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1  | INTRODUC TION

Understanding fishery impacts is imperative for understanding 
marine ecology and conservation. The global marine fishing indus‐
try currently dumps ~10 million tonnes (10%) of their annual catch 
(Zeller, Cashion, Palomares, & Pauly, 2018), yet discarding is probably 
one of the least studied component of fishery impacts. Discarding 
peaked at 18.9 million tonnes in 1989, but has since almost halved 

(Zeller et al., 2018), and changes in policy, such as discard bans in the 
European Union (EU Landing Obligation), Norway, Chile and New 
Zealand, are likely to reduce discarding further (Real et al., 2018). 
Although bans are desirable for stock management, they may have 
unforeseen knock‐on effects for the mammals, seabirds, fishes and 
crustaceans that scavenge on discharged biomass (Bicknell, Oro, 
Camphuysen, & Votier, 2013; Heath, Cook, Cameron, Morris, & 
Speirs, 2014; Oro, Genovart, Tavecchia, Fowler, & Martínez‐Abraín, 
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Abstract
Every year fisheries discard >10 million tonnes of fish. This provides a bounty for 
scavengers, yet the ecological impact of discarding is understudied. Seabirds are the 
best‐studied discard scavengers and fisheries have shaped their movement ecology, 
demography and community structure. However, we know little about the number of 
scavenging seabirds that discards support, how this varies over time or might change 
as stocks and policy change. Here, we use a Bayesian bioenergetics model to esti‐
mate the number of scavenging birds potentially supported by discards in the North 
Sea (one of the highest discard‐producing regions) in 1990, around the peak of pro‐
duction, and again after discard declines in 2010. We estimate that North Sea dis‐
cards declined by 48% from 509,840 tonnes in 1990 to 267,549 tonnes in 2010. This 
waste had the potential to support 5.66 (95% credible intervals: 3.33–9.74) million 
seabirds in the 1990s, declining by 39% to 3.45 (1.98–5.78) million birds by 2010. Our 
study reveals the potential for fishery discards to support very large scavenging sea‐
bird communities but also shows how this has declined over recent decades. Discard 
bans, like the European Union's Landing Obligation, may reduce inflated scavenger 
communities, but come against a backdrop of gradual declines potentially buffering 
deleterious impacts. More work is required to reduce uncertainty and to generate 
global estimates, but our study highlights the magnitude of scavenger communities 
potentially supported by discards and thus the importance of understanding the 
wider ecological consequences of dumping fisheries waste.
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2013). However, we are unable to understand fully the impact of 
changing discards because of knowledge gaps about the number/
biomass of scavengers supported, how this has changed over time, 
or might vary in the future (Heath et al., 2014; Real et al., 2018).

Seabirds are the best‐studied consumers of fisheries waste 
(Oro et al., 2013). At least 52% of species feed on discards to some 
degree, and fisheries waste is the dominant dietary item in some 
populations (Bicknell et al., 2013; Oro et al., 2013). Discarding has 
shaped many aspects of seabird ecology, including their movements 
(Bartumeus et al., 2010; Bodey et al., 2014; Votier et al., 2010), de‐
mography (Bicknell et al., 2013; Oro et al., 2013), and community 
structure (Church, Furness, Tyler, Gilbert, & Votier, 2019; Votier et 
al., 2004). However, there is still relatively little known about the 
number of seabirds that discards can support, how this has changed 
over time and what the likely consequences of changes in discard 
availability may be for seabird communities. A fuller understanding 
of the wider ecosystem‐level impact of fisheries requires that we 
address this knowledge gap.

The North Sea is one of the world's largest discard‐producing re‐
gions (Heath & Cook, 2015; Zeller et al., 2018) and also supports an 
internationally important seabird assemblage (Garthe, Camphuysen, 
& Furness, 1996; Paleczny, Hammill, Karpouzi, & Pauly, 2015). This 
makes it an excellent system in which to estimate the number of scav‐
engers that could be supported by discards. During peak production 
in the late 1980s and early 1990s, North Sea fisheries generated 
500,000–900,000 tonnes of discards (Alverson, 1997; Camphuysen 
& Garthe, 1997; Tasker et al., 2000). These were estimated to sup‐
port ~6 million seabirds in 1990 by Garthe et al. (1996) in one of the 
only studies to attempt such a calculation. However, the model used 
to arrive at that figure did not account for the precision of its input 
variables; had that uncertainty been propagated, the final estimate 
could have been very imprecise, with 95% confidence intervals of 
2.2 and 16.3 million birds (Stratoudakis, 1999). At the time, the larg‐
est source of variation in the model came from very poor estimates 
of discard production (Stratoudakis, 1999). More reliable discard 
data for the region have recently become available which show a 
steep decline in the overall quantity of fish discharged over the pe‐
riod 1978–2011 (Heath & Cook, 2015). Moreover, catches have also 
shifted away from fish that are easy for seabirds to swallow (~80% 
roundfish) to less easily ingested fish (>50% flatfish) (Heath & Cook, 
2015), and the North Sea seabird community has also changed since 
the 1990s (Church et al., 2019; Mitchell, Newton, Ratcliffe, & Dunn, 
2004). A robust estimate—acknowledging the inevitable uncertain‐
ties and accounting for long‐term changes in discarding practices—of 
the size and composition of the discard scavenging seabird commu‐
nity in the North Sea is therefore overdue.

Here, we combine data on seabird abundance, diet and energetic 
expenditure, together with fisheries discard rates and fish energy 
content into bioenergetics models to estimate the number of sea‐
birds that could be supported by discards in the North Sea around 
the time of peak production in the early 1990s (hereafter the 1990 
model) and following discard declines in the late 2000s (hereafter 
the 2010 model) (Figure 1). We implement our model in a Bayesian 

framework, so that we can carry over input parameter uncertainty, 
and present our estimates split by species and by breeding and non‐
breeding seasons. We also consider our work in the context of global 
fisheries so that a broader understanding of the size of scavenging 
communities might be achieved. Finally, we discuss the ecological 
implications of our results in light of potential changes in practise 
and policy around discarding—the least studied component of fish‐
eries impacts.

2  | METHODS

We focussed on a scavenger community of eight regular discard 
consuming North Sea seabird species (see Table 1 for species 
names, Figure 2) (Garthe et al., 1996). We define “discards” as fish 
and invertebrates caught at sea, but subsequently discharged, 
and “offal” as the livers and intestines of marketable fish removed 
during sorting and cleaning, and subsequently thrown overboard 
(Garthe et al., 1996). For the purposes of our model, we assumed 
that both the availability of natural prey and discards were con‐
stant in space and time. We implemented our bioenergetics model 
in JAGS (v.4.3.0; Plummer, 2003), an open‐source software for 
fitting Bayesian hierarchical models using Monte‐Carlo Markov 
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Chain (MCMC) simulation. We called JAGS via the “jagsUI” library 
(v. 1.4.9) for the open‐source software R (v.3.2.3). Inference was 
based on three chains (iterations  =  1,100,000 samples, burn‐
in  =  100,000, thinning  =  10). Convergence was checked visually 
and using Gelman–Rubin diagnostics (all 

⌢

R values ≤1.01) (Brooks 
& Gelman, 1998). Unless specified, we present means  ±  95% 
Bayesian credible intervals (CI).

2.1 | North Sea seabird abundance

For our 1990 model, we used published estimates of the rela‐
tive abundance (proportions) of the eight seabird species (s) de‐
rived from the European Seabirds at Sea (ESAS) database and the 
International Bottom Trawl Survey (IBTS) database (Camphuysen 
et al., 1995; Garthe et al., 1996). We used the mean from both 
studies from May to June and August to September 1994 as 
the estimates for the breeding abundance (MB,s) and the mean 
from both studies for surveys in January/February 1993 and 
October–November 1994 as the estimate for the non‐breeding 
abundance (MN,s; Table 1). For our 2010 model, we calculated 
mean abundances using data in the ESAS database (v.5.0). Birds 
were counted by strip‐transect during ship‐based surveys in the 
North Sea (Camphuysen & Garthe, 2004; Tasker, Jones, Dixon, 
& Blake, 1984). As coverage has been unequal over seasons and 

has decreased in recent years, the data from 2005 to 2010 were 
pooled to provide adequate coverage for ICES areas IVa, IVb and 
IVc and seasons, giving a total survey area of 23,266 km2. Species‐
specific correction factors were applied to account for birds that 
may have been overlooked (Stone et al., 1995). Abundances of 
all eight species were calculated separately for the three areas, 
and separately for a breeding (May to August) and a non‐breeding 
period (September to April). Abundances were averaged over the 
three areas (to give geographic regions equal representation) and 
converted to relative abundance proportions (Table 1).

2.2 | Seabird energy requirements

For both the 1990 and 2010 model, we calculated species‐specific 
annual energy requirements (RA,s) as:

where FB,s and FN,s are field metabolic rates (FMR, kJ/d) for 
breeding and non‐breeding seabirds, respectively, and PB,s and PN,s 
are species‐specific breeding and non‐breeding periods (in days), 
respectively (Table 1). To estimate FB,s and FN,s, we used a web‐
based Seabird FMR Calculator tool (https​://ruthe​dunn.shiny​apps.
io/seabi​rd_fmr_calcu​lator​) which uses a phylogenetically informed 
meta‐analysis of seabird FMR during the breeding season (Dunn, 

(1)RA,s = (FB,s × PB,s) + (FN,s × PN,s)

F I G U R E  1   Schematic outlining the 
bioenergetic model used to estimate 
the number of seabirds in the North 
Sea supported by discards in 1990 and 
2010

NORTH SEA SEABIRD DATA

NUMBER OF INDIVIDUALS SUPPORTED

NORTH SEA DISCARD DATA

Relative abundance of eight 
scavenging seabird species 
(1993–1994 and 2005–2010)

Species-specific annual 
energy requirements

Species-specific diet 
composition

Modeled fisheries landings and 
discards (incl. offal) in 1990 and 2010

Proportion available 
to seabirds

Seabird assimilation 
efficiency

Energy content 
of discards (using 

energetic equivalents)

Proportion of each species present × total energy available as discards

÷
Energy per species based on relative abundance and diet composition

Species specific energy requirements

https://ruthedunn.shinyapps.io/seabird_fmr_calculator
https://ruthedunn.shinyapps.io/seabird_fmr_calculator
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White, & Green, 2018). The tool requires inputs of species, body 
mass, colony latitude and breeding phase, and outputs an estimate 
of daily FMR with confidence intervals for each of three breeding 
phases: incubation, brood and crèche (post‐guard) (Dunn et al., 
2018). We used species‐specific mean body masses (Table 1) and 
assumed a colony latitude of 55°N in each case. We then used the 
resulting estimate ((x) ), lower (L) and upper (U) confidence intervals 
to estimate a standard deviation (SD) for each species (s) and in 
each of the three breeding phases (p) based on the central limit 
theorem:

We then used these values to specify informative gamma priors 
(Figure S1). For FN,s, we used the estimates of FMR during incuba‐
tion to specify Gamma(αN,s, βN,s), where αN,s = the shape parameter 
(x2

p,s
∕SD2

p,s
), and βN,s = the rate parameter (x2

p,s
∕SD2

p,s
) and p = incuba‐

tion. For FB,s, we combined all three breeding phase estimates by 
taking 999,999 random samples (sim) from a gamma distribution 
(using the “rgamma” function for R), with one third generated using 

the shape and rate from each breeding phase. We then extracted 
species‐specific shape (αB,s) and rate (βB,s) parameters for breeding, 
based on the mean (xsim) and SD (SDsim), where �B,s= (xsims∕SDsim)

2 and 
�B,s=xsims∕SD

2
sim

.

2.3 | Seabird diet composition

For both 1990 and 2010, we modeled the species‐specific discard 
proportions in the diet (αs) using 39 observations from 9 studies 
(ranges and sources shown in Table 1). We kept these values consist‐
ent for the two model runs because we could not find any specific 
diet studies for this period that reported a percentage of discards in 
the diet that fell outside of the range we used to capture the uncer‐
tainty in this parameter (Table 1; see Appendix S1 for details) and the 
one long‐term diet study that collected across this period showed no 
evidence of a temporal trend in the proportion of great skua pellets 
containing discards (Church et al., 2019; Figure S2). Because there 
were between 3 and 8 observations for each species (Figure S3), we 
combined the data and used beta regression, with species as a ran‐
dom effect:

where Yj are the 39 observed proportions, θs is the coefficient 
estimate for a species‐specific mean proportion, bj,s denotes a 
random effect accounting for repeat observations ( j) within spe‐
cies (s), and Xj is a vector denoting the species to which an ob‐
servation belongs. For θs, we specified a uniform prior bounded 
by the minimum and maximum observation in the data set: 
Uniform(0.08,0.8) and used Normal(0,1/σ2) for the hyper‐prior 
associated with the random effect (bj,s), where the precision was 
1/ σ2~Gamma(10−3,10−3). Finally, the amount of its annual energy 
requirement that each species could obtain from discards (DA,s) 
was as follows:

2.4 | Energy available from discards

To calculate the energy available as discards, we used informative 
gamma priors which we generated by multiplying the modeled mean 
(±95% CI) tonnage landed and discarded by mixed demersal fisheries 
in the North Sea in each of 1990 and 2010 (Heath & Cook, 2015) 
by energetic equivalents for each discard type (Table 2) to obtain 
calorific values (Figures S4and S5). To estimate the tonnage of ben‐
thic invertebrates discarded, we incorporated the published range of 
4–11 kg of benthic invertebrates discarded for every kg of sole (Solea 
solea, Soleidae) landed (Bergman, Fonds, De Groot, & Van Santbrink, 

(2)SDp,s=
(Up,s−xp,s)∕1.96+ (xp,s−Lp,s)∕1.96

2

(3)

Yj∼Beta(�j,�j),

�j=�j�j,s,

�j= (1−�j)�j,s,

log(�j,s)∼Normal(0, 10−3),

�j=�sXj+bj,s

(4)DA,S = RA,S×�S

F I G U R E  2   Posterior probability densities (polygons), means 
(solid line) and 95% CI (dashed lines) for the estimated number of 
seabirds consuming fishery discards in the North Sea during the 
breeding (light grey) and non‐breeding seasons (dark grey) in (a) 
1990 (b) 2010
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1996; Camphuysen et al., 1995; Fonds, 1991; Fonds, Verboom, & 
Groeneveld, 1992) as a uniform prior in both models. Offal was as‐
sumed to make up 11% of roundfish landed mass, 6.5% for flatfish 
(Furness, Hudson, & Ensor, 1988) and 2.35% for other marketable 
species caught (Garthe et al., 1996). Because these values were re‐
ported without uncertainty, we assessed the sensitivity of our model 
to them by rerunning the 1990 model with the offal produced from 
roundfish (11%), flatfish (6.5%) and other marketable species (2.35%) 
increased and decreased by 10%, and by rerunning the 2010 model 
with the amount of offal discharged set to zero (see Supplementary 
Results in Appendix S1). We then used the resulting mean (x), lower 
(L) and upper (U) 95% confidence intervals to estimate a standard 
deviation (SD) for each discard type (t) following equation 2 and used 
these values to specify informative gamma priors: Gamma(δt, ϖt), 
where δt = the rate parameter (�t=x

2

t
∕SD2

t
) and ϖt = the shape pa‐

rameter (�t=xt∕SD
2
t
).

Seabirds do not always consume all available discards, and con‐
sumption rates vary by type (Camphuysen et al., 1995; Garthe et 
al., 1996). We therefore modeled the uncertainty in the proportion 
of the available discards that seabirds consume for each discard 
type (Figure S6) using 61 observed consumption rates from 12 
field studies (see Table 2) for both 1990 and 2010. There were 
between 2 and 16 observations per discard type, so we combined 
the data and used beta regression, with discard type as a random 
effect. However, 100% of offal was eaten in one discard experi‐
ment (Garthe et al., 1996) and although 0 and 1 may be genuine 
outcomes, their logits are undefined (Smithson & Verkuilen, 2006). 
One common solution is to transform the data (Z) to a variable (Ź)  
in the open interval (0, 1) using a weighted average (Smithson & 
Verkuilen, 2006):

where N is the sample size and k is a constant. The choice of k is es‐
sentially arbitrary (Smithson & Verkuilen, 2006), and we used 0.5092 
(the mean of Z) as that minimized the overall error between Ź and Z 
(<7 × 10−17). Thus, the type‐specific consumption rates (ct) were mod‐
eled as:

where Źj are the 61 observed proportions transformed into the 
interval (0,1), ct is the coefficient estimate for a type‐specific mean 
proportion, bj,s denotes a random effect accounting for repeat ob‐
servations ( j) within type (t) and Vj is a vector denoting the discard 
type to which an observation belongs. For ct, we specified a uni‐
form prior: Uniform(0,1) and used Normal(0,1/σ2) for the hyper‐
prior associated with the random effect (bj,t), where the precision 
was 1/σ2~Gamma(10−3,10−3).

2.5 | Energy from discards assimilated by seabirds

The amount of energy animals assimilate varies according to food 
type. We used 45 data points from 14 studies on 22 seabird species 
consuming diets of various fish and invertebrate species to model 
the uncertainty in assimilation efficiency for all discard types (Figure 
S7) using beta regression. For both 1990 and 2010, the mean assimi‐
lation efficiency (Gmod) was modeled as:

where υj are the 45 observed assimilation efficiencies and Gmod is the 
coefficient estimate for a mean assimilation efficiency, for which we 
specified an uninformative uniform prior: Uniform(0,1).

The available energy from invertebrates (GI) was thus:

where CI is the beta distribution for the proportion of invertebrate 
discards consumed, EI is the gamma distribution for the energy avail‐
able from invertebrate discards, Gmod is the beta distribution for the 
modeled assimilation efficiency and WI is the uniform distribution 
Uniform(4,11) for the conversion factor from landings of sole. For 
the five other discard types (t; roundfish, flatfish, elasmobranchs, 
offal and other marketable species, Table 2) the available energy (Gt) 
was defined as:

where Ct is the type‐specific beta distribution for the proportion of 
discards consumed, Et is the gamma distribution for the energy avail‐
able from each discard type and Gmod is the beta distribution for the 
modeled assimilation efficiency. The total energy that can be assim‐
ilated from discards (G) was thus:

The annual total energy available to each seabird species (EA,s) 
was therefore:

where LB,s and LN,s are (respectively) the breeding and non‐breeding 
season seabird abundances.

2.6 | Number of seabirds supported

The number of seabirds supported by discards in each species (Ts) 
was as follows:

(5)Ź= (Z(N−1)+k)∕N

(6)

Źj∼Beta(𝜍j,𝜌j),

𝜍j=𝜇j𝜏j,t,

𝜌j= (1−𝜇j)𝜏j,t,

log(𝜏j,t)∼Normal(0, 10−3),

𝜇j= ctVj+bj,t

(7)

�j∼Beta(�j,�j),

�j=�j� ,

�j= (1−�j)� ,

log(�)∼Normal(0, 10−3),

�j=G mod

(8)AI= ((WI×EI)×G mod )×CI

(9)Gt= (Ct×Et)×G mod

(10)G=

5
∑

t=1

Gt+GI

(11)EA,S= ((G×PB,S)×MB,S)+ ((G×PN,S)×MN,S)

(12)Ts=EA,s∕DA,s
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and the total number of seabirds supported by discards in the North 
Sea (T) was as follows:

To provide a sense of relative scale, we compare our outputs to 
species‐specific estimates of the number of mature individuals in their 
European breeding populations (Table 3). We use the European breed‐
ing populations because individuals of at least some of our focal spe‐
cies move into, and winter in, the North Sea from other parts of Europe 
during their non‐breeding seasons (Fort et al., 2012; Frederiksen et al., 
2012; Garthe, Hallgrimsson, Montevecchi, Fifield, & Furness, 2016).

3  | RESULTS

3.1 | North Sea discard production

We estimate that North Sea mixed demersal fisheries generated 
509,840 (284,619–788,105) tonnes of discards in 1990 and this de‐
clined by 48% to 267,549 (138,627–436,251) tonnes in 2010 (Table 2). 
Roundfish, which are particularly important food for seabirds be‐
cause they can be easily swallowed, declined by 52.9% (Table 2; from 
120,768 to 56,819 tonnes). When taking account of the energetic 
content of different discard types, this represented 1,884 (1,471–
2,348) and 1,014 (767–1,305) billion kJ of biomass discarded from 
North Sea mixed demersal fisheries in 1990 and 2010, respectively.

3.2 | Number of seabirds supported by North 
Sea discards

After accounting for assimilation efficiency and consumption rates 
in 1990, 720 (499–984) billion kJ were available to support an es‐
timated 1.24 (0.68–2.65) million birds during breeding and 4.55 
(2.65–7.82) million during the non‐breeding season (Figure 2A). In 
2010, 385 (257–548) billion kJ of discards could be used, poten‐
tially supporting 656,255 (373,084–1,132,250) birds during breed‐
ing and 2.89 (1.62–4.96) million individuals during the non‐breeding 
season (Figure 2B). Combining the seasonal posteriors gave a total 
of 5.66 (3.33–9.74) million seabirds potentially supported in 1990 
versus 3.45 (1.98–5.78) million individuals—or 39% fewer—able to 
consume fishery discards in the North Sea in 2010 (Figure 3A).

3.3 | Changes in scavenging seabird community 
supported by discards

The largest declines in the number of birds supported were for 
northern fulmars and black‐legged kittiwakes, and the largest in‐
creases were in the numbers of lesser black‐backed gulls and com‐
mon gulls potentially feeding on discards (Figure 3B). Although the 
overall number has approximately halved, the annual estimate for 
2010 still represents ~18% (CI: 10–30%) of these eight species’ esti‐
mated European populations in 2015 (Table 3), with this percentage 

being highest for common gulls at ~44% (CI: 15–108%) and lowest 
for northern fulmars at ~6% (CI: 3–12%) (Table 3).

4  | DISCUSSION

In this study, we estimate the number of seabirds that could be sup‐
ported by discards in the North Sea, incorporating sources of uncer‐
tainty to include credible intervals around these values. We estimate 
that the change in discard composition (especially the decline in eas‐
ily swallowed roundfish) and the 48% fall in total discard production 
in the North Sea from 1990 to 2010 (Table 2) led to a reduction of 
~2.2 million seabirds (39%) potentially supported by fishery waste 
(Figure 2). Wide credible intervals notwithstanding, the mean decline 

(13)T=

8
∑

s=1
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F I G U R E  3   (a) Posterior probability density (polygon), mean 
(solid line) and 95% CI (dashed lines) for the total estimated 
number of seabirds consuming fishery discards in the North Sea in 
1990 (light grey lines and polygon) and 2010 (dark grey lines and 
polygon). A previous estimate of 5.9 million individuals supported 
by discards in 1990 (Garthe et al., 1996) is also shown (black dotted 
line) and (b) Posterior means (circles) and 95% CI (whiskers) for the 
estimated number of individuals consuming discards in the North 
Sea in 1990 (light grey) and 2010 (dark grey) for the eight focal 
species: BK, black‐legged kittiwake; CG, common gull; GG, great 
black‐backed gull; GS, great skua; HG, herring gull; LG, lesser black‐
backed gull; NF, northern fulmar; NG, northern gannet
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suggests substantial changes in the size and relative composition of the 
seabird scavenging assemblage. Below we discuss our approach, vari‐
ation among species and seasons, the ecological implications in light 
of changes to fishing policy and the global implications of this study.

4.1 | Estimates of discard production

Our estimates of the biomass discarded into the North Sea were 
based on hind‐cast estimates from landed weights and length distri‐
butions from scientific trawl surveys (Heath & Cook, 2015). Catches 
in the scientific trawl surveys might differ substantially from com‐
mercial catches by other gear types, and there are likely to be other 
biases that we could not account for in our model. Nevertheless, 
these discard estimates appear to be robust. Our 1990s estimate 
of 509,840 (284,619–788,105) tonnes is in keeping with earlier es‐
timates, which placed the total amount of fish and benthic inverte‐
brates at between 500,000 and 900,000 tonnes in the 1980s and 
1990s (Alverson, 1997; Camphuysen & Garthe, 1997; Tasker et al., 
2000). Of that, ~330,000 tonnes were considered to be demersal 
fish in 1991 (see Heath & Cook, 2015) which compares well to our 
estimate for 1990 of 260,770 (137,363–424,218; Table 2) for all fish 
combined. Regardless, understanding how many scavengers are 
supported by fisheries discards will continue to depend on improved 
methods to estimate the biomass thrown back into the sea (Heath & 
Cook, 2015; Stratoudakis, 1999).

4.2 | Challenges in estimating the size of discard 
communities

Models of the type used here are limited by the quality and extent 
of data available for specific input parameters (Stratoudakis, 1999). 
Despite there being relatively good data on discards (Heath & Cook, 
2015) and the diet and abundance of scavenging seabirds available 
for the North Sea, our input parameters contained considerable 
uncertainty. When propagated through the model, this resulted in 
estimates with wide credible intervals (Figure 2), highlighting the 
challenges of generating precise estimates of the size of the scaven‐
ger community supported by discards, as well as the value of mod‐
eling these in a Bayesian framework.

Minimizing the uncertainty when estimating scavenger numbers 
supported by discards requires careful collection of data on scaven‐
ger ecology and biology. For example, estimates of the proportion of 
discards that get consumed by seabirds predominately come from a 
large‐scale experimental programme undertaken in the North Sea 
in the 1990s in which potential prey were discarded at fixed inter‐
vals in time (Camphuysen et al., 1995; Garthe et al., 1996; Garthe 
& Hüppop, 1998). The number of experimental results was small 
for some discards types (e.g. elasmobranchs), so the posterior un‐
certainty for this input parameter was influenced by our choice of 
prior to some extent (Figure S6). Also, these experiments reflected 
discharge rates from some gear types, such as those used in long‐
line fisheries, but may overestimate consumption rates that occur 
following pulsed discharges from vessels engaged in demersal and 

pelagic trawling (Depestele, Rochet, Dorémus, Laffargue, & Stienen, 
2016). We are not aware of any comparable, large‐scale discarding 
experiments that have been undertaken since (presumably for logis‐
tical and financial reasons), although smaller‐scale and shorter‐term 
experiments continue (Depestele et al., 2016; Sotillo, Depestele, 
Courtens, Vincx, & Stienen, 2014). We recommend that such studies 
consider examining the influence of varying discharge rates on spe‐
cies‐specific discard consumption.

Bioenergetics models are also sensitive to changes in diet 
composition and we therefore rely on accurate dietary data to 
parametrize models of this kind. Our data came from a range of 
methods, including analysis of chick regurgitates, pellets, isotopes 
and observations at sea, thus providing a robust estimate of sea‐
bird diet. However, there are uncertainties. For instance, there is 
strong intra‐specific variation in discard consumption, with some 
individuals specializing on fisheries waste (Patrick et al., 2015; 
Tyson, Shamoun‐Baranes, Van Loon, Camphuysen, & Hintzen, 
2015; Votier, Bearhop, Ratcliffe, Phillips, & Furness, 2004; Votier et 
al., 2010). Moreover, the amount to which seabirds rely on discards 
likely changes with age (Votier, Bearhop, Fyfe, & Furness, 2008), 
their annual cycle (Sotillo et al., 2014) and the availability of natural 
prey (Votier, Furness, et al., 2004). However, there remain little data 
available to parameterize a link between individual behaviour and 
population level effects of the kind relevant to our model (Patrick et 
al., 2015). Therefore, we urge that monitoring programmes incorpo‐
rate data on seabird diet, at‐sea distribution and abundance, across 
the full annual cycle and all components of the population to enable 
an effective ongoing assessment of the effects of changing discards 
on seabird populations.

4.3 | Ecological implications of declining discards on 
seabird communities

Shrinking stocks and discard bans will reduce fisheries waste, lead‐
ing to less food for scavengers. Our study was able to quantify this 
change in the North Sea over a period of profound change. The re‐
vised estimate of 5.66 (3.33–9.74) million seabirds potentially sup‐
ported in 1990 declined to 3.45 (1.98–5.78) in 2010. Other studies 
have suggested that the relative biomass of scavenging seabirds and 
marine mammals can be maintained under scenarios where discards 
from fisheries are reduced gradually (Fondo, Chaloupka, Heymans, 
& Skilleter, 2015; Heath et al., 2014), perhaps because these groups 
are opportunistic and can quickly switch their diet away from fish‐
eries waste (Tew Kai et al., 2013; Votier, Furness, et al., 2004). 
Abrupt changes associated with discard bans, like the EU's Landing 
Obligation, however, are expected to have substantial impacts on 
these species (Bicknell et al., 2013; Depestele et al., 2016; Fondo et 
al., 2015; Heath et al., 2014; Moutopoulos, Tsagarakis, & Machias, 
2018). In this context, it is noteworthy that our results suggest that a 
39% decline in abundance of scavenging seabirds could already have 
occurred alongside a relatively gradual reduction in discards (~48%) 
over the two decades of our study, with some species affected more 
than others.
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The biggest declines in our model were in the numbers of north‐
ern fulmars (~1.4 million or 77%), black‐legged kittiwakes (~1.3 
million or 64%), herring gulls (~630,000 or 53%) and great black‐
backed gulls (~18,500 or 11%) supported (Table 1, Figure 2). These 
reductions represent significant percentages of the 2015 European 
population (Table 3) and of the numbers of these species thought to 
winter in the North Sea in the late‐1980s and early‐1990s; ~1.9 mil‐
lion northern fulmars, ~1 million black‐legged kittiwakes, ~900,000 
herring gulls and ~300,000 great black‐backed gulls (Skov, Durinck, 
Leopold, & Tasker, 2007). These declines also coincide with pop‐
ulation declines at some North Sea colonies in each of these spe‐
cies (BirdLife International, 2015; Camphuysen & Gronert, 2012; 
Church et al., 2019; Foster, Swann, & Furness, 2017). The reasons 
for these declines are not entirely clear, and may not necessarily be 
underpinned by changes in discards (Skov & Durinck, 2001), though 
changes in herring gull numbers at some sites have been linked to 
declining discards (Foster et al., 2017). Some species may have been 
better able to buffer the gradual reduction in discards by feeding 
on alternative prey, being more aggressive competitors or by dis‐
persing to novel habitats (Bicknell et al., 2013; Votier, Furness, et al., 
2004). Prey switching could help to explain the increases in numbers 
of northern gannets (30%) and great skuas (38%) that could be sup‐
ported (Table 1, Figure 2). Both species are dominant scavengers at 
fishing vessels (Oro et al., 2013) whose populations have remained 
relatively stable or increased during 1990 to 2010 (Hayhow et al., 
2017). There were also sharp increases in the number of common 
(191%) and lesser black‐backed gulls (633%) that could be supported, 
with our estimates suggesting that >30% of the European popula‐
tion of both species are potentially using North Sea discards at some 
point during their annual cycle (Table 3). These large increases are 
likely because of changes in the distribution of these gulls (Oro et al., 
2013) leading to higher relative abundance in the European Seabirds 
at Sea data used in our model.

Lastly, exactly how the ecological impacts of discard bans will 
manifest themselves remains unclear. They are likely to interact with 
climate‐mediated declines in forage fish abundance (Church et al., 
2019) and concurrent changes in policy that will reduce the accessi‐
bility of other anthropogenic subsidies, notably food waste at landfill 
sites (Real et al., 2017). Some scavengers will decline dramatically if 
they cannot find alternative prey sources (Heath et al., 2014), while 
other species may benefit from discard bans via reduced bycatch 
risk (Bicknell et al., 2013). Moreover, as the options that some spe‐
cies have relied on in the past disappear, trying to exploit alternative 
food sources could bring them into greater conflict with humans. For 
example, large gulls may be forced into inland breeding and feeding 
grounds (Bicknell et al., 2013; Osterback, Frechette, Hayes, Shaffer, 
& Moore, 2015) where they are considered a nuisance, and great skua 
are likely to switch to predating other smaller seabird species (Votier, 
Furness, et al., 2004), some of which are now of conservation con‐
cern (Church et al., 2019). This could ultimately lead to a conundrum 
for management, as has occurred in southern Africa where great 
white pelicans (Pelecanus onocrotalus, Pelecanidae) and Cape fur seals 

(Arctocephalus pusillus pusillus, Otariidae) are actively managed to 
stop them predating on four Endangered seabird species (David et 
al., 2003; Mwema, de Ponte Machado, & Ryan, 2010). Finally, despite 
legislation, it is unclear how Landing Obligations will be implemented 
or enforced, highlighting further the need to quantify accurately dis‐
card production and its potential effect on scavengers.

4.4 | Global context

While we focus on the North Sea, seabirds are attracted to feed 
on discards worldwide with associations reported from the south‐
west Atlantic (Granadeiro, Phillips, Brickle, & Catry, 2011), west‐
ern Mediterranean (Oro & Ruiz, 1997), southern South America 
(Gonzalez‐Zevallos & Yorio, 2006), Baltic Sea (Garthe & Scherp, 
2003), northwest Atlantic (Montevecchi, 2002), southeast Atlantic 
(Crawford, Underhill, Raubenheimer, Dyer, & Martin, 1992), Canary 
Current (Camphuysen & van der Meer, 2005) and Australian waters 
(Svane, 2005). There are no global estimates of the number of sea‐
birds that fisheries waste could support, but it is likely to be consid‐
erable given the global biomass of discards across all ocean basins. 
The historically high biomass of North Sea discards probably led to 
a particularly large scavenging community, making it inappropriate 
to scale our estimate up to other regions. Instead, a reliable global 
estimate would require not only detailed data on discards (Zeller 
et al., 2018) and seabird numbers (Paleczny et al., 2015), but also 
the composition of seabirds attending vessels and their diet. Such 
studies would be of particular significance given the large regional 
changes in discard production over time (Zeller et al., 2018).

5  | CONCLUSIONS

We estimate that North Sea discards can support ~3.45 million 
seabirds per annum, but this declined by 39% from close to the 
period of peak discard production in the 1990s, indicating a shift 
away from a scavenger‐dominated ecosystem. These findings 
are important in the context of global discard declines and bans, 
including the EU's Landing Obligation, as this gradual reduction 
may lessen any deleterious impacts of an abrupt drop in discards. 
Nevertheless, discards still have the potential to support large 
numbers of scavenging seabirds in the North Sea and the gen‐
eral lack of empirical data on the impacts of fishery discards at 
an ecosystem level makes it difficult to predict the real ecological 
consequences of the landing obligation. Further work is needed 
to monitor the response of seabird scavengers to changing fish‐
ery practices where discard bans are implemented and to quantify 
their numbers globally, particularly if we are serious about adopt‐
ing an ecosystem‐level approach to fisheries management. Data 
on global discard rates are available (Zeller et al., 2018), but in‐
formation on seabird community composition, their diet and how 
this varies over time are also required in order to construct robust 
bioenergetics models.
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