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Abstract
The coastal impacts of climate change, including flooding and erosion due to storms and sea-level rise, and the
possible adaptation responses have been studied using very different approaches; from very detailed site-
specific, process-based investigations and interventions to global macroeconomic assessments of coastal zone
vulnerability. This paper presents a flood defense real option analysis methodology that values potential
investment decisions made in the building and maintaining of flood defenses around electricity infrastructure
at local spatial scales for a large region. Real option analysis embraces uncertainty in future climate conditions
and flexibility in the management of investment projects to produce a more precise optimal outcome than
attained with traditional discount cash flow analysis alone. The method uses high-level analysis from flood
inundation models to assess the cost of flooding for energy infrastructure at the present-day up to the highest
plausible sea-level rise for the UK in 2100 known as the H++ scenario, which projects a sea-level rise of 1.8 m.
These costs feed into a real option valuation model able to identify which energy infrastructure will benefit
from investment, and when. This northwest UK study identifies two infrastructure sites that, today, would
benefit from flood defence investment over discount cash flow analysis, increasing to an additional 14 in 2050.
Using this method has identified 46 sites that would benefit from deferring flood defence investment now,
reducing to 35 sites in 2050. This method of project valuation can be applied to any feature within the
floodplain, e.g. infrastructure or residential housing, making it an adaptable and useful tool in identifying
vulnerable features that require investment to ensure they stay resilient to extreme flood events in the future.
This work is the result of an inter-disciplinary collaboration between hydrodynamic modelling, flood risk
assessment and economics. The outputs of which are ideal to be fed into a decision-support tool, allowing
stakeholders to interrogate and disseminate information about the spatial locations they are interested in.
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1.0 Introduction 

 

The impacts of marine flooding in densely populated and infrastructure-rich coastal 

cities have received a lot of attention in the climate change impact literature 

(Bosello and De Cian, 2014). Hurricane Katrina killed more than 900 people from 

flooding alone on the US Gulf coast in 2005. In Europe, Storm Xynthia killed more 

than 50 people in 2010 through flooding on the French Atlantic coast. Most recently 

the super typhoon Haiyan in the Philippines generated storm surges up to 7 m in 

height and causing widespread damage and considerable fatalities (Lapidez et al., 

2015). Coastal areas are characterized by high concentrations of human 

settlements: population density is on average three times the global mean 

(McGranahan et al., 2007; Small and Nicholls, 2003) and large numbers of people 

and assets are already exposed to coastal flooding (Bosello and De Cian, 2014). 

Exposure to flooding is expected to increase with growing coastal populations and 

the economic relevance of coastal cities (Nicholls, 2004; Nicholls and de la Vega-

Leinert, 2008). Accordingly, the impact of climate change, particularly sea-level 

rise (SLR) in coastal areas and cities is a major concern (Handmer et al., 2012; 

Stevens et al., 2015). 

Due to its prevalent location in coastal areas, climate change, sea-level rise 

and extreme events represent significant challenges to the global energy 

infrastructure and supply (Reichl et al., 2013). The UK Energy Networks 

Association (ENA) identifies the biggest pressure to be from coastal flooding - if 

an electrical substation is flooded costs in clean up and repair can be high and 

ongoing costs from disruption and loss of supply have the potential to add to this 

significantly (Energy Network Association, 2009). Research has found that 

electricity generation infrastructure is vulnerable to severe weather and water 

shortages (Bartos and Chester, 2015; van Vliet et al., 2012); and transmission and 

distribution infrastructure is likely to be stressed by rising demand and increasing 

temperatures (Bartos and Chester, 2015; Government Accountability Office, 2014; 

van Vliet et al., 2012). In addition it is also likely that the impacts may be amplified 

due to energy system interdependencies, and the compounding effect of multiple 

climate impacts (Government Accountability Office, 2014). 

Increased temperatures contribute to future risk to infrastructure resilience 

by derating power lines and transformers while also increasing vegetation 

interference on power lines. An increased likelihood of droughts and heatwaves 

mean soils are more likely to dry out, creating earthing problems with associated 

potential ground movement. However, it is currently accepted that the relative 

impact of these risks will be minor (Figure 1) (Cradden and Harrison, 2013; Energy 

Network Association, 2009, 2007).  

A temperate, maritime nation, the UK is susceptible to coastal flooding 

(Prime et al., 2015). The storm surges in the winter of 2013/2014 caused a large 

amount of damage in the UK, particularly to infrastructure located on or near the 

coast. The events of 2013/2014 were clustered together (Wadey et al., 2014) 

resulting in the stormiest period in 143 years (Matthews et al., 2014). Being resilient 
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to extreme events like storm surges means that there would be little or no damage 

to repair which could be considerable after a cluster of extreme events impacting 

on the coast. Under rising mean sea levels that are expected up to and beyond 2100, 

the damage from coastal flooding is expected to increase so adaptation must be 

made to combat rising damage cost. The UK has three times as many coastal 

facilities than any other European country (Brown et al., 2013). The infrastructure 

or assets that supply electricity to consumers can be split up into three different 

types of asset: 

• Generation assets 

• Transmission assets 

• Distribution assets 

Generation consists of assets that generate electricity, such as coal, oil and 

gas power stations, but also include nuclear and renewable sources such as wind 

and solar. Transmission takes the high voltage electricity generated by power 

stations and transmits it nationally and internationally to regions for distribution to 

consumers. Distribution is where the high voltage electricity is stepped down to 

more useable voltage for local consumption - this is also where renewable 

electricity supplies tend to feed in. This study focuses on the larger distribution 

infrastructure at risk, the primary and grid substations. Secondary substations are 

not considered in this study as they are located in the area that they supply and if 

they are flooded then the area that they supply is usually also flooded, so the 

resilience of the local area is more important than the impact of the substation being 

flooded. Other assets in the electricity networks such as pylons, towers, cables etc. 

are not believed to be typically impacted by or vulnerable to coastal flooding, unless 

such flooding is long-term and access for maintenance/repair purposes is prevented. 

Investment in maintaining and improving the resilience to coastal flooding is 

therefore important, particularly when the potential impacts of climate change and 

sea-level rise are considered. 

Combating the impacts of a changing climate will require a 

multidisciplinary approach, consisting of combining a global assessment of climate 

change expressed as regional projections of relative sea-level rise in conjunction 

with a flood inundation model assessing the flood risk at the regional scale, with a 

financial methodology assessing the relative costs of strategic intervention and 

flooding damage, clean-up and repair. This approach also provides detail on 

optimal times for investing in building resilience to the impact of climate change. 

1.1 Energy Infrastructure, Risks and Investment 

All markets require strategic investments in an environment of uncertainty. 

Typically, the response to this uncertainty is by making corrections on project 

implementation, investing in stages, and/or deferring projects (Pringles et al., 

2015). These decisions to invest or disinvest depend on the development of events 

and traditional modeling procedures such as cost-benefit analysis (CBA). The UK 

ENA produced matrix (Figure 1) highlights the different risks that are projected to 

impact on energy infrastructure by 2100 rated by relative impact and relative 

likelihood. The greatest impacting and highest likelihood risk to resilience is coastal 

flooding (R12).  
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One of the main causes of coastal flooding is from storm surges, which 

occur when high winds and low atmospheric pressure during a storm raise the level 

of the tide at the coast. If this occurs in conjunction with a high tide, particularly a 

spring tide then water levels above the predicted tide can occur resulting in an 

extreme water level (EWL). This can lead to flooding, resulting in infrastructure 

damage and failure. It is important that this infrastructure is able to withstand and 

be resilient to extreme events that could occur now and also in the future. As the 

infrastructures resilience will decrease due to increasing mean sea-levels (Haigh et 

al., 2010; Menéndez and Woodworth, 2010; Wahl et al., 2011). If future SLR can 

be known with any degree of certainty, then cost-effective investments in defenses 

to maintain and improve the resilience to coastal flooding could be made. Future 

SLR has a large degree of uncertainty, which increases the longer the time horizon 

is for the projection of SLR being made (Jevrejeva et al., 2014). This uncertainty 

makes the decision to invest in flood defenses difficult as building defenses based 

on the most likely estimate of SLR could result in defenses that are not adequate 

for the extreme flood events that are realised in the future; equally building defenses 

to cope with the highest level of SLR projected is highly likely to waste resources 

due to the low probability of this SLR being attained. 

When traditional investment frameworks are applied to infrastructure 

investments, they readily lead to suboptimal irreversible decisions being made. 

Under- or over-estimation of the future SLR could lead to investments not being 

made in substation sites that would benefit from flood defenses and investments 

being undertaken at sites that are unnecessary. The most widely used traditional 

investment procedure is known as Discounted Cash Flow (DCF) where the future 

cash flows of a project are compared with the benefits of the project. This technique 

allows the summation of the economic performance of the project into a single 

metric known as Net Present Value (NPV). DCF has limitations in its methodology 

where any flexibility in investment decisions is not accounted for (Majd and 

Pindyck, 1987; Phung, 1980).  

In investment environments where there is uncertainty, such as the future 

climate, management flexibility can provide economic value and methods that 

recognize and value this flexibility has been developed in the past. Real option 

analysis has proved to be a powerful approach for addressing this valuation 

flexibility. It has been adapted from financial option analysis, which values stocks 

and shares to value physical assets. This analysis assesses the implied value of 

flexibility that is embedded in many investment projects. In contrast to DCF 

valuation that considers management as a passive player, real options assume that 

management is an active player able to take advantage of new information. This 

flexibility results from the acknowledgement that investment plans are modified or 

deferred in response to the arrival of new information such as updated SLR 

projections. While the new information can never fully complete the picture, it can 

help to reduce the uncertainty in investment. Real option analysis has been applied 

to energy generation projects that consider different types of options and 

uncertainties - these include, flexible investment in nuclear power plants in Japan, 

hydroelectric plants in Brazil and renewable energy projects in the UK (Abadie and 

Chamorro, 2014; Caminha-Noronha et al., 2006; Kiriyama and Suzuki, 2004). 
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Using real option analysis for other areas of the energy industry such as 

transmission and distribution networks is much more limited, particularly for 

investments in increasing the resilience of infrastructure.  

 

Figure 1: Risk matrix showing biggest projected risks to energy infrastructure up 
to 2100. This assumes that no adaptation measures are taken and that the high emissions 
scenario of United Kingdom Climate Projections 2009 (UKCP09) at the 90% probability 
level is the climate scenario that is realised (Energy Network Association, 2009). 

1.2 Study Site 

The site selected for this study is part of the northwest UK coastline running from 

Southport in the south to Morecambe in the north, incorporating Blackpool and 
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Fleetwood. This case study provides an example of the regional flood hazard to 

infrastructure to demonstrate how the methodology could be applied to other 

regions. Its location is shown within the wider context of the UK (Figure 2A) and 

as a close up of the whole area (Figure 2B). The Environment Agency’s (EA) flood 

risk map presented in Figure 2C, indicates large parts of this region are in an area 

of medium to high flood risk.  

 

Figure 2A: Map showing location of study area within the United Kingdom. Figure 2B: Map 
showing close up of study area with place names and finally Figure 2C: showing the extent 
of the Environment Agency Flood Risk for the study area (Environment Agency, 2016). 

Electricity Northwest, the region’s electricity distribution company, 

provided a database detailing all of their assets amounting to over 3000 different 

assets. Distribution infrastructure has three types of substation, grid, primary and 

secondary. Grid and primary feed into large areas and consequentially have a large 

impact on the region if flooded the location of these substations is shown in Figure 

3, which shows the geographical locations of the grid and primary substations. 

From Figure 3 it is clear that most of the substation assets are located in areas of 

risk, i.e. close to the coast, rivers etc. Comparing the asset locations with the flood 

risk map from the EA indicated that some assets are in a flood risk area already and 

this number will only increase up to 2100.  

2.0 Methodology 

The methodology undertaken was to identify all the suitable substations in 

the selected study area, the local distribution company Energy Northwest provided 

a spatial dataset with the sizes and locations of all their assets. The size threshold 

was set at 30 m, all substations with an perimeter greater or equal to this was 

selected, this resulted in a list of 388 substations that could potentially require flood 

defenses during extreme events. 

The methodology presented in this paper, that combines flood inundation and 

economic analysis involves multiple steps to produce an annual cost due to 

flooding. This cost can be viewed as a revenue stream of damage avoided if flood 
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defense investment takes place. The revenue stream will continue for the whole of 

the defense lifetime and will likely increase over time due to higher costs of 

flooding with increased mean sea-level. The costs of building and operating the 

defenses can be offset from this revenue stream, giving a net present value for flood  

 

 

Figure 3: Black triangles denote the location of the 388 grid and primary substations in the 
study area (defined as having a perimeter greater than 30 m). 
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defense investment decisions. This means that a SLR projection value is required 

for every year of the defense life span starting from the potential investment point. 

In this study the defense life span is 50 years so investment decisions can only be 

assessed 50 years before the end of the SLR projection, which in this case is 2100. 

However, longer SLR projection datasets and defenses with a shorter life span can 

be used to increase the investment decision time horizon. 

2.1 Storm Surge Data 

To simulate these extreme events, Environment Agency data was used, this 

consisted of 16 extreme water levels at 2 km intervals around the UK coastline. The 

water levels correspond to a given probability of exceedance, e.g. 1 in 1 year, which 

is the water elevation that has the probability of occurring on an annual basis or 1 

in 100 years which is the water level that has the probability of being exceed of 1% 

in any given year. The full list of probabilities available are: 

1. 1 in 1 year 

2. 1 in 2 years 

3. 1 in 5 years 

4. 1in 10 years 

5. 1 in 20 years  

6. 1 in 25 years 

7. 1 in 50 years 

8. 1in 75 years 

9. 1 in 100 years 

10. 1 in 150 years 

11. 1 in 200 years 

12. 1 in 250 years 

13. 1in 300 years 

14. 1 in 500 years 

15. 1 in 1000 years 

16. 1 in 10,000 years 

This dataset provides the data required to simulate a wide range of potential 

extreme events in the present day. With increasing mean sea-levels, the impacts of 

these extreme events will be greater. The United Kingdom Climate Projections 

2009 (UKCP09) gave a maximum plausible sea level rise of 1.8 m under their H++ 

scenario. To investigate the impact of this possible range of sea level rise 21 

intervals of sea level rise were simulated for each of the 16 extreme events provided 

by the EA data.  

The method used to simulate coastal flooding follows the same 

methodology as (Prime et al., 2015) where extreme water levels with a given 

probability of occurrence are combined with a synthetic storm surge curve and a 

predicted high tide to create a storm tide of a specific likelihood. This produces a 

synthetic storm surge that peaks at the desired extreme water level and rising and 

falls in a way that is appropriate to the location around the UK. A SLR parameter 

can also be added across all water elevation values to simulate the storm tide in the 

future based on SLR projections. In Prime et al. (2015) this described process was 

only completed for one extreme water level likelihood and one sea-level rise 
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projection. However, for this study the process was applied across all 16 

likelihoods, from 1 in 1 year up to 1 in 10,000 years and all 21 sea-level rise 

intervals giving 336 discrete (16x21) scenarios to simulate. 

For this study, the present-day sea defenses will be incorporated in the flood 

inundation simulations and assumes that these defenses will not be upgraded over 

the time period of this study. This work will be examining up to the year 2100, it is 

recognized that this is a long time for power generation and transmission. 

Historically this amount of time has shown a large amount of change and it is likely 

that in this time period large changes may occur, for example more local generation 

from solar panels etc. This work has assumed that there is relatively stationarity in 

the electrical grid in that all the 388 substation sites will continue to be needed and 

will be worth defending from extreme events in the future. 

2.2 Flood Inundation Simulations 

To simulate the impact of coastal flooding a flood inundation model was used. 

Previous studies have used a SLOSH model to estimate storm surge damage to 

coastal settlements, (Genovese and Green, 2015). (Barnes et al., 2017) used the 

CLARA model for storms in coastal areas and estimated damage values. However, 

for this work the model chosen was LISFLOOD-FP. LISFLOOD-FP was first 

formulated by (Bates and De Roo, 2000) in order to provide a computationally 

efficient two dimensional hydrodynamic flood inundation model. LISFLOOD-FP 

is a freely available 2D finite difference model based on a storage cell approach. It 

has been continually developed since its inception, improving computational 

runtime and accuracy and has been used successfully in coastal flooding 

applications, including flood assessment within the study area. LISFLOOD-FP has 

also been tested on multiple occasions, and was found to have a good fit between 

the predicted and observed flood inundation extent making it suitable for this study 

(Smith et al., 2011). 

LISFLOOD-FP was run for each of the 336 simulations with the horizontal 

resolution of the domain set at 50 m. This is comparatively coarse for flood 

inundation, but the large number of simulations meant that the computation cost of 

running a given simulation had to be reduced from several days (as for a 5 m 

resolution used by Prime et al., 2015) to around an hour. LISFLOOD-FP then 

provides the maximum water depth experienced throughout a given simulation at 

each of the 338 locations that correspond to an identified substation. This results in 

336 levels of flooding (which might be zero) for each substation. Figure 4 shows 

an example flood inundation output from a simulation for the study area. 
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Figure 4: Example inundation output for study area, scenario shown is a 1 in 200 
year 0.5% annual probability event with 0.5m of SLR realized. 
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2.3 Calculating Economic Damages 

To determine the impact of a flood inundation scenario a monetary cost needs to be 

derived. This is achieved using a depth damage (DD) curve (Penning-Rowsell et 

al., 2014). A depth damage curve shows the relationship between floodwater depth 

and the relative clean up and repair costs. Beyond the scope of this study, other 

costs can be added to the curve, that also take into account disruption and 

compensation paid to consumers as well as the cost of not transmitting electricity 

when the substation is damaged. This curve was provided by the Flood and Coastal 

Erosion Handbook 2014 (Penning-Rowsell et al., 2014). This publication details 

many different depth damage curves for different infrastructures, different types of 

residential housing and also different types of arable land. It also provides curves 

for different forms of flooding, from the type of water (salt water or fresh) to the 

length of duration (short or long). Short duration is classified as a few days, typical 

of a storm surge. Whereas long is classified as being over several days, typical 

timescales of river flooding. For this work the short duration salt water curve for 

substations was used (Figure 5) this also shows the curves used to as part of the 

sensitivity analysis where each monetary value on the short duration salt water 

curve was increased by 30% and decreased by 30%. The resulting curves will also 

be used within the analysis to see how sensitive the results are to the monetary 

damage costs. 

 

Figure 5: Depth damage (DD) curve for salt water short duration flooding. Black circles 
show the cost in flooding in £ per m2 for different flood water depths. The dashed lines 
show the plus and negative 30% values used in the sensitivity analysis (Penning-Rowsell 
et al., 2014). 
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For each substation and for each simulation the cost of flooding can be 

calculated using this curve. Data provided by Electricity Northwest allowed the 

area of each substation to be calculated and used in calculating economic damage. 

Following the methodology used in Engineering Technical Report 138 provided by 

the Energy Networks Association all substations sites should have a freeboard of 

0.3 m from flooding so this amount was added to each flood water depth (Energy 

Network Association, 2009).  

2.4 Estimated Annual Damage/Vulnerability 

Once the cost for each combination of storm likelihood and sea-level rise has been 

calculated at every grid cell that corresponds to a substation site, the estimated 

annual damage (EAD) at each site can be derived. EAD is the annualized cost of 

the damage due to flooding for all the storm likelihood flood events. Figure 6 shows 

the process in deriving Estimated Annual Damage (EAD) from the flood water 

depth value at each substation site location for each of the 336 flood inundation 

simulations. 

 

Figure 6: Flow chart showing the process in calculating EAD for each grid cell containing 
an infrastructure asset. 

EAD is calculated by multiplying the monetary impact of each of the storm 

likelihood events for each asset by its probability of occurrence. For example, a 1 

in 200-year recurrence interval has a probability of 0.005 or 0.5%. These values are 

then summed for each of the 16-recurrence interval at each SLR projection. The 

output from this is 21 values of estimated annual damage (EAD) ranging from 0 m 

of SLR (present-day) to 2 m of SLR (H++ scenario). This process is repeated for 

each of the 388 grid cells that correspond to a substation asset shown in Figure 3. 
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An example of one of these EAD versus SLR relationships for substation number 

67 is shown below in Figure 7. 

 

Figure 7: Changes in EAD for substation number 67 in study area. Black dots show the 
increase in EAD in relation to the increase in mean sea-level. 

Figure 7 shows the EAD at each SLR interval for a substation, for this 

particular site it is clear that there would be no flooding damage across all extreme 

events up to around 0.6 m SLR, after that it would only be for very unusual large 

storms. From around 1.1 m of SLR it is clear that flooding and damage would be 

much more likely and it can be seen that there is a threshold or tipping point in EAD 

where it significantly increases relative to SLR between 1.3 m and 1.4 m for 

substation 67. Once the SLR to EAD relationship for each asset is calculated the 

EAD of the asset as a result of coastal flooding can be projected into the future 

using any given SLR projections. 

2.5 Sea-Level Rise projections 

The sea-level rise projections used in this study are from the UKCP09 (Lowe et al., 

2009) high emission scenario regional relative sea-level rise projections for the 

study area. The majority of large UK key infrastructure providers use UKCP09 

within their climate adaptation reports (Duffield and Macgregor, 2012; National 

Grid, 2010) therefore using this dataset for this study will be acceptable to most 

investment managers within these industries. 
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The data is provided in the form of a 5th, 50th and 95th percentile SLR value 

for every year up from 2010 to 2100. Global sea-level rise projections could also 

be used, but consideration needs to be made due to the fact that sea-level rise varies 

spatially around the world so the global values may not be appropriate. As the 

projections are relative, they also take into account glacial isostatic adjustment 

(GIA) where the land is still adjusting to the removal of the weight of ice sheets 

present during the last glacial maximum. This land movement can be positive 

(uplift) or negative (subsidence) and varies spatially around the world.  

As the 5th and 95th percentile SLR projections are equidistant from the 50th 

percentile, a suitable distribution to fit to these projections would be a normal or 

Gaussian. Figure 8 shows an example of this normal or Gaussian distribution for 

the year 2100. 

 

Figure 8: Sea-level rise distribution for the year 2100 based on a normal probability 
distribution. 

The 91 normal distributions available from the UK Climate Projections 

2009 (UKCP09) for each of the years from 2011 to 2100 can be drawn to provide 

a possible sea-level rise “pathway” from 2010 to 2100. Each of the annual normal 

distribution provides a potential SLR value, e.g. on average this would be 0.6 m for 

the year 2100 but if sampled multiple times, one in twenty (95th percentile) would 

be over 1.2 m. This process was repeated 100,000 times across all the annual 

distributions giving 100,000 potential SLR “pathways” up to 2100. The SLR values 

from these pathways were converted into EAD cost using the EAD against SLR 

curve that has been produced for each substation site. For SLR values between the 
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0.1 m intervals, the EAD value was interpolated from the surrounding data points. 

Thus, for each substation site, this results in 100,000 values in EAD that reflect the 

SLR projections produced by UKCP09. These annual EAD values represent the 

damage averted if flood defenses were present and therefore represent “revenue” 

generated by investing in flood defenses. 

As well as using a normal probability distribution, other distributions could 

potentially be used. Being able to capture the lower probability but higher impact 

events would help to potentially identify which assets are vulnerable to these lower 

probability sea-level rise projections. As can be seen from Figure 9, the 95th 

percentile SLR value is approx. 1 m. However, the H++ scenario that is part of 

UKCP09 has a value of 1.8 m, which (while there is no probability attached to this 

value) recent research projects a 95th percentile value of 1.8 m for global sea-level 

rise in 2100 (Jevrejeva et al., 2014). While this is a global SLR projection, the UK 

experiences SLR values that are comparable to global projections. A log-normal 

probability distribution is able to capture this as a tail in the probability distribution. 

Figure 9 shows a log-normal distribution based on the same UKCP09 SLR 

projections for 2100. 

 

Figure 9: Sea-level rise distribution for the year 2100 based on a log-normal probability 
distribution. 

Comparing the results using both sets of probability distributions will show 

what effect the lower probability high values of SLR have on the vulnerability of 

energy assets up to 2100. 
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2.6 Defense Investment Cost 

There are many different defense types that could be utilized to defend substation 

sites, these range from permanent defenses, temporary barriers and flood proofing 

the substation buildings. There are also demountable defenses where defense walls 

are slotted into pre-mounted posts. However, like temporary defenses this requires 

a site visit to erect the defenses before the extreme event occurs (e.g. due to a storm 

surge warning). For this study, demountable defenses were the defenses selected to 

protect all 338 studied sites, future work could assess the benefits of using different 

defense types.  

The demountable defense installation cost was calculated by using the 

perimeter of the asset as the length of defense needed and multiplying that cost by 

the £ per m for the demountable defenses used in this study. The £ per m varies 

depending on the maximum modelled flood water depth (the max depth 

experienced over all simulations) at the asset site. The cost of operating and erecting 

the defenses was also added to the investment cost. Equation 1 shows the method 

in calculating the total investment cost for installing and operating demountable 

defenses for each asset. 

(1)   𝐷𝐼𝐶 = (𝑃 × 𝑀 + 𝐸𝐴𝑂)         

where: 

• DIC = Defense Investment Cost 

• P = perimeter length of asset 

o M = £ per meter to build defenses (dependent on max flood water 

depth) 

• EAO = Estimated Annual Operational Cost (see equation 2) 

Calculating the cost per meter to erect the defense to protect against an 

extreme event and multiplying that by the perimeter of the asset produced the 

operational cost for a given extreme event. This value for each asset is then 

multiplied by the probability of occurrence for each recurrence interval and 

summed, giving an Estimated Annual Operating cost (EAO). Equation 2 shows this 

in more detail. 

(2)  𝐸𝐴𝑂 = ∑ 𝑃 × 𝑁 × 𝑅𝑃𝑛
𝑡=1         

where 

• EAO = Estimated Annual Operational Cost 

• P = length of perimeter of asset 

• N = £ per metre to erect defenses 

• RP = probability of each recurrence interval expressed in decimal 

• n = number of recurrence interval values 

The cost to install and erect defenses has been calculated for each site and 

can be compared with the benefits that building the defenses brings in reducing the 

EAD cost to zero. It is assumed that the defense totally protect the substation sites 

during the extreme events and no damage due to flooding occurs. 
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2.7 Net Present Value 

The net present value for investing in demountable flood defenses, is calculated by 

comparing the cost of building and operating the defenses over the projected 

defense lifetime with the amount of damage cost that has been averted by having 

the defenses in position. The costs and benefits of the defenses also need to be 

discounted to the present day to allow for a direct comparison. 

 However, it is not as simple as this as there is large uncertainty in the 

amount the sea levels will raise by. This will have a large impact on the outcome, 

as higher increases will result in more benefits realized by the defenses therefore 

making them more cost effective sooner. Conversely if minimal sea level rises 

occur then building defenses may have been unnecessary and the resources used to 

build and operate the defenses were wasted. This study has used two different 

methods in calculate the net present value of investing in flood defenses for each 

substation site. The first is net present value classic (NPV classic), where the 

decision on whether to invest today is taken based on the most likely outcome of 

SLR, i.e. the 50th percentile of each annual sea-level projection. The second method 

is net present value flexible (NPV flexible), where the uncertainty surrounding the 

sea-level rise projections is utilised to determine if there is value in deferring the 

investment of defenses for a defined period, in this case 10 years. This allows more 

information to be gathered, better or more confident sea level projections to be 

made and used. This can be repeated in 10-year intervals to see when it is likely 

based on current projections that the decision to invest in flood defenses would be 

made. The first stage in this process is to decide what rate to apply to future costs 

and benefits to discount the present day to allow them to be compared.   

2.8 Discount Rate 

Using annual SLR projections up to 2100 to allow the estimation of EAD revenue 

also requires that EAD to be discounted to the present day. This allows comparison 

with the defense costs and any defenses costs that occur in the future, such as 

operation costs over the defense life span or deferred building of defenses. To do 

this a discount rate is used, for this study the UK Government Treasury Green Book 

for infrastructure projects was used to provide the percentage term. This term varies 

depending on the number of years that have passed, for example the first 30 years 

is set at 3.5%. This discount rate is applied to all future revenue from the flood 

defenses or EAD and also to the capital costs and costs of operating and building 

the defenses.  

2.9 Calculating Net Present Value (classic) 

To calculate classic NPV the cash flows in and out of the project need to be 

discounted and compared. For flood defenses the revenue or cash flow in is the 

EAD accrued for each year over the defense life span based on annual SLR 

projections. The NPV calculation uses the mean annual SLR projection. The cash 

flow out is the initial cost of building defenses and the annual operational costs. All 

cash flows are discounted to the current time interval and compared. If the costs 

exceed the revenue generated then building defenses is not cost effective, but if the 

revenue is greater than costs then the investment is cost effective. Basing the 
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revenue on the mean or 50th percentile SLR projection does not take into account 

the uncertainty in SLR projections and under-estimates the impact of crossing the 

threshold in EAD where large changes in EAD are present for small changes of 

SLR (Figure 8). If these thresholds occur at lower probability SLR values, then the 

NPVclassic will be suboptimal for a given asset. 

(3) 𝑁𝑃𝑉𝑐𝑙𝑎𝑠𝑠𝑖𝑐 =  (𝑃𝑉𝑐𝑖 − 𝑃𝑉𝐼𝑖𝑛𝑣 − 𝑃𝑉𝑂𝑝𝐸𝑋)    

    

(4)  𝑃𝑉𝑐𝑖 =  ∑
𝐸𝐴𝐷

(1+𝑟)𝑡
𝐿
𝑡=1         

   

(5)  𝑃𝑉𝐼𝑖𝑛𝑣 =  
𝐷𝐼𝐶

(1+𝑟)1
         

   

(6)  𝑃𝑉𝑂𝑝𝐸𝑋 =  ∑
𝐸𝐴𝑂

(1+𝑟)𝑡
𝐿
𝑡=1         

    

where PVci is the discounted revenue over the defense life based on annual 50th 

percentile SLR projections, PVIinv (Initial Investment) is the discounted cost of 

installing the defenses in year 1 and PVOpEX is the discounted operational cost of 

the defenses over its lifespan. r is the discount rate, L is the lifespan of the defenses 

in this case 50 years, DIC is the defense investment cost and EAO is the estimated 

annual operational cost. It has been assumed that there are no or negligible 

maintenance costs for the demountable defenses over the course of its lifetime. The 

operational projected annual cost is represented by the cost of deploying the barriers 

in response to a given extreme event. 

2.10 Real option analysis 

Real option analysis is an extension of financial option theory (Black and Scholes, 

1973; Copeland et al., 2005; Cox et al., 1979; Dixit and Pindyck, 1994). The main 

feature of financial option theory is that financial assets are valued under 

uncertainty. While financial options are written as an explicit contract, real options 

need to be recognized and specified. A financial option is an option that when 

purchased grants its owner the right but not the obligation to buy/sell a financial 

asset after a specified period of time. This is comparable to a company that makes 

strategic investments having the right but not obligation to take advantage in 

investing in the future. Real options are embedded in plans, projects or investments. 

An example of this is the ability to postpone or defer an investment to await the 

arrival of key information. Real options can also be used to value real assets under 

uncertainty (Farrell, 2012; Kjærland, 2007). 

To derive real option valuation three methods may be used. These include 

(i) stochastic differential equations, (ii) dynamic programming and (iii) simulation 

models. Under specific conditions an option can be valued using a stochastic partial 

differential equation (PDE). The solution of the PDE provides the value of the 

option as a direct function of the inputs. The Black-Scholes equation (Black and 

Scholes, 1973) is considered the seminal work on option valuation theory. Dynamic 

programming is an approach based on splitting the whole problem into two basic 
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constituents, the immediate decision and a function that summarizes the 

consequences of all future subsequent decisions starting from the immediate 

decision. An example of this approach is the binomial lattice (Cox et al., 1979). 

Finally, the approach used in this study is simulation models where thousands of 

likely paths of underlying asset evolution are generated by Monte Carlo sampling 

(Boyle, 1977). For each path, the optimal investment strategy is determined, and 

the option return is calculated. The option value is estimated as the average of the 

option returns for all paths, which will identify which substations would benefit 

from flood protection and when between the present-day and the end of the 

investment decision time horizon.  

2.11 Real Option Valuation: Net present value flexible 

Using simulation modelling this study values the Real Option (RO) to defer 

or invest; these are decided with the following decision rules and option valuation 

adapted from Pringle et al 2015: 

 

Option Condition 1 Condition 2 Condition 3 

Defer 
Investment 

NPVmax > 0 NPVflexible < 0 NPVclassic < 0 

Invest Now NPVmax > 0 NPVflexible > 0 NPVclassic < or > 0 

Table 1: The different conditions that need to be met to enable the option to invest or defer 
flood defense investment to be exercised. 

• Option to defer: Provides the right to postpone the investment for a 

set period of time, rejecting the revenue for this deferred period and await the arrival 

of new and better information the reduces the SLR uncertainty 

• Option to Invest: The conditions are favorable at the current time to 

invest in flood defenses 

where NPVmax is defined as the difference between the discounted maximum 

revenue that can be generated for each asset based on the mean of the maximum 

SLR value for 2100 and the discounted capital and operational costs of investing in 

defenses. 

NPVclassic defined in section 2.8 uses the 50th percentile annual SLR 

projections up to 2100 to produce the revenue which is discounted and compared 

with the discounted capital and operation costs. 

NPVflexible is the flexible NPV value that consists of the NPVclassic with the 

addition of the option value.  

(7)  𝑁𝑃𝑉𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 =  𝑁𝑃𝑉𝑐𝑙𝑎𝑠𝑠𝑖𝑐 + 𝑂𝑝𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒     

     

The option value is the mean value of all the Option Returns (OR) calculated 

from the Monte Carlo EAD pathways. These consist of 100,000 potential SLR 
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pathways for each substation sampled from the 91 annual SLR distributions. The 

option return (OR) for a single EAD pathway is calculated as follows: 

(8) 𝑂𝑅 = [(𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝐸𝑎𝑟𝑛 − 𝐶𝑜𝑠𝑡𝑠) −
(𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝐷𝑒𝑓𝑒𝑟𝑟𝑒𝑑 − 𝐶𝑜𝑠𝑡𝑠)]  

(9)  𝑂𝑅 =  [(𝑃𝑉𝑓𝑖 − 𝐼𝑖𝑛𝑣 − 𝑂𝑝𝐸𝑋) − (𝑃𝑉𝑚𝑖 − 𝐼𝑖𝑛𝑣 − 𝑂𝑝𝐸𝑋)]  

   

(10)  𝑃𝑉𝑓𝑖 =  ∑
𝐸𝐴𝐷

(1+𝑟)𝑡
𝐷+𝐿
𝑡=𝐷+1        

   

(11)  𝑃𝑉𝑚𝑖 = ∑ 𝐸𝐴𝐷(1 + 𝑟)𝑡 𝐷
𝑡=1       

   

(12) 𝑃𝑉𝐼𝑖𝑛𝑣 =  
𝐷𝐼𝐶

(1+𝑟)𝐷         

   

(13) 𝑃𝑉𝑂𝑝𝐸𝑋 =  ∑
𝐸𝐴𝑂

(1+𝑟)𝑡
𝐿
𝑡=1         

    

where PVfi is the discounted revenue over the defense life span if it is executed after 

the deferral interval, PVmi is the discounted deferred revenue over the deferral 

interval, PVIinv is the discounted construction costs after the deferral interval and 

PVOpEX is the discounted operational costs over the defense life after the deferral 

interval. Further, r is the discount rate, DIC is the defense investment cost, EAO is 

the estimated annual operational cost, D is the deferral interval (in this case 10 

years) and L is the defense life span (50 years).  

This process is repeated at each time interval to show the changes in options 

to invest or defer at set intervals based on regional SLR projections. 

The methodology has been summarized in the flow chart in figure 10 

showing the process for calculating the flood damage benefit and defense 

investment cost. 
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Figure 10: Schematic showing the process used to calculate benefits/revenue and costs 
for input in real option valuation analysis. 

3.0 Results 

For each of the 388 substations, a classic NPV based on DCF methodology has 

been calculated for every time interval up to 2050 (Table 2). Any substation that 

has a positive value would go ahead with flood defense investment. However, this 

approach does not value any flexibility in the management process. Additionally, 

the flexible NPV has been calculated using the Real Option Valuation methodology 

with the number of substations taking options to invest or defer calculated for each 

time interval up to 2050. The option to invest or defer investment in flood defenses 

has been considered using the decision rules in Table 1. Table 2 shows the results 

of the economic analysis, both NPV classic and both NPV flexible options.  

Scenario Option 2010 2020 2030 2040 2050 

NPVclassic Invest 4 4 6 6 7 

NPVflexible Invest 6 7 10 15 21 

NPVflexible Defer 46 45 43 38 35 

Table 2: Numbers of substations that would be invested in based on DCF NPV and Real 
Option Valuation methodology. 

Comparing the results of the DCF and real option valuation methodology 

shows that using real option analysis, investment in flood defenses would go ahead 

for 2 additional substations in 2010, 3 in 2020, 4 in 2030, 9 in 2040 and finally 14 

in 2050. Table 2 shows that a small number of substations (6) generate enough 

revenue from EAD at the present day to cover the cost of building and operating 

flood defenses in 2010. This is due to the NPV flexible taking into account the more 

unlikely levels of SLR that could be realized over the defenses lifetime. This rises 

to 21 by 2050 with the biggest increase of 6 being seen between 2040 and 2050. In 

2010 46 substations exercise the option to defer investment which by 2050, has 

reduced to 35 as more substations exercise the option to invest rather than defer.  

Table 3 presents the year a specific substation would exercise its option to 

invest based on the decision rules of Table 1. The invest option would be exercised 

when the NPVflexible value or NPVclassic is greater than zero. There are 6 substations 

that would invest in flood defenses in the present day, whereas the majority of 

additional substations that exercise the option to invest by 2050 do not do so until 

2040/2050. This is likely due to a threshold being reached in SLR where the 

increase in revenue from EAD at this point in time justifies the investment in 

building and maintaining flood defenses at the relevant substations. 2050 is the 

furthest this methodology can assess based on the operational life of defenses being 

assessed and the length of the regional SLR projection dataset, to extend the time 

horizon a longer SLR dataset would be required or defenses with a shorter life span. 
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Substation 
Number 

Year Invest Option 
Taken 

24 2030 

25 2040 

26 2050 

30 2010 

40 2020 

58 2010 

59 2050 

67 2040 

104 2040 

105 2010 

106 2040 

107 2010 

108 2010 

222 2010 

350 2030 

351 2050 

352 2050 

355 2040 

356 2050 

357 2030 

384 2050 

Table 3: The year when a substation would exercise the option to invest in flood defenses 
based on the decision rules in Table 1. Any substation that does not take the investment 
option has been removed. 

Using model simulation real option analysis also allows the percentage 

chance of the NPVflexible being positive (and therefore exercising the option to 

invest) to be calculated. The real option value is based on the mean option value 

calculated across the 100,000 SLR pathways. Instead of using the mean option 

value, the percentage chance of the option value ever making the NPVflexible positive 

can be calculated instead. By calculating the percentage chance, it is possible to 

identify assets that would be invested in if a low probability high impact SLR 

pathway are realised. Table 4 below shows the percentage likelihood for flood 

defense investments for all assets up to 2050 (to simplify the table, any asset that 

remains at zero percent in 2050 has been removed). 
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Table 4 shows a larger number of substations that could potentially exercise 

the option to invest in this case there are 27 assets that have some percentage chance 

of the revenue from EAD to exceed the cost of building and operating the defenses. 

The additional 7 substations are the ones with percentage chances less than 50%, 

of these one has a chance of 48.77% in 2050 it may be worth considering this 

substation for investment. The other substations have percentage chances ranging 

from 0.1 to 20% indicating they are only likely to be considered for investment 

under unlikely high end SLR projections or over a longer time period that the 

current regional SLR projections do not cover. 

 

Substation 
Number 

2010 2020 2030 2040 2050 

24 0 0.04 93.22 100 100 

25 0 0.02 2.37 53.88 100 

26 0 0 0.13 3.83 48.77 

27 0 0 0.01 0.17 3.92 

30 100 100 100 100 100 

40 0 92.8 100 100 100 

43 0 0 0 0 0.44 

58 100 100 100 100 100 

59 0 0 0 0.14 93.66 

67 0 0 3.26 99.42 100 

70 0 0 0 0.01 20.37 

100 0 0 0 0 0.09 

101 0 0 0 0.01 15.04 

104 0 0 0.2 47.45 100 

105 100 100 100 100 100 

106 0 0 15.08 99.71 100 

107 100 100 100 100 100 

108 100 100 100 100 100 

222 70.47 100 100 100 100 

350 0 27.29 100 100 100 

351 0 0 0.01 1.73 93.38 

352 0 0 0.02 3.05 97.81 

354 0 0 0.01 0.29 7.81 

355 0 0.06 10.49 82.83 100 

356 0 0 0.04 8.34 99.97 

357 0 0.68 100 100 100 

384 0 0 0.03 15.04 99.78 

Table 4: Percentage chance of a substation asset receiving flood defense investment. 

22

Journal of Ocean and Coastal Economics, Vol. 5, Iss. 1 [2018], Art. 3

https://cbe.miis.edu/joce/vol5/iss1/3
DOI: 10.15351/2373-8456.1075



Figure 11: NPVclassic values (black squares) and NPVflexible values (black diamonds) at ten-
year intervals up to 2050 for substation 67. The horizontal dashed line is at zero where 
the NPV becomes positive and investment would take place. 

Figure 11 shows the NPVclassic and NPVflexible values for substation 67, in 

which the NPVclassic increase up to 2050 but remains negative so investment would 

not proceed at any point before 2050. The NPVflexible values do become positive in 

2040, where the option to invest would be exercised. The real option valuation 

analysis has found extra value in the management flexibility, which while negative 

in 2010 to 2030 is still greater value than the corresponding NPVclassic value. 

Figure 12 below shows the results of the sensitivity analysis that has been 

performed by varying two key parameters to see their impact on the outcome of the 

real option valuation method. The depth damage curve has been increased and 

decreased by 30% (Figure 5) along with the discount rate provided by the UK 

Treasury. Finally, changing the probability distributions of SLR used from a normal 

to a log-normal has also been investigated. 
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Figure 12: Number of substations undertaking flood defense investments up to 2050. For 
DCF methodology (black circles) and real option valuation methodology (black squares). 
The effect in varying the depth damage curve (dotted lines), discount rate (dashed line) 
and log-normal probability distribution (black diamonds) is also shown.  

 

Figure 12 shows that varying the depth damage curve or discount rate by 

+/-30% does not have a large effect on the outcome of the analysis, the trend and 

values are largely the same and always provide more investment opportunities than 

DCF methodology. Assuming SLR projections have a log-normal distribution has 

a large effect with increases of 18 in 2010 to a maximum of 34 in 2030 reducing to 

18 again in 2050. The reason for large increase is due to the higher levels of SLR 

that are more likely to occur over the defense’s life-span giving increased revenues 

of EAD making taking the option to invest in defense investment more likely.  

The real option valuation methodology specifies using the mean option 

value from the 100,000 SLR pathways, but sensitivity analysis was also performed 

to see what the impact of using a different percentile from the mean would have the 

results (Table 5).   
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Option 
Value 
Percentile 
Used 

2010 2020 2030 2040 2050 

25th 5 7 11 14 20 

50th (Mean) 6 7 11 15 22 

75th 6 7 11 15 22 

Table 5: Number of substations taking the option to invest, for different percentiles of 
Option Value based on the SLR pathways 

Table 5 shows that there is little sensitivity to the percentile of option value 

used with a small reduction in substations taking the investment option for the 25th 

percentile, a reduction of one in 2010, 1 in 2040 and 2 in 2050.  

Overall sensitivity analysis has shown that the only variable that 

significantly affects the results is the use of a log-normal probability distribution of 

SLR that makes sampling a higher value for future SLR more likely, making more 

substations more likely to exercise the option to invest due to the resulting higher 

EAD revenues over the defense lifetime.   

Figure 13: Flexible net present value distribution for substation 67 in 2030 (white bars) 
and 2040 (black bars). 

Figure 13 shows the distribution of NPVflexible across all 100,000 pathways. 

In 2030 for substation 67 only the upper bars of the histogram are over zero 

meaning only under low probability high future SLR pathways would the decision 

25

Prime et al.: Flood Defence Investment: Real Options Approach

Published by Digital Commons @ Center for the Blue Economy, 2018



to invest be taken here. By 2040 this has changed where the majority of the 

distribution is over zero with only a minority of the lower probability low level SLR 

resulting in the decision to invest not being taken. For the analysis, the mean value 

of the distribution at each time interval has been used. 

 

Figure 14: Map showing locations of substations in 2050 that would invest in flood defenses 
under DCF methodology (black triangles). Substations that have been identified in addition 
to these that would exercise the option to invest (black stars) and the option to defer 
investment (black circles) have also been identified. 

Figure 14 shows the locations of the substations in 2050 that would be 

invested in based on DCF methodology (black triangles) it also shows the 
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substations that exercise the option to invest (black stars) and also the option to 

defer investment (black circles). Comparing with Figure 3 it can be seen that these 

substations are very spatially variable with small areas of the map having large 

numbers of both invest or defer options present. Invest options are predominantly 

concentrated in the Fleetwood area with a few substations on the banks of the Lune 

river near Heysham also exercising the invest option (Figure 2A). Defer options are 

also present in these locations, particularly concentrated around the north of 

Heysham showing that these assets may potentially in the future exercise the option 

to invest. Finally, some defer options are also present on the north side of the Ribble 

estuary and river indicating that this is an area that may be at risk beyond 2050 

(Figure 2A). Investments based on DCF methodology are concentrated in 

Fleetwood close to the River Wyre and also in Heysham close to the River Lune 

(Figure 2A). 

4.0 Discussion 

The previous section provides results from the flooding and economic analysis 

methodology, which we will now discuss in more depth. We have found that relying 

on DCF methods to decide whether to invest in flood defenses will end up with 

suboptimal decisions being made where some projects that would benefit from 

defenses will be missed. This is due to the DCF methodology not taking the 

uncertainty of future conditions into account as well as the flexibility of 

management decisions to respond to them. 

This study has conducted a sensitivity analysis by varying the three key 

parameters, Firstly, the depth damage curve that changes a flood water depth into a 

monetary value. Secondly, there is the discount factor discounting future values to 

present day ones. Finally, there is the probability distribution used to sample SLR 

values for a given year. It was found there is some sensitivity to all parameters. 

Changing the depth damage curve +/- 30% caused a maximum change in the 

number of invest options of +/- 2 substations. Changing the discount factor by +/-

30% also showed some sensitivity with a maximum change of +/- 3 substations. 

The most significant sensitivity in the results is the assumed probability distribution 

for SLR values. Changing from a normal to a log-normal distribution that captures 

the low probability high-end values of projected future SLR shows a maximum 

increase of 34 substations in 2030. A recent global SLR projection study put the 

95th percentile probability of SLR at 1.8 m in 2100 (Jevrejeva et al., 2014), which 

is a closer match to the log-normal distribution used within this study, showing that 

using log-normal probability distributions may be more suitable than a normal 

probability distribution. Another benefit for the decision to use log normal 

distributions is that the Black-Scholes option pricing formula also assumes a 

lognormal distribution. Sturm et al. (2017) has noted that using Black-Scholes on 

natural systems with log normal distributions gives identical values to Monte Carlo 

simulations predicated on certain assumptions similar to the work as undertaken for 

this study. The latest regional relative SLR projections have been used as a sectoral 

standard reference, but these were produced in 2009 and are not up to current 

knowledge regarding SLR.  
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Similar results to this study have been made in (Sturm et al., 2017) which 

while it examined drought, also looked at distributions at the intersection of nature 

and humans. (Sturm et al., 2017) demonstrated that for asymmetric human cost 

overlay functions on even non-lognormal natural distributions generates data that 

mimics options even when there is no choice, and that valuing the costs at the mean 

of the natural distribution gives lower values than using the entire distribution 

(Sturm et al., 2017). This is comparable to the methods followed for NPV flexible 

(Monte Carlo analysis) and NPV classic (valuing costs at the mean). This is the 

likely explanation of the results observed.  

The trends in both NPVclassic and NPVflexible are one of increasing value up 

to 2050. Most substations that are under assessment within the study always stay 

negative. This is due to the low EAD revenue if flooding is minor or zero EAD 

revenue if the substation never floods, regardless of the SLR considered. The 

benefits brought in building demountable flood defenses never exceed their cost of 

construction and operation. Some substations at the present day have positive 

NPVclassic values. Figure 14 shows that a lot of these are located close to major 

rivers, and care must be taken with these locations due to the low horizontal 

resolution of the flood model (50 m) which may cause the flood water depths to be 

over-estimated. This can be resolved by using an input dataset with higher spatial 

resolution. At the time of running the inundation model it was too computationally 

expensive but recently a newer version of the flood model has been released which 

reduces the computation cost potentially allowing higher resolution domains to be 

simulated. A good comprise between 5 m and 50 m is likely to be a 10 m horizontal 

resolution which will provide much more detail than the 50 m grid while having a 

large reduction in the computational cost when compared with the 5 m grid. 

Figure 13 shows the distribution of option value for substation 67 in 2030 

and 2040, the mean value of the distribution is what is used in the calculation of 

NPVflexible. To see if the outcome is sensitive to the percentile used the 25th and 75th 

percentiles of option value were considered alongside the 50th in calculating the 

NPVflexible value. It was found that using the 25th percentile value resulted in the 

option to invest being exercised in one less substation in 2010, one less in 2040 and 

two less in 2050, whereas the 75th percentile had the same results as the mean. The 

results show little sensitivity to the percentile used, so only the 50th percentile needs 

to be considered within the real option analysis.    

However, considering the full distribution of NPVflexible values can be 

beneficial as it can highlight additional substations that will require investment if a 

low probability SLR projection is realised. It also highlights substations that can 

just miss the option to invest, such as substation 26 where a percentage chance of 

48.77% of the pathways result in investment in 2050 meaning that it would exercise 

an option to defer. If it was over 50%, so more pathways result in investment than 

defer then it would reach the threshold required for it to be invested in, warranting 

a closer analysis. Likewise, other percentage chances on the order of 1% where 

only 1 in every 100 pathways result in the option to invest being taken show that 

taking the option to defer is the right one based on the SLR projections used. 
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As expected, from inspection of the data, the substations at risk overlap to 

some degree with the Environment Agency’s flood risk map (Figure 2C) but as this 

map only covers present-day flood risk for a single extreme event it is unable to 

highlight which assets would have the investment decision to invest in flood 

defenses made or deferred particular with the increasing uncertainty of SLR over 

time.  

The methodology outlined in this paper has shown it is able to integrate 

physical risk from marine flooding with economic considerations of resilience 

within a flexible real option analysis methodology that only an interdisciplinary 

model would be able to provide. It also enables timely and cost-effective investment 

in building flood defenses that allow energy infrastructure to remain resilience to 

extreme events in the face of a changing climate. 

5.0 Conclusions 

This work has focused on the economic impacts of future sea-level rise on coastal 

energy infrastructure. Although a UK case study is presented the approach could 

be applied to energy infrastructure in coastal region. Investment is required to 

maintain the standard of flood protection to important electricity distribution and 

transmission infrastructure in the face of climate change, or potentially improve it. 

To date, the impacts of sea-level rise and coastal flooding - and the possible 

adaptation responses - have been studied using very different approaches, such as 

very detailed site-specific engineering studies and global macroeconomic 

assessments of coastal zone vulnerability. This paper offers a real option analysis 

framework that values the investment potential of flood defenses around electricity 

infrastructure at local spatial scales for a large region. The results have shown that 

tipping points in the EAD curves result in thresholds being present, most notably 

in 2030 where the number substations exercising the option to invest more than 

doubles by 2050. The analysis has been found to be insensitive to the underlying 

cost curve that converts flood water depth into cost and also the discount rate used 

to discount future revenues to the present-day. It is however very sensitive to the 

probability distribution used to sample annual SLR projections for each SLR 

pathway to 2100. A log-normal distribution appears to fit global SLR projections 

well, but for the regional SLR projections a normal SLR projection maybe more 

appropriate due to the 25th and 75th percentile values being an equidistant from the 

mean.  

As demonstrated, the work undertaken has given an indication of where and 

when these investment resources should be deployed. Knowing which assets are 

vulnerable and require investment now and which are likely to be vulnerable and 

require investment in the future ensures an optimum allocation of available 

resources.  Thus, the authors believe that both the methods and results presented in 

this paper will help to inform management policy on deciding where it is cost 

effective to invest in flood defenses and where it is cost-effective to defer 

investment. It allows a more flexible policy procedure than the policy informed 

from discount cash flow methods alone. 

The outputs from this analysis can also be fed into a decision-support tool, 

such as the one described by Knight et al. (2015). This would allow stakeholders to 

29

Prime et al.: Flood Defence Investment: Real Options Approach

Published by Digital Commons @ Center for the Blue Economy, 2018



access economic data for areas of interest, while also providing flood water depths 

for each of the extreme events under different SLR scenarios. EAD and defense 

costs for each substation site would also be available, along with information about 

which investment option is taken and when. This study has effectively 

demonstrated the essential need to combine physical environment and economic 

modelling to provide effective decision-support for climate change adaptation and 

optimized investment for building infrastructure resilience. 
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