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Abstract—Speech emotion recognition (SER) is an important
part of affective computing and signal processing research areas.
A number of approaches, especially deep learning techniques,
have achieved promising results on SER. However, there are
still challenges in translating temporal and dynamic changes
in emotions through speech. Spiking Neural Networks (SNN)
have demonstrated as a promising approach in machine learning
and pattern recognition tasks such as handwriting and facial
expression recognition. In this paper, we investigate the use of
SNNs for SER tasks and more importantly we propose a new
cross-modal enhancement approach. This method is inspired by
the auditory information processing in the brain where auditory
information is preceded, enhanced and predicted by a visual
processing in multisensory audio-visual processing. We have
conducted experiments on two datasets to compare our approach
with the state-of-the-art SER techniques in both uni-modal and
multi-modal aspects. The results have demonstrated that SNNs
can be an ideal candidate for modeling temporal relationships in
speech features and our cross-modal approach can significantly
improve the accuracy of SER.

Index Terms—Speech Emotion Recognition, Spiking Neural
Networks, Unsupervised learning, Multisensory integration

I. INTRODUCTION

Speech represents a crucial part in eliciting and understand-
ing emotions, and both linguistic and para-linguistc parameters
are useful for translating emotional states. Speech Emotion
recognition (SER) has long been a popular task, which can be
categorised into uni- and multi-modal approaches [1], [2]. Uni-
modal approaches focus on extracting and learning auditory
features contributing to emotion recognition [3], while multi-
modal approaches integrate modalities from visual, audio, and
other sources [4]–[6].

With the advantages of using multiple signal sources, multi-
modal approaches have achieved better performance in SER,
but the challenge still exists, especially where most multi-
modal approaches have not investigated cross-modal learning
and enhancement. In human brain, we process emotions in a
cross-modal manner where one modality can predict, enhance
or complete the other [7].

Turning towards more biologically inspired models would
give an insight on how cross-modal learning and enhancement
can be used to achieve better SER. Multisensory integration
and learning in the brain does not occur via a simple fusion but
follows specific principles and is based on a constant dialog

between different modalities at an early level of information
processing [8].

In this paper we investigate the feasibility of using bio-
inspired models based on speech processing in the brain
through both uni-modal and cross-modal aspects for the SER
tasks. We explore the use of Spiking Neural Networks (SNN)
to support unsupervised learning in SER and demonstrate
comparable accuracy to the state-of-the-art techniques [9].
More importantly, we propose a novel cross-modal approach
that enhances SER with visual information and achieves better
performance compared to most commonly used data fusion
approaches in multimodal emotion recognition [10]. This will
lead to more simplified and computationally advantageous
models. Also this enhancement model, rather than fusion,
promotes loose coupling between multiple signal modalities,
which can be more flexible and robust. For example, where
one modality fails or is very noisy, it will not affect the overall
recognition accuracy.

This paper is organised as follows. Section II gives an
overview of the state-of-the-art techniques in Speech Emotion
Recognition (SER) tasks. Section IV introduces a theoretical
background of SNN and describes a novel approach based
on early multisensory integration and enhancement of audio
signals using visual signals. Section V reports experiments
and results on evaluating the performance of SNN and our
cross-modal approach on two datasets. Section VII draws
conclusions and points to future directions in using more
biologically inspired models for the SER task.

II. RELATED WORK

This section will briefly introduce the state of the art in
feature extraction, emotion recognition, and multimodal fusion
in the application of speech emotion recognition.

A. Emotion Speech Features

One of the main interests in SER is feature extraction
– learning best auditory features translating variations in
affective and emotional states in speech. The features can be
both linguistic and para-linguistic. In the following we list
some of the most popular features for the SER task.

1) Mel Frequency Ceptral Coefficients MFCCs: MFCCs
are calculated from the mel-frequency ceptrum (MFC) – a
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linear cosine transform of a log power spectrum, which rep-
resents a short-term power spectrum of an audio signal. This
method mimics the human auditory processing of sound [11].

2) Spectral Centroid: This feature represents the brightness
of an audio signal, which is represented by the center mass of
the magnitude of the spectrum. It indicates the rapid changes
in the signal [12]. Cummins et al. have used this feature with
a convolutional neural network for SER [13].

3) Energy: Energy represents the presence of a signal at a
given temporal interval. Energy of an audio signal is calculated
by measuring the occurrence of an audio signal in a small time
window interval.

B. Classifiers for SER

There are two types of learning in SER: static and dy-
namic. Static learning aims to recognise emotion through the
whole utterance on auditory features [14]–[17], while dynamic
learning partitions an auditory signal into frames and focuses
on learning temporal relationships between frames in emotion
recognition [18].

1) Deep Learning: In recent years, deep learning tech-
niques have outperformed the classic machine learning tech-
niques in SER [16], [19]. Most of deep learning work using
hand-crafted features take the feature input as a whole regard-
less of the dynamic relation within time. These hand-crafted
features are considered to represent the audio signal with a
global level acoustic feature, where once extracted they tend
to loose the dynamic relation in the temporal dimension.

Niu et al. [20] propose the application of Deep Retinal
Convolution Neural Network (DRCNN), which consists of the
following two steps: (1) data augmentation step where the
principal of retina and convex lens imaging is used on the
set of spectrogram features for each input, and (2) learning
step that applies a deep convolution neural network on the
extract spectrogram features. They have obtained an overall
accuracy of 99% using the augmented data.

Satt et al. [21] have investigated two types of network on
spectrogram features for the SER tasks. They first train a CNN
on the extracted spectrogram data, using different network
topologies. They then train a CNN in addition to a LSTM
layer. Adding a LSTM layer has proved beneficial to the
improvement of the overall accuracy; that is, it reaches 68%
compared to 62% with the CNN layers alone. Other deep
learning techniques have also been investigated; for example,
Lee et al. have used a RNN to learn feature representations of
audio signals [22].

2) Bio-inspired Approaches: Bio-inspired approaches have
not been sufficiently explored in the literature of SER. Busci-
cchio et al. have made an early attempt of using a SNN for
SER [23], where the work focuses on the the linguistic part
of the speech by decomposing each sentence into different
parts for each vowel occurrence. For each part MFCC features
are extracted and encoded into spike trains using average
rate coding. The network is trained using the reinforcement
learning algorithm.

Lotfidereshgi et al. have used raw speech signal as an input
and used Liquid State Machines (LSM) for classification [24].
LSM is a type of reservoir computing [25], where reservoir
represents a SNN. The speech input goes through several pre-
processing steps, where linear prediction analysis is applied to
the audio signal. The overall classification task has achieved
the accuracy of 82.35%, which is comparable to the state of
the art for the same datasets.

3) Multisensory Integration: Research toward multisensory
emotion recognition has focused on using various state-of-the-
art data fusion techniques such as early, decision or model
fusion for enhancing recognition accuracy.

State-of-the-art approaches offer a wide range of capabili-
ties. However, they focus on choosing the right features rather
than investigating novel approaches in terms of classifiers.
Extracting emotional states solely from para-linguistic speech
data can prove challenging, as such information cannot be fully
translated into emotional states [26].

Naturally human processes emotion in a multisensory man-
ner where the prediction from preceding visual information
plays a significant role in facilitating the recognition of
emotional states through speech [27]. In addition, external
context such as the background and body gesture play a role
in emotion recognition [28]. This is not translated in state-
of-the-art techniques in SER either in audio alone or in a
multimodal aspect. Although there has been extensive research
in multimodal emotion recognition, data fusion techniques
applied do not focus on the interaction between different
modalities [29]. Therefore research needs to turn towards more
realistic cross modal interaction instead of treating the tasks
solely as a data fusion problem. In this paper, we propose
a bio-inspired approach that aims to translate interactions
between different modalities.

III. BACKGROUND ON SPIKING NEURAL NETWORKS

Humans perceive emotions through face expression and
speech differently from other pattern recognition tasks. The
process involves various brain regions constantly interacting to
make meaningful precepts from the perceived linguistic, non
linguistic and changes in facial expression [30]. Information
in the brain is transmitted between neurons using action
potentials via synapses. When a membrane potential reaches a
certain threshold a spike is generated [31]. The computation of
SNNs is based on the timing of spikes rather than their shape,
where spikes that fire together get a stronger connection.

SNNs have been extensively used for translating neuro-
computational processes in the brain and successfully applied
to machine vision tasks and lately for speech signals [32]. In
these tasks, SNNs have demonstrated as a promising candidate
for modeling temporal data such as audio signals [33]. Here we
focus on employing SNNs to translate temporal information
of an audio signal for emotion recognition.

SNNs support different types of learning, including
• Unsupervised: unsupervised learning in spiking neural

network follows the Hebbs’ where the coupling between
neurons is strengthened when neurons fire together. The



Hebbian plasticity is influenced by the timing of the pre-
synatptic and post-synaptic spike. This type of learning
is referred to Spike Timing Dependent Plasticity (STDP).
STDP learning has been used in various clustering and
pattern recognition tasks [34].

• Supervised: supervised learning has been implemented
in a Hebbian way for biologically inspired models by
adding a supervision signal to reinforce the firing at target
times [35].

• Reinforcement: reinforcement learning enables learning
directly from the environment where a SNN includes a
rewarding signal spike [36].

IV. PROPOSED WORK

In this section we will present an early cross-modal ap-
proach where visual information is used to enhance speech-
based emotion recognition. Figure 1 shows the workflow of
our approach, which mainly consists of two learning parts: (1)
unimodal learning on visual and audio signals based on SNN;
(2) Early cross-modal interaction in the brain [37], [38] to
enhance audio signals using visual stimuli. In the following,
we will detail the design on these two components.

Fig. 1: The work-flow of our early cross-modal enhancement:
(a) pre-processing both visual and audio input, (b) encoding
input into spike trains, (c) excitatory layer, (d) inhibitory layer

A. SNN for Unimodal Learning

1) Neuron models: Here we present the application of SNN
with unsupervised STDP learning for SER tasks. We have
adapted the work from [34], where Leaky-Integrate-and-Fire
(LIF) is used to model neurons dynamics and learning is
achieved using STDP. As mentioned in Section III, neurons
communicate through a series of spikes by firing spikes, and
thus neurons at the excitatory layer can learn unique features
that distinguish different emotional states. The membrane volt-
ages of the neurons are translated by the following function:

τ
dV

dt
= (Erest − V ) + ge(Ee − V ) + gi(Ei − V ). (1)

V is the membrane voltage and Erest represents the resting
membrane potential. Ei and Ee represent the equilibrium

potential for inhibitory and excitatory synapses respectively.
ge and gi represent the conductance of the synapses for the
excitatory and inhibitory synapses. When a membrane reaches
a certain threshold, the neuron fires spikes followed by a
resting phase Erest for a certain time interval (5ms). This
represents a refractory period where the neuron cannot spike.
τ is a time constant representing the time a synapse reaches
its potential and it is longer for excitatory neurons.

In order to achieve a better network balance and stability,
we have also employed homoeostasis – an adaptive membrane
threshold Vthresh mechanism [34]. That is, Vthresh =Vthresh
+ θ, where Vthresh initial value is a constant and θ increases
when a neuron fires and then decays exponentially when θ
reaches the neuron’s rate with a time constant of (5ms) which
is the time of the refractory period of the excitatory neurons.
In this way, homoeostatsis prevents some neurons firing for
all presented inputs and as well as avoids few neurons from
dominating emotional patterns [39]. We also employ lateral
inhibition encouraging competition between neurons.

Modelling synapses is achieved by changes in conduc-
tance. Their conductance increase when pre-synaptic reaches
a synapses otherwise the conductance decreases exponentially.
The conductance dynamics are governed by a time constant
of post-synaptic potential following the equation:

τge
dge
dt

= −ge (2)

Where τge is a time constant of post-synaptic potential. The
time constant for the inhibitory conductance is set to 1 ms and
for the excitatory to 2ms.

2) STDP Learning: Learning is performed in an unsuper-
vised manner from the input layer to the excitatory layer
through unsupervised STDP learning [34]; that is, learning
distinctive features for each emotional class label in an unsu-
pervised manner. The STDP algorithm has been successfully
used in pattern recognition and image classification tasks [40].
It represents a spike based type of Hebbian learning, where
the connection between neurons is strengthened when they
fire together. The plasticity is influenced by the timing of the
pre-synatptic and post-synaptic spikes. The synaptic weight
updates when a post-synaptic spike reaches a synapse, which
is characterised by the following equation:

∆w = η(xpre − xtar)(wmax − w)µ (3)

η is the learning rate. wmax is the maximum weight and xtar
is the target value of the pre-synaptic trace when the post-
synaptic spike fires. This is used to enable the disconnection
of neurons that seldom lead to firing, when the post-synaptic
neuron is rarely active. µ is the dependence of updates on
previous weight. xpre is the pre-synaptic trace left every
time pre-synpatc spike reaches a synapse. That is, weights
are increased if pre-synaptic spikes fire prior to post-synaptic
spikes. Otherwise, they decrease. The changes of weights
in STDP learning is computed by a function of difference
between pre-synaptic and post-synaptic spike firing timing.



Learning with STDP is considered to be quite advantageous
comparing to back-propagation as weights do not need to be
learned through backward and forward pass [41].

B. SNN Adaptation for SER

The first step in using SNN is to encode the input into
meaningful format for the SNN, especially for audio input. We
encode extracted audio features into a population of Poisson
spike trains [34]. Each extracted input represents a firing rate
proportionate to its intensity and each feature value over time
is transformed into firing rate between 0 and 63.75Hz. The
input data is run through the network for 350ms [34]. After
that the network enters a resting phase for 150ms, in order
to get back to its initial equilibrium before receiving the next
input.

Built on the basic SNN architecture [34], we have used
a convolutional layer over the input; that is, the input layer
is connected to a convolution excitatory layer coupled with
an inhibitory layer. Each input is divided into convolutional
features where a stride window moves through the input
along the temporal axis of the audio features. Adding a
convolution layer has demonstrated to be useful in improving
the overall accuracy on unimodal learning from general image
classification [42].

C. Cross-Modal Enhancement

Here we introduce an early cross-modal enhancement
method which describes one of multisensory integration prin-
ciples. Recent research findings have demonstrated the exis-
tence of early cross-modal interaction and integration between
different brain areas in audio-visual processing at an early
level [37], [38]. Multisensory areas in the brain such as the
superior colliculus (SC) use STDP learning at a neural level for
the interaction between different unisensory modalities [43]. It
has been demonstrated that unisensory areas have a constant
interaction at early sensory levels [43] during multisensory
integration. This idea of early sensory enhancement represents
one possibility of cross-modal prediction and interaction espe-
cially for audio and visual pathway in emotion processing [7],
[44].

In our approach, cross-modal enhancement is achieved by
designing two distinct neural groups, with different early path-
ways corresponding to the auditory and visual modality [43],
as shown in Figure 1. We use spiking neural networks to
translate this cross-modal enhancement where spiking patterns
in the visual modality affect the auditory part. This translates
early multisensory integration in the brain; that is, influencing
auditory processing with visual neurons spikes. The auditory
excitatory layer receives input from both the auditory input
layer and the visual excitatory layer. Following the same
pattern in the brain where visual information precedes by few
milliseconds the auditory processing. This is different from
early multimodal data fusion introduced in Section II, which
simply concatenate features extracted from each modality
while ignoring interactions between them. It is also different

from the recent cross-model learning [26] where a cross-
modal transfer from the visual to auditory data is applied. Our
approach is more biologically plausible, where the auditory
part does not use prediction from the visual but learns from
the spiking patterns. This represents a multisensory learning,
which helps propagate spikes from the visual group to the
auditory group [45].

Here we summarise the main workflow in Figure 1. We
generate Poisson spike trains from both image and audio input
data, and feed the spike trains to both visual and audio SNNs
to learn distinctive features of image and speech for each type
of emotions. We use the same SNN architecture presented in
Section IV-A to learn the visual modality. The input layer for
each modality is then recurrently connected to an excitatory
layer that is in turn connected to an inhibitory layer in a one-
to-one aspect providing a lateral inhibition. Where neurons
in the inhibitory layer are connected to all neurons from all
features in the excitatory layer apart from the ones it receives
input from. Similarly, we have added pre-processing and a
convolution layer on the input layer for better feature learning
[42].

We then connect the spiking activity of visual neurons at
the excitatory layer to audio neurons at the excitatory layer
in the audio SNN. These connections will activate additional
neurons in the audio SNN. After receiving video frames input
at the visual modality, the network runs and learns different
spike patterns. After learning from the video input, the net-
work enters a resting phase. The audio modality then learns
from both the audio input and the visual spike patterns. The
neurons spiking for the audio modality play a multisensory
role, accepting input from the visual modality. Connections
between the visual excitatory neuron groups and the auditory
neuron groups help the transfer of spikes from the visual to
the auditory modality. The weights of these connections are
initialised similarly to the connection weights from inputs to
excitatory layers.

The visual-audio interaction is learned through STDP in the
same fashion as unimodal modalities. The evaluation of the
unsupervised STDP learning is achieved in two stages. During
the training, weights are updated after each training interval
and spiked neurons for each feature at the audio excitatory
layer are allocated a class label, according to which neurons
spiked most for each feature. In the second stage and during
the testing phase, classification is achieved by allocating the
testing data with a class label for the most spiked neurons
saved through the training phase.

V. EXPERIMENTS

The main purpose of the experiments is to assess (1) the
suitability of using SNN for speech emotion recognition with
audio data alone and (2) the effect of early cross-modal
enhancement of audio using visual modality. To do so, we
have designed the following experiment methodology.



A. Datasets

We use some common, third-party datasets for our experi-
ments. Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) [46] is a multimodal database com-
posed of the basic emotions through speech and songs. The
dataset consists of 24 participants with a balanced gender num-
ber. The subjects are professional actors, reading sentences in
emotional states such as happy, sad, angry, fearful, surprised
and disgust. The recordings are available through video, audio,
and audio-video options. The eNTERFace dataset [47] is an
acted dataset of 42 subjects from 14 nationalities. With a
proportion of 81% males and 19% females, all being English
speakers. This dataset includes subjects with glasses and beard.
The audio is recorded as 48000 Hz in 16-bit format. Each
subject records the same basic emotions as in the RAVDESS
dataset. We split both datasets into 80% for training and
20% for testing. The number of runs in the training phase
corresponds to the number of data in the training set.

B. Feature Extraction

We extract audio features that achieve best performance in
SER in the community of speech recognition; i.e., Mel-scale
spectrogram, and MFCCs, as shown in Figure 2.

(a) Mel-Scale spectrogram
sample

(b) MFCCs features
sample

Fig. 2: Mel-Scale spectrogram and MFCC features

For each audio sequence, Mel-scale spectrogram is extracted
using Fast Fourier Transform (FFT) [48]. First the magnitude
spectrogram is calculated from the raw input signal. Then it
is mapped onto the Mel scale with a power spectrum. We
choose the FFT window with a length of 128, which enables
to transform the time domain signal into a frequency domain.
The Mel-scale features are then computed using librosa python
library [49].

The maximum frequency used to the input is 8000 and the
number of Mel bands is set to be 128. Although using a higher
maximum frequency gives better precision, this choice gives
a smaller input to the network input layer, which will be more
computationally advantageous. Figure 2a presents result of
Mel-scale spectrogram from the eNTERFACE dataset sample
with ‘angry’ emotion.

MFCCs are extracted from the Mel-Scale spectrogram by
applying logs of power which are calculated for each Mel
frequency. Then Discrete Cosine Transform are applied on the
the Mel log powers. The log Mel spectrum is then converted
back to temporal signal. The cseptral representation of the
speech enables the identification of local spectral properties
of the audio signal for each temporal frame. MFCCs are
computed using the python library librosa [49]. The number

of energies of filter banks is set at 40. All audio features are
unified to have a temporal length of 388. Audio signals which
results in smaller size are padded to match the chosen setting.
A sample of the MFCCs features for ‘angry’ emotion is shown
in Figure 2b.

C. SNN Architecture for SER

All experiments are implemented using the Spiking neural
Network simulator BRIAN [50]. We have used the same
parameters as [34] in terms of input firing rates, membrane
threshold and resting phase duration. The input layer of the
network architecture consists of two groups of neurons each
representing a modality. The number of neurons for each input
neuron group is proportional to the size of the input; that is,
the size of the audio features and video frame features. We
use 40*388 and 100*100 input neurons for the auditory and
visual input respectively. The input layer is then connected
to a convolution excitatory layer which is connected to an
inhibitory layer with a lateral inhibition, where neurons are
connected to all neurons in the excitatory layer apart from
the one receiving information from. Each input is divided into
convolution features where a stride window moves through the
input. The convolution window in the audio modality moves
along the temporal axis. Convolutional windows are applied
separately to each modality. That is, the visual and audio both
have different configuration in terms of convolutional window
and the number of features and the total excitatory neurons.
We have experimented with various configuration and have
chosen the best performing ones which are using 10 as the
window size and the stride size for the auditory and 10 for
the visual. The number of features is set to 60 for the auditory
modality and 60 for the visual modality.

After processing the visual frames input, the audio input is
fed to the network. Both visual and audio layers are connected
through their excitatory layers through a recurrent connection.
Speech features, visual features and cross-modal connections
are learned using STDP unsupervised learning.

D. Multimodal Integration Baseline

In order to compare our proposed approach of early cross-
modal enhancement, we have created a basic multimodal
integration approach with audio and visual modalities. We
achieve an early fusion by creating distinct multimodal neuron
groups which gets input from both audio and visual excitatory
layers.

VI. RESULTS AND EVALUATION

This section will present experiments results, discussion and
shed insights on the use of SNN and cross-modal interaction
in speech emotion recognition. First we describe the effect
of convolution configuration on the overall results. Then we
investigate the results for unimodal SER tasks. Finally we
discuss the results for early multisensory integration for the
enhancement of SER tasks.



Fig. 3: Effect of convolutional window configuration on overall
accuracy

1) Effect of The Number of Features And The Size of
Convolutional window: The network is experimented with
various convolutional window sizes and number of features.
Results in Figure 3 show that the overall accuracy increases
when the convolutional size is smaller and the number of
features are large. Increasing the number of features leads
to an increase in the number of excitatory neurons; i.e.,, a
better accuracy. The pattern is observed using both MFCCs
and Mel-scale spectrogram features [34], [39]. Having more
features and more excitatory neuron leads to learning more
features. In the end, we choose a convolution window of 10
and 60 number of features.

A. SER With Audio Data Alone

Table I presents the accuracy of SER using two types of
features: Mel-scale Spectrogram and MFCC. MFCCs achieve
a higher accuracy than raw audio signals or Mel-scale spec-
trogram for both eNTERFACE and RAVDESS datasets with
72.2% and 80.29% respectively. This shows that MFCCs are
an effective type for audio features for processing speech data
in SNN. This is also in line with state-of-the-arts methods
where MFCCs outperforms other types of audio features in
emotion recognition [51].

TABLE I: Comparison of SER accuracy with audio data only
between different audio features

Feature extraction eNTERFACE(%) RAVDESS (%)
Mel-scale spectrogram 42.1 45.1

MFCCs 72.2 80.3

Table II compares the SER accuracy between the SNN and
the state-of-the-art techniques. As an unsupervised learning
technique, the SNN has produced comparable results, and in
certain cases it outperforms some of the state-of-the-art. Fu
et al. [9] introduce an Enhanced Sparse Local Discriminate
Canonical Correlation Analysis approach (En-SLDCCA) using
multi-modal feature learning representation. This presents an
interesting future work for SNN, as we currently only use one
feature representation – MFCC, and it would be beneficial
to build multi-modal network to learn on each type of audio
features. Fonnegra et al [52] have produced the best accuracy
of 91.4% using a convolutional auto-encoder and a data
augmentation technique. Data augmentation is out of scope
of this paper, but it certainly presents an interesting direction
to explore in the future. The proposed use of SNN with only
one type of features, MFCC, is comparable to the state-of-

the-art techniques without the use of any data augmentation
or other features.

TABLE II: Comparison of SER accuracy between SNN and
the state-of-the-art techniques on the eNterface dataset

Recognition
method

Model Learning Accuracy
(%)

Noroozi et al.
[53]

RF/MFCC supervised 47.1

Turgut [54] Acoustic analysis supervised 56.3
Turgut [54] Texture analysis

of spectrogram
supervised 60.9

Fu et al. [9] En-SLDCCA supervised 80.1
Fonnegra et al.
[52]

Convolution
auto-encoder

supervised 91.4

SNN SNN/MFCC unsupervised 72.2

TABLE III: Comparison of SER accuracy on cross-model
enhancement between different audio features

Feature extraction eENTRFACE(%) RAVDESS (%)
Mel-scale Spectrogram 63.7 54.4

MFCCs 86.3 83.6

1) Cross-Modal Enhancement: Table III presents the SER
accuracy for cross-modal enhancement. The accuracy has con-
sistently improved from unimodal learning in Table I on both
Mel-scals spectrogram and MFCC for both RAVDESS and
eNTERFACE datasets. There is an improvement compared to
SER with audio data only. Confusion matrices in Figure 4 and
5 show the difference between the recognition with SNN audio
only and the cross-modal enhancement. Although there is an
enhancement of the overall accuracy, the confusion matrices
show different patterns depending on the emotion classes.
‘Surprise’ is at 36.4% using SNN with audio alone, and
increases to 66.7% using the visual information enhancement.
However ‘sad’ class accuracy decreases from 100% accuracy
from SNN with audio only to 94.4% with visual cross-modal
enhancement. On the other hand, ‘happiness’ and ‘disgust’ do
not change their accuracy. The highest increase noticed in the
‘surprise’ emotion class can result from a higher information in
the visual modality and can translate the inverse-effectiveness
of multisensory integration.

Fig. 4: Confusion matrix for
the SNN with audio only on
the RAVDES dataset

Fig. 5: Confusion matrix
for the cross-modal en-
hancement on the RAVDES
dataset

The best overall accuracy of cross-modal enhancement is
comparable to the state-of-the-art approaches on the same



TABLE IV: Comparison of SER accuracy between cross-
modal enhancement and the state-of-the-art techniques

Recognition
method

Model Learning Fusion Accuracy
(%)

Zhangi et al.
[10]

SVM supervised A+V 66.5

Noroozi et
al. [53]

RF/PCA supervised A+V 99.9

SNN with
cross-modal
enhance-
ment

SNN/MFCC unsupervised A
enhanced
by V

86.3

eNTERFACE dataset, as presented in Table IV. Our method
is outperformed by Noroozi et al. [53]. Their method is
a supervised learning approach consisting of late fusion of
various classifier on various visual and audio features. They
fuse the confidence score of each classifier. Although they
report a very high accuracy, Their system can be challenging
in a real time environment as they summarise visual frame
features using fewer key frames. This could lead to missing
key information from real-time data. Our proposed method
makes use of the whole visual and audio sequence in order to
capture the whole dynamics.

We have also compared our proposed early cross-modal
enhancement to a basic multisensory integration architecture.
Early cross-modal integration outperforms the basic multisen-
sory integration implementation where it achieves the accuracy
of 83.6% for RAVDESS dataset compared to 81.3% for the
basic multimodal integration. The latter achieves nearly similar
accuracy to unimodal implementation in Table V.

TABLE V: Comparison of SER accuracy between the pro-
posed early cross-modal enhancement to the basic multimodal
integration

Model Fusion Accuracy (%)
Multimodal integration A+V early fusion 81.3
SNN with cross-modal
enhancement

A enhanced by V 83.6

VII. CONCLUSION AND FUTURE WORK

In this this paper we have demonstrated that the exploration
of different types of classifiers and more biologically inspired
architectures can be beneficial for SER tasks. Providing an
unsupervised STDP learning proves to be effective for SER,
with the reduced reliance on the labelled training data and
very large datasets. Using cross-modal enhancement provides
us with more accurate recognition compared to a uni-sensory
SNN, early fusion or state-of-the-art supervised learning tech-
niques. Using SNN is more computationally advantageous
due to their effectiveness on small datasets [55], the sup-
port spatio-temporal data [56] and the ability to generalise
features across different datasets [55]. Turning towards more
biologically inspired architectures can be useful for computing
a cognitive model and more accurate learning especially in
mutimodal affective computing. In the future, we will extend

the experiments to test on incongruent visual and auditory data
to assess the robustness of our model.
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