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Abstract

High-Level Heterogeneous and Hierarchical Parallel Systems (HLPGPU) aims to bring to-
gether researchers and practitioners to present new results and ongoing work on those as-
pects of high-level programming relevant, or specific to GPGPUs and new architectures.
The 2016 HLPGPU symposium was an event co-located with the HiPEAC conference in
Prague, Czech Republic. HLPGPU is targeted at high-level parallel techniques, including
programming models, libraries and languages, algorithmic skeletons, refactoring tools and
techniques for parallel patterns, tools and systems to aid parallel programming, heteroge-
neous computing, timing analysis and statistical performance models.
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1. Presentation

Heterogeneous multicore/manycore systems are becoming ubiquitous. Such systems com-
bine CPUs, GPUs etc. into coherent highly-parallel, and energy-efficient, systems. Data-
intensive applications are one of the most important and commonly encountered classes of
industrial application. They are often potentially highly parallel and are a clear match to
emerging heterogeneous parallel systems. Near-future data-intensive applications will thus
need to consider large-scale parallelism as an essential part of their design and development.

Typical state-of-the-art development methodologies treat parallelism as an after-thought,
deploying, for example, inappropriate concurrency techniques that are tedious, error-prone
and lacking scalability or portability to new computer architectures. Developing parallel
software is still seen as a specialist activity, and strong software engineering principles are
rarely applied. What is needed is a new software development approach that is simple
enough to be followed by applications developers, but which is flexible and robust enough to
deal with highly complex parallel hardware and systems, as required for e.g. data-intensive
applications.
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This special issue presents innovative technical solutions showing advances on high-
level parallel programming models, adaptation to heterogeneous/hierarchical platforms (i.e.,
GPGPU, multicore, FPGA), programming experiments and applications of heterogeneous/hierarchical
platforms with a view on high-level programming methods, domain-specific parallel patterns,
pattern implementations using application-specific, and refactoring tools and techniques for
parallel patterns.

The invited talk was given my Daniel Garcia of Universidad Carlos III de Madrid. We
had 10 paper presentations at the workshop, after which, we opened up the special issue
for revised submissions. This special issue reports the accepted revised papers. The special
issue includes extended versions of the selected papers of HLPGPU 2016 workshop whose
topics fit in the scope of this special issue, but it has been also open to any author, through
an open call.

2. Special Issue Contents

This special issue of High Performance Computing Applications Journal contains papers
selected from a set of invited papers extracted from the papers presented in the HLPGPU
2016 workshop, High-Level Programming for Heterogeneous and Hierarchical Parallel Sys-
tems, held in Prague, Czech Republic, but it also covers papers coming from an open call.
The special issue received 8 papers, 6 featuring extended versions of papers selected among
top ranked papers of HLPGPU 2016 and two from the open call. Four of which were selected
for publication after going through the High Performance Computing Applications Journal
peer review process. As we show below, the accepted papers cover important aspects of
the special issue topics, going from the development of parallel patterns to GPGPU-based
applications.

Heterogeneous parallel platforms, comprising multiple processing units and architectures,
have become a cornerstone in improving the overall performance and energy efficiency of
scientific and engineering applications. Nevertheless, taking full advantage of their resources
comes along with a variety of difficulties: developers require technical expertise in using
different parallel programming frameworks and previous knowledge about the algorithms
used underneath by the application. In “Performance Modelling and Verification of Cloud-
based Auto-Scaling Policies” [3], Rio et al. alleviate this burden by proposing an adaptive
offline implementation selector that allows users to better exploit resources provided by
heterogeneous platforms. Specifically, this framework selects, at compile time, the tuple
device-implementation that delivers the best performance on a given platform. The user
interface of the framework leverages two C++ language features: attributes and concepts.
To evaluate the benefits of this framework, the authors analyse the global performance and
convergence of the selector using two different use cases. The experimental results demon-
strate that the proposed framework allows users enhancing performance while minimizing
efforts to tune applications targeted to heterogeneous platforms and also that the proposed
framework delivers comparable performance figures with respect to other similar approaches.

Graphics processing units are used to accelerate reverse time migration, but these de-
ployments suffer from limitations such as the lack of high graphics processing unit memory
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capacity, frequent CPU-GPU communications that may be bottlenecked by the PCI bus
transfer rate, and high power consumptions. Said et al. [5] present the work “Leveraging the
accelerated processing units for seismic imaging: A performance and power efficiency com-
parison against CPUs and GPUs” that explores how efficiently may the APU be applicable to
reverse time migration. Using OpenCL (along with MPI and OpenMP), a CPU/APU/GPU
comparative study is conducted on a single node for the 3D acoustic reverse time migration,
and then extended on up to 16 nodes. The authors show the relevance of overlapping the
I/O and MPI communications with the computations for the APU and graphics processing
unit clusters, that performance results of APUs range between those of CPUs and those of
graphics processing units, and that the APU power efficiency is greater than or equal to the
graphics processing unit one.

Structured parallel programming models have been developed to support the design and
implementation of parallel applications.These programming models provide the parallel ap-
plication programmer with a set of pre-defined, ready to use parallel pattern abstractions
that may be directly instantiated, alone or in composition, to model the complete parallel
behaviour of the application at hand. Examples of these patterns are pipelines, farms, and
data stream-based skeletons. Danelutto et al. [2] introduce a set of state access patterns
suitable for managing accesses to states in parallel computations operating on streams. The
state access patterns are useful for modelling typical stream parallel applications. The au-
thors present a classification of the patterns according to the extent and way in which the
state can be structured and accessed, defining precisely the state access patterns and dis-
cuss possible implementation schemas, performances and possibilities to manage adaptivity
(parallelism degree) in the patterns. The paper includes experimental results relative to
implementations built on top of the structured parallel programming framework FastFlow
[1] that demonstrate the feasibility and efficiency of the proposed access patterns.

Nowadays the use of hardware accelerators, such as the graphics processing units, is
key in solving computationally costly problems that require high performance computing.
However, the development of solutions for an efficient deployment for these kind of devices
is a very complex task, which relies on the manual management of memory transfers and
configuration parameters. The programmer has to carry out a deep study of the particular
data that needs to be computed at each moment, across different computing platforms,
also considering architectural details. In the paper “Controllers: An abstraction to ease
the use of hardware accelerators”, Moreton et al. [4] introduce the controller concept as an
abstract entity that allows the programmer to easily manage the communications and kernel
launching details on hardware accelerators in a transparent way. This model also provides the
possibility of defining and launching central processing unit kernels in multi-core processors
with the same abstraction and methodology used for the accelerators. It internally combines
different native programming models and technologies to exploit the potential of each kind
of device. Additionally, the model also allows programmers to simplify the proper selection
of values for several configuration parameters that can be selected when a kernel is launched.
This is done through a qualitative characterization process of the kernel code to be executed.
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