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ABSTRACT: We report the results of testing quantitative
structure−property relationships (QSPR) that were trained upon
the same druglike molecules but two different sets of solubility
data: (i) data extracted from several different sources from the
published literature, for which the experimental uncertainty is
estimated to be 0.6−0.7 log S units (referred to mol/L); (ii) data
measured by a single accurate experimental method (CheqSol), for
which experimental uncertainty is typically <0.05 log S units.
Contrary to what might be expected, the models derived from the
CheqSol experimental data are not more accurate than those
derived from the “noisy” literature data. The results suggest that, at
the present time, it is the deficiency of QSPR methods (algorithms and/or descriptor sets), and not, as is commonly quoted, the
uncertainty in the experimental measurements, which is the limiting factor in accurately predicting aqueous solubility for
pharmaceutical molecules.

KEYWORDS: solubility, bioavailability, QSPR, QSAR, druglike, ADME, Random Forest, dissolution, experimental error, CheqSol,
Noyes−Whitney, Henderson−Hasselbalch, polymorph, crystal, machine learning, general solubility equation, ADMET, pharmaceutical,
rule-of-five

■ INTRODUCTION

Interest in the prediction of solubility by quantitative
structure−property relationships (QSPRs) has risen dramati-
cally in recent years.1−5 Currently, the state-of-the-art tool
allows the prediction of solubility with root-mean-square errors
(RMSEs) of approximately 0.3−0.4 log units for simple organic
molecules and 0.7−1.0 log units for drug molecules.6 One
frequently cited reason for the difficulty in predicting solubility
for drug molecules is that published methods are derived from
data taken from multiple sources from the literature, for which
RMSEs in experimental data have been estimated to be 0.6−0.7
logS units.6 The implicit assumption is that if existing models
could be retrained and tested upon more accurate data, then
the predictive error would decrease. Until recently, it has,
however, not been possible to test this hypothesis, due to the
absence of a definitive “gold-standard” data set containing
accurate solubility data for fully characterized drug molecules.
There are many different definitions of aqueous solubility in

common use in the published literature, but the majority of
QSPR models have focused on the prediction of intrinsic
aqueous solubility, which is the property we consider here. The
intrinsic aqueous solubility of an ionizable molecule is defined
as the concentration of the unionized molecule in saturated
aqueous solution at thermodynamic equilibrium at a given
temperature.7,8 It is used to calculate dissolution rate and pH-

dependent solubility in models such as the Noyes−Whitney
equation9 and the Henderson−Hasselbalch equation,10,11

respectively. There has been great interest in predicting the
intrinsic aqueous solubility of bioactive molecules in the
biochemical sciences because it is a key determinant in the
bioavailability of novel pharmaceuticals and the environmental
fate of potential pollutants.12−14

Recently, the intrinsic aqueous solubilities of 132 drug
molecules have been measured by the CheqSol method.15,16

The data are highly reproducible and standard errors for ten
repeat assays (i.e., the random errors between repititions of the
same experiment) are typically around 0.05 log units (referred
to mol/L). CheqSol measurements of solubility have been
shown to be very reliable, with very good agreement reported
for experiments carried out in different laboratories in different
countries and continents. The results also agree very well with
carefully performed shake-flask experiments carried out under
the correct conditions (which are not always the conditions
used for data reported in the published literature). The
CheqSol data were originally published as part of a blind
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Table 1. Experimental Solubility Data Measured by the CheqSol Method (log S (exp)), and Experimental Solubility (log S (lit)),
Melting Point (M.P.) and Octanol−Water Partition Coefficient Data (logP) Taken from the Published Literature; the Data Are
Collated for 85 Druglike Molecules

molecule logS (exp) (mol/L) σ(S (exp)) (μ mol/L) logS (lit) (mol/L) M.P. (°C) logP

acebutolol −2.675 410 −2.2027 12332 1.7132

acetaminophen −1.064 7000 −0.9827,29 17032 0.4632

acetazolamide −2.435 80 −2.4929 260.532 −0.2632

alprenolol −2.634 40 −2.4327 10932 3.1032

amantadine −1.854 1180 −1.3833 18032 2.4432

amitriptyline −4.550 2.9 −4.8027,29 196.532 4.9232

amoxicillin −1.972 540 −2.0927 19433 0.8732

atropine −2.004 460 −1.9627,29 118.532 1.8332

azathioprine −3.208 16 −3.4434 243.532 0.1032

bendroflumethiazide −4.298 6 −3.5935 22332 1.8932

benzocaine −2.336 900 −2.4727,29 9232 1.8632

benzthiazide −4.829 0.23 −4.6933 231.532 1.7332

bupivacaine −3.222 33 −2.0832 10832 3.4132

cephalothin −2.938 3 −3.4033 160.532 0.0032

chlorpromazine −5.071 0.1 −5.2227 5336 5.4132

chlorpropamide −3.249 10 −3.3028 12832 2.2732

chlorprothixene −6.750 0.008 −4.4037 97.532 5.1832

chlorzoxazone −2.663 10 −2.8329 191.532 1.6633

cimetidine −1.692 480 −1.4627,29,38 14232 0.4032

ciprofloxacin −3.597 27 −3.4827,38 26339 0.2832

clozapine −3.238 2.14 −4.6428 18432 3.2332

desipramine −3.627 8 −3.7627 2540 4.9032

diazoxide −3.363 23 −3.6028 330.532 1.2032

dibucaine −4.390 5.8 −3.7041 6442 4.4032

diclofenac −5.456 0.1 −5.3327,29 18343 4.5132

diethylstilbestrol −4.429 11 −4.5327,28 170.532 5.0732

diflunisal −5.936 0.08 −4.4829 210.529 4.4432

diltiazem −3.159 45 −2.9533 21232 2.7032

5,5-diphenylhydantoin −3.857 16 −4.1227−29 28632 2.4732

famotidine −2.648 50 −2.4927 163.532 −0.6432

flufenamic acid −5.355 0.08 −4.6229 133.532 5.2532

flurbiprofen −4.152 0.4 −4.0527,29 11132 4.1632

folic acid −5.247 0.45 −5.4429 25032 −2.8044

furosemide −4.227 6 −4.7527 29532 2.0332

glipizide −5.488 0.09 −4.0833 20933 1.9132

guanine −4.432 9 −3.5827,29 36032 −0.9445

hexobarbital −2.674 100 −2.7332 146.532 1.9832

hydrochlorothiazide −2.678 0.007 −2.6127−29,38 27432 −0.0732

hydroflumethiazide −2.967 300 −3.0429 270.532 0.3632

4-hydroxybenzoic acid −1.464 670 −1.4432 214.532 1.5832

ibuprofen −3.595 16 −3.4727−29 7632 3.9732

imipramine −4.105 3.5 −4.5227 174.532 4.8032

indomethacin −4.609 14 −5.3127−29 15832 4.1646

4-iodophenol −1.714 600 −1.8937 93.532 2.9132

ketoprofen −3.209 16 −3.2327−29,38 9432 3.1232

lidocaine −1.874 420 −1.7427,29 68.532 2.4432

mefenamic acid −6.738 0.001 −3.7729 23132 5.1232

metoclopramide −3.565 16 −3.1829 147.2532 2.6232

metronidazole −1.222 1500 −1.2129 160.532 −0.0232

miconazole −5.071 0.3 −5.7927 18547 6.0233

nalidixic acid −3.611 5 −3.3729 229.532 1.5932

naphthoic acid −3.774 0.06 −3.5632 185.532 3.2832

1-naphthol −1.983 400 −2.2232 9532 2.8532

naproxen −4.496 0.5 −4.2027−29 15332 3.1832

niflumic acid −4.585 5 −4.1741 20442 4.4332

nitrofurantoin −3.239 27 −3.4829 26332 −0.4732

oxytetracycline −3.086 180 −3.1732 184.532 −0.9032

phenazopyridine −4.194 2 −4.5327 13932 2.8044

phenobarbital −2.293 280 −2.3427,29 17432 1.4732
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challenge to predict solubility.15,16 Although this exercise
provided a useful benchmark for the field, the results of the
blind challenge were difficult to interpret in the scope of the
questions addressed here since entrants were not asked to
provide details of the methods they used or of any additional
experimental data they employed in making the predictions.
Here, to test the hypothesis that experimental data quality is

the limiting factor in predicting aqueous solubility, we develop
QSPRs from the CheqSol solubility data set and compare these
with models derived from literature solubility data for the same
molecules. The models are derived by Random Forest
regression, which has a number of attributes that make it
useful for this purpose. First, a Random Forest model trained
on the molecular descriptors used here has been shown to
perform well in comparison to other published methods for the
prediction of solubility.17,18 Therefore, the models may be
considered to be representative of QSPR models in the
literature. Second, Random Forest is a well-defined algorithm
for QSPR model building that does not overfit, which means
that its use eliminates the influence that inconsistent modeling
procedures would have on the experiment. To provide a
comparison to the Random Forest model, we also implement a
regression model against experimental melting point and logP,
which may be considered to be a parametrized model based on
the general solubility equation.19

The results are important as a benchmark of the prediction of
solubility by QSPR methods but may also be considered to be
illustrative of the effect that noise (in the dependent variable)
has on QSPR models and what this means when attributing

physical significance to QSPR variables. The work is also timely
given the recent development of molecular simulation methods
to predict the solubility of druglike molecules,20,21 which,
although currently more computationally expensive and less
accurate than QSPR models, may in the future offer an
alternative to QSPR models in some applications, depending
on how both fields develop.22−24

■ METHODS

Data Sets. For each of the 85 drug molecules in the data set,
two solubility values were obtained. First, the thermodynamic
solubility of the nonionized form (intrinsic solubility) at 298 K
was determined by the CheqSol method (“CheqSol Data set”).
Second, an experimental intrinsic solubility value at 298 K was
taken from the literature (“Literature Data set”).

CheqSol Data Set. The intrinsic aqueous solubilities of 132
molecules were published by Llinas et al. as part of a recent
blind challenge to predict solubility.15,16 In the current work,
we consider only a subset of this data because solubility data for
only 85 of these molecules were found to be available from
other sources in the published literature. The intrinsic aqueous
solubility was measured for all 85 compounds by Llinas et al.
using the CheqSol method.16,25,26 For indomethacin, which was
observed to hydrolyze in the original assay, we took the revised
solubility data point reported by Comer et al.26 In each
CheqSol assay, intrinsic solubility was measured 10 or more
times. In addition, the complete CheqSol assay was repeated
multiple times starting from separate samples in different vials.
The solubility or standard error of each molecule in the data set

Table 1. continued

molecule logS (exp) (mol/L) σ(S (exp)) (μ mol/L) logS (lit) (mol/L) M.P. (°C) logP

phenylbutazone −4.391 0.04 −2.6429 10532 3.1632

phthalic acid −1.606 860 −1.3732 23032 0.7332

pindolol −3.788 4 −3.5627,38 17132 1.7532

piroxicam −4.801 0.5 −4.0328 20032 3.0632

probenecid −4.864 0.35 −4.7127,28,38 19532 3.2132

procaine −1.719 820 −1.7827 6132 2.1432

propanolol −3.495 16 −3.5227,38 9632 3.4832

pyrimethamine −4.108 11 −3.3133 233.532 2.6932

quinine −2.786 36 −2.7827,29 19532 3.4432

salicylic acid −1.931 290 −1.8027,29 15832 2.2632

sulfacetamide −1.52 240 −1.5129 18332 −0.9632

sulfamerazine −3.121 23 −2.9832,33,48 23632 0.1432

sulfamethazine −2.732 23 −2.2729 198.532 0.8932

sulfamethizole −2.779 150 −2.5337 20832 0.5432

sulfathiazole −2.688 180 −2.8129 18932 0.0532

sulindac −4.509 4 −4.9327−29 18332 3.4232

tetracaine −3.011 22 −3.2337 14749 3.5132

tetracycline −2.924 190 −3.2437 172.532 −1.3032

thiabendazole −3.484 20 −3.6037 30032 2.4732

thymol −2.186 38 −2.2232 51.532 3.3032

tolbutamide −3.463 18 −3.3950 128.532 2.3432

tolmetin −4.092 4 −3.0633 15632 2.7932

trichlomethiazide −3.529 5 −2.6832 27032 0.6232

trimethoprim −2.951 96 −2.8728,29 20332 0.9132

trimipramine −4.796 3 −6.2927 4532 4.4533

warfarin −4.783 0.03 −4.7427 16132 2.6032

minimum −6.750 −6.29 25 −2.80
maximum −1.064 −0.98 360 6.02
mean −3.469 −3.31 175 2.24
σ 1.238 1.16 68 1.83
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is reported as a statistical result across all separate CheqSol
assays (Table 1). The standard errors for the measured intrinsic
solubilities were typically less than 0.05 logS (referred to mol/
L).
For five molecules in the data set, a change in polymorphic

form was reported to occur during the solubility assay. In each
case, the final polymorphic form was reported to be stable to
repeated cycling between sub- and supersaturated states, and
the solubility of this polymorph was used in the QSPR analyses.
The ratios of the solubilities of the observed polymorphs are
discussed in the results section.
Literature Solubility Data. Data for intrinsic solubility in

water at 25 °C were obtained from the literature for each of the
85 molecules. For 26 of the 85 molecules, more than one value
for solubility was found in the literature and an arithmetic
average was taken. Of these molecules, three had a standard
deviation between 0.5 and 1 log solubility units (diethyl-
stilbestrol, indomethacin, and propanolol) and the remainder
had standard deviations less than 0.5 log solubility units.
Solubility data and references are provided in Table 1.
The literature solubility data set was compiled from 123

experimental solubility values taken from 12 sources from the
literature. In general, the data are taken from well-known QSPR
solubility data sets; the majority comes from papers on the
prediction of solubility by Bergström et al. (35%),27 Wassvik et
al. (11%),28 and Rytting (28%).29 The remainder of the data
are taken from other QSPR papers and well-known databases.
Accurate measurement of intrinsic aqueous solubility requires
that thermodynamic equilibrium is established and several
factors are controlled, including purity of the solute and solvent,
temperature, physical form of the precipitate, and solution pH
and ionization state. Although care was taken to select intrinsic
aqueous solubility from reliable sources in the literature (and
those that are representative of good QSPR data sets), mistakes
in experimental methodology and reporting of data have
undoubtedly introduced some unidentified errors, which may
mean that some of the literature data do not correspond
perfectly to intrinsic aqueous solubility (they may be kinetic or
total aqueous solubility). The problems with literature solubility
are widely known and have been well discussed by many other
authors.30,31 Simple statistics of the distribution of both the
literature and the new experimental data set are provided in
Table 1. The literature and CheqSol solubility data are plotted
against each other in Figure 1.
Melting Point Data and logP Data. For each molecule,

experimental melting point and logP data were also obtained
from the literature. All data and references are given in Table 1.
QSPR Models. Two models were built for both new

experimental and literature solubility data: (i) a Random Forest
model using all 2D and 3D descriptors; (ii) a multilinear
regression equation using two variables: experimental melting
point and experimental logP. The Random Forest model is
similar to that used in a previous study on the prediction of
solubility.17 The multiple linear regression equation is a
reparameterization of the general solubility equation and is
included for comparison.
For each molecule, molecular structure files were taken from

PubChem and were checked using SciFinder. A single low
energy molecular conformer was selected by a low-mode
conformation search using the MMFF94s force field with a
Generalized Born Surface Area (GB/SA) model for water as
solvent (as implemented in MacroModel).51 Both 2D and 3D
molecular descriptors were calculated from the lowest energy

conformer using the Molecular Operating Environment
(MOE) software.52 The MOE software provides a method
for predicting logS, which when compared to our new
experimental solubility data for all 85 molecules gave a rather
unsatisfactory, r2 = 0.27, RMSE = 1.05 logS units, and bias =
−0.36 logS units (where S is referred to units of mol/L). These
predicted solubility values were excluded from further analysis
and were not used in model building.
The 2D descriptors included calculated physical properties

(logP, molar refractivity), charged surface properties (from
Gasteiger−Marsili PEOE charge distributions on VDW
surfaces), constitutional descriptors (counts of atoms and
functional groups), connectivity and topological indices
(including the chi, Kier−Hall, kappa, Wiener, and Balaban
indices), and hydrogen bonding propensities (numbers of
hydrogen bond donors and acceptors). The 3D descriptors
included energy terms (total potential energy and contributions
of angle bend, electrostatic, out of plane, and solvation terms to
the molecular mechanics force-field energy), molecular shape
descriptors (water accessible surface areas), volume descriptors,
and surface area descriptors. These descriptors have previously
been shown to be successful for the prediction of solubility.53

All of the descriptors used in this work are listed in the
Supporting Information. Each model was trained upon a subset
of the data set (n = 60) and then validated by both cross-
validation on the training data set and by prediction of the
remaining 25 molecules. To reduce the influence of the choice
of training and test split, this procedure was repeated 20 times
(i.e., 20 different random partitions; a method sometimes
referred to as Monte Carlo cross-validation), and statistically
averaged results are reported. All comparisons were made on a
like-for-like basis, i.e., the same randomly selected training and
test sets and the same cross-validation folds were used for each
pair of Random Forest or multilinear regression models trained
upon literature solubility and new experimental data. Thus, the
results for row 1 in Table 4 (or Table 7) and row 1 in Table 5
(or Table 8) are directly comparable, and likewise for rows 2, 3,
4, etc. Three statistics are reported to assess the accuracy of
each regression model:

Figure 1. Correlation diagram for solubility data taken from the
literature and as measured by the CheqSol method.
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where index i runs through the set of N selected molecules, and
yi and yexp

i are the calculated and the experimental values,
respectively, for molecule i for the given property (i.e., log10S).
A parentheses nomenclature is adopted to indicate whether the
results refer to fit-to-the-training data (tr), 10-fold cross-
validation (cv), out-of-bag validation (oob), or prediction of the
test set (te).
Random Forest is robust to overfitting and can be used

without optimization of the training parameters,54 which allows
the results for the two data sets to be compared without
concern that the results are influenced by modeling errors. Each
Random Forest was trained with the parameters of ntree = 500,
nodesize = 5, and mtry = (total number of descriptors)/3,
which have been used successfully in previous QSPR models to
predict solubility.17,18

Comparison between Experimental and Literature
Solubility Data. Figure 1 shows the correlation diagram
between the log solubility data taken from the literature against
the new experimental data (r2 = 0.69, RMSE = 0.68 logS units,
σ = 0.66 logS units, and bias = −0.18 logS units). Table 2 shows

summary statistics for the distribution of log solubility data in
these two data sets. The largest deviations between the two
sources of solubility data are observed toward the bottom left of
the graph (at low solubility values). Nine molecules have a
difference in reported solubilities (ΔlogS = logS(exp) −
logS(lit)) with a magnitude larger than 1 logS unit (ΔlogS
given in parentheses): bupivacaine (−1.14), chlorprothixene
(−2.35), clozapine (1.40), diflunisal (−1.46), glipizide (−1.41),
mefenamic acid (−2.97), phenylbutazone (−1.75), tolmetin
(−1.03), and trimipramine (1.49).
Accurate measurement of intrinsic aqueous solubility

requires the careful control of many factors, including purity
of the solute and solvent, temperature, physical form of the
precipitate, and solution pH and ionization state. In Figure 1,
the predominance of molecules whose literature solubility
values are higher than our measured intrinsic values suggests
that some of these literature data points may correspond more
closely to total aqueous solubilities than intrinsic solubilities
(i.e., the ionized form of the molecule may contribute to the
measured solubility). The literature solubility values that are
lower than the measured intrinsic values may indicate that in
the former a different crystalline form (e.g., a hydrate) was
present at thermodynamic equilibrium. The inaccuracies in
literature solubility caused by both experimental and reporting

errors have been well discussed previously.8,30 The CheqSol
method is designed to measure specifically the intrinsic aqueous
solubility. The crystalline form of the precipitates identified in
the CheqSol experiments were characterized by thermogravi-
metric analysis, differential scanning calorimetry, and powder
and single-crystal X-ray diffraction.

Polymorphism. The cycling between subsaturated, satu-
rated and supersaturated states that is inherent to the CheqSol
method was reported to cause a polymorphic change for five
molecules during the solubility assay.15,25 This polymorphic
change was first evident as a change in solubility and was
verified by repeating the assay in order to isolate and fingerprint
the precipitate by powder X-ray diffraction (PXRD). The final
polymorphic form was reported to be stable to repeated cycling
between saturated and subsaturated states in each experiment.
In Table 3, the ratios of the average solubilities of each

observed polymorph to that of the least soluble polymorph for
that molecule are reported. For each molecule, the solubility is
observed to decrease as consecutive polymorphs are formed,
which is in agreement with Ostwald’s “Law of Stages” that
states that metastable polymorphs are often observed to form
prior to more thermodynamically stable ones.55

The largest ratio of the solubility of observed polymorphs is
for diflunisal, for which form I is 89 times more soluble than
form IV, a surprisingly large difference in solubility.
Unfortunately, although the result for diflunisal was reprodu-
cible, it was not possible to solve the three-dimensional crystal
structure from the PXRD patterns, which prevented further
analysis of the structural differences between forms I and IV.
The remaining four molecules in the data set have an average
polymorph ratio of 3.45, which provides further evidence that
diflunisal is an uncommon example. It has previously been
reported, based on a statistical analysis of known crystal
structures and existing solubility data, that the average
difference between the solubility of polymorphs of druglike
molecules is approximately 2-fold.56 Here the observed average
polymorph solubility ratio is 3.45; this may be an artifact caused
by the use of a small data set (only five molecules with
solubilities for more than one polymorph).

■ RESULTS
We have used two different methods, (i) Random Forest
regression with a combination of 2D and 3D molecular
descriptors and (ii) multilinear regression using only
experimental melting point and logP values, to model the 85
molecule data set for both literature solubility data and new
solubility data.

Table 2. Simple Statistics for Both the New Experimental
Log Solubility Data (Referred to mol/L) and the Literature
Log Solubility Data (Where Units of Solubility Are mol/L)

σ maximum minimum kurtosis skew

new experimental data 1.24 −1.06 −6.75 −0.30 −0.31
literature data 1.16 −0.98 −6.29 −0.54 −0.17

Table 3. Polymorph Solubility Ratios for Five Molecules
That Were Observed to Undergo a Polymorphic Change
during the CheqSol Assaya

molecule form I form II form III form IV

trazadone 3.6 1 n/a n/a
trichlomethiazide 2.2 1 n/a n/a
sulindac 6.7 1 n/a n/a
phthalic acid 1.3 1 n/a n/a
diflunisal 89 27 3.5 1

aThe number represents the ratio relative to the least soluble
polymorph for the given molecule. The polymorphs are named in the
order that they appeared in the experiments, e.g., form I to form IV.
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The results for each of the 20 Random Forest regression
models derived from different random partitions of the data set
are presented for literature solubility data in Table 4 and for
new experimental data in Table 5. The statistically averaged
results are presented in Table 6. For the literature solubility
data set, the averaged values for out-of-bag cross-validation

were r2(oob) = 0.42, RMSE(oob) = 0.85 logS units, and
bias(oob) = 0.01 logS units, and prediction of the molecules in
the external test sets were r2(te) = 0.44, RMSE(te) = 0.89 logS
units, and bias(te) = 0.08 logS units. These results are
comparable to recent global models for the prediction of
solubility of drugs such as those of Bergström et al.27 who

Table 4. Statistics for Random Forest Regression with Literature Solubility Dataa

model r2(tr) RMSE(tr) bias(tr) r2(oob) RMSE(oob) bias(oob) r2(te) RMSE(te) bias(te) σ(tr) σ(te) mean(tr) mean(te)

1 0.91 0.36 −0.00 0.40 0.91 0.00 0.40 0.83 0.23 1.18 1.09 −3.42 −3.07
2 0.89 0.36 0.01 0.32 0.90 0.02 0.59 0.82 0.16 1.11 1.31 −3.31 −3.33
3 0.90 0.33 0.00 0.32 0.86 0.00 0.58 0.89 −0.09 1.05 1.41 −3.29 −3.38 a,c
4 0.92 0.34 0.01 0.47 0.88 0.01 0.37 0.78 −0.10 1.22 1.01 −3.23 −3.50
5 0.92 0.31 0.00 0.47 0.78 0.01 0.45 0.96 0.24 1.08 1.33 −3.41 −3.08 e
6 0.92 0.32 0.00 0.45 0.81 0.01 0.43 0.98 0.03 1.10 1.32 −3.28 −3.39 a,e
7 0.92 0.31 0.00 0.47 0.81 0.00 0.46 0.88 0.18 1.12 1.22 −3.45 −2.98 a
8 0.92 0.32 0.01 0.49 0.82 0.02 0.43 0.87 0.06 1.16 1.17 −3.35 −3.21 a
9 0.93 0.31 −0.00 0.55 0.79 −0.01 0.08 1.01 −0.30 1.20 1.08 −3.25 −3.47
10 0.92 0.31 −0.00 0.51 0.78 −0.01 0.43 0.95 −0.00 1.12 1.28 −3.31 −3.31 e
11 0.89 0.35 0.02 0.31 0.88 0.05 0.52 0.94 0.10 1.06 1.39 −3.31 −3.32 a
12 0.91 0.36 0.01 0.45 0.89 0.04 0.44 0.76 0.03 1.22 1.04 −3.30 −3.34
13 0.90 0.35 0.00 0.37 0.88 0.01 0.48 0.91 −0.14 1.12 1.28 −3.29 −3.36 e
14 0.90 0.33 0.01 0.35 0.83 0.04 0.42 1.01 0.51 1.04 1.35 −3.48 −2.91 a,c,d
15 0.91 0.33 −0.00 0.38 0.86 −0.00 0.54 0.88 −0.02 1.10 1.32 −3.27 −3.41 e
16 0.92 0.32 0.01 0.49 0.81 0.02 0.38 0.92 −0.16 1.15 1.19 −3.24 −3.49
17 0.91 0.35 0.01 0.40 0.88 0.03 0.43 0.89 0.53 1.14 1.20 −3.41 −3.09
18 0.91 0.35 −0.01 0.44 0.89 −0.01 0.30 0.87 −0.03 1.20 1.07 −3.35 −3.22
19 0.91 0.36 −0.00 0.41 0.90 −0.01 0.55 0.73 0.17 1.18 1.10 −3.22 −3.54
20 0.91 0.35 −0.01 0.40 0.88 −0.01 0.51 0.83 0.13 1.15 1.21 −3.29 −3.38 c,e

aExtrapolation in logS for (a) acetaminophen, (b) miconazole, (c) metronidazole, (d) phthalic acid, and (e) trimipramine, in test set.

Table 5. Statistics for Random Forest Regression with New Experimental Solubility Dataa

model r2(tr) RMSE(tr) bias(tr) r2(oob) RMSE(oob) bias(oob) r2(te) RMSE(te) bias(te) σ(tr) σ(te) mean(tr) mean(te)

1 0.92 0.37 0.01 0.48 0.94 0.03 0.22 0.85 0.46 1.30 0.99 −3.63 −3.09
2 0.90 0.33 0.00 0.36 0.86 0.01 0.49 1.10 −0.12 1.08 1.56 −3.41 −3.62 c,d,f
3 0.91 0.35 0.01 0.43 0.88 0.03 0.59 0.88 −0.01 1.18 1.40 −3.45 −3.52 a,b,g
4 0.92 0.35 0.01 0.52 0.87 0.02 0.26 0.97 −0.27 1.26 1.15 −3.35 −3.76 c
5 0.92 0.36 0.01 0.48 0.88 0.03 0.27 1.02 0.50 1.23 1.21 −3.61 −3.13
6 0.91 0.37 0.02 0.42 0.93 0.05 0.58 0.80 0.11 1.24 1.26 −3.45 −3.51 b
7 0.92 0.36 −0.00 0.50 0.88 0.01 0.48 0.83 0.12 1.25 1.17 −3.60 −3.16 b
8 0.93 0.32 0.02 0.54 0.82 0.04 0.39 1.02 −0.01 1.21 1.33 −3.50 −3.39 b,c
9 0.93 0.33 0.01 0.56 0.83 0.03 0.29 0.98 −0.35 1.25 1.19 −3.35 −3.74
10 0.93 0.34 0.01 0.54 0.85 0.03 0.40 0.89 0.12 1.27 1.17 −3.51 −3.37
11 0.91 0.37 0.01 0.39 0.95 0.01 0.61 0.78 0.36 1.22 1.28 −3.54 −3.31 b
12 0.92 0.38 0.02 0.49 0.96 0.06 0.52 0.63 0.06 1.35 0.93 −3.50 −3.40
13 0.90 0.39 0.02 0.35 1.00 0.05 0.64 0.73 0.07 1.25 1.24 −3.48 −3.44
14 0.89 0.38 0.02 0.31 0.94 0.07 0.50 0.95 0.48 1.15 1.37 −3.64 −3.06 b,g
15 0.90 0.38 0.01 0.39 0.94 0.03 0.59 0.83 −0.02 1.21 1.32 −3.43 −3.57 c
16 0.91 0.37 0.02 0.42 0.95 0.04 0.54 0.79 −0.11 1.27 1.19 −3.42 −3.58
17 0.91 0.35 −0.00 0.43 0.86 0.00 0.58 0.92 0.24 1.16 1.44 −3.49 −3.43 c
18 0.93 0.36 0.02 0.54 0.90 0.05 0.15 0.87 0.14 1.34 0.96 −3.54 −3.30
19 0.90 0.35 0.00 0.38 0.89 0.00 0.49 0.97 −0.17 1.13 1.38 −3.28 −3.91 c,d,e,f
20 0.92 0.36 0.01 0.47 0.91 0.02 0.53 0.81 0.17 1.26 1.20 −3.43 −3.55

aExtrapolation in logS for (a) 4-hydroxybenzoic acid, (b) acetaminophen, (c) chlorprothixene, (d) diflunisal, (e) glipizide, (f) mefenamic acid, and
(g) metronidazole, in test set.

Table 6. Average Statistics for Random Forest Regression with Both Literature and Experimental Solubility Data

data r2(tr) RMSE(tr) bias(tr) r2(oob) RMSE(oob) bias(oob) r2(te) RMSE(te) bias(te) σ(tr) σ(te) mean(tr) mean(te)

experimental 0.91 0.36 0.01 0.45 0.90 0.03 0.45 0.88 0.09 1.23 1.24 −3.48 −3.44
literature 0.91 0.34 0.00 0.42 0.85 0.01 0.44 0.89 0.08 1.13 1.22 −3.32 −3.29
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reported RMSE(te) from 0.86 to 1.01 logS units and Chen et
al.34 who reported an RMSE(te) = 0.86 logS units, which
suggests that the Random Forest model is performing as
expected for the literature data set. When the model was
retrained upon the new solubility data set, however, the
expected improvement in results was not observed. For the new
solubility data set, the averaged values for cross-validation were

r2(oob) = 0.45, RMSE(oob) = 0.90 logS units, and bias(oob) =
0.03 logS units, and prediction of the molecules in the external
test sets were r2(te) = 0.45, RMSE(te) = 0.88 logS units, and
bias(te) = 0.09 logS units (Tables 5 and 6).
By comparison to the Random Forest models, the multilinear

regression models against experimental values of melting point
and logP were less accurate for the prediction of solubility. The

Table 7. Statistics for Multilinear Regression against Two Variables (Experimental Melting Point and Experimental logP) for
Literature Solubility Data

model r2(tr) RMSE(tr) bias(tr) r2(cv) RMSE(cv) bias(cv) r2(te) RMSE(te) bias(te) σ(tr) σ(te) mean(tr) mean(te)

1 0.22 0.99 0.00 0.11 1.06 −0.01 0.53 0.81 −0.00 1.13 1.20 −3.19 −3.62
2 0.41 0.88 0.07 0.34 0.93 −0.01 0.13 1.06 −0.18 1.16 1.16 −3.25 −3.46
3 0.40 0.87 0.10 0.37 0.89 −0.02 0.05 1.09 −0.24 1.13 1.14 −3.14 −3.73
4 0.53 0.74 −0.02 0.50 0.77 −0.00 −0.01 1.31 0.05 1.09 1.33 −3.38 −3.16
5 0.22 0.98 0.05 0.13 1.03 −0.01 0.49 0.84 −0.13 1.12 1.20 −3.17 −3.67
6 0.36 0.82 −0.03 0.31 0.86 −0.01 0.29 1.18 0.07 1.04 1.43 −3.38 −3.16
7 0.35 0.90 0.01 0.28 0.95 −0.01 0.30 1.04 −0.03 1.12 1.26 −3.34 −3.24
8 0.48 0.82 −0.01 0.47 0.83 −0.00 0.02 1.18 0.02 1.15 1.22 −3.29 −3.36
9 0.31 0.94 0.08 0.23 0.99 −0.01 0.34 0.94 −0.18 1.14 1.18 −3.20 −3.60
10 0.31 0.93 −0.01 0.23 0.99 0.00 0.37 0.96 0.01 1.14 1.24 −3.36 −3.21
11 0.31 1.01 −0.05 0.24 1.06 −0.01 0.38 0.76 0.12 1.23 0.99 −3.38 −3.15
12 0.34 0.93 0.08 0.25 0.99 −0.02 0.23 0.97 −0.19 1.16 1.13 −3.18 −3.63
13 0.30 1.03 0.06 0.17 1.13 0.01 0.39 0.67 −0.15 1.24 0.88 −3.19 −3.62
14 0.42 0.87 0.02 0.37 0.90 −0.02 0.15 1.09 −0.05 1.15 1.20 −3.27 −3.42
15 0.29 0.93 −0.06 0.17 1.01 −0.01 0.36 0.97 0.15 1.11 1.24 −3.44 −3.00
16 0.37 0.90 0.00 0.26 0.98 −0.00 0.26 1.03 −0.01 1.14 1.22 −3.31 −3.33
17 0.51 0.79 0.05 0.50 0.79 −0.01 −0.02 1.24 −0.12 1.13 1.25 −3.32 −3.30
18 0.23 1.03 −0.03 0.12 1.11 0.01 0.60 0.67 0.06 1.19 1.07 −3.41 −3.08
19 0.28 0.98 −0.05 0.21 1.03 −0.01 0.42 0.85 0.13 1.16 1.14 −3.42 −3.05
20 0.45 0.93 0.05 0.45 0.92 −0.01 −0.19 0.98 −0.11 1.25 0.91 −3.35 −3.22

Table 8. Statistics for Multilinear Regression against Two Variables (Experimental Melting Point and Experimental logP) for
New Experimental Solubility Data

model r2(tr) RMSE(tr) bias(tr) r2(cv) RMSE(cv) bias(cv) r2(te) RMSE(te) bias(te) σ(tr) σ(te) mean(tr) mean(te)

1 0.28 0.92 −0.01 0.21 0.97 −0.00 0.54 0.99 0.02 1.10 1.50 −3.33 −3.80
2 0.44 0.90 0.13 0.39 0.93 −0.00 0.31 1.05 −0.32 1.21 1.29 −3.35 −3.75
3 0.44 0.91 0.08 0.42 0.93 −0.02 0.24 1.03 −0.19 1.22 1.20 −3.30 −3.88
4 0.48 0.83 −0.02 0.42 0.88 −0.00 0.28 1.17 0.04 1.17 1.41 −3.54 −3.30
5 0.37 0.92 0.05 0.28 0.98 −0.02 0.41 1.00 −0.13 1.17 1.33 −3.30 −3.87
6 0.46 0.88 −0.05 0.41 0.92 −0.01 0.30 1.09 0.12 1.20 1.32 −3.56 −3.25
7 0.32 0.98 0.03 0.23 1.04 −0.01 0.58 0.86 −0.08 1.20 1.36 −3.49 −3.42
8 0.53 0.88 −0.04 0.54 0.88 −0.01 0.01 1.07 0.09 1.30 1.10 −3.47 −3.47
9 0.33 1.00 0.08 0.25 1.06 −0.01 0.56 0.79 −0.20 1.23 1.22 −3.34 −3.78
10 0.39 0.99 −0.05 0.30 1.06 0.01 0.45 0.83 0.13 1.27 1.15 −3.57 −3.24
11 0.41 1.00 −0.09 0.33 1.06 −0.02 0.37 0.79 0.22 1.31 1.02 −3.58 −3.19
12 0.31 0.95 0.14 0.23 1.00 −0.01 0.48 0.93 −0.34 1.15 1.32 −3.27 −3.96
13 0.39 0.98 0.08 0.28 1.07 0.01 0.38 0.84 −0.20 1.27 1.09 −3.31 −3.85
14 0.49 0.91 0.04 0.46 0.94 −0.01 0.12 1.02 −0.11 1.29 1.11 −3.40 −3.64
15 0.36 1.00 −0.09 0.24 1.09 −0.01 0.44 0.80 0.22 1.26 1.10 −3.64 −3.05
16 0.44 0.91 −0.01 0.36 0.98 −0.00 0.34 1.01 0.02 1.24 1.27 −3.48 −3.45
17 0.49 0.88 0.08 0.45 0.91 −0.02 0.23 1.09 −0.20 1.24 1.27 −3.46 −3.50
18 0.32 1.02 −0.02 0.18 1.13 0.01 0.62 0.72 0.05 1.25 1.19 −3.57 −3.22
19 0.37 1.03 −0.08 0.29 1.10 −0.01 0.50 0.69 0.20 1.31 0.99 −3.62 −3.11
20 0.50 0.88 0.14 0.47 0.90 −0.01 0.19 1.07 −0.34 1.25 1.22 −3.43 −3.57

Table 9. Average Statistics for Multilinear Regression against Two Variables (Experimental Melting Point and Experimental
logP) for Both Literature and Experimental Solubility Data

data set r2(tr) RMSE(tr) bias(tr) r2(cv) RMSE(cv) bias(cv) r2(te) RMSE(te) bias(te) σ(tr) σ(te) mean(tr) mean(te)

experimental 0.41 0.94 0.02 0.34 0.99 −0.01 0.37 0.94 −0.05 1.23 1.22 −3.45 −3.52
literature 0.35 0.91 0.02 0.29 0.96 −0.01 0.25 0.98 −0.04 1.15 1.17 −3.30 −3.35
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results for all 20 models for literature and new experimental
data are presented in Tables 7 and 8, respectively. The
statistically averaged results are presented in Table 9. For the
literature solubility data set, the averaged values for cross-
validation were r2(cv) = 0.29, RMSE(cv) = 0.96 logS units, and
bias = −0.01 logS units, and for prediction of the molecules in
the external test sets, r2(te) = 0.25, RMSE(te) = 0.98 logS units,
and bias = −0.04 logS units. When the multilinear regression
models were retrained upon new experimental solubility data,
the results for cross-validation were r2(cv) = 0.34, RMSE(cv) =
0.99 logS units, and bias = −0.01 logS units, and for prediction
of the molecules in the external test sets, r2(te) = 0.37,
RMSE(te) = 0.94 logS units, and bias = −0.05 logS units.

■ DISCUSSION
The observation that QSPR models for the prediction of
solubility do not improve when trained and tested upon
experimental data that are obtained under standardized
conditions is surprising and is in disagreement with the
assumptions made by other authors. Before this conclusion can
be accepted, it is necessary to discuss potential sources of error
in this experiment.
First, the work is only valid if the experimental data are more

accurate than the literature data set. The average standard
errors for the measured solubility data are typically <0.05 log
solubility units, which is calculated as the standard deviation of
multiple independent measurements made using the CheqSol
method. The standard error is an indication of the
reproducibility of the solubility measurements and does not
preclude a systematic error. It is difficult to guarantee the
accuracy of the data because there is no separate “gold-
standard” set of solubility data with which to compare the
results. However, the CheqSol results have proven to be
consistent between different laboratories and in tests with
carefully measured shake-flask results. Since QSPRs are
empirical models, the presence of a systematic (rather than
random) error would not necessarily imply that an accurate
structure−property relationship could not be derived.
Second, the results may have been deleteriously affected

when the random partitioning into training and test sets meant
that the models had to extrapolate in logS. In Tables 5 and 8,
the errors for the extrapolative predictions of the test set
(marked with an a, b, or c) are observed to be of the same order
as the nonextrapolative predictions; therefore, this possibility
may be rejected.
Third, the regression model might not be optimal because

the data set is small and diverse. Without measuring additional
solubility data this is difficult to investigate, but a simple
experiment was carried out to see whether the Random Forest
out-of-bag cross-validation results would converge with data set
size. Random Forest models were retrained on data sets of size
10, 20, 30, 40, 50, 60, 70, and 80 molecules, taken from the full
data set (n = 85) with experimental solubility values. The
selection of each data set was made at random, and as before,
the results were averaged over 20 different random selections
for each size of data set. A plot of average RMSE(oob) in logS
units against the size of the data set is shown in Figure 2. The
predictive accuracy is worst when the data set size is very small,
as would be expected based upon the statistical averaging that is
inherent to Random Forest and because of the general
problems with working with small data sets. The average
RMSE(oob) in logS units converges at around 60 molecules,
which suggests that the size of the data set used in this work is

acceptable. Furthermore, when leave-one-out cross-validation
was carried out against the complete data set (n = 85) the
results were similar for both the new experimental solubility
data (q2 = 0.51, RMSE = 0.86 logS units, and bias = 0.02 logS
units) and the literature solubility data (q2 = 0.49, RMSE = 0.82
logS units, and bias = 0.00 logS units), which suggest that the
size of the data set is acceptable. It should be noted that the
results illustrated in Figure 2 are dependent upon the diversity
of the molecules that are selected (and the physical property of
interest). Therefore, these results should not be interpreted as
indicating that 60 molecules is an acceptable or minimum data
set size for all QSPRs.
Fourth, QSPR models make a prediction of solubility from

molecular structure (without knowledge of the crystal packing);
therefore, it is reasonable to expect that the error might be due
to the difference in solubility between polymorphs. However,
the average difference in solubility between polymorphs has
been measured to be 2-fold,56 whereas the error in models to
predict solubility is approximately 5- to 10-fold. Therefore, it
would seem unlikely that this is the sole reason why the
accuracy of QSPR models does not improve when trained upon
accurate experimental data.
Our conclusion from this work is that experimental error in

literature solubility data is not the limiting factor in predicting
aqueous solubility. The predictive errors are similar for models
constructed from both new solubility data and data extracted
from the literature, even though the latter are known to contain
experimental errors of the order of 0.6 to 0.7 log units. An
interesting conclusion that can be drawn from this observation
is that QSPR models are adept at modeling noise. This might
suggest that caution should be exercised when attributing
physical significance to QSPR variables.
The obvious question is, “how can QSPR models for the

prediction of solubility be improved?” Various authors have
demonstrated that the prediction of solubility of liquids and
simple nondruglike organic molecules is possible with RMSEs
of approximately 0.3 log solubility units.4 Therefore, the answer
may relate to the added complexity of modeling solubility for
solid drug molecules. The solubility of a solid drug molecule
depends upon the energy required for removing molecules
from the crystal lattice as well as the energy gained by solvation.

Figure 2. Average RMSE(oob) (in logS units) converges with data set
size.
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Including these solid-state effects into models to predict
solubility is unlikely to be completely successful based solely on
single molecule properties because solid−solid interactions also
depend upon the geometrical arrangement of molecules in the
crystal lattice. The prediction of melting point for drug
molecules exemplifies this problem, where the average RMSE
for prediction is 40−50 °C,18,57 even though the average
experimental error is probably less than 5 °C. The most
complete solution to this problem might involve the ab initio
prediction of crystal structure, but despite recent advances, this
remains a major challenge for drug molecules.58 However, we
note that it might not be necessary to know the correct
polymorphic form, but only a plausible low energy polymorph,
because average differences in solubility between polymorphs
(2-fold) are considerably lower than average errors in QSPR
models to predict solubility (5- to 10-fold).59 This suggests that
it might be possible to improve existing QSPR models by
incorporating lattice energy terms calculated from a simulated
or best-guess crystal form. Furthermore, separating crystal
packing energy from solvation energy in QSPR models might
permit a simpler linear regression model to be developed,
which might alleviate the problems noted by Lipinski that
solubility becomes more difficult to predict for complex
molecules because it depends upon multiple intercorrelated
factors.60 In the long term, a more satisfactory solution to this
problem might be to calculate solubility from first-principles
using molecular simulation. Although there have been some
significant recent advances in this field,20,21,59,61 further
development work is required before these methods become
widely used in pharmaceutical research and development.62,63

Another consideration is that errors in the calculation of logP
may contribute to errors in models to predict solubility.
However, this conclusion is not supported by the results. First,
it is observed that the error in the multilinear regression model
is large despite being derived from experimental values of logP
and melting point (this observation also implies that melting
point and logP are not ideal descriptors to quantify the free
energy changes associated with breaking cohesive interactions
in the crystal and hydrating the free solute molecules; such
contributions to the free energy of solution can be expressed
more rigorously as sublimation and hydration free energies by a
thermodynamic cycle via the gas-phase21,59). Second, when the
Random Forest model was retrained using experimental logP
values, rather than calculated logP values, the results did not
improve.

■ CONCLUSIONS

We conclude from this work that existing QSPR methods for
modeling solubility data do not improve when trained upon
experimental data that is obtained under standardized
conditions. Furthermore, QSPR models are adept at modeling
noise, which suggests that caution should be exercised when
attributing physical significance to QSPR variables. The results
suggest that further work is required to develop novel QSPR
methodologies that are more accurate and more reliable.
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