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A wide variety of complex phases in quantum materials are driven by electron-electron interactions,
which are enhanced through density of states peaks. A well-known example occurs at van Hove
singularities where the Fermi surface undergoes a topological transition. Here we show that higher order
singularities, where multiple disconnected leaves of Fermi surface touch all at once, naturally occur at
points of high symmetry in the Brillouin zone. Such multicritical singularities can lead to stronger
divergences in the density of states than canonical van Hove singularities, and critically boost the formation
of complex quantum phases via interactions. As a concrete example of the power of these Fermi surface
topological transitions, we demonstrate how they can be used in the analysis of experimental data on
Sr3Ru2O7. Understanding the related mechanisms opens up new avenues in material design of complex
quantum phases.

DOI: 10.1103/PhysRevLett.123.207202

Introduction.—The properties of unconventional phases
in quantum materials are generally connected to features of
the electronic band structure. For example, in density
waves, characteristic wave vectors of emergent order
parameters can often be related to nesting-type features
of the underlying Fermi surface (FS) as discussed for, e.g.,
iron pnictides [1], organics [2], and transition metal
dichalcogenides [3]. Yet these nesting features in them-
selves usually cannot account for the observed thermody-
namic stability of such correlated quantum phases.
Intriguingly, in a range of these materials, the band
structure hosts energetically close-by singularities in the
density of states ν (DOS), which have been conjectured
often to be crucial ingredients stabilizing the emergent
phases.
Singularities in the DOS occur naturally at FS topologi-

cal Lifshitz transitions (LT). A prominent example is the
van Hove singularity (vHs) formed at a saddle point in the
energy-momentum dispersion [see Fig. 1(a)]. A two-
dimensional (2D) vHs has a relatively weak logarithmic
divergence in the DOS, but it is known to lead to a wealth of
phenomena such as ferromagnetism driven by the Stoner
mechanism (see, e.g., Ref. [4]). An important point is that
the thermodynamic stability of the emergent phases
depends on the magnitude of the singularity as well as
its shape [4] (i.e., gradient and curvature). As a conse-
quence stronger power law divergences can have a much
more dramatic impact on the formation of complex ordered
phases than the weaker vHs.

The identification of the type of these singularities in
correlated quantum materials is an important first step to
understand their properties, given that many experimental
quantities, with puzzling dependencies on the external
probes, can be explained in a natural way. Here, we explore
the consequences of a generalization of these concepts to
multicritical topological transitions where multiple disjoint
parts of a FS merge and demonstrate the power of the
singularities in explaining properties of the correlated
material Sr3Ru2O7.
Multicritical FS topological transitions naturally occur at

points of high crystal symmetry, where the number n of FS
components merging depends on the particular symmetry.
In Figs. 1(a)–1(f) we illustrate the symmetries associated
with the n ¼ 2 (vHs), 3 and 4 cases in 2D. When the
singularity occurs at an edge of a Brillouin zone (BZ) there
are generically two pieces (n ¼ 2) of the FS that join at the
singularity, as depicted in Fig. 1(a). At the critical energy
(dotted line) there is a topology change in the FS structure
with n ¼ 2 FSs touching and reconnecting. At the corner of
a hexagonal BZ, three FSs or leaves (n ¼ 3) can join at the
singularity, as happens in, e.g., biased bilayer graphene [5],
[Figs. 1(c) and 1(d)]. In the square lattice, four leaves
(n ¼ 4) can meet at the X point in the corner of the BZ
[Fig. 1(f)]. At these high symmetry points higher order
terms in the dispersion can become relevant, critically
changing the divergence of the DOS, e.g., from a loga-
rithmic to a stronger power-law divergence in the n ¼ 4
case discussed below.
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An explicit illustration of the experimental effects of these
concepts is provided by examining the physics of the layered
perovskite Sr3Ru2O7, which has been intensely studied
because of its unusual magnetic and transport properties [6].
We identify a strong power-law singularity at a fourfold
symmetric point in momentum space [Fig. 1(f)] and dem-
onstrate how, in conjunction with other features of the FS
and electron interactions, this multicritical feature is pivotal
for the physical properties of this material, explaining
several previously perplexing characteristics. This is the
first tangible demonstration in an existing layered material
of the effects of such multicritical LTs (MLTs).
Effective dispersion relation and analysis for n ¼ 4.—

The energy-momentum dispersion relation in the vicinity
of a n ¼ 4 MLT can be approximated by the simple
expression

εðk⃗Þ ¼
�
ak2 þ k4 cos 4φ − μ;

aðk2x þ k2yÞ þ ðk4x − 6k2xk2y þ k4yÞ − μ;
ð1Þ

where the first line is a representation in polar coordinates
(with φ being the azimuthal angle) and the second being a
representation in Cartesian coordinates.
For a small, nonzero, positive a this dispersion exhibits

two LTs as we change the chemical potential μ (see Fig. 2).
At smaller values of μ one large holelike FS exists. At the
critical chemical potential four vHs appear at a FS
topological transition where a new center pocket is created.
As the chemical potential is increased further, the FS
undergoes a second LT, of the band edge type, with the
vanishing of the center pocket.
If the dispersion relation can be tuned closer to a ¼ 0,

then the singularity is approached and the vHs merge with
the minimum of the central electron pocket to form a fourth
order saddle:

4 × ðk2x − k2yÞ|fflfflfflfflffl{zfflfflfflfflffl}
vH saddle

þ 1 × k2|{z}
e=h pocket

↔ k4 cos 4φ|fflfflfflfflffl{zfflfflfflfflffl}
4th order saddle

: ð2Þ

The singularity can be viewed as a Lifshitz multicritical
point, as it appears at the crossing of two LTs and sits at the
border of four different topological phases, see Fig. 2. Such
behavior can be described within the framework of singu-
larity theory [7] by a symmetry-restricted unimodal para-
bolic singularity X9 in the electron dispersion εðk⃗Þ. The
core of the singularity is the fourth order terms, generalized
to k4x þ Kk2xk2y þ k4y in Cartesian coordinates. This term is
the germ of the singularity, while the remaining terms
½aðk2x þ k2yÞ − μ� represent the perturbation unfolding the

a

μ

K K

K K

FIG. 2. Schematic phase diagram of the relevant hole-like
version of the effective dispersion relation (1). In Sr3Ru2O7

there is no control over the parameter a > 0, so that only red,
yellow, and green phases are accessible. There are two lines of
LTs, a dashed-dotted line of a band edge type and a solid line
corresponding to the transition of the neck-narrowing type. The
X9 singularity is located at the crossing of these two lines. The
white line schematically shows the location of Sr3Ru2O7 within
this phase diagram with the diamond marking the location in zero
field. (Right side) The three dimensional surfaces above are
electron dispersions ε ¼ εðkx; kyÞ in the vicinity of the singu-
larity. The gray horizontal plane represents the critical energy of
the singularity ε ¼ 0.

(a) (b)

(d)

(f)

(c)

(e)

FIG. 1. (a) The n ¼ 2 2D van Hove singularity in the form of a
saddle point. The DOS ν diverges as ln μ. Red lines indicate FSs
above and below the singularity. The critical FS is shown by the
dotted black line. (b) This singularity occurs for example very
close to the Fermi energy in the case of Sr2RuO4 (green marker
for the critical chemical potential) (c) The n ¼ 3 singularity that
can occur at threefold symmetric points. (d) The band structure
or FS of bilayer graphene that is very close to such a n ¼ 3
monkey saddle singularity. (e) The n ¼ 4 singularity at a fourfold
symmetric point. (f) Schematic of the quasi-2D FS of Sr3Ru2O7

in the kz ¼ 0 plane at the Fermi energy (left side) and at μC (right
side). The crucial bands that are close to the n ¼ 4 multicritical
point are highlighted in red. The central pocket is a small
perturbation (see main text). In order to emphasize the character-
istic clover leaf FS we show an extended k-space picture beyond
the BZ boundaries.
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singularity. Unlike simpler singularities, X9 forms a whole
family of singularities parametrized by the modulus K.
While a generic singularity from the X9 family has a
codimension of eight, one modulus and seven control
parameters, the presence of the lattice symmetry greatly
simplifies the situation leaving only the modulusK and two
control parameters a, μ. The consequences of the singu-
larity on physical properties are the same for the whole
rangeK < −2. The value of the modulusK ¼ −6 is special
as it corresponds to electronlike and holelike sections of the
same width, a property that is confirmed in the DFT
calculation. This implies existence of an additional sym-
metry in the system, a superposition of the particle-hole
transformation ε ↔ −ε and rotation by an angle π=4. If we
increase the value to K ¼ −2, then the system reaches a
critical point and the saddle disappears, leaving a singular
∝ k4 electronic pocket. All values of the modulus K < −2
lead to the same topological features.
In the relevant parameter regimeK < −2 the DOS of this

dispersion has a critical ∝ jμj−1=2 scaling for a ¼ 0 and can
be summarized as

νðμÞ ∝
( jμ − μcj−1=2; jμj ≫ μc;

ln μc
jμ−μcj ; jμ − μcj ≪ μc;

ð3Þ

where the critical value of the chemical potential μc ¼
ajaj=4 (more details in the Supplemental Material [8]).
Experimental consequences of the singularities in

correlated systems: Sr3Ru2O7.—There are profound con-
sequences of this singularity for Sr3Ru2O7, a material of
wide interest due to the observed phenomena in the vicinity
of a metamagnetic quantum critical end point (QCEP) at
Hc ¼ 8 T for fields parallel to the crystallographic c
axis [26,27].
In Fig. 3 the emergent phase diagram is schematically

shown highlighting several features relevant for our dis-
cussion (for a review [6]). Approaching Hc as a function of
T, a logarithmic divergence in specific heat divided by
temperature C=T is observed [28,29]. The approach to Hc
as a function of magnetic field in the Fermi liquid (FL)
regime is characterized by a singular contribution to C=T.
Careful analysis [30] reveals a power law divergence of
C=T as a function of reduced field h ¼ ðH −HCÞ=HC with
an unexpected exponent of (−1). It has been suggested that
the singularities in C=T as a function of field or temperature
are consistent with a 2D QCEP point within the canonical
description of quantum criticality [31]. The expected
exponent within this theoretical framework is −1=3 and
in general has to be fixed in any fit of this model [32].
The observed exponent of (−1) in an assumption-free
power law fit to C=T therefore posed important theoretical
questions.
At low temperature, access to the QCEP is preempted by

an unusual set of emergent phases (labeled A and B in
Fig. 3) [33,34]. Neutron scattering measurements [33]

revealed an incommensurate magnetic order with a
wave vector Q⃗A¼ð�0.233;0;0Þ=ð0;�0.233;0Þ and Q⃗B ¼
ð�0.218; 0; 0Þ=ð0;�0.218; 0Þ, respectively.
Fermi surface as calculated by density functional

theory.—To understand the origin of the singularity in
the DOS we performed density functional theory (DFT)
calculations [8,35,36]. The calculated band structure for
zero magnetization agrees broadly with ARPES data
[37,38] [Fig. 4(a)]. While the chemical potential is slightly
higher than observed experimentally, this does not affect
the main conclusions drawn here. We therefore consider the
evolution of the DOS with increasing magnetic moment
per unit cell (see Fig. 4), as a convenient way to model the
effects of an applied magnetic field. By increasing the
magnetic moment a LT is observed at the X point at a
magnetization of around 0.5 μB=Ru. This LT dominates the
DOS and the thermodynamic properties. In order to

FIG. 3. Schematic phase diagram of Sr3Ru2O7 together with
the crystal structure shown in the inset (see Ref. [6] for more
details).

X

Λορεμ ιπσυμ μ Λορεμ ιπσυμ μ
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kx

ky X
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QA QA
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(d) (e) (f)

(b) (c)

FIG. 4. Result of the DFT calculation. (a) Here we show the
schematic FS structure from Fig. 1(e) together with the kz-
projected DFT calculation to aid orientation. (b)–(f) Projected
FSs for values of magnetization μ ¼ 0.0, 0.2, 0.4, 0.5, 0.55 μB per
unit cell as calculated by the DFTand centered at the X point. The
topological transitions are evident for the value of magnetization
close to 0.5 and 0.55 μB per unit cell. The red arrow in (e),
(f) connects the two nested parts of the characteristic clover leaf
structure giving rise to the density wave in the A phase.
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identify the essential requirements generating the key FS
features we derive a quasi-2D tight binding model based on
the Ru 4D orbitals (see the Supplemental Material [8])
relevant at the Fermi energy [39] and adjusted to accurately
describe the relevant part of the ARPES data. The resulting
FS is shown in Fig. 1(f). A careful study of the band
structure reveals that it is well described by an effective
dispersion given in Eq. (1). The DFT calculations suggest
the value of K close to K ¼ −6, implying an effective
power law divergence [Eq. (3)].
Qualitatively similar conclusions can be drawn from the

tight binding model which unveils the microscopic origin
of the MLT point (see the Supplemental Material [8]). In
the aristotype structure without RuO2 octahedra rotations
the band structure exhibits a n ¼ 2 vHs at anM point of the
BZ. Counterintuitively the rotations, while lowering the
crystal symmetry, reconstruct the BZ such that the singu-
larity is transformed into an n ¼ 4MLT point at an X point
in the new BZ. This is an important guiding principle how
to stabilize such LT.
The characteristic clover leaf structure of the FSs in the

vicinity of the LT naturally gives rise to strong nesting of
the edges of the γ bands which, in combination with the
MLT, helps generate the SDW. It is important to note that
the nested FS parts have a distinct orbital character (dxz=yz)
from those FS parts that create the MLT (dxy). The value of

the nesting vector Q⃗ ¼ ð�0.23; 0; 0Þ or ð0;�0.23; 0Þ is
effectively that which is observed experimentally in phase
A. These nested parts of the FS determine the wavelength of
the observed SDW (see also [33]) within our theoreti-
cal model.
Magnetic field approach to criticality.—The MLT has a

profound effect on the specific heat Cv as a function of the
magnetic field (Cv ∝ jH −Hcj−1). The power-law diver-
gence of the DOS as a function of energy leads to the
divergence of Cv with the field [30]. Cv is determined by
the value νðϵFÞ of the DOS at the Fermi level: Cv ¼
ðπ=2ÞkBTνðϵFÞ. Near the singularity νðϵÞ ∝ jϵ − ϵcj−1=2,
where ϵc is the location of the singularity. Including
magnetic field to lowest order, the DOS is νðϵ;HÞ¼
1
2
½νðϵþgμBHÞþνðϵ−gμBHÞ�. Charge conservation requires
the Fermi energy to shift nonlinearly with H:

½ϵFðHÞ − ϵc þ gμBH�1=2 þ ½ϵFðHÞ − ϵc − gμBH�1=2
¼ 2½ϵFðH ¼ 0Þ − ϵc�1=2 ð4Þ

At Hc, ϵFðHcÞ ¼ ϵc þ gμBHc as the singularity is within
the minority band. Then ϵFð0Þ − ϵc ¼ 1

2
gμBHc and for H

near Hc Eq. (4) reads ϵFðHÞ ¼ ϵc þ gμBðH2 þH2
c=2HcÞ.

Therefore, ν½ϵFðHÞ� ∝ 1=jH −Hcj and the specific heat as
well as the entropy is proportional to 1=jH −Hcj. This
explains the experimental data and is a direct fingerprint
of the existence and the importance of the n ¼ 4 MLT
in Sr3Ru2O7.

Phase formation.—As explained, there is significant
nesting along Q⃗A in the γ band giving rise to a susceptibility
to SDW formation. As the SDW and the MLT originate
from different orbitally orthogonal parts of the FS, at tree
level in a renormalization group (RG) sense, the two
processes can be treated as decoupled. At a higher RG
order, this is no longer true and the DOS singularity
influences the thermodynamic stability of the SDW. The
mechanism of this particular LT as described above
involves the creation of a pocket at the X point. An effect
of interactions is that this pocket formation is a first order
transition with a jump to a higher total number of fermions
in the relevant bands [40]. This is consistent with exper-
imental observations upon entering the A phase as a
function of field. The additional pocket, in combination
with the MLT point, provides additional FS degrees of
freedom. This leads to the counterintuitive result of the
high-field A phase having a higher entropy than the low
field FL phase, as is established experimentally [30].
Temperature approach to criticality.—The logarithmic

divergence Cv ∝ T logð1=TÞ [Fig. 1(d)] as a function of
temperature is clearly an effect of interactions and a sign of
quantum criticality. As shown previously [41], the for-
mation of a small pocket in the middle of a larger FS leads
to the same result due to interactions. Alternatively, it can
be thought as a consequence of the scattering of “light”
electrons further from the singularity, off “heavy” electrons
[42]. In addition, a correlated 2D system with self-energy
which is position dependent (k dependent) leads to the
same behavior [43,44]. In the case of SDW formation,
the self-energy correction is Σðω; k⃗Þ ∝ ω=k (with k ¼ kjj),
giving an effective mass m� ¼ m½1 − ∂Σ=∂ωjω→0�.
Therefore, given that Cv ∝ T

R
m�dk, then naturally

Cv ∝ T logð1=TÞ. These conditions are fundamentally
linked to the MLT, leading to qualitatively similar behavior.
Discussion.—The effects of simple LTs were explored in

several classes of quantum materials (e.g., [41,45–48]). In
this work, we have demonstrated how an MLT is formed at
a high symmetry point in the BZ can lead to a wealth of
unusual physical phenomena. This was illustrated con-
cretely through the example of Sr3Ru2O7, in which an MLT
happens in the γ bands at the X point of the BZ, leading to a
four-leaf (n ¼ 4) FS. This is accompanied by a large peak
in the DOS, describable by a divergence as an inverse
square root in energy singularity. We showed how this
power-law in combination with the emergent central pocket
and enhanced spin or charge susceptibilities due to inde-
pendent, orbitally orthogonal parts of the FS are consistent
with a wide range of previously puzzling experimental data.
The intriguing behavior of this well-characterized material
is explained within the framework of higher singularities.
For any n ¼ 4 singularity in quasi-2D materials the phase
diagram presented in Fig. 2 is relevant, and whenever
K < −2 a regime of effective power-law divergence should
appear.
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The example of Sr3Ru2O7 demonstrates one important
finding; the FL parameters at zero field are extremely
robust against tuning over a much wider range than
previously believed. A direct implication would be that
quantum fluctuation corrections are not relevant over a
wide region of magnetic fields in the FL regime of the
phase diagram. For example, significant further band
renormalization might not be expected. This is not only
surprising but should also lead to a careful reevaluation of
other materials. While the singularity dominates the
thermodynamics, the heavy quasiparticles only indirectly
contribute to transport through the scattering of electrons
from other parts of the FS off them. Therefore, there is a
subtle interplay of the importance of each part of the FS to
different experiments.
Sr3Ru2O7 serves as a model system and guide to a whole

range of material classes in which MLTs occur (see the
Supplemental Material [8] for a discussion on generic
mechanisms in, e.g., ruthenates [49], bilayer graphene
[5,46,50,51], and transition metal dichalcogenides [52]).
One key lesson is that the nontrivial divergences in the
DOS are a key driver in thermodynamically stabilizing
unconventional phases, originating from otherwise inde-
pendent (orbitally orthogonal) parts of the FS. The achieve-
ment of this work is to identify the importance of the MLT
and thereby help to disentangle the roles of the LT in the
band structure on the one hand and (quantum) fluctuations
and interactions on the other. In all quasi-2D materials with
an n ¼ 4 singularity the phase diagram presented in this
work is relevant and whenever K < −2 a regime of power-
law divergence should appear. The counterintuitive mecha-
nism that turns a trivial n ¼ 2 vHs into a n ¼ 4 MLT by
lowering the crystal symmetry, provides a new guiding
principle how to stabilize complex quantum phases.
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