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The bioavailability of essential nutrients such as nitrogen (N) and phosphorus (P) 

has fluctuated with the chemical evolution of Earth surface environments over geologic 

timescales. However, significant uncertainty remains over the evolution of Earth’s early 

nitrogen cycle, particularly how and when it responded to the evolution of oxygenic 

photosynthesis. Here we apply multi-proxy geochemical analyses (Fe speciation, 13C 

and δ15N) to exceptionally well-preserved shales from the approximately 2.7 Ga Manjeri 

Formation in the Belingwe Greenstone Belt, Zimbabwe, to evaluate the redox status of 

Earth’s early nitrogen cycle and decipher feedbacks associated with the initial stages of 

planetary oxygenation. These continental shelf sediments have previously been linked to 

early cyanobacterial oxygen production, and provide a direct test of conflicting 

hypotheses concerning the importance of nitrogen oxyanions in the Late Archean.  Our 

data reveal a dominantly anaerobic marine nitrogen cycle, where ammonium-replete 

ferruginous waters underlay an ephemeral oxygen oasis. Driven by the emergence of 

oxygenic photosynthesis, increased primary productivity could have periodically 

strengthened export production, allowing for accumulation of ammonium in the water 

column during organic matter degradation. Restricted oxygen availability could have 

allowed upwelling ammonium to reach the photic zone, providing ample nitrogen to fuel 

a prolific Late Archean biosphere.  
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The majority of organic- and mineral-bound nitrogen (N) is initially derived from 

relatively inert atmospheric dinitrogen (N2) gas. Early in Earth’s history, abiotic N2 fixation 

reactions induced by lightning, photochemical processes, or catalytic reduction in 

hydrothermal systems could have provided nitrogen to the biosphere1. These sources of fixed 

nitrogen, however, were likely sensitive to the prevailing environmental conditions (e.g., 

pCO2
2), restricting nitrogen bioavailability while effectively curtailing the expansion of the 

biosphere. Consequently, the biochemical innovation that allowed prokaryotes to reduce N2 

(diazotrophy) would have provided unprecedented bioavailable nitrogen, removing the 

dependence on abiotic processes and opening previously unavailable ecological niches. 

Nitrogen isotope evidence suggests that iron-molybdenum (FeMo)-based diazotrophy had 

likely evolved by at least 3.2-billion-years-ago (Ga)3,4, and has since served as the primary 

source of nitrogen to the marine environment. This new source of nitrogen could presumably 

have benefitted the biosphere through the degradation of diazotrophic biomass in the water 

column and in the sediments, allowing for the accumulation of ammonium (NH4
+) in the 

anoxic deep ocean. However, direct geochemical evidence for bioavailable NH4
+ is currently 

lacking.  

In modern oxygenated oceans, the majority of ammonium is either rapidly recycled in 

the photic zone or sequentially oxidised to nitrite (NO2
-) and nitrate (NO3

-) via nitrification, a 

process dependant on molecular oxygen (O2). Ammonium, nitrite and nitrate can be 

assimilated directly, or returned to the atmosphere as N2 via chemolithotrophic processes that 

are generally confined to redox interfaces. Denitrification (the reduction of NO3
- to N2) and 

anaerobic ammonium oxidation (anammox, the oxidation of NH4
+ to N2 with NO2

-) both 

occur under suboxic conditions in oxygen-minimum zones and in marine sediments5. These 

N loss processes are dependent on a supply of oxidised nitrogen species, and are therefore 
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likely to have been limited prior to the rise of atmospheric O2 during the Great Oxidation 

Event at ~2.3 Ga6,7.  

Many of the metabolisms within the nitrogen cycle are associated with a measurable 

nitrogen isotope fractionation, discriminating between 15N and 14N, and preferentially 

enriching the reaction products in the lighter isotope. Given that many of these reactions are 

redox controlled, variability in the environmental redox state is reflected in the nitrogen 

isotopic composition (expressed as δ15N = [(15N/14N)sample/(
15N/14N)air – 1]×1000, in ‰) of 

dissolved inorganic nitrogen (DIN). This δ15N variability is communicated to the geological 

record through biological uptake and organic matter burial, presenting a window into the 

operation of the ancient nitrogen cycle through the δ15N of sedimentary organic matter. 

Diazotrophy yields a relatively small enzyme-specific isotope effect, with organisms 

exploiting the FeMo-bearing nitrogenase producing organic matter with δ15N values ranging 

from -4 to +2‰8. Alternative nitrogenases are associated with larger fractionations, resulting 

in biomass with δ15N values as low as -7‰9; however, environmental expression of these 

alternative nitrogenases appears to be confined to modern terrestrial environments and mat-

forming salt marsh cyanobacteria10. Regardless of the complexities involved in discerning 

between the specific the nitrogenases, the FeMo-nitrogenase is thought to be the ancestral 

form, with alternative nitrogenases emerging much later3,11. 

By contrast, nutrient assimilation is associated with much larger nitrogen isotope 

fractionations. For example, biological ammonium assimilation can produce fractionations in 

excess of 20‰, resulting in highly 15N-depleted biomass. Critically, however, this isotope 

effect is only expressed when ammonium concentrations are high enough to prevent its 

complete utilisation12 and thus is rarely seen in modern environments. The net impact of 

nitrification, denitrification and anammox serves to enrich the residual dissolved nitrogen 

species in 15N by as much as 10–25‰13,14. The high δ15N of nitrate present in modern anoxic 
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upwelling zones, for instance, is the result of progressive denitrification that is conveyed to 

sedimentary organic matter via biological nitrate assimilation15. Given that incomplete 

ammonium assimilation would require a dissolved ammonium reservoir in excess of 

biological need12, the δ15N of modern marine organic matter largely reflects the isotopic 

composition of dissolved nitrate (~5‰)13, which is dictated by the global balance between 

denitrification/anammox and diazotrophy.  

Prior to the widespread establishment of oxygenic photosynthesis, the nitrogen cycle 

would have been much simpler, driven by the interplay between diazotrophy, ammonium 

regeneration and assimilation. The chemostratigraphic record of this primitive nitrogen cycle 

should vary around its input, and record δ15N values lower than 0‰ when ammonium is replete 

and incompletely assimilated. The rise of atmospheric O2 during the Great Oxidation Event 

(GOE) at ~2.3 Ga7 and the subsequent partial oxygenation of the surface ocean is thought to 

have revolutionised the nitrogen cycle, stimulating widespread nitrification-denitrification. 

Such a profound change in the operation of the nitrogen cycle is evidenced by increased organic 

δ15N values (to > +5‰), reflecting the uptake of residual 15N-enriched oxidized nitrogen 

species6,16. Evidence for sustained aerobic nitrogen cycling prior to the Paleoproterozoic is 

lacking, with available datasets advocating only episodic oxidative N-cycling17,18. Therefore, 

while localised aerobic nitrogen cycling may have emerged in the prelude to the GOE, nitrogen 

oxyanions seemingly remained a subordinate component of the nitrogen cycle until later in 

Earth history.  

Here we investigate the nitrogen cycle and its response to localised oxygenation 

during the deposition of the ~2.7 Ga Manjeri Formation (Fm) from the Belingwe Greenstone 

Belt in Zimbabwe (Figure S1). The studied succession unconformably overlies an Archean 

gneissic terrain, deepening progressively through conglomerates and intertidal sands, 

carbonates, cherts and silts of the Spring Valley Member and subtidal Shavi Member, to the 
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exceptionally well-preserved shales of the Jimmy Member. Lead-lead isochrons derived from 

Manjeri Fm stromatolitic limestones constrain its deposition to 2.706 ± 0.049 Ga19. 

Sedimentary textures imply that the Jimmy Member was deposited in a deeper shelf setting 

below wave base20. The Manjeri Fm also hosts stromatolites and algal mat carbonates that 

have been interpreted as cyanobacterial21, providing direct macroscopic evidence for oxygen 

production. Overall, the metamorphic grade of the studied succession is remarkably low for 

rocks of this age, as supported by the preservation of texturally pristine and mineralogically 

unaltered komatiites22. Maximum post-depositional temperatures have been estimated at 200-

300oC, though they are likely as low as 200oC in the specific study area21. Given available 

experiential and empirical constraints, the thermal regime of these rocks (lowermost 

greenschist) limits metamorphic alteration of the primary 15N signals to 1-3‰; these 

processes can also cause a divergence between kerogen and bulk rock δ15N values of up to 3-

4‰23. Detailed sample descriptions and further discussion of data fidelity are provided in the 

supplementary information (SI). 

Ocean chemistry during deposition of the Manjeri Fm 

The depositional redox conditions of the Manjeri Fm were assessed using the well-

established iron (Fe) speciation proxy24. Here, the ratio of highly reactive Fe to total Fe 

(FeHR/FeT) can be used in well-preserved sedimentary rocks to determine the oxygen content 

of their depositional setting. In anoxic settings, the fraction of pyrite-housed highly reactive 

Fe serves as an additional proxy to discriminate between sulphide containing (euxinic) or 

ferruginous (Fe2+-bearing) water columns. The Fe speciation data for the Spring Valley and 

Shavi Members imply persistently anoxic, ferruginous water column conditions (FeHR/FeT ≥ 

0.38, FeT/Al ≥ 0.5, and FePy/FeHR < 0.7) with very limited redox variation over the course of 

their deposition (Fig. 1). The depositional environment of the Jimmy Member, however, was 

much more variable, with many FeHR/FeT ratios falling between 0.22 and 0.38, which 
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preclude unambiguous interpretation. These aside, the Jimmy Member also exhibits evidence 

of deposition beneath a ferruginous water column (FeHR/FeT > 0.38), while some samples 

record lower FeT/Al (< 0.5) and FeHR/FeT (≤ 0.22) ratios consistent with oxic deposition (Fig. 

1). These data suggest that the Jimmy Member could have been deposited in proximity to a 

chemocline separating ferruginous deep waters from an overlying mildly oxygenated water-

mass, as has been suggested for the Mesoarchaean oceans25. The simplest explanation for the 

presence of these intermittently oxic conditions is via in situ O2 production by oxygenic 

photosynthesis in a so-called “oxygen oasis”, a hypothesis consistent with the presence of 

stromatolites in the shallow-water Manjeri Fm21. Supporting this inference, organic carbon 

isotope values (δ13Corg) range from -36‰ to -26‰ (Fig. 1), also consistent with carbon 

fixation dominated by photoautotrophy. 

Trends in the pyrite-derived sulfur isotope data (δ34S), and their relationship with total 

organic carbon content, provide further support for well-developed redox stratification (Fig. 

1). The δ34S values throughout the Spring Valley Member show little variation, averaging 4.6 

± 2.4‰ (1σ), consistent with the small fractionations that accompany microbial sulfate 

reduction (MSR) under low sulfate concentrations26. By contrast, the Shavi Member features 

higher total organic carbon (TOC, mean of 0.7 ± 0.5%) and lower δ34S values (-0.1 ± 3.1‰), 

including an excursion to ~-10‰ coincident with an increase in TOC. These 

chemostratigraphic trends could represent more complete expression of MSR-derived sulfur 

isotope fractionations under more locally sulfate replete conditions. The Jimmy Member 

exhibits some larger δ34S excursions (from ~+6‰ to -20‰) independent of TOC, consistent 

with previous work on the Jimmy Member that documented large microscopic 34S 

variability, which requires an active microbial consortium featuring aerobic sulfur cycling20. 

As above, the δ34S data support dynamic redox conditions with intermittent free O2 in a 

shallow oxygen oasis, where local sulphate availability and primary productivity were 
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probably modulated by small-scale redox variations. Notably, although these data are 

consistent with the development of localized oxygenation during deposition of the Jimmy 

Member, the lack of evidence for water column euxinia throughout the succession supports 

previous suggestions that atmospheric oxygen levels remained too low to stimulate 

widespread pyrite oxidation, which would have provided a significant flux of sulphate to the 

oceans27. 

Nitrogen cycling on a ferruginous continental shelf 

The δ15N values of extracted kerogen (δ15Norg) and bulk rock powders (δ15Nbulk) are mostly 

below 0‰, with values ranging from -11‰ to +4‰ (Fig. 1). These light δ15N values are most 

consistent with N2 fixation and incomplete ammonium assimilation, which would require 

locally non-limiting ammonium concentrations. Conservatively incorporating experimentally 

determined isotope fractionation factors associated with ammonium uptake (ε of -4, -14, -27)12 

within a closed system Rayleigh model reveals the potential δ15N-tajectory of the marine 

ammonium pool during progressive ammonia assimiliation (Fig. 2A). This model illustrates 

that the measured δ15N values (Fig. 1) are consistent with 70–90% of the total ammonium pool 

having been assimilated into biomass (Fig. 2A). A corollary to this is that the long-term 

consumption and burial of 15N-depleted ammonium would elevate the δ15N of the residual 

ammonium pool toward extremely enriched values (> 50‰18). We see no evidence of such 

high δ15N values in our dataset, indicating that either ammonium assimilation never proceeded 

to completion, or that any 15N-enriched ammonium was spatially separated from the shelf 

environment. Intriguingly, however, age-equivalent strata show very high δ15N values (Fig. 

2B), reaching values greater than 40‰ in the ~2.7 Ga Tumbiana Formation in Western 

Australia28,29. These values have been variably interpreted as representing incomplete 

ammonium oxidation coupled to methane cycling28 or to ammonium volatilisation from 

alkaline lakes29. Assimilation of residual 15N-enriched ammonium advected into an 
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intracratonic basin could provide an additional explanation for the extremely high δ15N values 

that typify this time period. 

The δ15N values (-9.5‰ to +1‰) of the Spring Valley and Shavi Members (Fig. 1) all indicate 

an anaerobic nitrogen cycle driven by biological N2 fixation and varying degrees of ammonium 

assimilation. Although an incursion of oxygenated waters is indicated by Fe speciation and 

δ34S data from the Jimmy Member, only one sample exhibits mildly positive δ15N (+4‰) that 

is outside the range of values produced during N2 fixation (-4‰ to +2‰). Alternatively, this 

maxima in δ15N could result from the progressive drawdown of the ammonium reservoir and 

15N-enrichment, due to either decreased supply or enhanced consumption in response to 

increased primary productivity. Regardless of the exact mechanism, these δ15N data suggest 

that nitrification was not yet common enough for nitrate to serve as a significant source of 

nutrient N, or that any nitrate that was formed was rapidly returned to the atmosphere via 

complete denitrification. This scenario implies that widespread nitrification was delayed by 

abundant reductants such as ferrous Fe, that presumably served as the primary sink for 

photosynthetic O2 in the largely-ferruginous shallow waters during this time (Fig. 1).  

Implications for nutrient cycling in the Late Archean 

Our results provide the first direct evidence for a large pool of bioavailable nitrogen 

that could have fuelled a Late Archean biosphere. Enhanced organic carbon export and 

subsequent release of ammonium would follow from higher rates of primary production 

associated with the rise of oxygenic photosynthesis. The largely anoxic deep oceans of the 

mid-to late-Archean could have allowed ammonium to accumulate, while biospheric nitrogen 

loss resulting from denitrification and anammox would have been restricted. Additionally, the 

advent of oxygenic photosynthesis would have allowed for photophosphorylation of ATP and 

increased energetic yields, which may have further promoted surface water N2 fixation. Such 

marine conditions were likely unique to the late Archean, following the proliferation of 
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oxygenic photosynthesis, but prior to widespread oxygenation of the surface oceans when a 

stabilised aerobic nitrogen cycle developed6.  

Given the ~400 million-year time lag between the deposition of the Manjeri Fm and 

the accumulation of atmospheric oxygen7, some other nutrient(s) must have prevented a 

nitrogen-induced positive feedback from creating a runaway biosphere and a cascade of 

oxidants to the Earth system. Under widespread iron-rich ocean conditions, the formation of 

iron-oxides at the chemocline may have enhanced phosphorus scavenging, or even promoted 

direct precipitation as vivianite, restricting dissolved phosphorous availability30. Therefore, 

marine phosphorus delivery and drawdown in shallow ferruginous oceans must have been 

critical in limiting the expansion of early life31. 
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Figure Captions 

Figure 1. Lithological and geochemical data from the 2.7 Ga Manjeri Formation. Data 

include Fe speciation, the 34S of pyrite (‰), total organic carbon (TOC; wt%), δ13Corg (‰), 

δ15Norg (‰) and δ15Nbulk (‰). For all data, uncertainties are smaller than the symbols. The 

blue and green shading in the FeHR/FeT panel discriminates between oxic and anoxic 

depositional conditions, whereas the red and purple shading in the FePy/FeHR panel separates 

ferruginous and euxinic depositional conditions, respectively. The FePy/FeHR data are only 

plotted for samples where the corresponding FeHR/FeT ratio exceeds 0.22, suggesting anoxic 
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depositional conditions. Red diamonds and purple crosses in the δ15N panel differentiates 

between δ15Norg and δ15Nbulk, respectively.  

Figure 2. Modeled δ15N values that can reproduce temporal trends in the rock record. A. 

Rayleigh model illustrating the evolution of δ15N values in biomass and the residual 

ammonium pool following non-quantitative uptake (based on experiments of Hoch et al.12; 

see SI for full model description). B. Temporal changes in δ15N preserved in sediments over 

geologic time (updated from Zerkle et al.6 and Kipp et al.16 with references therein). 

Uncertainties are smaller than the symbols. Red diamonds and purple crosses illustrate 

δ15Norg and δ15Nbulk data from our study, as in Fig. 1.  
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Figure 1. Lithological and geochemical data from the 2.7 Ga Manjeri Formation. Data were obtained from three 

cores, core NERMAR through the Spring Valley and Shavi members, and Cores A and B through the Jimmy 

member, which are plotted in ascending order (bottom to top). Data include Fe speciation, the 34S of pyrite 

(‰), total organic carbon (TOC; wt%), δ13Corg (‰), δ15Norg (‰) and δ15Nbulk (‰). For all data, uncertainties are 

smaller than the symbols. The blue and green shading in the FeHR/FeT panel discriminates between oxic and 

anoxic depositional conditions, whereas the red and purple shading in the FePy/FeHR panel separates ferruginous 

and euxinic depositional conditions, respectively. The FePy/FeHR data are only plotted for samples where the 

corresponding FeHR/FeT ratio exceeds 0.22, suggesting anoxic depositional conditions. Red diamonds and purple 

crosses in the δ15N panel differentiates between δ15Norg and δ15Nbulk, respectively. SV is the Spring Valley 

Member.  
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Figure 2. Modeled δ15N values that can reproduce temporal trends in the rock record. A. Rayleigh model 

illustrating the evolution of δ15N values in biomass and the residual ammonium pool following non-quantitative 

uptake (based on experiments of Hoch et al.18; see SI for full model description). B. Temporal changes in δ15N 

preserved in sediments over geologic time (updated from Zerkle et al.5 and Kipp et al.22 with references therein). 

Uncertainties are smaller than the symbols. Red diamonds and purple crosses illustrate δ15Norg and δ15Nbulk data 

from our study, as in Fig. 1.  
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Online Methods 

Iron Speciation and 34S Analyses 

Oxic Fe extractions were performed at the University of St Andrews following the 

protocol developed by Poulton and Canfield24. Briefly, carbonate iron (FeCarb) was extracted 

with a solution of sodium acetate at pH 4.5 at 50 °C for 48 hours; iron oxide (FeOx) was 

extracted with a solution of sodium dithionite, tri-sodium citrate and acetic acid for 2 hours; 

magnetite iron (FeMag) was extracted with a solution of ammonium oxalate and oxalic acid for 

8 hours; and poorly reactive sheet silicates (FePRS) were extracted by vigorous boiling for 1 

minute in 12N HCl. Iron contents of the sequential extracts were determined using a Thermo 

Scientific iCAP 6300 inductively coupled plasma optical emission spectrometer (ICP-OES) 

via external, matrix matched calibration (as described in Izon et al.32). Synthetic, matrix 

matched, 1 ppm Fe standards (n > 5 in each run) reproduced better than 2% (1σ relative 

standard deviation; RSD); replicate extractions of a PACS-2 sediment standard (n = 5) 

reproduced better than 6% (1σ RSD) for all Fe pools. In addition, full procedural duplicates of 

a selection of samples give an external reproducibility of <0.05% for all extraction steps. 

Pyrite-derived Fe (FePy) was calculated gravimetrically from silver sulphide (Ag2S) 

precipitated following a sequential 6 M HCl distillation to determine acid volatile sulphide 

(FeAVS) and a hot chromous chloride distillation to determine chromous reducible sulphide 

(FeCRS), such that FePy is the summation of the AVS and CRS phases33. Experimental triplicates 

for this distillation process at St Andrews demonstrate a 1σ RSD better than 5%34.  

Major elemental abundances and total Fe (FeT) content were determined by X-ray 

fluorescence (XRF) at the University of St Andrews. The samples were fused using a mixed 

lithium tetraborate (Li2B4O7; 20%) and lithium metaborate (LiBO2; 80%) flux, using 

ammonium iodide (NH4I) as a releasing agent. Fused samples were analysed on a Spectro 

Xepos HE instrument, utilising a 50 Watt end-window X-ray tube to excite the samples, and a 
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30 mm2 Peltier cooled Si-drift detector, providing spectral resolution (FWHM) ≤ 155 eV at Mn 

K-alpha. Reproducibility of Fe measurements was assessed by experimental comparison with 

Penryhn slate, where a value of 8.95 ± 0.0% (3σ, n = 20) was obtained against a certified value 

of 8.94%, with a limit of detection of 0.012%. Other elemental oxides were similarly 

reproducible. All samples had greater than 0.5 wt% Fe, indicating that the Fe speciation method 

should robustly reflect depositional conditions35. In addition, samples from cores A and B had 

very low carbonate contents (2–8%), and while carbonate contents are admittedly higher in the 

NERCMAR core (4–30%, mean of 17%), they are still low enough to confidently preclude 

significant dilution by diagenetic carbonate formation36. 

Sulphur isotope (δ34S) analyses were performed on the silver sulphide (Ag2S) 

precipitated during the CrCl2 (FePy) distillation by Iso-Analytical Laboratories, Cheshire, UK 

using standard EA-IRMS techniques. Data accuracy was assessed using reference materials 

IA-R061 with reproducibility of 0.11‰ (1σ; n = 10), and IAEA-SO-5 with reproducibility of 

0.2‰ (1σ; n = 10). We have conservatively adopted the larger of these uncertainties to 

represent the precision of the resulting analyses. 

Carbon and Nitrogen analyses 

Total organic carbon (TOC) was measured at RHUL. Depending on their organic 

content, between 1 and 20 mg of sample was decarbonated. Each sample was prepared 

following the protocol outlined by Grassineau37. Briefly, the samples were cleaned using high-

grade methanol in an ultrasonic bath, then the carbonate fraction was removed at 100˚C with a 

20% HCl leach. Finally, the samples were rinsed in triplicate with ultra-pure water and dried 

for analysis. Encapsulated in tin, analysis was conducted using a Fisons 1500 Series 2 

elemental analyser18. At the start of each daily run, various carbon-bearing in-house and 

international standards (graphite, calcite, soils) were measured to calibrate the instrument. 

Instrumental drift was monitored via replicate analysis of a graphite standard. Instrumental 



20 

 

blanks, in a form of empty crimped tin capsules, were also analysed regularly to flush the 

system and determine the instrumental background. Data have been both blank and drift 

corrected. Replicate analyses of samples and standards were better than 0.05%.  

Analyses of bulk nitrogen isotope ratios (δ15Nbulk) and organic carbon isotope ratios 

(δ13Corg) were performed on rock powders decarbonated at St Andrews. We specifically 

avoided samples that showed visual evidence of deformation or veining. Decarbonation 

involved subjecting a ~0.5 g aliquot of whole-rock powder to repeat 24-hour, 10% (vol/vol) 

HCl leaches. Sample residues were then washed until pH neutral using Type 1 ultrapure (18.2 

MΩ•cm) water and dried at below 40°C. Carbonate content was then calculated gravimetrically 

from the dry sample residues.  

 The carbon isotopic composition of organic carbon (δ13Corg) was measured in the GAPP 

Lab at Syracuse University using an Elementar Isotope Cube EA coupled to an Isoprime 100 

IRMS. Decarbonated sample powders were loaded into tin capsules, evacuated, and purged 

with argon prior to analysis. The EA operating conditions were as follows:  a helium purge was 

set for 45 seconds, the oxidation and reduction reactor temperatures were set at 1100oC and 

650oC, respectively; helium carrier gas flows were 230 ml min-1; the O2 pulse was set for 60 

seconds and the CO2 trap was heated to 230oC. Samples were run co-mingled with international 

reference materials ANU sucrose [+10.4‰] and NIST 1547 peach leaves [-26.0‰]. Sample 

and standard data were corrected to accepted values for the reference materials using the 

correction scheme described in Coplen et al.38. Reproducibility for replicate samples and 

standards was better than 0.10‰ (1σ).  

Kerogen was extracted in the Geobiology laboratory at the University of St Andrews, 

following methods outlined in Zerkle et al.6. Approximately 100–200 mg aliquots of bulk rock 

powder were decarbonated twice with 10% (vol/vol) HCl overnight at 40 °C in a clean hood. 

After being transferred to Teflon beakers in a dedicated fume cupboard, 5 ml of 10% HCl and 
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2 ml of concentrated HF per 100 mg powder were added and the samples heated to 35-40°C. 

This procedure was performed twice on consecutive days, followed by an additional digestion 

in 10% HCl to remove any residual Ca-fluorides. Once at incipient dryness the now silicate-

free residues were rinsed five times with ultra-pure (18.2 MΩ•cm) water. Chloroform was 

added to the residue, shaken, and allowed to settle in separation funnels for about 30 min. 

Heavy minerals that sank to the bottom were first removed, before the floating kerogen was 

transferred to another Teflon beaker and dried in a clean hood. Kerogen isolates were stored in 

an anaerobic chamber prior to analysis. For this study we performed only one kerogen 

extraction per sample, preventing reproducibility estimation for this step directly from these 

samples. However, previous comparison of kerogen extracted using our laboratory methods 

with a set of commercially extracted repeats yielded sub-1‰ inter-laboratory δ15Norg 

variability20.  

Nitrogen isotope analyses of kerogens (δ15Norg) and decarbonated rock powders 

(δ15Nbulk) were performed at the Syracuse University GAPP Lab using an automated ‘nanoEA’ 

system similar to that described in Polissar et al.39. The GAPP Lab nanoEA comprises an 

Elementar Isotope Cube EA coupled to an Isoprime Trace Gas analyser. The Trace Gas is used 

for N2 trapping and chromatographic focusing prior to sample gas introduction into the 

Isoprime 100 stable isotope mass spectrometer. Samples were loaded into tin capsules, 

evacuated, and purged with argon prior to introduction into the EA to remove interstitial 

atmospheric N2. The EA conditions were as follows: the helium purge was set for 45 seconds; 

the oxidation and reduction reactor temperatures were 1100oC and 650oC, respectively; the 

helium carrier gas flow was 150 ml min-1; and the O2 pulse was set for 90 seconds. During 

sample analysis the full flow of the EA is diverted to an automated silica gel-filled cryotrap 

that is immersed in liquid nitrogen while N2 gas was being generated during combustion. The 

N2 trap is switched to a low-flow He carrier gas (2 ml min-1) via an automated Vici 6-port 
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Valco valve and released to the IRMS through an Agilent CarboBond column (25m x .53mm 

x 5um).  

Samples were run in triplicate on the NanoEA system using sequentially larger samples 

(i.e., 1, 2 and 3 mg) and blank corrected using Keeling-style plots. International reference 

materials IAEA N1 ammonium sulphate [0.4‰]; N2 ammonium sulphate [20.3‰]; NIST 1547 

peach leaves [2.0‰]; and in-house Messel Oil Shale [7.0‰] were run in a similar manner, and 

in quantities of N that bracketed the N-content of the sample materials. The resulting blank 

corrected samples and standard data were corrected to accepted values for the reference 

materials using the correction scheme described in Coplen et al.19. Reproducibility for replicate 

samples and standards using the nanoEA is 0.25‰, and approaches the reported nitrogen 

isotopic composition of the reference materials (0.2‰).  

The nitrogen contents of kerogen (kerogen %N) and bulk samples (TN) were also 

determined using nano-EA IRMS total peak area data via blank subtraction and peak area 

response factors (g of N*peak-area-N-1). The response factor was determined using 

replicates of NIST-1547 peach leaves (2.98 wt. % N) distributed throughout sample analysis 

runs and bracketing the quantity of N found in the samples. Reproducibility of the N content 

of NIST-1547 peach leaves is 0.5% (relative error) and +/- 0.11 wt. % (1).  

Data Availability 

The authors declare that all data supporting the findings of this study are available 

within the article and its supplementary information files.  
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