
MarkUs: Drop-in use-after-free prevention for

low-level languages

Sam Ainsworth, Timothy M. Jones

University of Cambridge, UK

{sam.ainsworth, timothy.jones}@cl.cam.ac.uk

Abstract—Use-after-free vulnerabilities have plagued software
written in low-level languages, such as C and C++, becoming
one of the most frequent classes of exploited software bugs.
Attackers identify code paths where data is manually freed by
the programmer, but later incorrectly reused, and take advantage
by reallocating the data to themselves. They then alter the data
behind the program’s back, using the erroneous reuse to gain
control of the application and, potentially, the system. While a
variety of techniques have been developed to deal with these
vulnerabilities, they often have unacceptably high performance
or memory overheads, especially in the worst case.

We have designed MarkUs, a memory allocator that prevents
this form of attack at low overhead, sufficient for deployment
in real software, even under allocation- and memory-intensive
scenarios. We prevent use-after-free attacks by quarantining data
freed by the programmer and forbidding its reallocation until
we are sure that there are no dangling pointers targeting it. To
identify these we traverse live-objects accessible from registers
and memory, marking those we encounter, to check whether
quarantined data is accessible from any currently allocated
location. Unlike garbage collection, which is unsafe in C and
C++, MarkUs ensures safety by only freeing data that is both
quarantined by the programmer and has no identifiable dan-
gling pointers. The information provided by the programmer’s
allocations and frees further allows us to optimise the process
by freeing physical addresses early for large objects, specialising
analysis for small objects, and only performing marking when
sufficient data is in quarantine. Using MarkUs, we reduce the
overheads of temporal safety in low-level languages to 1.1× on
average for SPEC CPU2006, with a maximum slowdown of only
2×, vastly improving upon the state-of-the-art.

I. INTRODUCTION

The lack of temporal safety in low-level languages, such as

C and C++, has become a critical cause of insecurity in

modern systems. Large, security-critical applications, such as

web browsers [1], [2] and operating system kernels [3], are

increasingly plagued with use-after-free vulnerabilities. Here,

data is mistakenly freed by a process, reallocated, and altered

by an attacker with control of data input, then incorrectly

reused by the process. These allow the attacker to alter control

flow, and potentially gain kernel-level access.

A variety of techniques have been proposed to mitigate

use-after-free vulnerabilities in C and C++. For example,

all pointer locations can be logged and then nullified when

their data is freed [1], [4], [5], objects allocated with their

own page-table entries [6], [7], or probabilistic reuse delays

employed [8]–[10]. However, these tend to exhibit both high

average- and worst-case overheads in terms of performance

and memory utilisation, or have limited coverage.

We take a different approach with MarkUs, by storing

programmer-freed object locations in quarantine until we can

demonstrate that no dangling pointers exist to them. We do

this by performing a live-object traversal of accessible memory

regions, similar to but much more efficient than the behaviour

of a garbage collector [11], to mark accessible heap objects.

Since only objects freed by the programmer can be reallocated,

language safety is maintained, and since objects with dangling

pointers cannot be reallocated, programmer frees do not need

to be relied on for security. This allows use-after-free attack

prevention at low overhead even in complex cases, while

maintaining compatibility with real-world applications.

We can use the information provided by the programmer’s

untrusted manual frees to reduce the cost of the live-object

traversal. We can reallocate the physical pages used by large

objects as soon as they are freed, using the unmapped virtual

addresses as protection, to reduce the frequency of marking

procedures without increasing memory utilisation. In addition,

because we know the amount of memory we can potentially

reclaim from a marking process, we can eliminate needless

memory traversals, reduce marking frequency by only attempt-

ing to reclaim objects when enough can be freed, and, further,

trade off memory usage for performance.

MarkUs gives performance overhead and memory usage that

is low enough for real-world use, for all applications written

in low-level languages. For example, for SPEC CPU2006, we

achieve an average slowdown of just 1.1× (2× worst case),

with average memory overhead of 1.15× (2× worse case),

both of which are lower than any other competing technique.

Our main contributions are as follows:

• The realisation that free() can be treated as a hint for

reallocating memory but the actual reallocation can be

decoupled for security.

• Use of a marking procedure to verify programmer deal-

locations and permit reallocation.

• Use of a quarantine list to store programmer-freed data

until it has been verified as safe to reallocate.

• Page-table optimisations to immediately free physical

address space for large deallocations, while still ensuring

high performance for small deallocations.

• Optimisations using knowledge of the volume of data

freed, to vastly reduce marking-procedure overheads, and

trade off memory and performance overhead.

• Evaluation on a variety of real-world and allocation-

intensive workloads, including multithreaded setups and

comparison against state-of-the-art techniques.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/266985681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Object x = new Object();

2 delete(x);

3 ...

4 // x’s vtable replaced by the attacker, who is

5 // reallocated x’s address space with y.

6 Object y = new Object(user_input);

7 ...

8 // Control diverted to attacker’s pointer, in

9 // the place of the original delete function.

10 delete(x);

Fig. 1: An example use-after-free attack, in C++. The attacker

is allocated data that is still pointed to by x, and can manipulate

the data to redirect the old pointer to a chosen function rather

than the original object’s delete call.

(a) In an object’s first deletion, the call to delete is correctly looked
up in the vtable of the object.

(b) Once the programmer has deleted the object, the space it contains
is free to be reallocated. However, in this case the pointer still points
to the deleted object, and so can still be derefenced and used.

(c) As the memory object has been freed, this allows the attacker to
reallocate it and store their own data in the same location, overwriting
the vtable with their own data. A subsequent, incorrect, call to delete,
which often exists due to programmer bugs, via the now-dangling
pointer will then be redirected to the attacker’s choice of code,
allowing them to hijack the application.

Fig. 2: The example use-after-free attack shown in figure 1,

in terms of allocated data.

II. BACKGROUND

Here we describe use-after-free attacks, and solutions in

higher-level languages, before presenting our threat model.

A. Use-After-Free Attacks

In a use-after-free attack [12], an object is freed prematurely

before being incorrectly reused via a dangling pointer. By

this point an attacker may have changed its contents to

point to their own data, by forcing the allocator to reallocate

to the attacker the region targeted by the dangling pointer.

Example code is given in figure 1, and the associated memory

behavior is shown in figure 2. This is a particularly damaging

vulnerability due to its common occurrence in large codebases,

and high level of exploitability. For example, as of 2013 it was

the most widespread memory vulnerability in Chromium [1].

Operating-system kernels and browsers are particularly af-

fected by use-after-free attacks [2], [3], as high-value targets

written in manually memory-managed languages.

This is a memory-safety violation: in C/C++, the use of

freed memory, or memory accessed outside the bounds of data

structures, is considered undefined behavior. Specifically, use-

after-free attacks come under the category of temporal-safety

violations, where something is accessed after a point where

it is no longer allowed. This contrasts with spatial violations,

such as buffer overflows [13].

An attacker can utilise control over the data stored in

a still-accessible object in various ways. Particularly useful

methods include double-delete attacks, where a C++-style

delete virtual function pointer is overwritten by an attacker

before an incorrect second free, or, more generally, a function

pointer is overwritten in an object before it is incorrectly called

after a free. This allows attackers to divert the program to their

own choice of code within a process’s address space.

B. Garbage Collection

Garbage collection [14] solves the problem for high-level

languages (at least excluding their own runtimes, typically

written in lower-level languages), in that data is only freed

when no pointers to it are available. This means dangling

pointers do not exist, and so use-after-free attacks cannot

occur. Still, often a performance hit is observed, and as such

safe techniques for manual deallocation have been added even

in languages where garbage collection is safe [15].

In C and C++ the picture is somewhat more complex. In

most runtimes on most architectures we cannot distinguish

pointers from other data, and indeed the two can be converted

between each other. This means we are limited to conservative

garbage collection [11], where we must assume all data may

be a pointer, creating the chance of accidental references.

This is reasonable for small objects, as the chance of a given

object being coincidentally pointed to is vanishingly small,

and the cost of each failed free is very low. However, larger

objects cause issues, as the probability of a false mark and the

memory-usage cost of this both increase. Some conservative

garbage collectors [16] offer the ability to manually free

objects to prevent such leaks, in addition to automatically

attempting to clear objects by garbage collection, but this

opens up the potential for use-after-free attacks.

Another problem for garbage collection in C and C++ is that

it is not typically safe. Pointers can be hidden with arbitrary

arithmetic, such as in XOR lists, meaning that data that should

be live is incorrectly deleted [17]. Compiler optimisations

can also hide pointers [18], which means that many high-

performance applications do not run correctly in the presence

of a garbage collector.

MarkUs is not a garbage collector, and does not use garbage

collection. Still, the marking procedure of a typical garbage

collector performs the same live-object traversal necessary to

detect dangling pointers to quarantined objects, allowing us

to implement similar code to verify whether the manual frees

2

Fig. 3: Memory objects freed by the programmer are placed

on a quarantine list. This is periodically checked by a marking

procedure, where the stack, data, bss, and registers are walked

to find accessible heap pointers, and any data transitively ac-

cessible from those pointers. MarkUs can deallocate unmarked

objects that are already on the quarantine list whereas other,

marked, objects must remain on the quarantine list for security.

In this example, D remains on the quarantine list because

it is accessible transitively through a pointer starting on the

stack. Solid lines show application pointers, dotted lines show

MarkUs pointers to objects on the quarantine list.

of the programmer are yet inaccessible. This means that we

can find dangling pointers while still ensuring that only data

the programmer has actually freed can be deleted, resulting

in correct program behavior even in the presence of hidden

pointers. Further, information from the programmer’s frees

can be used to optimise the process, by unmapping physical

pages early, and only performing a marking procedure when

sufficient manual frees are ready to be vetted.

C. Threat Model

We assume that programs execute in the presence of an at-

tacker able to allocate memory, for example through carefully

constructed inputs, and who can force the program to read

freed data. This attacker wishes to gain further control over

the program, for example by redirecting control-flow.

Like other papers on use-after-free mitigation [1], [7], we

only look at heap use-after-free, rather than stack, as the heap

attack is both the most difficult to protect against and by far

the most commonly exploited [19]. This is because attacks

based on data freed on the stack can be handled with static

checks, such as escape analysis [7].

III. MARKUS

MarkUs is a memory allocator designed to prevent security

violations from use-after-free attacks, intended for production

scenarios where preventing their use is more important than

detecting their existence. It delays the reuse of programmer-

freed memory objects until certain that there are no dangling

pointers that target the freed range. It is designed primarily for

C and C++, but is suitable for any languages that allocate using

malloc and free, or new and delete, which it replaces with

its own implementation. The MarkUs library can be used in

applications either by directly calling the replacment functions

and linking against the library, or by dynamically replacing

these functions at runtime.

Within MarkUs, calls to deallocate or free data are replaced

with a call to add the memory object to an intermediate

structure, the quarantine list, shown in figure 3. Objects are

kept here until known to be safe to reallocate, at which point

they are moved to the allocator’s free lists. To identify this,

we traverse all live objects, marking those we find; those

on the quarantine list that are unmarked at the end do not

have dangling pointers pointing to them. This means that only

programmer-freed data audited by this marking procedure is

actually freed, achieving safety with respect to the original

implementation at the same time as security from use-after-

free attacks. Large allocations can be reused before a marking

procedure, by unmapping virtual pages and allowing the

operating system to reallocate the physical. We can also reduce

overheads by using the information from the programmer’s

manual free calls to control frequency of marking procedures,

and to trade off performance overhead for memory utilisation.

A. Quarantine List

To prevent use-after-free attacks, we must ensure that there are

no pointers to a given freed object before we can allow it to

be reallocated. By manually freeing an object, a programmer

claims it is safe to free and reallocate. MarkUs decouples these

two, allowing the programmer to free the object and claim

it is safe, but delaying reallocation until this is validated. To

achieve this, rather than immediately placing a manually freed

object on a free list, we quarantine it until we can verify the

programmer is correct, placing it instead on a quarantine list.

Only objects on this quarantine list are allowed to be

deleted. This is necessary to conserve safety within C and

C++, and prevent accidental deletion of data pointed to by

hidden pointers as a result of, for example, XOR pointers or

compiler optimisations [17], [18]. This means that, despite our

mark-based technique, MarkUs deliberately does not attempt

to prevent memory-leaks by the programmer. It is purely a

technique to improve the security aspect of an application.

The quarantine list itself is not inherently trusted. Instead,

it is used as a guide to what the programmer believes should

be freeable, for safety rather than security. It is then up to

MarkUs to audit the list to see if it agrees, before an object is

truly freed and made available for new allocations.

B. Identifying Live Objects

Periodically, we search for objects on the quarantine list that

can or cannot be freed, by traversing all live objects and

marking those we encounter, starting with those visible from

registers, the BSS and data segments, and the stack, then

transitively any heap objects pointed to by this set. Such

objects, and their pointers, are recursively walked using a

graph traversal, with any word treated as a pointer if it

appears to point within the heap’s bounds. An example is

shown in figure 3. This is similar to a mark procedure from a

garbage collector, and we use the Boehm-Demers-Weiser [16]

implementation.

Marking an object on the quarantine list is not necessarily

indicative of a bug. This is because of both conservatism, in

3

that data values may coincidentally point to objects on the

heap, and the existence of a pointer not necessarily indicating

its future use. This is one reason why MarkUs, and, more

generally, any other runtime technique, cannot detect all use-

after-free occurrences within programs, though it does prevent

their use for security violations. Conversely, an object that is

not on the quarantine list and isn’t marked cannot be freed, to

preserve safety under pointer-hiding [17], [18].

This marking procedure can be performed in parallel [16],

and there is no need to stop execution of the program during

it (see section III-H). Indeed, the constraints here are looser

than a traditional garbage collector, as safety is ensured by

the quarantine list preventing deallocation of any data not

specified by the programmer. This means the guarantees of

the marker need only prevent any race condition in the marker

from causing exploitable security vulnerabilities.

Further, this step need not be performed by a traditional

marker, which transitively follows pointers to find those which

are accessible. While that is necessary in a true garbage collec-

tor to avoid circular references in deallocatable objects, with

manual freeing this could be avoided by zeroing out objects

when they are added to the quarantine list. This means that,

potentially, a sweep of the entire stack, heap, registers, and

BSS segment is sufficient, and more cache-friendly. Though

the performance overheads are potentially higher, we use a

traditional mark in our implementation, to reuse more of the

Boehm-Demers-Weiser garbage collector [16].

C. Quarantine-List Walk

Following a marking procedure, a garbage collector would

sweep the heap looking for free objects. However, for MarkUs

this is not a safe underapproximation of what is truly freeable,

due to hidden pointers, and is unnecessary, as we already have

a list of candidates in the quarantine list. Instead of a sweep,

we walk the quarantine list, and free anything that wasn’t

marked in the previous marking procedure. Anything that is

marked is left on the list, as we cannot guarantee it will not be

reused by the current holder of the pointer. Anything that is

not marked is moved to the relevant free list in the allocator,

based on its size, to be reallocated by malloc or new.

D. Mark Frequency Optimisation

Marking is typically the most expensive part of a garbage

collector, and this is also true of MarkUs. This means, to

reduce overheads, we need to mark as infrequently as possible.

One thing that MarkUs can exploit to do this, that a real

garbage collector cannot, is that it knows how much data it

can possibly free, because it knows the size of its manually-

freed quarantine list. We can therefore trade off expected

memory usage for performance, by only allowing garbage

collection when the size of data on the quarantine list exceeds

a proportion of the total current heap size.

More specifically, we allow marking procedures when

(qlsize−failed frees−usize)∗N > (heap size−unmapped)

where N is a chosen growth bound, which can be controlled

to trade off heap growth compared to an unprotected program

with performance overhead, qlsize (quarantine list size) is the

amount of data currently waiting to be audited (either added

after a previous marking procedure, or from a failed attempt in

a previous round), failed frees is the amount of data that failed

to be deallocated in the previous round, and so is likely to fail

again in the near-term future, and usize (unmapped size) is the

proportion of the quarantine list that is not taking up physical

memory space, as it has been unmapped. Further, heap size is

the total size of the heap allocated to a process, and unmapped

is the proportion of the heap that has been unmapped, and so

does not represent physical memory utilisation.

This does not result in a strict limit on heap growth com-

pared with an unprotected program, and there is no maximum

quarantine size. This is because we may not be able to

free some data due to the presence of dangling pointers or

conservative overestimation of data as pointers. In addition,

while previously failed frees may be successful in the next

round of a marking procedure, as the dangling pointer may

disappear, they are disregarded as part of the trigger condition

for mark culling to prevent constant ineffective marking when

large numbers of failed frees exist. Still, under the assumption

that accessible data on the quarantine list is rare, we can

control overheads based on system parameters.

E. Allocator Details

Because it provides data structures to set mark bits for the

marking procedure, we use the allocator from the Boehm-

Demers-Weiser garbage collector [11]. This splits objects into

two sizes: those larger than a page are allocated as monolithic

objects with their own headers, at page-sized granularities. For

MarkUs, this means the entire object can be unmapped from

the virtual address space once it is freed from quarantine, as no

other objects will share pages with the freed object. However,

for objects smaller than a page, the allocator uses a pool

strategy: a single header is used for an entire page of objects,

which are all the same size and initialised simultaneously, to

reduce metadata and allocation overheads. Mark bits are stored

in these headers rather than the objects themselves.

Objects are initialised to zero upon allocation, to reduce the

probability of old false pointers appearing when these objects

are later walked by the marking procedure. These pointers

would reduce the proportion of objects we could securely

free. Zeroing also has the helpful side-effect of mitigating

information leakage via heap initialisation bugs [20], another

class of temporal safety violations.

Other allocators could use MarkUs’s strategy to eliminate

use-after-free vulnerabilities—the allocator’s implementation

choices typically neither help nor hinder MarkUs, and instead

add orthogonal overheads and performance benefits. However,

since these allocators would then need separate support added

for mark bits, to limit engineering work we only evaluate on

the Boehm-Demers-Weiser allocator with existing support.

4

F. Page Unmapping

For large allocations, we can provide a form of use-after-free

detection, as well as prevention, by unmapping pages upon

a user’s deallocation, as long as an object’s allocated region

entirely covers each unmapped page. Subsequent access to an

unmapped page will result in a segmentation fault, correctly

flagging the use of a dangling pointer.

There are also performance and memory-consumption bene-

fits to this approach. Because we unmap these physical pages,

they can be reused in a subsequent mmap call for another

allocation without any need for a marking procedure. As

virtual addresses are typically an ample resource, particularly

on 64-bit architectures, this can significantly cut down the per-

formance overhead of MarkUs in the face of large allocations,

as marking frequency for a given memory overhead can be

significantly reduced. For large objects, this can potentially

be the only practical way of recovering physical memory. As

a single allocation grows in size, in a conservative marker

the likelihood of unrelated data coincidentally pointing to an

address within that allocation’s range increases. This means

a marking procedure may be unable to free and reallocate

such an allocation. For a true garbage collector, this can cause

memory leaks without allowing unsafe manual deallocation,

but for MarkUs, it is reduced to a problem of potential

virtual-address leakage rather than physical-memory leakage.

Unmapping the physical pages therefore eliminates the prob-

lem. In addition, unmapped pages need not be examined for

pointers, as they are inaccessible, reducing marking costs. This

is implemented using a bit in the allocator’s per-page metadata.

On reallocation, if the allocator wishes to reuse space with

the unmapped bit set, it calls mmap with the address of the

page or region as its argument. Otherwise, mmap is called

with the address at the end of the current heap, installing new

metadata. This prevents the allocator from accidentally reusing

the unmapped space of pointed-to addresses for new objects

if its heap is exhausted. If the programmer uses mmap calls

elsewhere, then these can be wrapped to prevent reuse, though

as with previous work [7] we have not found the need to do this

in practice because munmapped space is typically not reused

in an mmap unless deliberately requested.

For large objects, this makes our allocation and deallocation

strategy similar to use-after-free-prevention techniques that

use a separate virtual page for every allocation [6], [7]. The

differences are in how we treat small allocations. First, we

store multiple small objects in the same virtual page to avoid

TLB pressure, and use marking procedures to reclaim the

memory. Second, virtual addresses are eventually reclaimed

by marking procedures. Third, aliasing of physical pages is

unnecessary because MarkUs only needs to map one physical

page to one virtual page at any point, rather than using multiple

mappings to have concurrently-live small objects allocated in

the same page but accessible by different virtual addresses.

G. Small-Object Block Sweeping

The Boehm-Demers-Weiser pool allocator ensures all objects

within a page-sized block are of the same size. Once freed,

(a) Quarantine list elements from entirely-unmarked blocks are found
and sent to a small-object list for further analysis, in an attempt to
free the entire page for use by differently-sized objects.

(b) The free lists of the appropriate sizes are checked, to find any
objects within blocks we are trying to entirely free, and placed on
the small-object list if from an unmarked block.

(c) Any block for which every object is on the small-object list is
entirely freed. Objects within partially-freed blocks with no marks
are instead placed on the relevant free lists of the pool allocator.

Fig. 4: An example of walking the quarantine, free and small-

object lists when using small-object block sweeping.

these small objects go to separate free lists per object size,

and by default are only reused for new objects of that size.

MarkUs deliberately trades off marking-procedure fre-

quency for memory overhead. This means that, even for a

small working set of memory objects, many pages can be

allocated between each marking procedure, which, by default,

can only be used for memory objects of the same size from

that point on. This can result in significant memory overhead,

because if the proportion of object sizes changes over time,

this allocation space effectively becomes unusable.

To fix this, we deallocate blocks that consist of entirely-

freed memory objects, allowing them to be reused more

generally. One way of finding this information out is by

looking at the marks within a block: if the block is entirely

unmarked, we can reallocate it by deleting every element from

the appropriate free list. However, in C and C++, where the

marks of a collector cannot necessarily be trusted, this results

in a safety violation, as we may free objects that the user is

still accessing. Instead, we use that information as a guide

5

to trigger a more complicated analysis. If there are no marks

within the block of an object on the quarantine list, we do not

free that object immediately. Instead, we add such objects to

a small-object list. We then sweep the free list, moving any

objects that share a block with a quarantined object we think

is in an entirely free block back to the small-object list. We

then check to see if any blocks are entirely within this new

small-object list. If they are, we delete the entire block and

allow its reuse for differently-sized objects. If not, we add

them to their original free list, from which they may have just

been removed. An example is given in figure 4.

This means that, as well as freeing small objects in partially-

free blocks so that they can be reused, we also safely free

entire blocks so that they can be reused for data of other sizes,

preventing memory leaks even for programs with many distinct

memory-allocation phases throughout their execution.

H. Concurrency and Parallelism

The marking procedure is parallel; it can be run on multiple

threads at once by splitting up the current frontier of objects

to be searched for pointers. This has the effect of making the

marking procedure faster and more efficient on multicores, and

decreases single-core slowdown at the expense of spreading

CPU utilisation across many cores. If too high, this can impact

other applications running on the system. However, MarkUs

typically spends little time running marking procedures, and

parallel execution is typically more energy efficient.

MarkUs’s marking procedures are performed concurrently

with application execution, which continues while the stack

and heap are searched. Since data may be modified during the

marking procedure, to preserve correctness we use page-table

dirty bits [16], set when pages are modified while a marking

procedure is being concurrently performed, to track this new

data. These dirty pages are then checked once again at the end

of the marking procedure, to check for the presence of any new

accessible regions. The marking procedure need only stop-the-

world briefly at the start of the marking procedure, through

sending suspend signals to each thread, (to collect registers

as root sets to find pointers) and at the end (to preserve

correctness under concurrent modification). Since these require

little work, stop-times are unnoticeable, and thus MarkUs

works for applications with user interaction, such as browsers.

Walking the quarantine list is performed under the allo-

cator’s lock, and is thus single-threaded. While this could

be parallelised, its overhead is negligible compared with the

marking procedure, and thus optimisation is unwarranted.

I. Coverage Limitations and Hidden Pointers

Since low-level languages, like C and C++, allow pointer

hiding, for example by XORing them with other data, we

are not able to see all of them. That doesn’t stop our sys-

tem from being semantically safe, however, since we only

ever delete objects that the programmer freed themselves,

so we cannot introduce undefined behavior. However, it also

means that MarkUs could fail to detect complex use-after-

free vulnerabilities involving hidden pointers, as is a limitation

with any technique that involves identifying pointers. Still, a

garbage collector works for most parts of most C and C++

programs [21] The vast majority of pointers are not hidden,

as we examine in section V-I. Further, most hidden pointers

are already carefully implemented, and so are unlikely to

contain use-after-free errors. This means the defence is practi-

cal, and other techniques that rely on, for example, zeroing

old pointers [1], [4], [23], or tracking them [16], are also

vulnerable. MarkUs can further successfully protect programs

even in the presence of integer-casted or union pointer types

that the compiler cannot disambiguate, but MarkUs can treat

as potentially containing pointers.

An attacker can deliberately create pointers to objects just

through write access to integer arrays, as MarkUs cannot by

default distinguish between pointers and data. This prevents

deallocation of such space, causing larger memory utilisation.

This gives an attacker with full allocation abilities no more

power unless they are limited to a given area of sandbox space,

at which point they can have more system-level impact than

they could otherwise, potentially exhausting the application

of memory instead of just the sandbox. Still, there are two

alternative mechanisms that can be used to prevent this specific

case, if necessary for a given application. The first is that a

sandbox’s memory can be limited to prevent its quarantine,

as well as its allocated data, from exceeding a given size.

The second is that, in high-level languages, we can tag allo-

cation space as integer-only, to avoid its marking and prevent

any conservative pointer behaviour. The Boehm allocator we

use [16] already supports the latter, but as it is a very specific

use-case, and requires application targeting rather than being

entirely drop-in, we do not utilise this in our implementation.

The allocator’s headers (section III-E) are isolated from

data, and so cannot be targeted by use-after-free in quarantine.

However, our current implementation inherits small-object

links that are stored within old objects. An attacker can

potentially rewrite these links in two ways if they find a use-

after-free. First, they can add false elements to the list, though

unless these elements are hidden pointers they cannot be

deleted, and unless they can be written to by the attacker, the

marking procedure will not reach the end of its list, preventing

application progress and the presence of a useful attack. Sec-

ond, they can possibly remove elements or cause loops through

an existing double-free. While neither causes useful privilege

escalation, as they either prevent program progress or only

affect memory utilisation, a full implementation could isolate

metadata at negligible overhead. Fast allocators, including

jemalloc already utilise such isolation [10], and we only avoid

it for implementation complexity.

J. Summary

This section has presented the design of MarkUs, a use-after-

free-preventing memory allocator for low-level languages,

based on quarantining data that is manually freed by the

programmer and verifying it using a marking procedure of

the stack, heap, registers, and data segments. Through this,

MarkUs achieves both safety with respect to low-level pointer

6

handling, and protection against use-after-free attacks. To

minimise the costs of the technique, we optimise this strategy

by directly limiting the number of marking procedures based

on the amount of data the programmer has tried to free,

eagerly unmapping virtual pages of large allocations so that

the physical pages can be reused immediately following the

programmer’s deallocation, and using the marking procedure’s

overestimation of entirely-free regions of memory as a guide to

perform more complex checks to reallocate regions to objects

of different sizes. The next section describes our experimental

system before we move on to demonstrate how MarkUs

performs on real workloads.

IV. EXPERIMENTAL SETUP

We evaluate MarkUs using a prototype built by extending the

Boehm-Demers-Weiser Garbage Collector [11], [16]. This is

implemented as a shared library that overrides malloc, free,

calloc, realloc, new, and delete, which can be utilised by

defining LD PRELOAD before execution of a dynamically-

linked application, meaning source code access is unnecessary.

By default, we use a growth bound (section III-D) of 4, to

represent a quarantine list of 33% of the size of the rest of

allocated memory.

We evaluate on an Intel system, featuring a quad-core

Haswell Core i5-4570, 16GB of DDR3 RAM, and running

Ubuntu 16.04. For profiling, we used PSRecord [26]. We

evaluate using SPEC CPU2006 [24] (using reference inputs)

and Olden [27] (default inputs), to demonstrate on benchmarks

with a wide range of memory behaviors and to directly

evaluate against other work in the literature. We show C

and C++ benchmarks from SPEC CPU2006 to give direct

comparison with prior work; Fortran benchmarks behave sim-

ilarly. In addition, we use Firefox with BBench [28] to show

applicability to modern, particularly vulnerable workloads.

SPEC CPU2006 and Olden ran with no modifications, as do

most applications in practice, as the allocator is functionally

compatible with glibc malloc. MarkUs has also been tested

on a variety of real-world applications such as OpenOffice,

Okular, Evince, Texstudio, Vim and Emacs, where no notice-

able impact on the application was observed. For Firefox, we

compiled with --disable-jemalloc to directly hook malloc

and free instead of the custom allocator Firefox normally

uses, to reduce implementation effort. We also compiled with

--enable-valgrind and --disable-sandbox because the

sandboxing of Firefox is unaware that MarkUs’ marking pro-

cedure accessing all memory is intended behavior. This does

not enable valgrind during execution, but prevents warnings

from Firefox’s monitoring mechanism [29]. In production

environments, applications using custom intra-process sand-

boxing would be altered to be aware of MarkUs, or separate

instances of MarkUs would be used for each sandbox. We

execute all workloads three times, unless the benchmark suite

already makes another higher choice for us, for example, in

BBench. Bars show the mean from each of these, with error

bars showing the maximum and minimum values observed.

For comparison, we evaluate against results taken from

Oscar [7], Dhurjati and Adve [6], Dangsan [4], CRCount [25]

and pSweeper [23], on the benchmarks they use. In the latter

case, we compare against the pSweeper-1s technique, as this

compares most closely to MarkUs in terms of additional CPU

costs: overheads for pSweeper-1s on other cores are limited to

approximately 30%, rather than the 100% overhead that occurs

from the consistent use of a single extra core when pSweeper

runs continuously. By comparison, while MarkUs is allowed

to use the resources of other CPUs, the additional utilisation

is typically negligible. In addition, MarkUs also compares

favorably in terms of memory and performance against the

higher-overhead techniques presented in the paper [23].

V. EVALUATION

We first look at the overheads of MarkUs in terms of memory

and performance, contrasting them with other state-of-the-art

use-after-free protections [4], [6], [7], [23]. We then take an in-

depth look at how we can trade off overheads within MarkUs,

and the improvements rendered by the optimisations described

in section III. In particular, MarkUs results in performance and

memory overheads of 10% and 16% respectively on SPEC

CPU2006 [24], which are both improvements on all other

techniques for use-after-free prevention in C and C++.

A. SPEC Overheads

Figure 5 shows the performance impact on the C and C++

benchmarks from SPEC CPU2006 [24], compared with the

reported results from other state-of-the-art techniques. We

see that MarkUs has the lowest average performance impact

of any technique: 10%, versus 40% for Oscar [7], 36% for

DangSan [4], 15% (along with the additional overhead of an

extra computation thread) for pSweeper [23], and 22% for

CRCount [25]. While Oscar shows overheads of up to 4.5×
for pointer-intensive workloads due to TLB pressure, Dangsan

experiences up to 7× due to its expensive logging of all pointer

references, and CRCount pays over 2× even on workloads

such as povray that aren’t allocation intensive but often create

pointers, since MarkUs only increases the malloc and free

costs, it never incurs over 2× overhead.

Memory overhead shows a similar pattern in figure 6, where

MarkUs incurs an average 16% overhead, compared with

60% for Oscar, 140% for Dangsan, 130% for pSweeper, and

17% for CRCount. Dangsan and pSweeper, in particular, can

face crippling penalties due to the requirement of logging

all pointer locations in the program, and Oscar likely suffers

in extreme cases due to the number of page-table entries

required. The metadata for MarkUs behaves predictably, never

exceeding 2×, partly because it is designed to limit the

additional resources used before a marking procedure cleans

up the extra resources. Indeed, the variance that exists in

MarkUs is primarily due to the allocation strategy inher-

ited from the Boehm-Demers-Weiser garbage collector [16],

which, compared with the standard GNU malloc, can increase

or reduce memory usage significantly, even ignoring the pres-

ence of delayed collection of freed data (see section V-G).

7

 0

 1

 2

 3

 4

 5

astar
bzip2

dealII gcc
gobmk

h264ref
hmmer

lbm

libquantum mcf
milc

namd

omnetpp

perlbench
povray

sjeng

sphinx3
soplex

xalancbmk

geomean

S
lo

w
d

o
w

n

Technique
MarkUs (ours)

Oscar
Dangsan

7.5

pSweeper
CRCount

Fig. 5: Slowdown for SPEC CPU2006 [24], compared with results reported in the literature [4], [7], [23], [25].

 0

 1

 2

 3

 4

 5

 6

 7

astar
bzip2

dealII gcc
gobmk

h264ref
hmmer

lbm

libquantum mcf
milc

namd

omnetpp

perlbench
povray

sjeng

sphinx3
soplex

xalancbmk

geomean

M
e

m
o

ry
 O

v
e

rh
e

a
d

Technique
MarkUs (ours)

Oscar
Dangsan

13522 9

pSweeper
CRCount

Fig. 6: Memory overhead for SPEC CPU2006 [24], compared with results from the literature [4], [7], [23], [25].

 1

 10

 100

 1000

 10000

asta
r
bzip

2
dealII gcc

gobmk

h264re
f

hmmer
lbm

lib
quantum mcf

milc
namd

omnetpp

perlb
ench

povra
y
sje

ng

so
plex

sp
hinx3

xa
lancb

mk

M
a
rk

in
g
 P

ro
c
e
d
u
re

s

Fig. 7: Number of marking procedures performed in each

SPEC CPU2006 workload.

Even though CRCount can free objects once all references to

them disappear, whereas MarkUs deliberately delays this to

reduce performance overheads, MarkUs is still slightly lower

memory overhead: this is because it requires less metadata,

since pointers do not need to be identified and allocations

do not need reference counts, and since large allocations in

MarkUs can be deallocated immediately in the physical space

even in the presence of dangling pointers.

Without MarkUs, execution times range from 120 seconds

(povray) to 463 seconds (sphinx3), with a geomean of 280

seconds. With MarkUs, this changes from 120 seconds to

477 seconds, with the same workloads at the extremes, and

a geomean of 309 seconds. The overhead from MarkUs is

primarily from its marking procedures, and figure 7 shows that

the number of these performed can differ by several orders of

magnitude between each application: the more frequent deallo-

cation is, and the less amenable to page-table unmapping, the

longer spent marking and thus the higher the overheads. Since

MarkUs’s marking procedure is multithreaded, and so can

utilize the resources of multiple cores, in figure 8(a) we present

the CPU utilisation overheads as distinct from slowdown.

Though MarkUs is able to parallelize some of its overheads

 1

 1.05

 1.1

 1.15

asta
r
bzip

2
dealII gcc

gobmk

h264re
f

hmmer
lbm

lib
quantum mcf

milc
namd

omnetpp

perlb
ench

povra
y
sje

ng

sp
hinx3

so
plex

xa
lancb

mk

geomean

A
v
e
ra

g
e
 C

P
U

 U
ti
lis

a
ti
o
n

(a) CPU utilisation overhead for SPEC CPU2006.

 0.98
 0.99

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06

asta
r
bzip

2
dealII gcc

gobmk

h264re
f

hmmer
lbm

lib
quantum mcf

milc
namd

omnetpp

perlb
ench

povra
y
sje

ng

sp
hinx3

so
plex

xa
lancb

mk

geomean

S
lo

w
d
o
w

n

(b) Slowdown from running SPEC CPU2006 simultaneously with
a MarkUs-augmented Xalancbmk, our most marking-procedure-
intensive workload, relative to the same workloads running simul-
taneously with an unaugmented Xalancbmk.

Fig. 8: System-wide resource metrics for MarkUs.

away, the effect of this on overall system resources is slight, as

most workloads do not spend much time performing marking

procedures: the average is 2.4% extra CPU resources per unit

time, and worst case 17.9%. Even running the most allocation-

intensive workload, xalancbmk, simultaneously with other

workloads (figure 8(b)) , the overall effect on performance is

minimal relative to an unaugmented xalancbmk. All workloads

suffer minor slowdown, due to some competition for resources

on CPU time from the parallel marking procedure, and some

also suffer from the increase in DRAM usage, but this is

minimal in both cases.

8

 0

 2

 4

 6

 8

 10

 12

bh
bisort

em3d
health mst

perimeter
power

treeadd tsp
voronoi

geomean

S
lo

w
d

o
w

n

Technique
MarkUs (ours)

D+A

Fig. 9: Slowdown for the pointer-intensive Olden [27] suite

for MarkUs, compared with results reported from Dhurjati

and Adve [6]. As MarkUs does not increase TLB pressure,

it performs significantly better, and more reliably.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

bwave
s

ca
ctu

BSSN
lbm wrf

pop2

im
agick nab

fotonik3
d
ro

ms

perlb
ench gcc mcf

omnetpp

xa
lancb

mk
x2

64

deepsje
ng

leela

exc
hange2 xz

geomean

S
lo

w
d

o
w

n

Fig. 10: Slowdown for SPECspeed 2017 with MarkUs, using

four threads on our four-core system.

B. Olden Overheads

Techniques that use a page-table entry per allocation to enforce

use-after-free safety, such as Oscar [7] and Dhurjati and

Adve [6], can incur even heavier costs for pointer-intensive

workloads, where TLB pressure causes performance to drop

dramatically. As we see in the evaluation on Olden [27]

(figure 9), this is not the case for MarkUs, which can efficiently

execute even under such complex scenarios. While Dhurjati

and Adve suffer up to 11× overhead, and Oscar would likely

suffer similar overheads through using a similar strategy,

though we cannot verify this as no source is available, MarkUs

is never slowed down by more than 1.4× (1.1× average).

C. SPEC 2017 OpenMP Overheads

Figure 10 shows that, since MarkUs is implemented as an

extension to a parallel, concurrent garbage collector and allo-

cator [16], it works equally-well for multithreaded workloads.

Using MarkUs with SPECspeed 2017 and OpenMP results in a

slowdown of only 13%. Workloads are slowed down in similar

areas to their SPEC 2006 counterparts: gcc is slowed down

by the allocator (though others such as lbm, xz, and nab are

sped up by it), and xalancbmk and omnetpp are slowed down

through marking procedures. Of the newer workloads, only wrf

and roms are slowed down significantly. The former suffers

from the marking procedure, the latter from metadata overhead

due to less reuse of virtual pages. Still, typical overheads are

very low, and in line with the single-threaded SPEC 2006.

D. BBench Overheads

Figure 11(a) shows that the overheads are similar for complex

and highly-threaded browser workloads, in that the average

 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

overall

amazon bbc cnn

craigslist
ebay

espn
google msn

slashdot
twitte

r

youtube

S
lo

w
d

o
w

n

(a) Slowdown for BBench. Error bars show the range of load times
from each successive page load, and result from marking procedure
costs not being evenly shared across all pages, in addition to existing
variance even without MarkUs.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2 4 6 8 10 12 14 16 18 20

N
o
rm

a
lis

e
d
 R

e
n
d
e
r

T
im

e
(5

-W
e
ig

h
te

d
 G

e
o
m

e
a
n
)

Run Number

amazon
bbc
cnn

craigslist
ebay
espn

google
msn

slashdot

twitter
youtube

geomean

(b) The execution time of twenty rounds of BBench, normalised to
overall average render time for each page. We see that there is no
pattern – MarkUs does not cause increasing slowdowns over time.

Fig. 11: Experiments for MarkUs on BBench [28] in Firefox.

performance overhead is just 15% across the webpages loaded

by BBench [28] in Firefox. Because BBench measures short

individual page loads across an entire process invocation, we

do see some variance as a result of marking procedures being

invoked at different times during multiple loads of the same

page. Still, this is relatively limited, with worst cases well

below 2×, and a more mature implementation would be able

to limit this further through more offloading to other threads,

and a more incremental collection strategy.

As BBench can be repeated multiple times within the same

Firefox process invocation, we can use it to see how MarkUs

copes with long execution times. We see in figure 11(b) that,

despite the large variance in page rendering times throughout

repetition of BBench, there is no overall trend over successive

iterations — the load of a page in the 20th iteration of BBench

is similar to that on the first iteration.

E. Memory-Performance Tradeoffs

Because we know how much data the application has freed

since the last marking procedure, as discussed in section III-D,

we can adjust the frequency of marking based on the size of

the quarantine list. This gives us a tradeoff between memory

utilisation and performance, which we explore in figure 12.

As should be expected, the larger the maximum size of the

quarantine list, the higher the increase in average memory

consumption. The exception to this is dealII, where most

allocation is performed on large objects that can be imme-

diately unmapped on a free, and so similar memory overhead

is observed regardless of frequency of marking.

9

In terms of performance, dealII again shows a flat curve,

only increasing mildly under very small quarantine-list sizes,

where the frequency of marking procedures starts to impact

execution. As most allocations are to large objects that can

be immediately unmapped, the size of the quarantine list

only grows slowly, and so all intermediate sizes for the

quarantine list give identical performance, and CPU overhead

is relatively stable regardless of setting. Perlbench is slowed

down moderately by MarkUs under extreme settings, though

only to 1.5× maximum, and reaches negligible overheads with

larger quarantine-list sizes. Similarly, additional CPU overhead

from marking procedures, run in parallel by the Boehm-

Demers-Weiser collector, is insignificant except from when

collections are extremely frequent. Xalancbmk and omnetpp,

by contrast, represent a more distinct tradeoff, were we can

directly increase performance by allowing higher memory con-

sumption: smaller quarantine-list sizes result in significantly

lower performance coupled with significant burden on other

cores from the parallel marking procedure.

F. Overhead Impact of Optimisations

MarkUs includes several features intended to improve perfor-

mance over the basic combination of a quarantine list and

garbage-collection-style marking procedure, described in sec-

tion III. In figure 13 we show each optimisation’s importance

in terms of performance, memory, and CPU utilisation over-

head, and consider them here in turn for the four allocation-

intensive benchmarks from SPEC CPU2006 [24], as identified

by Dang et al. [7]. We see that, even if garbage collection

were safe in C and C++, the performance overhead would be

intolerable: the optimisations brought about by MarkUs are

necessary for practical use.

No Optimisation For the allocation-intensive benchmarks

from SPEC CPU2006 [24], the overheads of the basic collector

in terms of performance and CPU utilisation are too high

for the technique to be worthwhile. For example, xalancbmk

(figure 13(b)) sees a slowdown of over 30× along with over

twice the CPU utilisation. This is because the Boehm-Demers-

Weiser collector performs a marking procedure whenever it

runs out of memory, even when no allocations can be freed,

as it does not have the information available to do better.

More surprisingly, memory overheads can also be unfavor-

able, with perlbench (figure 13(a)) and dealII (figure 13(d))

suffering from 2.5× and 7.5× increases respectively, from

memory leaks for large allocations with dangling pointers, and

the average consumption being pushed up by spending large

amounts of time in allocation-intensive regions due to frequent

marks significantly reducing performance. By comparison, the

benchmarks featuring many small allocations, xalancbmk and

omnetpp, suffer very low memory overheads, from the high

frequency of collection and the low probability of conservative

pointer aliasing for small allocations.

Page Unmapping The situation is considerably improved

for the benchmarks that feature large memory allocations

(dealII and perlbench) with the immediate unmapping of

virtual pages following a free of a large allocation. This

prevents any significant memory leaks, as the large objects that

are probabilistically most likely to suffer from conservative

pointer aliasing, and from dangling pointers, have their physi-

cal memory cost eliminated. In addition, as the allocator is free

to reuse unmapped pages with a new virtual address before a

marking procedure, the overhead of marking is significantly

reduced. Still, for workloads with small allocations below the

size of a page, marking procedures are still frequent, and

performance is low, particularly for xalancbmk.

Mark Frequency Optimisation The over-zealous marking

for benchmarks such as xalancbmk and omnetpp is drasti-

cally reduced when we delay marking procedures until the

programmer has attempted to free sufficient data. This extra

knowledge, unavailable to a garbage collector, allows us to

reduce the overheads from over 30× to 1.7× for xalancbmk.

As we deliberately trade off memory consumption for

performance, we may expect average memory utilisation to go

up, and this is true for perlbench and omnetpp. In particular,

these workloads suffer from significant overhead not just

because of the deliberate tradeoff, but because delaying the

marking procedure results in many pages of objects of each

size being created in between marking procedures. These are

returned to individually-sized free lists and never to the main

pool, causing significant overhead. However, we also see the

opposite occurring, with dealII exhibiting a lower overhead

with mark frequency optimisation than without it. This is

because we can use the quarantine-list size to trigger, as well as

prevent the triggering of, a marking procedure. Therefore early

marking procedures, before the program runs out of allocated

memory, can reduce overheads.

Small-Object Block Sweeping All four allocation-

intensive benchmarks have their memory consumption im-

proved by returning all entirely-free blocks of allocated objects

to the general pool, as the overhead of generating many

blocks of objects between marking procedures becomes only

temporary, rather than for the entire execution of a program.

For some programs, the overheads are even lower than with-

out mark-culling, as even with frequent marking procedures,

triggered on every new memory allocation, we can still have

blocks of objects that are only used during some allocation

phases, and wasted for the rest of the program.

As small-object block sweeping increases the amount of

computation necessary at the end of a marking-procedure,

the impact on performance is usually less positive, with

xalancbmk in particular seeing a slowdown. Still, dealII sees a

performance improvement, because of the significant reduction

in memory consumption contributing to a reduction in marking

procedures and better locality of data.

G. Allocator Overheads

Not all of the overheads of our sample implementation of

MarkUs can be attributed to the marking procedure. Figure 14

shows for comparison the overheads resulting from using only

the underlying Boehm-Demers-Weiser pool allocator, without

10

 1

 1.5

 2

 2.5

 3

 3.5

 4

1/32 1/16 1/8 1/4 1/2 1 2 4 8

O
v
e

rh
e

a
d

Quarantine List to Heap Ratio

CPU
Memory
Performance

(a) Perlbench

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1/32 1/16 1/8 1/4 1/2 1 2 4 8

O
v
e

rh
e

a
d

Quarantine List to Heap Ratio

(b) Xalancbmk

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1/32 1/16 1/8 1/4 1/2 1 2 4 8

O
v
e

rh
e

a
d

Quarantine List to Heap Ratio

(c) Omnetpp

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

1/32 1/16 1/8 1/4 1/2 1 2 4 8

O
v
e

rh
e

a
d

Quarantine List to Heap Ratio

(d) DealII

Fig. 12: Tradeoffs in memory-usage, performance and CPU utilisation for the four allocation-intensive benchmarks [7] from

SPEC CPU2006 [24], based on the maximum permitted quarantine list size relative to the rest of the heap.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

performance
memory cpu

O
v
e
rh

e
a
d

(a) Perlbench

 0

 5

 10

 15

 20

 25

 30

 35

performance
memory cpu

O
v
e

rh
e

a
d

Optimisations
None

Page unmapping
Mark frequency optimisation
Small-object block sweeping

(b) Xalancbmk

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

performance
memory cpu

O
v
e

rh
e

a
d

(c) Omnetpp

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

performance
memory cpu

O
v
e

rh
e

a
d

(d) DealII

Fig. 13: Overhead observed by cumulatively adding optimisations to the basic quarantine-list and mark technique, compared

with no protection, for the four allocation-intensive benchmarks [7] from SPEC CPU2006 [24].

MarkUs’s protection or any garbage collection: manual frees

are freed immediately in this case.

We see that this allocator itself can be a poor choice in

certain circumstances: it is 5% slower than the default Linux

allocator, accounting for almost half of MarkUs’s overhead.

In particular GCC shows one of the highest overheads for our

technique, but is unaffected in performance by the MarkUs

security mechanisms themselves. Indeed, many of the choices

in this sample allocator are not fundamental to the function-

ing of MarkUs, and we should expect a dedicated allocator

designed to optimise these cases may perform significantly

better depending on the circumstance. On the flip side, the

Boehm-Demers-Weiser allocator can perform better than the

stock glibc allocator baseline. For example, with xalancbmk

MarkUs does introduce true overhead, because frequent mark-

ing procedures are necessary. Still, the only SPEC CPU2006

workloads we see significant overhead on for MarkUs itself

are omnetpp, perlbench, milc and xalancbmk; most others

are relatively unaffected despite the security provided. By

comparison, providing the same security guarantees using

the full garbage collector adds very large overheads even

on workloads such as astar, milc, sphinx and soplex, where

MarkUs has no observable overhead.

H. Deallocation Efficiency

While one concern with MarkUs’s approach is that dangling

pointers could prevent it from freeing quarantined data, fig-

ure 15 shows that this is unwarranted. This figure shows the

proportion of quarantined space that can be cleared across

all marking procedures (i.e., memory freed not allocations

freed). We see that for most workloads, with the full MarkUs

technique, almost all data is freed, meaning dangling pointers

11

1
1.25
1.5

2
2.5

3
3.5

4

astar
bzip2

dealII gcc
gobmk

h264ref
hmmer lbm

libquantum mcf
milc

namd
omnetpp

perlbench
povray

sjeng
sphinx3

soplex

xalancbmk

geomean

S
lo

w
d
o
w

n
Allocator Only (No Safety) MarkUs Full GC

9.4 82 9.7 14.1 14.4 31.6

Fig. 14: Slowdown resulting from the use of the Boehm-Demers-Weiser [16] pool allocator alone without garbage collection

or temporal safety, as opposed to the standard GNU allocator, compared with the full MarkUs technique which makes use

of the allocator, and compared with the allocator’s default full garbage collector (augmented with a quarantine list to prevent

false deletion of objects and thus allow correct execution).

 0

 0.2

 0.4

 0.6

 0.8

 1

asta
r
bzip

2
dealII gcc

gobmk

h264re
f

hmmer
lbm

lib
quantum mcf

milc
namd

omnetpp

perlb
ench

povra
y
sje

ng

sp
hinx3

so
plex

xa
lancb

mk

R
a
ti
o

Full MarkUs No Page Unmapping

Fig. 15: Proportion of space in quarantine that can successfully

be freed, with and without page unmapping.

cause no issue. The only exception is xalancbmk, where a

typical marking procedure only empties 90% of the quarantine

memory at once. However, without page unmapping, which

allows us to free larger allocations even if dangling pointers

exist, we start to hit significant issues. Astar, dealII, gcc,

h264ref, perlbench and xalancbmk start to leave significantly

more space in quarantine. DealII is particularly affected, as

many of its large allocations have dangling pointers, and they

exist for long periods of time, meaning quarantined space is

repeatedly not freed. Still, that MarkUs is so effective when

page unmapping is enabled tells us that dangling pointers tend

to only cause issues with large allocations. This is because

pointers are more likely to exist by chance to large allocation

windows, and a single pointer, such as on the stack to an old

array, can cause significant damage. These are the allocations

that page unmapping targets well, and so the optimisations to

MarkUs work together to hide an otherwise significant cost.

I. Coverage

While MarkUs functions correctly in the presence of hidden

pointers, as it cannot deallocate anything the programmer has

not freed, it can only protect allocations that have visible

pointers from attack. To measure this we use the inverse of

MarkUs; we use our marking procedure to indicate regions of

allocated memory that have not been freed by the programmer,

but do not feature marked bits in the mark table. In figure 16,

we see that hidden pointers are likely to be a negligible threat

in practice. While every SPEC CPU2006 workload features

some pointers that are invisible to MarkUs, and thus a marking

procedure on its own would incorrectly free them (potentially

causing incorrect application behaviour or crashes), this is

1

 0.1

 10

 100

 1000

 10000

 100000

asta
r
bzip

2
dealII gcc

gobmk

h264re
f

hmmer
lbm

lib
quantum mcf

milc
namd

omnetpp

perlb
ench

povra
y
sje

ng

sp
hinx3

so
plex

xa
lancb

mk
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

K
ib

ib
y
te

s

P
e
rc

e
n
t

Kibibytes Percent

Fig. 16: Maximum address space, and percentage of address

space across entire run, that MarkUs cannot find references to

but the programmer has not freed.

uncommon; no workload has more than 0.001% of its address

space, averaged across its entire run, as hidden pointers.

J. Summary

MarkUs has better overheads in performance and memory

than any other non-circumventable security mechanism for

use-after-free attacks in low-level languages, and never suf-

fers from large overheads (maximum 2×). The optimisations

brought about by using, but not trusting, the user-provided

freeing information, in the form of the quarantine list, take

the technique from being infeasible, to very low overhead,

making it suitable for use in production environments.

VI. RELATED WORK

Page Protection Several techniques exist that use the

virtual memory system to prevent use-after-free attacks, by

only ever using each virtual page once, and allocating one

object per page. Electric Fence [30] is an example of this

approach, as is Dhurjati and Adve [6], who reduce overheads

by reusing physical pages, and aliasing them to multiple virtual

pages. Dang et al. [7] present Oscar, which expands this

technique to remove the need for source code analysis. While

this approach can work well if allocations are larger than a

page already, it causes extreme TLB pressure under pointer-

intensive workloads [6], causing severe performance losses.

For large allocations, MarkUs essentially behaves similarly,

in that pages are unmapped on deallocation. The difference is

that MarkUs deals with small objects more efficiently, reduc-

ing TLB pressure, and eventually reallocates virtual address

space after a marking has verified manual frees, preventing

exhaustion of the space.

12

Pointer Nullification Another approach is to zero all

pointers to data upon its deallocation. This prevents use-after-

free attacks by removing dangling pointers. DangNull [1]

and FreeSentry [5] are examples of this technique, and Dan-

gSan [4] optimises the approach and deals with the complex-

ity of multithreaded workloads. To achieve this, each stores

an expanding list of pointer locations with each allocation,

resulting in high performance loss and memory overhead in

benchmarks with lots of copies of pointers. MPChecker [31]

uses pointer-indirection to look up every memory access in a

table, nullifying the table entry on a free. As it pays overhead

on every memory access, the overheads are significantly higher

than observed with MarkUs.

PSweeper [23] is also a nullification-based technique. The

difference is that, instead of zeroing pointers immediately

upon freeing an object, pSweeper zeros them continuously

in the background, using another thread and core to do so.

This offloads some of the overhead, but still results in high

memory utilisation from storing a live pointer table to find

references, high CPU utilisation from the use of additional

resources, and instrumentation overhead. To uniquely identify

pointers, separate data and pointer stacks must be used, with

heap allocation for structs that partially contain pointers.

Automatic Memory Management Garbage collectors pre-

vent use-after-free attacks by causing deallocation to occur

only once the last pointer to an object is deleted [14]. However,

garbage collection can result in high overheads, and is not safe

for C and C++ applications, which can hide pointers [18], and

if manual freeing of objects is supported (as in the Boehm-

Demers-Weiser garbage collector [16]), then use-after-free

attacks can still occur. Examples of garbage collector usage in

C to explicitly prevent use-after-free attacks include Fail-Safe

C [32] and CCured [33], but both suffer from high overheads

and incompatibility. CRCount [25] is inspired by reference-

counting garbage collectors, in that it uses reference counts to

find when objects the user has freed should be deallocated, by

instrumenting pointer creation and destruction in the compiler

and using a shadow space to keep track of them.

Project Snowflake [15] tackles the inverse problem to

MarkUs. While MarkUs seeks to add temporal safety to a

low-level language where garbage collection is unsafe, Project

Snowflake seeks to add temporally-safe manual memory man-

agement to a high-level language where pointers can be

reliably determined, and garbage collection is the default

deallocation strategy, to improve performance.

Pointer Labeling Some systems attach unique labels to

pointers and their allocations to prevent reuse of dangling

pointers, such as CETS [34]. This relies on taint propagation

to deal with pointer arithmetic, where the modified pointer

keeps the same label, though this results in false positives [1],

and the checks on every pointer access cause high overheads.

Hardening Hardening techniques, such as DieHard [8],

DieHarder [9], and FreeGuard [10], provide probabilistic reuse

delays to reduce the chances of use-after-free attacks. While

these techniques are circumventable [1], and can result in

high memory overhead, they typically result in relatively-low

performance loss. Cling [35] is an allocator that delays general

reuse to reduce attack chances, while allowing immediate

reuse of memory by objects from the same allocation call

site, deemed to be of the same type, to prevent some classes

of use-after-free vulnerability.

Detection Systems designed to detect the usage of dan-

gling pointers under debug conditions, rather than prevent

their use by a motivated attacker, are available. These include

hardware tagged pointer techniques such as in the SPARC

M7 [36] and recent Arm systems [37], which use a limited

number of bits as an ID field to reduce the likelihood of a

new allocation using the same ID as an old one in the same

location. Unlike MarkUs, these give immediate poisoning of

all dangling pointers, allowing the detection of use-after-frees

at the point of use rather than the prevention of their use by an

attacker. However, tags must quickly be reused due to the small

number of ID bits, and so a motivated attacker can easily wrap

around to restore the vulnerability from a security perspective.

Still, MarkUs composes well with such techniques. Not only

does MarkUs provide the security that tagged memory lacks,

and tagged memory the debug that MarkUs does not aim to

provide, but tagged memory can also make MarkUs more

efficient, by allowing reuse of memory multiple times, based

on incrementing the ID tag of each successive allocation,

before address space must be quarantined to ensure old IDs

have been eliminated and can be reallocated.

Software techniques to detect dangling-pointer use exist at

higher overheads, such as AddressSanitizer [38]. This poisons

free regions, along with the bounds of allocations, for detection

of both spatial and temporal safety violations, but as the

technique does not detect accesses using dangling pointers to

reallocated memory, and suffers extremely high overheads, it

is intended for debug, rather than for in production security.

VII. CONCLUSION

We have introduced MarkUs, an allocator that prevents use-

after-free attacks for low-level languages such as C and C++.

Its ability to verify the manual deallocation attempts of the

programmer, using a marking procedure to find live objects,

along with the use of the programmer’s deallocations to

optimise the process and free virtual pages early for large

allocations, allows overheads in performance and memory that

are lower than any other non-circumventable technique in the

literature, along with particularly low worst-case overheads.

This results in a technique that is already low-enough-

overhead for use in production settings. Still, our implementa-

tion was designed around the existing Boehm-Demers-Weiser

marking procedure and allocator, and as such represents only

a primitive set of optimisations for performance. We should

expect an implementation designed from the ground up for

the checking of manual deallocations to exhibit even lower

overheads, resulting in a new era of programs resilient to this

increasingly critical attack vector.

13

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Physical

Sciences Research Council (EPSRC), through grant refer-

ences EP/K026399/1 and EP/P020011/1, and Arm Ltd. Ad-

ditional data related to this publication is available in the

data repository at https://doi.org/10.17863/CAM.46535 and

https://github.com/SamAinsworth/MarkUs-sp2020.

REFERENCES

[1] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee,
“Preventing use-after-free with dangling pointers nullification.” in NDSS,
2015.

[2] O. Chang, “Racing MIDI messages in Chrome,” https:
//googleprojectzero.blogspot.com/2016/02/racing-midi-messages-
in-chrome.html, 2016.

[3] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu, “From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel,” in CCS, 2015.

[4] E. van der Kouwe, V. Nigade, and C. Giuffrida, “DangSan: Scalable
use-after-free detection,” in EuroSys, 2017.

[5] Y. Younan, “FreeSentry: protecting against use-after-free vulnerabilities
due to dangling pointers,” in NDSS, 2015.

[6] D. Dhurjati and V. Adve, “Efficiently detecting all dangling pointer uses
in production servers,” in DSN, 2006.

[7] T. H. Y. Dang, P. Maniatis, and D. Wagner, “Oscar: A practical page-
permissions-based scheme for thwarting dangling pointers,” in USENIX

Security, 2017.
[8] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety for

unsafe languages,” in PLDI, 2006.
[9] G. Novark and E. D. Berger, “Dieharder: Securing the heap,” in CCS,

2010.
[10] S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu, “Freeguard: A faster

secure heap allocator,” in CCS, 2017.
[11] H.-J. Boehm and M. Weiser, “Garbage collection in an uncooperative

environment,” Softw. Pract. Exper., vol. 18, no. 9, Sep. 1988.
[12] T. M. Corporation, “Cwe-416: Use after free,” https://cwe.mitre.org/data/

definitions/416.html, 2018.
[13] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in

memory,” in SP, 2013.
[14] P. R. Wilson, “Uniprocessor garbage collection techniques,” in IWMM,

1992.
[15] P. Kedia, M. Costa, M. Parkinson, K. Vaswani, D. Vytiniotis, and

A. Blankstein, “Simple, fast, and safe manual memory management,”
in PLDI, 2017.

[16] H.-J. Boehm, A. J. Demers, and S. Shenker, “Mostly parallel garbage
collection,” in PLDI, 1991.

[17] J. R. Ellis and D. L. Detlefs, “Safe, efficient garbage collection for c++,”
in Proceedings of the 6th Conference on USENIX Sixth C++ Technical

Conference - Volume 6, ser. CTEC’94, 1994.
[25] J. Shin, D. Kwon, J. Seo, Y. Cho, and Y. Paek, “CRCount: Pointer

invalidation with reference counting to mitigate use-after-free in legacy
c/c++,” in NDSS, 2019.

[18] H.-J. Boehm and D. Chase, “A proposal for garbage-collector-safe c
compilation,” Journal of C Language Translation, vol. 4, no. 2, Dec.
1992.

[19] J. Caballero, G. Grieco, M. Marron, and A. Nappa, “Undangle: Early
detection of dangling pointers in use-after-free and double-free vulner-
abilities,” in ISSTA, 2012.

[20] A. Milburn, H. Bos, and C. Giuffrida, “Safeinit: Comprehensive and
practical mitigation of uninitialized read vulnerabilities,” in NDSS, 2017.

[21] H.-J. Boehm, “Simple garbage-collector-safety,” in PLDI, 1996.

[22] B. Davis, R. N. M. Watson, A. Richardson, P. G. Neumann, S. W. Moore,
J. Baldwin, D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka, A. Joannou,
B. Laurie, A. T. Markettos, J. E. Maste, A. Mazzinghi, E. T. Napierala,
R. M. Norton, M. Roe, P. Sewell, S. Son, and J. Woodruff, “Cheriabi:
Enforcing valid pointer provenance and minimizing pointer privilege in
the posix c run-time environment,” in ASPLOS, 2019.

[23] D. Liu, M. Zhang, and H. Wang, “A robust and efficient defense against
use-after-free exploits via concurrent pointer sweeping,” in CCS, 2018.

[24] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH

Comput. Archit. News, vol. 34, no. 4, Sep. 2006.
[26] “PSRecord,” https://github.com/astrofrog/psrecord, 2018.

[27] M. C. Carlisle, “Olden: Parallelizing programs with dynamic data struc-
tures on distributed-memory machines,” Ph.D. dissertation, Princeton,
NJ, USA, 1996, uMI Order No. GAX96-27387.

[28] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver, “Full-system analysis and characterization
of interactive smartphone applications,” in IISWC, 2011.

[29] “Valgrind now supports jemalloc builds directly,” https:
//blog.mozilla.org/jseward/2012/06/05/valgrind-now-supports-jemalloc-
builds-directly/, 2012.

[30] “Electric fence,” https://elinux.org/index.php?title=Electric\ Fence,
2015.

[31] W. Qiang, W. Li, H. Jin, and J. Surbiryala, “Mpchecker: Use-after-free
vulnerabilities protection based on multi-level pointers,” IEEE Access,
vol. 7, 2019.

[32] Y. Oiwa, “Implementation of the memory-safe full ansi-c compiler,” in
PLDI, 2009.

[33] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Trans. Pro-

gram. Lang. Syst., vol. 27, no. 3, May 2005.

[34] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets:
Compiler enforced temporal safety for c,” in ISMM, 2010.

[35] P. Akritidis, “Cling: A memory allocator to mitigate dangling pointers,”
in USENIX Security, 2010.

[36] G. K. Konstadinidis, H. P. Li, F. Schumacher, V. Krishnaswamy, H. Cho,
S. Dash, R. P. Masleid, C. Zheng, Y. D. Lin, P. Loewenstein, H. Park,
V. Srinivasan, D. Huang, C. Hwang, W. Hsu, C. McAllister, J. Brooks,
H. Pham, S. Turullols, Y. Yanggong, R. Golla, A. P. Smith, and
A. Vahidsafa, “Sparc m7: A 20 nm 32-core 64 mb l3 cache processor,”
IEEE Journal of Solid-State Circuits, vol. 51, no. 1, 2016.

[37] M. Gretton-Dann, “Arm A-Profile architecture developments 2018:
Armv8.5-A,” https://community.arm.com/processors/b/blog/posts/arm-
a-profile-architecture-2018-developments-armv85a, 2018.

[38] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in USENIX ATC, 2012.

14

