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Abstract Many results have been established that show how the number of
conjugacy classes appearing in the product of classes affect the structure of a
finite group. The aim of this paper is to show several results about solvability
concerning the case in which the power of a conjugacy class is a union of one
or two conjugacy classes. Moreover, we show that the above conditions can be
determined through the character table of the group.
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1 Introduction

Let G be a finite group. The product of conjugacy classes is a G-invariant set,
and consequently, is a union of classes. There exist many results about the
structure of a finite group regarding the number of conjugacy classes in the
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Universidad Politécnica de Valencia,
46022 Valencia, Spain
E-mail: mfelipe@mat.upv.es

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/266985595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. Beltrán et al.

product of its classes, some of which are related to the normal structure and
the non-simplicity of the group. In this paper we study three problems about
the power of a conjugacy class, each of them corresponds to a section.

In [2], Z. Arad and M. Herzog conjectured that in a non-abelian simple
group the product of two non-trivial conjugacy classes is not a conjugacy
class. The conjecture has received much attention and has been confirmed for
several families of simple groups. We propose the following.

Conjecture 1 In a non-abelian finite simple group the product of n non-trivial
conjugacy classes with n ∈ N and n ≥ 2 is not a conjugacy class.

To tackle this conjecture we prove a characterisation of the property using
irreducible characters, see Theorem 7. This enables us to prove that Conjec-
ture 1 holds for sporadic simple groups.

In [9], R.M. Guralnick and G. Navarro confirmed the conjecture of Arad
and Herzog for the particular case of a square of a conjugacy class. We prove
the following theorem which confirms Conjecture 1 for the case when a prod-
uct of a single non-trivial conjugacy class is considered. We use the notation
xG to denote the conjugacy class of an element x ∈ G.

Theorem A. Let K = xG be a conjugacy class of a group G. There exists
n ∈ N and n ≥ 2 satisfying that Kn is a conjugacy class if and only if

χ(x)n = χ(1)n−1χ(xn)

for all χ ∈ Irr(G). In this case, 〈K〉 is solvable.

To prove the solvability of 〈K〉 in Theorem A we utilise the Classification
of Finite Simple Groups (CFSG). However, we note that in many cases CFSG
is not needed, in particular, when the order of the elements in the conjugacy
class is prime, or a power of 2, or if the classes are real. These results are
collected in Theorems 3 and 4 of Section 2.

In Sections 3 and 4 we will focus on two cases when the power of a con-
jugacy class is a union of exactly two conjugacy classes. In the first case we
suppose one of these conjugacy classes is the trivial class, we demonstrate the
following theorem.

Theorem B. Suppose that K is a conjugacy class of a group G such that
Kn = {1} ∪ D for some n ∈ N with n > 2 and D is a non-trivial conjugacy
class. Then KK−1 = {1} ∪D and 〈K〉 is solvable.

In [3], Theorem B is proved for the particular case n = 2 without using the
CFSG and the structure of 〈K〉 and 〈D〉 is determined.
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In the second case we suppose the two conjugacy classes are inverse to each
other. We believe the following to hold.

Conjecture 2 Let G be a group and let K be a conjugacy class. If Kn =
D ∪ D−1 for some n ∈ N and n ≥ 2 and D a conjugacy class, then 〈K〉 is
solvable. In particular, G is not simple.

We provide the following evidence to support this conjecture.

Theorem C. Let G be a group and let K be a conjugacy class. If Kn =
D ∪ D−1 for some n ∈ N and n ≥ 2 and D a conjugacy class, then either
|D| = |K|/2 or |K| = |D|. In the first case, 〈K〉 is solvable.

Theorem D. Let G be a group and let K = xG be a conjugacy class of G.
If K2 = K ∪K−1, then 〈K〉 is solvable. Moreover, x is a p-element for some
prime p.

We will also obtain characterizations with irreducible characters of the
properties stated in Theorems B and C. These are collected in Theorems 12
and 13. All groups are supposed to be finite.

2 Powers of classes which are classes

In this section we prove that Conjecture 1 is true for the particular case of the
nth power of a conjugacy class, n ≥ 2. Furthermore, we obtain an equivalent
property in terms of irreducible characters and prove the solvability of the
subgroup generated by such a conjugacy class by means of the CFSG.

We use the following lemma to prove Theorem 1, which will be useful to
obtain the solvability part of Theorem A. We denote by C[G] the complex
group algebra over the complex field C. Let K be a conjugacy class of G and
denote by K̂ the class sum of the elements of K in C[G].

Lemma 1 (Lemma 2.1 of [9]) Let x ∈ G, where G is a finite group, and let
K = xG. Then the following are equivalent:

1. K̂x ∈ Z(C[G]).

2. K̂x−1 ∈ Z(C[G]).
3. For each character χ ∈ Irr(G), either χ(x) = 0 or |χ(x)| = χ(1).

In the next theorem we find a normal subgroup of a group when there is a
conjugacy class such that some of its powers is again a conjugacy class, and an
equivalent property in terms of the irreducible characters of the group. This
result extends the first half of Theorem A of [9] in which the authors prove
the case n = 2. The techniques of the proof are the same.

Theorem 1 Let G be a group and K = xG with x ∈ G, n ∈ N and n ≥ 2.
The following assertions are equivalent:
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(a) Kn is a conjugacy class
(b) CG(x) = CG(xn) and N = x−1K = K−1K = [x,G]EG
(c) CG(x) = CG(xn) and χ(x) = 0 or |χ(x)| = χ(1) for all χ ∈ Irr(G).

Proof Let us prove that (a) implies (b). Since xn ∈ Kn and Kn is a con-
jugacy class, it follows that (xn)G = Kn. Furthermore, for all 2 ≤ j ≤ n,
we see that xKj−1 ⊆ Kj and so |K| ≤ |Kj | ≤ |Kn|. On the other hand,
since CG(x) ⊆ CG(xn), we have |Kn| ≤ |K|. Thus, |K| = |Kj | = |Kn| and
CG(x) = CG(xn). In particular, xKn−1 = Kn and xK = K2. Let y ∈ K then
yK = K2 = xK and so x−1yK = K. As y = xg for some g ∈ G it follows
that [x, g]K = K. So, for N = [x,G] = 〈[x, g] | g ∈ G〉 we have NK = K and
so Nx ⊆ K and |N | = |Nx| ≤ |K|. However, as K = x{[x, g] | g ∈ G} ⊆ xN ,
it follows that |K| ≤ |xN | = |N |. Consequently, K = xN . Furthermore,
K−1 = x−1[x,G] and KK−1 = [x,G] as required.

Suppose (b) and let us see (c). Since Kx−1 = N , then K̂x−1 = N̂ . Also,

N̂ ∈ Z(C[G]) since N / G. Therefore, assertion (c) holds by Lemma 2.1 (3).

Assuming (c) now, Lemma 1 guarantees that K̂x is central in C[G], and
thus the set Kx is closed under conjugation. Let us see that K2 = xK. Clearly,
Kx ⊆ K2 and let xgxh ∈ K2 for some g, h ∈ G. Thus, ((xg)h

−1

x)h ∈ (Kx)h =
Kx. Therefore, K2 = xK. We obtain by induction that Kn = xn−1K. Since
|Kn| = |K| = |xG| = |(xn)G|, then Kn = (xn)G and (a) is proved.

Remark 1 As a consequence of Theorem 1 we have that if [x,G] = {[x, g] | g ∈ G},
then Kn is a conjugacy class when (n, o(x)) = 1.

It follows, from Theorem 1, that if G is a finite group with a non-central
conjugacy class K such that Kn is a conjugacy class for some n ≥ 2, then G is
not simple. The following corollaries will be useful to prove some results later.

Corollary 1 Let G be a group and K = xG with x ∈ G such that Kn is a
conjugacy class for some n ∈ N with n ≥ 2. Then |Kr| = |K| for all r ∈ N
and Ko(x)+1 = K and Ko(x)−1 = K−1. Moreover, Km is a conjugacy class
for all m ∈ N such that (m, o(x)) = 1.

Proof Since Kn is a conjugacy class, we know by Theorem 1(b) that K = xN
with N = KK−1 = [x,G] E G. Thus, Kr = xrN and |Kr| = |N | = |K| for
all r ∈ N. Furthermore, if s = o(x), then K = xsK ⊆ Ks+1, so Ks+1 =
K. Analogously, since x−1 = xs−1 ∈ Ks−1 and |K−1| = |K| = |Ks−1|, we
conclude that Ks−1 = K−1. Finally, let m ∈ N such that (m, o(x)) = 1, then
CG(x) = CG(xm) and Km is a class by applying Theorem 1(b).

Corollary 2 Let G be a group and K = xG with x ∈ G such that Kn = K
for some n ∈ N with n ≥ 2, then:

(a) Kk(n−1)+r = Kr for every r, k ∈ N.
(b) Kn−1 = [x,G]EG.
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(c) π(o(x)) ⊆ π(n−1) where π(t) denotes the set of primes dividing the number
t.

Proof (a) First, let us see that Kk(n−1)+1 = K for every k ∈ N. It follows by
induction on k. It is given if k = 1. Let us suppose that Kk(n−1)+1 = K for
some k ∈ N. Then K(k+1)(n−1)+1 = Kk(n−1)+n = Kk(n−1)Kn = Kk(n−1)K =
Kk(n−1)+1 = K. In general, for every k, r ∈ N, we have

Kk(n−1)+r = Kk(n−1)+1+r−1 = KKr−1 = Kr.

(b) Since xKn−1 ⊆ Kn = K, we have |xKn−1| ≤ |K|. We also know that
|K| ≤ |xKn−1|, so xKn−1 = K. On the other hand, by applying Theorem
1(b), we obtain K = x[x,G], so Kn−1 = [x,G].

(c) By (a), we know thatKk(n−1)+1 = K for every k ∈ N. As a consequence,
o(x) = o(xk(n−1)+1) for every k ∈ N. Let p be a prime such that (p, n−1) = 1.
We can find k with 1 ≤ k < p such that n− 1 ≡ k (mod p). Since Zp is a field,
there exists t ∈ Z+ such that tk ≡ −1 (mod p). In fact, t can be taken such
that 1 ≤ t < p. Now

t(n− 1) ≡ tk ≡ −1 (mod p),

that is, t(n − 1) + 1 ≡ 0 (mod p). Since o(x) = o(xt(n−1)+1), we have (t(n −
1) + 1, o(x)) = 1, and this implies that p does not divide o(x).

Remark 2 With the notation of Corollary 2, observe that K2 = K cannot
happen. Otherwise, by Theorem 1(b), we have K = xN , so x2N = xN , and
hence x ∈ N , that is, K = N , a contradiction.

Let us see an example in which K3 = D with D 6= K.

Example 1 Let G = 〈a〉 o 〈b〉 with 〈a〉 ∼= Z3 and 〈b〉 ∼= Z4. Let K = bG, then
K3 = D 6= K and |K| = 3.

Corollary 3 Let G be a group and let π be a set of primes. Suppose that for
each conjugacy class K of π-elements of G there exists n ∈ N with n ≥ 2 such
that Kn is a conjugacy class . Then G/Oπ′(G) is nilpotent. In particular, if
π = π(G), then G is nilpotent.

Proof Analogous to the proof of Corollary E of [3].

Remark 3 Following Remark 1 we have that if [x,G] = {[x, g] | g ∈ G} for
each π-element x of G, by Corollary 3, G/Oπ′(G) is nilpotent. In particular,
if π = π(G), then G is nilpotent.

The following result, which does not require the CFSG, will be useful for
our purposes.

Theorem 2 (Theorem 3.2(c) of [9]) Let G be a finite group and let N be a
normal subgroup of G. Let x ∈ G be such that all elements of xN are conjugate
in G. If x is a p-element for a prime p, then N has a normal p-complement.
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Now we see some particular cases in which the solvability of 〈K〉 where K
is a conjugacy class such that Kn is a class for some n ∈ N and n ≥ 2 can be
obtained without using the CFSG. First, we add conditions about the order
of the elements of K and later we study the particular case when Kn is a real
class.

Theorem 3 Let K be a conjugacy class of an element x of a group G. Suppose
that there exists n ∈ N with n ≥ 2 satisfying that Kn is a conjugacy class.
Then:

1. If o(x) is a prime, then 〈K〉 is solvable.
2. If x is a 2-element, then 〈K〉 is solvable.

Proof By Theorem 1(b) we have K = xN with N = KK−1 = [x,G]EG. Let
us prove (1). Suppose x is of prime order p, we show that CN (x) is a p-group.
Since N = x−1K, if we take some element x−1xg ∈ CN (x), then x ∈ CG(xg).
Thus, o(x−1xg) divides the least common multiple of o(x−1) and o(xg), so all
non-trivial elements of CN (x) have order p. In particular, CN (x) is a p-group,
as wanted. Now, all elements of xN are G-conjugate, so N has a normal p-
complement by Theorem 2. We write N = P0L with P0 a p-group and LEN
a p′-group. Since CL(x) ⊆ CN (x) and CN (x) is a p-group, we conclude that
CL(x) = 1 and since o(x) = p, we deduce that L is nilpotent by Thompson’s
Lemma (see for instance Theorem 2.1 in Chapter 10 of [6]). As a result, N is
solvable and 〈K〉 = 〈x〉N is solvable too.

Now, we prove (2). By Theorem 2, N has a normal 2-complement, and
consequently, as 〈K〉/N is a 2-group, then 〈K〉 has a normal 2-complement as
well. By Feit-Thompson’s Theorem, we conclude that 〈K〉 is solvable.

Theorem 4 Let K be a conjugacy class of an element x of a group G. Suppose
that there exists n ∈ N with n ≥ 2 satisfying that Kn = D where D is a real
conjugacy class, then 〈K〉 is solvable. Also, D3 = D and D is a class of a
2-element. In particular,

(a) If n = 2a for some a ∈ N, then |K| is odd and o(x) = 2a+1.
(b) If D = K, then x is a 2-element and Km = K for every odd number m.

Also, K2 = [x,G]EG.

Proof We have
Kn = D = D−1 = (Kn)−1 = (K−1)n.

By Corollary 1, we get |K| = |Kn| = |D| and we conclude that xn−1K = Kn.
Hence,

K = (xn−1)−1Kn = (xn−1)−1(K−1)n = (x−1)n−1(K−1)n ⊆ (K−1)2n−1.

By applying Corollary 1 to K−1, we obtain K = (K−1)2n−1. Thus, K−1 =
K2n−1. We have K ⊆ KKK−1 = K2K2n−1 and as |K| = |K2n+1|, by Corol-
lary 1, it follows that K2n+1 = K. Thus, by multiplying both sides by Kn−1,
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we obtain K3n = Kn, so D3 = D and D is a conjugacy class of a 2-element
by Corollary 2(c). By Theorem 3 (2) we have that 〈D〉 is solvable. Since
K2n+1 = K, we know by Corollary 2(b) that K2n = D2 = N = [x,G], so
N is solvable. By Theorem 1(b) we have K = xN with N = [x,G]EG, so 〈K〉
is solvable.

Let us prove the particular case (a). Suppose that |K| = |D| is odd. Then
D is a real class of odd size and then o(xn) = 2. This means that o(x) = 2a+1

and the result is proved. Assume that |K| = |D| is even and we are going to
get a contradiction. By Theorem 1, N = KK−1 = x−1K EG and we write

x−1K = {1} ∪D1 ∪ · · · ∪Dm

where each Di is the conjugacy class of an element x−1xg 6= 1 for some g ∈ G.
Since |x−1K| = |K| is even, there exists in x−1K, at least one conjugacy class
of odd size. Let Ω = {Di | |Di| odd} and we necessarily have that |Ω| is odd.
Thus, there exists a real conjugacy class Dk with k ∈ {1, · · · ,m} such that
|Dk| is odd, that is, Dk is a non-trivial conjugacy class of elements of order 2.
We write Dk = tG. Since |Dk| is odd, then CG(t) contains a Sylow 2-subgroup
of G. Observe that xn is a 2-element by the previous part. Consequently, x
is a 2-element. By taking conjugates, we can suppose that 〈x〉 ⊆ P ⊆ CG(ts)
for some P ∈ Syl2(G) and some s ∈ G. We write ts = x−1xg for some g ∈ G.
Observe that xg 6= x because t 6= 1. We have x ∈ CG(x−1xg), so x and xg

commute. Since o(x−1xg) = 2, then (x2)g = x2, so g ∈ CG(x2). On the other
hand, as |Kn| = |K|, we have CG(xn) = CG(x), and since CG(x2) ⊆ CG(xn),
this leads to t = 1, a contradiction.

Finally, (b) directly follows from the first part of this theorem.

Remark 4 Observe that if a real conjugacy class K satisfies that there exists
n ∈ N such that Kn = D where D is a conjugacy class, then D is also a real
class. However, if a class K satisfies that there exists n ∈ N such that Kn = D
and D is real, then K need not be real. A trivial example of this situation
occurs in Z4. We have studied this case in the previous theorem.

We use the following result appearing in [9] to obtain the solvability of the
subgroup generated by a conjugacy class satisfying the conditions of Theorem
1, and consequently, to prove the solvability part of Theorem A. The CFSG
is required.

Theorem 5 (Theorem 3.2(a) of [9]) Let G be a finite group and let N be a
normal subgroup of G. Let x ∈ G be such that all elements of xN are conjugate
in G. Then N is solvable.

In the next result the solvability in Theorem A is obtained by means of the
CFSG. In fact, Theorems 1 and 6 are extensions of some parts of Theorem A
of [9], in which the authors prove similar results for the square of a conjugacy
class.
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Theorem 6 Let K be a conjugacy class of a group G such that there exists
n ∈ N satisfying that Kn is a conjugacy class. Then 〈K〉 is solvable.

Proof By Theorem 1(b), we have K = xN with N = [x,G]. Thus, N is solvable
by applying Theorem 5. As a consequence, 〈K〉 = 〈x〉N is solvable.

Next, we obtain a characterization in terms of characters of the fact that
the product of n conjugacy classes, for some n ∈ N, is again a conjugacy class.
This extends the case in which the product of two classes is a class (see for
instance [12]) and this is useful to prove Conjecture 1 for the sporadic simple
groups for some values of n. In particular, we obtain such a characterization
for the case in which the power of a class is a class and so, the first part of
Theorem A. We refer the reader to Chapter 3 of [11] for a detailed presentation
of character and class sums properties.

Theorem 7 Let K1, · · · ,Kn be conjugacy classes of a group G and write
Ki = xi

G with xi ∈ G. Then K1 · · ·Kn = D where D = dG if and only if

χ(x1) · · ·χ(xn) = χ(1)n−1χ(d)

for all χ ∈ Irr(G). In particular, if K is a conjugacy class of G and x ∈ K,
then Kn is a conjugacy class for some n ∈ N if and only if

χ(x)n = χ(1)n−1χ(xn) (1)

for all χ ∈ Irr(G).

Proof Let χ ∈ Irr(G) and let R be an irreducible representation associated to

χ. We know that R can be linearly extended to C[G] and R(K̂) ∈ Z(C[G])

commutes with R(g) for all g ∈ G. We denote by K̂i the sum of all elements
in Ki in the group algebra C[G]. We know that

R(K̂i) = wχ(K̂i)I

where

wχ(K̂i) =
|Ki|χ(xi)

χ(1)

and I is the identity matrix.

Assume that K1 · · ·Kn = D. We write K̂1 · · · K̂n = mD̂ with m ∈ N. Thus,
the hypothesis implies that

R(K̂1 · · · K̂n) = R(K̂1) · · ·R(K̂n) = mR(D̂)

and
wχ(K̂1) · · ·wχ(K̂n) = mwχ(D̂).

Consequently,

|K1| · · · |Kn|χ(x1) · · ·χ(xn)

χ(1)n
= m

|D|χ(d)

χ(1)
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and since |K1| · · · |Kn| = m|D|, we have

χ(x1) · · ·χ(xn) = χ(1)n−1χ(d)

for every χ ∈ Irr(G).

Let us prove the converse. Assume that the equation with characters holds.
We know that K1 · · ·Kn = D1 ∪ · · · ∪Dr with Di a conjugacy class for all 1 ≤
i ≤ r. We write K̂1 · · · K̂n = m1D̂1 + · · ·+mrD̂r, where mi is the multiplicity
of D̂i in the product. We have |K1| · · · |Kn| = m1|D1|+· · ·+mr|Dr|. As above,

R(K̂1 · · · K̂n) = R(K̂1) · · ·R(K̂n) = m1R(D̂1) + · · ·+mrR(D̂r)

and by hypothesis we know

χ(x1) · · ·χ(xn) = χ(1)n−1χ(d)

for all χ ∈ Irr(G). Thus,

|K1| · · · |Kn|χ(d) = m1|D1|χ(d1) + · · ·+mr|Dr|χ(dr)

where Di = dGi and

|K1| · · · |Kn|χ(d)χ(d) = m1|D1|χ(d1)χ(d) + · · ·+mr|Dr|χ(dr)χ(d).

From this equation we obtain

|K1| · · · |Kn|
∑

χ∈Irr(G)

χ(d)χ(d) = |K1| · · · |Kn||CG(d)| =

= m1|D1|
∑

χ∈Irr(G)

χ(d1)χ(d) + · · ·+mr|Dr|
∑

χ∈Irr(G)

χ(dr)χ(d).

Then Di = D for some i. Without loss of generality, suppose that D1 = D
and we have mi = 0 for all i 6= 1. This means that K1 · · ·Kn = D.

Remark 5 Recall that the extended covering number of a group is the smallest
integer r such that the product of r conjugacy classes is the whole group for all
classes. In [13], it is shown that the extended covering number of the sporadic
simple groups is at most 7. By using the character tables of the sporadic groups
we have checked that for each of them and for each n-tuple of conjugacy classes
for n = 3, 4, 5, 6 there is some irreducible character which does not satisfy
equation (1) of Theorem 7. The case n = 2 obviously corresponds to Arad and
Herzog’s conjecture, which is already known to be satisfied by the sporadic
simple groups. Therefore, Conjecture 1 holds for the sporadic simple groups.

Proof of Theorem A. It is a direct consequence of Theorems 6 and 7.
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3 Powers which are a union of the trivial class and another class

In this section we study the case in which the power of a conjugacy class is
a union of two conjugacy classes one of them being the trivial class. We first
prove a particular case satisfying the conjecture of Arad and Herzog which
will also be useful in further proofs.

Lemma 2 Let G be a group and K, L and D non-trivial conjugacy classes
of G such that KL = D with |D| = |K|. Then G possesses a solvable proper
normal group which is 〈LL−1〉. In particular, 〈L〉 is solvable.

Proof Let x ∈ L. Then xK = D = xgK for all g ∈ G. Consequently, K =
x−1xgK for all g ∈ G. Let N = 〈x−1xg | g ∈ G〉 = 〈LL−1〉 is normal in G
and then NK = K. Since K is union of cosets of N , then |N | divides |K|.
Then N is proper in G. In addition, since all elements in xN are conjugate,
N is solvable by Theorem 5. Furthermore, it is an elementary fact that 〈L〉 =
〈x〉[x,G] = 〈x〉N , so 〈L〉/N is cyclic, and consequently, 〈L〉 is solvable.

We also need the following two results due to Guralnick and Robinson,
which appeal to the CFSG, as well as Kazarin’s extension of Burnside’s Lemma.

Theorem 8 (Theorem A of [8]) Let G be a finite group and p a prime. Let
x ∈ G be an element of order p such that [x, g] is a p-element for every g ∈ G.
Then x ∈ Op(G).

Theorem 9 (Theorem 4.1 of [8]) Let G be a finite group and p a prime. If
x ∈ G has order p and is not central modulo Op′(G), then x commutes with
some conjugate xg 6= x.

Theorem 10 (Kazarin, Theorem 15.7 of [10]) Suppose 1 6= g ∈ G and |gG| =
pa, where p is a prime. Then gG generates a solvable normal subgroup of G.

We are ready to prove Theorem B.

Proof of Theorem B. We write Kn−1 = A1 ∪ · · · ∪ Am where Ai are distinct
conjugacy classes for i = 1, . . . ,m. So Kn = KA1 ∪ · · · ∪ KAm = {1} ∪ D.
Thus, 1 ∈ KAi for some i and we assume without loss of generality i = m. So
we write Kn−1 = K−1 ∪A1 ∪ · · · ∪Am−1. Then KK−1 ⊆ Kn = {1} ∪D and
we have either KK−1 = {1} or KK−1 = {1} ∪D. In the first case K = {x},
that is, x is central in G, so Kn = {xn} and this is not possible. Therefore,
KK−1 = {1} ∪D.

To prove the solvability of 〈K〉 we argue by minimal counterexample, so
let G be a minimal counterexample. Write K = xG with x ∈ G and we dis-
tinguish two possibilities: xn = 1 and xn 6= 1. Assume first that xn 6= 1. If
m = 1, where m is as in the above paragraph, then Kn−1 = K−1. In ad-
dition, by Corollary 1 we know that Ko(x)−1 = K−1 and Ko(x)+1 = K. So,
since Kn−1 = K−1 = Ko(x)−1, we deduce that Kn+1 = Ko(x)+1 = K and it
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necessarily follows that KD = K. By Lemma 2, 〈D〉 = 〈KK−1〉 is solvable,
so the case m = 1 is finished. Suppose now that m > 1, that is, there exists
i ∈ {2, . . . ,m} such that KAi = D. Then |K| 6 |D|. On the other hand, since
xn 6= 1, then D = (xn)G and CG(x) ⊆ CG(xn) implies that |D| divides |K|.
As a result |D| = |K|. We can apply Lemma 2 and we obtain that 〈Ai〉 is solv-
able. Now, consider G = G/〈Ai〉. From the hypothesis, we have K

n
= {1}∪D

where K denotes the corresponding class in G. If K
n

= {1}, then K is central
and if K

n
= D, then 〈K〉 is solvable by Theorem A. Otherwise, by minimal

counterexample we get that 〈K〉 is solvable, so 〈K〉 is solvable too, a contra-
diction.

For the rest of the proof we assume that xn = 1. First, we prove that n can
be assumed to be prime. Suppose that the theorem holds for a prime, that is,
Kp = {1} ∪ D with p prime implies that 〈K〉 is solvable. Suppose that n is
not prime and write n = pt for a prime p and t > 1. Write

Kt = C1 ∪ · · · ∪ Cs

where Ci are conjugacy classes of G for all 1 ≤ i ≤ s. Since

Kn = Kpt = (C1 ∪ · · · ∪ Cs)p = {1} ∪D,

we have Cpi ⊆ {1} ∪D for every i and there are three possibilities: Cpi = {1},
Cpi = D or Cpi = {1} ∪ D. If Cpi = {1}, then trivially 〈Ci〉 ≤ Z(G), so
〈Ci〉 is solvable. If Cpi = D, then 〈Ci〉 is solvable by Theorem A. Finally,
if Cpi = {1} ∪ D, then 〈Ci〉 is solvable by our assumption. Now, we denote

G = G/〈Ci〉 for some non-trivial class Ci. Notice that K
n

= {1}∪D. Arguing
similarly to above leads to the fact that 〈K〉 is solvable. Thus, 〈K〉 is solvable
too, a contradiction.

Therefore, for the rest of the proof we assume that Kp = {1} ∪ D with
p prime, and hence we are assuming that o(x) = p. Let N be a minimal
normal subgroup of G. Arguing as in the above paragraph, that is, by trans-
ferring into the quotient G/N , using Theorem A and minimality, it easily
follows that N is the only minimal normal subgroup of G and that it is a
direct product of isomorphic simple groups. We will prove that N is solvable,
and this contradiction will complete the proof. Set D = tG with t ∈ G. If t
is a p-element, since KK−1 = {1} ∪ D, then x−1xg = [x, g] is a p-element
for every g ∈ G. By Theorem 8 we have x ∈ Op(G) 6= 1. Consequently,
〈K〉 ≤ Op(G), which implies that 〈K〉 is solvable. Thus, we can assume that
o(t) 6= p. If x is non-central modulo Op′(G), then by Theorem 9, x com-
mutes with some conjugate xg 6= x , so in particular o(x−1xg) = p, a con-
tradiction. Therefore, x can be assumed to be central modulo Op′(G). Also,
if Op′(G) = 1, then x ∈ Z(G) and there is nothing to prove. We assume
then that Op′(G) 6= 1, and by minimality N ≤ Op′(G). Moreover, if x cen-
tralizes Op′(G), then x ∈ CG(N) 6= 1, which forces N to be abelian, and
the proof is finished. Therefore, we can assert that there exists a prime q
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dividing |Op′(G) : COp′ (G)(x)| and hence, by coprime action, there exists

Q ∈ Sylq(Op′(G)) such that Qx = Q, so 1 6= [x,Q] ⊆ Q. Let [x, g] be a
non-trivial q-element of [x,Q]. Since [x, g] = x−1xg ∈ K−1K = {1} ∪D, then
the elements of D are q-elements. In particular the prime q must be unique,
that is, qa = |Op′(G) : COp′ (G)(x)| with a ≥ 1. Since |N : CN (x)| divides

|Op′(G) : COp′ (G)(x)|, we have |N : CN (x)| = qb for some b ≤ a. As a con-

sequence |N〈x〉 : CN〈x〉(x)| = qb, so we can apply Theorem 10 and 〈xN〈x〉〉 is

solvable. Now, it is elementary that 〈xN〈x〉〉 = 〈x〉[N〈x〉, 〈x〉] = 〈x〉[N, x]. We
conclude that 1 6= [N, x] is a normal solvable subgroup of N〈x〉. This certainly
leads to the solvability of N , and this is the final contradiction. �

We have seen that Kn = {1} ∪D implies that KK−1 = {1} ∪D and this
property was characterized in Theorem B of [4] in terms of characters. Thus,
the hypothesis of Theorem B implies the following equality with characters.

Corollary 4 Let G be a group and x, d ∈ G \ {1}. Let K = xG, D = dG such
that Kn = {1} ∪D for some n ∈ N. Then for every χ ∈ Irr(G)

|K||χ(x)|2 = χ(1)2 + (|K| − 1)χ(1)χ(d).

Proof By Theorem B we know that KK−1 = {1} ∪D and the result follows
by Theorem B of [4].

Example 2 Let us show two examples of the situation Kn = {1} ∪ D with
n = 3. In the first, xn = 1 and in the second xn 6= 1. Let G = A4 and K =
(1 2 3)G, which satisfies |K| = 4 and o((1 2 3)) = 3. Furthermore, K3 = {1}∪D
where D = ((1 2)(3 4))G. On the other hand, let G = (Z7 o Z9) o Z2 having
a conjugacy class K of elements of order 21 satisfying that K3 = 1 ∪D and
|K| = 6 where D is a class of elements of order 7 and |D| = 6. In this example,
〈K〉 ∼= Z21.

Remark 6 We have seen that Kn = {1} ∪D implies that KK−1 = {1} ∪D.
However, the converse is not true. Let G = SL(2, 3) and let K be one of
the two conjugacy classes of elements of order 6 which satisfies |K| = 4. It
follows that KK−1 = {1} ∪ D where D is the unique conjugacy class such
that |D| = 6. However, there is no n ∈ N with Kn = {1} ∪D.

In [2], Arad and Herzog published the following result about the multiplic-
ity of a conjugacy class in the product of conjugacy classes. We will use it for
the particular case of the power of a class in Theorems 12 and 13.

Theorem 11 (Lemma 10.1 of [2]) Let G be a group and let K1, . . . ,Kr be the
conjugacy classes of the elements x1, . . . , xr, respectively such that K1 · · ·Kr =
D1 ∪ · · · ∪ Dt where D1, . . . , Dt are the conjugacy classes of the elements
d1, . . . , dt, respectively. Then

r∏
i=1

K̂i =

t∑
j=1

αjD̂j ,
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where

αj =

∏r
i=1 |Ki|
|G|

∑
χ∈Irr(G)

(
∏r
i χ(xi))χ(dj)

χ(1)r−1

for j = 1, . . . , t. In particular, if K = xG and Kr = D1 ∪ · · · ∪Dt, then

K̂r =

t∑
j=1

αjD̂j ,

and

αj =
|K|r

|G|
∑

χ∈Irr(G)

χ(x)rχ(dj)

χ(1)r−1
.

Theorem 12 Let G be a finite group and let K be a conjugacy class of an
element x ∈ G. Then Kn = {1} ∪D where D = dG 6= {1} if and only if there
exist positive integers m1 and m2 such that

χ(x)n|K|n = χ(1)n−1(m1χ(1) +m2|D|χ(d))

for all χ ∈ Irr(G) and |K|n = m1 +m2|D| where

m1 =
|K|n

|G|
∑

χ∈Irr(G)

χ(x)n

χ(1)n−2

and

m2 =
|K|n

|G|
∑

χ∈Irr(G)

χ(x)nχ(d)

χ(1)n−1
.

Proof Assume that Kn = {1} ∪D and we write K̂n = m11̂ +m2D̂ where m1

and m2 are positive integers that can be determined by the character table by
using Theorem 11. Then |K|n = m1 + m2|D|. Let χ ∈ Irr(G) and let R and
wχ be as in Theorem 7. We have

R(K̂n) = R(K̂)n = m1R(1̂) +m2R(D̂)

and
wχ(K̂)n = m1wχ(1̂) +m2wχ(D̂).

Then

|K|nχ(x)n

χ(1)n
= m1 +m2

|D|χ(d)

χ(1)

and so
χ(x)n|K|n = χ(1)n−1(m1χ(1) +m2|D|χ(d))

for all χ ∈ Irr(G), as wanted.

Conversely, assume that there exist m1 and m2 satisfying the equalities
with characters. We write Kn = D1 ∪ · · · ∪Dr with Di a conjugacy class for
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all 1 ≤ i ≤ r. We write K̂n = n1D̂1 + · · · + nrD̂r and notice that |K|n =
n1|D1|+ · · ·+ nr|Dr|. Let χ ∈ Irr(G) and let R and wχ be as before. Then

R(K̂n) = R(K̂)n = n1R(D̂1) + · · ·+ nrR(D̂r)

and by hypothesis we know

χ(x)n|K|n = χ(1)n−1(m1χ(1) +m2|D|χ(d))

for all χ ∈ Irr(G). Therefore,

m1χ(1) +m2|D|χ(d) = n1|D1|χ(d1) + · · ·+ nr|Dr|χ(dr). (2)

By multiplying both sides by χ(d) we get

m1χ(1)χ(d) + |D|m2χ(d)χ(d) = n1|D1|χ(d1)χ(d) + · · ·+ nr|Dr|χ(dr)χ(d).

From this equation, we obtain

m1

∑
χ∈Irr(G)

χ(1)χ(d) + |D|m2

∑
χ∈Irr(G)

χ(d)χ(d) = |D|m2|CG(d)| =

= n1|D1|
∑

χ∈Irr(G)

χ(d1)χ(d) + · · ·+ nr|Dr|
∑

χ∈Irr(G)

χ(dr)χ(d).

Then Di = D = dG for some i. Without loss of generality, we can assume
that D1 = D. Now, if we multiply both sides of Eq.(2) by χ(1) and argue
similarly we conclude that D2 = {1} and ni = 0 for all i 6= 1, 2. This means
that Kn = {1} ∪D.

4 Powers which are a union of a class and its inverse

In this section we are going to study the case in which the power of a conjugacy
class is a union of two classes, one of them being the inverse of the other, and
we prove Theorems C and D. We use the CFSG in all results except in Theorem
13.

Remark 7 If K = xG with x ∈ G and Kn = D ∪ D−1 for some n ∈ N with
D 6= D−1, thenK is non-real. Suppose thatK is real and xn ∈ D. We have that
x−1 = xg for some g ∈ G. Then (xn)g = (xg)n = (x−1)n = x−n ∈ D ∩D−1, a
contradiction.

We give the proof of Theorem C, which demonstrates that Conjecture 2 is
true when |D| = |K|/2.

Proof of Theorem C. Notice that if D = D−1, we have the hypothesis of
Theorem A and the result immediately follows. So we assume that D is not
a real class. Let K = xG. We know that either D = (xn)G or D−1 = (xn)G.
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Without loss of generality, we may assume that D = (xn)G. Since CG(x) ⊆
CG(xn) we have that |D| divides |K|. Furthermore, it follows that |K| ≤
|Kn| = 2|D|, that is, |K|/2 ≤ |D|. Consequently, either |D| = |K|/2 or |K| =
|D|. Suppose that |D| = |K|/2. Since |Kn| = 2|D| = |K|, we deduce that
|Ki| = |K| for all i ≤ n. Thus, xK = K2 and similarly, if y ∈ K, we get
yK = K2. By arguing as in Theorem 1 it can be obtained that K = xN where
N = [x,G] EG. By Theorem 1, N is solvable and consequently, 〈K〉 = 〈x〉N
is also solvable. �

Example 3 We are going to see that both cases of Theorem C are possible.
Let G = Z8 o Z2 = M16 = 〈a, x | a8 = x2 = 1, ax

−1

= a5〉 and K = aG. It
follows that K2 = D ∪ D−1, |K| = 2 and |D| = 1. On the other hand, let
G = Z2 × (Z7 o Z3) and K = xG where o(x) = 14. We have K2 = D ∪D−1
and |K| = |D| = 3.

In Theorem D we prove Conjecture 2 in the particular case n = 2 and
D = K. We will work in the complex group algebra C[G] and we will use the
following properties. Let g1, . . . , gk be representatives of the conjugacy classes

of a finite group G. Let Ŝ =
∑k
i=1 niĝ

G
i with ni ∈ N for 1 ≤ i ≤ k. We write

(Ŝ, ĝGi ) = ni following [1].

Lemma 3 If D1, D2 and D3 are conjugacy classes of a finite group G, then

1. (D̂1D̂2, D̂3) = (D̂−11 D̂−12 , D̂−13 )

2. (D̂1D̂2, D̂3) = |D2||D3|−1(D̂1D̂
−1
3 , D̂−12 )

3. (D̂1D̂2, D̂1) = |D2||D1|−1(D̂1D̂
−1
1 , D̂−12 ) = (D̂2D̂

−1
1 , D̂−11 ) = (D̂−12 D̂1, D̂1).

Proof See the proof of Theorem A of [1].

Proof of Theorem D. We argue by induction on |G|. We write K̂2 = αK̂+βK̂−1

with α, β ∈ Z+ and α = (K̂2, K̂) = (K̂−1K̂, K̂) = (K̂K̂−1, K̂−1) by Lemma
3(3). Thus,

K̂K̂−1 = |K|1̂ + αK̂ + αK̂−1 + Ŝ

where (Ŝ, L̂) = 0 if L ∈ {1,K,K−1}.

We distinguish between whether S = ∅ or not. Suppose first that S = ∅.
Since K3 = KK2 = K(K ∪K−1) = {1} ∪K ∪K−1, we obtain by induction
that Kn = {1}∪K∪K−1 for all n ≥ 3. Thus, 〈K〉 = KK−1 = {1}∪K∪K−1.
As all non-trivial elements in 〈K〉 have the same order, it follows that 〈K〉
is p-elementary abelian for some prime p, and we have finished. Assume now
that S 6= ∅. We have

K̂(K̂K̂−1) = K̂(|K|1̂ + αK̂ + αK̂−1 + Ŝ) = |K|K̂ + αK̂2 + αK̂K̂−1 + K̂Ŝ

and on the other hand,

K̂2K̂−1 = (αK̂ + βK̂−1)K̂−1 = αK̂K̂−1 + βK̂−1K̂−1.
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Taking into account both equalities and that K̂−1K̂−1 = βK̂ + αK̂−1, we
obtain

|K|K̂ + α(αK̂ + βK̂−1) + K̂Ŝ = β(βK̂ + αK̂−1).

If we rearrange, we obtain

K̂Ŝ = (β2 − |K| − α2)K̂.

In particular, we conclude that KS = K and by applying Lemma 2, it easily
follows that 〈S〉 is solvable. Consider now G = G/〈S〉. We observe from the
hypothesis that K2 = K∪K−1, so 〈K〉 is solvable by induction. Consequently,
〈K〉 is solvable.

Now let us see that x is a p-element. Since KS = K, we have that
K−1K〈S〉 = K−1K and KK−1 is union of left cosets of the subgroup 〈S〉, so
|〈S〉| divides |KK−1| = 1 + 2|K| + |S|. Hence, |〈S〉| divides 1 + |S| because
|〈S〉| divides |K|. It necessarily follows that 〈S〉 = {1}∪S. On the other hand,
since K3 = KK2 = K(K ∪ K−1) = {1} ∪ K ∪ K−1 ∪ S and KS = K, we
easily obtain by induction on n that Kn = {1} ∪K ∪K−1 ∪ S for all n ≥ 3.
Thus, 〈K〉 = KK−1 = {1} ∪ K ∪ K−1 ∪ S. We write G = G/〈S〉, so 〈K〉
is p-elementary abelian for some prime p because 〈K〉 is a minimal normal
subgroup with all non-trivial elements of the same order. We write x = xpxp′

where xp and xp′ are the p-part and the p′-part of x respectively. Then xp′

and x−1p′ are in 〈S〉. Consequently, xp = xx−1p′ ∈ K〈S〉 = K and so K is a
conjugacy class of a p-element as required.�

Example 4 In Theorem D, the case in which 〈K〉 is non-abelian can hap-
pen. We take for instance the group G = ((Z2 × Z2 × Z2) o Z7) o Z3 =
SmallGroup(168, 43) which has a conjugacy class K of elements of order 7
and size 24 satisfying K2 = K ∪K−1. Also, 〈K〉 = (Z2 × Z2 × Z2) o Z7.

The following property is useful to check Conjecture 2 from the character
table, in particular for the sporadic simple groups.

Theorem 13 Let G be a finite group and let K be a conjugacy class of an
element x ∈ G. Then Kn = D∪D−1 where D is a conjugacy class if and only
if there exist positive integers m1 and m2 such that

χ(x)n|K|n = χ(1)n−1|D|(m1χ(xn) +m2χ(x−n))

for all χ ∈ Irr(G) and |K|n = (m1 +m2)|D| where

m1 = |K|n
|G|

∑
χ∈Irr(G)

χ(x)nχ(xn)
χn−1(1) and m2 = |K|n

|G|
∑
χ∈Irr(G)

χ(x)nχ(xn)
χn−1(1) .

In particular,

χ(x)n + χ(x−1)n = χ(1)n−1(χ(xn) + χ(x−n))

for all χ ∈ Irr(G).
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Proof Assume that Kn = D ∪D−1 and we write K̂n = m1D̂+m2D̂−1 where
m1 and m2 are positive integers that can be determined by the character table
by using Theorem 11. Then |K|n = (m1 + m2)|D|. Let χ ∈ Irr(G) and let R
and wχ be as in Theorem 7. We have

R(K̂n) = R(K̂)n = m1R(D̂) +m2R(D̂−1)

and
wχ(K̂)n = m1wχ(D̂) +m2wχ(D̂−1).

If we suppose that xn ∈ D (analogously if xn ∈ D−1), then

|K|nχ(x)n

χ(1)n
= m1

|D|χ(xn)

χ(1)
+m2

|D|χ(x−n)

χ(1)

and then
|K|nχ(x)n = χ(1)n−1|D|(m1χ(xn) +m2χ(x−n))

for all χ ∈ Irr(G), as wanted. By taking conjugates in the above equation we
obtain

|K|nχ(x−1)n = χ(1)n−1|D|(m2χ(xn) +m1χ(x−n))

for all χ ∈ Irr(G). The last part of the theorem follows by summing the pre-
vious equations.

Conversely, assume that there exist m1 and m2 satisfying the equalities
with characters. We write Kn = D1 ∪ · · · ∪Dr with Di a conjugacy class for
all 1 ≤ i ≤ r. We write K̂n = n1D̂1 + · · · + nrD̂r and notice that |K|n =
n1|D1|+ · · ·+ nr|Dr|. Let χ ∈ Irr(G) and let R and wχ be as before. Then

R(K̂n) = R(K̂)n = n1R(D̂1) + · · ·+ nrR(D̂r)

and by hypothesis we know

χ(x)n|K|n = χ(1)n−1|D|(m1χ(xn) +m2χ(x−n))

for all χ ∈ Irr(G). Therefore,

|D|m1χ(xn) + |D|m2χ(x−n) = n1|D1|χ(d1) + · · ·+ nr|Dr|χ(dr). (3)

By multiplying both sides by χ(xn) we get

|D|m1χ(xn)χ(xn)+|D|m2χ(x−n)χ(xn) = n1|D1|χ(d1)χ(xn)+· · ·+nr|Dr|χ(dr)χ(xn)

From this equation we obtain

|D|m1

∑
χ∈Irr(G)

χ(xn)χ(xn) + |D|m2

∑
χ∈Irr(G)

χ(x−n)χ(xn) = |K|n|CG(xn)| =

= n1|D1|
∑

χ∈Irr(G)

χ(d1)χ(xn) + · · ·+ nr|Dr|
∑

χ∈Irr(G)

χ(dr)χ(xn).
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Then Di = D = (xn)G for some i. Without loss of generality, we can assume
that D1 = D. Now, if we multiply both sides of Eq.(3) by χ(xn) and argue
similarly we conclude that D2 = D−1 and ni = 0 for all i 6= 1, 2. This means
that Kn = D ∪D−1.

Remark 8 Let G be a group and let K be a conjugacy class of an element
x ∈ G. If Kn = D∪D−1 for some n ∈ N, n ≥ 2 and D a conjugacy class, then
G is not a sporadic simple group.

Proof Let x, xn ∈ G such that K = xG, D = (xn)G and Kn = D ∪ D−1 for
some n ∈ N. We show that for any sporadic simple group there is no conjugacy
class satisfying the hypotheses of the theorem. By Theorem 13, we know that
the hypotheses imply

χ(x)n + χ(x−1)n = χ(1)n−1(χ(xn) + χ(x−n)) (4)

for all χ ∈ Irr(G). The aim is to find some irreducible character that does not
satisfy Eq.(4). Recall that the smallest integer m satisfying Cm = G for each
non-trivial conjugacy class C of G is called the covering number of G. The
covering number of each sporadic simple group is at most 6 ([13] and [2]). It
can be checked by using the character tables (for example included in GAP)
that for any of these groups and any two non-trivial conjugacy classes of it
and n < 6, there exists an irreducible character which does not satisfy Eq.(4).
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