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ABSTRACT: The growing interest in plasmonic nanoparticles and their increasingly
diverse applications is fuelled by the ability to tune properties via shape control,
promoting intense experimental and theoretical research. Such shapes are dominated
by geometries that can be described by the kinetic Wulff construction such as
octahedra, thin triangular platelets, bipyramids, and decahedra, to name a few. Shape
is critical in dictating the optical properties of these nanoparticles, in particular their
localized surface plasmon resonance behavior, which can be modeled numerically.
One challenge of the various available computational techniques is the representation
of the nanoparticle shape. Specifically, in the discrete dipole approximation, a particle is represented by discretizing space via an
array of uniformly distributed points-dipoles; this can be difficult to construct for complex shapes including those with multiple
crystallographic facets, twins, and core−shell particles. Here, we describe a standalone user-friendly graphical user interface
(GUI) that uses both kinetic and thermodynamic Wulff constructions to generate a dipole array for complex shapes, as well as
the necessary input files for DDSCAT-based numerical approaches. Examples of the use of this GUI are described through three
case studies spanning different shapes, compositions, and shell thicknesses. Key advances offered by this approach, in addition
to simplicity, are the ability to create crystallographically correct structures and the addition of a conformal shell on complex
shapes.

■ INTRODUCTION

Plasmonic nanoparticles (NPs) have gained much attention in
the scientific community owing to their optical properties that
can be exploited for a variety of applications, ranging from
sensing1 and photocatalysis,2 to biomedicine3 and optical
circuits.4 NPs of free electron metals confine light via collective
electron cloud oscillations triggered by an incident oscillating
electromagnetic field, giving rise to resonances known as
localized surface plasmon resonances (LSPRs). LSPRs enhance
light scattering and absorption whilst amplifying local electric
fields at the NP’s surface. Commonly, plasmonic NPs are
synthesized from Au and Ag5 but novel plasmonic structures of
earth-abundant materials such as Al, Cu, and Mg have recently
been demonstrated theoretically and experimentally.6−11 Other
metals, such as Ga and In also present significant LSPR
tunability12,13 while Pd and Pt sustain rather weak and broad
LSPRs.14,15

The energy and peak width of a LSPR can be tuned by
controlling the composition, environment, size, and shape of
the NPs, to name a few.5,16,17 Shape is particularly appealing, as
it easily and predictably controls the near-field distribution
around a particle, creating for instance localization around
either the corners or faces in a cube18 or tip and shaft in a
rod,19 depending on the resonance frequency. Shape tuning
can be supplemented by composition tuning by incorporating
layers of different materials, either as a simple core−shell
structure or complex multishell, egg-yolk, or other shapes.20

Such core−shell structures are of particular interest not only

because they introduce new parameters that affect LSPRs, such
as shell composition and thickness,21 but also because they can
combine plasmonic and nonplasmonic materials,22 thus
providing further means to design functional NPs. Core−
shell structures may also be used to prevent the oxidation of a
core,23 or occur spontaneously upon self-limiting oxidation of a
metal.7,9

The shape of NPs, so critical for their optical properties, is
dictated by the crystal structure and growth environment. At
thermodynamic equilibrium (e.g., in vacuum or another
scarcely interacting environment), NP shape can be predicted
analytically from the (thermodynamic) surface free energy
according to the Wulff construction.24 Briefly, the distance
normal to an (hkl) facet, hhkl, is related to its surface energy γhkl
as

hhkl
hkl

γ
Λ

=
(1)

where Λ is a constant accounting for volume. While this is only
valid for a free-floating particle during growth, extensions to
the model including interaction with one or two interfaces with
a substrate have been developed, named the Winterbottom and
the Summertop constructions, respectively.25,26 Similarly, the
addition of internal rather than external boundaries to account

Received: August 8, 2019
Revised: September 16, 2019
Published: September 18, 2019

Article

pubs.acs.org/JPCCCite This: J. Phys. Chem. C 2019, 123, 25501−25508

© 2019 American Chemical Society 25501 DOI: 10.1021/acs.jpcc.9b07584
J. Phys. Chem. C 2019, 123, 25501−25508

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

pubs.acs.org/JPCC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcc.9b07584
http://dx.doi.org/10.1021/acs.jpcc.9b07584
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


for twinning leads to the modified Wulff construction.27

Realizing that the thermodynamic shapes were rarely present
in reaction products, the kinetic Wulff construction28 was
developed, where a growth velocity vhkl is used instead of the
thermodynamic surface free energy γhkl. The kinetic approach
to the growth of twinned structures was then, recently,
developed,29 where twin boundaries, disclinations, and re-
entrant surface kinetic effects help explain most experimentally
obtained shapes for face-centered cubic (fcc) materials, which
include most plasmonic metals (Cu, Ag, Au, Al).
Here, this kinetic version of the regular (single crystal) and

modified (twinned) Wulff construction29 is used as the basis of
a shape modeling code integrated in a user-friendly, standalone
graphical user interface (GUI). Briefly, to derive a NP’s shape
from the inputs of vhkl and optional enhancements at re-entrant
surfaces, twin boundaries, and disclinations, space is discretized
in a cubic three-dimensional grid and growth velocities (vg) are
calculated at each point of the grid, described as a vector p⃗ with
respect to the center of the shape. This is mathematically
implemented by calculating the following expression on each
grid point p⃗

v p n p( ) e , for
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where b is a smoothing factor and n⃗ = Fvhkln̂, where n̂ is the
unit vector of the corresponding crystallographic facet, and F is
the enhancement factor given by
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The Wulff shape is then defined as an isosurface of growth
velocities, because this is directly proportional to the distance
from the geometric center of the particle to the facet (eq 1). In
the case of twinned NPs the created shape is mirrored along
the twin plane for NPs with a single twin plane or rotated
around the five-fold symmetry axis for NPs with five
nonparallel twin planes.30

Modeling shape effects is the key to understand how
geometry affects LSPRs (both far and near-field) and can
support and inspire the design and synthesis of NPs for
tailored light−matter interactions. To do this, one must solve
Maxwell’s equations, which describe the electromagnetic
interactions at play. Because analytical solutions to Maxwell’s
equations are limited to a small number of simple geometries,
such as spheres with the Mie solution31 or ellipsoids with the
Mie−Gans solution,32 various numerical techniques have been
developed to model arbitrary shapes. Prevailing approaches
include the finite difference time domain (FDTD) method,33

the discrete-dipole approximation (DDA),34 the finite-element
method (FEM)35 and the boundary element method
(BEM).36 The first three approaches (FDTD, DDA, FEM)
require discretization over the NP volume while for BEM the
discretization is applied only to the NP surface.
In DDA,34 particles are represented by an array of small

cubic elements considered dipoles interacting with each other
and with the incident electric field. These interactions result in
a system of Maxwell’s equations that can be solved to obtain
the polarization of each dipole and subsequently to calculate
the absorption and scattering properties of the particle, as well
as near-field effects such as field enhancement mapping and
local charge distribution around nanostructures. The latter can
give important information about LSPR modes such as their

localization on the edges and corners of triangular plates.37 In
FDTD33 the space and time derivatives that appear in
Maxwell’s equations are replaced by finite differences, therefore
requiring a discretization over both time and space, the latter
achieved by a grid of cuboid elements; the problem is then
solved iteratively until a steady-state solution is achieved,
where the error is better defined than in DDA.38,39 In the case
of FEM, space discretization is achieved using elements,
usually tetrahedral, for which the Helmholtz equation is
satisfied along with appropriate conditions to ensure continuity
and a consistent solution.35

The DDA is a hugely successful and popular method
because in general, it requires comparatively low computa-
tional power, depending of course on the dipole number and
interdipole distance.39,40 Unlike other techniques, it uses a
simple and straightforwardly physically meaningful discretiza-
tion of space in dipoles. One downside to this simplicity is that
equally sized cubic elements do not allow for a denser, better
fitting grid for curved surfaces, making it difficult to model high
aspect ratio structures for instance.41 When modeling NP
shapes, for DDA and for the aforementioned computational
techniques, the appropriate geometry input must be created,
which can prove difficult, especially for shapes with complex
features or with many facets and angles such as a Marks
decahedron. Here we present an approach to solve this struggle
and facilitate simulation of the plasmonic properties of various
NP shapes.
Acknowledging the advantages of the DDA technique and

the already validated Wulff construction theory, we incorporate
the modified kinetic Wulff construction code29 in a GUI that
creates a crystallographically correct NP shape and all the
appropriate inputs for DDSCAT,34 an open source code that
uses the DDA method to calculate the optical properties of
nanostructures. We show the modeling of single crystal and
twinned fcc NPs with and without a shell for both concave and
convex geometries, in both the kinetic and thermodynamic
regime. Below we first describe the GUI, and then demonstrate
its capabilities by modeling and calculating the absorption and
scattering properties of Au, Ag, and Al NPs of various shapes as
well as core−shell structures including Au@SiO2 decahedra,
Ag@SiO2 cubes, and Al@Al2O3 bipyramids with various shell
thicknesses.

■ COMPUTATIONAL DETAILS
Au and Ag refractive indices (RI) were obtained from Johnson
and Christy,42 those of Al and Al2O3 from Palik,43 and that of
SiO2 from Rodriǵuez-de Marcos et al.44 For Al, RI from Palik
was available only up to 190 nm and the DDA extrapolation
was used for 150−190 nm. The ambient RI was set to 1
(vacuum), and electron surface scattering corrections on the
RI were not deemed necessary because all NPs are sufficiently
small, that is, they have an effective diameter greater than 30
nm.45 Scattering (Csca) and absorption (Cabs) cross sections
were calculated by multiplying the corresponding DDSCAT
output efficiencies with the effective area (πaeff

2). The shapes
were modeled with an interdipole distance range of 0.3−2.6
nm depending on the total size, shape, and material of the NP
(Tables S1 and S2), with no fewer than 105 dipoles, except for
cubes, to ensure accuracy.39 The convergence of the results
with the number of dipoles was investigated only for the
smallest NPs (Figures S2−S5) as larger NPs are expected to
require fewer dipoles to get results with the same accuracy.39

In all cases, the incident light is modeled having two
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orthogonal polarizations, an approach commonly used to
mimic unpolarized light, and propagates along the highest
symmetry axis of the particle, that is, perpendicular to a face for
the cube, along the direction of the 4-fold axis for the
octahedron, along the direction of the 5-fold axis for the sharp
and Marks decahedron, and perpendicular to the twin plane for
the bipyramid and triangle. The contribution of the two
polarization components was also investigated for Au and Ag
decahedra and was found to mainly influence the LSPR
intensities with little effect on the LSPR energy. These results
(Figure S6) along with the GUI input parameters used for the
shape modeling (Table S3) and further computational details
can be found in the Supporting Information.

■ RESULTS

User Interface. Figure 1 shows the process of calculating a
sharp decahedron and generating the dipole array with the aid
of the Wulff construction GUI, and the subsequent calculation
of the absorption and scattering spectra, as well as electric field
distribution with the DDA. The Matlab-based GUI, deployed
as a standalone application, features a main window (Figure
1a) with input panels and action buttons that guide the user
through the steps from modeling the NP’s shape to creating
the shape file (shape.dat) and then the parameter file
(ddscat.par) which are inputs for the DDSCAT simulation.
Additionally, a RI file is to be provided by the user (RI files of
Au, Ag, Al, SiO2, and Al2O3 available in the Supporting
Information).
Specifically, the surface growth velocities (vhkl) of the {100},

{110}, and {111} planes as well as the kinetic growth re-
entrant surface (φre‑entrant), twin (φtwin), and disclination
(φdisclination) enhancements are specified in the basic parameters
panel. Thermodynamic surface energies can be used instead of
growth velocities, with no enhancement, for thermodynamic
shapes. The user can select no twin plane (single crystal), one

{111} twin plane (monotwin), as common in fcc structures, or
five nonparallel {111} twin planes (pentatwin). NPs with a
shell can be calculated, providing information about the
thickness of the shell (shell percentage) and the curvature of
the shape (concave or convex) is supplied. The shell generated
is conformal, that is, it has the same geometry as the Wulff NP
without a shell.
After all the parameters are defined the shape isosurface is

calculated and displayed; at this stage the shape is
dimensionless. In the DDSCAT the size of the studied target
is introduced in the parameter file as the effective radius

i
k
jjj

y
{
zzza V

3
4eff

1/3

π
=

(4)

where V is the volume of the target. To calculate V and the
effective radius (calculate effective radius), the user selects two
arbitrary points on the shape and inputs the distance between
them (Figure S1b). Conveniently, the two points can be on the
same or different facets, or on the shell or core of the particle,
allowing, for example, defining the size of the particle based on
the plasmon length.
When performing the DDSCAT calculations the choice of

number of dipoles or equivalently the interdipole distance is
important for the accuracy of the obtained result. In DDSCAT
the interdipole distance is defined by the total number of
dipoles and the total volume of the studied structure. In the
GUI, the user can specify the interdipole distance (define
interdipole distance) through a dialog box (Figure S1c); the
code then readjusts the number of dipoles to fit both the
volume and interdipole distance requirements. To achieve a
good accuracy the interdipole distance must be small
compared to both any structural length of the target and the
wavelength of the incoming radiation.34 The convergence of
the results can be checked by manipulating the interdipole
length for a given shape.

Figure 1. Wulff construction tool. (a) Main Wulff construction GUI window, (b) resulting dipole representation, (c) scattering spectrum, and (d)
near field (E⃗2) distribution at the NP’s mid-height obtained from the DDA calculation for a sharp Au decahedron.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.9b07584
J. Phys. Chem. C 2019, 123, 25501−25508

25503

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b07584/suppl_file/jp9b07584_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b07584/suppl_file/jp9b07584_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b07584/suppl_file/jp9b07584_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b07584/suppl_file/jp9b07584_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b07584/suppl_file/jp9b07584_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b07584/suppl_file/jp9b07584_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.9b07584/suppl_file/jp9b07584_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcc.9b07584


The first DDSCAT input file generated is the shape file
(create shape file), which contains the array of dipoles that
represent the NP as well as information about its orientation
and composition. The second DDSCAT input file is the
parameter file (create ddscat file), which includes details about
the computational setup of the calculations, the material and
effective radius of the target, the incident field, and the output
files. A detailed description of the shape and parameter files
and their variables can be found in the DDSCAT manual,46

and a typical parameter file along with an extended description
of the GUI can be found in the Supporting Information.
Case Study 1: NP Shape and Composition. Au and Ag

NPs are dominant among plasmonic metals as they exhibit
strong, tunable LSPRs throughout the visible and infrared
region.5 Unlike Ag, Au NPs are stable toward oxidation and
biocompatible, enabling biomedical applications.3 Alternatives
to the rather expensive Ag and Au are becoming common-
place, Al being an example that is earth abundant and sustains
LSPRs in the visible and ultraviolet (UV) region, providing
opportunities for UV plasmonics6 All three metals have well-
established synthetic techniques7,47,48 leading to a variety of
single-crystal and twinned NPs49 whose shape-dependent
plasmonic properties can be predicted or confirmed via
numerical simulations. Here, Au and Ag cubes, {100}-capped
bipyramids, and decahedra are chosen as examples of single
crystal, monotwin and pentatwin noble metal shapes,
respectively, while cubes, octahedra, and {100}-capped
bipyramids are chosen as representative Al shapes. The
different structures studied, all generated with the Wulff
construction tool (Table S3), are shown in Figure 2a. The
effective radius of the NPs is 31 nm, corresponding to a cube
with an edge length of 50 nm.
The scattering and absorption cross sections of Au NPs as a

function of wavelength are shown in Figure 2b. As expected,
these rather small Au cubes and decahedra exhibit one, dipolar,
LSPR peak in the region of 500−550 nm50,51 while, given its
higher anisotropy, the bipyramid features a red-shifted main
peak and a second peak as a high energy shoulder.52 The
dominant peak for all shapes shifts toward higher wavelengths
in the order: Marks decahedra, cubes, sharp decahedra, and
bipyramids, a trend that reflects the combined effects of
increasing plasmon length and anisotropy of the shapes. More
specifically, given that the NPs have the same volume, the
plasmon length, defined as the length over which the dipole
oscillations take place,17 increases in the order: cube,
decahedron, and bipyramid. As the plasmon length increases,
resonance occurs at higher wavelengths, that is, causing the
noted red-shifts. This also explains the smaller peak wavelength
of Marks decahedron compared to the sharp one. On the other
hand, higher symmetry causes a blue-shift. The thicker Marks
decahedron is more similar to a sphere further explaining its
blue-shifted LSPR compared to the sharp decahedron and the
cube. The peak intensities follow an increasing trend from
marks decahedron, to cube, bipyramid, and sharp decahedron.
Peak intensity increases with the plasmon length unless high
anisotropy causes the appearance of a new peak or shoulder,
consequently decreasing the highest peak intensity as observed
in the case of the Au bipyramids. The near-field response for a
Au sharp decahedron is also reported in Figure 1d.
The absorption and scattering cross sections for the Ag NPs

are presented in Figure 2c. The six characteristic main LSPR
modes of Ag cubes, well-identified in the literature,53,54 span
roughly 330−420 nm. The LSPR peaks are broader for the

decahedra and the bipyramids as their symmetry leads to less
mode degeneracy than the cube.53,55 A red-shift trend in the
peak wavelength follows the Au NPs pattern.
Finally, the LSPRs of Al NPs (Figure 2d) appear at lower

wavelengths than Ag and Au of the same size, in the range of
150−250 nm. This is consistent with previous calculations for
Al nanorods and spheres of comparable size.56 Other
calculations for Al octahedra have shown the presence of
two peaks in the octahedron spectrum,57 one of which in the
200−400 nm range shown here. Note that for Al the scattering
and absorption profiles look different because the scattering
and absorption peak intensity ratio changes with wavelength.
This feature depends on the dielectric constant of the material
and is less prominent as we move to Ag and Au. The ratio also
depends on the shape and size of the NP.

Case Study 2: Core−Shell NPs. Silica (SiO2) shells are
commonplace in nanoscience because silica is an inert material
that helps increase the stability of the NPs while its thickness
can be used to control the LSPR characteristics of the core
material.48 The optical properties of Al NPs which develop
self-limiting alumina (Al2O3) shells are also attractive as the

Figure 2. Wulff construction shapes where the black line shows the
edge length (a) and the corresponding simulated scattering and
absorption cross sections for (b) Au, (c) Ag, and (d) Al. Green, blue,
and red solid lines correspond to cube, decahedron, and bipyramid,
respectively; green and blue dotted lines correspond to the
octahedron and Marks decahedron, respectively. The effective radius
is 31 nm for all NPs.
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oxide can passivate and protect the NP.7,58 Here we
demonstrate the capabilities of our approach by calculating
the scattering and absorption properties of Au@SiO2 sharp and
Marks decahedra, Ag@SiO2 cubes, and Al@Al2O3 bipyramids
for varying oxide thickness t. The core geometry has an edge
length of 50 nm for cubes, sharp decahedra, and bipyramids
and 20 nm for Marks decahedra and is as illustrated for all
shapes in Figure 2a.
The scattering and absorption of Au@SiO2 sharp decahedra

are shown in Figure 3a. As the oxide shell increases the
plasmon peak red-shifts gradually by 50 nm at t = 10 nm
because of the higher RI of SiO2 compared to that of vacuum.
This value fits between the ∼20 nm redshifts reported for
silica-coated Au spheres of various sizes59 and larger ∼100 nm
shifts for silica-coated Au triangles.60 This trend is consistent
with the observation that higher wavelength LSPRs, found in

more anisotropic shapes, exhibit higher RI sensitivity.16 The
scattering and absorption for silica-coated Marks decahedra
(Figure 3b) follow a similar pattern.
Silica-coated Ag cubes (Figure 3c) demonstrate a slightly

higher red-shift than Au for the high wavelength peaks and a
smaller red-shift for lower wavelength peaks. The high
wavelength LSPR shifts more than what has been reported
for SiO2-coated Ag spheres owing to the larger RI sensitivity of
cubes.61

Figure 3d shows the scattering and absorption of Al@Al2O3
core−shell bipyramids with different Al2O3 shell thickness. The
significant decrease in intensity for an oxide layer as small as t
= 10 nm is consistent with reports of similar LSPR suppression
for other shapes.56,58 We also note that Al2O3 causes a notable
red-shift of the LSPR positions, following the trend of
computational findings for cylinders which, similarly to
bipyramids, are highly anisotropic shapes.56

Case Study 3: Triangular Plates. Thin nanoplates,
including triangles,62−64 disks,65 and hexagons,66 are another
interesting group of plasmonic NPs. Triangular plates are quite
attractive as their high RI sensitivity, stemming from their
sharp corners, makes them suitable for sensing applications64

while their high anisotropy creates strong local fields.37 In this
last case study, we demonstrate the applicability of our
approach by modeling Au and Ag triangular plates and
calculating their scattering, absorption, and near-field proper-
ties. The modeled NPs (Figure 4a) have an edge length of 75
nm and thickness of 10 nm.

Figure 4b shows the E⃗2 field distribution for a Au triangular
plate, calculated at a peak wavelength of 656 nm and shown at
the NP mid-height. Here, light is polarized vertically, that is,
along the height of the triangle including the top corner. The
plasmon-enhanced field is localized at the three sharp corners
of the plate, with a higher intensity around the top corner
owing to the polarization.37 Additional, weaker enhancement is

Figure 3. Simulated scattering and absorption cross sections for
core−shell Au@SiO2 sharp decahedra (a), Au@SiO2 Marks
decahedra (b), Ag@SiO2 cubes (c), and Al@Al2O3 bipyramids (d)
with varying oxide thickness. Spectra offset for clarity.

Figure 4. Wulff modeled triangular plate (a) and calculated (b) E⃗2

field distribution at the NP mid-height and scattering and absorption
cross sections for (c) Au and (d) Ag of edge length 75 nm and
thickness 10 nm.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.9b07584
J. Phys. Chem. C 2019, 123, 25501−25508

25505

http://dx.doi.org/10.1021/acs.jpcc.9b07584


present along the NP’s edges. Figure 4c,d shows the scattering
and absorption cross sections for the Au and Ag triangular
plates, respectively. Au has a dominant peak at 656 nm with a
shoulder at 740 nm, while Ag features at least six distinct peaks
ranging from 460 to 630 nm. As expected, for both
compositions peaks are red-shifted with respect to the previous
studied shapes following the anisotropy trend discussed in the
first case study.

■ DISCUSSION
The results above have shown the applicability of the code to a
variety of NPs, some well-studied and some novel; all being
crystallographically correct. To our knowledge, current shape-
generating tools, used to provide the geometry for various
electromagnetic simulation open source codes or commercial
packages do not take into account crystallographic directions.
For example, built-in 3D drawing platforms are used to
generate arbitrary geometry inputs for FEM calculations
performed with the COMSOL package and for FDTD
packages such as CST Microwave or Lumerical. Some
crystallographically correct shapes can be imported as 3D
CAD structures created with the open-source FORTRAN code
SOWOS67 which performs Wulff construction modeling,
although without including kinetic enhancements or twin
planes. Other FDTD software like the open source MEEP68

use manually created geometries defined through a variety of
options including vectors or equations. For the DDA it is
possible to find tools, such as DDSCAT Convert,69 that create
the dipole array from a file containing three-dimensional
information about the geometry, but again crystallographic
orientation is ignored.
Unlike these approaches, with the Wulff construction GUI

we provide a facile way to create intrinsically correct NP shapes
with correct angles between the NP facets and a consistent
area for the facets of the same type. This is encoded in the
crystallographic directions that are considered for the Wulff
construction, that is, the facet angles are the angles formed
between the well-defined crystallographic planes. Currently
only the three most stable fcc facets, {111}, {110}, and
{100}70 are considered but the addition of more facets, when
required, is trivial. Note that other Wulff shape modelling
tools67,71 are either restricted to shape visualization or the
output data needs to be processed in a nontrivial way before
used in any electromagnetic simulation software. They also do
not offer the required control over the critical parameters for
DDA such as the interdipole distance. Conveniently for
convergence studies, our tool can be used to systematically
alter the interdipole distance, by controlling its value through
the appropriate action button, or to maintain the same number
of dipoles for varying shape sizes, by fixing the step size value,
the latter being applicable only for particles with the same
shape.
Further, with the second case study we have specifically

demonstrated the use of the Wulff construction tool to
calculate the properties of coated NPs. This is a useful feature
when investigating optical trends for deliberate or sponta-
neously formed conformal shells. It therefore, applies very
conveniently to most oxide layers, which are of increasing
interest given the increasing importance of non-Au plasmonics.
It is important to note that the Wulff construction tool tends

to create slightly rounded shapes because of the adopted
discretization process; this conveniently happens to mirror the
typical experimental shapes. Yet this is not perfect, and one

must be careful to recognize that small shape changes can
influence the plasmonic behavior and thus care should be
taken to choose an appropriate step size for each shape in
order to eliminate the so-called staircase effect. As the number
of dipoles decreases, deviations from the user-set dimension
and interdipole distance are more apparent because the
numerical volume calculation becomes inevitably less accurate.
The shell is conformal, as appropriate for relatively thin shell
layers on shapes of varying complexity.72 The GUI does not
currently support core and shell of different shapes73 or allow
for thickness variations at the NP edges and tips.60 Another
limitation is the minimum thickness that can be modeled: as
the code (and DDSCAT) uses the same dipole density for the
core and shell, creating a very thin (<4 nm) shell requires a
dense array that leads to long computational time.
As a newly developed tool, the Wulff construction GUI has a

generous range of future developments including for instance
further crystal structures, addition of a substrate,74 and the
ability to model NPs with multiple shells.20 While the current
output is tailored to the DDSCAT, the isosurface can easily be
used to generate a CAD shape and in principle provide a
crystallographically accurate geometry input for the FDTD and
FEM techniques, or for 3D printing.

■ CONCLUSIONS
We described a MATLAB-based standalone GUI that models
the shape of fcc NPs, based on the modified kinetic Wulff
construction theory, and creates the required input files for the
DDSCAT simulations. The range of accessible shapes includes,
but is not limited to, cubes, octahedra, bipyramids, stars, plates,
pentagonal rods, and multiple decahedra-related structures. All
structures modeled have crystallographically correct angles. To
demonstrate the capabilities of the GUI we modeled the
plasmonic properties of Au, Ag, and Al NPs of various shapes.
Next, the effects of oxide shells, including SiO2 and the native
Al2O3 on Al, on the optical response of NPs was used to
display the capability of the GUI to add a conformal shell on a
complex NP. Finally, the near-field and far-field optical
properties of triangular plates were also calculated. The results,
consistent with the literature when available, show the
simplicity and power of the coupled use of the GUI and
DDSCAT to predict the plasmonic response of metallic
nanomaterials. This GUI is therefore, expected to be an
advantageous tool for facilitating the studies of nano-
plasmonics, with interesting future extensions.
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Peŕez-Juste, J.; Liz-Marzań, L. M.; García de Abajo, F. J. Modeling the
Optical Response of Highly Faceted Metal Nanoparticles with a Fully
3D Boundary Element Method. Adv. Mater. 2008, 20, 4288−4293.
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Modified Stöber Method. J. Colloid Interface Sci. 2005, 283, 392−396.

(62) Imaeda, K.; Hasegawa, S.; Imura, K. Imaging of Plasmonic
Eigen Modes in Gold Triangular Mesoplates by Near-Field Optical
Microscopy. J. Phys. Chem. C 2018, 122, 7399−7409.
(63) Tsai, D.-S.; Chen, C.-H.; Chou, C.-C. Preparation and
Characterization of Gold-Coated Silver Triangular Platelets in
Nanometer Scale. Mater. Chem. Phys. 2005, 90, 361−366.
(64) Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.;
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