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Abstract. Large uncertainty remains about the amount of
precipitation falling in the Indus River basin, particularly
in the more mountainous northern part. While rain gauge
measurements are often considered as a reference, they pro-
vide information for specific, often sparse, locations (point
observations) and are subject to underestimation, particu-
larly in mountain areas. Satellite observations and reanalysis
data can improve our knowledge but validating their results
is often difficult. In this study, we offer a cross-validation
of 20 gridded datasets based on rain gauge, satellite, and
reanalysis data, including the most recent and less studied
APHRODITE-2, MERRA2, and ERAS. This original ap-
proach to cross-validation alternatively uses each dataset as
a reference and interprets the result according to their de-
pendency on the reference. Most interestingly, we found that
reanalyses represent the daily variability of precipitation as
well as any observational datasets, particularly in winter.
Therefore, we suggest that reanalyses offer better estimates
than non-corrected rain-gauge-based datasets where under-
estimation is problematic. Specifically, ERAS is the reanal-
ysis that offers estimates of precipitation closest to observa-
tions, in terms of amounts, seasonality, and variability, from
daily to multi-annual scale. By contrast, satellite observa-
tions bring limited improvement at the basin scale. For the
rain-gauge-based datasets, APHRODITE has the finest tem-
poral representation of the precipitation variability, yet it im-
portantly underestimates the actual amount. GPCC products
are the only datasets that include a correction factor of the
rain gauge measurements, but this factor likely remains too
small. These findings highlight the need for a systematic
characterisation of the underestimation of rain gauge mea-
surements.

1 Introduction

Throughout the Holocene, the Indus River and its tributaries
have provided much of the water needed by the people liv-
ing in its basin for various purposes (e.g. food, energy, in-
dustry). The diversity of use and the risks associated with
scarcity or excess of water under variable and changing cli-
matic and socio-economic conditions highlight the impor-
tance of water management in both Pakistan and north-west
India (Archer et al., 2010; Laghari et al., 2012). Moreover,
the Indus headwaters are an important locus of water storage,
with numerous glaciers whose current and future change re-
mains uncertain (Hewitt, 2005; Gardelle et al., 2012). There-
fore, a comprehensive evaluation of the basin-wide water cy-
cle is needed. Studies that have addressed this issue have
stressed the uncertainties inherent in the observed precipi-
tation (Singh et al., 2011; Gardelle et al., 2012; Immerzeel
et al., 2015; Wang et al., 2017; Dabhri et al., 2018).

Gridded products allow for a homogeneous spatial repre-
sentation of precipitation at a river basin-scale for statistical
purposes (Palazzi et al., 2013). They can be derived from rain
gauges, satellite imagery or atmospheric models (e.g. reanal-
ysis) but need validation to assess their quality. Most stud-
ies that validate precipitation products in Pakistan, India, or
in the adjacent mountainous areas (Hindu Kush, Karakoram,
Himalayas) make use of rain gauge data as a reference, ei-
ther directly from weather stations (Ali et al., 2012; Khan
et al., 2014; Ghulami et al., 2017; Hussain et al., 2017; Igbal
and Athar, 2018), or after gridding (Palazzi et al., 2013; Ra-
jbhandari et al., 2015; Rana et al., 2015, 2017). However,
some authors have pointed out that these reference datasets
also suffer from limitations that could dramatically reduce
correlation and increase biases, incorrectly lowering the con-
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fidence in the dataset validated (Tozer et al., 2012; Ménégoz
et al., 2013; Rana et al., 2015, 2017).

The first issue of validating gridded precipitation products
with rain gauge measurements is simply the uncertainty of
the measurements. Beside the risk of corruption or missing
values in the reporting process, it has been demonstrated that
rain gauges can underestimate precipitation (Sevruk, 1984;
Goodison et al., 1989). The main source of underestima-
tion is the wind-driven under-catchment that can reach up
to 50 % during snowfall (Goodison et al., 1989; Adam and
Lettenmaier, 2003; Wolff et al., 2015; Dahri et al., 2018),
but also includes the wetting of the instrument, evaporation
before measuring, and splashing out (WMO, 2008). Dahri
et al. (2018) used the guidelines from the World Meteoro-
logical Organization (WMO) to re-evaluate the precipitation
measured from hundreds of rain gauges in the upper Indus
and found the underestimation to be between 1 % and 65 %
for each station, and 21 % across the basin. The second issue
is the one of spatial representativeness. A rain gauge records
a measurement at a specific location whereas in a gridded
dataset, each value represents the mean over all the grid box.
Thus, the two types of data have a different spatial represen-
tativeness. This discrepancy in representativeness increases
when considering shorter timesteps and areas with strong
heterogeneity such as mountainous terrains, which is espe-
cially impactful when studying extreme events. Some meth-
ods exist to quantify and tackle this issue (e.g. Tustison et al.,
2001; Habib et al., 2004; Wang and Wolff, 2010).

Gridding methods are used to spatially homogenise point
measurements and they also have limitations. Firstly, the
specificity of the interpolation method can impact the result
(Ensor and Robeson, 2008; Newlands et al., 2011). Secondly,
the sparsity of the weather stations increases the uncertain-
ties, which can range from 15 % to 100 % in areas with a low
number of rain gauges (Rudolf and Rubel, 2005). This last
point is especially problematic in the Indus River basin. For
climatological purposes, the WMO has published guidelines
for the density of rain gauges: from one station per 900 km?>
in flat coastal areas, to one every 250 km? in mountains
(WMO, 2008). However, the Meteorological Department of
Pakistan have recently published a 50-year climatology of
precipitation for the country based on 56 stations, which is
around one station per 15 000 km? (Faisal and Gaffar, 2012).
Gridded rain-gauge-based datasets rely on a similar density
of observations in the Indus River basin (see Fig. 2, Table 2).
The situation in India is better as the Indian Meteorologi-
cal Department produces a country-wide dataset of precipi-
tation that is used for monsoon monitoring and includes up
to 6300 stations. This distribution makes around one station
per 500 km?, which is well within the WMO guideline. How-
ever, areas of lower density remain, especially in the western
Himalayas and the Thar Desert, which are both in the In-
dus River basin (Kishore et al., 2016). Rain gauges are not
only scarce in mountainous areas, but their location is also
biased. In order to be accessible all year long, they are gener-
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ally situated at the bottom of valleys, and these locations ap-
pear to be significantly drier than locations at altitude (Archer
and Fowler, 2004; Ménégoz et al., 2013; Immerzeel et al.,
2015; Dabhri et al., 2018), which means that the interpola-
tion method underestimates precipitation in the surrounding
mountains.

There are a number of ways of overcoming the limitations
of gridded rain gauge data, including the use of data derived
from satellites and reanalyses. Satellite imagery can help to
reduce both the lack and the heterogeneity of surface mea-
surements. Satellite-based products generally make use of
global infrared observations of cloud cover and microwave
measurements along a swath (the narrow band where the ob-
servations are made as the satellite passes). However, their
abilities over a heterogeneous terrain are more limited than
over a flat and homogeneous one (Khan et al., 2014; Hussain
et al., 2017; Igbal and Athar, 2018). Moreover, these prod-
ucts still need rain gauges for calibration and are therefore
dependent on the quality of station data.

Reanalyses of the atmosphere offer another way to esti-
mate precipitation. Many valuable variables in a reanalysis
are the result of the assimilation of observations with model
outputs, but estimates of precipitation are, in most cases, a
pure model product. That is, the precipitation is a forecast
generated by the model used for the reanalysis and is not
constrained by direct observations in the way that other as-
similated quantities are. Models are known to predict pre-
cipitation with difficulty and most studies highlight that pre-
cipitation from reanalyses is less reliable than that based on
observations (Rana et al., 2015; Kishore et al., 2016). The
reasons often invoked include discrepancies in spatial pat-
terns and important model biases. However, recent progress
in assimilation techniques has made it possible to integrate
precipitation observations in the most recent reanalysis prod-
uct (ERAS, Hersbach et al., 2018), and significant improve-
ments are possible (e.g. Beck et al., 2019).

This study aims to better understand the quality and limita-
tions of 20 precipitation datasets that are available for a study
area encompassing the Indus River basin. Previous studies
have investigated the strengths and limitations of precipita-
tion datasets in this area (e.g. Ali et al., 2012; Palazzi et al.,
2013; Khan et al., 2014; Hussain et al., 2017), but none has
looked at such a large number of datasets nor at the most re-
cent ones. Moreover, our method differs slightly, as we offer
a cross-validation, thereby avoiding the problems that come
from the selection of a unique reference. We cross-compare
each of the datasets, identify their similarities and discrepan-
cies, and using the diversity of data source and methods we
assess their strengths and weaknesses. After presenting the
datasets selected for the study, we give a general description
of the methods. The subsequent result section is split into
four parts, which review the following, for the precipitation:
(i) the annual mean, (ii) the seasonality, (iii) the daily vari-
ability, and (iv) the monthly and longer-term variability. The
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Figure 1. Relief and topographical features in and around the area
investigated. The thick outer black contour represents the watershed
on the Indus and Luni rivers. This area is split to form the two study
areas: the upper Indus to the north, and the lower Indus to the south.

final section concludes with the main results, the potential of
the method, and future research priorities.

2 Data and methods
2.1 Study areas

The Indus River basin extends across the north-westernmost
part of the South Asian sub-continent and is an area of vari-
ous topographic features, as indicated in Fig. 1. It is bounded
from the north-east to the west by high mountain ranges, in-
cluding the Himalayan, Karakoram, Hindu Kush, and Su-
laiman ranges. To the south, the Indus River flows into the
Arabian Sea. The eastern border is the most ambiguous as it
extends into the flat dune fields of the Thar desert. Much of
the precipitation that falls in this extensive area evaporates
before reaching the Indus River or the sea. It may also forms
seasonal rivers, such as the Luni River, which has been in-
cluded in the study area. This particular river flows into the
Rann of Kutch, which is a flat salt marsh with complex con-
nections with the Arabian Sea and the mouth of the Indus
River (Syvitski et al., 2013) and is bounded to the west by
the Aravalli Range. Although not strictly a part of the Indus
watershed, it provides a clear and steady boundary for the
study area. The total watershed considered for the study is
represented by the thick outer black line shown in Fig. 1.
Precipitation amount as well as its seasonality varies
across the basin, as shown in Fig. 2a. In the flat southern part,
most of the precipitation occurs in July and August, under the
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influence of the South Asian summer monsoon propagating
from the Indian Ocean and India, while during the rest of
the year the basin remains dry (e.g. Ali et al., 2012; Khan
et al., 2014; Rana et al., 2015). By contrast, the northern re-
gion is much more mountainous and encompasses a steep
maximum of precipitation along the Himalayan front. This
precipitation falls throughout the year, exhibiting a seasonal
bi-modality explained by differences in circulation patterns
(e.g. Archer and Fowler, 2004; Singh et al., 2011; Palazzi
et al., 2013; Filippi et al., 2014). As in the southern part of
the basin, a sharp peak in precipitation occurs in July—August
that is related to the summer monsoon, but a second, broader
peak also occurs in winter, from January to April, triggered
by mid-latitude, extra-tropical western disturbances (Cannon
et al., 2015; Dimri and Chevuturi, 2016; Hunt et al., 2018).

Those differences in relief and precipitation seasonality
and pattern suggest that the basin can be split into two
distinct areas, along a line between 33.5°N, 68.75°E and
30°N, 77.5°E (thick inner black contour in Fig. 1), which
broadly corresponds to the 100 mm isohyet of winter precip-
itation (defined from December to March). Thus, the north-
ern part of the basin (hereafter the upper Indus, 595 000 km?)
includes the maxima of precipitation along the Himalayas
and most of the winter precipitation, while the southern part
(hereafter the lower Indus, 785 000 kmz) is characterised by
a single wet season during summer, as wintertime precipita-
tion is negligible (see Fig. 3).

2.2 Datasets
2.2.1 Rain gauge data

We have selected five commonly used and one newly avail-
able gridded datasets based only on rain gauge data. These
are the first six datasets presented in Table 1. The mean
number of stations used in the two study areas are avail-
able for five of the datasets and presented in Table 2. The
Asian Precipitation - Highly-Resolved Observed Data Inte-
gration Towards Evaluation (APHRODITE; Yatagai et al.,
2012) of water resources was developed by the Research In-
stitute for Humanity and Nature (RIHN) and the Meteoro-
logical Research Institute of Japan Meteorological Agency
(MRI/JMA). Specific to Asia, it is one of the best datasets
available for the area (Rana et al., 2015), both in terms of
resolution (0.25° and daily, it includes a large number of
rain gauges; Table 2) and because it covers an extended pe-
riod (over 50 years). However, it does not provide data af-
ter 2007. A new dataset has been issued in 2019 from the
same institute extending the period covered up to 2015 and
using a new algorithm (APHRODITE-2), though its quality
has not yet been investigated. Covering the whole twentieth
century at a monthly resolution, the Global Precipitation Cli-
matology Center monthly dataset (GPCC-monthly; Schnei-
der et al., 2018) is widely used in climatology and for calibra-
tion purposes (e.g. satellite-based datasets, Table 1). GPCC-
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Table 1. Observational datasets of precipitation selected for this study, derived from rain gauges or satellites.

Name Version Time coverage Time Spatial Based on Reference
resolution  resolution
APHRODITE V1101 1951-2007 Daily 0.25° Rain gauge only  Yatagai et al. (2012)
APHRODITE-2 V1901 1998-2015 Daily 0.25° Rain gauge only
CPC V1.0 1979 (monthly)/ Daily 0.5° Rain gauge only  Xie et al. (2010)
1998 (daily) to 2018
GPCC-daily V2 1982-2016 Daily 1° Rain gauge and  Ziese et al. (2018)
GPCC-monthly
GPCC-monthly V8 1891-2016 Monthly 0.25° Rain gauge only  Schneider et al. (2018)
CRU TS4.02 1901-2017 Monthly 0.5° Rain gauge only  Harris and Jones (2017)
TMPA 3B42 V7  1998-2016 3-hourly 0.25° GPCC, satellites  Huffman et al. (2007)
GPCP-1DD V1.2 19962015 Daily 1° GPCC, satellites  Huffman and Bolvin (2013)
GPCP-SG V2.3 1979-2018 Monthly 2.5° GPCC, satellites ~ Adler et al. (2016)
CMAP V1810 1979-2018 Monthly 2.5° CPC, satellites Xie and Arkin (1997)

Table 2. Number of stations used on average for the rain-gauge-
based datasets (except CRU for which this information was not di-
rectly available), per time step, for the two study areas, and over the
period 1998-2007.

Datasets Upper Lower

Indus  Indus
APHRODITE 55 48
APHRODITE-2 88 65
CPC 15 21
GPCC-daily 11 16
GPCC-monthly 35 33

daily (Ziese et al., 2018) offers a better temporal resolution
(daily), but at a lower spatial resolution, and has a much-
reduced time coverage compared to GPCC-monthly. It uses a
smaller number of rain gauges (Table 2) but is constrained by
GPCC-monthly. The precipitation dataset from the Climate
Research Unit (CRU; Harris and Jones, 2017) has a simi-
lar resolution and time coverage to GPCC-monthly. We also
selected another daily dataset from NOAA’s Climate Predic-
tion Center (CPC; Xie et al., 2010). Although CPC uses a
lower number of rain gauges compared to APHRODITE (Ta-
ble 2), its availability extends to the present with near-real-
time updates, which means that it can be used for calibrat-
ing other near-real-time products (e.g. CMAP in Table 1 and
MERRAZ2 in Table 3).

2.2.2 Satellite data

Various satellite-based gridded precipitation products are
available, but we have only selected datasets providing data
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from 1998, to ensure a long enough common period with
the rain-gauge-based datasets (the common period reaches
10 years due to APHRODITE ending in 2007). Four were
eventually selected (last four datasets in Table 1). The Tropi-
cal Rainfall Measuring Mission (TRMM) Multi-satellite Pre-
cipitation Analysis (TMPA; Huffman et al., 2007) is the most
widely used satellite-based datasets. It has the highest tem-
poral and spatial resolution of the selection (sub-daily, and
0.25° like APHRODITE and GPCC-monthly) and includes
a large diversity of satellite observations. We also selected
the daily product from the Global Precipitation Climatology
Project (GPCP-1DD; Huffman and Bolvin, 2013) as well as
the monthly product issued by the same group (GPGP-SG
Adler et al., 2016). All three of these datasets (TMPA, GPCP-
1DD, and GPGP-SG) use GPCC for calibration, which could
introduce some similarities. By contrast, the last dataset in-
cluded, CPC Merged Analysis of Precipitation (CMAP; Xie
and Arkin, 1997), uses CPC for calibration. It has the same
time coverage and resolution as GPCP-SG. This version does
not include reanalysis data, to simplify the analysis.

2.2.3 Reanalysis data

Unlike the observation datasets, reanalysis data can be quite
different from one another. They generally use their own
atmospheric model and assimilation scheme, and the type
and number of observations assimilated can vary. Table 3
shows the ensemble of the 10 reanalysis datasets that have
been used in this study. The four reanalyses of the lat-
est generation are as follows, from most recent to oldest:
ERAS (Hersbach et al., 2018) from the European Centre for
Medium-Range Weather Forecasts (ECMWF), the Modern
Era Retrospective-analysis for Research and Applications
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Name Time coverage  Spatial resolution ~ Remarks Reference
ERAS 1979-2018 0.25° 4DVAR, precipitation assimilated Hersbach et al. (2018)
ERA-Interim  1979-2018 0.75° 4DVAR assimilation scheme Dee et al. (2011)
JRA 1958-2018 0.5° Kobayashi et al. (2015)
MERRA2 1980-2018 0.5°/0.625° Correction of the precipitation with CPC for Gelaro et al. (2017)
land interaction. Assimilate aerosol observations
MERRAL1 1979-2010 0.5°/0.66° Rienecker et al. (2011)
CFSR 19792018 0.5° Coupled reanalysis (atmosphere, ocean, land, Saha et al. (2010, 2014)
cryosphere). Same analyses as MERRAL.
Version 2 starting in April 2011
NCEP2 1979-2018 1.875° Fixed errors and updated model since NCEP1 Kanamitsu et al. (2002)
No satellite radiance assimilated
NCEP1 1948-2018 1.875° No satellite radiance assimilated Kalnay et al. (1996)
20CR 1871-2012 1.875° Assimilate surface pressure only Compo et al. (2011)
ERA-20C 1900-2010 1° Assimilate surface pressure and marine wind only ~ Poli et al. (2016)

version 2 (MERRAZ2; Gelaro et al., 2017) from NASA, the
Japanese 55-year Reanalysis (JRA; Kobayashi et al., 2015)
from the JMA, and the Climate Forecast System Reanalysis
(CFSR; Saha et al., 2010, 2014) from the National Center
for Environmental Prediction (NCEP). These are still reg-
ularly updated, and they all include the latest observations
from satellites and cover the full satellite era from at least
1980. JRA goes back to 1958, when the global radiosonde
observing system was established. ERAS currently starts in
1979 but future releases are expected to extend this back to
1950.

In terms of technical differences, ERAS uses a more com-
plex assimilation scheme than the other reanalysis (4DVAR),
which allows for better integration of the observations. It
is also the only one that assimilates precipitation measure-
ments. MERRA?2 also uses observations, but takes them from
a gridded dataset (CPC) and only uses them to correct the
precipitation field before analysing the atmospheric impact
on the land surface; this changes land surface feedbacks
on the atmosphere. CFSR is an ocean—atmosphere coupled
reanalysis — that is, the sea surface is modelled and pro-
vides feedback to the atmospheric model, instead of be-
ing prescribed by an analysis from observations. ERA5 and
MERRA?2 are the most recent of the reanalysis datasets to
be published, and not many studies have looked at the im-
provement from their predecessors, ERA-Interim (Dee et al.,
2011) and MERRAI1 (Rienecker et al., 2011), respectively.
Both have stopped being updated or will be very shortly, but
they are included in this study for comparison purposes.

Reanalyses for the whole twentieth century have also been
produced, but to retain the homogeneity of the type of obser-
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vations assimilated they only include surface observations.
The twentieth century reanalysis from NCEP (20CR; Compo
et al., 2011) only assimilates surface pressure, but more re-
cently, the ECMWF produced ERA-20C (Poli et al., 2016),
which has surface wind assimilated along with surface pres-
sure.

We have also made use of older-generation reanaly-
sis datasets that are still being updated, including the
NCEP/NCAR reanalysis (NCEP1; Kalnay et al., 1996) and
the NCEP/NDOE reanalysis (NCEP2; Kanamitsu et al.,
2002). Both are useful to quantify the progress in reanalysis
systems as well as to compare them with more observation-
limited century-long reanalyses.

2.3 Methods

For each dataset, the time series of precipitation are aver-
aged over the two study areas (upper and lower Indus) and
calculated at a monthly resolution, and daily if possible.
The datasets have different spatial resolution, which causes
a problem when calculating the precipitation averages over
the study areas. Simply selecting the cells whose centre is
within these areas leads to small biases in the extent of the
region considered. These biases are reduced by bi-linearly in-
terpolating all data to a 0.25° grid, common to APHRODITE,
APHRODITE-2, and GPCC-monthly. This choice is further
discussed in Sect. 3.1.1.

The analysis is performed over the 10-year period from
1998-2007, which is common to all datasets, except when
analysing the trends and inter-annual to decadal variability,
for which we use all data available. We focus on the two wet
seasons of the upper Indus. Summer is defined from June to

Hydrol. Earth Syst. Sci., 24, 427-450, 2020



432 J.-P. Baudouin et al.: Precipitation in the Indus River basin

(b) CRU

w =
)¢ S
o ° 1 Precipitation Anomaly Observations
(mm yr-1) (mmyr-1)  (fraction
of time)
3000 . 500
I 250 * 025
) 1000 0 * 0.50
Q) 300 _250 * 0.75
{ .4 i . l % 1.00
ﬂ% 0 -500

(f) TMPA (g) MERRA2 (h) ERA5
45 e e SO S —
S o S
35 % oy
< < - N et o
> . o o
o‘. L
= :
25 25 " -
- O{Jq‘ ‘*
». .Q:‘ /
1350 70 80 9 %0 70 =5 90

Figure 2. Map of annual mean precipitation for different datasets. The annual mean is computed over the period 1998-2007. GPCC
monthly (a) is used as a reference to compute the anomaly for the other datasets (b=h). The grey lines are the isohyets whose level cor-
responds to the labels in the legend. The boundaries of the two study areas are displayed in dark blue on each map. The stars mark the grid
cells that include at least one gauge observation. The size of the stars represents the number of time steps with at least one observation over
that cell, relative to the total number of time steps needed to compute the annual mean (120 for a, 3652 for ¢, d, and e). This information was
not available for CRU (b) nor ERAS5 (h) and does not apply to the satellite-based TMPA (f) and MERRA2 (g).
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Figure 3. Monthly mean of precipitation, over the period 1998-2007, representing the seasonal cycle. Results are split between upper
Indus (a, b) and lower Indus (¢, d) as well as observation datasets (a, ¢) and reanalyses (b, d).

September, which matches the monsoon precipitation peak.
Winter is defined from December to March. This fits the
snowfall peak rather than the precipitation peak but makes
it possible to focus on issues of snowfall estimation (Palazzi
et al., 2013). In the lower Indus, we use the same definition
for summer, but winter is not analysed, as it is a dry season.

We first compare the mean and seasonal cycle of each
dataset in Sects. 3.1 and 3.2. For quantitative statements, we
use GPCC-monthly as a reference. However, in Sect. 3.1.3,
we use the precipitation dataset from Dahri et al. (2018) as
reference instead. This dataset cannot be used in other parts
of the study, as it is limited to one part of the upper Indus and
only provides annual means.

Then, in Sect. 3.3 we compare the daily variability of the
precipitation using the Pearson correlation. The correlation
significance is discussed at the 95 % probability level. To re-
duce the impact of abnormally large rainfall events when in-
vestigating trends in daily variability (see Sect. 3.3.4), we
use the Spearman correlation. Lastly, in Sect. 3.4, other
timescales of variability of the precipitation are investigated:
monthly, seasonal, inter-annual, and decadal, still using the
Pearson correlation at the 95 % confidence interval.

www.hydrol-earth-syst-sci.net/24/427/2020/

3 Results
3.1 Annual mean
3.1.1 Differences between rain-gauge-based datasets

Annual mean precipitation in both study areas and for each
dataset are given in Table 4 (last two columns). We first focus
on the rain-gauge-based datasets (upper part of the table).
Spatial pattern differences are shown in Fig. 2a to e.

First, we should mention that the bi-linear method we use
to interpolate each dataset to the same grid (cf. Sect. 2.3)
leads to some differences between datasets. The two GPCC
products can be used to evaluate the impact of our interpo-
lation method, as they have a different spatial resolution but
use the same monthly climatology. Hence, the small underes-
timation of GPCC-daily compared to GPCC-monthly (about
1 % in the upper Indus and 5 % in the lower Indus) is related
to the interpolation method. However, these differences are
small enough to justify the use of our method.

More generally, annual mean differences can be explained
by methods and data that each dataset uses. Particularly,
the interpolation of station measurements to a grid differs
from one dataset to the other. APHRODITE’s interpolation
method, for instance, considers the orientation of the slope
to quantify the influence of nearby stations. This greatly re-
duces the amount of precipitation falling in the inner moun-
tains compared to GPCC-monthly. An example of this pat-
tern is evident to the north of the Himalayas where only
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Table 4. Mean annual and seasonal precipitation (in mm) falling
over the two study areas, for the period 1998-2007. Winter is de-
fined from December to March and summer from June to Septem-
ber. The first 10 datasets are observations, the second 10 are reanal-
yses.

Datasets Upper Indus ‘ Lower Indus

Winter Summer  Annual ‘ Annual
APHRODITE 154 237 484 198
APHRODITE-2 179 272 555 223
CPC 98 200 355 216
GPCC-daily 201 297 607 243
GPCC-monthly 201 301 613 255
CRU 166 281 565 267
TMPA 156 298 555 286
GPCP-1DD 161 305 569 317
GPCP-SG 167 309 583 325
CMAP 273 307 696 279
ERAS 280 380 828 300
ERA-Interim 289 445 931 305
JRA 299 325 810 586
MERRA2 265 310 724 177
MERRA1 205 267 598 355
CFSR 282 214 656 162
NCEP2 274 259 703 276
NCEP1 372 343 915 239
20CR 244 319 746 116
ERA-20C 175 276 551 175

very few observations exist (Fig. 2d; Yatagai et al., 2012). In
CRU, the interpolation method (triangulated linear interpola-
tion of anomalies; Harris et al., 2014) seems to smooth areas
of strong gradients such as those near the foothills of the Hi-
malayas (Fig. 2b). This smoothing might explain a slightly
drier upper Indus, and slightly wetter lower Indus, compared
to GPCC-monthly (Table 4).

Differences can also be explained by the dramatic change
in the location and number of stations used to compute the
statistics (Fig. 2a, ¢, d, and e, Table 2). For example, CPC
is by far the driest dataset in the upper Indus and the sec-
ond driest in the lower Indus. This is likely related to the low
number of observations it includes, leaving vast areas with
no or very few observations, including the wettest regions
(Fig. 2e). However, there is no linear relationship between
precipitation amount and number of observations. GPCC-
daily includes the lowest number of observations, but this
does not impact its climatology, because the climatology is
derived from GPCC-monthly. On the contrary, APHRODITE
comprises a much higher number of observations than other
datasets but remains much drier than GPCC-monthly (about
20 % drier in both study areas).

Yatagai et al. (2012) pointed out that differences in qual-
ity checks compared to the other datasets might explain
APHRODITE’s dry bias. They noted that APHRODITE
partly relies on GTS data that are sent in near real time to the
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global network, with the risk of misreporting. This risk par-
ticularly concerns misreported zero values, which are hard to
detect and lead to a dry bias. The large dry bias seen in CPC
data might be associated with the same issue, since CPC is
entirely based on GTS data. In GPCC-monthly and GPCC-
daily, only stations with at least 70 % of data per month are
retained (Schneider et al., 2014), while in CRU this number
is 75 % (Harris et al., 2014). Thus, limiting the analysis to
the most reliable weather stations can help build confidence
in recorded total precipitation amount.

Interestingly, APHRODITE-2 is more than 10 % wetter
than APHRODITE in both study areas. Several changes have
been performed in the methodology: quality control of ex-
treme high values, station-value conservation after interpo-
lation, merging daily observation with different definitions
of “end-of-day” time (see Sect. 3.3.1), and an updated cli-
matology. However, the difference in mean precipitation is
most likely related to the change in observations from rain
gauges. Although APHRODITE-2 comprises more observa-
tions across the basin, this increase mainly occurs over the
Indian territory, whereas Pakistan is presented with fewer
precipitation measurements, especially in the dry southern
central part (Fig. 2d). This decrease in observations in a drier
area can reasonably explain the increase in mean precipita-
tion in the lower Indus. In the upper Indus, the increase is
mainly due to the inclusion of measurements from one iso-
lated weather station in the northernmost part of the area.

3.1.2 Considering satellite and reanalysis datasets

We now consider satellite-based datasets (middle part of the
table 4). In the upper Indus, CMAP stands out as being
the wettest observational datasets, 13 % wetter than GPCC-
monthly. By contrast, the other three (TMPA, GPCC-1DD,
GPCP-SG) are drier than GPCC-monthly (between 10 % and
5 %), despite being calibrated by this GPCC-monthly. In
the lower Indus, all satellite-derived datasets are wetter than
the rain gauge products (between 10 % and 30 % more than
GPCC-monthly). The complexity of the algorithm used to
produce the satellite-based datasets makes determining the
reasons for their differences with each other or with rain
gauge products difficult. According to previous studies, their
ability to represent precipitation over rough terrain is lim-
ited (e.g. Hussain et al., 2017). In fact, Fig. 2f shows that
the strongest differences between TMPA and GPCC-monthly
occurs near mountain ranges, such as the upper Indus. In con-
trast, precipitation estimates over flat terrain with sparse ob-
servations and mostly convective precipitation benefit from
satellite observations (Ebert et al., 2007). This suggests that
the higher precipitation mean of the satellite-derived datasets
for the lower Indus is possibly due to better consideration of
locally higher precipitation rates during convective events.
The annual mean precipitation in reanalysis datasets is
listed in the lower part of Table 4. In the lower Indus, the
range of values is very high: the wettest dataset, JRA, is
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5 times wetter than the driest dataset, 20CR. This range
shows the significant difficulties for reanalyses to represent
precipitation in an area where convection dominates. Among
the most recent reanalyses, ERAS has the closest estimates
of precipitation to the observational datasets, yet they remain
above the estimates from rain gauges. Figure 2h suggests that
these wetter conditions mainly come from the north-western
edge of the Suleiman range, an area with sparse precipita-
tion observations (cf. Fig. 2a), therefore increasing confi-
dence in ERAS estimation. The two twentieth century reanal-
ysis (20CR and ERA-20C) are amongst the driest reanalysis
datasets, suggesting that their models have difficulties prop-
agating the monsoon precipitation into the lower Indus re-
gion, when only surface observations are assimilated. Lastly,
MERRAZ2 exhibits a severe drop in precipitation compared to
the previous version, MERRA1. Summer monsoon precipi-
tation is known to be strongly affected by surface moisture
content, especially in flat areas like the lower Indus (Dou-
ville et al., 2001). MERRA2 uses CPC data to constrain the
precipitation flux at the surface. Due to the dry bias of CPC,
soil moisture is reduced for most of India (Fig. 3 in Reichle
et al., 2017), explaining the drop in precipitation.

For the upper Indus, the most striking feature is that
all reanalysis datasets except MERRA1 and ERA-20C pre-
dict higher precipitation amounts than GPCC-monthly, about
20% higher on average. In the following we investigate
whether this difference can be explained by an underestima-
tion of rain gauge measurements.

3.1.3 Impact of rain gauge biases in mountainous
terrains

Rain gauge measurements are known to potentially underes-
timate precipitation and particularly snowfall (Sevruk, 1984;
Goodison et al., 1989). This is an important issue for moun-
tainous regions such as the upper Indus. However, among the
six rain-gauge-based datasets, only GPCC’s products con-
sider a correction of the data. Based on a study by Legates
and Willmott (1990), a correction factor, which depends on
the month, is applied at each grid cell. Most of these factors
vary between 5 % and 10 % (Fig. 4 in Schneider et al., 2014)
and explain why GPCC’s products are wetter than most of the
other rain-gauge-based datasets. Recently, Dahri et al. (2018,
hereafter Dahri2018) compiled the measurements from over
270 rain gauges in the upper Indus and adjusted their values
to the under-catchment, following WMO guidelines. They
found a basin-wide adjustment of 21 %, but this varies from
65 % for high altitude stations to around 1 % for the stations
in the plains.

The Dahri2018 dataset has the advantage of both consid-
ering a very large number of observations and correcting rain
gauge measurements. However, its result is based on a study
area somewhat smaller than the upper Indus region presented
here and only covers the period from 1999 to 2011. For com-
parison purposes, we recomputed the annual mean of several
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Table 5. Mean annual precipitation (in mm) for various datasets
over the study area defined in Dahri et al. (2018) for the pe-
riod 1999-2011. Both adjusted and unadjusted values (the latter in
parenthesis) from Dahri et al. (2018) are reported in the second line.

Datasets Revised upper Indus
Dahri2018 697 (574)
APHRODITE-2 548
GPCC-monthly 612
TMPA 480
ERAS 835
JRA 827
MERRA2 929
CFSR 783

of the most recent and highest resolution datasets to fit these
definitions (Table 5).

Table 5 shows that none of the observational datasets
is able to reproduce the Dahri2018 precipitation estimates.
They all have a dry bias, from 30 % for TMPA to 10 % for
GPCC-monthly. Furthermore, APHRODITE-2 and TMPA
even underestimate the unadjusted value of Dahri2018,
which suggests that the underestimation is not only related
to rain gauge measurements, but also to the representation
of the spatial pattern. By contrast, GPCC-monthly is 7 %
higher than the Dahri2018 unadjusted value, which corre-
sponds to the correction factor used in GPCC. This suggests
that the unadjusted values in both datasets are very close and
highlights the quality of GPCC. Nevertheless, we also found
discrepancies in the spatial patterns between GPCC-monthly
and Dahri2018. Particularly, in the northernmost part of the
upper Indus region, in the Karakoram range, GPCC-monthly
exhibits lower precipitation means than Dahri2018, which
cannot be explained by the difference in correction factors
between the two datasets alone. The nearest stations used in
GPCC-monthly are all located in the dry and more acces-
sible Indus River valley to the south of the mountain range
(Fig. 2a). Those drier conditions extend to the north due to
the interpolation method used by GPCC, while Dahri2018
includes station measurements with wetter conditions than
in the valley. This difference illustrates the impact of biased
weather station locations mentioned in the introduction and
in several other studies (e.g. Archer and Fowler, 2004; Méné-
goz et al., 2013; Immerzeel et al., 2015).

Still in the Karakoram range, Fig. 2g and h show that
MERRA?2 and ERAS are wetter than GPCC-monthly, and
therefore closer to Dahri2018. However, spatial discrepan-
cies remain. Particularly, the maximum of precipitation in
MERRAZ? is shifted to the north, which leads to important
biases when averaging over the Dahri2018’s study area. Our
study area, which does not overlap with the highest precip-
itation rates, is less affected by shifts and is better fitted to
compare the large-scale precipitation patterns. Nevertheless,
the four selected reanalysis datasets in Table 5 overestimate
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the Dahri2018 adjusted values, by 20 % on average. This sug-
gests that part but not all of the differences between reanal-
yses and observational data can be explained by biases from
the latter. This overestimation of modelled precipitation in
reanalyses for the upper Indus is corroborated by previous
studies (e.g. Palazzi et al., 2015).

To conclude, all rain-gauge-based datasets suffer from an
underestimation of annual mean precipitation for the upper
Indus when compared to Darhi2018. This results from biases
in rain gauge locations and measurements. Quality control
and interpolation methods also impact precipitation amount
in both parts of the basin. Satellite observations probably im-
prove precipitation estimates in flat areas with sparse obser-
vations. However, they cannot correct observational biases
since they use them for calibration, and biases remain un-
changed or even become amplified for the upper Indus. Re-
analyses do not include rain gauge measurement, except for
ERAS5 and MERRAZ2, and are therefore not affected by ob-
servational biases. However, model biases can also be signif-
icant, as suggested by the spread of the annual mean precipi-
tation values. Reanalyses tend to be wetter than observational
datasets in the upper Indus, which is partly explained by
the underestimation of the observations. Lastly, all datasets
suffer from spatial discrepancies, which are detrimental to
small-scale comparisons, especially near mountains, but jus-
tify our choice to use a larger study area.

3.2 Seasonal cycle

The seasonal cycle of precipitation for each dataset is pre-
sented in Fig. 3. Analysing the seasonality is particularly in-
teresting in the upper Indus, as it is characterised by two wet
seasons. The mean precipitation of each season is presented
in Table 4 (second and third column). The rain-gauge-based
datasets exhibit a very similar seasonality for both study ar-
eas. In the upper Indus, the maxima of precipitation occur in
February and July, the minima in May and November. The
differences between the datasets vary little from one month
to another, which suggests that the causes of the differences
identified in the previous section (e.g. misreporting, station
location and number, interpolation method) are independent
of the seasonality. The satellite-based datasets represent the
summer precipitation almost exactly the same as GPCC-
monthly. The annual mean differences are explained by bi-
ases during the winter season, which suggests that winter
precipitation is more difficult to estimate for those datasets.
The reanalyses represent the dry and wet seasons of the
upper Indus, but with a larger spread than in the observa-
tions and some differences in seasonal cycle (Fig. 3b). On
average, winter precipitation is 30 % higher than in GPCC-
monthly, with the notable exception of ERA-20C (Table 4).
Those wetter conditions also extend to the surrounding drier
months: April-May and October—-November. However, the
mean summer precipitation in reanalyses is not significantly
different from GPCC-monthly (Table 4). Only ERA-Interim
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stands out with a wet summer precipitation bias, mainly in
the north-west corner of the upper Indus, a bias partly cor-
rected in ERAS (Fig. 2h). The winter wet bias is not surpris-
ing after the comparison with the Dahri2018 dataset in the
Sect. 3.1.3. Indeed, Dahri2018 found that the most impor-
tant rain gauge underestimations happen in winter when pre-
cipitation mostly falls as snow. More interestingly, we found
that the latest reanalyses (ERAS, JRA, MERRA2, and CFSR)
represent winter precipitation in similar ways. We have not
been able to investigate the seasonality of the Dahri2018
dataset, but we suggest that the latest reanalyses better repre-
sent winter precipitation than the observational datasets.

We noted another discrepancy in seasonality between a
majority of the reanalyses and the observations for the upper
Indus: a delay of the summer precipitation starting from the
pre-monsoon season (Fig. 3b). The observations show that
May is the driest month of that season, followed by a sharp
increase in precipitation in June. Only ERAS, ERA-Interim,
and MERRA1 reproduce this behaviour. In contrast, NCEP2
and CFSR are much drier in June than in May. For other re-
analyses, precipitation during May and June are comparable.
This delay continues into the summer monsoon period: while
the observations clearly show a wetter July than August, this
is only the case for ERAS, ERA-Interim, and both MERRA
reanalyses. A similar delay can be found over the Ganges
plain and along the Himalayas, which suggests wider un-
certainties in the monsoon propagation in the reanalyses. By
contrast, no such delay is found in the lower Indus, despite
the large uncertainty in the amount of precipitation (Fig. 3d).

3.3 Daily variability
3.3.1 Lag analysis

Investigating the daily precipitation variability helps to bet-
ter quantify the quality of each dataset. Before computing
the daily correlation, we checked for possible lags between
the datasets. Lags can have different origins. The first is the
accumulation period considered for the rain gauge measure-
ments. CPC documentation (Xie et al., 2010) points out that
the official period is different from one country to another (in
our case, Afghanistan, Pakistan, and India all use different
periods, or end-of-day time: 00:00, 06:00, and 03:00 UTC,
respectively), which could impact precipitation estimates.
Neither GPCC-daily nor APHRODITE documentation men-
tion this issue, while a specific effort has been made to ho-
mogenise all observations in APHRODITE-2. Secondly, the
TMPA algorithm uses the 00:00 h imagery for the following
day of accumulation and therefore could be more represen-
tative of an accumulation starting at 22:30 UTC (Huffman
et al., 2007). Thirdly, biases in the daily cycle are possible in
the reanalyses.

Our main finding relates to CPC. Figure 4 shows the daily
correlation year per year of CPC against APHRODITE and
MERRAZ2, for two lags: 0 and —24 h (previous day for CPC).
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We found that the two lags switch their behaviour somewhere
around 1997-1998, which we interpret as an error in the data
processing for CPC. That is, in CPC before 1998, precipita-
tion values correspond to those for the following day. This
should not have an important impact on monthly and longer
accumulations, but we limited the daily analysis of CPC to
the period from 1998 to 2018. Moreover, similar errors might
have happened earlier during the 1980s as the curves in Fig. 4
come closer or invert again. This error also propagates to the
corrected precipitation of MERRAZ2. That is, before 1998,
the land surface in the model receives the precipitation of the
following day. Theoretically, this could enhance precipitation
by increasing surface moisture supply before the precipita-
tion actually falls. However, we have not been able to find a
significant change before and after 1998. The error has been
reported to NOAA’s CPC.

Possible differences in the end-of-day times of the obser-
vational datasets are investigated using the sub-daily resolu-
tion of TMPA. We compute TMPA daily accumulation with
different end-of-day times and determine which one max-
imises the correlation with the other observational datasets.
APHRODITE and CPC (after 1998) maximise the correla-
tion with TMPA when for the latter an end-of-day time at
03:00 UTC is used. This behaviour suggests that both CPC
and APHRODITE are more representative of an accumula-
tion period ending at 03:00 UTC, influenced by the Indian
rain gauge network. APHRODITE-2 successfully corrected
this delay, maximising correlation with TMPA for a end-of-
day time at 00:00 UTC, like GPCC-daily.

A similar analysis can be performed for the reanalyses, to
investigate the possibility of a delay in the daily cycle of the
precipitation. We found that most reanalyses have a negli-
gible (<3 h) delay with TMPA. However, the reanalyses of
the twentieth century have a different behaviour: both have
a +12h delay. For those two, only surface observations are
assimilated. It is possible that 12 h is the time needed by the
troposphere to adjust to those surface constraints.

Finally, we decided to take the accumulation period start-
ing at 00:00h for all sub-daily datasets. Indeed, it is not
straightforward to correct the delay in APHRODITE or CPC
for instance, since only a daily resolution is available. More-
over, the differences of correlation when using different sub-
daily lags remain small.

3.3.2 Cross-validation

We now start the comparison of the daily variability between
each dataset. Particularly, we aim to understand whether the
co-variability exhibited between datasets is coming from the
use of a common method or data source, or from a good rep-
resentation of the precipitation variability. All datasets are
estimates of precipitation, but they use different methods and
input data to achieve this (see Sect. 2.2). If two datasets share
a similar method or data source, this can at least partly ex-
plain the co-variability between the datasets. If, on the con-

www.hydrol-earth-syst-sci.net/24/427/2020/

437

trary, the two datasets are independent, then the co-variability
they share is most likely due to the precipitation signal they
estimate. As a consequence, the higher the correlation be-
tween two independent datasets, the better the estimate of
precipitation in both datasets.

Table 6 presents the daily correlation of precipitation be-
tween the different datasets, for the upper Indus. The up-
per part of the table focuses on the cross-correlation be-
tween the observational datasets. The highest correlation co-
efficient, almost 0.9, is between TMPA and GPCP-1DD,
showing how close those two datasets are, likely due to the
satellite observations they have in common and the simi-
larity of retrieval procedures (Rahman et al., 2009; Palazzi
etal., 2013; Rana et al., 2017). The rain-gauge-based datasets
APHRODITE, CPC, and GPCC-daily have also a high cor-
relation between one another about 0.8. The two versions of
APHRODITE are even closer, due to their similarities of con-
ception. When comparing GPCP-1DD and TMPA'’s correla-
tion coefficients using the rain-gauge-based datasets as ref-
erence, it turns out that the TMPA coefficients are system-
atically significantly higher than those for GPCP-1DD (at
the level 95 %). That is, TMPA variability is closer to the
rain-gauge-based datasets than GPCP-1DD is. It could be ei-
ther because TMPA includes more information from the rain
gauge measurements than GPCP-1DD or because it has bet-
ter quality (better algorithm, better data source). Similarly,
we note that APHRODITE and APHRODITE-2 have sig-
nificantly higher correlation with the satellite-based datasets
than CPC and GPCC-daily do.

In the lower part of Table 6, the correlation between the re-
analyses and the observational datasets are about as high as
between the observational datasets, suggesting that reanaly-
ses are as good as observational datasets in representing the
daily variability. Moreover, precipitation values from reanal-
ysis and observational data are independent from each other,
in the sense that they do not share the same data source (ex-
cept ERAS, which assimilates precipitation observations, and
MERRAZ2, which integrates CPC data; the two need to be
treated separately). Hence, the correlations between the two
types of datasets are not affected by common data or a com-
mon method. These correlations are rather a measure of the
datasets’ quality and help identify the best datasets in each
group.

We continue the comparison of the observational datasets
using reanalyses as a reference (comparison along the rows
of Table 6). APHRODITE-2 has systematically higher cor-
relation with the reference, regardless of the reanalysis
used, than the other observational datasets. It is followed
by APHRODITE. Both have significantly higher correlation
than GPCC-daily, in third position. By contrast, CPC has a
systematically lower correlation than GPCC-daily. Interpret-
ing these results in terms of quality, we attribute the lower
performance of CPC and GPCC-daily to the much lower
number of observational inputs than in APHRODITE and
APHRODITE-2 (Table 2). Despite a slightly higher num-
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Figure 4. Daily correlation, per year, between CPC and Aphrodite (a, ¢), and MERRA?2 (b, d) for both the upper Indus (a, b) and lower
Indus (¢, d). The green line is the correlation between the same days in each dataset. For the red line, the previous day of CPC is used instead.
The black vertical line is the start of the year 1998, around where the main error should be.

Table 6. Daily correlation between different datasets, in the upper Indus for the period 1998-2007.

Datasets APHRODITE APHRODITE-2 CPC GPCC-daily TMPA GPCP-1DD
APHRODITE-2 0.92

CPC 0.797 0.775

GPCC-daily 0.819 0.836  0.816

TMPA 0.76 0.762  0.687 0.712

GPCP-1DD 0.735 0.725  0.665 0.676  0.898

ERAS 0.888 0.903 0.743 0.81 0.741 0.727
ERA-Interim 0.854 0.87 0.722 0.777  0.733 0.727
JRA 0.843 0.86 0.677 0.759  0.702 0.697
MERRA2 0.846 0.862 0.714 0.778  0.708 0.699
MERRA1 0.834 0.849  0.683 0.76  0.698 0.688
CFSR 0.795 0.82 0.64 0.74  0.641 0.625
NCEP2 0.706 0.731  0.552 0.661 0.577 0.545
NCEP1 0.76 0.769  0.606 0.687  0.619 0.598
20CR 0.596 0.635 0.512 0.567  0.481 0.478
ERA-20C 0.754 0.746  0.646 0.691 0.644 0.643

ber of measurements, CPC performs worse than GPCC-daily,
likely due to issues with the quality of those measurements,
discussed in Sect. 3.1.1. Regarding satellite-based datasets,
TMPA systematically outperforms GPCP-1DD, but the two,
along with CPC, have the lowest correlations with the re-
analyses. That is, satellite measurements seem to degrade the
signal from rain gauge measurements.
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We can also compare the reanalyses’ quality using obser-
vational datasets as a reference (along the columns of Ta-
ble 6). ERAS has systematically higher correlations with the
observations. However, this reanalysis assimilates rain gauge
measurements, such that it is not completely independent
from the observational datasets. It is certainly a sign of good
quality that the reanalysis output resembles the observations,
but the reanalysis data could also include some of the obser-
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vation errors. ERA-Interim has the second highest correla-
tions and is the best-performing reanalysis among those that
do not assimilate precipitation observations. It is closely fol-
lowed by MERRA2, while CFSR has poorer results among
the latest generation of reanalyses. Interestingly for NCEP’s
reanalyses, the first version outperforms the second version.
The two twentieth century reanalyses also show interesting
behaviour: while 20CR has the lowest correlations with the
observations, ERA-20C performance is between CFSR and
NCEPI, despite only assimilating surface observations. This
behaviour clearly shows the progress made in reanalysis pro-
cessing (e.g. in atmospheric modelling and data assimilation)
over the last decades.

The same correlation analysis is performed for the lower
Indus (Table 7). The results are quite similar, but we also
note some interesting differences. The correlations between
the observations are all higher for this study area. In this
flat area, precipitation is less heterogeneous, and observa-
tions are more representative of their surrounding (i.e. larger
spatial representativeness). In contrast, the reanalyses have
lower correlations with observations than for the upper In-
dus. The lower Indus only receives precipitation during the
summer monsoon, which is less well represented in mod-
els than the winter precipitation in the upper Indus (see fol-
lowing section on seasonality). In particular, APHRODITE-2
and APHRODITE still perform best among the observational
datasets, but the four other datasets rank in a different order:
satellite products are possibly better in that flatter area. For
the reanalyses, we noticed that MERRA2 does not outper-
form MERRAL. It echoes the large change in precipitation
amount between the two discussed above (Table 4) and, simi-
larly, could be related to the integration of CPC in MERRA2.
Indeed, Table 7 suggests that CPC does not perform as well
as the other observational datasets in terms of variability,
and, indeed, surface moisture content variability was not im-
proved from MERRAT1 to MERRA?2 in the study area (Fig. 1
in Reichle et al., 2017). As for ERAS and ERA-Interim, they
remain the two reanalysis datasets with the highest correla-
tion with the observations.

3.3.3 Influence of the seasonality

Figure 5 presents the seasonality, for the upper Indus, of
the correlations between the reanalyses and APHRODITE-
2. This reference is chosen because of its higher correlation
with the reanalyses, but the other rain-gauge-based datasets
give a similar seasonality. The figure shows that the reanaly-
ses are altogether more similar to APHRODITE-2 during the
winter season than during summer. From December to April,
all reanalysis products have a similarly high correlation with
the observational dataset (> 0.9), except for the two century-
long reanalyses, and to a lesser extent the older NCEP re-
analyses. From May onward, all correlations drop to vari-
ous degrees. Both NCEP reanalyses drop the most, followed
by CFSR. ERAS shows the highest correlations, just above
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Figure 5. Daily correlation, per month, between APHRODITE-2
and each reanalysis, in the upper Indus. The period considered is
1998-2007.

ERA-Interim, JRA, MERRA1, and MERRAZ2. For the cen-
tury reanalyses, 20CR drops to very low values (< 0.5 and
even < 0.2 in September and October), while ERA-20C re-
mains at acceptable levels, around CFSR. Accordingly, we
have very high confidence in the capability of most reanal-
yses to represent the daily variability in winter. In summer,
the confidence is more dependent on the reanalysis, and over-
all lower than in winter. However, it is unclear whether the
seasonality of the correlation between APHRODITE-2 and
the best reanalyses (ERAS, ERA-Interim, JRA, MERRAI,
MERRA?Y) is due to a changing ability of the reanalyses or
of APHRODITE-2. The seasonality for those reanalyses dis-
appears when using TMPA as a reference, but mainly due to
a drop in winter correlation, which rather suggests that satel-
lite observations are not suited for that season (not shown).
The analysis of the seasonality is less interesting in the lower
Indus, since it is mainly dominated by the monsoon. The re-
sults resemble what was just discussed for summer in the
upper Indus.

3.3.4 Trends

We also looked at possible trends in the representation of the
daily variability, due to a change in the type, quantity, or qual-
ity of input data in each dataset. We computed the time series
of correlations between observations and reanalyses using a
2-year moving window. However, the Pearson correlation we
used so far is also known to be sensitive to extreme values.
This leads to jumps in the correlation when an extreme value
(abnormally large precipitation event) passes in the moving
window and is well represented. In order to have a clearer
signal, without jumps, we used the Spearman correlation in-
stead. This coefficient is based on the rank rather than on the
absolute value of each observation and is therefore not sen-
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Table 7. Same as Table 6 for the lower Indus.
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Datasets APHRODITE APHRODITE-2 CPC GPCC-daily TMPA GPCP-1DD
APHRODITE-2 0.887

CPC 0.838 0.825

GPCC-daily 0.864 0.841 0.87

TMPA 0.829 0.869 0.79 0.809

GPCP-1DD 0.771 0.801 0.72 0.74  0.906

ERAS 0.858 0.871  0.805 0.826  0.835 0.772
ERA-Interim 0.828 0.837 0.763 0.794 0.79 0.744
JRA 0.719 0.76  0.709 0.708 0.76 0.73
MERRA2 0.777 0.794  0.723 0.763  0.725 0.677
MERRA1 0.782 0.796  0.749 0.76  0.775 0.741
CFSR 0.7 0.69 0.626 0.657  0.672 0.618
NCEP2 0.601 0.632 0.572 0.618  0.576 0.523
NCEP1 0.635 0.643  0.605 0.623  0.596 0.545
20CR 0.442 04 0.35 0.393  0.345 0.308
ERA-20C 0.655 0.712  0.643 0.663  0.678 0.673

sitive to extreme values. We checked that most of the results
presented above are valid with the Spearman correlation as
well.

In Fig. 6a, we compare the observational dataset using
ERA-Interim as a reference, for the upper Indus. We first
notice that APHRODITE and APHRODITE-2 always have
significantly higher correlation scores than the others, except
around 2004-2006, and relatively stable values between 0.85
and 0.9. The quality of those two datasets found over the
period 1998-2007 can therefore be extended to the whole
period 1979—-present. GPCC-daily exhibits stronger variabil-
ity during the first 20 years, but then its score increases and
stabilises around 0.85. This behaviour is likely due to an in-
crease in the number of observations that are between 5 and
10 before 2000, but above 15 after 2005. CPC is in gen-
eral very close to GPCC-daily, except around the year 2000,
which explains the differences between the two datasets over
the period 1998-2007 previously investigated. The two satel-
lite products TMPA and GPCP-1DD are very similar to each
other, relatively stable, but at a lower level than the rain-
gauge-based datasets.

We now investigate in Fig. 6b the quality of the most re-
cent reanalysis using as reference APHRODITE (plain line)
and APHRODITE-2 (dotted line). These references are jus-
tified by the stability of their good results discussed above.
They give similar results over their common period, which
helps when analysing the whole time period. ERAS and
ERA-Interim are the two most stable reanalyses and have the
highest correlations. JRA is also one of the best reanalysis
datasets in the 1980s, but its correlation drops by about 0.05
compared to ERAS after 1990 and never recovers. MERRA1
and 2 exhibit similar variability to each other, but the first
version often has better results than the latter. CFSR is the
most problematic reanalysis with the strongest variability
and much lower correlations. However, it shows much bet-
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ter results at the end of the time period, with the release of its
second version.

Lastly, over the second half of the twentieth century, the
large change in number and type of observations assimilated
could impact the quality of the reanalysis and is therefore
investigated in Fig. 6¢c. However, no trend can be found. Cor-
relations between JRA and APHRODITE remain mostly be-
tween 0.8 and 0.85. ERA-20C is also fairly stable over time,
generally above NCEP1. 20CR, by contrast, exhibits a much
higher variability, with the correlation dropping as low as 0.4
at times, and sometimes reaching NCEP1.

There are some differences in the results for the lower In-
dus as shown in Fig. 7. First, for the observational datasets,
CPC and GPCC-daily reach the quality of APHRODITE-2
around 2005, despite including half the number of obser-
vations (Fig. 7a). Certainly, after 2005, the more homoge-
neous coverage of observations in CPC and GPCC-daily than
in APHRODITE-2 counterbalances the reduction in number
(Fig. 2d and e). Before 2005, the cause of the improvement
of GPCC-daily can again be tracked to the increase in obser-
vations included, while the rise in the quality of CPC remains
of uncertain origin, since the number and location of obser-
vations are constant. TMPA’s correlations with the reference
are very close to CPC’s correlations, with a similar unex-
plained rise between 2000 and 2005, almost reaching the val-
ues of the rain-gauge-based datasets. GPCP-1DD has lower
scores than TMPA but also sees a rising trend during the two
decades it covers. Comparing the differences between the re-
analyses (Fig. 7b), we found much smaller differences than
when using the Pearson correlation (Table 7), which suggest
that the difference in quality resides in the representation of
the extreme events. No clear change can be observed during
the period 1979-2015, however.
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Figure 6. Daily correlation using the Spearman formula, on a running 2-year window, between a reference and different datasets, for the upper
Indus. The years on the x axis are the start of the 2-year windows. In (a) observational datasets are tested against ERA-Interim. Panel (b)
shows the correlation between a selection of reanalysis and APHRODITE data over the period 1979-2005 (plain line) and APHRODITE-2
over the period 1998-2013 (dotted line). Finally, (c) presents the reanalyses covering the second half of the 20th century, with APHRODITE

as reference.

3.4 Monthly, seasonal, and inter-annual variability

A good representation of daily precipitation variability does
not ensure a good representation of monthly or longer pe-
riod variability. Moreover, all the observational datasets se-
lected for this study can be analysed at a monthly timescale.
In Fig. 8, we present the trend in monthly correlation between
a reference and each type of dataset for the upper Indus.
The correlation is calculated with the Pearson formula and
over a 10-year moving window. It uses the monthly anomaly
of precipitation, relative to a monthly mean computed over
the same 10-year moving window. The reference to validate
the observational datasets is ERA-Interim (Fig. 8a), and to
validate the reanalyses GPCC-monthly (Fig. 8b). Those two
datasets present a more stable quality and good correlations,
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as we demonstrate below. They also cover the whole period
1979 to the present. However, we checked the main results
with other references to validate them.

The best observational dataset for representing monthly
variability for the upper Indus is APHRODITE (Fig. 8a).
By contrast to the daily variability analysis, APHRODITE-
2 has a significantly lower correlation with ERA-Interim on
the common period with APHRODITE (1998-2007) and the
correlation continues to drop after it. The difference in cor-
relation between the two datasets is quite dependent on the
reference, but all show the subsequent decrease. By contrast,
CPC starts with the lowest correlation, but the correlation
rises in the last decade at the level of the other datasets.
CMAP, based on CPC, also presents lower correlation but
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Figure 7. Same as Fig. 6 but for the lower Indus.

is more variable, and it depicts a similar rise around the year
2000. All the other datasets are very close to each other.

Still for monthly variability, the closest reanalysis to the
observations is ERAS (Fig. 8b), except when using CPC and
CMAP as reference: then, MERRA?2 has higher correlation
at times, likely due to the use of CPC data in both CMAP
and MERRA2. Several datasets show a decrease in corre-
lation during the 1990s: JRA has a drop more pronounced
than what is observed for the daily variability, and a drop
appears for NCEP1, NCEP2, and ERA-20C. 20CR has the
lowest correlation, while MERRA2, MERRA1, and ERA-
Interim are quite similar, with correlation just below ERAS.
CFSR also has relatively high values but exhibits a decreas-
ing trend, especially in the last 10 years, which is even
more pronounced when testing with the other observational
datasets. It is possible that version 2 of CFSR gives better re-
sults, but it has not been running long enough to evaluate the
monthly variability over a 10-year period. Instead, the corre-
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lations in Fig. 8b include both versions toward the end of the
time period, which could add discrepancies when computing
the monthly mean anomaly.

We also tested the datasets with the longest time coverage
against GPCC-monthly (Fig. 8c). We found relatively stable
correlations with APHRODITE and CRU during the twenti-
eth century: the time series do not diverge, despite the low-
ering number of observations. However, since the datasets
are not independent, we cannot say that the quality of those
datasets remains constant. The reanalyses present fluctuating
correlations with the reference. ERA-20C has lower correla-
tions in the first half of the century, which could be due to
a lowering confidence in either the reference or the reanaly-
sis. However, ERA-20C correlations get closer to 20-CR dur-
ing that period, which suggests the variation in the reanalysis
quality is the most important factor.

The lower Indus shows somewhat different results in
terms of monthly variability (Fig. 9). For the observations,
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Figure 8. Correlation of monthly anomaly on a running 10-year window for the upper Indus. The monthly mean needed for the anomaly
is computed relatively to the 10-year window. The years on the x axis are the start of the 10-year windows. Similarly to in Fig. 5, a set of
datasets is tested against a reference. In (a) observational datasets are tested against ERA-Interim. Panel (b) shows the correlation between
the reanalysis and GPCC-monthly. Lastly, (¢) presents the longest datasets, except GPCC-monthly which is used as reference.

APHRODITE does not have the highest correlations, as it
is bypassed by GPCP-SG during the 1980s. After 2000, all
datasets perform very similarly with two exceptions: CRU,
which always has lower correlations, and APHRODITE-2,
whose correlations drop during the last 2 years. For the re-
analysis, ERAS still has the highest correlations but is joined
by ERA-Interim just before the year 2000. MERRA?2 does
not specifically show higher correlations with CPC, as it does
for the upper Indus, except for the first 2 years, where CPC
has the lowest values. It is possible that the smaller difference
in quality between CPC and the other observational datasets
is not important enough to influence MERRA2’s quality sig-
nificantly. Lastly, for the century-long datasets, correlations
between CRU and GPCC-monthly show a decreasing trend,
which could be related to an increasing difference in the ob-
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servations included in each dataset. By contrast, ERA-20C
correlation, are as low as 20CR before 1950.

In Fig. 10, we compare the inter-annual variability of
GPCC-monthly to the reanalyses over the period 1981-2010
and to the other observational datasets covering that period.
In Fig. 11, we look at the 10-year moving mean for each
of these datasets. Note that the years we mention in the text
correspond to the start of that 10-year window. The results
are split by season and study area. GPCP inter-annual vari-
ability is almost identical to that of GPCC-monthly, due to
the inclusion of GPCC-monthly data (Fig. 10). By contrast,
CPC has a much lower correlation with GPCC-monthly, es-
pecially in the upper Indus. This agrees with the lower capa-
bilities found for the daily and monthly variability of CPC.
Moreover, CPC is the most dissimilar observational dataset
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Figure 9. Same as Fig. 8 but for the lower Indus.

for the decadal variability, particularly for the upper Indus,
along with CMAP and APHRODITE-2 (Fig. 11). In contrast,
the other datasets show a very similar behaviour.

The reanalyses in winter have a decadal variability simi-
lar to the observations for the period 1980-2010 (Fig. 11d).
Moreover, the most recent reanalyses tend to converge to-
wards the same amount of precipitation after 2000. By con-
trast, the reanalyses that run before 1980 do not represent the
decadal variability depicted by the observations. For summer
in both study areas, none but ERA-5 represents the decadal
variability observed. For example, in the upper Indus during
summer, the precipitation amount increases after 2000 in the
observations (Fig. 11b). While MERRA2 and CFSR show
an increase in precipitation 2 or 3 times larger, ERA-Interim,
NCEPI, and NCEP2 show instead a decrease (Fig. 11e). In-
terestingly, while the observations show similar decadal vari-
ability for summer between the upper and the lower Indus,
this is not the case for the reanalyses, except maybe for the
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twentieth century reanalyses, and ERA-5. Notably, ERAS
has an inter-annual correlation with GPCC-monthly that is
higher than the correlation between GPCC and CRU for all
three panels in Fig. 10, suggesting it is at least as able as
observational datasets.

4 Conclusions

In this study, we have compared a large number of precip-
itation datasets of different types across two distinct zones
of the Indus watershed: 6 datasets are based only on rain
gauges, 4 are derived from satellite observations, and 10 from
reanalysis. We have shown that the number and diversity of
the datasets help to identify and quantify the limitations and
abilities of each of them, which in turn enables a better esti-
mation of the uncertainties.
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Figure 11. Decadal variability of precipitation using a 10-year running mean for different seasons and domains (winter in the upper Indus: a
and d; summer in the upper Indus: b and e; summer in the lower Indus: ¢ and f) and the different datasets (observational datasets: a, b and c;

reanalysis datasets: d, e and f).

We have compared the datasets on the basis of the annual
mean precipitation, the seasonal cycle, as well as the variabil-
ity over timescales from 1d to 10 years. We have relied on
the literature to evaluate the different sources of uncertainty
and have interpreted the mean differences between datasets
in terms of their quality. We have suggested that the sim-
ilarities in variability can be directly interpreted in terms of
quality, especially when comparing datasets with no common
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methods or data source. Most reanalyses do not assimilate
precipitation observations, which makes it possible to cross-
validate between observational and reanalysis data based on
variability. Regardless of the observational datasets used as
a reference, we have found that some reanalyses have sig-
nificantly higher correlation with that reference than other
reanalyses, which we have interpreted as a sign of good
quality. Conversely, when using a reanalysis as a reference,
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some observational datasets have significantly higher corre-
lation than others. The use of reanalyses to validate observa-
tional datasets is justified by the quality of reanalysis prod-
ucts demonstrated in this study. Specifically, at the scale of
the Indus basin, and for the daily variability, the same level
of similarity between the reanalyses and observations is also
seen between the observational datasets themselves.

We have used the Pearson correlation to compare the
datasets, although this has some limitations. For example, it
is affected by extreme values, that is, in our context, abnor-
mally large precipitation events. These lead to difficulties in
interpreting trends and we preferred the Spearman formula in
this context (in Figs. 6 and 7). By contrast, the Pearson cor-
relation is less affected by the difficulties in representing the
lowest precipitation rates, although these rates can explain
some of the biases.

One of our findings concerns the important uncertainty in
fine-scale spatial patterns of precipitation, particularly in the
upper Indus, where precipitation is the most heterogeneous.
Important discrepancies remain between datasets, which ex-
plain some of the differences in mean precipitation. This is-
sue needs to be tackled in observational datasets by including
more measurements and by updating the climatology used
in the interpolation methods. In reanalysis products, higher
resolution and better modelling of small-scale processes are
likely needed to improve confidence in the spatial pattern of
precipitation. In this study, we have deliberately selected two
large study areas, which has increased the confidence in the
datasets. Area-wide correlation particularly improves the sig-
nificance of the variability analysis, compared to a point-wise
correlation.

We have also found that the quality of the datasets depends
on the season. Rain gauge measurements suffer from impor-
tant underestimations in winter for the upper Indus. Most
satellite-derived datasets even further amplify this bias. By
contrast, reanalyses perform best during winter. Particularly,
the most recent reanalyses produce a very similar amount of
winter precipitation and its variability is similar to the obser-
vations at all timescales. We have suggested that their amount
of precipitation is closer to reality than the observations, al-
though some overestimations are possible, due to, for exam-
ple, misrepresentation of the lowest precipitation rates. Sum-
mer precipitation, in both study areas, is much more uncer-
tain in the reanalyses in total amount, seasonality, and vari-
ability. In contrast, satellite observations perform better in
summer than in winter and seem to bring additional informa-
tion to rain gauge measurements.

As mentioned above, rain-gauge-based datasets underes-
timate precipitation. Only GPCC products use a correction
factor to account for measurement underestimation, but this
factor is still too small. We emphasise the need to directly
correct the measured values before interpolation, using, for
example, methods similar to those developed by Dabhri et al.
(2018).
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More specifically, APHRODITE is the best observational
dataset for daily and monthly variability, thanks to a large
number of observations in the whole basin. However, it also
exhibits drier conditions than most of the other datasets,
which is partially caused by the interpolation method it uses
and possibly by a lower quality of the data. Surprisingly,
APHRODITE-2 is not as good, especially for the longer-term
variability, as it removes some observations in areas with an
already lower density of measurements. CPC is the least re-
liable observational dataset, particularly for the upper Indus,
with a large dry bias compared to GPCC-monthly, the lowest
correlation scores at all timescales, and an error on the dates
before 1998. However, its quality significantly improves af-
ter 2005, which, we suspect, is due to a change in the quality
of the data source. GPCC-monthly is one of the most reli-
able datasets in terms of both amount and variability. GPCC-
daily relies on GPCC-monthly for its monthly mean. The
very low number of daily measurements included in the early
part of the covered period limits its quality, but this quickly
improves as more observations are included.

Satellite-based datasets are very dependent on the quality
of the rain-gauge product they integrate. The added value of
satellite observations remains limited at the basin scale. The
signal is degraded during winter for the upper Indus, while
better results in the lower Indus suggest slightly wetter con-
ditions than the rain-gauge-based datasets. Importantly, the
quality of satellite-based datasets resides in their near-real-
time availability as well as their higher temporal and spatial
resolution than rain-gauge-based datasets.

The quality of reanalysis datasets has clearly improved
since the first datasets were released. ERAS is the latest re-
analysis and clearly stands out as the one representing the
observations the best, in terms of amount, seasonality, and
variability at all timescales investigated. Remarkably, it is
the only reanalysis representing the decadal variability of the
summer precipitation for both study areas as it is seen in the
observations. Furthermore, for the daily to inter-annual vari-
ability, the best-performing observational dataset often has
a better level of similarity with ERAS than with other ob-
servational datasets. Some of these qualities can be derived
from its high resolution, which allows the representation of
interesting fine-scale features, as well as the assimilation of
precipitation measurements.

After ERAS, ERA-Interim, MERRA1, and MERRA2
have relatively similar performance. Reichle et al. (2017)
showed that the soil moisture content was not improved over
South Asia from MERRA1 to MERRA?2, in terms of neither
variability nor biases, despite the use of CPC to correct the
precipitation input to the land surface model of MERRA?2.
Given the difficulties CPC has in representing precipitation
in the Indus basin, correcting the modelled precipitation with
this dataset probably does not improve the signal. In this
study, we were able to show that the correction with CPC
feeds back locally on the modelled precipitation, particu-
larly at the monthly scale for the upper Indus. We have also
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suggested that the dry bias of MERRA?2 in the lower Indus
and the decrease score on the daily variability compared to
MERRALI are also due to that correction.

The confidence in JRA’s precipitation in the upper Indus is
generally high, but drops for the daily and monthly variabil-
ity in the 1990s. By contrast, it represents overly wet condi-
tions for the lower Indus. CFSR has problems reproducing
the daily variability and the seasonality of the monsoon, es-
pecially in the upper Indus. This is probably improved by the
latest version that started in April 2011. However, it would
likely be better to treat the two versions separately as it
seems the new version produces somewhat different statistics
of precipitation. The twentieth century reanalyses, which in-
clude only surface observations, are not as good as the others,
especially in winter. However, while 20CR barely reproduces
any of the variability depicted by the observations, RA-20C
has much better capabilities, close to NCEP1 and CFSR, es-
pecially during summer. Neither 20CR nor ERA-20C repre-
sent the decadal variability seen in the observations before
1980.

Finally, large uncertainties remain in the precipitation in
the upper Indus, but one should not treat all datasets equally.
We have demonstrated that specific datasets represent the
precipitation better, which helps to narrow down the uncer-
tainty. Particularly, we have argued that precipitation from
reanalyses and observational datasets can both be useful for
cross-validation. They can also be used for quality moni-
toring. Daily correlation of precipitation for key areas can
be performed between a series of datasets with near-real-
time updates. Changes in correlation between one or several
datasets would therefore highlight a change in quality that
would need to be investigated.
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