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Abstract  

Introduction: 

Planar 123I-MIBG (meta-iodobenzylguanidine) cardiac imaging is listed as an indicative biomarker in 

the 2017 international consensus criteria for the diagnosis of dementia with Lewy bodies.  There has 

been very little research into the relationship between apparent cardiac uptake and patient size, or in 

the possible advantage of attenuation and scatter corrected SPECT-CT compared to planar imaging.  

We aimed to evaluate this in both a chest phantom and in older adults with normal cognition. 

Materials and Methods: 

An anthropomorphic chest phantom was filled with 123I solution using activities typical of healthy 

subjects.  The phantom was scanned on a Siemens Intevo gamma camera with MELP collimators using 

both planar and SPECT-CT techniques.  Further scans were acquired with a PMMA chest plate added, 

then water filled plastic breasts.  The SPECT-CT images were reconstructed using a resolution recovery 

OSEM method with and without attenuation and scatter correction (ACSC) applied. 

Twenty-nine adults over 60 years of age (mean 75.2 ± 8.3 years) underwent planar cardiac MIBG 

imaging, followed by SPECT-CT.  SPECT images were reconstructed as above. Heart-to-mediastinum 

ratios (HMRs) were calculated for planar and SPECT images.   

Results:  

Phantom planar HMR decreased by 20% with the PMMA chest plate added; 39% with plate and 

breasts.  ACSC SPECT cardiac counts showed less dependence on phantom size than SPECT without 

ACSC (3% vs 37%).  The body mass indices (BMI) of the older adults ranged from 22 to 38. There was 

a significant linear relationship between planar HMR and BMI (R2=0.44, p<0.01), but not for ACSC 

SPECT.  However, there was no significant difference between the slopes for planar and ACSC SPECT 

(p=0.11).   

Conclusion: 

Planar cardiac 123I-MIBG HMR results are correlated with BMI.  Phantom results suggest that ACSC 

SPECT can correct for patient size.  A large patient population or clinical database would be required 

to demonstrate a clinical effect. 
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Introduction 

Dementia with Lewy bodies (DLB) is the second most common form of neurodegenerative dementia 

after Alzheimer’s disease, accounting for 5-10% of cases [1, 2].  Accurate diagnosis is important for 

clinical management, prognosis, and carer wellbeing [3-5], but initial misdiagnosis outside the 

specialist setting is common [2, 6, 7].  Cardiac MIBG sympathetic innervation imaging is an established 

technique for the differential diagnosis of DLB from other dementias, which do not cause sympathetic 

denervation and thus have normal scan appearances [8-10].   The technique has been used in Japan 

for the diagnosis of Lewy body disease for over a decade and was recently included as an indicative 

biomarker in the fourth DLB consensus criteria, alongside 123I-FP-CIT SPECT [6].   Cardiac MIBG 

scintigraphy is also used for the estimation of risk of sudden cardiac death in heart failure patients and 

predicting those who could benefit from an implantable cardiac defibrillator (ICD) [11, 12] and this is 

currently the principal application in Europe and the US [13].   

Several authors have commented on the need to standardise cardiac MIBG image acquisition and 

processing parameters in order for cardiac uptake thresholds to be applicable between centres, e.g. 

[14-19].  A method to correct for differences in image acquisition parameters between centres 

(predominantly caused by different gamma camera and collimator models) has been developed by 

Nakajima et al. [20] was used in the multicentre study mentioned above [21, 22].  However, technical 

factors such as variation in the amount of attenuation and scatter due to patient size, cannot be taken 

into account with this method.  There have been few publications commenting on whether patient 

factors may have a significant impact on diagnostic value of planar cardiac MIBG scintigraphy, and to 

our knowledge none that have explored whether SPECT with CT attenuation and scatter correction 

(CTACSC) would be of benefit.  Although several groups investigating the diagnostic accuracy of cardiac 

123I-MIBG for the diagnosis of Lewy body disease have acquired SPECT data alongside planar, often it 

is only the planar scans that have been used for analysis with the SPECT results not reported [23-27], 

suggesting the added value of SPECT is unclear.  In 2016 Odagiri et al. reported that the accuracies of 

planar and SPECT-CT 123I-MIBG cardiac scintigraphy were similar, but did not appear to use the CT data 

for SPECT image corrections, only for localising the heart [28].  In their 2015 multicentre study, Yoshita 

et al. used SPECT for visual analysis but not for quantification of cardiac uptake [21]. 

Obesity has been linked to decreased apparent cardiac MIBG uptake by two previous studies [29, 30], 

and is thought to be due to increased attenuation and scatter in larger individuals, rather than to true 

differences in cardiac uptake.  The largest study of healthy controls recruited to a cardiac MIBG 

research study (n=94) was that of Jacobsen et al. [31] carried out as part of the ADMIRE heart failure 

study [11].  The controls were aged between 29 to 82 years (mean 58.5 ± 10.6 years, with a wide BMI 
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range of 20.4 to 44.3 kg/m2 (mean 28.7 ± 5.1).  The study reported a “modest” decrease in HMR with 

BMI, however this was a study into ageing and the incidental finding of a relationship between BMI 

and HMR was not discussed in detail.  Pellegrino et al. reported lower HMRs in patients with BMI>30 

(n=10) compared to those with BMI<30 (n=35) [30].  This was in heart failure patients and the results 

have not yet been replicated in healthy controls but do suggest patient size may affect apparent 

cardiac MIBG uptake.   

In this study we aimed to establish the degree to which planar cardiac I-123-MIBG scintigraphy is 

affected by patient size and whether SPECT with CTACSC can correct for this.  We investigated this 

using an anthropomorphic chest phantom configured with different amounts of attenuation and a 

cohort of older adults with normal cognition with BMI between 22 and 38 kg/m2. 

Materials and methods 

Inclusion criteria for older adults 

Twenty-nine volunteers aged between 62 and 94 years (mean 75.2 ± 8.3 years) were recruited as part 

of an ongoing Newcastle University study into cardiac MIBG in a representative UK population of older 

adults.  They underwent a detailed neurological and cognitive examination by a research physician 

with a detailed medical history taken.  All volunteers had normal cognition, no evidence of 

parkinsonism and normal MRI brain scans.  We did not recruit anyone with Class II or worse heart 

failure according to the New York Heart Association classification, who had experienced a myocardial 

infarction in the previous year or were taking tramadol.  As we aimed to recruit a representative 

sample of older people, we did not exclude those with diabetes or other risk factors for cardiac disease 

such as smoking or raised blood pressure. 

Image acquisition 

The volunteers were administered 111 MBq I-123-MIBG via slow intravenous injection.  Potassium 

iodate tablets (170mg) were given before and after injection to minimise uptake of free iodine by the 

thyroid.  Ten minute anterior planar images were acquired at 4 hours (± 30 minutes) after injection.  

SPECT-CT imaging was carried out immediately after the delayed planar image with the subject in the 

supine position with arms raised if possible.  Only ten of the volunteers were able to be scanned with 

arms raised, the others kept their arms by their sides.  All images were acquired on a dual headed 

Siemens Symbia Intevo hybrid SPECT-CT gamma camera (Siemens Healthcare, Munich, Germany) 

using medium energy low penetration (MELP) collimators.  For planar imaging the energy window was 

159 keV ± 10%, matrix size was 128 x 128 and no zoom was applied, resulting in a pixel size of 4.8 mm.  
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SPECT images were acquired over 360 degrees in H mode (detectors oriented parallel to each other) 

to obtain 120 projections of 20 seconds using a non-circular autocontoured orbit. The energy window 

was 159 keV ± 7.5%, matrix size 64 x 64 and zoom factor 1.64.  Following SPECT imaging, a low dose 

CT scan (130 kV with a quality reference mAs of 13) was acquired for attenuation and scatter 

correction. 

Image reconstruction 

All images were processed on a Hermes workstation (Hermes Medical Ltd, Stockholm Sweden), to 

obtain results generalisable to different gamma camera models.    SPECT images were processed in 

Hermes Hybrid Recon Cardiology v1.1.2 using OSEM iterative reconstruction with 15 iterations and 3 

subsets, with a Butterworth filter of 0.90 cm applied.  Resolution recovery collimator modelling for 

the MELP collimator was applied, with parameters set for the Siemens Intevo gamma camera as 

provided by Hermes: hole diameter 0.294 cm; hole length 4.06 cm; detector intrinsic resolution at 140 

keV 0.38 cm ; radius of rotation off-set 4.76 cm.    Two sets of images were reconstructed, both using 

resolution recovery: non-corrected (NC) and CT corrected for attenuation and scatter (ACSC).  The 

voxel size was 6.6 mm.  The scatter correction model is based on a Monte Carlo simulation of scatter 

within the patient [32, 33].  Full collimator and detector response modelling [34] is not included in this 

model. 

Phantom image acquisition  

Images were acquired with the RSD torso phantom (Radiology Support Devices Ltd, Long Beach, CA, 

USA), with fillable heart, lung, liver and background compartments (Figure 1).  The original heart insert 

supplied with the phantom did not give realistic-looking cardiac MIBG images so was substituted with 

a simple left ventricle insert manufactured in-house with fillable myocardial wall and cavity 

compartments.  The phantom was filled and scanned with I-123, using activity concentrations 

designed to mimic patient studies.  The activities used are given in Table 1. The left ventricle insert 

was imaged alone on the scanner bed without any additional attenuation followed by three filled 

phantom scans with increasing amounts of attenuation: torso phantom, torso phantom with solid 

PMMA chest extension plate and torso phantom with chest plate and breasts (plastic shells filled with 

water) – see Figure 1. 

The scan parameters were the same as those used for clinical research studies at our centre: MELP 

collimators, auto-contouring, 1.64 zoom, 64 x64 matrix size.  As with clinical scans, CT scans allow for 

both attenuation and scatter corrected and non-corrected images to be reconstructed..   

Images were reconstructed using the clinical parameters given above. 
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Figure 1: Anthropomorphic torso phantom (centre), with in-house replacement LV insert (left) and additional PMMA chest 

plate and water filled breasts (right) 

Table 1: activity concentrations used in the anthropomorphic torso phantom, selected to give count densities similar to 

healthy control images. 

 Activity  (MBq) Activity 

concentration 

(kBq / ml)  

Concentration 

relative to 

background 

LV dose (diluted 

into 200 ml, actual 

volume ~160 ml) 

27.7 138.7 22 

Background 

(approx. 8200 ml) 

52.6 6.4 1 

Liver (1000 ml) 78.6 78.6 12.2 

Lungs (diluted in 

1000 ml before 

filling) 

50.1 50.1 7.8 

 

Image analysis for cardiac uptake 

The images of the torso phantom and the images of the older adult volunteers were analysed in the 

same way.  Anterior planar images were analysed to obtain the heart to mediastinum ratio (HMR) 

using a 6 cm circular ROI placed over the left ventricle and 4 x 3 cm rectangular ROI between the lungs 

in the mediastinum, see [35].  The phantom was not moved from the scanner couch between 

acquisitions, allowing the same regions to be used for all three attenuation configurations.   

The SPECT coronal slices were summed over all 64 slices to give images analogous to planar images. 

We obtained HMRs on these summed images in the same way as for the planar and we term these 

“coronal SPECT HMRs”.  The same regions of interest were used for planar and summed coronal SPECT 
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HMRs, with no adjustment between the non-corrected and ACSC SPECT (see Figure 2 for example).  

This enables a direct assessment of the effects of attenuation and scatter correction to be made. 

 

Figure 2: Planar image (left) with corresponding summed coronal SPECT slice images without CT ACSC (middle) and with 

corrections (right).  Note the relative reduction in lung uptake and increased heart contrast on the ACSC image. 

Volumetric HMRs on clinical and phantom SPECT images were calculated using 6cm diameter spherical 

VOIs placed over the left ventricle and cuboid VOIs over the mediastinum (Figure 3).  The placement 

of VOIs was not modified between the ACSC and non-corrected datasets.   

 

Figure 3: Example control SPECT-CT images showing coronal, sagittal and transverse slices centred on the left ventricle, with 

spherical cardiac VOI and rectangular mediastinal VOI shown. 

Planar and SPECT HMR data for the controls were plotted against BMI and the slopes and standard 

errors calculated using linear regression.  The standard errors of the slopes were used to calculate t-

statistics to determine whether each relationship between HMR and BMI (for planar or SPECT) was 

significant at the α = 0.05 level.   To compare slopes, normalisation was necessary since average HMRs 

are much higher for SPECT than planar due to increased contrast.  The SPECT slopes and the standard 

errors were scaled to be consistent with planar data by multiplying by the ratio between the mean 

planar HMR and HMR in question.  The differences between the normalised slopes and their combined 

standard errors were used to determine whether corrections for attenuation and scatter had a 

significant impact on reducing the dependence of HMR on BMI. 
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Results 

Torso phantom 

The appearance of the phantom on planar and non-corrected SPECT images was significantly affected 

by additional attenuation, whereas this was not the case with the attenuation and scatter corrected 

SPECT images (Figure 4).  The HMR on planar imaging was reduced by 20% with the additional PMMA 

chest plate added and by 40% with the plate and water filled breasts added (Figure 4 and Figure 5).  

On the summed coronal SPECT images without CT ACSC this improved to 11% and 21% respectively.  

The summed coronal ACSC SPECT images showed an increase in HMR with additional attenuation, due 

to lower mediastinum counts – the appearance of the images was reasonably preserved.   

Compared to baseline, the volumetric HMR with the additional chest plate and breasts decreased from 

8.8 to 7.6 (13%) on non-corrected SPECT but increased from 9.5 to 10.3 (8%) on ACSC (Figure 5), again 

due to a greater reduction in counts in the mediastinum VOI. 

The decay corrected SPECT cardiac count data (Figure 6), show a much lower drop with additional 

attenuation on the ACSC images than the non-corrected SPECT images (3% vs 37%). 
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Figure 4: The effects of attenuation and scatter on planar and ACSC SPECT images of the torso phantom.  The top row 

shows the planar images, middle row the NC summed coronal slices and the bottom row the ACSC summed coronal slices.   

 

 

Figure 5: Phantom heart to mediastinum ratios for the three size configurations, calculated from planar images, summed 

ACSC and non-corrected (NC) coronal SPECT images and volumetric HMRs from ACSC and NC SPECT.  Both the planar and 

non-corrected SPECT HMRs decrease with additional attenuating material. 

 

  

Figure 6: Counts in cardiac volume of interest with ACSC and non-corrected SPECT for the heart insert scanned alone and with 

increasing attenuation within the torso phantom. The decrease in counts when the insert is scanned within the phantom is 

much less with ACSC applied, as is the difference between the standard phantom configuration and the largest size. 
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Clinical results 

On planar imaging a negative linear correlation between HMR and BMI is seen (Figure 7), with a slope 

that is significantly different from zero (p <0.01), resulting in a 32% drop in HMR on average between 

BMI of 20 and 35 (  
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Table 2).  In comparison, the drop in HMR over this BMI range with attenuation and scatter corrected 

SPECT was 14% on average for the summed coronal slice method and 16% for the volumetric SPECT 

method (with 6cm diameter spherical VOI).  However, comparison between normalised slope values, 

via a t-statistic calculated from the standard errors of the slopes (Table 3) shows no significant 

difference between planar and either summed coronal ACSC SPECT (p =0.11) or volumetric ACSC 

SPECT (p=0.36). 

Error! Reference source not found. shows the plots of HMR or cardiac counts against BMI for the 

summed coronal SPECT images and SPECT volumetric HMR.  These are displayed with the non-

corrected data on the left and the ACSC data on the right for each method.  The linear fits, and p values 

for slopes being different from zero for planar and SPECT imaging are given in   
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Table 2.  The p-values in show that with the summed non-corrected SPECT coronal slices, there is a 

significant drop in HMR with BMI but with attenuation and scatter correction this is not statistically 

significant.  However, when comparing the slopes for non-corrected and ACSC coronal HMR data 

directly (  
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Table 2) there is no evidence of a statistically significant difference.  SPECT volumetric HMR (spherical 

VOI) data show no significant relationship with BMI either with or without ACSC, and have the highest 

normalised standard errors, possibly due to greater uncertainty in cardiac and mediastinum volume 

of interest placement compared to the other 2D methods.  The coefficients of variation of the HMR 

data (independent of any relationship with BMI) are also higher for the volumetric SPECT data than 

for the planar or summed coronal HMRs (  
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Table 2). 

 

Figure 7: planar HMR plotted against BMI for the 29 older adults, with linear fit. 
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Table 2: Linear regression between HMR and BMI for planar data and SPECT with and without attenuation and scatter 

correction. 

Quantitative measurement Planar 

HMR 

Summed SPECT 

coronal slices HMR 

Volumetric SPECT HMR 

CT ACSC? n/a Yes No Yes No 

Coefficient of variation  17% 14% 13% 25% 28% 

Linear fit to BMI -0.067*BMI 

+ 4.61 

-0.039*BMI 

+ 4.76 

-0.053*BMI 

+ 4.74 

-0.117*BMI 

+ 12.84 

-0.125*BMI 

+ 12.42 

R2 0.44 0.11 0.28 0.05 0.05 

Normalised slope n/a -0.028 -0.037 -0.034 -0.039 

SE of slope 0.017 0.023 0.017 0.104 0.11 

Normalised SE n/a 0.017 0.015 0.03 0.034 

p-value for non-zero slope <0.01 0.09 <0.01 0.27 0.27 

Predicted drop in value 

between BMI 20 and 35 

3.36 to 

2.27  

(-32%) 

3.95 to 

3.39  

(-14%) 

3.69 to 

2.90  

(-21%) 

10.50 to 

8.74  

(-16%) 

9.93 to 

8.06  

(-19%) 

 

Table 3: Comparison between normalised slopes for planar and SPECT HMR with BMI, and for attenuation and scatter 

corrected SPECT data vs no corrections. 

Comparison Difference 

in 

normalised 

slopes 

Combined 

normalised 

standard error 

T-statistic P-value 

Planar HMR vs ACSC 

summed coronal HMR 

0.038 0.022 1.60 0.11 

Planar HMR vs ACSC 

volumetric SPECT HMR 

0.032 

 

0.035 0.932 0.36 

Summed coronal: ACSC vs 

no corrections 

0.008 0.022 0.380 0.71 

Volumetric SPECT: ACSC vs 

no corrections 

0.005 0.046 0.104 0.92 
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Figure 8: Summed coronal HMR with and without ACSC (top), SPECT volumetric HMR with and without ACSC (bottom). 
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acquired under controlled conditions allowing us to investigate the impact of increasing phantom size 

alone with no other sources of variation.  The clinical data applies image reconstruction in more 

realistic conditions to determine whether the effect holds in practice. 

The visual appearance of the torso phantom reconstructed with the summed ACSC SPECT images was 

greatly improved compared to the standard planar images and the non-corrected summed SPECT 
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images; this is particularly apparent on the third configuration with both the PMMA chest plate and 

the water filled breast inserts added.  The counts within the left ventricle insert showed a much 

greater reduction with increasing scatter and attenuation on the non- corrected images compared to 

those reconstructed with ACSC.   Given that this was an anthropomorphic phantom with realistic 

dimensions and activity concentrations, the results can be assumed to hold in individual patients. 

However, when examining our cohort of 29 older adults with normal cognition, the benefit of ACSC 

SPECT is not as apparent.  Although on average, the relationship between BMI and cardiac uptake was 

less obvious with SPECT imaging than planar, there was no evidence that this was statistically 

significant.  It is clear that there is a significant relationship between planar HMR and body mass index, 

so on average we would expect to see lower HMRs in larger people.  However given the substantial 

variation between subjects (an R2 value of 0.44 suggests that less than half the variation is related to 

BMI), it would not be practical to apply a linear correction to the HMR results based on BMI.  This 

variation seems to be even greater with SPECT volumetric HMRs and there is furthermore no 

statistically significant negative slope between SPECT HMR and BMI, which we would expect for data 

without attenuation and scatter correction if this is the cause of the drop seen in planar imaging.  The 

summed coronal slices do show a drop on the non-corrected images, suggesting that the summation 

of the SPECT slices reduces noise in the data.  We recognise that BMI is more complex than the 

increases in size applied to our phantom study and there is likely to be substantial variation in the 

gamma ray interactions of two people of the same BMI.   The size of the left ventricle may also affect 

the activity concentration.  In addition, the inactive background material used in the phantom is not 

fully representative of the activity distribution within patients. 

Variation in uptake between individuals may not be the only explanation for our findings.  The ACSC 

summed coronal SPECT images do not appear noisier than the planar images but do suggest a drop in 

HMR with increasing BMI, albeit not statistically significant.   A possible explanation is errors in the CT 

ACSC that are not seen in the phantom scans.  Motion between SPECT and CT is a possibility, either 

due to volunteers moving slightly or internal mis-registration due to free breathing (e.g. diaphragm) 

or lack of cardiac gating.  The images were examined for mis-registration during reconstruction, but 

this will not detect subtle shifts. 

A further limitation is the truncation of reconstructed SPECT data in some cases, due to the finite field 

of view.  The majority of the older adults (19/29) were not able to tolerate being scanned with their 

arms raised, which is the standard protocol, so the arms were outside the SPECT field of view and not 

taken into account during reconstruction (Figure 9).  The CT field of view is slightly wider, but the CT 

data outside the SPECT field is not used for reconstruction.  In some cases there was further truncation 
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due to body habitus for the largest subjects.  This means that scatter and attenuation correction for 

larger people may be inadequate, and could explain why there appears to be a residual drop in ACSC 

SPECT HMR with increasing BMI (Figure 10).  However, we cannot exclude the possibility that larger 

people may on average be more likely to have true reductions in cardiac uptake, for example due to 

underlying coronary artery disease, for which obesity is a risk factor. 

  

Figure 9: The image on the left is of a volunteer scanned with arms raised, with the whole body within the SPECT and CT 

fields of view.  The image on the right is an example of a larger person scanned with arms by their side.  The arms are 

outside the SPECT field of view so have not been taken into account. 

 

Figure 10: Attenuation and scatter corrected HMR for the volunteers plotted against cross sectional size on CT.  For those 

scanned with arms down there appears to be drop in HMR with size, suggesting inadequate ACSC due to data truncation. 
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is no longer apparent.  Clinical planar cardiac 123I-MIBG images show a significant inverse relationship 

between cardiac uptake ratios and subject BMI.   SPECT images with attenuation and scatter correction 

applied show no statistically significant drop in cardiac uptake with BMI, but there is considerable 

inter-subject variation and no statistically significant difference between the slopes of HMR against 

BMI for non-corrected and ACSC SPECT.  It may be possible to reduce variation in future studies by 

using a SPECT-CT protocol that is more acceptable to older patients.  This work suggests that ACSC 

SPECT does have the potential to improve cardiac 123I-MIBG quantification, particularly in borderline 

planar cases but much larger studies would be needed to demonstrate this. 
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Acknowledgements 

We thank all the staff in the Nuclear Medicine department at the Royal Victoria Infirmary, Newcastle 

upon Tyne, in particular Kim Howe (Chief Technologist), Tamir Ali (Consultant Radiologist) and 

Elizabeth Jefferson (Consultant Clinical Scientist).  We thank the Newcastle University team (including 

Rory Durcan, Helen Kain, Sally Barker, Sarah Lawley, Calum Hamilton and Joanna Ciafone) who 

recruited and assessed the participants.  We are extremely grateful to the individuals who participated 

in this study for giving up so much of their time to help with research.  

Gemma Roberts is supported by an Alzheimer’s Society healthcare professional Fellowship.  Collection 

of clinical data was funded by Alzheimer’s Research UK as part of a separate study.  Infrastructure and 

support was provided to authors based at Newcastle by the National Institute for Health Research 

(NIHR) Newcastle Biomedical Research Centre, a partnership between Newcastle upon Tyne Hospitals 

NHS Foundation Trust and Newcastle University.  John O’Brien is supported by the NIHR Cambridge 

Biomedical Research Centre. 

 



21 
 

 

References 

 

1. Vann Jones, S.A. and J.T. O'Brien, The prevalence and incidence of dementia with Lewy bodies: 
a systematic review of population and clinical studies. Psychol Med, 2014. 44(4): p. 673-83. 

2. Kane, J.P.M., et al., Clinical prevalence of Lewy body dementia. Alzheimers Res Ther, 2018. 
10(1): p. 19. 

3. Hanyu, H., et al., Differences in clinical course between dementia with Lewy bodies and 
Alzheimer's disease. Eur J Neurol, 2009. 16(2): p. 212-7. 

4. Lee, D.R., et al., Examining carer stress in dementia: the role of subtype diagnosis and 
neuropsychiatric symptoms. Int J Geriatr Psychiatry, 2013. 28(2): p. 135-41. 

5. Galvin, J.E., et al., Lewy body dementia: the caregiver experience of clinical care. Parkinsonism 
Relat Disord, 2010. 16(6): p. 388-92. 

6. McKeith, I.G., et al., Diagnosis and management of dementia with Lewy bodies: Fourth 
consensus report of the DLB Consortium. Neurology, 2017. 89(1): p. 88-100. 

7. Donaghy, P.C. and I.G. McKeith, The clinical characteristics of dementia with Lewy bodies and 
a consideration of prodromal diagnosis. Alzheimers Res Ther, 2014. 6(4): p. 46. 

8. Chung, E.J. and S.J. Kim, (123)I-Metaiodobenzylguanidine Myocardial Scintigraphy in Lewy 
Body-Related Disorders: A Literature Review. J Mov Disord, 2015. 8(2): p. 55-66. 

9. Orimo, S., et al., (123)I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in alpha-
synucleinopathies. Ageing Res Rev, 2016. 30: p. 122-33. 

10. Sonni, I., et al., Clinical validity of presynaptic dopaminergic imaging with (123)I-ioflupane and 
noradrenergic imaging with (123)I-MIBG in the differential diagnosis between Alzheimer's 
disease and dementia with Lewy bodies in the context of a structured 5-phase development 
framework. Neurobiol Aging, 2017. 52: p. 228-242. 

11. Jacobson, A.F., et al., Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac 
events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging 
for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol, 2010. 55(20): p. 2212-21. 

12. Verberne, H.J., et al., Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) 
parameters in patients with heart failure: a systematic review. Eur Heart J, 2008. 29(9): p. 
1147-59. 

13. Travin, M.I., et al., How do we establish cardiac sympathetic nervous system imaging with 
(123)I-mIBG in clinical practice? Perspectives and lessons from Japan and the US. J Nucl 
Cardiol, 2018. 

14. Nakajima, K., et al., Standardization of 123I-meta-iodobenzylguanidine myocardial 
sympathetic activity imaging: phantom calibration and clinical applications. Clin Transl 
Imaging, 2017. 5(3): p. 255-263. 

15. Verberne HJ, et al., Vascular time-activity variation in patients undergoing ¹²³I-MIBG 
myocardial scintigraphy: implications for quantification of cardiac and mediastinal uptake. Eur 
J Nucl Med Mol Imaging, 2011. 38(6): p. 7. 

16. Verschure DO, et al., ¹²³I-MIBG heart-to-mediastinum ratio is influenced by high-energy photon 
penetration of collimator septa from liver and lung activity. Nucl Med Commun, 2015. 36(3): 
p. 7. 

17. Verschure, D.O., et al., A European myocardial 123I-mIBG cross-calibration phantom study. J 
Nucl Cardiol, 2017. 



22 
 

18. Slomka, P., et al., Quantification of I-123-meta-iodobenzylguanidine Heart-to-Mediastinum 
Ratios: Not So Simple After All. J Nucl Cardiol, 2014. 21: p. 979-983. 

19. Klene, C., et al., Influence of ROI definition on the heart-to-mediastinum ratio in planar 123I-
MIBG imaging. J Nucl Cardiol, 2016. 

20. Nakajima, K., et al., Standardization of metaiodobenzylguanidine heart to mediastinum ratio 
using a calibration phantom: effects of correction on normal databases and a multicentre 
study. Eur J Nucl Med Mol Imaging, 2012. 39(1): p. 113-9. 

21. Yoshita, M., et al., Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial 
scintigraphy in dementia with Lewy bodies: a multicenter study. PLoS One, 2015. 10(3): p. 
e0120540. 

22. Komatsu, J., et al., (123)I-MIBG myocardial scintigraphy for the diagnosis of DLB: a multicentre 
3-year follow-up study. J Neurol Neurosurg Psychiatry, 2018. 

23. Hanyu, H., et al., The role of 123I-metaiodobenzylguanidine myocardial scintigraphy in the 
diagnosis of Lewy body disease in patients with dementia in a memory clinic. Dement Geriatr 
Cogn Disord, 2006. 22(5-6): p. 379-84. 

24. Inui, Y., et al., Comparison of (123)I-MIBG myocardial scintigraphy, brain perfusion SPECT, and 
voxel-based MRI morphometry for distinguishing between dementia with Lewy bodies and 
Alzheimer's disease. Ann Nucl Med, 2014. 28(8): p. 796-804. 

25. Oide, T., et al., Usefulness of [123I]metaiodobenzylguanidine ([123I]MIBG) myocardial 
scintigraphy in differentiating between Alzheimer's disease and dementia with Lewy bodies. 
Intern Med, 2003. 42(8): p. 686-90. 

26. Wada-Isoe, K., et al., Diagnostic markers for diagnosing dementia with Lewy bodies: CSF and 
MIBG cardiac scintigraphy study. J Neurol Sci, 2007. 260(1-2): p. 33-7. 

27. Watanabe, H., et al., Cardiac (123)I-meta-iodobenzylguanidine (MIBG) uptake in dementia 
with Lewy bodies: comparison with Alzheimer's disease. J Neurol Neurosurg Psychiatry, 2001. 
70(6): p. 781-3. 

28. Odagiri, H., et al., On the Utility of MIBG SPECT/CT in Evaluating Cardiac Sympathetic 
Dysfunction in Lewy Body Diseases. PLoS One, 2016. 11(4): p. e0152746. 

29. Jacobson AF, et al., Impact of age on myocardial uptake of 123I-mIBG in older adult subjects 
without coronary heart disease. . J Nucl Cardiol, 2013. 20: p. 9. 

30. Pellegrino, T., et al., Impact of obesity and acquisition protocol on (123)I-
metaiodobenzylguanidine indexes of cardiac sympathetic innervation. Quant Imaging Med 
Surg, 2015. 5(6): p. 822-8. 

31. Jacobson, A.F., et al., Impact of age on myocardial uptake of (1)(2)(3)I-mIBG in older adult 
subjects without coronary heart disease. J Nucl Cardiol, 2013. 20(3): p. 406-14. 

32. Sohlberg, A., H. Watabe, and H. Iida, Acceleration of Monte Carlo-based scatter compensation 
for cardiac SPECT. Phys Med Biol, 2008. 53(14): p. N277-85. 

33. Kangasmaa, T., et al., Half-time myocardial perfusion SPECT imaging with attenuation and 
Monte Carlo-based scatter correction. European Journal of Nuclear Medicine and Molecular 
Imaging, 2011. 38: p. S204-S204. 

34. Sohlberg, A.O. and M.T. Kajaste, Fast Monte Carlo-simulator with full collimator and detector 
response modelling for SPECT. Annals of Nuclear Medicine, 2012. 26(1): p. 92-98. 

35. Roberts, G., et al., A comparison of visual and semiquantitative analysis methods for planar 
cardiac 123I-MIBG scintigraphy in dementia with Lewy bodies. Nucl Med Commun, 2019. 

 


	Abstract
	Introduction
	Materials and methods
	Inclusion criteria for older adults
	Image acquisition
	Image reconstruction
	Phantom image acquisition
	Image analysis for cardiac uptake

	Results
	Torso phantom
	Clinical results

	Discussion
	Conclusion
	Participant Consent and Ethical Approval
	Acknowledgements
	References

