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SUMMARY

This supplementary material contains pseudo-code for the implementation of our approach, as well as 10

proofs of all stated results.

1. IMPLEMENTATION PSEUDO-CODE

Further to our description in §2.5, we provide pseudo-code of the likelihood computation algorithm to
assist users in implementing the method.

Define the Hessian matrix function 15

H(λ) =

n∑
i=1

exp{λTgi}gigT

i .

Algorithm 1. Computing the exponentially tilted empirical likelihood

input θ and τ0
Solve linear programming problem described by (9) in the main text
If no feasible solutions exist

output 0
else

λ← (0, . . . , 0)
τ ← τ0 + 1
while τ > τ0

s← H(λ)−1f(λ)
r ← 0
λ′ ← λ− s
while f(λ) > f(λ′)

r ← r + 1
λ′ ← λ− 2−rs

τ ← ‖λ′ − λ‖
λ← λ′

for i = 1 to i = n
pi ← exp(λTgi)/

∑n
j=1 exp(λTgj)

L←
∏n
i=1 npi

output L
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2. NOTATION

To reduce the amount of notational clutter in the proofs, we introduce the notation (i) ln(θ) = logLn(θ)
and (ii) gi(θ) = g(di, θ).

3. PROOFS

Proof of Proposition 1. The optimization problem20

max
p1,...,pn

n∑
i=1

{−pi log pi}

subject to
n∑
i=1

pi = 1

is solved uniquely by pi = 1/n for each i = 1, . . . , n (using the method of Lagrange multipliers for ex-
ample). If the additional constraint

n∑
i=1

pig(di, θ̂n) = 0

is imposed, it follows that pi = 1/n for each i = 1, . . . , n is still the unique solution since it satisfies the
constraint. By the AM-GM inequality,

Ln(θ) =

n∏
i=1

npi(θ) ≤ 1

with equality if and only if each pi(θ) is equal to 1/n, attained at θ = θ̂n. �

Proof of Theorem 1. From the proof of Proposition 1, Ln(θ̂n) = 1. Furthermore, by consistency of θ̂n,25

θ0 will lie in the ball {θ : ‖θ − θ̂n‖ ≤ δ/2} with probability approaching one. Hence,

sup
‖θ−θ̂n‖2≥δ

Ln(θ)

Ln(θ̂n)
≤ sup
‖θ−θ0‖≥δ/2

sup
p∈Φ(θ)

n∏
i=1

npi (1)

occurs with probability approaching 1, where Φ(θ) = {p :
∑n
i=1 pi = 1,

∑n
i=1 pigi(θ) = 0, pi ≥ 0, i =

1, . . . , n} ∪ {0}, and it is therefore sufficient to establish the upper-bound for the right-hand side.
By a similar argument to the proof of Lemma 1, EP0{g(D, θ)} is continuous in θ and we have assumed

that it has a unique zero at θ0. By the compactness of Θ, there exists some ε > 0 such that30

inf
‖θ−θ0‖≥δ/2

‖EP0
{g(D, θ)}‖1 > ε.

By Assumption 1(iv), n−1
∑n
i=1 gi(θ) and n−1

∑n
i=1‖gi(θ)‖22 converge uniformly in probability to

EP0
{g(D, θ)} and EP0

{‖g(D, θ)‖22} respectively. Therefore,

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

gi(θ)− EP0
{g(D, θ)}

∥∥∥∥∥
1

< ε/2, sup
θ∈Θ

1

n

n∑
i=1

‖gi(θ)‖22 < 2EP0

{
sup
θ∈Θ
‖g(D, θ)‖22

}
occur with probability approaching 1. On this event,

inf
‖θ−θ0‖≥δ/2

∥∥∥∥∥ 1

n

n∑
i=1

gi(θ)

∥∥∥∥∥
2

1

= inf
‖θ−θ0‖≥δ/2

inf
p∈Φ(θ)

∥∥∥∥∥ 1

n

n∑
i=1

gi(θ)−
n∑
i=1

pigi(θ)

∥∥∥∥∥
2

1

>
ε2

4
.
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By the Cauchy-Schwarz inequality, the left hand side is bounded above by

inf
‖θ−θ0‖≥δ/2

inf
p∈Φ(θ)

{
1

n

n∑
i=1

(npi − 1)2

}{
1

n

n∑
i=1

‖gi(θ)‖22

}
.

Hence, there exists a strictly positive constant ε̃ such that 35

inf
‖θ−θ0‖≥δ/2

inf
p∈Φ(θ)

{
1

n

n∑
i=1

(npi − 1)2

}
≥ ε̃.

Consider the optimization problem of maximizing
∏n
i=1 npi subject to

n∑
i=1

pi = 1,

n∑
i=1

(npi − 1)2 ≥ nε̃, pi ≥ 0 for each i = 1, . . . , n.

For an element p = (p1, . . . , pn) in the constraint set, if pi, pj both exceed n−1 for some i, j and are
unequal, replacing both with (pi + pj)/2 would strictly increase the objective while remaining in the
constraint set. We deduce that for any solution to the the optimization problem, all values of pi exceeding
n−1 must be equal. At least one value exceeds n−1 due to the inequality constraint. A similar argument 40

applies for values below n−1.
For fixed m ∈ {1, . . . , n− 1}, we consider maximizing the objective when m values of pi are equal to

p+ > n−1, and the remaining n−m values are equal to p− < n−1. We can further write np+ = 1 + a,
np− = 1− b, where 0 ≤ a ≤ n− 1, 0 ≤ b ≤ 1. By taking the logarithm of the objective, we seek to
maximize m log(1 + a) + (n−m) log(1− b) subject to 45

am = (n−m)b, ma2 + (n−m)b2 ≥ nε̃.

For (nε̃)/{(n− 1)2 + ε̃} < m < n/(1 + ε̃), the constraint set is non-empty and the solution is

a =

{
ε̃(n−m)

m

}1/2

, b =

[
ε̃m

n−m

]1/2

.

We consider sufficiently large n such that m = 1 lies in the permissible range. We claim that for fixed n,
m = 1 is the value which maximizes the objective, which can now be written as

[
1 +

{
ε̃(n−m)

m

}1/2
]m{

1−
(

ε̃m

n−m

)1/2
}n−m

.

Letting x = {(n−m)/m}1/2, which is strictly decreasing inm, and taking the logarithm of the objective,
it is sufficient to show that the function 50

n

1 + x2
log(1 + xε̃1/2) +

nx2

1 + x2
log

(
1− ε̃1/2

x

)
is increasing in x. By differentiating with respect to x and simplifying, it is sufficient to show that

2x

{
log(1 + xε̃1/2)− log

(
1− ε̃1/2

x

)}
− (1 + x2)

(
ε̃1/2

1 + xε̃1/2
+

ε̃1/2

1− ε̃1/2/x

)
< 0. (2)
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The first term is equal to

2x log

(
1 + xε̃1/2

1− ε̃1/2/x

)
= 2x log

{
1 +

ε̃1/2(x2 + 1)

x(1− ε̃1/2/x)

}
≤ 2ε̃1/2(x2 + 1)

1− ε̃1/2/x

(
1 + xε̃1/2

1− ε̃1/2/x

)−1/2

=
2ε̃1/2(x2 + 1)

{(1− ε̃1/2/x)(1 + xε̃1/2)}1/2
55

where we have used the inequality log(1 + z) ≤ z(z + 1)−1/2. Therefore, the left-hand side of (2) is
upper-bounded by

ε̃1/2(x2 + 1)

{(1− ε̃1/2/x)(1 + xε̃1/2)}1/2

{
2−

(
1− ε̃1/2/x

1 + xε̃1/2

)1/2

−
(

1 + xε̃1/2

1− ε̃1/2/x

)1/2
}
. (3)

For positive z, z + z−1 is lower-bounded by 2, with equality if and only if z = 1. But ε̃ is strictly greater
than 0, so (

1− ε̃1/2/x

1 + xε̃1/2

)1/2

cannot equal 1. Therefore, (3) is strictly less than 0, as required.
Returning to (1), we conclude that

sup
‖θ−θ0‖≥δ/2

sup
p∈Φ(θ)

n∏
i=1

npi ≤ [1 + {ε̃(n− 1)}1/2]

{
1−

(
ε̃

n− 1

)1/2
}n−1

60

= [1 + {ε̃(n− 1)}1/2] exp

[
(n− 1) log

{
1−

(
ε̃

n− 1

)1/2
}]

≤ [1 + {ε̃(n− 1)}1/2] exp{−ε̃(n− 1)
1/2}.

For 0 < ε∗ < ε̃, and sufficiently large n, we have a further upper-bound of exp{−ε∗(n− 1)
1/2}. �

Proof of Proposition 2. We work in a neighbourhood of (0, θ0) in Rm ×Θ in which Assumptions 3
and 4 hold. The function65

EP0
[exp{λTg(D, θ)}g(D, θ)]

is 0 at (0, θ0) and the domination condition of Assumption 4 allows us to differentiate under the integral
sign twice and deduce that the function is twice continuously differentiable. By the implicit function
theorem, there exist a neighbourhood U ⊂ Θ of θ0 and a neighbourhood ofW ⊂ Rm of 0 such that there
exists a unique twice continuously differentiable function λ0 : U → W satisfying

λ0(θ0) = 0, EP0
[exp{λ0(θ)Tg(D, θ)}g(D, θ)] = 0

for all θ ∈ U . The second part of Theorem 3.1 in Csiszár (1975) implies that λ0 is in fact the unique70

mapping into Rm which satisfies the above properties. The implicit function theorem also implies that the
second derivative ∂2λ0 of λ0 can be expressed as the sum and products of expectations of expressions
involving λ0, ∂λ0, g, ∂θg, which are all continuously differentiable in θ, and ∂2

θg, which satisfies the Lip-
schitz condition from Assumption 3, defined on a bounded set. Therefore, ∂2λ0 is Lipschitz continuous.�

LEMMA 1. The function75

EP0{g(D, θ)g(D, θ)T}

is continuous in θ.
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Proof of Lemma 1. For a fixed value θ∗ ∈ Θ, consider a sequence θn → θ∗. Define

fn(d) = g(d, θn)g(d, θn)T, f(d) = g(d, θ∗)g(d, θ∗)T

such that fn converges pointwise to f P0-almost everywhere and

‖fn(d)‖F ≤ sup
θ∈Θ
‖g(d, θ)g(d, θ)T‖F

for all n and for all values of d, where F refers to the Frobenius norm. The upper-bound is integrable,
since 80

EP0

{
sup
θ∈Θ
‖g(d, θ)g(d, θ)T‖F

}
= EP0

{
sup
θ∈Θ
‖g(d, θ)‖2

}
<∞

by Assumption 1(iv). Therefore, we can apply the dominated convergence theorem to deduce that

lim
n→∞

EP0 {g(d, θn)g(d, θn)T} = EP0 {g(d, θ∗)g(d, θ∗)T} ,

which establishes continuity. �

LEMMA 2. Under Assumptions 1–4, there exists a value of δ > 0 such that the δ-ball around θ̂n satis-
fies the following properties with probability approaching 1:

(i) contained in a neighbourhood of θ0 satisfying the conditions of Assumptions 2 and 3 and Proposition 85

2.
(ii) the set of vectors {g1(θ), . . . , gn(θ)} span Rm for all values of θ.

(iii) the function λ̂n(θ) from Assumption 2 is the unique function mapping into Rm which satisfies
n∑
i=1

exp{λ̂n(θ)Tgi(θ)}gi(θ) = 0.

(iv) λ̂n is twice continuously differentiable and

∂λ̂n(θ) = −

{
n∑
i=1

pi(θ)gi(θ)gi(θ)
T

}−1
 n∑
j=1

pj(θ){I + gj(θ)λ̂n(θ)T}∂θgj

 . (4)

(v) ln is twice differentiable with ∂ln(θ̂n) = 0 and n−1∂2ln(θ̂n) = −Σ̂+
n = −ĜT

nΩ̂−1
n Ĝn. 90

Proof of Lemma 2. Consider a ball around θ0 satisfying the conditions of Assumptions 2 and 3 and
Proposition 2. By the consistency of θ̂n, with probability approaching one, θ̂n is within half the radius
from θ0. Thus, we can take the ball around θ̂n of half the radius.

Assumption 1(iii) and Lemma 1 imply that there exists a neighbourhood of θ0 where the determinant
of EP0

{g(D, θ)g(D, θ)T} is bounded away from 0. By the uniform law of large numbers implied by As- 95

sumption 1(iv), n−1
∑n
i=1 gi(θ)gi(θ)

T is positive definite for all θ in this neighbourhood with probability
approaching 1. This is equivalent to the set {g1(θ), . . . , gn(θ)} spanning Rm. If necessary, we shrink the
ball around θ̂n to be contained in here.

The function fn(λ, θ) =
∑n
i=1 exp{λTgi(θ)}gi(θ) is differentiable with respect to λ with partial

derivative 100

∂λfn(λ, θ) =

n∑
i=1

exp{λTgi(θ)}gi(θ)gi(θ)T

which is positive definite by the previous property. Thus, for fixed θ, fn(λ, θ) is an injective mapping of
λ and λ̂n(θ) the unique value which maps to 0.

By the uniqueness of λ̂n and the application of the implicit function theorem to fn at each value of
(λ̂n(θ), θ), λ̂n is equal to the implicit function and is thus twice continuously differentiable. The first
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derivative is105

∂λ̂n(θ) = −

{
n∑
i=1

exp λ̂n(θ)Tgi(θ)gi(θ)gi(θ)
T

}−1
 n∑
j=1

exp λ̂n(θ)Tgj(θ){Im + gj(θ)λ̂n(θ)T}∂θgj


= −

{
n∑
i=1

pi(θ)gi(θ)gi(θ)
T

}−1
 n∑
j=1

pj(θ){Im + gj(θ)λ̂n(θ)T}∂θgj

 .
We can express the log exponentially tilted empirical likelihood as

ln(θ) = log

n∏
i=1

exp{λ̂n(θ)Tgi(θ)}∑n
j=1 exp{λ̂n(θ)Tgj(θ)}

=

n∑
i=1

{λ̂n(θ)Tgi(θ)} − n log

n∑
j=1

exp{λ̂n(θ)Tgj(θ)}110

and we differentiate with respect to θ to obtain

∂ln(θ) =

n∑
i=1

∂(λ̂T

ngi)− n
n∑
i=1

∂(λ̂T
ngi) exp{λ̂n(θ)Tgi(θ)}∑n
j=1 exp{λ̂n(θ)Tgj(θ)}

=

n∑
i=1

∂(λ̂T

ngi){1− npi(θ)}.

But pi(θ̂n) = 1/n for each i = 1, . . . , n, so

∂ln(θ̂n) = 0.

The second derivative of ln is

∂2ln(θ) =

n∑
i=1

∂2(λ̂T

ngi)(θ){1− npi(θ)} − n
n∑
i=1

{∂(λ̂T

ngi)
T∂(pi)}(θ).115

Since pi(θ̂n) = 1/n for each i = 1, . . . , n, the first sum is zero at θ = θ̂n. Furthermore,

∂(λ̂T

ngi)(θ̂n) =
(
gT

i ∂λ̂n + λ̂T

n∂θgi

)
(θ̂n)

= (gT

i ∂λ̂n)(θ̂n)

since λ̂n(θ̂n) = 0 by part (ii) and

∂pi(θ̂n) =

pi∂(λ̂T

ngi)− pi
n∑
j=1

pj∂(λ̂T

ngj)

 (θ̂n)120

= n−1(gT

i ∂λ̂n)(θ̂n)− n−2


n∑
j=1

gj(θ̂n)


T

∂λ̂n(θ̂n)

where the second term is zero since θ̂n is the M-estimator. We deduce from part (iii) that

∂λ̂n(θ̂n) = −

{
n−1

n∑
i=1

gi(θ̂n)gi(θ̂n)T

}−1
n−1

n∑
j=1

∂θgj(θ̂n)


= −Ω̂−1

n Ĝn.
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Putting everything together, 125

n−1∂2ln(θ̂n) = −ĜT

nΩ̂−1
n

{
n−1

n∑
i=1

gi(θ̂n)gi(θ̂n)T

}
Ω̂−1
n ĜT

n

= −ĜT

nΩ̂−1
n Ĝn,

as required. �

Proof of Theorem 2. This proof is based on the proof of Theorem 1.4.2 in Ghosh & Ramamoorthi
(2003). 130

We make a change of variables s = n1/2(θ − θ̂n)∫
Rm

∣∣∣ p∗(s | D1, . . . , Dn)− (2π)−m/2|Σ0|−1/2 exp(−0.5sTΣ−1
0 s)

∣∣∣ds
where

p∗(s | D1, . . . , Dn) =
p(θ̂n + s/n1/2)Ln(θ̂n + s/n1/2)∫
p(θ̂n + t/n1/2)Ln(θ̂n + t/n1/2) dt

=
p(θ̂n + s/n1/2) exp{ln(θ̂n + s/n1/2)− ln(θ̂n)}∫
p(θ̂n + t/n1/2) exp{ln(θ̂n + t/n1/2)− ln(θ̂n)} dt

and is extended to all of Rm by taking the value zero outside of its original domain. Writing Cn = 135∫
Rm p(θ̂n + t/n1/2) exp{ln(θ̂n + t/n1/2)− ln(θ̂n)} dt, we are required to show that

C−1
n

∫
Rm

∣∣∣p(θ̂n + s/n1/2) exp{ln(θ̂n + s/n1/2)− ln(θ̂n)} − Cn(2π)−m/2|Σ0|−1/2 exp (−sTΣ−1
0 s/2)

∣∣∣ ds
(5)

tends in probability to 0. It is sufficient to show that

I1 =

∫
Rm

∣∣∣p(θ̂n + s/n1/2) exp{ln(θ̂n + s/n1/2)− ln(θ̂n)} − p(θ0) exp (−sTΣ−1
0 s/2)

∣∣∣ ds→ 0

with convergence in probability, since it implies that Cn converges to p(θ0)(2π)m/2|Σ0|1/2 in probability
and the integral in (5) is bounded above by I1 + I2, where

I2 =

∫
Rm

∣∣∣p(θ0) exp (−sTΣ−1
0 s/2)− Cn(2π)−m/2|Σ0|−1/2 exp (−sTΣ−1

0 s/2)
∣∣∣ ds 140

=
∣∣∣p(θ0)− Cn(2π)−m/2|Σ0|−1/2

∣∣∣ ∫
Rm

exp (−sTΣ−1
0 s/2) ds

which also converges to 0 in probability.
Let δ > 0 be small enough to satisfy the conditions of Lemma 2. Let c > 0. We separate I1 into the

three regions A1 = {s : ‖s‖2 < c log n1/2}, A2 = {s : c log n1/2 < ‖s‖2 < δn1/2}, A3 = {s : ‖s‖2 >
δn1/2}. 145

We begin with A3.∫
A3

∣∣∣p(θ̂n + s/n1/2) exp{ln(θ̂n + s/n1/2)− ln(θ̂n)} − p(θ0) exp (−sTΣ−1
0 s/2)

∣∣∣ ds
≤
∫
A3

p(θ̂n + s/n1/2)
Ln(θ̂n + s/n1/2)

Ln(θ̂n)
ds+

∫
A3

p(θ0) exp (−sTΣ−1
0 s/2) ds.

The first integral goes to zero by Theorem 1. The second goes to zero by the tail properties of the multi-
variate normal distribution. 150
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By Taylor’s theorem,

ln(θ̂n + s/n1/2)− ln(θ̂n) =
1

2n
∂2ln(θ̂n)(s, s) +

1

2n
{∂2ln(θs)(s, s)− ∂2ln(θ̂n)(s, s)}

= −1

2
sTΣ̂+

n s+Rn(s)

where θs = θ̂n + (ηs)/n1/2 for some η ∈ [0, 1], with the first order term vanishing due to Lemma 2. By
the domination conditions of Assumption 4 and the uniqueness of λ0 from Proposition 2, all of155

sup
θ∈Bδ(θ̂n)

∥∥∥λ̂n(θ)− λ0(θ)
∥∥∥ , sup

θ∈Bδ(θ̂n)

∥∥∥∂λ̂n(θ)− ∂λ0(θ)
∥∥∥ , sup

θ∈Bδ(θ̂n)

∥∥∥∂2λ̂n(θ)− ∂2λ0(θ)
∥∥∥

converge to 0 in probability. For the following, let hi(θ) = λ0(θ)Tgi(θ) and h(D, θ) = λ0(θ)Tg(D, θ)
and we suppress dependence on θ for presentational clarity

1

n
∂2ln =

1

n

n∑
i=1

(
∂2hi

[
1− exp(hi)

EP0
{exph(D)}

]
− exp(hi)∂h

T
i

EP0
{exph(D)}

[
∂hi −

EP0
{exph(D)∂h(D)}
EP0
{exph(D)}

])
+ oP0

(1).

From Assumption 3 and Proposition 2, we know that for each i, ∂2hi satisfies a Lipschitz condition, and
all other terms are continuously differentiable in θ, thus160

sup
s∈A1∪A2

n−1
∥∥∥∂2ln(θs)− ∂2ln(θ̂n)

∥∥∥
op

‖θs − θ̂n‖2
≤ OP0

(1).

Now consider∫
A1

∣∣∣∣p(θ̂n + s/n1/2) exp{ln(θ̂n + s/n1/2)− ln(θ̂n)} − p(θ0) exp

(
−1

2
sTΣ−1

0 s

)∣∣∣∣ ds ≤ J1 + J2

where

J1 =

∫
A1

p(θ̂n + s/n1/2)

∣∣∣∣exp

(
−1

2
sTΣ̂+

n s+Rn(s)

)
− exp

(
−1

2
sTΣ−1

0 s

)∣∣∣∣ ds
J2 =

∫
A1

∣∣∣p(θ̂n + s/n1/2)− p(θ0)
∣∣∣ exp

(
−1

2
sTΣ−1

0 s

)
ds.165

By consistency of θ̂n and continuity of p(θ) at θ0, J2 converges to 0 in probability. Furthermore,

sup
s∈A1

Rn(s) ≤ sup
s∈A1

‖s‖22‖θs − θ̂n‖2OP0(1) ≤ c3 (log n1/2)3

n1/2
OP0(1) = oP0(1)

and Σ̂+
n converges to Σ−1

0 in probability by Assumption 1. Therefore, J1 converges in probability to zero.
Next consider∫

A2

∣∣∣∣p(θ̂n + s/n1/2) exp{ln(θ̂n + s/n1/2)− ln(θ̂n)} − p(θ0) exp

(
−1

2
sTΣ−1

0 s

)∣∣∣∣ ds
≤
∫
A2

p(θ̂n + s/n1/2) exp

{
−1

2
sTΣ̂+

n s+Rn(s)

}
ds+

∫
A2

p(θ0) exp

(
−1

2
sTΣ−1

0 s

)
ds.170

The second integral is bounded above by p(θ0) exp{−ζ(c log n1/2)2/2}vol(A2) where ζ > 0 is the small-
est eigenvalue of Σ−1

0 . For n1/2 > e, (log n1/2)2 > log n1/2, so we can further upper-bound the second
integral by

Kp(θ0)
nm/2

nζc2/4

where K > 0 is a constant. For sufficiently large c, this tends to 0 as n tends to infinity.



Inference under unequal probability sampling 9

For the first integral, since ‖θs − θ̂n‖2 < δ for all s ∈ A2, we have 175

sup
s∈A2

|Rn(s)|
‖s‖22

≤ δ OP0
(1).

Therefore, for any ε > 0, we can choose sufficiently small δ to ensure that

pr
{
|Rn(s)| < 1

4
sTΣ̂+

n s for all s ∈ A2

}
> 1− ε

for all sufficiently large n. Hence, with probability greater than 1− ε,∫
A2

p(θ̂n + s/n1/2) exp

{
−1

2
sTΣ̂+

n s+Rn(s)

}
ds

≤ sup
s∈A2

p(θ̂n + s/n1/2)

∫
A2

exp

(
−1

4
sTΣ̂+

n s

)
ds

which converges to zero in probability. � 180

Proof of Theorem 3. Using the same notation as the proof of Theorem 2, we claim that∫
Rm
‖s {p∗(s | D1, . . . , Dn)− (2π)−m/2|Σ0|−1/2 exp(−0.5sTΣ−1

0 s)}‖2 ds→ 0

with convergence in probability. This is similar to what was proved in Theorem 2, but there is now an
additional factor of ‖s‖2 in the integrand. The claim implies that∥∥∥∥∫

Rm
s {p∗(s | D1, . . . , Dn)− (2π)−m/2|Σ0|−1/2 exp(−0.5sTΣ−1

0 s)} ds
∥∥∥∥

2

→ 0

with convergence in probability, but the second term within the norm is equal to the mean of a mean zero
multivariate normal distribution. Thus, 185

n1/2(θ∗n − θ̂n) =

∫
Rm

s p∗(s | d1, . . . , dn) ds→ 0

with convergence in probability. The second assertion follows from this along with the asymptotic nor-
mality of θ̂n stated in §2.1.

It remains to prove the initial claim. Since
∫
Rm‖s‖2 exp(−0.5sTΣ−1

0 s) ds <∞, we can argue similarly
to the proof of Theorem 2 that it is sufficient to show∫

Rm
‖s{p(θ̂n + s/n1/2) exp{ln(θ̂n + s/n1/2)− ln(θ̂n)} − p(θ0) exp (−sTΣ−1

0 s/2)}‖2 ds→ 0

with convergence in probability. As before, we decompose the integral into the three regions A1, A2 and 190

A3. For A3,∫
A3

‖s{p(θ̂n + s/n1/2) exp{ln(θ̂n + s/n1/2)− ln(θ̂n)} − p(θ0) exp (−sTΣ−1
0 s/2)}‖2 ds

≤
∫
A3

‖s‖2 p(θ̂n + s/n1/2)
Ln(θ̂n + s/n1/2)

Ln(θ̂n)
ds+

∫
A3

‖s‖2 p(θ0) exp (−sTΣ−1
0 s/2) ds.

Changing variables back to θ, the first integral on the right hand side is equal to∫
‖θ−θ̂n‖2>δ

n(m+1)/2‖θ − θ̂n‖2 p(θ)
Ln(θ)

Ln(θ̂n)
dθ.

But 195∫
‖θ−θ̂n‖2>δ

‖θ − θ̂n‖2 p(θ) dθ ≤
∫
‖θ−θ̂n‖2>δ

(‖θ‖2 + ‖θ̂n‖2) p(θ) dθ,
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and the right hand side is stochastically bounded by the finite moment assumption. Thus, by applying The-
orem 1, the first integral tends to zero in probability. The second integral also tends to zero in probability
by the tail properties of the multivariate normal distribution.

Furthermore,∫
A1

‖s‖2 exp(−sTΣ−1
0 s/2) ds = OP0

(1) and
∫
A2

‖s‖2 exp (−sTΣ−1
0 s/4) ds→ 0

with convergence in probability, from which we can deduce that the integrals for A1 and A2 will also200

converge to 0 in probability using the same arguments as the proof of Theorem 2. �

Proof of Theorem 4. Theorem 2 implies L1 convergence of the full posterior as n→∞∫
Θ

∣∣∣ p(θ | D1, . . . , Dn)− pθ̂n,n−1Σ0
(θ)
∣∣∣ dθ → 0

with convergence in probability, where Θ ⊂ Rm is the parameter space of θ, pθ̂,n−1Σ0
is the density

of N (θ̂n, n
−1Σ0), θ̂n = (α̂n, β̂n, ρ̂n, γ̂n) and Σ0 = limn→∞ varP0

(n1/2θ̂n). It remains to show the cor-
responding result for the marginal posterior. Let m1 = dim(α) + dim(β) + dim(ρ), so that (α, β, ρ) ∈205

Rm1 , and let m2 = dim(γ), so m1 +m2 = m. The posterior density p(θ | d1, . . . , dn) is assigned the
value 0 outside of Θ.∫

Γ

∣∣∣ p(γ | D1, . . . , Dn)− pγ̂n,n−1V0
(γ)
∣∣∣ dγ =

∫
Γ

∣∣∣ ∫
Rm1

p(θ | D1, . . . , Dn)− pθ̂n,n−1Σ0
(θ) dα dβ dρ

∣∣∣ dγ
≤
∫

Γ

∫
Rm1

∣∣∣ p(θ | D1, . . . , Dn)− pθ̂n,n−1Σ0
(θ)
∣∣∣ dα dβ dρ dγ

≤
∫
Rm2

∫
Rm1

∣∣∣ p(θ | D1, . . . , Dn)− pθ̂n,n−1Σ0
(θ)
∣∣∣ dα dβ dρ dγ210

=

∫
Θ

∣∣∣ p(θ | D1, . . . , Dn)− pθ̂n,n−1Σ0
(θ)
∣∣∣ dθ

+

∫
Rm\Θ

pθ̂n,n−1Σ0
(θ) dθ.

The first term tends in probability to 0 by Theorem 2. This implies that∫
Θ

pθ̂n,n−1Σ0
(θ) dθ → 1

with convergence in probability, so the second term also tends in probability to 0. �
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