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Abstract 

Determining the premalignant lesions that develop into malignant tumours remains a 

daunting task. Brain tumours are frequently characterised by a block in differentiation, 

implying that normal developmental pathways become hijacked during 

tumourigenesis. However, the heterogeneity of stem cells and their progenitors in the 

brain suggests there are many potential routes to tumour initiation. Studies in 

Drosophila melanogaster have enhanced our understanding of the tumourigenic 

potential of distinct cell types in the brain. Here we review recent studies that have 

improved our knowledge of neural stem cell behaviour during development and in 

brain tumour models. 

 

Introduction 

Neural stem cell (NSC) division is required to generate neurons and glia at the right 

time and place, but aberrant NSC proliferation can lead to tumourigenesis. Therefore, 

a balance between NSC proliferation and differentiation must be maintained during 

development and in adulthood. Tumours affecting the central nervous system (CNS) 

are among the most poorly understood and difficult to treat. The recent identification 

of tumour-specific genetic markers, in combination with histopathological analysis, 

has allowed for the classification of CNS tumours [1]. While these developments have 

provided important diagnostic tools, they have not necessarily led directly to therapies 

and many brain tumours remain resistant to available treatments. This is due, in part, 

to the enormous diversity of CNS tumours, with both inter- and intra-tumour 

heterogeneity, as well as a lack of knowledge regarding the molecular basis of tumour 

malignancy. It is challenging to determine the pre-malignant lesions that progress to 

malignant tumours in humans, but much can be learned from studying simpler 

organisms that employ conserved mechanisms to regulate NSC behaviour. 
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Here we summarise recent findings on brain tumour initiation and malignancy in 

Drosophila, which has served as a valuable cancer model for many years [2]. The 

unparalleled genetic toolkit for Drosophila has enabled diverse aspects of 

tumourigenesis to be investigated. 

 

1. The diversity of Drosophila neural stem cells  

The relative simplicity of the Drosophila CNS provides an excellent model system in 

which to investigate the mechanisms that regulate neurogenesis [3]. Drosophila 

neurogenesis occurs in two distinct phases: (1) an embryonic phase, that generates the 

larval nervous system, and (2) a larval phase, that generates the adult nervous system 

[4]. The majority of Drosophila NSCs (called neuroblasts) arise from the 

neuroectoderm during embryogenesis and exhibit three main division modes: type 0, 

type I and type II (Fig. 1A-B) [5]. Type I neuroblasts are the most prevalent NSC in 

the embryonic and larval CNS. Asymmetric division of a type I neuroblast results in 

NSC self-renewal and the generation of a ganglion mother cell (GMC), a cell type 

that undergoes a terminal division to produce two neurons or glial cells. At the end of 

embryogenesis, a small number of type I lineages switch to a type 0 division mode, 

whereby their daughter cells (GMCs) do not divide, but differentiate directly to a 

neuronal fate [6-8].  

 

Type II neuroblasts, of which there are eight in each brain lobe, exhibit the highest 

self-renewal capacity in the developing CNS and represent a rare NSC state. 

Asymmetric division of type II neuroblasts generates intermediate neural progenitors 

(INPs) [9-11], which retain many NSC properties, such as the ability to self-renew 

and produce GMCs that give rise to neurons or glia. Importantly, the embryonic 

origin of type II neuroblasts and their lineages has recently been described [12,13]. 

These studies identified the genes that promote type II neuroblast fate during 

embryogenesis [12], with roles for buttonhead, Sp1 and the EGFR pathway, and 

determined the contribution these embryonic NSCs make to the adult central complex 

[13]. 

 

Yet another type of NSC generates the neurons and glia of the adult visual system (the 

optic lobe) and has a different origin. These NSCs arise from symmetrically dividing 



neuroepithelial cells that are converted to asymmetrically dividing neuroblasts by a 

wave of proneural gene expression that traverses the larval optic lobe [14]. The 

majority of optic lobe NSCs divide in a type I manner, with the exception of a small 

population at the tips of the neuroepithelium that exhibit type 0 divisions [15].  

 

While the development of the optic lobe during larval development has been well 

characterised, the behaviour of optic lobe NSCs during embryonic development has 

recently been revised [16]. The optic lobe neuroepithelium was thought to be dormant 

during embryogenesis, but this view has been overturned by the discovery of a small 

number of NSCs that are generated by the embryonic optic lobe neuroepithelium 

(embryonic optic neuroblasts, EONs) [16]. Although the contribution of EONs to 

visual system development and their tumourigenic capacity are yet to be determined, 

their identification highlights the dynamic behaviour of NSCs in the optic lobe during 

the early stages of development. 

 

2. Neural lineages as the source of tumours 

The asymmetric division of NSCs is a fundamental aspect of cell biology that 

underlies neurogenesis. The generation of two cells with different identities after cell 

division can arise from the unequal segregation of cell fate determinants at mitosis. In 

Drosophila NSCs, fate determinants have been observed to localise on the basal side 

of the cell to enable partitioning to their daughter cells (GMC or INP, depending on 

the lineage) (Fig. 2A-A’). In all NSCs, the adaptor protein Miranda (Mira) is a central 

player in the segregation of cell fate determinants and correct localisation of Mira 

establishes daughter cell identity [17-21]. Recent studies have revealed that the 

phosphorylation state of Mira is important for cortical localisation [22]. During 

interphase, Mira is non-phosphorylated and is uniformly associated with the plasma 

membrane, but aPKC-mediated phosphorylation at metaphase prevents the 

localisation of Mira at the apical pole [22,23]. Furthermore, the asymmetric 

localisation of Mira is maintained through interactions with its cognate mRNA [24]. 

Robust Mira localisation ensures that cell fate determinants are distributed to the 

GMC or INP when a NSC divides [18-21]. Disrupting Mira localisation at 

asymmetric NSC division, for example through the ectopic expression of activated 

aPKC, impairs daughter cell differentiation and results in ectopic NSCs [18,25,26]. It 

is also notable that the activation of aPKC has been shown to promote hyperplastic 



growth of the neuroepithelium [27]. 

 

Two cell fate determinants that associate with Mira are the homeodomain 

transcription factor Prospero (Pros) and the translational repressor Brain tumour 

(Brat) [17-19]. Consistent with the loss of function phenotype of mira, mutations 

affecting either pros or brat result in an increase in NSCs [28,29]. However, pros 

tumours are found throughout the CNS [28] whereas brat tumours affect only the 

central brain [29]. This difference occurs because pros and brat mutations initiate 

tumourigenesis from different cells of origin (Fig. 2B). brat tumours arise from INPs 

of type II lineages that fail to differentiate [11,30], whereas GMCs revert to NSC 

identity in the absence of pros [28].  

 

Many of the tumour suppressors identified in Drosophila initiate tumourigenesis from 

neural progenitors. A number of these tumours originate specifically from the INPs of 

type II lineages. The adaptor protein Partner of Numb (Pon) is responsible for 

partitioning the Notch antagonist, Numb, to INPs at mitosis [31]. The loss of Numb 

prevents the establishment of INP fate and leads to large tumours consisting of type II 

neuroblasts, similar to the phenotype observed in brat mutants The FezF transcription 

factor Earmuff (Erm) regulates the maturation of INPs and mutations in erm result in 

the dedifferentiation of INPs to type II neuroblast fate [32-34]. Intriguingly, a recent 

study has suggested that the decision for INPs to differentiate or revert to NSC fate in 

certain brat mutants could be stochastic [35]. The majority of the proliferating cells in 

these tumours are not type II neuroblasts but are likely INPs that maintain the ability 

to self-renew and produce neurons and glia [35]. As such, INPs represent a weak 

point in type II lineages that is susceptible to distinct tumourigenic insults. Type I 

lineages, in contrast, are unaffected by mutations in brat, numb or erm [11,32]. 

 

Mutations in the gene lethal(3)malignant brain tumour (l(3)mbt) result in the 

overproliferation of neuroepithelial cells in the optic lobe without affecting 

asymmetric cell division [36]. L(3)mbt is a chromatin insulator that binds to many 

Hippo pathway target genes to repress their expression and restrain proliferation [36]. 

Surprisingly, l(3)mbt brain tumours ectopically express many germline genes that are 

required for tumour malignancy, including homologues of human cancer/testis 

antigens [37]. 



 

Remarkably, even post-mitotic cells have been shown to revert to NSC fate and serve 

as the tumour cell of origin. Mutations in the gene encoding the BTB zinc finger 

transcription factor Longitudinals lacking (Lola), results in the dedifferentiation of 

optic lobe neurons to a NSC-like fate [38]. Similarly, mutations affecting Nerfin-1 

result in ectopic NSCs originating from neurons of type I and type II lineages [39]. 

These experiments demonstrate that neurons are able to reinitiate a stem cell 

programme to become tumour cells of origin, as can GMCs and INPs, highlighting 

the diverse nature of tumour initiation within NSC lineages (Fig. 2B). Similar 

findings have been made in mouse tumour models, which have shown that malignant 

gliomas can also originate from differentiated neurons and suggest that tumour 

initiation likely occurs via dedifferentiation [40]. 

 

3. Temporal patterning and tumour malignancy 

NSCs divide continuously throughout larval development to generate neurons and 

glial cells but the identity of the neuronal subtypes they generate changes over time. 

The birth order and identity of their progeny is directed by the sequential expression 

of a series of ‘temporal transcription factors’ [41-43]. The temporal patterning of 

NSCs also ensures their timely cell cycle exit at the end of larval development [44,45]. 

In contrast, ectopic NSCs that result from the loss of many tumour suppressor genes 

do not exit the cell cycle but rather have an extended capacity to self-renew [25]. The 

unlimited proliferative potential of tumour NSCs was demonstrated through serial 

transplantation experiments, in which pieces of larval brain tumour were allografted 

into the abdomen of adult host flies and could be maintained in this manner for years 

[25]. It may not be surprising that mutations affecting asymmetric cell division lead to 

an increase in NSCs, but the ability of these ectopic NSCs to divide indefinitely 

showed that they were truly tumourigenic and not simply hyperplastic overgrowths. 

However, the mechanisms through which tumour NSCs maintain an unrestricted 

proliferative potential, far beyond that of their developmental counterparts, was not 

clear. Recent evidence has implicated the temporal identity of the tumour cell of 

origin as a prerequisite for tumour malignancy [46].  

 

Two broad temporal windows play an important role in tumour malignancy: (1) an 

early window, defined by the expression of Chronologically inappropriate 



morphogenesis (Chinmo), IGF-II mRNA-binding protein (Imp) and Lin-28, and (2) a 

late window, characterised by the expression of Syncrip (Syp), Broad (Br) and 

Ecdysone-induced protein 93F (E93) (Fig. 3A) [45-48]. The loss of pros from NSC 

lineages during either temporal window results in large NSC tumours. However, 

tumours induced early in larval development are maintained as large tumours in the 

adult nervous system (Fig. 3B), whereas those generated in the late temporal window 

mostly differentiate (Fig. 3C) [46]. Intriguingly, the authors found that the majority of 

tumour NSCs progressed from early to late identity during larval stages, at the same 

as surrounding wild type tissue, but a small population of tumour NSCs retained early 

identity. These early-identity tumour cells were responsible for the malignancy of 

pros tumours, driving tumour growth and persistence in the adult [46,49].  

 

How does early NSC temporal identity promote tumour growth? An important 

difference between the early and late temporal windows during development is the 

competence of NSCs to respond to the steroid hormone ecdysone [47]. Ecdysone 

levels increase toward the end of larval stages and signal NSC cell cycle exit [44,50]. 

The expression of the B1 isoform of the ecdysone receptor (EcR) in NSCs is 

regulated by the orphan nuclear receptor Seven-up (Svp) (orthologous to mammalian 

COUP-TF transcription factors) coincident with the early-to-late transition, which is 

also regulated by Svp [45,47,51]. Intriguingly, ecdysone signalling has also been 

shown to regulate the early-to-late transition [47], although these results could not be 

replicated in another study [52]. The subpopulation of pros tumour NSCs that are 

stalled in the early temporal window do not respond to the endogenous signals, such 

as ecdysone, that stimulate NSCs to exit the cell cycle [46,49]. As a result, these 

tumour cells continue to divide in the adult and drive tumour growth.  

 

The role of early temporal identity in enhancing tumour growth is not unique to pros 

tumours. In brat tumours, a subpopulation of tumour NSCs that express the early 

temporal genes Chinmo and Imp also drives tumour malignancy, and the repression of 

these genes restricts tumour growth [46,53]. One study identified a long non-coding 

RNA (lncRNA), cherub, that promotes tumour malignancy by preventing the 

temporal progression of tumour NSCs [53]. It is also notable that NSC hyperplasia 

induced by the ectopic activation of Notch signalling in type II INPs declines with the 

age of the cell of origin [54]. 



 

The identification of specific subsets of neural cells that promote tumour growth in 

the Drosophila CNS provides support for the cancer stem cell (CSC) hypothesis. 

CSCs are proposed to drive tumour malignancy and regrowth following treatment due 

to their resistance to traditional therapies [55]. The recent studies reviewed here take 

advantage of the simple Drosophila nervous system to identify conserved factors that 

promote the formation and maintenance of CSCs in vivo. 

 

Concluding remarks 

Studies in Drosophila have revealed that many distinct tumour types can arise from 

neural lineages. Furthermore, it is clear that tumours with common pathologies may 

develop from different cells of origin. Neural lineages are also the source of tumours 

affecting the mammalian CNS, in particular medulloblastoma and glioblastoma, 

which are two of the most aggressive brain tumours (reviewed in [56]). Evidence 

suggests that mammalian tumours may arise, not from NSCs directly, but from more 

restricted cells in the lineage [57-60] indicating that dedifferentiation is a conserved 

mechanism of tumour initiation. 

 

It remains unknown how the temporal identity of the cell of origin influences tumour 

malignancy in humans, and this will be an important aspect for future study. The 

recent adoption of single cell sequencing methods has made it possible to determine 

the transcriptomes of large numbers of cells and to profile the diverse cell types found 

in the developing and adult mammalian brain [61-63]. Promisingly, this approach has 

demonstrated that subtypes of childhood cerebellar cancers have very similar 

transcriptional profiles to distinct foetal progenitors found only early in development 

[64]. This suggests that the developmental window of tumour induction could 

determine the composition of mature tumours, but detailed lineage analysis in vivo 

will be required to assess if this is indeed the case for mammalian brain tumours.  
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Figure 1: Neural stem cells in the developing Drosophila central nervous system 

(A) NSCs in the developing Drosophila CNS (also called neuroblasts) are organised 
in stereotypical locations across the brain lobes and ventral nerve cord (VNC). 
The schematic shows a brain from mid/late larval stages. The majority of 
neuroblasts are type I (red). The optic lobe (OL) contains mostly type I 
neuroblasts but also a subset of type 0 neuroblasts (green). Type II neuroblasts 
are found in the posterior region of the brain lobe (blue). A, anterior; P, 
posterior; D, dorsal; V, ventral. 

(B) Division mode of Drosophila neuroblasts (NB). GMC: ganglion mother cell, INP: 
intermediate neural progenitor.  
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Figure 2: Neural stem cell lineages as tumour cells of origin 

(A-A’) The unequal distribution of fate determinants establishes differences in cell 
identity in the nervous system. In neuroblasts, members of the Par complex 
(aPKC/Bazooka/Par6) localise apically whereas cell fate determinants are 
anchored basally through interactions with adaptor proteins. (A) In type II 
neuroblasts, the adaptor protein Mira localises Brat to the basal cortex and 
Numb is recruited by the adaptor protein Pon. (A’) In type I neuroblasts and 
INPs, Brat and Numb are localised asymmetrically but do not regulate GMC 
fate. In contrast, correct distribution of Pros, regulated by Mira, is required for 
establishing GMC fate.  

(B) Mutations affecting different cell fate determinants initiate tumours from distinct 
cells of origin. 

  



Figure 3: The temporal identity of the cell of origin determines tumour 
malignancy  

(A) Temporal progression of NSCs and their lineages during development. 

(B) Induction of NSC tumours in the early temporal window results in malignant 
tumours that are maintained in the adult. 

(C) In contrast, a large number of NSCs in tumours induced during the late temporal 
window undergo differentiation before reaching the adult. These tumours show 
restricted growth and are characterised as benign. 
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