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Abstract

Background: DNA methylation (DNAm) age acceleration (AgeAccel) has been shown to be predictive of all-cause mortality but it is unclear 
what functional aspect(s) of aging it captures. We examine associations between four measures of AgeAccel in adults aged 45–87 years and 
physical and cognitive performance and their age-related decline.
Methods: AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno, and AgeAccelGrim were calculated in the Medical Research Council 
National Survey of Health and Development (NSHD), National Child Development Study (NCDS) and TwinsUK. Three measures of physical 
(grip strength, chair rise speed, and forced expiratory volume in one second [FEV1]) and two measures of cognitive (episodic memory and 
mental speed) performance were assessed.
Results: AgeAccelPheno and AgeAccelGrim, but not AgeAccelHannum and AgeAccelHorvath were related to performance in random 
effects meta-analyses (n = 1,388–1,685). For example, a 1-year increase in AgeAccelPheno or AgeAccelGrim was associated with a 0.01 mL 
(95% confidence interval [CI]: 0.01, 0.02) or 0.03 mL (95% CI: 0.01, 0.05) lower mean FEV1 respectively. In NSHD, AgeAccelPheno and 
AgeAccelGrim at 53 years were associated with age-related decline in performance between 53 and 69 years as tested by linear mixed models 
(p < .05). In a subset of NSHD participants (n = 482), there was little evidence that change in any AgeAccel measure was associated with change 
in performance conditional on baseline performance.
Conclusions: We found little evidence to support associations between the first generation of DNAm-based biomarkers of aging and age-
related physical or cognitive performance in midlife to early old age. However, there was evidence that the second generation biomarkers, 
AgeAccelPheno and AgeAccelGrim, could act as makers of an individual’s healthspan as proposed.

Keywords: Cognitive aging, DNA methylation, Epigenetic clock, Functional performance, Longitudinal, Normative aging, Physical performance

The worldwide demographic shift towards an aging population is 
accompanied by an increase in life expectancy; however, the quality 
of these extra years remains unclear (1–3). Aging is a dynamic and 
complex process characterized by an array of cellular and molecular 

changes which accumulate over the life course to manifest as im-
paired function and an increased susceptibility to multiple chronic 
diseases and death (4). The heterogeneity in age-related disease and 
functional capability cannot be explained by chronological age (CA) 
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alone (5). Therefore, a measure of biological age that can capture 
the aging process beyond what is represented by CA may identify 
people at risk of functional impairment, providing an insight into 
their health-related quality of life.

Numerous biomarkers of aging have been proposed including 
epigenetic biomarkers based on DNA methylation (DNAm) (6–10). 
Over recent years, a number of DNAm-based biomarkers of aging 
have been developed (8,11–15). The first generation of these bio-
markers were developed to predict CA and include the blood-based 
Hannum and the multi-tissue Horvath algorithms, which show a high 
correlation with and small deviation from CA (12,13). More recently, 
second generation DNAm-based biomarkers of aging have been de-
veloped with the specific aim of identifying Cytosine-phosphate-
Guanine sites (CpGs) that capture lifespan and healthspan in addition 
to those displaying changes with chronological time. One of these, the 
DNAm-based Phenotypic Age (PhenoAge), identified CpGs that pre-
dict a composite measure of mortality-related clinical physiological 
measures and CA (14). Another began by generating surrogate DNAm 
biomarkers of age-related physiological measures and smoking pack 
years then regressed time-to-death on these DNAm surrogates and CA 
to produce the DNAm GrimAge (15).

Having a higher DNAm age independent of CA (denoted age 
acceleration, AgeAccel), in all of these biomarkers has been shown 
to be associated with an increased risk of premature all-cause mor-
tality, cardiovascular disease and cancer, with AgeAccelPheno and 
AgeAccelGrim showing stronger associations than AgeAccelHannum 
or AgeAccelHorvath (14–21). However, it is unclear what functional 
aspects of aging these DNAm-based biomarkers of aging capture, 
and whether they can act as a proxy for an individual’s health be-
yond mortality and disease.

The maintenance of physical and cognitive performance are vital 
components of healthy aging and poorer performance has been as-
sociated with higher subsequent mortality rates (22,23). Therefore, 
examining associations between DNAm-based biomarkers of aging 
and age-related measures of performance and their decline may 
provide insight into the validity of these as biomarkers of healthy 
aging. Previous evidence from a small number of studies has been 
inconsistent and focused on the first generation of DNAm-based 
biomarkers (24–28). Two studies examining AgeAccelHannum and 
AgeAccelHorvath and change in physical and cognitive perform-
ance were either sex-specific, had small sample sizes and/or did not 
examine a wide range of performance measures (25,27). Another 
study examining a range of performance measures among 70-year 
olds observed cross-sectional but not longitudinal associations 
between AgeAccelHorvath, AgeAccelHannum and poorer grip 
strength, lung function and cognitive performance (24).

We used data from the Medical Research Council National 
Survey of Health and Development (NSHD; 1946 British birth 
cohort), National Child Development Study (NCDS;1958 British 
birth cohort) and TwinsUK Registry to examine associations be-
tween four DNAm-based biomarkers of aging (AgeAccelHannum, 
AgeAccelHorvath, AgeAccelPheno, AgeAccelGrim) at ages 
45–87  years and a range of physical and cognitive performance 
measures. We also examine if these DNAm-based biomarkers of 
aging are associated with decline over 16 years of follow-up in any 
of the performance measures in NSHD.

Methods

Participants
Participants from three cohorts (NSHD, NCDS and TwinsUK) have 
all been described in detail previously (29–32). Eligible participants 

had information on DNAm and at least one measure of physical and 
cognitive performance at the same or a later time point. In NSHD, 
DNAm and physical and cognitive performance were measured 
when participants were 53 (n = 1,375) and 60–64 years (n = 672). 
Of the participants with DNAm at 53 years, 973 also had physical 
and cognitive performance measured at 69 years. Participants from 
NCDS had DNAm and lung function measured at 45 years and cog-
nitive performance measured at 50 years (n = 240). For TwinsUK, 
120 monozygotic female twins (60 twin pairs) had DNAm profiled 
when aged 46–87 years and markers of physical performance meas-
ured up to 7  years before or after. The mean absolute differences 
between when DNAm was measured and when grip strength, chair 
rise speed and lung function was measured was 3, 0.7 and 0.4 years, 
respectively.

DNAm-Based Biomarkers of Aging
Blood samples for each cohort were taken as previously described 
(29,32,33). DNAm was measured at >850,000 CpG sites in each 
cohort using Infinium MethylationEPIC BeadChips and processed 
using the ENmix package (34) in R (35) to obtain methylation beta-
values. Quality control procedures were applied (Supplementary 
Material). We estimated four DNAm-based biomarkers of aging 
in each cohort: DNAm AgeHannum, DNAm AgeHorvath, DNAm 
PhenoAge, and DNAm GrimAge (12–15). We calculated these 
four DNAm-based biomarkers of aging using available software 
(https://labs.genetics.ucla.edu/horvath/dnamage/) with the normal-
ization option and advanced analysis for blood samples. Following 
the notation of previous publications, CA-independent DNAm-
based biomarkers were calculated within the software and de-
noted as AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno, and 
AgeAccelGrim, all in units of a year. Estimated blood cell counts 
(naive and exhausted CD8+ T-lymphocytes, CD4+ T-lymphocytes, 
B cells, natural killer cells, monocytes, and granulocytes) were also 
calculated within this software.

Aging Outcomes
We selected three measures of physical (grip strength, chair rise speed 
and lung function [forced expiratory volume in one second, FEV1]) 
and two measures of cognitive performance (episodic memory and 
mental speed), each of which were available in NSHD and at least 
one other study. All these performance measures were available in 
NSHD. Cognitive performance and FEV1 were measured in NCDS, 
while TwinsUK collected the three physical performance measures. 
Details of how each of these measures were assessed is outlined in 
Supplementary Material.

Covariates
We selected the covariates a priori based on previous studies (24,27) 
to include in sensitivity analyses: body mass index (BMI), height (m), 
smoking status and socioeconomic position indicated by either occu-
pational social class or income. We used covariates measured at the 
same time as the blood samples. For longitudinal analyses in NSHD, 
we included time-varying BMI and smoking status measured at 53, 
60–64, and 69 years. Details of how each of these covariates were 
measured is outlined in Supplementary Material.

Statistical Analyses
All analyses were conducted using the four AgeAccel biomarkers. 
Further mention of AgeAccel refers to all biomarkers unless specified.

First, we examined associations between AgeAccel and each per-
formance measure within each cohort. Linear regression models were 
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Table 1. Characteristics of Study Members by Cohort at Time of DNA Extraction

 

NSHD 53 y NSHD 60–64 y NCDS TwinsUK

Male 
n = 655

Female 
n = 720

Male 
n = 345

Female 
n = 327

Male 
n = 112

Female 
n = 128

Female 
n = 120

Year(s) at DNA extraction 1999 2006–2010 2003 2008–2015
Age (y) 53.4 (0.2) 53.5 (0.2) 63.0 (1.1) 63.1 (1.0) 45.1 (0.36) 45.1 (0.37) 64.6 (9.3)
DNAm AgeHannum (y) 43.1 (4.3) 41.6 (4.0) 53.4 (4.5) 50.4 (3.8) 36.1 (3.2) 35.7 (3.6) 51.8 (8.5)
AgeAccelHannum 0.79 (4.28) –0.66 (3.95) 1.50 (4.43) –1.53 (3.69) 0.25 (3.16) –0.22 (3.59) –0.06 (3.65)
DNAm AgeHorvath (y) 50.7 (4.2) 49.6 (3.9) 58.9 (4.7) 57.2 (4.1) 45.1 (3.5) 44.0 (3.9) 58.7 (8.1)
AgeAccelHorvath 0.54 (4.15) –0.54 (3.86) 0.79 (4.65) –0.83 (4.00) 0.58 (3.47) –0.51 (3.94) –0.07 (4.0)
PhenoAge (y) 39.0 (5.6) 38.9 (5.6) 48.9 (5.9) 47.7 (5.8) 37.9 (5.6) 38.6 (5.0) 56.8 (10.8)
AgeAccelPheno 0.05 (5.60) –0.02 (5.60) 0.57 (5.86) –0.84 (5.76) –0.37 (5.60) 0.32 (4.90) 0.47 (5.74)
GrimAge (y) 58.0 (5.14) 55.3 (4.81) 64.6 (4.6) 61.1 (4.3) 48.17 (4.92) 46.70 (4.43) 59.8 (7.8)
AgeAccelGrim 1.40 (5.14) –1.28 (4.79) 1.53 (4.4) –1.67 (4.10) 0.82 (4.91) –0.71 (4.39) –0.19 (3.02)
Body mass index (kg/m2) 27.4 (4.0) 27.3 (5.0) 28.2 (4.2) 28.0 (4.9) 25.2 (3.6) 24.0 (4.3) 26.8 (5.2)
Height (m) 1.75 (0.07) 1.61 (0.06) 1.75 (0.07) 1.62 (0.06) 1.77 (0.07) 1.64 (0.07) 1.62 (0.07)
% current smokers 22.9 25.4 10.5 12.6 19.6 24.2 5.0
% Nonmanual social class/income 
≥£25,000*

63.6 69.8 66.9 74.1 70.5 69.5 58.1

Grip strength (kg) 48.3 (12.6) 27.7 (8.3) 45.6 (11.6) 26.4 (7.6) – – 24.0 (6.6)
Chair rise speed (stands/min) 32.0 (10.0) 30.0 (9.3) 26.0 (7.0) 24.3 (6.9) – – 34.7 (11.0)
FEV1 3.26 (0.59) 2.31 (0.45) 3.07 (0.68) 2.18 (0.44) 3.84 (0.68) 2.68 (0.67) 2.28 (0.52)
Number of words recalled 23.2 (6.1) 24.5 (6.2) 23.6 (6.0) 25.6 (5.7) 6.59 (1.52) 6.78 (1.37) –
Total number of letters scanned 275.2 (73.8) 291.8 (76.0) 258.0 (71.4) 272.2 (69.5) 342.78 (105.5) 348.13 (96.10) –

Note: Values are mean (SD) unless stated. AgeAccel = age acceleration.
*Occupational social class for NSHD and NCDS, income for TwinsUK.

used in NSHD and NCDS and linear mixed models in TwinsUK, 
including a random effect for twin pair to account for familial effects. 
We adjusted for sex (in NSHD and NCDS) and CA (in months). We 
tested for interaction between AgeAccel and sex by including a multi-
plicative term. We tested for the presence of nonlinear associations by 
including a quadratic term of AgeAccel in regression models. Results 
from within-cohort analyses were then combined using random ef-
fects meta-analyses. AgeAccel was available in NSHD at two dif-
ferent time points: 53 and 60–64 years. Therefore, we subsequently 
conducted the primary meta-analyses using data collected at 53 years 
with a sensitivity analysis including data from 60–64 years.

Second, in NSHD we used linear mixed models with random 
intercepts and slopes to examine if physical and cognitive per-
formance measures between 53 and 69 years were associated with 
AgeAccel at 53 years. We included AgeAccel, sex, and CA (in months) 
at the 53-year measurement as fixed effects. We then tested inter-
actions between time and AgeAccel at 53 years using a log-likelihood 
ratio test to determine whether it was associated with rate of decline 
in the performance measures.

Third, in NSHD, we examined if change in AgeAccel between 53 
and 60–64 years was associated with change in performance between 
53 and 60–64 years. Linear regression models with Δperformance 
(ie, performance at 60–64  years–performance at 53  years) as the 
outcome and ΔAgeAccel as the exposure were used. Models were 
adjusted for performance at 53 years.

Sensitivity analyses were performed repeating each set of analysis 
with adjustment for BMI, height, smoking status and social class 
or income. Since the blood-based AgeAccel measures are correlated 
with cell composition (14,15,17) and cell composition changes with 
age, we explored cell-intrinsic (17) associations by adjusting for esti-
mated cell counts (naïve and exhausted CD8+ T-lymphocytes, CD4+ 
T-lymphocytes, B cells, natural killer cells, monocytes, and granulo-
cytes) in sensitivity analyses.

Results

Table 1 outlines characteristics of the study participants. The cor-
relation coefficients between the different AgeAccel measures were 
similar within each study. AgeAccelHannum, AgeAccelHorvath, and 
AgeAccelPheno were moderately correlated (ranging from r = .33 for 
AgeAccelHannum and AgeAccelPheno in TwinsUK to r  =  .58 for 
AgeAccelHannum and AgeAccelPheno in NCDS). AgeAccelGrim 
was also moderately correlated with AgeAccelPheno within each 
study (ranging from r  =  .36 in NSHD 60–64  years to r  =  .39 to 
r  =  .40 in all other studies). However, AgeAccelGrim had weak 
correlations with AgeAccelHannum within each study (r  =  ≤.25) 
and no correlation with AgeAccelHorvath (r  =  ≤.06 in NSHD at 
60–64 years, NCDS and TwinsUK r = .13 in NSHD at 53 years).

Associations Between AgeAccel and Physical and 
Cognitive Performance Across the Three Cohorts
We found no evidence for associations between AgeAccelHannum 
or AgeAccelHorvath and physical or cognitive performance in 
meta-analyses (Figures 1–5, Supplementary Tables 1 and 2). There 
was evidence of a nonlinear association (plinearity  =  .04) and sex 
interaction (pinteraction  =  .01) between AgeAccelHorvath and FEV1. 
When stratified by sex, effect sizes for the association between 
AgeAccelHorvath and FEV1 were in opposite directions. In women, 
higher AgeAccelHorvath was associated with lower FEV1, but in 
men with better FEV1 (Supplementary Table 2).

Higher AgeAccelPheno was associated with weaker grip strength, 
lower FEV1 and slower mental speed (Supplementary Table 3 and 
Figures 1–5). Higher AgeAccelGrim was associated with lower FEV1, 
poorer episodic memory and slower mental speed (Supplementary 
Table 4 and Figures 1–5). There was no evidence for a sex interaction 
with AgeAccelPheno or AgeAccelGrim and any of the performance 
measures. Estimates for the association between AgeAccelGrim 
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and physical and cognitive performance tended to be stronger than 
AgeAccelPheno (Supplementary Tables 3 and 4 and Figures 1–5). 
For example, a 1-year increase in AgeAccelPheno was associated 
with –0.97 (95% confidence interval [CI]: –1.65 to –0.29) mean re-
duction in number of letters scanned while AgeAccelGrim with a 
–2.05 (95% CI: –2.81 to –1.29) reduction.

Adjustment for covariates attenuated the association between 
AgeAccelPheno and grip strength but did not affect the overall 
conclusions for other associations (Supplementary Figures 6–10). 
Adjusting for cell composition did not affect the majority of the re-
sults; however, the association between AgeAccelGrim and chair rise 
speed became stronger due to the study estimates becoming less het-
erogeneous (Supplementary Figures 1–5).

There were no major differences in conclusions for 
AgeAccelHannum and AgeAccelHorvath between meta-analyses 
including NSHD participants at 53 years and the ones including par-
ticipants at 60–64 years with only minor differences in estimates and 
evidence for a nonlinear association between AgeAccelHannum and 

Figure 1. Association between (A) AgeAccelHannum, (B) AgeAccelHorvath, (C) 
AgeAccelPheno, (D) AgeAccelGrim and grip strength adjusted for sex and age.

Figure 2. Association between (A) AgeAccelHannum, (B) AgeAccelHorvath, 
(C) AgeAccelPheno, (D) AgeAccelGrim and chair rise speed adjusted for sex 
and age.

Figure 3. Association between (A) AgeAccelHannum, (B) AgeAccelHorvath, 
(C) AgeAccelPheno, (D) AgeAccelGrim and FEV1 adjusted for sex and age.

Figure 4. Association between (A) AgeAccelHannum, (B) AgeAccelHorvath, 
(C) AgeAccelPheno, (D) AgeAccelGrim and standardized total number of 
words recalled adjusted for sex and age.

Figure 5. Association between (A) AgeAccelHannum, (B) AgeAccelHorvath, 
(C) AgeAccelPheno, (D) AgeAccelGrim and total number of letters scanned 
adjusted for sex and age.
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mental speed (plinearity = .04, Supplementary Table 1) and no evidence 
for nonlinearity or sex interactions between AgeAccelHorvath and 
FEV1 (Supplementary Table 2). Overall, estimates for the associations 
between AgeAccelPheno and performance measures were weaker 
when data on NSHD participants from age 60–64 years were com-
pared with data from 53 years in meta-analyses. This was due to the 
weaker associations observed at 60–64 years compared with 53 years. 
Conversely, estimates for the associations between AgeAccelGrim 
and performance measures were stronger when including NSHD par-
ticipants at 60–64 years compared with 53 years.

Longitudinal Associations Between AgeAccel at 
53 Years and Change in Physical and Cognitive 
Performance Between 53 and 69 Years in NSHD
There was an overall decline in mean physical and cognitive per-
formance between 53 and 69 years in NSHD (Supplementary Table 
5). There was no evidence that AgeAccelHorvath at 53 years was 
related to any physical or cognitive performance measure between 
53 and 69 years (Table 2). Higher AgeAccelHannum at 53 years was 
associated with poorer physical performance and episodic memory 
over the 16-year period, but not with the rate of decline (pinteraction ≥ 
.17). Higher AgeAccelPheno and AgeAccelGrim at 53 years were also 
associated with a poorer chair rise speed and cognitive performance 
measures at 53 and 69 years (Table 2), but not with decline. For grip 
strength, higher AgeAccelPheno at 53 years was related to poorer 
performance at all ages, while higher AgeAccelGrim was not associ-
ated with performance at 53 years but was associated with greater 
decline between 53 and 69 years. Thus, by age 69 years, a 1-year 
higher AgeAccelGrim was associated with a –0.25  kg (95% CI: 
–0.37 to –0.14) weaker grip strength. There was evidence that higher 
AgeAccelPheno and AgeAccelGrim at 53 years were associated with 
lower FEV1 at 53 years and with a faster decline where the negative 
association slightly strengthened over time. By 69  years, a 1-year 
higher AgeAccelPheno at 53 years was associated with a –0.016 mL 

(95% CI: −0.021 to −0.010) lower mean FEV1 compared with a 
–0.010 mL (95% CI: −0.015 to −0.005) at 53 years. Similarly, for 
AgeAccelGrim at 53 years, the association was –0.02 mL (95% CI: 
−0.03 to −0.02) at 69 years compared with –0.04 (95% CI: −0.05 to 
−0.04) at 53 years. Adjusting for cell composition did not affect the 
results for AgeAccelHorvath, AgeAccelPheno, or AgeAccelGrim but 
did attenuate the results for AgeAccelHannum (Supplementary Table 
6). Adjustment for covariates attenuated the associations but did not 
change the overall conclusions for AgeAccelPheno or AgeAccelGrim 
(Supplementary Table 7).

Associations Between Change in AgeAccel and 
Change in Physical and Cognitive Performance 
Between 53 and 60–64 Years in NSHD
In NSHD, 482 participants had AgeAccel information at both 53 
and 60–64 years. There was some evidence for an association be-
tween greater change in ΔAgeAccelPheno and change in chair rise 
speed (Table 3), however this was attenuated after accounting for cell 
composition and additional covariates (Supplementary Tables 8 and 
9). There was no association between any of the other ΔAgeAccel 
measures and Δphysical/cognitive performance between the ages of 
53 and 60–64 years (Table 3). However, adjusting for cell compos-
ition strengthened associations between ΔAgeAccelGrim and Δgrip 
strength and Δchair rise speed (Supplementary Table 8).

Discussion

We found evidence of relationships between the second gener-
ation of DNAm-based biomarkers of aging (AgeAccelPheno and 
AgeAccelGrim) and physical and cognitive performance among 
participants aged 45–87 years that were not observed for the first 
generation biomarkers (AgeAccelHannum and AgeAccelHorvath). 
In addition, associations between AgeAccelGrim and subsequent de-
cline in performance was observed.

Table 2. Association Between DNAm Age Acceleration at 53 Years and Longitudinal Change in Performance (53–69 years) in NSHD

 

Grip strength (kg) 
(n = 1362)

Chair rise speed 
(stands/min) 
(n = 1334)

FEV1 (mL) 
(n = 1359)

Number of words 
(n = 1358)

Total number of  
letters scanned 
(n = 1368)

Estimate 
(95% CI) p-value

Estimate 
(95% CI) p-value

Estimate 
(95% CI) p-value

Estimate 
(95% CI) p-value

Estimate 
(95% CI) p-value

AgeAccelHannum –0.12 
(–0.22, –0.02)

.03 –0.101 
(–0.197, –0.005)

.04 –0.009 
(–0.015, –0.002)

.01 –0.074 
(–0.146, –0.001)

.04 –0.55 
(–1.38, 0.29)

.20

AgeAccelHorvath –0.06 
(–0.17, 0.04)

.27 –0.05 
(–0.18, 0.08)

.49 0.0003 
(–0.0065, 0.0071)

.94 –0.02 
(–0.09, 0.06)

.68 –0.34 
(–1.20, 0.52)

.44

AgeAccelPheno –0.14 
(–0.22, –0.07)

<.001 –010 
(–0.17, –0.03)

.01 –0.010* 
(–0.015, –0.005)

<.001 –0.11 
(–0.16, –0.06)

<.001 –1.15 
(–1.76, –0.54)

<.001

AgeAccelPheno × time     –0.003** 
(–0.001, <–0.000)

.04     

AgeAccelGrim 0.004* 
(–0.110, 0.118)

.92 –0.23 
(–0.32, –0.15)

<.001 –0.024* 
(–0.029, –0.018)

<.001 –0.24 
(–0.29, –0.18)

<.001 –2.17 
(–2.87, –1.48)

<.001

AgeAccelGrim × time –0.016** 
(–0.025, –0.008)

<.001   –0.0010** 
(–0.0014, –0.0007)

<.001     

Note: All models adjusted for sex and age at 53 years.
Estimates represent difference in outcome which is constant between 53 and 69 years for a 1-year increase in AgeAccel at 53 years unless p-value from log-

likelihood ratio test comparing models fit with an interaction term for time to models without the interaction term = ≤0.05 then:
*Estimates represent the average difference in outcome at 53 years (i.e. at the intercept) for a 1-year increase in AgeAccel at 53 years.
**Estimates represent the average difference in the linear slope (per year time) between 53 and 69 years for a 1-year increase in AgeAccel at 53 years.
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Identifying a reliable and valid biomarker of aging has the poten-
tial to progress the understanding of, and slow the rate of aging (36). 
While AgeAccel has been heralded as a promising aging biomarker 
(6), evidence to date has focused on the first generation of DNAm-
based biomarkers and has been sparse and inconsistent. Findings 
from a previous cross-sectional study examining associations be-
tween AgeAccelHannum or AgeAccelHorvath in 486 monozygotic 
twins aged 55–79  years and general cognitive function were in 
line with our null results (25). In contrast to our findings, a sep-
arate study of middle-aged female monozygotic twins (n = 24 twin 
pairs) found some evidence for a cross-sectional association between 
higher AgeAccelHorvath and lower grip strength (26).

Our results for the first generation of DNAm-based biomarkers 
of aging should also be compared with previous data from the 1936 
Lothian birth cohort (24). Marioni and coworkers observed asso-
ciations between higher AgeAccelHorvath and poorer physical and 
cognitive performance at 70  years. Similar to our findings, they 
found no association between AgeAccelHorvath and decline in per-
formance between 70 and 76 years. Although we did not find any 
associations for the first generation of DNAm-based biomarkers of 
aging in our meta-analyses, the direction of the effects are consistent 
(except for FEV1 where we observed an estimate of 0.001 [95% CI: 
–0.013, 0.011]) with data from the Lothian birth cohort. We included 
a larger sample size than the Lothian birth cohort (n = 1,388–1685 
vs n = ~920); however, most of our participants were younger and 
it is possible that the cross-sectional association may get stronger 
with increasing age. Another study examined DNAm AgeHannum 
and DNAm AgeHorvath in a younger cohort (n = 818) (28). The 
authors observed modest associations between DNAm AgeHannum 
at 38 years and measures of cognitive function but not grip strength 
or for DNAm AgeHorvath and any marker of performance (28). 
The authors found no evidence of an association between change 
in DNAm AgeHannum between the ages of 26 and 38 years and 
measures of cognitive or physical performance at 39 years, although 
change in DNAm AgeHorvath was weakly correlated with cognitive 
performance (r = .11).

One previous study examined the association between 
AgeAccelHorvath and physical performance using data from a 
smaller subsample of NSHD women (27). In this study, no associ-
ations between AgeAccelHorvath measured using blood samples at 
53 years and grip strength or chair rise time at 53 or 60–64 years 
were observed; unlike results from our study, AgeAccelHorvath at 
baseline (53 years) was modestly associated with a greater decline in 

grip strength between 53 and 60–64 years. The 152 women in the 
previous paper were not included in our study because DNAm was 
measured using the Infinium Methylation450k BeadChips while our 
study used Infinium MethylationEPIC BeadChips. In addition, half 
of these women were selected because they developed breast cancer 
and thus findings in this subsample may not be representative of 
all women.

The second-generation DNAm-based biomarkers of aging 
have been developed more recently with the specific aim of acting 
as a biomarker for healthspan (AgeAccelPheno) and lifespan 
(AgeAccelGrim). While AgeAccelPheno and AgeAccelGrim have 
been associated with age-related disease, and mortality (14,15), to 
the best of our knowledge, no study to date has examined their 
associations with physical of cognitive performance. Although all 
correlations were in the expected direction, it is unclear why we 
observed associations between AgeAccelPheno and AgeAccelGrim 
for some but not all age-related performance measures. Over 95% 
of the participants included in our meta-analyses are aged 65 or 
younger. It is possible that the variation in both age-related per-
formance and AgeAccel in this age group is small; however, decline 
in age-related performance has been shown to be evident prior to 
65  years (37–41). Furthermore, older participants tend to have a 
lower AgeAccel than younger participants, indicating the presence 
of survivor bias (42,43), which would be less evident in our younger 
sample. In sensitivity analysis for our meta-analysis, including data 
from NSHD participants at 60–64 years rather than 53 years, weak-
ened the associations between AgeAccelPheno and performance 
measures because cross-sectional associations were weaker at the 
older age in NSHD.

Both AgeAccelPheno and AgeAccelGrim, as well as being asso-
ciated cross-sectionally with performance measures were also asso-
ciated with decline in FEV1 over a 16-year period. Lung function 
has been shown to decline in NSHD from as early as 43 years (38), 
which might explain why we observe such a relationship in FEV1 
but not other performance measures in our relatively younger par-
ticipants. In addition, AgeAccelGrim at 53 years, although not as-
sociated with weaker grip strength cross-sectionally, was associated 
with grip strength by 69 years. This suggests that even if DNAm-
based biomarkers of aging in early midlife do not reflect all current 
performance measures, they may be related to subsequent decline.

The second generation healthspan and lifespan biomarkers use 
differences in physiological status among individuals of the same 
CA to construct the score, unlike the first generation which use 

Table 3. Association Between Change in DNAm Age Acceleration and Change in Age-Related Performance Between 53  years and  
60–64 years Conditional on Baseline Performance at 53 years

 

ΔGrip strength (kg) 
(n = 435)

ΔChair rise  
(stands/min) 
(n = 418)

ΔFEV1 
(n = 451)

ΔNumber of words 
recalled 
(n = 456)

ΔTotal number of  
letters scanned 
(n = 464)

Estimate 
(95% CI) p-value

Estimate 
(95% CI) p-value

Estimate 
(95% CI) p-value

Estimate 
(95% CI) p-value

Estimate 
(95% CI) p-value

ΔAgeAccelHannum 0.19 
(–0.07, 0.44)

.15 0.03 
(–0.14, 0.20)

.74 0.006 
(–0.007, 0.019)

.34 –0.01 
(–0.13, 0.11)

.88 0.49 
(–1.19, 2.17)

.56

ΔAgeAccelHorvath –0.06 
(–0.28, 0.16)

.59 –0.12 
(–0.27, 0.03)

.12 –0.002 
(–0.013, 0.008)

.66 0.06 
(–0.05, 0.17)

.25 1.31 
(–0.17, 2.79)

.08

ΔAgeAccelPheno 0.03 
(–0.14, 0.20)

.72 –0.12 
(–0.24, –0.01)

.04 0.006 
(–0.003, 0.015)

.17 0.05 
(–0.04, 0.13)

.25 0.16 
(–0.98, 1.31)

.78

ΔAgeAccelGrim –0.04 
(–0.18, 0.11)

.60 –0.06 
(–0.16, 0.04)

.23 0.006 
(–0.001, 0.013)

.09 0.04 
(–0.03, 0.11)

.27 –0.91 
(–1.87, 0.05)

.06
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CA only. In line with findings for age-related disease (15), we ob-
served the strongest associations for age-related performance for 
AgeAccelGrim. DNAm AgeHannum is based on 71 CpGs while 
DNAm AgeHorvath with 353, DNAm PhenoAge with 513 CpGs, 
and DNAm GrimAge with 1030 CpGs. Of the 513 CpGs for 
DNAm PhenoAge, 41 overlapped with DNAm AgeHorvath and 
with 6 DNAm AgeHannum. Furthermore, DNAm AgeHorvath 
was the only one of the biomarkers that was based on multiple-
tissues, with the others using whole blood. Since both blood cell 
composition and DNAm changes with age (17,44), the blood-based 
DNAm-based biomarkers of age also reflect age-related changes in 
cell-type composition (14,15). A previous study found that meas-
ures of AgeAccelHorvath and AgeAccelHannum that incorporate 
blood cell counts give stronger associations with all-cause mortality 
compared with measures independent of blood cell counts (17). 
Adjusting for cell composition in our study generally weakened as-
sociations, but did not affect the overall conclusions except for as-
sociations between AgeAccelHannum and performance in NSHD. 
In line with previous findings that AgeAccelHannum measures that 
incorporate blood cell counts outperform measures that exclude 
them for mortality prediction, our observed associations were con-
siderably attenuated.

To the best of our knowledge, this is the largest study of AgeAccel 
and physical and cognitive performance to date and the only one 
that has included the second generation of DNAm-based biomarkers 
of healthspan and lifespan. The main strengths of our study were 
the inclusion of participants from three British cohorts, the exam-
ination of a range of objective measures of physical and cognitive 
performance, and the longitudinal performance measures available 
from three time points in NSHD. However, the sample size remains 
relatively small and we may still lack power to detect small asso-
ciations. Despite having three time points for performance meas-
ures for longitudinal analyses, this was only possible in NSHD and 
therefore may lack power. Furthermore, when assessing change in 
AgeAccel and change in performance over the same 10-year period 
in NSHD, only two time points were available which adds additional 
measurement error.

Although participants across the three cohorts are generally rep-
resentative of the white British population (29–32), selection bias for 
this specific cross-cohort study may have influenced the observed as-
sociations. Participants from these cohorts were selected if they had 
information on DNAm, outcomes of interest and a range of other 
health- and age-related variables. If having a lower AgeAccel and 
higher age-related performance was associated with participation, 
this could have introduced collider bias where estimates may be posi-
tively biased (45). Finally, the performance measures were assessed 
slightly differently between the cohorts potentially introducing some 
heterogeneity, although there was little variation in observed effect 
sizes between the cohorts in most cases. For the meta-analyses, all 
associations in NSHD were cross-sectional but in NCDS cogni-
tive performance were measured 5 years after DNAm age and per-
formance was measured up to 7 years before or after DNAm age 
in TwinsUK. It is possible that physical and cognitive performance 
changed during this period introducing some error in the observed 
effect sizes. In conclusion, our study found evidence to support the 
second generation of DNAm-based biomarkers of healthspan and 
lifespan as a proxy for age-related physical or cognitive performance 
in mid- to early old age, particularly for lung function. However, 
these findings should be replicated and current validated measures of 
physical and cognitive performance should not be replaced by these 
DNAm-based biomarkers.

Supplementary Material

Supplementary data is available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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