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Secure account-based data capture with smartphones – 
preliminary results from a study of articulatory precision in clinical 
depression  

1 Introduction  

Smartphones provide an attractive way of sourcing data for linguistic researchers, potentially 

collecting recordings in more natural environments and thus with higher ecological validity than 

recordings made in a recording studio or similar setting. The hardware itself offers several 

advantages over standardized recording equipment, including a wide range of embedded sensors, 

intuitive user interface, large memory storage and computational power for recording and 

processing information (Dogan et al. 2017; Lane et al. 2010). In addition to this, the ubiquity and 

popularity of these devices allow unparalleled access to individuals and can be easily integrated into 

daily lives as a non-invasive, cost-efficient method of sampling and monitoring objective data. This 

article introduces a smartphone app for the secure collection of phonetic data and demonstrates its 

use in a pilot study of articulatory precision of depressed speech.  

2 Reliability of smartphone recordings 

Many branches of linguistic research require the use of high-quality speech data that preserves 

acoustic detail for analysis (Lin, Hornibrook and Ormond 2012). Recording and processing of audio 

data allows for the entry of error, and particular attention must be paid to the microphones 

embedded in smartphones (Grillo et al. 2016; Jannetts et al. 2019; Kardous and Shaw 2014; Lin et al. 

2012; Manfredi et al. 2017; Uloza et al. 2015).  In order to achieve the most reliable voice measures 

for analysis, recording equipment should maintain the original characteristics of the speech signal as 

much as possible.  Voice measures can be influenced by many different sources of variation, 

including biological factors which cause natural changes in the voice over time (e.g. health status, 

mood or age) (Decoster and Debruyne 2000) as well as artefacts like environmental characteristics, 

technology and equipment (Vogel and Maruff 2014). 

At present there is a diverse range of smartphone types , recent reports include 22 major 

vendors within the smartphone industry (Sui 2018) and device microphones and other audio 

components can vary considerably between these. As manufacturers tend not to publish their exact 

specifications, their use in linguistic research requires further comparative testing by reference to 

established, standardised recording equipment.  

Several recent studies have compared studio and smartphone recording practices, 

demonstrating variable robustness of acoustic parameters under smartphone recording conditions 

(E Lin, Hornibrook and Ormond 2012; Vogel and Maruff 2014; Uloza et al. 2015; Grillo et al. 2016; 

Manfredi et al. 2017; Maryn et al. 2017; Kojima et al. 2018; Jannetts et al. 2019).  

Jannetts et al. (2019)  compared smartphone recordings to studio equipment recordings and 

observed small but statistically significant systematic errors for a range of acoustic parameters (e.g. 

fundamental frequency [F0] and cepstral peak prominence [CPPS] [Heman-Ackah et al. 2003]) in 

sustained vowels and connected speech.. Furthermore, voice parameters like Jitter % and Shimmer 

% showed a random error for smartphone recordings that was deemed too high for reliable use with 

voice analysis. 
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These findings highlight the fact that the use of smartphone recordings for detailed acoustic 

assessment is not without problems, and care needs to be taken to determine which acoustic 

parameters can reliably be used when working with smartphone recordings. 

3 Smartphone recordings - ethical considerations  

Using smartphone applications for data collection is an efficient method of capturing recordings 

from participants in real-world settings, but many of the strengths of smartphone data collection 

also drive privacy and security concerns (Arora, Yttri and Nilsen 2014). Ethical issues arise with 

respect to the security of sensitive participant information, particularly the physical location of data 

storage and user access, as well as compliance with regulations governing personal information (e.g. 

the EU General Data Protection Regulation [GDPR]).  

Ethical guidelines typically dictate that any research data is stored securely and accessibly by   

authorised researchers only. Data collected via smartphones is generally stored on a server, the 

location and access of which varies between server providers. To protect participant information, 

transfer of data from application to server should be completed via a secure connection, with 

identifying information being stored in encoded format. Data backup should also be enabled on 

separate hosts from the original dataset. Lastly, the server itself should have clearly managed access 

rights so that unauthorised access to the data is avoided.  

Ethical considerations are especially important when recording data from health service 

patients. Collection of potentially sensitive or identifying information should be minimised and 

safeguards must be in place to protect data transfer between devices and servers. The collection of 

standardised speech tasks (e.g. Jannetts et al. 2019; Leemann et al. 2016; Lin, Hornibrook and 

Ormond 2012; Uloza et al. 2015) may reduce the possibility of recording identifying information 

through an app, but voice data is always potentially identifiable by those who know the individual, 

and extra care should therefore be taken to limit the risk of data breaches.  

Smartphones have great potential to collect data from individuals at various time points (e.g. for 

longitudinal studies), and to collect sets of various types of data (e.g. survey data) alongside linguistic 

recordings. The consequent need to keep track of multiple submissions per user can be managed 

through accounts-based applications. However, accounts-based applications will require additional 

security measures to protect the integrity of user accounts and the data stored within them.  

4 Fitvoice Application 

The Fitvoice system has been developed for longitudinal monitoring of voices, initially from a voice 

health perspective with occupational voice users as target audience. We are currently piloting its 

extension to other health related uses, e.g. voice monitoring in clinical depression. The system is 

currently tested in various field and reliability studies and has around 200 test users. 

The mobile app has been implemented using the cross-platform Ionic framework 

(ionicframework.com) and is currently available for iOS and Android in the UK Apple app store and 

Google Play. The app has been designed to record three types of speech prompts a) sustained 

vowels, b) a set of sentences targeting specific aspects of voice and c) a short connected speech 

sample (a modified version of the dog and duck story, [Brown and Docherty 1995]). 

Alongside each recording the app prompts a short voice health questionnaire that records self-

assessment of the user’s voice (e.g. vocal load, current ease of use, sensations like cattargh or pain). 

The audio signal is recorded in 1 channel (i.e. mono). The app accesses the device microphone using 



audio recording APIs that are available in both Android and iOS operating systems. The raw audio 

samples are stored uncompressed with 16bit signed integer resolution (“wav” format), and 44.1 kHz 

sampling rate. The wav files are not compressed for transmission to the backend server. 

To address the various ethical and confidentiality issues raised in section 2, the app has been 

implemented with a range of security features. After a recording has been completed on the app, 

audio recordings and survey data are securely transmitted to a backend server using an SSL/TLS 

secure channel. The SSL/TLS secure channel guarantees full encryption of the data between device 

and server. This technology makes it virtually impossible to read or alter the data during transfer, 

e.g. when passing through intermediate data servers. The backend server runs on a virtual machine 

from cloud service provider linode.com. The physical location of the server is currently London, and 

holds various security-relevant certificates, e.g. ISO 27001. The Fitvoice system is account-based, i.e. 

each Fitvoice user creates a password-protected account before using the system and submitting 

recordings. User account management is provided by GDPR compliant authentication management 

provider Auth0 Europe (auth0.com). In this setup, all confidential information (e.g. user name, email 

and password) are stored on Auth0 servers. The Fitvoice backend only stores audio recordings, 

survey data and encrypted links to the Auth0 data. As individuals are potentially identifiable through 

voice recordings, the voice data is stored on secure servers (see above), and research participants 

are alerted to this fact and are asked to provide explicit consent to various types of data use (e.g. 

storage beyond the end of specific projects, use for perception experiments etc.).  

 

 
Figure 1:  Fitvoice system setup, including data and authentication flow 
 

 The Fitvoice backend has APIs implemented so that other applications can access the data 

after authorisation. In its current implementation, the Fitvoice web app allows users to access their 

own data through a web interface, review survey data, play back audio recordings, and inspect a 

range of acoustic parameters individually for each recording as well as longitudinally over several 

submissions. Longitudinal analysis is facilitated by displaying a multivariate parameter (Hotelling’s T2, 

Schaeffler and Beck, 2017). Web app authorization is again managed by Auth0, and ordinary users 

can only access data from their own account. The Fitvoice web app offers two additional levels of 

access, administrators can access all recordings while operators can only access data for specific 



projects. The Fitvoice system is currently maintained and commercialised through a Community 

Interest Company (Fitvoice C.I.C., registered in Scotland).  

    
Figure 2: Screenshots of home screen and recording screen prompts for the Fitvoice mobile application. 

5 Pilot Study: Speech Features in Clinical Depression 

The search for more effective treatment strategies for depression includes the identification of 

patients who are most likely to benefit from a given therapy – this is usually done through the 

discovery of biological and clinical markers of response (Papakostas and Fava 2008). The human 

voice may be a highly sensitive indicator of physiological and psychological state; reported links 

between the voice and psychomotor activity point to the potential value of voice variation as a 

clinical marker of symptom severity and treatment response in antidepressant trials  (Cummins et al. 

2015; Mundt et al. 2012; Quatieri and Malyska 2012; Stassen, Kuny and Hell 1998). These studies 

provide preliminary evidence to suggest that the neurobiological mechanisms responsible for voice 

and speech production may be affected in depression, and inversely these changes may revert as an 

individual responds to antidepressant treatment.  

From a cognitive psychology perspective, it appears that cognitive impairments associated with 

depression may affect an individual’s phonological loop, resulting in impaired phonation and 

articulation (Christopher and MacDonald 2005). Research does appear to support this notion, as 

speech in depressed individuals demonstrates poor planning (as seen in difficulty with word choice 

or initiation of speech; Alpert, Pouget and Silva 2001; Mundt et al. 2012) and articulatory precision 

(e.g. shortened voice onset time, decreased second formant transition and increased spirantization 

(Flint et al. 1993) possibly due to impaired neuromuscular coordination processes (cf. Cummins et 

al., 2015).  

Articulation can be thought of as a specific component in the chain of speech production, an 

integral part of the motor programming stage where the speech mechanism is prepared just prior to 

speaking (van der Merwe 2009). In depression, this process can be disrupted due to biological 

changes within the brain (e.g. atrophy and neuronal loss in the hippocampus and prefrontal cortex 

[Racagni and Popoli 2008] and changes in dopaminergic tone in the basal ganglia and nucleus 

accumbens [Pallis, Thermos and Spyraki 2001]).  As such, articulation and other motor planning are 

affected by measurable changes within the speech signal. One such method of assessing articulatory 

proficiency (and consequently, levels of psychomotor retardation (Flint et al. 1993), is through 
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changes in spirantization, or frication throughout speech production. Frication, or high-frequency 

energy visible in spectrograms, can denote a leakage of air from the oral cavity – this is particularly 

salient when the oral cavity should be closed (i.e. just prior to the release of stop plosives). So far 

there is little research examining articulatory precision and motor planning in depressive speech – a 

gap that our pilot study aims to fill.  

5.1 Pilot Aims  

The primary aim of this pilot study is to assess the effect of depression on articulatory 

control from a phonetic perspective. The study compares this phenomenon between depressed and 

healthy participant groups, taking note of durational measures and frequency of frication occurring 

prior to a plosive release, as a potential indicator of decreased articulatory control and psychomotor 

retardation.  

Data collection utilises the Fitvoice app, and a secondary aim is to assess the app’s ability to 

preserve sufficient acoustic detail in a depressive individuals’ speech for analysis. This is an 

important consideration, as few clinical rooms provide a good recording environment; minimal 

furnishings and carpet often result in a high level of reverberations. The app also may aid in 

collecting speech data outwith clinical settings, avoiding the need for participants to travel when 

experiencing a depressive episode. The ability to record speech within patients’ own homes is yet 

another advantage of smartphone data collection, but one that requires additional consideration of 

room size, acoustics, etc.  

5.2 Method 

Ethical approval for the completion of this study was granted by the Health Research Authority 

North East – Newcastle and North Tyneside 1 Research Ethics Committee (Ref: 18/NE/0129). Twelve 

speakers (6 healthy controls; 6 depressed subjects, aged 26 – 59 years) produced two trials of the 

phonetically balanced text ‘The Dog and Duck Story’ (Brown and Docherty, 1995). The vocal health 

and diagnostic status of each participant was determined by a pre-recording interview using a 

demographic questionnaire, Mini-International Neuropsychiatric Interview (MINI; [Sheehan et al. 

1998]) and Hamilton Depression Rating Scale (17-item; [Hamilton 1960]) scales.  

5.3 Recording Procedure 

 Recordings were made in a clinical interview room. Participants were asked to speak 

simultaneously into the smartphone and microphone (Neumann U89i model which has a flat 

frequency response curves up to 10 kHz within a pickup angle of ± 100° and a dynamic range of  117 

dB [A-weighted]). Each was set up 20 cm away from the subject’s mouth. The smartphone device 

used the Fitvoice app for all recordings and all microphone recordings were completed using 

recording and editing software AudacityTM (Version 2.3.0; Mazzoni 2018). It was considered 

necessary to test the application in comparison to standard equipment within a controlled setting 

prior to its utilisation in field recordings; this was done using a direct comparison between the 

Fitvoice app and microphone.   

5.4 Articulatory Closure Proficiency Analysis  

A total of 24 recordings (12 subjects x 2 recording sessions) underwent a phonetic markup 

procedure where all productions of word-initial voiceless plosives in stressed words were identified 

(Karlsson et al. 2014). Utterance initial plosives were excluded due to complications with separating 

the initial silence portion of the stop from the preceding silent segment. Additionally, plosives 

produced before or after a fricative were also excluded due to difficulties in segmenting phonemic 

boundaries.  



To avoid reliability problems (as outlined in Section 2), this study relied on relatively simple 
spectrogram based analysis. Manual segmentation of the  structure of the plosive (i.e. start and end 
times, release, etc.) was completed in Praat (Boersma and Weenink 2019), with the release being 
distinguished as the portion of the signal with the strongest amplitude and widest distribution across 
frequencies. Stemming from a previous acoustic analysis study investigating closure proficiency 
(Karlsson et al. 2014), extracted acoustic parameters included the following: 

 Duration of the plosive (in ms).  

 Location of the plosive release, identified as the strongest peak in signal amplitude 
combined with high energy across the spectrogram output. 

 ‘Pre-release frication’ or high-frequency energy occurring just prior to the release of a 
plosive (see Figure 3). The number of occurrences per participant as well as length of 
this frication (in ms) were both recorded for further analysis.  

 

 
Figure 3: Example of pre-release frication (PRF) identified prior to release (circled in red).  

 
Preliminary analysis demonstrates that the smartphone model is less affected by 

environmental noise and produces a ‘cleaner’ spectrogram for analysis than the omnidirectional 

microphone (See Figure 4). To quantify environmental noise levels between the smartphone  and 

studio microphone recordings, a random subset of the smartphone recordings (7 participants x 2 

sessions x 2 recording conditions) was selected to complete a signal-to-noise ratio (SNR) analysis. 



 

 We measured signal-to-noise ratio by comparing signal intensity levels in parts of the 

recordings with and without speech. This analysis was performed with a Praat script that extracted 

intensity levels for speech and non-speech parts from the sound file, based on manually corrected 

forced-aligner segmentations of the audio signal, using the Penn Phonetics Lab forced aligner (Yuan 

and Liberman, 2008). The results provide an indication that smartphone recordings might have 

advantages over microphone recordings in clinical settings. Figure 5 shows that smartphone 

recordings had consistently higher SNR values than the microphone recordings for all participants, 

with an average difference of 0.5 dB. Higher SNR values reflect a lower relative amount of noise in 

the recordings.  

 

 

Figure 4: Comparison of spectrograms from the smartphone (left) and microphone (right) recordings made simultaneously. 

The spectrogram resulting from the smartphone has picked up less background noise, as evidenced by less 'noise' above the 

space (sp) phoneme. The blue arrow demonstrates an example of where the microphone picks up background noise (i.e. darker 

area) that is occurring outwith the phonemic segment; the corresponding space on the smartphone spectrogram has less of this 

background noise denoted by less dark colouring.   
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Figure 5: A comparison of Signal to Noise Ratio (SNR) between recording conditions (microphone 
versus smartphone). The left graph demonstrates the higher smartphone SNR values across both 
recording sessions for all participants. On the right, the mean difference between microphone and 
smartphone conditions is graphed in a boxplot.  
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5.5 Exploratory Analysis and Results  

All analysis was completed using R version 3.5.1 (R Core Team, 2019). One instance of plosive 

production for a healthy participant was excluded due to background noise, leaving a total of 120 

plosive productions for the depressed group and 119 for the control group. Initially, duration of 

plosives was compared between groups (healthy vs. depressed) with a linear mixed effects model 

analysis with speaker as random factor and group as fixed factor. A likelihood ratio test using ANOVA 

was completed to test the significance of using group as a fixed effect. Results showed that the 

difference between groups was not significant -- healthy and depressed participants produced 

plosives of similar duration ((χ2 (1)=1.16, p=0.282; see Figure 6).  

 

A separate analysis was completed to compare pre-release frication across groups. First, 

frequency of occurrence of pre-release frication was compared across groups (see Table 1). The 

depressed group showed significantly more plosives with pre-release frication (Fisher’s exact test 

=239, p = .0082).  
 

Table 1: Summary table of frequency of plosive productions with pre-release frication.  
 
Group Productions without 

pre-release frication 
Productions with  
pre-release frication 

Total  

Healthy       91 28 119 

Depressed       72 48 120 

Total 163       76         239 
 

 
Figure 6: Plosive duration(in ms) by group, demonstrating no significant group 

differences. 
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For those plosives with pre-release frication, duration of frication was compared using a 

linear mixed effect model where group was included as a fixed effect and speaker was incorporated 

as a random effect (see Figure 7). Again, likelihood ratio test using ANOVA was completed to test the 

significance of using group as a fixed effect. Length of pre-release frication did not differ by group 

((χ2 (1)=3.57, p=.06).  

 
Figure 7: Length of pre-release frication by group (in ms) demonstrating no significant 
group differences. 
 

The depressed sample in this pilot study exhibited more productions of pre-release frication 

than the healthy controls in this sample, despite producing plosives that were nearly equal in 

duration. Instances of high-frequency energy preceding a stop burst may indicate a lack of adequate 

closure in the oral cavity, with an apparent ‘leaking’ of air.  Karlsson et al. (2014) attribute this to a 

lack of ‘articulator force’, whereby the muscular ability of an individual results in less forceful closure 

action. Depressed individuals may find it more difficult to achieve adequate closure and to 

synchronise articulatory movements due to psychomotor retardation, a prominent feature of clinical 

depression (Quatieri and Malyska 2012b). When pre-release frication did occur in healthy 

participants, the length of these did not differ from those produced by depressed participants. 

Rather, the frequency of this occurrence between groups may be a distinguishing factor between 

diagnostic groups.  

Although previous studies have found increased pausing behaviour (Alpert et al., 2001; 

Cannizzaro et al. 2004; Stassen, Kuny and Hell 1998; Mundt et al. 2012) and average syllable 

duration (Honig et al. 2014) in depressed groups, results from this pilot point to similar segment 

duration, at least for voiceless plosives, between clinical and healthy groups; These findings also 

contrast those from another previous study (Trevino, Quatieri and Malyska 2011) which 

demonstrated evidence for phone-specific duration measures as a potentially strong indicator of 

depression severity and even specific subsymptoms; in particular, slowing of production of the /t/ 

phoneme was one of the strongest correlators to psychomotor retardation. It may be that decreased 

articulatory coordination often seen in depression may lead to large variability in plosive production 
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and duration, making comparisons of findings between research samples difficult. Further analysis 

will be completed with the full sample after data collection is completed to reassess these 

behaviours on a wider scale. 

Results suggest that utilisation of smartphone technology to capture details of the speech 

signal is both feasible and effective. The use of mobile interventions for depression and other mental 

health conditions is growing, supported by increasingly sophisticated technology (Adams et al. 2017; 

Depp et al. 2010; Donker et al. 2013; Reid et al. 2011). Continuing refinement of mobile-based 

speech monitoring of speech biomarkers has the potential to enhance the sensitivity of such 

approaches.  

6 Recommendations and Future Directions 

 As mobile technology becomes more prevalent in linguistic research data collection, there is 

a growing need for regulation of recording conditions and parameter extraction methods. The 

mobile phone market is extremely dynamic, with new manufacturers, phone models and 

microphone settings emerging on a regular basis. In order to keep pace with these technological 

innovations, a potential solution could be the creation of standardised acoustic tests to evaluate 

hardware and software. Such tests could elucidate the unique effects of using mobile phones for 

data collection, such as the impact of noise cancelling microphones and beamforming.  

Mobile technology facilitates the collection of supplementary information alongside recordings, 

a benefit that could be exploited more widely. For example, field recordings may be affected by 

room size, furnishings and other characteristics, so routine collection of information about recording 

environment may be helpful to support evaluation of the impact of such environmental factors. 

Fitvoice asks users to complete an integrated questionnaire alongside each recording, providing 

information about room size/type as well as other factors that are expected to affect vocal quality, 

such as level of stress, voice use and presence of cold-like symptoms. Supplementary questionnaires 

of this type are easily adaptable and may allow more sophisticated analysis and interpretation of 

data. 

As ascertained from a comparison of spectrograms between microphone and smartphone 

conditions in our pilot, smartphones may also be a good way moving forward with recordings in 

clinical settings. Smartphones seem able to produce satisfactory output recordings for phonetic 

analysis, preserving sufficient detail to evaluate minute measures such as pre-release frication. Still, 

further testing will be required to understand better any artefacts that are introduced during the 

smartphone recording process. 

For data management, account-based mobile data capture applications are useful, especially 

with longitudinal studies. To facilitate data sharing and support reproducibility and accuracy of 

findings (Houtkoop et al. 2018; Klein et al. 2018), open access databases could be created. These 

could be well suited to navigating around the previously discussed ethical issues (e.g. confidentiality 

constraints) by only providing access to extracted acoustic parameters, rather than the primary data 

itself. In this manner, researchers interested in sharing data may increase the transparency of their 

findings and also maintain the privacy of those who have been recorded.  

  There is no doubt that mobile technology can provide powerful tools for linguistic research, 

with the potential to benefit research as well as practice, e.g. in the area of health care and vocal 

biomarkers for mental health applications. Given the complexity of web-based technology and the 

very dynamic smartphone market there is an urgent need for ongoing multidisciplinary efforts and 

knowledge exchange to maximise the potential of mobile-mediated linguistic and phonetic research.  
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