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Abstract. A rigidity theory is developed for frameworks in a metric space with two
types of distance constraints. Mixed sparsity graph characterisations are obtained for
the infinitesimal and continuous rigidity of completely regular bar-joint frameworks in
a variety of such contexts. The main results are combinatorial characterisations for (i)
frameworks restricted to surfaces with both Euclidean and geodesic distance constraints,
(ii) frameworks in the plane with Euclidean and non-Euclidean distance constraints, and
(iii) direction-length frameworks in the non-Euclidean plane.

1. Introduction

A bar-joint framework (G, p) in Rd is the combination of a finite simple graph G = (V,E)
and a map p : V → Rd. The framework is rigid if the only edge-length-preserving continu-
ous deformations of the framework arise from isometries of Rd. While it is typically hard to
determine rigidity for a given framework, characterising generic rigidity and infinitesimal
rigidity is a well-studied problem, solved in the Euclidean plane by Pollaczek-Geiringer
[12] and Laman [8]. We consider here combinatorial characterisations of rigidity for bar-
joint frameworks for various multi-distance and multi-constraint settings. When there are
just two types of distance constraint the underlying structure graph of the framework may
be bi-coloured with blue and red edges, representing the two types of constraint. In this
case rigidity requirements lead naturally to necessary sparsity conditions for monochrome
subgraphs, which we refer to as mixed sparsity conditions.

We obtain combinatorial characterisations of generic rigidity for double-distance frame-
works in various 2-dimensional contexts. These include (i) bar-joint frameworks restricted
to surfaces with both Euclidean and geodesic distance constraints, (ii) frameworks in the
plane with Euclidean and non-Euclidean distance constraints, and (iii) direction-length
frameworks in the non-Euclidean plane. The proofs make use of inductive characterisa-
tions of bi-coloured structure graphs, of the appropriate mixed sparsity type, together
with determinations of minimal rigidity preservation for a range of coloured graph Hen-
neberg extension moves. These new contexts in geometric rigidity theory and their com-
binatorial characterisations extend the analyses in: Nixon, Owen and Power [10, 11] of
3-dimensional frameworks which are vertex-constrained to surfaces; Kitson and Power [7]
of 2-dimensional frameworks with non-Euclidean distances; and Servatius and Whiteley
[14] of 2-dimensional (Euclidean) direction-length frameworks.
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Frameworks in R2 with both distance and direction constraints [14] fall into the more
general category of multiple-constraint frameworks. This is also the case for a range of
more elementary frameworks in product type contexts where the individual constraints
depend on independent variables and so, in this sense, are separable. It seems to us,
moreover, that multiple constraint rigidity theory is of potential significance in a range
of applications. We note, for example, that in three dimensions, the measure of residual
dipolar coupling (RDC) between rigid units of a protein may be interpreted as a secondary
nonmetric constraint [5]. Also, in the area of 3D sensor networks it is natural to consider
the augmentation of Euclidean distances by (possibly partially available) data such as alti-
tudes to a reference surface [9]. An elementary example of this, considered in Section 2.3,
is the separable double-distance context (R3, dxy, dz) associated with projected distances
in the xy-plane and in the z-axis.

The discussion is organised as follows. In Section 2 we define double-distance con-
texts and the minimal infinitesimal rigidity of their bar-joint frameworks, and we give
in Theorem 2.6 the necessary Maxwell counting condition for the edges and vertices of
such frameworks. In Section 2.3 we recall the (2, k)-sparsity and (2, k)-tight conditions for
graphs and we give 3 illustrative double-distance contexts and their associated sparsity re-
quirements. In Sections 3, 4 and 5, we obtain the main results, namely the characterisation
of infinitesimal rigidity for (completely regular) frameworks on some surfaces (with direct
and geodesic distances), for frameworks in the plane (with Euclidean and non-Euclidean
distances), and for direction-length frameworks in the non-Euclidean plane. In each of
these sections we provide a recursive construction of the appropriate class of bi-coloured
graphs. We then give a geometric analysis that the relevant graph operations preserve
minimal rigidity at the level of completely regular frameworks.

In the final section we indicate six additional multi-distance contexts for further analysis
and which generally require a deeper combinatorial and geometric analysis. This includes
Euclidean distance frameworks which are augmented with constraints associated with
projections and reflections.

2. Double-distance bar-joint frameworks

A separation constraint, or separation distance, associated with a setX of points x, y, . . . ,
is a continuous non-negative function d : X × X → R+ which is symmetric, so that
d(x, y) = d(y, x), for all x, y. In particular we do not require the triangle inequality to
hold and d(x, x) may be nonzero. If d1, d2 are separation distances for X then (X, d1, d2)
is said to be a double-constraint context or double-distance context.

2.1. Continuous rigidity. Bar-joint frameworks (G, p) and their continuous flexes may
be defined for any metric space (X, d). In this case G is a simple graph and p : V → X
is a placement map, or realisation in X. It is assumed that p(v) and p(w) are distinct if
vw is an edge. A continuous flex p(t), for a time parameter t in some interval [0, a], is a
pointwise continuous path of placements pt : V → X, with p0 = p, such that for each edge
e = vw the map t → d(pt(v), pt(w)) is constant. There are generally two variants of the
notion of a trivial continuous flex. The (possibly weaker) first form requires that the flex
extends to a flex of the complete framework associated with (G, p). One could say that
the framework is distance rigid or separation rigid if each continuous flex is trivial in this
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sense over a small enough time interval. The other (possibly stronger) form of continuous
rigidity requires that any continuous flex over a small enough time interval is given by
a continuous isometric motion p̃t : X → X of the entire metric space. We say that the
framework is spatially rigid in this case, or, simply, continuously rigid.

Bar-joint frameworks restricted to surfaces (see [10, 11]) as well as bar-joint frameworks
in non-Euclidean spaces (see [6, 7]) give examples of bar-joint frameworks in a metric space
setting.

One can readily extend the definitions of continuous flexes and continuous rigidity above
to double-distance frameworks in a double-distance context (X, d1, d2) where X is a topo-
logical space with topology determined by d1, d2. Such a framework, (G, p), is associated
with a placement map p : V → X, and the structure graph G = (V,E) is a 2-(edge)-
coloured (or bi-coloured) multigraph whose monochrome subgraphs are simple graphs,
possibly with loops. We refer to these graphs as monochrome simple bi-coloured graphs.

Formally, a bar of (G, p) associated with a coloured edge e ∈ E of (G, p) is a triple p(e) =
{p(v), p(w); c}, where e = (vw, c) is an edge vw of G with colour c = c(e). The length or
separation of the bar p(e) is then the nonnegative real number d(p(e)) = dc(p(v), p(w)),
where dc is the distance function for the colour c. We shall use the colours blue and red,
indicated also by b and r.

The definition of a continuous flex is as before but with the requirement for a trivial
continuous flex being agreement with a continuous motion p̃t of X preserving both distance
functions. As usual a continuous flex may be considered as a continuous path in the
topological space V (G, p) of all configurations which, by definition, is the set of all solutions
q : V → X to the set of constraint equations

d(q(e)) = d(p(e)), e ∈ E(G).

While these generalities hold for arbitrary topological spaces we shall be concerned only
with Euclidean spaces and associated finite-dimensional manifolds.

2.2. Infinitesimal flexibility and rigidity. We now extend the notion of infinitesimal
rigidity for bar-joint frameworks. The following abstract class of double-distance contexts
covers all of our main examples.

A double-distance context (X, d1, d2) is essentially smooth if

(i) X is a topological space with a dense open subset X0, possibly equal to X, which is
a compatible smooth manifold (C∞-manifold),

(ii) the separation distances d1, d2 are differentiable functions on X0 ×X0 which deter-
mine the topology of X0.

If X0 = X then we say that (X, d1, d2) is a smooth double-distance context. This is the
case for the double-distance frameworks on the surfaces considered in Section 3, and for
the mixed-norm frameworks in R2 in Section 4.

Definition 2.1. Let X = (X,X0, d1, d2) be an essentially smooth double-distance context
where X0 is an open subset of the Euclidean space Rn and d1(x, y) = ‖x− y‖2.

(i) An infinitesimal flex of the bar {p1, p2; di}, where p1, p2 ∈ X0, is a velocity vector
u = (u1, u2) in R2 ⊕ R2 such that

di(p1 + tu1, p2 + tu2)− di(p1, p2)) = o(t), as t→ 0.
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(ii) An infinitesimal flex of a double-distance bar-joint framework (G, p) for X with
joints in X0 is a velocity vector u : V → R2|V | such that the restriction of u to each bar of
(G, p) is an infinitesimal flex.

The infinitesimal flex condition may be paraphrased as the statement that to first order
the velocity vectors do not distort bar separations. In the case that d1(x, y) is a Euclidean
metric note that a velocity pair is an infinitesimal flex for the bar {p1, p2; d1} if and only
if it is an infinitesimal flex for the length of {p1, p2; d21}. This is a convenient polynomial
separation distance and the equivalence follows from the identity a2 − b2 = (a− b)(a+ b).

Let (G, p) be a bar-joint framework for the double-distance context (X,X0, d1, d2) with

edge set E = E1 ∪E2 and placement p with range in X
|V |
0 . Define the rigidity map for the

structure graph G to be the function fG :
∏

v∈V X0 →
∏

e∈E R given by

fG((xv)v∈V ) =
∏
e∈E

d(p(e)),

where d(p(e)) is the separation di(xv, xw) for the bar p(e) = {xv, xw; di}.
The following lemma identifies the space of infinitesimal flexes with the kernel of the

derivative of the rigidity map. The proof is the same as the usual proof for bar-joint
frameworks in Rn.

Lemma 2.2. Let (X,X0, d1, d2) be an essentially smooth double-distance context where
X0 is an open subset of the Euclidean space Rn and d1(x, y) = ‖x − y‖2. Then a vector
u is an infinitesimal flex for (G, p) if and only if the matrix product ((DfG)(p))ut, for the
transpose vector ut, is the zero vector in R|E|.

The lemma shows that we could have defined the real vector space of infinitesimal
flexes as the kernel of a rigidity matrix R(G, p) = (DfG)(p) determined by d1 (or d21) and
d2. However both viewpoints are useful since the rigidity map may only be determined
implicitly as a differentiable function.

Ordering the rows of DfG so that the rows labelled by edges of the subset E1 for the
distance constraint d1 come first, we have

DfG(p) =

[ ]
E1 2R1(p)
E2 R2(p)

where R1(p) is the usual Euclidean distance rigidity matrix for the framework (G1, p),
where G1 = (V,E1), and where R2(p) may be considered as the rigidity matrix for the
d1-separation distance framework (G2, p), where G2 = (V,E2).

We give an explicit example of the form of a rigidity matrix in Example 2 of Section
2.3.

We now define the notion of infinitesimal rigidity for a bar-joint framework (G, p) in an
essentially smooth double-distance context.

Definition 2.3. Let X = (X,X0, d1, d2) be an essentially smooth double-distance context
and let (G, p) be a double-distance bar-joint framework for X with joints in X0.

(i) An infinitesimal flex u of (G, p) is a rigid motion infinitesimal flex if and only if u
is the restriction of an infinitesimal flex of the framework (K(V ), p) where K(V ) is the
complete bi-coloured graph on V .
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(ii) (G, p) is infinitesimally rigid if every infinitesimal flex is a rigid motion infinitesimal
flex.

In analogy with our comments on separation rigidity this definition could be referred
to as separation infinitesimal rigidity. Here K(V ) is the graph with 2 edges between each
pair of vertices and 2 loop edges on each vertex, these pairs having distinct colours. The
stricter form of rigid motion infinitesimal flex (spatially rigid) would require that u is the
restriction of an infinitesimal flex of K(X0).

Definition 2.4. Let X = (X,X0, d1, d2) be an essentially smooth double-distance context.
A double-distance framework (G, p) with joints in X0 is regular if the rank of DfG(p) is
maximal over all frameworks (G, q) with joints in X0.

It follows trivially from the definition of infinitesimal rigidity that the complete graph
framework (K(V ), p) is infinitesimally rigid. In all our contexts we see that the regular
frameworks (K(V ), p) are also continuously rigid, except for certain small graphs, and so
we may make use of the following equivalence. We omit the proof which is a standard im-
plicit function argument [1]. See also Theorem 3.8 of [10] on the equivalence of continuous
rigidity and infinitesimal rigidity for regular frameworks constrained to algebraic surfaces.

Theorem 2.5. Let X = (X,X0, d1, d2) be an essentially smooth double-distance context,
with (X0, d1) a metric space, let (G, p) be a regular framework with multigraph G = (V,E)
and suppose that (K(V ), p) is continuously rigid. Then (G, p) is infinitesimally rigid if
and only if it is continuously rigid.

A bar-joint framework (G, p) is minimally infinitesimally rigid if it is infinitesimally rigid
and (G − e, p) has a nontrivial infinitesimal flex for every edge e. The following theorem
generalises the classical Maxwell counting condition, or “top count”, which is necessary
for minimal infinitesimal rigidity.

Theorem 2.6. Let X = (X,X0, d1, d2) be an essentially smooth double-distance context,
where X0 is a connected manifold and (X0, d1) is a metric space. Let (G, p) be a minimally
infinitesimally rigid framework for X, with joints in X0, and let G = (V,E). Then

|E| = dim(X0)|V | − dim(F((K(V ), p)))

where F((K(V ), p)) is the infinitesimal flex space for the framework for the complete multi-
graph K(V ).

Proof. The rigidity matrix DfG(p) has size |E|×n where n = dim(X0)|V |. By Lemma 2.2
and Definition 2.3 the column rank of the rigidity matrix is equal to n−dim(F((K(V ), p))).
By the minimality condition the rows are linearly independent and so the row rank is
|E|. �

The theorem expresses a maximal rank property of minimal infinitesimal rigidity. The
following definition of complete regularity in terms of ranks for subframeworks may be
viewed as a natural strong form of geometric genericness. This will be a convenient
assumption for the frameworks in construction moves (G, p) → (G′, p′) where we wish to
show the preservation of infinitesimal rigidity.
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Definition 2.7. Let (G, p) be a framework for a double-distance context and let K be the
complete multigraph on the vertex set of G. Then (G, p) is completely regular if every sub-
framework (H, p|H) of (K, p) has a rigidity matrix with maximal rank over all framework
realisations of H.

If the rigidity map for an essentially smooth double-distance context is a real analytic
function on a connected dense open set then it follows from standard arguments that the
set of completely regular frameworks for a structure graph G is a dense open set amongst
the set of all frameworks for G.

2.3. Examples of contexts and sparsity conditions. For k ∈ {1, 2, 3}, a multigraph
G = (V,E) is (2, k)-sparse if |E ′| ≤ 2|V ′| − k for all subgraphs (V ′, E ′) with |E ′| > 0.
Moreover G is (2, k)-tight if |E| = 2|V | − k and G is (2, k)-sparse.

Note that: (i) a (2, 3)-sparse multigraph in fact has no parallel edges or loops, that is,
it is a simple graph. (ii) a (2, 2)-sparse graph is loopless and may have parallel edges of
multiplicity 2 only. (iii) a (2, 1)-sparse multigraph may have loops, but no multiple loops
at a single vertex, and may have parallel edges of multiplicity 2 or 3 only.

For bi-coloured multigraphs arising from minimally rigid bar-joint frameworks in double-
distance contexts with dimX0 = 2 we shall see that there are further conditions on mono-
chrome subgraphs.

We now give some illustrative examples of double-distance contexts and multi-constraint
contexts.

1. It should be evident that the discussion above extends in a routine way to multi-
constraint contexts and their bar-joint frameworks, and that the rigidity matrix then takes
the form of a column of rigidity matrices R1, . . . , Rn associated with separation distances
d1, . . . , dn respectively. Define a separable multi-distance context to be a multi-distance
context in which the functions di have independent variables.

Consider in particular the multi-seminorm context (Rn, dr11 , d
r2
2 , . . . , d

rk
k ), associated with

the decomposition Rn = Rr1 × · · · × Rrk for a partition of {1, . . . , n} into sets S1, . . . , Sk,
where drii (x, y) depends only on the variables for the set Si. Then the following elementary
theorem follows from the block diagonality of the rigidity matrix.

Theorem 2.8. A completely regular separable multi-seminorm framework in Rn is min-
imally infinitesimally rigid if and only if each maximal monochrome subframework is
minimally infinitesimally rigid in (Rri , drii ).

Using the well-known combinatorial characterisations of infinitesimal rigidity in 1- and
2-dimensions [8] we obtain the following corollary, where each semi-norm drii corresponds
to a Euclidean norm for 1 or 2 of the variables.

Corollary 2.9. Let (Rn, dr11 , d
r2
2 , . . . , d

rk
k ) be a separable multi-seminorm context in which

ri ≤ 2 for 1 ≤ i ≤ k. Then a generic separable multi-seminorm framework in Rn is
minimally infinitesimally rigid if and only if each d1i - maximal monochrome structure graph
is a spanning tree and each d2i -monochrome structure graph is (2, 3)-tight.

We note two natural specific cases. Firstly consider the multi-seminorm context (Rn, d1,
. . . , dn) where di(x, y) = |xi − yi| for x = (x1, . . . , xn), y = (y1, . . . , yn). Here minimal
infinitesimal rigidity is characterised by the n-coloured multigraph being the union of
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n monochrome spanning trees of distinct colours. Secondly, consider the double-distance
context (R3, dxy, dz) indicated in the introduction. In this case one can deduce readily that
an algebraically generic bar-joint framework (G, p) is minimally infinitesimally rigid if and
only if its xy-projection is minimally infinitesimally rigid in R2 and its z-axis projection
is minimally infinitesimally rigid in R1.

2. Recall that direction-length frameworks in the plane are frameworks with both dis-
tance constraints and direction constraints between pairs of joints, see Servatius and
Whiteley [14]. Thus they are associated with realisations of simple bi-coloured multi-
graphs, that is, ones with no loops and no monochrome parallel edges. We may also
specify direction-length frameworks in an equivalent way as frameworks for the double-
distance context (R2, db, da), where db is Euclidean distance and da is the angular separation
distance given by

da(p1, p2) = (y1 − y2)2/(x1 − x2)2.
Here the sparsity type is that of (2, 2)-tight graphs in which any monochrome subgraph is
(2, 3)-sparse.

The rigidity matrix DfG(p) for the double-distance framework (G, p) has columns in-
dexed by the coordinates xi, yi of the joints pi, for i = 1, . . . , n = |V |). Each row is
determined by a framework bar {pi, pj; c}, where c is b for a Euclidean bar and a for a
direction bar. A row for a Euclidean bar has the form,

[ ]2 ... xi − xj ... yi − yj ... xj − xi ... yj − yi ...

where the unspecified entries are zero, while the row for a direction bar has the form[ ]
2(yi−yj)
(xi−xj)2

... − (yi−yj)
(xi−xj)

... 1 ... +
(yi−yj)
(xi−xj)

... −1 ... .

3. Consider the torus identification space T = [0, 1]2/ ∼ endowed with the flat geo-
desic distance constraint. By this we mean the minimum of the direct Euclidean distance
db(p1, p2) and the ”re-entrant” distance dr(p1, p2) defined as the minimum of the 2 linear
distances associated with the ”linear” paths through the horizontal and vertical boundaries
of [0, 1]2. This leads to the essentially smooth double-distance context (T,T0, db, dr), for di-
rect and re-entrant distances, where T0 = (0, 1)2. Noting that there is only a 2-dimensional
space of rigid motion infinitesimal flexes, coming from translations, the relevant mixed
sparsity condition is (2, 2)-sparseness with (2, 3)-sparseness for blue subgraphs. This set-
ting is closely related to the context of 2-periodic bar-joint frameworks in the plane. See
also Whiteley [17] and Ross [13].

3. Double-distance frameworks on surfaces

We consider here the unit sphere S in R3 defined by the equation x2 + y2 + z2 = 1 and
the unit cylinder Y defined by x2 + y2 = 1. One may also consider extensions to families
of concentric surfaces but we will not do so here.

In [10] it was shown that a framework realised generically on M with Euclidean distance
constraints is minimally rigid if and only if the underlying graph is (2, k)-tight, where:
M = S and k = 3, or where M = Y and k = 2. Analogous results were obtained by
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Whiteley [17] for the case when only geodesic constraints were considered. In this section
we will extend these results to characterise minimally rigid frameworks on M when geodesic
and Euclidean constraints are present simultaneously. Such frameworks are frameworks
(G, p) for a smooth double-distance context (M, db, dg) in the sense given in Section 2. The
graph edge set is the disjoint union Eb∪Er where the blue edges in Eb represent constraints
implied by Euclidean distances in R3 and the red edges of Er represent geodesic distances.
Note that in this smooth manifold case a velocity vector u : V → R2 for a framework
(G, p) is a selection of vectors u(v) in the tangent space of p(v) for each vertex v.

Whiteley [16] showed that, in the context of rigidity, there is an equivalence between
geodesic bar constraints and Euclidean bar constraints on the sphere. In our formalism
we note that for the sphere the infinitesimal flex space for the Euclidean bar {p1, p2; db}
is identical to the infinitesimal flex space for the geodesic bar {p1, p2; dg}. From these
observations we obtain the following theorem.

Theorem 3.1. Let G be a bi-coloured graph and let (G, p) be a completely regular frame-
work on S for Euclidean and geodesic distances. Then the framework (G, p) is minimally
rigid on S if and only if G is (2, 3)-tight.

For other surfaces the distinction between geodesic and Euclidean constraints leads to
differing combinatorics and we now consider this in the case of the cylinder. The rigidity
matrix RY(G, p) for a framework (G, p) on the cylinder Y is the |E| + |V | × 3|V | matrix
where the first |E| rows correspond to the usual rigidity matrix R(G, p) (with its rows
partitioned into the two types of constraint), and the final |V | rows form a block diagonal
matrix with non-zero entries given by normal vectors to the cylinder (as in [10, 11]). The
rank of RY(G, p) is at most 3|V | − 2 and, by Theorem 2.5, we may say that (G, p) is rigid
on Y when the rank is exactly 3|V | − 2.

We next state the main theorem of Section 3.

Theorem 3.2. Let G be a bi-coloured multigraph. A completely regular framework (G, p)
is minimally rigid on Y if and only if G is (2, 2)-tight.

3.1. (2, 2)-tight bi-coloured graphs. Our key tool, which is of independent interest, is
an inductive construction of bi-coloured (2, 2)-tight graphs. Note that we cannot immedi-
ately use recursive constructions of (2, 2)-tight multigraphs, or simple graphs, appearing
in the literature [10, 15] because of the requirement that each monochrome subgraph is
simple.

First we define the relevant coloured graph construction moves.
A 0-extension (or Henneberg 1 move) adds a vertex v and two edges incident to v.

The new vertex v can have two neighbours (with the two edges having arbitrary colours),
or one neighbour (with one edge of each colour). We refer to the reverse operation as a
0-reduction.

A 1-extension (or Henneberg 2 move) deletes an edge xy and adds a new vertex v of
degree 3 which is adjacent to x and y. The third edge incident to v can be incident to x
if the two parallel edges xv have distinct colours. We refer to the reverse operation as a
1-reduction.

We say that a 1-extension deleting the edge xy and adding a new vertex v is colour-
restricted if the colour c of xy is the colour of xv and of yv. In this section we only
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apply colour limited 1-extensions that result in a new degree 3 vertex with three distinct
neighbours.

Define a colour-restricted vertex split to be the following restricted version of the usual
vertex splitting operation [18]. This move splits a vertex v into two vertices v1, v2, adds
the edge v1v2, chooses a neighbour x of v and replaces the edge xv by two edges xv1, xv2
and then replaces all other edges yv with either yv1 or yv2. Also we require the additional
restriction that the colour c of xv is the colour of the three edges v1v2, xv1, xv2. We refer
to the reverse move as edge contraction.

Define a graph extension by a graph H with f(H) = 2 on a vertex v to form a new
graph by deleting v, adding H disjoint from G and replacing each edge xv with an edge
xy for some y ∈ H. (We make no colour restriction on graph extensions.) We refer to the
reverse move by graph contraction.

Note that H may be a multigraph, e.g. the graph consisting of two vertices with one
red and one blue edge between them. In this specific case if one of the two vertices of H
has degree 3 then this is a 1-extension. Hence graph extension is a generalisation of this
type of 1-extension. A similar remark, with one type of 0-extension, applies when one of
the vertices has degree 2.

Let G be (2, 2)-tight. Then a graph, or edge, contraction on G is allowable if the
resulting graph is (2, 2)-tight.

Lemma 3.3. Let G = (V,E) be a bi-coloured graph which is (2, 2)-tight.
(a) Suppose H is a proper subgraph of G with f(H) = 2. Then there is an allowable graph
contraction on H unless there is a vertex u in G − H and two vertices a, b in H with
(au, c), (bu, c) ∈ E.
(b) Suppose xy is an edge contained in an induced subgraph isomorphic to K3 on x, y, z
with coloured edges (xy, c), (xz, c), (yz, c). Then there is an allowable K3 contraction on
xy unless there is a vertex a ∈ V (G − K3) with two edges of the same colour to the K3

subgraph or there is a subgraph Y with f(Y ) = 2, x, y ∈ Y and z /∈ Y .

Proof. (a) It is easy to see that f(G/H) = f(G) and that any Y ′ ⊂ G/H with f(Y ) < 2
would imply a corresponding Y ⊂ G (such that Y/H = Y ′) with f(Y ) < 2. G/H is
monochrome simple unless G/H contains two parallel edges of the same colour which
implies the claim.

(b) Suppose the graph resulting from the edge contraction on xy is denoted by G′. G′

is (2, 2)-sparse provided it has no subgraph Y ′ with f(Y ′) < 2. Y ′ is also a subgraph of
G unless it derives from a subgraph Y ⊂ G with xy ∈ Y and f(Y ′) < f(Y ) only if z /∈ Y .
It follows that G′ is (2, 2)-tight unless it contains parallel edges of the same colour giving
the result. �

A (2, 3)-circuit is a (multi)graph G with |E| = 2|V | − 2 and |E ′| ≤ 2|V ′| − 3 for any
proper subgraph with at least one edge.

Lemma 3.4. Let G be (2, 2)-tight. Then either:
(a) G is a (2, 3)-circuit;
(b) G has a proper subgraph H with f(H) = 2 such that any vertex u ∈ V (G)− V (H) is
either adjacent to at most one vertex in V (H) or is adjacent to two but the two edges have
different colours; or
(c) G has a vertex of degree 2.
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Proof. Suppose (a) fails. Then G has a proper subgraph H with f(H) = 2. Let H ′ ⊃ H
be the smallest (2, 2)-tight graph containing H such that there is no vertex u in G −H ′
and two vertices a, b in H ′ with au, bu both having the same colour. Then since such
vertices u have at most 2 edges to H either (b) holds or H ′ = G. If (b) fails then H ′ can
be formed from H by applying a sequence of monochrome 0-extensions giving (c). �

Theorem 3.5. A bi-coloured multigraph G is (2, 2)-tight if and only if G can be generated
from K1 or K4 (where the colouring has at least 5 edges of the same colour) by 0-extensions,
colour-restricted 1-extensions, colour-restricted vertex splits and graph extensions.

Proof. Let G be (2, 2)-tight. Suppose G = K4. If there are at least two edges of each
colour, it is easy to check that there is a colour-restricted 1-reduction on G resulting in a
(2, 2)-tight graph. Hence, by the assumptions of the theorem we may suppose G is neither
K1 nor K4.

Consider the possibilities given in Lemma 3.4. If (b) holds then we can use Lemma
3.3(a) to contract a proper (2, 2)-tight subgraph. If (c) holds then we can use 0-reduction.
Hence we may suppose G is a (2, 3)-circuit. It follows that G has minimum degree 3 and
every degree 3 vertex has 3 neighbours. Note also that, since G is a (2, 3)-circuit, f(H) ≥ 3
for any proper H ⊂ G with |V (H)| ≥ 2.

Let v be a degree 3 vertex with neighbours x, y, z. Since G is a (2, 3)-circuit distinct
from K4, G contains no copy of K4. Thus without loss of generality we may suppose that
xy /∈ E.

Suppose first that the edges xv, yv have the same colour c. Now consider G′ = G−v+xy
(with the colour c). G′ is (2, 2)-tight unless G contained a subgraph H containing x, y but
not v, z with f(H) = 2, but this would contradict the fact that G is a (2, 3)-circuit. Hence
G′ is (2, 2)-tight. Since (xy, c) /∈ E, G′ is also monochrome simple.

It remains to consider the case, without loss of generality, when the edges incident to
v are (xv, b), (yv, r) and (zv, b). Here we consider the graph G′ = G − v + xz. By the
argument in the previous paragraph it follows that if G′ is not (2, 2)-tight then (xz, b) ∈ G.
Now {x, z, v} induces a monochrome triangle (note if (xz, r) ∈ E then we contradict the
fact G is a (2, 3)-circuit). We can now use Lemma 3.3(b) and the facts that v has degree
3 and G is a (2, 3)-circuit to complete the proof. �

3.2. Special position arguments. In the next section, and in subsequent sections for
other contexts, we show that the graph operations of the inductive construction preserve
the infinitesimal rigidity of completely regular frameworks. For a 0-extension move this
is elementary. However, for 1-extension moves we shall make use of special position argu-
ments which are specific to the geometry of the context.

We first recall the special position argument for infinitesimal rigidity preservation for
1-extensions in the case of traditional bar-joint frameworks in the plane, and in Definition
3.6 we introduce some convenient terminology.

Let (G, p) → (G′, p′) be a 1-extension move in which the bar p(e12), incident to joints
p1 and p2 in (G, p), is replaced by three bars p′(e′01), p

′(e′02), p
′(e′03) to create (G′, p′). Thus

the framework move is determined by the removal of the bar p(e12), the positioning of
a new joint p′0, and the addition of bars from p′0 to p1, p2, p3. In the case of Euclidean
frameworks in the plane, let us say that (G′, p′) is in a special position if p1, p2, p3 are not
colinear, and p′0, p1, p2 are colinear.
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Suppose now that (G, p) is regular and that (G′, p′) is in special position, as above.
We show that if (G′, p′) is infinitesimally flexible then so too is (G, p). This completes
the proof, since the infinitesimal flexibility of a regular framework for G′ implies the
infinitesimal flexibility of (G′, p′).

By assumption the special position framework is infinitesimally flexible with a nonrigid
motion infinitesimal flex u′. By the colinearity condition for the special position the ve-
locities u′1 and u′2 give an infinitesimal flex (u′1, u

′
2) of the bar p(e12) in (G, p). Thus, the

restriction, u say, of u′ to the joints of (G, p) determines an infinitesimal flex of (G, p).
Suppose, by way of contradiction, that this is a rigid motion flex. Then there is a cor-
responding rigid motion flex, u′rig say, of (G′, p′). Subtracting this flex from u′ we arrive
at a nonrigid motion infinitesimal flex of (G′, p′) which has zero velocities on all joints
except p0. Since p1, p2 and p3 are not colinear, by the special position condition, this is a
contradiction, as required.

Note that the essential part of this argument is that starting with a typical bar p1p2 we
are able to find a special position for a third joint p0 with the property that any infinitesimal
flex of the 2-bar framework with bars p0p1, p0p2 is automatically an infinitesimal flex of
the bar p1p2. This motivates the following definition for a general double-distance context.

Definition 3.6. Let T be a bar-joint framework triangle for the double-distance context
(X, db, dr), with distinct joints p0, p1, p2 and bars pij between pi, pj. Then the pair (T, p0)
is in special position if every infinitesimal flex of the 2-bar subframework with bars p01, p02
is also an infinitesimal flex of the bar p12.

In many cases we shall be able to use a special position infinitesimal flex argument as
above, or a limiting variant of this, as in [11, Lemma 4.2], to obtain rigidity preservation.
However, as we see in Section 4, for some mixed colour cases, such as Lemma 4.4 for
example, we need a more involved special position argument.

3.3. Geometric operations on Y.

Lemma 3.7. Let G′ be a colour-restricted 1-extension of a graph G and suppose that (G, p)
is a completely regular minimally rigid framework on Y. Then any completely regular
realisation of G′ is minimally rigid on Y.

Proof. As noted earlier we need only consider colour-restricted 1-extensions resulting in 3
distinct neighbours for the new vertex v.

In the case that the replaced edge xy is red, corresponding to a geodesic distance,
we note that any placement p(v) of v on the geodesic from p(x) to p(y) gives a special
position triangle framework for geodesic distances. Indeed, geodesic distances correspond
to planar Euclidean distances on unwrapping the cylinder to its planar covering space.
Rigidity preservation now follows, for either colour for zv, by the usual special position
argument [10].

Suppose now that xy is blue. Then [11, Lemma 4.2] applies. �

Lemma 3.8. Let G′ be a colour-restricted vertex split of a graph G on a blue edge and
suppose that (G, p) is a completely regular minimally rigid framework on Y. Then any
completely regular realisation of G′ on Y is minimally rigid on Y.

Proof. Since the operation is blue colour-restricted the argument given in [11, Lemma 5.1]
can be applied immediately. �
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Lemma 3.9. Let H be minimally rigid on Y, let G be a graph extension of G/H and
suppose that (G/H, p|G/H) is a completely regular minimally rigid framework on Y. Then
any completely regular framework (G, p) on Y is minimally rigid.

Proof. We can directly apply the proof from [10, Lemma 5.2]. �

3.4. Proof of Theorem 3.2. We can now prove the main result of this section.

Proof of Theorem 3.2. It follows from Theorem 2.6 that any minimally rigid framework
on Y is (2, 2)-tight. For the converse we use induction on |V |. It is easy to see that
K1 and K4 are minimally rigid. By Theorem 3.5 it remains to show that 0-extensions,
colour-restricted 1-extensions, colour-restricted vertex splits and graph extensions preserve
minimal rigidity. This was the content of Lemmas 3.7, 3.8 and 3.9. �

Remark 3.10. We remark that a second proof scheme for this theorem could make use
of a simpler combinatorial construction scheme with 1-extension moves of unrestricted
colour combination. On the other hand rigidity preservation for these hybrid moves would
require a further case-by-case analysis.

4. Euclidean and non-Euclidean constraints and mixed (2, 2)- and
(2, 3)-sparsity

We now consider frameworks in R2 where some bars constrain the Euclidean distance
between their joints and the remaining bars constrain a non-Euclidean distance for the
norm ‖ · ‖q, for some q 6= 2. Once again the structure graph is viewed as a bi-coloured
multigraph, without loop edges, where the blue edges correspond to the Euclidean distance
constraints and the red edges correspond to the remaining distance constraints.

We shall assume that q is fixed, with 1 < q < ∞, q 6= 2, and so the general results in
Section 2 apply to (R2, db, dr), where

db(p1, p2) = ‖p1 − p2‖2, dr(p1, p2) = ‖p1 − p2‖q.
In particular a completely regular double-distance framework (G, p) is infinitesmally rigid
if and only if the rigidity matrix has rank 2|V | − 2.

4.1. Mixed (2, 2)- and (2, 3)-sparsity. We say that a bi-coloured graph is (2, 3)-limited
if any subgraph with only blue edges is (2, 3)-sparse. It is worth commenting that this
definition is not symmetric in red and blue. We now derive a recursive construction of
bi-coloured graphs that are (2, 2)-tight and (2, 3)-limited. To simplify the requirements
for rigidity preservation in the next section, we consider some restriction on 1-extensions.
The first of these is that when we subdivide a red edge xy, at least one the two new edges
xv, yv is coloured red. In other words we do not use the 1-extension move for the colour
case r → {b, b}.

Lemma 4.1. A bi-coloured multigraph G is (2, 2)-tight and (2, 3)-limited if and only if
G can be generated from K1 by 0-extensions and 1-extensions which are not of the colour
case r → {b, b}.

Proof. Let G = (V,E) be (2, 2)-tight and (2, 3)-limited. Since |E| = 2|V | − 2, there exists
a vertex v of degree 2 or 3. If v has degree 2 it is easy to see that G − v is (2, 2)-tight
and (2, 3)-limited. So we may suppose the minimum degree is 3. Let v have degree 3 and
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consider the two graphs G′ resulting from a 1-reduction at v adding a coloured edge on
x, y. We see that

(i) G′ = G− v+ (xy, b) is an allowable 1-reduction unless G′ is not (2,2)-sparse or there
is a blue subgraph violating (2,3)-sparsity.

(ii) G′ = G − v + (xy, r) is an allowable 1-reduction unless G′ is not (2,2)-sparse or
(xy, r) ∈ E.

Suppose first that v has exactly two neighbours x and y. If, in either case (i) or (ii),
G′ has a subgraph which fails (2, 2)-sparsity then it follows that there is a subgraph of G
which violates (2, 2)-sparsity, a contradiction. Suppose that (i) holds and there is a blue
subgraph violating (2,3)-sparsity. This implies that G has a subgraph H containing x, y
but not v with f(H) = 3. Since f(H ∪ {v}) ≤ 2 we have that (xy, r) /∈ E and so, by (ii)
we are done. Since there is at most 1 edge between x, y we have shown that an allowable
1-reduction is always possible in the two neighbour case.

Now suppose that v has 3 neighbours x, y, z. First suppose at most one of the edges
incident to v is blue. (Since we only exclude the colour case r → {b, b}, this is sufficient
to allow us to consider all six possible coloured 1-reductions at v.)

Suppose that (2, 2)-sparsity fails for x, y and for y, z. Then there is a subgraph Hxy with
f(Hxy) = 2 containing x, y but not z, v and a subgraph Hyz with f(Hyz) = 2 containing
y, z but not x, v. Then f(Hxy∩Hyz) ≥ 2 so it follows that f(Hxy∪Hyz∪{v}) < 2 violating
(2, 2)-sparsity. Hence (2, 2)-sparsity fails for at most one pair of neighbours of v. Suppose
that there is a blue (2, 3)-tight subgraph F containing x, y, z but not v. Then there are
no red edges induced by the vertex set of F . Since (2, 2)-sparsity fails for at most for one
pair we see there is a valid 1-reduction at v.

Next suppose (2, 2)-sparsity fails precisely for the pair x, y but no other pair. Now let
Fyz be either a single red edge or a (2, 3)-tight blue subgraph containing y, z but not x, v.
In either case f(Fyz) = 3 and f(Hxy ∪ Fyz) ≤ 3. It follows that if either a single edge
(xz, r) or a (2, 3)-tight blue subgraph containing x, z but not y, v exists then adding v will
give a subgraph that contradicts (2, 2)-sparsity.

Lastly suppose that there is no (2, 2)-sparsity failure for any pair of neighbours. Then if
there is no 1-reduction to a (2, 2)-tight and (2, 3)-limited graph we have (xy, r), (yz, r) ∈ E
and we have subgraphs Fxy, Fyz as before. Since f(Fxy+(xy, r)) = 2 and f(Fyz+(yz, r)) =
2 we can use the argument above with Fxy + (xy, r) and Fzy + (yz, r) in place of Hxy and
Hyz to reach a contradiction.

Hence we may suppose at least two of the edges incident to v are blue. If exactly two
then the restriction on colouring rules out only one of the six possible 1-reductions at v.
Therefore we can use the same argument.

Thus suppose all three edges incident to v are blue. As above (2, 2)-sparsity may fail for
at most one pair. If this is the case then the argument above can be re-run. So suppose
there is no (2, 2)-sparsity failure for any pair. Then there is a 1-reduction on v to a smaller
(2, 2)-tight and (2, 3)-limited graph unless for all three pairs there is a blue subgraph
violating (2,3)-sparsity. This gives subgraphs Fxy, Fxz, Fyz defined as above each with
f(·) = 3. Suppose that |Fxy ∩Fxz| ≥ 2. Then f(Fxy ∩Fxz) ≥ 3 and f(Fxy ∪Fxz ∪{v}) ≤ 2
contradicting the fact that G is (2, 3)-limited. Hence we may assume that |Fxy ∩ Fxz| =
|Fxy∩Fyz| = |Fxz∩Fyz| = 1. It follows that f(Fxy∪Fxz∪Fyz∪{v}) = 2, again contradicting
the fact that G is (2, 3)-limited. �
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We next modify the construction scheme above to avoid 1-extensions of colour case
b→ {r, r} when the blue edge has a parallel red edge. We say that this move has parallel
edge colour case b → {r, r}. We show that this is possible at the expense of introducing
an elementary substitution move which replaces the 3-vertex graph K2 tK2, obtained by
joining 2 copies of bi-coloured K2 at a common vertex, by a red subgraph K4, which we
denote as Kr

4 . This replacement is joined at the 3 vertex positions of the removed graph,
denoted x, y, z below, and provides a degree 3 vertex v for the new graph (see Figure 1).

x

y

z

x

y

z

v

Figure 1. The substitution operation replacing K2 tK2 with Kr
4 .

It is straightforward to show that this (extension) move, from G′ to G, preserves the
class of (2, 2)-tight (2, 3)-limited graphs. It is also true that the inverse preserves these
properties as we now show. Any subgraph H, of G′, violating (2, 2)-sparsity contains either
x, y or y, z or x, y, z (otherwise it was present as a subgraph of G). In the latter case we
get a violation in G by adding (xz, r) and v’s 3 incident edges. If H contains x, y but not
z then, in G, adding z and v and their 5 incident edges gives a violation in G.

Similarly, any blue subgraph H violating (2, 3)-sparsity contains either x, y or y, z or
x, y, z. First the latter case, to get a violation in G we subtract (xy, b), (yz, b) from H but
add (xy, r), (yz, r), (xz, r) and v’s 3 incident edges, the new graph has both colours but
violates (2, 2)-sparsity. Lastly if H contains x, y but not z then, in G, H+ (xy, r) plus z, v
and their 5 incident edges gives a violation of (2, 2)-sparsity.

Lemma 4.2. A bi-coloured multigraph G is (2, 2)-tight and (2, 3)-limited if and only if G
can be generated from K1 by K2 tK2 substitutions, 0-extensions and 1-extensions which
are not of the colour case r → {b, b} or the parallel edge colour case b→ {r, r}.

Proof. Let G be (2, 2)-tight and (2, 3)-limited. Let v be a degree 3 vertex in G. By the
discussion above, it suffices to show that if there is no allowable 1-reduction for v then v
lies in a Kr

4 subgraph.
Let x, y, z be the neighbours of v. We may suppose that (xy, r) exists and the edges

incident to v from x and y are red. Since there is no 1-reduction to a red edge xz it follows
that (xz, r) exists or there is a (2,2)-tight subgraph Hxz as before (ie. containing x, v
but not y, z). Similarly, since there is no 1-reduction to a red edge yz then either (yz, r)
exists or there is a (2,2)-tight subgraph Hyz. Since the subgraph (Hxz ∪Hyz) +xy violates
(2, 2)-sparsity we may assume, relabelling if necessary, that (xz, r) exists.
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Now note that we cannot have a (2,2)-tight Hyz, since adding the 3 edges to v and the
2 red edges violate (2, 2)-sparsity. So we can assume that we have the red edge (yz, r),
and hence a K4 in G′ all of whose edges, except perhaps vz are red.

Finally, we show that vz is not a blue edge. Note that the K4 subgraph ensures that
(xz, b) and (yz, b) are not in G. Since there is no allowable reduction to (xz, b) or to (yz, b)
there are (2, 3)-tight blue graphs Fxz and Fyz as before. The union of these graphs with
the K4 graph violates (2, 2)-sparsity and so the proof is complete. �

4.2. 1-extensions and rigidity preservation. We next show that various mixed colour
1-extension moves preserve infinitesimal rigidity for completely regular frameworks in the
double-distance context (R2, ‖ · ‖2, ‖ · ‖q). Recall that for a 1-extension move

G→ G′ = G− v1v2 + (v0v1 + v0v2 + v0v3)

the edge v1v2 is replaced by the replacement edges v0v1, v0v2 and a connecting edge v0v3.
There are a number of colour cases c1 → {c2, c3} which we shall consider where, as before,
c1 is the colour of v1v2 and c2, c3 are the colours of the replacement edges.

Lemma 4.3. Let G and G′ be (2, 2)-tight bi-coloured multigraphs and let G → G′ be
a 1-extension move, with colour case r → {b, r}, b → {b, r}, b → {b, b} or r → {r, r}.
If (G, p) and (G′, p′) are completely regular and (G, p) is minimally rigid then (G′, p′) is
infinitesimally rigid.

Proof. We may assume that p = (p1, . . . , pn) and p′ = (p0, p). We show that if (G′, p′) is
not infinitesimally rigid then the same is true for (G, p). We use a limiting argument to
construct an infinitesimal flex of (G, p), which is in the style of the proof of [11, Lemma
4.2].

(i) Consider first the colour case r → {r, b} together with the assumption that v0v3 is
blue.

Let b be a unit vector which, at p2, is tangent to the closed curve of points (x, y) whose
non-Euclidean distance from p1 is dr(p1, p2). Equivalently b is a vector such that the real
scalar multiples λ(0, b) provide all the real infinitesimal flexes of the form (0, u2) for the
bar {p1, p2; r} in (G, p) with zero velocity at p1. Let pk0 be a sequence of specialisations of
p0, with pk0 − p2 orthogonal to b, which converge to p2 as k tends to infinity. See Figure 2.

pk0

p1

p3

p2

Figure 2. The colour case r → {b, r}



16 A. NIXON AND S.C. POWER

It follows from the assumption that there is an infinitesimal flex

uk = (uk0, u
k
1, u

k
2, . . . , u

k
n)

of (G′, pk), where pk = (pk0, p), such that uk1 = 0 and ‖uk‖2 = 1. Moreover, by replacing
the sequence (uk) by a subsequence we may assume that this sequence has a limit

u = (u0, u1, u2, . . . , un).

This vector, which has u1 = 0 and unit norm, is necessarily an infinitesimal flex of the
degenerate framework (G′, p∞) where p∞ is the limit of the sequence (pk). (This framework
has a zero length bar whose endpoints are the coinciding placements of v0 and v2.)

Note that uk0 is a scalar multiple of the tangent vector bk at pk0 for the boundary curve
of the non-Euclidean ball centred at p1 with radius dr(p1, p

k
0). Taking limits we see that

u0 is parallel to b. On the other hand, considering the Euclidean bar between pk0 and p2,
we have (uk0 − uk2) · a = 0 for all k, where a is a nonzero vector orthogonal to b. It follows
that u2 · a = 0, that is, that u2 is a scalar multiple of b.

Since the vector (0, u2) can now be regarded as a flex of the non-Euclidean bar {p1, p2; r}
it follows that the restriction of u to the joints of (G, p) provides an infinitesimal flex, ur
say, of (G, p) with zero velocity for the joint p1. Thus either (G, p) is infinitesimally flexible,
as desired, or ur = 0. However, if ur = 0 then, since u has norm 1 the velocity u0 has
norm 1 and we obtain a contradiction by considering the regular subframework of (G′, p∞)
consisting of the two bars from p1 and p3 to p∞0 . Note that for this last contradiction the
colour of the edges is irrelevant, so the argument also covers the case that the edge v0v3
is red.

(ii) The case b → {b, r}. This case follows by a similar limiting argument associated
with the specialisations illustrated in Figure 3. Let m be a unit vector perpendicular to
p1 − p2 and choose specialisations pk0 so that m is the flex direction for p2 for a flex of the
bar {pk0, p2; r} which has zero velocity at pk0.

pk0

p1

p3

p2
m

Figure 3. The colour case b→ {b, r}.

Consider a converging sequence of flexes uk of (G′, pk), as before, with uk1 = 0 and unit
norm. Then the velocity uk2 is the sum uk0+λkm, with uk0 viewed as a translation component
for the bar {pk0, p2; r}, and λkm viewed as a ‘non-Euclidean rotation’ component of the
same bar with zero velocity at pk0. As k tends to infinity uk0 tends to a scalar multiple of
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m and so u2 is also a scalar multiple of m. Thus the vector (0, u2) can be viewed as an
infinitesimal flex of the bar {p1, p2; b} and we can argue exactly as before.

(iii) The case b→ {b, b}. This follows from the standard linear specialisation, irrespec-
tive of the colour of v0v3.

(iv) The case r → {r, r}. This follows as in (iii) from a linear specialisation. (See also
Kitson and Power [7] for the purely non-Euclidean case.) �

The proof of the next lemma is analogous to the continuous flex special position argu-
ment in [10] for 1-extensions for frameworks on the cylinder.

Lemma 4.4. Let n ≥ 2 and suppose that all (2, 2)-tight, (2, 3)-limited, bi-coloured multi-
graphs with n vertices have completely regular placements which are minimally infinites-
imally rigid. Let G be such a graph and let G → G′ be a 1-extension move on the edge
e = (v1v2, b) for the colour case b → {r, r}, where G has no edge (v1v2, r). Then the
completely regular placements of G′ are minimally infinitesimally rigid.

Proof. Let Gr be G with (v1v2, b) replaced by (v1v2, r). Note that Gr is also (2, 2)-tight and
(2, 3)-limited. Let p be a placement of the vertices of G such that both (G, p) and (Gr, p)
are completely regular and infinitesimally rigid. Consider the framework (G\e, p) obtained
by removing the Euclidean bar {p1, p2; b}. When p1 is fixed the framework (G\e, p) has one
degree of flexibility, roughly speaking. To be precise, the space of infinitesimal flexes u of
this framework which have local velocity u1 = 0 at p1 is 1-dimensional. Also u is nonzero
if and only if the local velocity u2 is nonzero and in this case u2 is a nonzero multiple of a
unit vector, a say, at p2. In fact a is not orthogonal to p1−p2 since (G, p) is infinitesimally
rigid. We shall make use of the companion fact that since (Gr, p) is infinitesimally rigid
the vector a is not parallel to a vector, b say, at p2 which is tangent to the curve of points
z = (x, y) with dr(z, p1) = dr(p2, p1).

Choose a joint pn+1 on the interior of the line segment [p1, p2] and add bars {p1, pn+1; r}
and {pn+1, p2; r}, as indicated in Figure 4, to create a framework ((G\e)+, p+).

p1

p3

p2

Figure 4. The construction of ((G\e)+, p+) from (G, p).

Let u be a nonzero infinitesimal flex of ((G\e)+, p+) with u1 = 0. By the choice of
pn+1, since u1 = 0 the local velocity of u2 is in the direction a, as well as direction b, and
so is equal to 0. Since (Gr, p) is infinitesimally rigid the local velocities u3, . . . , un must
also be zero. Thus un+1 6= 0. Finally construct the framework (G′, p′) by adding the bar
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{p3, pn+1; c} to ((G\e)+, p+). The completely regular placements p above (for G and Gr)
are dense so we can arrange that p1, p2, p3 are not colinear. It follows that if c is red then
an infinitesimal flex u of (G, p) fixing p1, as above, does not extend to an infinitesimal flex
of (G′, p′). Thus (G′, p′) is infinitesimally rigid, and so any completely regular framework
for G′ is infinitesimally rigid. Similarly, if c is blue we may choose pn+1 on the line segment
such that p3− pn+1 is not orthogonal to the vector b to arrive at the same conclusion. �

4.3. Minimally rigid frameworks for (R2, ‖ · ‖2, ‖ · ‖q).

Theorem 4.5. Let G be a bi-coloured multigraph. A completely regular framework (G, p)
in (R2, (‖ · ‖2, ‖ · ‖q)), where 1 < q < ∞, q 6= 2, is minimally infinitesimally rigid if and
only if G is (2, 2)-tight and (2, 3)-limited.

Proof. It follows from Theorem 2.6 that any minimally rigid framework for the context
(R2, (‖ · ‖2, ‖ · ‖q)) has an underlying graph which is (2, 2)-tight and (2, 3)-limited. For the
converse we use induction on |V |. The single vertex graph K1 is trivially minimally rigid.
It is straightforward to show that 0-extensions preserve rigidity. By Lemma 4.2 it remains
to show that the relevant construction moves preserve minimal infinitesimal rigidity. This
is elementary in the case of the substitution move for K2 tK2, since this is a case of rigid
subgraph substitution. Also this holds for the required 1-extension moves by Lemmas 4.3,
4.4. �

5. Non-Euclidean direction-length frameworks

We now consider double-distance frameworks in (R2, ‖ · ‖q) where the red edges corre-
spond to distance under the q-norm, with q ∈ (1,∞), q 6= 2, and the blue edges correspond
to direction constraints. In this setting blue subframeworks admit dilation flexes and it
follows that the appropriate sparsity type is that of bi-coloured multigraphs which are
(2, 2)-tight and (2, 3)-limited. The inductive graph construction of Lemma 4.2 is thus
available in this setting. We note that rigidity in the case q = 2 has been characterised
combinatorially by Servatius and Whiteley [14].

The general results in Section 2 apply to the double distance context (R2, db, dr), where

db(p1, p2) = da(p1 − p2), dr(p1, p2) = ‖p1 − p2‖q.
Also, the direction-length framework (G, p) is infinitesimally rigid if and only if the rigidity
matrix has rank 2|V | − 2.

It is straightforward to see that a 0-extension move and the K2 tK2 substitution move
preserve direction-length rigidity in (R2, ‖ · ‖q). For four of the 1-extension colour cases
we have the following analogue of Lemma 4.3.

Lemma 5.1. Let G and G′ be (2, 2)-tight bi-coloured multigraphs and let G→ G′ be a 1-
extension move, with colour case r → {b, r}, b→ {b, r}, b→ {b, b} or r → {r, r}. If (G, p)
and (G′, p′) are completely regular direction-length frameworks and (G, p) is minimally
rigid then (G′, p′) is minimally infinitesimally rigid.

Proof. Assume that p = (p1, . . . , pn) and p′ = (p0, p). We show that if (G′, p′) is not
infinitesimally rigid then the same is true for (G, p). As before we consider four separate
cases according to colour. For the limiting arguments we identify a sequence of diagrams
given by a variable joint pk0 which converges to a position p∞0 coincident with the position of
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p2. The positioning of pk0 is chosen so that (assuming (G′, p′) is not rigid) the constructed
nontrivial limit flex, of the degenerate limit framework, restricted to the joints of (G, p),
yields a nontrivial flex of (G, p).

(i) Consider first the colour case r → {r, b}. The diagram sequence is indicated in
Figure 5 where the angle shown is constant and indicates the direction for a flex of the
non-Euclidean (red) bar p1p2 with zero local velocity at p1. We also assume that p1p

k
0 is

a non-Euclidean (red) bar and so it follows that the local velocity vectors uk0 at pk0 have
directions converging towards this angle with p1p2. Since p2p

k
0 is a blue direction-constraint

bar, the sequence of local velocities uk2 at p2 are similarly convergent. However, the limit
of this sequence is u2 and so the pair u1 = 0 and u2 gives a flex of the bar {p1, p2; r}. Thus
the limit flex u of the degenerate framework when restricted to the joints of (G, p) gives a
non rigid motion flex of (G, p), as desired.

pk0

p1

p3

p2

Figure 5. Colour case r → {r, b}.

(ii) The colour case b→ {b, r}. For each k the joint pk0 is chosen on the line through p2
whose angle with the line from p1 to p2 is such that the velocity direction at p2, for a flex
of the (red) length-separation bar p2p

k
0 with zero velocity at pk0, is in the direction from p2

to p1. See Figure 6.
We consider, as before, a sequence pk0 which converges to p2 together with a convergent

sequence of unit norm flexes uk with local velocities uk1 at p1 equal to 0. The velocity vector
uk0 is directed towards p1 since the bar between the joints is a blue direction-separation bar.
Since p2p

k
0 is a length-separation bar we claim that it follows from the chosen geometry

that the limit velocity vector u has local velocity u2 at p2 in the direction of the line from
p2 to p1. This completes the proof, as in (i). To see the claim note first that uk0 converges
to a velocity u0 which is in the direction from p2 to p1. Also by the chosen geometry the
velocity uk2 is a sum uk0 + wk

2 where wk
2 is in the direction from p2 to p1, and so the claim

follows.

(iii) The colour case b→ {b, b}, for purely direction constraints follows from the standard
linear specialisation, irrespective of the colour of v0v3.

(iv) The purely non-Euclidean bar colour case r → {r, r} follows, as in (iii), from a
linear specialisation as in Kitson and Power [7].

�
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pk0

p1

p3

p2

Figure 6. Colour case b→ {b, r}.

We have the following analogue of Lemma 4.4 whose proof, which we omit, follows
precisely the same logic.

Lemma 5.2. Let n ≥ 2 and suppose that all (2, 2)-tight, (2, 3)-limited, bi-coloured multi-
graphs with n vertices have completely regular direction-length frameworks which are min-
imally infinitesimally rigid. Let G be such a graph and let G→ G′ be a 1-extension move
on the edge e = (v1v2, b) for the colour case b → {r, r}, where G has no edge (v1v2, r).
Then the completely regular direction-length frameworks for G′ are minimally infinitesi-
mally rigid.

The following theorem can now be deduced from the construction scheme of Lemma 4.2
and the discussion above.

Theorem 5.3. Let G be a bi-coloured multigraph. A completely regular non-Euclidean
direction-length framework (G, p) in (R2, ‖ · ‖q), where 1 < q < ∞, q 6= 2, is minimally
rigid if and only if G is (2, 2)-tight and (2, 3)-limited.

6. Closing remarks

We note some further interesting double-distance contexts.

1. Projection constraints. In Nixon, Owen and Power [11] (2, 1)-tight combinatorial
characterisations of bar-joint frameworks in R3 were obtained for the generic rigidity of
frameworks whose joints were constrained to a cone or, more generally, to an algebraic
surface of revolution which is not a cylinder. One can augment this setting to form the
double-distance context of cone frameworks with projection constraints as follows. Let C be
a cone in R3 whose axis is orthogonal to the xy-plane. Let dr(p1, p2) denote the Euclidean
distance between joints located on this cone and let db(p1, p2) denote the distance between
their projections on the xy-plane. The context (C, db, dr) has a 1-dimensional space of rigid
infinitesimal motions corresponding to rotation about the axis of the cone. In particular
every completely regular framework with a complete (loopless) bi-coloured graph with
|V | ≥ 3 has a 1-dimensional space of infinitesimal flexes, and this space is given by
infinitesimal rotations. Thus we have the following corollary of Theorem 2.6.

Corollary 6.1. Let (G, p) be a completely regular bar-joint framework for (C, db, dr) with
at least 3 joints. Then the following are equivalent:

(i) (G, p) is continuously rigid;
(ii) (G, p) is infinitesimally rigid;



DOUBLE-DISTANCE FRAMEWORKS AND MIXED SPARSITY GRAPHS 21

(iii) rankDfG(p) = 2|V | − 1.

The underlying class of structure graphs for minimal infinitesimal rigidity are thus bi-
coloured graphs which are (2, 1)-tight and are (2, 3)-limited in the sense that any subgraph
with only blue edges is (2, 3)-sparse. We conjecture that a completely regular cone-and-
projection framework (G, p) is minimally infinitesimally rigid if and only if G is (2, 1)-tight
and (2, 3)-limited in this sense.

In analogy with the cone-and-projection context, one may define projection constraints
for any chosen surface. For example if one takes the surface to be the cylinder then the
appropriate sparsity type is (2, 2)-tight and (2, 3)-limited. We gave a recursive construction
of such graphs in Section 4 and this provides combinatorial methods that can be used to
characterise minimal rigidity in the cylinder-and-projection context.

2. Reflection distance in a half-plane. Let (Y, db, dr) be the double-distance context
indicated in Section 2.3 where Y = [0,∞) × R, with db being Euclidean distance and dg
the reflection distance where dg(p1, p2) is the minimum over boundary points q of the sum
db(p1, q)+db(p2, q). There is a 1-dimensional space of rigid motion infinitesimal flexes, given
by translational flexes and it follows from Theorem 2.6 that a minimally infinitesimally
rigid completely regular framework for (Y, db, dr) has bi-coloured graph which is (2, 1)-tight
and (2, 3)-limited for blue subgraphs, as before.

3. The flat projective plane. Let P2 be the set B2/ ∼ where B2 is the closed unit disc
in R2, centred at the origin, and ∼ is the equivalence relation for which two points x, y
of the closed disc are related if and only if they are antipodal points on the boundary, so
that y = −x. With the natural topology, inherited from the Euclidean topology, P2 is a
compact Hausdorff topological space and is homeomorphic to the real projective plane.
With this construction we may view the open disc D as densely embedded in P2. Also the
modulus |p| of a point p in P2 is well-defined in terms of this embedding and continuity.
Thus a point has modulus 1 if it corresponds to a boundary point of D.

The following separation distances are well-defined on the product D× D in P2 × P2.

(i) The direct (Euclidean) distance, db(p, q) = ‖p− q‖2.
(ii) The re-entrant distance, dr(p, q) = inf |x|=1{‖p− x‖2 + ‖q + x‖2}.
(iii) The geodesic distance, dg(p, q) = min{db(p, q), dr(p, q)}.
The re-entrant distance occurs as the sum of the lengths of two line segments to antipo-

dal points on the boundary for one of the positions where the angles subtended by the
corresponding diameter are equal. While the direct and re-entrant distances do not have
continuous extensions to P2 × P2 the geodesic distance does and (P2, dg) is a complete
metric space.

For the double-distance context (P2, db, dr) there is a 1-dimensional space of rigid infini-
tesimal motions, corresponding to rotation about the origin. Also it follows from Theorem
2.6, once again, that a minimally infinitesimally rigid completely regular framework has
bi-coloured graph which is (2, 1)-tight and (2, 3)-limited and we conjecture that this graph
condition is also sufficient.

We remark that George and Ahmed [2] consider the rigidity of a different class of
frameworks in a 1-dimensional projective space. For their context the structure graphs
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are hypergraphs and the rigidity matrix is given in terms of cross ratios. The conjecture
for the combinatorial characterisation of the hypergraphs for minimal infinitesimal rigidity
in this setting was proved by Jordán and Kazsanitzky [4].

4. Elevation constraints. Consider Rd to be oriented with respect to a coordinate
hyperplane and normal direction. Then we may consider an associated double-distance
context where db is Euclidean distance and dr is an elevation separation relative to the
hyperplane. Thus for R2 and the hyperplane x = 0 we may define

dr(p1, p2) = (y1 − y2)2.

We conjecture that the sparsity type characterising rigidity is that the bi-coloured struc-
ture graph should be (2, 2)-tight containing a blue spanning tree with any blue subgraph
being (2, 3)-sparse and any red subgraph being (1, 1)-sparse.

5. Global rigidity. It would be interesting to consider global rigidity in double-distance
contexts. On the cylinder, with Euclidean distances, global rigidity was characterised in
[3]. A key step was to understand ‘vertically restricted’ frameworks on the cylinder. These
are double-distance frameworks on the cylinder where the two types of distance constraints
are Euclidean (blue) and ‘dilation’ (red). More formally if (G, p) and (G, p̂) are frameworks
on the cylinder with p(vi) = (xi, yi, zi) and p̂(vi) = (x̂i, ŷi, ẑi), then the dilation constraint
for an edge vivj says that for (G, p) and (G, p̂) to be equivalent, we must have zi/zj = ẑi/ẑj.
In particular [3] characterised the bi-coloured graphs which are ‘vertically restricted’ rigid
on the cylinder when all possible vertical constraints are present (equivalently when the
red subgraph is a spanning connected graph). In the general double-distance context one
may conjecture that the sparsity type for minimal rigidity is that the bi-coloured struc-
ture graph should be (2, 1)-tight with any blue subgraph being (2, 2)-sparse and any red
subgraph being (1, 1)-sparse.

6. Coning. Frameworks on the sphere are often understood by way of coning [16]. One
can check that the following association provides double-distance cone bar-joint frame-
works (G̃, p̃) which are equivalent to bar-joint frameworks in R3 constrained to a cylinder.

Let X = R3, let d1 be the usual Euclidean distance and let d2 be the separation distance
defined by

d2((x1, y1, z1), (x2, y2, z2)) = ((x1 − x2)2 + (y1 − y2)2)
1
2 .

Let G = (V,E) be a simple graph and define G̃ = (Ṽ , Ẽ) where

Ṽ = V ∪ {v0}, Ẽ = E1 ∪ E2, E1 = E,E2 = {v0} × V.

Let (G, p) be a bar-joint framework constrained to the unit radius cylinder Y about the z-
axis, and let p̃ = (p0, p) with p0 = (0, 0, 0). Then the double-distance bar-joint framework
(G̃, p̃) is naturally equivalent to (G, p) on Y.
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