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36 Summary

37  Nutrient-distribution and neighbours can impact plant growth, but how 

38 neighbours shape root foraging strategy for nutrients is unclear. Here, we explore 

39 new patterns of plant foraging for nutrients as affected by neighbours to improve 

40 nutrient-acquisition.

41  Maize (Zea mays) was grown alone (maize), or with maize (maize/maize) or faba 

42 bean (Vicia faba) (maize/faba bean) as a neighbour on one side and with or 

43 without phosphorus (P)-rich zone on the other in a rhizo-box experiment.

44  Maize demonstrated root avoidance in maize/maize, with reduced root-growth in 

45 ‘shared’ soil, and increased growth away from its neighbours. Inversely, maize 

46 proliferated roots in the proximity of neighbouring faba bean roots that had 

47 greater P availability in the rhizosphere (due to citrate and acid phosphatase 

48 exudation) than maize roots. Maize proliferated more roots, but spent less time to 

49 reach, and grow out of, the P-patches away from neighbours in maize/maize than 

50 maize/faba bean. Maize shoot-biomass and P uptake were greater in the 

51 heterogeneous P treatment with maize/faba bean than maize/maize. 

52  The foraging strategy of maize roots is an integrated function of heterogeneous 

53 distribution of nutrients and neighbouring plants, consequently improving 

54 nutrient acquisition and maize growth. Understanding the foraging patterns is 

55 critical for optimizing nutrient management in crops.

56 Keywords: root foraging, nutrient heterogeneity, root-root interactions, phosphorus 

57 acquisition, nutrient-use efficiency, Zea mays (maize).
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58 Introduction

59 Plants experience significant challenges in obtaining nutrients as a result of spatial 

60 variation in the distribution of soil nutrients and neighbours (Callaway et al., 2003; 

61 Cahill et al., 2010; Cahill & McNickle, 2011). Consistent with a general 

62 understanding of dynamic foraging behaviour in many animal species (Charnov, 

63 1976; Krebs et al., 1977), plants can detect and respond to variations in nutrient 

64 availability and distribution in the soil environment (Kelly, 1990; Karban, 2008; 

65 McNickle et al., 2015). For example, when encountering a nutrient-rich patch, some 

66 species invest resources into proliferating roots, particularly increasing the proportion 

67 of fine roots (Drew, 1975; Hodge, 2004; Jing et al., 2010). In addition to changing 

68 root distributions in response to localized nutrient supply, plants can also modify 

69 nutrient uptake kinetics (Jackson et al., 1990). As root foraging is an active process 

70 involving search for nutrients, plants invest more resources into highly enriched 

71 patches than they do in homogeneous environments (McNickle & Cahill, 2009; Karst 

72 et al., 2012). Collectively, these root-foraging responses can significantly affect 

73 nutrient acquisition as well as plant growth and yield (Hodge, 2004; Cahill & 

74 McNickle, 2011).

75 The nutrient uptake benefits of root growth in a particular soil volume depend not 

76 only on nutrient concentration, but also on occupancy patterns of neighbours (Cahill 

77 et al., 2010). Studies are increasingly finding that plants have highly varied nutrient 

78 acquisition responses to the presence of neighbour roots (Semchenko et al., 2007; 

79 Mommer et al., 2012; Abakumova1 et al., 2016; Zhang et al., 2016), with some 

80 studied species demonstrating avoidance (i.e. roots growing away from the neighbour) 

81 (Gersani et al., 1998; Schenk et al., 1999), and some species tending to grow roots 

82 near neighbour roots (aggregation) (Maina et al., 2002; de Kroon, 2007). Despite the 

83 fact that nutrient depletion (Gersani et al., 1998; Schenk, 2006) and root exudates 

84 (Semchenko et al., 2014) can trigger different responses in root-root interactions, 

85 plant growth is mainly determined by soil nutrient availability; hence, adaptations that 

86 allow plants to acquire nutrients efficiently in the presence of neighbours can strongly 
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87 influence plant performance (Cahill & McNickle, 2011; Padilla et al., 2013). The 

88 dynamics of root foraging patterns for heterogeneously-distributed nutrients by 

89 individual plants are typically influenced by the co-occurring plants (Cahill et al., 

90 2010; Mommer et al., 2012; Zhang et al., 2016). Nonetheless, it remains unclear how 

91 plants integrate the information on nutrient and neighbour distributions in their 

92 foraging response that influences nutrient acquisition, plant growth, crop yield and 

93 even the outcome of ecological interactions.

94 Maize production is essential to food security in China and throughout the world. 

95 Because phosphorus (P) is poorly available in soils due to slow diffusion and strong 

96 fixation (Hinsinger, 2001; Shen et al., 2011), low P-use efficiency is one of the main 

97 factors that limit maize yield. Maize/faba bean intercropping is widely adopted in 

98 Chinese farming systems, particularly in northwest China, and is a good example of 

99 cropping systems that enhance P-use efficiency and deliver yield advantages (Zhang 

100 et al., 2004, 2010; Li et al., 2007, 2014a; Shen et al., 2013). In the maize/faba bean, 

101 maize roots spread underneath faba bean roots and showed greater compatibility of 

102 the spatial root distribution between the intercropped maize and faba bean in 

103 comparison to the maize/maize monocropping (Li et al., 2006). Whilst some of the 

104 maize crop yield and P uptake benefits from root proliferation in localized 

105 (heterogeneously-supplied) nutrients zone are understood (Jing et al., 2010, 2012; Ma 

106 et al., 2013; Shen et al., 2013; Li et al., 2014b), there is a considerable potential to 

107 improve maize yield and/or nutrient-use efficiency through understanding the 

108 integrated effects of patchy nutrient distribution and the neighbour species on maize 

109 root foraging behaviours.

110 In order to test how neighbouring plants modify maize-root foraging for 

111 heterogeneously-distributed P, and to understand the resulting impacts on P uptake 

112 and maize productivity, we conducted a rhizo-box study with varying neighbour 

113 species and soil P supply patterns. Specifically, we aimed to test the hypothesis: (1) 

114 root foraging strategy is an integrated function of nutrient distribution and neighbour 

115 species. The maize shows the specific root placement pattern in response to 

116 neighbouring faba bean compared with neighbouring maize, consequently causing the 
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117 varied root P foraging strategies in P-rich patches, such as root proliferation, and the 

118 time maize roots spend on acquiring heterogeneously-supplied P; and (2) the maize P 

119 nutrition is governed by modified root foraging behaviours influenced by the 

120 neighbour species and heterogeneously-supplied P.

121 Materials and Methods

122 Experimental set-up 

123 We constructed plastic rhizo-boxes 40 cm long, 12 cm wide and 30 cm deep (Fig. 1a, 

124 also refer to McNickle & Cahill, 2009) and the target maize was planted in the center 

125 of the rhizo-box. Such a planting design was based on the previous field experiment 

126 in that maize roots were concentrated mainly in the top 30 cm of soil, and 

127 nutrient-rich patches were located 4-10 cm (we used 8 cm in the present study) away 

128 from the maize plants (Jing et al., 2010; Ma et al., 2013; Zhang et al., 2019). In the 

129 rhizo-box experiment, one side (40 cm long and 30 cm deep) of the rhizo-box was 

130 removable for ease of soil and root sampling. A single clear acrylic tube (6 cm in 

131 diameter) was inserted horizontally 10 cm below the top edge of the rhizo-box (Fig. 

132 1a). A minirhizotron camera (Bartz Technology Corporation, Santa Barbara, CA, 

133 USA) was used to take images of roots during the experiment, enabling us to track 

134 root growth along the tube.

135 The soil was collected from Shangzhuang experimental station of China 

136 Agricultural University (latitude: 40° 14′ N, longitude: 116°19′ E) in Beijing, China, 

137 air-dried and sieved through a 2-mm sieve. The soil contained (per kg) 11.5 g organic 

138 carbon, 0.72 g total N, 8.5 mg available N (NO3
-+NH4

+), 2.6 mg NaHCO3-extractable 

139 P, 32 mg NH4Ac-extractable K, and had pH of 8.2 (the ratio of soil to 0.01 M CaCl2 

140 solution was 1:2.5). Before the treatments were established, basal nutrients in solution 

141 were uniformly added to the soil at the following rates (mg per rhizo-box containing 

142 15 kg soil): Ca(NO3)2·4H2O, 16,870; K2SO4, 2000; MgSO4·7H2O, 650; Fe-EDTA, 

143 87.8; MnSO4·H2O, 100; ZnSO4·7H2O, 150; CuSO4·5H2O, 30; H3BO3, 10; and 

144 Na2MoO4·5H2O, 2.5. 
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145 There were six treatment combinations of soil P supply patterns (homogeneous or 

146 heterogeneous) and maize planting treatments (alone, with neighbouring maize or 

147 with faba bean) (Fig. 1b). Each treatment had six replicates. The amount of P (applied 

148 as Ca(H2PO4)2·H2O) was the same in all treatments, but varied in spatial distribution: 

149 (1) 525 mg P mixed evenly throughout the soil, resulting in 35 mg P kg-1 soil 

150 (homogeneous treatment); (2) 255 mg P concentrated in a single rectangular column 

151 (4 cm × 12 cm × 30 cm, 1.5 kg soil, spanned the width and depth of each rhizo-box), 

152 and the other 270 mg P spread throughout the background soil (13.5 kg soil), resulting 

153 in 170 and 20 mg P kg-1 soil in the P-rich zone and the background soil, respectively 

154 (heterogeneous treatment). 

155 Based on the size of the rhizo-box and the soil volumes partitioned to neighbour, 

156 P-rich patch and the zone beyond the patch (Fig. 1c), total soil (15 kg) was divided 

157 into three lots: 10.5 kg soil in volumes 1 and 2, 1.5 kg soil in the P-rich patch (volume 

158 3) and 3 kg in soil volume beyond the P-rich patch (volume 4). Before loading the soil 

159 into the rhizo-box, the corresponding nutrients were added and thoroughly mixed with 

160 the soil. With the help of several thin plastic separators of different sizes, we loaded 

161 the soil into the corresponding rhizo-box zones.

162 The cultivar of maize (Zea mays L.) was ZD958, and the cultivar of faba bean 

163 (Vicia faba L.) was Lincan5. Maize and faba bean seeds were surface-sterilized in 

164 30% v/v H2O2 for 20 min, washed with deionized water, soaked in saturated CaSO4 

165 solution for 12 hours, and germinated on wet filter papers in Petri dishes for 4 days at 

166 22 C; seedlings were then transplanted into the rhizo-boxes. The target maize was 

167 grown in the center of the rhizo-boxes; on one side, 8 cm away from the target maize 

168 was a neighbouring plant (maize or faba bean), and 8 cm away from the target maize 

169 on the other side was the P-rich zone (in the heterogeneous treatments) (Fig. 1c). This 

170 design of the rhizo-box experiment allowed us to measure and monitor how the 

171 neighbours affected target maize root foraging for the localized nutrient. 

172 The experiment was conducted in a glasshouse at China Agricultural University, 

173 Beijing (latitude: 40° 01′ N, longitude: 116° 16′ E). Temperature in the glasshouse 

174 was maintained at 23-27 °C during the day and 13-16 °C at night, with a 13:11 h 
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175 light:dark cycle. The plants were gently watered every day to maintain field capacity 

176 (30%, v/v, checked by TDR100), and were allowed to grow for 45 days. 

177 Measurements

178 Root imaging. Images of roots were taken with a BTC 2 Minirhizotron camera 

179 system at 15 magnification. Three transects were used along the tube (see Fig. 1a), 

180 allowing the visualization of roots above (top transect) and on either side (90° to the 

181 top transect) in a clockwise or anti-clockwise direction. Given that small plants had 

182 few roots in the sight of the camera before the 17th day, we took the first images on 

183 day 18 after sowing. Digital images of roots were taken in 43 frames (1.35 cm × 2 

184 cm) along each transect at 2-3 d intervals to track root growth across the patch or in 

185 the related soil volume. After 44 days of growth, we took a final series of digital 

186 images. On day 45, all plants were harvested.

187 Shoot and root analyses. After 45 days of plant growth, the target maize and 

188 neighbouring species were sampled separately and divided into shoots and roots. To 

189 trace root foraging patterns of target maize, we regarded the rhizo-box edge close to 

190 the neighbour (i.e. opposite direction of the P-rich zone) as the starting point (0 cm) to 

191 divide roots into four volumes of soil in the heterogeneous or homogeneous 

192 treatments (Fig. 1c); volume 1: between the rhizo-box edge on the left-hand side and 

193 the stem of target maize (0-20 cm); volume 2: between the stem of target maize and 

194 the P-rich zone (20-28 cm); volume 3: P-rich zone (28-32 cm); and volume 4: 

195 between the distal P-rich zone edge and the other rhizo-box edge (32-40 cm).

196 Shoots were oven-dried at 105 C for 30 min and then at 65 C for 3 days for dry 

197 mass determination. Phosphorus concentration in shoots was determined after 

198 digestion with a mixture of 5 mL of concentrated sulfuric acid and 8 mL of 30 % v/v 

199 H2O2. Shoot P was analyzed by the molybdovanadophosphate method 

200 spectrophotometrically (UVmini-1240, Kyoto, Japan) at 440 nm (Johnson & Ulrich, 

201 1959). 

202 At harvest, the removable side of the rhizo-box was taken off, the soil was brushed 

203 away little by little from roots, and the neighbouring maize was removed carefully, 
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204 whereas the target maize roots stayed undisturbed; then, the root system of target 

205 maize was cut into four parts corresponding to soil volumes 1, 2, 3 and 4 (Fig. 1c). In 

206 the maize/faba bean treatments, maize roots and faba bean roots could be 

207 distinguished by color, i.e. maize roots were whitish and faba bean roots brownish; 

208 after root removal, the soil was sectioned into four parts and roots were further 

209 sampled. 

210 Roots were placed in an icebox for transport to the lab and were then washed in 

211 deionized water. The target maize roots were scanned on an EPSON root scanner at 

212 400 dot-per-inch resolution (Epson Expression 1600 pro, Model EU-35, Tokyo, 

213 Japan), and were then dried at 65 C for 3 days for the root mass measurement. The 

214 root length was analyzed by Win-RHIZO software (Regent Instruments Inc., Quebec, 

215 QC, Canada). The length of fine roots (diameter ≤0.2 mm) was calculated based on 

216 the classification of root diameters by Win-RHIZO software.

217 Statistical analyses

218 To assess the horizontal root distribution pattern of target maize, root mass production 

219 towards either the neighbouring plants or the P-rich zone (i.e. root-placement pattern) 

220 was analyzed by comparing root mass in region A (Fig. 1c) to the summed root mass 

221 in region B (including soil volumes 2, 3 and 4) (Fig. 1c). 

222 The proportion of root overlap between two neighbouring plants per unit area was 

223 calculated from the minirhizotron camera images (1.35 cm × 2 cm) to evaluate 

224 difference in the root-placement patterns between the maize/maize and maize/faba 

225 bean treatments (see Fig. 1c). Root length overlap was analyzed in the minirhizotron 

226 camera images using WinRhizoTron V. 2005 software (Regents Inc., Quebec, QC, 

227 Canada), and was divided by the total observable area in region A to assess how long 

228 both types of roots grew together per unit soil area.

229 To estimate how roots proliferate in specific soil zones when responding to 

230 neighbouring species, we measured the proportion of the target maize total root length 

231 and the fine root (diameter ≤0.2 mm) length in the P-rich zone with respect to the total 

232 root length in the whole rhizo-box in the heterogeneous treatment. Similarly, total root 
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233 length and fine root length in the soil volume corresponding to P-rich patch were 

234 divided by total root length of the target maize in the whole rhizo-box; both root traits 

235 were used to compare foraging capacity in the homogeneous with heterogeneous 

236 treatments (Mou et al., 1997; Jing et al., 2010; Li et al., 2014b; Wen et al., 2017). 

237 The days the target maize roots needed to reach, and grow out of, the P-rich zone 

238 were also recorded to evaluate foraging pattern. When the roots of the target maize 

239 were observed by the camera in soil volume 3 (the P-rich zone) in three transects, the 

240 day was recorded as the time roots grew into the P-rich zone. The patch-leaving time 

241 (when the roots grew out of the P-rich zone into volume 4) was recorded by the same 

242 method. 

243 We used the one-way analysis of variance (ANOVA) to test the effects of 

244 neighbour species on shoot biomass, P uptake, root distribution patterns and root 

245 foraging strategies of target maize. When appropriate, post-hoc mean comparisons 

246 were conducted using the Tukey's test at 5% probability (P ≤0.05) using the SPSS 

247 statistical software (SPSS version 23.0, IBM SPSS Inc., Chicago, IL, USA). Student’s 

248 t-tests were conducted to detect significant differences in the variables between the 

249 homogeneous and heterogeneous treatments.

250 Results

251 Target maize shoot mass and P content

252 The target maize shoot mass and P content were greater in maize/faba bean than 

253 maize/maize in either the homogeneous or heterogeneous P-supply treatment, even 

254 though maize shoot mass and P content were reduced in the mixture relative to single 

255 maize (Figs. 2a, 2b). Heterogeneous P supply increased maize shoot mass (Fig. 2a) 

256 and P content (Fig. 2b) in the maize/maize and maize/faba bean systems, whereas it 

257 had no significant effect on the shoot biomass and P content of individually grown 

258 maize (compared to the same dose of soil P that was distributed homogeneously). 

259 Additionally, neighbouring faba bean combined with the heterogeneous P supply 

260 stimulated maize growth, resulting in increased maize shoot biomass and P uptake in 
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261 maize/faba bean in the heterogeneous P treatment compared with maize in 

262 maize/maize in the homogeneous P treatment (Fig. 2).

263 Root distribution patterns of target maize

264 The interaction between neighbour species and nutrient distributions influenced maize 

265 total root mass (Figs. 3a, 3b; Table S1). In the homogeneous P supply treatment, total 

266 root mass of target maize was lowest in maize/faba bean, followed by the 

267 maize/maize and then individual maize treatments (Table S1). In the heterogeneous 

268 treatment, total root mass of target maize was lowest in the maize/faba bean 

269 treatment, and did not differ between the individual maize and the maize/maize 

270 treatments. Compared with maize (single maize and target maize in maize/maize and 

271 maize/faba bean) in the homogeneous treatments, heterogeneous P supply increased 

272 total root mass of target maize in the maize/maize and maize/faba bean systems, and 

273 for individual maize the trend was in the same direction, but not significant.

274 Comparing the root mass investment by target maize in the two soil volumes 

275 (region A with neighbour and region B with P-rich zone or equivalent in the 

276 homogeneous P environment, Fig. 1c), individually grown maize proliferated the 

277 same amount of roots on the sides with and without the nutrient patch (Figs. 3a, 3b). 

278 However, root proliferation varied in response to the combination of neighbour 

279 species and nutrient patch location. In the homogeneous P treatment, maize grew 

280 more roots on the side away from a neighbour, regardless of whether the neighbour 

281 was maize or faba bean. In contrast, in the heterogeneous P treatment, maize grown 

282 with faba bean produced similar root mass on the neighbour and the P-rich sides, but 

283 increased root allocation on the neighbour-free/P-rich side when grown with 

284 neighbouring maize. 

285 Even though the maize grown with faba bean did not alter root distribution 

286 between the two sides of the rhizo-boxes (with neighbour vs with P-rich patch; Fig. 

287 3), the proportion of root overlap between target maize and neighbouring plants (Fig. 

288 4) and their root images (Figs. 5, S1) taken by the camera both proved an adjustment 

289 in maize root placement within the soil zone shared with the faba bean neighbour. 
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290 When soil P was homogeneously distributed (Figs. 4a, 4b), the proportion of root 

291 overlap between maize and neighbouring faba bean in region A was greater than the 

292 root overlap between maize and neighbouring maize in the maize/maize treatment at 

293 day 44 (Fig. 4c), although it was similar after 30 and 37 days (Figs. 4a, 4b). In the 

294 heterogeneous treatment, the proportion of root overlap per unit of soil area was 

295 greater in the maize/faba bean treatment than maize/maize after 30, 37 and 44 days 

296 (Fig. 4). The soil P supply pattern had little impact on this proportion of root overlap 

297 between target maize and neighbouring plants, except for the maize/maize mixture at 

298 day 37 (Fig. 4b). In addition, root images taken with the camera showed that when 

299 maize and faba bean roots co-occurred, maize roots grew alongside the faba bean 

300 roots regardless of the P supply pattern (Fig. 5; also see Fig. S1). 

301 Root foraging strategies for heterogeneously-supplied P 

302 Under homogeneous P supply, the presence of neighbours (either maize or faba bean) 

303 increased maize root foraging capacity in the soil zone corresponding to the P-rich 

304 patch location compared with the single maize treatment (Figs. 6a, 6b). When soil P 

305 was heterogeneously distributed, neighbouring faba bean did not affect the proportion 

306 of target maize total root length and the fine root (diameter ≤0.2 mm) length in the 

307 P-rich zone (Figs. 6a, 6b). In contrast, neighbouring maize stimulated target maize 

308 root proliferation (Fig. 6a), but not that of fine roots (Fig. 6b), in the P-rich location. 

309 Hence, the target maize showed lower foraging capacity in the P-rich patch in the 

310 maize/faba bean than maize/maize treatments (Figs. 6a, 6b). Compared with maize in 

311 the homogeneous P treatment, the heterogeneous P had no effect on root foraging 

312 capacity of target maize grown with faba bean, but improved maize root foraging 

313 capacity in single maize and maize/maize (Figs. 6a, 6b).

314 The time roots of target maize required to reach and grow beyond P-rich zone (or 

315 the corresponding soil volume in the homogeneous treatment) was recorded to 

316 examine the capacity of roots to seek nutrients (Fig. 7). In the homogeneous and 

317 heterogeneous treatments, neighbouring faba bean had no impact on time maize roots 

318 spent reaching and growing out of the P-rich zone in maize/faba bean. However, the 
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319 time maize reached and exited the P-rich zone was shorter in the maize/maize than 

320 single maize treatments. The time in which target maize roots entered and exited the 

321 P-rich zone was longer in maize/faba bean than maize/maize except for the time 

322 maize took to reach P-rich patch in the homogeneous treatment. The difference in 

323 time the target maize exited the P-rich patch in maize/faba bean and maize/maize was 

324 confirmed by the greater target maize root mass and total root length in the soil zone 

325 beyond the P-rich patch in the maize/maize than maize/faba bean treatments (Fig. S2). 

326 The P supply treatments did not influence the time roots took to reach or grow beyond 

327 the P-rich zone (or corresponding soil volume in the homogeneous treatment) 

328 regardless of neighbours (Fig. 7).

329 Discussion

330 Our results clearly indicated that plant neighbour presence altered the maize root 

331 system spatial symmetry. Root growth of an individual plant is generally symmetrical 

332 around the plant axis under homogeneous soil nutrient supply (Brisson & Reynolds, 

333 1997; Schenk, 2006). In the present study, single maize grown in the homogeneous-P 

334 treatments produced similar root mass in the two soil volumes adjoining its axis, 

335 suggesting a balanced investment in development of individual maize roots (Fig. 3). 

336 However, any neighbours to maize represented potential competition, but 

337 neighbouring faba bean was less competitive than neighbouring maize (Zhang et al., 

338 2016). Plants appear to minimize neighbour competition by directing assimilates to 

339 roots in soil away from the neighbouring plant, thereby enhancing root development 

340 in those zones and reducing competitive encounters (Figs. 3, 4) (Maina et al., 2002; 

341 Callaway et al., 2003; Jesch et al., 2018). Although the present study did not consider 

342 root locations in vertical direction because species tested used different depths in soil 

343 profile as part of their foraging strategy (Li et al., 2006), the results clearly indicated 

344 that once neighbouring maize or faba bean was present, greater root mass was 

345 distributed in the soil region away from the neighbouring plant in a horizontal 

346 direction, more so in maize/maize than maize/faba bean.

Page 13 of 33

Manuscript submitted to New Phytologist for review



For Peer Review

14

347 In maize/maize, the target maize preferentially allocated the root mass into the soil 

348 volume away from the neighbouring maize (Fig. 3), leading to the formation of 

349 individual plant root territories as mentioned elsewhere (Caldwell et al., 1991; Schenk 

350 et al., 1999), so that the new roots could increase nutrient acquisition by avoiding 

351 competition for the same nutrient resources. Compared with maize grown with maize, 

352 the spatial distribution of maize roots in maize/faba bean was determined by several 

353 factors as follows. Firstly, in contrast to maize, faba bean could access the insoluble 

354 soil organic/inorganic P fractions (unavailable to maize) by exuding carboxylates and 

355 acid phosphatase, suggesting faba bean and maize had different soil P niches, as 

356 mentioned in the published reports (Li et al., 2007, 2014a; Hinsinger et al., 2011). 

357 Secondly, the proportion of root overlap was greater in maize/faba bean than 

358 maize/maize, indicating a tendency of maize roots to grow along faba bean roots 

359 (Figs. 4, 5, S1). Hence, the increased P availability induced by faba bean root 

360 exudates could support not just faba bean growth, but also that of maize. Thirdly, in 

361 addition to P mobilization by faba bean in the rhizosphere, the smaller and more 

362 shallow root system of faba bean compared with neighbouring maize could allow a 

363 greater soil volume (see also Li et al., 2006; Zhang et al., 2016) to be explored by 

364 roots of the target maize in the maize/faba bean than in the maize/maize mixtures; this 

365 idea was also supported by a previous study on maize/bean and maize/bean/squash 

366 system (Postma & Lynch, 2012). Hence, belowground competition for nutrients 

367 between target maize and neighbouring plants in maize/maize or maize/faba bean is 

368 fundamental for determining maize root system distribution through the soil. 

369 However, how root size and root exudation separately shape the response pattern of 

370 targeted maize roots warrant further investigation. In summary, the results indicated a 

371 role of the root/rhizosphere interactions driven by the neighbouring species in 

372 regulating the spatial asymmetry of maize roots in the maize/faba bean compared with 

373 maize/maize mixture. 

374 The neighbour-induced rooting patterns (Figs. 3, 4, 5, S1) and their roles in 

375 modifying target plant root foraging for nutrients, particularly in the nutrient-rich 

376 zones (Figs. 6, 7), were characterized in the present study. Before roots touched the 
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377 P-rich patch, maize root foraging behaviours were mainly influenced by neighbours. 

378 Compared with neighbouring maize, target maize roots tended to stay close to the 

379 neighbouring faba bean (region A) because faba bean mobilized soil P by exudation  

380 to feed maize in the soil (i.e. in soil with increased Olsen-P concentration) (Figs. 4, 5, 

381 S1) rather than extend only into the P-rich patch. Hence, the time required to reach the 

382 P-rich zone by target maize was longer in maize/faba bean than maize/maize (Fig. 

383 7a). After reaching the patch, root proliferation in P-rich patch was affected by both 

384 neighbouring species and heterogeneously-supplied P. Due to the lower root biomass 

385 allocated to P-rich patch by target maize in maize/faba bean than maize/maize (Fig. 

386 3), maize produced shorter total root length and fine roots length in P-rich patch (Fig. 

387 6), inducing a lower nutrient depletion rate in P-rich soil volume (Padilla et al., 2013; 

388 Zhang et al., 2019) but had longer time for nutrient acquisition and growing out of the 

389 patch in maize/faba bean than maize/maize (Figs. 7b, S2). Consistent with the 

390 previous study showing that the capacity of plants to proliferate roots into 

391 nutrient-rich patches was linked with the distribution of the root system through the 

392 soil (McNickle et al., 2015), the results presented here showed a substantial role of 

393 the neighbouring faba bean with low root morphological changes but high 

394 physiological activity in regulating the target maize root placement pattern, and thus 

395 root foraging strategies in the P-rich patches (hypothesis 1). 

396  One of the most interesting arguments is the optimality of plant performance 

397 governed by the foraging strategies (Weiner et al., 2010; Anten & Vermeulen, 2016). 

398 Optimal foraging does not mean that an organism must always respond to a resource 

399 stimulus (Clergue et al., 2005; Gordon, 2011) as has been assumed and expected in 

400 many plant studies. Indeed, the reduced proliferation of target maize roots in the 

401 P-rich zones when grown with faba bean possibly minimized the carbon cost and 

402 increased efficiency of P capture as reported before (McNickle & Cahill, 2009; 

403 Lynch, 2015). This study provides a direct support to the idea that an adaptive 

404 response should increase the benefits, while minimizing the costs, of a set of 

405 responses, subject to certain constraints (Smith, 1978). In the present study maize 

406 roots grew along faba bean roots and could capture the P mobilized by faba bean in 
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407 the common rhizosphere, thereby suppressing the need to forage for P in the P-rich 

408 patch by proliferating roots, which would be associated with a relatively large carbon 

409 cost.

410 In addition, maize in the maize/faba bean mixture could use the P in the soil 

411 volume unoccupied by faba bean and also the P in the P-rich patch, leading to greater 

412 maize P uptake and productivity in the maize/faba bean than maize/maize mixtures in 

413 the rhizo-box (Fig. 2), which was confirmed by an additional field experiment (see the 

414 methods and data in SI; Fig. S4). The present study integrated the multiple 

415 environmental cues (neighbour and nutrient) for understanding of 

416 biologically-complex interactions between rhizosphere properties and root foraging, 

417 indicating that interspecific variation in behavioural types governed nutrient uptake 

418 and crop yield (hypothesis 2). 

419 Root foraging traits are the important drivers of many ecosystem processes, such as 

420 carbon and nutrient cycling, and the formation and structural stability of soil (Bardgett 

421 et al., 2014). It is crucial to understand how different combinations of plant traits 

422 (such as different phylogeny, root sizes and various resource-use strategies) affect 

423 species coexistence and regulate ecosystem function. Understanding the details of 

424 plant foraging behaviour can enhance our knowledge on root-root interactions and 

425 nutrient-use efficiency as well as crop productivity, and contribute to revealing how 

426 these processes vary in the changing environments (e.g. variable nutrient 

427 concentrations and distribution patterns) in natural ecosystems, and how different trait 

428 combinations can influence system functions and sustainability in agroecosystems. 

429 For example, increasing biodiversity in agriculture (e.g. intercropping) could enhance 

430 soil fertility without external inputs and protect crops against pests and diseases while 

431 ensuring adequate crop productivity (see e.g. Brooker et al., 2015; Gaba et al., 2014; 

432 Duchene et al., 2017; Isbell et al., 2017; Weiner, 2017). However, the success of this 

433 agroecological practice depends to a great extent on local field conditions and is still 

434 potentially diminished by competition between intercropped species, particularly 

435 when influenced by unfavourable local climate, growth conditions, fertilization 

436 practices or choice of species (Hauggaard-Nielsen & Jensen, 2005). The present 
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437 research underlines the importance of designing cropping systems based on ecological 

438 principles and the delivery of ecosystem services (including crop yield) to enhance 

439 agroecosystem sustainability and nutrient-use efficiency, and minimize substrate and 

440 energy inputs, which is partially highlighted in the previous studies (Isbell et al., 

441 2017; Weiner, 2017). Hence, managing root foraging behaviours might allow 

442 designing more productive and sustainable cropping systems and developing more 

443 precise and efficient agronomic recommendations. 

444 Conclusions

445 The results demonstrated that plant root foraging patterns emerge from the 

446 interactions of soil nutrient distribution and neighbours presence. The 

447 root/rhizosphere interactions induced by neighbours are the underlying mechanism 

448 driving maize root spatial distribution and thus governing root foraging for 

449 heterogeneously-supplied P. The target maize showed greater foraging capacity for P 

450 in the P-rich soil zone in maize/maize cropping than maize/faba bean intercropping, 

451 shown as greater total root length as well as fine root length in the P-rich patch, but 

452 shorter time to reach, and grow out of, the P-patch zone. The effect of nutrient supply 

453 and neighbours on changing root growth and positioning corresponded to increases in 

454 the target maize P uptake and shoot mass (higher with the faba bean than maize 

455 neighbour, and higher in heterogeneous than homogeneous P supply). Faba bean 

456 intercropped with maize stimulated the target maize to acquire more P than 

457 neighbouring maize did in maize/maize, which was consistent with the greater shoot 

458 biomass of the target maize; the heterogeneous P supply further improved the target 

459 maize P nutrition. The present study showed that intercropping maize with faba bean 

460 and localized application of P increased the target maize P uptake and shoot biomass.
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630 Figure captions

631 Fig. 1 (a) Schematic diagram of the experimental rhizo-boxes with a horizontal tube 

632 for a minirhizotron camera. One side (40 cm long and 30 cm deep) of the rhizo-box 

633 was removable for ease of soil and root sampling. (b) Representation of experimental 

634 design with three planting treatments (left-to-right: single maize, maize/maize and 

635 maize/faba bean) in the homogeneous (Hom) and heterogeneous (Het) nutrient 

636 environments. (c) Arrangement of target maize (in the middle of the rhizo-box), 

637 neighbour (on the left side, represented by a red arrow) and P-rich zone (on the right 

638 side, vertical light brown column), the four soil volumes [→(1)↔(2)↔(3)↔(4)←] for 

639 separate root harvesting, and the two regions (A and B) for the root-placement pattern 

640 analysis.

641 Fig. 2 Shoot mass (a) and shoot P content (b) of target maize in various planting 

642 patterns and with soil P supply as homogeneous (Hom) or heterogeneous (Het). 

643 Different lowercase letters denote significant differences (P ≤0.05) among the target 

644 maize data in the single maize, maize/maize and maize/faba bean systems in the 

645 homogeneous treatments, and different capitals denote significant differences (P 

646 ≤0.05) in the heterogeneous treatments. Means + SE (n=6). For target maize, the 

647 t-tests were run to assess the differences in shoot mass or shoot P content between the 

648 heterogeneous and homogeneous treatments: *, P ≤0.05; ns = not significant.

649 Fig. 3 Root mass of target maize (position 0 on the X-axis) in region A with a 

650 neighbour (a) and region B with the P-rich zone (vertical light brown column) (b) in 

651 various planting patterns and with homogeneous (Hom) or heterogeneous (Het) soil P 

652 supply. Different lowercase letters denote significant differences (P ≤0.05) among the 

653 target maize data in the single maize, maize/maize and maize/faba bean systems in the 

654 homogeneous treatment, and different capital letters denote significant differences (P 

655 ≤0.05) in the heterogeneous treatment. The asterisks on the side of horizontal bars 

656 denote the differences in root mass between the homogeneous and heterogeneous 

657 treatments. The asterisks within horizontal bars represent the treatment differences in 
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658 root mass between region A containing a neighbour and region B containing the 

659 P-rich zone. The darkening bars from top to bottom represent planting patterns from 

660 single maize, maize/maize to maize/faba bean. Means + SE (n=6). The t-tests were 

661 run to detect significant difference between the heterogeneous and homogeneous 

662 treatments: *, P ≤0.05; **, P <0.01; ***, P <0.001; ns = not significant.

663 Fig. 4 Proportion of root overlap between neighbouring two plants in region A (see 

664 Fig. 1c) calculated from the minirhizotron camera images that were taken at 10-cm 

665 depth after 30 (a), 37 (b) and 44 days (c) with soil P supply either homogeneous 

666 (Hom) or heterogeneous (Het). All images were taken in the soil volume bordered by 

667 the lines projected from the faba bean and maize stems in region A at 15 

668 magnification. Different lowercase letters denote significant differences (P ≤0.05) 

669 between the target maize data in the maize/maize and maize/faba bean systems in the 

670 homogeneous treatments, and different capital letters denote significant differences in 

671 the heterogeneous treatments (P ≤0.05). Means + SE (n=6). The t-tests were run to 

672 detect significant difference between the heterogeneous and homogeneous treatments: 

673 * P ≤0.05 and ns = not significant.

674 Fig. 5 Minirhizotron camera images at 10-13 cm depth taken after 23 days of growth 

675 (top row, 1-a and 2-a) and after 6 additional days (29 days of growth; bottom row, 1-b 

676 and 2-b), whereby roots of the target maize approached and grew along the faba bean 

677 roots. All images were taken in the soil volume bordered by the lines projected from 

678 the faba bean and maize stems in region A (see Fig. 1c) at 15 magnification. The 

679 numbers in the bottom right corner represent replications and the day when the image 

680 was taken. Note the maize roots (whitish roots indicated by blue arrows) growing 

681 along faba bean roots (brownish roots indicated by red arrows). 

682 Fig. 6 Proportion of root length (a) and fine root (diameter ≤0.2 mm) length (b) of 

683 target maize in the P-rich zone with respect to the total (whole rhizo-box) root length 

684 as influenced by the P supply pattern (Hom, homogenous; Het, heterogeneous). 

685 Different lowercase letters denote significant differences (P ≤0.05) among the target 
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686 maize data in the single maize, maize/maize and maize/faba bean systems in the 

687 homogeneous treatments, and different capital letters denote significant differences (P 

688 ≤0.05) in the heterogeneous treatments. Means + SE (n=6). The t-tests were run to 

689 assess the differences in the target maize data between the heterogeneous and 

690 homogeneous treatments: *, P ≤0.05; **, P <0.01; ns = not significant.

691 Fig. 7 The number of days the target maize roots needed to reach (a) and grow out of 

692 (b) the P-rich zone in the single maize, maize/maize and maize/faba bean treatments 

693 with soil P supply either homogeneous (Hom) or heterogeneous (Het). When the roots 

694 of the target maize were observed by the camera in soil volume 3 (the P-rich zone) 

695 (see Fig. 1c) from the three transects, that day was recorded as the time roots grew 

696 into the P-rich zone. The patch-leaving time (when the roots grew out of the P-rich 

697 zone into volume 4, Fig. 1c) was recorded by the same method. Different lowercase 

698 letters denote significant differences (P ≤0.05) among the target maize data in the 

699 single maize, maize/maize and maize/faba bean systems in the homogeneous 

700 treatments, and different capital letters denote significant differences (P ≤0.05) in the 

701 heterogeneous treatments. Means + SE (n=6). The t-tests were run to assess the 

702 differences in the patch-reaching (a) and -leaving time (b) by target maize between 

703 the heterogeneous and homogeneous treatments: ns = not significant.
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Fig. 1 (a) Schematic diagram of the experimental rhizo-boxes with a horizontal tube for a minirhizotron 
camera. One side (40 cm long and 30 cm deep) of the rhizo-box was removable for ease of soil and root 
sampling. (b) Representation of experimental design with three planting treatments (left-to-right: single 
maize, maize/maize and maize/faba bean) in the homogeneous (Hom) and heterogeneous (Het) nutrient 

environments. (c) Arrangement of target maize (in the middle of the rhizo-box), neighbour (on the left side, 
represented by a red arrow) and P-rich zone (on the right side, vertical light brown column), the four soil 
volumes [→(1)↔(2)↔(3)↔(4)←] for separate root harvesting, and the two regions (A and B) for the root-

placement pattern analysis. 
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Fig. 2 Shoot mass (a) and shoot P content (b) of target maize in various planting patterns and with soil P 
supply as homogeneous (Hom) or heterogeneous (Het). Different lowercase letters denote significant 

differences (P ≤0.05) among the target maize data in the single maize, maize/maize and maize/faba bean 
systems in the homogeneous treatments, and different capitals denote significant differences (P ≤0.05) in 
the heterogeneous treatments. Means + SE (n=6). For target maize, the t-tests were run to assess the 

differences in shoot mass or shoot P content between the heterogeneous and homogeneous treatments: *, P 
≤0.05; ns = not significant. 
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Fig. 3 Root mass of target maize (position 0 on the X-axis) in region A with a neighbour (a) and region B 
with the P-rich zone (vertical light brown column) (b) in various planting patterns and with homogeneous 
(Hom) or heterogeneous (Het) soil P supply. Different lowercase letters denote significant differences (P 

≤0.05) among the target maize data in the single maize, maize/maize and maize/faba bean systems in the 
homogeneous treatment, and different capital letters denote significant differences (P ≤0.05) in the 

heterogeneous treatment. The asterisks on the side of horizontal bars denote the differences in root mass 
between the homogeneous and heterogeneous treatments. The asterisks within horizontal bars represent 

the treatment differences in root mass between region A containing a neighbour and region B containing the 
P-rich zone. The darkening bars from top to bottom represent planting patterns from single maize, 

maize/maize to maize/faba bean. Means + SE (n=6). The t-tests were run to detect significant difference 
between the heterogeneous and homogeneous treatments: *, P ≤0.05; **, P <0.01; ***, P <0.001; ns = 

not significant. 
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Fig. 4 Proportion of root overlap between neighbouring two plants in region A (see Fig. 1c) calculated from 
the minirhizotron camera images that were taken at 10-cm depth after 30 (a), 37 (b) and 44 days (c) with 
soil P supply either homogeneous (Hom) or heterogeneous (Het). All images were taken in the soil volume 

bordered by the lines projected from the faba bean and maize stems in region A at 15× magnification. 
Different lowercase letters denote significant differences (P ≤0.05) between the target maize data in the 
maize/maize and maize/faba bean systems in the homogeneous treatments, and different capital letters 
denote significant differences in the heterogeneous treatments (P ≤0.05). Means + SE (n=6). The t-tests 
were run to detect significant difference between the heterogeneous and homogeneous treatments: * P 

≤0.05 and ns = not significant. 
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Fig. 5 Minirhizotron camera images at 10-13 cm depth taken after 23 days of growth (top row, 1-a and 2-a) 
and after 6 additional days (29 days of growth; bottom row, 1-b and 2-b), whereby roots of the target 

maize approached and grew along the faba bean roots. All images were taken in the soil volume bordered 
by the lines projected from the faba bean and maize stems in region A (see Fig. 1c) at 15× magnification. 

The numbers in the bottom right corner represent replications and the day when the image was taken. Note 
the maize roots (whitish roots indicated by blue arrows) growing along faba bean roots (brownish roots 

indicated by red arrows). 
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Fig. 6 Proportion of root length (a) and fine root (diameter ≤0.2 mm) length (b) of target maize in the P-rich 
zone with respect to the total (whole rhizo-box) root length as influenced by the P supply pattern (Hom, 
homogenous; Het, heterogeneous). Different lowercase letters denote significant differences (P ≤0.05) 

among the target maize data in the single maize, maize/maize and maize/faba bean systems in the 
homogeneous treatments, and different capital letters denote significant differences (P ≤0.05) in the 

heterogeneous treatments. Means + SE (n=6). The t-tests were run to assess the differences in the target 
maize data between the heterogeneous and homogeneous treatments: *, P ≤0.05; **, P <0.01; ns = not 

significant. 
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Fig. 7 The number of days the target maize roots needed to reach (a) and grow out of (b) the P-rich zone in 
the single maize, maize/maize and maize/faba bean treatments with soil P supply either homogeneous 
(Hom) or heterogeneous (Het). When the roots of the target maize were observed by the camera in soil 

volume 3 (the P-rich zone) (see Fig. 1c) from the three transects, that day was recorded as the time roots 
grew into the P-rich zone. The patch-leaving time (when the roots grew out of the P-rich zone into volume 4, 

Fig. 1c) was recorded by the same method. Different lowercase letters denote significant differences (P 
≤0.05) among the target maize data in the single maize, maize/maize and maize/faba bean systems in the 

homogeneous treatments, and different capital letters denote significant differences (P ≤0.05) in the 
heterogeneous treatments. Means + SE (n=6). The t-tests were run to assess the differences in the patch-

reaching (a) and -leaving time (b) by target maize between the heterogeneous and homogeneous 
treatments: ns = not significant. 
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