
Clouseau: Generating Communication Protocols from Commitments

1798

Abstract
Engineering a decentralized multiagent system (MAS) re-
quires realizing interactions modeled as a communica-
tion protocol between autonomous agents. We contribute
Clouseau, an approach that takes a commitment-based spec-
ification of an interaction and generates a communication
protocol amenable to decentralized enactment. We show
that the generated protocol is (1) correct—realizes all and
only the computations the realize the input specification;
(2) safe—ensures the agents’ local views remain consistent;
and (3) live—ensures the agents can proceed to completion.

1 Introduction
Any application where stakeholders collaborate or compete
while retaining their autonomy, such as in finance, health-
care, and the Internet of Things, may be naturally understood
as a decentralized multiagent system (MAS). Engineering a
MAS presupposes a means to ensure that the agents interop-
erate even though their internal representations and decision
making are hidden from each other.

This paper unifies two core aspects of interoperation.
One, operational or how the agents realize their interac-
tions. A communication protocol specifies what messages
an agent may send or receive, and when (Bauer, Müller, and
Odell 2000). To reduce coupling, interactions must be asyn-
chronous, i.e., no agent blocks for another except to receive
essential information. Recent MAS platforms (Boissier et
al. 2019) and protocol approaches (Ferrando et al. 2019;
Singh 2011) support asynchrony. Two, meanings or the so-
cial import of an interaction. We must represent the mean-
ings formally and independently of agent construction, such
that the agents can reason about meanings of interactions
and agree on the outcomes upon observing the same events.

Social commitments (Fornara and Colombetti 2003;
Marengo et al. 2011; Chesani et al. 2013) provide high-level
meanings to messages, yielding an operations-independent
standard of correctness. For example, Alice (a merchant),
may commit to Bob (a customer) to send Bob some goods
if he pays. Now if Bob pays, the commitment is discharged
only if Alice sends the goods.

Whereas a protocol offers a clear operational interface for
agents, commitments capture the meanings of interactions.

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Current MAS approaches separately specify meanings and
protocols, which (1) creates a burden of maintaining consis-
tency of two specifications and (2) leads to inflexible proto-
cols because manually operationalizing meanings under de-
centralization is nontrivial.

Clouseau, our approach, provides a new way to opera-
tionalize commitments by compiling meanings into flexi-
ble protocols that can enacted by agents using asynchronous
messaging over unordered channels. This is a significant ad-
vance over existing approaches, which lack such a capabil-
ity. In particular, Clouseau produces correct and flexible pro-
tocols, thereby avoiding the above limitations.

Contribution: Operationalizing Commitments How
can we automatically generate a communication protocol
based on commitments, thereby bridging the gap between
meanings and protocols that benefit from asynchronous
messaging? A desirable protocol would (1) enable comput-
ing commitment states; (2) ensure alignment of the agents
with respect to the commitments; (3) be flexible, i.e., allow
as many interactions as possible given the commitments and
the capabilities of the agents.

Accordingly, we contribute a specification comprising (1)
a domain information model; (2) the roles to be played by
the interacting agents; (3) commitments between these roles
in terms of the information model; (4) the capabilities of
the roles; and (5) description of satisfactory completion (an
event expression). This input provides the essential knowl-
edge for capturing meanings computationally. This language
augments Cupid (Chopra and Singh 2015a) with agent capa-
bilities, which help capture how an agent may enact a pro-
tocol. Crucially, we reformulate the semantics of Cupid to a
decentralized model.

We adopt as output information-based protocols (Singh
2011) that express causality and integrity properties in infor-
mation. An output protocol captures all legitimate decentral-
ized enactments, thereby yielding flexible agent interaction.

Our overarching contribution is theoretical: a method to
generate a protocol from a commitment specification. We
show that a generated protocol is (1) correct, that is, it sup-
ports exactly the computations of the specification, (2) safe,
in the sense that local views of agents remain consistent de-
spite decentralization and asynchronous enactment, and (3)
live, ensuring that agents can proceed to completion.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/266984656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 NetBill and Commitments
We adopt NetBill (Sirbu 1997), a protocol for trading digi-
tal media, as a familiar running example (Yolum and Singh
2002a; Winikoff, Liu, and Harland 2005). Figure 1 shows
NetBill as a finite state machine (FSM) whose transitions
are labeled with messages (SENDER, RECEIVER: content).

S0 S1

S4 S2 S3

S5 S8

S6 S9

S7

BUYER, SELLER:
rfq(item)

SELLER, BUYER:
quote(item, price)

SELLER, BUYER:
quote(price, item)

BUYER, SELLER:
accept(price, item)

BUYER, SELLER:
reject(price, item)

SELLER, BUYER:
deliver(item)

BUYER, SELLER:
pay(price)

SELLER, BUYER:
deliver(item)

SELLER, BUYER:
receipt(decrypt)

BUYER, SELLER:
pay(price)

SELLER, BUYER:
receipt(decrypt)

SELLER, BUYER:
deliver(item)

Figure 1: Finite state machine representations of NetBill. The solid
lines describe the original NetBill. The dashed lines show some
possible generalizations that follow trivially from commitments.

NetBill begins with an rfq (request for quotes) message
from BUYER to SELLER for an item (transition from s0 to
s1), who responds to BUYER with a quote including the price
of item (transition from s1 to s2). If BUYER sends a reject in
response (transition from s2 to s3), the protocol ends, indi-
cated by the double circle on s3. Otherwise, if BUYER sends
an accept (transition from s2 to s4), SELLER sends a deliver
to BUYER, including item in an encrypted format (transition
from s4 to s5). After receiving deliver, BUYER sends a pay-
ment (i.e., an electronic cheque) to SELLER (transition from
s5 to s6). After receiving payment, SELLER sends a receipt
to BUYER including cipher to decrypt the item (transition
from s6 to s7), and the protocol ends.

3 Specifying Interactions using Clouseau
NetBill includes only two (i.e., accept and reject) branches.
We could enhance its flexibility by including, e.g., the
dashed edges in Figure 1 whereby SELLER may send an un-
solicited quote and BUYER may pay in advance.

But how would we establish that any path, original or
added, is legitimate? The idea behind using commitments
(Yolum and Singh 2002b) is to express the meaning of an
interaction formally and thereby to ensure that all and only
the legitimate interactions are realized. Given commitments,
paths where the commitments are not violated can be in-
cluded in the protocol without fear of violating a business
requirement—Clouseau supports more general completion
requirements. A major benefit is raising the level of abstrac-
tion from operations to meanings.

Clouseau provides a way to generate a protocol that re-
tains the flexibility of a meaning-level specification thus ob-
viating the need for manual design of a protocol.

3.1 Syntax of Clouseau Specifications
A Clouseau specification comprises (1) a set of roles; (2) an
information schema of base events over lists of attributes;
(3) commitments between the roles over the events; (4) each
role’s capabilities, i.e., which events a role can bring about
and attribute bindings it can set; and (5) completion. Cupid
(Chopra and Singh 2015a) has (2) and (3); Clouseau adds
(1), (4), and (5).

Table 1 shows Clouseau’s surface syntax. Here, −→ indi-
cates a production, and | indicates choice. A + indicates one
or more repetitions. b c indicate optionality. A , B, C , R,
and S are sets of (terminal) attributes, base events, commit-
ments, roles, and specification names. T = N∪∞ is a set of
time instances. ([] are terminals that identify time intervals.)
We write u, t, and 	 for and, or, and except, respectively.

Table 1: Syntax of Clouseau’s input specification.

Spec −→S {roles RR+ Base+ Commit+ Cap+ Comp}
Base −→ event B(bA boptcc+) key A +

Commit −→ commitment C R to R create Ev
bdetach Evc discharge Ev brelease Evc

Cap −→ capability R B bwith bbfreshc A c+c
Comp −→ completion Ev
Ev −→Bb[bTime, c Time]c | Life C b[bTime, c Time]c

| Ev and Ev | Ev or Ev | Ev except Ev
Time −→ T |B + T
Life −→ created | detached | discharged

| released | expired | violated| done

Listing 1 specifies NetBill based on Yolum and Singh
(2002b). Lines 4–10 show base event schemas, each a rela-
tion over its attributes. Some attributes form a key. A times-
tamp attribute is implicit. For example, rfq has attributes nID
(its key) and item. Each instance of rfq is a tuple of values
for its attributes that is unique for its value of nID.

Listing 1: Specification of NetBill in Clouseau.
1 N e t B i l l−F l e x i b l e {
2 roles Se l le r , Buyer
3
4 event r f q (nID , i tem) key nID
5 event quote (nID , item , p r i ce) key nID
6 event accept (nID , item , pr ice , dec is ion) key nID
7 event r e j e c t (nID , item , pr ice , dec is ion) key nID
8 event payment (nID , pr ice , dec is ion , cheque) key nID
9 event d e l i v e r (nID , dec is ion , i tem) key nID

10 event r e c e i p t (nID , item , cheque , c ipher) key nID
11
12 commitment PromiseGoods S e l l e r to Buyer
13 create quote
14 detach created AcceptQuote
15 discharge d e l i v e r [accept + 3]
16 release r e j e c t
17
18 commitment PromiseReceipt S e l l e r to Buyer
19 create quote
20 detach created AcceptQuote and payment [accept + 3]
21 discharge r e c e i p t [payment + 1]

2

22 release r e j e c t
23
24 commitment AcceptQuote Buyer to S e l l e r
25 create accept [quote + 5]
26 detach d e l i v e r [accept + 3]
27 discharge payment [accept + 5]
28
29 capability S e l l e r quote with nID , item , p r i ce
30 capability S e l l e r d e l i v e r
31 capability S e l l e r r e c e i p t with c ipher
32 capability Buyer r f q with nID , i tem
33 capability Buyer accept with fresh dec is ion
34 capability Buyer r e j e c t with fresh dec is ion
35 capability Buyer payment with cheque
36
37 completion done PromiseGoods and done PromiseReceipt and

done AcceptGoods
38 }

Only a role who has the capability for a base event (along
with any its attributes) can instantiate it. Line 29 states that
SELLER can bring about quote and may produce bindings
for nID, item, and price—indicated by with—that respect
quote’s key. Lines 33–34 state that BUYER must bind a fresh
value—indicated by fresh—for decision in accept and reject.
Therefore, since accept and reject have the same key, nID, at
most one of them can occur for any nID value.

A commitment involves four event expressions: create
and discharge are required but detach and release are op-
tional. AcceptQuote begins on Line 24: BUYER (its debtor)
commits to SELLER (its creditor) upon accept (its create
event) that if deliver occurs within three time units of ac-
cept (its detach event) then payment occurs within five time
units of accept (its discharge event). A created commitment
expires when its detach fails to occur; is violated if it is de-
tached but fails to discharge; and released (frees the debtor)
if its release event (shown for PromiseReceipt) occurs.

An event expression (Ev in Table 1) is either a base event
or a lifecycle event restricted by time constraints, or a com-
plex event built up from simpler events using and, or, except.
Lifecycle events refer to a commitment’s being created, de-
tached, discharged, expired, violated, or released (the last
four mean the commitment is terminated). The form done
abbreviates created except detached. A commitment’s life-
cycle events are derived entirely from its specification.

Line 37 means that NetBill completes when for each of its
three commitments, any instance that is created terminates.

Definition 1 states Clouseau’s deep syntax.

Definition 1. A specification S, is a tuple 〈R,B,A,C,Q〉,
whereR is a set of two or more roles;B is a nonempty set of
base events; A is a set of capabilities over R and B; C is a
set of commitments over R and B; Q is a completion event.

A base event, e or e(~a,~κ, ~q), associates an event named
e with sets of attributes ~a ⊆ A, key attributes ~κ ⊆ ~a, and
optional attributes ~q ⊆ (~a \ ~κ).
C(x, y, c, r, u, l) is a commitment from debtor x ∈ R to

creditor y ∈ R with create, detach, discharge, and release
events c, r, u, and l, respectively.

A(x, e, ~w, ~n) denotes a capability of role x ∈ R for base
event e(~a,~κ, ~q) ∈ B. It means that role x can bring about
instances of e by supplying values for e’s nonoptional at-

tributes. The attributes ~w are those for which r may gener-
ate a value if not already known. The attributes ~n (~n ⊆ ~w)
are those for which r must produce a fresh value (meaning
those attributes cannot be already known).

3.2 Semantics of Clouseau Specifications
Although we adopt Cupid’s syntax, we reformulate its se-
mantics based on roles. This section provides a synchronous
model of observations by roles. Section 4 provides an asyn-
chronous model based on messages. Section 5 shows how
to generate a asynchronous model (embodied in a protocol)
from the synchronous model. (Below, V is the domain of
values for all attributes.)

Definition 2 states that a base event’s instance provides
bindings for its attributes and a timestamp. An observation
associates an instance with observers, including one doer.
Definition 2. An instance, (e, b, t), of event e(~a,~κ, ~q) asso-
ciates a partial function b : ~a → V with ~a \ ~q ⊆ dom(b)
(binds all nonoptional attributes of e), and a timestamp t.

An observation, O(x, ~y, e, b, t), associates an instance
(e, b, t) with observer roles ~y, where |~y| ≥ 2, and a dis-
tinguished doer x ∈ ~y who brings about the instance.

Below, b(a) is the result of evaluating b on a and b(~κ) is a
vector mapping b over each element of ~κ.

For brevity, we omit the obvious components of
O(x, ~y, e, b, t) and abbreviate it as o, oi, and so on.

Definition 3 states that in a run for role r, (1) r makes each
observation and (2) the sequence respects timestamp order.
Definition 3. A run for r, τ r, is a sequence of observations
o1o2 . . ., where ∀oi, oj : (1) r ∈ ~yi and (2) i < j iff ti < tj .

At most one instance occurs at a time: if O(xi, ~yi, ei, bi, t)
and O(xj , ~yj , ej , bj , t), then and xi = xj , ~yi = ~yj , ei = ej ,
and bi = bj . Definition 4 captures synchrony: if a role makes
an observation in a run vector, all roles mentioned in that
observation also make that observation.
Definition 4. A run vector, Γ = [τ1 . . . τ |R|], is one where
∀r ∈ R, (1) τ r is a run, and (2) ∀oi ∈ τ r,∀y ∈ ~yi : oi ∈ τy .

An observation o ∈ Γ iff it appears in some run in Γ.
Definition 5 states that a run for role r is viable iff for any

observation of which r is the doer: (1) r has the capability
for the observed event; (2) r previously observes each at-
tribute that is not part of the capability; and (3) r does not
previously observe any of e’s fresh attributes.
Definition 5. A run of role r, τ r, is viable iff
∀O(r, ~y, e, b, t) ∈ τ r: (1) ∃A(r, e, ~w, ~n) ∈ A; (2) ∀a ∈
~a \ ~w : (∃oi : ti < t, a ∈ ~ai, ~κi ⊆ ~κ, b(~κi) = bi(~κi), and
b(a) = bi(a)); (3) ∀n ∈ ~n : @oi : ti < t, n ∈ ~ai, and ~κi ⊆ ~κ.
A run vector is viable iff each of its runs is viable.

[〈S〉] denotes the set of viable runs in S.

Consistency A run vector is consistent iff any two obser-
vations in it respect key integrity, i.e., if they agree on their
common key attributes, they agree on all common attributes.
Definition 6. Let oi and oj be observations. Let ~κ = ~κi∩~κj
and ~a = ~ai ∩ ~aj . Then, oi and oj are consistent iff bi(~κ) =
bj(~κ)⇒ bi(~a) = bj(~a).

3

A run vector Γ is consistent iff for any roles i, j, any oi ∈
τ i and oj ∈ τ j are consistent. Specification S is consistent
iff every run vector in [〈S〉] is consistent.

Inconsistency may occur only if the agents have over-
lapping capabilities. Listing 2 modifies NetBill-Flexible:
deliver includes cheque and SELLER can do deliver with
cheque. Upon accept, SELLER and BUYER can bring about
deliver and payment, respectively. Since both SELLER and
BUYER control cheque, they can set different bindings for it
for the same nID, producing an inconsistency.

Listing 2: An inconsistent variant of NetBill (Listing 1).
1 N e t B i l l−I n c o n s i s t e n t { / / Modi fy ing N e t B i l l−F l e x i b l e
2
3 event accept (nID , item , pr ice , dec is ion)
4 event payment (nID , dec is ion , item , pr ice , cheque)
5 event d e l i v e r (nID , dec is ion , item , cheque) key nID
6
7 capability S e l l e r d e l i v e r with cheque
8 capability Buyer payment with cheque
9 }

Overlapping capabilities need not cause inconsistency. As
Listing 1 shows, SELLER and BUYER can bind item but at
most one of them can do so for the same binding of nID.

In the rest of this paper, all specifications are consistent.

Intensions The intension of an event gives all the run vec-
tors in which instances of the event, including commitment
events, occur. We develop this idea below.

Two instances cohere iff they bind their common key at-
tributes to the same values.

Definition 7. Two instances, 〈ei, bi, ti〉 and 〈ej , bj , tj〉, co-
here iff bi(~κ) = bj(~κ), where ~κ = ~κi ∪ ~κj . Two sets of
instances cohere iff each pair of their members coheres.

A chain is a set (ordered by time) of instances drawn from
one consistent run vector that are (pairwise) coherent and
implicitly ordered by timestamp. The mix of two chains ig-
nores coherence so the result is not a chain. The merge of
two chains is their mix restricted by coherence.

Definition 8. A chain in a run vector Γ is a set of instances
{〈(e0, b0, t0)(e1, b1, t1) . . .〉} iff ∀i, j : (ei, bi, ti) ∈ Γ and
〈ei, bi, ti〉 and 〈ej , bj , tj〉 are coherent.

The mix of two sets of chains is their element-wise union:
σ1 d σ2 = {u1 ∪ u2|u1 ∈ σ1, u2 ∈ σ2}

The merge of two sets of chains is their mix restricted by
coherence: σ1 � σ2 = {u|u ∈ σ1 d σ2 and u is coherent}.

The certificate for an event expression is a chain that
makes the expression true. Let Γ ∈ [〈S〉] for specification
S. In Definitions D1–D17, e is a base event, E, F , and G
are base or lifecycle events, and X and Y are event expres-
sions. last and ts give the last instance of a chain and the
timestamp of an instance respectively.

D1. JeKΓ = {〈(e, b, t)〉 | O(x, ~y, e, b, t) ∈ Γ}
D2. JE[c, d]KΓ = {σ|σ ∈ JEKΓ and c 6 ts(last(σ)) < d}
D3. JE[F + c, d]KΓ = {σ|σ ∈ JEKΓ �

JF KΓ and ts(last(F, σ)) + c 6 ts(last(E, σ)) < d}

D4. JE[c,G + d]KΓ = {σ|σ ∈ JEKΓ � JGKΓ and c 6
ts(last(E, σ)) < ts(last(G, σ)) + d}

D5. JE[F + c,G + d]KΓ = {σ|σ ∈ JE[F + c,∞]KΓ �
JE[0, G+ d]KΓ}

D6. JX u Y KΓ = JXKΓ � JY KΓ

D7. JX t Y KΓ = JXKΓ∪ JY KΓ

D8. JX 	 (Y u Z)KΓ = J(X 	 Y) t (X 	 Z)KΓ

D9. JX 	 (Y t Z)KΓ = J(X 	 Y) u (X 	 Z)KΓ

D10. JX 	 (Y 	 Z)KΓ = J(X 	 Y) t (X u Z)KΓ

D11. JX	ET KΓ = (JXKΓd JET KΓ) \ (JXKΓ � JET KΓ) (T
is a time expression)

For brevity, let k = C(x, y, c, r, u, l) be a commitment.

D12. Jcreated(k)KΓ = JcKΓ

D13. Jdetached(k)KΓ = Jcreated(k) u rKΓ

D14. Jexpired(k)KΓ = Jcreated(k)	 rKΓ

D15. Jdischarged(k)KΓ = Jcreated(k) u uKΓ

D16. Jviolated(k)KΓ = Jdetached(k)	 (u t l)KΓ

D17. Jreleased(k)KΓ = Jcreated(k) u lKΓ

The intension of an event X is {Γ|Γ ∈ [〈S〉] and JXKΓ 6=
∅}. The intension of an specification is the intension of its
completion event (Q), computed via the above semantics.

Definition 9. The intension of specification S, JSK = JQK.

4 Communication Protocols
We express protocols in an variant of BSPL (Singh 2011),
which specifies protocols via causality and integrity con-
straints. Our variant includes (1) multicast messages and (2)
multiple protocol parameter lines, each a list of parameters
needed for one alternative completion. Table 2 shows the
syntax using M , R, S , and X as sets of (terminal) mes-
sages, roles, protocols, and parameter names, respectively.
Listing 3 shows a protocol generated from Listing 1. Sec-
tion 5 shows how to do so automatically.

Table 2: Syntax of protocols generated by Clouseau.

Prot −→S {roles R+bparameters bParam bkeycc+c+ Msg+}
Msg −→R 7→ R+ : M [Param+]
Param −→ inX | outX | nilX

Listing 3: Protocol generated by Clouseau for NetBill. Clouseau
adorns all protocol parameters poutq—omitted here for readability.
1 N e t B i l l−F lex ib l e−Pro toco l {
2 roles Se l le r , Buyer
3 parameters nID key , i tem , pr ice , quoteP
4 parameters nID key , i tem , pr ice , rfqP , quoteP
5 parameters nID key , i tem , pr ice , dec is ion , rfqP ,

quoteP , re j ec tP
6 parameters nID key , i tem , pr ice , dec is ion , rfqP ,

quoteP , acceptP
7 parameters nID key , i tem , pr ice , dec is ion , cheque ,

rfqP , quoteP , acceptP , payP
8 parameters nID key , i tem , pr ice , dec is ion , rfqP ,

quoteP , acceptP , de l i ve rP

4

9 parameters nID key , i tem , pr ice , dec is ion , cheque ,
rfqP , quoteP , acceptP , payP , de l i ve rP

10 parameters nID key , i tem , pr ice , dec is ion , cheque ,
rfqP , c ipher , quoteP , acceptP , payP , rece ip tP

11 parameters nID key , i tem , pr ice , dec is ion , cheque ,
rfqP , c ipher , quoteP , acceptP , payP , de l iverP ,
rece ip tP

12
13 Buyer 7→ S e l l e r : rfqM [out nID , out i tem , out r fqP]
14 S e l l e r 7→ Buyer : quoteM [in nID , in i tem , out pr ice , out

quoteP]
15 S e l l e r 7→ Buyer : quoteM [out nID , out i tem , out pr ice ,

out quoteP]
16 Buyer 7→ S e l l e r : acceptM [in nID , in i tem , in pr ice , out

dec is ion , out acceptP]
17 Buyer 7→ S e l l e r : re jec tM [in nID , in i tem , in pr ice , out

dec is ion , out r e j ec tP]
18 Buyer 7→ S e l l e r : payM [in nID , in pr ice , in dec is ion , out

cheque , out payP]
19 S e l l e r 7→ Buyer : de l iverM [in nID , in i tem , in dec is ion ,

out de l i ve rP]
20 S e l l e r 7→ Buyer : receiptM [in nID , in i tem , in cheque ,

out c ipher , out rece ip tP]
21 }

Each message morph has a sender, a receiver, a name,
and a set of parameters (subset of the protocol’s parameters),
some of which form a key. Morphs of the same name have
the same sender and receiver but their parameters and pa-
rameter adornments can differ. Each parameter has an adorn-
ment, which captures the sender’s knowledge of a binding
of that parameter: pinq means the sender knows it prior to
sending; poutq means the sender doesn’t know it prior but
produces it when sending; pnilq means the sender doesn’t
know it prior and doesn’t produce it. For example, Line 14
shows quoteM with sender SELLER and receiver BUYER; nID
is the key (inherited from the protocol); SELLER must have
observed nID and item (for the specified key) before sending;
must not know price before; but produce price when sending.

The adornments capture causal dependencies. For exam-
ple, rfqM of Line 13, which produces nID and item, must pre-
cede quoteM of Line 14, which uses those parameters. Mod-
eling causality yields flexibility: the constraints are causally
essential; every compatible order is correct. Thus, deliverM
and payM may be sent in any mutual order.

Message morphs encode alternative enactments. For ex-
ample, quoteM has two morphs: Line 14 adorns nID and
item pinq; and Line 15 has only poutq parameters. We as-
sume the message name, λ, includes an identifier to dis-
tinguish different morphs of the same name. Below, W =
{pinq, poutq, pnilq} is the set of adornments.

Definition 10. A message (morph), M(λ, x, ~y, ~p, α,~κ), com-
prises a name λ, a sender role x, a set of receiver roles ~y,
a function α : ~p → W assigning an adornment to each pa-
rameter, and a list of key parameters ~κ ⊆ ~p.

A protocol consists of a set of roles, a set of protocol pa-
rameter lines each with the same key (subset of parameters),
and a set of messages (morphs). A protocol completes if
all parameters on any parameter line are bound. We extend
BSPL with multiple parameter lines because each line cap-
tures one alternative completion of the protocol while avoid-

ing the need for giving a null binding to a parameter.

Definition 11. A protocol, 〈λ, ~x, ~p, ~π,~κ, F 〉, comprises a
name λ, a list of roles ~x, a list of parameters ~p, a set ~π
of parameter lines (each a pair [~q, α], where ~q ⊆ ~p and
α : ~q → W), a set of key parameters ~κ ⊆ ~p, and a set of
message morphs F .

An instance of a message binds its parameters. A role’s
history is a sequence of message instances that a role views.
We overload b from attribute to parameter bindings.

Definition 12. N(λ, b) is an instance of a message
M(λ, x, ~y, ~p, α,~κ) iff ~p = dom(b). The history of role x, hx,
is a sequence of message instances m0m1 . . ., emitted or re-
ceived by x. N(λ, b) appears in hx when emitted by x and,
for all y ∈ ~y, in hy when received by y.

A message instance m is viable for emission by role x at
its history hx iff (1) the bindings of m’s pinq parameters are
set earlier in the history and the bindings of m’s poutq or
pnilq parameters are not set earlier in the history.

Definition 13. For integer i, let N(λi, bi) be an instance
of message M(λi, x,~yi, ~pi, αi, ~κi) that occurs at index i in
history hx. Then, N(λj , bj) is viable in hx iff it is a re-
ception, or (1) ∀p ∈ ~p, α(p) = pinq : ∃i < j : κi ⊆ κj ,
p ∈ dom(αi), and bj(p) = bi(p); and (2) ∀p ∈ ~p, α(p) ∈
{poutq, pnilq} : @i < j : κi ⊆ κj and p ∈ dom(αi).

A history vector H progresses to H ′, H ≺ H ′, based on
a message emission or reception, capturing asynchrony.

Definition 14. H = [h1 . . . h|R|] is viable iff (1) all its his-
tories are empty, or (2) it progresses a viable history vector
through the emission or reception of a viable message. 〈〈P 〉〉
is the set of viable history vectors for protocol P .

A safe protocol guarantees integrity of information, i.e.,
no parameter may obtain conflicting bindings.

Definition 15. Messages N(λi, bi) and N(λj , bj) are consis-
tent iff, for ~κ = ~κi ∩ ~κj and ~a = ~ai ∩ ~aj , bi(~κ) = bj(~κ) ⇒
bi(~a) = bj(~a). A history vector is safe iff all pairs of mes-
sages in it are consistent. A protocol P is safe if and only if
each vector in 〈〈P 〉〉 is safe.

Definition 16. A history vector H is complete for param-
eters ~p iff (∀p ∈ ~p : ∃N(λ, b) ∈ H and p ∈ dom(b)). A
protocol P is live iff ∀H ∈ 〈〈P 〉〉: ∃H ′ : H ≺ H ′ where
H ′ ∈ 〈〈P 〉〉and H ′ is complete for a parameter line ~p of P .

5 Generating a Communication Protocol
The correctness of a generated protocol requires that its
set of history vectors matches the intension (i.e., the set of
run vectors) of the specification. Clouseau uses the commit-
ments and capabilities for determining senders and receivers
of messages, and capabilities for determining the operational
constraints expressed via adornments. We demonstrate this
method by generating Listing 3 from Listing 1.

Information integrity requires that (1) if two messages
share a parameter, their keys must overlap and (2) instances
determined by the same key bindings must be equal.

Definition 17 captures the intuition that when a parameter
is pinq, its binding in an instance with respect to its key must

5

be known before the instance is produced. That is, the pa-
rameter must be accompanied by sufficient key parameters
to be meaningful. The determinant of a parameter p, ∆p, is
the intersection of keys of all message morphs in which p
appears. A message is well-determined iff when a parameter
is pinq so is each parameter in its determinant.

Definition 17. M(λ, x, ~y, ~p, α,~κ) is well-determined iff
(∀p ∈ ~p : α(p) = pinq⇒ ∀p′ ∈ ∆p ⇒ α(p′) = pinq).

Generating Message Parameters and Adornments
Clouseau generates message morphs to capture role
choices. Listing 3 captures two paths in Figure 1 via two
morphs of quoteM (Lines 14–15). Line 14 adorns nID
and item pinq to capture the interaction in which SELLER
receives an rfqM, which binds nID and item, before sending
a quote. Conversely, Line 15 adorns nID and item poutq to
capture that SELLER can send quote without receiving rfqM.

Definition 18 lays out the possible adornments of the pa-
rameters in a morph.

Definition 18. Let e(~a,~κ, ~q) be an event, χ = A(x, e, ~w, ~n)
be a capability of role x. Then, message M(λ, x, ~y, ~p, α,~κ)
corresponds to e iff ~a ⊆ ~p and ∀a ∈ ~a : α(a) is as specified
in the α(a) column of Table 3 in the matching row.
Mχ is the set of messages corresponding to capability χ.

For S = (R,B,A,C), the set of messages is
⋃
χ∈AMχ.

a ∈ ~q a ∈ ~w a ∈ ~n α(a) (Possible adornments)

1 No No No pinq
2 No No Yes Ill-formed: no output
3 No Yes No pinq, poutq
4 No Yes Yes poutq
5 Yes No No pinq, pnilq
6 Yes No Yes Ill-formed: no output
7 Yes Yes No pinq, poutq, pnilq
8 Yes Yes Yes Ill-formed: no output

Table 3: The adornments for a parameter based on attribute a de-
pend on whether a is optional (a ∈ ~q), whether the sender can pro-
duce a (a ∈ ~w), and whether it must produce a (a ∈ ~n). Rows 2
and 6 are ill-formed because a must be produced by sender, but it
cannot be; row 8 because a must be produced but is optional.

Generating Message Senders and Receivers Senders are
those roles with a capability for an event from which a
morph is generated. In Listing 1, SELLER can bring about
quote, so it would be a sender for quoteM.

For receivers, we have some choices. The simplest is to
multicast the message to everyone: those to whom it matters
will read it. However, we can avoid generating superfluous
messages through the following criteria.

First, include receivers to ensure commitment alignment
(Chopra and Singh 2015b). In Listing 1, quote features
in the creates of PromiseGoods and PromiseReceipt, of
which SELLER is debtor and BUYER is creditor. Thus, make
SELLER the sender and BUYER the receiver of quoteM.

Second, include receivers to enable a stated capability,
i.e., if a role needs an attribute binding to exercise a capa-
bility. If so, we make that role a receiver of any message
arising from an event that includes that attribute.

Importantly, each message includes an poutq autonomy
parameter to make the sender’s exercising of its autonomy
explicit in the information model. Doing so is essential to
reflect the social meaning of communications. A suffix “P”
indicates such a parameter, e.g., quoteP for quoteM.

Generating Protocol Parameters Clouseau generates pa-
rameter lines. The connection with events is enforced
through the inclusion of relevant autonomy parameters in
a parameter line. In Listing 3, Line 4 includes rfqP and
quoteP and omits acceptP: thus, it is one of the complete
vectors when PromiseGoods and PromiseReceipt expire be-
cause AcceptQuote is not created.

To select the appropriate parameter lines, we begin from
the completion event in the specification. We convert it to
a quasi disjunctive normal form (DNF) by applying the se-
mantics of Section 3.2 to eliminate the commitment lifecycle
events and to remove any t from within the scope of u or
	. Then, we produce one parameter line for each disjunct,
including the parameters of messages derived from events
that appear positively in the disjunct and excluding the au-
tonomy parameter of any message derived from an event that
appears as the second argument of 	.

Below,G(S) is a protocol generated from specification S.

6 Correctness of Protocol Generation
To establish correctness of a generated protocol, we first de-
fine how the run vectors of a specification correspond to the
history vectors of a protocol.

We give a series of definitions of correspondence, includ-
ing (1) of an observation of an event instance to a message
instance; (2) a run to a history; (3) a run vector to a history
vector; and (4) a specification to a protocol.

Definition 19. Let O(x, ~y, e, b, t) be an observation
and µ = N(λ, bµ) be an instance of a morph
M(λ, xµ, ~yµ, ~pµ, αµ, ~κµ). Then, e corresponds to λ, e λ,
iff λ = eM , x = xµ, ~y = ~yµ, and b = bµ.

Run vectors progress in a lockstep manner in their global
timestamp order whereas history vectors progress in asyn-
chrony. The message emissions in a role’s history anchor
the desired correspondence with the events brought about.

Write a role r’s run τ as µ1β1µ2 . . . where each µi is a
possibly empty list of observations O(x, ~y, e, b, t), r 6= x,
and each βi is an observation O(r, ~y, e, b, t) whose doer is r.

Write a role r’s history h as ν0δ0ν1 . . . where each νi is
a possibly empty set of message receptions and each δi is a
single message emission. Then, h is canonical for τ iff (1)
|τ | = |h|; (2) ∀µi : µi νi; and (3) ∀βi : βi δi.

Let h′ = µ0δ0µ1 Then, h′ causally permutes h iff the
δi are unmoved and each µi is a permutation of νi.

Definition 20. A run τ and history h correspond, τ h, iff
∃h′ where h′ causally permutes h, and h′ is canonical for τ .

Run vector Γ and history vector H correspond, Γ H ,
iff their respective members correspond: ∀r ∈ R : τ r hr.

Definition 21. Let S and P be a specification and protocol
respectively. S P iff ∀Γ ∈ [〈S〉]∃H ∈ 〈〈P 〉〉 : Γ H and
∀H ∈ 〈〈P 〉〉∃Γ ∈ [〈S〉] : Γ H .

6

Theorem 1 establishes correctness of protocol generation.
Theorem 1. S G(S).
Proof sketch. First, show by induction on run vectors that for
every ∀Γ ∈ [〈S〉] : ∃H ∈ 〈〈G(S)〉〉such that Γ H . For the
base case, consider a run vector Γ with a single observation
O(x, ~y, e, b, t). This means that A(x, e, ~w, ~n) ∈ A for base
event e(~a,~κ, ~q) ∈ B such that ~a = ~w (all values must be
generated in this observation). According to Definition 18
m = M(eM, x, ~y,~a, α,~κ) where ∀a ∈ ~a : α(a) = poutq
is in G(S). Therefore, there exists a history vector H in
which the only message instance sent instantiates m as de-
fined above. Therefore, Γ H .

For the inductive step, assume for each Γi that is a run
vector over i observations, Γi Hi. Let O(x, ~y, e, b, t) be
the (i+ 1)st observation. This means that A(x, e, ~w, ~n) ∈ A
for e(~a,~κ, ~q) ∈ B. Let ~a′ ⊆ ~a be known from Γi. This
means that~a′∩~n = ∅ and ~w\~a′ are the bindings produced in
the observation. Let m′ = M(eM, x, ~y, ~p, α,~κ) where ~a′ ⊆
~p and ∀a′ ∈ ~a′ : α(a′) = pinq and ∀w ∈ ~w \ ~a′ : α(w) =
poutq. According to Definition 18,m′ is inG(S). Therefore,
there exists Γi+1 such that Γi+1 Hi+1.

Now we show the converse, that is, ∀H ∈ 〈〈G(S)〉〉: ∃Γ ∈
[〈S〉]. The argument is by induction on history vectors. The
empty history vector corresponds to the empty run vector.
Let H be a history vector such that for all strictly shorter
H ′, there exists Γ′ such that Γ′ H ′. Going from H ′ to H
may have either involved a reception or emission by r of an
instance of M(eM, x, ~y, ~p, α,~κ). In either case, there exists
capability A(x, e, ~w, ~n) ∈ A for base event e(~a,~κ, ~q) ∈ B,
which would guarantee that there exists Γ such that Γ H .

Theorem 2 relates the consistency of a specification and
the safety of a generated protocol.
Theorem 2. If S is consistent, then protocol G(S) is safe.
Proof sketch. The empty run vector is in [〈S〉] and is consis-
tent. The empty run vector corresponds to the empty history
vector in G(S), which is safe. Assume S is consistent. Let
Γ,Γ′ ∈ [〈S〉] such that that Γ′ extends Γ by one observa-
tion O(x, ~y, e, b, t) of instance (e, b, t), of event e(~a,~κ, ~q).
Further, let the observation be effected by x exercising its
capability A(x, e, ~w, ~n). By Theorem 1 ∃H,H ′ ∈ 〈〈P 〉〉such
that Γ H and Γ′ H ′. Therefore, H ′ differs from H in
having one extra emission—of a message instance m corre-
sponding to observation O. Assume by induction that H is
safe. Let ~v ⊆ ~w such that b(v) for each v ∈ ~v is not bound
in Γ but bound in Γ′, meaning that O produces the bindings
for ~v. From Γ H , we see that no v ∈ ~v is bound in H . By
Definition 18, we know that m is an instance of morph M
for A where exactly the ~v are poutq. Hence, H ′ is safe.
Theorem 3. If S is consistent, then protocol G(S) is live.
Proof sketch. Let Γ ∈ [〈S〉] be a run vector. Then Γ satis-
fies S’s completion event Q. Viewing Q in DNF, therefore,
Γ must satisfy at least one disjunct of Q. By construction
of protocol G(S), each parameter line of G(S) corresponds
to one disjunct of Q as well. Let H ∈ 〈〈G(S)〉〉 such that
Γ H . Since Γ would have bound each attribute in one
disjunct ofQ,H would bind the corresponding parameter as
well as the autonomy parameter for each message, thereby
completing the relevant parameter line.

7 Discussion

Our contribution bridges the gap between meaning-based
and operational specifications via a method for generating a
protocol given a Clouseau specification. Clouseau is higher
level than operational languages since it works from mean-
ing abstractions, especially commitments, events, and capa-
bilities. But whereas events in Clouseau are synchronous
(occurring simultaneously for all observers), messaging in
BSPL is asynchronous (the emission of a message is decou-
pled from its emission).

What makes Clouseau significant is that a flexible pro-
tocol supporting asynchrony is in general difficult to con-
struct and maintain by hand. By modeling the meanings pre-
cisely using Clouseau, a designer can avoid that overhead.
Winikoff (2007) and Desai and Singh (2008) highlight the
challenges of computing commitments in asynchronous set-
tings. Our approach could be adapted to target other protocol
languages, e.g., trace expressions (Ferrando et al. 2019) or
HAPN (Winikoff, Yadav, and Padgham 2018).

Yolum and Singh (2002a) introduced the idea of com-
puting directly with commitments, leading to enhanced
languages and tooling (Winikoff, Liu, and Harland 2005;
Chopra and Singh 2006; Baldoni et al. 2014), and work on
reasoning patterns (Yolum and Singh 2002b; Fornara and
Colombetti 2003; Chopra and Singh 2015a). This body of
work formalizes commitment reasoning in the context of
a conceptually unitary machine and does not tackle asyn-
chrony. Our contribution builds upon the core idea of these
approaches, namely, that messages carry meanings, by sup-
porting decentralized enactments.

Recent work on monitoring commitments (Chesani et al.
2013; Kafalı and Torroni 2018) or norms (Alechina, Dastani,
and Logan 2014; Dastani, Torroni, and Yorke-Smith 2018)
assumes a unitary model with synchronous state changes.
Conceptually, these works are closer to Cupid, which too is
based on a unitary model, and which our contribution ex-
tends to decentralized settings. El-Menshawy et al. (2018)
address the problem of model checking commitments with
real-time constraints. Baldoni et al. (2018) give an approach
for verifying agents against commitments. Such techniques
would be valuable for Clouseau specifications.

MAS programming frameworks, e.g., JaCaMo (Boissier
et al. 2019), address complementary concerns to ours. Ja-
CaMo supports asynchronous messaging, and can support
agents that enact protocols generated by Clouseau. Boissier
et al. (2019) point out that interaction between agents in Ja-
CaMo could be based on direct messaging between them or
via shared artifacts. Indeed, Baldoni et al. (2014) show how
to program agents using a shared JaCaMo artifact to coordi-
nate commitment-based interactions.

In brief, Clouseau is unique in that it unifies the meaning-
based and operational aspects of interaction with respect
to asynchronous communication. It can potentially enhance
productivity and quality in producing and maintaining a pro-
tocol that is maximally flexible given a meaning specifica-
tion and correct.

7

References
Alechina, N.; Dastani, M.; and Logan, B. 2014. Norm ap-
proximation for imperfect monitors. In Proceedings of the
13th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), 117–124. Paris: IFAAMAS.
Baldoni, M.; Baroglio, C.; Marengo, E.; Patti, V.; and Ca-
puzzimati, F. 2014. Engineering commitment-based busi-
ness protocols with the 2CL methodology. Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS)
28(4):519–557.
Baldoni, M.; Baroglio, C.; Capuzzimati, F.; and Micalizio,
R. 2018. Type checking for protocol role enactments via
commitments. Journal of Autonomous Agents and Multi-
Agent Systems (JAAMAS) 32(3):349–386.
Bauer, B.; Müller, J. P.; and Odell, J. 2000. An extension
of UML by protocols for multiagent interaction an exist-
ing multi-agent planning system. In Proceedings of the 4th
International Conference on Multiagent Systems (ICMAS),
207–214. IEEE Computer Society.
Boissier, O.; Bordini, R. H.; Hübner, J. F.; and Ricci, A.
2019. Dimensions in programming multi-agent systems.
Knowledge Engineering Review 34:e2.
Chesani, F.; Mello, P.; Montali, M.; and Torroni, P. 2013.
Representing and monitoring social commitments using the
event calculus. Journal of Autonomous Agents and Multi-
Agent Systems (JAAMAS) 27(1):85–130.
Chopra, A. K., and Singh, M. P. 2006. Contextualizing
commitment protocols. In Proceedings of the 5th Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems, 1345–1352. Hakodate, Japan: ACM Press.
Chopra, A. K., and Singh, M. P. 2015a. Cupid: Com-
mitments in relational algebra. In Proceedings of the 29th
Conference on Artificial Intelligence (AAAI), 2052–2059.
Austin, Texas: AAAI Press.
Chopra, A. K., and Singh, M. P. 2015b. Generalized com-
mitment alignment. In Proceedings of the 14th International
Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 453–461. Istanbul: IFAAMAS.
Dastani, M.; Torroni, P.; and Yorke-Smith, N. 2018. Moni-
toring norms: A multi-disciplinary perspective. Knowledge
Engineering Review 33:e25.
Desai, N., and Singh, M. P. 2008. On the enactability
of business protocols. In Proceedings of the 23rd Confer-
ence on Artificial Intelligence (AAAI), 1126–1131. Chicago:
AAAI Press.
El-Menshawy, M.; Bentahar, J.; Kholy, W. E.; and Laarej,
A. 2018. Model checking real-time conditional commitment
logic using transformation. Journal of Systems and Software
138:189–205.
Ferrando, A.; Winikoff, M.; Cranefield, S.; Dignum, F.;
and Mascardi, V. 2019. On the enactability of agent
interaction protocols: Toward a unified approach. CoRR
abs/1902.01131v4.
Fornara, N., and Colombetti, M. 2003. Defining interac-
tion protocols using a commitment-based agent communica-
tion language. In Proceedings of the 2nd International Joint

Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 520–527. Melbourne: ACM Press.
Kafalı, Ö., and Torroni, P. 2018. COMODO: Collaborative
monitoring of commitment delegations. Expert Systems with
Applications 105:144–158.
Marengo, E.; Baldoni, M.; Chopra, A. K.; Baroglio, C.;
Patti, V.; and Singh, M. P. 2011. Commitments with reg-
ulations: Reasoning about safety and control in REGULA.
In Proceedings of the 10th International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), 467–
474. Taipei: IFAAMAS.
Singh, M. P. 2011. Information-driven interaction-oriented
programming: BSPL, the Blindingly Simple Protocol Lan-
guage. In Proceedings of the 10th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS),
491–498. Taipei: IFAAMAS.
Sirbu, M. A. 1997. Credits and debits on the Internet. IEEE
Spectrum 34(2):23–29.
Winikoff, M.; Liu, W.; and Harland, J. 2005. Enhancing
commitment machines. In Proceedings of the 2nd Interna-
tional Workshop on Declarative Agent Languages and Tech-
nologies (DALT), volume 3476 of Lecture Notes in Artificial
Intelligence, 198–220. Berlin: Springer.
Winikoff, M.; Yadav, N.; and Padgham, L. 2018. A new Hi-
erarchical Agent Protocol Notation. Journal of Autonomous
Agents and Multi-Agent Systems (JAAMAS) 32(1):59–133.
Winikoff, M. 2007. Implementing commitment-based in-
teractions. In Proceedings of the 6th International Joint
Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 868–875. Honolulu: IFAAMAS.
Yolum, P., and Singh, M. P. 2002a. Commitment machines.
In Proceedings of the 8th International Workshop on Agent
Theories, Architectures, and Languages (ATAL 2001), vol-
ume 2333 of Lecture Notes in Artificial Intelligence, 235–
247. Seattle: Springer.
Yolum, P., and Singh, M. P. 2002b. Flexible protocol specifi-
cation and execution: Applying event calculus planning us-
ing commitments. In Proceedings of the 1st International
Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 527–534. Bologna: ACM Press.

8

