1	Short title (50 characters): Aggregates of hybrid cyanobacteria-tobacco Rubisco
2	
3	Correspondence:
4	Douglas J Orr
5	Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, UK
6	Tel: +44 (0)1524 593476
7	Email: <u>d.j.orr@lancaster.ac.uk</u>
8	

9	Hybrid cyanobacterial-tobacco Rubisco supports autotrophic growth and pre-carboxysomal
10	aggregation
11	Douglas J. Orr ^{1*} , Dawn Worrall ¹ , Myat T. Lin ² , Elizabete Carmo-Silva ¹ , Maureen R. Hanson ² , Martin A. J.
12	Parry ¹
13	
14	¹ Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK.
15	² Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
16	
17	One Sentence Summary:
18	Cyanobacterial Rubisco large subunits form functional hybrids with tobacco small subunits and pro-
19	carboxysome micro-compartments via the linker protein CcmM35 in absence of cognate small subunits.
20	
21	Keywords: carboxysome, CCM, cyanobacteria, Rubisco, photosynthesis
22	
23	FOOTNOTES:
24	List of author contributions:
25	MAJP, MRH, MTL & ECS conceived research. All authors designed experiments. DJO, DW & MTL
26	performed the experiments and analyzed data. All authors contributed to writing the manuscript.
27	Funding
28	This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) under
29	grant number BB/I024488/1 to M.A.J.P. and the US National Science Foundation (NSF) under grant
30	number EF–1105584 to M.R.H.
31	
32	*Correspondence: Douglas J Orr (d.j.orr@lancaster.ac.uk)
33	

34 Abstract

35 Much of the research aimed at improving photosynthesis and crop productivity attempts to overcome 36 shortcomings of the primary CO₂ fixing enzyme Rubisco. Cyanobacteria utilize a CO₂ concentrating 37 mechanism (CCM), which encapsulates Rubisco with poor specificity but relatively fast catalytic rate 38 within a carboxysome micro-compartment. Alongside active transport of bicarbonate into the cell, and 39 localization of carbonic anhydrase within the carboxysome shell with Rubisco, cyanobacteria are able to 40 overcome the limitations of Rubisco via localization within a high CO₂ environment. As part of ongoing 41 efforts to engineer a β -cyanobacterial CCM into land plants, we investigated the potential for Rubisco 42 large subunits (LSU) from the β -cyanobacteria *Synechococcus elongatus* (Se) to form aggregated Rubisco 43 complexes with the carboxysome linker protein CcmM35 within tobacco chloroplasts. Transplastomic 44 plants were produced that lacked cognate SeRubisco small subunits (SSU) and expressed SeLSU in place 45 of tobacco LSU, with and without CcmM35. Plants were able to form a hybrid enzyme utilizing tobacco 46 SSU and the SeLSU, allowing slow autotrophic growth in high CO₂. CcmM35 was able to form large 47 Rubisco aggregates with the SeLSU, and these incorporated small amounts of native tobacco SSU. Plants 48 lacking the SeSSU showed delayed growth, poor photosynthetic capacity and significantly reduced 49 Rubisco activity compared to both wild-type tobacco and lines expressing the SeSSU. These results 50 demonstrate the ability of the SeLSU and CcmM35 to form large aggregates without the cognate SeSSU 51 in planta, harboring active Rubisco that enables plant growth, albeit at much slower pace than plants 52 expressing the cognate SeSSU. 53

55 Introduction

56 The need to produce sufficient food for a growing population requires increasing the productivity and 57 efficiency of agriculture in order to increase yields by the estimated 70% that will be needed by 2050 58 (Lobell et al., 2009; Ray et al., 2012). Given its central role in crop growth and productivity, improving 59 photosynthesis is one approach that has the potential to generate step-change improvements in crop 60 yields and resource use efficiency (Long et al., 2006; Ort et al., 2015). One of the primary limitations to 61 photosynthesis is the relative inefficiency of the central carbon fixing enzyme Rubisco (ribulose 1,5-62 bisphosphate carboxylase/oxygenase), in particular its lack of specificity for CO_2 versus O_2 , which leads to 63 the energetically costly photorespiratory cycle (Whitney et al., 2011; Carmo-Silva et al., 2015; Sharwood 64 et al., 2016; Flamholz et al., 2019). Exemplifying this, at current atmospheric levels of CO_2 and O_2 , 65 Rubisco's tendency to oxygenate rather than carboxylate its substrate RuBP (ribulose 1,5-bisphosphate) 66 is estimated to reduce yields by as much as 36% and 20% in US grown soybean and wheat, respectively 67 (Walker et al., 2016). Recent work has shown that limiting the costs of photorespiration by increasing its 68 efficiency can provide dramatic benefits to plant growth (South et al., 2019).

69 Synthetic biology approaches hold promise for improving a number of facets of photosynthetic 70 efficiency in crop plants (Maurino and Weber, 2013; Erb and Zarzycki, 2016; Orr et al., 2017). One 71 example is the introduction of CO_2 -concentrating mechanisms (CCM's) into C_3 crops to increase CO_2 72 concentrations at the site of Rubisco, a strategy which is likely to dramatically reduce the propensity of 73 Rubisco to carry out oxygenation reactions by creating an environment which favors the beneficial 74 carboxylation reaction (Price et al., 2011; McGrath and Long, 2014; Hanson et al., 2016; Long et al., 75 2016). Significant research efforts are being invested in this area, with varying sources for the CCMs 76 being engineered, such as C₄ (Hibberd et al., 2008; Langdale, 2011) and CAM (Borland et al., 2014; Yang 77 et al., 2015) systems from plants, and the pyrenoid and carboxysome-based systems of algae and 78 cyanobacteria, respectively (Rae et al., 2017; Mackinder, 2018).

79 The CCM employed by cyanobacteria uses a combination of factors to create a high CO₂ 80 environment localized around Rubisco (Price et al., 2008; Hanson et al., 2016). Aggregation and 81 encapsulation of Rubisco within a highly ordered icosahedral protein micro-compartment, or 82 carboxysome, allows co-localization of Rubisco and carbonic anhydrase (CA) to convert HCO₃⁻ to CO₂ 83 where it is needed, and permits the movement of key molecules while limiting CO₂ escape. Generating a 84 high CO₂ environment is also facilitated by a complex system of inorganic carbon transporters on the 85 cyanobacterial outer membrane that move either HCO₃- or CO₂ into the cytoplasm through active and 86 passive mechanisms (Price, 2011). Modelling the incorporation of the various components of the CCM

into plants suggests that once a fully functioning system is established within a higher plant chloroplast,
photosynthetic rates could be improved by as much as 60% (McGrath and Long, 2014). The resulting
subsequent improvements in yield could facilitate a major change in crop productivity and resource use
efficiency (Ort et al., 2015; Hanson et al., 2016).

91 Significant progress has been made during recent years to unravel the molecular mechanisms of 92 CCMs involving either carboxysomes or pyrenoids. In Synechococcus elongatus PCC7942, which produces 93 β-carboxysomes, the *ccmM* gene gives rise to two proteins: CcmM58 and CcmM35, the latter arising 94 from an internal ribosomal entry site (Long et al., 2007; Long et al., 2010). CcmM35 possesses three 95 tandem repeats of Rubisco small subunit-like domains, and was initially thought to interact with Rubisco 96 by replacing small subunits (Long et al., 2011). However, recent experiments suggest that CcmM35 binds 97 Rubisco without releasing the small subunits (Ryan et al., 2019). A recent structural study revealed that 98 the interaction between CcmM35 and Rubisco leads to dramatic phase separation (Wang et al., 2019). 99 This nucleation of Rubisco holoenzymes by CcmM35 represents a critical first step in the assembly of β-100 carboxysomes (Cameron et al., 2013). In the pyrenoid of Chlamydomonas, similar phase separation was 101 also observed when the Rubisco and a repeat protein called EYPC1 interact (Wunder et al., 2018). 102 Likewise, in α -carboxysomes, Rubisco holoenzymes interact with a highly disordered repeat protein 103 called CsoS2 (Cai et al., 2015; Liu et al., 2018). In a recent breakthrough, Long and co-workers were able 104 to assemble α -carboxysomes in tobacco chloroplasts by co-expressing Rubisco large and small subunit 105 genes along with CsoS2 and a shell protein called CsoS1A from Cyanobium marinum PCC7001 (Long et 106 al., 2018). In another study, the shell proteins of β -carboxysome transiently expressed in the chloroplasts 107 of Nicotiana benthamiana were able to assemble structures similar to micro-compartments (Lin et al., 108 2014a).

109 Our previous work demonstrated that replacing the Rubisco large subunit gene in tobacco with 110 the Rubisco large and small subunit genes from Synechococcus elongatus PCC7942 (Se) resulted in plants 111 that can support photosynthetic growth under elevated CO₂ conditions (Lin et al., 2014b; Occhialini et 112 al., 2016). When CcmM35 was co-expressed in tobacco chloroplasts, the heterologous Rubisco was 113 observed in a large aggregate with an appearance resembling a separate liquid phase (Lin et al., 2014a). 114 In a previous study performed by another group, when the tobacco rbcL gene was replaced with that 115 from Synechococcus PCC6301, no Rubisco large subunit (LSU) was detected in the transformed plant 116 (Kanevski et al., 1999), and it was thought that the cyanobacterial LSU could not assemble with plant 117 small subunit (SSU) to form a functional enzyme.

118 Here we investigated the assembly and functioning of cyanobacterial Rubisco within higher plant

119 chloroplasts when the Se LSU is expressed either with or without CcmM35 in the absence of cognate 120 cyanobacterial SSU. Analysis of transplastomic tobacco lines incorporating some cyanobacterial 121 components but lacking the cognate SSU revealed that the Se LSU and CcmM35 are able to form large 122 aggregates of Rubisco within tobacco chloroplasts. Though only low amounts of tobacco SSUs were 123 present, the transplastomic lines characterized differed significantly in physiology and biochemistry from 124 comparable lines that also co-expressed the cognate cyanobacterial SSU. Remarkably, albeit at slow 125 rates, in the absence of the cognate small subunits, the hybrid cyanobacterial LSU-tobacco SSU 126 expressed in tobacco chloroplasts with and without CcmM35 was active and supported plant growth. 127

- 128
- 129 Results
- 130

131 Cyanobacterial Rubisco large subunits can support carbon fixation in tobacco chloroplasts in the

132 absence of cognate small subunits

133 We generated two transplastomic tobacco lines named SeL and SeLM35 by replacing in-frame the entire 134 tobacco Rubisco large subunit gene with that from Synechococcus elongatus PCC7942 (Se). In the 135 SeLM35 line, the ccmM35 gene was introduced downstream of the Se-rbcL gene to be co-expressed 136 from the same chloroplast genome locus (Fig. 1A). We used the same regulatory elements at intergenic 137 regions as described in our previous work namely, a terminator, an intercistronic expression element 138 (IEE) and a Shine-Dalgarno (SD) or ribosome binding site (Lin et al., 2014b; Occhialini et al., 2016). In 139 contrast to our previous work, the new transplastomic lines do not possess a corresponding 140 cyanobacterial Rubisco small subunit gene. The *aadA* selectable marker gene was incorporated into the 141 same operon as the Se-rbcL gene in the SeL construct instead of a separate operon as in the SeLM35 142 construct. We obtained homoplasmic transformed shoots after two rounds of selection, and were able 143 to transfer them to soil for growth under elevated CO₂ (9000 ppm). We collected seeds from two 144 independent SeL lines and one SeLM35 line. Both DNA and RNA blots confirmed complete removal of 145 the *Nt-rbcL* gene and its corresponding transcript in these plants (Fig. 1B, S1). We also analyzed the 146 transcripts containing Se-rbcL and ccmM35 genes in these lines together with SeLS and SeLSM35 lines 147 generated in our previous study (Fig. S1). The RNA blots showed bands arising from incomplete 148 processing of IEE as well as read-through transcription of the downstream *aadA* operon, consistent with 149 our previous observations (Occhialini et al., 2016).

151 Cyanobacterial Rubisco large subunits and CcmM35 aggregate in pro-carboxysome micro-

152 compartments in tobacco chloroplasts

153 Expression of Se CcmM35 together with the cyanobacterial LSU in the SeLM35 transformant resulted in 154 the formation of aggregates, or pro-carboxysome micro-compartments, in tobacco chloroplasts (Fig. 2). These aggregates were similar in size and shape to those observed in plants containing both the large 155 156 and small subunits of Rubisco, and CcmM35 (SeLSM35, Fig. S2), but were absent from tobacco plants 157 expressing the Se LSU in the absence of CcmM35. Immuno-gold labelling confirmed the presence of the 158 Se LSU and CcmM35 proteins within the SeLM35 pro-carboxysome compartments (Fig. 2, S3, S4). In 159 comparison, in SeL plants, the Se LSU protein could be detected throughout the chloroplast and, as 160 expected, the anti-CcmM antibody gave only background level signal.

161 Gel electrophoresis and immunoblotting of leaf extracts demonstrated the presence of 162 cyanobacterial LSU and CcmM35 in SeLM35 transplastomic plants (Fig. 3). Visually, the two proteins 163 appear to be more abundant on a total soluble protein basis in these plants compared to SeLSM35. As 164 expected, both proteins were absent from WT leaf extracts, and in SeLS and SeL plants, Se LSU was 165 present but CcmM35 was not observed. The tobacco SSU was detected in WT, SeL and SeLM35 leaf 166 extracts, although its abundance in SeL was very low, and visualization of the ~13 kDa SSU required a 167 higher TSP load to detect clearly using immunoblotting (Fig. 3C). Non-denaturing native-PAGE suggested 168 that CcmM35 is present in functional complexes with Rubisco in the tobacco transplastomic lines 169 SeLSM35 and SeLM35 (Fig. 3B).

170

171 Cyanobacterial Rubisco activity is impaired by the lack of a cognate SSU within tobacco chloroplasts

172 Consistent with previous efforts expressing Se Rubisco within tobacco chloroplasts, Rubisco content and

173 activity on a leaf area basis were significantly lower in leaf extracts of all the transplastomic lines,

174 representing less than 20% of the values in WT plants (Fig. 4). SeL plants in particular displayed minimal

amounts of Rubisco. While Rubisco active sites in SeL were ca. 20% of SeLS plants expressing both Se

176 Rubisco subunits (Fig. 4B), total activity in SeL was less than 5% of SeLS, and ca. 1% of WT tobacco,

177 consistent with the extremely slow growth of these plants (see below). SeLM35 plants had significantly

178 more Rubisco active sites than other transplastomic lines, including SeLSM35, which also expresses the

179 CcmM35 linker protein (Fig. 4B, P < 0.001), although Rubisco total activity was not significantly different

180 between the two lines (Fig. 4A, P > 0.001).

181To ascertain the ability of tobacco chloroplasts to maintain active cyanobacterial Rubisco, we182determined Rubisco activation states from WT and transplastomic plants under steady state conditions.

183 As anticipated, WT plants were observed to have a comparatively low activation state in high CO₂

184 conditions (Fig. 4C). Lines expressing both Se Rubisco subunits, with or without CcmM35 showed

essentially fully active Rubisco. In contrast, in SeLM35 Rubisco, activation was ca. 70 %, and in SeL,

- 186 expressing just the cyanobacterial LSU, it was only ca. 20 %. These data indicate that these complexes,
- 187 although able to function, did not become fully active in these growth conditions.

188 All transplastomic lines displayed significantly lower total soluble protein compared to WT

tobacco (Fig. 4D, P < 0.001) and this decrease was largely consistent with the decreased amount of

190 Rubisco on an area basis (Fig. S6). Alongside reduced total soluble protein and Rubisco content and in

- agreement with visual observation of these transplastomic plants, levels of chlorophyll a, b, and thus
- 192 total chlorophyll were significantly reduced (Fig. S7). Chlorophyll a was more severely reduced, and with
- 193 the exception of SeLS, all lines had a significantly reduced chlorophyll a/b ratio compared to WT tobacco.

194 Cyanobacterial Rubisco has been characterized to have a very high catalytic rate, but also a poor 195 affinity for CO₂ (high K_c value). In SeLS and SeLSM35 plants, values obtained for carboxylation rate, V_c,

and K_c, the Michaelis-Menten constant for CO₂, were consistent with previous work (Table 1; (Occhialini

197 et al., 2016). Rubiscos from SeLM35 and SeL, which contain the cyanobacterial LSU but lack a cognate

198 SSU, were able to carboxylate RuBP at significant rates. Immunoblotting suggested the presence of

199 tobacco SSU in the Rubisco complex, but this was likely at a stoichiometric ratio lower than 1:1 in

200 relation to the cyanobacterial LSU (Fig. 3). These two Rubisco enzymes had affinities for CO₂ comparable

- 201 to the enzyme from the transplastomic lines containing both the cyanobacterial LSU and SSU (Table 1).
- 202 203

Table 1. Rubisco catalytic properties. Maximum carboxylation rate (V_c), and Michaelis-Menten constant for CO₂ (K_c) of Rubisco from wild-type (WT) tobacco and transplastomic lines expressing β cyanobacterial carboxysome components from *Synechococcus elongatus* (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35). Values represent mean ± SEM (n = 3-5 biological replicates). * Wild-type values from Occhialini et al. (2016). Letters denote significant differences (P < 0.05) between transplastomic lines as determined by Tukey's pairwise comparisons following ANOVA. For K_c

210 differences were not significant at *P* = 0.05 level.

v

	♥ C			R _C		
Line	(µmol mg⁻¹ min⁻¹)			(μM)		
Wild-type*	3.9	±	0.2	9.0	±	0.3
SeLS	15.0	±	0.9 a	168	±	59 a
SeL	0.6	±	0.2 b	105	±	9 a
SeLSM35	10.9	±	0.8 c	133	±	12 a
SeLM35	2.0	±	0.3 b	110	±	22 a

212

213

214 The lack of a cognate Rubisco small subunit also impairs photosynthetic gas exchange

215 To evaluate the impact of the unusual Rubisco composition in the leaves of these transplastomic lines, 216 gas exchange measurements were carried out. At the levels present in these transplastomic plants and in 217 absence of a functional CO₂-concentrating mechanism, the faster catalytic rate of Se Rubisco does not 218 confer an advantage in photosynthetic rate per leaf area even at 2000 ppm CO_2 (Fig. 5A). Consistent with 219 previous work, aggregating cyanobacterial Rubisco through the expression of CcmM35 in SeLSM35 220 plants slightly reduced photosynthetic rates on an area basis (Fig 5A; Occhialini et al., 2016). SeLM35 221 photosynthetic rates show that the lack of the cognate Se SSU decreases photosynthetic rates even 222 further (Fig. 5A). Most transplastomic lines showed a noticeable increase of photosynthesis under low 223 oxygen conditions (Fig. S8). However, even at the highest CO₂ concentration measured combined with 224 2% oxygen, SeL plants displayed net photosynthetic rates that were barely above zero (Fig. S8C).

225 As a fully functional cyanobacterial CCM within tobacco will ideally require less Rubisco than 226 wild-type plants, we also determined Rubisco content in the leaves used for gas exchange analyses. 227 When CO₂ assimilation was normalized by Rubisco active site concentration, neither SeLM35 nor SeL 228 outperformed WT plants even at 2000 ppm CO₂ (Fig 5B). Consistent with earlier work, at CO₂ levels well 229 above ambient SeLS and SeLSM35 plants showed higher photosynthesis per Rubisco active site (Fig. 230 5B;(Occhialini et al., 2016)). Even accounting for very low Rubisco content, SeL plants show null 231 normalized rates even at C_i of 2000 ppm CO₂ (Fig. 5B). This is consistent with the observation that even a 232 short exposure of several hours in ambient CO₂ conditions leads to tissue damage, and that even in 233 growth conditions of 4000 ppm CO_2 SeL plants are extremely slow to develop (see below).

234

235

236 Replacement of tobacco Rubisco large subunits with cyanobacterial large subunits impairs growth

237 irrespective of other components

Transplastomic plants where the native tobacco Rubisco large subunit (LSU) was replaced with the Se large subunit with or without the carboxysome linker protein CcmM35 (SeLSM35 and SeLM35) grew slowly even at 4000 ppm CO₂ when compared to both WT and lines expressing both Se Rubisco subunits (SeLS, Fig. 6A, S6, Table S2). Germination time was similar between all lines (~7 days). Plant height and total leaf area of SeLSM35 and SeLM35 plants started to visibly increase 60 days after sowing, and the growth rate for the subsequent 15 days was significantly slower in SeLM35 plants lacking the Se SSU compared to SeLSM35 (*P* < 0.05, Fig. 6B, 6C, Table S2). SeL plants expressing only the Se LSU were
dramatically slower in growth (*P* < 0.001), which necessitated germination in tissue culture for
establishment before transferring to soil. These plants took approximately three times as long as SeLS
plants to reach a plant height of ~80 cm (Fig. 6B). SeL and SeLM35 plants produced numerous smaller
leaves, consistent with the other line expressing CcmM35, SeLSM35 (Fig. S10). Both SeL and SeLM35
were noticeably paler than WT controls and transplastomic lines expressing the Se SSU (Fig. S7, S9, S10).

251

252 **Discussion**

253 The current study describes two new transplastomic tobacco lines, namely SeL and SeLM35, where the 254 native *rbcL* gene has been replaced with its cyanobacterial counterpart without the *Se-rbcS* gene. 255 Previous work had shown the ability of L₈S₈ Rubisco from Synechococcus elongatus to assemble and 256 function within higher plant chloroplasts and to form large aggregates of linked Rubisco complexes in the 257 presence of CcmM35 (Lin et al., 2014a; Occhialini et al., 2016). Our current results show that 258 cyanobacterial LSU interacts with the carboxysome linker protein CcmM35 in the absence of a cognate 259 cyanobacterial SSU, and forms pro-carboxysome-like aggregates in tobacco chloroplasts. In contrast to a 260 previous study where no cyanobacterial LSU was detected in a similar tobacco transformant (Kanevski et 261 al., 1999), we were able to detect the cyanobacterial LSU as well as catalytic activity of Rubisco in both 262 SeL and SeLM35 lines (Table 1). It should be noted that the cyanobacterial LSU expressed in the previous 263 study had the first 8 residues at its N terminus replaced by the first 11 residues of the tobacco LSU, 264 possibly leading to lower stability of the modified LSU or inhibition of its assembly with the tobacco SSU 265 (Kanevski et al., 1999).

266 Relative to comparable lines expressing Se SSU, both SeLM35 and SeL plants showed delayed 267 growth (Fig. 6) and developed more numerous, but smaller leaves (Fig. S9, S10). SeL was not able to 268 grow autotrophically from seeds even in high CO₂ levels, and required establishment on tissue culture 269 media. Similar effects have been seen when engineering Rubisco in tobacco where either the 270 introduction of a foreign LSU (Whitney and Andrews, 2001; Sharwood et al., 2008) or mutation of the 271 native tobacco LSU (Whitney et al., 1999) leads to very low Rubisco amount and/or very poor activity. 272 Rubisco from both SeLM35 and SeL had dramatically slower maximum catalytic rates compared to the native Se enzyme (SeLS, Table 1), consistent with the slower growth of these plants. Combined 273 274 with the significantly lower Rubisco active sites, this led to much lower Rubisco activity on a leaf area 275 basis (Fig. 4). In both lines containing CcmM35, Rubisco catalytic rate was worse than that of β276 cyanobacterial Rubisco extracted from SeLS where no aggregation occurs, which would suggest a 277 putative negative impact of CcmM35 on Rubisco activity in the Se plants, and agrees with previous work 278 with the SeLSM35 line (Occhialini et al., 2016). This is consistent with previous observations from plants 279 expressing α -cyanobacterial Rubisco within a minimal α -carboxysome from *Cyanobium* (Long et al., 280 2018). The authors found that Rubisco catalytic rate was approximately halved when determined for 281 Rubisco from tobacco chloroplasts; however, after high-speed centrifugation to remove insoluble 282 carboxysomes, rates were consistent with those obtained from either the native cyanobacteria or 283 expressed without linker proteins within tobacco. Movement of metabolites such as RuBP may be 284 similarly inhibited by the formation of large β -pro-carboxysomes of LSU-CcmM35, as observed via K_{MRuBP} 285 measurements made on tobacco derived minimal α -carboxysomes (Long et al., 2018). The large size of 286 the observed pro-carboxysomes in SeLSM35 and SeLM35 plants, relative to native cyanobacterial 287 carboxysomes, appears likely to have influenced metabolite movement. This highlights that an important part of balancing expression of the various components is not only to ensure correct formation of a 288 289 functional carboxysome, but also to achieve a suitably sized microcompartment. However, Rubisco 290 extracted from SeLM35 was significantly more active than the enzyme extracted from SeL plants, 291 showing that in the absence of Se SSU, CcmM35 helps sequester more tobacco SSU, possibly by 292 increasing stability of the hybrid L_8S_8 enzyme or facilitating its assembly (Fig. 3).

293 The very low activity observed for SeL Rubisco that lacked the cognate SSU from cyanobacteria 294 agrees with *in vitro* findings from a number of previous studies investigating the ability of LSU-only 295 Rubisco to perform catalysis (Andrews and Ballment, 1984; Jordan and Chollet, 1985; Andrews, 1988). In 296 studies including cyanobacterial Rubisco, in vitro preparations containing only L₃ octameric cores 297 typically had detectable activity corresponding to only ~1% of the cyanobacterial holoenzyme, and even 298 addition of heterologous higher plant SSU from spinach led to dramatic increases in activity (Andrews, 299 1988). The cyanobacterial L₈ core binds spinach SSU with an affinity an order of magnitude lower than its 300 native SSU, and the activity of the hybrid enzyme was only half that of the enzyme with homologous 301 subunits (Andrews and Lorimer, 1985). This suggests that the minimal activity observed for SeL Rubisco, ~5% of SeLS (Fig. 4), may in part result from a substoichiometric amount of tobacco SSU's binding to 302 303 cyanobacterial L₈ cores.

304A common theme in organization of Rubisco enzymes within both carboxysomes of305photosynthetic bacteria and pyrenoids from green algae appears to be through interactions with a306disordered repeat protein such as CcmM35 in β-carboxysomes, CsoS2 in α-carboxysomes and EPYC1 in307pyrenoids (Long et al., 2011; Cai et al., 2015; Mackinder et al., 2016). In the case of β-carboxysomes and

308 pyrenoids, the Rubisco enzymes were sequestered into a separate liquid phase by these linker proteins 309 (Freeman Rosenzweig et al., 2017; Wunder et al., 2018; Wang et al., 2019). EPYC1 or CsoS2 were shown 310 to interact only with the SSU (Liu et al., 2018; Atkinson et al., 2019), whereas both the large and small 311 subunits are involved in binding CcmM35 based on a cryo-EM structural model, and the L₈ core alone 312 was insufficient to form a separate liquid phase with CcmM35 (Wang et al., 2019). Thus, the tobacco 313 SSUs are likely involved in the formation of CcmM35-Rubisco aggregates in SeLM35 plants although the 314 stoichiometry between the Se LSU and tobacco SSUs was not determined. Indeed, the residues in Se SSU 315 critical for interaction with CcmM35 are well conserved in tobacco SSU (Fig. S11; (Wang et al., 2019).

316 The poor photosynthetic performance of these transplastomic lines in the absence of a 317 functional CCM with all the necessary components is unsurprising. However, the ability of some lines to 318 outperform wild-type plants on a per Rubisco basis at higher CO₂ levels suggests that provided with high 319 CO_2 concentrations such as those within a fully formed β -carboxysome shell in a complete CCM, the 320 Rubisco levels within these plants may be sufficient to support improved rates of carbon assimilation. 321 Consistent with this, Long and colleagues (2018) observed that leaf discs from plants expressing α -322 cyanobacterial Rubisco produced similar photosynthetic rates to wild-type tobacco plants in 2% (v/v) CO₂ 323 conditions within a membrane inlet mass spectrometry system (MIMS). Thus, and even considering the 324 associated nitrogen costs of producing the shell components, reducing the typically very large 325 investment into Rubisco by C₃ plants may represent an overall nitrogen saving (McGrath and Long, 2014). 326 An issue that is highly likely to be encountered when dealing with the numerous other components of 327 the carboxysome shell is to optimize expression levels, and this may also be necessary for Rubisco. An 328 increasing understanding of the role of chaperones for Rubisco assembly (Feiz et al., 2014; Salesse-Smith 329 et al., 2018; Wilson and Hayer-Hartl, 2018; Conlan et al., 2019) may provide avenues to increase Se 330 Rubisco amounts, should this become necessary to support the desired number of carboxysomes per 331 chloroplast, in order to drive higher photosynthetic rates within a fully formed CCM. It is also possible 332 that adjusting the chloroplast regulatory sequences used to express Se Rubisco subunits may be 333 sufficient to increase the Rubisco amount.

The ability of CcmM35 to link Se LSU *in planta* without a cognate SSU shows that tobacco SSU can not only substitute Se SSU to form functional hybrid Rubisco, but can also result in an enzyme to which CcmM35 can bind. While the Se SSU does not appear to be essential for formation of a procarboxysome, the differences shown here based on its presence in a pro-carboxysome highlight its importance for full Rubisco functionality and carboxysome structural organization. These results support the likely necessity of co-engineering cognate subunits from a distant foreign Rubisco, as part of efforts to engineer both a foreign Rubisco into higher plants (Whitney and Andrews, 2001; Sharwood et al.,

2008) and for more complex engineering of CO₂-concentrating mechanisms such as carboxysomes and
 pyrenoids from cyanobacteria and algae, respectively (Atkinson et al., 2016; Rae et al., 2017).

343 The carboxysome alone will be insufficient to attain higher rates of photosynthesis without the 344 removal of existing stromal carbonic anhydrase and the addition of transporters to pump high levels of 345 HCO₃⁻ into the chloroplast (Hanson et al., 2016; Long et al., 2018; Desmarais et al., 2019). There have 346 been recent improvements in approaches to tackle the issue of localizing these inorganic carbon pumps 347 (Rolland et al., 2016; Uehara et al., 2016), alongside advances in understanding the role of the various 348 carbonic anhydrases (Hu et al., 2015; DiMario et al., 2016). Furthermore, there is now a better 349 understanding of the actual ratios of components in β -carboxysomes (Sun et al., 2019), engineering of β -350 carboxysome shells to obtain cryoEM structural models (Cai et al., 2016; Sutter et al., 2019), an assembly 351 of full β -carboxysomes in *E. coli* (Fang et al., 2018), and recent successes with α -carboxysomes (Long et 352 al., 2018). These advances provide encouragement that ongoing research is steadily moving toward the 353 ability to assemble these complex, powerful CCMs within plants to improve photosynthesis with the 354 ultimate goal of improving global food security.

- 355
- 356

357 Materials and Methods

358 Construction of chloroplast transformation vectors

359 All primers used were obtained from Integrated DNA Technologies and listed in Table S1. Phusion[™] high-360 fidelity DNA polymerase, FastDigest restriction enzymes and T4 DNA ligase from Thermo Scientific were 361 used to generate amplicons, restriction digests and ligation products respectively. The ligation products 362 were transformed into chemically competent DH5 a E. coli and selected on LB agar medium with 100 363 µg/mL ampicillin. A template vector to hold each DNA piece was first constructed as follows. The aadA 364 operon from BJF-070 vector (Hanson et al., 2013) was removed by self-ligation of the Nsil digest. An 365 amplicon was generated from the resulting vector using NsiI-BJF3 and BamHI-BJF5 primers and ligated 366 into the BamHI and Nsil sites of the vector to introduce SbfI and NotI sites upstream of the Nsil locus. 367 The resulting vector, BJFE-BB, was used as a vector to hold each DNA element between the SbfI and NotI 368 sites using BB-XXX-f and BB-XXX-r primers where 'XXX' stands for the name of each DNA element. Once 369 ligated into the BJFE-BB vector, each DNA element was flanked by SbfI-Mlul upstream and MauBI-NotI 370 downstream. Since Mlul and MauBI restriction sites have compatible cohesive ends, these DNA parts can 371 be assembled in any desired order using an approach similar to the BioBrick method (Shetty et al., 2008). 372 Specifically, we assembled an *aadA* module comprised of loxP-At TpsbA-IEE-SD-RBS-aadA-loxP. We then 373 modified pGEM-F1-rbcL-F2 vector described previously (Lin et al., 2014b) by introducing a SbfI site 374 immediately downstream of the Se-rbcL gene. It was accomplished by ligating the amplicon generated 375 with HindIII-LSUE5 and T1L-IEE3 primers into the HindIII and Xbal sites to obtain the pCT-rbcL-BB2 vector. 376 Next, Xbal+AscI digest of the amplicon from TrbcL5 and AscI-LSUFI2r primers was ligated into XbaI and 377 Mlul sites of pCT-rbcL-BB2 vector to obtain pCT-rbcL-BB vector. Finally, we introduced the *aadA* module 378 between the Sbfl and Notl sites of pCT-rbcL-BB vector to obtain pCT-rbcL-BB-aadA vector used to 379 generate the SeL chloroplast transformant tobacco line. pCT-rbcL-ccmM35 described previously (Lin et 380 al., 2014b) was used in the generation of SeLM35 tobacco chloroplast transformant.

381

382 *Generation of transplastomic tobacco plants*

383 We introduced transformation vectors into two-week-old tobacco (Nicotiana tabacum cv. Samsun) 384 seedlings with the Biolistic PDS-1000/He Particle Delivery System (Bio-Rad Laboratories) and tissue-385 culture based selection method as described previously (Occhialini et al., 2016). Briefly, about 10 µg of 386 DNA was mixed with 100 μ L of 50 mg/mL 0.6 μ m gold nanoparticles, 100 μ L of 2.5 M CaCl₂ and 40 μ L of 387 0.1 M spermidine free-base by vortexing for about one minute. The gold particles were then pelleted in 388 a microcentrifuge at 1000 rpm for 8 seconds and resuspended in 180 µL of 70% ethanol. After the 389 washing of the gold particles was repeated one more time, the pellet was resuspended in about 60 µL of 390 100% ethanol and then spread on ten microcarrier discs used for bombardment. Two days later, the 391 leaves from the bombarded seedlings were cut into halves and placed on RMOP agar medium with 500 392 µg/mL spectinomycin for 4-6 weeks at 23°C under 14 h light per day. The shoots arising were cut into 5 393 mm² pieces and subjected to a second round of selection on the same medium for another 4-6 weeks. 394 The regenerated shoots were then transferred to MS agar medium for rooting and subsequently 395 transferred to soil for growth in a chamber with elevated CO_2 (~9000 ppm) until the seeds were 396 collected. Total DNA was extracted from leaf tissues using CTAB buffer, digested with EcoRV+KpnI 397 restriction enzymes, separated on a 1% agarose gel, transferred to a Nylon membrane and detected with 398 a DIG-label DNA probe as described previously (Lin et al., 2014b).

399

400 Analyses of transgenes' transcripts on RNA blots

401 The transcripts were analyzed on RNA blots using the procedure described previously with the same

402 DIG-labeled RNA probes (Occhialini et al., 2016). Briefly, RNA samples were prepared from leaf tissues

403 with a PureLink[®] RNA mini kit (Life Technologies) and their concentrations were estimated with a Qubit[®]

404 RNA BR assay kit. About 1 µg each RNA sample was mixed with NorthernMax[®] formaldehyde load dye 405 (Life Technologies) with 50 µg/mL ethidium bromide and incubated at 65 °C for 15 min before they were 406 loaded to 1.3% agarose gel with 2% formaldehyde. After separation at 7 V cm⁻¹ for about 2 h, the gel was 407 washed three times in diethylpyrocarbonate-treated water for 10 min each and incubated in 20x SSC for 408 45 min before the RNAs were transferred to a positively charged nylon membrane under capillary action. 409 The membrane was then exposed to UV radiation with a Stratalinker[®] UV Crosslinker, hybridized with 200 410 ng of each DIG-labeled RNA probe in ~ 4 mL of DIG EasyHyb buffer (Roche) at 68 °C overnight, and 411 detected with anti-digoxigenin-AP antibody and CDP-Star chemiluminescent substrate (Roche).

412

413 Plant material

414 Seeds of wild type (WT) and transplastomic tobacco (Nicotiana tabacum cv. Samsun) were sown into 415 trays of a commercial potting mix (Petersfield Products, UK) with a slow-release fertiliser (Osmocote, 416 Scotts UK Professional, UK). Seedlings were thinned out after *ca*. two weeks, with individual plants 417 transferred to 1 L pots after three weeks. Seeds of SeL were sown into tissue culture pots containing agar 418 solidified MS medium containing 1% sucrose before transferring to soil after three weeks. Plants were 419 grown in a controlled environment chamber (Microclima 1750, Snijders Scientific B.V., Netherlands). The 420 chamber was set at day/night temperatures of 24/22 °C with a 16 h photoperiod, 60 % humidity. The 421 ambient CO_2 concentration within the chamber was maintained at 4000 ± 400 ppm using the integrated 422 CO₂ controller. CO₂ levels were also monitored in the chamber with a Vaisala hand held GM70 meter 423 (Vaisala, UK). Plants were kept well-watered. Space limitations within growth chambers necessitated 424 growing plants in batches for growth analysis.

425

426 Fixation and embedding of plant tissue, immunogold labelling and TEM

427 Small pieces (1x1.5mm) of tissue from fully expanded leaves of plants equivalent in size to 33 DAS WT 428 plants were incubated in fixative (4% paraformaldehyde, 2.5 % glutaraldehyde in 0.05 M sodium 429 phosphate buffer pH 7.2) for 2 hours at room temperature with rotation. A vacuum was used to aid 430 infiltration. After washing 3x 10 minutes in 0.05 M sodium phosphate buffer pH 7.2, the tissue was 431 dehydrated in an ethanol series (50%, 70%, 80%, 90%) at room temperature for 30 minutes each step 432 and finally 100% ethanol for 1 hour. Tissue was infiltrated with LR white resin (Agar Scientific, UK), first 433 by incubating for 1 hour in 100% ethanol:LR white 1:1 (v/v), then for 2 hours in100% LR white and finally 434 overnight in 100% LR white. Specimens were transferred to Eppendorf tubes charged with fresh 100% 435 LR white resin. The tubes were sealed with plastic film and the resin polymerised at 50 °C for 16 hours.

436 Ultrathin sections (~90 nm) of embedded leaf material were captured on gold gilded grids (Agar 437 Scientific, Stansted, UK) and used for immunogold labelling. Samples were blocked for 30 minutes in 1% 438 BSA in phosphate buffered saline (PBS) and then incubated in primary antibody solution (antibody 439 diluted 1/100 in 1% BSA in PBS) for 1.5 hours. Grids were washed 3x 10 minutes with 1% BSA in PBS 440 before incubation for 1 hour with secondary goat anti-rabbit antibody conjugated to 10 nm gold particles 441 (Agar Scientific, UK, 1/100 antibody dilution prepared in 1% BSA in PBS). Grids were washed 3x 10 442 minutes in 1% BSA in PBS and 3x 5 minutes in distilled water before air-drying. Images were obtained at 443 80kv using a JEOL 1010 (JEOL, Japan) microscope equipped with a digital AMT NanoSprint500 camera 444 (Deben, UK).

445

446 Gel electrophoresis and immunoblotting

Soluble protein extracts were analysed for the presence of proteins via both denaturing (SDS-PAGE) and non-denaturing (Native-PAGE) gel electrophoresis. SDS-PAGE and immunoblotting was carried out as described in Perdomo *et al.* (2018) using Bio-Rad Mini-Protean TGX gels (Bio-Rad, UK). Non-denaturing gels were run using a Tris-glycine buffering system at 4°C as per the manufacturer's instructions. For both types of electrophoresis, immunoblotting was as described by Perdomo *et al.* (2018) using SeLSU and CcmM antibodies described previously (Lin et al., 2014b) and a plant SSU antibody (Agri-Sera AS07 259, Agri-Sera, Sweden).

454

455 Rubisco biochemistry

Rubisco activities and activation state in leaf extracts were determined as described by Carmo-Silva *et al.*(2017), except that homogenate centrifugation was at a reduced 300 *g* for 1 min. Chlorophyll content in
the homogenates was determined by the method of Wintermans and de Mots (1965) using ethanol and
measuring absorbance in a microplate reader (SPECTROstar Nano, BMG LabTech, UK). Total soluble
protein (TSP) in the same supernatant as used for Rubisco activity assays was determined via Bradford
assay (1976). The amount of Rubisco was also quantified in the same supernatant by a [¹⁴C]CABP
[carboxyarabinitol-1,5-bisphosphate] binding assay (Whitney et al., 1999).

Rubisco catalytic properties were determined essentially as described previously (Prins et al.,
2016; Orr and Carmo-Silva, 2018) with the following changes: leaf discs were ground in extraction buffer,
followed by centrifugation at 300 g and 4°C for 1 min. Supernatants were immediately used for assays,
which was previously found to be suitable with similar cyanobacterial Rubisco complexes (Lin et al.,
2014b). Additional higher CO₂ concentrations (180, 280, and 410 µM) were also used for catalysis assays

468 to enable determination of the Michaelis-Menten constant for CO₂ (K_M^{CO2} or K_C).

469

470 *Photosynthesis measurements*

471 Photosynthetic gas exchange was measured in healthy leaves that had recently reached full expansion, 472 typically leaf 4 or 5 on plants of approximately 45 cm in height. A LI-6800F portable gas exchange system 473 (LI-COR, Lincoln, NE, USA) was used to enclose a 6 cm² portion of leaf, with constant irradiance of 600 474 μ mol photons m⁻² s⁻¹ supplied by the cuvette head LEDs, a vapour pressure deficit of 1.20 ± 0.03 kPa and 475 a flow rate of 300 μ mol m⁻² s⁻¹. Leaf temperature was maintained at 24 ± 1°C. For all measurements, the 476 entire gas exchange system was positioned inside the plant growth chamber, and controlled remotely via 477 Ethernet connection. After the cuvette was clamped onto a leaf, the chamber door was kept closed to 478 minimise fluctuations in CO₂ levels and the plant allowed to stabilise for at least 15 min at 3000 ppm CO₂ 479 prior to commencing measurements. For transplastomic tobacco lines, the ambient CO₂ concentration 480 (Ca) was subsequently decreased to 100 ppm, followed by increases to 200, 400, 800, 1200, 1600, 2000 481 and 2500 ppm CO₂. For wild-type tobacco, additional concentrations were used such that increases in 482 CO₂ went from 50 to 100, 150, 200, 250, 300, 400, 600, 800, 1200, 1600, 2000 and 2500 ppm. For all 483 leaves measured, a separate CO₂ response curve was determined under 2% (v/v) O₂ conditions using a 484 balanced air gas cylinder for input, using otherwise identical settings.

485

486 *Plant biomass*

487 Leaf numbers and leaf measurements were taken every 3-7 days from four or five individuals for each

488 line (2 in the case of the SeL line). Plant height was measured from soil level to growing point.

489 Measurements were initiated at 28 DAS for WT and SeLS, 46 DAS for SeLSM35 and SeLm35 and 127 DAS

490 for SeL, due to the differing growth rates between lines and continued until the initiation of flowering. At

491 the end of the growth period, final leaf measurements were taken and area measured using a LI-COR

492 3100 leaf area machine (LI-COR, Europe). Leaf areas were then derived for all time points.

493

494 Statistical analysis

495 Statistical differences between trait means were tested via one-way analysis of variance (ANOVA). In

496 cases where an effect of genotype was observed (*P* < 0.05), a post-hoc Tukey test was used to conduct

497 multiple pairwise comparisons. Statistical analyses were performed using RStudio (version 1.1.453, (R

498 Studio Team, 2019)) and R (version 3.5.0, (R Core Development Team, 2013)). Plots were prepared with

499 ggplot2 (Wickham, 2016). Plant height and leaf area data analyses involved fitting curves to the

- 500 exponential phase of growth and comparing means of the curve coefficients using ANOVA. Where a
- 501 significant difference was observed between lines, a post-hoc Holm-Sidak test was used for multiple
- 502 pairwise comparisons. Analyses were performed in SigmaPlot (version 13, Systat Software, UK).
- 503
- 504

505 Accession Numbers

- 506 Sequence data for cyanobacterial RbcL and CcmM35 can be found in the GenBank data library under
- 507 accession numbers AIM40198.1 and AIM40200.1 respectively.
- 508

509 Supplemental Data

- 510 **Supplemental Figure S1**. RNA blots of WT and transplastomic tobacco lines.
- 511 **Supplemental Figure S2**. Presence of pro-carboxysome compartments in tobacco transplastomic plants
- 512 containing cyanobacterial Rubisco large subunits and CcmM35, with and without Rubisco small subunits.
- 513 **Supplemental Figure S3.** Electron micrographs of tobacco plants expressing cyanobacterial Rubisco large
- subunits and CcmM35 contain a pro-carboxysome compartment in the chloroplast.
- 515 **Supplemental Figure S4**. Additional examples of electron micrographs of tobacco plants expressing
- 516 cyanobacterial Rubisco large subunits and CcmM35 with a pro-carboxysome compartment in the
- 517 chloroplast.
- 518 **Supplemental Figure S5**. Western blots of SDS-PAGE and Native-PAGE gels used to examine protein
- 519 composition of wild-type (WT) tobacco and transplastomic lines expressing β-cyanobacterial
- 520 carboxysome components.
- 521 **Supplemental Figure S6**. Rubisco content expressed as grams per square metre.
- 522 **Supplemental Figure S7**. Chlorophyll content of transplastomic lines.
- 523 Supplemental Figure S8. Response of leaf CO₂ assimilation to intercellular CO₂ concentrations (Ci) under
- 524 atmospheric levels and 2 % oxygen.
- 525 **Supplemental Figure S9**. Plant photographs at a comparable growth stage.
- 526 **Supplemental Figure S10**. Comparison of leaf size in transplastomic plants.
- 527 **Supplemental Figure S11**. Multiple sequence alignment of cyanobacterial and tobacco Rubisco small
- 528 subunits.
- 529
- 530 **Supplemental Table S1.** Oligonucleotide sequences used in the construction of transformation vectors.
- 531 **Supplemental Table S2.** Plant growth data analyses.

532

533 Acknowledgments

- 534 We are thankful to Dr Sam Taylor (Lancaster) for support and advice with gas exchange measurements,
- 535 and Nigel Fullwood (Lancaster) for guidance with TEM. We also thank the reviewers for helpful
- 536 comments on the manuscript.

538 Tables

539

- 540 **Table 1. Rubisco catalytic properties.** Rubisco maximum carboxylation rate (V_c), and Michaelis-Menten
- 541 constant for CO₂ (K_c) of wild-type (WT) tobacco and transplastomic lines expressing β-cyanobacterial
- 542 carboxysome components from *Synechococcus elongatus* (Se): Rubisco large subunit (L), Rubisco small
- 543 subunit (S), CcmM35 (M35). Values represent mean ± SEM (n = 3-5 biological replicates). * Wild-type
- 544 values from Occhialini *et al.* (2016). Letters denote significant differences (*P* < 0.05) between
- 545 transplastomic lines as determined by Tukey's pairwise comparisons following ANOVA.

546

547

- 549 Figure legends
- 550

Figure 1. Replacement of the *rbcL* gene in tobacco chloroplasts with the *Se-rbcL* with or without the *ccmM35* gene. (A) The gene arrangements of WT, SeL and SeLM35 tobacco lines along with the locations of the EcoRV and KpnI restriction sites used in the DNA blot. The binding site for the DIG-labeled DNA probe is shown in green bars. Seeds were obtained from two independent SeL lines and one SeLM35 line. (B) DNA blot analysis of the WT, SeL and SeLM35 samples digested with EcoRV and KpnI. All samples produced the expected band on the DNA blot.

557

Figure 2. Tobacco plants expressing cyanobacterial Rubisco large subunits and CcmM35 contain a procarboxysome compartment in the chloroplast. Immunolocalization of *Synechococcus elongatus* (Se) proteins in the chloroplasts of transplastomic tobacco lines expressing the Rubisco large subunit and CcmM35 (SeLM35) or the large subunit alone (SeL). Electron micrographs of ultrathin sections of mesophyll cells probed with the indicated primary antibody and a secondary antibody conjugated to 10 nm gold particles. Scale bars indicate size. Additional images are presented in Supplemental Figures S3 and S4.

565

566 Figure 3. Protein composition of wild-type (WT) tobacco and transplastomic lines expressing β-

567 cyanobacterial carboxysome components. Polypeptides in leaf extracts prepared from plants of each 568 line were separated by denaturing SDS-PAGE (A) and non-denaturing Native-PAGE (B) and either stained 569 with Coomassie Blue (upper panels) or used for immunoblotting with antibodies against cyanobacterial 570 Rubisco large subunit (SeLSU) and CcmM35, and against tobacco Rubisco small subunit (NtSSU) (lower 571 panels). Panels showing blotting of PAGE gels are slices from blots (see Fig. S5) and show the indicated 572 size regions where the respective antibodies detect proteins of interest. For SDS-PAGE and Native-PAGE, 573 10 and 20 µg total soluble protein was loaded per lane, respectively. (C), SDS-Page and Native-PAGE gels 574 immunoblotted with antibody against NtSSU, loaded with 20 and 40 µg total soluble protein,

575 respectively.

576

577 Figure 4. Rubisco and total soluble protein. Rubisco total activity (A), activation state (B), and content

578 (C), and total soluble protein (D), of wild-type (WT) tobacco and transplastomic lines expressing β-

- 579 cyanobacterial carboxysome components from *Synechococcus elongatus* (Se): Rubisco large subunit (L),
- 580 Rubisco small subunit (S), CcmM35 (M35). Values represent mean ± SEM (n = 3-4 biological replicates).

- Letters denote significant differences (*P* < 0.05) as determined by Tukey's honestly significant difference
 [HSD] mean-separation test following ANOVA (*P*-values indicated on each panel).
- 583
- 584 **Figure 5. Response of net CO₂ assimilation (A) to intercellular CO₂ concentrations (***C***_i). Rates are**
- 585 expressed on an area basis (A) and on a Rubisco active site basis (B) for leaves of wild-type (WT) tobacco
- 586 and transplastomic lines expressing β-cyanobacterial carboxysome components from *Synechococcus*
- 587 elongatus (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35). Values represent
- 588 mean ± SEM (n = 3-4 biological replicates).
- 589
- 590 **Figure 6. Plant development and growth traits.** Photographs of 33 day old plants grown in parallel in
- 591 4000 ppm CO₂ (A), plant height (B) and leaf area (C) development during the growth cycle wild-type (WT)
- 592 tobacco and transplastomic lines expressing β-cyanobacterial carboxysome components from
- 593 Synechococcus elongatus (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35).
- 594 Values represent mean ± SEM (n = 3-5 biological replicates). DAS, days after sowing.

595

597 References 598 599 Andrews TJ (1988) Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the 600 complete absence of small subunits. J Biol Chem 263: 12213–12219 601 Andrews TJ, Ballment B (1984) Active-site carbamate formation and reaction-intermediate-analog 602 binding by ribulosebisphosphate carboxylase/oxygenase in the absence of its small subunits. Proc 603 Natl Acad Sci U S A 81: 3660–3664 604 Andrews TJ, Lorimer GH (1985) Catalytic properties of a hybrid between cyanobacterial large subunits 605 and higher plant small subunits of ribulosebisphosphate carboxylase-oxygenase. J Biol Chem 260: 606 4632-4636 607 Atkinson N, Feike D, Mackinder LCM, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ 608 (2016) Introducing an algal carbon-concentrating mechanism into higher plants: location and 609 incorporation of key components. Plant Biotechnol J 14: 1302–1315 610 Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ (2019) The pyrenoidal 611 linker protein EPYC1 phase separates with hybrid Arabidopsis–Chlamydomonas Rubisco through 612 interactions with the algal Rubisco small subunit. J Exp Bot. doi: 10.1093/jxb/erz275 613 Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC 614 (2014) Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci 615 19: 327-338 616 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of 617 protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 618 Cai F, Bernstein SL, Wilson SC, Kerfeld CA (2016) Production and characterization of synthetic 619 carboxysome shells with incorporated luminal proteins. Plant Physiol 170: 1868–1877 620 Cai F, Dou Z, Bernstein SL, Leverenz R, Williams EB, Heinhorst S, Shively J, Cannon GC, Kerfeld CA 621 (2015) Advances in understanding carboxysome assembly in Prochlorococcus and Synechococcus 622 implicate CsoS2 as a critical component. Life **5**: 1141–1171 623 Cameron JCJ, Wilson SSC, Bernstein SLS, Kerfeld CAC (2013) Biogenesis of a Bacterial Organelle: The 624 Carboxysome Assembly Pathway. Cell 155: 1131–1140 625 Carmo-Silva E, Andralojc PJ, Scales JC, Driever SM, Mead A, Lawson T, Raines CA, Parry MAJ (2017) 626 Phenotyping of field-grown wheat in the UK highlights contribution of light response of 627 photosynthesis and flag leaf longevity to grain yield. J Exp Bot 68: 3473-3486 628 Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for 629 greater resource use efficiency. Plant, Cell Environ 38: 1817–1832 630 Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM (2019) BSD2 is a 631 Rubisco-specific assembly chaperone, forms intermediary hetero-oligomeric complexes, and is 632 nonlimiting to growth in tobacco. Plant Cell Environ **42**: 1287–1301 633 Desmarais JJ, Flamholz AI, Blikstad C, Dugan EJ, Laughlin TG, Oltrogge LM, Chen AW, Wetmore K, 634 Diamond S, Wang JY, et al (2019) DABs are inorganic carbon pumps found throughout prokaryotic 635 phyla. Nat Microbiol. doi: 10.1038/s41564-019-0520-8 636 DiMario RJ, Quebedeaux JC, Longstreth DJ, Dassanayake M, Hartman MM, Moroney J V. (2016) The 637 cytoplasmic carbonic anhydrases β CA2 and β CA4 are required for optimal plant growth at low CO₂.

- 638 Plant Physiol **171**: 280–293
- 639 Erb TJ, Zarzycki J (2016) Biochemical and synthetic biology approaches to improve photosynthetic CO₂ 640 fixation. Curr Opin Chem Biol 34: 72–79
- Fang Y, Huang F, Faulkner M, Jiang Q, Dykes GF, Yang M, Liu LN (2018) Engineering and modulating
 functional cyanobacterial CO2-fixing organelles. Front Plant Sci 9: 739
- Feiz L, Williams-Carrier R, Belcher S, Montano M, Barkan A, Stern DB (2014) A protein with an inactive
 pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants. Plant J
 80: 862–869
- Flamholz AI, Prywes N, Moran U, Davidi D, Bar-On YM, Oltrogge LM, Alves R, Savage D, Milo R (2019)
 Revisiting trade-offs between Rubisco kinetic parameters. Biochemistry 58: 3365–3376
- Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, Cartwright
 HN, Ronceray P, Plitzko JM, Förster F, et al (2017) The Eukaryotic CO2-Concentrating Organelle Is
 Liquid-like and Exhibits Dynamic Reorganization. Cell 171: 148–162.e19
- Hanson MR, Gray BN, Ahner BA (2013) Chloroplast transformation for engineering of photosynthesis. J
 Exp Bot 64: 731–742
- Hanson MR, Lin MT, Carmo-Silva AE, Parry MAJ (2016) Towards engineering carboxysomes into C₃
 plants. Plant J 87: 38–50
- 655 **Hibberd JM, Sheehy JE, Langdale JA** (2008) Using C₄ photosynthesis to increase the yield of rice-656 rationale and feasibility. Curr Opin Plant Biol **11**: 228–231
- Hu H, Rappel WJ, Occhipinti R, Ries A, Böhmer M, You L, Xiao C, Engineer CB, Boron WF, Schroeder JI
 (2015) Distinct cellular locations of carbonic anhydrases mediate carbon dioxide control of stomatal
 movements. Plant Physiol 169: 1168–1178
- Jordan DB, Chollet R (1985) Subunit dissociation and reconstitution of ribulose-1,5-bisphosphate
 carboxylase from *Chromatium vinosum*. Arch Biochem Biophys 236: 487–496
- Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1,5 bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco
 small subunit hybrid. Plant Physiol 119: 133–141
- Langdale JA (2011) C 4 Cycles: Past, Present, and Future Research on C 4 Photosynthesis. Plant Cell 23:
 3879–3892
- 667 Lin MT, Occhialini A, Andralojc PJ, Devonshire J, Hines KM, Parry MAJ, Hanson MR (2014a) β 668 Carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. Plant J
 669 79: 1–12
- Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014b) A faster Rubisco with potential to
 increase photosynthesis in crops. Nature 513: 547–550
- Liu Y, He X, Lim W, Mueller J, Lawrie J, Kramer L, Guo J, Niu W (2018) Deciphering molecular details in
 the assembly of alpha-type carboxysome. Sci Rep 8: 15062
- 674 Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes.
 675 Annu Rev Environ Resour 34: 179–204
- Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from *Synechococcus* PCC7942 reveals multiple rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol

- 678 Chem **282**: 29323–29335
- Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim Y-L, Nguyen ND, Massey B, Bala S, von
 Caemmerer S, et al (2018) Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in
 tobacco chloroplasts. Nat Commun 9: 3570
- Long BM, Rae BD, Badger MR, Price GD (2011) Over-expression of the β-carboxysomal CcmM protein in
 Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA)
 and M58 content. Photosynth. Res. pp 33–45
- Long BM, Rae BD, Rolland V, Förster B, Price GD (2016) Cyanobacterial CO₂-concentrating mechanism
 components: Function and prospects for plant metabolic engineering. Curr Opin Plant Biol **31**: 1–8
- 687 Long BM, Tucker L, Badger MR, Dean Price G (2010) Functional cyanobacterial β-carboxysomes have an
 688 absolute requirement for both long and short forms of the CcmM protein. Plant Physiol 153: 285–
 689 293
- Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields?
 Plant, Cell Environ 29: 315–330
- Mackinder LCM (2018) The Chlamydomonas CO₂-concentrating mechanism and its potential for
 engineering photosynthesis in plants. New Phytol 217: 54–61
- Mackinder LCM, Meyer MT, Mettler-Altmann T, Chen VK, Mitchell MC, Caspari O, Rosenzweig ESF,
 Pallesen L, Reeves G, Itakura A, et al (2016) A repeat protein links Rubisco to form the eukaryotic
 carbon-concentrating organelle. Proc Natl Acad Sci U S A 113: 5958–5963
- Maurino VG, Weber APM (2013) Engineering photosynthesis in plants and synthetic microorganisms. J
 Exp Bot 64: 743–751
- McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase
 photosynthesis in crop species? A theoretical analysis. Plant Physiol 164: 2247–2261
- Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ (2016) Transgenic tobacco plants with
 improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type
 rates if provided with elevated CO₂. Plant J 85: 148–160
- 704 Orr DJ, Carmo-Silva E (2018) Extraction of Rubisco to determine catalytic constants. Methods Mol. Biol.
 705 Humana Press, New York, NY, pp 229–238
- Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL (2017) Engineering
 photosynthesis: Progress and perspectives. F1000Research 6: 1891
- Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long
 SP, et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy
 demand. Proc Natl Acad Sci U S A 112: 8529–8536
- Perdomo JA, Sales CRG, Carmo-Silva E (2018) Quantification of photosynthetic enzymes in leaf extracts
 by immunoblotting. Humana Press, New York, NY, pp 215–227
- Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO₂ concentrating mechanism.
 Photosynth. Res. pp 47–57
- Price GD, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate
 transporters to improve leaf photosynthesis in C₃ crop plants. Plant Physiol 155: 20–26
- 717 Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-

- concentrating- mechanism (CCM): Functional components, Ci transporters, diversity, genetic
 regulation and prospects for engineering into plants. J. Exp. Bot. pp 1441–1461
- Prins A, Orr DJ, Andralojc PJ, Reynolds MP, Carmo-Silva E, Parry MAJ (2016) Rubisco catalytic properties
 of wild and domesticated relatives provide scope for improving wheat photosynthesis. J Exp Bot 67:
 1827–1838
- **R Core Development Team** (2013) A language and environment for statistical computing. http://www.r project.org/
- 725 R Studio Team (2019) RStudio Cloud: Integrated Development for R. https://www.rstudio.com/
- Rae BD, Long BM, Forster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD,
 McCormick AJ (2017) Progress and challenges of engineering a biophysical carbon dioxide concentrating mechanism into higher plants. J Exp Bot 68: 3717–3737
- Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and
 stagnation. Nat Commun 3: 1293
- Rolland V, Badger MR, Price GD (2016) Redirecting the cyanobacterial bicarbonate transporters bica and
 sbta to the chloroplast envelope: Soluble and membrane cargos need different chloroplast
 targeting signals in plants. Front Plant Sci 7: 185
- Ryan P, Forrester TJB, Wroblewski C, Kenney TMG, Kitova EN, Klassen JS, Kimber MS (2019) The small
 RbcS-like domains of the β-carboxysome structural protein CcmM bind Rubisco at a site distinct
 from that binding the RbcS subunit. J Biol Chem 294: 2593–2603
- Salesse-Smith CE, Sharwood RE, Busch FA, Kromdijk J, Bardal V, Stern DB (2018) Overexpression of
 Rubisco subunits with RAF1 increases Rubisco content in maize. Nat Plants 4: 802–810
- Sharwood RE, Von Caemmerer S, Maliga P, Whitney SM (2008) The catalytic properties of hybrid
 rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent
 source rubiscos and can support tobacco growth. Plant Physiol 146: 83–96
- Sharwood RE, Ghannoum O, Whitney SM (2016) Prospects for improving CO₂ fixation in C₃-crops
 through understanding C₄-Rubisco biogenesis and catalytic diversity. Curr Opin Plant Biol **31**: 135–
 142
- 745 Shetty RP, Endy D, Knight TF (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2: 5
- South PF, Cavanagh AP, Liu HW, Ort DR (2019) Synthetic glycolate metabolism pathways stimulate crop
 growth and productivity in the field. Science (80-) 363: eaat9077
- Sun Y, Wollman AJM, Huang F, Leake MC, Liu L-N (2019) Single-organelle quantification reveals
 stoichiometric and structural variability of carboxysomes Ddependent on the environment. Plant
 Cell 31: 1648–1664
- Sutter M, Laughlin TG, Sloan NB, Serwas D, Davies KM, Kerfeld CA (2019) Structure of a synthetic beta carboxysome shell. Plant Physiol pp.00885.2019
- Uehara S, Adachi F, Ito-Inaba Y, Inaba T (2016) Specific and efficient targeting of cyanobacterial
 bicarbonate transporters to the inner envelope membrane of chloroplasts in arabidopsis. Front
 Plant Sci 7: 1–8
- Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR (2016) The costs of photorespiration to food production
 now and in the future. Annu Rev Plant Biol 67: 107–129

- Wang H, Yan X, Aigner H, Bracher A, Nguyen ND, Hee WY, Long BM, Price GD, Hartl FU, Hayer-Hartl M
 (2019) Rubisco condensate formation by CcmM in β-carboxysome biogenesis. Nature 566: 131–135
- Whitney SM, Andrews TJ (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate
 carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc Natl Acad
 Sci U S A 98: 14738–14743
- Whitney SM, Von Caemmerer S, Hudson GS, Andrews TJ (1999) Directed mutation of the Rubisco large
 subunit of tobacco influences photorespiration and growth. Plant Physiol 121: 579–588
- Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature's
 CO₂-sequestering enzyme, Rubisco. Plant Physiol 155: 27–35
- Wickham H (2016) ggplot2: Elegant graphics for data analysis using the grammar of graphics. Springer Verlag New York
- Wilson RH, Hayer-Hartl M (2018) Complex chaperone dependence of Rubisco biogenesis. Biochemistry
 57: 3210–3216
- Wintermans JFGM, De Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and
 their phenophytins in ethanol. BBA Biophys Incl Photosynth 109: 448–453
- Wunder T, Cheng SLH, Lai SK, Li HY, Mueller-Cajar O (2018) The phase separation underlying the
 pyrenoid-based microalgal Rubisco supercharger. Nat Commun 9: 5076
- Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H,
 Smith JAC, De Paoli HC, et al (2015) A roadmap for research on crassulacean acid metabolism
 (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol
 207: 491–504