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• DEVALLE F., MONTBRIÓ E.. Synchronization in firing rate models with synaptic
kinetics. Bernstein Conference 2016. Sep 2016. Berlin, Germany.
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Abstract

A prominent feature of the dynamics of large neuronal networks are the synchrony-
driven collective oscillations generated by the interplay between synaptic coupling and
synaptic delays. This thesis investigates the emergence of delay-induced oscillations
in networks of heterogeneous spiking neurons. Building on recent theoretical advances
in exact mean field reductions for neuronal networks, this work explores the dynamics
and bifurcations of an exact firing rate model with various forms of synaptic delays.
In parallel, the results obtained using the novel firing rate model are compared with
extensive numerical simulations of large networks of spiking neurons, which confirm
the existence of numerous synchrony-based oscillatory states. Some of these states are
novel and display complex forms of partial synchronization and collective chaos. Given
the well-known limitation of traditional firing rate models to describe synchrony-based
oscillations, previous studies greatly overlooked many of the oscillatory states found
here. Therefore, this thesis provides a unique exploration of the oscillatory scenarios
found in neuronal networks due to the presence of delays, and may substantially extend
the mathematical tools available for modeling the plethora of oscillations detected in
electrical recordings of brain activity.

Keywords: mathematical neuroscience, oscillations, synaptic kinetics, time de-
lays, synchronization, neural population, firing rate, population model, spiking neurons,
quadratic integrate-and-fire, coupled oscillators, mean-field, Wilson-Cowan model.
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Introduction

The brain is a fascinating and intriguing functional structure, the most complex organ

of the human body. It drives our behavior and, at the same time, it regulates, controls

and oversees the functioning of our body. The characterization of brain anatomical and

physiological properties continually requires the joint effort of researchers from diverse

fields of science.

The pioneering experiments of Santiago Ramon y Cajal in the late XIX century first

identified the brain as a network of discrete unitary cells (neurons), that interconnect

among each other at clefts called synapses. Together with Camillo Golgi, who earlier de-

veloped the staining technique used in Cajal’s experiments, Ramon y Cajal was awarded

the Nobel prize in medicine in 1906. His discoveries established the fundamentals of the

theory known as the Neuron doctrine, which is still the base of modern neuroscience.

From a physiological standpoint, electricity was known to play a fundamental role in the

functioning of the nervous system since Galvani’s experiments on the sciatic nerve of

frogs in the late XVIII century. Galvani’s discovery of ”animal electricity” led later on

to the discovery of the action potential, and to the conduction properties of the nervous

system. Action potentials constitute the fundamental chunks of information that neurons

exchange. These spike-like events coordinate the cooperative action of myriades of neu-

rons, determining the substrate for the complex tasks that our brain needs to accomplish.
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Understanding the mechanisms of such a complex and sophisticated machine requires the

joint effort of experimental and theoretical research. Experimental evidence inspires new

theories, that in turn help designing new experimental paradigms, on which theoretical

predictions shall be tested.

The cardinal tool employed in theoretical neuroscience is mathematical modeling. Math-

ematical models have been for centuries a key element of physical sciences, providing

an invaluable tool for testing hypothesis and making predictions about the behavior of

a given physical system. An early attempt of building a neurophysiologically relevant

mathematical model is attributed to Lapicque (Lapique, 1907). In the early XX century,

Lapique built a simple phenomenological model of a neuron, now commonly known as

integrate-and-fire neuron, to describe nerve excitation. A detailed comprehension and

description of action potential generation, came in the mid XX century: in 1952, Hodgkin

and Huxley published their studies on the conduction properties of the squid giant axon,

presenting the first mathematical model accurately describing the physiological processes

leading to action potential generation (Hodgkin and Huxley, 1952). The Hodgkin-Huxley

model can still be considered the canonical model to describe single neurons dynamics.

Although with different degrees of biophysical detail, the integrate-and-fire and the

Hodgkin-Huxley model both describe single neurons dynamics.

In parallel, researchers developed a different type of descriptions, usually called firing

rate models. Firing rate models are phenomenological descriptions of the collective,

coarse-grained activity of large populations of neurons (Wilson and Cowan, 1972; Free-

man, 1975). This type of description is particularly desirable in neuroscience. It is often

hypothesized that brain function relies on population, rather than single neuron coding.

A illuminating example comes from the visual system: feature-selective nearby neurons

in the visual cortex often display similar coding properties (Hubel and Wiesel, 1963),

suggesting the population coding hypothesis. Key for this type of modeling are the

assumptions of relatively homogeneous neurons’ properties (as similar feature tuning

curves in the visual systems), and of some degree of redundancy in single neurons’

coding.

2



Firing rate models have two main great advantages: thanks to their simplicity, they allow

for mathematical analysis; additionally, they are computationally very efficient. For these

reasons, they rapidly became a standard tool to investigate both the computational princi-

ples underlying brain functions and the collective dynamics of neuronal populations.

Still, traditional firing rate models have two major limitations which limit their range of

applicability in neuroscience. First, firing rate models do not generally represent proper

mathematical reductions of the underlying network of spiking neurons but rather are

heuristic. As such there is in general no precise relationship between the parameters in

the traditional firing rate model and those in the full network of spiking neurons, and

there is no clear link between the macroscopic states of the network with the microscopic

dynamics of the constituent neurons. Second, these models are not accurate in describing

the dynamics of collective states where a significant fraction of the neurons fire spikes in

synchrony. Synchronous firing has been suggested to be the mechanism responsible for

the generation of large scale neuronal oscillations, the rhythmic patterns ubiquitous in

electrical recordings of brain activity (Buzsáki, 2006). Networks of spiking neurons may

engage in synchronous firing in several circumstances, either due to exogenous factors

(e.g. transient external inputs), or to endogenous characteristics of the circuit, such as the

presence of significant synaptic delays.

In this dissertation, we will investigate the synchrony-based oscillations that emerge in

networks of spiking neurons due to the presence of synaptic delays. We will employ a

novel firing rate model recently derived for networks of so called quadratic integrate-and-

fire (QIF) neurons (Montbrió et al., 2015). We will illustrate that the novel firing rate

model properly describes the dynamical regimes that emerge in networks of synaptically-

coupled spiking neurons, including synchrony-based oscillations.

Outline of the thesis

In this thesis, we will extensively analyze a firing rate model recently derived for networks

of QIF neurons, that we call QIF firing rate equations (QIF-FRE). The model is exact,

3



meaning that it can be rigorously mathematically derived from the underlying network of

spiking neurons. Employing the QIF-FRE thus has the unique advantage of allowing for

an extensive comparison of the macroscopic mean-field dynamics with the single neuron

properties.

Specifically, we will consider the effect that synaptic delays (in forms of fixed delays

and synaptic filters) have on the macroscopic dynamics of the QIF-FRE, and therefore

on the dynamics of the underlying network of spiking neurons. We will focus on the

deterministic, noiseless aspects of the dynamics. The results are expected to hold as long

as the system is in the so called mean-driven regime, i.e. low noise case. The central

questions addressed with this dissertation may be summarized as follows:

• How do synaptic delays shape the dynamics of large networks of spiking neurons?

Can synaptic delays produce self-sustained collective oscillations? If so,

– What is the mechanism generating these oscillations?

– Are the oscillations robust to neuronal heterogeneity?

• How does the microscopic dynamics of the neurons relate to the collective mean-

field dynamics?

• How do the exact QIF-FRE relate to traditional firing rate equations?

Specifically, Chapter 1 serves as a background for the rest of the Thesis. We first re-

view some relevant concepts on neuronal modelling, and then illustrate several examples

of network of spiking neurons where synchronous firing emerges as a consequence of

synaptic delays. Comparing these results with an analysis of the corresponding tradi-

tional rate equations, we demonstrate that generally traditional rate models fail to capture

synchronous states induced by synaptic delays. Finally, we introduce the firing rate

model employed throughout the thesis, the QIF-FRE.

In Chapter 2, we analyse the effect of first order synaptic kinetics on the QIF-FRE. We

show that the QIF-FRE, at variance with traditional rate models, correctly capture the
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synchrony-induced macroscopic oscillations that arise in networks of inhibitory neurons

with first order synaptic kinetics. We analytically determine the parameter region of

stable self-sustained oscillations, and show that the QIF-FRE also qualitatively capture

the dynamics of networks of biophysically detailed conductance-based model neurons.

Lastly, we study the limit of slow synaptic kinetics, and determine a relation between the

QIF-FRE and the traditional Wilson-Cowan-like firing rate equations.

Chapter 3 is devoted to the study the role of fixed delays on the QIF-FRE. We extensively

analyze the system dynamics, which includes synchronous, partially synchronous and

chaotic regimes, for both identical and heterogeneous populations of QIF neurons. We

identify a novel three-frequency modulated partially synchronous state, and study its

transition into chaos. We then explore the relation among the microscopic and the collec-

tive dynamics, particularly in the non-trivial partially synchronous and chaotic regimes.

Finally, we compare the dynamics of the QIF-FRE to the corresponding traditional rate

model with delays.

Chapter 4 serves as a preliminary study bridging Chapter 2 and Chapter 3. We consider

the simultaneous effect of fixed delays and synaptic kinetics on the QIF-FRE, illus-

trating by analyzing the oscillatory instabilities of the model that it is mainly the fixed

time delay that determines the system dynamics. Then, we compare the dynamics of

the QIF-FRE with that of the corresponding version of the traditional firing rate equations.

In the final chapter, Conclusions and discussion, we summarize the main contributions

of this dissertation, and illustrate some possible future directions of investigation.
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CHAPTER 1

Synchronization in networks of spiking neurons with

synaptic dynamics

This chapter serves as a background and introduction to the following chapters of this

thesis. We briefly discuss some concepts of synchronization, and models of neuronal

and synaptic dynamics. Then, we show some examples of synchronous dynamics in

networks of spiking neurons induced by synaptic delays. We then compare the network

dynamics with the corresponding (heuristic) firing rate description. Finally, we introduce

the firing rate equations that we will employ in the following chapters of the dissertation.

1.1 Synchrony and neuronal oscillations

Synchronization is a ubiquitous natural phenomenon. In Biology, examples include the

synchronous flashing of fireflies, the unison chirping of crickets, the synchronous firing

of pacemaker cells in the heart, and of circadian neurons in the suprachiasmatic nucleus

of the brain (Strogatz, 2003). Synchronization is a simple illustration of emergent collec-

tive behavior, where a congregation of elements concur to produce a collective effect.

Importantly, the emergence of this macroscopic order is a self-organization process:
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fireflies, circadian neurons, or any other oscillatory system engaged in a synchronous

rhythm, just adjust their intrinsic rhythms one with respect to the others, thanks to their

mutual interactions (Pikovsky et al., 2001).

In neuroscience, synchronization has often been related to the oscillations observed in

electrical recordings of neural activity (Buzsáki, 2006). Norbert Wiener was among

the firsts to propose a relation between brain oscillations and synchronization. Wiener

was investigating the alpha rhythm emerging in human EEG recordings, an oscillation

that was attracting increasing attention since it was observed for the first time a few

decades earlier by Hans Berger (Berger, 1929). Wiener hypothesized that this rhythm

might originate from a population of synchronizing neural oscillators (Wiener, 1961).

Even though not providing much evidence supporting the hypothesis (apart from a power

spectrum that has never been replicated), Wiener studies have certainly the merit of

raising much interest in biological oscillators (Strogatz, 1994). Besides alpha waves,

electrical recordings of brain activity reveal the presence of oscillations with a wide range

of frequencies (Buzsáki and Draguhn, 2004). These rhythms appear at different spatial

scales, from LFP recordings of few hundreds of neurons, to EEG and MEG recordings

of larger cortical areas (Wang, 2010). Brain oscillations have been implicated in several

brain functions, such as perceptual binding (Von der Malsburg and Schneider, 1986;

Gray et al., 1989; Engel and Singer, 2001), information processing and transfer (Fries,

2005; Palmigiano et al., 2017; Rohenkohl et al., 2018), sensory selection (Lakatos et al.,

2005; Schroeder and Lakatos, 2009), attention (Fries et al., 2001), and memory (Fell

et al., 2001; Axmacher et al., 2006; Fell and Axmacher, 2011).

1.1.1 Modeling Synchronization

From a mathematical standpoint, the first attempt to understand the emergence of bio-

logical rhythms in terms of mutual synchronization of populations of oscillators is due

to Wiener’s studies of alpha waves (Wiener, 1961). However Wiener’s approach, based

on Fourier integrals, was not successful, and, according to Strogatz, turned out to be a
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dead end (Strogatz, 2000). A proper mathematical formulation of the ideas introduced by

Wiener was later developed by Arthur Winfree (Winfree, 1967). Winfree assumed that,

in the weak coupling regime, an oscillator could be described only by a phase variable,

assuming the oscillations’ amplitude to remain constant. Additionally, the oscillator’s

response to perturbations (for instance induced by the interaction with other oscillators)

should depend on its phase, introducing the concept of phase response curve. Kuramoto,

with an elegant mathematical formulation, further simplified Winfree’s model, obtaining

a model where interactions depend only on the phase differences between oscillators

(Kuramoto, 1975, 1984). Thanks to its mathematical tractability, the Kuramoto model

soon became the standard tool to investigate synchronization transitions in populations

of coupled oscillators in several different setups, for a review see (Acebrón et al., 2005).

Interestingly, it predicts the qualitative structure of the power spectrum shown by Wiener

to support his hypothesis (Strogatz, 1994).

The Kuramoto model has been widely employed to investigate the emergence of neuronal

rhythms (Breakspear et al., 2010; Cabral et al., 2011; Ton et al., 2014; Villegas et al.,

2014; Petkoski et al., 2016), with recent theoretical advances (Montbrió and Pazó, 2018).

However, despite retaining some of the fundamental features, it has two important

limitations when applied to model neuronal dynamics:

• Neurons are excitable units, not self-sustained oscillators. Rhythmic firing is

elicited only by sufficiently strong incoming inputs.

• Neurons interact in an all-or-none fashion. Kuramoto-like interactions continuously

depend on the phase difference among the oscillators, while neurons interact via

pulse-like signals, action potentials.

These characteristics are considered in the more biophysically-realistic models that we

briefly discuss in the next section.
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1.2 Modeling collective neuronal dynamics

Building mathematical models of any physical or biological system requires a careful

compromise between the degree of detail and the complexity of the model. An extremely

detailed model might take into account exceptionally well all the details of the physical

system under analysis, but also rapidly become so complex to be almost impossible to

analyze. Certainly, the degree of detail we wish to include in our model also depends on

the scope of our analysis.

Modeling neuronal dynamics also requires a compromise between greater biophysical

detail and feasible analysis. If the aim is describing the collective activity of a large

neuronal population two strategies might be employed. The dynamics of each single cell

can be described (with a certain degree of detail), resulting in a quite complex and high-

dimensional model for the whole network–possibly also containing equations for the

synaptic transmission. Alternatively, the network might be described by some average,

”macroscopic”, quantity (as we shall see in the following, the firing rate) in analogy to

what is typically done e.g. in thermodynamics. As to the single neuron’s dynamics, a

plethora of alternative models have been developed, ranging from biophysically detailed

models to simplified phenomenological descriptions of integrate-and-fire type (Dayan

and Abbott, 2001). Similarly, synaptic processing can be modeled with different degrees

of details, as we will see later in this section. In the following we further discuss the

different classes of models mentioned above.

1.2.1 Spiking neuron models

The stereotypical neuronal signals are the action potentials, pulse-like events of rapid

depolarization and subsequent hyperpolarization of the membrane voltage of the cells.

The classical model of action potential generation, the Hodgkin-Huxley model, is a

four-dimensional system of differential equations that describe the subthreshold dynam-

ics of the membrane potential, together with sodium and potassium channels kinetics

(Hodgkin and Huxley, 1952). Thanks to its biophysical realism, it can faithfully account
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for experimental data on the electrical properties of excitable cells. Alternatively to

biophysical models, phenomenological models of action potential generation were devel-

oped, the so called integrate-and-fire models. Here, only the basic electrical properties

of the cell membrane are retained. The simplest (and also earliest) example of such

models was proposed by Lapique (Lapique, 1907), that introduced what is nowadays

known as leaky integrate-and-fire (LIF) neuron . The LIF neuron describes the cell with

a linear differential equation for the membrane voltage, constructed in analogy with an

RC circuit with a leakage current (Dayan and Abbott, 2001). A simple generalization of

the LIF model of the integrate-and-fire class is the quadratic integrate-and-fire neuron

(QIF) (Ermentrout and Kopell, 1986; Izhikevich, 2007) that captures the qualitative

behavior of the frequency-current curve of a larger family of more realistic models (i.e.

of Hodgkin-Huxley-type). The loss of biophysical detail of integrate-and-fire models

compared to Hodgkin-Huxley-type models is compensated by the simplified description,

facilitating more efficient numerical implementation and mathematical insights.

1.2.2 Synaptic processing

To model a neuronal network, we must additionally properly describe neuronal interac-

tions. This is particularly relevant for synchronous and oscillatory dynamics, since the

synaptic time course is known to play a fundamental role in generating oscillations– see

e.g. (Wang and Buzsáki, 1996; Brunel and Wang, 2003).

There are two main types of synaptic interactions: chemical synapses, and gap junctions

(or electrical synapses). In the following, we discuss the main characteristics of chemical

interactions, as this will be the type of interaction considered in this thesis *.

Chemical synapses filter the action potentials, transmitting them from the axon of the

presynaptic neuron to the dendrites of the postsynaptic neuron. The transmission takes

place at the synaptic cleft with a series of complex biochemical processes. The ionic

currents due to the incoming action potential in the presynaptic neuron interact with

specific proteins at the presynaptic terminal, releasing neurotransmitters in the extracellu-

*The effects of gap junction coupling on the model presented in this thesis are analyzed in (Pietras
et al., 2019).
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lar medium. The neurotransmitters bind to the chemical receptors at the postsynaptic

terminal, resulting in the opening of the ionic channels producing an influx of ions in the

postsynaptic neuron (the postsynaptic current).

Several detailed mathematical models have been developed that faithfully describe this

complex sequence of biochemical processes, see e.g. (Destexhe et al., 1998). These

models accurately describe the kinetics of the chemical reactions involved, and fit patch-

clamp experimental data extremely well. However, they are quite complex, and therefore

are often simplified in terms of phenomenological models (Roth and van Rossum, 2009).

Typically, the whole synaptic transmission process is reduced to two main stages: the

release of neurotransmitter in the synaptic cleft, and the opening and closing of post-

synaptic ion channels. The neurotransmitter release is modeled as a brief pulse of

neurotransmitter concentration that follows the presynaptic action potential (Destexhe

et al., 1998). The pulse typically is delayed, producing a brief latency in the postsynaptic

response (Markram et al., 1997; Bartos et al., 2001; Angulo et al., 1999). The kinetics of

the ion channels, or the fraction of open channels, have a rising and decaying phase. The

time course of the fraction of open channels following a presynaptic spike is commonly

taken to be a double exponential, with two time constants characterizing the opening

and closing phase of the process. Often, the two time constants are assumed to be equal,

resulting in the so called alpha synapses (Roth and van Rossum, 2009). For certain

types of synapses, the rising phase is much faster than the decaying phase, so that it is

reasonable to assume an instantaneous opening followed by an exponential decay. An

illustration of these two types of synaptic time course is shown in Fig. 1.1. The solid

blue line corresponds to the approximation of instantaneous opening of the channel

(instantaneous rise synapses), while the dashed blue line to alpha synapses. The arrival

of a presynaptic action potential (at t = 0) elicits a response after a latency (delay) D.

The general shape of the postsynaptic current following a presynaptic action potential is

then a delayed double exponential, characterized by three time scales: the latency, the

rising time, and the decaying time constants.

To investigate the synchronization properties of neuronal populations then typically we
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Figure 1.1: Sketch of the time course of the postsynaptic current elicited by a pre-synaptic action
potential. Solid blue line: instantaneous rise synapses. Dashed blue line: alpha synapses.

are faced with the study of high-dimensional networks of synaptically-coupled spiking

neurons. As discussed so far, the network constituents can embody several degrees of

biophysical detail, ranging from biophysically-detailed models (e.g. the Hodgkin-Huxley

neuron), to more idealized models (of integrate-and-fire type). Synaptic interactions can

be as detailed as describing all biochemical processes occurring at the synaptic cleft, or

just one or two phenomenological differential equations. Either way, any study aiming

at investigating collective phenomena in large neuronal networks has to deal with an

extremely high number of equations (few thousands neurons for each cubic millimeter of

brain tissue), rendering the analysis of the system extremely complex.

1.2.3 Firing rate models

Researchers alternatively formulated a different class of models, that rather than focusing

on the dynamics of single neurons, focus on the average collective activity of a local

neuronal population. This class of models describes the activity of a neuronal popula-

tion (a localized portion of brain tissue, containing a few thousands neurons) via (few)

collective variables. In the second half of the 20th century, several authors explored

the possibility of modeling the dynamics of neuronal circuits via their population firing

rate, the fraction of active neurons at a given instant in time (Beurle, 1956; Griffith,

1963; Anninos et al., 1970; Amari, 1971, 1972). The turning point in the field came

with the work of Wilson and Cowan (Wilson and Cowan, 1972, 1973), that with an

elegant mathematical formulation derived two nonlinear coupled differential equations
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for the mean activity of local excitatory and inhibitory populations. In their beautiful

1972 paper, Wilson and Cowan outline the assumptions that underlie the model equa-

tions. The properties of local neuronal pools must be homogeneous, and most of the

arguments exploited are the standard arguments of mean-field formulations in statistical

physics. A particularly relevant assumption underlying the model is that neuronal spiking

is uncorrelated, i.e. absence of spike-to-spike correlations. Neurons are assumed to

fire spikes asynchronously, and spike-correlations are neglected. Wilson Cowan-type

models usually undergoes the name of firing rate models, as they describe each neuronal

population via its (population) average firing rate. Throughout the thesis, we will also

refer to this class of models as heuristic firing rate equations (H-FRE).

In its simplest form, the H-FRE for one recurrently coupled population (excitatory or

inhibitory) is the following:

τmṘ = −R + Φ(I), (1.1)

whereR is the firing rate of the population, τm the time constant of the rate dynamics, and

I the input current. The time constant τm is related to the time coarse-graining procedure

that was originally employed to derive Eq. (1.1). It can be interpreted as the neuronal

membrane time constant, as long as fast transients in the rate dynamics are discarded

(Gerstner, 2000). The function Φ is the transfer function of the neuronal population. In

the original formulation of Wilson and Cowan the transfer function Φ determines the

fraction of active neurons given an input I at stationarity. It is of sigmoidal shape, with

an expansive nonlinearity at low rates and a saturation at high rates (Wilson and Cowan,

1972). Alternatively, the function Φ can be interpreted as the frequency-current (f-I)

curve of single cells, i.e. the neurons’ stationary firing rate response to applied inputs. In

the latter case, unless an explicit refractoriness is imposed in the neuronal model, the f-I

curve does not saturate. In subsequent analysis, unless otherwise specified, we adopt the

f-I curve*

Φ(I) =
1√

2πτm

√
I +
√
I2 + ∆2, (1.2)

*A plot of this function for several values of parameter ∆ is shown in Fig. 1.4.
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which is the transfer function of a population of QIF neurons with Lorentzian distributed

heterogeneity (Devalle et al., 2017).

Depending on the form of the synaptic current, the model Eq. (1.1) may show a rich

dynamical repertoire, including multistability between high and low activity states and

oscillations (Kilpatrick, 2015). In Comment 1.2.1 we briefly review the dynamics

of model Eq. (1.1) in its simplest setting of one recurrently coupled population with

instantaneous synaptic kinetics.

Comment 1.2.1: Analysis of H-FRE with instantaneous synaptic kinetics

A Wilson-Cowan equation for a recurrently coupled population with instantaneous

synapses can be written as

τmṘ = −R + Φ(Θ + JτmR), (1.3)

where Θ is the constant mean external input current and J the strength of recurrent

coupling. The stationary solutions of Eq. (1.3) are fixed points. Imposing Ṙ = 0, we

find the implicit equation for the fixed points:

R∗ = Φ(Θ + JτmR∗). (1.4)

Depending on parameters values, the fixed point condition may give one or multiple

solutions– see left panel of Fig. 1.2. Linearization around the fixed point gives the

characteristic equation:

λ = −1 + τmJΦ′, (1.5)

where Φ′ is the derivative of the transfer function with respect to its argument,

evaluated at the fixed point. Setting λ = 0, we find the loci of a stationary (saddle

node) bifurcation of the fixed points in parametric form:

(Θ, J)SN =
[
−π2r2 − 3∆2/(2πr)2, 2π2r + ∆2/

(
2π2r3

)]
, (1.6)
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where r = τmR. The boundaries Eq. (1.6), plotted as blue lines in the right panel of

Fig.1.2, delimit a region in the (Θ, J) plane of bistability between a low activity and

a high activity state (cyan region in the right panel of Fig. 1.2). In the same panel of

Fig.1.2 we additionally show with dashed orange lines the stationary bifurcations ob-

tained with a different (saturating) transfer function, Φ̃ (I) = (α/τm) /
(
1 + e−βI

)
.

Bistability

Stable node

Figure 1.2: Graphical solution of Eq. (1.4) and related phase diagram. Left panel: graphical
solution of Eq. (1.4) for Θ = −7 and: J = 19 (solid red line), J = 15 (dotted red line). The
black line is the transfer function Eq. 1.2 with ∆ = 1 and τm = 10 ms. As the coupling is
increased, two solutions (a saddle and a node) emerge. The dashed orange line is the transfer
function Φ̃ with α = 0.6 and β = 1.
Right panel: phase diagram of Eq. (1.3). Blue lines represent the saddle node bifurcation
Eq. (1.6) with ∆ = 1. In the cyan region, two stable fixed points coexist. In the white
region, the system has only one stable node. The symbols correspond to the parameters
chosen for the graphical solutions of the left panel. The dashed orange lines, defined
by (Θ, J)S̃N =

[
β−1 (α/ (r − α) + log (r/ (α− r))) , αr−1 (αβ − rβ)−1

]
, are the saddle

node bifurcations of Eq. (1.3) with f-I curve Φ̃ (see text). The parameters of the transfer
function Φ̃ are β = 1, α = 0.6.

The usefulness of firing rate models is twofold: on one hand, they have been proven

to be a remarkable tool to model several brain functions, as decision making (Wong

and Wang, 2006; Rabinovich et al., 2008a,b), learning and memory (Hopfield, 1984;

Durstewitz et al., 2000; Mongillo et al., 2008), motor control (Zhang, 1996), perception

(Moreno-Bote et al., 2007; Rankin et al., 2014, 2015), and visual processing (Schuster

and Wagner, 1990; Ben-Yishai et al., 1995; Rankin and Chavane, 2017). On the other

hand, they are very useful to investigate fundamental principles underlying the dynamics

of large populations of spiking neurons. Yet, firing rate models do not provide an

exact correspondence with the underlying networks of spiking neurons, but rather are
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heuristic. There is no clear correspondence among the underlying network parameters,

and the parameters of the rate model. Additionally, they are usually derived based on

statistical assumptions such that of uncorrelated spiking. Precisely these limitations

cause traditional Wilson-Cowan like firing rate models to fail to describe synchronous

neuronal activity, as we will outline in the next section.

In the next sections we present numerical simulations of networks of spiking neurons

where we consider the impact of synaptic processing. In fact, as previously mentioned,

the synaptic time course is crucial in generating synchronous spiking. Comparing the

network simulations and an analysis of the corresponding H-FRE we will illustrate that,

when some degree of synchronous spiking is present in the network, traditional rate

models of Wilson-Cowan type fail to capture the underlying networks dynamics.

1.3 Synaptic time delays favor the emergence of oscilla-

tions in populations of spiking neurons

Synaptic processing generates some fixed delay for neuronal interactions. In this section

we will show simulations of networks of spiking neurons with fixed synaptic delays,

and compare their dynamics with the corresponding traditional firing rate equations.

As model neurons, we will employ both a conductance-based Hodgkin-Huxley type

neuronal model, the Wang-Buzsáki neuron (WB) (Wang and Buzsáki, 1996), and the

quadratic integrate-and-fire (QIF) neuron (Ermentrout and Kopell, 1986; Izhikevich,

2007). The model equations of the QIF and the WB neuron, together with details on the

numerical simulations shown in this Chapter are given in Appendix A.

1.3.1 Synchronization in recurrently coupled networks of spiking

neurons with synaptic latency

It is well known that generally, time delays induce oscillations in dynamical systems

(MacDonald, 1989). An early study on the influence of time delay in coupled oscillators

is due to Schuster and Wagner (Schuster and Wagner, 1989), that showed that at variance
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with the zero delay case, two phase oscillators coupled with time delays may synchronize

with a multitude of different frequencies. Interestingly, these frequencies tend to vanish

for very large delays, a phenomenon known as frequency suppression (Niebur et al.,

1991), which holds also for networks of such oscillators.

Yeung and Strogatz first thoroughly analyzed the effect of delays on the canonical model

of synchronization in populations of coupled oscillators, the Kuramoto model. They

found bistability between synchrony (again, with multiple possible frequencies) and

incoherence, and cluster states (Yeung and Strogatz, 1999) . Multistability of synchronous

solutions is also found in ensembles of coupled rotators (Kim et al., 1997). In populations

of limit cycle oscillators, time delay can also result in amplitude death (Reddy et al.,

1999).

All these results regard networks of oscillators continuously coupled, i.e. where the

interactions depend continuously in time on the phase difference among the oscillators.

These types of model are a reasonable representation of neuronal dynamics only in the

weak coupling limit (Izhikevich, 2007).

Synaptic delays profoundly shape the dynamics of networks of pulse-coupled integrate-

and-fire oscillators. Generally, they favor the emergence of synchronization. Importantly,

this delay-induced synchrony is typically more robust for inhibitory, rather than for

excitatory coupling (Ernst et al., 1995, 1998). This holds particularly for short delays,

where only inhibition may lead to synchronous firing (Gerstner and van Hemmen, 1992,

1993; Gerstner et al., 1996). Notably, the prominent role of inhibition in synchronizing

neural firing holds not only when a fixed delay is explicitly introduced into the equations,

but also for any effective delay introduced by the synaptic coupling (Van Vreeswijk et al.,

1994).

In the following, we illustrate numerical simulations of populations of heterogeneous

WB and QIF neurons showing transitions to synchronized firing due to the delayed

coupling. Neurons are recurrently coupled all-to-all via the delayed mean firing rate of

the population (the delay is set to 3 ms). Fig. 1.3 shows the result for a population of

excitatory (left column) or inhibitory (right column) WB neurons. In the two simulations,
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the excitatory (inhibitory) coupling strength is suddenly increased at t = 100 ms. At the

beginning of the simulations, neurons fire asynchronously, with a given average firing

rate. When the coupling is sufficiently strong, the asynchronous state becomes unstable,

and the system undergoes an Hopf bifurcation giving rise to macroscopic oscillations.

These macroscopic rate oscillations are due to spike synchronization, as illustrated by

the raster plots shown in panels (c,d) of Fig. 1.3. These synchrony-based macroscopic

oscillations are fast, with frequency ∼ 100 Hz, as it is generally observed in oscillations

induced by short delays (Brunel and Wang, 2003).

The same collective oscillations also appear in a population of heterogeneous QIF

neurons. Also here, as shown in Fig. 1.4, when the recurrent coupling is sufficiently

strong (either excitatory or inhibitory), the neurons synchronize producing macroscopic

rate oscillations. Again, the network dynamics underlying the macroscopic oscillations

is synchronous (see the raster plots in panels (c,d) of Fig. 1.4).
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Figure 1.3: Networks of heterogeneous excitatory (left) and inhibitory (right) Wang-Buzsáki neu-
rons with synaptic delay display macroscopic oscillations when recurrent excitation (respectively
inhibition) is sufficiently strong. Panels (a,b): time series of the population firing rate. Panels
(c,d): raster plots showing spiking events of the population. Neurons are ordered according
to their intrinsic firing frequency. A sudden increase in coupling strength (shown in panels
(e,f) for excitation and inhibition respectively), results in synchronized firing of the population.
For details on the numerical simulations see Appendix A. Parameters: Iapp = 1.34 µA/cm2,
σ = 0.05 µA/cm2.

Importantly, in all these simulations, the large majority of the neurons of the populations

are supra-threshold when there is no coupling, i.e. they fire spikes periodically according
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Figure 1.4: Networks of heterogeneous excitatory (left) and inhibitory (right) QIF neurons with
synaptic delay display macroscopic oscillations when recurrent excitation (respectively inhibition)
is sufficiently strong. Panels (a,b): time series of the population firing rate. Panels (c,d): raster
plots showing spiking events of the population. A sudden increase in coupling strength (shown
in panels (e,f) for excitation and inhibition respectively), results in synchronized firing of the
population. For details on the numerical simulations see Appendix A. Parameters: Θ = 2.5,
∆ = 1.

to their own natural frequency. The transition to oscillations is therefore the typical

synchronization transition in a system of coupled oscillators, as the one of the Kuramoto

model with time delays (Yeung and Strogatz, 1999).

However, neurons are excitable cells, often silent for long time windows, and spikes are

triggered by external inputs. The dynamics of populations where most of the neurons

are excitable, clearly cannot be described by models of self-sustained oscillators where

rhythmic firing is implicitly assumed. The QIF and the WB neuron can readily switch

from the excitable to the periodic regime by changing the input current to the neuron.

With no inputs, we expect the network activity of a population with most of the neurons

in the excitable regime to be low. However, what happens when a common current

is injected into the network producing a burst of spikes, transiently synchronizing the

neurons? Simulations in Fig. 1.5 show that, after removal of the transient input to the

population, neurons keep firing in a synchronized manner, thanks to the strong recurrent

excitatory coupling. Therefore, these networks are typically bistable: according to

initial conditions, the population will settle in a (low activity) asynchronous state, or in

an (oscillatory) high activity state. Again, this phenomenon is general, and related to
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Figure 1.5: Networks of heterogeneous WB (left) and QIF (right) neurons in the excitable
regime synchronize due to sufficiently strong recurrent excitation. Panels (a,b): time series of
the population firing rate for WB (a) and QIF (b) neurons. Panels (c,d): raster plots showing
spiking events of the populations. A transient step current (shown in panels (e,f)) produces
synchronous spiking, which is then sustained by the strong recurrent excitation. For details on
the numerical simulations see Appendix A. WB parameters: kE = 18 mV, σ = 0.05 µA/cm2

mV, Ī = −0.1601µA/cm2. QIF parameters: J = 15, ∆ = 0.8, Θ = −2.5.

the coupling properties of the network rather than to the particular microscopic model

considered. Similar results can be indeed obtained with simulations of other types of

integrate-and-fire models, or other biophysically-detailed models.

The oscillations described in this section manifest themselves at the population level, and

we would expect a description of collective neural dynamics to capture them. In the next

section we discuss how the dynamics of traditional firing rate models is affected by time

delays.

1.3.2 Dynamics of traditional rate models with synaptic delays

The Wilson-Cowan equation for a population of recurrently coupled neurons with fixed

delays is:

τmṘ = −R + Φ (JτmR(t−D) + Θ) , (1.7)

where D is the time delay and times are rescaled by the rate time constant. Equation (1.7)

has been widely employed to investigate the emergence of delay-driven oscillations in

networks of spiking neurons (Roxin et al., 2005; Hutt and Atay, 2006; Battaglia et al.,

2007; Brunel and Hakim, 2008; Roxin and Montbrió, 2011).
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The fixed points of Eq. (1.7), as well as their stationary bifurcations, are the same as

the ones of the model without delays Eq. (1.3) (see comment 1.2.1). However the

presence of delays introduces oscillatory instabilities in the form of Hopf bifurcations.

To look for instabilities of the fixed point R = R∗, we study the linear evolution of a

small perturbation around the fixed point. Namely, we substitute in Eq. (1.7) the ansatz

R(t) = R∗ + δReλt, where δR� 1/τm, obtaining the characteristic equation:

λ = −1/τm + JΦ′e−λD, (1.8)

where Φ′ is the derivative of the transfer function evaluated at the fixed point.

The stationary bifurcations shown in Comment 1.2.1 are obtained setting λ = 0 in

Eq. (1.8). To look for the oscillatory instabilities, we set λ = iω (purely imaginary

eigenvalue). In this case, Eq. (1.8) is equivalent to the system of equations (Roxin et al.,

2005; Roxin and Montbrió, 2011):

τmω = − tan(ωD), (1.9a)

JH = [cos (ωD) Φ′]
−1
. (1.9b)

Eqs. (1.9a) has an infinite number of solutions, of which however only the first is the

relevant instability (the others are instabilities of unstable solutions). The first oscillatory

instability given by Eqs. (1.9) is the black line shown in the phase diagram illustrated

in the left panel of Fig. 1.6. For small coupling strength J , the fixed point is stable

(grey region). When recurrent inhibition is sufficiently strong, the system undergoes

an Hopf bifurcation and a self-sustained oscillation is stable–see also the numerical

simulations of the right panel of Fig. 1.6. Importantly, oscillations emerge only for

inhibitory coupling*. This is in contrast with the numerical results presented in the

*It can be proved using the transfer function Φ defined by Eq.(1.2). Eq. (1.9a) has solutions in two
ranges: π/2 ≤ ωD ≤ π and 3π/2 ≤ ωD ≤ 2π. The first range always results in a negative value of
the critical coupling JH , since the f-I curve is an increasing function. Solutions in the second range, that
might produce a critical positive coupling, always correspond to negative values of the firing rate, and are
therefore unphysical. Note that oscillations in Eq.(1.7) have been reported in the Literature exclusively for
inhibitory coupling (Roxin et al., 2005; Brunel and Hakim, 2008; Roxin and Montbrió, 2011)
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Figure 1.6: Hopf instability of the Wilson-Cowan model Eq.(1.7). Left panel:phase diagram
of the system. The black line is the Hopf bifurcation obtained from Eqs.(1.9). In the grey
region, the fixed point is stable. In the white region self-sustained oscillations are stable. The
symbols correspond to the numerical simulations shown in the right panel. Right panel: numerical
simulations of Eq.(1.7) for J = −10 (blue line) and J = −15 (red line). In both simulations,
D = 3 ms.
In both panels, we use the transfer function defined by Eq.(1.2). Other parameters: τm = 10 ms,
Θ = 1, ∆ = 0.01.

previous section on networks of spiking neurons, where oscillations emerged not only

for inhibitory, but also for excitatory coupling. A closer analysis, presented in Chapter

3, also reveals how the traditional rate model Eq. (1.1) has oscillatory instabilities only

for Θ > 0, at variance with networks of spiking neurons, where even when the majority

of neurons are excitable, oscillations due to strong recurrent excitatory connections are

possible.

Still, for inhibitory populations, the rate model Eq. (1.1) provides useful insights: first,

it predicts the emergence of oscillations for large enough inhibitory coupling strength

(Roxin et al., 2005). Secondly, it is also able to predict the range of frequencies of the

emerging oscillations: 1/4D < f < 1/2D (Brunel and Wang, 2003; Roxin et al., 2005).

It also gives a simple mechanistic interpretation of the nature of these oscillations: the

delay provides windows of low inhibition where the activity can be high, producing

in turn windows of strong shunting inhibition that suppresses the network activity.

Traditionally, these oscillations have been related to the sparsely synchronized states

arising in networks of spiking neurons with inhibition and strong noise. These states are

characterized by low irregular microscopic firing and coherent collective rhythms (Brunel

and Hakim, 1999, 2008) with a period again determined by the synaptic delay D, in the

22



range between 2D and 4D. This ”stochastic” form of synchronization is substantially

different from the states we described in the previous sections, where the firing frequency

of the neurons in the synchronized cluster is the same as the frequency of the mean field

oscillation. However, also for those highly synchronous oscillations, it can be shown

that, especially for large heterogeneity, the frequency for inhibitory coupling is in the

same range.

Still, the WC equation Eq. (1.1) with time delays does not account for any of the rhythms

sustained by excitatory coupling shown in the previous section. This discrepancy is

related to one of the main hypothesis underlying the WC model, the absence of spike

correlations. Neglecting such correlations prevents the possibility of accounting for those

highly synchronous states.

In the next section, we show how similar discrepancies occur also when an extra variable

describing synaptic dynamics is explicitly taken into account.

1.4 Networks of recurrently coupled inhibitory neurons

with synaptic kinetics generate fast oscillations

A large body of experimental and computational work indicates that networks of spiking

neurons with recurrent inhibitory interactions and synaptic dynamics readily generate

oscillations (Whittington et al., 1995; Traub et al., 1996; Wang and Rinzel, 1992, 1993;

Van Vreeswijk et al., 1994; Nischwitz and Glünder, 1995; Wang and Buzsáki, 1996;

Brunel and Wang, 2003; Olmi et al., 2014). Such inhibition-generated rhythms usually

are referred to as Interneuronal-Gamma (ING) oscillations, as their frequency is typically

in the gamma (30-100 Hz) range (Bartos et al., 2007; Buzsáki and Wang, 2012). Two pos-

sible network states (or microstates) underlie such oscillations in inhibitory populations:

a highly synchronous regime, with a large fraction of neurons firing at the population

frequency (Whittington et al., 1995; Nischwitz and Glünder, 1995; Wang and Buzsáki,

1996), or a stochastic regime, where neurons fire irregularly at low rates due to strong

noise, the sparsely synchronized state previously mentioned (Brunel and Wang, 2003).
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Here we focus on the highly synchronous regime, and we leave for the Conclusions and

discussion further considerations on the relation among the two states.

The interplay between inhibition and synaptic integration determines the frequency of

the population rhythm, with a prominent role for the decay times of the post-synaptic

potentials (Whittington et al., 1995; Traub et al., 1996). Figure 1.7 shows an illustration

of such oscillations in a network of globally coupled WB neurons (Wang and Buzsáki,

1996). Panels (a,c) show the results of a numerical simulation of the network for fast

synapses (time constant τd = 5 ms), compared to the membrane time constant of the

neuron model (τm = 10 ms). Although the neurons have different intrinsic frequencies

due to a distribution in external input currents, the raster plot reveals that fast inhibitory

coupling produces the frequency entrainment of a large fraction of the neurons in the

ensemble. This collective synchronization is reflected at the macroscopic scale as an

oscillation with the frequency of the synchronous cluster of neurons (Winfree, 1967;

Kuramoto, 1984). Indeed, panel (a) shows the time series of both the mean synaptic

activation variable S, and the mean firing rate R, which display ING oscillations. Panels

(b,d) of Fig. 1.7 show the disappearance of the synchronous state when the synaptic

kinetics is slow (τd = 50 ms).

The same behavior holds also for networks of QIF neurons, see Fig. 1.8. Again, when

synaptic kinetics is fast, the network shows sustained oscillations in the gamma range due

to partially synchronous spiking. Increasing the time constant of the synaptic dynamics

suppresses the oscillations, and desynchronizes the network (panels b,d).

In the next section, we compare the dynamics of the traditional firing rate model Eq. (1.1)

to the network simulations shown here.
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Figure 1.7: Networks of heterogeneous inhibitory neurons with fast synaptic kinetics (τd =
5 ms) display macroscopic oscillations in the gamma range (ING oscillations) due to collective
synchronization. Panels (a) and (c) show the time series of the synaptic variable S (red) and mean
firing rate R (blue), and the raster plot of a population of N = 1000 inhibitory Wang-Buzsáki
neurons (Wang and Buzsáki, 1996) with first order fast synaptic kinetics. The oscillations are
suppressed considering slow inhibitory synapses (τd = 50 ms), as shown in Panels (b) and (d).
Parameters: Ī = 0.5 µA/cm2, σ = 0.01 µA/cm2 and kI = 6 mV See Appendix A for details
on the numerical simulations.
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Figure 1.8: Networks of heterogeneous inhibitory QIF neurons with fast synaptic kinetics
(τd = 5 ms) display macroscopic oscillations in the gamma range (ING oscillations) due to
collective synchronization. Panels (a) and (c) show the time series of the synaptic variable S
(red) and mean firing rate R (blue), and the raster plot of a population of N = 1000 inhibitory
QIF neurons with first order fast synaptic kinetics. The oscillations are suppressed considering
slow inhibitory synapses (τd = 50 ms), as shown in Panels (b) and (d). Other parameters: Θ = 4,
∆ = 0.3, J = −5. See Appendix A for details on the numerical simulations.
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1.4.1 A heuristic firing rate equation with synaptic kinetics

A heuristic firing rate description of the spiking network simulated in Figs. 1.7 and 1.8

takes the form (Wilson and Cowan, 1972; Cowan, 2014)

τmṘ = −R + Φ(−JτmS + Θ), (1.10a)

τdṠ = −S +R. (1.10b)

where R represents the mean firing rate in the population, S is the synaptic activation,

J ≥ 0 the synaptic strength and the time constants τm and τd are the neuronal and

synaptic time constants respectively (Ledoux and Brunel, 2011; Keeley et al., 2017).

In contrast with the network model, the H-FRE Eqs. (1.10) cannot generate sustained

oscillations. In fact, a linear stability analysis of steady state solutions in Eqs. (1.10)

shows that the resulting eigenvalues are

λ = −α(1±
√

1− β), (1.11)

where the parameter α = (τm + τd)/(2τmτd) is always positive. Additionally, the

parameter β = [4τmτd(1 + JτmΦ′)]/(τm + τd)
2 is also positive, since the f-I curve Φ(x)

is an increasing function, and its derivative evaluated at the steady state is then Φ′ > 0.

Therefore the real part of the eigenvalue λ is always negative and hence steady states

are always stable, although damped oscillations are possible, e.g. for strong enough

coupling J . Hence, traditional firing rate equations of Wilson-Cowan type do not show

the oscillations that emerge in networks of inhibitory neurons with first order kinetics.

In summary, all the examples shown so far in this chapter show that traditional firing rate

models are not an appropriate description of networks that show some degree of spike

synchronization. This suggests that there is an additional mechanism in the network

dynamics, key for driving oscillatory behavior, that is missing in the H-FRE.

In the next section we will discuss a recently derived firing rate model that, exactly

obtained from networks of QIF neurons, can capture synchronous states, and therefore
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describe the synchrony-based oscillations shown in the previous sections.

1.5 An exact firing rate model for networks of QIF neu-

rons

Following the work of Wilson and Cowan, several approaches have been developed to

infer low dimensional descriptions of the collective activity of neuronal populations. They

can be broadly cast into two main classes of models. The first, which followed in spirit

the approach of Wilson and Cowan, typically use differential (or integro-differential)

equations to describe the evolution of some macroscopic variable related to the neuronal

populations, as the firing rate (Wilson and Cowan, 1972; Gerstner, 1995, 2000; Schwalger

et al., 2017), or the mean synaptic activity (Robinson et al., 1997). Models belonging to

this first class are also referred to as neural mass (Freeman, 1975), or neural field models

(Coombes, 2005; Bressloff, 2011). The second class of models are derived using the so

called population density method, as they derive evolution equations for the probability

density of the membrane potentials (Knight et al., 1996; Nykamp and Tranchina, 2000;

Brunel and Hakim, 1999; Knight et al., 2000; Mattia and Del Giudice, 2002; Dumont

et al., 2014). Typically, models belonging to the first class are simpler and more amenable

to mathematical analysis; however, often they fail to describe states with rapid variations

of the activity, due to the time coarse-graining applied to derive the model equations

(Gerstner, 2000; Schaffer et al., 2013). Population density models are able in contrast to

capture fast transient and synchronous states (Nykamp and Tranchina, 2000). However,

both the mathematical and the computational analysis of such models is convoluted.

In the following, we introduce a recently derived firing rate model for QIF neurons.

We review the main steps of the derivation of the model equations, closely following

(Montbrió et al., 2015). Remarkably, the model nicely connects the two classes mentioned

before, as we will see in the following.

The quadratic integrate-and-fire model is the canonical representative for Class-I neurons,

neurons that fire at arbitrarily low frequencies close to the spiking threshold. It describe
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the evolution of the voltage of the cell with a first order differential equation:

τmV̇ = V 2 + I, (1.12)

where I is an input current. Eq. (1.12) needs the resetting condition:

If V ≥ Vth then Vreset ← V, (1.13)

where crossing Vth the neuron emits a spike. In the theoretical analysis, it is useful to

impose that Vth = −Vreset →∞.

We analyze population of all-to-all coupled QIF neurons, which is then described by

τmV̇j = V 2
j + ηj + Jτms(t) + I(t) (1.14)

where j = 1, . . . , N , s is the synaptic activity, and J the coupling or synaptic strength.

The terms ηj represent the quenched heterogeneity of the networks, and determine each

neuron natural firing frequency. In absence of synaptic coupling and time varying inputs,

ηj determines whether neuron j is in the excitable (ηj < 0, the membrane potential

converges to a stable fixed point) or oscillatory (ηj > 0) regime. In the latter case, the

interspike interval of the neuron is given by ISI = πτm/
√
ηj .

The total synaptic activity can be written in general form as:

s(t) =
1

N

N∑

j=1

∑

k\tkj<t

∫ t

−∞
dt′aτd(t− t′)δ(t′ − tkj ) (1.15)

where tkj is the time of the kth spike emitted by neuron j, δ the Dirac delta function,

and aτd the synaptic kernel function. The derivation reviewed in the following holds for

general forms of the synaptic activation s(t). In the next chapters of this thesis, we will
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focus on three specific cases:

Chapter 2 τdṡ = −s+ r(t), (1.16a)

Chapter 3 s = r(t−D), (1.16b)

Chapter 4 τdṡ = −s+ r(t−D), (1.16c)

where r(t) is the population instantaneous firing rate,

r(t) = lim
τs→0

1

Nτs

N∑

j=1

∑

k\tkj<t

∫ t

t−τs
dt′δ(t′ − tkj ), (1.17)

and D the time delay. Eq. (1.16b) represents instantaneous-delayed synapses, Eq. (1.16a)

exponentially decaying synapses, and Eq. (1.16c) delayed exponential synapses. Eq. (1.16a)

and Eq. (1.16c) correspond respectively to consider an exponential and a delayed expo-

nential synaptic kernel function in Eq. (1.15), while Eq. (1.16b) a dirac delta.

1.5.1 Population density description

We consider a large population of neurons N � 1. In this limit, η’s are random variables

distributed according to a density g(η). We drop the indices j from Eq. (1.14), which

now describes the velocity of the neurons for each value of η.

The population of neurons can be described by the conditional density function ρ(V |η, t),

where ρ(V |η, t)dV dη will be the fraction of neurons with V ∈ [V, V + dV ] and η ∈

[η, η + dη]. The total (marginal) voltage density at time t will then be

ρ̄(V, t) =

∫ ∞

−∞
ρ(V |η, t)g(η)dη. (1.18)

Imposing the conservation of the total number of neurons on ρ̄ implies that the following

continuity equation must hold for each value of η:

τm∂tρ+ ∂V
[(
V 2 + η + Jτms(t) + I(t)

)
ρ
]

= 0. (1.19)
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A periodic boundary condition for the flux, consistent with the resetting condition

Eq. (1.13), is also imposed (Dumont et al., 2014):

lim
V→−∞

[
V̇ (V |η, t)ρ(V |η, t)

]
= lim

V→+∞

[
V̇ (V |η, t)ρ(V |η, t)

]
. (1.20)

Eq. (1.20) ensures that the ”outward” flux at threshold (V → +∞) equals the ”inward”

flux at the reset potential (V → −∞).

In the stationary state, the distribution of voltages is inversely proportional to the velocity,

ρ∗(V |η) ∝ (V 2 + η + Jτms) for each value of η. A natural ansatz for Eq. (1.19) is

to assume that, independently from initial conditions, the time dependent solutions of

Eq. (1.19) are Lorenztian distributions for each value of η. We therefore assume the

following form for the distribution ρ:

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2
(1.21)

where x(η, t) and y(η, t) are respectively the time dependent width and median of the

Lorentzian distribution of voltages for every value of η. Note that, imposing the ansatz

Eq.(1.21), the boundary condition Eq. (1.20) is automatically satisfied:

lim
V→−∞

(
V̇ ρ
)

= lim
V→+∞

(
V̇ ρ
)

= x(η, t)/π. (1.22)

Eq. (1.22) also identifies the firing rate for each value of η as πr(η, t) = x(η, t), therefore

relating the width of the distribution of voltages with the firing rate for a given value of η.

Then, we can obtain the total firing rate marginalizing over η*:

r(t) = π−1

∫ ∞

−∞
x(η, t)g(η)dη. (1.23)

*Please note that in this section we denote firing rate and the mean membrane potential with lower case
r and v.
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Additionally, from y(η, t), we can simply derive the median membrane potential of the

population *:

v(t) =

∫ ∞

−∞
y(η, t)g(η)dη. (1.24)

We can now substitute the ansatz Eq. (1.21) into the continuity equation Eq. (1.19). With

some algebra, we find that x and y must obey two coupled differential equations, that

can be written in compact form as:

τm∂tw(η, t) = i
[
η + Js(t)− w(η, t)2 + I(t)

]
, (1.25)

where w(η, t) ≡ x(η, t) + iy(η, t). The system described by Eq. (1.25) is still infinite

dimensional, since there is one equation for each value of η. However, choosing a

particular form for the distribution g(η), sharply reduces the dimensionality of the

system. Indeed, distributing η according to a Lorentzian distribution of median Θ and

width ∆,

g(η) =
1

π

∆

(η −Θ)2 + ∆2
, (1.26)

and extending the integrals Eqs. (1.23) and (1.24) to the complex η plane, we find that

only one value of η is relevant. More specifically, assuming η = ηr + iηi, we can perform

the integrals Eqs. (1.23) and (1.24) by closing the integration path with a half circle in

the lower half plane ηr < 0, since this guarantees that the width x(η, t) remains positive

zero if initially so. Applying residue theorem, we find that the mean firing rate and the

mean voltage only depend on w(η, t) evaluated at one of the poles of g(η),

πr(t) + iv(t) = w(Θ− i∆, t). (1.27)

Additionally, given this form of g(η), also the integral Eq. (1.18) can be performed†,

resulting in a voltage distribution ρ̄(V, t) with Lorentzian shape of half width πr and

*In the text, we will refer to this quantity as the mean membrane potential, as it can be also written as
v(t) =

∫∞
−∞ dηg(η)

[
limR→∞

∫ R

−R ρ (V |η, t)V dV
]
.

†Note that, to solve this integral and integrals Eqs. (1.23) and (1.24), ∆ must be strictly positive, so that
the poles of g(η) do not fall on the real axis. Also, to integrate Eq. (1.18), we need to impose x(η, 0) > 0,
to avoid additional singularities of ρ(V |η, t).
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center v

ρ̄(V, t) =
r(t)

[V − v(t)]2 + π2r(t)2
. (1.28)

Evaluating now Eq. (1.25) at η = Θ− i∆, we obtain two nonlinear ordinary differential

equations for the evolution of the mean firing rate and the mean membrane potential of

the populations of neurons:

τmṙ =
∆

πτm
+ 2rv, (1.29a)

τmv̇ = v2 + η̄ − (πτmr)
2 + Jτms(t). (1.29b)

Initial conditions of the membrane voltages of the populations inside the Lorentzian

manifold, clearly will follow the evolution given by Eqs.(1.29). However, it can be

proven that the Lorentzian manifold is always attracting, as far as ∆ > 0 (Montbrió

et al., 2015; Pietras and Daffertshofer, 2016). Namely, any initial condition will always

converge toward the manifold defined by Eq.(1.28), with r and v evolving according

to Eqs.(1.29). The reason for that is that the LA ansatz Eq.(1.21) is equivalent to the

Ott-Antonsen (OA) ansatz for populations of phase oscillators (Ott and Antonsen, 2008,

2009). Specifically, the original work by Ott & Antonsen applies to the Kuramoto model,

and it shows that the model admits an exact, low-dimensional description in terms of

the Kuramoto order parameter (Ott and Antonsen, 2008). The same theory holds for

large populations of globally pulse-coupled oscillators (Pazó and Montbrió, 2014), and in

particular for ensembles of theta-neurons (Luke et al., 2013; So et al., 2014; Laing, 2014,

2015; Coombes and Byrne, 2019; Roulet and Mindlin, 2016). The theta-neuron phase-

model can be transformed to a voltage-based description, the QIF model (Ermentrout and

Kopell, 1986). Similarly, the macroscopic description for networks of theta-neurons (in

terms of the Kuramoto order parameter) transforms into a more natural description for

ensembles of QIF neurons in terms of two mean-field quantities of particular relevance

in neuroscience: the mean firing rate, and the mean membrane potential (Montbrió et al.,

2015).

The two equations Eqs. (1.29), or QIF-Firing rate equations (QIF-FRE) together with
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the relations specifying the synaptic coupling s(t) (see Eqs.(1.16)) fully describe the

dynamics of the network of QIF neurons Eqs. (1.14).

1.5.2 Analysis of the QIF-FRE with instantaneous

synapses

In this section, we briefly overview the asymptotic dynamics of the QIF-FRE Eqs. (1.29)

with instantaneous synaptic kinetics. We refer the reader to (Montbrió et al., 2015) for a

more detailed analysis of the system.

In their simplest variant of infinitely fast synapses s(t) = r(t), the QIF-FRE Eqs. (1.29)

take the form:

τmṙ =
∆

πτm
+ 2rv, (1.30a)

τmv̇ = v2 + Θ− (πτmr)
2 + Jτmr(t). (1.30b)

The only attractors of Eqs. (1.30) are fixed points. Specifically, three regions with

different attractors in parameters space can be distinguished (see Fig.1.9): a region where

the only stable solution is a node (white area), a region with one stable focus (grey shad-

ing), and a region of bistability of the stable focus and the stable node (cyan region). The

blue line, delimiting the bistability region, depicts a saddle node bifurcation, which can be

obtained in parametric form: (Θ, J)SN = [−π2r2 − 3∆2/(2πr)2, 2π2r + ∆2/ (2π2r3)].

The red dotted line, defined by Θf = − [J/(2π)]2 − (π∆/J)2, separates the region with

a stable focus from the one with a stable node.

Compare the phase diagram of Fig. 1.9 with the corresponding phase diagram of the

Wilson-Cowan equation (see Fig. 1.2 of Section 1.2.1). The stationary (saddle node)

bifurcations of the two models are the same. However, while in the Wilson-Cowan

equation the fixed points are always of node-type, in the QIF-FRE a stable solution is

of focus type. This simple but fundamental difference has important implications when

synaptic delays are additionally considered, as we will see in the following chapters.
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Figure 1.9: Phase diagram of the QIF-FRE Eqs. (1.30). White region: stable node. Gray region:
stable focus. Cyan region: bistability among a stable node and a stable focus. The blue line is a
saddle node bifurcation, while the red dotted line separates the region of stable node from stable
focus.

The QIF-FRE Eqs. 1.29 have been recently analyzed in several different setups (Ratas

and Pyragas, 2016, 2017; Dumont et al., 2017; Schmidt et al., 2018; Esnaola-Acebes

et al., 2017; Laing, 2018; di Volo and Torcini, 2018). In the following chapters, we

analyze and discuss the effect of fixed synaptic delays and synaptic kinetics on the firing

rate equations Eqs. (1.29), and compare them with the traditional rate equations presented

in the previous sections of this chapter. We will show that, at variance with the H-FRE,

the QIF-FRE fully capture the dynamics of networks of spiking neurons, including the

synchronous states showed in this chapter, and more complex forms of synchrony-driven

oscillatory dynamics.
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CHAPTER 2

Firing rate equations require a spike synchronization

mechanism to correctly describe fast oscillations in

inhibitory networks

In this chapter, we investigate the dynamics of the QIF-FRE with first order synaptic

kinetics. These results are published in:

Devalle F, Roxin A, Montbrió E (2017) Firing rate equations require a spike synchrony

mechanism to correctly describe fast oscillations in inhibitory networks. PLoS Comput

Biol 13(12): e1005881.

2.1 An exact firing rate equation which captures spike

synchrony

Here we show that the mechanism responsible for the generation of the oscillations

shown in Fig. 1.3 is the interplay between the mean firing rate and membrane potential,

the dynamics of which reflect the degree of spike synchrony in the network. To do this,

we use a set of exact macroscopic equations which have been recently derived from a
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population of heterogeneous quadratic integrate-and-fire (QIF) neurons (Montbrió et al.,

2015). We refer to these equations as the QIF-FRE. The QIF-FRE with exponential

synapses have the form

τmṘ =
∆

πτm
+ 2RV, (2.1a)

τmV̇ = V 2 − (πτmR)2 − JτmS + Θ, (2.1b)

τdṠ = −S +R. (2.1c)

where ∆ is a parameter measuring the degree of heterogeneity in the network and the

other parameters are as in the H-FRE Eqs. (1.10). Eqs. (2.1) are an exact macroscopic

description of the dynamics in a large network of heterogeneous QIF neurons with

inhibitory coupling. In contrast with the traditional firing rate equations Eqs. (1.10),

they contain an explicit dependence on the subthreshold state of the network, and hence

capture not only macroscopic variations in firing rate, but also in spike synchrony.

Specifically, a transient depolarizing input which drives the voltage to positive values (the

voltage has been normalized such that positive values are suprathreshold, see Materials

and Methods) will lead to a sharp growth in the firing rate through the bilinear term in

Eq. (2.1a). Simulations in the corresponding network model reveal that this increase

is due to the synchronous spiking of a subset of neurons (Montbrió et al., 2015). This

increase in firing rate leads to a hyperpolarization of the mean voltage through the

quadratic term in R in Eq. (2.1b). This term describes the effect of the neuronal reset.

This decrease in voltage in turn drives down the mean firing rate, and the process can

repeat. Therefore the interplay between mean firing rate and mean voltage in Eqs. (2.1)

can generate oscillatory behavior; this behavior corresponds to transient bouts of spike

synchrony in the spiking network model.

It is precisely the latency inherent in this interplay which provides the effective delay,

which when coupled with synaptic kinetics, generates self-sustained fast oscillations. In

fact, in the limit of instantaneous synapses (τd → 0), Eqs. (2.1) robustly display damped

oscillations due to the spike generation and reset mechanism described in the preceding
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paragraph (Montbrió et al., 2015). Contrast this with the dynamics in Eqs.(1.10) in the

same limit: the resulting H-FRE is one dimensional and hence cannot oscillate.

On the face of things the Eqs. (2.1) appear to have an utterly distinct functional

form from the traditional Wilson-Cowan Eqs.(1.10). In particular, the f-I curve in H-

FRE traditionally exhibits an expansive nonlinearity at low rates and a linearization or

saturation at high rates, e.g. a sigmoid. There is no such function visible in the QIF-FRE,

which have only quadratic nonlinearities. However, this seeming inconsistency is simply

due to the explicit dependence of the steady-state f-I curve on the subthreshold voltage in

Eqs. (2.1). In fact, the steady-state f-I curve in the QIF-FRE is “typical” in the qualitative

sense described above. Specifically, solving for the steady state value of the firing rate in

Eqs. (2.1) yields

R∗ = Φ(−JτmR∗ + Θ), (2.2)

where

Φ(I) =
1√

2πτm

√
I +
√
I2 + ∆2. (2.3)

The f-I curve Eq. (2.3) is shown in Fig. 2.1 for several values of the parameter ∆, which

measures the degree of heterogeneity in the network. Therefore, the steady-state firing

rate in Eqs. (2.1), which corresponds exactly to that in a network of heterogeneous QIF

neurons, could easily be captured in a heuristic model such as Eqs. (1.10) by taking the

function Φ to have the form as in Eq. (2.3). On the other hand, the non-steady behavior

in Eqs. (2.1), and hence in spiking networks as well, can be quite different from that in

the heuristic Eqs. (1.10).

2.1.1 Fast oscillations in the QIF-FRE

We have seen that decreasing the time constant of synaptic decay τd in a network of

inhibitory spiking neurons leads to sustained fast oscillations, while such a transition to

oscillations is not found in the heuristic rate equations, in which the synaptic dynamics

are taken into account Eqs. (1.10). The exact QIF-FRE, on the other hand, do generate

oscillations in this regime. Figure 2.2 shows a comparison of the firing rate R and
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Figure 2.1: The f-I curve Φ(I), Eq. (2.3), for several values of the heterogeneity parameter ∆.
The membrane time constant is τm = 10ms.

synaptic variable S from simulations of the QIF-FRE Eqs.(2.1), with that of the H-FRE

Eqs. (1.10), for two different values of the synaptic time constants. Additionally, we

also performed simulations of a network of N = 5× 104 QIF neurons. The mean firing

rate of the network is shown in red, and perfectly agrees with the firing rate of the low

dimensional QIF-FRE (solid black lines). The function Φ in Eqs. (1.10) is chosen to be

that from Eq. (2.3), which is why the firing rate from both models converges to the same

steady state value when oscillations are not present (panels (b,d) for τd = 50 ms). We

will study the transition to fast oscillations in Eqs.(2.1) in greater details in the following

sections.

2.2 Linear stability analysis of the QIF-FRE

We can investigate the emergence of sustained oscillations in Eqs. (2.1) by considering

small amplitude perturbations of the steady-state solution. If we take R = R∗ + δReλt,

V = V∗ + δV eλt and S = S∗ + δSeλt, where δR, δV , δS � 1, then the sign of the real

part of the eigenvalue λ determines whether the perturbation grows or not. Plugging

this ansatz into Eqs. (2.1) yields three coupled linear equations which are solvable if the
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Figure 2.2: Heuristic FRE Eqs. (1.10) do not display inhibition-based fast oscillations. In
contrast, networks of QIF neurons (red) and their corresponding QIF-FRE Eqs. (2.1) (solid black)
do show ING oscillations for fast synaptic kinetics (τd = 5 ms). These oscillations are suppressed
for slow synaptic kinetics (τd = 50 ms), as in the Wang-Buzsáki model shown in Fig. 1.3. Panels
(a,b) show the times series of the Firing Rate variable R of the FRE models, as well as the mean
firing rate of a population of N = 5× 104 QIF neurons (red). Panels (c,d) show the time series
of the synaptic S variables for the H-FRE (dashed line) and QIF-FRE (solid line). Parameters:
τm = 10 ms, J = 21, Θ = 4, ∆ = 0.3. Initial values: R(0) = S(0) = 5 Hz, V (0) = 0.

following characteristic equation also has a solution

− 2JτmR∗ = (1 + τdλ)

[
(2πτmR∗)

2 +

(
τmλ+

∆

πτmR∗

)2
]
. (2.4)

The left hand side of Eq. (2.4) is always negative and, for τd = 0, this implies that the

solutions λ are necessarily complex. Hence, for instantaneous synapses, the fixed point

of the QIF-FRE is always of focus type, reflecting transient episodes of spike synchrony

in the neuronal ensemble (Montbrió et al., 2015). In contrast, setting τd = 0 in the

H-FRE, the system becomes first order and oscillations are not possible. This is the

critical difference between the two firing rate models. In fact, and in contrast with the

eigenvalues Eq. (1.11) corresponding to the growth rate of small perturbations in the

H-FRE, here oscillatory instabilities may occur for nonvanishing values of τd. Figure 2.3

shows the Hopf boundaries obtained from Eq. (2.4), as a function of the normalized

synaptic strength j = J/
√

Θ and the ratio of the synaptic and neuronal time constants

τ =
√

Θτd/τm, and for different values of the ratio δ = ∆/Θ —see Materials and
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Methods, Eqs.(2.16-2.18). The shaded regions correspond to parameter values where the

QIF-FRE display oscillatory solutions.

2.2.1 Identical neurons

In the simplest case of identical neurons ∆ = 0 we find the boundaries of oscillatory

instabilities explicitly. Indeed, substituting λ = ν + iω in Eq. (2.4) we find that, near

criticality (|ν| � 1), the real part of the eigenvalue is

ν ≈ Jτ
R∗

1 + (2πτdR∗)2
. (2.5)

Thus, the fixed point (2.2) is unstable for Jτ > 0, and changes its stability for either

J = 0, or τ = 0. In particular, given a non-zero synaptic time constant there is an

oscillatory instability as the sign of the synaptic coupling J changes from positive to

negative. Therefore oscillations occur only for inhibitory coupling (Van Vreeswijk et al.,

1994; Ermentrout, 1994; Hansel et al., 1995). The frequency along this Hopf bifurcation

line is determined entirely by the intrinsic firing rate of individual cells ωc = 2πR∗.

On the other hand, in the limit of fast synaptic kinetics, i.e. τd = 0 in Eq. (2.4), we

find another Hopf bifurcation with ωc = 1
τm

√
2τmR∗(J + 2π2τmR∗). This reflects the

fact that oscillations cannot be induced if the synaptic interactions are instantaneous. The

left panel of Figure 2.3 shows the phase diagram with the Hopf boundaries depicted in

Red, reflecting that oscillations are found for all values of inhibitory coupling and for

non-instantaneous synaptic kinetics.

2.2.2 Heterogeneous neurons

Once heterogeneity is added to the network the region of sustained oscillatory behavior

shrinks, see Fig.2.3, center and right. The red closed curves correspond to the Hopf

bifurcations, which have been obtained in parametric form from the characteristic equa-

tion (2.4), see Materials and Methods. Note that for small levels of δ, oscillations are

present in a closed region of the phase diagram, and disappear for large enough values of
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Figure 2.3: The ratio of the width to the center of the distribution of currents Eq. (1.26),
δ = ∆/Θ, determines the presence of fast oscillations in the QIF-FRE. Oscillations disappear
above the critical value given by Eq. (2.6). The panels show the Hopf boundaries of QIF-FRE
with first-order synapses, for different values of δ, obtained solving the characteristic Eq. (2.4)
with Re(λ) = 0, see Materials and Methods. Shaded regions are regions of oscillations. Symbols
in the right panel correspond to the parameters used in Fig 2.2.

τ (the synaptic time constant relative to the neuronal time constant). Further increases in

δ gradually reduce the region of oscillations until it fully disappears at the critical value

δc =

(
∆

Θ

)

c

=
1

5

√
5− 2

√
5 = 0.1453 . . . , (2.6)

which has been obtained analytically from the characteristic Eq. (2.4), see Materials and

Methods. This result is consistent with numerical studies investigating oscillations in

heterogeneous inhibitory networks which indicate that gamma oscillations are fragile

against the presence of quenched heterogeneity (Wang and Buzsáki, 1996; White et al.,

1998; Tiesinga and José, 2000).

In the following, we compare the phase diagrams of Fig. 2.3 with numerical results

using heterogeneous ensembles of Wang-Buzsáki neurons with first order synapses.

Instead of using the population mean firing rate or mean synaptic activation, in Fig. 2.4

we computed the amplitude of the population mean membrane potential. This variable

is less affected by finite-size fluctuations and hence the regions of oscillations are more

easily distinguishable. The results are summarized in Fig. 2.4 for different values of δ and

have been obtained by systematically increasing the coupling strength k for fixed values

of τd. The resulting phase diagrams qualitatively agree with those shown in Fig. 2.3.

As predicted by the QIF-FRE, oscillations are found in a closed region in the (τd, k)

parameter space, and disappear for large enough values of δ. Here, the critical value of
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Figure 2.4: Amplitude of the oscillations of the mean membrane potential for a population of
N = 1000 WB neurons. From left to right: δ = σ/Ī = 0, 0.05 and 0.06. Central and Right
panels have σ = 0.01 µA/cm2. See Materials and Methods for details.

δ = σ/Ī is about 6%, smaller than the critical value given by Eq. (2.6). This is due to

the steep f-I curve of the WB model, which implies a larger dispersion in the firing rates

of the neurons even for small heterogeneities in the input currents.

Additionally, for small τd (fast synaptic kinetics) and strong coupling k, we observed

small regions where the oscillations coexist with the asynchronous state —an example

of that is shown in Fig. 2.5. Numerical simulations indicate that this bistability is not

present in the QIF-FRE. For strong coupling, and coexisting with the asynchronous state,

we also observed various clustering states, already reported in the original paper of Wang

& Buzsáki (Wang and Buzsáki, 1996). Clustering in inhibitory networks has also been

observed in populations of conductance-based neurons with spike adaptation (Kilpatrick

and Ermentrout, 2011) or time delays (Ernst et al., 1998). The fact that such states do not

emerge in the model Eqs. (2.10) may be due to the purely sinusoidal shape of the phase

resetting curve of the QIF model (Okuda, 1993; Hansel et al., 1993; Kori and Kuramoto,

2001; Kori, 2003; Politi and Rosenblum, 2015; Clusella et al., 2016).

2.3 Firing Rate Equations in the limit of slow synapses

We have seen that the oscillations which emerge in inhibitory networks for sufficiently

fast synaptic kinetics are correctly described by the firing rate equations Eqs. (2.1), but not

by the heuristic Eqs. (1.10). The reason for this is that the oscillations crucially depend

on the interaction between the population firing rate and the subthreshold membrane
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Figure 2.5: Coexistence of the asynchronous and synchronous state in networks of WB neurons.
Mean membrane potential traces for two different initial conditions: fully synchronized (blue)
and asynchronous (orange). A transient is discarded. Parameters: τd = 15 ms, k = 30 mV,
σ = 0.01 µA/cm2, δ = 0.02.

potential during spike initiation and reset; this interaction manifests itself at the network

level through spike synchrony. Therefore, if one could suppress the spike synchrony

mechanism, and hence the dependence on the subthreshold membrane potential, in

Eqs. (2.1), the resulting equations ought to bear resemblance to Eqs. (1.10). In fact, as

we saw in Fig. 2.2, the two firing rate models become more similar when the synaptic

kinetics become slower.

Next we show that the two models become identical, formally, in the limit of slow

synaptic kinetics. To show this, we assume the synaptic time constant is slow, namely

τd = τ̄d/ε where 0 < ε� 1, and rescale time as t̄ = εt. In this limit we are tracking the

slow synaptic dynamics while the neuronal dynamics are stationary to leading order, i.e.

R∗ = Φ(−JτmS + Θ). (2.7)

Therefore, the dynamics reduce to the first order equation

τdṠ = −S + Φ(−JτmS + Θ). (2.8)

Notably, this shows that the QIF-FRE Eqs. (2.1), and the H-FRE (1.10), do actually

have the same dynamics in the limit of slow synapses. In other words, Eq. (2.8) is
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Figure 2.6: The reduction of the QIF-FRE to Eq.(2.8) breaks down when neurons receive time-
varying inputs. Panels (a-c): S-variable time series for QIF-FRE (solid Black), H-FRE (dashed
Black) and Eq. (2.8) (Blue), for decreasing values of the period TΘ of the external periodic
forcing Θ(t) = 4 + [1 + sin(2πt/Tθ)]

3 —shown in panels (g-i). In all cases, the synaptic time
constant is slow τd = 100 ms, compared to the membrane time constant τm = 10 ms. Panels
(d-f): R-variable time series. In the case of model Eq. (2.8), the firing rate has been evaluated
using Eq.(2.7). Other parameters are J = 21, ∆ = 0.3.

formally equivalent to the Wilson-Cowan equations for a single inhibitory population,

and this establishes a mathematical link between the QIF-FRE and Heuristic firing rate

descriptions. Additionally, considering slow second order synaptic kinetics (not shown),

allows one to reduce the QIF-FRE with either alpha or double exponential synapses to

a second-order system that formally corresponds to the so-called neural mass models

largely used for modeling EEG data, see e.g. (Freeman, 1975; Jansen and Rit, 1995;

Robinson et al., 1997; Coombes et al., 2014; Ashwin et al., 2016).

2.3.1 External inputs and breakdown of the slow-synaptic limit Eq. (2.8)

It is important to note that, in the derivation of Eq. (2.8) we considered external inputs

Θ to be constant. Then, if synapses are slow, the neuronal variables (R in the case of

Eqs. (1.10) andR and V in the case of Eqs. (2.1)) decay rapidly to their fixed point values.

However even in the limit of slow synapses, such reduction can break down if external

inputs are time-varying Θ = Θ(t), with a time-scale which itself is not sufficiently slow.

To demonstrate this, in Fig. 2.6, we compared the dynamics of the QIF-FRE and
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H-FRE with the approximation Eq. (2.8), for periodic stimuli of various periods —

panels (g-i)—, and always considering slow synapses, τd = 100 ms. As expected, the

models show good agreement for very slow external inputs —see panels (a,d)—, but

this discrepancy is strongly magnified for fast external inputs Specifically, for fast inputs

—see panels (c,f)—, the dynamics of the S and R variables of the QIF-FRE are clearly

different form those of the other models. This illustrates that even in the limit of slow

synapses, the response of spiking networks to arbitrary time-varying inputs will always

generate some degree of spike synchrony.

2.4 Discussion

Firing rate models, describing the average activity of large neuronal ensembles are

broadly used in computational neuroscience. However, these models fail to describe

inhibition-based rhythms, typically observed in networks of inhibitory neurons with

synaptic kinetics (Wang and Buzsáki, 1996; Whittington et al., 1995; White et al., 1998;

Whittington et al., 2000; Tiesinga and José, 2000; Brunel and Hansel, 2006; Brunel

and Hakim, 2008; Bartos et al., 2007; Wang, 2010). To overcome this limitation, some

authors heuristically included explicit delays in traditional FRE, and found qualitative

agreement with the oscillatory dynamics observed in simulations of spiking neurons with

both synaptic kinetics and fixed time delays (Roxin et al., 2005; Roxin and Montbrió,

2011; Brunel and Hakim, 2008; Keeley et al., 2017). Nonetheless it remains unclear

why traditional H-FRE with first order synaptic kinetics do not generate inhibition-based

oscillations.

Here we have investigated a novel class of FRE which can be rigorously derived

from populations of spiking (QIF) neurons (Montbrió et al., 2015). Networks of globally

coupled QIF neurons with fast inhibitory synapses readily generate fast self-sustained

oscillations. The corresponding exact FRE, which we call the QIF-FRE, therefore also

generates oscillations. The benefit of having a simple macroscopic description for the net-

work dynamics is its amenability to analysis. In particular, the nonlinearities in Eqs.(2.1),

which arise due to the spike initiation and reset mechanism in the QIF model, conspire
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to generate damped oscillations which reflect transient spike synchrony in the network.

This oscillatory mode can be driven by sufficiently fast recurrent inhibitory synaptic

activation, leading to sustained oscillations. This suggests that any mean-field description

of network activity which neglects subthreshold integration will not properly capture

spike-synchrony-dependent dynamical behaviors, including fast inhibitory oscillations.

The QIF-FRE have also allowed us to generate a phase diagram for oscillatory

behavior in a network of QIF neurons with ease via a standard linear stability analysis,

see Fig.2.3. This phase diagram agrees qualitatively with that of an equivalent network

of Wang-Buzsáki neurons, suggesting that the QIF-FRE not only provide an exact

description of QIF networks, but also a qualitatively accurate description of macroscopic

behaviors in networks of Class I neurons in general. In particular, the QIF-FRE capture

the fragility of oscillations to quenched variability in the network, a feature that seems to

be particularly pronounced for Class 1 neuronal models compared to neural models with

so-called Class 2 excitability (Tikidji-Hamburyan et al., 2015).

Finally we have shown that the QIF-FRE and the heuristic H-FRE are formally

equivalent in the limit of slow synapses. In this limit the neuronal dynamics is slaved

to the synaptic activation and well-described by Eq. (2.8), as long as external inputs are

stationary. In fact, in the absence of quenched heterogeneity (∆ = 0), the approximation

for slow synapses Eq. (2.8) is also fully equivalent to the reduction for slow synapses in

networks of Class 1 neurons derived by Ermentrout in (Ermentrout, 1994). This further

indicates that the QIF-FRE are likely valid for networks of Class 1 neurons in general.

However, we also show that in the more biologically plausible scenario of time-varying

external drive some degree of neuronal synchronization is generically observed, as in

Fig. (2.6), and the slow-synapse reduction Eq. (2.8) is not valid.

The results presented here are obtained under two important assumptions that need

to be taken into account when comparing our work to the existing literature on fast

oscillations in inhibitory networks. (i) A derivation of an exact firing rate model for a

spiking neuron network is only possible for ensembles of QIF neurons, which are the

canonical model for Class 1 excitability (Ermentrout, 1994; Izhikevich, 2007). Although
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many relevant computational studies on fast inhibitory oscillations also consider Class

1 neurons (Wang and Buzsáki, 1996; White et al., 1998; Brunel and Hakim, 1999;

Brunel and Wang, 2003; Tiesinga and José, 2000; Hansel and Mato, 2003; Keeley

et al., 2017), experimental evidence indicates that fast spiking interneurons are highly

heterogeneous in their minimal firing rates in response to steady currents, and that a

significant fraction of them are Class 2 (Golomb et al., 2007; Tateno et al., 2004; Tateno

and Robinson, 2007; Mancilla et al., 2007) —but see also (La Camera et al., 2006). (ii)

Our derivation of the QIF-FRE is valid for networks of globally coupled QIF neurons,

with Lorentzian-distributed currents. In this system inhibition-based oscillations are only

possible when the majority of the neurons are self-sustained oscillators, i.e. for Θ > 0

in Eq. (1.26), and are due to the frequency locking of a fraction of the oscillators in the

population (Winfree, 1967; Kuramoto, 1984) —as it can be seen in the raster plot of

Fig. 1.3(c). In this state, the frequency of the cluster of synchronized oscillators coincides

with the frequency of the mean field. The value of the frequency itself is determined

through an interplay between single-cell resonance and network effects. Specifically,

the synchronized neurons have intrinsic spiking frequencies near that of the mean-field

oscillation and hence are driven resonantly. This collective synchronization differs from

the so-called sparse synchronization observed in inhibitory networks of identical Class 1

neurons under the influence of noise (Brunel and Hakim, 1999; Brunel and Wang, 2003;

Tiesinga and José, 2000; Brunel and Hakim, 2008). In the sparsely synchronized state

neurons fire stochastically at very low rates, while the population firing rate displays the

fast oscillations as the ones reported here.

Oscillatory phenomena arising from single-cell resonances, and which reflect spike

synchrony at the population level, are ubiquitous in networks of spiking neurons. Mean-

field theory for noise-driven networks leading to a Fokker-Planck formalism, allows for a

linear analysis of the response of the network to weak stimuli when the network is in an

asynchronous state (Ostojic and Brunel, 2011; Ledoux and Brunel, 2011). Resonances

can appear in the linear response when firing rates are sufficiently high or noise strength

sufficiently low. Recent work has sought to extend H-FRE in this regime by extracting
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the complex eigenvalue corresponding to the resonance and using it to construct the linear

operator of a complex-valued differential equation, the real part of which is the firing

rate (Schaffer et al., 2013). Other work has developed an expression for the response

of spiking networks to external drive, which often generates resonance-related damped

oscillations, through an eigenfunction expansion of the Fokker-Planck equation (de

Monte and d’Ovidio, 2002). Our approach is similar in spirit to such studies in that

we also work with a low dimensional description of the network response. In contrast

to previous work our equations are an exact description of the macroscopic behavior,

although they are only valid for networks of heterogeneous QIF neurons. Nonetheless,

the QIF-FRE are simple enough to allow for an intuitive understanding of the origin of

fast oscillations in inhibitory networks, and in particular, of why these oscillations are

not properly captured by H-FRE.

2.5 Materials and Methods

2.5.1 Populations of inhibitory Quadratic Integrate and Fire neu-

rons

We model fast-spiking interneurons, the dynamics of which are well-described by the

Hodgkin-Huxley equations with only standard spiking currents. Many models of in-

hibitory neurons are Class 1 excitable (Rinzel and Ermentrout, 1989), including for

example the Wang-Buszáki (WB) (Wang and Buzsáki, 1996), and the Morris-Lecar

models (Morris and Lecar, 1981). Class 1 models are characterized by the presence

of a saddle-node bifurcation on an invariant circle at the transition from quiescence to

spiking. One consequence of this bifurcation structure is the fact the spiking frequency

can be arbitrarily low near threshold. Additionally, near threshold the spiking dynamics

are dominated by the time spent in the vicinity of the saddle-node itself, allowing for

a formal reduction in dimensionality from the full neuron model to a reduced normal

form equation for a saddle-node bifurcation (Ermentrout, 1994; Izhikevich, 2007; Er-

mentrout and Terman, 2010). This normal form, which is valid for any Class 1 model
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near threshold, is known as the quadratic integrate-and-fire model (QIF). Using a change

of variables, the QIF model can be transformed to a phase model, called Theta-Neuron

model (Ermentrout and Kopell, 1986), which has an strictly positive Phase Resetting

Curve (PRC). Neuron models with strictly positive PRC are called Type 1 neurons,

indicating that perturbations always produce an advance (and not a delay) of their phase.

In general, Class 1 neurons have a Type 1 PRC (Ermentrout, 1994), but see (Achuthan

et al., 2011; Ermentrout et al., 2012).

In a network of QIF neurons, the neuronal membrane potentials are {Ṽi}i=1,...,N ,

which obey the following ordinary differential equations (Ermentrout and Kopell, 1986;

Latham et al., 2000; Hansel and Mato, 2003):

C
dṼi
dt

= gL
(Ṽi − Vt)(Ṽi − Vr)

(Vt − Vr)
+ I0,i (2.9)

where C is the cell capacitance, gL is the leak conductance and I0,i are external currents.

Additionally, Vr and Vt represent the resting potential and threshold of the neuron,

respectively. Using the change of variables Ṽ ′i = Ṽi − (Vt + Vr)/2, and then rescaling

the shifted voltages as Vi = Ṽ ′i /(Vt − Vr), the QIF model (2.9) reduces to

τmV̇i = V 2
i + Ii (2.10)

where τm = C/gL is the membrane time constant, Ii = I0,i/(gL(Vt− Vr))− 1/4 and the

overdot represents derivation with respect to time t. Note that in the model (2.10) the

voltage variables Vi and the inputs Ii do not have dimensions. Thereafter we work with

QIF model its simplest form Eq. (2.10). We assume that the inputs are

Ii = ηi − JτmS, (2.11)

where J is the inhibitory synaptic strength, and S is the synaptic gating variable. Finally,

the currents ηi are constants taken from some prescribed distribution that here we consider
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it is a Lorentzian of half-width ∆, centered at Θ

g(η) =
1

π

∆

(η −Θ)2 + ∆2
. (2.12)

In numerical simulations the currents were selected deterministically to represent the

Lorentzian distribution as: ηi = Θ+∆ tan(π/2(2i−N−1)/(N+1)), for i = 1, . . . , N .

In the absence of synaptic input, the QIF model Eqs.(2.10,2.11) exhibits two possible

dynamical regimes, depending on the sign of ηi. If ηi < 0, the neuron is excitable,

and an initial condition Vi(0) <
√−ηi, asymptotically approaches the resting potential

−√−ηi. For initial conditions above the excitability threshold, Vi(0) >
√−ηi, the

membrane potential grows without bound. In this case, once the neuron reaches a certain

threshold value Vθ � 1, it is reset to a new value −Vθ after a refractory period 2τm/Vθ

(in numerical simulations, we choose Vθ = 100). On the other hand, if ηj > 0, the neuron

behaves as an oscillator and, if Vθ →∞, it fires regularly with a period T = πτm/
√
ηi.

The instantaneous population mean firing rate is

R = lim
τs→0

1

N

1

τs

N∑

j=1

∑

k

∫ t

t−τs
dt′δ(t′ − tkj ), (2.13)

where tkj is the time of the kth spike of jth neuron, and δ(t) is the Dirac delta function.

Finally, the dynamics of the synaptic variable obeys the first order ordinary differential

equation

τdṠ = −S +R. (2.14)

For the numerical implementation of Eqs. (2.13,2.14), we set τs = 10−2τm. To obtain a

smoother time series, the firing rate plotted in Fig. 2.2 was computed according to Eq.

(2.13) with τs = 3 · 10−2τm.

Fixed points of the QIF-FRE Eqs. 2.1

The fixed points of the QIF-FRE (2.1) are obtained imposing Ṙ = V̇ = Ṡ = 0.

Substituting this into Eqs. (2.1), we obtain the fixed point equation V ∗ = −∆/(2πτmR
∗),
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the firing rate given by Eq. (2.2) and S∗ = R∗. Note that for homogeneous populations,

∆ = 0, the f-I curve Eq. (2.3) reduces to

Φ(I) =
1

π

√
|I|+,

which displays a clear threshold at I = 0 (Here, |I|+ = I if I ≥ 0, and vanishes

for I < 0.) This function coincides with the squashing function found by Ermentrout

for homogeneous networks of Class 1 neurons (Ermentrout, 1994). As expected, for

heterogeneous networks, the well-defined threshold of Φ(I) for ∆ = 0 is lost and the

transfer function becomes increasingly smoother.

2.5.2 Nondimensionalized QIF-FRE

The QIF-FRE (2.1) have five parameters. It is possible to non-dimensionalize the

equations so that the system can be written solely in terms of 3 parameters. Generally,

we adopt the following notation: we use capital letters to refer to the original variables

and parameters of the QIF-FRE, and lower case letters for non-dimensional quantities. A

possible non-dimensionalization, valid for Θ > 0, is

ṙ = δ/π + 2rv, (2.15a)

v̇ = v2 − π2r2 − js+ 1, (2.15b)

τ ṡ = −s+ r, (2.15c)

where the overdot here means differentiation with respect to the non-dimensional time

t̃ =

√
Θ

τm
t.

The other variables are defined as

r =
τm√

Θ
R, v =

V√
Θ
, s =

τm√
Θ
S.
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On the other hand, the new coupling parameter is defined as

j =
J√
Θ
. (2.16)

and the parameter

δ =
∆

Θ
, (2.17)

describes the effect of the Lorentzian heterogeneity (1.26) into the collective dynamics

of the FRE (1.29). Though the Lorentzian distribution does not have finite moments, for

the sake of comparison of our results with those of studies investigating the dynamics of

heterogeneous networks of inhibitory neurons, e.g.(Wang and Buzsáki, 1996; White et al.,

1998), the quantity δ can be compared to the coefficient of variation, which measures the

ratio of the standard deviation to the mean of a probability density function. Finally, the

non-dimensional time

τ =

√
Θ

τm
τd, (2.18)

measures the ratio of the synaptic time constant to the most-likely period of the neurons

(times π),

T̄ = π
τm√

Θ
.

In numerical simulations we will use the original QIF-FRE (2.1), with Θ = 4, and

τm = 10ms. Thus T̄ = 10π/3 ≈ 15.71ms, so that the most likely value of the neurons’

intrinsic frequency is f̄ ≈ 63.66 Hz. However, our results are expressed in a more

compact form in terms of the quantities j, δ, τ , and we will use them in some of our

calculations and figures.

2.5.3 Parametric formula for the Hopf boundaries

To investigate the existence of oscillatory instabilities we use Eq. (2.4) written in terms

of the non-dimensional variables and parameters defined previously, which is

− 2jr∗ = (1 + λ̃τ)

[
(2πr∗)

2 +

(
λ̃+

δ

πr∗

)2
]
. (2.19)
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Imposing the condition of marginal stability λ̃ = iω̃ in Eq. (2.19) gives the system of

equations

0 = 2jr∗ + 4π2r2
∗ + 4v2

∗ − (1− 4v∗τ)ω̃2 (2.20a)

0 = ω̃(4v∗ − 4π2r2
∗τ − 4v2

∗τ + τ ω̃2) (2.20b)

where the fixed points are obtained from Eq. (2.2) solving

0 = v2
∗ − π2r2

∗ − jr∗ + 1, (2.21)

with

v∗ = − δ

2πr∗

Eq. (2.20b) gives the critical frequency

ω̃ =
2

τ

√
(πτr∗)2 + τv∗(τv∗ − 1).

The Hopf boundaries can be plotted in parametric form solving Eq. (2.21) for j, and

substituting j and ω̃ into Eq. (2.20a). Then solving Eq. (2.20a) for τ gives the Hopf

bifurcation boundaries

τ±(r∗) =
π2r2

∗ − 1 + 7v2
∗ ±

√
(π2r2

∗ − 1)2 − (14 + 50π2r2
∗)v

2
∗ − 15v4

∗
16v∗(π2r2

∗ + v2
∗)

. (2.22)

Using the parametric formula

(
j(r∗), τ

±(r∗)
)±

=
(
v2
∗/r∗ + 1/r∗ − π2r∗, τ

±(r∗)
)
.

we can be plot the Hopf boundaries for particular values of the parameter δ, as r∗ is

changed. Figure 2.3 shows these curves in red, for δ = 0.035 and δ = 0.075. They define

a closed region in parameter space (shaded region) where oscillations are observed.
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2.5.3.1 Calculation of the critical value δc, Eq. (2.6)

The functions τ± meet at two points, when the argument of the square root in Eq. (2.22)

is zero. This gives four different roots for δ, and only one of them is positive and real

δ∗(r∗) =
2πr∗√

15

√
8
√

1 + 5π2r2
∗ + 10π4r4

∗ − 7− 25π2r2
∗.

This function has two positive zeros, one at r∗min = 0, and one at r∗max = 1/π,

corresponding, respectively, to the minimal (j →∞) and maximal (j = 0) values of the

firing rate for identical neurons (δ = 0). Between these two points the function attains a

maximum, where r∗min = r∗max = r∗c, with

r∗c =
1√

2
√

5π
= 0.1505 . . .

The function δ∗(r∗) evaluated at its local maximum r∗ = r∗c gives Eq. (2.6).

2.5.4 Populations of Wang-Buzsáki neurons

We perform numerical simulations using the the Wang-Buzsáki (WB) neuron (Wang and

Buzsáki, 1996), and compare them with our results using networks of QIF neurons. The

onset of oscillatory behavior in the WB model is via a saddle node on the invariant circle

(SNIC) bifurcation. Therefore, the populations of WB neurons near this bifurcation are

expected to be well described by the theta-neuron/QIF model, the canonical model for

Class 1 neural excitability (Ermentrout and Kopell, 1986; Ermentrout, 1994).

We numerically simulated a network of N all-to-all coupled WB neurons. The evolution

equations of the WB neuron are given in Appendix A.

In Fig. 2.4, we systematically varied the coupling strength and the synaptic time decay

constant to determine the range of parameters displaying oscillatory behavior. For

each fixed value of τd we varied the coupling strength k; we performed two series of

simulations, for increasing and decreasing coupling strength. In Fig. 2.4 we only show

results for increasing k.
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All quantities were measured after a transient of 1000 ms. To obtain the amplitude of

the oscillations of the mean membrane potential, we computed the maximal amplitude

V̄max − V̄min over time windows of 200 ms for 1000 ms, and then averaged over the five

windows.
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CHAPTER 3

Dynamics of a large systems of spiking neurons with

synaptic delays

In this chapter, we analyse the QIF-FRE with fixed delays. The results are published in :

Devalle, F., Montbrió, E., Pazó, D. (2018). Dynamics of a large system of spiking neurons

with synaptic delay. Physical Review E, 98(4), 042214.

3.1 Model Description

We consider a network of N � 1 all-to-all coupled QIF neurons. The membrane

potential of the neurons is governed by the following quadratic differential equation

(Izhikevich, 2007)

τ V̇j = V 2
j + Ij j = 1, . . . , N (3.1)

where τ is a time constant. Every time the membrane potential of a neuron reaches

an upper threshold Vth � 1 it is said to fire. In addition to (3.1), one must define a

spike-resetting condition

If Vj > Vth then Vreset ← Vj. (3.2)
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In our theoretical analysis we consider the limits Vth = −Vreset →∞, which is faithfully

reproduced in numerical simulations in the following way: first, we consider Vth =

−Vreset = 500. When Vj > Vth, the membrane voltage is held at Vj for a time interval

τm/Vj , which is approximately the time that a neuron needs to reach +∞ from Vj . Then,

a spike is emitted, and the voltage is reset and hold at −Vj for another interval τm/Vj*.

The input in Eq. (3.1) is determined by two distinct contributions:

Ij = ηj + Js (t) . (3.3)

The first term represents the quenched heterogeneity, which for neurons in the oscillatory

regime (ηj > 0), determines the intrinsic interspike interval (ISI)

Tj = πτ/
√
ηj. (3.4)

The second term corresponds to the mean field coupling, where J is the coupling strength

and s (t) is the mean synaptic activation. We consider networks of spiking neurons with

delayed, mean-field coupling

s(t) =
τ

Nτs

N∑

j=1

∑

k

∫ t−D

t−D−τs
δ
(
t′ − tkj

)
dt′. (3.5)

where tkj is the time of the kth spike of neuron j, and τs the synaptic time constant. After

adopting the thermodynamic limit, N →∞, we take the limit τs → 0, so that s becomes

proportional to the instantaneous population-averaged firing rate at time t−D:

lim
τs→0

lim
N→∞

s(t) = τ r(t−D) ≡ τ rD.

*For the numerical simulations of the population of QIF neurons we use the Euler method with time
step δt = 10−5. For the integration of the FREs Eqs. (3.9) we use a third-order Adams-Bashforth-Moulton
predictor-corrector scheme with a timestep δt = 10−4 (Press et al., 1992). In all simulations shown, initial
transients were discarded.
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Finally, we assume a Lorentzian (Cauchy) distribution of the quenched heterogeneity

g (η) =
∆/π

(η − η̄)2 + ∆2
. (3.6)

3.2 Low-dimensional description: Firing rate equations

In the thermodynamic limit, the network of QIF neurons can be reduced to a finite set of

FRE (Montbrió et al., 2015; Pietras and Daffertshofer, 2016). This is possible assuming

that the conditional neuron densities ρ(V |η, t) are Lorentzian for all η values (Montbrió

et al., 2015), which is mathematically equivalent as to invoke the so-called Ott-Antonsen

(OA) theory (Ott and Antonsen, 2008).

Considering the QIF model in Sec. 3.1, the FRE consist of a system of two delay

differential equations for the firing rate r and for the mean membrane potential

v =

∫ ∞

−∞
dη g(η)

[
lim
R→∞

∫ R

−R
dV ρ(V |η, t)V

]
,

which read (Montbrió et al., 2015; Pazó and Montbrió, 2016)

τ ṙ =
∆

πτ
+ 2rv, (3.7a)

τ v̇ = v2 + η̄ − (πτr)2 + JτrD. (3.7b)

These FRE describe the evolution of the population of infinitely many spiking neurons

in terms of the firing rate r and the mean-membrane potential v of the population of

QIF neurons Eq. (3.1). Eqs. (3.7) have 5 parameters, which can be reduced to 3 by

nondimensionalization. In Ref. (Pazó and Montbrió, 2016) the FRE Eqs. (3.7) were

analyzed under the restriction η̄ > 0, and they were rescaled accordingly. Such rescaling

allows to systematically vary the time delay parameter D (including the case D = 0),

and facilitates the comparison with the classical and well-studied Kuramoto model with

delay (Yeung and Strogatz, 1999; Choi et al., 2000; Earl and Strogatz, 2003; Montbrió

et al., 2006; Lee et al., 2009).
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Alternatively, here we consider a new nondimensionalization which allows us to inves-

tigate the dynamics of the FRE Eqs. (3.7) in the entire range of η̄, so that the majority

of the neurons can be either self-oscillatory (η̄ > 0) or quiescent/excitable (η̄ < 0).

Specifically, we rescale time and v by D and τ as

t̃ = D−1t , ṽ = Dτ−1v, (3.8)

so that the new, non-dimensional rate is r̃ = Dr. Then the dynamics of the FRE can be

completely explored, without loss of generality, considering the rescaled parameters

J̃ = Dτ−1J , ˜̄η = D2τ−2η̄ , ∆̃ = D2τ−2∆,

and setting τ = D = 1 in Eqs. (3.7). Specifically, we investigate the nondimensional

system of delay equations

dr̃

dt̃
=

∆̃

π
+ 2r̃ṽ, (3.9a)

dṽ

dt̃
= ṽ2 + ˜̄η − (πr̃)2 + J̃ r̃D=1. (3.9b)

To lighten the notation we drop the tildes hereafter (also in the figure labels).

3.3 Populations of Identical Neurons

As we discussed previously, the case of identical oscillatory neurons has been investigated

in (Pazó and Montbrió, 2016) using a certain rescaling that required η̄ > 0. Here we

adopt the rescaling in Eq. (3.8), which allows us for an exhaustive investigation of the

dynamics of the system by systematically varying the parameter η̄.

Before starting the analysis, we emphasize that the Lorentzian ansatz (or the equiva-

lent OA ansatz) is not strictly valid for identical oscillators. In this case the system is

partially integrable and its phase space is foliated by a continuum of invariant manifolds,

being the Lorentzian ansatz a particular one. Actually, for the case of identical neurons
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(∆ = 0), the correct approach is to resort to the so-called Watanabe-Strogatz theory

(Watanabe and Strogatz, 1994), instead of the OA ansatz (Pikovsky and Rosenblum,

2011; Laing, 2018). Nevertheless, from a physical perspective the OA/Lorentzian ansatz

is very significant since any small amount of noise and/or heterogeneity destroys the

degeneracy and, at least for the systems analyzed so far, the density converges to a

vicinity of the OA manifold (Tyulkina et al., 2018).

Hence, in the following we analyze the identical case taking into account that its full

significance holds once a small amount of noise or heterogeneity is added to the system.

However, to avoid the inclusion of noise/heterogeneity in the integration algorithm, we

use initial conditions on the Lorentzian manifold in all the numerical simulations of

ensembles of identical QIF neurons Eqs. (3.1).

3.3.1 Analytical results: The incoherent and the fully synchronized

states

3.3.1.1 The incoherent state

Equation (3.9) has at most four fixed points. In some parameter values one of these

points is located in the negative rate region (r < 0), and we refer to it as “unphysical”.

Moreover, for ∆ = 0, the axis r = 0 is invariant so that solutions initiated with r(0) > 0

remain positive for all times. The equilibria of Eqs. (3.9) can be grouped into two sets of

fixed points:

• The first pair of fixed points is located in the (r, v) plane at

a± =

(
J ±

√
J2 + 4π2η̄

2π2
, 0

)
.

For J > 0, these fixed points are born at a saddle-node bifurcation located at

Jsn = 2π
√−η̄.

This line is partly depicted as a solid green straight line in the phase diagram
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Fig. 3.1, and is located in the region η̄ < 0. Note that the fixed point a− becomes

unphysical for η̄ > 0, while a+ exists for J < 0 only if η̄ > 0. As shown below,

the fixed point a+ is stable in a wide range of parameter values. We will refer to

a+ as the incoherent, or the asynchronous state. For finite networks a+ becomes

a so-called splay state, with all neurons firing with the same ISI, and one neuron

firing every ISI/N time units.

• The second pair of fixed points,

q± =
(
0,±√−η̄

)
,

only exists for η̄ < 0. They correspond to quiescent states, and coincide with

the fixed points of an individual QIF neuron. Hence, q− (resp. q+) is trivially

stable (unstable). The bifurcation at η̄ = 0 (green dashed line in Fig. 3.1) is

somewhat peculiar because it is not a simple saddle-node bifurcation of q+ and

q− as expected. For J > 0, it involves the simultaneous collision with a−, while

for J < 0 it coincides with the appearance of a+ for η̄ > 0.

Next we study the linear stability of the fixed points. The incoherent state a− is

always unstable, while the linear stability analysis of the high activity, asynchronous

state a+ reveals interesting features. Imposing the condition of marginal stability λ = iΩ

in the linearization of Eq. (3.9), we find a family of oscillatory instabilities at

J
(n)
H = π

(
Ω2
n − 4η̄

)
×





(6Ω2
n + 12η̄)

−1/2
, odd n

(2Ω2
n − 4η̄)

−1/2
, even n

(3.10)

where Ωn = nπ. We point out that these instabilities (represented as blue and red lines

in the phase diagram Fig. 3.1) are actually Hopf-like, rather than Hopf, because of two

facts: (i) The amplitude equations, computed in the Supplemental Material of (Pazó

and Montbrió, 2016), are degenerate. (ii) In the supercritical case, we find that the

emerging limit cycle has a period 2π/Ωn, which remains constant as one moves away

from threshold. This is apparently related to the reversible character of Eqs. (3.9) for
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∆̃ = 0 (note the invariance t → −t, v → −v) that, as argued in (Pazó and Montbrió,

2016), stabilizes symmetric orbits with fixed periods when D is nonzero.

Figure 3.1: Phase diagram for identical neurons, ∆ = 0. Shaded region: The asynchronous
state (a+) is stable. Slantwise hatched region: full synchrony is unstable. Horizontally hatched
region: The fully synchronized state does not exist and the only attractor is the global rest state
q−. The orbit of fully synchronized self-sustained oscillations is created at the dashed black line
(at η̄ < 0), Eq. (3.14). Blue and red lines are the loci of the sub- and super-critical Hopf-like
instabilities of incoherence Eqs. (3.10). Solid green line: saddle-node bifurcation. The vertical
dashed green line separates the oscillatory from the excitable regime of the QIF neuron.

3.3.1.2 The fully synchronized state

Besides the stability boundary of the asynchronous state, we can also analytically de-

termine the boundaries of full synchrony, Vj = V (t), ∀j. The FRE Eqs. (3.9) are not

suitable for this analysis, since the fully synchronized state corresponds to a degenerate

infinite trajectory along the v-axis. Full synchrony is hence investigated using the original

Eqs. (3.1).

As shown in (Pazó and Montbrió, 2016), for oscillatory dynamics (η̄ > 0) the stability
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ASYNC FULL SYNC QPS M-QPS COLLECTIVE CHAOS

IDENTICAL Single neuron: Periodic Periodic 2F-Quasip. 3F-Quasip. Chaotic-like (λ = 0)
Mean field: Constant Periodic Periodic 2F-Quasip. Chaotic

ASYNC PS-I PS-II M-PS COLLECTIVE CHAOS

HETEROGENEOUS Single neuron: Periodic Periodic, Periodic, 2F-Quasip., Chaotic-like (λ < 0)2F-Quasip. 2F-Quasip. 3F-Quasip.
Mean field: Constant Periodic Periodic 2F-Quasip. Chaotic

Table 3.1: Classification of the different dynamical states observed for populations of both
identical, and heterogeneous QIF neurons. The names of the states are the following: ASYNC:
Asynchronous or incoherent state. FULL SYNC: fully synchronized state. QPS: Quasiperiodic
partial synchronization. M -QPS: modulated quasiperiodic partial synchronization. PS-I and
PS-II stands for type I and type II partially synchronous states. M-PS: modulated partially
synchronous state. The prefix 2F- and 3F- indicate the number of frequencies of the corresponding
quasiperiodic dynamics. For each state we specify the dynamics at the macroscopic level (mean
field) and at the microscopic level (single neuron). For the states of collective chaos, λ is the
Lyapunov exponent of a single neuron forced by the mean field.

region of full synchrony is bounded by the family of curves

J (n′)
s = 2

√
η̄ cot

(√
η̄

n′

)
with n′ = 1, 3, .., (3.11)

and by the evenly spaced lines
√
η̄ = mπ with m = 1, 2, 3, ....

On the other hand, in the case η̄ < 0, we emphasize that the term ‘full synchronization’

cannot be strictly used since the neurons are excitable and not self-sustained oscillators.

However, to simplify the notation, in the following we refer to collective oscillatory

states with η̄ < 0 as fully synchronized states. Indeed, due to the presence of time delay,

collective self-sustained oscillations could be in principle maintained for strong enough

excitatory coupling. To study the existence and stability of these states, we rewrite the

QIF model Eq. (3.1) as

V̇j = V 2
j − |η̄|+ JrD. (3.12)

Then, to investigate the existence of a fully synchronized state, we can drop the index j

in Eq. (3.12). Note that, in the absence of coupling, Eq. (3.12) has one stable (s) and one

unstable (u) fixed points

V ∗u = −V ∗s =
√
|η|.

Between consecutive spikes, the evolution of the membrane potential of all neurons is
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given by

V̇ = V 2 − |η̄|. (3.13)

Considering that the neurons’ membrane potentials reach infinity at t = 0, we find

that their membrane potentials at the time immediately before receiving the spike,

t = D− = 1−, must satisfy the following equation,

∫ V (1−)

−∞

dV

V 2 − |η̄| = 1,

which gives

V
(
1−
)
≡ V − = −

√
|η̄| coth

√
|η̄|.

A necessary condition for the existence of self-sustained collective oscillations is that

an excitatory spike causes a jump in V beyond the unstable fixed point, which enables

the repetition of the cycle. More precisely, immediately after receiving the first spike,

t = 1+, the membrane potential V + must satisfy V + > V ∗u . Then, for η̄ < 0, we find

that fully synchronized solutions exist above the critical coupling

Jc = V ∗u − V − = 2
√
|η̄| e2

√
|η̄|

e2
√
|η̄| − 1

. (3.14)

To analyze the stability of full synchrony, we study the evolution of an infinitesimal

perturbation δV of a single neuron membrane potential away from the cluster formed by

the rest of the population. The perturbed neuron and the cluster before the incoming spike

evolve according to the flow given by Eq. (3.13). The multiplier of the linearized flow

( ˙δV = 2V δV ) is antisymmetric causing convergence for negative V , and divergence

for positive V . Hence, to have a stable fully synchronous solution, the neurons need to

spend more time in the convergent region of the flow than in the divergent one. This

holds if the instantaneous jump of the membrane potential due to the incoming spike is

large enough. Then the critical coupling corresponds to V + = |V −|, i.e. Js = 2|V −|, or

Js = 2
√
|η̄| coth

√
|η̄|. (3.15)
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Figure 3.2: Macroscopic (columns 1-2) and microscopic (columns 3-5) dynamics of QPS (rows
a,b), M-QPS (row c) and collective chaos (row d), see Table 3.1. Column 1: time series of the
mean firing rate. Blue lines correspond to numerical simulations of the FRE Eqs. (3.9), while
red dotted lines are obtained computing the mean firing rate of a population of N = 2000 QIF
neurons. Column 2: (r, v) phase portraits, numerically obtained using Eqs. (3.9). In panel (b2)
two coexisting periodic attractors are shown: QPS-asym(I) (solid) and QPS-asym(II) (dashed)
—see also inset of Fig. 3.3. Panels (b1,b3-5) correspond to QPS-asym(I). Columns (3-5) show
the dynamics of a population of N = 2000 QIF neurons. Column 3: raster plots. Neurons are
ordered according to their firing time at the beginning of the simulation (due to the first order
nature of the QIF model, this ordering is preserved in time). Columns 4 and 5 show return ISI
plots and ISI distributions of an arbitrary neuron j. The return plots of panels (a4,b4) are closed
curves, indicating quasiperiodic microscopic dynamics in the QPS-sym and QPS-asym. The
corresponding ISI histograms (a5,b5) show two (QPS-sym) or three (QPS-asym) peaks. In the
M-QPS, neurons are quasiperiodic with three characteristic frequencies — the return plots of
panel (c4) is a closed surface in 3D, and therefore its projection in 2D fills a defined region of
the space. Parameters: (row a) J = −9.2, (row b) J = −9.5, (row c) J = −10.3, (row d)
J = −10.6. We use

√
η̄ = 3.6 in all simulations.

This function is precisely the boundary in Eq. (3.11) with n′ = 1, which extends to

the negative η̄ region, since cot(ix) = −i coth(x). Note also that Js approaches Jc as

η̄ → −∞.

3.3.2 Phase diagram

The phase diagram shown in Fig. 3.1 summarizes our analytical results for populations

of identical neurons. On the y axis we represent the coupling strength J , which can be

either excitatory or inhibitory. On the x axis we represent a quantity that, if positive,

is proportional to the natural frequency of the neurons, see Eq. (3.4). Regions with

qualitatively different dynamics are highlighted with different combinations of colors
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and patterns. In the gray shaded regions, the asynchronous state a+ is stable, while

slantwise hatching indicates instability of the fully synchronized state. On the other hand,

in the horizontally-hatched area, the global quiescent state q− is the only attractor of the

system. In the unhatched white region, full synchrony is a stable attractor (and typically

the only one–see below), but several of such states may coexist in certain regions for

η̄ > 0.

More specifically, in the excitable region (η̄ < 0) of the diagram the global quiescent

state q− is always stable. In addition, the stability region of the asynchronous state

a+ (grey shading) is bounded by the saddle-node bifurcation Jsn (green line), and the

Hopf-like bifurcation line J (1)
H , Eq. (3.10) (blue line). The two lines meet at a Zero-Hopf

codimension-two point. In the unhatched grey region a+ coexists not only with q−, but

also with the fully synchronized state. This oscillatory state becomes stable at the solid

black line Eq. (3.15).

On the other hand, the positive η̄ region of the diagram is characterized by a sequence

of subcritical (blue lines) and supercritical (red lines) Hopf-like bifurcations, defined

by Eq. (3.10), that switch the stability of the incoherent state a+. Remarkably, in this

region (where neurons are self-sustained oscillators), the phase diagram bears strong

resemblance with that of the Kuramoto model with time delays (Yeung and Strogatz,

1999; Choi et al., 2000; Earl and Strogatz, 2003; Montbrió et al., 2006; Lee et al., 2009).

The two systems display tent-shaped regions with an even spacing given by the equality

between the delay (D = 1) and the intrinsic ISI Eq. (3.4), as well as bistability regions

between full sync and incoherence (unhatched gray regions). However, while in the

Kuramoto model the Hopf bifurcations are always subcritical, here we find supercritical

Hopf bifurcations for some η̄ values in the inhibitory (J < 0) part of the diagram. Near

the supercritical Hopf bifurcations, in the unshaded hatched region, both the incoherent

and the fully synchronous states are unstable, and partial synchrony (Quasiperiodic partial

synchrony (QPS), Modulated-Quasiperiodic partial synchrony (M-QPS) and collective

chaos) is found. In the next section we classify these states in terms of their macroscopic

and microscopic dynamics, and investigate their bifurcations.
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Finally, we discuss an interesting feature of the phase diagram in Fig. 3.1 —see also

the phase diagram in (Pazó and Montbrió, 2016). Note that, at variance with the vertically

oriented, tent-shaped regions of the Kuramoto model (Yeung and Strogatz, 1999; Choi

et al., 2000; Earl and Strogatz, 2003; Montbrió et al., 2006; Lee et al., 2009), here the

regions of stability are tilted. This discrepancy between populations of QIF neurons and

the Kuramoto model can be understood as follows: in the QIF model the neurons always

advance their phase in response to excitatory inputs, and always delay their phase in

response to inhibitory inputs —i.e. they have a so-called Type 1 phase resetting curve.

This produces the progressive ‘advancement’ of the boundaries in the excitatory part

of the phase diagram as the strength of the excitatory coupling J is increased —given

that neurons increase their firing frequency and thus their effective value of η̄. Similarly,

in the inhibitory region, the neurons slow down their firing frequency in response to

inhibitory inputs, and this progressively ‘delays’ the boundaries for J < 0. In contrast,

in the classical Kuramoto model, the terms producing advances and delays in response

to excitation and inhibition are not included (Montbrió and Pazó, 2018), and hence the

boundaries are not tilted.

3.3.3 Numerical analysis of partially synchronous states

Next we perform a numerical exploration of the partially synchronized states arising both

in the white slantwise-hatched region of Fig. 3.1, as well as in some neighboring regions.

In Table 3.1 these partially synchronized states are classified according to their dynamics,

both for identical and for heterogeneous (in Sec. V) populations of QIF neurons. The

macroscopic dynamics of the states is investigated performing numerical simulations

of the FRE Eq. (3.9), and illustrated in the columns 1 and 2 of Fig. 3.2. To investigate

the single neuron dynamics associated to the macroscopic states we also performed

numerical simulations of the original system of QIF neurons Eqs. (3.1), and depicted the

raster plots (column 3), and the ISI return maps (column 4) and histograms (column 5).

Finally, in column 1, we also show the time series of the population-mean firing rate of

the network simulations (dashed red lines), which show a perfect agreement with the
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QPS-sym

QPS-asym(I)

QPS-asym(II) TC

SN

Figure 3.3: Four largest Lyapunov exponents for two alternative bifurcation sequences in a range
of negative J values and fixed

√
η̄ = 3.6. For each solution, the continuation was carried out

either increasing or decreasing parameter J adiabatically. In the top panel the vertical dashed lines
indicate, from right to left: a supercritical Hopf bifurcation (SC-H), a transcritical bifurcation
(TC), a Neimark-Sacker bifurcation (NS), and a subcritical Hopf bifurcation (SB-H). In the
bottom panel the vertical dashed lines indicate, from right to left: a saddle-node bifurcation (SN),
a Neimark-Sacker bifurcation (NS), and the onset of chaos (C). The inset shows a sketch of the
bifurcation diagram connecting the two bifurcation sequences.

time series of the FRE (blue lines) —except in panel (d1), where the collective dynamics

is chaotic.

Note that stable partially synchronized states are not only found in the slantwise-

hatched region of Fig. 3.1, but also in a neighborhood of this region with
√
η̄ > π. This

is because the region where the Hopf-like bifurcation J (1)
H is supercritical (around the red

line at
√
η̄ ≈ π in Fig. 3.1) extends to

√
η̄ > π, and hence one expects a low-amplitude

periodic solution bifurcating from incoherence, a+, coexisting with a fully in-phase

synchronized state. In Figs. 3.2(a1) and 3.2(a2) we respectively show the time series and
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the phase portraits corresponding to the numerical integration of Eqs. (3.9) for
√
η̄ = 3.6.

These simulations confirm the presence of a small amplitude symmetric limit cycle,

which grows in size as parameters are moved away from the instability.

As analyzed in (Pazó and Montbrió, 2016), in Fig. 3.2(a1) the oscillation period

of the mean field is exactly T = 2 (or, in dimensional form, T = 2D). The periodic

dynamics of the global quantities leads to quasiperiodic dynamics of the individual

neurons, i.e. Quasiperiodic partial synchrony (QPS). This may be appreciated plotting

the ISIs of a single neuron versus their consecutive ISIs. The resulting return plot, shown

in Fig. 3.2(a4), forms a closed curve indicating quasiperiodic dynamics. Interestingly,

the ISIs of the neurons are always shorter than the period of the firing rate oscillations,

as shown by the ISI histogram in Fig. 3.2(a5). The bimodal structure of the distribution

is related to double-loop shape of the macroscopic periodic attractor.

The limit cycle that emerges via the Hopf-like instability displays a robust v → −v

symmetry that only breaks down after another bifurcation. In (Pazó and Montbrió,

2016), for
√
η̄ = 3, it was shown that symmetry broke down after a period-doubling

bifurcation. Here, taking a slightly larger value of
√
η̄ and increasing inhibition, we

observe an imperfect symmetry breaking transition, with two coexisting attractors, see

Fig. 3.2(b1,b2) and Fig. 3.3. These asymmetric periodic orbits —which we call QPS-

asym(I) and QPS-asym(II)— are not related by symmetry. In fact, each attractor is born

via a different bifurcation, see details below. In these asymmetric states the period differs

from 2D, but still neurons are quasiperiodic, see Fig. 3.2(b4,b5).

Increasing inhibition further, the macroscopic dynamics becomes more irregular, with

no evident periodicity, see Fig. 3.2(c1,c2). Below, we show the analysis of the Lyapunov

exponents indicating quasiperiodic mean field dynamics with two incommensurable

frequencies. As a consequence of this quasiperiodic forcing, the neurons exhibit three-

frequency quasiperiodic motion, see Fig. 3.2(c4). We call this new state modulated

QPS, or simply M-QPS, due to the additional modulating frequency. To the best of our

knowledge this state has been only reported in a very different setup (Nakagawa and

Kuramoto, 1995; Clusella and Politi, 2018). Lowering J further, the M-QPS eventually
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Figure 3.4: Poincaré sections of the FRE (3.9) for
√
η̄ = 3.6, and for three different values of

the inhibitory coupling strength: (a) J = −10.3; (b) J = −10.48; (c) J = −10.6. The Poincaré
surface is v = 0, v̇ < 0.

turns into a chaotic state, see Fig. 3.2(d1,d2).

To determine the bifurcations linking different partially synchronous states (QPS, M-

QPS, or collective chaos), we computed the four largest Lyapunov exponents of the FRE

on the line along the J direction with η̄ value of Fig. 3.2. Employing the usual method

(Farmer, 1982), parameter J was quasi-adiabatically decreased and increased, to detect

eventual bistabilities. Two parallel sequences of bifurcations were eventually detected, as

shown in top and bottom panels of Fig. 3.3. In the top panel, moving leftwards, the fixed

point attractor (a+), first undergoes a supercritical Hopf-like bifurcation, after which

the stable attractor of the system is a symmetric QPS attractor. The symmetry breaking

takes place at a transcritical bifurcation (TC), after which the limit cycle is asymmetric

(QPS-asym(II)). At a lower J value, the asymmetric periodic orbit undergoes Neimark-

Sacker bifurcation giving rise to M-QPS —given that we find two vanishing Lyapunov

exponents. Further decreasing inhibition, the M-QPS disappears in a subcritical Hopf

bifurcation (SB-H).

In the other sequence of bifurcations —bottom panel of Fig. 3.3— another asymmetric

orbit (QPS-asym(I)) is born at a saddle-node (SN) bifurcation. As QPS-asym(II), it also

undergoes a Neimark-Sacker bifurcation as J is decreased giving rise to M-QPS. In

Figs. 3.2 and 3.4 we show the M-QPS state corresponding to this particular sequence

of bifurcations. However, note that M-QPS states resulting from either route in Fig. 3.3

have the same dynamical features (two vanishing largest Lyapunov exponents and
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Figure 3.5: Numerical exploration of the partially synchronized states (QPS,M-QPS, collective
chaos) near the supercritical Hopf bifurcation in phase diagram Fig. 3.1. In the light gray
region the largest Lyapunov exponent is zero, and QPS is stable. The purple dots correspond
to two vanishing Lyapunov exponents, indicating quasiperiodic dynamics. In the cyan region
the dynamics is chaotic. The vertical dashed black line at

√
η̄ = 3.6 corresponds to the range of

parameters explored in Fig. 3.3.

three-frequency microscopic motion). Lockings occur at certain windows of J , where

the second largest Lyapunov exponent is not zero. To further prove the macroscopic

quasiperiodic nature of the M-QPS, we also show Poincaré sections for three different

values of J in Fig. 3.4. As J is lowered the torus corrugates as typically observed in the

transition to chaos via fractalization of the torus (Curry and Yorke, 1978), see Fig. 3.4(b).

The torus breaks down around J = −10.5, and the attractor turns fractal. Notably, the

chaotic attractor achieves rapidly an information dimension larger than three according to

the Kaplan-Yorke formula (Kaplan and Yorke, 1979) since λ1 > |λ3|, see bottom panel of

Fig. 3.3; in contrast with the dimension slightly above two found in (Pazó and Montbrió,

2016) for the chaotic attractor born from the period doubling cascade. It is important

to stress that, in spite of the positive Lyapunov exponent (of the collective dynamics),

the microscopic dynamics remains nonchaotic, because the individual oscillators have

only one degree of freedom. In fact the structure of the model imposes the neurons to
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fire sequentially, see Fig. 3.2(d3). Finally, the inset in Fig. 3.3 is our conjecture of how

the two bifurcation sequences in the main panels are connected: the unstable branch the

SN bifurcation collides with the symmetric QPS state at the TC bifurcation.

In the preceding figures we have shown the transitions along a specific η̄ value. Seeking

a more global picture we decided to sweep parameters J and η̄ monitoring the largest

Lyapunov exponents. This permits to identify the attractor types efficiently. Figure 3.5

shows the region spanned by partially synchronized dynamics*. The light gray and

purple regions indicate QPS and M-QPS states, respectively, while cyan dots correspond

to chaotic dynamics. It surprised us the extension of the parameter region where QPS

coexists with full synchrony (light shaded unhatched area). There is a “tongue” extending

to very negative J values around
√
η̄ = 4.7 that looks like an “echo” at 3π/2 = 4.712 . . .

of the infinite tongue just below
√
η̄ = π. We do not have an intuitive explanation for

this. Quasiperiodic dynamics (M-QPS) is found always not far from the degenerate

point were the instability boundaries for n = 1 and n = 2, see Eq. (3.10), meet. This

is probably not casual (further analysis is nonetheless beyond our scope†). Regarding

the chaotic state, it shows up in two distinct regions: the leftmost one is related to the

period-doubling scenario observed in (Pazó and Montbrió, 2016), while the rightmost

one corresponds to the quasiperiodic route uncovered here.

3.4 Populations of Heterogeneous neurons

In this section we consider that the neurons in the network are non-identical, and investi-

gate how this alters the phase diagram in Fig. 3.1, and the partially synchronous states

depicted in Fig. 3.2. Hence, in the following we assume that the half-width ∆ of the

Lorentzian distribution Eq. (3.6) is not zero. Under the presence of Lorentzian hetero-

geneity fully and partially synchronous states discussed previously are unattainable. In

the following the generic term ‘partial synchronization’ refers to any state of the network

which is not an incoherent state.
*Actually, we do not have explored the region close to the supercritical bifurcation just above

√
η̄ = 2π.

†The degenerate point is a codimension-three point because the instability for n = 1 is degenerate
exactly at that point (see the Supplemental Material of (Pazó and Montbrió, 2016)).
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States reminiscent of QPS and collective chaos persist for finite values of ∆, with

individual neurons displaying different motions depending on their native Tj values. We

denote these states as partial synchronization-I (PS-I) and PS-II for the states reminiscent

of full synchrony and QPS, respectively. In PS-I most neurons are 1:1 entrained to the

global frequency, and the remaining neurons are either entrained with a different ratio

or display quasiperiodic dynamics. In the case of PS-II only a minority of the neurons

entrains 1:1 with the macroscopic oscillation. We use the distinction between PS-I and

PS-II for convenience, but we emphasize that there is not a clearcut distinction between

both states and one can transit from one to the other continuously. As for the other states,

the asynchronous state continues to exist after introducing the heterogeneity, although

not in the form of a splay state. Finally, M-QPS is replaced by a modulated PS states, or

M-PS, while collective chaos continues to exist, see Table I.

Next we analyze how the stability regions of incoherence, which can still be analyti-

cally computed from the FRE Eqs. (3.9), change due to the presence of heterogeneity.

Unfortunately, in the heterogeneous case, a stability analysis similar to that of Sec. IVA

for the case of synchronous states is not possible. Later in this section we examine

how the partially synchronized states found in the region η̄ > 0 for identical inhibitory

neurons are altered by quenched disorder.

3.4.1 Stability boundaries of incoherence and phase diagram for

∆ = 0.1

It is important to note that the presence of heterogeneity removes all degeneracies of the

FRE Eqs. (3.9). The fixed points can be still obtained in parametric form, as well as the

boundaries corresponding to saddle-node bifurcations of the asynchronous/incoherent

states, [green lines in Fig. 3.6]. However, these expressions are lengthy and here we omit

them for the sake of clarity, see (Montbrió et al., 2015). Linearizing and imposing the

condition for marginal stability, also the loci of the Hopf bifurcations can be obtained

in parametric form [black lines in Fig. 3.6]. We finally used numerical simulations of

Eqs. (3.9) to detect the regions where partially synchronous states become unstable, or
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Figure 3.6: Phase diagram for populations of heterogeneous neurons, ∆ = 0.1. Dark shaded
region: Incoherence (fixed point) is the only stable state. Light shaded region: Incoherence
(fixed point) coexist with a partially synchronous state (limit cycle). Brown region: Two forms
of asynchrony (high and a low activity fixed points) coexist with a partially synchronous state.
Green lines are saddle-node bifurcations, and black lines correspond to Hopf boundaries. Note
that here, in contrast with Fig. 3.1, the Hopf boundaries are not represented in Blue/Red (we do
not explicitly specify whether these boundaries are subcritical or supercritical). The boundary
between light and dark shaded regions was obtained numerically.

cease to exist [dark gray region in Fig. 3.6].

The phase diagram in Figure 3.6 summarizes these results for ∆ = 0.1, and displays

the regions where distinct dynamics occur —compare with the phase diagram Fig. 3.1.

As expected, close to the J = 0 axis incoherence is the only attractor of the system (dark

shaded). Like in the case of identical neurons, bistability regions between incoherence

and another state(s) exist (light shaded). Interestingly, for inhibitory coupling, the Hopf

bifurcations of the asynchronous state largely overlap with the numerical boundaries

of ‘pure’ incoherence (dark shading). This indicates that, for inhibitory networks, the

intervals where the Hopf bifurcations are supercritical are dramatically enlarged as

heterogeneity is increased.
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Stable limit cycle

Unstable fixed point

Stable fixed point

Unstable limit cycle

Cusp

Figure 3.7: Enlarged view of the region of multistability located at η̄ < 0 in Fig. 3.6. Black line:
Hopf bifurcation (subcritical). Green lines: saddle-node bifurcations. In the dark shaded region,
only the quiescent, low activity state is stable. In the light shaded region, incoherence coexists
with a collective oscillatory state —self-sustained due to recurrent excitation. In the brown region
the low activity fixed point coexists with a high activity fixed point and with the oscillatory state.
In the small dark purple region only the two high and low activity fixed points are attracting.
Right panels: Sketches of the Poincaré section in different regions (assuming that it coincides
with the one-dimensional manifold that connects different fixed points). The thick lines indicate
two-dimensional manifolds, and periodic orbits are indicated by a point surrounded by a small
circle.

3.4.1.1 Phase diagram in the region η̄ < 0

Figure 3.7 displays an enlarged view of the phase diagram Fig. 3.6, around the brown

region located at η̄ < 0. The scenario of bifurcations is quite intricate in this region,

and here we describe it in detail. The brown shaded region is interesting since a high-

rate and a low-rate fixed points —reminiscent of the fixed points a+ and q−— coexist

with a periodic orbit. In Fig. 3.7 we have included two dashed lines corresponding to

bifurcations involving saddles and/or repellors to fully clarify the transitions between

different stable states. We also highlight two codimension-two points: the cusp point

where the two saddle-node bifurcations meet, and the zero-Hopf (ZH) point —associated

to a zero and a pair of pure imaginary eigenvalues. The different shadings in the figure

indicate regions with qualitatively different attractors: in the dark region (I) only one

fixed point is stable. In the small dark purple region (II) this fixed point coexists with

another stable fixed point. In the light shaded areas (IV,V,VI) a stable fixed point coexists

with a stable limit cycle. This limit cycle is the only stable attractor in the white region

(VII). Finally, in the brown region (III), there are three coexisting stable attractors: two

fixed points, and a limit cycle.
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The transitions between any two regions in the diagram can be understood considering

a three-dimensional space. In the right panels of Fig. 3.7 we present sketches of the phase

portraits of the different stability regions, by means of Poincaré sections. Thick lines

represent two-dimensional manifolds. Comparing the phase diagram in Fig. 3.7 with the

results previously obtained for instantaneous interactions (Montbrió et al., 2015), we see

that the delay promotes the appearance of a Hopf bifurcation of the asynchronous state.

Note that the scenario shown in Fig. 3.7 resembles that of a population of heterogeneous

QIF neurons with fast synaptic kinetics (Ratas and Pyragas, 2016), but here we find a

codimension-two ZH point, instead of a double-zero eigenvalue point.

3.4.2 Numerical analysis of partially synchronized states in the pres-

ence of heterogeneity
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Figure 3.8: Macroscopic (columns 1-2) and microscopic (columns 3-5) dynamics of (row a)
PS-II states, (row b) M-PS states, and (row c) collective chaos for heterogeneous neurons, —see
Fig. 3.2 and Table 3.1. Column 1: Time series of the firing rate for the FRE Eqs. (3.9) (blue)
and for a population of N = 2000 QIF neurons Eqs .(3.1) (red dotted). Column 2 shows the
corresponding attractors, obtained using the FRE. In rows (a) and (b), the dynamics is periodic
but, in contrast with the identical case, here the limit cycle is asymmetric due to the presence
heterogeneity. Column 3 shows the raster plots corresponding to numerical simulations of a
population of N = 2000 QIF neurons Eqs. (3.1), and columns 4 and 5 show the corresponding
return plots and ISI histograms, respectively. In the raster plots, each neuron index j corresponds
to a specific ηj value (see text). For the computation of return plots and ISI histograms we used
neuron j = 500. In panels (a4) and (b4) one can see that the neuron behaves quasiperiodically,
with two and three incommensurable frequencies, respectively. Note also the three peaks in panel
(a5) due to the asymmetry of the limit cycle. In all panels we use ∆ = 0.1,

√
η̄ = 3.5, and (row

a) J = −9.60; (row b) J = −10.70; (row c) J = −11.30.

Here we explore numerically how the presence of heterogeneity transforms the par-
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tially synchronized states described in Sec. IV. In order to circumvent sample-to-sample

fluctuations, ηj values are selected deterministically from the Lorentzian distribution

setting ηj = η̄ + ∆ tan [π(2j −N − 1)/(2N + 2)], where j = 1, 2, . . . , N . States remi-

niscent of previous partially synchronous states persist for ∆ 6= 0; in columns (1,2) of

Fig. 3.8 we show the macroscopic time series of PS-II, M-PS and collective chaos, where

blue lines represent numerical integration of the FRE (3.9) and red lines simulation of

a population of QIF neurons. All the three states are clearly reminiscent of the QPS,

M-QPS and collective chaos states for identical neurons. In the columns (3-5) of Fig. 3.8

we also show the raster plots of the spiking activity of the population of QIF neurons

together with the return plots and ISI histograms of a single neuron of the population.

Due to the presence of heterogeneity, in the PS-II state neurons can be either periodic

or two-frequency quasiperiodic, while in the M-PS they can be two- or three-frequency

quasiperiodic, see Table 3.1. The illustrative neuron chosen to plot the return maps

and ISI histograms of Fig. 3.8 are, respectively, two-frequency and three-frequency

quasiperiodic for panels (a4,a5) and (b4,b5). Note how, as in the QPS-asym in Fig. 3.2(f),

the histogram of ISIs for a quasiperiodic neuron in the PS-II state has three peaks, due to

the asymmetric shape of the limit cycle.

To further characterize the microscopic dynamics of PS-II, M-PS and collective

chaos, in Fig. 3.9 we calculate the time-averaged coupling-modified ISIs of the neurons,

and plot them against each neuron natural ISI Tj . In the PS-II state shown in panel (a),

the frequencies of the upper and lower plateaus correspond, respectively, to the average

period between two consecutive peaks of the mean field, and to the period of the mean

field oscillation in Fig. 3.8. Here it is convenient to recall Table 3.1, where the relations

between macroscopic and microscopic dynamics are indicated.

Finally, we investigate the bifurcations that connect these partially synchronous states,

again relying on the computation of the Lyapunov spectrum of Eqs. (3.9). As we did

in Section IV for identical neurons, we evaluate the four largest Lyapunov exponents

along the J direction in the phase diagrams, near the Hopf bifurcation. Figure 3.10

reveals a scenario qualitatively similar to the identical case (except that, at least for the
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specific η̄ value adopted, no bistability was detected). Starting from a fixed point, the

Hopf bifurcation produces a periodic solution (PS-II) with a vanishing largest LE, which

then undergoes a Neimark-Sacker bifurcation leading to a quasiperiodic solution (M-PS).

Eventually, this quasiperiodic solution breaks down giving rise to a chaotic state. Finally,

increasing inhibition above a critical level makes the Lyapunov exponents to change

abruptly, and chaos is suddenly replaced by a periodic orbit (PS-I). This is in consistency

with an exterior crisis undergone by the chaotic attractor.
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Figure 3.9: Time-averaged coupling-modified ISIs as a function of the intrinsic ISI for a popula-
tion of 2000 QIF neurons in three different states: (a) PS-II, (b) M-PS, and (c) collective chaos.
The red dots are obtained with direct simulations of the population of QIF neurons, while the blue
line is obtained forcing each neuron with the FRE. Note the multiple plateaus in the middle panel.
Parameters are as in Fig. 3.8:

√
η̄ = 3.5 and (a) J = −9.60; (b) J = −10.70; (c) J = −11.30.
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Figure 3.10: The four largest Lyapunov exponents for ∆ = 0.1 and
√
η̄ = 3.5. The stability

regions of the different attractors are indicated by vertical gray dashed lines.
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3.4.3 Boundaries of incoherence for large heterogeneity

At this point, we discussed a fixed value of the heterogeneity ∆ = 0.1. We now study

the effect of increasing values of ∆ on the stability boundaries of incoherence. As

previously discussed, the Hopf bifurcations become increasingly supercritical as the

level of heterogeneity grows, and this is particularly pronounced for inhibitory coupling.

Hence the Hopf boundaries are a good proxy to bound the regions with oscillations of

either type (PS-I, PS-II, M-PS, collective chaos).

Figure 3.11 shows the Hopf boundaries increasing values of ∆. Note that the region of

oscillations for inhibitory coupling progressively shrinks, and eventually disappears from

the diagram. Accordingly, given a value of η̄, there is a value of ∆ for which, no matter

how strong inhibition is, the neurons will not synchronize. The fragility of the oscillations

against heterogeneity is consistent with previous computational studies of networks of

inhibitory, conductance-based spiking neurons (Wang and Buzsáki, 1996; White et al.,

1998; Tiesinga and José, 2000). However, note that synchronization can always be

achieved for strong enough excitatory coupling. This highlights a fundamental asymmetry

between the excitatory and the inhibitory oscillatory regions in networks of QIF neurons.

We emphasize that this asymmetric behavior is not found in the heterogeneous Kuramoto

model with delay (Earl and Strogatz, 2003; Montbrió et al., 2006; Lee et al., 2009). A

possible explanation for such asymmetry is that, at variance with other self-sustained

oscillators, QIF neurons cease to oscillate for strong enough inhibition. On the contrary,

excitation just speeds up QIF neurons, which remain oscillatory.

3.5 Conclusions and Discussion

We analyzed the dynamics of a large population of QIF neurons with synaptic delays.

To a large extent the analysis was carried out using the FRE Eqs. (3.9), which are

mathematically tractable and allows for an efficient computational analysis. For identical

neurons, we have extended the analytical results in (Pazó and Montbrió, 2016) to the

excitable regime (η̄ < 0). Our analytical predictions pointed out parameter regimes
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Figure 3.11: Increasing the level of heterogeneity ∆ reveals different synchronization scenarios
for excitation and inhibition (see text). Black, dark blue, blue and light blue lines correspond,
respectively, to the Hopf boundaries of Eqs. (3.9) with ∆ = 0.1, 5, 10, 20. These boundaries
determine the regions of stability of the incoherent/asynchronous states. In the shaded regions
incoherence is stable for ∆ = 0.1. In the dark shaded region the only attractor is incoherence.

where non-trivial dynamics should necessarily occur. In these regions of parameter space

we performed an extensive numerical exploration supported by the computation of the

Lyapunov spectrum, which revealed the existence of partially synchronous states. One

of these states, which we called M-QPS, appears after a Neimark-Sacker bifurcation of

QPS that superimposes a second (modulating) frequency. Partially synchronous states

—especially QPS— coexist with full synchronization in a large region of the parameter

space. The existence in the phase diagram Fig. 3.5 of what looks like a second tongue

for QPS is an intriguing finding of this work. Can its origin be understood, at least

heuristically? We finally showed that the partially synchronized states observed in the

absence of disorder also have their counterpart in the presence of heterogeneity. However,

disorder induces diversity in the microscopic behaviors of the single neurons.

To conclude, we demonstrate that most of the dynamics of the FRE Eqs. (3.9) investi-
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gated here cannot be reproduced using traditional firing rate models (Wilson and Cowan,

1972; Dayan and Abbott, 2001; Gerstner and Kistler, 2002; Ermentrout and Terman,

2010). To show this we note that the fixed points of Eqs. (3.9) have precisely the structure

of traditional firing rate models, while the dynamics is generically different (Devalle

et al., 2017). Solving the fixed point equation corresponding to Eq.(3.9a) for v, and

substituting it into the fixed point equation corresponding to Eq. (3.9b), one obtains an

equation for the steady firing rate

r∗ = Φ(Jr∗ + η̄). (3.16)

The function

Φ(x) =
1√
2π

√
x+
√
x2 + ∆2,

is the so-called ‘transfer function’ of a population of QIF neurons with Lorentzian

distribution of currents (Devalle et al., 2017; Laing, 2014) —steady state equations

for arbitrary distributions of currents can be obtained self-consistently, see Eq. (C1) in

(Montbrió et al., 2015). Clearly, the traditional first-order firing rate model with time

delays

ṙ = −r + Φ(JrD=1 + η̄), (3.17)

largely investigated in the literature has exactly the same fixed points as Eqs. (3.9), but

different dynamics —see e.g. (Roxin et al., 2005; Battaglia et al., 2007; Brunel and

Hakim, 2008; Roxin and Montbrió, 2011; Ledoux and Brunel, 2011; Keeley et al., 2017;

Kim et al., 2018) for studies of Eqs. (3.17) using different transfer functions. Indeed, the

linear stabililty analysis of the fixed points of Eq.(3.17) gives the characteristic equation

λ = −1 + Φ′Je−λ,

where λ is an eigenvalue, and Φ′ is the derivative of the transfer function evaluated at the

fixed point r∗, determined by Eq. (3.16). The nonstationary instabilities (obtained using

the condition of marginal stability λ = iΩ) are depicted in Fig. 3.12 for different values
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Figure 3.12: Oscillations emerge only for inhibitory coupling in the traditional firing rate model
Eq. (3.17). In the gray region, limited by the black line (∆ = 0.1), the fixed point determined by
Eq. (3.16) is stable and looses stability via a Hopf bifurcation —compare with Fig. 3.11. The dark
blue, and blue curves respectively correspond to ∆ = 5, and 10. The green dashed boundary
corresponds to the case ∆ = 0 and is a straight line.

of the heterogeneity ∆, and clearly differ from the Hopf boundaries of the FRE (3.9)

shown in Fig 3.11. Specifically, the traditional firing rate model Eq. (3.17) only displays

oscillations for inhibitory coupling and η̄ > 0, while the FRE Eqs. (3.9) show oscillations

for both excitation and inhibition, even for η̄ < 0 —see Figs. 3.1, 3.6, and 3.11. Moreover,

the tent-shaped structure of the Hopf boundaries of Eqs. (3.17) is lost in the traditional

firing rate model Eq. (3.17).

Nonetheless note that as the heterogeneity ∆ is increased, the behavior of the Hopf

boundaries of Eq. (3.17) qualitatively agrees with that of the FRE Eqs. (3.9): The region

of oscillations in both models shifts to large η̄ values, in consonance with the well known

result that quenched heterogeneity cannot be counterbalanced by inhibitory coupling to

produce synchronization (Wang and Buzsáki, 1996; White et al., 1998; Tiesinga and

José, 2000; Devalle et al., 2017). Moreover, we have shown that for large heterogeneity
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the Hopf boundaries of Eqs. (3.9) become supercritical, and this coincides with what

is generically found in traditional firing rate models with small delays (Roxin and

Montbrió, 2011). In fact, though Eq.(3.17) is heuristic, it has proven to be remarkably

effective at describing the oscillatory dynamics of networks of spiking neurons with

strong noise (Roxin et al., 2005; Battaglia et al., 2007; Brunel and Hakim, 2008; Roxin

and Montbrió, 2011; Ledoux and Brunel, 2011; Keeley et al., 2017; Kim et al., 2018;

Senk et al., 2018), and is a paradigmatic mean-field model to investigate the effect of

various types of delays in neuronal networks, see e.g. (Hutt and Atay, 2006; Bressloff

and Kilpatrick, 2008; Venkov et al., 2007; Coombes and Laing, 2009; Faye and Faugeras,

2010; Touboul, 2012; Wilson et al., 2012; Veltz, 2013; Veltz and Faugeras, 2013; Faye

and Touboul, 2014; Dijkstra et al., 2015).

Finally, we want to note the resemblance of the partially synchronized states investi-

gated here with the so-called sparsely synchronized states (Brunel and Hakim, 2008),

in which strong inhibition and noise produce irregular spiking but a coherent macro-

scopic oscillation. Remarkably, in both states the period of the macroscopic oscillation

is determined by the time delay but differs from the ISIs of the single cells. However,

microscopically, the neurons have a qualitatively different behavior: in the QPS, their

dynamics is purely deterministic and quasiperiodic, while in the sparse synchrony it is

stochastic and irregular.
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CHAPTER 4

Firing rate equations with synaptic kinetics and fixed

delays

In the previous chapters, we separately analyzed the effect of time delays and synaptic

kinetics on the dynamics of large networks of spiking neurons. However, the postsynaptic

response to a presynaptic action potential is typically characterized by both ingredients,

a brief latency (of the order of a few milliseconds, see e.g. (Markram et al., 1997)),

followed by a (fast) increase and subsequent decrease of the postsynaptic ionic current.

In this chapter we analyze the QIF-FRE including both a fixed delay and a differential

equation for the synaptic kinetics. The model equations we consider are:

τmṘ =
∆

πτm
+ 2RV, (4.1a)

τmV̇ = V 2 − (πτmR)2 + JτmS + Θ, (4.1b)

τdṠ = −S +RD. (4.1c)

Note that the fixed point solutions of Eqs. (4.1) are the same as those of the QIF-

FRE discussed in chapters 2 and 3. They can be expressed in compact form as V∗ =

−∆/(2πτmR∗), S∗ = R∗, where R∗ is the solution of the implicit equation R∗ = Φ(R∗)
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and Φ is the transfer function for QIF neurons Eq. 2.3.

In this chapter, we will restrict the analysis to Θ > 0, i.e. regimes where the majority of

neurons in the population are rhythmically firing.

The number of free parameters in the model equations (4.1) can be reduced with a

suitable rescaling. Adopting the same rescaling used in the previous chapter*, we obtain

the following (non-dimensional) firing rate equations:

ṙ =
δ

π
+ 2rv, (4.2a)

v̇ = v2 − (πr)2 + js+ 1, (4.2b)

τ ṡ = −s+ rd. (4.2c)

In the next section we analyze the stability of the fixed point of Eqs. (4.2).

4.1 Oscillatory instabilities

To analyze the stability of the stationary solution of Eqs. (4.2), we linearize around the

fixed point setting r(t) = r∗ + δreλt, s(t) = s∗ + δseλt and v(t) = v∗ + δveλt. We then

obtain the following characteristic equation:

2jr∗e
−λd = (1 + λτ)

[
(2πr∗)

2 +

(
λ+

δ

πr∗

)2
]
. (4.3)

Clearly, Eq. (4.3) reduces to the characteristic equation Eq. (2.4) of the system with

vanishing delays when d→ 0. Imposing the condition of marginal stability λ = iω, we

*The only extra parameter to be rescaled comparing to Chapter 3 is D. The dimensionless variables

are then t̃ =

√
Θ

τm
t, r =

τm√
Θ
R, v =

V√
Θ

. The new parameters are: j =
J√
Θ

, δ =
∆

Θ
, τ =

√
Θ

τm
τd,

d =

√
Θ

τm
D. The overdot in Eqs. (4.2) represents derivative w.r.t. the dimensionless time t̃.
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obtain the two following conditions:

ω2

(
1 +

2δτ

πr∗

)
− 4π2r2

∗ −
(

δ

πr∗

)2

= −2jr∗ cosωd, (4.4a)

ω

[
τω2 −

(
2πδr∗ + 4τ (πr∗)

4 + τδ2
)

(πr∗)
2

]
= 2jr∗ sinωd. (4.4b)

Explicit solutions of Eqs. (4.4) cannot be found; however, parametric formulas for the

Hopf bifurcations can be obtained. We first illustrate the simpler case of an identical

population of neurons, δ = 0.

4.1.1 Identical neurons δ = 0

Setting δ = 0 in Eqs. (4.4), it is possible to find explicit solutions for d and j, as a function

of the Hopf frequency ω. As in the QIF-FRE with instantaneous synaptic kinetics and

fixed delays (Chapter 3), the system dynamics is characterized by a sequence of Hopf

bifurcations. The Hopf boundaries are given by

j
(n)
H = πα1/2

n

(
ω2
n − 4

)
×





(4α−1
n + 8 + 4ω2

nαn + 2ω2
n)
−1/2

, odd n

(4α−1
n − 8 + 4ω2

nαn − 2ω2
n)
−1/2

, even n
(4.5)

d
(n)
H =

nπ − arctan (τωn)

ωn
, (4.6)

where αn =
√

1 + τ 2ω2
n and n ∈ Z. When τ → 0, we have αn = 1 and ωn = nπ/d,

then recovering the equations of Chapter 3 and (Pazó and Montbrió, 2016) *. Remarkably,

the formula for the Hopf frequency given by Eq. (4.6) coincides with the formula obtained

by Brunel and Wang for the oscillations that emerge in networks of inhibitory spiking

neurons with strong noise, the sparsely synchronized state (Brunel and Wang, 2003).

The boundaries Eqs.(4.5,4.6) can be plotted in the plane (d, j) for different values of

parameter τ . The resulting phase diagrams are shown in Fig. 4.1. The black lines

represent the Hopf bifurcations; in the dark shaded region the fixed point is stable. The

*For this reason we indicate ω as ωn in Eqs. (4.5), even if in this formulation ω has no explicit
dependence on n.
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Figure 4.1: Phase diagram of the model Eqs. (4.2) for τ = 0.5 (left) and τ = 5 (right). The
black lines are the Hopf bifurcations Eqs.(4.5). Gray shading indicates stability of the fixed point.

Figure 4.2: Phase diagram of the model Eqs. (4.2) in the (τ, j) parameters space for d = 0.5
(left) and d = 1 (right). The black lines are Hopf bifurcations of the fixed point. Gray shading
indicates stability of the fixed point.

tent-shaped structure of both panels is clearly reminiscent of the phase diagrams obtained

in the previous chapter for the QIF-FRE with fixed delays. The slower the synaptic

kinetics, the more the shape of the tents is modified (right panel of Fig. 4.1). Regions

of stable incoherence grow, as the intersections between consecutive Hopf lines shift to

larger coupling strengths.

To facilitate the comparison with the model analyzed in Chapter 2 we also plot the

boundaries Eqs. (4.5) in the (τ, j) parameter space, for fixed values of the delay d. The

resulting phase diagrams are shown in Fig. 4.2. In absence of delays oscillations are

present only for inhibitory coupling–see Fig. 2.3 of Chapter 2. Short fixed delays induce

oscillations also for excitatory coupling (left and right panel of Fig. 4.2). For larger delay

values, the asynchronous solution is stable also for inhibitory coupling for large values

87



of the synaptic time constant τ (right panel of Fig. 4.2).

The range of values that parameters can assume is limited by physiological constraints.

We then also plot the Hopf lines Eq. (4.5) with dimensional parameters. Synaptic

latencies typically are of the order of a few milliseconds (Markram et al., 1997). On

the other hand, synaptic decay time constants may vary from a few milliseconds (fast

inhibitory GABA-mediated synapses), to tens of milliseconds (slow excitatory NMDA

neurotransmitters) (Roth and van Rossum, 2009). In Fig.4.3, we show the phase diagram

for Eqs. (4.1) for two values of the intrinsic period of the neurons (left panel: 5 Hz, right

panel: 60 Hz) and two values of the synaptic time constant (solid lines: τd = 5 ms,

dashed lines: τd = 100 ms).

In this range of delays, between 0 and 10 ms, only the first three Hopf lines affect the

dynamics of the system. When neurons have a low intrinsic firing rate (left panel),

oscillations exist mainly in the inhibitory region of the diagram. However, with strong

enough coupling and sufficiently large delay, the system undergoes an Hopf bifurcation

also for excitatory coupling. With higher intrinsic firing of the neurons (right panel), the

crossing of the first Hopf line with the axis J = 0 is at D ' 5 ms, so that the regions

of oscillations for excitatory coupling enlarges. As a counter effect, here larger delays

prevent oscillations for inhibitory coupling. In both panels, the effect of increasing the

synaptic time constant τd is modest and mainly quantitative, as it slightly shifts the Hopf

lines toward shorter delay (see dashed lines in Fig. 4.3).

These findings indicate that the dynamics of the system strongly depends on the presence

of a fixed synaptic delay. Indeed, the effect of varying the synaptic time constant produce

no qualitative changes of the phase diagram of the model. The characteristic tent-shaped

structure of the Hopf bifurcations of the equations with fixed delays persist when the

decay time of the synapses is finite. On the other hand, even short delays of the order of

few milliseconds (in range with experimental observations of synaptic latencies, see e.g.

(Markram et al., 1997)) induce oscillatory dynamics for excitatory coupling, in contrast

to the case of first (or second–not shown) order synaptic kinetics, where oscillations

appear only for inhibitory interactions.
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Figure 4.3: Phase diagram of the model Eqs. (4.1) for slow (left) and fast (right) intrinsic
frequency of the neurons. The black lines are the Hopf bifurcations Eqs. (4.5). The synaptic time
constant τd is equal to 10 ms for the solid lines (fast synapses), and to 100 ms for the dashed
lines (slow synapses). Grey regions indicate stability of incoherence. Left panel: η = 3.58. Right
panel: η = 0.024. In both panels, τm = 10 ms.

4.1.2 Heterogeneous neurons δ 6= 0

We now consider an heterogeneous population of neurons, taking δ 6= 0 in Eqs. (4.2). In

this case, explicit parametric formulas for j and d cannot be found from Eqs. (4.4), as

the fixed point solution of Eqs. (4.2) can be found only numerically.

To plot the Hopf boundaries, we apply the following procedure. Given a value of r∗,

from the fixed point condition we find jfp = j(r∗). Then, we can solve Eq. (4.4b) for

d = d(jfp, ω). Substituting the solution in Eq.(4.4a), we obtain a numerical solution

for ω. We can then plot the boundaries in the plane (d, j), varying parametrically r∗,

for different values of δ. The resulting phase diagrams, for τ = 0.5 and τ = 5, are

shown in Fig. 4.4. Comparing to the case δ = 0, here incoherence is always stable for

small coupling strengths. For small heterogeneity and vanishing delay, for both values

of τ , incoherence is unstable in a range of negative j values. This range corresponds

to the islands of stable oscillations of the model without delays described in Chapter 2

(see Fig. 2.3). Increasing heterogeneity, while the boundaries in the positive j region

persist for large enough coupling, for inhibitory coupling they progressively shift to

larger delay values. This is particularly pronounced for large τ values, where already

for small values of δ oscillations appear only for large values of the delay. Eventually,

the Hopf boundaries completely disappear from the inhibitory region of the diagram.
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Figure 4.4: Phase diagram of the model Eqs. (4.2) for different values of the heterogeneity δ
and the synaptic time constant τ . Left panel: τ = 0.5. Right panel: τ = 5. The scatter points
represent the Hopf boundaries obtained from Eqs. (4.4). Different colors stand for different values
of the heterogeneity. Oscillations are present inside the islands defined by the Hopf lines.

A numerical estimation of the critical value of δ at which the diagram disappears gives

δc = 0.577 . . . for both τ = 0.5, 5. Thus, oscillations are fragile against heterogeneity in

inhibitory networks consistently across the three forms of synaptic coupling considered

in this thesis.

As in the previous section, we also show the phase diagram of the system in a parameter

space with physical dimensions. The diagram is shown in Fig. 4.5; the parameters chosen

are the same as in the right panel of Fig. 4.3. In this range of delays, oscillations appears

for both excitatory and inhibitory coupling. While for excitatory coupling, sufficiently

increasing the synaptic strength may lead to oscillations, the oscillations rapidly disappear

from the inhibitory region of the diagram.

In the next section, we analyse the dynamics of traditional firing rate equations with

fixed delays and first order synaptic kinetics, to compare it with the results obtained with

the QIF-FRE.
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Figure 4.5: Phase diagrams of the QIF-FRE Eqs. (4.1) for different values of the heterogeneity
∆ and fast synaptic kinetics τd = 5 ms. The scatter points are the Hopf boundaries. Different
colors correspond to different values of ∆. All other parameters are as in right panel of Fig. 4.3.

4.2 Wilson-Cowan equations with fixed delays and synap-

tic kinetics

A Wilson-Cowan-type equation with both synaptic kinetics and a fixed delay takes the

form:

τmṘ = −R + Φ(JτmS + η̄), (4.7a)

τdṠ = −S +R(t−D), (4.7b)

where, as in previous chapters, we choose the function Φ to be the transfer function

for QIF neurons Eq. (2.3). The fixed points of Eq. (4.7), determined by the conditions

R∗ = Φ(R∗) and S∗ = R∗, clearly are the same of Eqs. (4.1). Here, we analyse the

model without rescaling parameters, even though the same rescaling adopted for the

QIF-FRE can be employed.

This model, with fixed delays and synaptic kinetics, also display oscillations, which

are induced by the time delay D. Linearizing around the fixed point and imposing

the condition of marginal stability λ = iΩ, we obtain the following conditions for the
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emergence of oscillations:

(τm + τd)Ω

1− τmτdΩ2
= − tan(ΩD), (4.8a)

(τd + τm)Ω = −τmJΦ′ sin(ΩD), (4.8b)

where Φ′ is the derivative of the transfer function evaluated at the fixed point. Eqs. (4.8)

clearly reduce to Eqs. (1.9) when τd → 0.

Solving for D and Ω, we find:

D
(n)
H =

arctan

[
(τm + τd) Ω

τmτdΩ2 − 1

]
+ nπ

Ω
, (4.9a)

Ω =

√
−τ 2

m − τ 2
d +

√
(τ 2
m − τ 2

d )
2

+ 4J2τ 2
d (Φ′)2

√
2τmτd

, (4.9b)

where n ∈ Z.

Hence Eqs. (4.9) together with the fixed point condition Φ(R∗) = R∗, permit to plot

the Hopf boundaries in the (D, J) plane for several values of the heterogeneity ∆. The

0 10 20
D [ms]

−40

−20

0

J

∆ = 0.0

∆ = 0.4

∆ = 0.7

∆ = 1.0

Figure 4.6: Phase diagrams of the Wilson Cowan model Eqs. (4.7) for different values of the
heterogeneity ∆. The black line corresponds to the Hopf bifurcation for identical neurons. Gray
shading indicates stability of incoherence for identical neurons. The scatter points are the Hopf
boundaries obtained varying r∗ in Eqs. (4.9). Incoherence is stable left to the Hopf boundaries.
All other parameters are as in right panel of Fig. 4.3.
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resulting diagram is shown in Fig. 4.6. In contrast to the QIF-FRE, here only the first

Hopf line n = 1 is relevant for the dynamics of the system, as the subsequent Hopfs

destabilize already unstable solutions. Moreover, this line exists only for negative values

of the coupling J , in contrast with the QIF-FRE, where oscillatory instabilities exist also

for excitatory coupling.

For identical neurons (∆ = 0), the difference between the H-FRE and the QIF-FRE is

pronounced also for negative couplings: for short delays, the QIF-FRE display oscil-

latory behaviour, in contrast to the H-FRE where incoherence is always stable. This

result agrees with the fact that the H-FRE with first order synaptic kinetics do not show

oscillations, unless some delay is explicitly considered into the equations (Keeley et al.,

2017; Devalle et al., 2017). We note that, if second order kinetics is considered (e.g.

alpha synapses), then the H-FRE do have an oscillatory instability for vanishing delay–

not shown.

4.2.1 Disappearance of oscillations for large heterogeneity

Increasing heterogeneity, the Hopf lines shift toward larger values of D, as in the QIF-

FRE. It is possible to compute the critical value of ∆ at which the boundaries disappear.

Indeed, imposing that the solutions of Eq. (4.9b) must be real (positive argument of the

square root), we find the critical value:

(
∆

η̄

)

c

=
1√
3

= δc. (4.10)

Note how the relevant parameter for the existence of inhibition-driven oscillation is the

previously defined dimensionless quantity δ. At this value of δ, the Hopf frequency Ω

vanishes and the boundaries tend to D →∞, as it can be easily verified by computing

the limit ω → 0 in Eq. (4.9a).

Interestingly, this critical value δc coincides with the critical value we numerically

estimated for the QIF-FRE. The value does not depend on the synaptic time constant τ ;

93



in fact, it holds also for infinitely fast synapses. In Fig. 3.6 of Chapter 3, it corresponds

to a vertical line tangent to the Hopf boundary, due to the different variables’ rescaling.

In the QIF-FRE, the ratio ∆/η̄ establishes the fraction of excitable vs oscillatory neurons.

The cumulative distribution of the Lorentzian density of frequencies is:

F (η) =
1

π
arccot

(
η̄ − η

∆

)
,

which, for η = 0, gives:

F (0) =
1

π
arctan

(
∆

η̄

)
.

The critical value of the fraction of excitable (non-oscillatory) neurons is then

Fc =
1

π
arctan δc =

1

6
.

Hence, when the fraction of excitable or inactive neurons is above ∼16%, both the

QIF-FRE and the H-FRE with delays and first order synaptic kinetics do not display

oscillations for any (D, J) values. Note that this value does not depend on the decay

time constant of the synapses τd. On the other hand, we saw in the previous chapter that,

when D = 0 in Eqs. (4.1), such critical value reduces to ∼5 % (see section (2.5.3.1)

of chapter 2). This further indicates the importance of the time delay for generating

oscillatory behavior.

4.3 Discussion

Presynaptic and dendritic processing unavoidably produce some delay in action potential

transmission (Markram et al., 1997). Together with postsynaptic filtering, they contribute

to shape the collective dynamics of neuronal populations. In this chapter, we analyzed

the combined effect that fixed delays and synaptic kinetics have on the QIF-FRE.

We showed that a fixed time delay is important for determining the dynamics of the

network. In fact, even short delays of the order of a few milliseconds, generate oscillatory
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instabilities in networks of excitatory neurons. Oscillatory states cannot be achieved on

the other hand in excitatory networks with only first or second order synaptic kinetics. In

fact, the effect of introducing a finite time constant in the interaction is mainly quantita-

tive. It certainly favors the emergence of oscillatory behaviours in physiological ranges

of the synaptic latency, but does not qualitatively alters the model dynamics.

Moreover, we conducted a similar analysis in the Wilson-Cowan equations for one recur-

rently coupled population with fixed delays and first order synaptic kinetics. At variance

with the QIF-FRE, the H-FRE do not capture the excitation-driven oscillations observed

in presence of delays, neither for identical, or heterogeneous neuronal populations. The

two models, QIF-FRE and H-FRE, qualitatively agree only for inhibitory coupling, and

large heterogeneity.

95



Conclusions and discussion

In this dissertation, we investigated the emerge of synchrony-driven oscillations in net-

works of spiking neurons with synaptic delays. For this purpose, we employed a recently

derived firing rate model for networks of QIF neurons, the QIF-FRE. We were able to

analyze the bifurcation structure of the model to a large extent analytically for different

forms of synaptic delays. In parallel to the analysis of the reduced model, we conducted

extensive numerical simulations of the underlying network of spiking neurons, which

confirm the presence of several synchrony-based oscillatory states. Moreover, we sys-

tematically compared the dynamics of the novel QIF-FRE, to that of traditional rate

equations of Wilson-Cowan type. In the following we discuss the most relevant results

that emerged from the analysis conducted.

Synchrony-driven oscillations and heterogeneity. Synaptic delays favor the emer-

gence of synchronization in networks of spiking neurons (Wang and Buzsáki, 1996;

Van Vreeswijk et al., 1994; White et al., 1998). Synchronous neuronal firing is reflected

at the macroscopic level by collective rate oscillations. Traditional firing rate equations

cannot describe such oscillations, as they generally capture the dynamics of highly

asynchronous networks’ states (Wilson and Cowan, 1972; Abbott and van Vreeswijk,

1993).

The firing rate equations employed in this dissertation faithfully capture synchronous
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neuronal firing, and hence correctly display the macroscopic self-sustained oscillations

that synaptic delays generate in networks of spiking neurons. It is well known that such

synchrony-driven oscillations are fragile against heterogeneity for inhibitory networks

(Wang and Buzsáki, 1996; White et al., 1998; Tiesinga and José, 2000). In contrast to

the Kuramoto model with time delays, where increasing (either excitatory or inhibitory)

coupling, may always result in a synchronization transition (Yeung and Strogatz, 1999;

Montbrió et al., 2006), networks of inhibitory neurons cease to oscillate when hetero-

geneity is too strong (Wang and Buzsáki, 1996; White et al., 1998; Tiesinga and José,

2000). We have shown that this phenomenon is well captured and predicted by the

QIF-FRE. For all three forms of synaptic delays considered in this thesis, oscillations

in inhibitory networks are suppressed beyond a critical value of the heterogeneity, no

matter the strength of recurrent connections.

The relation of the QIF-FRE with traditional firing rate models. As previously dis-

cussed, traditional firing rate models, at variance with the QIF-FRE, do not describe

synchronous states. The fundamental reason for this discrepancy resides in the fact that,

while traditional rate models only keep track of the mean firing rate of the neuronal

population, the firing rate equations employed in this dissertation track both the mean

firing rate and the mean membrane voltage (Montbrió et al., 2015). This difference

produces important effects on the network dynamics, particularly concerning oscillatory

behavior. Already a comparison of the QIF-FRE and traditional rate models in the simple

setting of one excitatory recurrently coupled population with instantaneous synapses,

reveals a simple but essential discrepancy. While the steady bifurcations of the two

models are the same, the high activity stable fixed point of the QIF-FRE is a focus rather

than a node (i.e. perturbations decay oscillating to the fixed point) (Montbrió et al., 2015).

This feature is what constitutes the substrate in the QIF-FRE for the presence of the

self-sustained oscillatory states shown in Chapters 2 and 3 when synaptic kinetics, or

time delays, are considered.

The dynamical regimes that traditional rate models show are also captured by the QIF-
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FRE. The bistability among high and low activity fixed points is inherent to the fixed

point structure of the two models. The oscillations that emerge when explicit delays

are introduced in the traditional rate equations for inhibitory networks are also captured

by the QIF-FRE (Chapter 3). Interestingly, traditional rate equations are generally con-

sidered to describe highly asynchronous network states, in the noise-dominated regime.

However using the QIF-FRE the microstates of the network can be directly observed,

and it can be appreciated that the neuronal dynamics is purely deterministic, and that the

network state underlying the collective oscillations is partially synchronous (Chapter 3).

This consideration further underlines the non-trivial relation among the microscopic state

of a network, and its macroscopic or collective dynamics.

When the voltage-dependent spike synchronization mechanism is suppressed the QIF-

FRE and the H-FRE become formally equivalent, and have the same dynamical behaviour

(Chapter 2). This is what occurs when synaptic kinetics is assumed to be much slower

than neuronal dynamics (and external inputs are also slow). In this limit, the neuronal

variables (firing rate and membrane potential in the QIF-FRE, only the firing rate in the

H-FRE), rapidly converge to their fixed points, suppressing the rate-voltage interplay of

the QIF-FRE and therefore the spike-synchronization mechanism.

In the case of fixed delays (Chapter 3), no formal equivalence among the two models

is found. Still, for inhibitory coupling, the phase diagrams of the QIF-FRE and the

corresponding H-FRE become increasingly similar as heterogeneity is increased. The

tendency of the QIF-FRE and H-FRE to agree as heterogeneity is increased holds also

when both synaptic kinetics and fixed delays are simultaneously considered (Chapter 4).

Also in the latter case, a reduction of the QIF-FRE to a Wilson-Cowan type equation is

hard to achieve and requires further investigations, as more time scales are involved in

the system dynamics (the fixed delay, the time constant of the synaptic dynamics, and

the neuronal time constant).

Dichotomy among macroscopic and microscopic dynamics. A great advantage of the

Ott-Antonsen theory is that it offers a description at two different scales: the microscopic
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(single neurons) dynamics, and the macroscopic (mean-field) dynamics. This allows to

explore the relation among the two spatial scales. From a theoretical perspective, this

fact represents a novelty in the field: typically, firing rate descriptions are not exactly

derived from the underlying network of spiking neurons, and hence do not establish a

precise relationship among the microscopic and the macroscopic scale.

For Kuramoto-like synchronous states (e.g. the oscillations shown in Chapter 2) the

relation among neuronal and mean-field dynamics is transparent. The neurons that

contribute to the mean-field oscillations are frequency-locked and regularly fire at the

same frequency as the mean field. On the other hand, for the partially synchronous states

illustrated in Chapter 3, such as the QPS and the M-QPS, the micro-macro relation is far

more intricate: in the QPS, a periodic mean field is produced self-consistently by a popu-

lation of quasiperiodic neuronal oscillators. The neurons ”feel” a periodic mean-field,

with incommensurable frequency to their own: therefore they behave quasiperiodically.

Intriguingly, the mean-field is produced by the population itself. The neurons contribut-

ing to the peaks of the mean field change over time, at variance with the Kuramoto-like

synchronous states.

In the M-QPS, a similar reasoning can be carried out, with the difference that here the

mean-field is quasiperiodic: single neuron dynamics is then also quasiperiodic, but with

three, rather than two, frequencies. The microscopic-macroscopic dichotomy emerges

also in the chaotic states: here, the collective dynamics is chaotic, while the single

neurons have either zero (if they are identical) or negative Lyapunov exponents (Chapter

3 and (Pazó and Montbrió, 2016)).

Remarkably, the presence of complex partially synchronous states as the QPS is revealed

by the QIF-FRE. This fact shows the utility of low-dimensional descriptions as the

QIF-FRE to analyze and investigate the dynamics of large neuronal networks. Thanks to

their simplicity, such firing rate descriptions allow to uncover and thoroughly analyze

complex dynamical regimes.
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Open questions and perspectives for future work

The firing rate equations employed in this dissertation have shown to be a valuable tool

to investigate the dynamics of networks of spiking neurons. Specifically, at variance

with traditional firing rate equations the QIF-FRE correctly account for synchrony-

driven oscillations generated by the interplay between recurrent network connections

and synaptic delays. Yet, the QIF-FRE also suffer some limitations, mainly due to the

assumptions made to obtain the low-dimensional description (Ott and Antonsen, 2008,

2009; Ott et al., 2011).

Specifically:

• The connectivity structure of the network of spiking neurons is assumed to be

all-to-all. However, local cortical circuits have complex synaptic connectivity

structures, see e.g. (Song et al., 2005);

• The shape of the distribution of heterogeneity is Lorentzian;

• The dynamics of the single neurons is purely deterministic.

On the connectivity structure, a certain progress has been recently made to account for

more complex topologies in networks of theta neurons (Chandra et al., 2017) and phase

oscillators (Restrepo and Ott, 2014). Additionally, mean-field approximations allow to

rephrase a random structure of the synaptic connectivity into quenched heterogeneity of

the synaptic weights (di Volo et al., 2014). This approach has been recently employed

using the QIF-FRE to investigate the dynamics of random networks of spiking neurons

(di Volo and Torcini, 2018).

Concerning the type of distribution assumed for the heterogeneity, the QIF-FRE were

shown to qualitatively capture the dynamics of the system also for Gaussian distributed

heterogeneity (Montbrió et al., 2015). However, further studies are needed to extend

the Ott-Antonsen ansatz, and hence the QIF-FRE, to more general shapes of synaptic

connectivity and forms of heterogeneity. In the following, we discuss the role of noise,

which is probably the more compelling issue, as experimental evidence indicates that
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spike train statistics of single neurons is often stochastic.

The presence of noise. Strictly speaking, the Ott-Antonsen approach, on which the

derivation of the QIF-FRE is based, holds only for deterministic networks of oscillators.

Still, it can be expected to capture the qualitative dynamics of the systems as long as

the noise is small, i.e. the oscillator’s dynamics is mainly governed by the deterministic

contribution (Vlasov et al., 2016). In networks of neurons, this regime is usually called

mean-driven regime. In the mean-driven regime, neuronal spiking is substantially regular.

The mean-driven regime is opposed to the noise-driven regime, where spiking (driven

by noisy inputs) is highly irregular. Irregular spike trains are often observed both in in

vivo and in vitro experiments. A vast literature exists on the dynamics of noise-driven

excitable system, see (Lindner et al., 2004) for a review. A relevant example closely

related to the topics of this dissertation are the stochastic oscillations that arise in net-

works of spiking neurons with recurrent delayed inhibition and strong noise (Brunel and

Hakim, 1999, 2008; Brunel and Wang, 2003). In this regime, also known as sparsely

synchronized state (SPS), the mean field oscillates with a period of about twice the delay,

while the neurons fire stochastically, with a rate much lower than the collective oscillation.

The origin of these oscillations can be intuitively understood as follows: strong noise

guarantees the irregular microscopic firing, while strong recurrent delayed inhibition

produces windows where firing is less likely to occur. This, in turn, induces (after a

delay) windows of lower inhibition, and therefore higher activity. The period of the

collective oscillation is then about twice the delay. Macroscopically, the SPS is closely

related to the QPS state reported in Chapter 3. In the QPS, the collective period is also

about twice the delay (or exactly twice the delay for populations of identical neurons),

and the collective oscillation can be understood intuitively exactly in the same way as

the SPS. However, the single neurons dynamics in the two regimes is very different.

In the QPS, neurons fire quasiperiodically, with an average firing rate higher than the

mean-field; in the SPS, neurons fire irregularly at low rate. Intuitively speaking, the QPS

appears to be the ”mean-driven” correspondent regime of the SPS: it preserves the same
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macroscopic collective dynamics, yet with a strikingly different microscopic counterpart.

Some progress has been recently made to obtain low dimensional descriptions for pop-

ulations of noisy oscillators. A strategy to tackle the problem has been developed in

(Tyulkina et al., 2018; Goldobin et al., 2018), based on a perturbative approach on top of

the Ott-Antonsen reduction. The approach is perturbative on the order of magnitudes

of the noise, and could then in principle account for high noise intensities. As noise is

increased, extra equations are added to the mean-field description. Could this approach

bridge among states, and regimes, like the QPS and the SPS? Is it actually possible to

describe with macroscopic laws highly stochastic regimes as the SPS? Could a mean-field

model account both the mean-driven and the noise-driven regimes, and be sufficiently

simple to be of practical utility? These are important questions which need to be further

explored.

Modelling perspectives. A great challenge of theoretical neuroscience is to understand

possible functional roles and underlying mechanisms of the wide range of rhythms that

are constantly observed in electrical recordings of brain activity (Dipoppa and Gutkin,

2013; Deco et al., 2013; Cabral et al., 2011, 2014; Freyer et al., 2011; Daffertshofer et al.,

2018). Are brain oscillations a mere epiphenomenon, or do they play a functional role?

What are the neuronal mechanisms that generate such large-scale rhythms? Theoretical

modelling should address and provide insights into these questions.

The spike-synchronization mechanism inherent in networks of spiking neurons has been

proposed to play a functional role in working memory (Dipoppa and Gutkin, 2013)

and inter-areal brain communication (Fries, 2005). The firing rate equations employed

in this dissertation, the QIF-FRE, readily account for a large variety of synchrony-

driven dynamical regimes, ranging from Kuramoto-like synchronous states, to the non-

trivial partially synchronous states reported in Chapter 3. Faithfully accounting for

the spike-synchronization mechanism inherent in networks of spiking neurons, the

QIF-FRE constitute an ideal candidate to investigate oscillations-driven brain functions.

Specifically, mean-field descriptions as the QIF-FRE have been employed to model
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working memory computations (Schmidt et al., 2018), motor control (Byrne et al., 2017),

and inter-areal neuronal communication (Dumont and Gutkin, 2018).

We expect the firing rate equations studied in this dissertation to serve as a valuable

modeling tool for the neuroscience community, helping to unravel the fundamental

principles that underlie the relation between oscillations and cognitive functions.
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APPENDIX A

Numerical simulations of Chapter 1

In this Appendix, we describe the models and methods used to perform the numerical

simulations of networks of spiking neurons of Chapter 1. The model neurons used

throughout Chapter 1 are the Wang-Buzsáki (WB) neuron (Wang and Buzsáki, 1996),

and the quadratic integrate-and-fire (QIF) neuron (Ermentrout and Kopell, 1986; Izhike-

vich, 2007). In the following, we describe the equations of the model neurons employed.

A.1 Spiking neuron models

Wang-Buzsáki neuron. We numerically simulated a network of N all-to-all coupled

WB neurons, where the dynamics of each neuron is described by the time evolution of

its membrane potential:

CmV̇i = −INa,i − IK,i − IL,i − Isyn + Iapp,i + I0.

The cell capacitance is Cm = 1 µF/cm2. The inputs Iapp (in µA/cm2) are distributed

according to a Lorentzian distribution with half width σ and center Ī . In numerical
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simulations these currents were selected deterministically to represent the Lorentzian

distribution as Iapp,i = Ī + σ tan(π/2(2i − N − 1)/(N + 1)), for i = 1, . . . , N . The

constant input I0 = 0.1601 µA/cm2 sets the neuron at the SNIC bifurcation when

Iapp = 0. The leak current is

IL,i = gL (Vi − EL) ,

with gL = 0.1 mS/cm2, so that the passive time constant τm = Cm/gL = 10 ms. The

sodium current is

INa,i = gNam
3
∞h (Vi − ENa) ,

where gNa = 35 mS/cm2, ENa = 55 mV, m∞ = αm/ (αm + βm) with αm (Vi) =

−0.1 (Vi + 35) / (exp (−0.1 (Vi + 35)− 1)),

βm (Vi) =4 exp (− (Vi+60) /18). The inactivation variable h obeys the differential equa-

tion

ḣ = φ (αh (1− h)− βhh) ,

with φ = 5, αh (Vi) = 0.07 exp (− (Vi + 58) /20) and βh (Vi) = 1/ (exp (−0.1 (Vi + 28)) + 1).

The potassium current follows

IK,i = gKn
4 (Vi − EK) ,

with gK = 9 mS/cm2, EK = −90 mV. The activation variable n obeys

ṅ = φ (αn (1− n)− βnn) ,

where αn (Vi) = −0.01 (Vi + 34) / (exp (−0.1 (Vi + 34))− 1) and

βn (Vi) = 0.125 exp (− (Vi + 44) /80).

The synaptic current is Isyn = k{E,I}CmS, where S is the synaptic activation variable

and k{E,I} is the excitatory or inhibitory coupling strength (expressed in mV). The factor

Cm ensures that the effect of an incoming spike to the neuron is independent from its
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passive time constant. The neuron is defined to emit a spike when its membrane potential

crosses 0 mV.

Quadratic integrate-and-fire neuron model. In the numerical simulations of Chapter

1 we considered a population of N QIF neurons, where each neuron is described by the

differential equation:

τmV̇j = V 2
j + ηj + JτmS(t) + I(t) (A.1.1)

where j = 1, . . . , N , ηj represents the quenched heterogeneity, S is the synaptic activity,

J the coupling or synaptic strength, and I(t) an external time varying input. The

membrane time constant τm is set to 10 ms. The inputs ηj are distributed according

to a Lorentzian distribution with half width ∆ and center Θ. In numerical simulations

these currents were selected deterministically to represent the Lorentzian distribution

as ηj = Θ + ∆ tan(π/2(2j − N − 1)/(N + 1)), for j = 1, . . . , N . Eq. (A.1.1) is

accompanied by the resetting condition:

If Vj ≥ Vth then − Vj ← Vj. (A.1.2)

According to the theoretical analysis presented in section 1.5 of Chapter 1, the resetting

rule is applied as follows: when Vj ≥ Vth, the membrane voltage is held at Vj for a time

interval τm/Vj . Then, a spike is emitted, and the voltage is reset and hold at −Vj for

another interval τ/Vj .

Numerical simulations

In the numerical simulations carried out in Chapter 1 we considered populations of

N = 1000 WB neurons andN = 1000 QIF neurons. To integrate the evolution equations

for both the WB and the QIF spiking model we used the Euler method. For WB neurons,

we used a time step dt = 0.001 ms, while for QIF neurons we used dt = 5× 10−5 ms.
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From all the simulations, an initial transient is discarded.

In Figs. 1.3, 1.4 and 1.5 the synaptic variable is defined as S(t) = R(t − D), where

D = 3 ms and the firing rate is defined according to

R(t) =
1

Nτs

N∑

j=1

∑

k\tkj<t

∫ t

t−τs
dt′δ(t′ − tkj ), (A.1.3)

with τs = 10−2 ms.

In Figs. 1.7 and 1.8 the synaptic variable follows the first order kinetics:

τdṠ = −S +R, (A.1.4)

where R is defined according to Eq. (A.1.3) with τs = 10−2 ms.
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Berger, H. (1929). Über das elektrenkephalogramm des menschen. Archiv für psychiatrie

und nervenkrankheiten, 87(1):527–570.

Beurle, R. L. (1956). Properties of a mass of cells capable of regenerating pulses.

Philosophical Transactions of the Royal Society of London. Series B, Biological

Sciences, 240(669):55–94.

Breakspear, M., Heitmann, S., and Daffertshofer, A. (2010). Generative models of

cortical oscillations: neurobiological implications of the kuramoto model. Frontiers in

human neuroscience, 4:190.

109



Bressloff, P. C. (2011). Spatiotemporal dynamics of continuum neural fields. Journal of

Physics A: Mathematical and Theoretical, 45(3):033001.

Bressloff, P. C. and Kilpatrick, Z. P. (2008). Nonlocal ginzburg-landau equation for

cortical pattern formation. Phys. Rev. E, 78:041916.

Brunel, N. and Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire

neurons with low firing rates. Neural Comput., 11(7):1621–1671.

Brunel, N. and Hakim, V. (2008). Sparsely synchronized neuronal oscillations. Chaos:

An Interdisciplinary Journal of Nonlinear Science, 18(1):015113.

Brunel, N. and Hansel, D. (2006). How noise affects the synchronization properties of

recurrent networks of inhibitory neurons. Neural Comput., 18(5):1066–1110.

Brunel, N. and Wang, X.-J. (2003). What determines the frequency of fast network

oscillations with irregular neural discharges? i. synaptic dynamics and excitation-

inhibition balance. Journal of neurophysiology, 90(1):415–430.
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