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Abstract

This research reviewed the "Smoking, Drinking and Drug Use among Young

People in England" 2010 survey (the Year 2010 Survey) study in terms of its

data collection, processing and analysis. The research aimwas to gain increased

understanding of young people’s drug-trying behaviour in England through

appropriate handling of missing data, as well as, to build upon the previous

work done, developing and applying statistical methodologies for analysis of

multivariate categorical data collected by the Year 2010 Survey study.

The main work done in this research included: (1) modifying the original data

set to arrive the usefulworking data set; (2) conducting exploratory data analysis

with the working data set to identify direction for further empirical investiga-

tion; (3) properly handling the missing data problem in the working data set

and (4) developing and applying advanced statistical methodologies to further

analyse the working data set.

Apart from supporting the main findings of the Year 2010 Survey study that

smoking, drinking and some drug-related socio-demographic covariates were



ii

positively associated with the students’ drug-trying behaviour, additional sig-

nificant results found by the univariate logistic regression models, log-linear

analysis models, two-parameter item response theory models and latent class

analysis models reported that (1) the 15 drugs were highly and positively as-

sociated with each other and each drug exerted different extent of influences

on the students’ drug-trying behaviour and (2) generally, students’ drug-trying

behaviour couldbe further explainedbynumerous smoking, drinking anddrug-

related socio-demographic factors at different extent.

These additional findings contributed to a deeper understanding of the drug use

problem, added evidence to the drug related research literature and provided

helpful guidance on formulating policies to combat against drug use problem in

England. Another contribution of this research was the development of a new

methodology for backward elimination of latent class analysis models which

provided a more thorough evaluation of the optimal number of latent class and

covariate elimination from saturated model.
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Chapter 1

Introduction

Drug use is a global problem and a long-standing issue for British society (Stim-

son (1987); McArdle (2004); Mold (2007); Niblett (2016)). Copps (2013) empha-

sized the seriousness of the problem in Britain by labelling it as "the addicted

man of Europe"; outlining an increase in the number of people using various

harmful drugs and yet who knew little of the damages that could be caused by

those drugs. Over the years, drug use problem has impacted British society in

various ways; for example: increasing the number of poisoning deaths, increas-

ing the economic burden on drug addicts’ families and society (Copello (2009);

Copps (2013); Manders (2016)), and causing the health and social problems,

such as disease transmission and growth in organised crime activities (Casey

(2012); Copps (2013); Swiftl (2013)).

Regarding the policies on drug use, Copps (2013) further mentioned that the

United Kingdom Government had endeavoured to combat against drug use

and alcohol addiction problems, but barriers, such as established interests and

funding cut, have impeded the government to effectively achieve its objective.

Despite that, the United Kingdom Government has been implementing policies

to combat against drug use problem (Stimson (1987); HM Government (2015);

HM Government (2017)). To provide helpful guidance to the United Kingdom

1
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Government on devising drug use policies, researchers usually rely upon sur-

veys and statistical analysis, such as logistic regression models, with purposes

to understand drug-trying behaviour, as well as to identify factors that are as-

sociated with drug use, for example, Fuller and Hawkins (2014). However,

reviews of some drug-related studies indicated that a better approach, in terms

of research methodologies to investigate drug-trying behaviour among young

people, is needed and must be carried out, in order to enrich understanding

of the drug use problem in England. With an objective to improve quality of

future drug research studies, in this research, we focus upon development and

application of advanced statistical methodologies to investigate drug-trying be-

haviour among young people in England. To achieve this research objective, a

data set from onemajor survey series on drug use among young people, namely

the "Smoking, Drinking and Drug Use among Young People in England" 2010

survey (the Year 2010 Survey) (Fuller et al., 2011), was utilised.

The "Smoking, Drinking andDrugUse amongYoung People in England" survey

series, which was firstly carried out in year 1982 as a comprehensive biannual

survey, is an annual survey that has been carried out jointly by the National

Centre for Social Research and the National Foundation for Educational Re-

search since 2000. The survey has been conducted to collect information about

young people’s behaviour and habits, in respect of smoking, drinking alcohol

anddruguse respectively. Please refer to Fuller et al. (2011) for the survey review.

The reported findings of the survey series have been considered by the United

Kingdom Government when devising its policies on smoking, drinking alco-

hol and drug use among young people in the country (Department of Health,

2010). This annual survey has most recently been conducted by Statistics Team,

NHS Digital (2017). For each annual survey conducted between the years 2010

and 2014 (Fuller et al. (2011); Fuller et al. (2012); Fuller et al. (2013); Fuller
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and Hawkins (2014); Fuller et al. (2015)), non-responses (design-based and self-

selected) and invalid or ambiguous responses existed in the data set. Potential

reasons for the missing data may be the sensitive nature of the drug use ques-

tions posed, misunderstanding of questions and question ambiguity. Moreover,

in the data analysis leading to the survey reports, potentially insufficient con-

sideration has been given to handle the missing data issue. Specifically, simple

methods, including treating missing categorical data as a separate category,

were used to handle the missingness. In addition, further information regard-

ing drug-trying behaviour among young people in England can be obtained

through employing appropriate, possibly more advanced, statistical models in

data analysis. For instance, one limitation of each annual survey is that for the

drug-trying response variables, there was no consideration of the interactions

of any sub-group behaviour. Another limitation is that the logistic regression

models typically employed in data analysis investigated aggregation over all

drug responses but did not consider each type of drug per se. As such, these

inherent limitations may affect the robustness of the survey findings and may

not have exploited sufficiently available information in the data collected.

Based upon the data collected by the Year 2010 Survey and built on its work

done, the primary aim of this research is to gain increased understanding of

drug-trying behaviour of young people in England by developing and applying

advanced statisticalmethodologies to permit analysis ofmultivariate categorical

data in the Year 2010 Survey study, in the presence of missing data.
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1.1 A Primer on Drugs: Classification, Usage and

Predictors

1.1.1 Definition and Classification of Drugs

According to the documents from the United Nations Office on Drugs and

Crime (UNODC), in terms of international drug control, both the terms "drug"

and "narcotic drug" are defined as "any of the substances listed in Schedule I

and II of the 1961 Single Convention on Narcotic Drugs" (United Nations, 1961).

These two schedules include, but are not limited to, cannabis, cocaine, heroin,

methadone, morphine and opium. The term "narcotic drug" is used imprecisely

to connote the term "illicit drug" in common parlance and legal usage (United

Nations, 2016).

In Europe, drug classification varies among member countries of the European

Union (EuropeanMonitoring Centre for Drugs andDrugAddiction, 2012a). For

example, in the Netherlands, drugs are classified into soft and hard drugs (Gov-

ernment of the Netherlands, 2011), and in Ireland, drugs are classified into five

schedules, where cannabis, LSD andMDMA are classified into the highest-level

schedule (European Monitoring Centre for Drugs and Drug Addiction, 2012b),

as being themost harmful drugs. Themost prominentmethod of drug classifica-

tion in the United Kingdom is using Schedule II of theMisuse of Drugs Act 1971,

Chapter 38 (HMGovernment, 1971), in which drugs are classified into classes A

to C, with class A represents the most dangerous drugs, and class C represents

the least dangerous drugs. Class A drugs include crack, cocaine, ecstasy, heroin,

LSD, magic mushrooms, amphetamines (if injected) and methadone. Class B

drugs include amphetamines (if taken orally), cannabis and benzodiazepines

(tranquillisers). Class C drugs include anabolic steroids and ketamine.
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1.1.2 Drug Use Problem

Drug use problem has been widespread around the world, yielding a consider-

ably large market value of illicit drugs (e.g. cannabis, cocaine, heroin, opium,

methadone, morphine, amphetamine). In 2003, the global illicit drug retail mar-

ket yielded a total of $ 321.6 billion US dollars. In the same year, the global illicit

drug trafficking market reached a total of $ 94 billion US dollars, which was

greater than the total amount of meat and cereal wholesale markets combined

(United Nations Office on Drug Control and Crime, 2005). More recently, May

(2017) estimated that the value of the global illicit drug trafficking market was

between $ 426 billion and $ 652 billion in 2014, which suggested an increase

in the value of the illicit drug market over the eleven-year period, from 2003

to 2014. Regarding the number and hence the proportion of people who used

illicit drugs, the World Drug Report 2017 (United Nations Office on Drug Con-

trol and Crime, 2017) revealed an increase in illicit drug use from the year 2006

to 2015, with the figure rising from 208 million to 255 million over the period.

In addition, there was an increase in the proportion of adults who used illicit

drugs. It was estimated that in 2015, 5.3 % of people aged between 15 and 64

had used illicit drugs, compared to 4.9 % in 2006.

In addition to a general increase in the number of people using drugs, vari-

ation in the types of drugs used has been observed. For example, cannabis

use became more prevalent in 2013 when compared to its use in 2009, which

was reflected in its corresponding prevalence index that had increased from 100

in 2009 (2009 as the base year and 100 as the base index) to more than 105 in

2013 (United Nations Office on Drug Control and Crime, 2015). However, an

opposite trend has been observed of using other drugs. For example, use of

amphetamines and cocaine became less prevalent in 2013 when compared to

2009, with both indices dropped from 100 to below 95 over the period (United
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Nations Office on Drug Control and Crime, 2015).

In the United Kingdom, drug use is also a long-standing problem. In 2013,

new ’legal highs’ were entering the drug market at the rate of one drug per

week (Copps, 2013). On the contrary, according to the National Health Service,

approximately 3.3 million adults in England aged 16-59 were using drugs in

2005, which dropped to around 2.9 million in 2011. Despite the decrease in the

number of drug users from 2005 to 2011, the drug use among adults in England

remained substantial (NTA, 2012). Drug use trends vary among different age

groups. More recently, according to the Home Office, the percentage of adult

users, aged 16-24, of drugs in England and Wales decreased gradually from

around 30 % in 1996 to between 15 % and 20 % between the years 2012 and 2015,

whereas the percentage of adult users, aged 30-59, of drugs remained similar

(Lader, 2015).

Trends in the usage of various types of drugs among young people in Eng-

land also vary. The percentage of the entire population in England that used

cannabis dropped from 11 % in 2001 to 7 % in 2010 (NTA, 2012). Also, accord-

ing to the National Health Service, there were 332,000 heroin and crack users

and 130,000 people who injected drugs into their bodies in England in the year

2005/06. These figures dropped to 306,000 and 103,000 respectively in 2009/10

(NTA, 2012). In contrast, there was an increase in the proportion of 16-59 years-

old adults that used Class A Drugs, from 2.7 % in 1996 to 3.2 % in the 2014/15

period (Lader, 2015). Also, an increase in the proportion of such adults using

powder cocaine was found rising from less than 1 % in 1996 to 2.4 % in 2014/15

(Lader, 2015). According to the Home Office, there was a rise in the proportion

of the population aged 16-59 who used anabolic steroids, from the year period

2004/05 to 2014/15 (Lader, 2015). Furthermore, the recent increase in the use of

new psychoactive substances has also become a worrying phenomenon, despite
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there was a slight decrease in the number of heroin or crack users in the past

few years prior to 2013 (Copps, 2013).

Focusing upon young people, there has been a sustained prevalence of life-

time drug use among young people in the United Kingdom. Hibell (2011)

pointed out that the lifetime use of illicit drugs (which included cannabis, am-

phetamines, cocaine, crack, ecstasy, LSD or other hallucinogens, heroin and

GHB) in the United Kingdom was higher than the average of European Union

(EU) (27 % for the UK versus 18 % for EU on average). In terms of lifetime use

of cannabis, marĳuana and hashish, figures representing the United Kingdom

were higher than the EU average (UK: cannabis - 25 %, marĳuana and hashish -

25%, EUon average: cannabis - 17%,marĳuana andhashish - 17%). In addition,

the United Kingdom yielded an above-average percentage of students who had

specifically used inhalants (10 % for the UK versus 9 % for EU on average), but

it yielded a below-average percentage of students who had used tranquillisers

or sedatives (3 % for the UK versus 6 % for EU on average). Besides, the report

"Substance Misuse Among Young People 2011-12" reflected an increasing trend

in the number of young people aged under 18 who sought specialist services

due to cannabis addiction problems, between 2005/06 and 2011/12, from 9,000

to 13,000 (NHS, 2012).

There are different trends in the usage of various types of drug among young

people. Recently, researches showed that cannabis is the most used drug among

young people. From the "Smoking, Drinking and Drug Use among Young Peo-

ple in England 2013" report, among the 5,168 students aged 11-15, 11.3 % of

them had used at least one drug during the year 2013, with 7.0 % of those

students trying cannabis (Fuller and Hawkins, 2014). Moreover, according to

Lader (2015), cannabis was the most commonly used drug among respondents

aged 16-24 in England and Wales in year period 2014/15, with 16.5 % of the
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respondents using it. Powder cocaine was the second most commonly used

drug among those respondents in 2014/15, with 2.4 % of them using it.

1.1.3 Impact of Drug Use Problem

Drug use problem among the public has contributed to several social problems

in the United Kingdom. Firstly, drug use problem has led to unnecessary deaths

in England and Wales. According to Manders (2016), the number of drug poi-

soning deaths increased from 2,597 in the year 2012 to 3,744 in the year 2016. The

number of deaths due to heroin and/or morphine increased from 579 to 1,209

between 2012 and 2016, and the number of deaths due to cocaine increased

from 139 to 371 between 2012 and 2016. Secondly, drug use problem among

the general public in the United Kingdom has posed an economic burden to the

UK public, costing British taxpayers 15 billion pounds in one year (Copps, 2013).

On a more personal level, drug use problem has added a financial burden

to the drug addicts’ families. For heroin users or crack users or both, the cost to

their families was estimated to be £9,497 annually in 2008 prices (Copello, 2009).

In addition, drug use problem has affected the family’s health and resulted in

loss of the addicts’ employment opportunities. The total annual cost among all

British families was estimated to be £1.8 billion (Copello, 2009). Also, the total

resource cost of NHS and local authorities was £747 million (Copello, 2009),

which is a huge economic burden to the United Kingdom government.

In summary, drug use problem has caused health and societal issues for young

people. For example, an increasing number of new drugs in the UK market has

caused some young people to lose their "bladders" (Copps, 2013). A research

on cannabis seizures found that cannabis is harmful to brain development, es-

pecially to those of young people with mental health issues (Swiftl, 2013). Also,
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drug takers are suffered from poorer overall health (Casey, 2012). Taking drugs

affect young people’s employability as well, because most employers are not

keen to employ drug takers (Casey, 2012).

Throughout the past two decades, the United Kingdom Government has im-

plemented measures and strategies to combat against drug use problem among

people (including young people) in the United Kingdom. From the Govern-

ment (1998) report, the United Kingdom Government has outlined a ten-year

plan with the following four aims in the strategy framework: (1) young people,

(2) communities, (3) treatment and (4) availability. The Government’s strategies

are: (1) to prevent young people from abusing drugs; (2) to protect communities

in the United Kingdom from drug-related crimes and behaviour; (3) to assist

people suffering fromdrugproblems and (4) to reduce the supply of illegal drugs

in the market in the United Kingdom. In the plan, the Central Government acts

as the enabler and coordinator which coordinated with Government anti-drug

bodies, such as UK Anti-Drugs Coordinator and Deputy, and organisations at

national and local levels translate the Government’s aims into practice, as well

as local drug-action teams, private sectors and media that penetrate through

communities, parents and young people to spread the Government’s message

and vision of drug abuse among people. These four aims have been carried

on by the current HM Government (2015). In addition, the United Kingdom

Government has allocated more resources to combat against drug use problem

by driving and throughout the Internet. The United Kingdom Government has

also helped shaping international anti-illicit drug policy and practice, as well

as leading in global illegal drug combating actions such as launching new ini-

tiatives on new psychoactive substances and coordinating with other countries

to establish and promote anti-illicit drug research and analysis network (HM

Government, 2015).
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1.1.4 Risk Factors Related to Drug Use

Both the prevalence and impact of drug use have motivated researchers to con-

duct many surveys and studies in order to gain more understanding about the

drug use problem and provide useful guidance to the United KingdomGovern-

ment to devise drug policies and strategies. Various reports and studies have

suggested several risk factors that are associated with drug use. Firstly, accord-

ing to a survey of 2,318 teenagers aged from ten to twelve from Glasgow and

Newcastle (Mckeganey, 2004), drug-trying behaviour amongst teenagers was

found associating with several family and peer factors. Family drug use was

linked to teenagers’ drug use, as 15.8 % of the respondents had families that had

used drugs in the past, compared to 1.9 % of the respondents whose families did

not use any drug (Mckeganey, 2004). This finding suggests that if a teenager’s

family used drugs, it is more likely for that teenager to try drugs.

Secondly, 16.8 % of the respondents that received low parental supervision had

used drugs, compared to 1.6 % of the respondents who received high parental

supervision (Mckeganey, 2004). This finding indicates the positive effect of

parental supervision on drug-trying behaviour.

Factors such as smoking and drinking alcohol have regularly been found as-

sociating with drug use (Mckeganey, 2004). 19.7 % of the respondents drinking

alcohol for at least a month tried drugs in the past, compared to 3.2 % of the

respondents who did not drink alcohol (Mckeganey, 2004). 44.7 % of the re-

spondents who smoked at least once a week used drugs in the past, compared

to 3.2 % of the respondents who did not smoke (Mckeganey, 2004).

Moreover, a Europe-wide study (Vuolo, 2009) revealed that adolescents who

knew hard drug users were more likely to use a drug in the previous month
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(odds ratio of 5.605, standard error = 0.213). Furthermore, it was also found

that adolescents living with parents who used drugs were more likely to use

drugs (Copps, 2013). In addition, factors of "substance abuse", "mental health

problems" and "criminality" among parents of adolescents were also found to

influence an adolescent to try a drug (Gauffin, 2013).

Drug use among adolescents has also been found relating to age, gender and

school failure. Firstly, the association between drug exposure and age as well

as gender has been supported by Mckeganey (2004), which stated that being

male and increasing age resulted in increased exposure to drugs. Secondly,

the relationship of gender on drug use (hazard ratio of drug taking for males

compared to females is 2.39, 95% confidence interval: (2.34, 2.45)) has been

supported by Gauffin (2013), which revealed that males were 2.39 times more

likely than females to use at least one drug. Furthermore, it was found by

Fuller and Hawkins (2014) that in year 2013, a higher percentage of males than

females in England had ever used any drug (16.6 % compared to 15.7 %) and

individual drugs such as cannabis (9.1 % compared to 7.5 %) and cocaine (1.1

% compared to 0.7 %). Besides, the relationship of age on drug use has been

supported by Fuller and Hawkins (2014) report, where increasing age from 11

to 15 was linked to increasing percentage of trying any drug in 2013 (from 3 %

to 23.7 %), as well as individual drugs such as LSD (from 0.1 % to 0.9 %) and

glue/gas/aerosols/solvents (from 2.1 % to 4.4 %). Finally, from Gauffin (2013)

report, it was found that an adolescent suffering from school failure was 4.22

times more likely to use a drug (hazard ratio = 4.22, 95% confidence interval =

(4.13, 4.31)).

More generally, other factors that have been found relating to drug use include:

(1) poverty and unemployment (Ghodse, 2012) and (2) other drugs (Hale and

Viner, 2013).
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Although findings of prior research studies have provided information on sev-

eral risk factors that contributed to drug use and the United Kingdom Gov-

ernment never stops implementing drug policies to combat against drug use

problem, the trend and continued prevalence of drug use indicate that the issue

has not yet been resolved. To address the prevalence of drug use issue, which

has significant adverse social, economic and financial impact, as well as to gain

fuller understanding and better investigation of the issue, it is anticipated that

research efforts should be devoted in at least two dimensions: (1) continuous

conduction of drug related studies to explore more insightful information about

drug abuse phenomenon and behaviour and (2) review of prior research studies

about drug use to identify limitations andweaknesses, and to develop and apply

statistical methodologies to improve the quality of future drug related studies.

The latter dimension is the focus of this research.

A usual method of conducting drug related research is through surveys. In

the next two sections, the general issues in respect of survey studies and specific

issues in respect of "Smoking, Drinking and Drug Use among Young People in

England" survey series will be discussed.

1.2 Surveys: Questionnaire Design and Limitations

1.2.1 Brief Introduction of Surveys

Fink (2002) stated that surveys collect information about a specific group of

population, to "describe, compare, or explain their knowledge, attitudes and

behaviour". Mathers et al. (2007) also stated that survey "is a traditional way of

conducting research", which is "useful especially for non-experimental descrip-

tive designs that seek to describe reality". Moreover, surveys are adopted by
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researchers, for instance, in societal and scientific aspects (Mathers et al., 2007).

De Leeuw et al. (2008) provided an alternative objective of conducting surveys,

that is "to obtain insight into the behaviour of the whole group of respondents".

There are several classifications of surveys. Mathers et al. (2007) suggested

that surveys can be classified into two types: (1) cross-sectional surveys and

(2) longitudinal surveys. Surveys that are carried out at only one time point

are known as cross-sectional surveys, whereas those that are carried out over

a certain period (in units of months or years) are known as longitudinal sur-

veys. Mathers et al. (2007) further classified the longitudinal surveys into cohort

surveys and trend surveys, where cohort surveys follow the same group of in-

dividuals over a certain time period and trend surveys ask different individuals

the same questions at each time point, over a specified time period.

When investigating drug use among young people, usually either a longitu-

dinal survey or a cross-sectional survey is adopted by researchers, depending

on the objectives of the research.

1.2.2 Methods of Conducting Surveys andConstruction of Sur-

veys

Mathers et al. (2007) provided a comprehensive list of methods of collecting

survey data: (1) face-to-face interviews; (2) telephone interviews and (3) ques-

tionnaires. Face-to-face interviews are labour intensive, but they can be the best

way of collecting high-quality data. Face-to-face interviews are preferable for

sensitive, but non-personal, subject matter (drug taking questions are personal,

thus not suitable for face-to-face interview, as well as lengthy interviews). They

are also preferable when the researchers need to cope with respondents with

disabilities. Also, telephone interviews can be an effective and economical way
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of collecting quantitative data, given that the ownership rate of telephones is

high in the survey area and the questionnaire is short. However, according

to Mathers et al. (2007), whilst telephone interviews are conducted within a

limited period, face-to-face interviews have benefits that respondents are gen-

erally "more likely to complete the survey", once "they are committed", when

compared to the telephone survey. In general, questionnaires are cheaper and

quicker than face-to-face interviews, and are therefore more ideal for large and

widely dispersed population.

Apart from the postal method, questionnaires can also be delivered via email

and the Internet (Dillman et al., 2014). Moreover, surveys with questionnaires

can be conducted in a specified venue, such as classrooms in secondary schools

(Fuller et al., 2011). Recently surveys tend to combine several survey methods

in a single survey for a reason: to increase the response rate and enhance the

collection of survey data (Fink (2002); Dillman et al. (2014)).

Regardless of which survey method researchers are using, in most circum-

stances, a portion of respondents do not provide answers to some or all ques-

tions in a questionnaire. Missing data, also known as missingness, therefore

exist in such circumstances. In Section 1.2.3, we discuss more the missingness

problem.

1.2.3 Missingness Problem

Fink (2002) and Kang (2013) suggested that missing data occur in almost all

survey research, "even in a well-designed and controlled study". According to

Fink (2002), there are several causes that affect the level of missing data, which

are also known as non-responses, including: (1) the nature of the population

units; (2) the mode of data collection and (3) the fieldwork procedures together
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with social and cultural factors. Major factors that correlate consistently with

item non-response include the respondent’s age and education, where elderly

and less educated respondents tend to lead to an increased amount of missing

data (Tourangeau and Yan, 2007). Also, one main cause of missingness problem

is sensitive questions (Tourangeau and Yan, 2007).

According to Tourangeau and Yan (2007), sensitive questions tend to produce

higher non-response rates than those on non-sensitive topics. Tourangeau et al.

(2000) listed three distinct characteristics of sensitive questions: (1) "intrusive-

ness to privacy"; (2) "threat of disclosure" and (3) "social desirability". Survey

questions about drug use and sexual behaviour have met all the three criteria

of sensitive questions, so they are prone to missingness (Tourangeau and Yan,

2007).

Other reasons for non-response include: (1) the inclusion of ’do-not-know’

questions (Sudman and Bradburn, 1974); (2) a respondent faced with a large

number of questions (Weiner and Dalessio, 2006) and (3) refusal to participate

and inability of the data collector and respondent to communicate, due to for

example, language barriers (Fink, 2002). The existence of missing data may

cause various issues in data analysis.

Most data analysis procedures are designed for complete data sets (i.e. data

sets without any missing data) instead of data sets with missingness (Schafer

and Graham, 2002). When these inferential methods are applied on data sets

with missing data of which they are not dealt with beforehand, this may lead to

"misleading inferences" (Carpenter and Kenward, 2013). Moreover, if the miss-

ing data are not handled properly, for example, by listwise or pairwise deletion

(Kelejian (1969); Schafer and Olsen (1998)), information loss as well as "less

efficient" estimates and less powerful "statistical tests", may result (De Leeuw,
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2001). Missing data can also render the analysis invalid due to biased results

(Kang, 2013). Details about missing data will be discussed in Chapter 4.

After presenting the general issues in respect of surveys, we introduce the smok-

ing, drinking and drug use surveys in England in Section 1.3.

1.3 The Smoking, Drinking andDrug Use Survey in

England

1.3.1 Overview of "Smoking, Drinking and Drug Use among

Young People in England" Series

Among various drug use related surveys, the survey series of "Smoking, Drink-

ing and Drug Use among Young People in England" are exemplars in terms of

the scale of the survey, quality of study and extent of influence. The survey series

began in 1982 by measuring the prevalence of smoking and smoking behaviour

among young people in England. From 1988 onwards, the survey included alco-

hol consumption among young people, and from 1998 onwards, the survey also

included the prevalence of drug use among young people. The survey series

were carried out from 1982 to 1998 on a biannual basis. The survey series have

then been carried out annually since 2000, jointly by the National Centre for

Social Research and the National Foundation for Educational Research (Fuller

et al., 2011), except the year 2015 survey, which was skipped due to an external

sponsorship funding issue.

There are two aims of conducting the survey series. One aim of conducting

the survey series is to address the Government of United Kingdom’s concern

"on the use of tobacco, alcohol and drugs" among young people in England
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(Fuller et al., 2011). Another aim is to guide the United Kingdom Government’s

development and implementation of policy on smoking, drinking and drug use

among young people, since the government recognises smoking, drinking al-

cohol and abusing drug as three of the seven most common primary causes

of preventable deaths in England (HM Government, 2010). Thus, the findings

reported in the survey series have been seriously considered by theUnited King-

dom Government (Department of Health, 2010).

Starting from 1998, each year’s survey included a set of core questions cov-

ering students’ current and past activities of smoking, drinking and drug use,

consumption of cigarettes and alcohol drinks in the previous week prior to the

study, as well as their awareness of and the availability of several specific drugs

(Fuller et al., 2011). With effect from 2000, additional detailed questions were

included in the annual questionnaire, with the emphasis alternating between

smoking and drinking in one year and drug use the next (Fuller et al., 2011).

1.3.2 Overview of "Smoking, Drinking and Drug Use among

Young People in England" 2010 Survey

In this research, the research aim is to review a previous research study about

drug use, to identify its limitations and weaknesses and built upon its work

done, to develop and apply statistical methodologies to gain increased under-

standing of drug-trying behaviour of young people in England. To achieve the

research aim, we have chosen to critically review an annual "Smoking, Drinking

and Drug Use among Young People in England" 2010 Survey (hereafter referred

as the Year 2010 Survey) in terms of its data collection, data processing and data

analysis with purposes to improve the quality of the survey study.

Apart from the reasons that the Year 2010 Survey is a comprehensive and per-
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tinent related drug use study in England with data available at the time when

this research began as well as there are potential rooms for improvement in

respect of its data analysis conducted, another important reason to choose the

Year 2010 Survey is that as the focus of the Year 2010 Survey was smoking

and drinking, additional detailed questions were included in the questionnaires

concerned smoking and drinking as opposed to drug use. Thus, selecting the

Year 2010 Survey for this research would provide an additional benefit of fuller

understanding of drug-trying behaviour among young people from further in-

vestigation of the associations between drug-trying response variables and the

smoking, drinking and drug-related socio-demographic covariates.

In total, 246 schools throughout England participated in the Year 2010 Sur-

vey, and a total of 7,296 students completed the survey questionnaires. After

the survey, the data in the collected questionnaires were double-checked by an

external keying agency, and a report of findings of the Year 2010 Survey was

then published (Fuller et al., 2011).

1.3.3 Overview of Findings of the Year 2010 Survey Report

In this section, since this research focuses on drug use among young people, we

discuss the key findings from the drug use section of the Year 2010 Survey report

(Fuller et al., 2011) (Serial number: 6883). Furthermore, with the logistic regres-

sion models employed in the report, we discuss how the smoking, drinking and

drug-related socio-demographic variables were found to relate to drug-trying

behaviour among students in the Year 2010 Survey. It should be noted that

because of the new sample design of the Year 2010 Survey, selection weights

were applied to the survey data by the researchers in data analysis. Details of

the new sample design of the Year 2010 Survey will be discussed in Section 2.1.
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The Year 2010 Survey report revealed that the prevalence of reported drug

use among the students aged between 11 and 15 has declined over the ten years

period from 2001 to 2010 as supported by three findings: (1) the proportion of

the students who reported having taken drugs ever dropping from 29% in 2001

to 18% over same period in 2010; (2) the proportion of those students that took

drugs in the last year (i.e. 2009) prior to annual survey dropping from 20% in

2001 to 12% 2010 and (3) the proportion of the students who had taken drugs in

the last month dropping from 12% in 2001 to 7% in 2010. However, the age of

the students was found positively associated with drug use among the students

with a higher proportion of older students (15 years old) than younger students

(11 years old) who reported taking drugs in each of the three circumstances: (1)

taken drugs at least once; (2) taken drugs in 2009 and (3) taken drugs in the last

month. No such similar pattern was seen in respect of gender of the students

except a slightly higher proportion of male students (7%) than female students

(6%) reported that they have taken drugs in the last month. Regarding the fre-

quency of taking drugs, 2% of the students took drugs once within 2009, the

year prior to the Year 2010 survey, 3% of the students took drugs in two to five

occasions, 1% of the students took drugs in six to ten occasions, and 2% of the

students took drugs in more than ten occasions. There was a higher proportion

of older students (5% of 15 years old) than younger students (1% of 11 and 12

years old) who reported taking drugs at least once a month.

In terms of use of drugs, cannabis was the most widely used drug, with 8.2% of

the students reported trying it in 2010. Among those students who had taken

drugs in 2010, 71% of them had only taken one type of drug, 29% had taken two

or more. The proportion of the students who had taken specific drugs in 2010

was observed to increase with age of the students. A higher proportion of older

students (33% of 15 years old) than younger students (14% of 11 and 12 years

old) was found to have taken two or more different types of drugs.
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Apart from age, factors that were found to contribute to general drug use among

young people were truancy and whether being excluded from school. The stu-

dents who had truanted or been excluded from schools were more likely to take

drugsmore frequently than thosewho had not truanted nor been excluded from

schools. It was found that 8%of the studentswho had truanted or been excluded

from schools reported usually taking drugs at least once a month, compared to

1% of those who had not been excluded or truanted from schools.

Though overall there was a decline in the proportion of the students (28%)

who reported having been offered drug in the survey, the proportion of the stu-

dents who had been offered drugs increased with age that 49% older students

(15 years old) reported they had been offered at least one drug when compared

with 9% younger students (11 years old). Regarding sources of helpful informa-

tion about drugs, themost likely sources of obtaining helpful information by the

students were teachers (67 %), television (64 %) and parents (62 %). There were

differences by age and by gender in respect of the reported sources of helpful

information about drugs.

The main statistical method referenced in the "Drug Use" section of the Year

2010 Survey report was the logistic regression analysis (Fuller et al., 2011). The

research team fitted a logistic regression model with a binary drug response, yi,

which recorded whether the student i had tried any drug in the year prior to the

survey (i.e. 2009): yi = 1 if the student i had tried any drug and yi = 0 otherwise;

i = 1, . . . ,n.

Model outputs were reported in the form of odds ratios relative to baselines

of the corresponding factors. Odds ratios greater than 1 indicated increasing

odds of a student trying drugs, whereas odds ratios less than 1 indicated re-
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ducing odds of a student trying drugs. In the logistic regression model, only

significant variables at 5% significance level were reported. The researchers

used t-tests to determine the significance of covariate at each factor level, and

reported 95 % confidence interval for the odds ratio of each factor level. If the

95% confidence interval did not include 1, the corresponding factor level of a

covariate was significantly different from the reference category. This implied

that the covariate was significantly associated with drug use in 2010 at 5 % sig-

nificance level and vice versa. Covariates that were non-significant at all factor

levels were not reported in the result of logistic regression.

When handling the missing values for each variable, the researchers did not

exclude them but rather treated them as either a single category (missing cate-

gory) for categorical variables or imputed the mean value of the respondents for

continuous variables. The key covariates that were reported in the model were

listed in Table 1.3.1.
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Table 1.3.1: Table of Variables Adopted in the Logistic Regression Model of the
Year 2010 Survey Report

Variable Type Labels
Response Variable
Tried any drug in last year Nominal Yes, No
Student-level Variables
Sex Nominal Boy (=0), Girl (=1)
Age Linear
Ethnicity Nominal White, Mixed, Asian, Black, Other
Smoking Status Nominal Non-smoker, Occasional-smoker,

Regular-smoker
Whether Drunk Alcohol Nominal Never drunk alcohol,

Drunk in previous week,
Drunk, not in previous week

Ever Truanted Nominal Yes, No
Ever Been Excluded Nominal Yes, No
Receives Free School Meal Nominal Yes, No
Number of Books at Home Nominal
School-level Variables
School Type Nominal Maintained schools, Academics,

Independent
Sex of School Intake Nominal Mixed, Boys Only, Girls Only
Strategic Health Authority Nominal
% GCSE A*-C passes Nominal (in quantiles)
% students Eligible for Linear
Free School Meals
% students with English Linear
as Additional Language
Faith School Nominal None/Not known,

Christian Denomination,
Other Religion

According to Fuller et al. (2011), seven variables were found to be signifi-

cantly related to drug use in 2010: (1) sex; (2) age; (3) ethnicity; (4) smoking; (5)

drinking alcohol; (6) truancy and (7) exclusion. The odds ratios and the 95%

confidence intervals for the significant variables were found to be as follows:

Firstly, girls were less likely than boys to have taken drugs in 2010 (odds ra-

tio=0.74, 95% confidence interval = (0.58, 0.94)). Secondly, the odds of having

taken drugs in 2010 increased linearly with age (odds ratio=1.13 for each addi-
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tional year of age, 95% confidence interval = (1.02, 1.24)). Thirdly, students of

Asian ethnicity weremore likely thanWhite students to have tried drugs in 2010

(odds ratio=2.10, 95% confidence interval = (1.34, 3.31)). However, when Mixed

students, Black students and students from other ethnic backgroundswere com-

pared toWhite students, no significant differenceswere observed. Moreover, the

students who regularly smoke were more likely to have tried drugs when com-

pared with non-smoking students (odds ratio=11.30, 95% confidence interval =

(8.31, 15.35)). For occasional smokers, the odds ratio was 5.99 (95% confidence

interval = (4.19, 8.56)). Also, the students who had drunk alcohol within a week

before the survey were more likely to have tried drugs when compared with

non-drinking students (odds ratio=6.94, 95% confidence interval = (4.97, 9.68)).

Those who had drunk alcohol but not within a week before the survey were

more likely to have tried drugs when compared with non-drinking students,

but with a smaller magnitude of the increase in odds (odds ratio=3.32, 95% con-

fidence interval = (2.48, 4.42)). The students who had ever played truant from

school were more likely to have tried drugs than those who had not (odds ra-

tio=2.44, 95% confidence interval = (1.81, 15.35)), and the students who had ever

been excluded from school were more likely to have tried drugs than those who

hadnever been excluded (odds ratio=1.70, 95%confidence interval = (1.26, 2.29)).

In summary, the key findings of the Year 2010 Survey revealed that: (1) the

prevalence of drug taking behaviour among young people aged between 11 and

15 had declined from 2001 to 2010; (2) cannabis was the most widely used drug,

and (3) the factors of sex, age, ethnicity, smoking, drinking alcohol, truancy and

exclusionwere associatedwith drug use among young people, albeit in different

directions.
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1.3.4 Limitations of the Analysis of the Year 2010 Survey

In the Year 2010 Survey, the researchers have methodically researched and

planned their questionnaire design, data collection and analysis. However,

there are several limitations relating to data analysis carried out for Fuller et al.

(2011) report. One limitation of the logistic regression model in Fuller et al.

(2011) study is that it only models the effect of covariates on a single response

variable (i.e. whether the students had tried any drug or not) in one-way di-

rection (i.e. how covariates affect response variables, instead of how response

variables affect covariates). In other words, to investigate the two-way interac-

tions between covariates and a response variable, two logistic regressionmodels

are required. Furthermore, it is considered that the data analysis can be further

enhanced by employing more sophisticated statistical models to study the asso-

ciations between drug-trying response variables and other related covariates, as

well as the interactions among drug-trying response variables.

Another limitation is the insufficient consideration of the missing data, which

are ubiquitous among survey data sets. On one hand, when publishing propor-

tion tables and frequency tables for variable pairs, missing cases were ignored.

On the other hand, in the logistic regression, missing data for each variable

were treated directly in one of the following two methods: (1) as either a single

category for categorical variables or (2) mean imputation, for continuous vari-

ables. In addition, the report did not explain in sufficient depth the reasoning

of how those three types of missing values in the data set existed, as well as

the consequent methods of treating these missing values other than ignoring

them or setting them as mean values. As explained in the previous section, if

the missing data in a data set are not adequately and properly managed, the

robustness of the data analysis may be adversely affected. Statistical computa-

tional methods applied in the circumstances of ignoring missing data may lead
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tomisleading inferences (Sterne et al., 2009) and "biased estimates" (Kang, 2013).

In summary, in the Year 2010 Survey, though the data collection methodol-

ogy of the researchers was robust and thorough, the data set is considered not

exploited in sufficient depth. Also, treating the missing data as either a single

category for categorical variables, or imputing the mean observed values for

continuous missing values are considered not appropriate approaches to deal

with the missingness problem and may induce bias in data analysis (Rubin,

2002).

1.4 Aim, Approaches and Expected Contributions of

Research, Structure of Thesis

1.4.1 Aim of Research

The primary aim of this research is to gain increased understanding of drug-

trying behaviour of young people in England, based upon the data collected by

the Year 2010 Survey and built on its work done, by developing and applying

advanced statisticalmethodologies to permit analysis ofmultivariate categorical

data in the Year 2010 Survey, in the presence of missing data.

1.4.2 Approaches and Expected Contributions of Research

To achieve the aim of this research, the main approaches of the research are

planned as follows:

(1) To tidy the original data set of the Year 2010 Survey by employing parsi-

monious number of variables into this research and combining excessive levels

of some variables. The resultant data set (i.e. working data set) will be in a sim-
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pler andmore appropriate format, in order to investigate the interactions among

the drug-trying response variables, as well as how the smoking, drinking and

drug-related socio-demographic factors contribute to drug-trying behaviour,

which has not been sufficiently investigated in Fuller et al. (2011) study.

(2) To deal with the missing data problem that existed in the Year 2010 Survey.

Firstly, we will determine the type of missingness for each variable included

in the working data set with explanations, and whether the missingness is ig-

norable. Secondly, we will apply various imputation methods to the working

data set and compare the results from imputed data sets between imputation

methods, to evaluate the difference in parameter estimates between imputation

methods. For the 15 drug-trying response variables that will be described in

Chapter 3, as well as other covariates (or explanatory variables), we will im-

pute the missing groups by multiple imputation by chained equations (MICE).

Alternatively, the drug-trying response variables will be imputed under fully

Bayesian framework. As such, more unbiased values can be assigned to missing

data based on other covariates.

(3) In our research, we will fit logistic regression models to explain the drug-

trying response variables with individual drugs and other covariates. We will

also run latent class analysis to model these drug-trying response variables and

covariates. For purposes of selecting useful variables for the latent class anal-

ysis, we will employ the logistic regression models in our study, using Akaike

Information Criterion (Sakamoto et al., 1986) for eliminating less essential re-

lated covariates relating to drug-trying response variables. To deal with the

rare-case problem, we will investigate contingency tables between drug-trying

response variables and smoking, drinking and drug-related socio-demographic

covariates. If empty cells exist, then special methods to impute empty cells may

be needed. As such, missing data can be assigned with more unbiased values
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based on other covariates, which may contribute to more robust estimates and

standard errors.

(4) Moving beyond the logistic regression models, we will apply various sta-

tistical models to estimate the associations between drug-trying response vari-

ables and other related factors, as well as the interactions among drug-trying

response variables. In our analysis, we will employ log-linear analysis models,

item response theorymodels, latent class analysis and K-means clustering to the

working data set. The main purpose of employing various statistical models in

this research is to analyse the drug-trying behaviour among young people in

the Year 2010 Survey from different perspectives.

(5) To carry out variable selection, we will adopt backward elimination on statis-

ticalmodels employed for choosing themost parsimoniousmodel. For purposes

of combining results from imputed data sets, we will adopt Rubin’s rule. For

applying Bayesian approach to the analysis, we will determine the prior by sen-

sitivity analysis under Bayesian framework, in order to determine the stability

of estimate results for drug-trying response variables against choices of priors.

(6) Regarding latent variable models (i.e. item response theory and latent class

analysis models), we will reduce the dimension of the drug-trying behaviour

by employing a latent variable to represent the propensity for students to try

drugs. Continuous latent variable model and discrete latent variable model are

compared.

It is anticipated that this research will have the following three main contri-

butions:

(1) Through employment of different imputation models, it will show proper
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ways of dealing with missing data in survey research in general and in the Year

2010 Survey in particular.

(2) Through development and application of advanced statistical methodolo-

gies, it will show how to enhance the quality of data analysis in survey research

in general and in the Year 2010 Survey in particular.

(3) The development and application of advanced statistical methodologies to

theworkingdata set of theYear 2010 Surveywill provide adeeperunderstanding

on the drug-trying behaviour of young people in England in terms of the in-

teractions among drug-trying response variables and the associations between

drug-trying response variables and the smoking, drinking and drug-related

socio-demographic covariates.

1.4.3 Structure of Thesis

To deal with the missing data problem, as well as to identify factors that con-

tribute to drug use among young people and to develop new methodologies

to investigate associations between drug-trying response variables and covari-

ates, this thesis is structured into two parts. After having introduced the drug

abuse problem, the survey issues, the data source of this research as well as aim

and objectives of this research study in Chapter 1, the first part of the thesis,

Chapters 2 to 4, focuses on data cleaning, variable selection and imputation of

missing data. In these chapters, we will focus on selecting variables that capture

the most essential part of the questionnaire. We will focus on data processing

and treating missing data through more sensible methods. Specifically, we will

ask are there excessive levels in any variable. What are the sensible ways of

categorising different types of missing data? Finally, we will focus on a robust

method of imputing the missing data. The second part of the thesis, Chapters
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5 to 7, focuses on the modelling of the imputed data set. In this part, we aim

to ask how the drug-trying response variables are related to each other. Which

smoking, drinking and drug-related socio-demographic covariates are associ-

ated with drug-trying behaviour? What statistical models are fitted on imputed

data sets reflect about drug-trying behaviour of young people? What are the

relationships between these statistical models?

1.5 Summary

This chapter has provided an overview of drug use problem, its adverse implica-

tion and previous research on risk factors that were associated with drug-trying

behaviour among young people. Building upon such knowledge, an overview

of the "Smoking, Drinking andDrugUse among Young People in England" 2010

survey studywas carried out and its limitations were discussed. Finally, the aim

and approaches of this research, expected contribution of this research, as well

as the structure of this thesis were elaborated in this chapter. The aim of this

research is 1. to review the "Smoking, Drinking and Drug Use among Young

People in England" 2010 survey study (the Year 2010 Survey), in terms of its

data collection, data processing and data analysis, 2. to identify its limitations

and weaknesses, as well as 3. to build upon its work done to develop and apply

statistical methodologies to permit analysis of multivariate categorical data in

the Year 2010 Survey, in order to gain increased understanding of drug-trying

behaviour of young people in England.

The next chapter provides a detailed discussion of the Year 2010 Survey, as

well as data extraction, cleaning and variable selection, in respect of the data set

of this research.



Chapter 2

Smoking, Drinking and Drug Use

Survey 2010

As mentioned in Section 1.3.2, the Year 2010 Survey is the selected data source

of this research. To understand more about the Year 2010 Survey, this chapter

outlines the survey and questionnaire designs, and the data source of the Year

2010 Survey (Fuller et al., 2011). Themethods adopted in pre-processing the data

set of the Year 2010 Survey are also described in this chapter. Themain purposes

of pre-processing the Year 2010 Survey data set are to reduce the complexity of

the original data set and to obtain a useful data set for this research (that is the

working data set), of which the focus is on drug use among young people.

2.1 Survey Design

Four steps were included in the Year 2010 Survey (Fuller et al., 2011) to collect

survey data: (1) selecting respondents; (2) issuing letters to respondents and

arranging times to conduct the survey; (3) administering the questionnaires in

classrooms and (4) performing validation tests on respondents.

The sample design of the Year 2010 Survey was firstly changed from a dis-

30
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tribution across England proportionate to the distribution of survey population

(adopted in previous years’ survey) to a multi-stage sample design stratified by

the 10 Strategic Health Authority (SHA) regions in England. The change in sam-

pling methodology was intended to produce regionally representative samples

in order to facilitate the production of regionally representative analysis while

produce results comparable with previous years’ survey ((Fuller et al., 2011)).

The Year 2010 Survey commenced with two stages of student selection. In the

first stage, 52 schoolswere chosen in each of 10 StrategicHealthAuthority (SHA)

regions in England. A total of 520 schools in England were approached and in-

vited, via letters and telephone calls, to participate in the survey. Four schools

approached were later found to be not eligible due to an insufficient number

of students and were, thereby, removed from the study. In the second stage,

approximately 35 students were randomly selected from each of the remaining

516 schools, according to each school’s self-sorted student register, with respect

to tutor groups, classes or groups, within school years.

The selected students were provided with letters, issued from the National

Centre for Social Research via their schools, asking for their parents’ consent

to participate in the survey. For every chosen school, a convenient time for the

survey was negotiated among the interviewers of the National Centre of Social

Research and the school committee.

To conduct the survey, according to Fuller et al. (2011), all the invited stu-

dents who agreed to participate in the survey were "gathered together in a

classroom", where they were monitored by an interviewer. Each student was

given a questionnaire to complete within a period, called a fill-in period. Dur-

ing the fill-in period, participants were not allowed to chat among themselves

nor looked at other students’ answers. Moreover, they were informed by the

interviewer and also through the questionnaire statements that their answers
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would be completely confidential. Tomaximise the response rate, if four ormore

participants were absent during the first visit to a school, the interviewer visited

that school for the second time. At this follow-up survey, participation progress

was monitored and the same survey, for the previously absent participants, was

conducted.

In the Year 2010 Survey, three factors were taken into consideration: (1) reli-

ability of the participating students’ answers; (2) honesty of the participating

students and (3) accuracy of data collection through medical methods (Fuller

et al., 2011). Firstly, to assess whether participants were honest in answering

the questionnaire, researchers conducted saliva tests from students in half of

the participating schools during the survey (Fuller et al., 2011). It was discov-

ered that only several students yielded contradictory saliva levels against the

smoking behaviour reported by themselves, indicating that most students were

honest about reporting their smoking behaviour (Fuller et al., 2011). Secondly,

the researchers inserted questions about a non-existent drug called semeron

into- the questionnaire, in order to check if the students generally exaggerated

their answers regarding drug use. It was found that only 13 out of 7,296 students

reported that they had ever tried semeron. This indicated that most students

did not exaggerate their drug use (Fuller et al., 2011).

In order tominimise recall bias of this investigation, the recall period of questions

regarding the usual behaviour of the students related to alcohol and cigarettes

were set to be within a week prior to the survey. One reason was that recall-

ing the number of cigarettes smoked or the amount of alcohol drunk might be

difficult for most students. Another reason was that the students’ behaviour

pattern might be discrete and "experimental". It could be that such behaviour

patternwas caused not only by the students’ ownmemories but also by their self

judgement of their own memories. Also, the students’ memories could not be
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relied upon for a long period of time. Fuller et al. (2011)mentioned other sources

of inaccuracy, including non-response bias and over and under-reporting, with

the latter two factors potentially linked to the degree of social acceptance on

smoking, drinking and drug use.

Furthermore, the new sample design of the 2010 Year Survey resulted in equal

number of schools (52 schools) were selected in each of 10 SHA regions in

England. Given the fact that the populations of the SHA regions varied, the

probability that each student in the study would be selected was not the same

across England. The survey data were therefore weighted (selection weights)

by the researchers in order to correct the unequal selection probabilities among

SHA regions (Fuller et al., 2011). Though it was understood that SHA regions,

age and gender covariates were used to calculate selection weights, the calcu-

lation of the selection weights was not fully reported in the Year 2010 Survey

Report nor could it be directly obtained from the researchers.

2.2 Questionnaire Design

The Year 2010 Survey questionnaire contained 238 questions spanning smok-

ing, drinking, drug use and socio-demographics. Two types of questions were

asked in the questionnaire: multiple choice questions and fill in the blank ques-

tions. The questionnaire began with six general questions, which captured the

student’s age, gender (Sex), school year (Syear), year and month of birth and

ethnicity. The next 33 questionswere about smoking habits, sources of cigarettes

and the relationship between smoking and the respondents’ peers. These ques-

tions were followed by 52 questions about drinking alcohol habits, sources of

alcoholic drinks and the relation of alcohol drinking to people.

Among the 238 questions in the Year 2010 survey, 115 questionswere specifically
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related to drugs. These questions consisted of eight questions about each of the

15y separate drugs andother drugs as an independent category. These questions

formed the largest section of the questionnaire. The 15 drugs in the surveywere:

cannabis, amphetamines, LSD, ecstasy, semeron, poppers, tranquillisers, heroin,

magic mushrooms, methadone, crack, cocaine, ketamine, anabolic steroids and

gas. These 115 questions were followed by four general questions about drugs.

The following 25 questions were about socio-demographic factors, followed by

two confirmatory questions about smoking frequency. The questionnaire con-

cluded by asking the students if they had any other questions. The frequency

table of each general classification of the questionnaire questions is shown in

Table 2.2.1.

Table 2.2.1: Frequency Table of General Classification of Questionnaire Ques-
tions in the "Smoking, Drinking andDrugUse among Young People in England"
2010 Survey

Question Type Frequency
General Question 6
Smoking-related 35
Drinking-related 52
Drug-related 119
Socio-demographic 25
Any other 1

Details about the classification of questions in the questionnaire are listed

in Appendix A.1. The Year 2010 Survey adopted an internal routing system, in

which respondents providing different answers in a question were directed to

separate subsequent questions. For example:

Q9: Now read the following statements carefully and tick the box next to the

one which best describes you.
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Choice 1: I have never smoked→ Q10

Choice 2: I have only ever tried smoking once→ Q11

Choice 3: I used to smoke sometimes but I never smoke a cigarette now→ Q11

Choice 4: I sometimes smoke cigarettes now but I don’t smoke as many as one

a week→ Q11

Choice 5: I usually smoke between one and six cigarettes a week→ Q14

Choice 6: I usually smoke more than six cigarettes a week→ Q14

From the above example, if the students answered choice 1, they would be

directed to question 10; if they answered choice 2, choice 3 or choice 4, they

would be directed to question 11; and if they answered choice 5 or choice 6,

they would be directed to question 14. As such, the students were directed

to answer partial questions in the questionnaire that were applicable to them,

skipping questions that were not. Finally, at the end of the questionnaire, a

puzzle was provided to the students for entertainment after answering all the

survey questions.

2.3 Open Data Source

A processed data set was uploaded onto the UK Data Service Website, formerly

Economic Social Data Service. The data set, in SPSS format, is available on the

website: www.esds.ac.uk. As mentioned in Section 2.1 that because of the new

sample design of the Year 2010 Survey, selection weights were applied to the

survey data by the researchers in data analysis. Nevertheless, in this study, we

used mainly the unweighted data in data analysis rather than weighted data for

the following main reasons:

(1) To achieve the aim of this study, we would develop and apply advanced

statistical methodologies, such as log-linear analysis models (in Chapter 5), item



CHAPTER 2. SMOKING, DRINKING AND DRUG USE SURVEY 2010 36

response theorymodels (in Chapter 6) and latent class analysismodels (in Chap-

ter 7) to further analyse multivariate categorical data collected in the Year 2010

Survey. Though Clogg and Eliason (1987) and Magidson (1987) had incorpo-

rated sampling weights into the maximum likelihood estimation for log-linear

analysis, and Vermunt and Magidson (2005) suggested a method to incorporate

sampling weights into latent class analysis, there were no methods to incor-

porate sampling weights into item response theory models. For maintaining

consistency in data analysis under above-mentioned various advanced statis-

tical methodologies as mentioned, we therefore did not incorporate selection

weights (the calculation of them was not fully reported in the Year 2010 Survey

Report) into our data analysis in this study.

(2) The 2010 Survey Report mentioned that the SHA regions were used in strat-

ifying samples in order to facilitate the production of regionally representative

analysis. Thus, selection weights were incorporated to correct the unequal se-

lection probabilities among SHA regions. Nevertheless, the primary aim of this

study is to gain increased understanding of drug-trying behaviour of young

people in England rather than in each SHA regions. In such situation, according

to Stapleton and Kang (2016), strategically, without access to multilevel soft-

ware that can accommodate the sampling weights, wemight consider including

stratification variables (i.e. SHA regions, age and gender in this study) as inde-

pendent variables in our data analysis. We therefore did not include selection

weights in our data analysis but as a remedy, we included SHA regions, age and

gender as independent covariates in our data analysis.

(3) Stapleton andKang (2016) examined the design effects of five public-released

data sets from the National Centre for Education Statistics (NCES) of ignoring

the sampling design, and reported empirical findings that therewere onlyminor

effects of ignoring the sampling design and no differences in inferenceswould be
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made. Also, in the Year 2010 Survey Report, some key survey estimates showed

greater changes from 2009, while continuing established trends. Further analy-

ses carried out by the researchers, including comparison of key estimates with

and without selection weights, true standard errors and confidence intervals

between Year 2009 Study and Year 2010 Study for these key estimates, did not

indicate any reason to suggest that the changes in these key estimates were due

to the change in sample design or the consequent selection weighting (Fuller

et al., 2011). It was therefore believed that ignoring selection weights might not

cause any significant statistical effect in our data analysis. Vermunt and Magid-

son (2007) also suggested that if the variables used to construct the sampling

weighting do not affect the measurement part of the model, then we should use

unweighted analysis rather than the weighted analysis.

The potential implication of using unweighted data in this study will be dis-

cussed in Section 8.8.1.

2.4 Data Processing

Examining the original data set of the Year 2010 Survey, a few issues associated

with the data set were discovered. Firstly, the original data set contains 536 vari-

ables. We focused on the selection stage upon the variables directly recorded

from the questionnaire rather than the derived variables, such as cigarette smok-

ing status and non-cigarette-smoking status (three categories), because the orig-

inal variables directly recorded information from the answers of the students’

survey questionnaire. Since the focus of our analysis is investigating factors

that contribute to drug-trying behaviour among young people in England, we

selected questions and variables that were related to drug-trying, such as status

of smoking and status of drinking (Mckeganey, 2004). We also opted to select

a parsimonious number of variables, in order to apply the simplest statistical
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models that have good explaining power. Therefore, the process of combining

a fewvariables, to forma single variablewithmore information,wasundertaken.

Secondly, as described in Fuller et al. (2011) report, the original data set contains

three types of missing data. Including all three missing data categories in this

research analysis would not gain extra benefits in research investigation, but

would cause greater difficulty in analysing the data. As such, the missing data

were recorded, trimming down the number of missing categories from three to

one. Further details about recoding of missing data will be discussed in Section

2.4.2.1

Thirdly, the missing percentages of several original variables are too high. Ac-

cording to the data set, since the survey questionnaire adopted internal routing,

most of the missing data of these original variables were linked to the leading

questions, implying that most missing data was due to missingness by design.

In this research, themissing data of the variables that were chosenwere checked

with the leading questions, in order to obtain certain corresponding answers to

such missing data.

Finally, several original variables yield too many distinct levels, which lead

to the following potential problems: (1) In a contingency table between one of

such variables and a drug-trying response variable, empty cells might result and

(2) unnecessary levels might result in longer analysis time when carrying out a

logistic regression analysis. As such, the levels in these original variables were

collapsed by combining levels with similar log odds ratios, whilst maintaining

logical separations. An overview about collapsing these levels is provided in

Section 2.4.3.

To summarise, in order to reduce the excessive complexity of the original data
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set based on the above-mentioned four main reasons, the original data set is

needed to be modified into a manageable and usable working data set for this

research.

2.4.1 Modifications to Working Data Set

In this section, we describe the selection of the variables on four aspects: (1)

drug-trying response variables; (2) smoking variables; (3) drinking variables

and (4) drug-related socio-demographic variables.

2.4.1.1 Drug-trying Response Variables

15 drug-trying response variables, that identified the drugs which the students

had ever tried, were selected (i.e. DgTdCan, DgTdHer, DgTdCok, DgTdMsh,

DgTdCrk, DgTdMth, DgTdEcs, DgTdAmp, DgTdLSD, DgTdPop, DgTdKet,

DgTdAna, DgTdGas, DgTdOth, DgTdTrn), and they were named as DgTd-

Can1 for cannabis, DgTdHer1 for heroin, DgTdCok1 for cocaine, DgTdMsh1 for

magic mushrooms, DgTdCrk1 for crack, DgTdMth1 for methadone, DgTdEcs1

for ecstasy, DgTdAmp1 for amphetamines, DgTdLSD1 for LSD, DgTdPop1 for

poppers, DgTdKet1 for ketamine, DgTdAna1 for anabolic steroids, DgTdGas1

for gas, DgTdOth1 for other drugs, DgTdTrn1 for tranquillisers respectively. The

questions relating towhether the students had heard of the drug (i.e. DgHdCan,

DgHdHer, DgHdCok, DgHdMsh, DgHdCrk, DgHdMth, DgHdEcs, DgHdAmp,

DgHdLSD, DgHdPop, DgHdKet, DgHdAna, DgHdGas, DgHdOth, DgHdTrn)

were not recorded, because variables capturing whether students had heard of a

specific drug were deemed closely associated with the main response variables

(whether they had tried that specific drug). If the students had not heard of

a drug, then they were assumed to have never tried that drug. If the students

were asked if they had ever heard of a drug, and they either answered ’Don’t

know’ or refused to answer the question, then the response to the drug-trying
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response variable was recorded as missing. If the students were asked if they

had tried the same drug, and they either answered ’Don’t know’ or refused to

answer the question, then the corresponding drug- trying variable was recorded

as missing. The questions about the drug semeron were ignored, since there

were too few cases of trying semeron (i.e. only thirteen cases) in the original

data set to be used, and semeron is a fictional drug instead of an authentic one.

2.4.1.2 Questions relating to the addictive behaviour of smoking

In the Year 2010 survey, there were 103 variables recorded in respect of the

addictive behaviour of smoking. The number of these variables was trimmed

down to only 19 variables, which can be referred to Table A.2.1 in Appendix

A.2 for the working data set. Reasons for trimming down the corresponding

smoking variables are elaborated below.

For the three questions relating to family attitudes: (1) family’s attitude to

smoking (non-smokers) (CgFamN); (2) family’s attitude to smoking (smokers)

(CgFamS) and (3) family’s attitude to smoking (secret smokers) (CgFamZ), a

variable, CgFam1, was created to capture all the information about the family’s

attitude to smoking.

There were three questions relating to the severity of the smoking habit, in-

cluding the cigarette smoking status (CgStat), the cigarette smoking status for

irregular smokers only (CgIreg), and the total number of cigarettes smoked dur-

ing the previous week in prior to the study, from Monday to Sunday (Cg7Mon,

Cg7Tue, Cg7Wed, Cg7Thu, Cg7Fri, Cg7Sat, Cg7Sun). These questions were

integrated into a single variable, CgStat1, which could be treated as an ordinal

categorical variable. A variable (CgPe1) was used to capture the question of

whether usually smoke packet cigarettes, roll-ups or both.
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Aquestionaboutwaysofusuallypurchasingorobtaining cigaretteswas adopted

in data analysis. For that big question, there were 15 sub-questions asking the

respondents how they obtained the cigarettes. These 15 sub-questionswere cate-

gorized into three following groups: (1) group 1 - purchasing cigarettes through

shops/machine/Internet (from supermarket, newsagent, garage, other type of

shops, street market, machine, the Internet) (CgGetSup, CgGetNew, CgGetSho,

CgGetMar, CgGetMac, CgGetInt); (2) group 2 - purchasing cigarettes through

people (friends or relatives, or someone else) (CgGetFre, CgGetEls), and (3)

group 3 - being given cigarettes by people or other sources (by friends, siblings,

parents, someone else, or cigarettes in some other way) (CgGetGiv, CgGetSib,

CgGetPar, CgGetElg, CgGetTak, CgGetOth). Each of these groups was treated

as a separate variable, namely CgGet1 for Group 1, CgGet2 for Group 2 and

CgGet3 for Group 3 respectively. The number of sources for each of these three

variables was counted, and levels for each of these three variables based on

the counts were classified, as well as alternative ways of obtaining cigarettes.

These three variables could be treated as ordinal categorical variables. On the

other hand, another variable, CgGet, was created, which determined whether

the students obtained cigarettes through shops or people, or if they were given

cigarettes by people. This created variable was derived from the three variables

mentioned in this paragraph, and could only be treated as a nominal categorical

variable.

There were eight sub-questions related to smokers that the students knew in

a single big question (boyfriend or girlfriend, friends of same age, older friends,

younger friends, parents or step-parent, sibling, other relatives, no friends or

family) (CgPpGb, CgPpFrsa, CgPpFrol, CgPpFryo, CgPpPar, CgPpSib, CgP-

pOth, CgPpNo). The responses of these eight sub-questions were classified into

three groups: (1) these smokers were other relatives; (2) these smokers were

friends and (3) these smokers were family members. A derived variable of types
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of people who know smoke cigarettes, namely CgPp1, was created of which the

levels were determined by basing on which following group each student was

classified: either other relatives, friends, family members or a mixture of these

three groups.

For the two questions and the corresponding variables relating to smokers in

house (whether people who lived with a student smoked inside the house) (Cg-

WhoSmo, CgWhoHme), a combined variable, CgWho1, was created to capture

both questions.

For the other two questions and the corresponding variables that were linked to

the frequency of buying cigarettes from a shop, as well as how many peers of

the students’ age smoke, two separate variables, namely CgBuyF1 and CgEstim,

were created to record them respectively.

There were several questions related to obtaining helpful information about

smoking cigarettes from people (parents/ guardians, siblings, other relatives,

friends, GP, teachers, other adults at school or police) (CgInPar, CgInSib, CgIn-

Rel, CgInFre, CgInGP, CgInTea, CgInAd, CgInPol) as well as several questions

relating to obtaining helpful information about smoking cigarettes from the

media (TV, radio, newspaper, the Internet, FRANK service, helpline) (CgInTV,

CgInRad, CgInNews, CgInInt, CgInFRA, CgInHelp). A variable was created for

the former set of questions in the same way as the variable related to people

who the students knew smoke cigarettes, grouping these sub-questions into

two groups: (1) obtaining information from parents and other relatives and

(2) obtaining information from professionals and the police. This variable was

named CgPe1. The same was done for the latter set of questions, grouping

the sub-questions into two groups: (1) obtaining information through passive

media and (2) obtaining information through interactive media. This variable
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was named CgIn1.

Finally, two separate variables were created to capture issues about whether

the students had lessons on smoking in the last twelve months (LsSmk), and

whether the students currently smoked cigarettes (CgNow).

2.4.1.3 Questions relating to the addictive behaviour of drinking

In the Year 2010 Survey, there were 135 variables recorded in respect of the

addictive behaviour of drinking. The number of these variables was trimmed

down to only 21 variables, which can be referred to Table A.2.2 in Appendix A.2,

for the working data set. The trimming down process is described below.

Firstly, a binary variable was created, which captured whether a student had

ever drunk alcohol (AlEvr). Secondly, there were several questions relating to

the severity of the drinking habit, including the frequency of drinking alcohol

(AlFreq) and the number of days of drinking in the precedingweek (Al7Day1), in

the survey. These questions were combined into one created variable (AlFreq2)

which could be treated as ordinal categorical variables. Thirdly, a binary vari-

able was created, which captured whether a student had been in a pub, a bar or

a club in the evening in the four weeks prior to the survey (AlBnPub). A variable

(AlLast) was used to capture the question aboutwhen students last used alcohol.

A variable was created, which captured how many acquaintances of own age

drink (AlEstim). This variable could be treated as an ordinal categorical vari-

able. A binary variable, which captured whether the students had lessons on

drinking in the last twelve months, was created as well (LsAlc).

There were three questions related to family attitudes on how parents feel about

their children drinking alcohol: (1) how parents feel about their children drink-
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ing alcohol that was applied to non-drinkers (AlPar); (2) how do parents feel

about their children drinking alcohol that was applied to drinkers they knew

(AlParSt) and (3) how do parents feel about their children drinking alcohol that

was applied to drinkers they knew (AlParKnw) separately. To capture informa-

tion from these three questions, a derived variable was created (AlPar1), which

captured all the data about the family’s attitude towards drinking alcohol. This

variable could be treated as an ordinal categorical variable.

Questions about the number of places a student purchased alcohol, as well as

the number of sources of obtaining alcohol, were adopted. Therewere eight sub-

questions that asked the students from where and from whom they purchased

alcohol (pub or bar, club or disco, off-license, shop or supermarket, friend or

relative, off the street, garage forecourt or someone else) (AlBuyPub, AlBuyClu,

AlBuyOff, AlBuyShp, AlBuyFre, AlBuyStr, AlBuyGar, AlBuyEls). These eight

questions were categorized into two separate groups (AlBuy1 andAlBuy2). The

number of sources for each of these two variables was counted, and classified

levels for each of these two variables based on the counts, and alternative ways

of purchasing alcohol. These variables could be treated as ordinal categorical

variables. On the other hand, another variable (AlBuy) was created, which

determined whether the students purchased alcohol from shops or acquired it

from people. This variable could only be treated as a categorical variable.

In addition, two separate questions about types of peers that the students

used alcohol with, and where the students used alcohol were adopted. For

the question about types of people that the students used alcohol with, the

seven sub-questions (girlfriend or boyfriend, same sex, opposite sex, both sexes,

guardians, siblings or other relatives, or other people) (AlUsGB,AlUsFreS,AlUs-

FreO, AlUsFreB, AlUsPar, AlUsSib, AlUsOth) were classified into two groups:

(1) other people and friends and (2) familymembers. A derived variable (AlUs1)
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was created to capture types of people that students used alcohol with, and the

levels were determined basing on which group each student was classified: ei-

ther other people and friends, and family members. On the other hand, for

the question about types of places the students used alcohol with, the seven

sub-questions (pub or bar, club or disco, party, home, someone else home,

street or somewhere else) (AlUsPub, AlUsClu, AlUsFre, AlUsHom, AlUsOHm,

AlUsStr, AlUsEls) were classified into four groups: (1) pubs; (2) home/party; (3)

stranger’s place/public outdoor area and (4) a mixture. A variable (AlUs2) was

created, which captured all the data about places a student usually used alcohol.

There were eight sub-questions in a single question asking about issues when

drinking alcohol in the last four weeks. These eight sub-questions (had ar-

gument, had fight, felt ill or sick, vomited, taken to hospital, lost money or

belongings, clothes, belongings damaged, or trouble with police) (Al4WArg,

Al4WFig, Al4WIll, Al4WVom, Al4WHos, Al4WLst, Al4WDam, Al4WPol) were

classified into two groups: (1) health issue and aggressive issue and (2) other

issues. A variable (Al4W1) was created to indicate which group each respon-

dent belonged to: (1) never drank; (2) drank but no issues; (3) health issues;

(4) aggressive issues and other issues, and (5) both. There were also eight sub-

questions within a big single question, asking about why the students thought

about the reasons for the people of the same age to drink (relax, feel more con-

fident, to be sociable with friends, bored, look cool, forget problems, for a rush

or pressure from friends) (AlWhyRel, AlWhyCon, AlWhySoc, AlWhyBor, Al-

WhyCoo, AlWhyFgt, AlWhyRsh, AlWhyPre). These eight sub-questions were

categorized into two groups: (1) to feel better and (2) to socialise. Another

variable (AlWhy1) was created to indicate which group each student fell into in

respect of the reason: (1) to feel better; (2) to socialise and (3) both. This variable

could then be treated as a nominal categorical variable.
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For the two questions and corresponding variables relating to drinking within

their household (whether people who lived with a student drank inside the

house) (AlWhoHme, AlWhoDr), a combined variable (AlWho1) was created to

capture data of both questions.

There were eight questions relating to the source of obtaining helpful infor-

mation about drinking alcohol from people (parents/guardian, siblings, other

relatives, friends, GP, teachers, other adults at school or police) (AlInPar, AlIn-

SiB, AlInRel, AlInFre, AlInGP,AlInTea, AlInAd, AlInPol), aswell as six questions

relating to getting helpful information about drinking alcohol from media (TV,

radio, newspaper, the Internet, FRANK service, helpline) (AlInTV, AlInRad,

AlInNews, AlInInt, AlInFRA, AlInHelp). A variable (AlPe1) was created for the

former set of questions in the same way as we did for drinking alcohol, and the

sub-questions were grouped into two groups: (1) parents and other relatives,

and (2) professionals and police. By creating a variable (Alln1), a similar way

was done for the latter set of questions, and the sub-questions were grouped

into two groups: (1) passive media and (2) interactive media.

2.4.1.4 Drug-related Socio-demographic Questions

There were eight questions related to how the students gained knowledge about

drug use from other people and from the media (parents/guardian, siblings,

other relatives, friends, GP, teachers, other adults at school or police) (DgInPar,

DgInSiB, DgInRel, DgInFre, DgInGP, DgInTea, DgInAd, DgInPol). A variable

(DgPe1) was created for the first set of questions in the samemethod as the vari-

able related to people who take drugs, and the sub-questions were grouped into

twogroups: (1) parents andother relatives and (2) professionals andpolice. Sim-

ilar method applied to the media questions by grouping the six sub-questions

(TV, radio, newspaper, the Internet, FRANK service, helpline) (DgInTV, DgIn-

Rad, DgInNews, DgInInt, DgInFRA, DgInHelp) into two groups: (1) passive
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media and (2) interactive media by using a variable (DgIn1) to capture data of

these sub-questions.

A variable was also created to capture howmany acquaintances of the student’s

own age uses drug (DgEstim). This was an ordinal categorical variable. A bi-

nary variable that captured whether the students had drug education lessons in

the last twelve months was also created (LsDrg).

Two variables were created, one was to capture how many books in the stu-

dent’s home (Books1) and another was to capture the age of the students (Age),

which ranged from eleven to fifteen years old. These variables could be treated

as ordinal categorical variables.

To capture the information about the gender of the students, a binary vari-

able (Gender) was used. Another binary variable (FSM1) was adopted to record

the question about whether the students had joined the free school meal (FSM)

scheme was used to reflect the economic status of the student’ families.

Moreover, in order to capture whether the students had ever played truant

or had ever been excluded from school, two separate variables, namely Truant1

and ExclA1were used respectively. The two variables could be treated as binary

variables.

By the concept of extension of truancy and exclusion variables, two additional

variables, namely TruantN and ExclAN1, were created to capture the students’

frequency of playing truant and being excluded from school respectively. These

two variables could be treated as ordinal categorical variables.

Finally, to incorporate StrategicHealthAuthority (SHA) regions in data analysis,
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a variable, namely SHA, was created, which captured the ten SHA regions in

England that were used to stratify the 7,296 students.

2.4.2 The Missing Data Problem

The original data set contained three types of missingness: (1) a question not

answeredor refused to answer by a student (coded as -9); (2) a question answered

"don’t know" or "can’t tell" by a student (coded as -8) and (3) a question that was

not applicable to a student (coded as -1). In this section, the general methods

that are used to recode the missing data will be discussed, with the aim of

downsizing the number of missing data categories to one.

2.4.2.1 Recoding of the Missing Data

For the missing data that were coded as (-9), they were all treated as missing,

because no information could be obtained from this kind of missing data.

For the missing data that were coded as (-8), the corresponding question was

examined to determine if this classification of missing data, "don’t know" or

"can’t tell", could be regarded as a level in the subsequent variable. For ex-

ample, in the case of creating a variable that described family attitudes toward

smoking, the choices of the related variable were classified into three options:

(1) against smoking; (2) for smoking and (3) neutral (between against option

and for option). In this case, the students coded (-8) were treated to be in the

middle (neutral) option, because they still answered as "don’t know" or "can’t

tell", or simply ticked more than one box in any of these related questions about

family attitudes toward smoking, and we were not sure if the families of those

students clearly supported smoking or opposed to smoking. If the students

did not tick proper boxes through the normal procedure, their answers were

classified as "don’t know". The same recoding strategy was applied to the vari-
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able capturing how the students’ parents/guardians feel about drinking alcohol.

For the missing data that were coded as (-8) in all other questions in which

sufficient information could not be obtained to determine which valid option

such missing response data could assume, the missing data that were coded as

(-8) were treated to be missing.

For themissing data thatwere coded as (-1), which stood for "not applicable", the

leading question was traced back to determine where those missing data should

be recoded. For example, when the students were coded (-1) as responses for

the variable "whether usually smoke packet cigarettes, roll-ups or both about

equally", the leading questions, the question about cigarette smoking status and

its subsequent question about cigarette smoking status for irregular smokers,

were examined to determine how the "not applicable" responses for the question

"whether usually smoke packet cigarettes, roll-ups or both about equally" were

treated. When these students answered the question about cigarette smoking

status or the subsequent question for irregular smokers, there were generally

two scenarios listed as follows.

Scenario 1: Several students did not answer the question about cigarette smok-

ing status or answered "don’t know" for cigarette smoking status question;

Scenario 2: Several students answered "I have only ever tried smoking once"

or "I used to smoke sometimes but I never smoke a cigarette now" for cigarette

smoking status question. Other students answered "I have never tried smoking

a cigarette, not even a puff or two" or "I did once have a puff or two of a cigarette,

but I never smoke now" for cigarette smoking status question for irregular smok-

ers. Also, some students did not answer the cigarette smoking status question

for irregular smokers because they answered "I have never smoked" for cigarette
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smoking status question.

After answering any of the two questions about smoking status, the students

were then required to answer the following question - "whether usually smoke

packet cigarettes, roll-ups or both about equally". There were three options

provided in the questionnaire for the students to answer: (1) Cigarette from a

packet; (2) Hand-rolled cigarettes and (3) both about equally.

Regarding the above question, for the students in scenario 1, their responses

were treated as missing because there was no information or hint about which

option these students should be allocated to. For the students in scenario 2, their

responses were treated to be level 0: "never smoke now and usually", due to

the questionnaire design that the students who matched the cases included in

scenario 2 were directed away from the question "whether usually smoke packet

cigarettes, roll-ups or both about equally". Treating these responses as missing

values could result in contradicting imputations. For instance, the students

who answered "I did once have a puff or two of a cigarette, but I never smoke

now" or "I used to smoke sometimes but I never smoke a cigarette now" may

be imputed as usually smoking cigarette from a packet, hand-rolled cigarettes,

or both, which contradict the former statements made by the students that they

might actually smoke a few times in the past but they did not actually smoke

currently, in a usual way.

Finally, for all questions generally, the students who did not answer a ques-

tion, or answered "don’t know" as a non-valid option of the question, were

recoded as missing.
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2.4.3 Collapsing the Levels of Variables

This section concerns the collapsing of levels for several selectedvariables. When

considering the reduction of factor levels, the frequency in each level, the log-

odds of each level against drug-trying response variables andwhether it is more

sensible to combine several levels, should be considered.

One considering factor is the frequency in each level of each variable. If the

frequency in a certain level is too low, then it may yield an empty cell in a con-

tingency table with a drug-trying response variable. For example, originally the

frequency of respondents of "being excluded" variable (ExclAN1) contained six

levels: (1) 0 - No; (2) 1 - Been excluded, but not in the last 12 months; (3) 2 - Once

or twice; (4) 3 - 3 to 4 times; (5) 4 - 5 to 10 times and (6) 5 - more than 10 times.

The frequency table of the "being excluded" variable is shown in the following

table:

Table 2.4.1: Frequency Table of "Being Excluded" Variable

Level 0 1 2 3 4 5 Missing
Frequency 6503 238 287 45 23 5 195

The frequency of respondents in level 5 was considered to be too low, such that

in the contingency table against trying anabolic steroids, empty cells occurred,

as illustrated by the following table:

Table 2.4.2: Contingency Table of "Being Excluded" Variable against "Tried An-
abolic Steroids" Variable

Being Excluded
0 1 2 3 4 5 Missing

Tried anabolic steroids
Yes 20 3 6 1 2 0 116
No 6430 226 276 42 20 4 2

Missing 53 9 5 2 1 1 77
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As a result, we considered combining level 5 of "Being Excluded" variable with

level 3 and level 4 together into a single level, level 3.

Another relevant factor is the log-odds of each level of a variable. If the log-odds

against drug-trying response variables are similar, the levels of a variable can

be combined. We used the variable that recorded the number of books in a

respondent’s house, against cannabis as an example. For each level of "Number

of books in home" variable, the log-odds of ever trying cannabis could be calcu-

lated. The log-odds are shown in the following table:

Table 2.4.3: Log-odds Table of "Number of Books in Home" Variable against
"Tried Cannabis" Variable

Number of books in home

Levels None(0) Very
few(1) 11-50(2) 51-

100(3)
101-
200(4) >200(5)

Log-odds -1.6305 -1.8248 -2.2065 -2.3688 -2.6279 -2.5150

From this table, the log-odds for levels 2 to 5 were similar, so these two levels

were combined into a single level, level 2.

The frequencies and log-odds for every level of several selected covariates were

checked against each drug-trying response variables, before decidingwhich lev-

els of each of these covariates to be collapsed.

Finally, the levels of variables were checked to determine if these levels were

sensible. For several occasions, it might be more sensible if several levels were

combined into a single level. For example, for "cigarette smoking status" vari-

able, the following two levels: "I have only ever tried smoking once" and "I used

to smoke sometimes but I never smoke a cigarette now", generally meant those

smokers used to smoke in the past but they never smoked now. It would be
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more sensible to combine these two levels into a single level.

By considering the three criteria mentioned above, several smoking, drinking

and drug-related socio-demographic variables were collapsed by the following

ways.

2.4.3.1 Variables relating to the Addictive Behaviour of smoking

Regarding the variable about cigarette smoking status, two levels: (1) "not tried"

and (2) "ex-smokers", were combined into a single level. Also, two levels: "I

sometimes smoke cigarettes now but I don’t smoke as many as one a week" and

"I usually smoke between one and six cigarettes a week" were combined into a

level called "current-light".

When dealing with another variable concerned with the frequency of buying

cigarettes from shops in the last year (prior to the survey), three levels: (1) "about

once a month"; (2) "two or three times a month" and (3) "once or twice a week",

were combined into one level: "occasional".

2.4.3.2 Variables relating to the Addictive Behaviour of drinking

Regarding the variable capturing the frequency of regularly drinking alcohol

(AlFreq2), three levels: (1) "once a week"; (2) "twice a week" and (3) "every day

or almost every day", were combined into a single level.

When dealing with another variable that captured when a student last had

alcohol (AlLast), the two levels of the original variable: (1) "6 months ago or

more" and (2) "1 month, but less than 6 months ago", were combined into a

level; another pair of levels: (1) "2 weeks, but less than 4 weeks ago" and (2)

"1 week, but less than 2 weeks ago" were combined into a level; and the last

three levels: (1) "some other time during the last 7 days"; (2) "yesterday" and (3)
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"today" were also combined into a single level.

Finally, for a variable that recorded the number of days in last seven days a

student drank alcohol, "one to two days" were grouped into a lower level, whilst

"three to seven days" were grouped into an upper level.

2.4.3.3 Drug-related Socio-demographic Variables

Considering the variable of how many own age take drugs, the following two

levels: (1) "once or twice a week" and (2) "almost every day" were collapsed into

a single level.

The four levels of the variable, in respect to the number of books a student

had in home: (1) "11 to 50 books"; (2) "51 to 100 books"; (3) "101 to 200 books"

and (4) "more than 200 books", were collapsed into a single level.

Also, considering the variable of the frequency of playing truant by a student,

three levels: (1) "3 or 4 times"; (2) "5 to 10 times" and (3) "more than 10 times"

were collapsed into a single level. A similar collapsing procedure was carried

out for the variable in respect of the frequency of being excluded.

2.5 Summary

This chapter has provided a detailed review of survey design, questionnaire

design and data source of the Year 2010 Survey. As this research focuses on drug

use among young people, as well as for the purposes to reduce the complexity of

the original data set of the Year 2010 Survey, the original data set was modified.

The modification process of the Year 2010 Survey data set included: (1) proper
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recording of the missing data; (2) combining several variables into a single

variable, where appropriate, and (3) collapsing factor levels of some variables

in the original data set. After the modification of the original data set of the

Year 2010 Survey, a cleaner data set, namely "working data set", was obtained,

which is more usable for this research. Details of the working data set will be

discussed in Chapter 3.



Chapter 3

Exploratory Data Analysis

The ExploratoryDataAnalysis (EDA) is the best-knownwork fromTukey (1977),

who discussed the need for collecting results of actual datawith specific analytic

techniques, whilst suggesting the approximation property of actual data on data

analysis.

Based on the literature, this chapter describes and summarises the main fea-

tures of the exploratory data analyses, in respect of the working data set. The

purposes to carry out exploratory data analysis of the working data set are to

gain more understanding of the properties of the variables in the working data

set and the associations among these variables. Section 3.1 provides an overview

of the working data set and the variables. In this chapter, we explore the fre-

quencies and percentages for the variables by type in the following sections:

(1) the smoking variables in Section 3.1.1; (2) the drinking variables in Section

3.1.2; (3) drug-related socio-demographic variables in Section 3.1.3 and (4) the

drug-trying response variables in Section 3.1.4. Section 3.2 further describes the

drug-trying response variables. Section 3.3 summarises the pairwise associa-

tions among drug-trying response variables and covariates, using contingency

tables, log-odds tables, box plots and polychoric correlation plots, where ap-

propriate. The study of the associations and relationships among drug-trying

56
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response variables and covariates (i.e. the smoking, drinking and drug-related

socio-demographic variables) has not been carried out in details in the Year

2010 Survey report. It is expected that the aforesaid study will enrich the un-

derstanding of drug-trying behaviour among young people in respect of those

mentioned covariates.

3.1 Overview of the Working Data Set

After modification of the original data set of the Year 2010 Survey, the working

data set of this research contains 68 variables, including 19 smoking variables, 21

drinking variables, 13 drug-related socio-demographic variables and 15 drug-

trying response variables. Among these 68 variables, 6 of them are derived

variables. Summaries and labels of the variables are presented in Tables A.2.1

to A.2.3 in the Appendix A.2. The sections below provide further details of the

variables by sub-types: (1) smoking variables in Section 3.1.1; (2) drinking vari-

ables in Section 3.1.2; (3) drug-related socio-demographic variables in Section

3.1.3 and (4) drug-trying response variables in Section 3.1.4.

3.1.1 Smoking Variables

The 19 smoking variables recorded the family attitudes toward smoking (Cg-

Fam1), the current cigarette smoking status of respondents (CgStat, CgStat1,

Cg7Num, CgNow) and smoking packaging type (CgPk1). In addition, sources

of purchasing/obtaining cigarettes (CgGet1, CgGet2, CgGet3, CgGet), the rela-

tionship of known smokers (if any) to the students and the estimated proportion

of such known smokers (CgPp1, CgEstim) were recorded. Whether the smokers

live in the same house as the students (CgWhoSmo, CgWhoHme, CgWho1), the

frequency of purchasing cigarettes from shops (CgBuyF1) and obtaining infor-

mation or lessons about smoking (CgPe1, CgIn1, LsSmk) were also recorded.

The combined variable describing the cigarette smoking status (CgStat1) was
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created from two separate variables: (1) the average number of cigarettes a stu-

dent smoked per day in the week prior to the survey (Cg7Num) and (2) the

original variable of smoking status (CgStat). We only used this combined vari-

able for this research analysis.

Another combined variable, "smokers in house and where" (CgWho1), was

formed from two other separate variables: (1) the number of people living

with a student who smoked (CgWhoSmo) and (2) whether people living with

a student smoked inside the house (CgWhoHme). A variable describing the

usual sources of obtaining cigarettes (CgGet) captured information from three

related variables: (1) "number of type of source through shops/ machine/ In-

ternet" (CgGet1); (2) "number of type of source through people" (CgGet2) and

(3) number of type of source of being given cigarettes usually by people or other

sources" (CgGet3). Tables 3.1.1 and 3.1.2 provide the frequency summaries of

the smoking variables respectively, including missing data.



CHAPTER 3. EXPLORATORY DATA ANALYSIS 59

Table 3.1.1: Frequency Table of Smoking Variables (First table)

Variables Category(Level) n (%) Variables Category(Level) n (%)
CgFam1 Against(0) 6341 (86.91) CgStat Never(0) 5362 (73.49)

Neutral(1) 598 (8.20) Tried/Ex-
smoker(1) 1264 (17.32)

For(2) 103 (1.41) Current-
light(2) 385 (5.28)

Current-
moderate to
heavy(3)

243 (3.33)

Missing 254 (3.48) Missing 42 (0.58)
CgStat1 Never(0) 5358 (73.44) Cg7Num 0(0) 6528 (89.47)

Tried/ Ex-
smoker(1) 1264 (17.32) (0,6](1) 325 (4.45)

Current-
light(2) 385 (5.28) > 6(2) 121 (1.66)

Current-
moderate(3) 95 (1.30)

Current-
heavy(4) 115 (1.58)

Missing 79 (1.08) Missing 322 (4.41)
CgPk1 None(0) 6626 (90.82) CgGet1 None(0) 6945 (95.19)

Packet(1) 273 (3.74) 1(1) 180 (2.47)
Hand-
rolled(2) 96 (1.32) > 1(2) 94 (1.29)

Both(3) 219 (3.00)
Missing 82 (1.12) Missing 77 (1.06)

CgGet2 None(0) 6822 (93.50) CgGet3 None(0) 6626 (90.82)

Shops only(1) 149 (2.04) Shops/ peo-
ple(1) 153 (2.10)

1(2) 187 (2.56) 1(2) 283 (3.88)
> 1(3) 61 (0.84) > 1(3) 157 (2.15)
Missing 77 (1.06) Missing 77 (1.06)

CgGet None(0) 6626 (90.82) CgPp1 None(0) 1148 (15.73)

Shops only(1) 81 (1.11) Other relatives
only(1) 958 (13.13)

People only(2) 52 (0.71) Friends
only(2) 1088 (14.91)

Given(3) 196 (2.69) Family mem-
bers only(3) 606 (8.31)

Mixture(4) 264 (3.62) Mixture(4) 2971 (40.72)
Missing 77 (1.06) Missing 525 (7.20)

CgWhoSmo 0(0) 4270 (58.53) CgWhoHme No(0) 5744 (78.73)
> 0(1) 2610 (35.77) Yes(1) 1195 (16.38)
Missing 416 (5.70) Missing 357 (4.89)

CgWho1 None(0) 4270 (58.53) CgBuyF1 Never(0) 6530 (89.50)
Smoke, out-
side(1) 1424 (19.52) Few(1) 199 (2.73)

Smoke, in-
side(2) 1174 (16.09) Occasional(2) 203 (2.78)

Frequent(3) 55 (0.75)
Missing 428 (5.87) Missing 309 (4.24)
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Table 3.1.2: Frequency Table of Smoking Variables (Second table)

Variables Category(Level) n (%) Variables Category(Level) n (%)
CgEstim None(0) 1340 (18.37) CgPe1 None(0) 1340 (18.37)

Few(1) 3530 (48.38) Parents, other
relatives(1) 4158 (56.99)

Half(2) 1377 (18.87) Pros, police(2) 38 (0.52)
Most, but not
all(3) 726 (9.95) Both(3) 1303 (17.86)

All(4) 49 (0.67)
Missing 274 (3.76) Missing 457 (6.26)

CgIn1 None(0) 1237 (16.95) LsSmk No(0) 1905 (26.11)
Passive(1) 1298 (17.79) Yes(1) 4233 (58.02)
Interactive(2) 309 (4.24)
Both(3) 3947 (54.10)
Missing 505 (6.92) Missing 1158 (15.87)

CgNow No(0) 6504 (89.14)
Yes(1) 623 (8.54)
Missing 169 (2.32)

From Tables 3.1.1 and 3.1.2, regarding the CgFam1 variable, a majority of the

students’ families (86.91 %) were against the students’ smoking behaviour, 8.20

% were neutral and 1.41 % were supportive. From the CgStat1 variable, most of

the students (90.76 %), including non-smokers and ex-smokers, did not smoke

regularly. 5.28 % of the students smoked lightly, 1.30 % of the students smoked

moderately, and 1.58 % of the students smoked heavily. Regarding the CgPk1

variable, a few students smoked packet cigarettes (3.74 %), a few students

smoked hand-rolled cigarettes (1.32 %) and a few students smoked both (3.00

%). When considering the CgGet variable, a few students obtained cigarettes

through shops and people, and were given to them by people (3.62 %). When

considering the CgPp1 variable, a majority of the students (77.07 %) reported

that either their families or friends or other relatives were smokers. However,

when considering the CgWho1 variable, more than half of the students did not

have smokers living with them (58.53 %). If the students had smokers living

with them, more of these smokers smoked outside their house rather than in-

side (19.52 % for outside versus 16.09 % for inside). From the CgBuyF1 variable,

most smokers never bought any cigarette in the past year (89.50 %), with a few

smokers who bought cigarettes occasionally (2.78 %). When considering the
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CgEstim variable, a majority of the smokers had a few surrounding smokers

(77.87 %), whereas about 29 % of the students had at least half of people of the

same age they knew who smoked, and 0.67 % of the smokers reported that all

people they knew were smokers. From the CgPe1 and CgIn1 variables, a large

proportion of the students received information about smoking from their par-

ents and other relatives (56.99 %), and from both passive and interactive media

(54.10%). Similarly, from the LsSmk variable, more than half of the students had

received lessons about smoking (58.02 %). Finally, from the CgNow variable,

a majority of the students reported they had never smoked (89.14 %), and less

than 10 % of the students reported they had smoked (8.54 %).

In summary, from the Tables 3.1.1 and 3.1.2, a majority of the students reported

that: (1) their families were against students’ smoking (86.91 %); (2) they did not

have smoking habit (90.76 %) and (3) either their families or friends or relatives

were smokers (77.07 %). Also, for those students who smoked, 77.87 % of them

reported that they knew a few smokers of similar age surrounding them.

3.1.2 Drinking Variables

The 21 drinking variables in the working data set recorded the frequency of

drinking alcohol by the students (AlEvr, AlFreq, Al7Day1, AlFreq2), and the

last time the students drank alcohol (AlLast). The students’ family attitudes to-

wards drinking (AlPar1), places of drinking (AlBnPub, AlUs2), the relationship

of known drinkers (if any) to the student (AlUs1), the estimated proportion of

known persons who drank (AlEstim) and the number of type of sources and

places of purchasing alcohol (AlBuy1, AlBuy2, AlBuy) were recorded. Types

of issues happening when drinking (Al4W1), the reason for drinking (AlWhy1)

and whether the students had obtained information/education about smoking

(LsAlc, AlPe1, AlIn1) were also included.
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A variable describing the usual frequency of drinking alcohol (AlFreq2) was

derived from two separate variables: (1) the number of days in the week prior

to the survey, when alcohol was consumed (Al7Day1) and (2) the frequency of

drinking alcohol (AlFreq). A variable describing whether the students usually

purchased alcohol themselves or it was obtained via other people (AlBuy) cap-

tured information from two related variables: (1) "number of places a student

usually purchase alcohol" (AlBuy1) and (2) "number of people fromwhoma stu-

dent usually purchase alcohol" (AlBuy2). Another derived variable, "drinkers

in house and where" (AlWho1), was combined from two separate variables:

(1) "whether people living with the respondent drank inside the house (Al-

WhoHme)" and (2) "number of people living with respondent who drank (Al-

WhoDr)".

Tables 3.1.3 and 3.1.4 provide summaries of the drinking variables in terms

of frequencies and percentages.
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Table 3.1.3: Frequency Table of Drinking Variables (First table)

Variables Category(Level) n (%) Variables Category(Level) n (%)
AlEvr No(0) 3933 (53.91) AlFreq Never(0) 3933 (53.91)

Yes(1) 3271 (44.83) Ex-drinker(1) 206 (2.82)
Few a year(2) 1244 (17.05)
Once a
month(3) 557 (7.63)

Once a fort-
night(4) 486 (6.66)

More than
once a fort-
night(5)

606 (8.31)

Missing 92 (1.26) Missing 264 (3.62)

AlLast Never(0) 3933 (53.91) Al7Day1 Did not smoke
last week(0) 6075 (83.26)

up to 1 month
ago(1) 1290 (17.68) 1-2 days(1) 790 (10.83)

4 weeks to 1
week ago(2) 852 (11.68) 3-7 days(2) 146 (2.00)

During last
week(3) 942 (12.91)

Missing 279 (3.82) Missing 285 (3.91)
AlFreq2 Never(0) 3933 (53.91) AlBnPub No(0) 5109 (70.02)

Ex-drinker(1) 206 (2.82) Yes(1) 1909 (26.17)
Few a year(2) 1244 (17.05)
Once a
month(3) 557 (7.63)

Current-
Light(4) 603 (8.26)

Current-
Moderate(5) 364 (4.99)

Current-
Heavy(6) 121 (1.66)

Missing 268 (3.67) Missing 278 (3.81)

AlEstim None of
them(0) 1120 (15.35) LsAlc No(0) 1917 (26.27)

Only a few(1) 2170 (29.74) Yes(1) 4200 (57.57)
About half(2) 1574 (21.57)
Most, but not
all(3) 1966 (26.95)

All of them(4) 293 (4.02)
Missing 173 (2.37) Missing 1179 (16.16)

AlPar1 Against(0) 3475 (47.63) AlBuy1 0 sources(0) 6259 (85.79)
Middle(1) 3357 (46.01) 1 sources(1) 441 (6.04)
For(2) 78 (1.07) 2 sources(2) 209 (2.86)

3 sources or
more(3) 70 (0.96)

Missing 386 (5.29) Missing 317 (4.34)
AlBuy2 None(0) 5605 (76.82) AlBuy None(0) 5605 (76.82)

From shops(1) 404 (5.54) Places(1) 404 (5.54)

1(2) 730 (10.01) Family mem-
bers(2) 654 (8.96)

> 1(3) 240 (3.29) Both(3) 316 (4.33)
Missing 317 (4.34) Missing 317 (4.34)
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Table 3.1.4: Frequency Table of Drinking Variables (Second table)

Variables Category(Level) n (%) Variables Category(Level) n (%)
AlUs1 None(0) 4139 (56.73) AlUs2 None(0) 4139 (56.73)

Own(1) 39 (0.53) Pub(1) 55 (0.75)
Other people
and friends(2) 1134 (15.54) home/party(2) 1088 (14.91)

Family mem-
bers(3) 723 (9.91)

stranger’s
place/ pub-
lic outdoor
area(3)

623 (8.54)

Both(4) 979 (13.42) mixture(4) 1101 (15.09)
Missing 282 (3.87) Missing 290 (3.97)

Al4W1 Never in last 4
weeks(0) 6038 (82.76) AlWhy1 No reasons(0) 494 (6.77)

Drink, no is-
sue(1) 313 (4.29) Feel better(1) 239 (3.28)

Drink, health
issue(2) 147 (2.01) Socialise(2) 690 (9.46)

Drink, aggres-
sive and other
issue(3)

139 (1.91) Both(3) 5550 (76.07)

Drink, both(4) 240 (3.29)
Missing 419 (5.74) Missing 323 (4.43)

AlWhoDr 0(0) 1351 (18.52) AlWhoHme No(0) 2424 (33.22)
> 0(1) 5420 (74.29) Yes(1) 4458 (61.10)
Missing 525 (7.20) Missing 414 (5.67)

AlWho1 None(0) 1351 (18.52) AlPe1 None(0) 1367 (18.74)
Drink, out-
side(1) 988 (13.54) Parents, other

relatives(1) 4092 (56.09)

Drink, in-
side(2) 4416 (60.53) Pros, police(2) 32 (0.44)

Both(3) 1309 (17.94)
Missing 541 (7.42) Missing 496 (6.80)

AlIn1 None(0) 1452 (19.90)
Passive Me-
dia(1) 1407 (19.28)

Interactive
Media(2) 259 (3.55)

Both(3) 3632 (49.78)
Missing 546 (7.48)

Regarding the CgStat1 variable in Table 3.1.1 and the AlEvr variable in Table

3.1.3, drinkers and non-drinkers weremuchmore evenly distributed than smok-

ers and non-smokers (44.83 % and 53.91 % compared to 25.48 % and 73.44 %

respectively). From the AlFreq and AlFreq2 variables, while 17.05 % of the

students drank a few times a year, 8.26 % of the students drank every fortnight

(current-light), and 1.66 % of the students drank at least three days in the previ-

ous week (current-heavy). These figures were further augmented by the figures
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from the AlLast variable that 17.68 % of the students drank alcohol up to the

previous month and 12.91 % of the students drank alcohol during the previous

week prior to the survey.

From the AlBnPub variable in Table 3.1.3, most of the students (70.02 %) had

not been to the pub, but from the AlEstim variable, 82.28 % of the students were

surrounded by drinkers. From the AlPar1 variable, the majority of the family

members of the students (93.64 %) were either against drinking or neutral to

drinking alcohol. On the other hand, from the AlBuy variable, 8.96 % of the

students obtained alcohol from their family members, 5.54 % of the students

obtained alcohol from various places such as supermarkets and 4.33 % of the

students obtained alcohol from both these source types. Referring to Table 3.1.4,

from the AlUs1 variable, very few students (0.53 %) drank alcohol on their own,

15.54 % of them drank alcohol with other people and friends, whereas 9.91 %

of them drank alcohol with family members, and 13.42 % of the students drank

alcohol with both groups of people. Consequently, from AlUs2 variable, 14.91

% of the students drank alcohol at home or at a party, 8.54 % of the students

drank in other places and 15.09 % of the students drank alcohol at home and/or

at a party and/or in other places. Finally, from the AlWho1 variable, more than

half of the students (60.53 %) had drinkers at home. These figures potentially

reflected that despite unfavourable opinions from families about drinking alco-

hol, plenty of the students consumed alcohol at home with their friends and

family members, and they were surrounded by drinkers at home.

Additionally, from the Al4W1 variable, among the small proportion of students

who reported that they had drunk in the past four weeks, more students had

issues associated with alcohol than those who did not (7.21 % versus 4.29 %).

From the AlWhy1 variable, most of these students (88.81 %) stated the reasons

that people drank to feel better and/or to socialise with other people. On the
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other hand, from the LsAlc variable, more than half of the students (57.57 %)

received lessons about drinking. In addition, from the AlPe1 variable, more

than half of the students (56.09 %) received information about drinking from

their parents and other relatives, and from the AlIn1 variable, about half of the

students (49.78 %) received information about drinking from both passive and

interactive media.

In summary, from the Tables 3.1.3 and 3.1.4, about half of the students (53.91 %)

reported that they did not drink. However, when compared with the students

who smoked, there were more students who drank (44.83 %) than who smoked

(25.48%). Majority of the students’ familymembers (93.64%)were either against

drinking or neutral to drinking alcohol. Also, 82.28 % of the students reported

that they were surrounded by drinkers. For those students reported that they

were drinkers, 60.53 % of them reported that they had drinkers at home and a

majority of them (88.81 %) drank for feeling better and/or socialisation reasons.

3.1.3 Drug-Related Socio-demographic Variables

Demographic information relating to age (Age) and gender (Gender) of the stu-

dents were available, as were information regarding drug knowledge (LsDrg,

DgPe1, DgIn1) and the estimated proportion of peer (own age) drug use (DgEs-

tim). In addition, the information on truancy (TruantN, Truant1), exclusion from

school (ExclAN1, ExclA1), number of books in the home (Books1), whether a

student had enrolled in a free school meal scheme (FSM1) and the students’

Strategic Health Authority regions (SHA) were included.

Table 3.1.5 provides summaries of the drug-related socio-demographic vari-

ables, in terms of frequency and percentages.
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Table 3.1.5: Frequency Table of Drug-related Socio-demographic Variables

Variables Category(Level) n (%) Variables Category(Level) n (%)
DgPe1 None(0) 2091 (28.66) DgIn1 None(0) 1687 (23.12)

Parents, other
relatives(1) 3154 (43.23) Passive Me-

dia(1) 1115 (15.28)

Pros, police(2) 81 (1.11) Interactive
Media(2) 489 (6.70)

Both(3) 1431 (19.61) Both(3) 3466 (47.51)
Missing 539 (7.39) Missing 539 (7.39)

DgEstim None(0) 3170 (43.45) Books1 None(0) 292 (4.00)

Only a few(1) 3272 (44.85) Very few 1 to
10(1) 943 (12.92)

About half(2) 484 (6.63)
Enough to fill
1 shelf and
more(2)

5776 (79.17)

Most to all(3) 186 (2.55)
Missing 184 (2.52) Missing 285 (3.91)

LsDrg No(0) 1819 (24.93) Age 11 years old(0) 1154 (15.82)
Yes(1) 4238 (58.09) 12 years old(1) 1502 (20.59)

13 years old(2) 1486 (20.37)
14 years old(3) 1468 (20.12)
15 years old(4) 1686 (23.11)

Missing 1239 (16.98) Missing 0 (0)
Gender Boy(0) 3688 (50.55) FSM1 No(0) 6058 (83.03)

Girl(1) 3608 (49.45) Yes(1) 1001 (13.72)
Missing 0 (0) Missing 237 (3.25)

Truant1 No(0) 6181 (84.72) TruantN No(0) 6181 (84.72)

Yes(1) 879 (12.05)
Played truant,
not in last 12
months(1)

231 (3.17)

Once/
twice(2) 401 (5.50)

>= 3 times(3) 213 (2.92)
Missing 236 (3.23) Missing 270 (3.70)

ExclA1 No(0) 6503 (89.13) ExclAN1 No(0) 6503 (89.13)

Yes(1) 606 (8.31)
Excluded,
not in last 12
months(1)

238 (3.26)

1-2 times(2) 287 (3.93)
>= 3 times(3) 73 (1.00)

Missing 187 (2.56) Missing 195 (2.67)
SHA North East(0) 699 (9.58) SHA East(5) 756 (10.36)

North West/
Merseyside(1) 710 (9.73) London(6) 491 (6.73)

Yorkshire and
the Humber(2) 503 (6.89) South East

Coast(7) 769 (10.54)

East Mid-
lands(3) 814 (11.16) South Cen-

tral(8) 842 (11.54)

West Mid-
lands(4) 946 (12.97) South West(9) 766 (10.50)

Missing 0 (0)
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Regarding the Gender variable in Table 3.1.5, the percentages of boys and girls

were similar. Regarding the Age variable, except the percentage of 11 years

old students, which was 15.82 %, and the percentage of 15 years old students,

which was 23.11 %, all other levels yielded percentages of approximately 20 %.

Considering the DgPe1 and DgIn1 variables, 43.23 % of the students received

information about drugs from their parents and other relatives, and about 47.51

% of the students received information from both passive and interactive me-

dia, such as FRANK and the Internet. Moreover, when considering the LsDrg

variable, most students (58.09 %) had lessons about drugs in the last 12 months.

These findings were similar to those variables related to smoking and drinking

education and information (CgPe1, CgIn1, LsSmk, AlPe1, AlIn1 and LsAlc re-

spectively). In addition, from the DgEstim variable, nearly half of the students

(44.85 %) knew only a few persons who had tried drugs, and from the Books1

variable, most students (79.17 %) possessed books that were filled at least one

bookshelf.

From the FSM1 variable, a majority of the students in this survey (83.03 %)

were not enrolled in a free school meal scheme, this might suggest that the fam-

ilies of most students were not in economic difficulties, according to Hobbs and

Vignoles (2007). In addition, from the Truant1 variable, 84.72 % of the students

had not played truant and from the TruantN variable, 3.17 % of the students

had played truant more than 12 months ago. However, several of the students

(5.50 %) had truanted once or twice in the year, and 2.92 % of the students had

truanted at least three in the year. From the ExclA1 variable, most students

(89.13 %) had not been excluded from school, and from the ExclAN1 variable,

only 3.93 % of the students had been excluded once or twice in that year.
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3.1.4 Drug-trying Response Variables

The drug-trying response variables in this research analysis were the 15 drugs,

containing information about whether a student had ever tried a specific drug

(yes/no). The 15 drugs were: (1) cannabis; (2) heroin; (3) cocaine; (4) magic

mushrooms; (5) crack; (6) methadone; (7) ecstasy; (8) amphetamines; (9) LSD;

(10) poppers; (11) ketamine; (12) anabolic steroids; (13) gas; (14) other drugs and

(15) tranquillisers. Table 3.1.6 provides the frequency and percentages summary

of drug-trying response variables.

Table 3.1.6: Frequency Table of Drug-trying Response Variables

Variables Category n (%) Variables Category n (%)
(Level) (Level)

DgTdCan1 No(0) 6485 (88.88) DgTdHer1 No(0) 7104 (97.37)
(Cannabis) Yes(1) 661 (9.06) (Heroin) Yes(1) 36 (0.49)

Missing 150 (2.06) Missing 156 (2.14)
DgTdCok1 No(0) 7060 (96.77) DgTdMsh1 No(0) 7031 (96.37)
(Cocaine) Yes(1) 87 (1.19) (Magic Mushrooms) Yes(1) 109 (1.49)

Missing 149 (2.04) Missing 156 (2.14)
DgTdCrk1 No(0) 7105 (97.38) DgTdMth1 No(0) 7085 (97.11)
(Crack) Yes(1) 45 (0.62) (Methadone) Yes(1) 52 (0.71)

Missing 146 (2.00) Missing 159 (2.18)
DgTdEcs1 No(0) 7058 (96.74) DgTdAmp1 No(0) 7056 (96.71)
(Ecstasy) Yes(1) 80 (1.10) (Amphetamines) Yes(1) 67 (0.92)

Missing 158 (2.17) Missing 173 (2.37)
DgTdLSD1 No(0) 7113 (97.49) DgTdPop1 No(0) 6979 (95.66)
(LSD) Yes(1) 42 (0.58) (Poppers) Yes(1) 164 (2.25)

Missing 141 (1.93) Missing 153 (2.10)
DgTdKet1 No(0) 7119 (97.57) DgTdAna1 No(0) 7114 (97.51)
(Ketamine) Yes(1) 43 (0.59) (Anabolic Steroids) Yes(1) 34 (0.47)

Missing 134 (1.84) Missing 148 (2.03)
DgTdGas1 No(0) 6569 (90.04) DgTdOth1 No(0) 7120 (97.59)
(Gas) Yes(1) 590 (8.09) (Other Drugs) Yes(1) 33 (0.45)

Missing 137 (1.88) Missing 143 (1.96)
DgTdTrn1 No(0) 7129 (97.71)
(Tranquillisers) Yes(1) 32 (0.44)

Missing 135 (1.85)

From Table 3.1.6, cannabis was the most commonly used drugs amongst the

students with 9.06 % of the students having tried it. This was followed by gas

and poppers, with 8.09 % of the students reported that they had tried gas and

2.25 % of the students reported that they had tried poppers. The least-used drug

group was tranquillisers, which was only used by 0.44 % of the students.
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In this research, further investigation of the demographic properties of drug-

trying response variables was carried out and further exploration among these

variables will be discussed in Section 3.2.

3.2 Further Exploration among Drug-trying

Response Variables

In this stage of the exploration among drug-trying response variables, the total

number of drugs each student had tried was investigated. The rationale was

to gauge the potential level of drug-trying behaviour of the students. The

frequency table of number of drugs tried by the students, based on observed

data, is provided in Table 3.2.1.

Table 3.2.1: Frequency Table of Number of Drugs Tried by Students

# Drugs Tried 0 1 2 3 4 5 6
Frequency 6094 821 199 71 45 25 9

Percent 83.53% 11.25% 2.73% 0.97% 0.62% 0.34% 0.12%
# Drugs Tried 7 8 9 10 11 12 13

Frequency 10 6 6 4 2 2 2
Percent 0.14% 0.08% 0.08% 0.05% 0.03% 0.03% 0.03%

From Table 3.2.1, althoughmajority of the students (83.53 %) reported they tried

no drugs, 821 students (11.25 %) reported they had tried one drug, 381 students

(5.22 %) reported that they had tried at least two drugs, including 199 that had

tried two drugs, 71 that had tried three drugs, 45 that had tried four drugs, 25

that had tried five drugs, and 41 that had tried at least six drugs. The above

result of 16.47 % of 7,296 students participated in the Year 2010 Survey reported

that they had tried different drugs indicates that there may exist a high number

of young people in England, estimated to be 450,000 young people by basing on

the estimated total number of 3million of boys and girls aged 11 to 15 in England

by the Year 2010 Survey report (Fuller et al., 2011), who have taken drugs. This
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further supports the prior research finding of a sustained prevalence of drug use

among young people in British society and that further research effort should

be continuously devoted to address the drug use problem.

3.3 Pairwise Associations between Drug-trying Re-

sponse Variables and Covariates

The Year 2010 Survey report did not study the associations among drug-trying

response variables and covariates (i.e. the smoking, drinking and drug-related

socio-demographic variables) in detail. To understand more about the drug-

trying behaviour of young people in respect of those covariates, in this section,

pairwise associations among drug-trying response variables and the smoking,

drinking and drug-related socio-demographic variables were depicted by per-

centage contingency tables, box plots (for continuous variables) and polychoric

correlation plots.

3.3.1 Percentage Contingency Tables among Covariates and

Drug-trying Response Variables

In this section, we examine the pairwise associations between the categorical

covariates and the drug-trying response variables. Percentage contingency ta-

bles were adopted to investigate such pairwise associations. In the percentage

tabulates, drug-trying response variable for drug A, on the horizontal x-axis,

was compared to covariate B, on the vertical y-axis, to investigate the percentage

of students who had tried drug A against each factor level of covariate B (i.e.

given a factor level of covariate B, what was the percentage of students who had

tried drug A). The purpose of using percentage tabulates was to illustrate the

increase in the percentage of students who had tried drug A, when we set the

factor level of covariate B from lower level to higher level. A positive associa-
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tion can be observed from the percentage tabulates if the percentage increases

corresponding to rises in factor levels of the covariate.

Several covariates were selected to represent smoking, drinking and drug-

related socio-demographic variables, in order to produce percentage tabulates

in respect of these selected covariates and drug-trying response variables. These

selected covariates are listed in Table 3.3.1 as follows:

Table 3.3.1: Table of Selected Covariates for Depiction

Category Selected Covariate
Smoking CgFam1, CgStat1, CgWho1, CgBuyF1
Drinking AlFreq2, AlPar1, AlBuy, AlWho1
Drug-related Socio-demographic DgEstim, Age, Gender, FSM1, TruantN, ExclAN1

These covariates were selected because they were the most informative vari-

ables that might predict drug-trying behaviour within their own variable group

(as discussed in Sections 3.1.1, 3.1.2 and 3.1.3). For the smoking variables, the

CgFam1 variable represented the responses of the students’ families to smok-

ing, whereas the CgStat1 and the CgBuyF1 variables represented the cigarette

smoking status and frequency of purchasing cigarettes of the students respec-

tively. Also, the CgWho1 variable represented the number of smokers that the

students had in their houses. For the drinking variables, the AlFreq2 variable

represented the students’ frequency of drinking alcohol, whereas the AlBuy

variable represented the students’ sources of obtaining alcoholic drinks. The

AlPar1 variable represented the students’ family responses to drinking, and the

AlWho1 variable represented the number of alcohol drinkers that the students

had in their houses. For drug-related socio-demographic variables, the DgEstim

variable represented the proportion of drug takers around the students. The

Age andGender variableswere demographic variables that were usually related

to drug-trying behaviour. The FSM1 variable represented the economic status

of the students’ families, whereas the TruantN and ExclAN1 variables repre-
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sented the behaviour of the students in playing truancy and being excluded

from schools respectively. The description of these variables in this section can

be referred to Appendix A.2.

In Tables 3.3.2 and 3.3.3 the percentage tabulates portrayed the conditional per-

centages of the students who had tried a specific drug, which were listed along

the x-axis, given a factor level of a covariate listed along the y-axis.
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From Tables 3.3.2 and 3.3.3, a general trend was observed that in most cases

the higher the levels of a selected smoking, drinking or drug-related socio-

demographic variable, the more likely that a student had tried a drug. The

percentage tabulates of CgStat1, CgBuyF1 and AlFreq2 variables indicated that

generally the students’ heavier smoking or drinking habits were linked to their

increased drug-trying behaviour. The percentage tabulates of DgEstim showed

peer influence on the students’ drug-trying behaviour that the more people of

the same age who had tried drugs, the higher the likelihood that the students

would try drugs. These two phenomena were particularly obvious for the six

drugs: (1) cannabis; (2) poppers; (3) cocaine; (4) ecstasy; (5) magic mushrooms

and (6) gas. In addition, percentage tabulates of CgFam1 and AlPar1 variables

indicated that for almost every drug, when the students’ families were inclined

to support the students’ smoking or drinking behaviour, such students became

more likely to try drugs. The percentage tabulates of the CgWho1 variable

generally illustrated that the students, who had smokers living with them and

smoking inside their houses, were more likely to try drugs than those who have

smokers smoking outside their houses. In addition, the latter group of the stu-

dents was more likely to try drugs than those who had no smokers living with

them. Similar findings were found on AlWho1 variable. From the percentage

tabulates of the AlBuy variable, it was observed that purchasing alcohol from

shops influenced more students to try a drug than purchasing alcohol from

family members. This finding may imply a relationship of places where alcohol

and drugs could be bought.

However, there was no significant gender difference of trying types of drugs

except that girls apparently used more gas than boys (9.27 % for girls and 7.22 %

for boys), whereas boys apparently used more cannabis than girls (10.02 % for

boys and 8.47 % for girls). For the free school meal, represented by FSM1 vari-

able as a proxy of the economic status of the students’ families, it was observed
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that the students involved in the free school meal scheme were more likely to

try cannabis, heroin, cocaine, magic mushrooms, methadone, ketamine, gas

and tranquillisers. This might imply a relationship of economic status of the

students’ families and students’ drug-trying behaviour.

From the percentage tabulates of both TruantN and ExclAN1 variables, a gen-

eral pattern was observed that the percentages of the students trying drugs in-

creased when the frequencies of the students playing truant or being excluded

from school increased. This finding implies positive associations between both

TruantN and ExclAN1 variables and drug-trying response variables.

Additionally, from the percentage tabulates of the Age variable, it was observed

that generally, older students were increasingly likely to try drugs. The positive

correlation between Age variable and drug-trying response variable was par-

ticularly strong in respect of the drugs: (1) cannabis; (2) gas; (3) poppers; (4)

cocaine and (5) magic mushrooms.

3.3.2 Empty Cell Problem

The empty cell problem, whichmeans zero cell count for a combination of factor

levels fromboth categorical variables, existed in some combinations of covariates

and drug-trying response variables, such as DgPe1 and heroin, and DePe1 and

tranquillisers. The contingency tabulates of DgPe1 against heroin and DgPe1

against tranquillisers, shown in Table 3.3.4, were used as examples to assist in

explaining the empty cell problem.



CHAPTER 3. EXPLORATORY DATA ANALYSIS 78

Table 3.3.4: Contingency Tablulates of DgPe1 against Heroin and Tranquillisers

Drug-trying Response Heroin Tranquillisers
Variable Level No Tried No Tried
DgPe1 None (0) 2052 12 2063 8

Parents, other relatives (1) 3117 14 3123 8
Pros, police (2) 80 0 81 0

Both (3) 1404 8 1407 12

These cross-tabulations in Table 3.3.4 showed no students who received infor-

mation about drugs from the professionals and the police, had tried heroin or

tranquillisers. Empty cells cause problems that lead to undefined likelihood esti-

mates, since the log of zero is undefined. It should also be noted that sparse data

were detected as well if there were very low frequencies in several frequency

cells. However, this type of sparse data would not lead to singularities when

fitting logistic regressionmodels. One example of such sparse datawith positive

frequencies was the cell representing the frequency of the students having tried

heroin and obtained information from professionals and the police (Level 2 of

DgPe1 Variable).

3.3.3 Box Plots for Continuous Variables

To investigate the relationships between the continuous variables and drug-

trying response variables, box plots were adopted as well. In the working data

set, there were three continuous variables: Cg7Num, CgWhoSmo and Age.

For each continuous variable, we plotted fifteen box plots, with each box plot

showed each continuous variable against a single binary drug-trying response

variable. In addition, we plotted a box plot, in which the AlEvr variable, under

the label ’Alcohol’, was analysed against each of the three continuous variables,

in order to investigate the relationships between the three continuous variables

and this drinking variable. These box plots are plotted, clustered and presented

in Figures 3.1 and 3.2.
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Figure 3.1: Box Plots for the Average Number of Cigarettes per day (Cg7Num)
and Number of Cigarette Smokers of Respondent (CgWhoSmo) Covariates
against Drug-trying Response Variables and "Alcohol" Variables
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Figure 3.2: Box Plots for Age against Drug-trying Response Variables and "Al-
cohol" Variables

From the boxplots in Figures 3.1 and 3.2, theCg7Numvariable exhibitedpositive

associations with most drug-trying response variables (except anabolic steroids

and gas). When examining the medians between drug-triers and non drug-

triers for cocaine, methadone, ecstasy, amphetamines, LSD and other drugs,

positive associations between the average number of cigarettes per day in the

previous week and these drug-trying response variables were observed. This

finding reflects drug-triers’ tendency to smoke more cigarettes on average in

the previous week. No apparent observations were made from box plots with

CgWhoSmo variable. Finally, Age variable was found to be significantly related

to alcohol covariate, as well as cannabis, cocaine, crack, methadone, ecstasy, am-

phetamines, LSD, poppers and ketamine, implying that drug-triers and drinkers

in this survey are usually older students.
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3.3.4 Polychoric Correlation Plots

In this section, polychoric correlation plots were adopted to investigate the rela-

tionships between variables in theworking data set. These plotswere adopted to

illustrate polychoric associations among a large number of variables at a glance.

In each correlation plot, listwise comparison between variable pairswas adopted

to generate comparable correlation values across every correlation plot.

Polychoric correlation (Drasgow, 1986) is a method of measuring the correla-

tion between two ordinal or continuous variables. Polychoric correlation is

scaled between -1 and 1, and can be applied to continuous, ordinal and binary

variables. Nominal variables are broken down into separate binary factors that

correspond to each level in these variables. Variables in a plot are ordered ac-

cording to their aggregate magnitude in polychoric correlations. The resulting

polychoric correlation plots are presented in Figures 3.3 to 3.5.

Firstly, Figure 3.3 illustrated that most smoking variables yielded strong posi-

tive correlationswith drug-trying response variables, and that these drug-trying

response variables were strongly and positively correlated with each other, par-

ticularly for cannabis, cocaine and amphetamines. It was observed that in par-

ticular, CgFam1, CgGet, CgPk1, CgEstim, CgBuyF1, CgGet1, CgGet2, CgGet3,

CgStat1, CgStat, CgNow and Cg7Num variables were highly positively corre-

lated with drug-trying response variables. These findings implied that, family’s

attitude to smoking, cigarette smoking status, number of cigarettes smoked, fre-

quency of purchasing cigarettes, sources of obtaining cigarettes, as well as the

proportion of people a student knows who smoke, are all positively associated

with drug-trying response variables. These smoking variables were also found

highly correlated with each other as well.
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Other smoking variables in respect of obtaining information and having

lessons about smoking (CgIn1 and LsSmk respectively) were not as highly cor-

related with drug-trying response variables as the 12 smoking variables previ-

ously mentioned. Moreover, regarding the variable on the number and types of

people a student knows who smoke (CgEstim), it was observed that if people

were other relatives and family members, it lowered the likelihood of students

to try drugs, but if they were friends, it, in turn, increased such likelihood. In

addition, from the variable related to getting helpful information about smoking

cigarettes from people (CgPe1) and getting helpful information about smoking

cigarettes from media (CgIn1), it was found that the students who obtained

information from professionals and police were much less likely to try most of

the drugs, and those who obtained information from interactive media such

as the Internet were much less likely to try tranquillisers and heroin. From

the variable in respect of the types of people the students know who smoked

cigarettes (CgPp1), those students who knew other relatives, friends or all that

smoked cigarettes were less likely to try drugs. However, those students who

knew family member who smoked cigarettes were more likely to try drugs.
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Secondly, in Figure 3.4, it was observed that the 15 drug-trying response vari-

ables were strongly and positively correlated with each other and that most of

the drinking variables apparently showedpositive correlationswith drug-trying

response variables. These drinking variables were AlUs1, AlUs2, Al4W1, Al-

Buy, AlPar1, AlEstim, AlBuy1, AlBuy2, AlEvr, AlFreq, AlFreq2 and Al7Day1.

Also, the AlLast variable was highly correlated with drug-trying response vari-

ables. These findings imply that, places of consuming alcohol, companions who

drank alcohol, types of incidences a student encounteredwhendrinking alcohol,

places of purchasing alcohol, frequency of drinking alcohol, family’s attitude to-

wards alcohol consumption and the proportion of people a student knows were

drinkers, are all positively associated with drug-trying among students. These

drinking variables were also found highly correlated among themselves. An-

other observation was that from the variable AlPe1 the students who obtained

information about drinking alcohol from professionals and police apparently

lowered the likelihood for the students to try drugs. Compared with the smok-

ing variables, other drinking variables in respect of obtaining information and

having lessons about drinking (LsAlc, AlIn1) were not as highly correlated with

drug-trying response variables as the former cluster of smoking variables. In

addition, regarding the drinking variable about the reason that the students

thought people of same age smoke (AlWhy1), Figure 3.4 showed that the stu-

dents who thought people drank to feel better themselves were less likely to

try drugs. This suggests that seeking of exuberance may be a reason for trying

drugs. It was also noted that the drinking variables on a whole were positively

correlated with each other. Absolute negative correlations only existed between

levels of the same drinking variables.
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Finally, in Figure 3.5, apart from the 15 drug-trying response variables were

strongly and positively correlated with each other, it was observed that several

drug-related socio-demographic variables showed apparent positive correla-

tions with drug-trying response variables. Age, ExclA1, ExclAN1, DgEstim,

TruantN and Truant1 were all strongly associated with drug-trying response

variables, indicating that a rise in levels in age, frequency of truancy and exclu-

sion from school, which are bothmeasures of anti-social behaviour, increases the

likelihood for a student to try drugs. In addition, students are more likely to try

drugs as they get older. Another observation was that from the DgPe1 variable,

the students obtained information about drugs from professionals and police

were apparently less likely to try drugs. Variables in respect of drug education

and information from media (LsDrg, and DgIn1 respectively), gender (Gender)

and number of books (Books1) a student owns were apparently not related to

drug-trying response variables.

3.3.5 Comparison with the Findings in the Year 2010 Survey

Report

Comparedwith the findings in the Year 2010 Survey report (a summarywas pre-

sented in Section 1.3.3), additional main findings of the drug-trying behaviour

among young people in England by the study of the associations and relation-

ships among drug-trying response variables and covariates (i.e. the smoking,

drinking and drug-related socio-demographic variables) are summarized as fol-

lows:

(1) Similar to the finding in the Year 2010 Survey report, results of the percentage

contingency tables, box plots and polychoric correlation plots consistently show

the strong positive association between smoking and drug-trying behaviour

of the students in England and that there are different patterns of pairwise
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associations between the smoking variables and the 15 individual drugs. Re-

sults of the percentage contingency tables, box plots and polychoric correlation

plots further reveal that the strong positive association between smoking and

drug-trying behaviour of the students in England is highly contributed by the

following smoking covariates: (1) the attitude of the students’ family towards

smoking (CgFam1); (2) the students’ cigarette smoking status (CgStat1); (3) num-

ber of cigarettes smoked by the students in the previous week (Cg7Num); (4)

frequency of purchasing cigarettes from shops by the students (CgBuyF1); (5)

sources of obtaining cigarettes by the students (CgGet); (6) whether there were

smokers inside the students’ houses (CgWho1) as well as (7) the proportion of

people a student knows who smoke (CgEstim).

(2) Similar to the smoking variable, results of the percentage contingency ta-

bles, box plots and polychoric correlation plots are consistent to the finding in

the Year 2010 Survey report that there is a positive association between drinking

alcohol and drug-trying behaviour of the students in England and that there are

different patterns of pairwise associations between the drinking variables and

the 15 individual drugs. Results of the percentage contingency tables, box plots

and polychoric correlation plots further reveal that the positive association be-

tween drinking and drug-trying behaviour of the students in England is mainly

contributed by the following drinking covariates: (1) the attitude of the stu-

dents’ family toward drinking alcohol (AlPar1); (2) usual frequency of drinking

alcohol by the students (AlFreq2); (3) sources of buying alcohol by the students

(AlBuy); (4) whether there were drinkers inside the students’ houses (AlWho1);

(5) types of incidences when the students drank alcohol (Al4W1) as well as (6)

the proportion of people a student knows who drank alcohol (AlEstim).

(3) For the drug-related socio-demographic variables, results of the percent-

age contingency tables, box plots and polychoric correlation plots support the
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findings in the Year 2010 Survey report that the drug-related socio-demographic

variables, namely (a) age of the students (Age); (b) how often the students had

been excluded fromschools (ExclAN1) and (c) howoften the students played tru-

ant (Truant1), are strongly and positively associated with drug-trying response

variables. However, these three drug-related socio-demographic variables exert

different patterns of pairwise associations with the 15 individual drugs. These

three drug-related socio-demographic variables are particularly strongly corre-

lated with the five drugs: (1) cannabis; (2) poppers; (3) cocaine; (4) ecstasy and

(5) magic mushrooms.

(4) For the drug-trying response variables, results of the polychoric correlation

plots show that the 15 drug-trying response variables are strongly and positively

correlated with each other.

(5) The Year 2010 Year Survey report stated that "girls were less likely than

boys to have taken drugs in the last year" (Fuller et al., 2011). According to the

percentage contingency table in respect the gender variable (Gender), it reveals

that the aforesaid statement is valid for seven drugs (cannabis, magic mush-

rooms, crack, LSD, ketamine, anabolic steroids and tranquillisers) of which the

proportion percentages of male students trying them were slightly higher than

female students. On the other hand, for the other eight drugs (heroin, cocaine,

methadone, ecstasy, amphetamines, poppers, gas and other drugs), results of

the percentage tabulate show the opposite. Similarly, the Year 2010 Survey re-

port stated that the school-level variable (percentage of pupils eligible for the

free school meals) was not significantly associated with drug use in the survey.

However, the percentage contingency table in respect of whether the students

have enrolled in free school meal scheme (FSM1) indicates that the students

involved in the free school meal scheme are more likely to try cannabis, heroin,

cocaine, magic mushrooms, methadone, ketamine, gas and tranquillisers.
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The above additional main findings in the exploratory data analysis of the

working data set provide hints to justify our planned effort in this research

as elaborated in Section 1.4.2. To enrich the understanding of drug-trying

behaviour among young people in England, development and application of

advanced statistical methodologies are needed to further investigate the inter-

actions among drug-trying response variables as well as to further study the

associations among drug-trying response variables and the smoking, drinking

and drug-related socio-demographic variables in the working data set.

3.4 Summary

This chapter has summarised the results of the exploratory data analysis in re-

spect of the working data set of this research. There were 25.48% of the students

who had ever smoked, and 44.83% of the students who had ever drunk alco-

hol. Most family members were either against or neutral towards smoking and

drinking behaviour of the students. Most students knew surrounding people

who either smoked or drank or took drugs, and most of them had lessons about

smoking, drinking and drugs. Regarding the usage of drugs, cannabis was the

most used drug, of which 9.06% of the students used it, whereas tranquillisers

was the least used drug, of which only 1.85% of the students used it. A large

number of the students had never tried drugs, but there were still a substantial

number of the students who had tried drugs, including a few who had tried

more than six drugs.

Regarding the pairwise associations between drug-trying response variables

and covariates, except CgWhoSmo, gender and free school meal covariates, in

general, most of the smoking, drinking and socio-demographic covariates were

positively associatedwithdrug-trying responsevariables. Drug-trying response
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variables were also strongly and positively associated with each other.

Also, empty cells existed in some combinations of covariates and drug-trying

response variables. This problem is needed to be addressed in Chapter 5 under

logistic regression models.

When compared with the findings of the Year 2010 Survey report, examination

of the pairwise associations and relationships in respect of drug-trying response

variables and covariates (i.e. the smoking, drinking and socio-demographic vari-

ables) of the working data set by percentage contingency tables, box plots and

polychoric correlation plots shed additional light to help understanding more

about the drug-trying behaviour of the students. These additional findings (as

summarised in Section 3.3.5) were not found in the Year 2010 Survey report.

In Chapter 4, we continue our analysis by investigating the missingness of the

working data set. However, before such investigation, we discuss the missing

data theory applied in the working data set in Section 4.1.



Chapter 4

Missing Data Theory, Methodology

and Application

4.1 Overview of Missingness

Missingness occurs for various reasons. For item non-response, reasons may

include: (1) a respondent may not understand the question; (2) a respondent

does not wish to answer the sensitive question; or (3) a respondent cannot figure

outwhich option to choose in the case ofmultiple-choice questions. Moreover, if

survey questions are deemed too tedious or too sensitive to answer, a respondent

may refuse to answer (Tourangeau and Yan, 2007). Also, the internal routing

system in a questionnaire may be another reason for item non-response. For

unit non-response, a respondent may either have no interest or refuse to provide

answers to the questionnaire or is unable to be interviewed due to language bar-

rier and disabilities (Lavrakas, 2008).

Missing data are ubiquitous in societal and behavioural science studies (Lit-

tle and Schenker, 1995), as well as in most medical, clinical and epidemiological

research studies (White et al. (2009); Sterne et al. (2009); Tu and Greenwood

(2012)), and are prevalent in large-scale surveys, including the "Health Survey

92



CHAPTER 4. MISSING DATA THEORY, METHODOLOGY AND APPLICATION93

for England" and "Smoking, Drinking and Drug Use among Young People in

England" survey series. De Leeuw et al. (2008) listed the possible causes of

the increase in missing data in surveys, which include: (1) respondents are not

having an answer to the question and (2) respondents’ refusal to provide a re-

sponse. Regarding the Year 2010 Survey employed in this research, the probable

causes of the missing data included the followings: (1) the survey questionnaire

contained sensitive questions which the students refused to answer and (2) a

portion of the students in the survey might possess insufficient information to

answer some questionnaire questions (Kyureghian et al., 2011).

The problem of missing data is a major issue in statistical analyses. Schafer

and Graham (2002) stated that since most statistical analyses are not designed

to deal with missing values, the occurrence of missingness hampers the statis-

tical analysis of scientific research. If missing data are not managed properly,

missingness can lead to problems of bias in the statistical estimates and a loss

of efficiency (White et al. (2009); Sterne et al. (2009); Carpenter and Kenward

(2013)). Despite these problems, many researchers mistreat missingness by ei-

ther treating missing values as merely another category or ignore the issue of

themissing data and conduct a complete case analysis instead. In order to better

understand the reason for the presence ofmissing data, there is a need to discuss

the missing data theory and mechanisms, as well as methods to properly deal

with missing data.

4.2 Terminology and Models Used

LetY be a dependent variable withmissingness, whereY = {Ymiss,Yobs}, and X be

the covariates, where X = {Xmiss,Xobs}. In this chapter, we examine the missing-

ness mechanisms suggested by Rubin (1987) and investigate ways of using these

mechanisms within a statistical model. When performing a statistical analysis
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in the presence of missing data, the following three models are considered:

4.2.1 Substantive Model

The substantive model which concerns addressing the questions of interest,

for example, finding the factors that attribute to drug-trying behaviour. The

probability of the dependent variable is expressed as: f (Y | X ,Θ), where Θ is the

set of parameters of the substantive model.

4.2.2 Missingness Model

The missingness model is used to diagnose the mechanism by which the data

is missing. Let M = {M1, . . . ,MN} be the binary missingness indicators for Y ,

for respondent 1, . . . ,N, where N represents the number of respondents. The

probability of missingness in Y can be expressed as: f (M | X ,Y,φ), where φ is

the set of parameters of the missingness model for Y . Missing indicators for X

can be defined in a similar way.

4.2.3 Imputation Model

The imputationmodelwhich formulates themethodology for imputing the data

for data analysis. The probability of the covariates is expressed as: f (X | ψ),

where ψ is the set of parameters of the imputation model.

Sections 4.3 and 4.4 below provide an overview on the missingness mechanism

and its implication, as well as techniques for diagnosing the missingness.

4.3 Missing Data Mechanism

Lavrakas (2008) suggested that the assumption regarding themissingnessmech-

anism has an influential consequence for the subsequent data analysis. Accord-
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ing to Rubin (2002), the missing mechanism can be defined by the assumed

relationship between missingness and the values of variables in the data set.

There are three classifications of missingness, namely: (1) missing completely at

random (MCAR) (Rubin, 2002); (2) missing at random (MAR) (Rubin, 1976) and

(3) missing not at random (MNAR) (Rubin, 1976).

MCAR is defined with an assumption that the missingness in a data set is

independent of both observed and missing values in the data set. For example,

a respondent flips a coin or throws a dice to decide whether he or she should

respond to a question or not. MCAR is expressed by the following equation:

f (M | X ,Y,φ ,Θ,ψ) = f (M | φ). (4.1)

The existence of theMCARmechanism can be tested through using a hypothesis

test, involving logistic regression, known as Ridout’s test (Ridout and Diggle,

1991), which was adopted to assess the relationship between the dropout of

individuals in a clinical trial and a covariate. The Ridout’s test can be applied

to assess the relationship between the missingness of a covariate and observed

values of another covariate. Suppose the data set X contains P covariates, i.e.

X = {X1, . . . ,XP}, where Xp, p = 1, . . . ,P represents the covariate vector for each

covariate p in the data set. Suppose the missingness of a variable p′, p′ = 1, . . . ,P,

φ = {φ0,φ1}, where φ0 represents the intercept of the logistic regression model,

and φ1 represents a parameter for covariate p in the data set. The formulation of

the Ridout and Diggle (1991) test is expressed as follows:

logit(Mp′) = φ0 +φ1Xp, p, p′ = 1, . . . ,P, p 6= p′. (4.2)

If the coefficient of φ1 is determined byWald’s test (Wald, 1945) to be significant

at 5 % significance level, it indicates that the missingness of Y is significantly re-
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lated toX , implying that themissingness of variableY is notMCAR.On the other

hand, if the coefficient of φ1 is determined by Wald’s test to be not significant at

5 % significance level, we do not reject the hypothesis that the missingness of Y

is not related to X . However, this does not necessarily mean the hypothesis that

the missingness of variable Y is MCAR should be assumed.

Rubin (1976) defined MAR as where the missingness can be explained in terms

of observed data. For example, older respondents may be more likely to refrain

from reporting their income in a questionnaire. The equivalent equation ofMAR

is expressed as follows:

f (M | X ,Y,φ ,Θ,ψ) = f (M | Yobs,Xobs,φ), (4.3)

where φ is a set of parameters causing the missingness of Y and Θ is a set of

parameters in a substantive model, as stated in Section 4.2.1.

The MCAR assumption is stronger than the MAR assumption in the sense that

it is assumed that missingness is independent of both observed andmissing val-

ues. Though the MCAR assumption can be rejected, it is not possible to verify

the MAR assumption with a single data set (White et al., 2009).

MNAR is defined as the status that the missingness is dependent on both ob-

served values andmissing values in the data set. For example, respondents who

have committed at least one crime are less likely to respond to questions related

to crimes in a questionnaire. The equivalent equation of MNAR is expressed as

follows:

f (M | X ,Y,φ ,Θ,ψ) 6= f (M | Xobs,Yobs,φ). (4.4)
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One example of MNAR is the response to income questions in a survey, which

are related to an income variable. If respondents who are earning more are less

likely to answer such income questions, then the response of the income variable

is subject to MNAR.

Rubin (1976) defined the term ignorable for the missing data mechanism with

two following conditions that are needed to be fulfilled:

1. The missing data are under MCAR or MAR mechanism.

2. The set of parameters that govern the missingness model, φ , are distinct from

the set of parameters that govern the substantive model, Θ.

4.4 Inferring the Missing Data Mechanism

According to Ibrahim et al. (2005), if the missingness of Y is ignorable, then the

missingness model term f (M | X ,Y,Θ,φ ,ψ) can be simplified into f (M | X ,Y,φ),

since this term represents the probability of the missingness model, involv-

ing parameters which predict the missingness of the data set. No parameters

that do not cause missingness are included in this term. The likelihood term

f (Y | X ,Θ,φ ,ψ) can be simplified into f (Y | X ,Θ), since this term represents the

likelihood of the substantive model, involving parameters which predict the

response variable and parameters that are related to the response variable. The

covariate term f (X | Θ,φ ,ψ) can be simplified into f (X | ψ), since the covariate

term only depends on parameters that are related to covariates.

The joint likelihood of the data set, the covariate terms and the missingness

are represented by the selection model as described by the following equation:
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f (X ,Y,M |Θ,φ ,ψ) ∝ f (M | X ,Y,φ) f (Y | X ,Θ) f (X | ψ). (4.5)

(Ibrahim et al., 2005)

An alternative factorisation of the joint likelihood expressed in Equation 4.5 is

a pattern-mixture model (Little, 2008). The pattern-mixture model is expressed

as follows:

f (X ,Y,M |Θ,φ ,ψ) ∝ f (Y | X ,M,Θ) f (X |M,ψ) f (M | φ). (4.6)

(Little, 2008)

Here, the pattern-mixture model specifies the marginal distribution of the miss-

ingness indicators, as well as the conditional distribution of the response vari-

ables based on missingness indicators. More details of the selection model and

the pattern-mixturemodel can be referred toGlynn et al. (1986) and Little (1993).

The pattern-mixture model is only feasible when there are a small number of

missingness patterns. Under a large number of missingness patterns, the appli-

cation of the pattern-mixture model is difficult.

There is no test to determinewhether themissingness isMAR.However, Allison

(2001) stated that it is unlikely for this condition to be "violated in real world sit-

uations", including the "Smoking, Drinking and Drug Use among Young People

in England" study series, in which as many responses were collected as possible

in a strictly confidential way. As a result, treating the MAR missingness as

ignorable is common. Buuren (2012) stated that for "practical purposes", the

"missing data model" can be considered "ignorable if MAR holds", in the belief

that the observed data "are sufficient to correct for the effects" of all "missing

data" in a data set. Data sets with MAR missingness should be treated with

more sophisticated imputation methods. In Section 4.5 below, we discuss the
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methods and procedures for handling missing data that are MAR.

4.5 Handling Missing Data

Various ways of handling missing data that are MAR have been widely used

by researchers through imputation to assess model uncertainty. In this section,

details of the imputation model specifications and inferential frameworks used

in this work are described. The two imputation model specifications mentioned

in this section are: (1) joint models, which is described in Section 4.5.2, and

(2) fully conditional specification, which is described in Section 4.5.3. The full

conditional specification is used in the mice package for multiple imputation by

chained equations.

Before describing these two imputation model specifications, single imputation

is briefly introduced in Section 4.5.1.

4.5.1 Single Imputation

Previously, single imputation models were often used to deal with missing

data, including listwise deletion (Kelejian, 1969), pairwise deletion (Schafer and

Olsen, 1998) and predictive mean matching (Little, 1988). However, in a single

imputation, as the name suggests, the missing data are only imputed once. The

uncertainty due to the need for imputation is therefore neglected in a single im-

putation. Moreover, in a single imputation, there is nomethod of differentiating

between the imputed data and the non-imputed data in the subsequent analy-

sis. This problem is addressed by imputing stochastically the missing data more

than once, ideally more than five times. The method of imputing the missing

data repeatedly is called multiple imputation, which is introduced in the next

two sections.
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4.5.2 Joint Models

Multiple imputation by joint models assumes that the data can be described by

a multivariate distribution, depending on the type of data. The limitation of

this approach is that the data rarely conform to a predefined joint distribution,

and transformation is often required to address this discrepancy (Buuren (2007);

Buuren (2012)). This implies a substantial amount of effort to identify suitable

joint distributions and transformations for all variables with missing values in

a large data set. One alternative approach is to implement multiple imputation

through fully conditional specification, which is described in Section 4.5.3 below.

4.5.3 Full Conditional Specification (FCS)

In contrast to specifying a joint model for the data, multiple imputation by fully

conditional specification (FCS) (Buuren, 2012) adopts pre-specified conditional

distributions for each variable in a data set. Each of these variables is then im-

puted sequentially. When specifying the full conditional distributions for each

variable, the data model must be defined, according to the type of data, and is

taken to be conditional upon the other variables in the data set.

One issue with FCS is compatibility (Buuren, 2012). Another issue with FCS

is convergence. Buuren and Groothuis-Oudshoorn (2011) suggested that con-

vergence is achieved when the following two criteria are achieved: (1) different

chains (i.e. posterior chains) of imputation are freely and stably mingled with

each other and (2) the ’between-imputation’ variance between different chains

is not larger than the average within-imputation variance.

Both the fully Bayesian framework and themultiple imputation by chained equa-

tions are sampled from full conditional distributions. The fully Bayesian frame-

work is a one-stage modelling approach, since the imputation model and the
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substantive model are integrated, whereas the multiple imputation by chained

equations is a two-stage modelling approach, since the imputation model and

the substantivemodel are separately conducted in two stages. The fully Bayesian

framework is described in Section 4.5.3.1, whereas the multiple imputation by

chained equations (Stage 1) and response modelling (Stage 2) are described in

Section 4.5.3.2 and 4.5.3.3 respectively.

4.5.3.1 Fully Bayesian Framework

Both Spiegelhalter (2003) and Lunn et al. (2006) discussed the fully Bayesian

framework. The basic idea of a fully Bayesian framework for missing data in-

volves specifying priors for all parameters concerned, along with specifying

distributions for the missing data. These missing data are sampled from their

conditional posterior distribution through a Gibbs sampler (Geman and Geman

(1984); Spiegelhalter (2003)).

A fully Bayesian framework is an approach that not only imputes the miss-

ing data, but also models the uncertainty of the imputation. It is a one-stage

method, since missing data and parameters are imputed within the same sta-

tistical model. In a fully Bayesian framework, each parameter is given a prior

and all the parameters are initialised by drawing initial values from their corre-

sponding priors. These parameters are then updated from their corresponding

posterior functions, while also sampling the missing data from the likelihood of

the imputation model, until convergence. In the case that there is missing data

in the covariates, then a prior must be placed on these covariates.

The conditional prior for the covariate X , which is based on the parameter

of covariates of the imputationmodel ψ , is denoted by p(X |ψ). After observing

the response data, Y , the prior is updated from a posterior. The probability

density function for the response data Y , depending on the parameter Θ, is
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called likelihood function (p(Y | X ,Θ)), which can be used to impute the missing

data. When there is missingness in the covariates, a prior distribution must be

specified for the covariates as a part of the imputation model. In this case, the

prior for the covariates will become p(ψ).

In the fully Bayesian framework, the joint probability model for Y , X , M, Θ,

ψ , φ is as follows:

p(Y,X ,M,Θ,φ ,ψ) ∝ p(Y | X ,Θ)p(X | ψ)p(M | Y,X ,φ)p(Θ)p(ψ)p(φ), (4.7)

(Ibrahim et al. (2005);Best and Mason (2012))

where p(Y | X ,Θ) is the likelihood of the substantive model, p(X | ψ) represents

the likelihood of the imputation model and p(M | Y,X ,φ) represents the miss-

ingness model, p(Θ), p(φ) and p(ψ) are priors for Θ, φ and ψ , respectively.

In this section, we focus on the case when the assumption of ignorability can

be made. The non-ignorable case has been explained in Ibrahim et al. (2005).

In other words, both φ and M terms can be ignored. The subsequent joint

probability model for Y , X , Θ, ψ is therefore represented as follows:

p(Y,X ,Θ,ψ) ∝ p(Y | X ,Θ)p(X | ψ)p(Θ)p(ψ). (4.8)

A fully Bayesian framework utilises various samplers, including the Gibbs

Sampler (Geman and Geman, 1984) and Slice Sampler (Ntzoufras, 2009) to up-

date the parameters and missing values. This method begins with drawing the

initial values for ψ and Θ parameters, as well as missing values of X and Y , by

specifying the distribution terms of the missing values of X and the priors of

ψ and Θ. The missing values Xmiss, Ymiss, ψ and Θ are all sampled from their

respective conditional terms at each iteration t, t = 1, . . . ,T . The algorithm of
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sampling by the Gibbs Sampler is provided as Algorithm 4.1 below:

Algorithm 4.1 Fully Bayesian Framework
1: Specify the imputation model X , p(X | ψ) and the likelihood function, p(Y |

X ,Θ).
2: Specify the prior distributions for parameters of the substantive model and

the imputation model, Θ and ψ respectively.
3: Initialise ψ , Θ, Xmiss and Ymiss as ψ(0), Θ(0), X (0)

miss and Y (0)
miss.

4: for t = 1, . . . ,T do
5: Sample ψ , Θ, X and Y from the joint distribution function, p(Y,X ,Θ,ψ),

to the following conditional posteriors:
a: Θ(t) from p(Y (t−1) | X (t−1),Θ(t))p(Θ(t)) - to sample from this distribution,
propose q(Θ(t)) and accept according to Metropolis-Hastings ratio;
b: ψ(t) from p(X (t−1) |ψ(t))p(ψ(t)) - to sample from this distribution, propose
q(ψ(t)) and accept according to Metropolis-Hastings ratio;
c: Y (t)

miss from p(Y (t) | X (t−1),Θ(t));
d: X (t)

miss from p(X (t) | ψ(t)).
6: end for

Steps 5a to 5d of Algorithm 4.1 are repeated for all Θ and ψ terms, all Ymiss miss-

ing responses and all Xmiss missing covariates, until convergence is obtained for

all these terms altogether. The methods for convergence check (i.e. trace plots

containingmean estimates and standard errors) are demonstrated in Section 4.7.

Calculating the conditional terms in Steps 5a to 5d of Algorithm 4.1 can be a

technically demanding and complex task. WinBUGS and OpenBUGS programmes

(Lunn et al. (2000); Spiegelhalter (2003); Spiegelhalter (2009)) make this com-

puting task much simpler for the user. In WinBUGS, only the priors, p(Θ) and

p(ψ), and the likelihood, p(X | ψ) and p(Y | X ,Θ), are needed to be specified,

and the conditional terms are sampled from the specified priors and likelihoods

automatically.

In the OpenBUGS program (Spiegelhalter, 2009), the Gibbs sampling (Geman and

Geman, 1984) is the main sampler of the fully Bayesian imputation, in which the

component imputation involves various methods, including rejection sampling
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and Slice sampler. Further details about Slice sampler and rejection sampling

can be found in Ntzoufras (2009). In this research, OpenBUGS program was

used because the environment was easy to use for writing Bayesian imputation

programs (Murphy, 2007).

4.5.3.2 Multiple Imputation by Chained Equations - First Stage

Multiple imputation by chained equations creates many copies of the fully ob-

served data with varying imputed values for missing data. It is a two-stage

imputation model, as the missing data are imputed by an imputation model,

and statistical inferences are implemented on imputed data sets with a substan-

tive model. Section 4.5.3.3 discusses how the models on the imputed data sets

are combined. In this section, we show how the multiple imputation by chained

equations can be used to carry out multiple imputation.

The multiple imputation by chained equations (MICE)(Buuren, 2012) is an im-

plementation of fully conditional specification (FCS), which imputes missing

data on a "variable-by-variable" basis, for T iterations, P number of variables

in the data set and W imputed data sets. The MICE imputation deals with

parameters for substantive model at iteration t of the Gibbs sampler, denoted

as Θ
(t)
w,p, and parameters for imputed model denoted as ψ

(t)
w,p for t = 1, . . . ,T,w =

1, . . . ,W . This imputation deals with each parameter sequentially, which are

Θw,p,ψw,p, p = 1, . . . ,P,w = 1, . . . ,W . The missing data Xw,p,miss is sampled from

X (t)
w,p,miss ∼ P(X (t)

w,p,miss | ψw,p) for t = 1, . . . ,T,w = 1, . . . ,W, p = 1, . . . ,P. With im-

plementation of FCS and Gibbs Sampling (Geman and Geman (1984);Buuren

(2012)), the MICE sampling procedure can be described with the following

equations and the steps of MICE algorithm for imputation of multivariate miss-

ing data are listed as Algorithm 4.2 of the first stage of modelling (Buuren,

2012).

Buuren and Groothuis-Oudshoorn (2011) developed the mice package in R pro-
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Algorithm 4.2 First Stage of MICE Modelling Algorithm
1: for Imputation w = 1, . . . ,W do
2: Specify the imputation model Xw,miss, p(Xw,miss | ψw) and the likelihood

function, p(Yw | Xw,Θ)

3: Initialise Yw,miss as Y (0)
w,miss.

4: for All parameters p = 1, . . . ,P do
5: Initialise Xw,p,miss as X (0)

w,p,miss.
6: Initialise Θw,p as Θ

(0)
w,p.

7: Initialise ψw,p as ψ
(0)
w,p.

8: end for
9: end for
10: for Imputation w = 1, . . . ,W do
11: for t = 1, . . . ,T do
12: Y (t)

w,miss ∼ P(Y (t)
w,miss | . . .);

13: for p = 1, . . . ,P do
14: X (t)

w,p,miss ∼ P(X (t−1)
w,p,miss | ψw,p);

15: Θ
(t)
w,p ∼ P(Θ(t)

w,p | . . .);
16: ψ

(t)
w,p ∼ P(ψ(t)

w,p | . . .);
17: end for
18: end for
19: end for
20: for w = 1, . . . ,W do
21: Upon convergence, obtain the last imputed data set: Y (T )

w,miss as the wth

imputed data set, Yw, and proceed to Second stage MICE algorithm.
22: end for

gram (R Version 3.3.0). This program calculates posterior probabilities based

on generalized linear models. For binary data response, we specify a logistic

regression model; for nominal variable with more than two levels, we specify

a polytomous regression model, and for continuous data, we specify a linear

regression with prediction method. Details of this program can be referred to

the R program manual (R Development Core Team, 2008) about mice package

(Buuren and Groothuis-Oudshoorn, 2011).

4.5.3.3 Multiple Imputation by Chained Equations - Second Stage

The second stage of modelling fits the substantive models on imputed data sets,

followed by combining estimates of the substantivemodels throughRubin’s rule
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(Rubin, 1987). Through the substantive model for each wth of the W imputed

data sets, w = 1, . . . ,W , a set of parameter estimates, Θ̂w and its covariance ma-

trix, V̂w = Var(Θ̂w), are obtained for variable Θp. Estimates and variances from

W imputed data sets are combined by Rubin’s rule (Rubin, 1987). Rubin’s rule

is applicable to imputed data sets under MAR, ignorability and normality as-

sumptions (Allison, 2003).

Suppose W sets of estimates are obtained from analysis of W imputed data

sets for the variable Θp, denoted as the estimate vector Θ̂w,w = 1,2, . . . ,W , the

combined mean estimate vector for W imputed data sets, Θ̄W , is calculated by

Equation 4.9:

Θ̄W =
1

W

W

∑
w=1

Θ̂w. (4.9)

Regarding the calculation of total combined covariancematrix, firstlywe explain

the calculation of the combined within-imputation covariance matrix, V̄W , and

then the combined between-imputation covariance matrix, B̄W . Finally, we ex-

plain the calculation of the total combined covariance matrix, T̄W . At this stage,

we utilise W number of covariance matrices, V̂1, . . . ,V̂W , that are associated with

estimate vectors Θ̂1, . . . ,Θ̂W respectively.

The combinedwithin-imputation covariancematrix, V̄W , is calculated as inEqua-

tion 4.10, which is basically the mean of variances for Θ̂w, w = 1, . . . ,W , from W

imputed data sets:

V̄W =
1

W

W

∑
w=1

V̂w. (4.10)

The combined between-imputation covariance matrix, B̄W , is calculated as in

Equation 4.11:

B̄W =
1

W −1

W

∑
w=1

(Θ̂w− Θ̄W )(Θ̂w− Θ̄W )T . (4.11)
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Hence, the total combined covariance matrix, T̄W , is calculated as in Equation

4.12:

T̄W = V̄W +

(
1+

1
W

)
B̄W , . (4.12)

(Rubin, 1987)

and Rubin’s combination rule hence provides an unbiased estimate of the total

combined covariance matrix.

Wald’s test is used to determine whether a variable is significantly related to

responses. For combined estimates, Wald’s test statistics are adopted for testing

a certain variable, Θp, which contains k′ components to be tested. Suppose Θ̄W

is the mean estimate vector for Θp over W imputed data sets in Rubin’s rule

equations, Θ̄0 is the vector of null values for testing Θp, V̄W and B̄W are com-

bined within-imputation covariance matrix and combined between-imputation

covariancematrix respectively in Rubin’s rule equations, theWald’s test statistic,

ω(Θ̄W ), is calculated as follows:

ω(Θ̄W ) =
(Θ̄W − Θ̄0)

TV̄−1
W (Θ̄W − Θ̄0)

(1+ r)k′
, (4.13)

where k′ is thenumberof components being tested, r =(1+1/W )trace(B̄WV̄−1
W )/k′.

The p-value by F distribution is then evaluated, and the corresponding p-value

is stated as follows:

P[Fk′,l > ω(Θ̄W )], (4.14)

whereFk′,l is a randomvariable of F distributionwith k′ and l degrees of freedom.

For k′(W −1)> 4, l is defined as follows:

l = 4+[k′(W −1)−4]
(

1+
z
r

)2
,z =

{
1− 2

k′(W −1)

}
. (4.15)

Alternatively, l = (W −1)(k′+1)(1+1/r)2/2 if k′(W −1)≤ 4.
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(Li et al., 1991)

The Wald’s test will also be applied in the backward elimination process with

Rubin’s rule in logistic regression model, log-linear analysis model, item re-

sponse theory model and latent class analysis model.

The algorithm of the second stage of the MICE imputation is described as Algo-

rithm 4.3.

Algorithm 4.3 Second Stage of MICE Variable Selection Algorithm (Combining
Estimates)
1: whileAn insignificant covariate exists in a substantial backward elimination

model do
2: for w = 1, . . . ,W do
3: Fit the substantialmodelwith everyYw, andgenerate Θ̂w, V̂W as results.
4: end for
5: Calculate Θ̄W = 1

W ∑
W
w=1 Θ̂w.

6: Calculate V̄W = 1
W ∑

W
w=1 V̂w.

7: Obtain the between-imputation variance B̄W and total variance T̄W by
Rubin’s Rule.

8: Perform Wald’s test with Θ̂w, Θ̄W , V̄W , B̄W and T̄W on each covariate and
determine which insignificant one (at 5% significance level) to discard by
the highest p-value.

9: Discard the insignificant covariate with the highest p-value.
10: end while

To determine which covariates to be included in the imputation model, poly-

choric correlation plots among complete cases are adopted before imputation of

missing values. Generally, covariates that yield correlation value with any other

covariates of 0.3 or more are included in the imputation model. Referring to

Figures 3.3 to 3.5, most covariates yielded high correlation values with at least

one other covariates. In addition, percentage tables and box plots in Chapter 3

reflected that most variables were related to drug response variables. As such,

all covariates were included in the imputation model of MICE imputation.
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4.6 Application: Building an Imputation Model

This section discusses how the fully Bayesian framework and multiple impu-

tation methods in Section 4.5.3 can be applied to our data set of the Year 2010

Survey. We adopted two types of data set: (1) a type of data set with covariates,

excluding nested variables and derived variables and (2) another type of data set

with the 15 drug-trying response variables only. Sections 4.6.1 and 4.6.2 below

describe how we applied fully Bayesian framework and multiple imputation by

chained equations to these two types of data set.

4.6.1 Fully Bayesian Framework

To impute missing data by fully Bayesian framework for the data set with the 15

drug-trying response variables only, weused OpenBUGSprogram. Further details

about the OpenBUGS program code can be found in Ntzoufras (2009). We spec-

ified a statistical model with parameters and equations for missing responses.

We linked these parameters with observed covariates and we specified priors

for these parameters. We loaded two Markov chains and compiled the data set

and the statistical model. After specifying the initial values for the parameters,

we updated model parameters and missing data for 17,000 cycles with 1,000

cycles of burning-in, providing 16,000 usable cycles for statistical inference. We

also diagnosed the trace plots of the convergence of both Markov Chains.

The fully Bayesian Framework was applied to item response theory in Chapter

6. Details of the fully Bayesian Framework applied in item response theory can

be referred to Sections 6.2.2 and 6.3.

4.6.2 Multiple Imputation by Chained Equations

In the multiple imputation by chained equations, we used mice package in R

program (Buuren and Groothuis-Oudshoorn, 2011) to facilitate the multiple im-
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putation by chained equations on the two types of data set. Here, two MICE

imputation schemeswere involved, namely scheme 1: MICE imputation scheme

based on 15 drug-trying response variables only and scheme 2: MICE imputa-

tion scheme based on full data frame. We produced W = 10 imputed data sets

through 200 imputation cycles. For binary data, we adopted logistic regression

method (logreg); for categorical variables that contained more than two lev-

els, we adopted multinominal (polynominal) logit regression model (polyreg);

for continuous variables, we adopted normal linear regression model (norm).

All these methods were under Bayesian method according to Rubin (1987) and

Brand (1999).

For continuous variables with lower limits, upper limits, or both, we trans-

formed them to approximate normality before imputation by the following

methods. Suppose a continuous variable YP has a lower limit of zero, and we

wished to transform YP into Y ′P for imputation, then for each value of YP corre-

sponding to respondent i,Yi,P, i = 1, . . . ,N, we adopted a transformation function

f : (0,∞)→R, to transform eachYi,P toY ′i,P. The transformation function for each

Yi,P was defined as below:

f (Yi,P) = Y ′i,P = log(Yi,P). (4.16)

For any Yi,P = 0, we added a small number, i.e. 1×10−6, onto Yi,P before apply-

ing the transformation function. After imputation, we used the inverse function

f−1(Y ′i,P) to transform Y ′i,P back to Yi,P. Values of Yi,P between 0 and 1×10−6 were

treated as 0, and values of Yi,P between u−1×10−6 and u were treated as u.

The above log-transformation method was implemented on any count data,

as well as any variable that span across the range [0,∞) for mapping and

transforming such data to (−∞,∞) (R domain). The log-transformation is not
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a variance-stabilising function, whereas the square root transformation is the

variance-stabilising function. However, the log-transformation was chosen in

this study over the square root transformation based on the following reasons:

(1) square root transformation only maps variables that span monotonically

across the range [0,∞) to [0,∞), given that the orders of the values are main-

tained; (2) it was possible that square-rooted value can be either negative value

or positive value, such that values can be mapped from [0,∞) to (−∞,∞); but in

this case, this mapping is no longer monotone. However, log-transformation is

monotone whlist mapping values from [0,∞) to (−∞,∞). In other words, orders

of values can be maintained during mapping and (3) we use MICE package in R

programme for imputingmissing data bymultiple imputation by chained equa-

tions by the time of data analysis, since MICE package is the only R package that

offered multiple imputation by chained equations. However, MICE did not offer

Poisson or Negative Binomial regression option for count variables, nor Gamma

regression option for variables that span across the range [0,∞).

As mentioned above that log-transformation is not a variance-stabilising func-

tion, there might be a risk of heteroscedasticity in regression analysis, com-

promising likelihood estimation of variable standard errors. However, as there

were only three variables that used this log-transformationmethod for imputing

missing values in MICE transformation scheme in this study, and the regres-

sion analysis that used iterative weighted least square, the same method used

in the regression analysis, is robust against heteroscedasticity (Mak, 1992), log-

transformation might not be a serious problem in the regression analysis.

For example, for the variable recording the number of cigarettes the students

have smoked during a week prior to the survey (Cg7Num), the values before

imputation and after imputation by Equation 4.16 are listed in the following

table:
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Table 4.6.1: Values of Cg7Num Variable during Imputation

Before imputation After imputation
Yi,P augmented Yi,P Y ′i,P Y ′i,P augmented Yi,P Yi,P

0 0.000001 -13.81551 -13.81551 0.000001 0
0.5 0.5 -0.693147 -0.693147 0.5 0.5
1 1 0 0 1 1
5 5 1.609438 1.609438 5 5
10 10 2.302585 2.302585 10 10
missing missing missing -20 0.000000 0
missing missing missing 0.5 1.648721 1.648721

We ordered the variables in both data sets, in ascending order, according to the

percentage of missingness (from the smallest percentage of missingness to the

largest percentage of missingness). This method was implemented since the

multiple imputation by chained equations was implemented on each covariate

according to its order, andarranging covariateswith the fewestmissingdata to be

imputed in higher priority led to more observed data available for imputation

during imputation process, thus improving the prediction of missing values.

After imputation, we checked the mean and standard deviation plots of all

variables involved in the imputation to diagnose if all these variables were

converged.

4.7 Application to Working Data Set

In this section, we beginwith the exploration ofmissing data in theworking data

set in Section 4.7.1. Afterwards, we discuss how Bayesian andMICE imputation

schemes described in Sections 4.5 and 4.6 are applied to the working data set, in

Sections 4.7.2 and 4.7.3 respectively.
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4.7.1 Exploration of Missing Data in Working Data Set

The exploratory analysis on missingness was conducted on the working data

set, for the purpose to understand the relationship between missingness of one

variable and other variables. We employed the missing data theories and mech-

anisms, which we have described in the previous sections of this chapter, to

analyse our working data set in the aspects of exploration of missing data, con-

struction of a model for imputation and validating imputation diagnostics. In

this section, we discuss the following two types of exploratory analyses onmiss-

ingness.

(1) Frequency and Percentage of Missingness in the working data set (in Section

4.7.1.1).

(2) Missingness Plots for Working Data Set (in Section 4.7.1.2).

4.7.1.1 Frequency and Percentage of Missingness

In the working data set, across all 68 variables, altogether there were 3,855

complete cases out of 7,296 available cases, accounting for 52.84 % of all cases.

Among all variables in the working data set, the maximum percentage of miss-

ingness for one variable, i.e. LsDrg, was 16.98 %.

Table 4.7.1 provides information about the missingness of each of the 68 vari-

ables, sorted by the percentage of missingness in descending order. The cor-

responding missingness proportion bar plot for each variable is displayed in

Figure 4.1.
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Table 4.7.1: Frequency and Proportion of Missingness for Each Variable in the
Working Data Set

Variable Frequency (Prop.) Variable Frequency (Prop.)
LsDrg 1239 (16.98%) FSM1 237 (3.25%)
LsAlc 1179 (16.16%) Truant1 236 (3.23%)
LsSmk 1158 (15.87%) ExclAN1 195 (2.67%)
AlIn1 546 (7.48%) ExclA1 187 (2.56%)
AlWho1 541 (7.42%) DgEstim 184 (2.52%)
DgPe1 539 (7.39%) DgTdAmp1 173 (2.37%)
DgIn1 539 (7.39%) AlEstim 173 (2.37%)
AlWhoDr 525 (7.20%) CgNow 169 (2.32%)
CgPp1 525 (7.20%) DgTdMth1 159 (2.18%)
CgIn1 505 (6.92%) DgTdEcs1 158 (2.17%)
AlPe1 496 (6.80%) DgTdMsh1 156 (2.14%)
CgPe1 457 (6.26%) DgTdHer1 156 (2.14%)
CgWho1 428 (5.87%) DgTdPop1 153 (2.10%)
Al4W1 419 (5.74%) DgTdCan1 150 (2.06%)
CgWhoSmo 416 (5.70%) DgTdCok1 149 (2.04%)
AlWhoHme 414 (5.67%) DgTdAna1 148 (2.03%)
AlPar1 386 (5.29%) DgTdCrk1 146 (2.00%)
CgWhoHme 357 (4.89%) DgTdOth1 143 (1.96%)
AlWhy1 323 (4.43%) DgTdLSD1 141 (1.93%)
Cg7Num 322 (4.41%) DgTdGas1 137 (1.88%)
AlBuy 317 (4.34%) DgTdTrn1 135 (1.85%)
AlBuy2 317 (4.34%) DgTdKet1 134 (1.84%)
AlBuy1 317 (4.34%) AlEvr 92 (1.26%)
CgBuyF1 309 (4.24%) CgPk1 82 (1.12%)
AlUs2 290 (3.97%) CgStat1 79 (1.08%)
Books1 285 (3.91%) CgGet 77 (1.06%)
Al7Day1 285 (3.91%) CgGet3 77 (1.06%)
AlUs1 282 (3.87%) CgGet2 77 (1.06%)
AlLast 279 (3.82%) CgGet1 77 (1.06%)
AlBnPub 278 (3.81%) CgStat 42 (0.58%)
CgEstim 274 (3.76%) gender 0 (0%)
TruantN 270 (3.70%) Age 0 (0%)
AlFreq2 268 (3.67%) SHA 0 (0%)
AlFreq 264 (3.62%)
CgFam1 254 (3.48%)
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FromTable 4.7.1, the variables representingwhether a student had lessons about

drug taking, drinking alcohol and smokingyielded relatively higher proportions

of missingness, from 15.87 % to 16.98 %. Such high proportions existed due to

the additional "don’t know" option in their corresponding questions, and those

"don’t know" responses were treated as missing, leading to an increase in miss-

ingness. In addition, obtaining information about smoking, drinking alcohol

and drug use typically yielded relatively higher proportions of missingness.

From Table 4.7.1, 37 variables yielded missingness of over 3 %, indicating that

missingness in the working data set was substantial, though not severe. In ad-

dition, three variables were completely observed, indicating that there were no

missing values in these three variables. In a nutshell, we concluded that the

missingness of every variable in the working data set was not huge, though

substantial.

When we investigated the missingness of each individual student, i.e. num-

ber of missing values for each student, we examined the frequency of missing

values for each student, along with missing pattern of each student. The fre-

quency of missing value for each student is presented in Table 4.7.2, and the

corresponding histogram plot is presented in Figure 4.2.

Figure 4.2: Histogram of Number of Missingness for Each Student in the Year
2010 Survey
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Table 4.7.2: Table of Frequency and Proportion of Missing Values for Each
Student in the Year 2010 Survey

Missing Frequency Missing Frequency Missing Frequency
0 3855 (52.84%) 20 14 (0.19%) 40 1 (0.01%)
1 1026 (14.06%) 21 18 (0.25%) 41 7 (0.10%)
2 496 (6.80%) 22 11 (0.15%) 42 5 (0.07%)
3 632 (8.66%) 23 12 (0.16%) 43 11 (0.15%)
4 201 (2.75%) 24 7 (0.10%) 44 5 (0.07%)
5 120 (1.64%) 25 11 (0.15%) 45 5 (0.07%)
6 161 (2.21%) 26 11 (0.15%) 46 1 (0.01%)
7 82 (1.12%) 27 10 (0.14%) 47 7 (0.10%)
8 67 (0.92%) 28 5 (0.07%) 48 1 (0.01%)
9 73 (1.00%) 29 6 (0.08%) 49 1 (0.01%)
10 37 (0.51%) 30 5 (0.07%) 52 2 (0.03%)
11 111 (1.52%) 31 9 (0.12%) 53 1 (0.01%)
12 53 (0.73%) 32 5 (0.07%) 54 1 (0.01%)
13 37 (0.51%) 33 3 (0.04%) 55 4 (0.05%)
14 40 (0.55%) 34 3 (0.04%) 56 3 (0.04%)
15 31 (0.42%) 35 4 (0.05%) 57 4 (0.05%)
16 14 (0.19%) 36 5 (0.07%) 58 1 (0.01%)
17 26 (0.36%) 37 4 (0.05%) 63 1 (0.01%)
18 13 (0.18%) 38 4 (0.05%)
19 7 (0.09%) 39 6 (0.08%)

Referring to the frequency table in Table 4.7.2, we observed that 52.84 % of the

students did not yield anymissingness. In contrast, 2,895 students yieldedmiss-

ing values in 1 to 10 variables. These students were considered as possessing

a small number of missing values. The worst case was a student who yielded

missing values in 63 out of 68 variables. Additionally, there were 44 students

who yielded missing values in 31 to 40 variables, 43 students who yielded miss-

ing values in 41 to 50 variables, and 16 students who yielded missing values in

51 to 60 variables. Since these 104 cases were included in our analysis, more

imputation work was required for these cases.

In the next section, we discuss the missing proportion plots and the missingness

box plots.
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4.7.1.2 Missingness Plots for Working Data Set

Two types of diagrams were adopted to investigate the missingness and its rela-

tionships within the working data set. These diagrams were outlined as:

1. The aggregate missingness pattern plot, which was for investigating the

missingness of the drug-trying response variables, is displayed in Figure 4.3.

2. The missingness matrix plot, which depicted the missingness and levels

of one variable against the missingness and levels of the other variables.
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From Figure 4.3(a), the bar plots depicted the missingness of the drug responses

in the working data set to be between 1.5 % and 2.5 %, resembling the missing-

ness figures for drug responses from the original data set analysis as described

in Chapter 3. From Figure 4.3(b), althoughmost cases contained nomissingness

within any of the 15 drug-trying response variables, a large number of patterns

that contained more than half of missingness were observed.

Following the discussion of missing proportion plots and the missingness pat-

tern plots in Section 4.7.1.2, the investigation of the missingness of the working

data set continued with missingness matrix plots. In the missingness matrix

plots in Figures 4.4 to 4.5, all cases were sorted according to a particular vari-

able, where values were highlighted by a grey scale that ranged from white to

black, representing low to high levels of any variable. Missingness was marked

in red. The purpose of the missingness matrix plots was to investigate, at all

levels of a sorting variable, the pattern of missingness, thus diagnosing whether

missingness of another variable depended on the sorting variable (e.g. whether

missingness of cigarette smoking status depended on the attitude of the family

on smoking).
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Figure 4.4: Missingness Matrix Plot of All 58 Covariates, Sorted by AlFreq
Variable. Greyscale indicates levels from low(white) to high(black), red indicates
missing values. More missingness on other covariates is observed for higher
levels of the AlFreq variable, and the most missingness on other covariates is
observed for the missing cases of the AlFreq variable.
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Figure 4.5: Missingness Matrix Plot of All 58 Covariates, Sorted by Gender
Variable. Greyscale indicates levels of boys(white) and girls(black) for gender,
and from low(white) to high(black) for other covariates, red indicates missing
values. In this figure, boys yielded more missingness than girls.
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The missingness matrix plots in Figure 4.4 indicated that for a particular stu-

dent, when frequency of drinking (AlFreq) variable was missing, most variables

appeared to be missing. This was due to the questionnaire design of the survey.

From Figure 4.5, it was observed that more boys were associated with missing

values in other variables than girls. From Figures 4.4 to 4.5, it was observed that

missingness in the data set was related to several smoking, drinking and drug-

related socio-demographic variables, for example, CgStat, AlFreq, Gender and

Age, rendered the missingness in the data set to be missing at random (MAR).

To investigate the connection of each response variable in the working data

set, which contained missingness in other covariates, we employed two criteria:

(1) if missingness of a response variable depended on any other covariates and

(2) if a response variable depended on any other covariates. In the following

paragraphs, we defined a drug-trying response variable to be dependent on a

covariate if either of the above two criteria, or both, held for such a drug-trying

response variable.

The investigation of missingness of a drug-trying response variable on other

covariates involved the Ridout’s Test (Ridout and Diggle, 1991), which was ex-

plained in Section 4.3 above.

The significance threshold of 0.20 was adopted in this analysis for the pur-

pose to include more potentially related variables in the regression model. The

significance threshold of 0.20 has been suggested by Pearson (1938). The set of

results corresponding to the 0.20 threshold are displayed in Figures 4.6 to 4.8.

The missingness indicator plot is displayed in Figure 4.6, whereas the covariate

significance plot is displayed in Figure 4.7, and the covariate dependency plot is

displayed in Figure 4.8.
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According to the missingness indicator plots in Figure 4.6, a few logistic re-

gression models could not be fitted due to sparse cases of missingness in the

complete set of individuals, thus leading to a slightly difficult investigation in

missingness. However, from Figure 4.6, it was observed that the missingness

of each of the 58 variables depended on at least 20 variables. The covariate

significance plots in Figure 4.7 outlined the situation where all variables were

associated with most of the other covariates (at least 30 out of 57 other covari-

ates). The combined dependency indicator plots in Figure 4.8 generally depicted

that all variables depended onmost of the other covariates, supporting the belief

that the missingness is MAR, and that all variables should be included in the

MICE imputation, where all imputed variables are predicted based on all other

covariates.

After identifying characteristics of the working data set throughout this ex-

ploratory data analysis of missing values, imputation of the missing data was

then carried out on the working data set with missing values. The method of

imputing the missing data is discussed in Section 4.7.2 below.
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4.7.2 Building a Model for Imputation (only for FCS)

In this section, we discuss the plausibility of missing at random (MAR) assump-

tion, followed by the procedures of imputing the missing data, the frequency

tables and the polychoric correlation plots on imputed data sets. Firstly, the

setup of the imputation of the missing data is discussed. Secondly, the multiple

imputation by chained equations is considered for multiple imputation of the

working data set, and their processes are described as well. Thirdly, proportion

tables for drug-trying response variables and the polychoric correlation plots

are interpreted.

4.7.2.1 Plausibility of Missing at Random Assumption and Ignorable Miss-

ingness Assumption

Referring to Section 1.3, the questionnaires of the "Smoking, Drinking and Drug

Use Among Young People in England" survey series were conducted in an

anonymous manner, i.e. none of the students’ names or participating schools

were recorded and reflected in the data set. Furthermore, the students were

informed that their answers would be completely confidential. The students

were also informed that only researchers could use the collected data for data

analysis, and no such data would be revealed to any other personnel, such as

police andmembers of the authorities, and therefore answering questions about

smoking, drinking and drug use honestly would not be risky to them. In addi-

tion, during the Year 2010 survey, the researchers and staff had attempted strict

survey procedures to keep the survey confidential and to raise the response per-

centage. Under the aforesaid confidential ways to collect data, the researchers

and staff were expected to capture as many responses as possible, instead of

attempting to relate any variable to missingness. Therefore, it could be reason-

ably assumed that themissingmechanism of the data set was ignorable and that

it was MAR as suggested by Allison (2001). In other words, we could assume
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that the missingness of any variable in the Year 2010 survey was not affected

by the value of such variable itself, since we could assume that when making

choices for questions in the questionnaire, the studentswere not affected by their

worries that they would expose themselves into any risk. The assumption that

the working data set was MAR was supported by the Missingness Matrix Plots

shown in Figures 4.4 and 4.5 and Missingness Indicator Plots shown in Figures

4.6 to 4.8 as discussed in 4.7.1.2.

Moreover, the hypothesis test by Ridout and Diggle (1991) revealed that the

MCAR hypothesis of the working data set was rejected at 5 % significance level,

indicating that theworking data setwas notMCAR. Furthermore, Buuren (2012)

stated that if MAR holds, for "practical purposes", the "missing data model" can

be considered reasonable. Given the above-mentioned reasons, we could rea-

sonably assume that the working data set was MAR and was ignorable.

After determining theworking data setwasMARandwas ignorable, we applied

a suitable imputation called multiple imputation by chained equations (MICE)

to the working data set, which is discussed in Section 4.7.2.2 below.

4.7.2.2 Variable Selection for Imputation

The first step of the MICE imputation setup was to select essential variables

that covered all essential information of the working data set. In other words,

derived variables and nested variables (variables that contained reduced levels

from the original variables) were excluded from the imputation.

Referring to the working data set, the six variables, cigarette smoking status

(CgStat1), smokers in house and where (CgWho1), types of sources of obtain-

ing cigarettes usually (CgGet), frequency of drinking alcohol (AlFreq2), how

respondents usually obtain alcohol (AlBuy), and drinkers in house and where
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(AlWho1), were not included in the MICE. This was because these six variables

were combined from their respective variables, as listed in Table 4.7.3 below:

Table 4.7.3: Table of Derived Variables in the Working Data Set

Combined variable Original Variable
CgStat1 CgStat, CgIreg, Cg7Num
CgWho1 CgWhoSmo, CgWhoHme
CgGet CgGet1, CgGet2, CgGet3
AlFreq2 AlFreq, Al7Day
AlWho1 AlWhoDr, AlWhoHme
AlBuy AlBuy1, AlBuy2

We excluded these derived variables due to the following reasons: (1) since the

levels in derived variables were well represented by particular combinations of

original variables, levels in derived variables were redundant for imputation,

and (2) high correlations might occur between derived variables and original

variables.

Four nested variables were excluded because all nested variables exhibited very

high correlations with parent variables, to an extent that singularities happened

when both nested and parent variables were included in a regression model.

Such nested variables are listed in Table 4.7.4 below.
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Table 4.7.4: Table of Nested Variables in the Working Data Set

Nested variable Parent Variable
CgNow CgStat
AlEvr AlFreq
Truant1 TruantN
ExclA1 ExclAN1

Although nested variables contained slightly more complete cases than par-

ent variables, the difference in the number of complete cases was so small that

it did not affect the superiority of parent variables over nested variables in pro-

viding valid information about a variable.

The second step of the setup was to specify the variable type (i.e. categorical

(factor) or linear) for all variables in the working data set. Specifying a correct

variable type was essential, especially for multiple imputation by chained equa-

tions, where generalized linear models were used for updating missing values.

In the imputation process, we made as few assumptions on each variable as

possible. If a variable could be treated as either a nominal, ordinal or linear vari-

able, we treated such variable as a nominal variable. This was because ordinal

variables were subjected to an additional assumption that the odds of trying a

certain drug increased when the variable level increased. Also, linear variables

were also subjected to an extra assumption that the increase in the odds was

constant between adjacent levels. However, we did not need to make these as-

sumptions for nominal variables. Thus, treating a variable as nominal required

the least assumptions to the variable.

The table describing the type of variables is presented in Appendix A.2. In

general, there were four variables which were treated as numeric: (1) Cg7Num;

(2) CgWhoSmo; (3) AlWhoDr and (4) Age. In this section, we only discuss the

MICE, which was considered for imputation of the working data set.
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In the MICE imputation, we adopted the mice package in R program. Seed

number 4321 was adopted for all the MICE processes. The MICE imputation

on the working data set with 58 variables was processed on Adelie Processor

Cluster of Penguin Supercomputer Cluster at Lancaster University.

For a data set with all 58 variables, each variable depended on the other 57

variables during the MICE imputation. For a data set with 15 drug-trying re-

sponse variables, each drug-trying response variable depended on the other 14

drug-trying response variables. Before imputation, all variables among each

data set were sorted, from the first variable to be considered to the last, by

ascending missing proportions.

4.7.3 Imputation Diagnostics/ Validation

During the 200 cycles of theMICEonbothdata sets, the variables, namelyCgStat,

CgGet3, CgPk1, AlFreq, AlLast, AlUs1, AlUs2, Al7Day1, AlPar1, AlWhoHme,

LsSmk, LsAlc and LsDrg showed trends of changing estimates on trace plots of

their mean and standard deviation at the initial stage of imputation. However,

all variables were observed to converge after 150 imputations. The convergence

plots for each of the variables in both data sets are presented in Figures 4.9 to

4.11.
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After the imputation of the working data set through the MICE scheme, we

produced proportion percentage tables for drug-trying response variables of

the imputed working data sets under two MICE imputation schemes, in order

to compare with those of the original working data set and investigate the dif-

ference in the proportion of students trying a specific drug, as well as how the

imputation from the two MICE schemes differed from each other. The related

proportion percentage table is presented in Table 4.7.5.

Table 4.7.5: Proportion Percentage Table of Drug Response Variables in Original
Working Data Set and Imputed Working Data Sets by the MICE Imputation
(proportions in %) ("Org" means original working data set). Percentages are
calculated without missing data.

MICE Imputation Scheme 1
Data Set Org 1 2 3 4 5 6 7 8 9 10
Cannabis 9.24 9.27 9.17 9.27 9.29 9.29 9.33 9.28 9.32 9.29 9.27

Heroin 0.50 0.63 0.60 0.59 0.60 0.60 0.60 0.56 0.59 0.63 0.56
Cocaine 1.22 1.32 1.26 1.29 1.29 1.30 1.32 1.26 1.32 1.33 1.29

Magic Mushrooms 1.53 1.56 1.56 1.58 1.55 1.59 1.58 1.54 1.55 1.58 1.56
Crack 0.63 0.71 0.66 0.71 0.69 0.71 0.74 0.67 0.73 0.75 0.69

Methaone 0.73 0.77 0.74 0.77 0.75 0.81 0.78 0.73 0.77 0.78 0.77
Ecstasy 1.12 1.19 1.12 1.15 1.15 1.18 1.19 1.11 1.17 1.19 1.17

Amphetamines 0.94 0.97 0.96 1.00 0.97 1.03 1.00 0.96 1.00 1.01 0.97
LSD 0.59 0.63 0.59 0.64 0.62 0.66 0.63 0.62 0.62 0.66 0.63

Poppers 2.30 2.33 2.29 2.36 2.32 2.38 2.32 2.34 2.36 2.33 2.36
Ketamine 0.60 0.69 0.62 0.69 0.64 0.67 0.67 0.60 0.63 0.64 0.62

Anabolic Steroids 0.48 0.52 0.51 0.51 0.52 0.53 0.52 0.52 0.52 0.56 0.53
Gas 8.24 8.24 8.28 8.35 8.25 8.31 8.31 8.21 8.29 8.24 8.35

Other Drugs 0.46 0.48 0.47 0.51 0.47 0.45 0.49 0.49 0.48 0.49 0.49
Tranquillisers 0.45 0.51 0.45 0.53 0.48 0.47 0.48 0.51 0.48 0.49 0.51

MICE Imputation Scheme 2
Data Set 1 2 3 4 5 6 7 8 9 10
Cannabis 9.46 9.46 9.43 9.38 9.44 9.46 9.43 9.42 9.46 9.50

Heroin 0.85 0.74 0.71 0.64 0.73 0.67 0.70 0.77 0.75 0.79
Cocaine 1.52 1.41 1.44 1.38 1.51 1.47 1.38 1.45 1.45 1.48

Magic Mushrooms 1.70 1.67 1.70 1.70 1.75 1.70 1.70 1.69 1.74 1.73
Crack 0.82 0.85 0.85 0.81 0.82 0.75 0.77 0.75 0.81 0.84

Methaone 0.85 0.95 0.89 0.86 0.85 0.93 0.90 0.97 0.90 0.97
Ecstasy 1.33 1.23 1.27 1.21 1.33 1.30 1.29 1.38 1.32 1.34

Amphetamines 1.14 1.10 1.10 1.04 1.14 1.01 1.14 1.19 1.08 1.15
LSD 0.79 0.73 0.73 0.67 0.79 0.64 0.71 0.71 0.77 0.79

Poppers 2.54 2.49 2.43 2.56 2.56 2.40 2.44 2.54 2.56 2.51
Ketamine 0.73 0.75 0.78 0.73 0.74 0.78 0.71 0.81 0.78 0.78

Anabolic Steroids 0.71 0.71 0.55 0.60 0.58 0.56 0.69 0.70 0.67 0.70
Gas 8.50 8.36 8.46 8.48 8.42 8.31 8.44 8.43 8.43 8.48

Other Drugs 0.66 0.56 0.53 0.58 0.59 0.62 0.55 0.58 0.66 0.64
Tranquillisers 0.62 0.69 0.58 0.60 0.64 0.62 0.55 0.59 0.67 0.56
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FromTable 4.7.5, we observed similar proportion percentages for all drug-trying

responses variables across all ten imputations for each imputation scheme. We

found that most (over 90%) proportion percentages were inflated for all ten im-

puted data sets, from original data set with drug-trying response variables only

(MICE Scheme 1). However, all proportion percentages were inflated for all

ten imputed data sets with drug-trying response variables and smoking, drink-

ing and drug-related socio-demographic covariates, which were imputed under

MICE Scheme 2. This pattern was caused by drug-trying response variables

being influenced by various smoking and drinking variables in their imputation

models such as frequency of smoking (CgStat) and frequency of drinking (Al-

Freq). This highlighted how influential these smoking and drinking variables

were on the proportion of the students trying every drug. In a similar way, those

proportion percentages for data sets imputed under MICE Scheme 1 and MICE

Scheme 2 were inflated from those for the original data set due to mutually

positive association among drug-trying response variables.

4.8 Summary

Overall, we have identified missing data as a problem in our working data set.

On average, there was approximately 4% of the data missing in each variable,

with a range between 0.58% and 16.98%. Four variables did not contain any

missingness. The highest value of missingness was found in questions relating

to whether the students had taken any lessons about specific drug use and their

effects.

When analysing any data with missingness, it was important to consider the

underlying missing mechanism. In this chapter, we have introduced the miss-

ingness problemanddefinedmissingnessmechanisms and ignorability. Various

exploratory methods were used to identify the missingness pattern and we de-



CHAPTER 4. MISSING DATA THEORY, METHODOLOGY AND APPLICATION138

termined that the working data could be considered as missingness at random

(MAR) and ignorable.

Weconsideredanddiscussed two imputationmethods, namely, the fullyBayesian

frameworkand themultiple imputationby chainedequations. The fullyBayesian

framework had the advantage of being a one-stage method, when compared to

the two-stage method of the MICE. However, the coding of the missingness

model could be very complex under the fully Bayesian framework.

For the first stage of the MICE, we applied chained equations, which were simi-

lar with the Gibbs Sampler, on a fixed number of imputed data sets. Diagnostic

plots showed convergence of these chains for all variables generally, though

there were slow convergence for several variables. After multiple imputation by

chained equations, the proportions of students trying certain drugswere similar

across all ten imputed data sets, reflected by all 15 drug-trying response vari-

ables. For the second stage, analyses for a substantive model were performed on

each of the imputed data sets. The estimates and covariance matrices among all

imputed data sets were combined using Rubin’s Rule. However, this required

an analysis which produced a covariance matrix and a set of estimates for the

substantive model.

For the rest of this thesis, we assume the working data set to be MAR, and

we adopt the MICE for imputing all variables that contained missingness. Ru-

bin’s rule with Wald’s test is adopted to test the significance of a covariance or

an interaction term in regression models.



Chapter 5

Logistic Regression and Log-linear

Analysis Models for Further

Exploring Association and

Interaction

5.1 Introduction

Asdiscussed in Section 3.3.5, additionalmain findings from the exploratory data

analysis of the working data set of this study provided hints and justification to

further investigate the interactions among drug-trying response variables, the

smoking, drinking and drug-related socio-demographic variables. In this chap-

ter, generalized linearmodels are applied to further explore possible interactions

among the binary drug-trying response variables in the working data set of this

study and to understand more the associations of the smoking, drinking and

drug-related socio-demographic covariateswithdrug-trying response variables.

The first type ofmodel applied is the univariate logistic regressionmodel, a type

of generalized linear model (GLM). In the univariate logistic regression anal-

ysis model, a single binary drug-trying response variable is modelled against

139
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covariates and other drug-trying response variables. The univariate logistic re-

gression model is repeated for each of the 15 drugs. The second type of model

applied is the log-linear analysis model, which is another type of GLM, in which

the frequencies of students in all combinations of the 15 drug-trying response

variables are modelled against the main effects and the first order interactions

among the drug-trying response variables.

In this chapter, firstly, a brief introduction to the univariate logistic regres-

sion model is made and then each drug-trying response variable is modelled

against all covariates and other drug-trying response variables. In the analysis,

a backward elimination procedure is adopted to eliminate covariates with little

explanatory value. In the backward elimination procedure, each drug-trying re-

sponse variable is regressed against the other drug-trying response variables and

all other explanatory covariates, i.e. those smoking, drinking and drug-related

socio-demographic covariates. Therefore, in the univariate logistic regression

analysis, one-way interactions between one drug-trying response variable and

the smoking, drinking and drug-related socio-demographic covariates as well

as other drug-trying response variables is examined.

Secondly, a brief introduction to the log-linear analysis model is made. This

is a type of Poisson GLM where the counts of each combination of the 15 drug-

trying response variables are modelled against the main effects and the first

order interactions among the drug-trying response variables to identify signifi-

cant two-way interactions of these variables. We again employ Rubin’s rule and

apply backward elimination in running the model.

Finally, we compare the interactions found using the univariate logistic regres-

sion model with those found using log-linear analysis model and discuss the

results.
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5.2 Univariate Logistic Regression Model

5.2.1 Introduction

The main aims of conducting the univariate logistic regression model are two-

fold:

1. To investigate the relationship of every drug-trying response variable with

the smoking, drinking and drug-related socio-demographic factors, along

with other drug-trying response variables.

2. To serve as a useful guide for variable selection in a latent class analysis

(which will be discussed in Chapter 7).

5.2.2 Theory

There are two common characteristics of univariate generalized linear models

(Dobson and Barnett, 2008):

1. The distribution describing the dependent variable is from the exponential

family.

2. Let themean of each response i be E(yi) = µi and denote themonotone link

function to be either g(µi) or ηi, which relates µi to the linear predictors xi

with a set of parameters β .

ηi = g(µi) = xT
i β .

In modelling a binary variable (e.g. a drug-trying response variable) using the

univariate logistic regression model, an appropriate link function is a logit(µi)

link. For respondents i, i = 1, . . . ,N, the probability of a positive response for
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respondent i given the predictors xi is denoted by pi = P(yi = 1 | xi), where yi

denotes the response.

Yi ∼ Bernoulli(pi)

E [yi] = pi

logit(pi) = log
(

pi

1− pi

)
= xT

i β .

The log-likelihood for the univariate logistic regression model is expressed by

the following equation:

`(p;y) =
n

∑
i=1

[
yi log

(
pi

1− pi

)
+ log(1− pi)

]
.

(McCullagh and Nelder, 1999)

The likelihood for the univariate logistic regression model is maximized by

the repeated use of the Iteratively Weighted Least Squares (IWLS) algorithms.

The IWLS function estimates the mode value of the log-likelihood and uses

a local quadratic approximation to the log-likelihood function to estimate the

variance. The IWLS is the repeated application of the Newton-Raphsonmethod

(Hazewinkel, 1994). Details of the IWLSalgorithms canbe foundatGreen (1984).

In this research, each set of parameters in each univariate logistic regression

model with each imputed data set respectively were estimated by the maximum

likelihood function, which was maximised through the IWLS algorithm. These

estimated parameters for all corresponding imputed data sets were combined

by using Rubin’s rule. Backward elimination was employed on the M imputed

data sets, which involved the combination of Rubin’s rule (Rubin, 1987) and

Wald’s test (Wald, 1945), to eliminate the covariates one by one in each back-

ward elimination step in order to reach the most parsimonious model. Rubin’s
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rule andWald’s test can be referred to Section 4.5.3.3 respectively. The procedure

of backward elimination based on Rubin’s rule is described below.

The backward elimination process begins by fitting saturated regressionmodels

to allM imputed data sets; the consequent estimates and standard errors of these

M saturated models are then pooled and combined using Rubin’s rule. Wald’s

test is then conducted for each estimate in the saturated model. If the combined

p-value of an estimate is greater than 0.05, then the term is considered to be

discarded from the model, otherwise, the variable is retained in the model.

At this iteration, only the term with the highest combined p-value is discarded

from the saturated model. Afterwards, the M imputed data sets are fitted with

a reduced regression model without the discarded term. The subsequent esti-

mates and standard errors of theseM saturatedmodels are pooled and combined

byRubin’s rule. Wald’s test is consequently conducted and the insignificant term

at 5% significant level with the highest combined p-value at this stage is dis-

carded from the reduced model. This process repeats with one term discarded

at each iteration until no insignificant terms remained in themodel. Suchmodel

at this step is considered as the final model.

For complete case analysis, Wald’s test is adopted as the term selection test

for the backward elimination.

5.2.3 Application of Univariate Logistic Regression Model

In this research, the univariate logistic regression model predicted the students’

drug-trying behaviour for each drug-trying response variable with respect to

the smoking, drinking and drug-related socio-demographic covariates. Two

groups of the univariate logistic regression model were employed:
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Model 1: univariate logistic regression models which consisted of other 14

drug-trying response variables as covariates;

Model 2: univariate logistic regressionmodelswhich consisted of other 14 drug-

trying response variables as well as the smoking, drinking and drug-related

socio-demographic variables as covariates.

The model 1 was set up to investigate solely how the use of a drug was re-

lated to the use of other drugs, whereas the model 2 was set up to investigate

how other drug-trying response variables, together with smoking, drinking and

drug-related socio-demographic covariates, predicted the probability for trying

each drug.

For model 1 (i.e. the univariate logistic regression models with 15 drug-trying

response variables), two imputation schemes, namely scheme 1: MICE Imputa-

tion, FCS based on 15 drug-trying response variables only and scheme 2: MICE

Imputation, FCS based on full data frame, were adopted for imputation of the

data. Each imputation scheme generated ten corresponding imputed data sets.

When dealing with the ten imputed data sets, which were generated from each

imputation scheme, twomodelling processeswere used: (1) the saturatedmodel

included all other 14 drug-trying response variables as covariates without back-

ward elimination and (2) the final model resulting from backward elimination

which began with all other 14 drug-trying response variables as covariates.

Backward elimination started with fitting each of the ten univariate logistic

regression models with each of the ten corresponding imputed data sets in the

R program through the glm function, which used the IWLS function for max-

imizing the likelihood of each model. The ten resulting sets of estimates and
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standard errors, each from the pattern table of each imputed data set, were then

pooled by Rubin’s rule. Wald’s test was then conducted for each covariate to

determine whether it was significant at 5 % significance level. Among all in-

significant terms found, the term with the highest p-value (denoted as XP1) was

discarded in each step.

Then ten imputed data sets were fitted again with the univariate logistic re-

gression model without the XP1 term, and the whole process was repeated and

the termwith the highest p-value at this step, XP2, was discarded from themodel.

The ten imputed data sets were then fitted again with the univariate logistic re-

gression model without both XP1 and XP2 terms, and the same procedure was

repeated for every step until no insignificant terms remained in the model. This

ultimate univariate logistic regression model was the final model.

For comparison purposes, the above-mentioned modeling process that was ap-

plied to the imputed data sets were applied to complete case analysis situation

for model 1 as well. In complete case analysis situation, Wald’s test was adopted

to test each covariate.

The results of the univariate logistic regressionmodels involving 15 drug-trying

response variables only (i.e. model 1) are discussed in Section 5.2.4 and the re-

sults of the univariate logistic regression models involving the smoking, drink-

ing, drug-related socio-demographic covariates and other drug-trying response

variables (i.e. model 2) are examined in Section 5.2.5. Each section commences

with the discussion of the significant variable indicators, follows by the discus-

sion of tables of estimates and standard errors, which are presented in Tables

B.3.1 to B.3.5 for model 1 in Appendix B.3 and Tables B.4.1 to B.4.21 for model 2

in Appendix B.4 respectively. Finally, results of the univariate logistic regression

results in respect of model 1 and model 2 are compared to investigate the effect
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of including smoking, drinking and drug-related socio-demographic covariates

in the univariate logistic regression analysis.

5.2.4 Univariate Logistic Regression Model with Other Drug-

trying Response Variables as Covariates

In this section, we concentrate on investigating each binary drug-trying response

variable, as a function of other drug-trying response variables via the univari-

ate logistic regression models among fifteen drug-trying response variables

only (i.e. model 1). As mentioned in Section 5.2.3, this analysis involved two

modelling processes, namely the saturated model which included all 14 other

drugs as covariates, and the finalmodel resulting frombackward elimination. In

analysing the results of the univariate logistic regressionmodel 1 here, both final

models and saturated models were considered. The purpose of implementing

the final models with backward elimination was to find the most parsimonious

model for predicting students’ drug-trying behaviour based upon drug-trying

response variables. The purpose of implementing the saturatedmodels without

backward elimination was to provide compatible models for comparison.

5.2.4.1 Results of the Univariate Logistic Regression Model with Other

Drug-Trying Response Variables as Covariates

For Model 1, we constructed a covariate sign plot for the final models with

backward elimination conducted, which indicated the form of the relationship

in Figure 5.3. In this research, the covariate sign plot is a grid plot displaying

three colours for each combination of response variable and covariate variables

under three groups: (1) positive associations, which are displayed in blue; (2)

negative associations, which are displayed in red and (3) not significantly associ-

ated (with p-value larger than 0.05), which are displayed in grey. The covariate

sign plot for the saturated models, without backward elimination conducted,
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is shown in Figure 5.4, across data sets imputed under all two MICE schemes

and complete case analysis. The related tables contained estimates and standard

errors for final models and saturated models are shown in Tables B.3.1 to B.3.5

and Tables B.3.6 to B.3.10 respectively in Appendix B.3.

Before considering the results shown in Figure 5.3 and 5.4, it is worth to note

that in Chapter 3 Section 3.3.4, Figures 3.3 to 3.5 in respect of polychoric corre-

lation plots have already shown that generally all the 15 drug-trying response

variables were strongly and positively correlated with each other. The log-odds

ratio heat plots in Figures 5.1 and 5.2 and the covariate sign plots in Figures

5.3 and 5.4 further explore such relationships among the 15 drugs in a greater

detail.
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Both log-odds ratio heat plots in Figures 5.1 and 5.2 showed thatmost remaining

terms in the 15 final models were positive (log odds ratios larger than zero), and

two imputation schemes generated similar results. The covariate sign plot of the

univariate logistic regression final models with backward elimination, which is

shown in Figure 5.3, showed that most remaining terms in the 15 final models

possess positive associations, indicating that if a student has tried a specific

drug, the student was more likely to try other drugs. The only exception was

the relationship between LSD and ketamine. In addition, cannabis was found to

associate with almost all drug-trying response variables except heroin. On the

other hand, crack, methadone, other drugs and tranquillisers were associated

with relatively a smaller number of other drug-trying response variables.

The covariate sign plot of the univariate logistic regression saturated models

without backward elimination, which is shown in Figure 5.4, exhibited similar

significance patterns as shown in Figure 5.3. The plot also shows fewer signifi-

cant terms with a positive association between any pair of drug-trying response

variables and one additional negative association between heroin and other

drugs. The slight discrepancies between significant terms in the two sign plots

might due to the adjustments of the covariate terms made through backward

elimination process in the final models.

Referring to Figure 5.3, in most of the covariate terms, the results generated

from imputed data sets by MICE schemes 1 and 2 generally agreed with each

other. The slight discrepancies in the results between these two schemes might

be due to slight differences in the percentages of students trying each of the

15 drugs, caused by the influence of the smoking, drinking and drug-related

socio-demographic covariates. Table 4.7.5 in Section 4.7.3 illustrates such slight

differences. These differences reflected the influence of the smoking, drinking

and drug-related socio-demographic covariates on the results of the imputation
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in the drug-trying response variables, and eventually the results of the univari-

ate logistic regression final models among drug-trying response variables.

In terms of the numerical results of the univariate logistic regressionfinalmodels

in respect of 15 drug-trying response variables, Tables B.3.1 to B.3.5 in Appendix

B.3 showed a general picture that almost all the 15 drugs were positively associ-

ated with each other. According to MICE scheme 2, cannabis was found to have

positive associations with 10 drugs. Cocaine, magic mushrooms and ecstasy

were shown to have positive associations with 7 drugs. Poppers, amphetamines

and gas were displayed to have positive associations with 6 drugs. Heroin, tran-

quillisers and anabolic steroids were found to have positive associations with 5

drugs, as well as LSD and ketamine, but the latter two included a negative inter-

action relationship with one drug. Finally, methadone, crack and other drugs

were shown to have positive associations with 4 drugs. As cannabis and gas

were two drugs reported by a higher proportion of studentswho had tried them,

as reported in the Year 2010 Survey, these two drugswould further be discussed.

We concentrated on discussing the two groups of univariate logistic regres-

sion model, as described in this section. Each univariate logistic regression

model was analysed with a specific drug, namely cannabis, gas, crack or tran-

quillisers, as the response respectively, which was modelled with imputed data

set underMICE scheme 2. Firstly, we discussed the twomodels with the highest

proportion of students trying a specific drug: the logistic model with cannabis

as the response variable and another with gas.

Focusing on the imputed data set under MICE scheme 2, Table B.3.1 in Ap-

pendix B.3 showed the probability for a student who had tried cannabis but

without trying other types of drugs was at an odds ratio of e−2.7497 = 0.06395.

The students who had tried cocaine were more likely to try cannabis, at an odds
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ratio of e1.7329 = 5.6570. The students who had tried magic mushrooms were

more likely to try cannabis, at an odds ratio of e1.7882 = 5.9787. The students

who had tried crack, methadone, ecstasy, anabolic steroids or amphetamines

were similarly more likely to try cannabis. In the other cases, the students who

had tried poppers or ketamine were more likely to try cannabis, at odds ratios

of e2.9916 = 19.9175 and e2.7259 = 15.27019 respectively. To a lesser extent, the

students who had tried gas were more likely to try cannabis, at an odds ratio

of e0.6938 = 2.0013. These estimates appeared to be similar with those corre-

sponding estimates generated under saturated model, as seen from Table B.3.6

in Appendix B.3.

Similarly, from Table B.3.5 in Appendix B.3, the probability the students who

had tried gas but without trying other types of drugs was e−2.6213 = 0.07271.

The students who had tried cannabis were more likely to try gas at an odds ratio

of e0.7705 = 2.1608, and the students who had tried heroin, magic mushrooms,

ecstasy or poppers were more likely to try gas, at odds ratios of e0.9839 = 2.6748,

e0.9361 = 2.5500, e0.6683 = 1.9509 and e0.8132 = 2.2551 respectively. In addition,

the students who had tried anabolic steroids were more likely to try gas, at

an odds ratio of e1.49 = 4.4371. All covariate terms, except the estimate of ec-

stasy, appeared to be similar with those estimates generated without backward

elimination, as seen from Table B.3.10 in Appendix B.3. The discrepancy of

the estimates of the ecstasy covariate term could be explained by the adverse

confounding relationship of the students who had tried ecstasy and who also

tried heroin, crack or anabolic steroids, of which the corresponding estimates

were negative as shown in Table B.3.8 in Appendix B.3.

When comparing the results of the univariate logistic regression final model

with cannabis to the results of the univariate logistic regression final model

with gas, it was observed that the model with the cannabis as a response vari-
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able yielded more significant terms and larger estimates than the final model

with gas. This observation indicated a larger proportion of students who had

tried cannabis and who also tried other types of drugs than those who had tried

gas and other types of drugs. Therefore, it highlighted a stronger association of

trying cannabis with trying other types of drugs.

After discussing cannabis and gas, of which a higher proportion of the students

who reported trying them in the Year 2010 Survey, we continued to discuss the

drugs with a moderate and the lowest proportion of the students who reported

them in the Year 2010 Survey, namely crack and tranquillisers, in Tables B.3.1

and B.3.5 in Appendix B.3.

Focusing on the imputed data set underMICE scheme 2, Table B.3.2 inAppendix

B.3 showed the probability of the student trying crackwithout trying other types

of drugs was e−6.255 = 0.001921. Students who had tried cannabis were more

likely to try crack, with an odds ratio of e2.1344 = 8.4520. Similarly, students who

had tried heroin, cocaine or tranquillisers were more likely to try crack, with

odds ratios of e2.688 = 14.7022, e2.1769 = 8.8189 or e1.9876 = 7.2980 respectively.

These estimates, which were generated by the final models, appeared to be

similar with those corresponding estimates generated by the saturated models,

which could be referred to Table B.3.7 in Appendix B.3.

Finally, from Table B.3.5 in Appendix B.3, the probability of the students trying

tranquillisers but without trying other types of drugs was e−6.2404 = 0.001949.

The students who had tried cannabis were more likely to try tranquillisers, at an

odds ratio of e1.4099 = 4.0955. Similarly, the students who had triedmagic mush-

rooms, crack, ketamine or other drugs were more likely to try tranquillisers, at

odds ratios of e1.8991 = 6.6799, e2.0391 = 7.6837, e1.7976 = 6.0351 or e1.8307 = 6.2383

respectively. All covariate terms generated in the final models, except for the
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estimate of other drugs, appeared to be similar with those corresponding esti-

mates generated in the saturated models, which are shown in Table B.3.10 in

Appendix B.3. The discrepancy of the estimate of the other drugs covariate term

could be explained by the adverse relationship of students who had tried other

drugs andwho had also tried heroin, ofwhich the corresponding estimateswere

negative, as shown in Table B.3.10 in Appendix B.3.

In addition, according to Tables B.3.1 to B.3.5 and Tables B.3.6 to B.3.10 in Ap-

pendix B.3, the estimates of significant terms in the final models and those in the

saturated models for the two sets of imputed data under MICE scheme 1 and

scheme 2were found to be quite similar. This findingwas valid to any covariates

that existed in the final models and the saturated models with several excep-

tions, such as the estimates of significant terms in the final and saturatedmodels

of: (1) LSD or other drugs covariates with heroin as the response variable; (2)

tranquillisers covariate with ketamine as the response variable and (3) heroin or

gas covariates with anabolic steroids as the response variable. Such differences

were due to different imputed responses between two sets of ten imputed data

sets under two different MICE schemes (i.e. MICE scheme 1 and MICE scheme

2) respectively.

The results of the univariate logistic regression models among 15 drug-trying

response variables fitted on data sets, imputed through two MICE schemes, are

compared with those fitted on data sets under complete case analysis, as shown

in Tables B.3.1 to B.3.5 in Appendix B.3. The results of estimates and standard

errors from the two MICE schemes applied on 15 drugs appeared to be closer

in terms of their magnitudes. Those from the complete case analysis appeared

to be farther in terms of their magnitudes from either set of results for the two

MICE schemes. Together with the trace plots from Figures 4.9 to 4.11 in Sec-

tion 4.7.3, this finding further supports the statement that drug-trying response
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variables influenced the MICE imputation.

5.2.5 The Univariate Logistic RegressionModel with the Drug-

trying Response Variables and Covariates

To investigate the covariates that associate with young people’s drug-trying be-

haviour, we expanded the univariate logistic regression models with the drug-

trying response variables to include the smoking, drinking and drug-related

socio-demographic covariates. These univariate logistic regressionmodels were

known as logistic regression model 2, which was stated in Section 5.2.3. In this

case, only the imputed data sets from the MICE imputation scheme 2, i.e. MICE

Imputation, FCS based on full data frame, were adopted for imputation of the

data.

The primary goal of conducting the univariate logistic regression models with

the smoking, drinking and drug-related socio-demographic covariates was to

find themost parsimoniousmodel that explained the association of the smoking,

drinking and drug-trying socio-demographic covariates to each of the 15 drug-

trying response variables. In other words, 15 such most parsimonious models

were constructed separately each for one of the 15 corresponding drug-trying

response variables. To achieve this goalwith the imputed data sets, a selected set

of variables in pre-defined forms (either linear or categorical (factor) variables),

and the model selection by backward elimination, were required. The steps for

constructing the univariate logistic regression models, i.e. model 2, were:

(1) Each potential ordinal variable was either treated as a linear variable or

a categorical (factor) variable. This was because treating the variable as ordinal

would lead to the univariate logistic regression models (produced from glm()

function in R program) being difficult to interpret. The determination of the
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variable type of these potential ordinal variables was by the Akaike Information

Criterion (AIC) through complete case analysis on each variable. The resultant

types of covariates for the univariate logistic regression models with covariates

(i.e. model 2) are presented in Tables B.1.1 and B.1.2 in Appendix B.1.

(2) Checked if a pair of highly correlated variables could be applied to the

univariate logistic regression model with a drug-trying response variable si-

multaneously, without any error in the GLM function in R program, a two-

parameter logistic regression under complete case analysis was carried out. The

two-parameter logistic regression model is described by the following equation:

logit(Yi) = β0 +β1iX1i +β2iX2i (5.1)

where for respondent i = 1, . . . ,n, (Yi) represents the drug response (Y ), X1i and

X2i represent two highly correlated covariates (X1 and X2), whereas β0 represents

the intercept parameter of the logistic regression model, β1i and β2i represent

the corresponding parameters of these two covariates. Therewere two scenarios

that indicated the necessity of choosing a variable between the two covariates.

The first scenario was the failure of the model fitting, which indicated the sin-

gularity between these two covariates. The second scenario was the unusual

large standard errors, which indicated the high correlation between the two

covariates. If either one of these two scenarios occurred, then with the same set

of complete cases, two logistic regression models, involving each covariate term

and its corresponding parameter in each model, were used. The two logistic

regression models for two respective covariates are described by the following

equations:

Model A: logit(Yi) = β0 +β1iX1i; (5.2)

Model B: logit(Yi) = β0 +β2iX2i. (5.3)
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The AICs of both models were then calculated and compared. If the AIC of

Model A was lower, then the covariate X1 was included in the saturated models

of the backward elimination by Rubin’s Rule of the univariate logistic regression

models (i.e. model 2) with the MICE scheme 2 imputed data sets, and X2 was

then discarded from the backward elimination, and vice versa for Model B.

These two steps were carried out separately and differently for each univari-

ate logistic regression model with one drug-trying response variable (e.g. the

two steps were carried out separately and differently in the univariate logistic

regression model with Cannabis as well as in the univariate logistic regression

model with cocaine). Covariates that were discarded from the initial model of

each univariate logistic regression model, as well as those that were remained

in the initial model, are presented in Tables B.2.1 and B.2.2 in Appendix B.2.

Another challenge of fitting the univariate logistic regression models with the

drug-trying response variables was the problem of sparsity in the drug-trying

response variables and the covariates, which was described in Agresti (2002).

The problem could be explained by a two-by-two contingency table of two vari-

ables as shown in Table 5.2.1 below.

Table 5.2.1: Contingency Table of Two Binary Covariates, X1 and X2

X1
No Yes

X2
Level 0 n00 n10
Level 1 n01 n11 = 0

By referring to Table 5.2.1, the log-odds ratio of X1 against X2 was (n00 ∗n11)/(0∗

n10), whichwas either infinite or negative infinite. Such log-odds ratio resulted in

fitting problems in statistical inference. Agresti (2002) described the problem as

"empty cell" problem and offered a solution of adding 0.5 observed frequencies

in the empty cell (in this example, the n11 cell) for improving the performance
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of statistical inference of log-linear analysis. For practical application to the

univariate logistic regression models, suppose X1 was a response variable, and

X2 was a covariate variable, then we randomly selected a case which satisfied

the two conditions X1 = 0 and X2 = 1, and converted its response of X1 from

"No" to "Yes", hence satisfying the conditions X1 = 1 and X2 = 1. As a result,

n01 increased by 1, whereas n11 decreased by 1. These procedures preserved the

total frequency of X2 while improving the statistical inference of the univariate

logistic regressionmodels and therefore improving the credibility of themodels.

Similarly, if X4 was a categorical variable with P levels, where P > 2, and X3

was a binary variable, the contingency table between X3 and X4 can be described

as Table 5.2.2 below:

Table 5.2.2: Contingency Table of a Binary Covariate X3 and a Multi-level Co-
variate X4

X4
0 . . . p . . . P

X3
No n00 . . . n0p . . . n0P
Yes n10 . . . n1p = 0 . . . n1P

where the frequency cell that represented the conditions when X3 = 1 (yes) and

X4 = p was of zero count, then we randomly selected a case that satisfied both

conditions X3 = 0 and X4 = p and changed its response on X3 from "No" to "Yes".

During model fitting, if the problem of singularity and high correlation still

existed, then the problematic variables would be discarded one by one until no

such problem remained.
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5.2.5.1 Results of Logistic Regression Model within Drug-Trying Response

Variables and Covariates

The results of variable selection were applied to data sets imputed under MICE

scheme 2. Each cell of the covariate sign plots contained five symbols, repre-

sented combination of response and covariate, as well as under which type of

data set (∗∗: Positive association between a response variable and a covariate,

significant at all factor levels; ∗: Positive association between a response variable

and a covariate; significant not at all factor levels; x: Mixed association between

a response variable and a covariate within factor levels; v: Negative association

between a response variable and a covariate, significant not at all factor levels;

vv: Negative association between a response variable and a covariate; significant

at all factor levels). The tables of types of variables used in the univariate logistic

regression models, as well as covariates included in the models, are shown in

Appendix B.

Two sets of covariate sign plot tables, which indicated relationships and signifi-

cance of the remaining covariates in the final models after backward elimination

for the data sets imputed under MICE scheme 2, are displayed in Tables 5.2.3 to

5.2.6. The related tables of estimates and standard errors for the final models for

the data sets, imputed under MICE scheme 2, can be referred to Tables B.4.1 to

B.4.21 in Appendix B.4. The full description of each covariate can be referred to

Tables A.2.1 to A.2.3 in Appendix A.
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Tables 5.2.3 to 5.2.6 showed that totally there were 12 smoking covariates, 11

drinking covariates and 11 drug-related socio-demographic covariates, which

were significant at 5 % significance level, in at least one of 15 univariate logistic

regressionmodels. In the following paragraphs, other important covariates that

were related to trying drugs are discussed.

Firstly, the relationships between smoking behaviour anddrug-trying behaviour

were discussed. From the 15 univariate logistic regression models, the students

who smoked more recently, more frequently and more heavily (referring to

CgStat1) were more likely to try cannabis, cocaine, magic mushrooms, am-

phetamines, LSD or other drugs. The students who took lessons about smoking

(LsSmk)weremore likely to try cocaine ormethadone and thosewho purchased

cigarettes more often (CgBuyF1) were more likely to try poppers. The students

who received information about smoking through people (CgPe1) were less

likely to try gas. In contrast, those students who received information about

smoking through media (CgIn1) were more likely to try gas. Also, the students

who lived with smokers (CgWho1) were more likely to try cannabis or anabolic

steroids, but they were less likely to try gas.

Secondly, the relationships between drinking behaviour and drug-trying be-

haviour were discussed. From the 15 univariate logistic regression models,

the students who drank more recently (AlLast) were more likely to try heroin.

Similarly, the students who drank more frequently (AlFreq2) were more likely

to try cannabis, magic mushrooms or poppers. The students who had been

in a pub, bar or club in the evening (AlBnPub) were more likely to try gas or

tranquillisers, and those who had incidents after drinking in the last four weeks

(Al4W1) were more likely to try cannabis or ecstasy as well. Nonetheless, the

students whose drinking behaviour were tended to be supported by their fam-

ilies (AlPar1) were less likely to try cannabis. Those students who knew more
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people of their own age (AlEstim) addicted to drinkingwere less likely to try gas.

Finally, we discussed the relationships betweendrug-related socio-demographic

covariates and drug-trying behaviour. From the 15 univariate logistic regres-

sion models, the students who knew more people of their own age using drugs

(DgEstim) were more likely to try cannabis, magic mushrooms, amphetamines

and gas. Moreover, the students who truanted more often (TruantN) were more

likely to try cannabis, gas, tranquillisers or other drugs, and those who had

been more often excluded from schools (ExclAN1) were more likely to try other

drugs. On the other hand, the students who possessed more books (Books1)

were found to be less likely to try heroin or tranquillisers, but more likely to try

gas, possibly with the reason of relieving academic stress. The older students

(Age) were more likely to try cannabis or magic mushrooms, but on the other

hand, less likely to try LSD or gas. Girls were more likely than boys to try gas,

but less likely to try cannabis. The students whose families were less wealthy,

reflected by the free school meal variable (FSM1), were less likely to try am-

phetamines or other drugs.

Based on the above-mentioned findings from the covariate sign plot Tables 5.2.3

to 5.2.6, it can be concluded that numerous smoking, drinking and drug-related

socio-demographic covariates are associated with drug-trying behaviour in dif-

ferent dimensions. Wedefined important covariates as thosewhichwere present

in at least three univariate logistic regression final models. By referring to Ta-

bles 5.2.3 to 5.2.6, these important covariates are: CgStat1, CgWho1, CgBuyF1,

CgEstim, AlFreq2, DgEstim, Books1, Age and TruantN, reflecting the situation

that smoking variables and drug-related socio-demographic variables are more

influential than drinking variables to the student’s drug-trying behaviour.

In order to further investigate how every factor and linear terms of a covariate
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was related to the students’ drug-trying behaviour, the estimates and standard

errors of the univariate logistic regression models are presented in Tables B.4.1

to B.4.21 in Appendix B.4. These estimates and standard errors were discussed

by focusing on interpreting the four univariate logistic regression final models

with cannabis, gas, crack or tranquillisers as the drug-trying response variables

respectively. As discussed in Section 5.2.4.1, cannabis and gas were two drugs of

which a higher proportion of the students reported in the Year 2010 Survey that

they had tried them, whereas crack and tranquilliserswere drugswithmoderate

and the lowest proportion of the students who reported trying them in the Year

2010 Survey.

Firstly, the univariate logistic regression final model with cannabis as drug-

trying response variable was discussed. The covariate measuring the cigarette

smoking status was included in the univariate logistic regression final model.

The students who had tried smoking or smoked before were the most likely

group to try cannabis, at an odds ratio of e2.3924 = 10.9397. Those students were

trailed by the students who smoked heavily at an odds ratio of e1.5900 = 4.9037,

then by those who smoked moderately and those who smoked lightly, at odds

ratios of e0.8510 = 2.3420 and e0.3877 = 1.4736 respectively. These odds ratios im-

plied that more frequent smoking increased the likelihood of a student to try

cannabis, but the most determinant factor was whether a student had smoked

before and stopped smoking at the survey time. Another covariate measuring

the source of obtaining cigarettes was included in the model. It was found that

the students who obtained cigarettes from at least two types of sources (mix-

ture) were most likely to try cannabis, at an odds ratio of e3.1510 = 23.3594. The

students who obtained cigarettes from shops, people, or given by people, were

similarly likely to try cannabis, at odds ratios of e2.4625 = 11.7341, e2.8112 = 16.6299

and e2.7442 = 15.5522 respectively. This result pinpointed that if a student ob-

tained cigarette frommore types of sources, he or shewould bemore likely to try
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cannabis. These findings were similar to the covariate measuring the smokers in

house and where the students who lived with the smokers and smoked outside

or inside were more likely to try cannabis, at odds ratios of e0.3740 = 1.4535 and

e0.2764 = 1.3184 respectively. On the other hand, the students who purchased

cigarettes (CgBuyF1) a few times were most prone to try cannabis, at an odds

ratio of e0.5746 = 1.7764. Thosewho purchased cigarettes occasionallyweremore

likely to try cannabis at an odds ratio of e0.5694 = 1.7672, but those who did fre-

quently were less likely to try cannabis, at an odds ratio of e−0.8214 = 0.4398.

These findings suggested that the frequent purchase of cigarettes might sup-

press the behaviour of trying cannabis.

The covariate which measured the sources a student obtain information about

drugs from people (DgPe1), included in the final model, revealed that the stu-

dents who obtained information from parents and other relatives were more

likely to try cannabis, at an odds ratio of e0.4807 = 1.6172, whereas those who

obtained information from the professionals and the police were less likely to

try cannabis at an odds ratio of e−0.3073 = 0.7354. For the students who obtained

information from both types of sources, the dominating effect of parents and

other relatives led to a slightly positive likelihood of the students to try cannabis

(odds ratio: e0.0875 = 1.0914). On the other hand, the students who knew larger

proportions of drug takers (DgEstim) were more likely to try cannabis (odds

ratios from e0.6854 = 1.9846 to e2.0144 = 7.4962), whereas the students who were

older (age) by every unit of year were more likely to try cannabis at an odds

ratio of e0.3752 = 1.4553, and girls were less likely to try cannabis than boys at an

odds ratio ofe−0.9074 = 0.4036. Finally, a covariate that measured the frequency

of truancy of the students was included in the final model. Those students who

played truant a year prior of the survey were found to be more likely to try

cannabis at an odds ratio of e0.5708 = 1.7697. Moreover, those students who had

played truant at least three times were found to be more likely to try cannabis
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at an odds ratio of e0.3093 = 1.3625.

Secondly, the univariate logistic regression final model with gas as the drug-

trying response variable was discussed. A covariate recording the types of

people that the students knew who smoked cigarettes (CgPp1) was included in

the final model. The students who knew their friends smoking were more likely

to try gas, at an odds ratio of e0.4565 = 1.5785, whereas those who knew at least

two of three types of people smoking were most likely to try gas, at an odds

ratio of e0.561 = 1.7524. These results reflected the influence of smoking friends

on drug-trying behaviour. Moreover, another covariate recording whether the

people who the students lived with smoked outside or inside their houses (Cg-

Who1) was included in the final model. The students who lived with people

smoking inside their houses were the least likely to try gas, at an odds ratio

of e−0.5167 = 0.5965, whereas the students who lived with people smoking out-

side their houseswere less likely to try gas, at a log odds ratio of e−0.2887 = 0.7492.

A covariate that recorded the frequency of purchasing cigarettes by a stu-

dent (CgBuyF1) was included in the final model that the students who bought

cigarettes occasionally were found to be less likely to try gas, at an odds ra-

tio of e−0.8203 = 0.4403. Moreover, a covariate that recorded how the students

obtained information about smoking from people (CgPe1) was included in the

final model. The students who obtained such information from parents, rel-

atives and professionals, police were less likely to try gas, at an odds ratio of

e−0.5128 = 0.5988. Another predictor that recorded how the students obtained

information about smoking frommedia (CgIn1)was included in the finalmodel.

In contrast to CgPe1 variable, the students who obtained such information from

passive media, interactive media, or both (CgIn1), were more likely to try gas.

The students who had been in a pub (AlBuPub) were also more likely to try

gas, at an odds ratio of e0.2807 = 1.3241. Also, the students who knew half of
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other people drinking (AlEstim) were less likely to try gas, at an odds ratio of

e−0.5442 = 0.5803. The students who received lessons about drinking (LsAlc)

were more likely to try gas, at an odds ratio of e0.6697 = 1.9537. On the other

hand, from the variable describing the types of places a student usually uses

alcohol in(AlUs2), the students who consumed alcohol at home or in a party, as

well as consuming alcohol at pub, home or party, and in other places, weremore

likely to try gas, at odds ratios of e0.6213 = 1.8613 and e0.5032 = 1.6540 respectively.

A covariate that measured the proportion of drug-taking people a student knew

(DgEstim) was included in the final model. The students who knew more than

half of such people were more likely to try gas, at odds ratios of e2.0303 = 7.6164

for ’half’ level and e1.8536 = 6.3828 for ’most/all’ level. Another predictor that

measured the number of books students possessedwas also included in the final

model. The students who possessed books (Books1) were more likely to try gas,

at odds ratios of e0.7698 = 2.1593 and e0.874 = 2.3965 for ’few’ and ’lots’ levels

respectively. In contrast, the students who had taken lessons about drugs were

less likely to try gas, at an odds ratio of e−0.3795 = 0.6720; older students (Age)

were less likely to try gas, with the likelihood in log scale decreasing at an odds

ratio of e−0.2997 = 0.7410 with an increase in one year of age. Those students who

played truant more seriously were found to be more likely to try gas, at an odds

ratios of e0.55 = 1.7333, e0.5799 = 1.7859 and then e0.757 = 2.1319 if a student played

truant a year ago, had played truant once or twice in the last year, and at least

three times in the last year respectively. Finally, the students living in London

SHA region (SHA)weremore likely to try gas at an odds ratio of e0.5488 = 1.7312.

On the other hand, another two univariate logistic regression final models with

crack as well as tranquillisers as drug-trying response variables were conducted

respectively. For the final model of crack, firstly, the variable that predicted the

family’s attitude towards smoking (CgFam1) was included in the final model.
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If the students’ families supported the student’s smoking behaviour, those stu-

dents were more likely to try crack at an odds ratio of e1.6797 = 5.3639. In con-

trast, a covariate whichmeasured the number of sources the students purchased

cigarettes usually through shops/machine/Internet (CgGet1) was included in

the final model. The students who purchased cigarettes from more than one

sourcewere less likely than thosewhopurchased cigarettes fromonly one source

to try crack, when compared respective odds ratios of e−2.2321 = 0.1073 and

e−1.3446 = 0.2606 respectively. Moreover, the students who obtained informa-

tion about drugs through passive media or through both passive and interactive

media were found to be less likely to try crack, at odds ratios of e−2.2219 = 0.1084

and e−1.2256 = 0.2936 respectively.

For the univariate logistic regression final model with tranquillisers as drug-

trying response variable, firstly, the predictor which measured the number of

sources the students purchased cigarettes usually through shops/machine/ In-

ternet (CgGet1) was included in final model. The students purchased cigarettes

in this way from more sources were more likely to try tranquillisers, at an odds

ratio increasing by a factor of e1.3055 = 3.6895 for an increase in every level of

CgGet1 variable. Besides, those studentswho had been in a pub (AlBnPub)were

more likely to try tranquillisers at an odds ratio of e0.9311 = 2.5373. In contrast,

the students who purchased alcohols from shops (AlBuy1) from at least one

source were less likely to try tranquillisers at an odds ratio of e−1.1832 = 0.3063

for an increase in every level of (AlBuy1) variable; the students who possessed

more books were less likely to try tranquillisers, at an odds ratio decreasing by

a factor of e−0.8351 = 0.4338 for an increase in every level of Books1 variable.

Finally, the students who had truanted were more likely to try tranquillisers,

at an odds ratio of e0.4045 = 1.4986 for an increase in every level of the Truant

variable.



CHAPTER 5. LOGISTIC REGRESSION AND LOG-LINEAR ANALYSIS MODELS173

To determine in the univariate logistic regression final model with a drug-trying

response variable, whether the terms of drug covariates were replaced by the

terms of the smoking, drinking and drug-related socio-demographic covariates,

the final models containing only drug covariate terms were compared with the

final models containing drug covariate terms as well as the smoking, drinking

and drug-related socio-demographic terms. In that regard, only the comparable

final models in respect of cannabis, gas, crack and tranquillisers were discussed.

In the finalmodel of cannabis including the smoking, drinking and drug-related

socio-demographic covariates, methadone, ecstasy and amphetamines covari-

ates were explained by a plenty of the smoking, drinking and drug-related

socio-demographic covariate terms as mentioned in previous paragraphs. The

common terms in the final model yielded apparently different estimates and

standard errors. On the other hand, in the finalmodel of gas including the smok-

ing, drinking and drug-related socio-demographic covariates, the cannabis and

ecstasy terms were explained by numerous smoking, drinking and drug-related

socio-demographic covariate terms, but the estimates and standard errors of the

common terms in the final model were similar with those in the final model

containing only drug covariates.

In the final model of crack, the other drugs term was explained by CgFam1,

CgGet1 and DgIn1 variables, but the estimates and standard errors of the com-

mon terms were similar with those in the final model containing only drug

covariates. Similarly, in the final model of tranquillisers including the smoking,

drinking and drug-related socio-demographic covariates, the cannabis and ke-

tamine covariate terms were explained by the ecstasy term, CgGet1, AlBnPub,

AlBuy1, Books1 and TruantN predictors, but the estimates and standard errors

of the common termswere quite similar with those in the finalmodel containing

only drug covariates.
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5.2.6 Summary of Main Findings from Univariate Logistic Re-

gression Analysis

In both Sections 5.2.4 and 5.2.5, univariate logistic regression analysis was em-

ployed to further study the relationships among drug-trying response vari-

ables and the smoking, drinking and drug-related socio-demographic covari-

ates. When only involvedwith the 15 drug-trying response variables, univariate

logistic regression analysis revealed that almost every drug has a positive inter-

actionwith other drugs (except the relationship between LSD and ketamine) but

the extent of association varied among the 15 drugs. For example, cannabis was

found to have positive interactions with 10 drugs (MICE scheme 2), whereas for

methadone, crack and other drugs each has positive interaction with 4 drugs

(MICE scheme 2). This finding indicates that using other types of drugs by a

student is a good predictor of whether the student uses cannabis or not.

When including the smoking, drinking and drug-related socio-demographic

covariates in the univariate logistic regression analysis, it was found that nu-

merous smoking, drinking anddrug-related socio-demographic covariateswere

associated with drug-trying behaviour in different dimensions. Among these

smoking, drinking and drug-related socio-demographic covariates, there were

important covariates which were associated with at least three of the 15 drugs.

These important covariates included: (1) cigarette smoking status of a student

(CgStat1); (2) number of smokers in a student’s house and where they smoked

(CgWho1); (3) frequency of buying cigarettes from shop by a student (CgBuyF1);

(4) how many peer smokers a student knew (CgEstim); (5) usual frequency of

drinking alcohol by a student (AlFreq2); (6) number of peer drug users a student

knew (DgEstim); (7) how many books in a student’s home (Books1); (8) age of a

student (Age) and (9) how often a student played truant (TruantN).
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5.3 Log-linear Analysis Model

5.3.1 Introduction

As mentioned in Vermunt (1996), a log-linear analysis model is widely used for

analysing frequency tables and contingency tables. A log-linear analysis model

is used to analyse the multivariate frequency tables with a set of parameters

(Vermunt, 1997). A Poisson link function is employed for modelling such ob-

served frequencies or counts.

Log-linear analysis models are also applied in behavioural studies, where case

frequencieswithin a certainperiod areusually recorded (McCullagh andNelder,

1999).

In this research, in addition to the univariate logistic regression models, a log-

linear analysis model is adopted to analyse the two-way interactions among the

15 drug-trying response variables. However, we did not include three or more

ways of interaction terms, since there were too few cases with three or more

ways of interaction terms for modelling in R program. In the univariate logistic

regression models, only one-way interaction among the drug-trying response

variables can be modelled in a single regression model. In a log-linear analysis

model, we can fit the patterns among the 15 drug-trying response variables with

hierarchical two-way interactions, in order to investigate the relationships be-

tween these drug-trying response variables in both directions in a single model.

We can also include intercepts in the log-linear analysis model to measure the

probability of trying each drug by the students. According to Christensen

(1997), the advantages of using log-linear analysis models are: (1) log-linear

analysis models possess the properties of modelling flexibility that are associ-

ated with ANOVA and regression and (2) log-linear analysis models are easily
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interpretable in terms of odd and independence. However, the disadvantage of

a log-linear analysis model is that it focuses on aggregate data level rather than

individual data level, as the data set for a log-linear analysis model records the

frequency of each data pattern at aggregate level (Bĳleveld et al., 1998).

5.3.2 Theory

In this research, the associations among 15 drug-trying response variables were

evaluated by hierarchical log-linear analysis models that contained two-way in-

teractions among drug-trying response variables. Since a hierarchical log-linear

model was adopted in our analysis, only two-way hierarchical log-linear analy-

sis model was discussed in this section.

Vermunt (1997) defined a saturated two-way hierarchical log-linear analysis

model as follows: suppose there exists a frequency table with three binary vari-

ables, denoted as A, B and C. Let a, b and c be indices associated with A, B and

C respectively. Let µabc be the expected frequency for the cell that belongs to

category a of A, b of B, and c of C, then the equation of a saturated two-way

hierarchical log-linear analysis model is expressed as Equation 5.4.

µabc = u+uA
a +uB

b +uC
c +uAB

ab +uAC
ac +uBC

bc , (5.4)

(Vermunt, 1997)

where uA
a , uB

b and uC
c indicate the relative number of cases at the various levels of

A, B andC, and uAB
ab , uAC

ac and uBC
bc represent the strength of the partial associations

between A and B, A and C and B and C respectively.

The saturated two-way P-dimensional log-linear analysis model includes all

the possible intercept terms and two-way interaction terms of P variables. The

total number of the two-way interaction terms is (P−1)(P−2)/2.



CHAPTER 5. LOGISTIC REGRESSION AND LOG-LINEAR ANALYSIS MODELS177

To explain the log-linear equation adopted in this research, we adopt the in-

dex i associated with a pattern that contained a distinct combination of (a,b,c).

A data set containing three binary variables, namely A, B and C, is adopted.

Corresponding binary responses of A, B and C, are recorded for each of the

respondent i, i = 1, . . . ,n. The data patterns for these three binary variables are

illustrated in the following frequency table of all combinations of patterns in the

following Table 5.3.1.

Table 5.3.1: Pattern Table of Data Set with Three Variables, Ah, Bh and Ch

h Ah Bh Ch Frequency
1 0 0 0 F000
2 0 0 1 F001
3 0 1 0 F010
4 0 1 1 F011
5 1 0 0 F100
6 1 0 1 F101
7 1 1 0 F110
8 1 1 1 F111

The equation of the corresponding log-linear analysis model, containing one

and two-dimensional interactions, is expressed as the following:

µh = u+uA
h +uB

h +uC
h +uAB

h +uAC
h +uBC

h , (5.5)

where µh is the expected frequency for pattern h, h = 1, . . . ,8, u is the global

intercept parameter and uA
h ,u

B
h ,u

C
h are main effects for binary variables A,B,C,

and uAB
h ,uAC

h ,uBC
h are parameters representing interactions between A and B, A

and C and B and C, respectively.

An alternative log-linear model formulation for the frequency of each pattern h,
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denoted as FAh,Bh,Ch , of Ah,Bh,Ch, is expressed as:

log(E[FAh,Bh,Ch]) = λ0+λAAh+λBBh+λCCh+λABAhBh+λACAhCh+λBCBhCh, (5.6)

where E[FAh,Bh,Ch] is the expected frequency for pattern h, h = 1, . . . ,8, for ob-

served values of Ah,Bh,Ch, λ0 is the global intercept parameter (for the zero

vector pattern), and λA,λB,λC are effects associated with A,B,C, and λAB,λAC,λBC

are parameters for two-way interaction terms.

When conducting a log-linear analysismodel (where the combinations aremod-

elled by a Poisson GLM) to pattern data, denoted X ′′ = {x′′1, . . . ,x′′h, . . . ,x′′8}, where

x′′h represents the hth data pattern, with associated response vector (frequency

vector) Y ′′ = {y′′1, . . . ,y′′h, . . . ,y′′8}, an appropriate link function is the log(µh) link,

where the µh is the expected frequency for pattern h. We have:

y′′h ∼ Poisson(µh), (5.7)

E
[
y′′h
]
= µh, (5.8)

log(µh) = β0 +(x′′h)
T

β . (5.9)

where β is a vector representing main effects and interaction terms, and β0 is an

intercept of the model. The log-likelihood for the log-linear analysis model is

expressed by the following equation:

`(µ,Y ′′) =
8

∑
h=1

(y′′hlog(µh)−µh− log(y′′h!)).

Derived from Equation 5.5, the expected log frequencies in this pattern table
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are presented by the following equations.

log(E[F000]) = λ0; (5.10)

log(E[F010]) = λ0 +λB; (5.11)

log(E[F001]) = λ0 +λC; (5.12)

log(E[F011]) = λ0 +λB +λC +λBC; (5.13)

log(E[F100]) = λ0 +λA; (5.14)

log(E[F110]) = λ0 +λA +λB +λAB; (5.15)

log(E[F101]) = λ0 +λA +λC +λAC; (5.16)

log(E[F111]) = λ0 +λA +λB +λC +λAB +λAC +λBC. (5.17)

Note that using the notation in Equation 5.9 above, we can hence write:

β0 = λ0,β = (λA,λB,λC,λAB,λAC,λBC). By combining Equations 5.10 to 5.17, the

intercepts and interaction term parameters of the log-linear analysis model are

defined as follows:

log(E[F100])− log(E[F000]) = log
(

E[F100]

E[F000]

)
= λA, (5.18)

log(E[F010])− log(E[F000]) = log
(

E[F010]

E[F000]

)
= λB, (5.19)

log(E[F001])− log(E[F000]) = log
(

E[F001]

E[F000]

)
= λC, (5.20)

log(E[F110])− log(E[F100])− [log(E[F010])− log(E[F000])] = λAB, (5.21)

log(E[F101])− log(E[F100])− [log(E[F001])− log(E[F000])] = λAC, (5.22)

log(E[F011])− log(E[F010])− [log(E[F001])− log(E[F000])] = λBC. (5.23)

From Equation 5.10, λ0 represents the expected log frequency of respondents at

the baseline. The derivation of intercept parameters, λA,λB,λC in Equations 5.18

to 5.20, shows that these parameters represent the log odds of variables A, B and
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C respectively, given the condition of zero as rest of responses for a respondent.

Finally, the derivation of the respective interaction parameters, λAB,λAC,λBC, im-

plies these parameters represent log odds ratio between any pair of variables,

given the condition of zero as rest of responses for a respondent.

In general, the intercept term of the log-linear analysis model for variable X

is the log-odds of the corresponding variable X , whereas the interaction term

for variable X and Y is the log-odds ratio of the two corresponding variables X

and Y .

Same as the logistic regression analysis models, Rubin’s rule with Backward

Elimination with Wald’s test can be applied to log-linear analysis. Rubin’s rule

and Wald’s test can be referred to Section 4.5.3.3 respectively. Backward Elimi-

nation begins with the inclusion of all relevant intercept terms and interaction

terms in a Poisson Generalized Linear Model, known as the saturated model.

Such model is fitted to all M imputed data sets. Estimates and standard errors

from the M imputed data sets are combined and pooled by Rubin’s Rule. Wald’s

test is then conducted for each of the estimates in the model. If the combined

p-value of an estimate is higher than 0.05, then the term is discarded from the

model; if not, then the variable is retained in the model. The termwith the high-

est combined p-value (here, we denote it as XP1) is discarded from the model at

each step. The M imputed data sets are re-fitted without the XP1 term, and the

process repeats, where the term with the highest combined p-value, XP2 at this

step, is discarded. The process repeats until no insignificant terms remain in the

model. Such model at this status is considered as the final model.

For complete case analysis, Wald’s test was adopted as the term selection test

for the backward elimination.
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The next step is extending the log-linear analysis model to include four re-

sponse variables, A, B, C and D, up to two-way interactions. Similar with the

log-linear analysis model with three response variables, the equation for two-

way log-linear analysis model with four response variables is expressed below:

µh = u+uA
h +uB

h +uC
h +uD

h +uAB
h +uAC

h +uAD
h +uBC

h +uBD
h +uCD

h . (5.24)

The two-way log-linear analysis model can be extended further to include P

response variables.

5.3.3 Application of Log-linear Analysis Model

In this research, a log-linear analysis model was adopted with the objective of

further investigating the relationships between 15 drug-trying response vari-

ables. The log-linear analysis model was fitted for data sets of two imputation

schemes and complete case analysis. The two imputation schemes were:

Scheme 1: MICE Imputation, FCS based upon 15 drug-trying response vari-

ables only;

Scheme 2: MICE Imputation, FCS based upon full data set;

In this research, the two-way interactions between 15 drug-trying response vari-

ables were investigated. The most parsimonious model was obtained through

the backward elimination. Since the log-linear analysismodel was a hierarchical

model, intercept terms were required.

Similar to the univariate logistic regression model, one selection process for

a log-linear analysis model was to carry out the backward elimination. The

backward elimination for the log-linear analysis model commenced from the

saturated model that contained all the intercepts and two-way interaction terms
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only from the ten pattern tables of ten respective imputed data sets imputed by

each imputation scheme (scheme 1 and scheme 2). Details of backward elimina-

tion could be found in Section 5.2.2. Any pattern with zero predicted frequency

was discarded from the pattern tables before conducting the log-linear analysis.

In the following sections, firstly we discuss the results of the final model of Log-

linear Analysis with backward elimination, in Section 5.3.4.1. Then we discuss

the results of saturated models of log-linear analysis, in Section 5.3.4.2. Both re-

sult and discussion sections beginwith a log-odds ratio heat plot of the resultant

model, as well as a covariate sign plot, which describes whether an interaction

term between any combination of two drug variables, under any scheme, is

positive (indicated in blue), negative (indicated in red), or non-significant at 5

% significance level (indicated in grey). Discussions about these plots are then

followed, and the whole section ends with a conclusion.

5.3.4 Results and Discussion

5.3.4.1 Results of Final Log-linear Analysis Model with Backward Elimina-

tion

In this section, the tables of estimates of log-linear analysismodels, as well as the

covariate sign plot, are discussed, with emphasis on which pairs of drug-trying

response variables existed in the final models and their relationships. The tables

of estimates of the final log-linear analysis models are presented in Tables C.1.1

to C.1.3 in Appendix C, whereas those of saturated log-linear analysis models

are presented in Tables C.2.1 to C.2.3. The log-odds ratio heat plots of the final

log-linear analysis models for twoMICE schemes are shown as Figure 5.5, while

the model’s covariate sign plot is shown as Figure 5.6.
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When comparing the estimates and standard errors of the interaction terms

presented in the final log-linear analysis models, as shown in Tables C.1.1 to

C.1.3, for both imputation schemes 1 and 2, it was observed that many estimates

were similar. Some interaction terms with large absolute values were different

between the results of the two imputation schemes, for example, the interaction

term for heroin and tranquillisers. However, signs of estimates of all the in-

teraction terms in respect of two imputation schemes matched with each other

and most standard error values of the interaction terms were quite similar. This

observation is reflected in Figure 5.5. When we compared the estimates and

standard errors of the interaction terms presented in the final models between

the complete case analysis and the two MICE imputation schemes, the interac-

tion terms presented in a pair of final models for twoMICE imputation schemes

were substantially different from those for the complete case analysis, especially

the interaction terms that were related to heroin, cocaine, magic mushrooms,

crack, methadone, ecstasy, amphetamine, LSD and poppers. These differences

could be explained that drug-trying response variables influenced the MICE

imputation, thus producing different results from the complete case analysis.

When comparing the model results from the different imputation schemes, we

observed that these results appeared to be slightly different, suggesting the

influence of including covariates other than drug-trying response variables in

multiple imputation.

When comparing the results of final log-linear analysis models based upon

complete case analysis with those of log-linear analysis models based upon two

MICE imputation schemes in Figure 5.6, an interaction term, i.e. the interac-

tion term between heroin and tranquillisers, has conflicting directions. This

discrepancy might be caused by the adjustments from other interaction terms

in the two log-linear analysismodels due to differences in imputedmissing data.
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From Figure 5.5, the first observation was that cannabis yielded the largest

number of significant interactions with other types of drugs. The two imputa-

tion schemes generally agreed with most of the significant covariates between

cannabis, heroin, magic mushrooms, ecstasy, amphetamines, LSD, poppers

and anabolic steroids predictors. When investigating the significant interac-

tion terms in final log-linear analysis models based upon MICE scheme 2, the

results of the final log-linear analysis models largely agreed with the univariate

logistic regression final models with various drug-trying response variables as

the responses. The model with heroin, cocaine, magic mushrooms or ecstasy

as the response variable yielded six other types of drug exploratory variables,

indicating that though the percentages of students trying heroin, cocaine, magic

mushrooms and ecstasy were tiny (0.49%, 1.19 %, 1.49% and 1.10%), heroin,

cocaine, magic mushrooms and ecstasy were essential in connecting other drug-

trying response variables. Additionally, models with amphetamines or gas as

the response variable yielded five other types of drug exploratory variables,

whereas a model with popper as the response variable yielded four other types

of drug exploratory variables. Models with crack, methadone, LSD or anabolic

steroids as the response variable yielded three other types of drug exploratory

variables, and models with ketamine as the response variable yielded two other

types of drug exploratory variables.

From Tables C.1.1 to C.1.3, the intercept terms of each of the log-linear anal-

ysis models showed that the ordering of the drug-trying response variables,

in terms of the proportion of the students trying them, were generally similar

with the corresponding ordering of the students trying each of the 15 drugs as

shown in Table 3.1.6. For example, the log-odds estimates of trying cannabis

and trying gas showed that they were the two drugs with higher proportions

of the students trying them, which corresponded to the finding of the higher
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proportions of the students trying these two drugs as shown in Table 3.1.6. The

slight discrepancies existed in some drugs between the above mentioned two

orderings were due to adjustments made under different imputation schemes.

Most of the log-odds ratios of the interaction terms were positive, as depicted in

Figure 5.5, indicating students trying one drug were more likely to try another

drug. Specifically, these positive interactions briefly explained the ordering of

the proportion of students trying each of the 15 drugs. The smaller the pro-

portion of students trying one of two drugs in a pair of interaction terms, the

greater the absolute estimate value of the corresponding log-odds ratio.

The results of the MICE scheme 1 were chosen to discuss the results of the final

log-linear analysis models with backward elimination, since theMICE scheme 1

considered only 15 drugs for imputation, which is in linewith log-linear analysis

models with drugs only. When looking at the results of the MICE scheme 1,

several interaction terms with distinctive estimates were observed. The interac-

tion term between heroin and magic mushrooms yielded the highest estimate

of a log-odds ratio (8.0758), indicating each student having tried heroin was

almost certain to try magic mushrooms or vice versa. On the other hand, the

interaction term between cocaine and ketamine yielded the lowest estimate (-

7.1597), indicating each student having tried cocaine was almost certain not to

try ketamine or vice versa. Other distinctive interaction terms with positive

associations include heroin and amphetamines as well as cocaine and poppers,

which all highlighted the positive effects of including these interaction terms in

frequencies related to these terms. Distinctive interaction terms with negative

associations include heroin and amphetamines as well as heroin and tranquil-

lisers, which all highlighted their negative effects in related frequencies.

In Section 5.3.4.2 below, the results of saturated log-linear analysis models are
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discussed in a similar format.

5.3.4.2 Results of Saturated Log-linear Analysis Model

In this section, we discussed the tables of estimates and standard errors of

saturated log-linear analysis models, as well as the related sign plots, with

emphasis on which pairs of drug responses existed in the saturated model and

their relationships. The tables of estimates are presented in Tables C.2.1 to

Tables C.2.3 Appendix C. The log-odds ratio heat plots of the saturated log-

linear analysis models for twoMICE schemes are shown as Figure 5.7, while the

models’ covariate sign plot is shown as Figure 5.8.
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Judging from the log-odds ratio heat plots in Figure 5.7, cannabis was related

to all other types of drugs except heroin, due to all mildly positive interaction

terms between the cannabis and all other drug-trying response variables. An-

other point was that more than half of the interaction terms in the saturated

models were positive, but several very negative interaction terms were found.

For example, heroin was negatively correlated with other drugs and tranquil-

lisers. On the contrary, heroin was positively correlated with methadone. This

correlation was sensible because methadone was a derivation of heroin. Finally,

most correlations in the saturated model were weak. One instance was that gas

was weakly correlated with all other types of drugs with reference to Figure 5.7.

Figure 5.8 was considered by comparing the significant interaction terms pre-

sented in complete case analysiswith those ofMICE scheme 1 andMICE scheme

2 models.
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Referring to Figure 5.8, concentrating on significant interaction terms only, there

were no conflicting signs between complete case analysis and the two imputa-

tion schemes. Similar with the final models with backward elimination, most of

the log-odds ratios of the significant interaction terms were positive, as depicted

in Figure 5.8.

For saturated log-linear analysis models, estimate tables in Appendix B.3 were

considered by comparing the estimates and standard errors between MICE im-

putation scheme 1 and MICE imputation scheme 2. From Tables C.2.1 to C.2.3,

most interaction term estimates were observed to be similar. Only a few in-

teraction term estimates, such as crack and ketamine, amphetamines and other

drugs, heroin and tranquillisers, yielded relatively large differences.

From Tables C.2.1 to C.2.3, focusing on results from MICE imputation Scheme

1, several interaction terms with distinctive estimates were observed. For exam-

ple, the interaction term between amphetamines and tranquillisers yielded the

highest estimate (7.9116), indicating that the estimated number of students who

have tried amphetamines were almost certain to try tranquillisers or vice versa.

On the other hand, the interaction term between cocaine and ketamine yielded

the lowest estimate (-12.3839), indicating that less estimated number of students

who have tried cocaine were almost certain not to try ketamine or vice versa.

Other distinctive interaction terms with positive associations include cannabis

and ketamine, heroin and methadone, heroin and magic mushrooms, cocaine

and other drugs. On the other hand, distinctive interaction terms with negative

associations include heroin and other drugs, heroin and tranquillisers, crack and

ketamine, which all highlighted their negative effects on related frequencies.



CHAPTER 5. LOGISTIC REGRESSION AND LOG-LINEAR ANALYSIS MODELS193

5.3.5 Comparison of Log-linear Analysis Model with Univari-

ateLogisticRegressionModelswithDrugCovariatesOnly

Another aim of conducting the log-linear analysis models is to justify the find-

ings of the association of a student trying a drug and another drug through

comparing corresponding findings of univariate logistic regression models. In

this comparison, the interaction terms of the two-way relationships between

drug-trying response variables in the log-linear analysis models were compared

with the corresponding interaction terms of the drug predictors to drug-trying

response variables in univariate logistic regressionmodels, whichwere regarded

as one-way relationships among drug-trying response variables. A comparison

was conducted to identify common terms and the direction of these common

terms.

In respect of association and interaction among the 15 drug-trying response

variables, results from the univariate logistic regression models were generally

found to be comparable with those from the log-linear analysis models.

To explain this comparison, a data set containing two drug-trying response

variables and n students was used. Suppose there are two binary drug-trying

response variables, A and B, where the response 0 denotes "No", and another re-

sponse 1 denotes "Yes", then the contingency table is presented as follows: This

B
Yes No

A
Yes F11 F10
No F01 F00

contingency table can be transformed into the pattern table and the log-linear

analysis model, in this case, is defined as below:
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h Ah Bh Frequency
1 0 0 F00
2 0 1 F01
3 1 0 F10
4 1 1 F11

log(FAh,Bh) = λ0 +λAAh +λBBh +λABAhBh, (5.25)

where Ah = 0,1 and Bh = 0,1 respectively. As a result, the prediction for all

frequencies in this contingency table is listed as below:

log(E[F00]) = λ0; (5.26)

log(E[F10]) = λ0 +λA; (5.27)

log(E[F01]) = λ0 +λB; (5.28)

log(E[F11]) = λ0 +λA +λB +λAB. (5.29)

Referring back to the working data sets, for respondent i = 1, . . . ,n, the logistic

regression model, in this case, is defined as below:

logit(p(Ai = 1 | Bi)) = log
(

p(Ai = 1 | Bi)

p(Ai = 0 | Bi)

)
= β01 +β11Bi,

logit(p(Bi = 1 | Ai)) = log
(

p(Bi = 1 | Ai)

p(Bi = 0 | Ai)

)
= β02 +β12Ai.

The predicted probability p(Ai = a | Bi = b) can be interpreted as E[Fab]/E[FBi=b],

where FBi=b is the frequency of cases fulfilling the condition Bi = b, since this is

a conditional probability that Ai = a given a condition Bi = b. Hence, in a case
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when Bi = 1,

log
(

p(Ai = 1 | Bi = 1)
p(Ai = 0 | Bi = 1)

)
= log

(
(E[F11]/E[FBi=1])

(E[F01]/E[FBi=1])

)
. (5.30)

= log
(

E[F11]

E[F01]

)
= λA +λAB. (5.31)

In another case, when Bi = 0,

log
(

p(Ai = 1 | Bi = 0)
p(Ai = 0 | Bi = 0)

)
= log

(
(E[F10]/E[FBi=0])

(E[F00]/E[FBi=0])

)
= log

(
E[F10]

E[F00]

)
= λA. (5.32)

As a result, the result for λAB is as follows:

(5.31)− (5.32), log
(

E[F11]E[F00]

E[F01]E[F10]

)
= λAB. (5.33)

Indicating the interaction term in the log-linear analysis model, λAB is the log-

odds ratio between A and B. The Equation 5.32 reveals λA in the log-linear

analysis model is the log-odds for A given the condition of Bi = 0. Similarly, λB

in the log-linear analysismodel is the log odds forB given the condition ofAi = 0.

When deriving the logistic regression model, in the condition of Bi = 0,

logit(p(Ai = 1 | Bi = 0)) = log
(

p(Ai = 1 | Bi = 0)
p(Ai = 0 | Bi = 0)

)
= β01 = λA

= log
(

E[F10]

E[F00]

)
. (5.34)

in which the intercept term of the logistic regression model, β01 , equates the

intercept term of the log-linear analysis model, λA, indicating the log-odds for A

given the condition of Bi = 0. Moreover, when Bi = 1,

logit(p(Ai = 1 | Bi = 1)) = log
(

p(Ai = 1 | Bi = 1)
p(Ai = 0 | Bi = 1)

)
= log

(
E[F11]

E[F01]

)
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= β01 +β11 = λA +λAB. (5.35)

⇒ β11 = log
(

E[F11]

E[F01]

)
−β01 = log

(
E[F11]

E[F01]

)
− log

(
E[F10]

E[F00]

)

= log
(

E[F11]E[F00]

E[F01]E[F10]

)
= λAB, (5.36)

in which the coefficient term of the logistic regression model, β11, equates the

interaction term of the log-linear analysis model, λAB, indicating the log-odds

ratio between A and B. Similarly, we evaluate λB, β02 and β12 with a similar

method, conditioning on A, and derive the following result:

1. λB = β02 denotes the log odds for B given the condition of Ai = 0,

2. β12 = β11 = λAB denotes the log odds ratio between A and B.

This comparison can be extended to a data set with three variables. Using

the same data sets and the pattern table in Section 5.3 with the same variables,

A, B andC, the equivalent logistic regressionmodels are defined by the following

equations:

logit(p(Ai = 1 | Bi,Ci)) = log
(

p(Ai = 1 | Bi,Ci)

p(Ai = 0 | Bi,Ci)

)
= β01 +β21Bi +β31Ci; (5.37)

logit(p(Bi = 1 | Ai,Ci)) = log
(

p(Bi = 1 | Ai,Ci)

p(Bi = 0 | Ai,Ci)

)
= β02 +β12Ai +β32Ci; (5.38)

logit(p(Ci = 1 | Ai,Bi)) = log
(

p(Ci = 1 | Ai,Bi)

p(Ci = 0 | Ai,Bi)

)
= β03 +β13Ai +β23Bi. (5.39)

The explanation of the relationship between log-linear analysis model and logis-

tic regressionmodel begins by the condition (a): p(Ci = 1 |Ai,Bi) forAi = 0,Bi = 0.

In the log-linear analysis model, from Equations 5.10 and 5.12:

log
(

E[F001]

E[F000]

)
= λC. (5.40)
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Using Equation 5.39 and letting FAi=a,Bi=b as the frequency of cases fulfilling

the two conditions Ai = a and Bi = b, the equivalent logistic regression model is

expressed as follows:

log
(

p(Ci = 1 | Ai = 0,Bi = 0)
p(Ci = 0 | Ai = 0,Bi = 0)

)
= log

(
E[F001]/E[FAi=0,Bi=0]

E[F000]/E[FAi=0,Bi=0]

)
= β03. (5.41)

As a result, λC = β03 represent the log odds for C when Ai = 0,Bi = 0.

When evaluating another condition (b): Ai = 0,Bi = 1, from Equation 5.23:

λBC = log
(

E[F011]E[F000]

E[F010]E[F001]

)
. (5.42)

In the logistic regression model,

log
(

p(Ci = 1 | Ai = 0,Bi = 1)
p(Ci = 0 | Ai = 0,Bi = 1)

)
= log

(
E[F011]/E[FAi=0,Bi=1]

E[F010]/E[FAi=0,Bi=1]

)
= β03+β23. (5.43)

⇒ β23 = log
(

E[F011]

E[F010]

)
−β03 = log

(
E[F011]

E[F010]

)
− log

(
E[F001]

E[F000]

)

= log
(

E[F011]E[F000]

E[F001]E[F010]

)
= λBC. (5.44)

According to the result of Equation 5.44, λBC = β23 represents the log-odds ratio

between B and C when Ai = 0.

Finally, when evaluating another condition (c): Ai = 1,Bi = 0, from Equation

5.22:

λAC = log
(

E[F101]E[F000]

E[F100]E[F001]

)
. (5.45)

In the logistic regression model, using Equations 5.39,

log
(

p(Ci = 1 | Ai = 1,Bi = 0)
p(Ci = 0 | Ai = 1,Bi = 0)

)
= log

(
E[F101]/E[FAi=1,Bi=0]

E[F100]/E[FAi=1,Bi=0]

)
= β03+β13. (5.46)
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⇒ β13 = log
(

E[F101]

E[F100]

)
−β03 = log

(
E[F101]

E[F100]

)
− log

(
E[F001]

E[F000]

)
.

= log
(

E[F101]E[F000]

E[F001]E[F100]

)
= λAC. (5.47)

According to the result of Equation 5.47, λAC = β13 represents the log-odds ratio

between A and C when Bi = 0.

On the other hand, conditioning on Ai = 1, the log-odds ratio between B and C

is expressed as follows:

In the log-linear analysis model, (5.17) + (5.14) - (5.15) - (5.16),

log
(

E[F111]E[F100]

E[F101]E[F110]

)
= (λ0 +λA +λB +λC +λAB +λAC +λBC)+(λ0 +λA)

− (λ0 +λA +λC +λAC)− (λ0 +λA +λB +λAB) = λBC. (5.48)

In the logistic regression model, using Equation 5.39,

log
(

p(Ci = 1 | Ai = 1,Bi = 1)
p(Ci = 0 | Ai = 1,Bi = 1)

)
= β03 +β13 +β23, (5.49)

log
(

p(Ci = 1 | Ai = 1,Bi = 0)
p(Ci = 0 | Ai = 1,Bi = 0)

)
= β03 +β13. (5.50)

(5.49) - (5.50),

log
(

p(Ci = 1 | Ai = 1,Bi = 1)
p(Ci = 0 | Ai = 1,Bi = 1)

)
− log

(
p(Ci = 1 | Ai = 1,Bi = 0)
p(Ci = 0 | Ai = 1,Bi = 0)

)

= log
(
(E[F111]/E[FAi=1,Bi=1])

(E[F110]/E[FAi=1,Bi=1])

)
− log

(
(E[F101]/E[FAi=1,Bi=0])

(E[F100]/E[FAi=1,Bi=0])

)

= log
(

E[F111]E[F100]

E[F101]E[F110]

)
= β23 = λBC, (5.51)

implying that λBC = β23 represents the log-odds ratio between B and C when

Ai = 0,1, in other words, in all conditions of variable A.
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Similarly, (5.17) + (5.11) - (5.13) - (5.15)

log
(

E[F111]E[F010]

E[F011]E[F110]

)
= (λ0 +λA +λB +λC +λAB +λAC +λBC)+(λ0 +λB)

− (λ0 +λB +λC +λBC)− (λ0 +λA +λB +λAB) = λAC. (5.52)

In the logistic regression model, using Equation 5.39,

log
(

p(Ci = 1 | Ai = 1,Bi = 1)
p(Ci = 0 | Ai = 1,Bi = 1)

)
= β03 +β13 +β23, (5.53)

log
(

p(Ci = 1 | Ai = 0,Bi = 1)
p(Ci = 0 | Ai = 0,Bi = 1)

)
= β03 +β23. (5.54)

(5.53) - (5.54),

log
(

p(Ci = 1 | Ai = 1,Bi = 1)
p(Ci = 0 | Ai = 1,Bi = 1)

)
− log

(
p(Ci = 1 | Ai = 0,Bi = 1)
p(Ci = 0 | Ai = 0,Bi = 1)

)

= log
(

E[F111]E[F010]

E[F011]E[F110]

)
= β13 = λAC, (5.55)

implying that λAC = β13 represents the log odds ratio between variables A andC

when Bi = 0,1, in other words, in all conditions of variable B.

Applying similar derivation techniques on Equations 5.10 to 5.17, and using

Equations 5.37 and 5.38, the following results are generated:

λA = β01 represents the log-odds for A when Bi = 0,Ci = 0;

λB = β02 represents the log-odds for B when Ai = 0,Ci = 0;

λC = β03 represents the log-odds for C when Ai = 0,Bi = 0;

λAC = β13 = β31 represents the log-odds ratio between A and C;

λAB = β12 = β21 represents the log-odds ratio between A and B;

λBC = β23 = β32 represents the log odds ratio between B and C.
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In general, intercept terms of the log-linear analysis models represent the log-

odds of the respective drug-trying response variables, under the condition that

all other responses be "0". Also, interaction terms of the log-linear analysis mod-

els represent the log-odds ratios between two drug-trying response variables in

the data set.

To compare the log-linear analysismodelswith the univariate logistic regression

models for drug-trying response variables only, the same corresponding com-

binations of covariate terms to all interaction terms in the saturated log-linear

analysis model are adopted in the saturated univariate logistic regression mod-

els. In other words, whenever an interaction term is not included in a log-linear

analysis model, the corresponding combinations of response variables and co-

variates are not included in the univariate logistic regression models.

In this section, the comparison of the interaction terms of the saturated log-

linear analysis model with the terms of the saturated univariate logistic regres-

sion models is made. The log-odds ratio heat plots for the saturated models are

presented in Figures 5.2 and 5.7 respectively and the related covariate sign plots

were are presented in Figures 5.4 and 5.8 respectively.

When comparing Figures 5.2 and 5.7, both saturated models of the log-linear

analysis model and the univariate logistic regression models (after backward

elimination) exhibited the dominance of cannabis in terms of relationships with

other types of drugs, showing that the students trying cannabisweremore likely

to try other types of drugs, or vice versa. From Figures 5.4 and 5.8, a majority

of the significant interaction terms in both models showed positive associations

among drug-trying response variables, however, less negative interaction terms

were found in the univariate logistic regression models than in the log-linear
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analysis models. Most interaction terms in both models were positive interac-

tion terms, such as those involving ecstasy and cannabis as well as heroin and

cocaine, of which indicated positive associations between such pair of drugs.

5.4 Summary

In this chapter, both univariate logistic regressionmodels and log-linear analysis

models were applied to further explore possible interactions among drug-trying

response variables and to understand the associations of the smoking, drinking

and drug-related socio-demographic covariates with students’ drug-trying be-

haviour.

The univariate logistic regression models reported the one-way interaction

among the fifteen drug-trying response variables. The main findings reflected

by the univariate logistic regression models included:

1. Almost every drug has positive interactions with other types of drugs.

2. The extent of interactions among drug-trying response variables varied

among the fifteen drugs.

3. Among the fifteen drugs, cannabis was found positively associating with

the highest number of other types of drugs. On the other hand, methadone,

crack and other drugs were found associating with a relatively smaller number

of other types of drugs.

The log-linear analysis models reported the two-way interaction among the

fifteen drug-trying response variables. Apart from that, the results from the
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saturated log-linear analysis models were found generally comparable with that

of the univariate logistic regression models, particularly in the following two

dimensions:

1. A large number of significant interaction terms, in terms of log-odds ra-

tios, between all drugs were found, and most of these interaction terms were

positive, with only a few being negative.

2. Among the fifteen drugs, cannabis was the most dominant drug that yielded

the greatest number of significant interaction terms with other types of drugs.

The univariate logistic regressionmodels further revealed that numerous smok-

ing, drinking and drug-related socio-demographic covariates were associated

with students’ drug-trying behaviour in different extent. These covariates re-

placed several drug covariates in predicting whether a student had ever tried at

least one of the fifteen drugs. These covariates were summarised as follows:

Smoking covariates included: (1) family attitudes toward smoking (CgFam1);

(2) cigarette smoking status (CgStat); (3) sources of purchasing cigarettes

(CgGet); (4) number of smokers who the students know and where those

smokers smoked (CgWho1) and (5) education and information about

smoking (CgPe1 and CgIn1).

Drinking covariates included: (1) time and frequency of consuming alcohol

(AlFreq2); (2) number of alcohol drinkers students know and where those

drinkers drank (AlEstim, AlBnPub); (3) family’s attitude towards drinking

(AlPar1); (4) how students purchase alcohol (AlBuy1, AlBuy2, AlBuy) and

where they consume the alcohol (AlUs1, AlUs2); (5) having lessons or ob-

taining information about drinking (AlPe1, AlIn1) and (6) types of issues

happened when a student drank alcohol (Al4W1).
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Drug-related socio-demographic covariates included: (1) having lessonsor ob-

taining information about drugs (DgPe1, DgIn1); (2) number of drug-

trying students know and where those drug-takers tried drugs (DgEstim)

(3) the amount of books students possessed (Books1); (4) age; (5) gender;

(6) free school meal scheme; (FSM1) (7) frequency of truancy (TruantN);

(8) frequency of being excluded (ExclAN1) and (9) SHA (SHA).

Both the univariate logistic regression models and the log-linear analysis mod-

els have shown a large number of covariates predicting students’ drug-trying

behaviour. This finding is useful for latent class regression modelling. As a

large number of interaction terms between drug-trying response variables were

detected, this finding supports the feasibility of analysing multiple drug-trying

response variables in a single item response theory model, a single latent class

analysis model and through k-means clustering. We will discuss the fitting of

the item response theory model on our working data set in Chapter 6 as well as

the running of the latent class analysis and k-means clustering in Chapter 7.



Chapter 6

Item Response Theory

In this chapter, we discuss the use of the item response theory model for the

investigation of drug use among young people, as well as the key feature of the

itemresponse theorymodel and the ItemCharacteristicCurve (ICC) (Hambleton

et al., 1991), which is a logistic curve for the probability of a positive response

under different values of a latent parameter (Loken and Rulison, 2010). In

particular, we conduct this investigation in order to understandmore about how

each drug-trying response variable relates to the overall drug-trying behaviour

of the students, as well as the proportion of students trying each drug. We

commence with a brief overview of the underpinning item response theory

prior to fitting an item response theory model to the working data set. We also

compare the likelihood and Bayesian approaches and contrast them in terms of

their statistical inferences.

6.1 Introduction

Both Lord (1951) and Rasch (1960) have laid down a solid foundation on early

work of the item response theory model. Lord (1951) adopted a large number

of item response theory terms such as "latent ability", which means there is a

hidden parameter that explains the "ability" parameter of the respondents in

204
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the data set, whereas Rasch (1960) published the one-parameter item response

theory model. Birnbaum (1967) developed the model further, forming the two-

parameter and three-parameter item response theory models. Based upon early

works from Lord (1951), Rasch (1960) and Birnbaum (1967), the item response

theory was utilised by Lord (1968) to model the data of the Verbal Scholastic

Aptitude Test (Verbal SAT). The consequent statistical model, the item response

theory model, was used to analyse students’ performance in different SAT tests,

in terms of separation scores among students, namely a scale parameter. Also, it

was used to analyse the amount of influence of trying a certain drug on overall

drug-trying behaviour, with a "discrimination" parameter, as well as measuring

the drug’s location on the scale that quantified the proportion of respondents

trying the drug, with a "difficulty" parameter. Over the last three decades, the

item response theory model has been universally adopted in "psychometrics

and educational measurements" (Carlson and von Davier, 2013), and it is in con-

tinuous evolution. The model has also been increasingly popular in the social

science and education sectors, and its application has been extended to other

domains, such as investigation of personality (Reise andWaller (1990); Ferrando

(1994); Rouse et al. (1999)) and delinquency (Osgood et al., 2002).

In this research, the item response theory model is considered appropriate

in the investigation of the 15 drug-trying response variables as it will allow for

analysing the probability that a student tries a drug, as well as the separation

amongst students regarding their drug-trying behaviour. The item response

theory model can also explain the proportion of the students trying each drug,

whilst providing additional information about the degree of separation of each

drug-trying response variable and the drug-trying behaviour of the students.

In this research, we adopted the two-parameter item response theory model

to further investigate the relationships between drug-trying response variables
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and the students’ overall drug-trying behaviour. As described in Arima (2015),

the item response theory model differ from the conventional univariate logis-

tic regression model and the log-linear analysis model that the item response

theory model is based on the "invariance property": (1) parameters that charac-

terise the drug items do not depend on how the likelihoods of students to try

each drug are distributed and (2) parameters that characterise a student do not

depend on the drug responses. In addition, the item response theory models

are based on the following three postulates: (1) the likelihood of students to

try a drug can be explained by a latent parameter (unidimensionality); (2) the

observed drug responses are conditionally independent of each other, given the

latent parameter that measures the overall likelihood of each respondent to try

drugs, and (3) the relationship between the likelihood of students to try a drug

and the overall likelihood of each student to try drugs can be described by the

item characteristic curve (ICC). Based on the above characteristics of the item

response theory model, it can help to investigate the influence of trying each

drug by the students on their entire drug-trying behaviour, which is not found

in the log-linear analysis and univariate logistic regression models, other than

measuring the likelihood for students to try certain drugs. Such finding can

support the results of log-odds of trying each drug in the log-linear analysis and

univariate logistic regression models.

This introduction provided a brief description of the item response theory

model. In the next section, we discuss the theory of the item response the-

ory model in more details.

6.2 Theory

The item response theorymodel is used for evaluating the probability of respon-

dent i, i = 1, . . . ,n, to make a positive binary response (Yi j = 1) when presented
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with item j, j = 1, . . . ,J. Such a probability is denoted as P(Yi j = 1). The factor

level or ability parameter for the respondent i, denoted as θi, measures the latent

tendency of the respondent i to yield a positive response.

By letting ζ j as a collection of parameters that describe the characteristics of item

j, the general form of the item response theory model (for binary responses) is

expressed as:

P(yi j = 1 | θi,ζ j)) = f (yi j | θi,ζ j) (6.1)

(Baker, 1961).

The Rasch model (also known as the one-parameter Rasch model) only contains

the factor score parameter (θi) for respondent i, as well as a difficulty factor (δ j)

for item j, hence in this case, ζ j = {δ j}. The equation for the Rasch model is

expressed as:

logit(P(yi j = 1 | θi,δ j)) = (θi−δ j) (6.2)

(Rasch, 1960).

The two-parameter item response theorymodel contains the factor score param-

eter (θi) for respondent i, as well as a discrimination factor (α j) and a difficulty

factor (δ j) for item j, hence in this case, ζ j = {α j,δ j}. A discrimination pa-

rameter for item j, denoted as α j, measures how well the item j separates the

respondents. The difficulty parameter of the item j, denoted as δ j, measures

the difficulty of the item j. α j and δ j are referred to as fixed effects, whereas θi

is referred to as a random effect. In general, the two-parameter item response

theory model is expressed as:

logit(P(yi j = 1 | θi,α j,δ j)) = α j(θi−δ j) (6.3)

(Rizopoulos, 2006).
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Equation 6.3 can be expressed alternatively as:

P(yi j = 1 | θi,α j,δ j) =
exp(α j(θi−δ j))

1+exp(α j(θi−δ j))
. (6.4)

(Van der Linden et al., 1997)

The comparison between the Raschmodel and the two-parameter item response

theory model is illustrated in Figure 6.1.

Figure 6.1: Comparison of ItemCharacteristic Curves between RaschModel and
the Two-parameter Item Response Theory model with varied Discrimination
factor (fixed to 1 for Rasch model) (Upper pair) and Difficulty factor (factor of
value -0.5 versus 0.5) (Lower pair) (x-axis: difficulty factor value, y-axis: factor
score value).

As observed from Figure 6.1, when the discrimination factor was varied for two-
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parameter item response theory model, the item characteristic curve was flatter

as the discrimination factor was smaller and was steeper as the discrimination

factor was larger. When the difficulty factor was varied, the item characteristic

curve shifted leftwards as the difficulty factor decreased, and rightwards as the

difficulty factor increased.

The reason we employed two-parameter item response theory model rather

than one-parameter item response model was because from the results of uni-

variate logistic regression and log-linear analysis models, different drug-trying

response variables possessed different relationships between each other drug-

trying response variable, and various frequencies of drug-trying patterns were

measured, implying that different drug-trying variablesmay influence the entire

drug-trying behaviour of the students at different degree. As such, a varying

discrimination parameter was required. We also employed two-parameter item

response theory model rather than three-parameter item response model based

on the following reasons: (1) the third parameter of the three-parameter item

response model is the guessing parameter, which may potentially predict stu-

dents’ probability of trying the right drug, which may not be reasonable in this

analysis, and (2) the correct model for three-parameter item response model

remains uncertain (von Davier, 2009).

When fitting an item response theory model, there are two possible approaches,

namely the marginal approach and the Bayesian approach, that can be adopted

and are implemented in R program. These two approaches will be discussed in

Sections 6.2.1 and 6.2.2 respectively.
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6.2.1 Rizopoulus Marginal Approach

In the marginal approach, both the two-parameter item response theory model

and the Rasch model are fitted by marginal maximum likelihood approach. In

the marginal maximum likelihood estimation, model parameters, namely dis-

crimination factor and difficulty factor (α j, δ j) are estimated through integrating

the latent variables or random effect (θi) out of the equation, obtaining marginal

log-likelihood and then maximising this marginal log-likelihood (Rizopoulos,

2006).

Let yi be the vector of responses for the ith individual respondent, and α j and δ j

be the discrimination and difficulty factors for item j of an item response theory

model respectively. Assume that the latent parameter for the ith respondent, θi,

follows a standard normal distribution, then the log-likelihood equation for ith

respondent is:

li(α j,δ j) = log
(

p(yi;α j,δ j)
)
= log

∫
p(yi | θi;α j,δ j)p(θi)dθi (6.5)

(McCullagh and Nelder, 1999).

Considering the parameters of an item response theory model, the likelihood

for ith respondent, which is conditioned on the latent parameter-factor score is

expressed as follows:

Li(α j,δ j;θi) = p(yi | θi;α j,δ j) = ∏
j

{
exp(α j(θi−δ j))

1+exp(α j(θi−δ j))

}
(6.6)

=
exp(∑ j α jθi−∑ j α jδ j)

∏ j[1+exp(α j(θi−δ j))]
(6.7)

(Rizopoulos, 2006).
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Rizopoulos (2006) made an assumption that θi ∼ Normal(0,1), then for i =

1, . . . ,n, the marginal log-likelihood is as follows:

li(α j,δ j) = log
∫

i

exp(∑ j α jθi−∑ j α jδ j)

∏ j[1+exp(α j(θi−δ j))]

1√
2π

exp(−1
2

θ
2
i )dθi. (6.8)

In Equation 6.8, the factor score component cannot be integrated out analytically

but can be approximated by Gauss-Hermite quadrature.

The likelihood optimisation through Hessian matrix is initially processed by

the expectation-maximisation (EM) updating algorithm until convergence (Ri-

zopoulos, 2006).

The EM updating algorithm (Dempster et al., 1977) intends to evaluate param-

eters α j and δi, which maximises the likelihood optimization by two steps: an

expectation step (E-step), which computes the expected likelihood function for

these three parameters. The E-step is followed by a maximisation step (M-step),

whichfinds the respective values ofα j and δ j thatmaximises the likelihood func-

tion. The EM steps are conducted for T iterations. For iteration t for t = 1, . . . ,T ,

E-step and M-step are listed as follows:

E-step: Compute E[li(α
(t)
j ,δ

(t)
j )];

M-step: Evaluate
(

α
(t+1)
j ,δ

(t+1)
j

)
= argmax

(
E
[
li
(

α
(t)
j ,δ

(t)
j

)])
then set t = t +1

(Dempster et al., 1977).

In this research, estimates and standard deviations of parameters, for both dis-

crimination factors and difficulty factors, were combined and evaluated by Ru-

bin’s rule, which was described in Section 4.5.3.3, to provide corresponding

pooled estimates and standard errors across all imputed data sets, accounting
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for imputation uncertainty. To evaluate the factor scores θ of the item response

theory model, the empirical Bayes estimation method was adopted.

An alternative to the marginal approach of Rizopoulos (2006) is the Bayesian

approach, when the factor score, θ , is not integrated out, but instead being

estimated along with discrimination and difficulty factors.

6.2.2 Bayesian Approach with OpenBUGS

The Bayesian approach adopts the Markov Chain Monte Carlo (MCMC) algo-

rithm (Metropolis et al. (1953); Hastings (1970)). In the Bayesian approach,

priors for discrimination factor, difficulty factor and factor scores are specified.

Posterior mean estimates, as well as standard deviations of discrimination fac-

tors, difficulty factors and factor scores are generated after updating of values

through Markov chains. In Bayesian inference, the priors of a set of parameters

θ , α , δ , denoted as p(θ), p(α), p(δ ) respectively, must be specified to generate

chains of iterations for posterior inference. The joint probability density function

of parameters α , δ and θ , with conditioning on data response y is denoted as

p(α,δ ,θ | y). The posterior is the probability density function of a parameter

conditioned on data response, i.e. p(α,δ ,θ | y). The posterior is evaluated using

the Bayes Theorem. It is proportional to likelihood and prior, which is expressed

in the following equation.

p(α,δ ,θ | y) ∝ p(y | α,δ ,θ)p(α,δ ,θ)

∝ p(y | α,δ ,θ)p(α)p(δ )p(θ).

Algorithm 6.1 below shows the Gibbs Sampling procedure for finding the pos-

terior distributions of θ , α and δ , in the presence of missing data. Algorithm

6.1 of Bayesian approach for an item response theory model is described as:

The entireprocedure in lines 1 to 15of algorithm6.1 is repeateduntil convergence
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Algorithm 6.1 Bayesian Approach
1: for Chains c = 1, . . .C do
2: Intialise all unknown parameters from the full posterior conditionals
3: {ym,θ ,δ ,α}← {y(0)m ,θ (0),δ (0),α(0)}
4: for t = 1, . . . ,T do
5: Missing data is simulated from likelihood: ymiss | . . .∼ p(y | θ ,α,δ ).
6: for j = 1, . . . ,P do
7: The unknown parameters α j,δ j are sampled for chains 1 : C;
8: α j | . . .∼ p(α j)p(y | θ ,α,δ ) - to sample from this distribution, pro-

pose q(α j) and accept according to Metropolis-Hastings ratio;
9: δ j | . . .∼ p(δ j)p(y | θ ,α,δ ) - to sample from this distribution, pro-

pose q(δ j) and accept according to Metropolis-Hastings ratio.
10: end for
11: for i = 1, . . . ,n do
12: θi | . . .∼ p(θi)p(y | θ ,α,δ ).
13: end for
14: end for
15: end for

of all parameters (i.e. θ ,α,δ ) in the model. In algorithm 6.1, the notation α j | . . .

denotes the full conditional posterior distribution of α j given everything else

except α j and the burn-in iterations (see Section 6.2.3 below). The same notation

applies for δ j (i.e. δ j | . . .).

6.2.3 Comparison of Bayesian Approach toMarginal Approach

The advantages of a Bayesian approach over a marginal approach are: (1) miss-

ing data are updated along with other parameters in the one-stage model in-

stead of two-stage model, where the imputation model and substantive model

are separated instead to being integrated into a single model; (2) the process of

generating iterations is faster and (3) creating multiple data sets is not required.

On the other hand, Bayesian approach has several drawbacks: (1) under the

Bayesian approach, it is much more difficult to select an appropriate imputa-

tion model, when there are covariates with missing values; (2) sensible priors

should be used for all parameters, and their sensitivities should be tested and (3)

large computational power is required to model a large number of variables in
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Bayesian approach, and thus making it less feasible for analysis involving many

variables.

6.3 Application of Item Response Theory Models

In order to investigate how the drug-trying response variables discriminate

and differ in terms of their discrimination and difficulty factors, the item re-

sponse theory model was implemented on the working data set through two

approaches: (1) the marginal approach and (2) the Bayesian approach.

The marginal approach (using ltm package in R program) (Rizopoulos, 2006)

was explored by using two different schemes for handling missing data: (1)

MICE scheme on 15 drug-trying response variables only (Scheme 1) and (2)

MICE scheme on full data set (Scheme 2). In the Bayesian approach, the item

response theory model was applied to data sets imputed through the OpenBUGS

program.

6.3.1 Marginal Approach

In the marginal approach, the 15 drug-trying response variables imputed from

each of the two schemes of imputed data sets were analysed with complete

case analysis. In the complete case analysis, 6,791 students were involved in

the model fitting and statistical inference. For the two MICE schemes and the

complete case analysis, the ltm package in R program was adopted for model

fitting, with 21 points of Gauss-Hermite estimation.

6.3.2 Bayesian Approach

In the Bayesian approach, a range of discrimination and difficulty prior speci-

fications were adopted in the item response theory model through specifying
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a specific item response theory model in OpenBUGS program, spanning 14 prior

specifications for the discrimination prior and two prior specifications for the

difficulty prior.

Bazan et al. (2006) used the half normal priors for the discrimination factor.

Both Patz and Junker (1999) and Sahu (2002) suggested log-normal distribution

for the discrimination factor. Glickman et al. (2009) suggested norm (0, 100)

distribution for the difficulty factor. Norm (0, 1) (Glickman et al., 2009) was

adopted as the prior for factor score (θ ) The following priors for discrimination

factor (α), difficulty factor (δ ) were adopted in Table 6.3.1. The distribution plot

for priors of discrimination factor is presented in Figure 6.2.

Table 6.3.1: Table of Priors for Parameters in OpenBUGS

Prior α

1 Gamma (1, 0.1)
2 Gamma (1, 0.311) (Roos and Held, 2011)
3 Gamma (1, 0.622) (Roos and Held, 2011)
4 Gamma (1, 0.933) (Roos and Held, 2011)
5 Half-normal (0, 100) (Ames, 2015)
6 Half-normal (0, 1000)
7 Half-normal (0, 0.5)
8 Log-normal (0, 0.16)
9 Log-normal (1, 0.25)
10 Log-normal (1, 0.5)
11 Uniform (0, 100)
12 Log-normal (0, 4) (Hsieh and Proctor, 2010)
13 Log-normal (0, 0.0625) (Nering and Ostini, 2010)
14 Log-normal (1, 4)
Prior δ

1 Norm (0, 100) (Glickman et al., 2009)
2 Norm (0, 1000)

Somepriors fromFigure 6.2were flat and non-informative and some otherswere

moderately flat but non-informative, such as log-normal (0, 4) and gamma (0,

0.933). Only two of them, log-linear (0, 0.16) and log-linear (1,4), were informa-

tive priors. The inclusion of both non-informative and informative priors in the

sensitivity analysis for Bayesian approach was to investigate whether the item

response theory model result was largely affected by choice of priors, whether
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Figure 6.2: Density Plot for Distributions of 14 Priors of Discrimination Factor.
For details about prior distributions, please refer to Table 6.3.1.

informative or not.

When fitting an item response theory model in OpenBUGS program, the two

simulated chains, each contained 17,000 iterations including 1000 burn-in itera-

tions, were generated for each item response theory model. For the first chain,

the initial values for allα parameters and δ parameterswere set at 1, whilst those

for all θ parameters were set at -0.1. For the second chain, the initial values for

all α parameters were set at 0.1, whereas those for the δ parameters were set at 0

and those for all θ parameters were set at 0.1. The initial values for missing val-

ues of the drug-trying response variables were generated by OpenBUGS program

with seed number 1 of 14, thereby generating two different sets of initial values.

We used two different sets of priors for two respective chains with different

initial values for every parameter, in order to diagnose whether the convergence

of all parameters has been achieved for a combination of priors. All simulations

were processed using seed number 1. The first chain was used for statistical

inference, which utilised a total of 16,000 iterations (without the 1,000 burn-in

iterations).
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The convergence of parameters was diagnosed through trace plots. Examples

of these are shown as in Figure 6.6 in Section 6.5. In OpenBUGS program, two

chains were executed. For all parameters, if both chains intermingled for a long

streak of iterations at a stationary mean, then the convergence was reasonable

(Spiegelhalter, 2003). The section before the convergence was called burn-in sec-

tion when two chains were either not stable or obviously separated from each

other. All the iterations during the burn-in section were discarded before any

statistical inference.

In Sections 6.4 and 6.5, the results (estimates and standard errors) from the im-

puted data sets for item response theory models, through two MICE schemes,

are firstly discussed by referring to Tables 6.4.1 and 6.4.2. Complete case analysis

was adopted in the item response theory analysis, and the subsequent results

were included along with those for twoMICE schemes as a reference. Secondly,

the results of item response theory models from the OpenBUGS program were

discussed. Then, the item response theory model results generated by ltm func-

tion in R program and the pre-defined item response theory model in OpenBUGS

program were compared.

Both Sections 6.4 and 6.5 commence with discussion of the 95% confidence

interval and mean estimate plots for discrimination and difficulty factors. Fi-

nally, we discuss the item characteristic curve, which illustrated the relationship

between factor level and the probability of a student trying a specific drug.
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6.4 Results of Item Response Theory Model under

Marginal Approach

The plots of the pooled estimates and their corresponding 95% confidence in-

tervals from two approaches to imputation and complete case analysis of data

sets, followed by tables of combined estimates and standard errors and item

characteristic curve plots, are presented in Figures 6.3 and 6.4, as well as in Ta-

bles 6.4.1 and 6.4.2 respectively. Ranks from the smallest estimate to the largest

estimate were included in Tables 6.4.1 and 6.4.2 and were compared within two

approaches to imputation and complete case analysis for their similarities in

ordering.
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From Figures 6.3 and 6.4, there were slight differences between the estimates

calculated in the complete case analysis and the pooled estimates computed

using the imputed data sets and Rubin’s rule. The estimates of the discrimina-

tion factors, α , calculated in the complete case analysis, appeared to be slightly

shifted downwards from the pooled estimates computed using imputed data

sets and Rubin’s rule. The estimates of the difficulty factors, δ , calculated in the

complete case analysis, were slightly shifted upwards from the pooled estimates

computed using imputed data sets and Rubin’s rule. These slight differences

might be caused by the changes in the mean values of drug-trying response

variables, due to positive correlation within drug-trying response variables, as

well as between drug-trying response variables andmost smoking, drinking and

socio-demographic covariates. TheMICE imputation trace plots in Figures 4.9 to

4.11 in Section 4.7.3 previously showed how themean values of each drug-trying

response variables were influenced by the other variables during 200 iterations

of MICE imputation. Though most mean values of the drug-trying response

variables were close to the initial values, several of them were different to their

initial values.

For discrimination factor, gas yielded the smallest estimate. On the contrary,

ecstasy yielded the largest estimate. For difficulty factor, cannabis yielded the

smallest estimate, whereas other drugs yielded the largest estimate. This corre-

sponds to the fact that the highest proportion of the students had tried cannabis.
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From Table 6.4.1, the estimates of the discrimination factors of gas were found to

be around 1, and the rest of the drug-trying response variables were found to be

between 2 and 4, in respect of data sets from each of the twoMICE schemes and

the complete case analysis. This observation reflected that, except gas, which has

an average level of separation, each of the 15 drugs has a high degree of separa-

tion and thus exerted an impact on the students’ overall drug-trying behaviour.

Amongst the 15 drugs, the estimates of the discrimination factors computed un-

der each of the three schemes (i.e. the twoMICE schemes and the complete case

analysis) of data sets consistently showed that ecstasy, cocaine, amphetamines,

LSD, magic mushrooms and heroin were ranked the top six drugs in terms of

their high mean estimate values with ecstasy yielding the highest estimates. In

other words, the aforesaid six drugs were expected to exert higher influence

on the students’ drug-trying propensity. On the other hand, anabolic steroids,

other drugs and gas were consistently ranked the bottom three drugs in terms

of their low mean estimate values with gas yielded the lowest mean estimate

value of around 1.

From Tables 6.4.2, the estimates of the difficulty factors of all the 15 drug-

trying response variables, computed under each of the three schemes (i.e. the

two MICE schemes and the complete case analysis) of data sets, were found to

be greater than 1.5, with the majority found to be between 2.5 and 3.2. This

observation generally reflected the low proportion of the students who had ever

tried each of the 15 drugs. However, amongst the 15 drugs, the estimates of

the difficulty factors computed under each of the three schemes (i.e. the two

MICE schemes and the complete case analysis) of data sets consistently showed

that cannabis, poppers, cocaine, magic mushrooms, ecstasy and amphetamines

have relatively lower mean estimate values with cannabis yielded the lowest

estimates. This reflected the highest proportion of the students who had tried

cannabis, and poppers, cocaine, magic mushrooms, ecstasy and amphetamines.
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On the other hand, tranquillisers, anabolic steroids and other drugs were con-

sistently found to have relatively higher estimates with anabolic steroids yielded

the highest estimate. This implied that tranquillisers, anabolic steroids and other

drugs yielded low proportions of the students who had tried these drugs.

From Table 6.4.1, when examining the standard errors in respect of all the

estimates of the discrimination factors, it was observed that for the complete

case analysis, the standard error range was between 0.2141 and 0.5913. Also, for

MICE scheme 1, the standard error rangewas between 0.1943 and 0.4819, and for

MICE scheme 2, the standard error range was between 0.1855 and 0.5410. These

standard error ranges, though differed slightly, did not include extreme values.

In terms of order of ability to discriminate, as seen from the "rank" column in

Table 6.4.1, the results from the two MICE schemes appeared to be similar.

From Table 6.4.2, when examining the standard errors in respect of all the

estimates of the difficulty factors, it was observed that for the complete case

analysis, the standard error range was between 0.0415 and 0.2122. Also, for

MICE scheme 1, the standard error ranges were between 0.0387 and 0.1709, and

for MICE scheme 2, the standard error range was between 0.0397 and 0.1897.

Similar to the discrimination factor, these standard error ranges of the estimates

of the difficulty factors though differed slightly, they included no extreme val-

ues. In terms of order of position of difficulty factor, as seen from the "rank"

column in Table 6.4.2, the results from the two MICE schemes appeared to be

similar.
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Figure 6.5 illustrated the analogous item characteristic curves of the 15 drug-

trying response variables in respect of the complete case analysis and the two

MICE schemes. For the complete case analysis, the item characteristic curves of

heroin, crack, methadone, ketamine, anabolic steroids and tranquillisers were

slightly separated from the corresponding curves for the twoMICE schemes. On

the other hand, the item characteristic curves based on MICE schemes 1 and 2

were all at the leftmost. This comparison implied that the results based onMICE

schemes 1 and 2provided themost optimistic estimation,with a relatively higher

possibility of trying any drug by the students. On the contrary, the complete

case analysis provided relatively lower possibility estimates of trying any drug

by the students at any factor score point. Finally, the item characteristic curve

of ecstasy was found to be the steepest, whereas the curve of gas was found

to be the flattest. This observation was supported by the findings that ecstasy

yielded the highest estimated mean value and gas yielded the lowest estimate

mean value in the completed analysis case and the twoMICE schemes as shown

in Table 6.4.1 in this section.

6.5 Results of Item Response Theory Model under

Bayesian Approach

In the Bayesian approach, all the prior combinations mentioned in Table 6.3.1

in Section 6.3.2 were compared for their sensitivity of the item response theory

model results to different priors.

Before conducting this sensitivity analysis, we examined the trace plots of the

discrimination and difficulty parameters to diagnose their convergence. The re-

lated trace plots for the prior combination of discrimination factor prior α2 and

difficulty factor prior δ1, are presented in Figure 6.6. To discuss the results of the



CHAPTER 6. ITEM RESPONSE THEORY 228

sensitivity analysis under the Bayesian approach, the tables of posterior means

and posterior standard deviations and rankings of each α and δ parameter for

each considered prior specifications of α and δ are presented in Appendix D.

The results for the prior combination of discrimination factor α2 and difficulty

factor δ1, as well as prior combination of discrimination factor α3 and difficulty

factor δ1, are presented in Table 6.5.1. The results of two discrimination factor

priors (i.e. α2 andα3) are selected to discuss the results of the sensitivity analysis

of item response theorymodels. The estimates of discrimination factor priors α2

and α3 are displayed in Table 6.5.1. The plots of the combined 95% confidence

intervals in respect of all combinations of priors are presented in Figures 6.7 to

6.10. Their respective item characteristic curves plots are presented in Figures

6.11 and 6.12.
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Figure 6.6: Trace Plots of the Estimates of the Discriminatory Factor Prior α2 and
the Difficulty Factor Prior δ1. The top three rows depict the posterior mean of
the discriminatory factors (α) for Gas, Other Drugs and Tranquillisers response
variables respectively, whereas the bottom three rows represent the estimates
of the difficulty factors (δ ) for Gas, Other Drugs and Tranquillisers response
variables respectively.
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Table 6.5.1: Table of PosteriorMeans and Standard Deviations of Discrimination
and Difficulty Factors with Discrimination Priors α2 and α3. For details about
prior distributions, please refer to Table 6.3.1.

α2 α3
Posterior mean(sd) Rank Posterior mean(sd) Rank

Discrimination Factor
δ1 Cannabis 2.853 (0.1969) 4 2.865 (0.205) 5

Heroin 3.434 (0.4061) 11 3.342 (0.3951) 11
Cocaine 4.337 (0.4393) 14 4.198 (0.47) 14

Magic Mushrooms 3.391 (0.3033) 10 3.31 (0.2882) 10
Crack 3.323 (0.3714) 9 3.211 (0.3565) 9

Methadone 3.199 (0.3604) 7 3.098 (0.3355) 7
Ecstasy 4.836 (0.5954) 15 4.576 (0.5055) 15

Amphetamines 3.935 (0.4028) 12 3.849 (0.4004) 13
LSD 3.946 (0.4925) 13 3.742 (0.4282) 12

Poppers 3.244 (0.2443) 8 3.184 (0.2275) 8
Ketamine 2.921 (0.3153) 5 2.812 (0.284) 4

Anabolic Steroids 2.531 (0.2709) 2 2.433 (0.283) 2
Gas 1.014 (0.07113) 1 0.9974 (0.06987) 1

Other Drugs 2.617 (0.3226) 3 2.547 (0.2898) 3
Tranquillisers 3.167 (0.4117) 6 3.022 (0.3641) 6

Difficulty Factor
δ1 Cannabis 1.569 (0.03857) 1 1.568 (0.04119) 1

Heroin 2.902 (0.1169) 11 2.936 (0.1178) 11
Cocaine 2.433 (0.06683) 3 2.454 (0.06884) 3

Magic Mushrooms 2.466 (0.07425) 5 2.481 (0.07537) 5
Crack 2.845 (0.1115) 10 2.884 (0.1151) 10

Methadone 2.828 (0.1148) 9 2.86 (0.1095) 9
Ecstasy 2.436 (0.06398) 4 2.468 (0.06733) 4

Amphetamines 2.582 (0.0767) 6 2.606 (0.0805) 6
LSD 2.765 (0.09819) 7 2.806 (0.09764) 7

Poppers 2.294 (0.06131) 2 2.314 (0.05906) 2
Ketamine 2.98 (0.1392) 12 3.029 (0.1316) 12

Anabolic Steroids 3.239 (0.1699) 15 3.313 (0.1855) 15
Gas 2.78 (0.1558) 8 2.812 (0.1527) 8

Other Drugs 3.227 (0.1679) 14 3.273 (0.1805) 14
Tranquillisers 3.029 (0.142) 13 3.09 (0.1559) 13
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As shown in Table 6.5.1, the estimates of the discrimination factors for gas was

found to be 1, and the estimates of the discrimination factors for the remaining

14 drug-trying response variables were found to be between 2 and 4. Amongst

the 15 drugs, the estimates of the discrimination factors showed that ecstasy,

cocaine, amphetamines, LSD, heroin and magic mushrooms were ranked the

highest six drugs, in terms of their high posterior means with ecstasy yielded

the highest posterior mean. On the other hand, other drugs, anabolic steroids

and gas were ranked the bottom three drugs in terms of their low posterior

means, with gas yielded the lowest posterior mean of around 1. The posterior

means of the difficulty factors of all the 15 drug-trying response variables were

found to be greater than 1.5, with the majority found to be between 2.5 and

3.2. Also, amongst the 15 drugs, the posterior means of the difficulty factors

showed that cannabis, poppers, cocaine, ecstasy, magic mushrooms and am-

phetamines have relatively lower mean estimate values with cannabis yielded

the lowest posterior mean. On the other hand, tranquillisers, other drugs and

anabolic steroids were found to have relatively higher posterior mean with an-

abolic steroids yielded the highest posterior mean. These aforesaid findings

in respect of the estimates of the discrimination factors and difficulty factors

of the 15 drug-trying response variables were found to be consistent with the

corresponding findings under themarginal approach as discussed in Section 6.4

above.

From Figures 6.8 and 6.10, it was observed that for both difficulty factor pri-

ors, δ1 and δ2, the estimates and the orderings of difficulty factor generated from

all the discrimination factor priors were similar, except for those in respect of

discrimination factor priors α7, α8 and α13, which were slightly different from

other posteriormeans. Figures 6.7 and 6.9 illustrated slight downwarddistortion

in discrimination factor estimates for priors α7, α8 and α13, and slight upward

distortion in difficulty factor estimates for priors α7, α8 and α13 were shown
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in Figures 6.8 and 6.10. Another observation was that the standard deviations

were smaller when the estimates were smaller, leading to a higher degree of

precision. The discrepancies of standard deviations for the discrimination fac-

tor among discrimination factor priors might explain the increasing certainty of

drug responses which have less separation power of the students who had tried

drugs from those who had not. Similarly, the discrepancies of standard devia-

tions for the difficulty factor among discrimination factor priors might explain

the increasing certainty of drug responses which yield larger proportions of the

students who had tried them.

Furthermore, it was observed from Figures 6.11 and 6.12 that the item char-

acteristic curves in respect of difficulty factor priors δ1 and δ2 were similar,

except for the curves representing the twoMICE schemes and the complete case

analysis respectively which were packed relatively denser in plots related to

difficulty factor prior δ2. From Tables D.1.1 to D.1.6 in Appendix D, the rankings

of the estimates in respect of discrimination factor priors were similar, except for

discrimination factor priors α7, α8 and α13. The discrepancies between the rank-

ings might due to close estimates, where their differences were within a small

fraction of standard errors. In general, it could be concluded that the estimates

of the discrimination and difficulty factors were insensitive to discrimination

factor priors and difficulty factor priors.

In short, the Figures 6.7 to 6.10 summarised the general observation that most

discrimination factor priors generated similar results on discrimination factor

and difficulty factor estimates. The imputed data sets from the two MICE

schemes under Bayesian approach generated similar results.

In Section 6.6, a comparison between the results generated in the R program

and those generated in the OpenBUGS program is made and discussed.
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6.6 Comparison between Marginal Approach and

Bayesian Approach and Limitation

In this final section, we firstly discuss the differences in methods for handling

missing data between the OpenBUGS program and the R program, as well as

the advantages and disadvantages of both programs. We then compare the

estimates and standard errors of the item response theory models from the R

programwith those from the OpenBUGS program to investigate the extent of their

discrepancies. The results from the data sets imputed only through the MICE

imputation with the 15 drug-trying response variables (i.e. MICE scheme 1)

were chosen to represent the R program, whereas the results generated under

the discrimination factor prior α2 and the difficulty factor prior δ1 were selected

to represent the results from the OpenBUGS program. At the end of this section

the advantages anddrawbacks of using the item responsemodelwere discussed.

In the marginal approach, there were different procedures of imputing the data

with the following two configurations: (1)MICE imputationwith 15 drug-trying

response variables only (i.e. MICE scheme 1) and (2) MICE imputation with 15

drug-trying response variables and covariates (i.e. MICE scheme 2). Before

the marginal approach was implemented, the missing data were firstly imputed

through the "MICE" imputation, in which the missing values were imputed for

each variable at a time, conditioning on the rest of the variables as covariates

in the data set with pre-defined distributions to generate imputed data sets. In

some occasions, the distribution used for imputing missing values might be dif-

ferent from that used for statistical analysis. On the other hand, in the Bayesian

approach, the missing data was imputed and updated within the same model

for statistical analysis conditioning on the rest of the variables. Basically, the

marginal approach was a two-stage approach, whereas the Bayesian approach

was a one-stage approach. The marginal approach involved ten imputed data
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sets, where their estimates were combined through Rubin’s rule. On the other

hand, the Bayesian approach involved a single data set with missing values be-

ing imputed through at least two chains. Statistical inference of the Bayesian

approach involved any single chain instead of all chains.

Furthermore, in the Bayesian approach, initial values for missing data were

generated from a random seed, whereas in the marginal approach, the initial

values for missing data were the mean of the variable across observed data.

However, in the marginal approach, since the parameters of the item response

models were based on the imputed data sets, no priors were required for these

parameters, whereas in the Bayesian approach, a proper prior was required for

every parameter. If an incorrect prior was used, the result might be distorted.

Also, both the Bayesian approach and the Marginal approach took into account

imputation uncertainty in two different ways.

The estimates and standard error comparison tables of the R and OpenBUGS pro-

grams are generated in Table D.2.1 in Appendix D. The plots of the combined

95% confidence intervals from the two programs are presented in Figures 6.13

and 6.14, followed by their respective item characteristic curve plots in Figure

6.15.
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As could be seen from Figure 6.13, the plots for the estimates of the discrim-

ination factor generated from the R and OpenBUGS programs appeared to be

similar. On the other hand, from Figure 6.14, the plots for each estimate of the

difficulty factor generated from the R program showed slightly downward shift

when compared to those produced by the OpenBUGS program. From Table D.2.1

in Appendix D, the estimates of the discrimination factor for all the 15 drugs

and their respective rankings generated from the R program, were similar to

those generated from the OpenBUGS program. Although all the estimates of the

difficulty factor for all the 15 drugs generated from the R program were slightly

lower than those generated from the OpenBUGS program, their respective rank-

ings were similar. The relatively lower mean estimates of the difficulty factor,

which explained the phenomenon of slightly shifting downward of the plots for

the estimates, for all the 15 drugs generated by the R program might due to the

difference in the algorithms of prediction models for the missing values during

imputation.

Finally, from the item characteristic curves in Figure 6.15, we observed that

the two curves in every plot were contiguous with each other, with the curves

representing the R program on the left side. This observation was consistent

with the result tables in Appendix D, along with Figures 6.13 and 6.14.

There are advantages of using the item response theory model in this study,

which include: (1) the Item response theory model is good for a data set where

a core of items, such as 15 drug-trying response variables in this study, is anal-

ysed (Baker, 2001) and (2) the item response theory model helps to describe in

a more comprehensive way the associations among the 15 drug-trying response

variables by the discrimination and difficulty parameters. Nevertheless, it is

worth to note that there are a few drawbacks of using the item response theory

model, namely: (1) assumptions of the item response theory model are strong
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and (2) estimates generated by the item response theory model are sensitive to

variation in sample size (Baker, 2001).

6.7 Summary

In this chapter, the two-parameter item response theorymodelwas implemented

on theworking data set through two approaches, namely themarginal approach

and the Bayesian approach, in order to further investigate the relationships be-

tween drug-trying response variables and the students’ drug-trying behaviour.

In all the two-parameter item response theorymodels under marginal approach

and Bayesian approach, the estimates of the discrimination factors consistently

showed that ecstasy, cocaine, amphetamines, LSD,heroin andmagicmushrooms

were ranked the top six drugs in terms of their high mean estimate values with

ecstasy yielded the highest mean estimate value. On the other hand, other

drugs, anabolic steroids and gas were consistently ranked as the bottom three

drugs in terms of their low mean estimate values with gas yielded the lowest

mean estimate value of around 1. The aforesaid findings shed additional light

on the relationships between drug-trying response variables and the students’

drug-trying behaviour. Six drugs, namely ecstasy, cocaine, amphetamines, LSD,

heroin and magic mushrooms, were found to exert higher influence on the stu-

dents’ drug- trying behaviour that for example, if a student has tried ecstasy,

there was a higher likelihood that the student will try other types of drug.

Also, in all the two-parameter item response theory models under marginal

approach and Bayesian approach, the estimates of the difficulty factors of all the

fifteen drug-trying response variableswere found to be greater than 1.5, with the

majority found to be between 2.5 and 3.2. This observation generally reflected

the low proportion of the students who had ever tried each of the 15 drugs.
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However, amongst the 15 drugs, the estimates of the difficulty factors consis-

tently showed that cannabis, poppers, cocaine, magic mushrooms, ecstasy and

amphetamines have relative lower mean estimate values with cannabis yielded

the lowest mean estimate value. This reflected the highest proportion of the

students who had tried cannabis. On the other hand, tranquillisers, anabolic

steroids and other drugs were consistently found to have relatively higher mean

estimate values with anabolic steroids yielded the highest mean estimate value.

The aforesaid findings were consistent with the results shown in a frequency

table of Drug-trying Response Variable in Chapter 3.

Estimates of the difficulty and discrimination factors of the two-parameter item

response theory models were found to be similar in both the marginal approach

and Bayesian approach, albeit the result generated from the OpenBUGS program

under the Bayesian approach yielded slightly higher difficulty factor estimates

across all the fifteen drugs than the result generated from the R program un-

der the marginal approach. Such phenomenon might due to the difference in

the algorithms of prediction models for the missing values during imputation

under marginal approach. All priors, except for a half-normal prior and two

log-normal priors for discrimination factor, produced similar results. Such find-

ing supported that estimates were largely non-sensitive in prior changes.

Finally, the Bayesian approach is a slower method than the marginal approach

in respect of the item response theory model. Since both approaches generated

similar results in this research, deciding on which method is better for employ-

ment of the item response theory model became less essential.

In this chapter, we have discussed the item response theory models, where the

tendency to try drugs was represented by a continuous latent variable known as

a factor score. In Chapter 7, rather than adopting a continuous latent variable,
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we investigate the use of drugs by employing a discrete latent variable, which

provides clustering information of respondents.



Chapter 7

Latent Class Analysis and K-means

Clustering

7.1 Introduction

This chapter outlines the underpinning theory and presents the results of a la-

tent class analysis and a K-means clustering of the working data set.

The univariate logistic regression models in Section 5.2 were adopted to assess

the associations between the smoking, drinking and considered drug-related

socio-demographic factors and the drug-trying response variables, as well as to

assess whether the drug-trying response variables predicted each other. Sim-

ilarly, the log-linear analysis models, in Section 5.3, aimed to investigate the

interactions between the drug-trying response variables, so as to provide in-

sight regarding associations among 15 drugs. The item response theory models

in Chapter 6 provided a different perspective of investigating the drug-trying

behaviours among students. It permitted an investigation of the proportion of

students trying each drug, in terms of the amount of influence of trying each

drug on the overall drug-trying behaviours, and the propensity for students to

try drugs. However, none of these models sought to classify or cluster students

248
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with respect to their drug-trying behaviour patterns, which may provide addi-

tional understanding of any latent sub-structure.

Of interest in this study are the patterns and clusters of the drug-trying be-

haviours among students, and how these patterns may relate to other covari-

ates. For example, how smoking, drinking and considered drug-related socio-

demographic variables are related to any classification of students. At the first

stage, we thus need to find criteria by which to classify the students in order to

gain insight into their drug-trying behaviour within each classification. To clas-

sify the students, we employ the statistical technique known as "cluster analysis"

that groups the students’ drug-trying behaviour into classes. A brief overview

of cluster analysis is presented below.

The term "cluster analysis" was firstly coined by Edwards and Cavalli-Sforza

(1965) as identifying "clusters of points in space". "Cluster analysis" includes,

but is not limited to, two statistical approaches, namely latent class analysis

(Everitt et al., 1993) and K-means clustering (Hartigan, 1975). In this research,

we apply both the latent class analysis and K-means clustering, for which we

introduce new methodology to enable modelling over multiply imputed data.

In a latent class analysis, the classifying criteria are represented by a latent

discrete variable, which classifies respondents into groups (Collins and Lanza,

2010). Generally, a latent class analysis models the patterns of categorical re-

sponses and classifies respondents into a specified number of groups via a latent

discrete variable (Collins and Lanza, 2010). Latent class analysis has often been

used in analysing biological or social data. For example, Agrawal (2006) applied

latent class analysis to drug abuse data, in order to characterise poly-substance

abuse dependence of respondents of the National Epidemiological Survey on

Alcohol and Related Conditions in America. Also, Pharris (2011) applied the
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latent class analysis to investigate the relationship between HIV infection and

HIV-related risk factors, including drug use, via a latent variable with three

classes, which classified respondents by HIV-stigma. The alternative analyses

of latent class analysis could beprinciple component analysis and factor analysis.

However, we employed latent class analysis and considered principle compo-

nent analysis and factor analysis not suitable in this study due to the following

reasons: (1) factor analysis can only be used on continuous variables (Hair et al.,

1994) and (2) principle component analysis can only be used on variables which

follow normal distribution (Bartholomew et al., 2011). Also, interpretation of

factor analysis requires an extensive effort and is based on heuristic approach,

which might not be a complete method (Hair et al., 1994).

In this research, we apply latent class analysis to examine the potential par-

titioning of the students in this survey into a specific number of classes, based

upon their drug-trying patterns, as well as the proportion of the students in

each class and the ’class-conditional’ proportions of the students trying each

drug. Through this application, we identify the optimal number of classes by

maximum likelihood solutions, i.e. AIC and BIC, which adequately explains

any latent sub-structure. In addition, latent class analysis can be combined

with a logistic regression model to form a latent class regression model, to ex-

plain the relationship between class membership and the smoking, drinking

and considered drug-related socio-demographic factors via a regession model

on a latent variable. In other words, the latent class analysis provides insight

by fitting the working data set using a model that partitions the students into

some classes based upon their drug-trying patterns, while linking covariates to

class membership. A latent class analysis may thus assist in understanding pat-

terns of behaviours and also explaining the relationships between the smoking,

drinking and considered drug-related socio-demographic covariates, as well as

class membership, and thus enable investigation of the drug-trying behaviour
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of young people in greater depth.

In contrast, K-means clustering is a distance-based algorithm which classifies

the students into k clusters by minimising the total squared error distance be-

tween each student and the cluster mean point within response variables for

each corresponding cluster (Jain et al., 1999). The K-means clustering has pro-

vided a simple and widely used clustering algorithm for over 50 years (Jain,

2010). The K-means clustering has been applied to various fields, such as med-

ical (Ng et al., 2006) and environmental data (Shi and Zeng, 2014). Figure 7.1

provides a visualisation of three centroids in K-means clustering.

Figure 7.1: Three-dimensional Visualisation of K-means Clustering with Three
Centroids, C1, C2 and C3

Through identifying a parsimonious number of clusters and hereafter grouping

the students according to their nearest centroid, with respect to the hypercube

distance between K drug-trying response variables, the K-means clustering is

implemented in this study to provide another perspective on classification of the
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students. The results of the K-means clustering can then be compared with that

of the latent class analysis to check the validity of classification of the students

by the latter.

In the rest of this chapter, Section 7.2 discusses the latent class analysis. Section

7.3 presents and discusses the K-means clustering, which is compared to the

results generated from the latent class analysis in Section 7.2.

7.2 Latent Class Analysis

In this section, we firstly introduce latent class analysis contextually, before

presenting the theory and application of the latent class analysis to the working

data set. We conclude with a discussion of the results and utility of the latent

class analysis.

7.2.1 Introduction

Latent class analysis was firstly proposed by Lazarsfeld (1950) as measuring

models for categorical response data. It was until Goodman (1974), who pro-

posed the latent class analysis under the name "latent structure analysis", pro-

posed a maximum likelihood procedure for estimating the latent class analysis

models. Dayton andMacReady (1988) introduced a type of latent class analysis,

under the name "latent class models", in which the probabilities of latent class

memberships were functionally and directly related to concomitant variables.

The name "latent class analysis" was coined by Everitt et al. (1993).

In this research, we use the latent class analysis to classify the students’ drug-

trying patterns with a discrete latent variable, which discerns the number of

classes required to classify the students. We also implement a latent class re-

gression model to establish the linkage between the drug-trying response vari-
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ables and smoking, drinking and considered drug-related socio-demographic

predictors via the discrete latent variable.

We also implement the methodology of selection of the optimal number of

classes, as well as the backward elimination by Rubin’s rule with Wald’s test in

the latent class analysis.

7.2.2 Theory

Following the exposition in Dayton and MacReady (1988), the proportions of

latent classes, the class-conditional probabilities, the likelihood, the marginal

distribution and the constraints of latent class analysis model are defined in this

section. Suppose that there are L latent classes, n individuals, and J′ categorical

variables. Also, for each ith individual, i = 1, . . . ,n, each j′th categorical variable,

j′ = 1, . . . ,J′ contains R j′ response levels. Let Y = {y1, . . . ,yn} be the data set ma-

trix, where yi = {yi1, . . . ,yiJ′} for each vector of data set points for each individual

i and for each j′th categorical variable, j′ = 1, . . . ,J′. For each response level r of

each categorical variable j′, r = 1, . . . ,R j′ and each latent class l = 1, . . . ,L, let pl be

a proportion of latent class l, and let π j′rl be the class-conditional probability of

response level r to variable j′ in latent class l. Then the likelihood of the general

latent class analysis model for each latent class cl , in a collection of the latent

class analysis models, C(l = 1, . . . ,L), (i.e. cl ∈C(l = 1, . . . ,L)), is defined as:

f (Y | cl) =
J′

∏
j′=1

R j′

∏
r=1

π
δi j′
j′rl , (7.1)

and themarginal distribution of the general latent class analysismodel is defined

as:

f (Y ) =
L

∑
l=1

pl f (Y | cl), (7.2)
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where the δi j′ is the Kronecker Delta, which acts as an indicator of whether the

option was chosen. The Kronecker Delta is defined as:

δi j′ =


1, yi j′ = r

0, otherwise.
(7.3)

Equation 7.3 explains that the latent class analysismodel uses a dummy-variable

system, which identifies whether the response level r is taken for categorical

variable j′ by individual i. The probability parameters are subjected to the

following restraints - all class conditional probabilities within all responses of

categorical variable j′ are summed up to 1:

R j′

∑
r=1

π j′rl = 1, j′ = 1, . . . ,J′, l = 1, . . . ,L. (7.4)

In addition, all class proportions are summed up to 1 as in Equation 7.5 below:

L

∑
l=1

pl = 1. (7.5)

Linzer (2011) adopted a similar method involving a dummy variable but used a

response indicator term instead of the Kronecker Delta term in Equation 7.1. To

explain Linzer (2011)’s method, let I be a response indicator matrix the element

Ii j′r the observed indicator of rth response level for individual i and categorical

variable j′. As this stage, if yi j′ = r, then Ii j′r = 1. On the contrary, if yi j′ 6= r, then

Ii j′r = 0. As such, the probability density function for all j′ variables and l latent

class is expressed as follows:

f (Yi | cl) = f (Ii;πl) =
J′

∏
j′=1

R j′

∏
r=1

π
Ii j′r
j′rl . (7.6)

The probability density function across all L latent classes can be expressed as
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follows:

f (Yi) = f (Ii | π, pl) =
L

∑
l=1

pl

J′

∏
j′=1

R j′

∏
r=1

π
Ii j′r
j′rl . (7.7)

Given estimates of pl and π j′rl , p̂l and ˆπ j′rl respectively, the posterior probability

that individual i belongs to latent class l, li, conditional on the vector of response

indicator for individual i, Ii, is expressed as follows:

P̂(li | Ii) =
p̂l f (Ii; π̂l)

∑
L
l′=1 p̂l′ f (Ii; π̂l′)

, (7.8)

where li ∈ {1, . . . ,L}. The number of parameters in the latent class analysis

model is L[∑J′
j′=1(R j′−1)+(L−1)], which is the total number of response levels

and latent classes, subtracted by baseline response levels and latent classes. The

log-likelihood function for the latent class analysis model is here expressed by

the following:

ln( f (Y )) =
n

∑
i=1

ln
L

∑
l=1

pl

J′

∏
j′=1

R j′

∏
r=1

π
Ii j′r
j′rl . (7.9)

In order to estimate p̂l and π̂ j′rl , the Expectation-Maximisation (EM) algorithm

(Dempster et al., 1977) is implemented. The EM algorithm begins with initial

values of p̂l and π̂ j′rl , which are labelled as P̂l
old and π̂old

j′rl respectively. The

class membership probabilities, P̂(li | Ii), are calculated in the expectation step

by Equation 7.10 with P̂old
l and π̂old

j′rl . In the maximization step, P̂l
old and π̂old

j′rl

are updated by maximizing the log-likelihood function, expressed in Equation

7.11, given the estimated posterior P̂(li | Ii) obtained in Equation 7.10. The

updated estimates are denoted as p̂l
new and π̂new

j′rl respectively, with the following

expressions:

p̂l
new =

1
n

n

∑
i=1

P̂(li | Ii), (7.10)

and

π̂
new
j′rl =

∑
n
i=1 Ii j′P̂(li | Ii)

∑
n
i=1 P̂(li | Ii)

. (7.11)

The estimates and the standard errors of the latent class were derived by Linzer
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(2011), who continued building from work of McLachlan and Peel (2000).

A solution for including covariates in the latent class analysis model is to link

the class membership probabilities to a regression model. The resultant model

is called the latent class regression model. In terms of model construction,

Bandeen-roche and Miglioretti (1997) suggested using the proportion of all ex-

ponential sum of regression components as a measure of class membership

probabilities. More precisely, the component Pl is replaced by a mixing pro-

portion Pli = Pl(Xi;β ), where X = [X1, . . . ,Xi, . . . ,Xn] is a n×R covariate matrix,

β = [β1, . . . ,βL]
T is a R×L parameter matrix for L latent classes, R = ∑

J′
j′=1 R j′ is

the number of covariate parameters in the regression model. The mixing pro-

portion is expressed by the following equation:

pli = pl(Xi;β ) =
eXiβl

∑
L
l′=1 eXiβl′

. (7.12)

Combining Equations 7.7 and 7.12, Linzer (2011) derived the probability density

function for latent class regression model as follows:

f (Yi) = f (Ii | π, pl) =
L

∑
l=1

eXiβl

∑
L
l′=1 eXiβl′

J′

∏
j′=1

R j′

∏
r=1

π
Ii j′r
j′rl . (7.13)

The log-likelihood function of latent class regression model is expressed in

Equation 7.14 as:

ln( f (Y )) =
n

∑
i=1

ln
L

∑
l=1

eXiβl

∑
L
l′=1 eXiβl′

J′

∏
j′=1

R j′

∏
r=1

π
Ii j′r
j′rl . (7.14)

Linzer (2011) used the lowest-level latent class, c1, as a base level and set the

consequent vector β1 to be {0, . . . ,0}. The entire latent class regression model

then measures the log odds of latent class memberships of class 2 to L inclusive
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versus class 1. As a result:

ln
(

p2i

p1i

)
= Xiβ2,

ln
(

p3i

p1i

)
= Xiβ3,

...

ln
(

pLi

p1i

)
= XiβL. (7.15)

The general result from Equation 7.15 is equal to Equation 7.12, given the con-

straint that β1 = 0. The posterior (in this chapter, posterior means after consid-

ering the likelihood function) class membership probabilities in the latent class

regression model are then expressed as follows:

P̂(li | Xi; Ii) =
pl(Xi; β̂ ) f (Ii; π̂l)

∑
L
l′=1 pl′(Xi; β̂ ) f (Ii; π̂l′)

. (7.16)

Theprior probability estimates are applied to each latent class, c1, . . . ,cL, whereas

the posterior probability estimates are applied to every individual i = 1, . . . ,n of

the data set.

In many cases, the number of latent classes is more than two (i.e. L > 2), hence

more than two posterior proportion probabilities for each individual. Since the

range of these variables is contained in the [0,1] interval, each response can be

modeled by beta distribution. However, a problem arises since the beta distri-

bution is only capable of modelling two constrained proportions (e.g. pi and

1− pi). For analyses where three or more constrained proportions should be

modelled at once, the Dirichlet distribution is one viable solution. In Section

7.2.3, we discuss the theory of Dirichlet distribution, as well as its application to

the latent class analysis.
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7.2.3 Dirichlet Distribution

7.2.3.1 Theory

The Dirichlet distribution is an analysis for data sets containing responses that

are three ormore probabilities that summed up to 1. It serves as a generalisation

of Beta distribution for the number of class L ≥ 2. Maier (2014) provided the

following explanation: Suppose for n individuals, there exists L probability

responses, each corresponding to lth latent class: ρl, l = 1, . . . ,L, where ρl ∈ (0,1)

and ∑
L
l=1 ρl = 1, and shape parameters for each class l, denoted as α ′l , let ρ =

{ρ1, . . . ,ρL} be a set of probability responses for L corresponding latent classes,

then the probability density function for Dirichlet distribution, given a set of

shape parameters α ′ = {α ′1, . . . ,α ′L}, is described by Equation 7.17:

ρ ∼ D(α ′); f (ρ | α ′) = 1
B(α ′)

L

∏
l=1

ρ
α ′l−1
l , (7.17)

where the normalising constant B(α ′) is expressed as follows:

B(α ′) =
L

∏
l=1

Γ(α ′l )

Γ(∑L
l′=1 α ′l′)

, (7.18)

and the Gamma function Γ(.) is defined as follows:

Γ(x) =
∫

∞

0
tx−1e−tdt. (7.19)

Moreover, α ′l > 0, l = 1, . . . ,L. By denoting α ′0 = ∑
L
l=1 α ′l , with such set of param-

eters, the mean of Dirichlet distribution for class l is E[ρl] = α ′l/α ′0, the variance

is VAR[ρl] = [α ′l (α
′
0−α ′l )]/[(α

′
0)

2(α ′0 +1)], and the covariances are COV[ρl,ρl′] =

(−α ′l α
′
l′)/[(α

′
0)

2(α ′0 +1)]

Each class l is marginally distributed from beta distribution, B(α ′′,β ′), with

α ′′ = α ′l and β ′ = α ′0−α ′l . The full log-likelihood of the Dirichlet distribution
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with the original parameterisation is defined as:

ln( f (ρ | α ′)) = log
[

Γ

(
L

∑
l=1

α
′
l

)]
−

L

∑
l=1

log[Γ(α ′l )]+
L

∑
l=1

(α ′l −1)[log(ρl)]. (7.20)

7.2.3.2 Application

In real data applications, extreme values of probability responses in a Dirichlet

distribution model, which are 0 or 1, may exist. If ρl = 0, then log(ρl) =−∞, on

the other hand, ρl = 1 implies the other proportion probability to be zero, which

may lead to log(ρl′) =−∞, l′ = 1, . . . ,L, l′ 6= l. To remedy the situation of extreme

values, Smithson and Verkuilen (2006) suggested the following transformation:

ρ
∗
l =

ρl(n−1)+1/L
n

. (7.21)

The sum of all shape parameters, α ′0, can also be interpreted as a kind of ’pre-

cision’ parameter. By considering such a precision parameter, as well as the

expectation value of the Dirichlet distribution, this interpretation led to the al-

ternative parameterisation defined by Ferrari and Cribari-Neto (2004). In the

alternative parameterisation, let µl = E[ρl] be the expectation parameter, and

γ =α ′0 be the precision parameter, thenwe obtainα ′l = µlγ andα ′0 = γ . As a result

of re-parameterisation, the expectation, variance and covariance of Dirichlet dis-

tribution between latent class l and l′, l′ = 1, . . . ,L, l′ 6= l are defined as E[ρl] = µl ,

VAR[ρl] = [µl(1−µl)]/(γ +1) and COV[ρl,ρl′] =−µlµl′/(γ +1), where µl ∈ (0,1)

and γ > 0. Let µ = {µ1, . . . ,µL}. The probability density function for the Dirich-

let distribution under alternative parameterisation is derived as the following

equation:

f (ρ | µ,γ) = 1
B(µγ)

L

∏
l=1

ρ
(µlγ−1)
l (7.22)

(Maier, 2014),

where µl ∈ (0,1) and γ > 0. Due to the constraints of these parameters, two dif-
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ferent links were used for the expectation parameters of all classes and precision

parameter respectively: the multinomial logit link for the expectation param-

eters and log-arithmetic link for precision parameter. These link functions are

expressed in the following fashion:

ηµl = Xβl, (7.23)

ηγ = Zγ. (7.24)

Since for each case the sum of all ρl is constrained to be 1, the alternativemethod

of parameterisation is to set the lowest class (usually class 1, or generally, class

l′′, the baseline class) as the reference class and obtain the proportion ratio with

respect to the reference class (i.e. ρl/ρl′′). The mean parameters for the baseline

class l′′ and class l are denoted as µl′′ and µl . The regression coefficients for

the baseline class are set to zero (i.e. βl′′ = 0 = (0, . . . ,0)). As a result of re-

parameterisation, the expected values for the baseline class and any class l are

modelled as follows:

µl =
eXβl

∑
L
l′=1 eXβl′

, (7.25)

µl′′ =
eX0

∑
L
l′=1 eXβl′

=
1

∑
L
l′=1 eXβl′

, (7.26)

ln[(ρ | α ′)] = logΓ(γ)−
L

∑
l=1

logΓ(α ′l )+
L

∑
l=1

(α ′l −1)(ρl). (7.27)

Further details about the Hessian matrix can be found in Maier (2014).

7.2.4 Application of Latent Class Analysis

In this research, the R program for polychotomous latent class analysis, poLCA,

was adopted. The R function of latent class analysis, poLCA(.), was used for

fitting latent class analysis in R program (R version 3.3.0). Two, three and four

latent classes were specified. The R program begins at a set of arbitrary class-
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conditional probabilities for all drug-trying response variables (unless a random

seed is specified). The maximum number of iteration cycles for the EM algo-

rithm was set to 100,000 to guarantee convergence of this Bayesian estimation.

In order to avoid local maxima of the log-likelihood, ten sets of estimates were

generated, and the set with the lowest log-likelihood was chosen. To generate a

consistent result, a random seed number 4321 was used. After modelling, the

starting values of the class-conditional probabilities for all drug-trying response

variables were sorted, and were then used in executing the poLCA command

again. Re-running the latent class analysis model led to a change in the ordering

of the latent classes by class proportions (e.g. there were three classes in the

latent class analysis, A, B and C, class A yielded the largest class proportion and

class C yielded the smallest class proportion. In a latent class analysis model,

these three classes were ordered as B, C and A, but after re-running the model,

these classes were re-ordered as A, B and C), and hence the ordering of proba-

bilities. However, given that the sufficient iteration cycle and sufficient number

of estimating sets were specified, the values of estimates were not affected.

Throughout the analysis, the predicted class memberships for all students, class

proportions and class-conditional posterior probabilities for all drug responses,

as well as estimates and standard errors for covariates for the latent class regres-

sion model, were obtained. The class membership for each case was assigned

according to the greatest probability of the posterior probability of each case.

In this research, latent class analysis (among drug-trying response variables

only) was performed on the ten imputed data sets resulting from the MICE

scheme 2 using poLCA package in R program. Also, alternative environment

used for conducting the latent class analysis was the Latent Gold program

(Vermunt and Magidson, 2008). The Latent Gold program also permits the

fitting of a latent class analysis as well as a latent class regression model, to
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a data set with missingness. The missing values are by default imputed by a

non-parametric bootstrap procedure. An alternative imputation method is via

the EM procedure. According to the Latent Gold 4.5 Syntax Manual (Vermunt

and Magidson, 2008), the non-parametric bootstrap procedure is preferred be-

cause the procedure considers the imputation uncertainty. Whilst the latent

class analysis was mainly conducted using poLCA package in R program, it was

also conducted using the Latent Gold program via both EM procedure and

non-parametric bootstrap procedure as a sensitivity analysis, in order to com-

pare with the results generated from the R program.

In order to compare results of the latent class analysis models based on differ-

ent imputation procedures, both non-parametric bootstrap procedure and EM

procedure were considered in the Latent Gold program. The results generated

by both procedures returned similar values, which implied that the analyses

were not sensitive to this change in imputation procedures. The modelling

work on latent class analysis and latent class regression model there-after were

conducted on the poLCA package in R program.

Since fitting a latent class regression model with a large number of covariates

(for example 30 covariates) was found to be computationally challenging, with

three latent classes or more specified, a pre-selection of covariates was needed.

The rationalewas thus to choose a subset of likely predictors and hence to reduce

the computational complexity. In order to pre-select the covariates, firstly latent

class analysis was performed on the fifteen drug-trying response variables, with

options of latent classes L = 2,3,4. This was repeated for the M = 10 data sets.

The optimal number of latent classes was then chosen, based on the lowest BIC

(Schwarz, 1978) and adjusted BIC (Sclove, 1987), for each of the ten imputed data

sets. The equation for the BIC (denoted as BIC) for a tested model as described

in Equation 7.28 below is:
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BIC =−2l +P′′ ∗ ln(n) (7.28)

(Schwarz, 1978),

where l represents the log-likehood of the tested model, and P′′ represents

the number of parameters in the tested model. The equation for the adjusted

BIC (denoted asBICad j) for a testedmodel as described in Equation 7.29 below is:

BICad j =−2l +P′′ ∗ ln
(

n+2
24

)
(7.29)

(Sclove, 1987).

The global optimum was then chosen and is denoted Lopt . The next step was to

obtain the Lopt posterior probabilities of class membership for each student, and

these values sum to one. A Dirichlet regression model (alternative parameter-

isation) with all covariates was then fitted to each of the M = 10 imputed data

sets. Estimates and standard errors of the covariate coefficients were combined

using Rubin’s rule. The non-significant covariates in the Lopt regression models

(according to combined estimates and standard errors) were discarded, one at

each step, using backward elimination and a 5 % significance level. All the

covariate terms that remained significant in at least one of the Lopt models were

therefore selected for use in the latent class regression, namely "one-stage latent

class regression model". The algorithm for the "one-stage latent class regression

model" is given in Algorithm 7.1.
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Algorithm 7.1 one-stage latent class regression model
1: Begin with full model (with all covariates), based on ten imputed data sets;
2: while Insignificant variables remain in the model do
3: for w = 1, . . . ,W do
4: Fit a two-class, three-class or four-class model with a current set of

covariates for data set w;
5: Choose the optimal number of classes based on BIC and "adjusted

BIC" for data set w;
6: end for
7: for the models with the optimal number of classes, combine all estimates

and standard errors by Rubin’s Rule, and discard one covariate with the
largest p-value (which is greater than 0.05) by Wald’s test;

8: repeat Lines 2 to 7 without the covariate discarded at Line 7;
9: end while

7.2.5 Results of the Latent Class Analysis Model

Firstly, the values of BIC and adjusted BIC for L = 2,3,4 latent class analysis

models based on the ten imputed data sets are displayed in Table 7.2.1.

Table 7.2.1: Table of BIC and Adjusted BIC for Latent Class Analysis Models
Fitted Using poLCA Package in the R Program (*: lowest value)

BIC adjusted BIC
Data Set 2-class 3-class 4-class 2-class 3-class 4-class

1 16357.12 15996.86* 16069.57 16258.61 15847.51* 15869.37
2 16085.64 15777.18* 15835.27 15987.13 15627.82* 15635.07
3 15961.57 15670.15* 15743.23 15863.06 15520.79* 15543.03
4 16000.5 15731.12* 15793.69 15901.99 15581.76* 15593.49
5 16054.71 15694.21* 15740.53 15956.2 15544.85 15540.33*
6 15898.58 15627.17* 15699.52 15800.07 15477.81* 15499.32
7 15975.38 15704.12* 15763.54 15876.87 15554.76* 15563.34
8 16192.26 15864.19* 15934.65 16093.75 15714.83* 15734.45
9 16206.5 15862.27* 15911.63 16107.98 15712.92 15711.43*
10 16262.77 15910.25* 15983.4 16164.26 15760.9* 15783.2

According to Table 7.2.1, the lowest BIC was observed for all ten imputed data

sets for the L = 3 class option. In addition, the lowest adjusted BICwas observed

in eight out of ten imputed data sets for the L = 3 class option. This indicated

that the three-class option was, in general, classified the respondents parsimo-

niously. As such, the latent class analysis proceeded with three classes.
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Table 7.2.2 displays the proportions of combined class membership over the

M = 10 data set, for each of the three classes. Table 7.2.3 lists the student fre-

quencies for the three classes based upon posterior class membership assigned

by the greatest class probability for every student, for ten imputed data sets,

whereas Table 7.2.4 displays the class-conditional posterior probabilities arising

from the latent class analysis, for themodels generated using R and Latent Gold

programs, respectively.

Table 7.2.2: Combined Class Membership Proportion Table of Latent Classes for
the R and Latent Gold Programs

Program Class 1 Class 2 Class 3
R (poLCA) 0.9265 0.0654 0.0081
Latent Gold 0.9352 0.0576 0.0071

From Table 7.2.2, the class membership proportions for both models generated

from the R and Latent Goldprogramswere similar, with class 1 being the largest

group (class proportions of 0.9265 and 0.9352 for the R and Latent Gold pro-

grams respectively), followed by class 2 (class proportions of 0.0654 and 0.0576

for the R and Latent Gold programs respectively). Class 3 was a posteriori as the

smallest group. The proportions of class 2 and class 3 for the model generated

from the R program were larger than those generated from the Latent Gold

program. On the contrary, the proportions of class 1 for the model generated

from the R program were slightly smaller than those generated from the Latent

Gold program.
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Table 7.2.3: Predicted Frequency Table for Three-class Latent Class Analysis
Model using the R program

Class 1 Class 2 Class 3
1 6829 410 57
2 6887 357 52
3 6885 352 59
4 6869 372 55
5 6879 360 57
6 6874 366 56
7 6880 354 62
8 6865 371 60
9 6875 363 58
10 6854 383 59

From Table 7.2.3, the three frequencies of students in the corresponding three

classes between the ten imputed data sets were also generally similar, albeit the

frequencies of students in class 1 and 2 for data set 1 were slightly different, due

to the higher percentages of the students trying cannabis and gas in imputed

data set 1 when compared with other imputed data sets.

Table 7.2.4: Table of Class-conditional Posterior Probabilities of Latent Class
Analysis Models for the R and Latent Gold Programs Without Covariates

R (poLCA) Latent Gold
Variable Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Cannabis 0.0466 0.7434 0.9278 0.0442 0.7185 0.9109
Heroin 0.0004 0.0392 0.4972 0.0003 0.0335 0.3798
Cocaine 0.0005 0.1294 0.7648 0.0004 0.1076 0.6842

Magic Mushrooms 0.0009 0.1692 0.7594 0.0007 0.1534 0.6527
Crack 0.0006 0.0559 0.4971 0.0004 0.0482 0.3900

Methadone 0.0009 0.0546 0.5578 0.0008 0.0472 0.4705
Ecstasy 0.0004 0.1046 0.7862 0.0004 0.0790 0.7516

Amphetamines 0.0000 0.0992 0.6274 0.0000 0.0861 0.5225
LSD 0.0003 0.0441 0.5236 0.0003 0.0352 0.4439

Poppers 0.0021 0.2882 0.7194 0.0016 0.2649 0.6605
Ketamine 0.0007 0.0519 0.4334 0.0005 0.0477 0.3338

Anabolic Steroids 0.0004 0.0510 0.2893 0.0003 0.0468 0.2172
Gas 0.0638 0.3360 0.5619 0.0628 0.3274 0.4879

Other drugs 0.0005 0.0454 0.2656 0.0004 0.0396 0.2298
Tranquillisers 0.0005 0.0310 0.4067 0.0004 0.0273 0.3243

From Table 7.2.4, the class-conditional posterior probabilities for data sets im-

puted under the R program were all higher than those for data sets imputed
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under the Latent Gold program, albeit the differences were small. This might

due to imputationmodel differences anddifferent estimation algorithms in these

two programs. Table E.1.1 in Appendix E supported this argument by display-

ing mostly lower frequencies across the ten imputed data sets based on the R

program than those based on the Latent Gold program for cannabis, gas and

other drugs, but higher frequencies for other drug-trying response variables.

To assist with interpretation of the drug proportions in Table 7.2.4, Figure 7.2,

shows the combined class-conditional posterior probabilities of drug-trying re-

sponse variables for models generated from the R and Latent Gold programs.
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Both Table 7.2.4 and Figure 7.2 compared the class-conditional posterior proba-

bilities of drug-trying response variables across three classes. In Class 1, drug-

trying was rare but distinct small probabilities for cannabis and gas were ob-

served. In Class 2, relatively large probabilities for cannabis, poppers and gas,

as well as a smaller probability for magic mushrooms were observed. Since the

corresponding drugs were soft drugs, Class 2 could be classified as a ’soft drug

group’. Class 3 contained relatively large class-conditional probabilities of all

drugs and could be classified as ’soft and hard drug group’.

The next stage of analysis was to conduct Dirichlet regression model with back-

ward elimination. 34 covariates that workedwith theDirichlet regressionmodel

were included in the initial model. Ten imputed data sets generated fromMICE

were used. The estimates and covariance matrices of ten Dirichlet regression

models were combined by Rubin’s rule. In each step of backward elimination,

the covariate with the largest p-value that was larger than 0.05 significance

level was discarded. This process continued until no insignificant covariates

remained in the Dirichlet regression model.

From the resultant dirichlet regression model, the following covariates were

chosen: CgStat1, CgPk1, CgGet1, CgGet2, CgPp1, CgBuyF1, CgEstim, CgIn1,

AlFreq2, AlBnPub1, AlPar1 (numeric), Al4W1, AlWhy1, DgIn1, DgEstim, Age

(numeric), Gender, TruantN, ExclAN1 and SHA. These covariates were found

to be significant in any one of the three dirichlet regression models. Combined

with nine covariates which were found to be significant in at least three of fif-

teen logistic regressionmodels: CgStat1, CgWho1, CgBuyF1, CgEstim, AlFreq2,

DgEstim, Books1 (numeric), Age (numeric) and TruantN; a total of 22 covari-

ates (7 covariates out of total 29 covariates overlapped per the above two lists)

were selected as starting covariates of "one-stage latent class regression model"

model (mentioned in Section 7.2.4) at the first step of backward elimination as
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follows: CgStat1, CgPk1, CgGet1, CgGet2, CgPp1, CgWho1, CgBuyF1, CgEstim,

CgIn1, AlFreq2, AlBnPub1, AlPar1 (numeric), Al4W1,AlWhy1, DgIn1, DgEstim,

Books1 (numeric), Age (numeric), Gender, TruantN, ExclAN1 and SHA.

7.2.6 NewMethodology: theAlgorithm for theBackwardElim-

ination in the Latent Class Regression Model Using Ru-

bin’s Rule with Wald’s Test

Before discussing the results of the latent class regression model, we present

the algorithm for the backward elimination in the latent class regression model,

implemented using Rubin’s rule with Wald’s test.

Steps of Backward Elimination with Wald’s Test for Latent Class Regres-

sion Model:

a. For w imputed data sets, w = 1, . . . ,W , fit a saturatedmodel with the following

22 covariates:

CgStat1, CgPk1, CgGet1, CgGet2, CgPp1, CgWho1, CgBuyF1, CgEstim, CgIn1,

AlFreq2,AlBnPub1,AlPar1 (numeric), Al4W1,AlWhy1,DgIn1,DgEstim, Books1

(numeric), Age (numeric), Gender, TruantN, ExclAN1 and SHA

b. i. For w imputed data sets, w = 1, . . . ,W , model the 15 drug-trying response

variables (also 22 drugs, smoking and drinking indicators) using L = 2,3 latent

classes. Fit each model using ten iterations to obtain the model with the maxi-

mum global likelihood.

ii. Sort the class proportions in descending order. Sort the starting values

of the class-conditional probabilities of all the drug-trying response variable

accordingly and re-fit the model with the sorted starting values.

iii. Choose themodelwith the lowest adjustedBICamongst the threemodels.
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c. (1) For w imputed data sets, w = 1, . . . ,W , choose a variable to discard

by Rubin’s rule with Wald’s Test.

i. remodel the 15 drug-trying response variables (also 22 drugs, smoking

and drinking indicators) with all potential covariates.

Fit each model with various latent classes for ten times to obtain the model with

the maximum global likelihood.

ii. Sort the class proportions in descending order, sort the starting values

of the class-conditional probabilities of all the drug-trying response variables

accordingly and re-fit the model with the sorted starting values.

iii. For each covariate thatwas considered to be discarded, obtain an estimate

matrix and a corresponding covariance matrix;

The parameter estimate and the corresponding covariance matrix are then ob-

tained and hence transformed for computational reasons. More specifically, a

factor with levels A, B, C and two latent classes comparator levels (i.e. class

2:class 1 and class 3:class 1), (1, 2) for latent class regression model with three

classes. The matrices take the form:


θA1 θA2

θB1 θB2

θC1 θC2

 ,



VA1,A1 VA1,B1 . . . VA1,C2

VB1,A1 VB1,B1 . . . VB1,C2

VC1,A1 VC1,B1 . . . VC1,C2

VA2,A1 VA2,B1 . . . VA2,C2

VB2,A1 VB2,B1 . . . VB2,C2

VC2,A1 VC2,B1 . . . VC2,C2


.
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(2) The transformation is then made:



θA1

θA2

θB1

θB2

θC1

θC2


,



VA1,A1 VA1,A2 . . . VA1,C2

VA2,A1 VA2,A2 . . . VA2,C2

VB1,A1 VB1,A2 . . . VB1,C2

VB2,A1 VB2,A2 . . . VB2,C2

VC1,A1 VC1,A2 . . . VC1,C2

VC2,A1 VC2,A2 . . . VC2,C2


.

(3) Combine estimates and standard error of W data sets, carry out Wald’s test

for each covariate (i.e. only include estimates and covariates that are not related

to intercept and other covariates)

(4) Discard the covariate with the highest p-value (by Wald’s test).

d. Repeat the sameprocess (starting from step b) until no insignificant covariates

remain in the model.

7.2.7 Results of the Latent Class Regression Model

7.2.7.1 Results of the Initial Latent Class Regression Model with Covariates

Similar to the latent class analysis model without covariates, in this research, the

initial latent class regression model with covariates divided students into the

same three classes, with the largest class consisting of students who had tried no

drugs and those who had tried cannabis or gas only. Similarly, a much smaller

class consisted of students who had tried cannabis, poppers, magic mushrooms

and gas, and the smallest class who had tried at least three drugs. The largest

class 1 could be referred as "no drugs and cannabis or gas users", the second

largest class 2 as "soft drug users" and the smallest class 3 as "soft and hard drug

users". Figure 7.3 depicts the combined class-conditional posterior probability

plot of the division of the three latent classes.
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Figure 7.3: Combined Class-conditional Posterior Probability Plot for the Drug-
trying Response Variables in the Initial Latent Class Model with Covariates for
the Latent Gold Program

From Figure 7.3, latent class 1 yielded the smallest class-conditional posterior

probability for gas, whichwas lower than 10%whereas latent class 2 yielded rel-

atively high class-conditional posterior probabilities for cannabis, magic mush-

rooms, poppers and gas, with the values between 20 % and 80 %, and latent

class 3 yielded high class-conditional posterior probabilities for all drugs, with

the values larger than 20 %. In addition, the results generated from the ten data

sets were consistent.

Based on the results generated by the Latent Gold program, it was observed that

the generated class-conditional prior probabilities and posterior probabilities

(after modelling with covariates) were consistent within the ten imputed data

sets. On the other hand, when comparing the generated class-conditional prior

probabilities with class-conditional posterior probabilities, there were slight

discrepancies between them. Such results indicate that both the close associa-

tions within drug-trying response variables as well as the associations between
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drug-trying response variables and covariates, influenced the class membership

proportions of the students in the survey.

7.2.7.2 Results of the Final Latent Class Regression Model with Covariates

In this research, to relate the latent class regression model with covariates,

22 covariates were included in the initial model of the latent class regression

model. The backward elimination by Rubin’s rule with Wald’s test proceeded

without altering the number of classes (i.e. between two and three classes,

under the BICs and adjusted BICs criteria, the number of classes was chosen to

be three). After eleven steps, the final model was produced with 11 covariates.

Table 7.2.5 displays the predicted posterior probabilities of the final latent class

regression model with covariates and that of the latent class analysis model

without covariates, followed byTables 7.2.6 to 7.2.8, which describe the estimates

and standard errors of covariate terms for thefinal latent class regressionmodels,

as well as the BIC table for the initial and the final latent class regressionmodels.

The full description of each covariate can be referred to Tables A.2.1 to A.2.3 in

Appendix A.

Table 7.2.5: ClassMembership Proportion Table of the Final Latent Class Regres-
sion Model with Covariates against the Latent Class Analysis Model without
Covariates for the R Program

Class 1 Class 2 Class 3
Without Covariates 0.9265 0.0654 0.0081
With Covariates 0.8746 0.1066 0.0187
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From Table 7.2.5, latent class 1 yielded the dominant proportion in both latent

class analysismodel (with covariates) and the final latent class regressionmodel,

with over 87%, followed by class 2 with 6.54% for latent class analysis model and

10.66% for final latent class regression model respectively. The smallest group

was class 3 with a very small proportion of 0.81% and 1.87% for latent class

analysis model and latent class regression model respectively.

The class membership proportion of class 1 in the final latent class regression

model (with covariates) was lower than that of the latent class analysis model

(without covariates). In contrast, the class membership proportions of class 2

and 3 for latent class regression model were greater. This observation indicated

that the inclusion of covariates into the final latent class regression model had

led to several students being re-allocated from class 1 to mostly class 2 and with

some being re-allocated to class 3.

Tables 7.2.6 to 7.2.8 exhibit the relationships between the drug-trying response

variables and covariates. A total of eleven covariates remained in the final latent

class regressionmodelwith covariates: cigarette smoking status (CgStat1), types

of smoking (CgPk1), frequency of purchasing cigarettes in shops (CgBuyF1),

frequency of drinking (AlFreq2), parents’ attitude towards drinking (AlPar1),

reasons for drinking (Al4W1), proportion estimate of drug-takers (DgEstim),

age of students (between 11 and 15) (Age), gender of students (Gender), fre-

quency of playing truant (TruantN) and Strategic Health Authority (SHA).

Firstly, for the cigarette smoking status (CgStat1) covariate, there was no sig-

nificant increase in odds ratios of the drug-trying behaviour across level 2 to

4, when comparing latent class 2 to class 1, though the significant odds ratios

of level 1 indicated that having a smoking history increased the odds of the

students in class 2 trying any soft drug. However, when comparing latent class
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3 to class 1, a significant increase in the odds ratios of the drug-trying behaviour

across level 2 to 4 was observed. This observation indicated that smoking more

heavily led to a higher likelihood of the students in class 3 trying any soft or

hard drug.

Secondly, for the types of smoking (CgPk1) covariate, it was found that the stu-

dents in class 2 who smoked hand-rolled cigarettes were more likely than those

in class 1 who did not smoke, by a significant odds ratio of e2.8901 = 17.9951, to

try a soft drug. This coefficient was higher than that representing the students

in class 2 who smoked in packed cigarettes, which yielded an odds ratio of

e1.5004 = 4.4835. Moreover, smoking in packed cigarettes appeared having amit-

igating effect on the likelihood of the students in class 2 trying a soft drug, since

the third level of the CgPk1 variable, representing the students who smoked in

bothpackedandhand-rolled cigarettes, yieldedanodds ratio of e2.5328 = 12.5887,

which laid between odds ratio of e2.8901 = 17.9951 and e1.5004 = 4.4835. Types of

smoking variable did not have any significant effect on the students in class 3 to

try any hard or soft drug, at 5 % significance level.

For the frequency of purchasing cigarettes in shops (CgBuyF1) covariate, the

students in both class 2 and class 3 who purchased cigarettes a few times (Level

1) or occasionally (level 2) were more likely to try any soft or hard drug than

those who did not, as shown by the significant odds ratios of e1.0947 = 2.9883

and e2.2023 = 9.0458 respectively. Moreover, the students in class 3 had stronger

effects than those in class 2, indicating that the students who purchased more

often were more prone to trying more soft or hard drugs. However, as purchas-

ing cigarettes were more often (i.e. beyond level 1 and level 2), the students in

both class 2 and class 3 were less likely to try any soft or hard drug than those

who purchased cigarettes a few times or occasionally.
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For the frequency of drinking (AlFreq2) covariate, estimates from the students

in class 2 showed a gradually increasing trend in the likelihood of trying any

soft drug, from significant odds ratios of e1.6907 = 5.4233 to e2.9914 = 19.9135,

when drinking behaviour became more serious. For the students in class 3, no

apparent trendwas observed from level 1 to level 5, only the drinkerswho drank

more than once per week and three to seven days in the previous week (heavy

drinkers, identified by class 6) were more likely than non-drinkers to try any

soft or hard drug, by a significant odds ratio of e2.3663 = 10.6579.

For the parents’ attitude towards drinking (AlPar1) covariate, those students

in class 2 who received more encouragement from parents to drink were less

likely to try a soft drug. The students in class 2 appeared less likely than those

students in class 3 to try a soft drug, with the odds ratio of e−0.4928 = 0.6109 for

the students in class 2, compared to the log odds ratio of e−0.1126 = 0.8935 for the

students in class 3.

For issues associated with the drinking (Al4W1) covariate, the students in both

class 2 and class 3 who had drunk in the last four weeks were more likely

to try any soft or hard drug, by odds ratios ranging from e0.5563 = 1.7442 to

e2.1587 = 8.6599. There was no apparent difference in the reason factors for the

students in class 2 trying any soft drug, as the estimates were largely similar,

between odds ratios of e0.5563 = 1.7442 and e0.8471 = 2.3329. Among the students

in class 3 who had drunk, those who had no issues related to drinking appeared

the least likely to try any soft or hard drug at an odds ratio of e1.0725 = 2.9227,

followed by those who had health issues, with an odds ratio of e1.5145 = 4.5471.

In addition, the students who had become aggressive or had experienced other

issues were slightly more likely to try any soft or hard drug, at a significant odds

ratio of e1.6807 = 5.3693, and those who had both issues were the most likely to

try any soft or hard drug, at a significant odds ratio of e2.1587 = 8.6599.
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On the other hand, the estimated proportion of known peers who took drugs

(DgEstim) covariate, the students in both class 2 and class 3who reported higher

proportions were more likely to try any soft or hard drug. Higher estimates for

the class 3 students than those class 2 students indicated that the class 3 students

were more likely to try more soft drugs if they knew people who took drugs.

From the Age and Gender covariates, older students in class 2 were more likely

to try any drug, at a significant odds ratio of e0.2563 = 1.2921. Boys were more

likely than girls in both class 2 and class 3 to try any soft or hard drug as well.

For the frequency of playing truant (TruantN) covariate, generally speaking,

students in both class 2 and class 3 who played truant more often were more

likely to try any soft or hard drug. The students in class 3 who played truant

for at least three times were the most likely to try a soft or hard drug, with a

significant odds ratio of e1.9173 = 6.8026.

Finally, the odds ratio estimates of the Strategic Health Authority (SHA) co-

variate revealed that London students were most likely to try any soft drug

(a significant odds ratio of e1.4395 = 4.2186 for ’Class 2 vs 1’ coefficient), when

compared to the students from North East. At the same time, London students

appeared most likely to try any soft or hard drug (odds ratio of e0.2759 = 1.3177

for ’Class 3 vs 1’ coefficient). EastMidlands students appearedmore likely to try

any soft drug (odds ratio of e0.2687 = 1.3083 for ’Class 2 vs 1’ coefficient), when

compared to students from North East. West Midlands students appeared the

least likely to try any soft or hard drug (odds ratio = e−1.0475 = 0.3508 for ’Class

3 vs 1’ coefficient). Across the entire covariate, the class 2 students from North

East region were less likely to try any soft drug than the students from the other

regions. On the other hand, students from London and South Central were
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more likely to try any soft drug than the students from North East.

The main covariate results of the final latent class regression model with co-

variates could be summarised as follows:

(1) for the smoking covariates: the students who smoked more heavily and

more often were more likely to try soft or hard drugs; smoking hand-rolled

cigarettes played a more important role than packed cigarettes in influencing

the students to try soft drugs and the students purchasing cigarettes a few times

were more likely to try soft or hard drugs, but the likelihood faded with an

increase in the frequency of cigarette purchase.

(2) For the drinking covariates: the students who drankmore heavily weremore

likely to be subject to drug-trying behaviour; more encouragement from parents

to drink led to lower likelihood for the students to try soft drugs. Also, students

having drunk in the last four weeks and were involved in both aggressive and

health issues and other issues were more likely to try soft or hard drugs.

(3) For the drug-related socio-demographic covariates: the students who knew

a larger proportion of people taking drugs were influenced by these people,

hence they were more likely to try soft or hard drugs; older boys were more

likely than younger girls to try drugs; students who had played truant more

often were more likely to try many drugs; and finally, the students from London

were the most likely to try drugs.

Apart from discussing the estimates and standard errors of the final latent class

regression model, we also discussed in this section the values of BIC, adjusted

BIC and AIC of the final latent class regression model, with either two classes

or three classes, in order to confirm the three-class option was the best option.

We did not fit the latent class regression models with four classes or more, due

to excessive computational complexity, which caused the process nearly not to
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progress at all. The BIC and adjusted BIC of the final latent class regression

model, is presented in Table 7.2.9 below.

Table 7.2.9: Table of BIC and Adjusted BIC of the Final Latent Class Regression
Model Across Ten Imputed Data Sets

Data Set BIC Adjusted BIC
2-class 3-class 2-class 3-class

1 14710.49 13964.04 14268.05449 13175.35209
2 14464.88 13756.91 14022.45049 12968.22409
3 14280.02 13612.68 13837.58649 12823.99009
4 14274.7 13656.75 13832.26649 12868.06009
5 14413.56 13611.97 13971.13049 12823.28609
6 14212.92 13548.4 13770.48049 12759.70809
7 14302.05 13634.92 13859.61449 12846.23209
8 14550.05 13813.42 14107.61849 13024.73609
9 14575 13795.36 14132.56649 13006.67409

10 14151.19 13846.63 14184.51249 13057.94209

Table 7.2.9 showed that final latent class regression model with the three latent

classes that had lower BIC and adjusted BIC than the models with the two latent

classes. Actually, throughout all the steps in the backward elimination, the latent

class regression models with three latent classes were always chosen instead of

the models with two latent classes. Latent Class regression models with four or

more latent classes, in this case, were computationally challenging to fit.

The combined class-conditional posterior probabilities for the drug-trying re-

sponse variables in the final latent class regression model, based on ten MICE-

imputed data sets, were generated, with several of them being plotted and

displayed in Figure 7.4 below.
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From Figure 7.4, the class-conditional posterior probabilities in the final latent

class regression model with covariates were found to be similar with those in

the latent class analysis model without covariates and the initial latent class

regression model with covariates, as seen from Figures 7.2 and 7.3 respectively,

meaning that the grouping of the three classes, namely (1) nodrugs and cannabis

or gas users; (2) soft drug users and (3) soft and hard drug users were similar,

regardless of the inclusion of covariates.

Connecting Figure 7.4 with Table 7.2.5, class 1 represented the class that com-

prised of more than 87 % of the students, most of them had not tried any drug

but had tried cannabis or gas. Class 2 comprised of about 10 % of the students,

most of them had tried cannabis before (with a class conditional posterior prob-

ability of more than 75 %) and some of them had tried other soft drugs such

as poppers, magic mushrooms and gas. Those in this class did not tend to use

hard drugs such as heroin, methadone or crack. Class 3 represented about 1 %

of the students who were soft drug or hard drug users.

7.2.8 Discussion and Limitation

Latent class analysis and latent class regression model provided an alternative

perspective for investigating drug-trying behaviours. These models were useful

as wewere able to identify a number of sub-groups and factor classes predicting

membership. Specifically, the latent class regression model allowed for classifi-

cation and regression of latent behaviour on to potential predictors.

In this section, we discuss the possible explanation for the significant covari-

ates resulting from the final latent class regression model. We also contrast the

predictors of drug behaviour with those found in the Year 2010 Survey Report,

summarised in Section 1.3.
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Firstly, we considered the smoking covariates. One possible reason that may

explain the positive association between the students who smokedmore heavily

and more often and the tendency for the students to try soft or hard drugs is

that smoking more heavily led to more exposure to drugs. Table 5.2.3 in respect

of the univariate logistic regression in Section 5.2 suggested that students who

knew smoking peers were more likely to try cannabis. From Tables 5.2.5 and

5.2.6, trying cannabis was found to be associated with trying many other drugs

such as cocaine, magic mushrooms and poppers. Another possible reason is

that cigarettes contained an addictive called nicotine which has been proven

to be a preceding substance of cocaine. With the findings from Tables 5.2.5

and 5.2.6 that trying cocaine was associated with trying many other drugs such

as heroin, it is likely that the students will become addicted to hard drugs as

long as they smoke regularly. The finding of the positive associations between

the cigarette smoking status in general and the students’ drug-trying behaviour

confirmed the finding in Fuller et al. (2011) Report, as well as the univariate

logistic regression findings in Chapter 5. In addition, the odds ratio for the

class 2 students who were ex-smokers was higher than that for the class 3 who

were ex-smokers, but the odds ratios for the class 2 who were current smokers

were lower than that for the class 3 who were current smokers. These findings

suggest two further points: (1) regardless of when the students start to smoke,

they are more likely than non-smokers to try soft drugs and (2) current smokers

are more inclined to try soft or hard drugs than ex-smokers.

Unlike packed cigarettes, for hand-rolled cigarettes, smokers need to fill in a

cigarette paper with tobacco and roll it by hand. In this way, smokers who are

also drug users can gain more control in the size, the density and the type of

tobacco as well as drug powder they are going to smoke. This may explain the

students who smoke hand-rolled cigarettes are more likely to try soft drugs.
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Also, heavy smokers can pack more tobacco in a single piece of paper to form

a cigarette. These heavy smokers of hand-rolled cigarettes are positively associ-

ated with the tendency to try soft and hard drugs as discussed in the previous

paragraph. Hence, to consider how to mitigate drug abuse, the focus should

be more on hand-rolled cigarette smokers than packed cigarette smokers and

non-smokers.

The finding that the students who purchased cigarettes quite often were more

likely to try soft or hard drugs may be explained by the positive association

between the students who smoked more often and the tendency for them to try

soft or hard drugs as discussed in the previous paragraph. However, for the

finding that if the frequency of purchasing cigarettes was more often then the

students were less likely to try soft and hard drugs, the plausible reason may be

these students are more obsessed with smoking rather than taking drugs. The

similar trend was observed in the univariate logistic regression in Chapter 5 for

CgBuyF1 covariate with cannabis or amphetamines as response variables.

Secondly, we considered the findings for the drinking covariates. The find-

ing for the frequency of drinking alcohol indicated that if the class 2 students

drank more heavily, they would be more likely to try soft drugs. This finding

resembles the result of the logistic regression in (Fuller et al., 2011) report that

the frequency of drinking was associated with trying drugs in the previous

week. It also agreed to that found in the univariate logistic regression in Section

5.2, which suggested that the higher frequency of drinking contributed to more

students trying cannabis, magic mushrooms and poppers. This trend was not

clearly seen for the class 3 students, perhaps due to sparse data available in class

3. However, the result that the class 3 students who drank at least once a week

and three to seven times in the previous week were more likely than other stu-

dents to try soft or hard drugs matches with the generally positive association
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between the frequency of drinking alcohol and drug-trying behaviour.

The result about parents’ attitude towards drinking may reflect a situation that

if the parents can provide more support to the students then they may be less

likely to try drugs. One possible reason is that the students would be diverted

to consume alcohol instead of trying drugs. This result supported with the

finding in the univariate logistic regression in Section 5.2 that parents’ attitude

to drinking was negatively associated with trying cannabis. The degree of drop

in likelihood for the class 2 students was larger than that for the class 3 students.

This finding can be explained by the understanding that the students, who had

tried many types of drugs, are generally more unwilling to abandon their desire

to try drugs than those class 2 students who had tried fewer types of drugs.

Then we considered the results of the issues that the students came across when

they drank in the last four weeks. Here, the similar odds ratio estimates for the

class 2 and class 3 students indicated that, regardless of any issues which the

drinkers had, those who had drunk four weeks prior to the survey were more

likely to try any soft or hard drug. This finding resembles the finding from the

frequency of drinking that generally there was a positive association between

the frequency of drinking alcohol and drug-trying behaviour. Results which

showed that the class 3 students who had at least one issue were significantly

likely to try soft or hard drugs may need more concern.

Generally speaking, alcohol control for adolescents in England is essential if

the government officials wish to reduce drug-taking activities. Relying on par-

ents is not sufficiently effective in reducing drug-taking activities.

The positive association between the estimated proportion of peers who took

drugs (DgEstim1) and the drug-trying behaviour, for the class 2 and the class



CHAPTER 7. LATENT CLASS ANALYSIS AND K-MEANS CLUSTERING 289

3 students, confirms the findings in the univariate logistic regression in Section

5.2 that cannabis and magic mushrooms were positively associated with the

DgEstim1 variable. A plausible reason is the peer influence on drug-trying be-

haviour, with the students in class 3 who had tried many soft or hard drugs are

more influenced by their drug-taking peers.

For the Age covariate, the positive odds ratio for the class 2 students matches

with the result found in the Year 2010 Survey Report that has been mentioned

in Section 1.3.3. It also matches with the findings in the univariate logistic

regression in Section 5.2 that cannabis and magic mushrooms were positively

associated with the Age variable. This result indicates that the older students

are more likely to try soft drugs. On the other hand, despite insignificant odds

ratio for the class 3 students, it showed the negative odds ratio which suggests

that the older students are less likely to try many soft or hard drugs. This result

also matches with the finding in the univariate logistic regression that Age was

negatively correlated with the LSD and gas. One possible explanation is that

the younger students may have tried drugs had tried several of them. However,

as they grow older, they are more inclined to abandon LSD and gas. Instead,

they shift their attention to cannabis and/or magic mushrooms and concentrate

on fewer types of drugs.

The finding that girls were less likely than boys to try drugs is consistent with

Fuller’s results (Fuller et al. (2011), Fuller and Hawkins (2014)). However, the

smaller negative odds ratio for the class 3 students indicated that gender is a

less important factor for the drug triers who have tried many drugs.

In addition, the odds ratio results of the positive association between frequency

of truancy (TruantN) and drug-trying behaviour resemble the result in Fuller

et al. (2011) as mentioned in Section 1.3.3 that the frequency of truant was pos-
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itively associated with drug-trying behaviour. Despite the insignificant result

in level 2 in respect of the odds ratios for the class 3 students, all the odds ratio

estimates supported this explanation. The insignificant result for the class 3 stu-

dents may due to sparse data available in class 3, which results in a rather large

standard error, rendering the estimate to be insignificant. The higher odds ratios

for the class 3 students compared with those for the class 2 students indicated

that playing truant more seriously can lead to students trying more soft or hard

drugs.

Finally, the inclusion of the Strategic Health Authority (SHA) in the final la-

tent class regression model produced a new finding that results from both the

univariate logistic regression in Section 5.2 of Chapter 5 and the logistic regres-

sion that the researchers in Fuller et al. (2011) report, as described in Section

1.3.3 of Chapter 1, agree with each other. In this part, the higher likelihood for

the students from London to try soft or hard drugs can be explained by dense

population and a greater degree of urbanization in the London area, packing

drug-related activities as well as closer purchasing points within London. In

contrast, the relative lower likelihood for the students from East Midlands to try

soft drugs can be explained by the relatively less dense population and a large

area of countryside that provides more space for the students to pursue outdoor

activities.

When comparing all the standard errors in Tables 7.2.6 and 7.2.7, the stan-

dard errors for class 3 students were much larger than those for class 2. This can

be explained by the much smaller population in class 3 than class 2 that more

significant estimates were found for class 2 responses than class 3 responses.

However, having considered many measures when running latent class regres-

sion models, the following limitations were identified:



CHAPTER 7. LATENT CLASS ANALYSIS AND K-MEANS CLUSTERING 291

(1) If the positive response rate was too low, the result might fluctuate wildly,

and the estimates might be unstable.

(2) The latent class analysis was computationally intensive. It was computa-

tionally impossible to include all the smoking, drinking and drug-related socio-

demographic covariates in the latent class analysis with backward elimination.

We needed to pre-select those covariates for the latent class analysis with back-

ward elimination.

The latent class analysis provides a plausible classification of the students based

on their drug-trying patterns for this research. In order to provide another

perspective on classification of the students, we conducted K-means clustering,

which is discussed in Section 7.3 below.

7.3 K-means Clustering

K-means clustering is an alternative algorithm of latent class analysis in stratify-

ing the students based on the pattern, without connection to other covariates. In

this research, we compare the results of our latent class analysis with those of K-

means clustering, in order to check the validity of classification of the students.

We employ K-means clustering to partition all 7,296 students, in order to group

the students who are close to some others to form clusters. In the next section

(Section 7.3.1), we introduce K-means clustering and explain how it is carried

out in this research. Results of K-means clustering are discussed in Section 7.3.4.

7.3.1 Introduction

Clements (1954) suggested the idea of data clustering when dealing with an

anthropological data set. Over more than fifty years, data clustering is ubiq-
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uitously applied to a wide range of disciplines, for example, statistics, social

science, biology and medical research, for its little requirement of assumption.

In general, K-means clustering aims to allocate respondents into clusters bymin-

imising the total square error between each respondent and the cluster mean

point for each corresponding cluster (Jain et al., 1999).

Data clustering is an unsupervised classification (or intrinsic classification) of

data pattern, since no category labels denoting a priori partition of respondents

are employed (Jain et al. (1999); Jain and Dubes (1988)). Clustering algorithms

can be generally classified into hierarchical clustering and partitional clustering

respectively (Jain, 2010). Hierarchical clustering involves clustering responses

into a nested sequence of groups, whereas partitional clustering involves split-

ting responses into separate clusters (Jain and Dubes, 1988).

7.3.2 Theory

K-means clustering is a process of partitioning the N cases into the K clusters

in an efficient way, in the sense of within-cluster variance among the J response

variables (MacQueen, 1967). Four k-means algorithm options are included in a

K-means clustering function, kmeans(.), in the R program, (Hartigan andWong

(1979); MacQueen (1967); Lloyd (1982); Forgy (1965)). Lloyd’s method can be

regarded as Voronoi iteration, generating Voronoi tessellation. However, Telgar-

sky and Vattani (2010) suggested that Hartigan and Wong’s method provided

better performance on the synthetic data in the paper than Lloyd’s method. The

R manual regarding the kmeans function suggested that Hartigan and Wong’s

method is better than the other three methods mentioned.

Hartigan and Wong (1979)’s method is based on the K-means clustering al-
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gorithm described by Hartigan (1975). Suppose there are n cases, and there are

J variables. Euclidean distances are adopted for measuring distances between a

data point and its corresponding centroid. Suppose each ith case of jth variable

(i = 1, . . . ,n, j = 1, . . . ,J) yields a value A(i, j), the partition P(n,K) is composed of

each cluster 1, . . . ,K for each case 1, . . . ,n in each cluster k = 1, . . . ,K, the mean of

the jth variable over all cases in kth cluster is denoted by B(k, j), and the number

of cases in cluster k is n(k), the distance between the ith case and kth cluster is

expressed as follows:

D(i,k) = ( ∑
1≤ j≤J

[A(i, j)−B(k, j)]2)1/2. (7.30)

The partitioning error term, whichmeasures the sumof distances between every

point i and its corresponding mean point, is expressed as follows:

e[P(n,K)] = ∑
1≤i≤n

D[i,k(i)]2, (7.31)

where k(i) is the cluster including the ith case. Tominimise the partitioning error

by general searching procedure, a portion of respondents are reallocated from

one cluster to another. The procedure endswhen no suchmovement reduces the

error, where the lowest partition error is achieved. The procedure for Hartigan

(1975)’s algorithm is listed as follows:

Step 1: Assume initial clusters 1, . . . ,K. Then compute B(k, j), for 1 ≤ j ≤ J

and 1≤ k ≤ K and the initial partitioning error as:

e[P(n,K)] = ∑
1≤i≤n

D[i,k(i)]2, (7.32)

where D[i,k(i)] denotes the Euclidean distance between i and the cluster mean

of the cluster containing i.
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Step 2: For the first case, compute, for each cluster k,

n(k)D[1,k]2

n(k)+1
− n[k(1)]D[1,k(1)]2

n[k(1)]−1
.

This term refers to the increase in error in transferring the first case from cluster

k(1) to cluster k. Whenever the minimum of this quantity over all k 6= k(1) is

negative, transfer the first case from cluster k(1) to the minimal cluster k, adjust

the cluster means of k(1) and the minimal k, then add the increase in error (the

error term is negative) to e[P(n,K)].

Step 3: Repeat Step 2 for ith case, for 2≤ i≤ n.

Step 4: This procedure ends if no movement of any case from one cluster to

another; otherwise, return to Step 2.

7.3.3 Application

In this research, we applied K-means clustering to the 15 drug-trying response

variables using all 7,296 students. The clustering was applied to each of the

ten imputed data sets, resulting in ten K-means clustering model outputs. The

K-means clustering was implemented in the R program using the kmeans func-

tion. It aimed to allocate all the students into K clusters, such that the total

sum of squares of Euclidean distances, from each point to its corresponding

assigned cluster, was minimised. Since the kmeans function in R program chose

the clustering model generated from G random iterations started with the least

sum of squares, it was the best to specify a multiple number of random itera-

tions started by specifying the option in the kmeans function, with the syntax

"nstart=G>2". In this research, G was set to be 1000 to ensure convergence and

consistent results, even when adopting different random seeds. Also, a random
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seed number 4321 was used for generating results. One to eight-cluster models

(K = 1,2,3,4,5,6,7,8) were investigated. In order to select the optimal number

of cluster, the "Elbow"methodwas adopted, in which a significant turning point

on the total sum of squares graph was identified and the corresponding optimal

number of cluster was identified (Ketchen and Shook, 1996).

7.3.4 Results

When adopting the "Elbow" method, a convex curve is generated in Figure 7.5

for K-means clustering models with one to eight clusters, which revealed the

most balanced point for the number of clusters.

Figure 7.5: Sumof SquaresGraphs forK-meansClusteringModelswithDifferent
Number of Clusters

From Figure 7.5, the graph yielded a significant turning point at four clusters,

where adding more clusters to K-means clustering model might lead to dimin-

ishing returns. Therefore, the four-cluster K-means clustering model (K = 4)
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was chosen.

The frequency table and the percentage table for the four-cluster K-means clus-

tering model are displayed in Table 7.3.1 and 7.3.2 respectively:

Table 7.3.1: Frequency Table for Four-Cluster K-means ClusteringModel Across
Ten Imputed Data Sets

K-means Cluster
Data Set Cluster 1 Cluster 2 Cluster 3 Cluster 4

1 6138 462 607 89
2 6141 459 597 99
3 6143 460 591 102
4 6141 465 590 100
5 6145 453 598 100
6 6147 451 595 103
7 6145 457 588 106
8 6144 459 586 107
9 6141 457 597 101

10 6137 459 599 101

Table 7.3.2: Percentage Table (%) for Four-Cluster K-means Clustering Model
Across Ten Imputed Data Sets

K-means Cluster
Data Set Cluster 1 Cluster 2 Cluster 3 Cluster 4

1 84.13 6.33 8.32 1.22
2 84.17 6.29 8.18 1.36
3 84.20 6.30 8.10 1.40
4 84.17 6.37 8.09 1.37
5 84.22 6.21 8.20 1.37
6 84.25 6.18 8.16 1.41
7 84.22 6.26 8.06 1.45
8 84.21 6.29 8.03 1.47
9 84.17 6.26 8.18 1.38

10 84.11 6.29 8.21 1.38

From Table 7.3.1, the first cluster was the dominant group, followed by the third

cluster, then the second cluster and finally the fourth cluster. According to Table

7.3.2, over 84% of the students were in the first group, 6% of the students were

in the second group, 8% in the third group and more than 1.2% in the fourth

group. The bar plots for cluster-conditional probabilities is displayed in Figure
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7.6.

Figure 7.6: Cluster-conditional Probability Bar Plot for Drug-trying Response
Variables in K-means Clustering Model for Data Set 1

Fromthebarplots inFigure 7.6, four clusterswithdifferent cluster-conditional

probability patterns were observed. Cluster 1 consisted of a majority of the stu-

dents (about 84 %) who had not tried any drug; Cluster 2 consisted of about 6

% of the students who mostly had tried gas only. At the same time, Cluster 3

consisted of approximately 8 % of the students who had tried cannabis, pop-

pers and gas. The cluster-conditional probability of trying Cannabis was much

higher than those cluster-conditional probabilities for poppers and gas. Cluster

4 consisted of barely more than 1 % of the students who had tried many drugs.

Another observation from Figure 7.6 was the relatively high cluster-conditional

probabilities of trying: (1) cannabis, of which the usage was concentrated in

clusters 3 and 4, and (2) gas, of which the usage was concentrated in clusters 2

and 4.

The four clusters modelled by K-means could be interpreted as: (1) the largest

cluster that generally consisted of the students who had not tried any drug (clus-

ter 1); (2) the third largest cluster that generally consisted of the students who
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mostly had tried gas only (cluster 2); (3) the second largest cluster that gener-

ally consisted of the students who had tried soft drugs (i.e. cannabis, poppers

and gas) (cluster 3) and (4) the smallest cluster that generally consisted of the

students who had tried soft and hard drugs (cluster 4). In general, the clusters

were assigned according to the types of drugs the students had tried.

7.3.5 Limitation

According to Santini (2016), K-means clustering is easy to implement and when

compared to hierarchical clustering, it requires less computational time. How-

ever, in running K-means clustering model, the following limitations were iden-

tified:

(1) K-means clustering only clustered cases according to the Euclidean distances

between data points of students and their mean point. For data sets with only

binomial response variables, regardless of the drug-trying pattern of a student,

all cases would be treated the same, given their Euclidean distances are the

same.

7.4 Comparison of Latent Class Analysis and

K-means Clustering and Discussion

A three-class latent class analysis model without covariates and a four-cluster K-

means clustering model were compared in two aspects: (1) group determining

method and (2) group assignment.

7.4.1 Group Determining Method

In the latent class analysis, the EMalgorithmwas adopted, whichmaximised the

log-likelihood of the latent class analysis model and the latent class regression
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model. The probability mass function of the latent class analysis model was also

taken into account, and the drug-trying pattern of each student was therefore

assessed. In other words, different drug-trying patterns of the students led to

different probability mass functions, thus leading to different clustering results.

On the other hand, K-means clustering employed Euclidean distance as one of

the clustering criteria. The main aim of K-means clustering was to minimise the

total Euclidean distances between the cluster centroids and case points regard-

less of the students’ drug-trying patterns. In other words, the students of same

Euclidean distance would be treated in the same case and would be allocated

to the same cluster. To conclude, the latent class analysis took into account the

drug-trying patterns of the students in determining which cluster the students

were allocated to, whereas K-means clustering did not, but rather allocated the

students according to their Euclidean distances.

On the other hand, in the latent class analysis, the optimal number of latent

classes was easily identified by the lowest BIC or adjusted BIC value. How-

ever, in determining the optimal number of clusters for K-means clustering,

we could only resort to a more judgmental method, such as "Elbow Method",

where a point of number of clusters should be chosen if a diminishing return

was detected beyond such point.

7.4.2 Group Assignment

After running the latent class analysis model, the latent class regression model

and the K-means clusteringmodel, similarities in class versus cluster behaviours

were examined. When comparing Figure 7.2 with Figure 7.6, it was observed

that Class 1 of the latent class analysis model and latent class regression model

was basically split into clusters 1 and 2 of the K-means clustering model, where

the majority of class 1 members were the students who had not tried any drug
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and the much smaller cluster 2 comprised of 6.18 - 6.33% of the students who

mostly had tried gas. There were also several students from class 1 of latent

class analysis model who were slotted in either cluster 3 or 4 of K-means clus-

tering model. Class 2 of the latent class models was corresponded to cluster 3 of

K-means clustering model, due to the similar class/cluster-conditional proba-

bilities of trying any soft drug, where the class/cluster-conditional probabilities

for cannabis, poppers and gaswere relatively high. Similarly, class 3 of the latent

class models was corresponded to cluster 4 of K-means clustering model, due to

the similar probability profile of high class/cluster-conditional probabilities of

trying soft or hard drugs.

In general, comparing Table 7.3.1 with Table 7.2.3, the total frequency of stu-

dents in clusters 1 and 2 in K-means clustering model was slightly smaller than

the frequency of class 1 in the latent class analysis models. At the same time,

the frequency of students in cluster 3 in K-means clustering model was slightly

greater than the frequency of class 2 in the latent class analysis models, whereas

the frequency of students in cluster 4 in the former was smaller than that of class

3 in the latter. The aforesaid slight frequency discrepancies can be explained

by the reason that a small proportion of the students in classes 1 and 3 in the

latent class analysis models may be allocated to cluster 3 in K-means clustering

model, due to shorter Euclidean distance to the centroid of cluster 3. This re-

flects the discrepancy of individual predicted classmembership frommaximum

likelihood estimates to cluster allocation based on the shortest total Euclidean

distance. Despite the slight frequency discrepancies issue as mentioned above,

basically, the K-means clustering model supported the validity of classification

of the students in the latent class analysis models.

Generally speaking, though K-means clustering provides a more widespread

allocation of students, latent class analysis was considered as a more robust
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allocation method in modelling drug-trying behaviour, due to a greater consid-

eration of data pattern in deciding the allocation of groups.

7.5 Summary

In this chapter, the latent class analysis classified the students in accordancewith

their drug-trying patterns into three classes: (1) class 1: the students tended to

not have tried any drug except for cannabis or gas; (2) class 2: the students were

more likely to have tried soft drugs (e.g. cannabis, magic mushrooms, poppers

or gas) only (3) and class 3: the students had increased tendency to have tried

both soft drugs and hard drugs.

The selected 22 covariates were included into the latent class regression model

which attempted to explain the relationship between the students of different

classeswith respect to their drug-trying patterns and the smoking, drinking and

drug-related socio-demographic factors via a latent variable. The latent class

regression model was conducted by backward elimination by Rubin’s rule with

Wald’s test.

The final latent class regression model revealed that nine covariates were pos-

itively associated with the drug-trying behaviour of the students. These nine

covariates were: frequency of smoking (CgStat1), type of smoking (CgPk1),

frequency of purchasing cigarette (CgBuyF1), frequency of drinking (AlFreq2),

reason of drinking (Al4W1), proportion estimate of drug-takers (DgEstim), fre-

quency of truant (TruantN), age (Age) and Strategic Health Authority (SHA).

On the other hand, two covariates were negatively associated with the drug-

trying behaviour of the students: family’s attitude towards drinking (AlPar1)

and gender (Gender). These findings of the latent class regression model were

discussed in details in Section 7.2.8.
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Though the latent class analysis provided a plausible classification of the stu-

dents based on their drug-trying patterns for this research, in order to provide

an alternative means of classification of the students, K-means clustering was

conducted, which supported the classification made by the latent class analysis:

class 1 was associated with clusters 1 and 2; class 2 was associated with cluster

3, and class 3 was associated with cluster 4.



Chapter 8

Conclusion

Drug use problem is a global issue and has presented a long-term problem in

the United Kingdom. Over the years, the United Kingdom Government has

devoted its efforts to devising policies aimed at combating drug use problem in

the country. To provide helpful guidance to the United Kingdom Government

in developing its drug policies, researchers have continuously conducted related

drug use studies in order to understand drug-trying behaviour of young people

and to explore factors that were associated with such drug-trying behaviour.

The "Smoking, Drinking and Drug Use among Young People in England" sur-

vey series is amajor and exemplary annual survey series in England. However, a

review of this survey series revealed several limitations, in particular, the extent

of the data analysis and the handling of non-responses.

This research reviewed the "Smoking, Drinking and Drug Use among Young

People in England" 2010 survey (the Year 2010 Survey) in terms of its data col-

lection, data processing and data analysis. The primary research aim was to

enrich understanding of young people’s drug-trying behaviour in England and

factors that were associatedwith their behaviour and hence to improve the qual-

ity of future drug-related studies, through appropriate handling ofmissing data

and, built upon thework done in the Year 2010 Survey, developing and applying

303
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new statistical methodologies to permit analysis of multivariate categorical data

collected by the Year 2010 Survey study.

To achieve the aim of this research, the main work done in this research was as

follows:

(1) The original data set of the Year 2010 Survey was modified into a cleaner

working data set which was more suitable for this research. Modification works

included a proper recording of the missing data, combining several variables

into a single variable, where appropriate, and collapsing factor levels of eight

variables in the original data set. Details of modification of the Year 2010 Survey

data set to form the working data set of this research were reported in Chapter

2.

(2) Exploratory data analysis in respect of the working data set was conducted.

The purposes were to clearly identify any student who had tried a certain drug

from those who had never engaged in such drugs before, which helped deeper

understanding of how the behaviours of trying drugs were associated mutu-

ally (i.e. drug associations), as well as how the smoking, drinking and drug-

related socio-demographic factors were associated with students’ drug-trying

behaviour. Details of the exploratory data analysis of the working data set were

reported in Chapter 3.

(3) Missing data problem was another limitation of the Year 2010 Survey. To

properly deal with the missing data problem that existed in the working data

set, the following procedures were carried out. Firstly we determined the type

of missingness for each variable included in the working data set with expla-

nations and whether the missingness was ignorable. Secondly, we adopted

several imputation methods on the working data set and compared the results
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of the imputed data sets in respect of different imputation methods, in order to

evaluate the differences in parameter estimates. Finally, for the 15 drug-trying

response variables in the working data set as well as other smoking, drink-

ing and drug-related socio-demographic covariates, we imputed the missing

groups by multiple imputation by chained equations (MICE). As such, missing

data could be assigned more unbiased values based on other covariates. Details

about handlingmissingdata in theworkingdata setwere discussed inChapter 4.

(4) In addition to the exploratory analysis in Chapter 3, development and ap-

plication of advanced statistical methodologies are carried out to analyse the

working data set. The objectives of this analysis were: (1) to further investi-

gate drug associations, and (2) to further explore the specific contributions of

the smoking, drinking and drug-related socio-demographic factors to students’

drug-trying behaviour in the Year 2010 Survey. These statistical methodologies

conducted in this research were:

(a) Both univariate logistic regression models and log-linear analysis models

were applied to the working data set to further explore possible interactions

among drug-trying response variables, and to further study the associations

of the smoking, drinking and drug-related socio-demographic covariates with

the students’ drug-trying behaviour. Results of the univariate logistic regres-

sion models reported the one-way interactions among the 15 drug-trying re-

sponse variables as well as that numerous smoking, drinking and drug-related

socio-demographic covariates were associated with the students’ drug-trying

behaviour. Results of the log-linear analysis models reported the two-way in-

teractions among the fifteen drug-trying response variables. Details of both

univariate logistic analysis and log-linear analysis including their results were

reported in Chapter 5.
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(b) A two-parameter item response theorymodelwas implemented on thework-

ing data set through two approaches, namely the marginal approach and the

fully Bayesian approach, to further investigate the relationships between drug-

trying response variables and the students’ drug-trying behaviour. Results of

the item response theory models reported in Chapter 6 permitted an investiga-

tion of the probability of the students in trying each drug and the discrimination

among the students within each drug-trying response variable.

(c) A latent class analysis model and K-means clustering model were applied

to the working data set to examine the allocation of the students to a specific

number of classes, their drug-trying patterns, as well as the pattern of drug-

trying behaviour in each class. The latent class analysis aimed at how the

students should be best classified in accordance with their drug-trying patterns

that might influence the subsequent investigation of these students in this re-

search. In the K-means clustering, the best clustering criteria were identified by

observing mean values of the fifteen drug-trying response variables, without

any latent variable. In addition, the latent class analysis was combined with

the logistic regression model to form a latent class regression model, which ex-

plained the relationships between the students of different classes with respect

to their drug-trying behaviour and the smoking, drinking and drug-related

socio-demographic factors via a latent variable. Details of latent class analysis

and K-means clustering as well as their findings were reported in Chapter 7.

8.1 Data Processing

In this research, to reduce the complexity of the original data set of the Year 2010

Survey, efforts were spent to eliminate some unnecessary variables and factor

levels as well as to reduce the number of types of missingness from three to one.

In summary, three types of modification were made to the original data set.
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Firstly, there were an excessive number of variables in the original data set,

and a few variables contain excessive number of factor levels. In this research,

the working data set was formed by including all drug-trying response vari-

ables and selected variables that were closely related to drug-trying among

adolescents. Several selected variables were combined with others to form new

variables. Within several selected variables, factor levels with similar log odds

were combined together. The result was a working data set containing fewer

but more relevant variables and several variables were with fewer factor levels.

Secondly, regarding the missing data of the original data set, the challenge

was to mitigate the number of missing data groups from three to one. This was

done by examining the questionnaire questions and deciding how the following

missing data categories should be treated: (1) missingness due to questionnaire

design; (2) missingness due to repetitive questions and (3) missingness due to

non-response or "I don’t know" response.

Further processing of the original data set of the Year 2010 Survey was done

to generate the working data set of this research that could derive benefits in

three dimensions, namely, (1) increasing the response rate of several variables

by assigning missingness by design to appropriate values; (2) reducing the oc-

currence of empty cells, and (3) reducing the complexity of statistical modelling.

8.2 Findings of Exploratory Data Analysis

Before carrying out further statistical analyses for the purposes of this research

exploratory data analysis was conducted on the working data set to explore fur-

ther the associations and relationships among drug-trying response variables

and covariates (i.e. smoking, drinking and drug-related socio-demographic
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variables). Compared with the findings in the Year 2010 Survey report, key

findings of the exploratory data analysis which supported the findings in the

2010 Year Survey report were:

(1) Results of the percentage contingency table of drug-trying response vari-

ables confirmed that cannabis was the most tried drug (9.06 %) by the students,

followed by gas (8.09 %). The least tried drug was tranquillisers (0.44 %).

(2) Results of the percentage contingency tables, box plots and polychoric corre-

lation plots consistently showed a strong positive association between smoking

and drug-trying behaviour of the students in England. However, there were

different patterns of pairwise associations between the smoking variables and

the 15 drugs.

(3) Similar to the smoking variable, results of the percentage contingency ta-

bles, box plots and polychoric correlation plots were consistent to the finding in

the Year 2010 Survey report that there was a positive association between drink-

ing alcohol and drug-trying behaviour of the students in England. Also, there

were different patterns of pairwise associations between the drinking variables

and the 15 drugs.

(4) For the drug-related socio-demographic variables, results of the percent-

age contingency tables, box plots and polychoric correlation plots supported the

findings in the Year 2010 Survey report that the drug-related socio-demographic

variables, namely, (a) age of the students (Age), (b) how often the students had

been excluded from schools (ExClAN1) and (c) how often the students played

truant (Truant1), were strongly and positively associated with drug-trying re-

sponse variables. However, these three drug-related socio-demographic vari-

ables exerted different patterns of pairwise associations with the 15 drugs.
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Moreover, additional key findings in relation to the associations and relation-

ships among drug-trying response variables and covariates (i.e. the smoking,

drinking and drug-related socio-demographic variables), which were not re-

ported in the Year 2010 Survey report, were found by the exploratory data

analysis. They were:

(1) Results of the percentage contingency tables, box plots and polychoric cor-

relation plots generally showed that the 15 drug-trying response variables were

highly correlated with each other.

(2) Results of the percentage contingency tables, box plots and polychoric cor-

relation plots further revealed that the strong positive associations between

smoking and drug-trying behaviour of the students in England were highly

contributed by the following smoking covariates: (a) the attitude of the stu-

dents’ family towards smoking (CgFam1); (b) the students’ cigarette smoking

status (CgStat1); (c) number of cigarettes smoked by the students in the previous

week (Cg7Num); (d) the frequency of purchasing cigarettes from shops by the

students (CgBuyF1); (e) sources of obtaining cigarettes by the students (CgGet);

(f) whether there were smokers inside the students’ houses (CgWho1) as well as

(g) the proportion of people a student knows who smoke (CgEstim).

(3) Results of the percentage contingency tables, box plots and polychoric corre-

lation plots also further revealed that the positive associations between drinking

and drug-trying behaviour of the students in England was mainly contributed

by the following drinking covariates: (a) the attitude of the students’ family

towards drinking alcohol (AlPar1); (b) usual frequency of drinking alcohol by

the students (AlFreq2); (c) sources of buying alcohol by the students (AlBuy);

(d) whether there were drinkers inside the students’ houses (AlWho1); (e) types
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of incidences when the students drank alcohol (Al4W1) as well as (f) the pro-

portion of people a student knows who drank alcohol (AlEstim).

(4) The three drug-related socio-demographic variables, namely (a) age of the

students (Age); (b) how often the students had been excluded from schools (Ex-

ClAN1) and (c) howoften the students played truant (Truant1), were particularly

strongly correlated with the five drugs: cannabis, poppers, cocaine, ecstasy and

magic mushrooms.

(5) The Year 2010 Year Survey report stated that "girls were less likely than

boys to have taken drugs in the last year". According to the percentage con-

tingency table in respect the gender variable (Gender), it was revealed that the

aforesaid statement was valid for 7 drugs (cannabis, magic mushrooms, crack,

LSD, ketamine, anabolic steroids and tranquillisers) of which the proportion

percentages of male students trying them were slightly higher than female stu-

dents. On the other hand, for the other 8 drugs (heroin, cocaine, methadone,

ecstasy, amphetamines, poppers, gas and other drugs), the results of the percent-

age tabulates showed the opposite. Similarly, the Year 2010 Survey report stated

that the school-level variable (percentage of pupils eligible for the free school

meals) was not significantly associated with drug use in the survey. However,

results of the percentage contingency table in respect whether students have

enrolled in free school meal scheme (FSM1) indicated that students involved in

the free school meal scheme were more likely to try cannabis, heroin, cocaine,

magic mushrooms, methadone, ketamine, gas and tranquillisers.

The above additional key findings by the exploratory data analysis in relation

to the associations and relationships among drug-trying response variables and

covariates reflected that the data analysis could be further enhanced by employ-

ing more sophisticated statistical models to estimate the dependencies between



CHAPTER 8. CONCLUSION 311

drug-trying response variables and other related covariates as well as to further

study the relationships between drug-trying response variables.

8.3 Multiple Imputation

Another challenge to this research was to manage the missing data in the work-

ing data set with appropriate values, such that statistical inferences could be

properly interpreted. In the working data set for this research, there was on

average approximately 4 % of the data missing in each variable, with a range

between 0.58 % and 16.98 %. If themissing data were not imputed properly, bias

on estimates might occur. In order to overcome potential limitations caused by

missing data, this research successfully utilised a fully Bayesian framework and

also multiple imputation by chained equations (MICE). Details of employment

of fully Bayesian framework andMICE scheme were discussed in Chapter 4. As

discussed in Chapter 4, the missingness of the working data set was diagnosed

as MAR by both ’Little test’ and the Ridout and Diggle (1991) test. If the data

missingness is MAR, then one can refer the missingness as ignorable. In the

previous survey work carried out by Fuller et al. (2011) team, the assumption of

the missingness being ignorable was also made. Combining the results of the

working data set as MAR and ignorable, we were able to impute the missing

data by either the MICE scheme or under fully Bayesian framework. The fully

Bayesian framework has the advantage of being a one-stage method, when com-

pared to the two-stage method of the MICE scheme. However, the coding of the

missingness model can be very complex under the fully Bayesian framework.

Under MICE scheme, logistic regression, including polynomial logistic regres-

sion, was employed tomodel nominal variables, whereas normal regressionwas

used to model numerical variables. The regression models that were adopted

for imputing the missing values of each variable were conditioned on all other

variables. As such, every variable was fitted with an appropriate imputation
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model, and the resultingworking data sets were fittedwith a substantivemodel.

In contrast, in the fully Bayesian framework, a substantive model was fitted on

drug-trying response variables. In the fully Bayesian framework, because there

were no covariates with missingness, the imputation model was the same as the

substantive model.

In this research, the working data set was assumed to be missing at random

and generally the MICE scheme was adopted for imputing all variables that

contained missingness. Rubin’s rule with Wald’s test was adopted to test the

significance of a covariance or an interaction term in the corresponding regres-

sion models employed.

8.4 Findings From Further Investigation of Associa-

tions Among Drug-trying Response Variables

Following the additional finding from exploratory data analysis that the 15

drug-trying response variables were highly correlated with each other, in this

research, advanced statistical methodologies were needed to further investigate

and explore how the 15 drug-trying response variables were associated with

each other as well as the extent of their associations. For such purposes, we

developed and applied several statistical methodologies, namely, univariate lo-

gistic regression models, log-linear analysis models and item response theory

models, to the working data set.

Tables 8.4.1 and 8.4.2 below present summary and comparison of key find-

ings in respect of associations among 15 drug-trying response variables from

the Year 2010 Survey and various statistical methodologies in this study.
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Associations among 15 drug-trying response variables were not fully reported

in the Year 2010 Survey report and the key finding in this aspect from the

exploratory data analysis was summarised in Section 8.2. The rest of this sec-

tion focuses on the additional key findings generated from the univariate logistic

regressionmodels, log-linear analysismodels and item response theorymodels.

15 univariate logistic regressionmodelswere fitted to each drug-trying response

variable. Backward eliminations by Rubin’s rule with Wald’s test were adopted

within the univariate logistic regressionmodels, in order to discard insignificant

terms. In addition, a log-linear analysis model was fitted to all 15 drug-trying

response variables simultaneously to investigate two-way interactions of drug-

trying response variables. A backward elimination by Rubin’s rule with Wald’s

test was also adopted to discard insignificant terms. The aim of adopting back-

ward elimination was to identify important parameters and terms and focus on

interpreting and elaborating on them. Details of application of both univariate

logistic regression models and log-linear analysis models to investigate the re-

lationship and association among the 15 drug-trying response variables could

be referred to Chapter 5.

In terms of the numerical results of the univariate logistic regression final mod-

els in respect of 15 drug-trying response variables, it was found as a general

picture that almost all the 15 drugs were positively associated with each other

indicating that if a student has tried a specific drug, the student was more likely

to try the other drugs. According to MICE scheme 2, cannabis was found to

have positive associations with 10 other drugs. Cocaine, magic mushrooms

and ecstasy were found to have positive associations with seven other drugs.

Poppers, amphetamines and gas were found to have positive associations with

six other drugs. Heroin, tranquillisers and anabolic steroids were found to have

positive associations with five other drugs as well as LSD and ketamine, but the
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latter two included a negative interaction relationship with one drug. Finally,

methadone, crack and other drugswere found to have positive associationswith

four other drugs. The extent of interaction relationships among drug-trying re-

sponse variables varied among the 15 drugs. Detailed discussion on the specific

interaction relationships among the 15 drugs could be referred to Section 5.2.4.

The results from the log-linear analysis models were found generally compara-

ble with the univariate logistic regression models, particularly in the following

two dimensions:

(1) A large number of significant interaction terms among all drugs, in terms of

log-odds ratios, were found, and most of these interaction terms were positive,

with only a few being negative.

(2) Among the 15 drugs, cannabis was the dominant drug that yielded the

greatest number of significant interaction terms with other types of drugs.

Detailed discussion on the significant interaction terms among the 15 drugs

presented in the log-linear analysis models could be referred to Section 5.3.4.

When compared the univariate logistic regression saturated models with the

log-linear analysis saturatedmodels, the univariate logistic regression saturated

models yield less negative terms than the log-linear analysis saturated models.

Both models contain mostly positive terms, though the coefficients for the uni-

variate logistic regression saturated models are generally smaller than those for

the log-linear analysis saturated models.

We also developed and applied the item response theory models to the drug-

trying responsevariables, in order todiscover each student’s propensity of trying
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drugs. This also included variation among the students in trying every drug and

the likelihood for the students to try every drug. The factor scores were used to

measure the propensity of each student to try every drug. Discrimination and

difficulty factors for every drugwere used tomeasure the influence of each drug

to the overall drug-trying behaviour of students and the proportion of young

people that tried each drug respectively. The greater discrimination factor co-

efficient indicated the greater influence of the drug on the overall drug-trying

behaviour of students. Similarly, the greater difficulty factor coefficient indicated

the smaller proportion of young people who tried a drug and vice versa. In this

research, two-parameter item response theory model was implemented on the

working data set through two approaches, namely the marginal approach and

the fully Bayesian approach, to further investigate the relationships between

drug-trying response variables and the students’ drug-trying behaviour. De-

tails of application of the two-parameter item response theory models under

marginal approach and fully Bayesian approach on the working data set could

be referred to Chapter 6.

In all two-parameter item response theory models under marginal approach

and fully Bayesian approach, the estimates of the discrimination factors con-

sistently showed that ecstasy, cocaine, amphetamines, LSD, heroin and magic

mushrooms were ranked the top six drugs in terms of their high mean estimate

values with ecstasy yielded the highest mean estimate value. On the other hand,

other drugs, anabolic steroids and gaswere consistently ranked the bottom three

drugs in terms of their low mean estimate values with gas yielded the lowest

mean estimate value of around 1. The aforesaid findings shed additional light

on the relationships between drug-trying response variables and the students’

drug-trying behaviour. Six drugs, namely ecstasy, cocaine, amphetamines, LSD,

heroin and magic mushrooms, were found to exert higher influences on the stu-

dents’ drug trying behaviour that for example, if a student has tried ecstasy,
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there was a higher likelihood that the student will try other types of drug.

Also, in all the two-parameter item response theory models under marginal

approach and fully Bayesian approach, the estimates of the difficulty factors of

all the 15 drug-trying response variables were found to be greater than 1.5, with

themajority found tobebetween2.5 and3.2. This observationgenerally reflected

the lowproportion of the studentswhohad ever tried each of the 15 drugs. How-

ever, amongst the 15 drugs, the estimates of the difficulty factors consistently

showed that cannabis, poppers, cocaine, magic mushrooms, ecstasy and am-

phetamines have relative lower mean estimate values with cannabis yielded the

lowest mean estimate value. This reflected that there was the highest proportion

of students who had tried cannabis. On the other hand, tranquillisers, anabolic

steroids and other drugs were consistently found to have relatively higher mean

estimate values with anabolic steroids yielded the highest mean estimate value.

Detailed discussion on the results of the two-parameter item response theory

models undermarginal approach and fully Bayesian approach could be referred

to Sections 6.4 and 6.5 respectively.

Overall, findings from the univariate logistic regression models, log-linear anal-

ysis models and two-parameter item response theory models consistently sup-

ported and explained that therewerehigh correlations among the 15drug-trying

response variables and that each drug exerted different extent of influences on

the students’ drug-trying behaviour. These findings enrich understanding on

the drug-trying behaviour of young people in England in terms of a deeper

understanding of the interactions among the 15 drugs, which is one of the objec-

tives of this research. For example, with the finding that cannabis was the most

dominant drug that positively associated with 12 other drugs, cannabis can be

a good predictor of trying other drugs by young people in England.
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8.5 Findings From Further Investigation of Associa-

tions Between Drug-trying Response Variables

and the Smoking, Drinking and Drug-related

Socio-demographic Covariates

Another objective of this research is to identify and understand the factors that

are associated with the students’ drug-trying behaviour. The Year 2010 Survey

has reported that the factors of age, sex, ethnicity, smoking, drinking alco-

hol, truancy and exclusion were found significantly associated with drug use

among the students, albeit in different directions (Fuller et al., 2011). On the

other hand, the findings of the exploratory data analysis on the working data

set of this research not only supported the aforesaid findings in the 2010 Year

Survey report but also provided additional statistical information on how the

smoking, drinking and drug-related socio-demographic covariates associated

with students’ drug-trying behaviour. Considering the additional findings of

the exploratory data analysis, advanced statistical methodologies were needed

to further investigate what and how were the smoking, drinking and drug-

related socio-demographic covariates associated with the students’ drug-trying

behaviour. For such purposes, we developed and applied several statistical

methodologies, namely, univariate logistic regression models, latent class re-

gression models and K-means clustering, to the working data set.

Tables 8.5.1 to 8.5.5 below present summary and comparison of the key findings

in respect of associations between drug-trying response variables and the smok-

ing, drinking and drug-related socio-demographic covariates from the Year 2010

Survey and various statistical methodologies in this study.
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An elaborated summary of similar and different (additional) findings of the Year

2010 Survey and the exploratory data analysis in this study could be referred to

Section 8.2. The rest of this section focuses on the comparison of key findings

from the univariate logistic regression models, latent class analysis models and

K-means clustering model.

Details of the application of the univariate logistic regression models to in-

vestigate the relationship and association between the 15 drug-trying response

variables and the smoking, drinking and drug-related socio-demographic co-

variates could be referred to Section 5.2.5. In each of the univariate logistic

regression models, all the smoking, drinking, drug-related socio-demographic

covariates as well as other drug-trying responses were included in the saturated

model. Backward elimination was adopted to discard insignificant variables.

The univariate logistic regression models provided a more detailed perspective

of how trying each drugwas caused by other factors. Generally, from the results

of the univariate logistic regression models, students’ behaviour of trying vari-

ous drugs could be explained by numerous smoking, drinking and drug-related

socio-demographic covariates in different extent. These covariates replaced sev-

eral drug covariates in predicting whether a student had ever tried at least one

of the 15 drugs. These covariates were summarised as follows:

Smoking covariates included: (1) family attitudes toward smoking; (2) cigarette

smoking status; (3) sources of purchasing cigarettes; (4) number of smokers who

the students know and where those smokers smoked and (5) education and in-

formation about smoking.

Drinking covariates included: (1) time and frequency of consuming alcohol;

(2) number of alcohol drinkers students know and where those drinkers drank;

(3) family’s attitude towards drinking; (4) how students purchase alcohol and
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where they consume the alcohol; (5) having lessons or obtaining information

about drinking and (6) types of issues happened when a student drank alcohol.

Drug-related socio-demographic covariates included: (1) having lessons or ob-

taining information about drugs; (2) number of smokers students know and

where those drug-takers tried drugs; (3) the amount of books students pos-

sessed; (4) age; (5) gender; (6) free school meal scheme; (7) frequency of truancy;

(8) frequency of being excluded and (9) Strategic Health Authority (SHA).

Detailed discussion on the results of the univariate logistic regression models

with drug-trying response variables and covariates could be referred to Section

5.2.5.1.

The latent class analysis models contributed to this research, in addition to the

univariate logistic regression models, by providing separate covariate estimate

set for each classified group based on drug types. The latent class regression

model involved two stages. The first stage involved fitting a latent class analysis

model without covariates. It was then followed by retrieving the class prob-

abilities for all students and fitting a Dirichlet distribution regression model

on all smoking, drinking, and drug-related socio-demographic variables by

backward elimination to select covariates that were related to drug use among

adolescents. The second stage involved selecting covariates with Rubin’s rule

based on the results of both Dirichlet distribution regression model and logistic

regression models. In this research, 22 smoking, drinking and drug-related

socio-demographic covariates were selected and included into the latent class

regression model which explained the relationship between the students of

different classes with respect to their drug-trying behaviour and the smoking,

drinking and drug-related socio-demographic factors via a latent variable. The

latent class regressionmodelwas conductedbybackward elimination byRubin’s
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rule with Wald’s test. Details of the application of latent class analysis models

and latent class regression models to the working data set could be referred to

Section 7.2.

Results of the final latent class regression model revealed that nine covariates

were positively associatedwith the drug-trying behaviour of the students. These

nine covariates were: frequency of smoking (CgStat1), type of smoking (CgPk1),

frequency of purchasing cigarette (CgBuyF1), frequency of drinking (AlFreq2),

reason of drinking (Al4W1), the proportion estimate of drug-takers (DgEstim),

frequency of truant (TruantN), age (Age) and Strategic Health Authority (SHA).

On the other hand, two covariates were negatively associated with the drug-

trying behaviour of the students: family’s attitude towards drinking (AlPar1)

and gender (Gender). The detailed discussion of the findings of the latent class

regression model could be referred to Section 7.2.8.

K-means clustering was an alternative algorithm of latent class analysis in strat-

ifying students based on the pattern of drug responses, without connection to

other covariates. Though the latent class analysis models provided a sensible

classification of the students based on their drug-trying behaviour, for this re-

search, in order to provide another perspective of classification of the students,

K-means clustering was conducted and discussed in Section 7.3. In general, K-

means clustering supported the classification made by the latent class analysis

models.

Overall, findings from the univariate logistic regression models and latent

class analysis models supported findings of the Year 2010 Survey that smok-

ing, drinking and some drug-related socio-demographic (e.g. age, truancy

and exclusion from schools) covariates were positively associated with the stu-

dents’ drug-trying behaviour. Additional findings from these advanced statis-
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tical methodologies further explained how numerous smoking, drinking and

drug-related socio-demographic covariates contributed to the students’ drug-

trying behaviour at different extent. These additional findings thus provide a

deeper understanding on the drug-trying behaviours of young people in Eng-

land in terms of the associations between drug-trying response variables and

the smoking, drinking and drug-related socio-demographic covariates.

8.6 NewMethodology for Backward Elimination

One of the research objectives was to develop a newmethodology to investigate

the association among drug-trying response variables. In order to take impu-

tation and integrated selection of class at each step of backward elimination,

we developed a new methodology for the backward elimination of latent class

analysis models by Rubin’s rule. Most latent class analysis models with back-

ward elimination involved determining the optimal number of latent class, then

discarding insignificant covariates one by one, but without re-evaluating the

optimal number of latent class. Unlike most latent class analysis models with

backward elimination, the newly developed latent class analysis models took

imputation into account as well as incorporated Rubin’s rule with Wald’s test

into account. The newly developed latent class analysis models with backward

elimination provided a more thorough evaluation of the optimal number of la-

tent class and covariate elimination from saturated model. This was because

at each step, the optimal number of latent class was determined, followed by

discarding the most insignificant covariate. However, there are limitations to

this new methodology. Firstly, each step requires intensive computation of la-

tent class regression models. Secondly, for each step, the number of covariates

cannot be too small or too large. Too few covariates might lead to fitting prob-

lems and too many covariates might lead to the fitting barely progressing or not

progressing at all. The detailed description of the new methodology could be
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referred to Section 7.2.6.

8.7 Contributions of the Research

This research contributes to empirical research involving data analysis and drug

use related research in different dimensions. Major contributions of this research

are:

(1) Grounded on the literature that the robustness of the data analysis may

be adversely affected if the missingness problem in a data set of an empirical

research is not properly managed, this research showed proper ways to deal

with missing data, which are ubiquitous in survey data sets, through the em-

ployment of three models:

(a) The substantive model which concerns addressing the questions of inter-

est, for example, in this research, finding the factors that attribute to drug-trying

behaviour.

(b) The missingness model which is used to diagnose the mechanism by which

the data is missing.

(c) The imputation model which formulates the methodology for imputing the

data for data analysis.

(2) This research showed how to enhance the quality of data analysis in an em-

pirical research in order to generate more informative findings relevant to the

research objectives from a data set. This was done through the employment of

various sophisticated statistical methodologies such as univariate logistic anal-

ysis model, log-linear analysis model, item response theory model, latent class
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analysis regression model and K-means clustering model, where appropriate.

(3) In this research, a new methodology for the backward elimination of la-

tent class analysis models by Rubin’s rule was developed. The newly developed

latent class analysis models took imputation into account as well as incorpo-

rated Rubin’s rule with Wald’s test into account. The newly developed latent

class analysis models with backward elimination provides a more thorough

evaluation of the optimal number of latent class and covariate elimination from

saturated model.

(4) Relating to drug use research, the findings from various sophisticated statis-

tical models in this research, that the 15 drugs in question have positive associ-

ations with each other in different extent and direction, shed additional light on

the drug-trying behaviour of young people among the 15 drugs. Such deeper

understanding would provide helpful guidance on formulating policies to com-

bat against drug use problem in England. For example, in terms of resources

and effort, relatively more should be inserted and devoted in the direction to

combat certain types of drugs that deserve higher priority among the 15 drugs

in question, such as cannabis and drugs including ecstasy, cocaine, LSD, magic

mushrooms and amphetamines. Cannabis was found to be the most popular

and dominant drugs tried by the students and those drugs, including ecstasy,

cocaine, LSD, magic mushrooms and amphetamines, were found to exert higher

influences (in terms of trying that drug increase the likelihood of trying other

drugs associated with that drug) on the students’ drug-trying behaviour.

(5) The findings from univariate logistic regression models and latent class

regression models in this research, that numerous smoking, drinking and drug-

related socio-demographic factors were significantly associated with the stu-

dents’ dug-trying behaviour in different extent and direction. These findings
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contribute to a deeper understanding of the drug use problem in England and

add evidence to the drug related research literature in two aspects. On one

hand, these findings supported the prior research findings that factors like

smoking, drinking, age, truancy and exclusion, were positively associated with

the students’ drug-trying behaviour. On the other hand, these findings further

explained how these smoking, drinking and drug-related socio-demographic

factors influenced the students’ drug-trying behaviour. For example, the find-

ings in this research that smoking and drinking factors were significantly asso-

ciated with the students’ drug-trying behaviour through their related covariates

including frequency of smoking (CgStat1), type of smoking (CgPk1), frequency

of purchasing cigarette (CgBuyF1), frequency of drinking (AlFreq2) and reason

of drinking (Al4W1) respectively. The aforesaid deeper understanding on the

effect of smoking, drinking and drug-related socio-demographic factors on the

students’ drug-trying behaviourwould also provide helpful guidance on formu-

lating policies to deal with drug use problem among young people in England.

8.8 Limitations of the Research

Similar to other research studies, this research is subjected topractical limitations

which may restrict achievement of the research objective of enhancement of the

quality of data analysis to the highest level through appropriate handling of

missing data, developing and applying new statistical methodologies.

8.8.1 Limitations of using Unweighted Data

The selected data source of this research is originated from the Year 2010 Survey

study. Similar to other survey data based on samples, generally the precision of

sample estimates generated from the survey data source is subject to sampling



CHAPTER 8. CONCLUSION 332

errors as well as other sources of inaccuracy including non-response bias and

over- and under-reporting. As mentioned in Section 2.1, the Year 2010 Survey

was a multi-stage sample design stratified by the 10 Strategic Health Authority

(SHA) regions in England and hence selection weights were needed in data

analysis. However, we used unweighted data in data analysis for this research

with reasons in Section 2.3. The use of unweighted data in data analysis in

effect assumed the Year 2010 survey is a simple random sample design despite

the facts that: (1) as the populations of the ten SHA regions in England were

different, there were unequal selection probabilities for students in the ten SHA

regions (Fuller et al., 2011) and (2) the stratified structure of the Year 2010 Survey

might imply an adverse "neighbourhood" effect on independence of responses in

each SHA region. According to Rafferty (2016), not taking sampling weight of a

stratified random sample into accountmay induce sampling errors on estimates,

whichmay then affect true standard errors of variables. Indeed, sampling errors

in a multi-stage sample design are not the same as they would have been for a

simple random sample of the same size and this needs to be taken into account

when calculating standard error of a variable.

Using unweighted data of a multi-stage sample design may over- or under-

report the standard error of a variable depends on the property of the variable.

In other words, incorporating sampling weights into data analysis of data from

a multi-stage sample may increase or decrease the unweighted standard errors

of variables. This can be illustrated by two analyses: (1) true standard errors and

design factors for five key variables by gender in the Year 2010 Survey (extracted

from Tables B.1 to B.5, Appendix B of the Year 2010 Survey Report (Fuller et al.,

2011)) as shown in Table F.1.1 in Appendix F and (2) comparison of results of

final univariate logistic regression (with backward elimination) among 15 drug-

trying response variables between unweighted and weighted models as shown

in Table F.2.1 to Table F.2.8 in Appendix F.
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In Table F.1.1, the calculation of the true standard errors and design factors

was carried out in Stata using a Taylor Series expansion method (Fuller et al.,

2011). Table F.1.1 showed that the design factors of all five key variables by gen-

der were slightly greater than 1 which indicates that the true standard errors of

the five key variables’ estimates increased slightly after incorporating selection

weights in data analysis by the researchers of the Year 2010 Survey.

Tables F.2.1 to F.2.8 showed that the final univariate logistic regression analyses

among drug-trying response variables lead to increases in some true standard

errors of the estimates as well as decreases in the rest when compared the un-

weighted model with weighted model. However, the differences between all

estimates in the unweighted and weighted models were small as all differences

were all within one standard error in either unweighted or weighted models.

The above observations are consistent with Stapleton and Kang (2016) that they

indicate minor statistical effects if ignoring sampling weighting in data analysis

of this study. Nevertheless, we still cannot deny the fact that there is a mismatch

of sample design in our data analysis which is a potential source of bias to the

results of our data analysis under various statistical models.

8.8.2 Other Limitations

Other practical limitations include the following:

(1) Relating to managing the missing data, in the imputation process of ap-

plying MICE (multiple imputation by chained equations) to the working data

set, we should make as fewer assumptions as possible. Hence, if a variable

before imputation was either ordinal or continuous, the variable was treated as
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a nominal variable. This was because ordinal variables are subject to an extra

assumption that the odds of trying a certain drug increased when the variable

level increased aswell as continuous variables are subject to an extra assumption

that the increase in the odds was constant between adjacent levels. Treating an

ordinal or a continuous variable as a nominal variable requires the least assump-

tions to the variable.

(2) Relating to the log-linear analysis, because we intended to compare both

saturated and final log-linear analysis models with corresponding saturated

and final univariate logistic regression models with drug-trying response vari-

ables only, merely two-ways interactions among the 15 drugs were considered.

Three ormore dimensional interactions among the 15 drugswere excluded from

both saturated and final log-linear analysis models.

(3) The latent class regression model employed in this research was subjected to

the following limitations:

(a) If the positive response rate is too low, the result may fluctuate wildly, and

the estimates may be unstable.

(b) The latent class analysis is computationally extensive. It is computation-

ally impossible to include all the smoking, drinking and drug-related socio-

demographic covariates in the latent class analysis with backward elimination.

We, therefore, have to pre-select those covariates for the latent class analysis

with backward elimination.

(4) The K-means clustering model employed in this research is subjected to

the following limitations:
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(a) K-means clustering only classifies cases according to the Euclidean distances

between individuals and their mean point. For data sets with only binomial

response variables, regardless of the drug-trying pattern of a student, all cases

would be treated the same, as long as their Euclidean distances are the same.

(b) If we wish to integrate regression analysis into the K-means, a two-stage

analysis is required, which may result in loss of data information.

8.9 Further Research Work

This research can be potentially extended in several ways. Firstly, we can extend

the item response theory models to allow regressionmodels on the factor scores

and the difficulty factors. If we want to further investigate the likelihood of

students trying drug, we can conduct a longitudinal study for drug-trying re-

sponse variables over the survey series. This research is a cross-sectional study,

which looks at students’ responses at one time. We found that age had a sig-

nificant contribution in determining drug-trying among the students. It would

be beneficial to obtain more details on how the students’ drug-trying behaviour

evolved over time, which can be investigated through a longitudinal study. For

instance, did students use the soft drugs before they began using hard drugs? If

so, then there may be an argument for criminalising all soft drug use behaviour.

Did particular types of soft drug use lead to hard drug use? These questions are

difficult to be answered by merely a cross-sectional study. However, by a longi-

tudinal study, answers to these questions can be discovered. Alternatively, we

can apply new statistical methodologies on existing data sets that contain more

than one binary variable and covariates, such as data sets of "Smoking, Drinking

and Drug Use among Young People in England" surveys of different years. All

in all, the aforesaid potential future research work shares the objectives of this

research that are: to improve the quality of future drug-related survey study
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and to enrich understanding of the smoking, drinking and drug-related socio-

demographic factors that were associated with drug use among young people

in England.
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A.1 Classification of Questions in the Year 2010 Sur-

vey Questionnaire

Table A.1.1: Table of Question Classification of the Year 2010 Survey Question-
naire (Table 1)

Question Number Group
1-6 General question
7-10, 236-237 Smoking frequency

11-22 Attempt to smoking, giving-up smoking and family
responses

23-26 General information about purchase of cigarettes

27-37 More in-depth information about purchase of
cigarettes

38-39 Smoking with others
40-43 Attempt to drink alcohol and family responses
44-51,55 Habit of drinking alcohol and family responses

52-54, 56-69 Detail about alcohol consumption during the last 7
days

70-89 Detail about alcohol consumption during the last 4
weeks

90-91 Why people of own age drink alcohol
92-99 About cannabis
100-107 About speed, amphetamines
108-114 About LSD
115-121 About ecstasy
122-128 About semeron
129-135 About poppers
136-142 About tranquillisers
143-149 About heroin
150-156 About magic mushrooms
157-163 About methadone
164-170 About crack
171-177 About cocaine
178-184 About ketamine
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Table A.1.2: Table of Question Classification of the Year 2010 Survey Question-
naire (Table 2)

Question Number Group
185-191 About anabolic steroids
192-198 About glue, gas, aerosols and solvents
199-206 About other drugs

207-210 General questions of taking drugs but excluding
cigarettes or alcohol

211-212 Whether fine for people of same age to take drugs,
smoke or drink alcohol

213-216 Number of people of own age who smoke, drink alco-
hol or take drugs

217-219 Sources of helpful information about smoking, drink-
ing alcohol and taking drugs

220-223 Places of helpful information about smoking, drinking
alcohol and taking drugs

224-229 General questions about school
230 Number of books in house

231-235 Number of housemates, number of smoking and
drinking housemates

238 Any other questions
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A.2 List of Variables in working data set

Table A.2.1: Description of Smoking Variables in Working Data Set

Name Label
Smoking Variables

CgFam1 Family attitudes toward smoking
Cg7Num Average number of cigarettes smoked previous week
CgStat Cigarette smoking status

CgStat1 Cigarette smoking status (with average number of
cigarettes smoked previous week)

CgPk1 Whether usually smoke packet cigarettes, roll-ups or
both

CgGet1 Number of sources of buying cigarettes usually
through shops/ machine/ Internet

CgGet2 Number of sources of buying cigarettes usually
through people

CgGet3 Number of sources of being given cigarettes usually by
people or other sources

CgGet Types of sources of obtaining cigarettes usually
CgPp1 Types of people who know smoke cigarettes
CgWhoHme Whether people live with smoke inside house
CgWhoSmo Number of people live with smoke
CgWho1 Smokers in house and where

CgBuyF1 Frequency of buying cigarettes from shop in the past
year

CgEstim How many own age smoke

CgPe1 Getting helpful information about smoking cigarettes
from people

CgIn1 Getting helpful information about smoking cigarettes
from media

LsSmk Whether had lessons on smoking in last 12 months
CgNow Whether smokes cigarettes nowadays
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Table A.2.2: Description of Drinking Variables in Working Data Set

Name Label
Drinking Variables

AlEvr Have you ever drunk alcohol
AlFreq Usual frequency of drinking alcohol
AlLast When last had alcohol
Al7Day1 How many days in last seven drank alcohol

AlFreq2 Usual frequency of drinking alcohol (with how many
days in last seven drank alcohol

AlBnPub Been in a pub, bar or club in the evening in the last
four weeks

AlEstim How many own age drink?
LsAlc Whether had lessons on drinking in last 12 months

AlPar1 How do respondent’s parents/ guardians feel about
drinking alcohol

AlBuy1 Number of places a respondent usually purchase alco-
hol

AlBuy2 Number of people sources a respondent usually pur-
chase alcohol

AlBuy Respondents usually purchase alcohol themselves/
through people

AlUs1 Types of people a respondent usually uses alcoholwith
AlUs2 Types of places a respondent usually uses alcohol in

Al4W1 Types of issues happening when drinking alcohol in
last 4 weeks

AlWhy1 Why do you think people of same age drink?
AlWhoHme Whether people live with drank inside house
AlWhoDr Number of people live who drank
AlWho1 Drinkers in house and where

AlPe1 Getting helpful information about drinking from peo-
ple

AlIn1 Getting helpful information about drinking from me-
dia
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Table A.2.3: Description of Drug-related Socio-Demographic Variables and Re-
sponse Variables in Working Data Set

Name Label
Drug-related Socio-Demographic Variables

DgPe1 Getting helpful information about drug use from peo-
ple

DgIn1 Getting helpful information about drug use from me-
dia

DgEstim How many own age take drugs
Books1 How many books in home
LsDrg Whether had lessons on drug in last 12 months
Age Age 11 to 15
Gender Sex of respondents
FSM1 Whether enrolled in free school meal scheme
Truant1 Whether ever truanted
TruantN How often played truant
ExclA1 Whether ever been excluded
ExclAN1 How often been excluded
SHA Strategic Health Authority

Response Variables
DgTdCan1 Ever tried cannabis
DgTdHer1 Ever tried heroin
DgTdCok1 Ever tried cocaine
DgTdMsh1 Ever tried magic mushrooms
DgTdCrk1 Ever tried crack
DgTdMth1 Ever tried methadone
DgTdEcs1 Ever tried ecstasy
DgTdAmp1 Ever tried amphetamines
DgTdLSD1 Ever tried LSD
DgTdPop1 Ever tried poppers
DgTdKet1 Ever tried ketamine
DgTdAna1 Ever tried anabolic steroids
DgTdGas1 Ever tried gas
DgTdOth1 Ever tried other drugs
DgTdTrn1 Ever tried tranquillisers



Appendix B

Tables Related to Univariate Logistic

Regression

360



APPENDIX B. TABLES RELATED TO UNIVARIATE LOGISTIC REGRESSION361

B.
1

Ty
pe

s
of

V
ar
ia
bl
es

U
se
d
in

U
ni
va

ri
at
e
Lo

gi
st
ic

R
eg

re
ss
io
n

Ta
bl
e
B.
1.
1:

Ta
bl
e
of

Ty
pe

so
fV

ar
ia
bl
es

U
se
d
in

Lo
gi
st
ic
Re

gr
es
si
on

M
od

el
W
ith

C
ov

ar
ia
te
s(
F:

Fa
ct
or

(c
at
eg

or
ic
al
),
L:

Li
ne

ar
)(
Ta

bl
e

1) Va
ria

bl
e

C
an

na
bi
s

H
er
oi
n

C
oc
ai
ne

M
ag

ic
C
ra
ck

M
et
ha

do
ne

Ec
st
as
y

A
m
ph

et
am

in
e

LS
D

Po
pp

er
s

K
et
am

in
e

A
na

bo
lic

G
as

O
th
er

Tr
an

qu
ill
is
er
s

M
us

hr
oo

m
s

St
er
oi
ds

D
ru

gs
C
gF

am
1

F
F

F
F

F
F

F
L

L
F

L
F

F
L

L
C
gS

ta
t1

F
L

F
F

F
L

F
F

F
F

F
L

F
L

L
C
gP

k1
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

C
gG

et
1

F
F

F
F

F
F

F
F

F
F

F
L

F
F

L
C
gG

et
2

F
F

F
F

L
F

F
F

F
F

F
L

L
F

L
C
gG

et
3

F
F

F
F

L
F

F
F

F
F

F
L

F
F

L
C
gG

et
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

C
gP

p1
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

C
gW

ho
1

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
C
gB

uy
F1

F
L

F
F

F
F

F
F

F
F

F
L

L
L

F
C
gE

st
im

F
F

L
L

L
F

L
F

L
F

L
F

L
L

L
C
gP

e1
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

C
gI
n1

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
Ls

Sm
k

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
A
lL
as
t

F
F

L
L

L
F

L
L

L
L

L
L

L
L

L
A
l7
D
ay

1
F

L
L

F
L

F
F

F
L

F
F

L
L

L
L

A
lF
re
q2

F
L

F
L

F
F

F
F

F
L

L
L

F
F

L
A
lB
nP

ub
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

A
lE
st
im

F
L

L
L

L
L

L
L

L
L

L
F

L
L

L
Ls

A
lc

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
A
lP
ar
1

L
F

F
L

F
F

L
L

L
L

L
L

F
L

F
A
lB
uy

1
F

F
F

F
L

F
F

F
F

F
F

L
F

L
L

A
lB
uy

2
F

F
F

F
F

F
F

F
F

F
F

F
F

F
L



APPENDIX B. TABLES RELATED TO UNIVARIATE LOGISTIC REGRESSION362

Ta
bl
e
B.
1.
2:

Ta
bl
e
of

Ty
pe

so
fV

ar
ia
bl
es

U
se
d
in

Lo
gi
st
ic
Re

gr
es
si
on

M
od

el
W
ith

C
ov

ar
ia
te
s(
F:

Fa
ct
or

(c
at
eg

or
ic
al
),
L:

Li
ne

ar
)(
Ta

bl
e

2)

Va
ria

bl
e

C
an

na
bi
s

H
er
oi
n

C
oc
ai
ne

M
ag

ic
C
ra
ck

M
et
ha

do
ne

Ec
st
as
y

A
m
ph

et
am

in
e

LS
D

Po
pp

er
s

K
et
am

in
e

A
na

bo
lic

G
as

O
th
er

Tr
an

qu
ill
is
er
s

M
us

hr
oo

m
s

St
er
oi
ds

D
ru

gs
A
lB
uy

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
A
lU

s1
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

A
lU

s2
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

A
l4
W

1
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

A
lW

hy
1

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
A
lW

ho
1

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
A
lP
e1

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
A
lIn

1
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

D
gP

e1
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

D
gI
n1

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
D
gE

st
im

F
L

L
L

L
L

F
F

L
F

F
L

F
F

F
Bo

ok
s1

F
L

L
L

L
L

L
L

L
L

L
F

F
L

L
Ls

D
rg

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
ag

e
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

ge
nd

er
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

FS
M
1

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
Tr
ua

nt
N

F
F

F
F

F
L

F
F

F
F

L
F

F
L

L
Ex

cl
A
N
1

F
L

F
L

F
L

F
L

L
F

F
L

F
L

F
SH

A
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

C
an

na
bi
s

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
H
er
oi
n

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
C
oc
ai
ne

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
M
ag

ic
M
us

hr
oo

m
s

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
C
ra
ck

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
M
et
ha

do
ne

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
Ec

st
as
y

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
A
m
ph

et
am

in
e

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
LS

D
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

Po
pp

er
s

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
K
et
am

in
e

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
A
na

bo
lic

St
er
oi
ds

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
G
as

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
O
th
er

D
ru

gs
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

Tr
an

qu
ill
is
er
s

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F



APPENDIX B. TABLES RELATED TO UNIVARIATE LOGISTIC REGRESSION363

B.
2

C
ov

ar
ia
te
s
In

cl
ud

ed
in

Sa
tu
ra
te
d
M

od
el
s
of

Lo
gi
st
ic

R
eg

re
ss
io
n
w
it
h
C
ov

ar
ia
te
s

Ta
bl
e
B.
2.
1:

Ta
bl
e
of

C
ov

ar
ia
te
s
In
cl
ud

ed
in

Sa
tu
ra
te
d
M
od

el
s
of

Lo
gi
st
ic

Re
gr
es
si
on

w
ith

C
ov

ar
ia
te
s
(X

:I
nc

lu
de

d,
7
:E

xc
lu
de

d)
(T
ab

le
1)

Va
ria

bl
e

C
an

na
bi
s

H
er
oi
n

C
oc
ai
ne

M
ag

ic
C
ra
ck

M
et
ha

do
ne

Ec
st
as
y

A
m
ph

et
am

in
e

LS
D

Po
pp

er
s

K
et
am

in
e

A
na

bo
lic

G
as

O
th
er

Tr
an

qu
ill
is
er
s

M
us

hr
oo

m
s

St
er
oi
ds

D
ru

gs
C
gF

am
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
C
gS

ta
t1

X
X

X
X

X
X

X
X

X
X

7
X

X
X

X
C
gP

k1
7

7
7

X
7

X
7

X
7

7
7

X
7

X
X

C
gG

et
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
C
gG

et
2

7
X

X
X

X
X

X
X

X
7

X
X

7
X

X
C
gG

et
3

7
X

7
7

X
7

X
7

7
7

X
X

7
7

X
C
gG

et
X

7
7

7
7

7
7

7
7

X
7

7
X

7
7

C
gP

p1
X

7
X

X
7

7
7

7
7

X
7

X
X

7
7

C
gW

ho
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
C
gB

uy
F1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
C
gE

st
im

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
C
gP

e1
X

7
X

7
7

7
7

7
7

X
7

7
X

7
7

C
gI
n1

X
7

X
X

X
X

X
X

X
7

X
X

X
X

X
Ls

Sm
k

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A
lL
as
t

7
X

X
X

X
7

X
X

X
X

X
X

X
X

X
A
l7
D
ay

1
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

A
lF
re
q2

X
X

X
X

X
X

X
X

X
X

7
X

X
X

X
A
lB
nP

ub
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

A
lE
st
im

X
X

X
X

X
X

X
7

X
7

X
X

X
X

X
Ls

A
lc

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A
lP
ar
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A
lB
uy

1
7

7
7

7
X

7
7

7
X

7
X

X
7

X
X

A
lB
uy

2
7

7
7

7
7

7
7

X
X

7
X

7
7

7
7



APPENDIX B. TABLES RELATED TO UNIVARIATE LOGISTIC REGRESSION364

Ta
bl
e
B.
2.
2:

Ta
bl
e
of

C
ov

ar
ia
te
s
In
cl
ud

ed
in

Sa
tu
ra
te
d
M
od

el
s
of

Lo
gi
st
ic

Re
gr
es
si
on

w
ith

C
ov

ar
ia
te
s
(X

:I
nc

lu
de

d,
7
:E

xc
lu
de

d)
(T
ab

le
2)

Va
ria

bl
e

C
an

na
bi
s

H
er
oi
n

C
oc
ai
ne

M
ag

ic
C
ra
ck

M
et
ha

do
ne

Ec
st
as
y

A
m
ph

et
am

in
e

LS
D

Po
pp

er
s

K
et
am

in
e

A
na

bo
lic

G
as

O
th
er

Tr
an

qu
ill
is
er
s

M
us

hr
oo

m
s

St
er
oi
ds

D
ru

gs
A
lB
uy

X
X

X
X

X
X

X
7

7
X

7
X

7
X

X
A
lU

s1
7

X
7

7
7

7
7

7
7

X
X

7
7

7
7

A
lU

s2
7

7
7

X
7

7
7

7
7

7
7

X
X

7
X

A
l4
W

1
X

X
X

X
X

X
X

X
X

X
X

X
X

X
7

A
lW

hy
1

X
7

7
7

7
7

X
X

7
7

7
X

X
7

7
A
lW

ho
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A
lP
e1

X
7

7
7

7
7

7
7

7
7

7
7

X
7

7
A
lIn

1
X

7
7

7
X

7
X

X
7

X
7

X
X

X
7

D
gP

e1
X

7
X

X
7

X
7

7
7

X
7

X
X

X
7

D
gI
n1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
D
gE

st
im

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
Bo

ok
s1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
Ls

D
rg

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
ag

e
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

ge
nd

er
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

FS
M
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
Tr
ua

nt
N

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
Ex

cl
A
N
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
SH

A
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

C
an

na
bi
s

7
X

X
X

X
X

X
X

X
X

X
X

X
X

X
H
er
oi
n

X
7

X
X

X
X

X
X

X
X

X
X

X
X

X
C
oc
ai
ne

X
X

7
X

X
X

X
X

X
X

X
X

X
X

X
M
ag

ic
M
us

hr
oo

m
s

X
X

X
7

X
X

X
X

X
X

X
X

X
X

X
C
ra
ck

X
X

X
X

7
X

X
X

X
X

X
X

X
X

X
M
et
ha

do
ne

X
X

X
X

X
7

X
X

X
X

X
X

X
X

X
Ec

st
as
y

X
X

X
X

X
X

7
X

X
X

X
X

X
X

X
A
m
ph

et
am

in
e

X
X

X
X

X
X

X
7

X
X

X
X

X
X

X
LS

D
X

X
X

X
X

X
X

X
7

X
X

X
X

X
X

Po
pp

er
s

X
X

X
X

X
X

X
X

X
7

X
X

X
X

X
K
et
am

in
e

X
X

X
X

X
X

X
X

X
X

7
X

X
X

X
A
na

bo
lic

St
er
oi
ds

X
X

X
X

X
X

X
X

X
X

X
7

X
X

X
G
as

X
X

X
X

X
X

X
X

X
X

X
X

7
X

X
O
th
er

D
ru

gs
X

X
X

X
X

X
X

X
X

X
X

X
X

7
X

Tr
an

qu
ill
is
er
s

X
X

X
X

X
X

X
X

X
X

X
X

X
X

7



APPENDIX B. TABLES RELATED TO UNIVARIATE LOGISTIC REGRESSION365

B.3 Univariate Logistc Regression Results

B.3.1 Within Response Variables with Backward Elimination
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Table B.3.1: Table of Estimates of Univariate Logistic Regression Final Models
within Drug-trying Response Variables (Table 1)

Cannabis
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -2.7937 ( 0.0544 ) -2.749 ( 0.0522 ) -2.7497 ( 0.0524 )
Cannabis

Heroin
Cocaine 1.9203 ( 0.4247 ) 1.8951 ( 0.4082 ) 1.7329 ( 0.3951 )

Magic Mushrooms 1.7261 ( 0.3154 ) 1.8025 ( 0.3044 ) 1.7882 ( 0.2957 )
Crack 1.3056 ( 0.5562 ) 1.2621 ( 0.5125 ) 1.2098 ( 0.5254 )

Methadone 2.2028 ( 0.5141 ) 1.9568 ( 0.4965 ) 1.8096 ( 0.511 )
Ecstasy 2.1544 ( 0.5094 ) 1.8182 ( 0.442 ) 1.6372 ( 0.4145 )

Amphetamines 1.17 ( 0.5102 ) 1.2899 ( 0.4653 ) 1.067 ( 0.4404 )
LSD 1.9235 ( 0.6816 )

Poppers 2.951 ( 0.2274 ) 3.0107 ( 0.2211 ) 2.9916 ( 0.2161 )
Ketamine 3.0345 ( 0.4917 ) 2.8491 ( 0.4756 ) 2.7259 ( 0.4577 )

Anabolic Steroids 1.6713 ( 0.5272 ) 1.5765 ( 0.4951 ) 1.4771 ( 0.5199 )
Gas 0.6926 ( 0.1439 ) 0.6706 ( 0.1385 ) 0.6938 ( 0.1389 )

Other Drugs 1.5111 ( 0.6388 ) 1.4385 ( 0.5998 )
Tranquillisers

Heroin
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.9025 ( 0.3635 ) -6.6389 ( 0.315 ) -6.2607 ( 0.2896 )
Cannabis

Heroin
Cocaine 3.1359 ( 0.514 ) 2.8176 ( 0.5242 ) 2.6392 ( 0.621 )

Magic Mushrooms 1.1325 ( 0.5499 )
Crack 2.6261 ( 0.5796 ) 2.6312 ( 0.5713 ) 2.7598 ( 0.6416 )

Methadone
Ecstasy

Amphetamines
LSD 1.9736 ( 0.595 ) 1.3897 ( 0.68 )

Poppers
Ketamine 1.7981 ( 0.792 )

Anabolic Steroids 2.0174 ( 0.7362 ) 1.9491 ( 0.8275 )
Gas 2.0131 ( 0.4535 ) 1.9631 ( 0.421 ) 1.6851 ( 0.3872 )

Other Drugs
Tranquillisers

Cocaine
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.2757 ( 0.2793 ) -6.152 ( 0.2603 ) -5.978 ( 0.2611 )
Cannabis 2.4658 ( 0.3672 ) 2.3927 ( 0.3573 ) 2.2457 ( 0.3506 )

Heroin 2.8845 ( 0.5881 ) 2.6367 ( 0.5525 ) 2.3106 ( 0.563 )
Cocaine

Magic Mushrooms
Crack 2.2258 ( 0.5846 ) 1.9776 ( 0.529 ) 2.0184 ( 0.5726 )

Methadone
Ecstasy 2.1457 ( 0.3905 ) 2.0287 ( 0.3694 ) 2.0385 ( 0.3708 )

Amphetamines 1.367 ( 0.4369 ) 1.3557 ( 0.4116 ) 1.3445 ( 0.3998 )
LSD

Poppers 1.5163 ( 0.3495 ) 1.4097 ( 0.3362 ) 1.3961 ( 0.3672 )
Ketamine

Anabolic Steroids
Gas

Other Drugs 1.5313 ( 0.597 ) 1.6853 ( 0.5778 ) 1.5775 ( 0.6246 )
Tranquillisers
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Table B.3.2: Table of Estimates of Univariate Logistic Regression Final Models
within Drug-trying Response Variables (Table 2)

Magic Mushrooms
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -5.5673 ( 0.1961 ) -5.5786 ( 0.1948 ) -5.4764 ( 0.1918 )
Cannabis 2.412 ( 0.2594 ) 2.3972 ( 0.2602 ) 2.3558 ( 0.2554 )

Heroin 1.3508 ( 0.5966 ) 1.7713 ( 0.5318 ) 1.4814 ( 0.5399 )
Cocaine

Magic Mushrooms
Crack 1.2651 ( 0.5339 )

Methadone
Ecstasy 1.0356 ( 0.383 ) 0.9847 ( 0.3881 )

Amphetamines 1.8743 ( 0.3693 ) 1.6991 ( 0.3672 ) 1.5451 ( 0.4069 )
LSD 1.9126 ( 0.4486 ) 1.6311 ( 0.4691 ) 1.4617 ( 0.5252 )

Poppers
Ketamine

Anabolic Steroids
Gas 1.1088 ( 0.2611 ) 1.0917 ( 0.2565 ) 1.1226 ( 0.2515 )

Other Drugs 1.68 ( 0.5097 ) 1.2422 ( 0.5485 )
Tranquillisers 1.4506 ( 0.6681 )

Crack
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.6165 ( 0.3327 ) -6.3997 ( 0.3056 ) -6.255 ( 0.2871 )
Cannabis 2.1625 ( 0.4487 ) 2.2305 ( 0.4059 ) 2.1344 ( 0.4064 )

Heroin 2.7471 ( 0.5822 ) 2.9571 ( 0.522 ) 2.688 ( 0.6289 )
Cocaine 2.0928 ( 0.4817 ) 2.0782 ( 0.4476 ) 2.1769 ( 0.4617 )

Magic Mushrooms 1.3383 ( 0.4843 )
Crack

Methadone
Ecstasy

Amphetamines
LSD

Poppers
Ketamine

Anabolic Steroids -1.9414 ( 1.0203 )
Gas

Other Drugs
Tranquillisers 1.511 ( 0.726 ) 2.1943 ( 0.6202 ) 1.9876 ( 0.8471 )

Methadone
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.5812 ( 0.3353 ) -6.4512 ( 0.3045 ) -6.2018 ( 0.2856 )
Cannabis 2.7722 ( 0.4268 ) 2.7288 ( 0.3844 ) 2.6675 ( 0.3697 )

Heroin 1.6089 ( 0.6077 ) 2.117 ( 0.5686 ) 2.0742 ( 0.5162 )
Cocaine

Magic Mushrooms
Crack

Methadone
Ecstasy 1.6518 ( 0.4626 ) 1.0817 ( 0.4527 ) 1.2636 ( 0.4461 )

Amphetamines 1.9609 ( 0.4595 ) 1.9326 ( 0.424 ) 1.9547 ( 0.4057 )
LSD

Poppers
Ketamine

Anabolic Steroids
Gas

Other Drugs
Tranquillisers 1.264 ( 0.6059 )
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Table B.3.3: Table of Estimates of Univariate Logistic Regression Final Models
within Drug-trying Response Variables (Table 3)

Ecstasy
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -7.0491 ( 0.3895 ) -6.6318 ( 0.3117 ) -6.372 ( 0.3093 )
Cannabis 2.9169 ( 0.4501 ) 2.6454 ( 0.378 ) 2.4153 ( 0.3606 )

Heroin
Cocaine 2.5103 ( 0.3882 ) 2.1688 ( 0.3646 ) 2.161 ( 0.3879 )

Magic Mushrooms 0.9971 ( 0.4252 ) 1.054 ( 0.3981 ) 1.063 ( 0.4036 )
Crack

Methadone 1.4226 ( 0.5555 )
Ecstasy

Amphetamines 1.2128 ( 0.4688 ) 1.5387 ( 0.4134 ) 1.4918 ( 0.439 )
LSD 2.2862 ( 0.5259 ) 2.3854 ( 0.4726 ) 2.4016 ( 0.5146 )

Poppers
Ketamine 1.7167 ( 0.653 ) 1.7535 ( 0.5836 ) 1.6386 ( 0.5163 )

Anabolic Steroids
Gas 1.2246 ( 0.3544 ) 1.1697 ( 0.3362 ) 1.0951 ( 0.3346 )

Other Drugs
Tranquillisers

Amphetamine
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.4145 ( 0.3043 ) -6.2912 ( 0.2826 ) -6.0457 ( 0.2674 )
Cannabis 2.3824 ( 0.4165 ) 2.3813 ( 0.3836 ) 2.1558 ( 0.3596 )

Heroin
Cocaine 1.1801 ( 0.4338 ) 1.1134 ( 0.4103 ) 1.1136 ( 0.3959 )

Magic Mushrooms 1.6172 ( 0.3912 ) 1.583 ( 0.3788 ) 1.5306 ( 0.3939 )
Crack

Methadone 1.7816 ( 0.4862 ) 1.6973 ( 0.4543 ) 1.6726 ( 0.4403 )
Ecstasy 0.9449 ( 0.4486 ) 1.2555 ( 0.4077 ) 1.2797 ( 0.4064 )

Amphetamines
LSD

Poppers 1.0854 ( 0.3828 ) 0.8457 ( 0.3701 ) 0.8032 ( 0.3722 )
Ketamine

Anabolic Steroids
Gas

Other Drugs
Tranquillisers

LSD
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -7.2787 ( 0.4565 ) -7.0046 ( 0.3905 ) -6.6979 ( 0.3603 )
Cannabis 2.5932 ( 0.5785 ) 2.1616 ( 0.5309 ) 1.9202 ( 0.514 )

Heroin 1.8542 ( 0.6248 ) 2.0859 ( 0.6072 ) 1.9769 ( 0.7262 )
Cocaine

Magic Mushrooms 1.9545 ( 0.4442 ) 1.9568 ( 0.4416 ) 1.8625 ( 0.4522 )
Crack

Methadone
Ecstasy 2.3914 ( 0.4538 ) 2.4816 ( 0.4449 ) 2.5401 ( 0.4748 )

Amphetamines
LSD

Poppers 1.3871 ( 0.4433 ) 1.2895 ( 0.4468 ) 1.2544 ( 0.4251 )
Ketamine -2.1615 ( 0.8623 ) -2.0542 ( 0.8108 ) -1.772 ( 0.7841 )

Anabolic Steroids
Gas

Other Drugs
Tranquillisers
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Table B.3.4: Table of Estimates of Univariate Logistic Regression Final Models
within Drug-trying Response Variables (Table 4)

Poppers
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -5.349 ( 0.1772 ) -5.3932 ( 0.1768 ) -5.309 ( 0.1798 )
Cannabis 3.1558 ( 0.2163 ) 3.1617 ( 0.2124 ) 3.1767 ( 0.208 )

Heroin
Cocaine 1.5417 ( 0.3074 ) 1.4797 ( 0.3058 ) 1.5445 ( 0.3028 )

Magic Mushrooms 0.68 ( 0.3155 ) 0.6333 ( 0.3058 )
Crack

Methadone
Ecstasy

Amphetamines 1.0371 ( 0.3578 ) 0.9434 ( 0.3417 ) 0.9299 ( 0.3861 )
LSD 0.9255 ( 0.4375 ) 0.8981 ( 0.4263 ) 1.0284 ( 0.4081 )

Poppers
Ketamine

Anabolic Steroids
Gas 0.9871 ( 0.2175 ) 1.0067 ( 0.21 ) 1.0087 ( 0.2136 )

Other Drugs 0.9467 ( 0.4784 ) 1.0348 ( 0.4936 )
Tranquillisers

Ketamine
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.8171 ( 0.3786 ) -6.7563 ( 0.354 ) -6.5628 ( 0.3429 )
Cannabis 3.0986 ( 0.46 ) 2.8608 ( 0.4471 ) 2.8376 ( 0.4323 )

Heroin 2.114 ( 0.6027 ) 2.0136 ( 0.6124 )
Cocaine

Magic Mushrooms
Crack

Methadone
Ecstasy 1.4392 ( 0.5284 ) 1.3335 ( 0.4935 )

Amphetamines 1.814 ( 0.4737 ) 1.4766 ( 0.4927 ) 1.6181 ( 0.5255 )
LSD -1.8783 ( 0.824 ) -1.5951 ( 0.7317 )

Poppers
Ketamine

Anabolic Steroids
Gas

Other Drugs 1.637 ( 0.6211 ) 1.5218 ( 0.67 )
Tranquillisers 2.1775 ( 0.6089 ) 1.734 ( 0.6776 ) 2.2227 ( 0.6153 )

Anabolic Steroids
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.8057 ( 0.3482 ) -6.7371 ( 0.3276 ) -6.4052 ( 0.3028 )
Cannabis 2.053 ( 0.4476 ) 1.7098 ( 0.4316 ) 1.8518 ( 0.4148 )

Heroin 1.8887 ( 0.5867 ) 1.3435 ( 0.6578 ) 1.9483 ( 0.6655 )
Cocaine

Magic Mushrooms
Crack

Methadone
Ecstasy

Amphetamines 1.2496 ( 0.537 ) 1.1884 ( 0.5448 )
LSD 1.4418 ( 0.6513 ) 1.3857 ( 0.5845 )

Poppers
Ketamine

Anabolic Steroids
Gas 1.8589 ( 0.4106 ) 1.9801 ( 0.3994 ) 1.681 ( 0.3731 )

Other Drugs 1.697 ( 0.6703 ) 1.8425 ( 0.6425 ) 1.9379 ( 0.6956 )
Tranquillisers
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Table B.3.5: Table of Estimates of Univariate Logistic Regression Final Models
within Drug-trying Response Variables (Table 5)

Gas
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -2.634 ( 0.0507 ) -2.6275 ( 0.0494 ) -2.6213 ( 0.0494 )
Cannabis 0.8094 ( 0.136 ) 0.7635 ( 0.1319 ) 0.7705 ( 0.1315 )

Heroin 1.7214 ( 0.4693 ) 1.0928 ( 0.4221 ) 0.9839 ( 0.3858 )
Cocaine -0.7606 ( 0.3747 )

Magic Mushrooms 0.8989 ( 0.2616 ) 0.8747 ( 0.255 ) 0.9361 ( 0.2566 )
Crack

Methadone
Ecstasy 0.9273 ( 0.3357 ) 0.6495 ( 0.302 ) 0.6683 ( 0.2855 )

Amphetamines
LSD

Poppers 0.9337 ( 0.2224 ) 0.8467 ( 0.2112 ) 0.8132 ( 0.2115 )
Ketamine

Anabolic Steroids 1.7056 ( 0.4293 ) 1.7923 ( 0.4067 ) 1.49 ( 0.3794 )
Gas

Other Drugs
Tranquillisers

Other Drugs
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.6843 ( 0.3541 ) -6.6148 ( 0.3338 ) -6.2266 ( 0.3419 )
Cannabis 2.3636 ( 0.4935 ) 2.6111 ( 0.4461 ) 2.0142 ( 0.498 )

Heroin -2.061 ( 1.1018 )
Cocaine 1.6333 ( 0.5405 ) 1.8947 ( 0.4736 ) 1.642 ( 0.5249 )

Magic Mushrooms 1.3862 ( 0.5324 )
Crack

Methadone
Ecstasy

Amphetamines
LSD

Poppers 1.0451 ( 0.4973 )
Ketamine 1.922 ( 0.5963 ) 1.3898 ( 0.5577 )

Anabolic Steroids 1.653 ( 0.7591 )
Gas

Other Drugs
Tranquillisers 2.0648 ( 0.5832 )

Tranquillisers
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.6144 ( 0.337 ) -6.4956 ( 0.3092 ) -6.2404 ( 0.2924 )
Cannabis 1.7768 ( 0.5199 ) 1.6056 ( 0.4879 ) 1.4099 ( 0.493 )

Heroin
Cocaine

Magic Mushrooms 1.9219 ( 0.5566 ) 1.8991 ( 0.5185 )
Crack 1.6722 ( 0.6505 ) 1.8444 ( 0.631 ) 2.0391 ( 0.6164 )

Methadone
Ecstasy

Amphetamines 1.5089 ( 0.5784 )
LSD 1.7114 ( 0.6476 )

Poppers
Ketamine 1.8592 ( 0.6546 ) 1.5875 ( 0.6883 ) 1.7976 ( 0.6406 )

Anabolic Steroids
Gas

Other Drugs 1.6866 ( 0.6835 ) 1.9432 ( 0.7147 ) 1.8307 ( 0.7085 )
Tranquillisers
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B.3.2 Within Response Variables in Saturated Model
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Table B.3.6: Table of Estimates of Univariate Logistic Regression SaturatedMod-
els within Drug-trying Response Variables (Table 1)

Cannabis
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -2.7948 ( 0.0544 ) -2.7512 ( 0.0522 ) -2.7538 ( 0.0526 )
Cannabis

Heroin -0.2742 ( 0.741 ) -0.9856 ( 0.7907 ) -0.8696 ( 0.795 )
Cocaine 1.9528 ( 0.44 ) 1.9913 ( 0.4352 ) 1.7912 ( 0.4032 )

Magic Mushrooms 1.7251 ( 0.3155 ) 1.7608 ( 0.3071 ) 1.7126 ( 0.3004 )
Crack 1.3349 ( 0.5607 ) 1.3965 ( 0.5241 ) 1.3166 ( 0.5541 )

Methadone 2.2087 ( 0.513 ) 1.9756 ( 0.4919 ) 1.8659 ( 0.5057 )
Ecstasy 2.1388 ( 0.5099 ) 1.7925 ( 0.4585 ) 1.5767 ( 0.4282 )

Amphetamines 1.1483 ( 0.5104 ) 1.33 ( 0.4675 ) 1.1095 ( 0.4367 )
LSD 1.9239 ( 0.6822 ) 1.08 ( 0.6419 ) 0.8744 ( 0.621 )

Poppers 2.9544 ( 0.2274 ) 2.9746 ( 0.2233 ) 2.9597 ( 0.2173 )
Ketamine 3.0163 ( 0.4919 ) 2.8789 ( 0.4757 ) 2.7467 ( 0.4587 )

Anabolic Steroids 1.6512 ( 0.5254 ) 1.5197 ( 0.498 ) 1.4334 ( 0.5178 )
Gas 0.694 ( 0.1441 ) 0.6873 ( 0.1385 ) 0.7037 ( 0.1389 )

Other Drugs 1.4797 ( 0.6363 ) 1.4148 ( 0.6156 ) 0.9269 ( 0.7024 )
Tranquillisers 0.4452 ( 0.6753 ) -0.2809 ( 0.7098 ) -0.6016 ( 0.8085 )

Heroin
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -7.0439 ( 0.3923 ) -6.8069 ( 0.3458 ) -6.4266 ( 0.3378 )
Cannabis 0.7079 ( 0.5992 ) 0.3732 ( 0.6045 ) 0.3997 ( 0.6187 )

Heroin
Cocaine 2.9367 ( 0.6374 ) 2.6848 ( 0.6504 ) 2.2743 ( 0.6988 )

Magic Mushrooms 0.9827 ( 0.6538 ) 1.0714 ( 0.6579 ) 0.9691 ( 0.684 )
Crack 2.5676 ( 0.6286 ) 2.8023 ( 0.6043 ) 2.5861 ( 0.6437 )

Methadone 0.6438 ( 0.7563 ) 1.1038 ( 0.7559 ) 1.0027 ( 0.784 )
Ecstasy -1.0123 ( 0.7965 ) -0.9098 ( 0.7983 ) -0.4558 ( 0.8036 )

Amphetamines 0.1325 ( 0.7724 ) -0.2087 ( 0.7951 ) -0.2657 ( 0.7675 )
LSD 1.3338 ( 0.8339 ) 1.8883 ( 0.7826 ) 1.4072 ( 0.8153 )

Poppers 0.0509 ( 0.6867 ) 0.0595 ( 0.6897 ) 0.1772 ( 0.6423 )
Ketamine 0.7769 ( 1.3284 ) 2.4662 ( 0.8922 ) 2.0979 ( 1.1125 )

Anabolic Steroids 1.8646 ( 0.8092 ) 1.8396 ( 0.7763 ) 1.9969 ( 0.8006 )
Gas 1.9614 ( 0.4743 ) 1.715 ( 0.4525 ) 1.3969 ( 0.4475 )

Other Drugs -2.0068 ( 1.3497 ) -2.4703 ( 1.4856 ) -2.4866 ( 1.4565 )
Tranquillisers -1.4783 ( 1.1838 ) -2.0494 ( 1.2095 ) -0.7087 ( 1.4123 )

Cocaine
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.274 ( 0.2838 ) -6.181 ( 0.2669 ) -6.0034 ( 0.2664 )
Cannabis 2.505 ( 0.3694 ) 2.4145 ( 0.3602 ) 2.2683 ( 0.349 )

Heroin 2.9781 ( 0.6106 ) 2.751 ( 0.5928 ) 2.3667 ( 0.6003 )
Cocaine

Magic Mushrooms 0.5886 ( 0.4512 ) 0.7653 ( 0.4162 ) 0.6846 ( 0.4168 )
Crack 2.2425 ( 0.5815 ) 2.0233 ( 0.5325 ) 2.059 ( 0.559 )

Methadone -0.214 ( 0.6329 ) -0.273 ( 0.5829 ) -0.0569 ( 0.5665 )
Ecstasy 2.2752 ( 0.4509 ) 2.1005 ( 0.4237 ) 2.0452 ( 0.4271 )

Amphetamines 1.4347 ( 0.4669 ) 1.3409 ( 0.4335 ) 1.3095 ( 0.4296 )
LSD -0.1394 ( 0.6361 ) -0.0678 ( 0.6017 ) 0.0496 ( 0.576 )

Poppers 1.5309 ( 0.3567 ) 1.4298 ( 0.3465 ) 1.3894 ( 0.3754 )
Ketamine -1.2586 ( 0.8643 ) -1.4818 ( 0.7762 ) -1.2707 ( 0.7255 )

Anabolic Steroids 0.4301 ( 0.8445 ) 0.5867 ( 0.7697 ) 0.412 ( 0.7783 )
Gas -0.5286 ( 0.4033 ) -0.3445 ( 0.3722 ) -0.2939 ( 0.3667 )

Other Drugs 1.5425 ( 0.6189 ) 1.6959 ( 0.5811 ) 1.589 ( 0.6441 )
Tranquillisers 0.3043 ( 0.7862 ) 0.3144 ( 0.7004 ) 0.2978 ( 0.8158 )
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Table B.3.7: Table of Estimates of Univariate Logistic Regression SaturatedMod-
els within Drug-trying Response Variables (Table 2)

Magic Mushrooms
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -5.5493 ( 0.1956 ) -5.5807 ( 0.1957 ) -5.4783 ( 0.1893 )
Cannabis 2.2358 ( 0.278 ) 2.2627 ( 0.2712 ) 2.1918 ( 0.2676 )

Heroin 1.2254 ( 0.6353 ) 1.3203 ( 0.6247 ) 1.1891 ( 0.6078 )
Cocaine 0.202 ( 0.4581 ) 0.367 ( 0.4334 ) 0.3503 ( 0.4302 )

Magic Mushrooms
Crack 1.0317 ( 0.5755 ) 0.6152 ( 0.5718 ) 0.523 ( 0.5633 )

Methadone 0.2224 ( 0.5598 ) -0.1571 ( 0.537 ) -0.1318 ( 0.5586 )
Ecstasy 0.506 ( 0.466 ) 0.7342 ( 0.4258 ) 0.774 ( 0.4221 )

Amphetamines 1.4649 ( 0.4179 ) 1.4776 ( 0.3954 ) 1.3791 ( 0.4062 )
LSD 1.4529 ( 0.5195 ) 1.5431 ( 0.4977 ) 1.3794 ( 0.5432 )

Poppers 0.459 ( 0.3419 ) 0.4114 ( 0.3305 ) 0.3661 ( 0.3291 )
Ketamine 0.2292 ( 0.6693 ) 0.462 ( 0.5759 ) 0.3459 ( 0.6251 )

Anabolic Steroids 0.1145 ( 0.7093 ) -0.149 ( 0.7067 ) -0.0423 ( 0.7743 )
Gas 1.055 ( 0.2736 ) 1.1162 ( 0.2658 ) 1.1294 ( 0.2554 )

Other Drugs 1.2269 ( 0.5764 ) 0.8716 ( 0.5873 ) 0.7376 ( 0.6536 )
Tranquillisers 0.9762 ( 0.7035 ) 0.6385 ( 0.666 ) 1.0104 ( 0.6944 )

Crack
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.7001 ( 0.3443 ) -6.5114 ( 0.3201 ) -6.3966 ( 0.308 )
Cannabis 2.0624 ( 0.4781 ) 2.0025 ( 0.4448 ) 1.9116 ( 0.4328 )

Heroin 2.6703 ( 0.6059 ) 2.9255 ( 0.5647 ) 2.7354 ( 0.5882 )
Cocaine 2.0013 ( 0.5555 ) 1.8936 ( 0.5162 ) 1.9724 ( 0.5322 )

Magic Mushrooms 1.0469 ( 0.557 ) 0.7139 ( 0.5667 ) 0.6806 ( 0.5479 )
Crack

Methadone 0.1843 ( 0.7007 ) 0.9009 ( 0.624 ) 0.7979 ( 0.6364 )
Ecstasy -0.0604 ( 0.7174 ) -0.5113 ( 0.6987 ) -0.7054 ( 0.73 )

Amphetamines 0.1177 ( 0.6865 ) 0.0311 ( 0.6634 ) 0.1143 ( 0.7357 )
LSD 0.0857 ( 0.771 ) 0.3048 ( 0.8063 ) 0.3864 ( 0.794 )

Poppers 6e-04 ( 0.5582 ) 0.1412 ( 0.5266 ) 0.0514 ( 0.5582 )
Ketamine -0.4973 ( 0.9531 ) -0.1293 ( 0.8455 ) -0.0668 ( 1.0517 )

Anabolic Steroids -2.0951 ( 1.0686 ) -1.9623 ( 1.0166 ) -1.7165 ( 1.233 )
Gas 0.6927 ( 0.4663 ) 0.5352 ( 0.4693 ) 0.6429 ( 0.4552 )

Other Drugs 1.0734 ( 0.7724 ) 0.9984 ( 0.7605 ) 1.186 ( 0.8158 )
Tranquillisers 1.4205 ( 0.7829 ) 1.8793 ( 0.6978 ) 1.6295 ( 0.8634 )

Methadone
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.6585 ( 0.3412 ) -6.4932 ( 0.3073 ) -6.2618 ( 0.2874 )
Cannabis 2.5313 ( 0.4505 ) 2.4448 ( 0.414 ) 2.3345 ( 0.4147 )

Heroin 1.2172 ( 0.7502 ) 1.2414 ( 0.7926 ) 1.1821 ( 0.8311 )
Cocaine 0.2118 ( 0.5834 ) 0.2182 ( 0.5606 ) 0.2803 ( 0.5473 )

Magic Mushrooms 0.8293 ( 0.5038 ) 0.3696 ( 0.5042 ) 0.2841 ( 0.5331 )
Crack -0.0145 ( 0.7294 ) 0.8164 ( 0.6631 ) 0.7571 ( 0.6467 )

Methadone
Ecstasy 1.3814 ( 0.5577 ) 0.8531 ( 0.5503 ) 0.8308 ( 0.5392 )

Amphetamines 1.7542 ( 0.4734 ) 1.6518 ( 0.4509 ) 1.5749 ( 0.4396 )
LSD -0.9183 ( 0.7498 ) -0.5784 ( 0.7241 ) -0.6541 ( 0.6791 )

Poppers 0.2006 ( 0.4731 ) 0.3428 ( 0.4442 ) 0.3033 ( 0.4317 )
Ketamine 0.3231 ( 0.7249 ) 0.1628 ( 0.6815 ) 0.2881 ( 0.6116 )

Anabolic Steroids 0.8408 ( 0.7444 ) 1.1036 ( 0.7085 ) 1.0377 ( 0.7453 )
Gas 0.5814 ( 0.4041 ) 0.5288 ( 0.3897 ) 0.5214 ( 0.4141 )

Other Drugs -0.2712 ( 0.8759 ) 0.3239 ( 0.7433 ) 0.5823 ( 0.8225 )
Tranquillisers 0.0904 ( 0.8018 ) 0.7311 ( 0.707 ) 0.6351 ( 0.8455 )
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Table B.3.8: Table of Estimates of Univariate Logistic Regression SaturatedMod-
els within Drug-trying Response Variables (Table 3)

Ecstasy
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -7.0424 ( 0.3873 ) -6.6289 ( 0.3124 ) -6.3954 ( 0.3054 )
Cannabis 2.8287 ( 0.4613 ) 2.5811 ( 0.4032 ) 2.3683 ( 0.378 )

Heroin -0.5187 ( 0.8156 ) -0.382 ( 0.8415 ) -0.0508 ( 0.8609 )
Cocaine 2.426 ( 0.4299 ) 2.2037 ( 0.4165 ) 2.1662 ( 0.4271 )

Magic Mushrooms 0.9322 ( 0.4433 ) 0.9857 ( 0.4179 ) 0.9961 ( 0.4197 )
Crack 0.4857 ( 0.6791 ) -0.2336 ( 0.6866 ) -0.4804 ( 0.6785 )

Methadone 1.5059 ( 0.5735 ) 0.9378 ( 0.5794 ) 0.9078 ( 0.594 )
Ecstasy

Amphetamines 1.1483 ( 0.482 ) 1.4115 ( 0.4388 ) 1.3838 ( 0.4643 )
LSD 2.2252 ( 0.5415 ) 2.4588 ( 0.5216 ) 2.4616 ( 0.5506 )

Poppers 0.2232 ( 0.4162 ) 0.1114 ( 0.3954 ) 0.1502 ( 0.3994 )
Ketamine 1.5947 ( 0.7237 ) 1.6218 ( 0.6519 ) 1.4347 ( 0.5733 )

Anabolic Steroids -0.4639 ( 0.8602 ) -0.8987 ( 0.9345 ) -1.0751 ( 0.9616 )
Gas 1.28 ( 0.3627 ) 1.1995 ( 0.345 ) 1.1255 ( 0.3458 )

Other Drugs 0.2973 ( 0.7554 ) 0.0089 ( 0.7325 ) 0.1865 ( 0.7252 )
Tranquillisers 0.595 ( 0.8608 ) 0.6691 ( 0.8198 ) 0.7385 ( 0.9081 )

Amphetamine
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.4595 ( 0.3089 ) -6.3023 ( 0.2855 ) -6.0663 ( 0.2634 )
Cannabis 2.3087 ( 0.4233 ) 2.3715 ( 0.3863 ) 2.1052 ( 0.3672 )

Heroin 0.0693 ( 0.7807 ) 0.1368 ( 0.7712 ) -0.0829 ( 0.7515 )
Cocaine 1.2797 ( 0.4655 ) 1.1007 ( 0.4508 ) 1.0959 ( 0.4486 )

Magic Mushrooms 1.5984 ( 0.4247 ) 1.4932 ( 0.4126 ) 1.4089 ( 0.4286 )
Crack -0.2674 ( 0.7333 ) -0.3433 ( 0.6671 ) -0.1565 ( 0.7516 )

Methadone 1.7028 ( 0.5149 ) 1.4939 ( 0.4885 ) 1.4595 ( 0.4826 )
Ecstasy 0.7967 ( 0.4992 ) 1.1805 ( 0.4567 ) 1.1604 ( 0.4834 )

Amphetamines
LSD -0.1329 ( 0.6737 ) -0.2799 ( 0.661 ) -0.0801 ( 0.6539 )

Poppers 1.0667 ( 0.3984 ) 0.7124 ( 0.3975 ) 0.6765 ( 0.4175 )
Ketamine 1.2131 ( 0.7222 ) 0.8987 ( 0.6615 ) 1.1133 ( 0.7125 )

Anabolic Steroids 0.1623 ( 0.7751 ) 0.6676 ( 0.78 ) 0.8102 ( 0.7748 )
Gas 0.4141 ( 0.384 ) 0.1791 ( 0.3797 ) 0.1859 ( 0.3904 )

Other Drugs -0.1087 ( 0.7409 ) -0.2168 ( 0.7186 ) -0.0624 ( 0.7033 )
Tranquillisers -0.4614 ( 0.7971 ) 0.5072 ( 0.7753 ) 0.1879 ( 0.8047 )

LSD
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -7.281 ( 0.4589 ) -7.0036 ( 0.3936 ) -6.7234 ( 0.3649 )
Cannabis 2.5198 ( 0.5885 ) 2.0614 ( 0.5478 ) 1.8113 ( 0.5256 )

Heroin 1.5662 ( 0.7617 ) 1.9424 ( 0.7651 ) 1.7723 ( 0.7777 )
Cocaine 0.4469 ( 0.5402 ) 0.3558 ( 0.5499 ) 0.4078 ( 0.5229 )

Magic Mushrooms 1.8348 ( 0.467 ) 1.8741 ( 0.4737 ) 1.7722 ( 0.4943 )
Crack 0.3658 ( 0.7596 ) 0.2843 ( 0.7664 ) 0.3029 ( 0.727 )

Methadone -0.338 ( 0.6941 ) -0.2498 ( 0.6721 ) -0.289 ( 0.6151 )
Ecstasy 2.1352 ( 0.5184 ) 2.3686 ( 0.5213 ) 2.4163 ( 0.5445 )

Amphetamines 0.2453 ( 0.6065 ) 0.0851 ( 0.5983 ) 0.1311 ( 0.5872 )
LSD

Poppers 1.1914 ( 0.4688 ) 1.0481 ( 0.4851 ) 0.9956 ( 0.4771 )
Ketamine -2.7831 ( 1.0108 ) -2.8887 ( 0.9047 ) -2.5525 ( 0.9153 )

Anabolic Steroids 0.8553 ( 0.8454 ) 1.336 ( 0.8821 ) 1.2999 ( 0.9197 )
Gas 0.0631 ( 0.4807 ) -0.2206 ( 0.4947 ) -0.2377 ( 0.5006 )

Other Drugs 0.7571 ( 0.7663 ) 1.1293 ( 0.7251 ) 1.1309 ( 0.7979 )
Tranquillisers 0.5225 ( 0.7777 ) 0.8841 ( 0.775 ) 0.8188 ( 0.7249 )
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Table B.3.9: Table of Estimates of Univariate Logistic Regression SaturatedMod-
els within Drug-trying Response Variables (Table 4)

Poppers
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -5.3525 ( 0.1775 ) -5.3977 ( 0.1775 ) -5.3126 ( 0.1793 )
Cannabis 3.1355 ( 0.2183 ) 3.1586 ( 0.214 ) 3.1405 ( 0.2114 )

Heroin -0.0565 ( 0.6117 ) 0.1366 ( 0.5783 ) 0.2787 ( 0.5649 )
Cocaine 1.5416 ( 0.355 ) 1.4157 ( 0.3448 ) 1.3699 ( 0.3653 )

Magic Mushrooms 0.6192 ( 0.3309 ) 0.5345 ( 0.3205 ) 0.4696 ( 0.3202 )
Crack -0.3272 ( 0.5533 ) 0.0159 ( 0.5016 ) -0.0855 ( 0.5522 )

Methadone 0.128 ( 0.5028 ) 0.4149 ( 0.454 ) 0.3596 ( 0.4227 )
Ecstasy -0.1759 ( 0.4199 ) -0.1259 ( 0.3924 ) -0.0736 ( 0.4137 )

Amphetamines 0.9807 ( 0.383 ) 0.7909 ( 0.369 ) 0.7126 ( 0.3996 )
LSD 0.9343 ( 0.477 ) 0.8621 ( 0.4736 ) 0.7845 ( 0.4616 )

Poppers
Ketamine 0.064 ( 0.5821 ) 0.3239 ( 0.5281 ) 0.1499 ( 0.5297 )

Anabolic Steroids 0.0309 ( 0.6006 ) -0.1242 ( 0.6051 ) -0.1033 ( 0.5524 )
Gas 1.0065 ( 0.2223 ) 1.01 ( 0.2149 ) 0.9496 ( 0.2162 )

Other Drugs 0.8301 ( 0.5359 ) 0.7514 ( 0.5128 ) 0.8521 ( 0.5252 )
Tranquillisers 0.6136 ( 0.6555 ) 0.7108 ( 0.6155 ) 0.7118 ( 0.671 )

Ketamine
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.8372 ( 0.3814 ) -6.7553 ( 0.3567 ) -6.5873 ( 0.3507 )
Cannabis 2.8991 ( 0.484 ) 2.7851 ( 0.4584 ) 2.7238 ( 0.4461 )

Heroin 1.5407 ( 0.9374 ) 2.4987 ( 0.7563 ) 2.1727 ( 0.8975 )
Cocaine -0.56 ( 0.7205 ) -0.9446 ( 0.6949 ) -0.7125 ( 0.635 )

Magic Mushrooms 0.6278 ( 0.5823 ) 0.6741 ( 0.5321 ) 0.5803 ( 0.5925 )
Crack 0.2467 ( 0.8313 ) 0.2674 ( 0.766 ) 0.2602 ( 0.8316 )

Methadone 0.4479 ( 0.6862 ) 0.5599 ( 0.5943 ) 0.6077 ( 0.545 )
Ecstasy 1.1951 ( 0.6464 ) 1.5146 ( 0.6018 ) 1.3076 ( 0.5472 )

Amphetamines 1.4595 ( 0.5827 ) 1.4067 ( 0.5416 ) 1.4898 ( 0.5723 )
LSD -1.885 ( 0.9464 ) -1.9168 ( 0.8498 ) -1.7559 ( 0.7807 )

Poppers -0.0012 ( 0.5492 ) 0.1694 ( 0.5152 ) 0.0518 ( 0.496 )
Ketamine

Anabolic Steroids -0.3173 ( 1.029 ) -0.8381 ( 0.9512 ) -0.6154 ( 1.3286 )
Gas 0.052 ( 0.4753 ) -0.2095 ( 0.4703 ) -0.132 ( 0.4904 )

Other Drugs 1.6407 ( 0.7152 ) 1.7751 ( 0.6885 ) 1.5914 ( 0.7287 )
Tranquillisers 1.8483 ( 0.7255 ) 1.5951 ( 0.7063 ) 1.7398 ( 0.6738 )

Anabolic Steroids
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.8545 ( 0.3588 ) -6.8493 ( 0.3472 ) -6.504 ( 0.3168 )
Cannabis 1.9626 ( 0.4787 ) 1.8369 ( 0.451 ) 1.7808 ( 0.4429 )

Heroin 1.8799 ( 0.8234 ) 1.77 ( 0.8432 ) 2.01 ( 0.8081 )
Cocaine 0.2675 ( 0.7589 ) 0.4316 ( 0.7256 ) 0.3483 ( 0.7575 )

Magic Mushrooms 0.2814 ( 0.6655 ) -0.0049 ( 0.6577 ) 0.1127 ( 0.7049 )
Crack -1.6549 ( 1.1061 ) -1.2606 ( 1.0178 ) -1.2857 ( 1.1667 )

Methadone 0.516 ( 0.723 ) 0.6573 ( 0.6756 ) 0.7534 ( 0.665 )
Ecstasy -0.5789 ( 0.861 ) -1.0174 ( 0.8498 ) -1.0718 ( 1.0617 )

Amphetamines 0.9022 ( 0.6985 ) 1.0588 ( 0.668 ) 1.0071 ( 0.6967 )
LSD 1.1668 ( 0.819 ) 1.6142 ( 0.8425 ) 1.4716 ( 0.7887 )

Poppers -0.0527 ( 0.59 ) -0.2745 ( 0.5997 ) -0.2035 ( 0.6007 )
Ketamine -0.3334 ( 1.0241 ) -0.4494 ( 0.9642 ) -0.3434 ( 1.2313 )

Anabolic Steroids
Gas 1.9121 ( 0.4259 ) 2.1144 ( 0.4101 ) 1.7772 ( 0.3846 )

Other Drugs 1.5994 ( 0.7265 ) 1.7678 ( 0.6662 ) 1.7351 ( 0.7889 )
Tranquillisers 1.3639 ( 0.8165 ) 1.6723 ( 0.7601 ) 1.2483 ( 0.8262 )
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Table B.3.10: Table of Estimates of Univariate Logistic Regression Saturated
Models within Drug-trying Response Variables (Table 5)

Gas
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -2.6366 ( 0.0507 ) -2.6317 ( 0.0494 ) -2.6249 ( 0.0495 )
Cannabis 0.8123 ( 0.1364 ) 0.7833 ( 0.1323 ) 0.7812 ( 0.133 )

Heroin 1.7007 ( 0.4825 ) 1.4627 ( 0.4633 ) 1.1644 ( 0.4259 )
Cocaine -0.8527 ( 0.3906 ) -0.5946 ( 0.3595 ) -0.4711 ( 0.3502 )

Magic Mushrooms 0.9327 ( 0.2702 ) 1.0158 ( 0.2623 ) 1.0309 ( 0.2557 )
Crack 0.3949 ( 0.4713 ) 0.1878 ( 0.4719 ) 0.3523 ( 0.4679 )

Methadone 0.2282 ( 0.4311 ) 0.1315 ( 0.4124 ) 0.1982 ( 0.4349 )
Ecstasy 1.0052 ( 0.3617 ) 1.0404 ( 0.3372 ) 0.9467 ( 0.3316 )

Amphetamines 0.1805 ( 0.3779 ) 0.0018 ( 0.3658 ) 0.0581 ( 0.3684 )
LSD -0.7233 ( 0.496 ) -0.781 ( 0.4743 ) -0.6307 ( 0.458 )

Poppers 0.9518 ( 0.2256 ) 0.9567 ( 0.2169 ) 0.8876 ( 0.2167 )
Ketamine -0.5633 ( 0.5371 ) -0.8208 ( 0.5035 ) -0.5875 ( 0.4936 )

Anabolic Steroids 1.7365 ( 0.4333 ) 1.8901 ( 0.4134 ) 1.5783 ( 0.3906 )
Gas

Other Drugs -0.0266 ( 0.5117 ) 0.0953 ( 0.4828 ) 0.0288 ( 0.4981 )
Tranquillisers 0.3684 ( 0.5387 ) 0.1316 ( 0.5268 ) 0.0412 ( 0.502 )

Other Drugs
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.7083 ( 0.3574 ) -6.6539 ( 0.342 ) -6.2806 ( 0.3505 )
Cannabis 2.0803 ( 0.533 ) 2.0967 ( 0.4979 ) 1.7552 ( 0.539 )

Heroin -3.348 ( 1.3762 ) -3.5481 ( 1.6996 ) -3.0873 ( 1.525 )
Cocaine 1.0463 ( 0.6254 ) 1.3033 ( 0.6072 ) 1.129 ( 0.6532 )

Magic Mushrooms 1.142 ( 0.5776 ) 0.7399 ( 0.6114 ) 0.6086 ( 0.6548 )
Crack 1.0911 ( 0.8122 ) 1.1775 ( 0.8858 ) 1.0312 ( 0.8388 )

Methadone -0.9012 ( 0.8818 ) -0.3984 ( 0.7958 ) 0.0445 ( 0.7676 )
Ecstasy 0.0983 ( 0.7354 ) -0.2364 ( 0.7243 ) 0.0708 ( 0.725 )

Amphetamines 0.4069 ( 0.6613 ) 0.2652 ( 0.6481 ) 0.1716 ( 0.6643 )
LSD 0.1473 ( 0.773 ) 0.4953 ( 0.7552 ) 0.545 ( 0.8355 )

Poppers 0.9673 ( 0.5617 ) 0.7966 ( 0.5629 ) 0.8479 ( 0.5583 )
Ketamine 1.629 ( 0.7365 ) 1.4771 ( 0.7504 ) 1.2736 ( 0.8242 )

Anabolic Steroids 1.8255 ( 0.8021 ) 1.8422 ( 0.7843 ) 1.7604 ( 0.8909 )
Gas 0.1357 ( 0.5194 ) 0.1843 ( 0.506 ) 0.079 ( 0.5311 )

Other Drugs
Tranquillisers 0.734 ( 0.772 ) 1.0224 ( 0.7761 ) 0.8927 ( 0.8881 )

Tranquillisers
Complete Case MICE, Scheme 1 MICE, Scheme 2

(Intercept) -6.689 ( 0.3479 ) -6.5551 ( 0.3173 ) -6.2724 ( 0.299 )
Cannabis 1.1917 ( 0.6103 ) 0.9601 ( 0.5832 ) 0.7793 ( 0.5805 )

Heroin -1.9148 ( 1.2312 ) -2.2281 ( 1.1439 ) -0.7951 ( 1.4433 )
Cocaine 0.5486 ( 0.7773 ) 0.1061 ( 0.7739 ) 0.0946 ( 0.9906 )

Magic Mushrooms 1.2438 ( 0.6563 ) 0.804 ( 0.6838 ) 1.0792 ( 0.754 )
Crack 1.4657 ( 0.8057 ) 2.056 ( 0.7152 ) 1.6482 ( 0.8318 )

Methadone -0.4803 ( 0.8894 ) 0.435 ( 0.7384 ) 0.412 ( 0.8257 )
Ecstasy 0.5553 ( 0.8233 ) 0.7707 ( 0.7972 ) 0.8861 ( 0.9086 )

Amphetamines 0.6089 ( 0.7318 ) 0.9048 ( 0.6862 ) 0.4311 ( 0.808 )
LSD 0.7902 ( 0.8257 ) 1.1165 ( 0.8168 ) 0.8254 ( 0.802 )

Poppers 0.5692 ( 0.6532 ) 0.5474 ( 0.6394 ) 0.6049 ( 0.7034 )
Ketamine 1.7461 ( 0.8025 ) 1.4993 ( 0.8335 ) 1.5892 ( 0.8314 )

Anabolic Steroids 1.3087 ( 0.886 ) 1.5637 ( 0.8202 ) 1.0878 ( 1.0254 )
Gas 0.8159 ( 0.5262 ) 0.5245 ( 0.5236 ) 0.2998 ( 0.5346 )

Other Drugs 1.1385 ( 0.7828 ) 1.4342 ( 0.7685 ) 1.2766 ( 0.8606 )
Tranquillisers
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C.1 Results of Final Log-linear AnalysisModel with

Backward Elimination

Table C.1.1: Table of Estimates of Log-linear Analysis Final Model (Table 1)

Intercept/Interaction Terms Complete Case MICE Scheme 1 MICE Scheme 2
(Intercept) 8.6387 (0.0133) 8.6995 (0.0130) 8.6896 (0.0130)
Cannabis -2.8730 (0.0559) -2.9274 (0.0565) -2.9873 (0.0585)
Heroin -7.6983 (0.5011) -6.5619 (0.3532) -6.2344 (0.3300)
Cocaine -6.3377 (0.2940) -6.2065 (0.2779) -5.8472 (0.2630)
Magic Mushrooms -5.7263 (0.2159) -5.5128 (0.1943) -5.3624 (0.1821)
Crack -7.2246 (0.4217) -6.3464 (0.3047) -6.0955 (0.2916)
Methadone -6.5206 (0.3340) -6.3965 (0.3146) -6.1319 (0.2935)
Ecstasy -6.8299 (0.3639) -6.2547 (0.2884) -6.0214 (0.2746)
Amphetamines -6.6223 (0.3548) -6.2799 (0.2995) -5.9754 (0.2801)
LSD -7.0481 (0.4485) -6.8175 (0.4063) -6.4608 (0.3659)
Poppers -5.3906 (0.1818) -5.3589 (0.1770) -5.2167 (0.1778)
Ketamine -7.0386 (0.4275) -6.6562 (0.3529) -6.4284 (0.3376)
Anabolic Steroids -7.3812 (0.4461) -6.8056 (0.3466) -6.3037 (0.3263)
Gas -2.6561 (0.0512) -2.6301 (0.0494) -2.6102 (0.0496)
Other Drugs -6.8548 (0.4012) -6.5778 (0.3490) -6.1741 (0.3596)
Tranquillisers -7.7460 (0.5404) -6.4687 (0.3177) -6.1323 (0.2933)
Cannabis:Heroin 2.0494 (0.6258) 1.7744 (0.5917)
Cannabis:Cocaine 1.5942 (0.4633) 2.6603 (0.3659) 2.1973 (0.4190)
Cannabis:Magic Mushrooms 2.6415 (0.2988) 2.7483 (0.2446) 2.6743 (0.2549)
Cannabis:Crack 2.4988 (0.5807) 2.5854 (0.4470) 2.5057 (0.4590)
Cannabis:Methadone 2.6032 (0.4658) 3.2091 (0.3957) 3.1357 (0.3972)
Cannabis:Ecstasy 2.8659 (0.4534) 3.1453 (0.3602) 2.5394 (0.4074)
Cannabis:Amphetamines 2.8524 (0.4625) 2.7976 (0.3850) 2.8432 (0.3378)
Cannabis:LSD 2.2947 (0.6867) 3.0956 (0.5194) 2.5151 (0.5652)
Cannabis:Poppers 3.0823 (0.2297) 3.2712 (0.2177) 3.2956 (0.2101)
Cannabis:Ketamine 3.5164 (0.5172) 3.3829 (0.4514) 3.4512 (0.4257)
Cannabis:Anabolic Steroids 1.9593 (0.5649) 2.6927 (0.4275) 2.5370 (0.4847)
Cannabis:Gas 0.8386 (0.1408) 0.8286 (0.1367) 0.9007 (0.1361)
Cannabis:Other Drugs 2.2018 (0.5778) 2.4290 (0.4944) 2.5765 (0.5193)
Cannabis:Tranquillisers 3.9651 (0.8119) 4.5754 (0.5951) 4.2052 (1.1944)
Heroin:Cocaine 5.4590 (0.5874) 4.9954 (0.6540) 3.3535 (0.6928)
Heroin:Magic Mushrooms 10.1242 (0.8481) 8.0758 (1.6748) 4.2922 (1.2889)
Heroin:Crack -3.2287 (0.8813)
Heroin:Methadone 9.9682 (1.4740)
Heroin:Ecstasy
Heroin:Amphetamines -5.4199 (1.7716) -3.7368 (1.4289)
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Table C.1.2: Table of Estimates of Log-linear Analysis Final Model (Table 2)

Intercept/Interaction Terms Complete Case MICE Scheme 1 MICE Scheme 2
Heroin:LSD -4.6051 (1.2681)
Heroin:Poppers
Heroin:Ketamine 2.7733 (1.3817)
Heroin:Anabolic Steroids -16.1859 (1.6611)
Heroin:Gas 2.9951 (0.5793) 1.9508 (0.5323) 1.3216 (0.5622)
Heroin:Other Drugs 24.8226 (4.0921)
Heroin:Tranquillisers 8.1571 (1.9761) -5.3915 (1.7094) -2.6531 (0.9890)
Cocaine:Magic Mushrooms
Cocaine:Crack 4.7793 (0.6840) 2.3370 (0.6015) 2.6893 (0.6042)
Cocaine:Methadone 3.0632 (0.7450)
Cocaine:Ecstasy 2.9912 (0.4206) 2.1424 (0.5031) 2.6359 (0.3950)
Cocaine:Amphetamines 1.3299 (0.5638) 2.8990 (0.4591) 2.1635 (0.5187)
Cocaine:LSD 1.7208 (0.6703)
Cocaine:Poppers 2.8853 (0.4322) 1.5611 (0.3874) 1.9130 (0.4657)
Cocaine:Ketamine -7.1597 (2.1158)
Cocaine:Anabolic Steroids
Cocaine:Gas
Cocaine:Other Drugs 3.5488 (0.6827) 2.8327 (0.6787)
Cocaine:Tranquillisers 3.2159 (1.0143)
Magic Mushrooms:Crack 2.5952 (0.6377)
Magic Mushrooms:Methadone
Magic Mushrooms:Ecstasy 1.2963 (0.5546) 1.5760 (0.5424)
Magic Mushrooms:Amphetamines 3.1545 (0.5008) 2.5612 (0.4685)
Magic Mushrooms:LSD 1.6872 (0.6525)
Magic Mushrooms:Poppers 1.0592 (0.3552)
Magic Mushrooms:Ketamine 4.0600 (1.0467)
Magic Mushrooms:Anabolic Steroids 3.9594 (0.7208)
Magic Mushrooms:Gas 0.6949 (0.3094) 0.9628 (0.3040) 0.8456 (0.2934)
Magic Mushrooms:Other Drugs 4.3294 (0.6233) 3.3619 (0.6221) 2.6826 (0.6820)
Magic Mushrooms:Tranquillisers 3.5282 (0.7860)
Crack:Methadone -7.6057 (1.4261)
Crack:Ecstasy
Crack:Amphetamines
Crack:LSD -3.6968 (1.1509)
Crack:Poppers 4.6667 (0.6582) 2.3066 (0.8431)
Crack:Ketamine -11.2412 (1.7605)
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Table C.1.3: Table of Estimates of Log-linear Analysis Final Model (Table 3)

Intercept/Interaction Terms Complete Case MICE Scheme 1 MICE Scheme 2
Crack:Anabolic Steroids -36.9802 (3.6192)
Crack:Gas 1.3836 (0.5917)
Crack:Other Drugs 5.1968 (1.0235) 3.2040 (1.3345)
Crack:Tranquillisers 2.2393 (1.0872)
Methadone:Ecstasy 2.8503 (0.6560) 1.6108 (0.5330)
Methadone:Amphetamines 3.0465 (0.7214) 2.9741 (0.5376)
Methadone:LSD -11.5027 (1.4053)
Methadone:Poppers
Methadone:Ketamine 11.1938 (1.6745)
Methadone:Anabolic Steroids 5.9007 (1.6878) 2.8328 (1.2345)
Methadone:Gas
Methadone:Other Drugs
Methadone:Tranquillisers -9.4464 (1.5339)
Ecstasy:Amphetamines
Ecstasy:LSD 2.9886 (0.7048) 3.7084 (0.5284) 3.3840 (0.5483)
Ecstasy:Poppers
Ecstasy:Ketamine -9.4239 (1.7292) 3.3946 (1.0444) 2.5057 (0.5918)
Ecstasy:Anabolic Steroids 3.7481 (0.8926)
Ecstasy:Gas 1.0204 (0.3739)
Ecstasy:Other Drugs
Ecstasy:Tranquillisers
Amphetamine:LSD 3.2951 (1.0175)
Amphetamine:Poppers 1.7033 (0.4387)
Amphetamine:Ketamine
Amphetamine:Anabolic Steroids 2.9525 (0.8837)
Amphetamine:Gas
Amphetamine:Other Drugs
Amphetamine:Tranquillisers 8.3828 (0.9911) 3.2970 (0.9755) 4.2596 (1.4997)
LSD:Poppers 1.9083 (0.5984) 1.2350 (0.5771)
LSD:Ketamine -10.2011 (1.6990)
LSD:Anabolic Steroids 4.8315 (1.0290)
LSD:Gas
LSD:Other Drugs
LSD:Tranquillisers -6.4586 (1.2021)
Poppers:Ketamine 2.3247 (0.7824) 3.4330 (1.1524)
Poppers:Anabolic Steroids -5.3415 (1.5345)
Poppers:Gas 0.9826 (0.2338) 1.0958 (0.2230) 0.8350 (0.2262)
Poppers:Other Drugs
Poppers:Tranquillisers
Ketamine:Anabolic Steroids
Ketamine:Gas 1.7688 (0.6846)
Ketamine:Other Drugs 2.1809 (0.9066)
Ketamine:Tranquillisers 2.1035 (0.9230)
Anabolic Steroids:Gas 2.4697 (0.5161) 2.3035 (0.4393) 1.5286 (0.4837)
Anabolic Steroids:Other Drugs 3.6215 (1.0770)
Anabolic Steroids:Tranquillisers 6.9541 (0.9301)
Gas:Other Drugs
Gas:Tranquillisers 2.9826 (0.6418)
Other Drugs:Tranquillisers 3.0007 (0.9493)
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C.2 Results of Saturated Log-linear Analysis Model

Table C.2.1: Table of Estimates of Log-linear Analysis Saturated Model (Table 1)

Variable Complete Case MICE Scheme 1 MICE Scheme 2
(Intercept) 8.6388 (0.0133) 8.7027 (0.0129) 8.6928 (0.0130)
Cannabis -2.8569 (0.0561) -2.8387 (0.0558) -2.8639 (0.0568)
Heroin -7.6369 (0.5258) -7.0236 (0.4461) -6.5012 (0.3936)
Cocaine -6.3192 (0.2999) -6.1732 (0.2804) -5.9011 (0.2791)
Magic Mushrooms -5.7469 (0.2197) -5.6533 (0.2105) -5.4871 (0.2076)
Crack -7.2169 (0.4350) -6.6910 (0.3894) -6.3898 (0.3701 )
Methadone -6.5908 (0.3439) -6.4875 (0.3253) -6.2043 (0.2921)
Ecstasy -6.8840 (0.3751) -6.4514 (0.3072) -6.1599 (0.2858)
Amphetamines -6.6221 (0.3588) -6.4464 (0.3353) -6.0856 (0.2850)
LSD -7.0440 (0.4483) -6.9156 (0.4228) -6.5439 (0.3690)
Poppers -5.3788 (0.1825) -5.3978 (0.1857) -5.2889 (0.1770)
Ketamine -6.9139 (0.4208) -6.6810 (0.3668) -6.4742 (0.3491)
Anabolic Steroids -7.3559 (0.4708) -6.9773 (0.3980) -6.4945 (0.3448)
Gas -2.6587 (0.0514) -2.6414 (0.0496) -2.6271 (0.0500)
Other Drugs -6.8489 (0.4012 -6.9221 (0.4289 -6.4091 (0.3787)
Tranquillisers -7.8970 (0.6643) -6.8756 (0.4167) -6.3464 (0.3352)
Cannabis,Heroin 1.5922 (0.8331) 1.1944 (0.9038) 1.0200 (1.0859)
Cannabis,Cocaine 1.9796 (0.4988) 2.1315 (0.4371) 2.0953 (0.4271)
Cannabis,Magic Mushrooms 2.6575 (0.3080) 2.5363 (0.3189) 2.4602 (0.3204)
Cannabis,Crack 2.0737 (0.6359) 2.3058 (0.6328) 2.3195 (0.5450)
Cannabis,Methadone 2.4135 (0.4928) 2.5520 (0.4732) 2.4646 (0.4781)
Cannabis,Ecstasy 2.8095 (0.4925) 2.4534 (0.4655) 2.3148 (0.4721)
Cannabis,Amphetamines 2.4949 (0.5308) 2.6665 (0.4740) 2.3890 (0.4390)
Cannabis,LSD 2.3539 (0.6931) 2.1373 (0.7802) 2.0860 (0.7669)
Cannabis,Poppers 3.0095 (0.2342) 3.1140 (0.2417) 3.1514 (0.2196)
Cannabis,Ketamine 3.3542 (0.5318) 3.2651 (0.4794) 3.0348 (0.4873)
Cannabis,Anabolic Steroids 1.8757 (0.6584) 1.9102 (0.5764) 1.9359 (0.7501)
Cannabis,Gas 0.8070 (0.1434) 0.7686 (0.1395) 0.7853 (0.1550)
Cannabis,Other Drugs 2.1424 (0.6674) 2.2955 (0.8104) 1.7543 (0.8253)
Cannabis,Tranquillisers 3.6764 (1.2131) 3.4350 (1.7206) 3.1358 (2.6803)
Heroin,Cocaine 5.3682 (0.8476) 4.8479 (0.8198) 3.8530 (1.0391)
Heroin,Magic Mushrooms 8.7213 (1.2899) 7.8793 (2.1346) 4.6862 (3.1461)
Heroin,Crack -2.6660 (1.1362) -0.4403 (1.2774) 1.1283 (1.3643)
Heroin,Methadone 10.9827 (1.9091) 5.4948 (2.7236) 2.5665 (2.6411)
Heroin,Ecstasy 0.6014 (1.0584) -0.0712 (2.0460) -0.0699 (2.2660)
Heroin,Amphetamines 0.0805 (1.6813) -3.2297 (2.7543) -5.3321 (3.6009)
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Table C.2.2: Table of Estimates of Log-linear Analysis Saturated Model (Table 2)

Variable Complete Case MICE Scheme 1 MICE Scheme 2
Heroin,LSD -3.6646 (1.9359) -2.1728 (2.3425) 1.2382 (3.6023)
Heroin,Poppers 0.4906 (1.1034) -1.1617 (3.9537) -1.4205 (2.5400)
Heroin,Ketamine 1.7384 (1.8810) 3.5559 (3.9192) 4.4069 (3.5355)
Heroin,Anabolic Steroids -16.8424 (2.3945) -7.6430 (5.5743) -1.4620 (4.7958)
Heroin,Gas 2.9401 (0.6371) 2.2642 (0.7633) 1.9203 (0.6580)
Heroin,Other Drugs 18.7881 (7.0799) -7.2972 (10.2251) -9.7594 (9.3113)
Heroin,Tranquillisers 5.9471 (3.2136) -5.4824 (3.6285) -3.0579 (5.0752)
Cocaine,Magic Mushrooms -0.3588 (0.7809) 1.0377 (0.7907) 0.7823 (0.7583)
Cocaine,Crack 4.9842 (0.8129) 3.3908 (0.8925) 2.4443 (1.0605)
Cocaine,Methadone 2.1052 (1.1349) -0.5190 (2.0081) -0.3682 (1.8388)
Cocaine,Ecstasy 2.7708 (0.5982) 2.4755 (0.6662) 2.7114 (0.6643)
Cocaine,Amphetamines 1.2360 (0.7633) 1.8509 (0.8073) 2.2651 (1.0601)
Cocaine,LSD 1.0915 (0.8735) 0.6897 (1.1598) -0.8270 (2.0235)
Cocaine,Poppers 2.7285 (0.5093) 2.0369 (0.4893) 1.8163 (0.4692)
Cocaine,Ketamine -4.4652 (4.0171) -12.3839 (4.5758) -6.6162 (4.9985)
Cocaine,Anabolic Steroids 0.0678 (2.0228) 2.3556 (2.2840) 1.2312 (3.5170)
Cocaine,Gas -0.6783 (0.5672) -0.2365 (0.5025) -0.4986 (0.5834)
Cocaine,Other Drugs 3.4511 (1.3750) 4.4036 (1.6105) 2.2376 (2.1843)
Cocaine,Tranquillisers 3.8069 (1.7850) 3.5487 (1.3525) 1.0234 (2.7542)
Magic Mushrooms,Crack 2.4951 (0.8257) 1.4783 (1.1083) 2.1599 (1.4392)
Magic Mushrooms,Methadone 0.6776 (1.2878) -0.8019 (1.8617) -1.0768 (2.0978)
Magic Mushrooms,Ecstasy 0.7556 (0.9061) 1.3482 (0.8390) 1.2912 (0.8671)
Magic Mushrooms,Amphetamines 1.5718 (0.7884) 2.4795 (0.7183) 2.7080 (0.8402)
Magic Mushrooms,LSD 1.3746 (0.7964) 1.2979 (0.9729) 0.8541 (1.0626)
Magic Mushrooms,Poppers 0.9120 (0.4007) 0.4940 (0.4373) 0.3569 (0.4205)
Magic Mushrooms,Ketamine 4.7907 (1.7557) 2.7577 (1.9497) 0.4623 (2.1555)
Magic Mushrooms,Anabolic Steroids 4.1416 (0.8557) 2.2701 (1.6644) 1.7899 (1.6193)
Magic Mushrooms,Gas 0.8403 (0.3299) 0.8970 (0.3563) 0.8899 (0.3633)
Magic Mushrooms,Other Drugs 4.5787 (1.3622) 4.8967 (1.5682) 3.2839 (1.4191)
Magic Mushrooms,Tranquillisers 2.1758 (1.7195) -0.2789 (2.3706) 1.4175 (3.2168)
Crack,Methadone -7.3968 (2.0512) -0.9334 (3.5285) 1.4824 (3.4160)
Crack,Ecstasy -0.4364 (0.9756) -0.8509 (2.1362) -1.8502 (3.0495)
Crack,Amphetamines 0.8858 (1.5161) -0.9712 (2.4718) -0.6642 (2.8393)
Crack,LSD -2.9536 (1.6398) 0.3236 (2.5671) 0.2080 (2.3827)
Crack,Poppers 4.5590 (0.7711) 3.7729 (1.0883) 2.3593 (1.5063)
Crack,Ketamine -9.0979 (3.8906) -4.8484 (5.0607) -2.3669 (3.5224)
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Table C.2.3: Table of Estimates of Log-linear Analysis Saturated Model (Table 3)

Variable Complete Case MICE Scheme 1 MICE Scheme 2
Crack,Anabolic Steroids -35.0118 (5.7580) -9.7267 (8.1413) -5.9600 (4.5979)
Crack,Gas 1.7930 (0.6273) 0.4910 (0.7488) 0.4594 (0.6705)
Crack,Other Drugs 4.5841 (1.3669) 5.3322 (1.5962) 5.0691 (1.7097)
Crack,Tranquillisers 3.5243 (1.3505) 2.8388 (1.6975) 0.2710 (3.3666)
Methadone,Ecstasy 2.5955 (0.7265) 1.7379 (1.0396) 1.6648 (0.9683)
Methadone,Amphetamines 1.9829 (1.0368) 1.2812 (1.3530) 1.5664 (1.8149)
Methadone,LSD -11.7509 (2.2931) -4.3936 (2.9405) -1.6491 (2.7202)
Methadone,Poppers 1.4693 (0.7081) 1.5173 (0.7199) 0.9016 (0.8934)
Methadone,Ketamine 9.6484 (3.4589) 0.7186 (2.6657) 1.2068 (1.7376)
Methadone,Anabolic Steroids 4.5771 (2.4934) 3.0511 (5.4712) 2.4435 (5.5509)
Methadone,Gas 0.7162 (0.6179) 0.6908 (0.5863) 0.3693 (0.6156)
Methadone,Other Drugs 1.6276 (2.8919) -1.5581 (3.2643) 0.2218 (2.8647)
Methadone,Tranquillisers -11.7082 (3.0845) -2.2900 (3.9049) -2.1569 (3.9274)
Ecstasy,Amphetamines 0.2941 (0.8462) 1.3720 (0.7215) 0.8630 (0.7289)
Ecstasy,LSD 2.3349 (1.1868) 4.0120 (1.2461) 4.3446 (2.8789)
Ecstasy,Poppers 0.4928 (0.5617) 0.3776 (0.7116) 0.2409 (0.6375)
Ecstasy,Ketamine -7.2452 (3.4608) 2.4133 (1.9213) 2.1881 (1.6414)
Ecstasy,Anabolic Steroids 4.2572 (1.3517) 0.9766 (2.7171) -1.2053 (4.3357)
Ecstasy,Gas 1.2271 (0.4284) 0.9976 (0.4440) 0.8602 (0.4587)
Ecstasy,Other Drugs -0.5450 (1.9387) -1.1569 (3.2462) -1.3400 (2.7843)
Ecstasy,Tranquillisers -0.7987 (1.4463) 0.4081 (1.9182) -0.1325 (2.8477)
Amphetamine,LSD 3.6428 (1.7912) -1.7673 (2.3348) -0.6816 (3.6626)
Amphetamine,Poppers 1.6198 (0.4924) 0.8144 (0.4794) 0.3153 (0.5835)
Amphetamine,Ketamine -1.3590 (1.4601) -0.8723 (1.8846) 0.8848 (1.2198)
Amphetamine,Anabolic Steroids 2.9526 (1.0033) 0.9346 (1.7053) 0.9771 (1.8914)
Amphetamine,Gas 0.9857 (0.5120) 0.8473 (0.5507) 0.7539 (0.7232)
Amphetamine,Other Drugs 1.4189 (2.5866) 0.8863 (4.1956) 0.2666 (4.1225)
Amphetamine,Tranquillisers 8.1442 (1.9024) 7.9116 (2.1711) 3.8114 (3.3710)
LSD,Poppers 2.0353 (0.7041) 1.9981 (0.8504) 1.5259 (1.0245)
LSD,Ketamine -10.8492 (2.9463) 1.7895 (3.5546) -2.8419 (3.8946)
LSD,Anabolic Steroids 4.8480 (1.0877) 4.0462 (1.5560) 2.9886 (1.8591)
LSD,Gas -0.2065 (0.9770) -1.5168 (1.3131) -1.9522 (1.8986)
LSD,Other Drugs 2.7092 (2.5547) 0.7662 (4.1924) 2.1713 (4.2163)
LSD,Tranquillisers -3.9620 (2.0194) -2.3787 (3.1288) 1.2837 (2.3338)
Poppers,Ketamine 3.5444 (1.4155) 2.9193 (2.0111) 1.5425 (1.7286)
Poppers,Anabolic Steroids -5.3443 (1.9324) -2.2370 (4.1519) -0.7084 (5.8453)
Poppers,Gas 1.0187 (0.2539) 1.0335 (0.2491) 0.9728 (0.2465)
Poppers,Other Drugs -0.3069 (1.1758) -0.6269 (1.5221) 1.0607 (1.4690)
Poppers,Tranquillisers -1.0848 (2.0813) -1.3905 (2.5199) -0.6313 (2.7722)
Ketamine,Anabolic Steroids 1.8154 (1.4362) 2.2472 (5.2820) 1.9630 (3.1875)
Ketamine,Gas 1.2605 (0.9324) -1.7388 (2.9289) -0.6068 (2.3743)
Ketamine,Other Drugs 2.3534 (1.1623) 2.1512 (1.4084) 1.8506 (1.7845)
Ketamine,Tranquillisers 2.3032 (1.2276) 0.7887 (1.7203) 1.0690 (2.3755)
Anabolic Steroids,Gas 2.2228 (0.6005) 2.4333 (0.5696) 1.8237 (0.5285)
Anabolic Steroids,Other Drugs 3.7576 (1.7196) 3.3739 (2.0772) 3.5006 (2.7112)
Anabolic Steroids,Tranquillisers 7.1299 (1.0977) 1.0899 (4.6096) -0.2395 (4.7769)
Gas,Other Drugs -0.0335 (1.1287) -0.0844 (1.2897) -0.4161 (1.7891)
Gas,Tranquillisers 3.2391 (0.8322) 1.5822 (0.8140) 0.6502 (1.1871)
Other Drugs,Tranquillisers 3.5353 (1.3762) 1.7382 (2.3653) 1.9668 (3.6893)
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E.1 Frequency Table of Drug-trying Response Vari-

ables in Each Imputed Data Set

Table E.1.1: FrequencyTable ofDrug-tryingResponseVariables in Each Imputed
Data Set for the R and Latent Gold programs (Latent Class Analysis model). R:
R program; G: Latent Gold program

Response Data Set 1 2 3 4 5 6 7 8 9 10
Cannabis R 676 669 676 678 678 681 677 680 678 676

LG 676 681 683 681 675 678 678 676 675 677
Heroin R 46 44 43 44 44 44 41 43 46 41

LG 46 44 43 44 44 44 41 43 46 41
Cocaine R 96 92 94 94 95 96 92 96 97 94

LG 91 91 92 91 92 92 91 89 94 90
Magic R 114 114 115 113 116 115 112 113 115 114

Mushrooms LG 110 113 112 111 112 116 112 111 111 111
Crack R 52 48 52 50 52 54 49 53 55 50

LG 47 46 49 45 48 48 47 46 50 48
Methadone R 56 54 56 55 59 57 53 56 57 56

LG 53 53 54 54 55 58 54 52 58 54
Ecstasy R 87 82 84 84 86 87 81 85 87 85

LG 83 82 83 82 82 82 83 83 83 80
Amphetamines R 71 70 73 71 75 73 70 73 74 71

LG 70 71 69 69 68 69 69 70 68 68
LSD R 46 43 47 45 48 46 45 45 48 46

LG 44 44 43 43 45 45 44 43 44 47
Poppers R 170 167 172 169 174 169 171 172 170 172

LG 167 168 169 170 168 169 169 167 170 169
Ketamine R 50 45 50 47 49 49 44 46 47 45

LG 43 45 44 44 46 46 44 44 47 44
Anabolic R 38 37 37 38 39 38 38 38 41 39
Steroids LG 38 35 36 35 36 37 35 35 37 36

Gas R 601 604 609 602 606 606 599 605 601 609
LG 607 606 604 603 595 610 596 607 603 600

Other Drugs R 35 34 37 34 33 36 36 35 36 36
LG 36 35 35 35 36 36 34 33 34 34

Tranquillisers R 37 33 39 35 34 35 37 35 36 37
LG 33 34 34 33 34 35 34 36 37 34



Appendix F

Tables of Weighted Results

F.1 Design Factor Table on Five Perspectives of the

Year 2010 Study

Table F.1.1: True Standard Error and Design Factor Table on Five Perspectives of
the Year 2010 Study.

Key Variables Gender Sample
Size

Weighted
Sample
Size

True
Standard
Errors

Design
Factors

Prevalence of regular Male 3663 3676 0.378 1.166
smoking Female 3591 3575 0.445 1.083
Proportion who drank Male 3531 3541 0.73 1.292
alcohol in the last week Female 3486 3468 0.652 1.083
Mean alcohol consumption Male 389 377 0.836 1.169
in the last week Female 401 394 0.986 1.161
Proportion who have taken Male 3383 3395 0.556 1.23
drugs in the last month Female 3410 3388 0.471 1.168
Proportion who have taken Male 3401 3416 0.67 1.163
drugs in the last year Female 3424 3404 0.657 1.083
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F.2 Estimate Tables For Weighted Results
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Table F.2.1: EstimateTable of LogisticRegrssion among15Drug-tryingResponse
Variables Only (Unweighted model vs weighted model) (Table 1)

Cannabis
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -2.7937 0.0544 -2.7311 0.0707
Cannabis

Heroin
Cocaine 1.9203 0.4247 1.4227 0.5797

Magic Mushrooms 1.7261 0.3154 1.9892 0.4274
Crack 1.3056 0.5562 1.6481 0.6776

Methadone 2.2028 0.5141 2.3349 0.6803
Ecstasy 2.1544 0.5094 2.2548 0.6767

Amphetamine 1.1700 0.5102 1.2332 0.7146
LSD 1.9235 0.6816 1.4654 0.9238

Poppers 2.9510 0.2274 3.0144 0.2877
Ketamine 3.0345 0.4917 2.8347 0.5912

Anabolic Steroids 1.6713 0.5272 1.9280 0.6719
Gas 0.6926 0.1439 0.5502 0.1942

Other Drugs 1.5111 0.6388 1.7356 0.8111
Tranquillisers

Heroin
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.9025 0.3635 -7.0504 0.3313
Cannabis

Heroin
Cocaine 3.1359 0.5140 3.8005 0.4288

Magic Mushrooms 1.1325 0.5499
Crack 2.6261 0.5796 2.5595 0.5080

Methadone
Ecstasy

Amphetamine
LSD

Poppers
Ketamine

Anabolic Steroids 2.0174 0.7362 2.6668 0.6004
Gas 2.0131 0.4535 1.9512 0.3933

Other Drugs
Tranquillisers
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Table F.2.2: EstimateTable of LogisticRegrssion among15Drug-tryingResponse
Variables Only (Unweighted model vs weighted model) (Table 2)

Cocaine
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.2757 0.2793 -6.2124 0.2232
Cannabis 2.4658 0.3672 2.2158 0.3043

Heroin 2.8845 0.5881 3.0657 0.4898
Cocaine

Magic Mushrooms
Crack 2.2258 0.5846 2.3501 0.4808

Methadone
Ecstasy 2.1457 0.3905 2.2510 0.3269

Amphetamine 1.3670 0.4369 1.2733 0.3720
LSD

Poppers 1.5163 0.3495 1.6392 0.2902
Ketamine

Anabolic Steroids
Gas

Other Drugs 1.5313 0.5970 1.4439 0.5105
Tranquillisers

Magic Mushrooms
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -5.5673 0.1961 -5.6949 0.1737
Cannabis 2.4120 0.2594 2.4757 0.2330

Heroin 1.3508 0.5966 1.4980 0.4846
Cocaine

Magic Mushrooms
Crack 1.2651 0.5339

Methadone
Ecstasy 0.8523 0.3456

Amphetamine 1.8743 0.3693 1.2443 0.3435
LSD 1.9126 0.4486 1.3565 0.4390

Poppers 0.7052 0.2653
Ketamine

Anabolic Steroids
Gas 1.1088 0.2611 1.0012 0.2243

Other Drugs 1.6800 0.5097
Tranquillisers 1.4339 0.5487
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Table F.2.3: EstimateTable of LogisticRegrssion among15Drug-tryingResponse
Variables Only (Unweighted model vs weighted model) (Table 3)

Crack
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.6165 0.3327 -6.4595 0.2830
Cannabis 2.1625 0.4487 2.1587 0.3906

Heroin 2.7471 0.5822 1.9960 0.4927
Cocaine 2.0928 0.4817 2.3254 0.4183

Magic Mushrooms 1.3383 0.4843 1.3361 0.4097
Crack

Methadone
Ecstasy

Amphetamine
LSD

Poppers
Ketamine

Anabolic Steroids -1.9414 1.0203
Gas

Other Drugs
Tranquillisers 1.5110 0.7260

Methadone
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.5812 0.3353 -6.7766 0.3235
Cannabis 2.7722 0.4268 2.7941 0.3940

Heroin 1.6089 0.6077 1.7721 0.5276
Cocaine

Magic Mushrooms
Crack

Methadone
Ecstasy 1.6518 0.4626 1.4421 0.4173

Amphetamine 1.9609 0.4595 2.0256 0.4101
LSD

Poppers
Ketamine

Anabolic Steroids
Gas 0.7901 0.3456

Other Drugs
Tranquillisers
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Table F.2.4: EstimateTable of LogisticRegrssion among15Drug-tryingResponse
Variables Only (Unweighted model vs weighted model) (Table 4)

Ecstasy
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -7.0491 0.3895 -7.0659 0.3527
Cannabis 2.9169 0.4501 2.9460 0.4071

Heroin
Cocaine 2.5103 0.3882 2.5027 0.3482

Magic Mushrooms 0.9971 0.4252 1.0908 0.3843
Crack

Methadone 1.4226 0.5555 1.3940 0.4727
Ecstasy

Amphetamine 1.2128 0.4688 1.4593 0.4186
LSD 2.2862 0.5259 2.3957 0.4948

Poppers
Ketamine 1.7167 0.6530 1.7392 0.5690

Anabolic Steroids
Gas 1.2246 0.3544 1.0519 0.3256

Other Drugs
Tranquillisers

Amphetamine
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.4145 0.3043 -6.5207 0.2362
Cannabis 2.3824 0.4165 2.4432 0.3157

Heroin
Cocaine 1.1801 0.4338 1.1304 0.3204

Magic Mushrooms 1.6172 0.3912 1.3087 0.3015
Crack

Methadone 1.7816 0.4862 2.0364 0.3351
Ecstasy 0.9449 0.4486 1.2445 0.3265

Amphetamine
LSD

Poppers 1.0854 0.3828 0.9562 0.2854
Ketamine

Anabolic Steroids
Gas

Other Drugs
Tranquillisers
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Table F.2.5: EstimateTable of LogisticRegrssion among15Drug-tryingResponse
Variables Only (Unweighted model vs weighted model) (Table 5)

LSD
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -7.2787 0.4565 -7.0961 0.4137
Cannabis 2.5932 0.5785 2.1728 0.5587

Heroin 1.8542 0.6248 1.9715 0.6015
Cocaine

Magic Mushrooms 1.9545 0.4442 1.8976 0.4605
Crack

Methadone
Ecstasy 2.3914 0.4538 2.5057 0.4708

Amphetamine
LSD

Poppers 1.3871 0.4433 1.3561 0.4586
Ketamine -2.1615 0.8623 -1.8234 0.8098

Anabolic Steroids
Gas

Other Drugs
Tranquillisers

Poppers
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -5.3490 0.1772 -5.2558 0.1580
Cannabis 3.1558 0.2163 3.1298 0.1927

Heroin
Cocaine 1.5417 0.3074 1.5223 0.2894

Magic Mushrooms 0.6800 0.3155 0.7702 0.2897
Crack

Methadone
Ecstasy

Amphetamine 1.0371 0.3578 0.8789 0.3375
LSD 0.9255 0.4375 0.9683 0.4269

Poppers
Ketamine

Anabolic Steroids
Gas 0.9871 0.2175 0.9732 0.1981

Other Drugs
Tranquillisers
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Table F.2.6: EstimateTable of LogisticRegrssion among15Drug-tryingResponse
Variables Only (Unweighted model vs weighted model) (Table 6)

Ketamine
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.8171 0.3786 -6.5339 0.3118
Cannabis 3.0986 0.4600 2.8089 0.3937

Heroin
Cocaine

Magic Mushrooms
Crack

Methadone
Ecstasy

Amphetamine 1.8140 0.4737 2.1551 0.4192
LSD

Poppers
Ketamine

Anabolic Steroids
Gas

Other Drugs 1.6370 0.6211 1.5236 0.5902
Tranquillisers 2.1775 0.6089 2.3566 0.5758

Anabolic Steroids
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.8057 0.3482 -6.9418 0.3224
Cannabis 2.0530 0.4476 2.1651 0.3850

Heroin 1.8887 0.5867 2.1805 0.4945
Cocaine

Magic Mushrooms
Crack

Methadone
Ecstasy

Amphetamine 1.2496 0.5370
LSD

Poppers
Ketamine

Anabolic Steroids
Gas 1.8589 0.4106 2.2036 0.3572

Other Drugs 1.6970 0.6703 2.1094 0.5356
Tranquillisers
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Table F.2.7: EstimateTable of LogisticRegrssion among15Drug-tryingResponse
Variables Only (Unweighted model vs weighted model) (Table 7)

Gas
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -2.6340 0.0507 -2.6099 0.0502
Cannabis 0.8094 0.1360 0.6881 0.1362

Heroin 1.7214 0.4693 1.1576 0.4695
Cocaine -0.7606 0.3747

Magic Mushrooms 0.8989 0.2616 0.8876 0.2678
Crack

Methadone
Ecstasy 0.9273 0.3357 0.6596 0.3108

Amphetamine
LSD

Poppers 0.9337 0.2224 0.8763 0.2144
Ketamine

Anabolic Steroids 1.7056 0.4293 2.1136 0.4166
Gas

Other Drugs
Tranquillisers

Other Drugs
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.6843 0.3541 -6.7536 0.3322
Cannabis 2.3636 0.4935 2.4396 0.4476

Heroin -2.0610 1.1018 -2.2928 0.9541
Cocaine 1.6333 0.5405 1.5320 0.5050

Magic Mushrooms 1.3862 0.5324 1.2402 0.4993
Crack

Methadone
Ecstasy

Amphetamine
LSD

Poppers
Ketamine 1.9220 0.5963 1.9641 0.5286

Anabolic Steroids 1.6530 0.7591 2.5319 0.5942
Gas

Other Drugs
Tranquillisers
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Table F.2.8: EstimateTable of LogisticRegrssion among15Drug-tryingResponse
Variables Only (Unweighted model vs weighted model) (Table 8)

Tranquillisrs
Unweighted Weighted

Estimate SE Estimate SE
(Intercept) -6.6144 0.3370 -6.8317 0.3679
Cannabis 1.7768 0.5199 1.7215 0.5850

Heroin
Cocaine

Magic Mushrooms 1.9219 0.5566 1.5473 0.5993
Crack 1.6722 0.6505

Methadone
Ecstasy 2.2648 0.6376

Amphetamine
LSD

Poppers
Ketamine 1.8592 0.6546 1.6527 0.6159

Anabolic Steroids
Gas

Other Drugs 1.6866 0.6835
Tranquillisers
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