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ABSTRACT 

We propose the bear beta, i.e. the sensitivity of hedge funds to a bear spread portfolio orthogonalized to the 

market, as a novel way of classifying funds as insurance buyers or sellers. We find that low bear beta funds 

(insurance sellers) outperform high bear beta funds (insurance buyers) by 0.58% per month on average. 

The negative relation between bear beta and future hedge fund returns is not subsumed by a large set of 

fund characteristics and risk exposures. Consistent with a risk-based explanation, this relation remains 

negative during market crashes but turns positive during periods of increasing bear market concerns.  
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1. Introduction 

It is well-known that the time-series return behaviour of many hedge fund investment styles resembles the 

provision of insurance against downside market movements and hence the hedge fund industry as a whole 

is exposed to realized tail risk (Agarwal and Naik, 2004; Jurek and Stafford, 2015).1 This risk concentrates 

losses during market crashes and receives high compensation in equilibrium. Two recent studies, Jiang and 

Kelly (2012) and Agarwal, Ruenzi, and Weigert (2017), demonstrate a wide dispersion in realized tail risk 

exposure among individual hedge funds and show that such risk is priced in the cross-section of hedge fund 

returns. Agarwal, Ruenzi, and Weigert (2017) further show that hedge funds with more long put option 

positions tend to be less prone to tail risk. Collectively, the above empirical evidence is consistent with the 

idea that, while many hedge funds behave more like insurance sellers, some others behave more like 

insurance buyers.2 However, so far there has not been any study explicitly testing the effect of insurance 

buying or selling in the cross-section of hedge fund returns.   

In this paper, we take a direct approach to quantify the extent to which hedge funds act as insurance buyers 

or sellers and examine the explanatory power of such information for the cross-section of hedge fund 

returns. More specifically, we estimate the sensitivity of each hedge fund’s returns to the returns of a put 

options portfolio (“Bear portfolio”) controlling for the market factor. In this respect, the estimated bear 

betas capture hedge fund sensitivity to a market hedged Bear portfolio, i.e. a portfolio whose returns reflect 

the change in ex ante concerns about future bear market states on top of what is justified by concurrent 

market returns. Intuitively, hedge funds with high (positive) bear betas are interpreted as insurance buyers, 

while hedge funds with low (negative) bear betas are interpreted as insurance sellers. Controlling for the 

market factor when estimating bear betas is important for two reasons. First, we show that if we do not 

control for the market, insurance buyers cannot be correctly identified. The reason is that insurance buyers 

                                                           
1 More generally, a series of studies, such as Fung and Hsieh (1997), Fung and Hsieh (2001), Amin and Kat (2003), Agarwal, 

Bakshi, and Huij, (2010) and Agarwal, Arisoy, and Naik (2017), demonstrate option-like features inherent in the time-series return 

behavior of many hedge fund investment styles. 
2 Here we do not mean that certain hedge funds actually write insurance contracts to other funds. Instead, we posit that the trading 

activity of hedge funds through the usage of options, leverage, short sales etc. leads to payoffs that are effectively close to an 

insurance buying or selling strategy (see also, Stulz, 2007; Ang, 2014; Gao, Gao and Song, 2018). Hedge funds that act as insurance 

buyers are referred to as “black swan” funds in the financial press. 
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tend to have high market exposure, while the Bear portfolio and market factor are highly negatively 

correlated. As a result, the exclusion of the market factor from the bear beta estimation regression leads to 

a situation where the market exposure dominates the Bear portfolio exposure and the bear beta turns 

negative instead of positive. Second, we show that the risk exposure of each hedge fund can be seen as a 

combination of its unhedged market exposure and its exposure to the market hedged Bear portfolio. We 

further find that both the high bear beta and the low bear beta hedge funds have almost identical unhedged 

market exposure. As a result, any systematic difference in their expected returns should be the outcome of 

their differential exposure to the market hedged Bear portfolio. In fact, while the returns of the Bear 

portfolio are strongly affected by market movements, these two do not necessarily coincide. It is possible 

that there is a high increase in investors’ fears about bear market states even if there is little or no negative 

market return. In this case, the gain (loss) for the insurance buyer (seller) is high. In the same vein, it is 

possible to have little increase in the price of market insurance even if there is a large negative market 

return. In such a case, the buyer (seller) is actually worse off (better off).  

Overall, we hypothesize that insurance sellers generate higher average returns relative to insurance buyers 

by being more exposed to bear market risk, while at the same time they may not always be exposed to 

realized tail risk. Our hypothesis is based on the notion that assets that pay off when there is an increasing 

concern about future bear market states should earn lower average returns because they serve as hedging 

instruments. We argue that hedge funds behave much like conventional assets in this economy, earning a 

premium by being exposed to bear market risk and vice versa. Our empirical analysis provides strong 

support in favour of this argument.  

We follow Lu and Murray (2019) to capture the probability of future bear market states by constructing an 

Arrow (1964) and Debreu (1959) portfolio, or Bear portfolio, from traded S&P 500 index options. Such a 

portfolio has the advantages of being economically intuitive, model-free, and tradable. More specifically, 

the Bear portfolio is a bear spread position in S&P 500 index put options, which is long an out-of-the-

money (OTM) put, and short a further OTM put. Because this bear spread position will pay off $1 if the 

market at expiration is in a bear state, its price reflects a forward-looking measure of the risk-neutral 
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probability of future bear market states and its short-term return captures the variation in this probability.3 

We create a monthly Bear factor from the one-month buy-and-hold excess returns of the Bear portfolio.4 

As mentioned above, we measure hedge fund bear beta as the loading on the Bear factor from a regression 

of the hedge fund excess returns on the Bear factor and the excess market returns. This is equivalent to 

regressing hedge fund returns on the Bear factor orthogonalized to the market returns. The market hedged 

Bear factor is negative on average due to the premium paid for buying bear market risk insurance and 

captures time-variation in the probability of future bear market states without being exposed to market 

movements (see also Lu and Murray, 2019).  

To empirically test the explanatory power of bear beta for the cross-section of future hedge fund returns, 

we sort hedge funds based on their bear beta, group them into quintiles, and examine the average returns of 

these quintiles over the next one month. We find that hedge funds in the most negative bear beta quintile – 

funds whose trading strategies are more associated with selling bear market risk insurance – have an average 

monthly return that is 0.58% higher than hedge funds in the most positive bear beta quintile – funds whose 

trading strategies are more associated with buying bear market risk insurance. The risk-adjusted return 

spread between the high and low bear beta quintiles remains significant based on the Fung and Hsieh (2004) 

seven-factor model as well as other performance evaluation models used in the asset pricing literature. The 

results also hold for value-weighted portfolios and the predictive power of bear beta for future hedge fund 

returns extends as far as 18 months ahead. 

We further investigate whether the negative relation between bear beta and future hedge fund returns can 

be explained by other fund characteristics or exposure to alternative risk factors by performing a series of 

multivariate Fama and MacBeth (1973) regressions. The results confirm that bear beta predicts future fund 

returns after controlling for various fund characteristics such as fund size, age, management and incentive 

                                                           
3 We later show that the results are robust to using a portfolio consisting of a long-only put option. Similar to Lu and Murray (2019), 

we prefer to use the Bear portfolio in the main analysis for several reasons. First, its return has a clear economic interpretation. 

Second, the price of a portfolio that combines long and short put positions is less affected by demand pressure forces than the price 

of a portfolio consisting of a long-only put (Bollen and Whaley, 2004; Garleanu, Pedersen and Poteshman, 2009). Third, in practical 

terms, the return of a combined long-short put position is less impacted by unrelated factors such as the time decay of the options.  
4 It is important to note that the Bear portfolio is not held until the maturity date. While the hold-to-maturity return is determined 

by the market state at the option expiration date, the shorter-term return represents the change in ex-ante probability of future bear 

market states. 
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fee, lockup and redemption period and leverage, as well as past fund return and its higher moments. Further 

tests controlling for variables capturing manager skills and hedge fund exposure to risk factors such as risk-

neutral moments, tail risk, and macroeconomic uncertainty cannot subsume the fund-level cross-sectional 

relation between bear beta and future returns. Therefore, hedge fund exposure to bear market risk is distinct 

from exposure to other previously documented risk factors.  

As low bear beta funds earn higher returns on average by being more exposed to bear market risk, we should 

observe an opposite, i.e. positive, relation between bear beta and hedge fund returns during times of high 

bear market risk. We define high bear market risk periods as months when the market hedged Bear factor 

– the component of the Bear factor that is orthogonal to the market – is positive. In essence, the increase 

(decrease) in the price for market insurance is higher (lower) than what would be justified by the concurrent 

negative (positive) market return. During these months, we observe a strong positive relation between bear 

beta and future hedge fund returns. In contrast, during the remaining months, low bear beta funds earn 

significantly higher average returns than high bear beta funds. We further investigate the conditional 

relation between bear beta and future hedge fund returns in different periods classified by realized market 

returns. For example, during periods of market crashes, defined as months when the market returns are 

lower than the tenth percentile over the sample period, we still uncover a significant negative relation 

between bear beta and future fund returns. Similarly, the relation remains negative in periods of negative 

market returns. These findings lend further support to the idea that a fund’s exposure to bear market risk is 

distinct from its exposure to realized tail risk. 

We next examine the determinants of hedge fund bear beta. Several findings are in line with prior evidence 

on the risk-taking behavior of hedge funds. First, high exposure to bear market risk (low bear beta) is 

associated with funds that are young, exhibit negative return skewness, and have higher past return. The 

results support the notion that young funds might have an incentive to attract fund flows by establishing a 

track record of high returns early in their life cycle. Second, funds with higher exposure to bear market risk 

are more likely to demand higher management fees and have a hurdle rate, which is consistent with risk-

taking behavior responding to incentives. However, as previously discussed, hedge fund characteristics 

cannot fully explain the negative relation between bear beta and future fund returns. 
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In a related study, Gao, Gao and Song (2018) use a portfolio of put options to capture investors’ concerns 

about future disaster risk (RIX). They find that hedge funds with high RIX betas earn on average higher 

returns than funds with low RIX betas and interpret this as an indication that high RIX beta funds possess 

skills in exploiting disaster concerns. While the put portfolio in their study is different from ours, the two 

portfolios are conceptually similar. Therefore, at a first glance their results look opposite to ours. The reason 

for this ostensible difference comes from the fact that Gao, Gao and Song (2018) use the average daily price 

of the put options portfolio within a month rather than the monthly return as we do. In particular, we show 

that the sensitivity to the return – and not to the price level – of the same S&P500 index put portfolio that 

is used in the RIX construction predicts future hedge fund returns negatively. This result is in line with our 

main empirical evidence. Overall, the conclusions of the two studies are not inconsistent with each other. 

It is perfectly possible that the two effects, i.e. insurance sellers exploiting cases of overpriced insurance as 

Gao, Gao and Song (2018) suggest and insurance sellers earning high returns by just being exposed to bear 

market risk as we suggest, coexist and complement each other. 

More broadly, our study is related to a strand of the literature that relies on the differential exposure of 

hedge funds to option-implied risk factors in order to explain their returns in the cross-section (see, for 

example, Agarwal, Bakshi, and Huij, 2010; Buraschi, Kosowski, and Trojani, 2014; Agarwal, Arisoy, and 

Naik, 2017). We contribute to this literature by proposing the sensitivity to the market hedged Bear portfolio 

– the bear beta – as a novel way of classifying hedge funds as insurance buyers or sellers. We further show 

that bear beta is one of the strongest predictors for the cross-section of hedge fund returns and this 

predictability is in line with standard asset pricing intuition. 

Finally, we also contribute to the literature that aims to uncover the determinants of hedge funds’ tail risk. 

Jiang and Kelly (2012) and Agarwal, Ruenzi, and Weigert (2017) postulate that hedge funds whose trading 

activities resemble insurance selling (buying) are more (less) adversely affected by realized market crashes. 

Our evidence suggests that this relation is not always valid though. More specifically, we show that 

insurance sellers underperform insurance buyers only when the market crash is accompanied by a high 

increase in the price of insurance. If this is not the case, insurance sellers continue to outperform insurance 

buyers. 
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The rest of the paper is organized as follows. The next section discusses the data, construction of the Bear 

portfolio, and hedge fund bear beta measure. Section 3 presents the main results of the paper by studying 

the performance of bear beta-sorted hedge fund portfolios, examining whether the effect of bear beta on 

future hedge fund returns is subsumed by other fund characteristics and risk measures, and investigating 

the predictability across different market states. Section 4 studies the determinants of bear beta. Section 5 

provides additional analyses. We perform a series of robustness checks in Section 6 and conclude in Section 

7. 

 

2. Data and Variable Construction 

2.1. Hedge fund data 

The hedge fund data, including monthly hedge fund returns and fund characteristics, are from the Hedge 

Fund Research database (HFR), which is one of the leading sources of hedge fund information. In this 

database, we originally have information on a total of 25,976 live and defunct hedge funds. Since we 

construct the Bear portfolio returns using option data from OptionMetrics that are available from January 

1996, the full sample period of hedge fund returns that we use in this study is from January 1996 to 

December 2017. Following the literature, we retain monthly-filing funds and funds that report returns net 

of all fees and in US dollars. 

Next, we make efforts to minimize the effects of potential data biases documented in the hedge fund 

literature (Fung and Hsieh, 2000; Liang, 2000; Edwards and Caglayan, 2001). First, to mitigate the 

backfilling bias, we follow Kosowski, Naik, and Teo (2007) to eliminate the first 12 months of a fund’s 

return series. Furthermore, since this problem might be prevalent among small funds, we discard all funds 

with less than $10 million of asset under management (AUM). Specifically, if a fund begins with less than 

$10 million but later has $10 million in AUM, we include the fund in the sample from the time its AUM 

reaches $10 million and keep it in the sample as long as the fund exists regardless of its AUM. Second, 

monthly return histories of both live and defunct funds over the sample period from January 1996 to 

December 2017 are included, which helps minimize the survival bias. In Section 6, we perform a robustness 

check where we assume that returns of drop-out funds are -100% following their last reporting month.  
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The above process leaves us with a final sample of 11,084 distinct hedge funds, of which 8,190 are defunct 

funds and the remaining 2,894 are live funds. We follow Joenväärä, Kauppila, Kosowski and Tolonen 

(2019) to categorize hedge funds into ten primary strategies: event-driven, relative value, long-short equity, 

global macro, CTA, equity market-neutral, short-bias, sector, and fund of funds. In terms of the number of 

funds, long-short equity is the largest strategy style, comprising 2,936 distinct hedge funds in our sample, 

whereas there are only 60 hedge funds falling into the short bias strategy group. Table 1 presents descriptive 

statistics for our hedge fund sample.  

   [Insert Table 1 here] 

Panel A of Table 1 reports the time-series average of the monthly cross-sectional mean, standard deviation, 

and percentiles of all individual hedge fund returns. On average, a fund earns 0.64% per month over the 

sample period 1996-2017 with a standard deviation of 4.03%. Among ten main strategy categories, Sector 

and Long-short Equity are two strategies that yield the highest average monthly returns, 0.97% and 0.78% 

respectively, while Short-bias hedge funds realize the lowest performance with an average return of -0.15%.  

In Panel B of Table 1, we present the year-by-year number of funds entering the database, number of funds 

dissolved, total AUM, and distribution statistics of the monthly equal-weighted hedge fund portfolio 

returns. The period 1996-2007 experienced an exponential increase both in number of operating hedge 

funds, from 764 in 1996 to 4,583 funds at the end of 2007, and in total AUM, from around $109 billion in 

1996 to $1,549 billion in 2007. However, there was a sharp reversal in both of these figures, coupled with 

an increase in yearly attrition rates (ratio of the number of dissolved funds to the total number of funds at 

the beginning of the year) starting in 2008 due to the effect of the financial crisis. By the end of 2017, there 

were 2,894 operating hedge funds with total AUM of $1,211 billion in our sample.  

Panel C reports distribution statistics of cross-sectional hedge fund characteristics. The average AUM of 

individual hedge funds in our database is $171 million while the median size is $49 million, implying that 

there are a few hedge funds with very large size. On average, an individual hedge fund operates for 

approximately 78 months or 6.5 years. Management fee and incentive fee are 1.44% and 15.78% on 

average, respectively. Hedge funds in our sample have an average lockup period of 3.46 months and require 

an average minimum investment of $1.26 million. 

https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Juha%20Joenv%C3%A4%C3%A4r%C3%A4&eventCode=SE-AU
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2.2. Bear portfolio 

2.2.1. Data 

Data for S&P500 index options, including daily closing bid and ask quotes, trading volume and open 

interest for the period from January 1996 to December 2017, are obtained from OptionMetrics. We further 

collect the daily S&P500 index level and dividend yield, the VIX index level, and the risk-free rate. We 

apply several filters to the option data. First, to avoid illiquid options, we discard options if open interest is 

zero or missing, if the bid quote is zero, or if the bid quote is smaller than the ask quote. Second, all options 

that violate no-arbitrage conditions are excluded. Specifically, for a put option we require that the exercise 

price exceeds the best bid, which is in turn higher than 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝐾𝐾 − 𝑆𝑆0), where 𝐾𝐾 and 𝑆𝑆0 are the option’s 

strike price and the closing level of the S&P500 index respectively. Third, we only keep options with 

standard expiration dates.  

We use the mid-point of the bid and ask quotes as a proxy for the market price of the option contract. We 

further define the S&P 500 index forward price to be 𝐹𝐹 = 𝑆𝑆0𝑒𝑒(𝑟𝑟−𝑦𝑦)𝑇𝑇, where 𝑟𝑟 is the continuously 

compounded risk-free rate, 𝑦𝑦 is the dividend yield of the S&P 500 index, and 𝑇𝑇 is the time to maturity. 

2.2.2. Bear portfolio construction 

We follow Lu and Murray (2019) and define an Arrow-Debreu bear security as a portfolio that pays $1 

when the S&P 500 index level on a given date is in a bear state, and zero otherwise. We approximate this 

payoff structure from traded options by taking a long position in a put contract with strike price 𝐾𝐾1 > 𝐾𝐾2 

and a short position in a put contract with strike price 𝐾𝐾2. After scaling both positions by 𝐾𝐾1 − 𝐾𝐾2, the Bear 

portfolio will generate a payoff of $1 at expiration if the index level is below 𝐾𝐾2 and zero if the index level 

is above 𝐾𝐾1. The payoff decreases linearly from $1 to zero for index levels at expiration falling between 𝐾𝐾2 

and 𝐾𝐾1. Thus, the Bear portfolio price, 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, is: 

𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑃𝑃(𝐾𝐾1)− 𝑃𝑃(𝐾𝐾2)

𝐾𝐾1 − 𝐾𝐾2
, (1) 

where 𝑃𝑃(𝐾𝐾) is price of a put option with strike price 𝐾𝐾. 
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We choose 𝐾𝐾2 to be 1.5 standard deviations bellow the S&P 500 index forward price. The strike price 𝐾𝐾2 

establishes the bear region boundary, meaning that the market is in bear state when the market excess return 

is more than 1.5 standard deviations below zero.5 𝐾𝐾1 is set to be one standard deviation below S&P 500 

index forward price.6 

The standard deviation of the market return is defined as 𝑉𝑉√𝑇𝑇, where 𝑉𝑉 is the VIX index level divided by 

100. Setting the standard deviation equal to VIX instead of using a constant volatility means that the bear 

market region under consideration is always adjusted for current market volatility levels. As a result, the 

price of the Bear portfolio, i.e. the discounted risk-neutral probability of a bear market outcome, remains 

roughly the same at each portfolio formation period. The return of the portfolio captures innovations in bear 

market concerns. 

In the same vein with Lu and Murray (2019), we define 𝑃𝑃(𝐾𝐾1) and 𝑃𝑃(𝐾𝐾2) to be the trading-volume weighted 

average price of puts with strike prices within a 0.25 standard deviation range of the target strikes, 𝐾𝐾1 and 

𝐾𝐾2. We follow this procedure because traded option contracts with exact targeted strikes are unlikely to 

exist. In addition, the volume-weighted average put price over a range of strikes gives more weight to liquid 

put options whose prices are expected to be less affected by microstructure noise. More specifically, we 

take:  

𝑃𝑃(𝐾𝐾1) = � 𝑃𝑃(𝐾𝐾).𝑤𝑤(𝐾𝐾)
𝐾𝐾∈�𝐹𝐹.𝑒𝑒−1.25𝑉𝑉𝑉𝑉𝑉𝑉100√𝑇𝑇 ,   𝐹𝐹.𝑒𝑒−0.75𝑉𝑉𝑉𝑉𝑉𝑉100√𝑇𝑇�

 (2) 

and  

𝑃𝑃(𝐾𝐾1) = � 𝑃𝑃(𝐾𝐾).𝑤𝑤(𝐾𝐾)
𝐾𝐾∈�𝐹𝐹.𝑒𝑒−1.75𝑉𝑉𝑉𝑉𝑉𝑉100√𝑇𝑇 ,   𝐹𝐹.𝑒𝑒−1.25𝑉𝑉𝑉𝑉𝑉𝑉100√𝑇𝑇�

, (3) 

                                                           
5 The 1.5 standard deviations point is chosen based on a trade-off between our objective of capturing significant downward market 

movements on the one hand, and the relative illiquidity of deep-out-of-the-money put options on the other hand. In Section 6, we 

show that the findings are very similar if we use different definitions of bear market regions. 
6 Although as 𝐾𝐾1 approaches 𝐾𝐾2, the payoff function of the Bear portfolio converges to the theoretical payoff of an Arrow-Debreu 

security, the spread between 𝑃𝑃(𝐾𝐾1) and 𝑃𝑃(𝐾𝐾2) also converges to zero and might be adversely affected by noise from option bid-

ask spreads. Choosing 𝐾𝐾1 − 𝐾𝐾2 to be half a standard deviation is based on a trade-off between these two considerations. 
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where 𝑤𝑤(𝐾𝐾) is the trading volume of a put option with strike price 𝐾𝐾 divided by the total trading volume 

of all put options in the indicated range.  

2.2.3. Bear portfolio returns 

Since returns of individual hedge funds in our database are available on a monthly basis, we also create a 

monthly Bear portfolio return factor. Specifically, on the last trading day of each month from January 1996 

to November 2017, we buy the Bear portfolio using put options that have the shortest maturity among those 

with more than one month to expiration and calculate its price using the averages of closing bid-ask quotes 

of these options.7 We hold the portfolio for one month and measure its excess return by subtracting the one-

month risk-free rate from the one-month buy-and-hold return. In total, there are 264 monthly Bear portfolio 

excess returns for the period over 1996-2017. 

 [Insert Table 2 here] 

Table 2 reports the descriptive statistics for the monthly times-series of the Bear factor. Following Lu and 

Murray (2019), we scale the Bear factor to have the same volatility with the market factor. The average 

monthly excess return of the Bear factor is -1.64% and is statistically significant with a t-statistic of -5.04 

(as shown in the first column in Panel B of Table 2). The Bear portfolio returns exhibit a noticeably right-

skewed distribution with a skewness of 2.64.  

We further investigate whether the significantly negative Bear portfolio excess return is the compensation 

for exposure to previously identified risk factors. In Panel B of Table 2, we perform time-series regressions 

of the Bear factor, 𝑟𝑟 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡, on contemporaneous risk factor returns, 𝑭𝑭𝑡𝑡, over January 1996 to December 

2017. The regression is defined as: 

𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡  = 𝛼𝛼 + 𝜷𝜷′ × 𝑭𝑭𝑡𝑡 + 𝜀𝜀𝑡𝑡 , (4) 

where 𝜷𝜷 captures the exposure of the Bear factor to standard risk factors and 𝛼𝛼 measures the average Bear 

portfolio excess return that is not explained by the risk factors.  

                                                           
7 For example, on 31/01/1996 we choose options that expire on 16/03/1996 to create the Bear portfolio. Out of 264 months, there 

are nine months for which we do not have available put options that meet these requirements. For these months, we form the Bear 

portfolio on the first trading day of the month (instead of the end of last month) and hold it until the month end.  
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In Model 2 of Panel B, we regress the Bear portfolio returns on the market excess returns. Consistent with 

its negative delta exposure, the Bear factor exhibits a significant market exposure with a coefficient on the 

market factor of -0.85 (t-statistic of -15.90) and an adjusted R2 of 72%. However, the average alpha after 

controlling for the market factor is -1.09% per month, which is statistically significant with a t-statistic of -

6.77. The finding implies that market factor exposure cannot fully capture the negative average return of 

the Bear portfolio. 

In addition, the Bear factor is not subsumed by other standard risk factors documented in the asset pricing 

and hedge fund literature. In Models 3 and 4 of Panel B, we regress the monthly Bear portfolio excess 

returns on the Fama-French (1993) three factors and Carhart (1997) four factors (three-factor model 

augmented with a momentum factor) respectively. We find that the Bear portfolio still yields significantly 

negative alpha relative to these asset pricing models. We further examine whether the Bear factor is 

captured by the Fung and Hsieh (2004) seven factors. As shown in Model 5, the Bear portfolio produces an 

average alpha of -0.89% per month (with a t-statistic of -5.13) relative to the Fung and Hsieh (2004) seven-

factor model. Finally, Model 6 shows that the negative excess return of the Bear portfolio cannot be 

explained by the Fung and Hsieh (2004) seven factor model augmented with the value and momentum 

factors. In fact, as indicated by the small changes in R2, factors other than the market have little explanatory 

power over the Bear factor. 

2.3. Hedge fund exposure to bear market risk 

We measure a hedge fund’s sensitivity to bear market risk as follows. At the end of each month from 

December 1997 to November 2017, and for each hedge fund, we run a time-series regression of the fund’s 

monthly excess returns on the market excess returns and the Bear factor over a 24-month rolling-window 

period:  

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 , (5) 

where 𝑟𝑟𝑖𝑖,𝑡𝑡 is the excess return of fund 𝑖𝑖 in month 𝑡𝑡, 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 is the contemporaneous CRSP value-weighted 

market excess return, and 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 is the contemporaneous Bear factor return. We require at least 18 months 

of non-missing fund returns to ensure that we have a sufficient number of observations in the estimation. 
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Our main variable of interest is the hedge fund bear beta, 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, which captures the fund’s exposure to the 

component of the Bear portfolio return that is orthogonal to the market return. This orthogonal component 

(market hedged Bear factor) is basically the return of the Bear portfolio hedged with respect to the market 

return and is equivalent to the intercept plus the residuals from a regression of the Bear portfolio returns on 

the market returns: 

𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 = 𝛾𝛾 + 𝛿𝛿 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝜂𝜂𝑡𝑡 = 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 +  𝛿𝛿 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 . (6) 

As shown in Section 2.2, this intercept coefficient (𝛾𝛾 ) is negative on average. 

   [Insert Figure 1 here] 

Figure 1 plots the monthly market hedged Bear factor over the period from January 1998 to December 

2017. The return for each month 𝑡𝑡 is obtained from a rolling regression of the Bear factor on the market 

factor over the past 24 months. The five highest market hedged Bear portfolio returns happen in August 

1998, September 2000, February 2001, April 2002, and May 2012. During these months, the market excess 

returns were, -16.08%, -5.45%, -10.05%, -5.20%, and -6.19%, respectively. While these returns are all 

negative, with the exception of August 1998, those months are not the ones that experience the largest 

market losses. In fact, the average hedged Bear portfolio return in the five months with the largest negative 

market returns over 1998-2017 is -0.63%, which is negative.  

These results are indicative of an important observation. While market returns and investors’ bear market 

concerns are highly negatively correlated on average, they do not move in lockstep. It is possible that a 

negative market return is accompanied by a slightly positive (highly positive) Bear portfolio return. In this 

case, the market hedged Bear factor return will be negative (positive). Similarly, a positive market return 

might be accompanied by a highly negative (a slightly negative) Bear portfolio return. In this case, the 

market hedged Bear factor return will be negative (positive). Therefore, the market hedged Bear factor 

reflects the increase in investors’ concerns about future bear market states on top of what is justified by 

concurrent market returns. In that respect, the estimated hedge fund bear betas contain different information 

from hedge funds’ exposure to realized market tail risk. 

   [Insert Table 3 here] 
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While the interpretation of the market hedged Bear factor itself is straightforward, it is useful to clarify why 

it is important to estimate hedge funds’ sensitivity to bear market risk using the market hedged Bear factor, 

i.e. estimating Equation (5) which controls for the market. Panel A of Table 3 presents the average bear 

beta, 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, and market beta, 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀, of portfolios sorted on bear beta. Intuitively, the high bear beta hedge 

funds act as insurance buyers, while the low bear beta hedge funds act as insurance sellers. We observe that 

insurance buyers have a high market beta of 0.89, while the insurance sellers have a slightly negative market 

beta of -0.04. This result is reasonable in the sense that the hedge funds that seek insurance are the ones 

already having some high exposure to the market. However, these market beta values ignore that fact that 

the market and the Bear portfolio are highly negatively correlated. In fact, an insurance buyer (seller) 

reduces (increases) his overall market exposure by being long (short) the Bear portfolio. By combining 

Equations (5) and (6) we get: 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + �𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝛿𝛿� × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 . (7) 

This means that the total risk exposure of a hedge fund can be seen as the combination of its unhedged 

market exposure and its exposure to the market hedged Bear factor. Panel B of Table 3 shows that the 

average unhedged market exposures, 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 = �𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝛿𝛿�, of the low and high bear beta hedge 

funds are almost identical, at 0.43. Collectively, the results can be interpreted as follows. Both insurance 

buyers and insurance sellers behave as if they are similarly exposed to the market factor, but insurance 

buyers obtain also a hedged long position to the market, while insurance sellers obtain also a hedged short 

position to the market. In that respect, any difference in their relative performance should be attributed to 

their differential exposure to the market hedged Bear factor. In other words, hedge funds with low bear 

betas are expected to earn the negative premium of the market hedged Bear factor, and hence outperform 

on average the high bear beta hedge funds that pay the premium. 

There is also a second reason for which it is important to control for the market when estimating hedge fund 

exposure to bear market risk. In particular, if we do not do so, it will be impossible to correctly identify 

insurance buyers. As discussed above, high bear beta funds have a high positive market beta and the Bear 

portfolio and market factor are highly negatively correlated. Therefore, if the market factor is excluded 

from Equation (5), the large positive exposure of insurance buyers to the market will dominate the positive 

exposure to the Bear portfolio and the bear beta will turn negative. It is easy to see this by combining: 
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𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 = 𝜌𝜌 + 𝜆𝜆 × 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝜁𝜁𝑡𝑡, (8) 

with Equation (5) to get: 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 × 𝜌𝜌 + �𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 × 𝜆𝜆�× 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 × 𝜁𝜁𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 , (9) 

and noting that 𝜆𝜆 is typically a number between -0.85 and -0.90, while in the case of insurance buyers the 

average 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵is equal to 0.53 and the average 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 is equal to 0.89. In fact, Panel C of Table 3 shows that 

ignoring the market factor would cause the bear beta of insurance buyers, 𝛽𝛽𝑖𝑖,𝑡𝑡
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =

�𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 × 𝜆𝜆�, to become negative, at -0.27. The problem is much less acute in the case of insurance 

sellers. Their bear beta estimated ignoring that market factor takes the value of -0.51, which is similar to 

the value of -0.55 found when controlling for the market. The reason is that the market exposure of 

insurance sellers is close to zero, at -0.04, and hence �𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 × 𝜆𝜆� is a number very close to 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 

 

3. Bear market risk and hedge fund performance 

Since the negative return of the market hedged Bear portfolio reflects the premium for selling bear market 

risk insurance, hedge funds should earn a higher return on average by following trading strategies similar 

to selling this insurance. Equivalently, we hypothesize a negative cross-sectional relation between fund-

level exposure to bear market risk and future fund returns.  

3.1. Portfolio-level analysis 

At the end of each month from December 1997 to November 2017, we sort hedge funds into quintiles based 

on bear beta. The fifth (first) quintile consists of funds with the highest (lowest) bear betas. We also form 

a portfolio that goes long hedge funds in the fifth quintile and short hedge funds in the first quintile. We 

hold the portfolios for one month and measure their returns, which are from January 1998 to December 

2017.  

        [Insert Table 4 here] 

Table 4 reports the results for the performance of hedge fund portfolios sorted by bear beta. In particular, 

we present the time-series average of hedge fund returns across five quintiles. Each quintile has about 500 
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hedge funds on average and is well diversified. The average monthly equal-weighted hedge fund portfolio 

returns decline monotonically from 0.87% in the lowest bear beta quintile to 0.29% in the highest bear beta 

quintile. The average return difference between quintile 5 and quintile 1 is -0.58% per month, or -6.99% 

per year, with a t-statistic of -3.53. To measure portfolio-level risk-adjusted abnormal returns (alphas), we 

perform a time-series regression of the monthly hedge fund portfolio returns in each quintile on the Fung 

and Hsieh (2004) seven factors, including three trend-following, two equity-oriented, and two bond-

oriented risk factors (i.e. FTFSBD, PTFSFX, PTFSCOM, S&P, SCMLC, BD10RET, and BAAMTSY). The 

regression is generally defined as: 

𝑟𝑟𝑃𝑃,𝑡𝑡 = 𝛼𝛼𝑃𝑃 + 𝜷𝜷𝑷𝑷′× 𝑭𝑭𝑡𝑡 + 𝜀𝜀𝑃𝑃,𝑡𝑡, (10) 

where 𝑟𝑟𝑃𝑃,𝑡𝑡 is month 𝑡𝑡 hedge fund portfolio return in each quintile. We find that the Fung-Hsieh 7-factor 

alpha of the lowest bear beta portfolio is 0.70% (with a t-statistic of 4.04) while that of the highest bear beta 

portfolio is only -0.02% (with a t-statistic of -0.17). The resulting spread between alphas of quintile 

portfolios 5 and 1 is -0.72% per month and is significant at all conventional levels with a t-statistic of -3.73.  

We further examine whether the return spread between quintile 5 and 1 can be explained by additional 

hedge fund risk factors. We modify equation (10) by regressing equal-weighted Q5-Q1 portfolio returns on 

the Fung-Hsieh (2004) and several additional risk factors. The results are presented in Table 5. 

         [Insert Table 5 here] 

For ease of comparison, we report the results of the Fung and Hsieh (2004) seven-factor model as our 

baseline specification in the first column. These seven factor returns explain only 12% of the total variation 

in return difference between Q5 and Q1 over the period and none of them has a significant coefficient. In 

the second column, we include the HML (high-minus-low) and UMD (up-minus-down) factors from the 

Carhart (1997) model to control for book-to-market and momentum. In column 3, we further add the Pastor 

and Stambaugh (2003) traded liquidity factor to control for liquidity exposure of hedge funds. In columns 

4 to 7, we respectively include the returns of a long-short hedge fund portfolio with respect to the Bali, 

Brown, and Caglayan (2014) macroeconomic uncertainty factor, the Agarwal, Bakshi, and Huij (2010) risk-

neutral volatility and skewness factors, the Gao, Gao, and Song (2018) RIX factor, and the Agarwal, Ruenzi, 

and Weigert (2017) tail risk measure. In column 8, we add all previously discussed factors. Importantly, 
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our results indicate a significant negative alpha (or risk-adjusted return) for the Q5-Q1 return spread that 

ranges from -0.49% to -0.72% per month with the t-statistic ranging from -2.93 to -4.04.  

To summarize, there is a negative cross-sectional relation between exposure to bear market risk and 

expected hedge fund return. Equivalently, hedge funds managers who choose to harvest the risk premium 

from selling bear market risk insurance earn higher average returns than those who buy the bear market risk 

insurance. Their significant outperformance cannot be explained by the exposure to standard risk factors 

documented in the hedge fund literature.   

3.2. Fund-level analysis 

The results from portfolio-level analysis demonstrate that a portfolio of hedge funds with low bear beta 

yields significantly higher expected return than the one with high bear beta. In this section, we perform 

Fama and MacBeth (1973) regressions that utilize the entire cross-sectional information in the data to 

examine whether the negative predictive power of bear beta for hedge fund returns persists after 

simultaneously controlling for other hedge fund characteristics. In particular, each month from January 

1998 to December 2017, we perform the following cross-sectional regressions: 

𝑟𝑟𝑖𝑖,𝑡𝑡+1 = 𝜓𝜓0,𝑡𝑡 + 𝜓𝜓𝑡𝑡 × 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜙𝜙𝑡𝑡′𝚭𝚭𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡+1 (11) 

where 𝑟𝑟𝑖𝑖,𝑡𝑡+1 is the realized return of hedge fund 𝑖𝑖 in the month 𝑡𝑡 + 1, 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the bear beta of hedge fund 

𝑖𝑖 at the end of month 𝑡𝑡, and 𝚭𝚭𝑖𝑖,𝑡𝑡 is a vector of fund characteristics. To distinguish the impact of bear market 

risk from other risk measures, we also include several hedge fund measures of risk. The details of these 

variables are provided in the Appendix. 

Table 6 reports the time-series averages of the slope coefficients, the corresponding Newey-West adjusted 

t-statistics (with 24 lags) and the average adjusted R2 from 240 monthly regressions.  

[Insert Table 6 here] 

The univariate regression result in specification (1) shows a negative relation between bear beta and 

expected hedge fund returns. The average slope, 𝜓𝜓𝑡𝑡, from the monthly regressions of hedge fund returns 

on bear beta is -0.59 with a t-statistic of -3.63. The economic magnitude of the bear beta effect is comparable 

to that shown in the univariate portfolio-level analysis. Specifically, multiplying the difference in mean 
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values of bear beta between the high and low bear beta quintiles from Panel A of Table 3 by the slope 

coefficient yields a monthly risk premium differential between the high and low bear beta portfolio of -

0.63%. 

In specifications (2) to (4), we control for fund characteristics, i.e. size, age, minimum investment amount, 

a fund’s management and incentive fee, length of a fund’s lockup and redemption period. We also add 

indicator variables that take the value of one in case the fund employs leverage, has a hurdle rate, has a high 

water mark, or is an offshore fund, and zero otherwise. Finally, we control for other measures of risk, i.e. 

past fund return, fund return volatility, skewness, and kurtosis, and fund market beta. In line with the prior 

literature, we find that minimum investment, past return, as well as past return volatility and skewness are 

positive and significant predictors of future hedge fund returns. More importantly, the significantly negative 

association between bear beta and future hedge fund returns remains intact. Depending on the specification, 

the coefficient estimate on bear beta ranges from -0.25 to -0.35 with t-statistics ranging from -3.24 to -3.81. 

These results confirm that the relation between exposure to bear market risk and future hedge fund returns 

is not subsumed by fund characteristics and other risk measures.  

3.3. Bear beta effect in different market states  

In Table 7, we investigate the relation between fund-level bear beta and future hedge fund returns in 

different subperiods and market states. We use a specification identical to that in specification (4) of Table 

6. We report the coefficients on bear beta but suppress the coefficients for the control variables, i.e. market 

beta and fund characteristics, for the sake of brevity.  

[Insert Table 7 here] 

In specifications (1) and (2) of Table 7, we define increased (decreased) bear concern states as periods of 

positive (negative) market hedged Bear portfolio returns.8 As expected, we find that the effect of bear beta 

on future returns is strongly negative in periods of negative hedged Bear portfolio returns. In particular, the 

average coefficient on bear beta is -0.43 with a corresponding t-statistic of -4.51. However, the relation 

                                                           
8 Market hedged Bear portfolio return – the component of the Bear portfolio return that is orthogonal to market return – is equal to 

alpha (or intercept coefficient) plus the residual from the rolling 24-month window regressions of Bear portfolio returns on markets 

returns.  
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reverses and becomes positive, with an average bear beta coefficient of 0.41 and a t-statistic of 2.61, during 

periods of positive hedged Bear portfolio returns These results are in line with the following economic 

mechanism. When the hedged Bear portfolio return is negative, the price of insurance does not increase 

enough to compensate for the negative market return or decreases more than what is expected given a 

positive market return. Therefore, hedge funds with negative bear beta (insurance sellers) outperform funds 

with positive bear beta (insurance buyers). Oppositely, when the hedged Bear portfolio return is positive, 

the insurance return exceeds in absolute terms the negative market return or decreases less than what is 

expected given a positive market return. Therefore, hedge funds that act as insurance buyers outperform 

funds that act as insurance sellers. To better understand these results, recall from Panel B of Table 3 that 

insurance buyers and insurance sellers have the same unhedged market exposure (0.43). Hence, the relative 

outperformance or underperformance of each hedge fund group in different periods is purely attributed to 

its differential exposure to the market hedged Bear factor.  

In specifications (3) to (6), we examine the association between bear beta and hedge fund returns during 

different realized market states. Consistent with the idea that market returns do not necessarily coincide 

with the pricing of market insurance, we observe a negative relation between bear beta and future fund 

returns during periods of both positive and negative excess market returns. The relation is strongly 

significant during periods of negative market returns (the average bear beta coefficient of -0.40 with a t-

statistic of -2.92), while it is less pronounced during periods of positive market returns (the average bear 

beta coefficient of -0.16 with a t-statistic of -1.22). One potential explanation for the less pronounced 

negative bear beta effect during periods of positive market returns is that on some occasions positive market 

returns are accompanied by persistently high bear market risk concerns (for example, in periods when the 

market rebounds) and hence coincide with periods of positive market hedged Bear factor. Specification (5) 

further indicates a strong negative relation between bear beta and fund returns (coefficient of -0.49 and t-

statistic of -2.28) during periods of market crashes, defined as months during which market returns are 

lower than the sample period 10th percentile.9 For example, during the October 2008 crisis, the market 

experienced an excess return of -17.23%, but the hedged Bear portfolio had a return of -0.80%. 

                                                           
9 In unreported analysis, we still obtain significantly negative coefficients on bear beta during realized market crashes, defined as 

excess market returns lower than -10%, and during the recession periods indicated by National Bureau of Economic Research 

(NBER).       
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Accordingly, the quintile portfolio of funds with the lowest bear betas outperformed the portfolio of funds 

with the highest bear betas by 4.70%. During normal times, as in specification (6), we still observe a 

significant negative effect of fund-level bear beta and future fund returns with a bear beta coefficient equal 

to -0.23 and a t-statistic of -2.69. Overall, our findings contradict the conventional wisdom, which suggests 

that hedge funds acting as insurance sellers should necessarily underperform hedge funds acting as 

insurance buyers during market crashes. Given that both hedge fund groups have the same unhedged market 

exposure on average, they both perform poorly during market crashes and the relative outperformance or 

underperformance between the two groups is driven by the behaviour of the market hedged Bear portfolio. 

In specifications (7) and (8), we further examine the relation between bear beta and future fund returns in 

periods of low and high market volatility. As expected, market volatility does not have any systematic effect 

on the sign of the hedged Bear portfolio return and hence the coefficient on bear beta is negative and 

significant in both subperiods. Finally, in specifications (9) and (10) we examine the robustness of our 

results across time by splitting evenly our sample period into 1998-2007 and 2008-2017. We observe that 

the negative relation between bear beta and future fund returns remains strong both in the first and in the 

second part of our sample. 

 

4. Determinants of bear beta 

To further understand which funds are more or less likely to be exposed to bear market risk, we next 

examine which fund characteristics and other risk measures are associated with bear beta. We perform the 

following regression of bear beta of hedge fund 𝑖𝑖 in month 𝑡𝑡 on various contemporaneous characteristics 

and risk measures of fund 𝑖𝑖 using the Fama and MacBeth (1973) methodology: 

𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛼𝛼𝑡𝑡 + 𝜙𝜙𝑡𝑡′𝐙𝐙𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 , (12)  

where 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the bear beta of hedge fund 𝑖𝑖 in the month 𝑡𝑡, and 𝚭𝚭𝑖𝑖,𝑡𝑡 is a vector of fund characteristics. 

Table 8 reports the time-series averages of the slope coefficients and the corresponding Newey-West 

adjusted t-statistics (with 24 lags). 

[Insert Table 8 here] 
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Column (1) investigates the association between bear beta and time-varying fund characteristics such as 

fund size, age, return volatility, skewness, kurtosis and past yearly return. We find that hedge funds with 

low bear betas tend to be younger. Intuitively, young funds probably have incentives to attract fund flows 

by establishing a track record of high returns early in their life cycle. Thus, these funds are more likely to 

get involved in selling bear market insurance since it offers high compensation. Furthermore, consistent 

with risk-inducing behavior, there is a positive relation between fund bear beta and return skewness. 

Equivalently, insurance sellers, which are exposed to bear market risk, exhibit left-skewed return 

distributions. However, despite having more negative return skewness, these funds have higher past-year 

returns.  

In column (2), we include time-invariant contractual features such as fund’s minimum investment amount, 

management and incentive fees, lockup and redemption periods, as well as indicator variables that equal 

one if a given fund is offshore, employs leverage, has a high-water mark and a hurdle rate. Intuitively, 

hedge funds with low bear betas are associated with measures of managerial incentives such as high 

management fees, existence of a hurdle rate, and offshore location. There is a positive relation between 

fund bear beta and incentive fee, but this finding is consistent with Agarwal, Daniel, and Naik (2009) who 

find that incentive fees do not capture managerial incentives as two managers charging the same incentive 

fee can face different dollar incentives. We find a mixed relation between fund bear beta and managerial 

discretion. Specifically, funds with low bear betas have longer redemption periods and are probably more 

flexible to take on riskier positions, but are less likely to employ leverage. Intuitively, hedge funds that 

employ leverage tend to act more as insurance buyers, probably because their trading profile is already 

quite risky. In contrast, unlevered hedge funds tend to act more as insurance sellers probably because they 

find alternative ways to boost their returns rather than employing leverage.  

In column (3), we include all fund characteristics and contractual features together in the same regression 

model. Although, the statistical significance of some of the variables is reduced, the main findings about 

the determinants of bear beta remain intact.  

 

5. Further analysis 
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5.1. Additional control variables 

In this section, we investigate whether the fund-level cross-sectional relation between bear beta and future 

hedge fund returns is robust to the inclusion of additional control variables. We report the result of 

specification (4) of Table 6 in the first column of Table 9 for ease of comparison, with all the fund 

characteristics suppressed for the sake of brevity.  

[Insert Table 9 here] 

We augment the above specification by including respectively in specifications (2) to (4) of Table 9 the 

exposure to higher risk-neutral market moments (Agarwal, Bakshi, and Huij, 2010), market tail risk 

(Agarwal, Ruenzi, and Weigert, 2017), and macroeconomic uncertainty (Bali, Brown, and Caglayan, 2014), 

all computed based on an estimation window of 24 months. Depending on the specification, the average 

coefficient estimate on bear beta ranges from -0.27 to -0.33 with t-statistics ranging from -3.30 to -3.62. 

These results indicate that the above risk measures do not subsume the predictive power of bear beta for 

future hedge fund returns.  

A potential explanation for the negative relation between bear beta and future fund returns is that low bear 

beta hedge fund managers have higher level of skills. In specification (5), we control for several measures 

of hedge fund skills, including the skill at exploiting rare disaster concerns (𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅) of Gao, Gao and Song 

(2018), the R-squared measure of Titman and Tiu (2011), the strategy distinctiveness index (SDI) of Sun, 

Wang, and Zheng (2012), and the downside returns of Sun, Wang, and Zheng (2018). The average 

coefficient on bear beta remains negative and statistically significant at the 1% level, confirming the 

distinctive effect of bear market risk exposure. 

Of primary interest is specification (6), where we control for the full set of hedge fund characteristics, 

exposures to other risk factors, and manager skill measures. The coefficient on bear beta is still negative, at 

-0.28, and significant at all conventional levels with a t-statistic of -3.06. Overall, our results document a 

strong negative cross-sectional relation between bear beta and future hedge fund returns. The effect is not 

explained by hedge fund characteristics, manager skills, and fund exposures to previously documented risk 

factors. 

5.2. Bear beta and manager skills at exploiting rare disaster concerns 
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In a related study, Gao, Gao and Song (2018) also use a positioning in put options (see their Equation (4)) 

in order to capture investors’ perceptions about market-wide tail risk and show that hedge funds with high 

sensitivity to rare disaster concern index (RIX) earn on average higher returns than hedge funds with low 

sensitivity to the RIX index. Their put portfolio is more complicated and is designed to capture extreme 

negative price movements. In contrast, the Bear portfolio is simpler, and the level of extreme returns 

captured can be easily adjusted. Despite this difference, the two put option portfolios are conceptually 

similar. Therefore, it is important to understand why the results of our paper are different from theirs. 

Gao, Gao and Song’s (2018) RIX index is the average daily price within a month of a portfolio of put 

options on various indices from sectors including banking, semiconductor, precious metals, housing, oil 

service, and utilities. Hedge funds’ sensitivity to this measure (𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅) is interpreted as skill of exploiting the 

market’s ex ante rare disaster concerns.10 In contrast, the Bear factor is the monthly return of a portfolio of 

put options. As a result, it captures the return of an insurance contract against bear market states. Our 

conjecture is that the difference in the results of the two papers comes from the different approaches in 

using average prices within the month versus monthly returns and not from the different portfolio of puts 

that is used in each paper. This implies that if we use the monthly return – rather than the average daily 

price – of the portfolio of put options that form the RIX index, we will get a predictive pattern that resembles 

the one presented in this paper. 

[Insert Table 10 here] 

Table 10 presents the results from a portfolio sorting exercise based on hedge fund sensitivity to various 

versions of the RIX index. Model (1) uses the RIX index that is made publicly available by George Gao 

and covers the period 1996-2011. We observe a pattern that is very close to what is reported in Gao, Gao 

and Song (2018). Model (2) presents the result of the same analysis but with our replication of the RIX 

index. Our RIX index has a 99% correlation with the RIX index provided by Gao and hence, as expected, 

the results are very close to Model (1). Model (3) shows the results using a RIX index constructed using 

only S&P500 index options – rather than using a mixture of six indices as in the main RIX. Similar to Gao, 

                                                           
10 Gao, Gao and Song’s (2018) finding does not point to a risk-based explanation. RIX is persistent with an autocorrelation 

coefficient of 0.92, which is not a risk factor per se as the innovations in concerns about future bear market states. 
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Gao, and Song (2018) (see their Internet Appendix), we find a positive albeit less significant association 

between the sensitivity to this RIX index and hedge fund returns. 

Models (4) and (5) show the main result. We construct investable disaster concern factors from a portfolio 

of S&P500 put options as in Equation (4) in Gao, Gao and Song (2018). These factors capture the return of 

the put option portfolio, rather than the average daily price within the month. In Model (4), the option 

positions are formed on a daily basis, and the daily returns within the month are averaged to create the 

monthly RETRIX1. In Model (5) the option positions are formed at the end of each month, are held for one 

month, and give us the monthly RETRIX2. Construction of these investable RIX factors is detailed in the 

Appendix. We observe that the pattern is reversed and now there is a negative and significant association 

between sensitivity to RETRIX1 (𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1) or RETRIX2 (𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2) and future hedge fund returns. For 

consistency with Gao, Gao and Song’s (2018) study, all the above results span the period from January 

1998 to December 2011 and are based on decile portfolios. Models (6) and (7) extend the analysis with 

𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 and 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 for the period up to December 2017. We observe that the strong negative pattern 

remains. 

Overall, the results of this section show that the exact portfolio of put options that is used to capture negative 

market movements is of secondary importance for analyzing the cross-section of hedge fund returns. What 

is of primary importance is whether we consider the average price of this portfolio (the sensitivity to which 

reflects skill according to Gao, Gao, and Song; 2018) or the return of this portfolio (the sensitivity to which 

reveals whether a hedge fund acts more as an insurance buyer or seller). 

5.3. Bear market risk and future hedge fund returns conditional on investment styles 

To provide some insights as to whether the predictive power of bear beta for future hedge fund returns is 

an inter- versus intra-style effect, we examine the performance (returns and alphas) of bear beta sorted 

portfolios separately using funds within each investment style. Table 11 presents the results.  

[Insert Table 11 here] 

We exclude the short-bias category because, as shown in Table 1, we do not have enough observations to 

perform a meaningful analysis. Table 11 shows that there is a high variation in bear betas within each hedge 

fund investment style. Consistent with this finding, we further observe a strong and negative relation 
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between bear beta and portfolio returns in all the nine investment styles. Among the most significant styles, 

return spreads between high and low bear beta quintiles are -0.72% per month for relative-value, -0.70% 

for global macro, and -0.61% for multi-strategy. The corresponding alpha differentials are also 

economically substantial and statistically significant. The return and associated alpha spreads are lower 

among equity market neutral, fund of funds and long-short equity funds, but they are all statistically 

significant. In summary, there is a high variation in the exposure to bear market risk within each investment 

style and hedge funds seem to exhibit both inter- and intra-style bear market risk pricing.  

5.4. Bear market risk and long-term future hedge fund returns 

We further investigate how strong bear beta is in terms of predicting long-term future hedge fund returns. 

From a practical point of view, this is important because some investors and hedge fund managers might 

be more interested in long investment horizons. In fact, the lock-up periods for hedge fund managers can 

be sometimes up to one year.  

[Insert Table 12 here] 

First, we perform a univariate portfolio analysis, similar to that presented in Table 4, but we focus on the 

predictability of the return of month 𝑡𝑡 + 𝑘𝑘 – with 𝑘𝑘 ranging from two to nine – rather than the return of 

month 𝑡𝑡 + 1. Panel A of Table 12 presents the results. As expected, the magnitude of the return differentials 

(in absolute terms) becomes smaller as the gap between the month bear beta-sorted portfolios are generated 

and the month the performance of those portfolios is evaluated increases. However, the return and alpha 

spreads are all negative and statistically significant up to the eighth month. In the ninth month, the alpha 

spread is still negative, but not significant at the 5% level. Overall, bear beta is a persistent predictor of  

future hedge fund returns since its predictive power lasts for up to eight months ahead. 

Next, we examine the returns of bear beta portfolios by holding them for long-term horizons ranging from 

three months to 24 months. We follow Jegadeesh and Titman (1993) and implement the independently 

managed portfolio strategy to address the returns from overlapped holding periods. Panel B of Table 12 

reveals a significant performance persistence for up to 24 months ahead, with return differences between 

high and low bear beta funds of -0.58%, -0.49%, -0.30%, and -0.18% per month for a holding horizon of 

three, six, twelve, and twenty-four months, respectively. Moreover, these return differences are statistically 



25 
 

significant at the 5% level, showing that bear beta can successfully predict long-horizon cumulative hedge 

fund returns for up to 24 months into the future.  

Fund returns are often reported with a lag and it takes some time to start an investment into a hedge fund. 

Considering this practical issue in investing in hedge funds, we implement a portfolio strategy that is 

identical to that in Panel B except that we now leave a one-month gap between the portfolio formation 

month and the month in which portfolio returns start being calculated. The results reported in Panel C of 

Table 12 are similar to those presented in Panel B. In particular, we still observe a significant 

outperformance of low bear beta funds compared to high bear beta funds even when considering an 18-

month holding period.  

 

6. Robustness checks 

In this section, we further corroborate our findings in the paper by conducting a battery of robustness checks 

on the predictive power of bear beta for one-month ahead hedge fund returns based on portfolio-level 

analysis. 

[Insert Table 13 here] 

First, instead of equal-weighted returns as in our baseline analysis, we use value-weighted returns. 

Specification (1) of Table 13 shows that the bear beta effect is both statistically and economically significant 

when portfolio returns are weighted by asset under management too. For example, the underperformance 

of hedge funds in the highest bear beta, compared to the lowest bear beta, quintile is economically large, 

generating an average return spread of -0.63% per month with a t-statistic of -3.42. The associated alpha 

difference between these two quintiles is -0.73% per month and also statistically significant. 

Second, we examine the stability of our results by changing the bear beta estimation horizon from 24 months 

to either 12 or 36 months. As shown in specifications (2) and (3) of Table 13, the Q5-Q1 portfolio return 

spread is -0.50% and -0.42% per month for a bear beta estimation horizon of 12 months and 36 months, 

respectively. The corresponding t-statistics are -2.75 and -4.30. The risk-adjusted returns of the Q5-Q1 bear 
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beta portfolio based on the Fung and Hsieh (2004) seven factor model are also negative and statistically 

significant at the 1% level in both specifications.   

Third, we investigate whether our results are robust to alternative definitions of the Bear portfolio. In 

specifications (4) and (5) of Table 13, we define bear region as states in which the market excess return is 

one or two standard deviations, instead of 1.5 standard deviations, below zero. We still find significantly 

negative return and Fung-Hsieh alpha differences between the portfolio of high 𝛽𝛽1𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (or 𝛽𝛽2𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) hedge 

funds and the portfolio of low 𝛽𝛽1𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (or 𝛽𝛽2𝜎𝜎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) hedge funds. Next, we use only the long put position by 

dropping the short put position from the Bear portfolio. This put portfolio is simpler and conceptually closer 

to the portfolio utilized by Agarwal and Naik (2004). As shown in specification (6) of Table 13, the portfolio 

of low 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃 hedge funds outperforms the portfolio of high 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃 hedge funds with significant return and 

alpha differences. In an unreported analysis, we also find that funds with low 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃 do not underperform 

funds with high 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃 during periods of market crashes. 

Finally, as a way to mitigate survivorship bias, in specification (7) of Table 13 we repeat the baseline 

analysis by assuming that returns of the drop-out funds are -100% in the month following the last reporting 

month. This is because the HFR database does not report delisting hedge fund returns. This delisting return 

assumption does not change our conclusion. For instance, the return and alpha spreads between Q5 and Q1 

are -0.80% (t-statistic of -4.41) and -0.93% (t-statistic of -4.46), respectively. Besides, our results are not 

materially affected when we assign different value for delisted hedge fund returns, such as -75%, -50%, -

25%, and zero.  

 

7. Conclusion 

It is well documented that hedge funds, at an aggregate level, are exposed to tail risk by following trading 

strategies similar to providing insurance, i.e. writing a put option on the market index. However, the 

literature has paid little attention to the return behavior of insurance sellers, relative to insurance buyers, in 

the cross-section. In this paper, we use the bear beta, i.e. the sensitivity of each hedge fund to a market 

hedged Bear portfolio, to classify hedge funds as insurance sellers or buyers and examine its predictive 

power for the cross-section of fund returns. 
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The returns of the market hedged Bear portfolio reflect changes in bear market concerns after accounting 

for the strong negative relation between the Bear portfolio and the market. We show that, despite this strong 

negative relation, the market and the Bear portfolio do not move in lockstep. Therefore, the relative price 

movement between the two is a proxy for the innovation in bear market risk. In fact, we find that when we 

take into consideration the hedge funds’ insurance-related positions, the unhedged market exposure of 

insurance buyers and insurance sellers is almost identical. Therefore, any differences in their expected 

returns should be naturally attributed to their differential exposure to bear market risk, captured by bear 

beta. 

In a portfolio-level analysis, funds in the lowest bear beta quintile (insurance sellers) outperform funds in 

the highest bear beta quintile (insurance buyers) by 0.58% per month an average. The risk-adjusted return 

difference between these two quintiles remains economically large and statistically significant. Results from 

multivariate regressions reveal a negative and statistically significant effect of bear beta on future fund 

returns after controlling for a large set of fund characteristics and risk attributes. Therefore, the explanatory 

power of bear beta is distinct from previously documented hedge fund return predictors. 

Our interpretation for the above findings is that insurance sellers earn high returns on average by harvesting 

the bear market risk premium, while insurance buyers earn low returns on average because they willingly 

pay this insurance premium. Consistent with our risk-based explanation, the relation between bear beta and 

future fund returns is reversed and becomes positive and significant during months of positive market 

hedged Bear portfolio returns. In contrast, it remains negative in the rest of the periods, and especially in 

periods of negative market returns or market crashes. Overall, our paper provides evidence that bear market 

risk is a distinctive concept and not always closely associated with realized market tail risk. 
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Appendix A: Definition of variables 

For each stock 𝑖𝑖 at the end of month 𝑡𝑡, we compute all variables used to predict fund returns in month 𝑡𝑡 +

1. This appendix provides detailed definition of all variables in the paper. Note that for all variables 

computed using the past 24 months of hedge fund return series, we require at least 18 months of non-

missing returns.  

A.1. Time-varying fund exposures and characteristics 

    𝜷𝜷𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 or Bear Beta: is the coefficient 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 obtained by regressing monthly hedge fund excess returns 

on excess market returns and Bear portfolio excess returns: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐵𝐵𝑒𝑒𝑎𝑎𝑎𝑎,𝑡𝑡 +

𝜖𝜖𝑖𝑖,𝑡𝑡  over a 24-month rolling-window period. Details of Bear portfolio construction is provided in Section 2. 

     𝜷𝜷𝑴𝑴𝑴𝑴𝑴𝑴: is the coefficient 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀from the regression of monthly excess fund returns on excess market 

returns: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 over the past 24 months.  

     𝜷𝜷𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟, 𝜷𝜷𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟, and 𝜷𝜷𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟(Agarwal, Bakshi, and Huij, 2009): are exposures to higher risk-neutral 

moments obtained by regressing monthly excess fund returns on excess market returns and Δ𝑉𝑉𝑉𝑉𝐿𝐿𝑡𝑡, 

Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡, and Δ𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑡𝑡 (monthly relative changes in the market volatility, skewness, and kurtosis 

respectively) over a 24-month rolling-window period: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡Δ𝑉𝑉𝑉𝑉𝑉𝑉 × Δ𝑉𝑉𝑉𝑉𝐿𝐿𝑡𝑡 +

𝛽𝛽𝑖𝑖,𝑡𝑡Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × Δ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡Δ𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 × Δ𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡, with a requirement of at least 18 months of fund return 

data. Market volatility, skewness, and kurtosis are the Bakshi, Kapadia, and Madan (2003) model-free 

estimate of risk-neutral higher moments of market log return spanning the period up to option maturity day. 

They are extracted from S&P 500 Index options using trapezoidal approximation and are linearly 

interpolated to have the measures with constant 30-day maturity. 

     TailRisk (Agarwal, Ruenzi, and Weigert, 2017): is defined as the lower tail dependence of hedge fund 

returns and the market returns over the past 24 months (𝑇𝑇𝑇𝑇𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑖𝑖,𝑡𝑡), multiplied by the ratio of the absolute 

value of their respective expected shortfalls over the same period with the cutoff of q = 5%. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑖𝑖,𝑡𝑡 of 

fund 𝑖𝑖 takes the value of zero, 0.5, or 1 if none, one, or both of the fund’s two worst return realizations 

occur at the same time of the market’s two worst monthly returns over the past 24 months.   
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     𝜷𝜷𝑼𝑼𝑼𝑼𝑼𝑼 (Bali, Brown, and Caglayan, 2014): is hedge fund exposure to macroeconomic uncertainty, 𝛽𝛽𝑖𝑖,𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈, 

from the regression of monthly excess hedge fund returns on economic uncertainty index: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 +

𝛽𝛽𝑖𝑖,𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 over the past 24 months. The monthly economic uncertainty index is provided on 

Bali’s personal website. 

     𝜷𝜷𝑹𝑹𝑹𝑹𝑹𝑹 (Gao, Gao, and Song, 2018): is interpreted as skills at exploiting rare disaster concern, which is 

the coefficient, 𝛽𝛽𝑖𝑖,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅, from the regression of monthly hedge fund returns on excess market return and rare 

disaster concern index (RIX) over the past 24-month window: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 ×𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 ×

𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡. Data for RIX is obtained from Gao’s website and covers the period over 1996-2011. 

     𝜷𝜷𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 and 𝜷𝜷𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹: is the coefficient on RETRIX1 or RETRIX2 obtained by regressing monthly 

hedge fund returns on excess market return and Investable RIX factor over the rolling 24-month window 

period: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1(2) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1(2)𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡. Monthly investable RIX factor 

is computed as follows. We modify the formula for RIX slightly to allow the use of available option quotes. 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉− − 𝐼𝐼𝑉𝑉− =
2𝑒𝑒𝑟𝑟𝑟𝑟
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𝑃𝑃�𝑆𝑆𝑡𝑡;𝐾𝐾𝑖𝑖𝑃𝑃 ,𝑇𝑇�𝛥𝛥𝛥𝛥𝑖𝑖𝑃𝑃 

where 𝜏𝜏 ≡ 𝑇𝑇 − 𝑡𝑡 is the time to maturity, 𝑟𝑟 is the risk-free rate, 𝑆𝑆𝑡𝑡 is the spot price, 𝑛𝑛𝑃𝑃 is the number of OTM 

puts with available price data, 𝑖𝑖 indexes the OTM puts, 𝐾𝐾𝑖𝑖𝑃𝑃 is the strike of 𝑖𝑖th OTM put option when the 

strikes are ordered in decreasing order, and 𝑃𝑃�𝑆𝑆𝑡𝑡;𝐾𝐾𝑖𝑖𝑃𝑃 ,𝑇𝑇� is price of the put with strike 𝐾𝐾𝑖𝑖𝑃𝑃 maturing at T. 

𝛥𝛥𝛥𝛥1𝑃𝑃 = 𝑆𝑆 − 𝐾𝐾1𝑃𝑃 and 𝛥𝛥𝛥𝛥𝑖𝑖𝑃𝑃 = 𝐾𝐾𝑖𝑖−1𝑃𝑃 − 𝐾𝐾𝑖𝑖𝑃𝑃 for 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑃𝑃. For constructing RETRIX1, each day, we follow 

the formula to construct the option position using all valid OTM put options on the S&P500 index that 

expire on the third Friday of the next calendar month. The option position is hold for one day to calculate 

the return. We then take the average of the daily option position returns within a month to calculate monthly 

RETRIX1. For RETRIX2, at the end of each month, we form the position and hold it for one month to 

calculate monthly position return.  
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     𝑹𝑹𝑹𝑹 (Titman and Tiu, 2011): is the R2 measure of a fund from the regression of monthly hedge fund 

returns on Fung and Hsieh (2004) seven-factor model over the past 24-month period. 

     SDI (Sun, Wang, and Zheng, 2012): is strategy distinctiveness for a fund calculated as one minus the 

correlation between the fund returns and the average returns of funds with the same investment style based 

on the past 24 months.  

     Downside Return (Sun, Wang, and Zheng, 2018): is computed as the time-series average of fund 𝑖𝑖 

returns during months in which aggregate hedge funds returns are below the median level over the past 24-

month window.  

     Age: is he age of a hedge fund 𝑖𝑖 since its inception (measured in years) 

     Size: is computed as natural log of asset under management (in $ million) of hedge fund 𝑖𝑖 at the ned of 

month 𝑡𝑡. 

     Ret VOL, SKEW, KURT: are respectively the standard deviation, skewness, and kurtosis of fund 𝑖𝑖 

monthly returns over the past 24 months. 

     Past return (12M): is the cumulative returns of fund 𝑖𝑖 over the past 12 months ending in month 𝑡𝑡. 

A.2. Time-invariant fund characteristics 

     Min Investment: is computed as the natural log of (1 + minimum investment amount). 

     Management Fee: is the annual management fee (in percentage) for hedge fund 𝑖𝑖.  

     Incentive Fee: is the annual incentive fee (in percentage) for hedge fund 𝑖𝑖. 

     Lockup: is the minimum length of time (measured in months) that investors are required to keep their 

money invested in fund 𝑖𝑖. 

     Redemption: is the length of advanced notice that hedge fund 𝑖𝑖 requires from investors who wish to 

redeem their shares. 

     Leverage: is an indicator variable that takes the value of one if hedge fund 𝑖𝑖 uses leverage or zero 

otherwise. 



31 
 

     Hurdle: is an indicator variable that takes the value of one if hedge fund 𝑖𝑖 uses a hurdle rate or zero 

otherwise. 

     High Water Mark: is an indicator variable that takes the value of one if hedge fund 𝑖𝑖 use high watermark 

or zero otherwise. 

     Offshore: is an indicator variable that takes the value of one if hedge fund 𝑖𝑖 is based in offshore location 

outside of the USA or zero otherwise. 

A.3. Hedge fund risk factors 

     PTFSBD: Monthly return on trend-following risk factor in bonds 

     PTFSFX: Monthly return on trend-following risk factor in currencies. 

     PTFSCOM: Monthly return on trend-following risk factor in commodities.   

     S&P: The S&P 500 index monthly total return. 

     SCMLC: The size spread factor, computed as the difference between the Russell 2000 index monthly 

return and the S&P 500 monthly return. 

     BD10RET: The bond market factor, computed as the monthly change in the 10-year treasury maturity 

yield. 

     BAAMTSY: The credit spread factor, computed as the monthly change in the Moody’s Baa yield less 

10-year treasury constant maturity yield. 
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Figure 1: Time-series of market hedged Bear factor 

The figure plots the monthly time-series of the market hedged Bear portfolio excess returns over January 1998 to December 2017. 

Market hedged Bear portfolio excess return in month 𝑡𝑡 is equal to the intercept coefficient plus the month 𝑡𝑡 residual from a 

regression of the Bear portfolio excess returns on the market excess returns over the past 24 months. Bear portfolio excess return 

(Bear factor) is the one-month buy-and-hold excess return of a bear spread portfolio that longs an OTM put and shorts a further 

OTM put on the S&P500 index. 
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Table 1: Descriptive statistics of hedge funds 

The table presents summary statistics for the hedge funds used in our sample. Panel A shows the time-series average of the monthly 

cross-sectional mean, standard deviation, and percentiles for the returns (in percent) of hedge funds in each investment style 

category and in total. N is the number of distinct hedge funds in each category. Panel B reports the number of hedge funds and the 

total asset under management (in $ billions) each year for all hedge funds in our sample, as well as the mean, median, standard 

deviation, minimum and maximum monthly returns (in percent) of the respective equal-weighted hedge fund portfolio. Panel C 

presents cross-sectional mean and distribution statistics for hedge fund characteristics including size, age, management fee, 

incentive fee, redemption notice period, lockup period, and minimum investment amount for all hedge funds in our sample. Our 

sample covers hedge funds from the HFR database over the period January 1996 to December 2017. 

Panel A: Summary statistics of hedge fund returns (in percent) by categories 

  N (Funds) Mean STD P10 P25 P50 P75 P90 
Event Driven 832 0.70 3.22 -1.86 -0.48 0.61 1.74 3.27 
Relative Value 1366 0.62 2.74 -1.54 -0.26 0.64 1.56 2.84 
Long-Short Equity 2936 0.78 4.73 -3.93 -1.46 0.70 2.91 5.51 
Global Macro 443 0.64 4.39 -3.71 -1.31 0.54 2.47 5.08 
CTA 422 0.45 4.20 -3.67 -1.30 0.33 2.05 4.64 
Equity Market-Neutral 549 0.42 2.30 -2.08 -0.76 0.42 1.57 2.95 
Multi-Strategy 1715 0.65 4.07 -3.32 -1.17 0.58 2.37 4.63 
Short-Bias 60 -0.15 3.55 -4.50 -2.45 -0.19 2.11 4.30 
Sector 505 0.97 5.20 -4.56 -1.74 0.90 3.48 6.56 
Fund of Funds 2256 0.50 1.86 -1.17 -0.26 0.50 1.26 2.14 
All hedge funds 11084 0.64 4.03 -2.93 -0.83 0.55 2.01 4.24 
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Panel B: Summary statistics year by year 

            
Equal-weighted hedge fund portfolio monthly returns 

(%) 

Year Start Entries Dissolved End AUM ($B) Mean Median STD Min  Max 
1996 764 185 40 909 108.6 1.43 1.63 1.59 -2.00 3.87 
1997 909 365 63 1211 170.2 1.34 1.29 2.01 -1.39 4.57 
1998 1211 319 149 1381 169.4 0.22 0.26 2.62 -6.38 3.20 
1999 1381 349 139 1591 212.1 2.13 1.20 2.32 -0.45 6.84 
2000 1591 402 163 1830 255.4 0.70 0.18 2.49 -2.49 5.60 
2001 1830 418 183 2065 319.0 0.46 0.71 1.43 -2.20 2.72 
2002 2065 501 138 2428 376.2 0.11 0.35 1.06 -1.93 1.63 
2003 2428 669 209 2888 558.6 1.37 1.11 0.98 -0.20 3.49 
2004 2888 744 203 3429 809.9 0.67 0.72 1.23 -1.41 2.90 
2005 3429 824 299 3954 939.7 0.67 1.23 1.32 -1.58 1.96 
2006 3954 800 415 4339 1211.9 0.97 1.30 1.34 -1.55 3.17 
2007 4339 725 481 4583 1549.3 0.88 0.84 1.47 -1.68 2.93 
2008 4583 557 875 4265 1095.6 -1.69 -1.74 2.78 -6.71 1.87 
2009 4265 414 739 3940 1010.6 1.55 1.44 1.64 -1.10 4.87 
2010 3940 470 483 3927 1119.9 0.83 1.00 1.77 -2.85 3.29 
2011 3927 415 502 3840 1104.9 -0.36 -0.10 1.75 -3.54 2.40 
2012 3840 388 573 3655 1101.2 0.56 0.68 1.24 -2.19 2.56 
2013 3655 338 451 3542 1237.9 0.83 1.13 1.07 -1.45 2.54 
2014 3542 337 381 3498 1298.0 0.31 -0.24 0.94 -0.74 1.93 
2015 3498 245 469 3274 1280.8 -0.07 0.15 1.28 -2.30 1.93 
2016 3274 222 424 3072 1178.4 0.42 0.56 1.18 -2.58 1.93 
2017 3072 201 379 2894 1211.1 0.73 0.60 0.36 0.19 1.16 

 

Panel C: Summary statistics of hedge fund characteristics 
  N  Mean STD P10 P25 P50 P75 P90 
Average monthly AUM ($M) 11084 171.19 601.42 11.56 20.96 49.30 137.17 363.05 
Average age of fund (in months) 11084 78.33 63.95 16.27 31.96 60.00 107.01 167.07 
Management fee (%) 11084 1.44 0.57 1.00 1.00 1.50 2.00 2.00 
Incentive fee (%) 11084 15.78 7.54 0.00 10.00 20.00 20.00 20.00 
Redemption (in months) 11084 1.24 1.10 0.03 0.33 1.00 2.00 3.00 
Lockup (in months) 11084 3.46 6.92 0.00 0.00 0.00 6.00 12.00 
Minimum Investment ($M) 11084 1.26 4.63 0.05 0.10 0.50 1.00 2.00 
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Table 2: Descriptive statistics for Bear portfolio and factor analysis of its returns 

The table reports summary statistics and factor analysis results for the Bear factor. Bear factor is the one-month buy-and-hold 

excess return of a bear spread portfolio that longs an OTM put and shorts a further OTM put on the S&P500 index. Panel A presents 

the mean (Mean), standard deviation (STD), skewness (Skew), minimum value (Min), 10th percentile value (P10), 50th percentile 

value (P50), 90th percentile value (P90), and maximum value (Max) for the monthly time-series of the Bear factor from January 

1996 to December 2017. Panel B shows the results from time-series regressions of the Bear factor on standard risk factors in the 

asset pricing and hedge fund literature over 264 months from January 1996 to December 2017. The table includes alphas (or 

intercept coefficients), slope coefficients, and adjusted R2s. MKT, SMB, and HML represent the Fama and French (1993) factors. 

UMD represents the Carhart (1997) momentum factor. PTFSBD, PTFSFX, PTFSCOM, S&P, SCMLC, BD10RET, and 

BAAMTSY represent the Fung and Hsieh (2004) seven factors and are detailed in Appendix A. Newey and West (1987) t-statistics 

with lag length equal to 24 are reported in parentheses.  

Panel A: Summary statistics of the monthly Bear portfolio excess returns (in percent) 
Factor Mean STD Skew Min P10 P50 P90 Max 
Bear -1.64 4.41 2.64 -5.18 -4.71 -3.27 4.10 27.55 
 
Panel B: Factor analysis of the Bear portfolio excess returns 
  (1) (2) (3) (4) (5) (6) 
Alpha -1.64 -1.09 -1.12 -1.11 -0.89 -0.91 
  (-5.04) (-6.77) (-6.66) (-6.59) (-5.13) (-5.57) 

MKT   -0.85 -0.86 -0.86 
  

  
    (-15.90) (-17.40) (-16.09)     
SMB     0.09 0.10     
      (3.22) (3.15)     
HML     0.09 0.08   0.14 
      (1.26) (1.32)   (3.08) 
UMD       -0.01   -0.02 
        (-0.18)   (-0.59) 
PTFSBD         0.04 0.04 
          (1.80) (1.92) 
PTFSFX         0.01 0.00 
          (0.81) (0.58) 
PTFSCOM         -0.01 0.00 
          (-0.78) (-0.36) 
S&P         -0.80 -0.80 
          (-12.41) (-15.23) 
SCMLC         -0.05 -0.04 
          (-1.48) (-1.34) 
BD10RET         0.01 0.01 
          (1.22) (1.05) 
BAAMTSY         0.02 0.02 
          (3.26) (3.69) 
Adjusted R2 0.00 0.72 0.72 0.72 0.73 0.74 
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Table 3: Bear beta quintile portfolios and market exposure 

The table reports the average bear beta and market exposure based on different regression models for each bear beta quintile 

portfolio. Bear beta (𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) is estimated from a regression of hedge fund excess returns on the Bear factor controlling for the 

market excess returns over the past 24 months with a requirement of at least 18 months of non-missing fund returns. At the end of 

each month from December 1997 to November 2017, we sort hedge funds into quintiles according to their bear beta level. Quintile 

1 (5) consists of funds with the lowest (highest) bear betas. For each quintile, we report the time-series average of other regression 

coefficients. In Panel A, 𝛽𝛽𝑀𝑀 is the coefficient 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀  from the regression of monthly hedge fund excess returns on market excess 

returns and bear factor returns: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 over the past 24 months. In Panel B, 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 and 

𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 are respectively the coefficients 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀and 𝛽𝛽𝑖𝑖,𝑡𝑡
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 from the regression of monthly hedge fund excess returns 

on market excess returns and market-hedged bear factor returns: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 +

𝜖𝜖𝑖𝑖,𝑡𝑡 over the past 24 months, where market-hedged bear factor returns are estimated as residuals from the regression of bear factor 

returns on market excess returns over the past 24 months. In Panel C, 𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the coefficient 𝛽𝛽𝑖𝑖,𝑡𝑡
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 from 

the regression of monthly hedge fund excess returns on bear factor returns: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 over the 

past 24 months. We also report the results for the Q5-Q1 portfolio. Newey and West (1987) t-statistics with lag length equal to 24 

are reported in parentheses. 

Panel A: Regression model 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 
Sort by 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 Q1 Q2 Q3 Q4 Q5 Q5-Q1 t-stat (Q5-Q1) 

𝛽𝛽𝑀𝑀 -0.04 0.15 0.22 0.36 0.89 0.93 (10.54) 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 -0.55 -0.14 -0.03 0.10 0.53 1.08 (13.55) 
 
Panel B: Regression model 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 
Sort by 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 Q1 Q2 Q3 Q4 Q5 Q5-Q1 t-stat (Q5-Q1) 

𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 0.43 0.27 0.24 0.28 0.43 0.01 (0.1) 

𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 -0.55 -0.14 -0.03 0.10 0.53 1.08 (13.55) 
 
Panel C: Regression model 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑡𝑡

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 × 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 
Sort by 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 Q1 Q2 Q3 Q4 Q5 Q5-Q1 t-stat (Q5-Q1) 

𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 -0.51 -0.28 -0.22 -0.22 -0.27 0.24 (4.63) 
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Table 4: Performance of bear beta-sorted hedge fund portfolios 

The table presents the average returns and Fung-Hsieh alphas (in monthly percentages) of hedge fund portfolios sorted with respect 

to bear beta. Bear beta is estimated from a regression of hedge fund excess returns on the Bear factor controlling for the market 

excess returns over the past 24 months with a requirement of at least 18 months of non-missing fund returns. At the end of each 

month from December 1997 to November 2017, we sort hedge funds into quintiles according to their bear beta level. Quintile 1 (5) 

consists of funds with the lowest (highest) bear betas. We hold these quintile portfolios for one month and present the average 

equal-weighted returns and alphas for each quintile and for the Q5-Q1 portfolio. Newey and West (1987) t-statistics with lag length 

equal to 24 are reported in parentheses. 

  Q1 Q2 Q3 Q4 Q5 Q5-Q1 

Equal-weighted returns (%) 0.87 0.56 0.47 0.44 0.29 -0.58 
 

(5.44) (5.00) (3.93) (3.27) (1.61) (-3.53) 
FH alpha 0.70 0.40 0.30 0.23 -0.02 -0.72 
 

(4.04) (3.94) (3.21) (2.38) (-0.17) (-3.73) 
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Table 5: Alphas after controlling for additional risk factors 

The table presents alphas (or intercept coefficients) and slope coefficients from time-series regressions of the monthly equal-

weighted Q5-Q1 bear beta portfolio returns on different risk factors. As standard risk factors, we use the seven factors from the 

Fung and Hsieh (2004) model, which include three trend-following risk factors (PTFSBD, PTFSFX, PTFSCOM), two equity-

oriented risk factors (S&P, SCMLC), and two bond-oriented risk factors (BD10RET, BAAMTSY). In addition to the Fung and 

Hsieh (2004) seven factors, we use the Fama and French (1993) value factor (HML), the Carhart (1997) momentum factor (UMD), 

the Pastor and Stambaugh (2003) liquidity factor (PS LIQ), and returns of a long-short hedge fund portfolio with regard to the Bali, 

Brown, and Caglayan (2014) macroeconomic uncertainty factor (Return Macro), the Agarwal, Bakshi, and Huij (2010) relative 

change in risk-neutral volatility and skewness (Return VOL and Return SKEW), the Gao, Gao, and Song (2018) RIX factor (Return 

RIX), and the Agarwal, Ruenzi, and Weigert (2017) tail risk factor (Return TailRisk). Newey and West (1987) t-statistics with lag 

length equal to 24 are reported in parentheses. 

  
(1) 

 Q5-Q1 
(2) 

 Q5-Q1 
(3) 

 Q5-Q1 
(4) 

Q5-Q1 
(5) 

 Q5-Q1 
(6) 

 Q5-Q1 
(7) 

Q5-Q1 
(8) 

Q5-Q1 
Alpha -0.72 -0.69 -0.67 -0.59 -0.57 -0.61 -0.71 -0.49 
  (-3.73) (-3.34) (-2.93) (-4.04) (-3.63) (-3.12) (-3.57) (-3.38) 
PTFSBD -0.02 -0.02 -0.02 -0.03 -0.03 -0.02 -0.02 -0.03 
  (-1.00) (-1.20) (-1.24) (-1.62) (-1.64) (-1.03) (-1.37) (-1.85) 
PTFSFX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  (-0.29) (-0.08) (-0.05) (-0.16) (-0.19) (0.11) (-0.24) (-0.20) 
PTFSCOM 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 
  (1.15) (1.00) (1.01) (0.90) (0.34) (1.10) (0.53) (0.05) 
S&P 0.13 0.11 0.11 0.11 0.08 0.09 0.27 0.19 
  (1.51) (1.41) (1.34) (1.53) (1.48) (1.01) (1.52) (1.51) 
SCMLC 0.12 0.12 0.12 0.14 0.03 0.13 0.18 0.10 
  (1.55) (1.94) (2.00) (2.12) (0.84) (2.28) (1.86) (2.14) 
BD10RET 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 
  (0.70) (0.83) (0.82) (1.68) (-0.08) (1.27) (0.68) (0.52) 
BAAMTSY 0.00 0.00 0.01 0.01 0.00 0.01 -0.01 0.00 
  (0.40) (0.43) (0.52) (0.88) (-0.16) (1.87) (-0.80) (-0.26) 
HML   -0.16 -0.16 -0.14 -0.05 -0.16 -0.25 -0.11 
    (-3.20) (-3.32) (-2.46) (-1.62) (-2.85) (-2.23) (-2.09) 
UMD   -0.01 -0.01 0.01 -0.02 -0.01 -0.03 -0.03 
    (-0.25) (-0.30) (0.17) (-0.51) (-0.28) (-0.74) (-0.73) 
PS LIQ     0.01         (0.00 
      (0.40)         (-0.08) 
Return Macro       -0.19       -0.09 
        (-2.91)       (-1.33) 
Return VOL         0.50     0.44 
          (3.16)     (2.90) 
Return SKEW         0.31     0.27 
          (3.25)     (2.38) 
Return RIX           -0.23   -0.17 
            (-1.47)   (-1.15) 
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Return TailRisk             -0.26 -0.20 
              (-1.22) (-1.87) 
Adjusted R2 0.12 0.17 0.17 0.25 0.41 0.20 0.22 0.47 
Observations 240 240 240 240 240 240 240 240 
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Table 6: Fama and MacBeth regressions 

The table presents the average intercepts, average coefficients, and average adjusted R2s from Fama and MacBeth (1973) cross-

sectional regressions of hedge fund excess returns in month 𝑡𝑡 + 1 on bear beta (𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) and other control variables measured at the 

end of month 𝑡𝑡 over the sample period from January 1998 to December 2017. Bear beta is estimated from a regression of hedge 

fund excess returns on the Bear factor controlling for the market excess returns over the past 24 months with a requirement of at 

least 18 months of non-missing fund returns. The control variables include different fund characteristics and other measures of 

risks. A detailed definition of these variables is provided in Appendix A. Newey and West (1987) t-statistics with lag length equal 

to 24 are reported in parentheses. 

MODEL (1) (2) (3) (4) 

Intercept 0.53 0.18 0.45 0.18 
  (4.42) (1.61) (4.71) (1.68) 
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 -0.59 -0.35 -0.32 -0.25 
  (-3.63) (-3.81) (-3.47) (-3.24) 
Size   -0.02   -0.01 
    (-1.37)   (-1.01) 
Age   0.00   0.00 
    (-0.05)   (-0.18) 
Min Investment   0.01   0.01 
    (2.82)   (2.69) 
Management Fee   -0.02   -0.01 
    (-0.60)   (-0.39) 
Incentive Fee   0.00   0.00 
    (1.51)   (1.35) 
Lock Up   0.00   0.00 
    (0.79)   (0.32) 
Redemption   0.01   0.01 
    (0.47)   (0.42) 
Leverage   -0.03   -0.02 
    (-1.51)   (-1.16) 
Hurdle   -0.07   -0.06 
    (-1.51)   (-1.63) 
HWM   0.00   0.01 
    (-0.17)   (0.24) 
Offshore   -0.02   -0.01 
    (-0.81)   (-0.39) 
Past return (12M)   1.68   1.73 
    (5.58)   (7.33) 
Ret VOL (24M)   4.10   3.11 
    (1.69)   (1.87) 
Ret SKEW (24M)     0.12 0.05 
      (3.58) (2.03) 
Ret KURT (24M)     0.00 0.00 
      (0.11) (-0.45) 
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𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀     0.35 0.21 
      (1.41) (0.98) 
Adjusted R2 0.03 0.15 0.16 0.22 
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Table 7: Returns associated with bear beta in different states of the world 

The table shows results from Fama and Macbeth (1973) cross-sectional regressions of one-month ahead hedge fund excess returns on bear beta (𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) and a series of control 

variables in different subperiods. The control variables included are the same with specification (4) of Table 5. Bear beta is estimated from a regression of hedge fund excess returns 

on the Bear factor controlling for the market excess returns over the past 24 months with a requirement of at least 18 months of non-missing fund returns. We present only the 

coefficients on bear beta (𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵); the coefficients for the rest of the variables are suppressed for the sake of brevity. Market hedged Bear factor is the component of the Bear factor 

that is orthogonal to the market excess returns. In month 𝑡𝑡, it is equal to the intercept coefficient plus the month 𝑡𝑡 residual from a regression of the Bear factor on the market excess 

returns over the past 24 months. MKT denotes the excess return of the market. We define volatility as the level of VIX (the Chicago Board Options Exchange Volatility Index) at 

the end of the month and classify month 𝑡𝑡 as high (low) volatility period if VIX is above (below) its median level over the sample period from January 1998 to December 2017. 

Newey and West (1987) t-statistics with lag length equal to 24 are reported in parentheses.   

MODEL (1) 
Market 

hedged Bear 
factor  < 0 

(2)  
Market 

hedged Bear 
factor > 0 

(3) 
MKT < 0 

(4) 
MKT > 0 

(5) 
MKT < P10 

(6) 
MKT > P10 

(7) 
High volatility 

(8) 
Low volatility 

(9) 
1998-2007 

(10) 
2008-2017 

𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 -0.43 0.41 -0.40 -0.16 -0.49 -0.23 -0.24 -0.27 -0.16 -0.34 
 

(-4.51) (2.61) (-2.92) (-1.22) (-2.28) (-2.69) (-2.05) (-2.10) (-2.51) (-2.31) 
Control variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Average adjusted R2 0.19 0.32 0.23 0.23 0.37 0.20 0.26 0.18 0.24 0.20 
Number of months 189 51 91 149 24 216 120 120 120 120 
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Table 8: Determinants of bear betas 

The table presents the average intercepts, average coefficients, and average adjusted R2s from Fama and MacBeth (1973) cross-

sectional regressions of hedge fund bear beta (𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) on contemporaneous fund characteristics and risk attributes over the period 

from December 1997 to November 2017. Bear beta is estimated from a regression of hedge fund excess returns on the Bear factor 

controlling for the market excess returns over the past 24 months with a requirement of at least 18 months of non-missing fund 

returns. A detailed definition of different fund characteristics and other measures of risks is provided in Appendix A. Newey and 

West (1987) t-statistics with lag length equal to 24 are reported in parentheses.  

MODEL (1) (2) (3) 

Intercept 0.00 -0.03 0.00 
  (0.01) (-0.63) (-0.15) 
Size 0.00   0.00 
  (1.18)   (0.83) 
Age 0.00   0.00 
  (1.82)   (1.90) 
Ret VOL (24M) 0.07   -0.16 
  (0.18)   (-0.29) 
Ret SKEW (24M) 0.10   0.09 
  (6.00)   (5.89) 
Ret KURT (24M) 0.00   0.00 
  (-1.51)   (-1.56) 
Fund return (12M) -0.29   -0.27 
  (-2.15)   (-2.30) 
Min Investment   0.00 0.00 
    (1.19) (1.47) 
Management Fee   -0.02 -0.02 
    (-1.97) (-2.24) 
Incentive Fee   0.00 0.00 
    (1.85) (1.05) 
Lock Up   0.00 0.00 
    (0.38) (0.84) 
Redemption   -0.01 0.00 
    (-1.48) (-0.32) 
Leverage   0.01 0.01 
    (2.15) (1.68) 
Hurdle   -0.04 -0.02 
    (-2.73) (-1.98) 
HWM   0.01 0.01 
    (1.08) (1.17) 
Offshore   -0.04 -0.03 
    (-2.73) (-3.05) 

Adjusted R2 0.14 0.03 0.16 
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Table 9: Additional control variables 

The table presents the average intercepts, average coefficients, and average adjusted R2s from Fama and MacBeth (1973) cross-

sectional regressions of hedge fund excess returns in month 𝑡𝑡 + 1 on bear beta (𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵), fund characteristics, and additional control 

variables measured at the end of month 𝑡𝑡 over the sample period from January 1998 to December 2017. Bear beta is estimated from 

a regression of hedge fund excess returns on the Bear factor controlling for the market excess returns over the past 24 months with 

a requirement of at least 18 months of non-missing fund returns. The additional control variables that we consider are the exposure 

to market (𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀), risk-neutral higher moment (𝛽𝛽𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 and 𝛽𝛽𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) (Agarwal, Bakshi, and Huij, 2010), market tail risk (TailRisk) 

(Agarwal, Ruenzi, and Weigert, 2017), and macroeconomic uncertainty (𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈) (Bali, Brown, and Caglayan, 2014). We also control 

for several proxies for hedge fund skills including the skills at exploiting rare disaster concern (𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅) (Gao, Gao and Song, 2018), 

the R-squared measure (R2) (Titman and Tiu, 2011), the strategy distinctiveness index (SDI) (Sun, Wang, and Zheng, 2012), and 

the downside returns (Sun, Wang, and Zheng, 2018). The hedge fund characteristics and other measures of risks from specification 

(4) in Table 5 are included but are suppressed for the sake of brevity. Newey and West (1987) t-statistics with lag length equal to 

24 are reported in parentheses. 

MODEL (1) (2) (3) (4) (5) (6) 

Intercept 0.18 0.19 0.20 -0.02 0.18 0.17 

 (1.68) (1.61) (1.78) (-0.15) (1.13) (1.24) 
𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 -0.25 -0.29 -0.33 -0.27 -0.26 -0.28 

 (-3.24) (-3.30) (-3.33) (-3.62) (-4.04) (-3.06) 
𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 0.21         0.31 

 (0.98)         (1.48) 
𝛽𝛽𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥   -0.01       0.02 

   (-0.05)       (0.11) 
𝛽𝛽𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥   -0.91       -0.60 

   (-1.57)       (-1.33) 
TailRisk     0.11     -0.15 

     (0.69)     (-2.33) 
𝛽𝛽𝑈𝑈𝑈𝑈𝑈𝑈        0.05   0.01 

       (1.88)   (0.72) 
𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅          0.00 -0.01 

         (0.42) (-0.80) 
R2         -0.05 -0.06 

         (-0.38) (-0.64) 
SDI         -0.03 0.02 

         (-0.44) (0.36) 
Downside Return         -0.03 -0.02 

         (-0.80) (-0.39) 
Control for characteristics Yes Yes Yes Yes Yes Yes 
Adjusted R2 0.22 0.19 0.19 0.18 0.21 0.28 
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Table 10: Bear beta and skills at exploiting rare disaster concern 

The table reports the performance of decile portfolios of hedge funds sorted by the betas (or sensitivities) with respect to various versions of the RIX index. These betas are estimated 

by regressing hedge fund excess returns on different versions of the RIX index controlling for the market excess returns over a 24-month rolling window. For consistency with Gao, 

Gao, and Song (2018), specifications (1) – (5) are based on the period from January 1998 to December 2011. At the end of each month from December 1997 to November 2011, we 

sort hedge funds into deciles according to their betas on different versions of the RIX index. We rebalance the portfolios each month; thus, the portfolio returns are from January 

1998 to December 2017. We measure the average equal-weighted returns for each decile portfolio and for D10-D1 portfolio. We present seven sets of results. Specification (1) uses 

the RIX index that is made publicly available by George Gao. Specification (2) uses our replicated RIX index. Specification (3) uses a RIX index which is constructed from S&P500 

put options. Specifications (4) and (5) use RETRIX1 and RETRIX2, respectively. RETRIX1 is the average daily return within a month of a portfolio of S&P500 index put options 

that form RIX. RETRIX2 is the monthly return of the portfolio of S&P500 index put options that form RIX. Specifications (6) and (7) extend the analysis with RETRIX1 and 

RETRIX2 until December 2017. All returns and alphas are in monthly percentages. Newey and West (1987) t-statistics with lag length equal to 24 are reported in parentheses.   
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  D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1 FH alpha (10-1) 
(1) Sorted by fund's sensitivity to RIX index obtained from Gao et al. (2018) 

 

EW returns 0.34 0.46 0.47 0.49 0.43 0.45 0.52 0.61 0.72 1.11 0.77 0.80 
 

(0.91) (1.95) (2.35) (2.79) (2.47) (2.80) (3.48) (3.99) (4.44) (4.57) (2.51) (3.11) 
(2) Sorted by fund's sensitivity to our replicated RIX index 

 

EW returns 0.32 0.48 0.52 0.50 0.44 0.46 0.49 0.62 0.73 1.04 0.72 0.83 
 

(0.77) (1.95) (2.47) (2.78) (2.65) (3.06) (3.33) (4.30) (4.80) (4.80) (2.17) (3.09) 
(3) Sorted by fund's sensitivity to our replicated RIX index that uses only options from S&P500 

 

EW returns 0.44 0.49 0.49 0.50 0.48 0.44 0.53 0.59 0.67 0.95 0.52 0.64 
 

(1.05) (1.94) (2.29) (2.78) (2.88) (2.80) (3.74) (4.20) (4.42) (4.50) (1.47) (2.16) 
(4) Sorted by fund's sensitivity to RETRIX1 

 

EW returns 1.10 0.68 0.60 0.51 0.47 0.47 0.51 0.45 0.44 0.35 -0.75 -0.83 
 

(4.07) (3.24) (3.35) (3.20) (2.91) (2.96) (2.87) (2.42) (2.11) (1.15) (-2.98) (-2.87) 
(5) Sorted by fund's sensitivity to RETRIX2 

 

EW returns 1.06 0.68 0.64 0.55 0.54 0.52 0.49 0.50 0.35 0.25 -0.82 -0.92 
 

(3.27) (3.34) (3.71) (3.38) (3.25) (3.17) (3.02) (2.80) (1.77) (0.92) (-3.43) (-3.49) 
(6) Sorted by fund's sensitivity to RETRIX1: Extended period 1998-2017 

 

EW returns 0.89 0.63 0.56 0.48 0.45 0.45 0.48 0.45 0.48 0.39 -0.50 -0.55 
 

(4.32) (4.07) (4.24) (4.03) (3.82) (3.89) (3.75) (3.33) (3.07) (1.75) (-2.50) (-2.27) 
(7) Sorted by fund's sensitivity to RETRIX2: Extended period 1998-2017 

 

EW returns 0.92 0.63 0.58 0.51 0.50 0.49 0.47 0.49 0.38 0.28 -0.63 -0.70 
 

(3.75) (4.10) (4.46) (4.17) (3.97) (3.97) (3.82) (3.66) (2.53) (1.41) (-3.39) (-3.18) 
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Table 11: Performance of bear beta-sorted hedge fund portfolios in different investment style categories 

The table reports the performance of bear beta-sorted hedge fund portfolios for each investment style. Bear beta is estimated from 

a regression of hedge fund excess returns on the Bear factor controlling for the market excess returns over the past 24 months with 

a requirement of at least 18 months of non-missing fund returns. At the end of each month from December 1997 to November 

2017, hedge funds of a specific investment style are sorted into five portfolios on the basis of their bear betas. Quintile 1 (5) consists 

of funds with the lowest (highest) bear betas. We rebalance the portfolios each month; thus, the portfolio returns are from January 

1998 to December 2017. For each style, we present the average bear beta, the average equal-weighted returns and Fung-Hsieh 

alphas (in percentage terms) for each quintile as well as for the Q5-Q1 portfolio. Newey and West (1987) t-statistics with lag length 

equal to 24 are reported in parentheses. 

  Q1 Q2 Q3 Q4 Q5 Q5-Q1 
Event-Driven 

Average Bear Beta -0.43 -0.14 -0.04 0.07 0.41 0.84 
Equal-weighted returns 0.82 0.55 0.55 0.48 0.47 -0.35 
 

(4.51) (4.21) (4.77) (3.15) (2.25) (-2.83) 
FH alpha 0.58 0.37 0.40 0.30 0.17 -0.41 
 

(4.95) (4.21) (5.17) (2.67) (1.78) (-3.54) 
Relative Value 

Average Bear Beta -0.47 -0.13 -0.03 0.06 0.34 0.80 
Equal-weighted returns 0.92 0.63 0.50 0.35 0.20 -0.72 
 

(5.30) (6.29) (5.31) (2.72) (0.96) (-3.05) 
FH alpha 0.78 0.55 0.41 0.24 0.02 -0.76 
 

(4.85) (6.93) (5.98) (2.39) (0.11) (-2.96) 
Long-Short Equity 

Average Bear Beta -0.76 -0.23 -0.02 0.18 0.69 1.44 
Equal-weighted returns 0.86 0.64 0.59 0.56 0.61 -0.25 
 

(3.37) (3.57) (3.59) (2.95) (2.47) (-1.80) 
FH alpha 0.46 0.29 0.25 0.14 0.12 -0.35 
 

(2.27) (2.19) (2.43) (1.46) (0.87) (-2.17) 
Global Macro 

Average Bear Beta -0.62 -0.19 0.00 0.18 0.65 1.27 
Equal-weighted returns 0.92 0.76 0.49 0.41 0.22 -0.70 
 

(4.93) (4.96) (3.59) (3.19) (0.80) (-3.31) 
FH alpha 0.79 0.61 0.35 0.28 0.02 -0.77 
 

(4.14) (4.11) (2.37) (2.33) (0.09) (-4.18) 

CTA 
Average Bear Beta -0.56 -0.15 0.02 0.20 0.76 1.32 
Equal-weighted returns 0.70 0.38 0.25 0.24 0.18 -0.52 
 

(4.19) (2.55) (2.26) (3.11) (1.09) (-2.98) 
FH alpha 0.68 0.35 0.26 0.25 0.15 -0.53 
 

(4.27) (2.18) (2.43) (2.99) (0.80) (-2.81) 
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Equity Market Neutral 
Average Bear Beta -0.34 -0.12 -0.02 0.08 0.36 0.70 
Equal-weighted returns 0.42 0.32 0.29 0.23 0.22 -0.21 
 

(6.74) (6.98) (6.49) (3.21) (2.65) -2.47 
FH alpha 0.36 0.26 0.26 0.17 0.15 -0.21 
 

(4.74) (5.75) (5.14) (2.49) (1.99) -2.06 
Multi-Strategy 

Average Bear Beta -0.60 -0.18 0.01 0.19 0.70 1.29 
Equal-weighted returns 0.92 0.67 0.48 0.39 0.31 -0.61 
 

(5.26) (5.26) (5.95) (4.64) (2.50) (-2.99) 
FH alpha 0.97 0.68 0.45 0.34 0.26 -0.71 
 

(4.35) (4.01) (4.46) (3.76) (2.13) (-2.94) 
Sector 

Average Bear Beta -0.53 -0.12 0.10 0.34 0.94 1.47 
Equal-weighted returns 1.10 0.62 0.76 0.59 0.51 -0.58 
 

(2.67) (2.41) (2.07) (1.82) (1.43) (-2.01) 
FH alpha 0.64 0.28 0.38 0.16 0.00 -0.64 
 

(1.96) (1.25) (1.26) (0.64) (-0.01) (-1.94) 

Fund of Funds 
Average Bear Beta -0.31 -0.12 -0.05 0.03 0.22 0.53 
Equal-weighted returns 0.53 0.46 0.41 0.39 0.25 -0.28 
 

(3.96) (3.57) (3.22) (2.75) (1.71) (-3.68) 
FH alpha 0.39 0.31 0.26 0.24 0.07 -0.32 

 
(3.09) (2.81) (2.49) (2.04) (0.67) (-3.28) 
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Table 12: Long-term predictive power of bear beta 

The table reports the long-term performance of bear beta-sorted hedge fund quintle portfolios. All portfolios are equal-weighted. In Panel A, we report the time-series average of 

𝑘𝑘th-month ahead excess returns for each of the hedge fund quintiles formed each month on the basis of bear beta as well as the average 𝑘𝑘th-month ahead return and Fung-Hsieh 

alpha differences between the high and low bear beta quintiles (Q5-Q1). Panel B presents results for the bear beta-sorted quintile portfolios with holding periods ranging from 3 

months to 24 months. We implement the independently managed portfolio strategy of Jegadeesh and Titman (1993) to deal with the overlapping nature of the long-horizon returns 

and compute average monthly excess returns. We report the monthly average returns for each quintile as well as the average return and Fung-Hsieh alpha differences for the Q5-Q1 

portfolio. In Panel C, we perform the same analysis as in Panel B except that we leave a one-month gap between the portfolio formation month and the month in which portfolio 

returns start being calculated. Newey and West (1987) t-statistics with lag length equal to 24 are reported in parentheses. 

Panel A: Predictive power of bear beta for 𝑘𝑘th month ahead returns           
𝑡𝑡 + 𝑘𝑘 month ahead returns 𝑡𝑡 + 2 𝑡𝑡 + 3 𝑡𝑡 + 4 𝑡𝑡 + 5 𝑡𝑡 + 6 𝑡𝑡 + 7 𝑡𝑡 + 8 𝑡𝑡 + 9 
Q1 (Low 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 0.89 0.84 0.77 0.77 0.77 0.74 0.71 0.69 
Q2 0.57 0.56 0.54 0.53 0.52 0.50 0.49 0.54 
Q3 0.48 0.47 0.47 0.44 0.46 0.46 0.46 0.48 
Q4 0.41 0.41 0.41 0.42 0.42 0.45 0.45 0.49 
Q5 (High 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 0.29 0.32 0.35 0.39 0.42 0.45 0.52 0.56 
Q5-Q1 -0.60 -0.53 -0.42 -0.38 -0.34 -0.29 -0.19 -0.13 
  (-3.57) (-3.45) (-3.61) (-3.72) (-4.02) (-3.19) (-1.91) (-1.03) 
FH Alpha -0.75 -0.65 -0.49 -0.46 -0.41 -0.37 -0.28 -0.20 
  (-3.69) (-3.61) (-4.05) (-3.73) (-4.44) (-2.97) (-2.56) (-1.67) 
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Panel B: Predictive power of bear beta for long-term holding period returns 

Holding for the next 3 months 6 months 9 months 12 months 15 months 18 months 21 months 24 months 
Q1 (Low 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 0.87 0.83 0.80 0.76 0.74 0.70 0.67 0.64 
Q2 0.56 0.55 0.56 0.55 0.54 0.52 0.52 0.50 
Q3 0.47 0.46 0.49 0.48 0.48 0.46 0.45 0.44 
Q4 0.41 0.41 0.47 0.47 0.46 0.44 0.43 0.42 
Q5 (High 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 0.29 0.35 0.46 0.46 0.48 0.46 0.46 0.46 
Q5-Q1 -0.58 -0.49 -0.34 -0.30 -0.27 -0.23 -0.21 -0.18 
  (-3.53) (-3.79) (-2.99) (-3.18) (-3.28) (-2.97) (-2.63) (-2.30) 
FH Alpha -0.71 -0.58 -0.39 -0.34 -0.29 -0.25 -0.23 -0.19 
  (-3.66) (-3.89) (-3.15) (-3.05) (-2.65) (-2.35) (-2.14) (-1.88) 
                  
Panel C: Long-term holding period with a 1-month lag between ranking and performance months       
1-month lag and holding for the next 3 months 6 months 9 months 12 months 15 months 18 months 21 months 24 months 

Q1 (Low 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 0.84 0.79 0.75 0.72 0.70 0.68 0.66 0.64 
Q2 0.57 0.55 0.54 0.54 0.53 0.53 0.53 0.52 
Q3 0.48 0.47 0.47 0.47 0.47 0.47 0.47 0.48 
Q4 0.42 0.43 0.44 0.44 0.44 0.45 0.45 0.46 
Q5 (High 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 0.34 0.39 0.43 0.46 0.48 0.50 0.51 0.53 
Q5-Q1 -0.50 -0.40 -0.32 -0.26 -0.22 -0.18 -0.15 -0.11 
  (-3.55) (-3.66) (-3.35) (-2.97) (-2.64) (-2.20) (-1.75) (-1.28) 
FH Alpha -0.62 -0.51 -0.42 -0.36 -0.31 -0.28 -0.25 -0.21 
  (-3.82) (-3.98) (-3.87) (-3.47) (-3.08) (-2.77) (-2.41) (-2.02) 
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Table 13: Robustness checks 

The table reports the results from a series of robustness checks with respect to the average returns and Fung-Hsieh alphas of hedge 

fund portfolios sorted by bear beta. At the end of each month from December 1997 to November 2017, we sort hedge funds into 

quintiles according to their bear beta level. Quintile 1 (5) consists of funds with the lowest (highest) bear betas. We hold these 

quintile portfolios for one month and present the average returns and alphas for each quintile and for the Q5-Q1 portfolio. In 

specification (1), average returns are weighted by the fund’s AUM at the time of portfolio formation. In specifications (2) and (3), 

bear beta is estimated over the 12-month and 36-month rolling window, respectively. In specifications (4) and (5), we construct the 

Bear portfolio by defining the bear region as states in which the market excess return is two and one standard deviations below 

zero, respectively. In specification (6), we drop the short put position from the Bear portfolio and use only the long put position. In 

specification (7), we set -100% on returns of drop-out funds. All returns and alphas are in monthly percentages. Newey and West 

(1987) t-statistics with lag length equal to 24 are reported in parentheses. 

 
Q1 Q2 Q3 Q4 Q5 Q5-Q1 

(1) Value-weighted returns 
Value-weighted returns 0.83 0.52 0.44 0.40 0.20 -0.63 
 

(6.01) (4.74) (4.38) (3.31) (1.30) (-3.42) 
FH alpha 0.67 0.38 0.30 0.22 -0.06 -0.73 
 

(4.38) (4.20) (4.03) (2.50) (-0.51) (-3.40) 
(2) Horizon of 12 months 
Equal-weighted returns 0.88 0.57 0.51 0.47 0.39 -0.50 
 

(5.52) (4.91) (4.26) (3.42) (1.69) (-2.75) 
FH alpha 0.69 0.41 0.33 0.24 0.01 -0.67 
 

(4.56) (4.69) (4.18) (2.82) (0.10) (-3.36) 
(3) Horizon of 36 months 
Equal-weighted returns 0.82 0.56 0.48 0.44 0.39 -0.42 
 

(5.96) (5.20) (4.30) (3.66) (2.67) (-4.30) 
FH alpha 0.58 0.39 0.32 0.26 0.12 -0.46 
 

(3.51) (3.32) (2.93) (2.61) (1.24) (-3.38) 

(4) Beta Bear 2𝜎𝜎 
Equal-weighted returns 0.81 0.52 0.46 0.46 0.38 -0.43 
 

(4.83) (4.74) (4.00) (3.63) (2.26) (-3.16) 
FH alpha 0.61 0.35 0.30 0.26 0.09 -0.52 
 

(3.57) (3.89) (3.28) (2.94) (0.96) (-3.18) 

(5) Beta Bear 1𝜎𝜎 
Equal-weighted returns 0.84 0.57 0.47 0.42 0.33 -0.51 
 

(5.50) (4.97) (4.00) (3.20) (1.85) (-3.65) 
FH alpha 0.69 0.42 0.31 0.21 0.00 -0.69 
 

(4.10) (3.88) (3.33) (2.31) (-0.05) (-4.09) 
(6) Beta OTMPUT 
Equal-weighted returns 0.80 0.56 0.48 0.43 0.35 -0.45 
 

(4.71) (4.61) (4.07) (3.42) (2.36) (-3.54) 
FH alpha 0.60 0.40 0.32 0.22 0.07 -0.53 
 

(3.71) (3.69) (3.39) (2.61) (0.80) (-3.30) 
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(7) Delisting returns 
Equal-weighted returns -0.18 -0.35 -0.46 -0.59 -0.99 -0.80 
 

(-0.92) (-1.97) (-2.34) (-3.20) (-3.91) (-4.41) 
FH alpha -0.37 -0.52 -0.63 -0.79 -1.30 -0.93 

 
(-1.95) (-2.98) (-3.43) (-4.87) (-7.41) (-4.46) 

 


