
Reviewing and evaluating the functionality of top-rated mobile 1 
apps for depression  2 

Abstract  3 
Background:  In the last decade, there has been a proliferation of mobile apps 4 
claiming to support the needs of people living with depression. However, it is 5 
unclear what functionality apps for depression actually provide and for whom they 6 
are intended. 7 
 8 
Objective: This paper aims to explore the key features of top-rated apps for 9 
depression, including descriptive characteristics, functionality, and ethical concerns 10 
in order to support better-informed design of apps for depression.  11 
 12 
Methods: We reviewed top-rated iOS and Android mobile apps for depression 13 
retrieved from app marketplaces in spring 2019.  We applied a systematic analysis 14 
to review the selected apps, for which data was gathered from the two 15 
marketplaces, and through direct use of the apps. We report an in-depth analysis of 16 
app functionality, namely: screening, tracking, and provision of interventions. Of the 17 
initially identified 482 apps, 29 apps met the criteria for inclusion in this review. 18 
Apps were included if they remained accessible at the moment of evaluation, were 19 
offered in mental health relevant categories, received a review score greater than 20 
4.0 out of 5.0 contributed by more than 100 reviewers, and have depression as a 21 
primary target.  22 
 23 
Results:  The analysis revealed that a majority of apps specify the evidence-base for 24 
their intervention (62%, 18/29) while a smaller proportion describe receiving 25 
clinical input into their design (41%, 12/29). All selected apps are rated as suitable 26 
for children and adolescents on the marketplace, but 83% (24/29) do not provide a 27 
privacy policy consistent with their rating. Findings also show that most apps 28 
provide multiple functions. The most commonly implemented functions include 29 
provision of interventions (83%, 24/29) either as digitalized therapeutic 30 
intervention or as support for mood expression, tracking (66%, 19/29) of moods, 31 
thoughts or behaviors for supporting the intervention, and screening (31%, 9/29) to 32 
inform the decision to use the app and its intervention. Some apps include overtly 33 
negative content. 34 
 35 
Conclusions: Currently available top-ranked apps for depression on the major 36 
marketplaces provide diverse functionality to benefit users across a range of age 37 
groups, however guidelines and frameworks are still needed to ensure users’ 38 
privacy and safety while using them. Suggestions include clearly defining the age of 39 
the target population and explicit disclosure of the sharing of users’ sensitive data 40 
with third parties.  Additionally, we found an opportunity for apps to better leverage 41 
digital affordances for mitigating harm, for personalizing interventions, and for 42 
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tracking multimodal content. The study further demonstrates the need to consider 43 
potential risks while using depression apps, including the use of non-validated 44 
screening tools, tracking negative moods or thinking patterns, and exposing users to 45 
negative emotional expression content. 46 
 47 
Keywords: depression apps, review, functionality, screening, tracking, intervention, 48 
ethics 49 

Introduction 50 
Depression is a major affective disorder with significant socio-economic cost [32], 51 
affecting over 300 million people worldwide [62] across the life span [9]. However, 52 
access to treatment is problematic [37] given acknowledged barriers such as high 53 
treatment cost, time constraints [37], geographical location [6], and stigma [6, 8, 37, 54 
57]. With over  90% worldwide penetration [61], mobile phones have significant 55 
potential to scale up the provision of interventions targeting depression [43]. They 56 
are especially useful to reach users who do not normally seek professional support, 57 
such as adolescents [24]. Prior work has already indicated a high user acceptance 58 
and effectiveness of mobile delivered interventions for depression [20, 48]. The 59 
number of mobile apps available on marketplaces offering treatment for depression 60 
has also been growing rapidly [36, 43].  61 
 62 
The apps available on smartphone marketplaces provide access to a range of 63 
interventions targeting depression [35, 52, 55], which people can select and 64 
download to fit their needs [23]. Yet, users acting independently can only select 65 
apps based on information that is available at the point of download, i.e., popularity, 66 
user ratings, or app descriptions provided on the marketplaces. Evidence for 67 
supporting assessment of the quality of an app, i.e.,  structured description of its 68 
main features,  evidence-based functionality, and potential risks are not reflected in 69 
user ratings of apps [31, 54]. Neither do marketplaces require app developers to 70 
provide such information [1, 14]. As a result, concerns have been raised regarding 71 
the lack of an evidence-base for mental health apps [34, 52, 54] and poor regulation 72 
of the major mobile marketplaces [28, 56, 64] hosting them. Prior work [58] has 73 
also suggested the importance of having controlled clinical trials to determine the 74 
efficacy of new therapeutic treatments. In this newly established field of mHealth 75 
apps, most apps claim to be informed by evidence-based treatments, rather than 76 
presenting rigorous evaluations of the app itself.  77 

 78 
Besides efficacy, understanding patients (e.g., their characteristics, needs, and 79 
behaviors) is also key for improving the uptake of apps [33, 58]. Most Human-80 
Computer Interaction (HCI) work on understanding [44, 45, 50] or supporting 81 
depression has focused on designing and evaluating mobile technologies in research 82 
contexts rather than marketplaces [5, 39, 60]. Scholarly work has also called for the 83 
evaluation of commercial apps for depression to support the effective development 84 
of the rapidly growing market of commercial apps [24, 36, 52]. However, such 85 
evaluations tend to focus in isolation on specific aspects such as ethics [4], safety 86 
[40], or on specific interventions such as Cognitive Behavior Therapy (CBT) or 87 



Acceptance and Commitment Therapy (ACT) [24, 54]. Moreover, previous 88 
evaluations tend to analyze app information from marketplaces without the actual 89 
experience of using of the apps [52]. 90 
 91 
This paper addresses these limitations by focusing on a broader range of 92 
interventions and functionality of the top-rated apps for depression. Thus, we 93 
focused on the following research questions: 94 
1) Which are the key functionalities of the top-rated apps for depression available 95 
on iOS and Android marketplaces?   96 
2) Is this functionality described and delivered in a way that supports user privacy 97 
and safety? 98 

Methods 99 
This paper focuses on apps selected in spring 2019 from two major marketplaces: 100 
iOS and Android whose analysis triangulates i) reviewing app ratings on 101 
marketplaces to identify the top-rated apps for depression, ii) reviewing app 102 
descriptions on marketplaces, and iii) experimental evaluation through author  103 
interaction with the apps as expert HCI researchers [27, 29]. 104 
We now describe the selection process (Fig 1). The apps were initially identified 105 
through two keywords: “depression” and “depressed” entered into App Crawler and 106 
Google Play search engines. A script was used [21] to extract all apps shown in the 107 
search results. The script automatically downloaded information for each app from 108 
its marketplace, including name, category, marketplace description, price, review 109 
score, and number of reviewers. This resulted in 482 apps, and after removing 110 
duplicates, 444 apps were included in the later selection. 111 

App selection 112 
The strategy for app selection outlined in Figure 1 aimed to include top-rated 113 
publicly available apps targeting primarily depression. From the initially identified 114 
444 apps, we excluded those that: 1) have less than 100 reviews, 2) were 115 
inaccessible at the time of selection, 3) belong to irrelevant marketplace categories 116 
such as Social, Casual, Business, News, or Book, and 4) have average user review 117 
scores lower than 4.0 (out of 5.0). The application of these criteria on the initial set 118 
of 444 apps resulted in 94 apps for consideration.  119 
 120 
From these apps we further excluded those that do not focus primarily on 121 
depression, by employing the following criteria: 1) the words “depression” or 122 
“depressed” do not appear in the app’s title or marketplace description of the app, 123 
2) the primary target is not depression (e.g., yoga tracker), and 3) their marketplace 124 
description mentions that people with depression should not use the app. These 125 
criteria led to 31 apps from which we further excluded two more apps as their 126 
functionality was limited to the provision of therapy sessions to be purchased 127 
online. The remaining 29 apps were analyzed in this review (see Multimedia 128 
Appendix 1).  129 



Data extraction 130 
Descriptive characteristics of the apps were extracted from the information 131 
provided on the marketplace. These included category, costs, target audience, 132 
whether they claimed to be evidence-based (including explicit scientific 133 
underpinning, and clinical input), and data supporting analysis of ethical aspects 134 
such as the privacy policy.  135 
 136 
To extract data on app functionality, between June and Oct 2019, two rounds of 137 
experimental evaluation [27, 29] were used in which the authors as HCI experts 138 
interacted with the apps using both Android and iPhone mobile devices (i.e., 139 
Samsung tablet and Xiaomi phone for Android apps, and iPhone for iOS apps). The 140 
entire set of apps was evaluated by two authors (CQ and CD), and six apps (20%) 141 
were evaluated by all authors. The coding scheme was iteratively revised until 142 
agreement among all coders was reached. The coding process was hybrid, 143 
integrating both deductive and inductive coding.  Informed by prior work on the 144 
classification of mHealth apps [35], the deductive codes consisted of three main 145 
types of functionality of depression apps:  screening, tracking, and provision of 146 
interventions (Table 1). The inductive coding [19] allowed the identification of 147 
specific sub-codes under each of the main functionality described above. For 148 
instance, screening function was broken down into sub-codes such as symptom 149 
monitoring, self-diagnosis, and basis for personalization.  150 
 151 

Functionality          Functionality   
       type             subtype  

                           Definitions 

Screening 
 

Monitoring symptoms The screening function is provided for 
monitoring depression symptoms during 
intervention 

Self-diagnosis The screening function is provided for self-
assessment of depression  

Basis for 
personalization  

The screening function is provided as a basis for 
personalized intervention  

Tracking 
 

Tracking thought 
patterns 

The tracking function supports the tracking of 
thought patterns  

Tracking mood 
patterns 

The tracking function supports the tracking of  
users’ mood patterns   

Tracking behavior as 
intervention 
progresses 

The tracking function is provided for monitoring 
progress in following the intervention, including 
users’ adherence to the intervention  

Tracking depression 
symptoms 

The tracking function is provided for monitoring 
symptoms 

Intervention Thought diaries The intervention is provided to help users 
identify and challenge their negative thinking 
patterns  

Psychoeducation The intervention is provided as 
psychoeducational content   



Mindfulness The intervention is provided to help users 
improve mindfulness. 

Behavioral techniques The intervention is provided to motivate and 
guide users to perform positive behaviors 

Mood expression The intervention is provided for users to express 
their emotions  

Other The intervention is provided as emotional 
regulation strategies other than mindfulness. 

Table1. Main codes and sub-codes from functionality’s evaluation 152 

Results 153 
The description of findings is organized in two parts. The first outlines a broader 154 
picture focusing on descriptive app characteristics, and their evidence base. The 155 
second part looks in more depth into specific functionality such as screening, 156 
tracking, and provision of interventions. 157 

Overview  158 
This section describes the main categories under which depression apps are 159 
classified on marketplaces, their target audience, and cost. 160 
 161 
Categorization. The 29 apps reviewed in this study belong to three categories used 162 
to describe apps on the marketplaces. The most popular category is Health & Fitness 163 
(62%, 18/29 apps), followed by Lifestyle (14%, 4/29 apps), and Medical (24%, 7/29 164 
apps).  165 
 166 
Targeted audience (age group). An important finding is that app marketplaces 167 
rate all apps as suitable for non-adult users (Multimedia Appendix 2). Most of the 168 
selected apps were classified as being suitable for children from pre-school age: 169 
79% (23/29) of apps were rated for ages 3+, 3% for ages 4+ (1/29),  3% for ages 170 
12+ (1/29), 3% for ages 16+ (A7), and 10% with parental guidance (3/29).  171 
 172 
However, only 41% of the apps (12/29) provide a privacy policy intended to protect 173 
children’s data. Half of these privacy policies (58%, 7/12) claim to restrict users to a 174 
specific age group, albeit this approach is inconsistent with the app’s age rating on 175 
the marketplace. For instance, A8 states in its privacy policy that the app does not 176 
provide services to users who are younger than the age of 18; in contrast, it is rated 177 
on the marketplace as PEGI 3. This may be due to a mismatch between age rating 178 
definitions oriented around inclusion of material such as violent content, and 179 
healthcare apps which should have age restrictions due to the personal and 180 
sensitive nature of the content, and associated risk for harm.  181 
 182 
In addition, all of the apps apply the same design across all ages, and we did not find 183 
any customization for users who are children, such as involving in-app interactions 184 
to allow parents to collaborate or monitor their children while using the app [30]. 185 
 186 



Targeted audience (clinical nosology). All included apps claim to target users 187 
with depression. Most of the apps (69%, 20/29) represent “depression” as a lack of 188 
wellbeing (e.g., feeling stressed or having low mood). Less than one-fifth of the apps 189 
(17%, 5/29) actually represent depression as a mental disorder, while only one app 190 
(A18) employs PHQ-9 [53] to assess the severity of symptoms. Another 14% of apps 191 
(4/29) do not claim to target depression as a disorder, yet employ validated tools 192 
for assessing users’ depressive symptoms. Furthermore, none of the apps claims to 193 
target users with a specific level of severity (i.e. mild/moderate/severe depression).  194 
 195 
Costs. An important finding is that although most of the apps (97%, 28/29) are free 196 
to download, at least some of their costs are covered either directly or indirectly by 197 
users (Multimedia Appendix 2). The direct costs consist of explicit charges for more 198 
advanced features, while indirect costs relate to users’ forced consumption of in-app 199 
advertisements. In-app purchase was offered by 66% of the apps (19/29 apps), 200 
mostly as a subscription priced between $3.99 to $29.99 per month, or for accessing 201 
online-therapy sessions ($35/ hourly session over call, video or chat, A11). 202 
Advertisements were provided by 34% (10/29) of apps, which raises privacy 203 
concerns. Of the apps with advertisements, 80% (8/10) stated specifically in their 204 
privacy policies that users’ information, captured for instance through cookies, 205 
would be collected and shared with 3rd parties, including advertisers or analytics 206 
providers. Only one app that offered advertisements claimed that users’ data would 207 
not be collected or shared (A29), while the other app (A7) did not provide a privacy 208 
policy in English. Only 17% (5/29) of apps that are free to download neither request 209 
in-app purchase nor provide advertisement. Only one app requires purchase (for 210 
$4.99) prior to downloading. 211 
 212 
Evidence Base. Developers of 62% of the apps (18/29) have specified a scientific 213 
underpinning for their app design, while another 38% (11/29) do not make such a 214 
claim (Multimedia Appendix 3). Almost half of the apps (48%, 14/29) claim to be 215 
designed based on validated psychological treatments (e.g., CBT, ACT, DBT, 216 
mindfulness). The remaining 14% (4/29) are designed based on theories pertaining 217 
to gamification, hypnosis, and affirmations. However, only 7% of the apps (2/29) 218 
provide direct evidence in the form of peer-reviewed scholarly work on the efficacy 219 
of the app for reducing depression symptoms [25, 47], while another 34% of apps 220 
(10/29) provide indirect evidence of efficacy of their underpinning theories without 221 
referencing any academic work. For instance, eight apps (A3, A4, A5, A15, A16, A17, 222 
A18, A28) are promoted as evidence-based therapeutic tools by claims that their 223 
design is grounded on evidence-based treatments (i.e., Cognitive Behavior Therapy). 224 
41% (12/29) are described as being designed with input from clinicians (e.g., 225 
psychologists, psychiatrists, therapists), while 59% (17/29) do not mention the 226 
involvement of mental health professionals in their design. 227 
 228 
Medical disclaimer. A medical disclaimer is presented in 66% (19/29) of the apps, 229 
outlining that the app is not a replacement for clinical treatment (Multimedia 230 
Appendix 3). However, 8 out of these 19 apps (58%, 11/19) only present this 231 
disclaimer in their terms of use policy, which is hard to find and unlikely to be read 232 



by users. Another 35% (10/29) of apps do not provide any disclaimer. No app 233 
presented itself as an alternative to clinical treatments (i.e., drug treatment or face-234 
to-face psychotherapy). 235 
 236 
Clinical involvement. All apps are designed to be used independently and do not 237 
require professional guidance while using them (Multimedia Appendix 3). Five apps 238 
(17%, 6/29) provide opportunities to involve health experts while using the app. Of 239 
these, two apps support access to coaching and counseling sessions as an additional 240 
intervention for a price ranging from $29.99 per month (A27) to $35 per hour 241 
(A11). The other three apps allow users to share their in-app data (e.g., health 242 
tracking report) with their health care providers.  243 

Ethical considerations  244 
Negative content.  Aligned with the concerns raised by prior work that apps with 245 
poor design present an increased risk of potential harm [42, 52], the results show 246 
that, 2 out of 29 apps are categorized as so-called wallpaper apps. Such apps 247 
support people “reflecting the true nature of the pain and loneliness in [your] heart 248 
[…] give permission to feel the way you do” (A12). We found these two apps include 249 
images or quotes capturing negative thinking (e.g., “Do you ever get in those moods 250 
where you just don’t feel like existing”, A12). Surprisingly, these two apps with 251 
potentially disturbing content are rated as PEGI 3 (A12) or PEGI 12 (A6) on the 252 
marketplace, which indicates that the apps’ content merely includes bad language. 253 
As prior studies [7, 10] have indicated, adolescents’ exposure to negative content 254 
may trigger negative behavior such as self-harm. Therefore, there is a clear need to 255 
explore safeguarding strategies for protecting vulnerable users such as those at risk 256 
of self-harm or suicide, especially given that these two apps are highly-rated on the 257 
marketplace, i.e., between 4.4 and 4.6 out of 5, and subsequently more likely to be 258 
selected for use, adoption or appropriation [49]. 259 
 260 
Safety. Strikingly, despite the increased vulnerability of people living with 261 
depression, 72% of apps (21/29) do not provide any information for handling or 262 
preventing the risk of suicide (Multimedia Appendix 4). Only 28% of apps (8/29) 263 
provide such information: in particular, most of these apps (63%, 5/8) provide 264 
information on suicide prevention helplines or counseling websites, whereas 25% 265 
(2/8) provide information advising users to contact local emergency services if in 266 
critical risk of harm. One app (A18) assists users in creating a personalized safety 267 
plan for handling crises.  268 

Functionality review 269 
We now discuss the functionality of reviewed apps such as screening, tracking, and 270 
providing interventions.  271 

Screening  272 
Nine apps offer functionality to screen for depression; their features are 273 
summarized in Multimedia Appendix 5. Almost half of the apps that provide 274 
screening functionality (44%, 4/9) aim to assess changes in users’ depression 275 



symptoms during engagement with the app-provided intervention. Interestingly, 276 
despite the acknowledged benefit of personalization to support adherence[46], 277 
most of these apps (75%, 3/4) provide predefined psychoeducation articles upon 278 
informing users of their screening result, rather than app-based intervention to 279 
address particular issues identified through screening. All four of these apps employ 280 
the PHQ-9, a validated screening tool. An interesting outcome in this context relates 281 
to the frequency of the screening. Two apps allowed periodic repeated measures of 282 
users’ depression (i.e., apps suggest or limit access to the screening tool only once in 283 
a fortnight), while another two apps allow on-demand screening of users’ 284 
depression (i.e., users can access screening tools as frequently as they want with no 285 
instructions regarding an appropriate frequency).  286 
 287 
33% (3/9) of the apps provide standalone screening functionality for self-diagnosis 288 
purposes. 2 out of 3 apps classified into this category provide only screening 289 
functionality (A29, A24), while another app (A16) also provides mood regulation 290 
strategies in addition to screening as its primary function. The first two apps (A29, 291 
A24) do not use validated screening tools and do not provide direct in-app links to 292 
professional help upon informing users of the severity of their screening results. We 293 
found that the other app (A16) enables the potential benefits of screening whilst 294 
avoiding harm; it provides support for psychoeducation or for discussing the 295 
diagnosis and its implications with mHealth professionals [52, 54]. This app (A11) 296 
provides screening as the main functionality through the use of ICD-10 [63], a 297 
validated screening tool, and in-app links to professional support. A11 also allows 298 
users to generate a report of the screening result to show to their own healthcare 299 
professionals.  300 
 301 
The other apps (2/9, 22%) provide a screening function later used to inform the 302 
delivery of personalized app content. One app asks users to self-report their 303 
disorder and symptoms (A19), while the other app uses a questionnaire as a 304 
screening tool (A11), albeit providing neither the source of this questionnaire and 305 
information on its validity nor evidence for the personalization of intervention. This 306 
app offers in-app purchase of online therapy sessions, however, this is not 307 
integrated with users’ progress through the intervention or their screening results.  308 

Tracking 309 
Out of the 29 apps, 19 apps offer functionality for tracking at least one aspect such 310 
as thoughts, moods, behaviors, or depression symptoms (Multimedia Appendix 6). 311 
Apps that track multiple aspects serve different purposes: 90% of these apps 312 
(17/19) support tracking to assist the provision of personalized intervention i.e., 313 
tracking thought changes for providing materials to apply within the intervention, 314 
or tracking users’ behavior for visualizing their progress and adherence to the 315 
intervention. 37% (7/19) of the apps support mood tracking for revealing their 316 
triggers and patterns. Another 26% (5/19) apps support tracking of symptoms of 317 
depression through frequent use of screening tools, 1 of these 5 apps (A16) track 318 
aspects such as thought changes, mood or physical condition (i.e., appetite, sleep) 319 
over fortnightly periods to generate screening result.  320 



 321 
Thought tracking is supported by 74% of the tracking apps (14/19), mostly 322 
combined with mood tracking on the same data entry. Good practices for improving 323 
usability have started to emerge, for instance in the form of templates for guiding 324 
users through the tracking process (available in 79%, 11/14 apps). There is also an 325 
opportunity to explore alternative modalities for mood tracking. From the selected 326 
apps, we found that text is the most commonly employed modality for recording 327 
thoughts (100%, 14/14 apps) and also moods (64%, 9/14 apps). Other modalities 328 
such as emoticons are being used to record moods tagged with thoughts (44%, 4/9), 329 
and scales for recording mood intensity (11%, 1/9). Opportunities also arise for 330 
better representing the thought-logs, for instance introducing searching or filtering 331 
functionality. Currently, all 14 apps present thought logs directly to users in 332 
chronological order without the option of searching them.   333 
 334 
Of the 42% apps (8/19) which track user behavior as progress through the 335 
intervention, three apps automatically log users’ adherence to the proposed usage 336 
goals for app-delivered intervention (e.g., minutes spent on app-delivered 337 
meditation), while five apps track user’s achievement of positive behaviors 338 
suggested by the app (e.g., socializing with friends, drinking water). Apps for the 339 
latter purpose mostly require users to log their achieved activity themselves, while 340 
one app allows automatic tracking (i.e., step-count, A13). In addition, only half of the 341 
progress-tracking apps (63%, 5/8) provide a summary visualization of intervention 342 
progress (two apps provide a graphical summary, e.g., A11 provides a calendar 343 
view). Another three apps provide a textual summary, e.g., A17 displays the total 344 
number of minutes of meditation, without providing a record of each specific 345 
meditation). The other 38% of apps (3/8) provide direct access to textual logs with 346 
no summary. 347 
 348 
37% of the apps (7/19) support the understanding of mood patterns through 349 
visualizations. Such apps often track moods alongside their triggering factors 350 
(available in four apps), or physical conditions such as headache (available in four 351 
apps): the aim of the former is to understand the reasons for changes in mood, while 352 
the latter aims to reveal the impact of physical conditions on such changes. Despite 353 
the clear purpose of supporting understanding articulated by developers, the 354 
representation of logged data does not easily support the understanding of data 355 
patterns. Even though a graphical view of mood changes over time is provided by all 356 
seven apps, most of them (57%, 4/7) provide it separately from the graphical view 357 
of other tracked factors (e.g., A14, A28, A11 provide a graphical view of mood 358 
changes within a period of time, and a textual representation of mood triggering 359 
factors). Another three apps (43%, 3/7) offer an integrated representation of 360 
changes in physical condition with changes in mood, which may make it easier to 361 
understand relationships between the two.  362 
 363 
26% (5/19) of the apps automatically track screening results for symptom 364 
monitoring. Most of these apps (4 out of 5) provide only a textual review of 365 



screening results, in chronological order. Only one app (A28) also provides a 366 
graphic visualization of changes in screening results.  367 

Interventions 368 
Five types of interventions were identified in the analysis (see Multimedia Appendix 369 
7), reflecting a mixture of elements from psychological interventions, including 370 
thought diaries, psychoeducation, mindfulness, scheduling positive behaviors, and 371 
others. A distinct group of apps aims to support emotional expression rather than a 372 
particular psychological intervention.  373 
 374 
Thought diaries are a common intervention employed by one-third of  375 
the apps (38%, 9/24). This intervention borrows from traditional CBT practice by 376 
providing instructions for identifying negative thought patterns and for challenging 377 
distorted thoughts. One approach to tailoring interventions is to employ guidance 378 
for challenging real-time tracked thoughts or emotions. Most of these apps (78%, 379 
7/9) provide thought diaries as tailored interventions consisting of guidance for 380 
identifying and selecting personal challenging thought patterns to guide the writing 381 
of reflective diaries. Another two apps provide a generic template to guide thought 382 
diaries, rather than adaptive or personalized guidance.  383 
 384 
Apart from thought dairies, another set of nine apps (38%, 9/24) provide specific 385 
psychoeducation as intervention. Findings suggest that 44% (4/9) of such content is 386 
provided to specifically fit users’ depression assessment, while 56% (5/9) is non-387 
personalized, generic content. 388 
 389 
Mindfulness [13] is another popular intervention (38%, 9/24) as most of the  390 
selected apps include meditation (9 apps), grounding techniques (1 app, A26), or 391 
breathing guides (1 app, A2). Four apps suggest a frequency of use for the 392 
intervention, e.g., one meditation session per day (A1), whereas the others do not 393 
specify a frequency of use. Two apps provide adaptive interventions (i.e., meditation 394 
guidance) triggered by users’ input (e.g., during users’ conversation with AI-based 395 
chatbot, A27, A28).  396 
 397 
Another three apps provide other types of emotion regulation strategies, including 398 
positive affirmations (1 app, A25), or hypnosis (2 apps, A10, A20). Customization of 399 
intervention material is available in one app (A25), which allows users to create 400 
positive affirmations and to audio record them. 401 
 402 
17% (4/24) of the apps delivered interventions for scheduling positive behaviors 403 
(or behavior activation). Aligned with prior work, personalization [45, 54] is a good 404 
design principle for engaging users with app-delivered interventions. Three apps 405 
offer tailored intervention materials by allowing users to enter positive behaviors 406 
that they wish to schedule (e.g., A15, A18, A21), and another app (A11) provides a 407 
personalized monthly plan based on the results of the users screening measures. 408 



Other valuable design choices supporting engagement include offering peer-support 409 
[54] during the intervention (1 app, A21), or using gamification for providing daily 410 
intervention goals and rewards [22] for completed activities (2 apps, A11, A21).  411 
 412 
A final category of apps is those helping users to express their emotions associated 413 
with depression (21%, 5/24), either by sharing posts in online support groups or by 414 
individually consuming art-based materials.  Of the two apps providing peer-415 
supported mood expression, only one provides links to a 24/7 suicide helpline. Both 416 
apps allow users to filter posts: one app (A23) allows users to set filter words (e.g., 417 
“suicide”) in order to hide posts including such words and safeguard themselves 418 
from such content, while another app (A19) filters materials (i.e., posts in the 419 
community) automatically, and only shows materials that relate to users’ self-420 
reported disorder and symptoms. Apps that fall in the latter category (60%, 3/5) 421 
provide art-based content for expressing depressive moods. E.g., wallpaper pictures 422 
with emotional quotes. An important concern, however, is that none of the 423 
wallpaper apps provides any scientific background, or features to support access to 424 
mental health services for users at risk of suicide or self-harm. Most of the content of 425 
these three apps are negative, and only one of these apps also provides some 426 
positive content, being also the only app that offers users the possibility of 427 
personalizing the quotes.  428 

Discussion

Principal findings 430 
This paper indicates that the current top-ranked apps for depression provide 431 
various features to benefit users across different age groups. The potential of this 432 
newly established marketplace is promising, especially for reaching subgroups of 433 
users such as adolescents, who are less likely to seek professional support offline 434 
and thus could benefit from appropriately designed mHealth apps. For this purpose, 435 
we discuss the need and opportunity for regulating the marketplace to safeguard 436 
users and to ensure a positive impact from the use of apps. 437 
 438 
We begin by considering the ethical principle of non-maleficence [3] within the top-439 
rated apps for depression. Firstly, a clearer definition of age restrictions on the 440 
marketplace could better support users in general and younger users in particular 441 
to select age-appropriate apps. We found age to be handled insufficiently and 442 
inconsistently in current commercial apps, given that the age ratings on the 443 
marketplace generally indicate the maturity of app content rather than the targeted 444 
users for the app, and furthermore that these ratings were generally inconsistent 445 
with information regarding the targeted age group. This risk is further heightened 446 
by the conditions within the reviewed apps’ privacy policies including the sharing of 447 
users’ data with third parties for commercial purposes.  448 
 449 
A recent systematic review of HCI work on affective health technologies also 450 
identified potentially harmful aspects of tracking applications such as the provision 451 
of negative mood or thinking patterns with insufficient professional support, 452 



inadequate screening, and insufficiently founded diagnosis claims based on tracked 453 
data [50]. With respect to communicating negative content, we see apps supporting 454 
the consumption of publicly shared emotional expressions of depression generated 455 
by others (A6, A12). We further advocate that developers should consider the 456 
presence of negative content when selecting an age rating on the marketplace, as 457 
consumption of such content may lead to harmful behavior among adolescent users.   458 
 459 
In addition, this paper systematically reviewed and analyzed the apps’ functionality. 460 
The result inspires recommendations to guide developers to further leverage digital 461 
affordances to mitigate harm, to deliver personalized depression treatments, as well 462 
as to track multimodal content.  For instance, for apps that provide screening 463 
functionality, there may be a tendency to overclaim symptom screening informed by 464 
non-validated screening tools rather than using validated ones, e.g., developers of 465 
A24 and A29 prominently state their apps’ effectiveness in clinical practice on the 466 
marketplace, but do not provide scientific validation for the screening tools 467 
employed. In addition, with regard to the increased vulnerability of depressed 468 
individuals, we find limited direct access to professional help when screening 469 
results are communicated to users. For instance, in general, 76% (22/29) do not 470 
provide immediate access to suicide prevention or online counseling helplines 471 
(Multimedia Appendix 3).  472 

Safeguarding users while accessing and consuming negative content 473 
Risk of harm can be identified with respect to the viewing of strongly negative 474 
content from others within emotional expression apps for depression. Our findings 475 
highlight strong ethical concerns around these apps. While arguably beneficial for 476 
people creating it [41], such content might have a negative effect on those viewing it, 477 
especially given that depressed individuals have a tendency towards rumination 478 
[11]. We suggest that such apps should include safeguards for users viewing highly 479 
negative content. Moreover, developers of such apps could limit views of negative 480 
content, especially given that these two apps are also accessible to adolescent users, 481 
who are susceptible to engage in “problem” or “at-risk” behaviors [30]. One 482 
deployed strategy was to automatically cover negative keywords within app-483 
provided content and to offer a pop-up window with free psychological counseling 484 
helpline every 3 times when users choose to reveal hidden negative words (A23).  485 
 486 
Additionally, apps not specifically designed for children and adolescents, but with a 487 
child-friendly age rating on the marketplace should consider introducing 488 
customizable designs for non-adult users. It has previously been suggested that 489 
providing support and treatment sessions with parents, teachers, and siblings 490 
should be seriously considered when administering treatment to children with 491 
depression [30]. Therefore, we suggest that designers of such apps should consider 492 
mechanisms to engage parental support or supervision while children or 493 
adolescents are using these apps.  494 
 495 
An interesting issue with respect to apps supporting the tracking of mood and 496 
thought patterns is the unfiltered presentation of these data when predominantly 497 



negative content is being tracked. Apps tracking thoughts only provide access to 498 
tracking-logs in chronological order, and this presents a two-fold limitation. Firstly, 499 
such visualizations can be browsed but not queried in order to retrieve a specific 500 
entry. Secondly, browsing such logs may trigger vivid recall when they capture 501 
negative content and may increase the risk of rumination [45]. 502 

Safeguarding users while selecting age-appropriate apps and sharing private data  503 
The suggestions discussed in this section target particularly the developers of 504 
marketplaces hosting apps for depression. Previous findings suggested that the 505 
regulation of such apps regarding data privacy remains inadequate [39, 40, 64], and 506 
reported the prevalence of health-related apps selling users’ data to third parties. 507 
Survey studies have also indicated that the general public is less inclined to share 508 
their healthcare data with technology companies [39]. The identified limitations of 509 
the privacy policies for the reviewed apps illustrate that these concerns can be 510 
better addressed. 24% of the apps (7/29) failed to provide any privacy policy in 511 
English or in a reliable source (Multimedia Appendix 2). Additionally, aligned with 512 
prior studies [12, 58], the current privacy policies may be difficult to comprehend 513 
by typical users. We thus call for developers to improve the readability of privacy 514 
policies and support the suggestion of making them easy to read at a 6th Grade 515 
reading level [58].   516 
 517 
Another concern is protecting the privacy of users’ health data, and in particular the 518 
data of young people while using depression apps. More than half of these apps 519 
(83%, 24/29) fail to provide privacy policies that specify strategies to protect 520 
children’s data (55%, 16/29). Secondly, our findings also show that although most 521 
of the apps are free to download, they normally come with in-app purchases for 522 
additional features or advertisements. Regarding advertisement, we found 80% 523 
(8/10) of apps that use advertisements declare that they share users’ data for 524 
commercial purposes.  525 
 526 
All of the reviewed apps are rated as suitable for children and adolescents on the 527 
marketplace, while one fifth (24%, 7/29) specifically claim to restrict access from 528 
young users. This finding demonstrates the need for developers of marketplaces 529 
that host depression apps to increase the transparency of their standards. For 530 
instance, Google specifies that [2] their age rating is not for describing the apps’ 531 
target user group, but rather for describing the minimum maturity level of content 532 
in apps such as violence, drugs, and profane language.  533 
 534 
Surprisingly, however, no statement regarding data sharing or targeted users’ age 535 
range could be found on the app descriptions in the marketplace to support users 536 
making an informed decision at the point of downloading the app. The age rating 537 
may be specifically misleading to parents when they are selecting age-appropriate 538 
apps for their children, as developers only claim age restrictions in the privacy 539 
policy, We advocate a clearer definition and regulations for age rating of depression 540 
apps on marketplaces. 541 
 542 



Additionally, we argue that users should be informed upfront of the risk of having 543 
their sensitive data shared with third parties for commercial purposes. The 544 
prevalence of health-related apps selling users’ data to third parties has been 545 
previously reported [40, 59, 64]. Thus, we argue for the responsibility on the 546 
marketplaces’ developers to ensure consistency of privacy-related information in 547 
the app description on the marketplaces when compared to its privacy policy, or to 548 
ensure that the privacy policy is included directly within the app.  549 

Safeguarding users while screening depression 550 
Prior studies [59] have reported the tendency of commercial depression apps to 551 
blur the line between depression as a lack of wellness or as a mental disorder, which 552 
aligns with our findings. Additionally, none of the apps examined claim to target a 553 
specific level of depression severity. While apps may potentially reach a wider range 554 
of users by following such a strategy, it may be more difficult to formulate 555 
appropriate safeguards for users whose depression leaves them with higher levels 556 
of vulnerability [59]. Additionally, we found that most depression apps tend not to 557 
undergo a rigorous evaluation of their intervention components, but instead rely on 558 
designing the app based on evidence-based theory [58]. Apps with insufficient 559 
evidence of efficacy present challenges as they may risk misinforming patients [59]. 560 
We advocate clear communication of the targeted user groups for mHealth apps, 561 
and marketplace guidelines to match the required level of evidence for each app, as 562 
well as the condition and risks of their specifically targeted user group.  563 
 564 
App-based depression assessment is potentially valuable in supporting individuals 565 
with depression concerns to seek help, and share their electronic health information 566 
with health professionals [52, 58]. In addition, health data collected by users could 567 
support professionals’ understanding of users’ symptoms, which could support 568 
diagnosis and the delivery of clinical treatment. Despite these potential benefits, the 569 
top-rated depression apps reviewed seldom support this usage.  Only 1 of 8 apps 570 
offered the option of generating reports of screening outcomes for sharing with 571 
mental health professionals.  572 
 573 
Although PHQ-9 is the most used tool for depression screening, 3 out of 8 apps use 574 
non-validated screening tools, and information about screening tools and their 575 
scientific underpinning is seldom provided within app descriptions. We recommend 576 
that app developers use validated screening tools and provide basic information 577 
about the tools and their validity.  578 
 579 
Findings also indicate that tools intended for screening employ periodic repeated 580 
measures such as PHQ-9 [53] also tend to be used within apps during daily tracking.   581 
The latter, however, may be better suited to more lightweight ecological momentary 582 
assessment measures [15] rather than depression diagnosis measures. We also 583 
found a few emerging practices addressing this concern by suggesting an 584 
appropriate frequency for screening, or even limiting the frequency of access to 585 
screening tools (A16, A28). We thus suggest that app developers decouple the use of 586 
periodically repeated measures such as PHQ-9 for the purpose of depression 587 



screening, and the use of ecological momentary assessment for more frequent daily 588 
tracking of mood, thoughts, behavior patterns, and symptoms of depression [17].  589 

Opportunity to improve apps for depression by leveraging digital affordances  590 
An important challenge of mobile apps for depression is attrition [18, 45]. Previous 591 
work suggested the value of personalization for improving users’ engagement with 592 
apps [16, 45, 54], as well as the value of accessing social support [54] and involving 593 
concepts from gamification [22]. In the future, this may involve the provision of real-594 
time adaptive personalization of intervention content to the tracked thoughts or 595 
emotions [17]. However, despite the potential of mobile technology to deliver 596 
personalization, apps supporting it are limited. Exceptions here include the use of AI 597 
chatbot conversational agents (A27, A28) to respond in real-time to users’ currently 598 
recorded thoughts, instead of generic (not personalized) psychoeducational content. 599 
Personalization can also be extended to the schedule of activities within an app-600 
delivered intervention.  However, only one of the reviewed apps (A11) offered a 601 
personalized intervention plan based on users’ screening results. There is an 602 
opportunity to better leverage digital affordances for personalization when 603 
designing apps for depression. 604 
 605 
Findings also indicate that tracking within depression apps is focused on capturing 606 
users’ mood patterns or thought patterns, as well as their engagement with app-607 
delivered interventions. However, these distinct types of tracked content are seldom 608 
available together in one app. We argue for the value of simultaneously capturing 609 
both thinking and emotional content as these can support better encoding at the 610 
moment when an event occurs and better retrieval later on [26, 51]. We also suggest 611 
that integrating such tracked content with a record of progress with, and completion 612 
of intervention activities could better allow users to understand the value of the app 613 
for their wellbeing. Such combined visualization could further support users’ 614 
engagement and motivation to continue to use the app-delivered intervention.  615 

Conclusions and Future work 616 
The rapid increase of mobile apps for reducing depression can benefit from a closer 617 
look and evaluation of the functionality such apps actually deliver, and the potential 618 
ethical issues that they raise. From a systematic analysis of 29 top-rated depression 619 
apps on the major marketplaces, we suggest that developers of marketplaces should 620 
regulate depression apps in order to mitigate ethical risks including missing, 621 
inadequate, or inconsistent privacy policies, i.e., sharing data with third parties, 622 
child data protection, and safeguarding of vulnerable user groups.  In addition, the 623 
analysis of app functionality provided new insights into opportunities for mitigating 624 
harm regarding the consumption of the negative content, unrestricted access by 625 
children, and related privacy concerns, and the provision of screening employing 626 
tools with less scientific validation. 627 
 628 
 629 
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