MarLIN

Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

A bristleworm (*Cirratulus cirratus*)

MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review

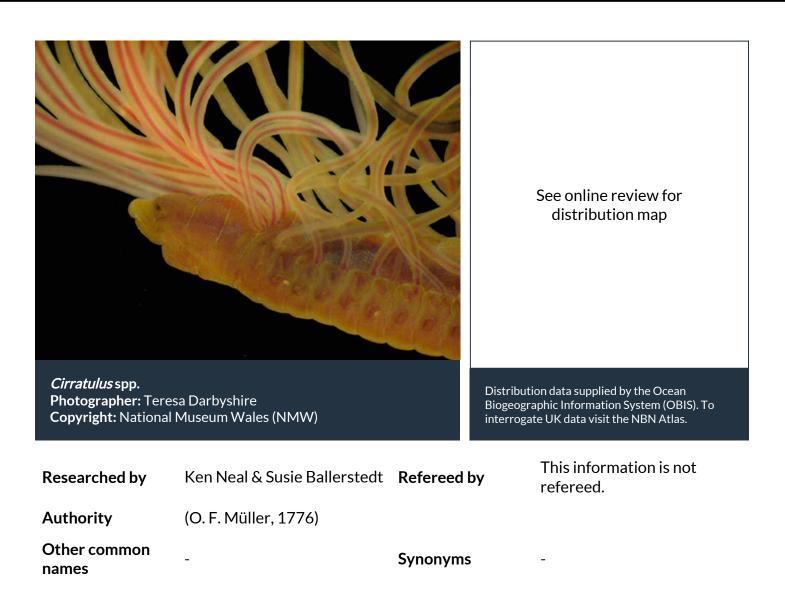
Ken Neal & Susie Ballerstedt

2006-05-02

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1786]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:


Neal, K.J. & Ballerstedt, S. 2006. *Cirratulus cirratus* A bristleworm. In Tyler-Walters H. and Hiscock K. (eds) *Marine Life Information Network: Biology and Sensitivity Key Information Reviews*, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1786.2

<u>©0\$0</u>

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

Summary

Description

Cirratulus cirratus has a long, slender, orange, pinkish or brownish-red body, with 75 to 130 segments, and can reach 12 cm in length. The head is a blunt cone with a row of 4 to 8 large black eyes either side that may meet on top of the head. There are two groups of up to 8 feeding tentacles on the first segment. Pairs of long slender gills arise at intervals from the whole length of the body and these appear as a mass of reddish threads when the worm is buried.

9 **Recorded distribution in Britain and Ireland**

Found in suitable habitats all round the coast of Britain and Ireland.

0 **Global distribution**

Most north west European coasts and also in the south Atlantic.

🖌 Habitat

Occurs on the lower shore in mud or muddy sand beneath or between rocks.

Ţ Depth range

Mainly intertidal but may be circalittoral.

Q Identifying features

- Long, slender body with 75 to 130 segments.
- Up to 12 cm in length.
- Blunt head with 4 to 8 large, black eyes.
- Body is orange, pinkish or brownish red.
- Two pairs of up to 8 feeding tentacles near the head.
- Paired, thread-like gills present along most of the body.

<u><u></u> Additional information</u>

Cirratulus cirratus is usually found in aggregations of up to 200 individuals. During the breeding season their colour changes, the females become bright yellow and the males white.

✓ Listed by

% Further information sources

Search on:

Biology review

≡ Taxonomy

Phylum	Annelida	Segmented worms e.g. ragworms, tubeworms, fanworms and spoon worms
Class	Polychaeta	Bristleworms, e.g. ragworms, scaleworms, paddleworms, fanworms, tubeworms and spoon worms
Order	Terebellida	
Family	Cirratulidae	
Genus	Cirratulus	
Authority	(O. F. Müller	-, 1776)
Recent Synonyms	; -	

Biology

0/	
Typical abundance	Moderate density
Male size range	5 - 130mm
Male size at maturity	20mm
Female size range	Medium(11-20 cm)
Female size at maturity	
Growth form	Cylindrical
Growth rate	See additional information.
Body flexibility	High (greater than 45 degrees)
Mobility	
Characteristic feeding method	l Non-feeding, Surface deposit feeder, Surface deposit feeder
Diet/food source	
Typically feeds on	Diatoms and algal detritus.
Sociability	
Environmental position	Infaunal
Dependency	No information found.
Supports	No information
Is the species harmful?	No

Biology information

Little information on the general biology or life history characteristics of this species was found. Cirratulus cirratus is regarded as a generally tolerant species and can be found in moderate densities in areas of high environmental disturbance (e.g. 120 per ml 500 m away from an oil platform) (Levell et al., 1989). Once larvae and juveniles settle, they remain in their burrow and adults do not move. It can grow up to 2 cm between reproductive episodes, which occur every 1-2 years (Olive, 1970).

Habitat preferences

Physiographic preferences Open coast, Offshore seabed, Strait / sound

Biological zone preferences	Lower circalittoral, Lower eulittoral, Lower infralittoral, Mid eulittoral, Sublittoral fringe, Upper circalittoral, Upper eulittoral
Substratum / habitat preferences	s Mud, Muddy gravel, Under boulders
Tidal strength preferences	Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferences	Extremely sheltered, Sheltered, Very sheltered
Salinity preferences	Full (30-40 psu), Reduced (18-30 psu), Variable (18-40 psu)
Depth range	Mainly intertidal but may be circalittoral.
Other preferences	No text entered
Migration Pattern	Non-migratory / resident

Habitat Information

In Northumberland it is the dominant crevice organism on rocky shores between low and high water neaps (Olive, 1970). *Cirratulus cirratus* has been described as an opportunistic deposit feeder that is characteristic of areas of organic enrichment (Penry & Jumars, 1990). *Cirratulus cirratus* is mostly intertidal but is sometimes found subtidally (up to 50 m depth off the Devon coast) (Garwood, 1982; Olive, 1970).

𝒫 Life history

Adult characteristics

Reproductive type	Gonochoristic (dioecious)
Reproductive frequency	Biannual episodic
Fecundity (number of eggs)	No information
Generation time	1-2 years
Age at maturity	1-2 years
Season	See additional text
Life span	5-10 years

Larval characteristics

Larval/propagule type Larval/juvenile development Duration of larval stage Larval dispersal potential Larval settlement period

Lecithotrophic < 1 day No information Insufficient information

Life history information

Reproduction in *Cirratulus cirratus* is asynchronous i.e. it is not entrained to any of the seasons and members of the population are at different stages of reproductive development at any one time (Garwood, 1982; Gibbs, 1971). Oocytes are 150 µm in diameter and once fertilized are deposited in a jelly mass on the surface of rocks (Petersen, 1999). The eggs hatch as a ciliated post-trochophore after 6 days. The larvae are entirely benthic for the duration of their development,

living off yolk for around 24 days after hatching and then commence adult style deposit feeding (Olive, 1970). Females can spawn 2-3 times in their lifetime and it takes 1-2 years after each spawning to mature a new clutch of oocytes (Olive, 1970). There are separate sexes, the males are white, females are lemon-yellow due to the colour of coelomic oocytes (Gibbs, 1971). Sex ratios vary and have been recorded as 1:1 (Olive, 1970) 1:1.7 and 1:2.8 (Gibbs, 1971).

Asexual reproduction by epitoky (clones growing from the posterior end of the worm) may occur in *Cirratulus cirratus*. However, the taxonomic status of *Cirratulus* is in constant review and epitokes may be formed by another species that has been erroneously identified as *Cirratulus cirratus* (Petersen, 1999).

Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence	
Substratum Loss	High	Low	High	Very low	
<i>Cirratulus cirratus</i> needs stones to live under in a muddy environment and if these were to be removed, mortality is likely to be very high due to desiccation and predation and an intolerance of high has been recorded. For recoverability see additional information.					
Smothering	High	Low	High	Very low	
<i>Cirratulus cirratus</i> lives in mud ur surface. A sudden influx of sedir and cause high mortality. There recoverability see additional inf	nent would prol fore, an intolera	bably interfere v	with feeding an	d gas exchange	
Increase in suspended sediment	Tolerant*	Not relevant	Not sensitive*	Very low	
<i>Cirratulus cirratus</i> is often found sediment and it is likely that it is <i>cirratus</i> feeds on precipitating pa organic matter. Therefore tolera	tolerant to an i articles and is lil	ncrease in suspe kely to benefit fr	ended sediment	t. Cirratulus	
Decrease in suspended sediment	Low	Very high	Very Low		
A decrease in suspended sedime predation. <i>Cirratulus cirratus</i> reli substratum for food, so that a de However, the reduced turbidity benefit to <i>Cirratulus cirratus</i> . Ove has been recorded.	es on particulat ecrease in suspe may increase b	e organic matte ended particulat enthic primary p	r precipitating es may reduce productivity, wł	onto the its food supply. nich would be of	
Dessication	Not relevant	Not relevant	Not relevant	Not relevant	
<i>Cirratulus cirratus</i> lives in mud ur desiccation. Not relevant has be		is therefore unl	ikely to be subj	ect to	
Increase in emergence regime	Intermediate	High	Low	Very low	
<i>Cirratulus cirratus</i> is found from t increase in emergence time is lik There would probably be some r population down to the new hig has been recorded.	kely to exclude w mortality near h	worms from the high water neap	upper limit of t tide level and a	heir range. shift of the	
Decrease in emergence regime	Tolerant*	Not relevant	Not sensitive*		
A decrease in emergence is likel range of the population up the s has been recorded.	<i>,</i> ,	•			

Increase in water flow rate

Cirratulus cirratus feeds by laying its tentacles out on the surface of the mud and passing food particles to the mouth by ciliary movements. An increase in water flow rate may affect the ability of Cirratulus cirratus to collect food particles. Also, an increase in water flow rate may change sediment characteristics and remove the preferred sediment type of Cirratulus cirratus.

High

Low

Very low

Intermediate

In increase in water flow, e.g. fr affect the substratum, removir for Cirratulus cirratus. Therefor	ig fine muddy de	posits, and redu	icing the area o	f suitable habitat
Decrease in water flow rate	Not relevant	Not relevant	Not relevant	
<i>Cirratulus cirratus</i> is found in es so a decrease in water flow rat assessed as not relevant.		•		
Increase in temperature	Tolerant	Not relevant	Not sensitive	Moderate
Cirratulus cirratus probably has cirratus is probably tolerant of	•			1971). Cirratulus
Decrease in temperature	Low	High	Low	<mark>High</mark>
Cirratulus cirratus probably has extremely cold winter in the U did not change (George, 1968) long periods but was killed afte (George, 1968). At the benchm affected by a decrease in temp	nited Kingdom ir Cirratulus cirratu er a few hours in ark level, Cirratu	n 1962-63, the c us survived temp -4°C due to ice ulus cirratus will p	listribution of C peratures as low crystals forming probably not be	Cirratulus cirratus w as -2°C for g in its tissues e adversely
Increase in turbidity	Tolerant	Not relevant	Not sensitive	Very low
Reduced illumination due to tu <i>Cirratulus cirratus</i> feeds upon. H therefore, is not likely to be ad	lowever, it also f	feeds on particu	•	-
Decrease in turbidity	Tolerant	Not relevant	Not sensitive	Not relevant
A decrease in turbidity is likely potentially benefit <i>Cirratulus ci</i> and organic matter to its diet is	rratus. However,	, the relative cor	ntribution of be	nthic microalgae
Increase in wave exposure	Intermediate	High	Low	Low
Increasing wave exposure increasing wave exposure increase the size of rocks of over, anything underneath is life suffer increased predation. Cirre revealed by loss of a protecting intermediate has been recorded	listurbed (Osma kely to be washe ratulus cirratus is grock, mortality	n, 1977). If the r d out of the sed not a very moti is likely to be hig	ocks on the sho iment by subse le species and it	ore are turned quent waves and f it were
Decrease in wave exposure	Not relevant	Not relevant	Not relevant	
<i>Cirratulus cirratus</i> is found from decrease in wave exposure is n		tremely sheltere	ed shores and th	nerefore a
Noise	Tolerant	Not relevant	Not sensitive	High
At most, <i>Cirratulus cirratus</i> will therefore is unlikely to be sens	•	ed ability to det	ect sound or vil	pration and
ww.marlin.ac.uk/habitats/detail/1786				

Tolerant

Intermediate

Visual Presence

Cirratulus cirratus does have eyes but it lives under rocks with only the deposit feeding tentacles exposed and so is probably tolerant to visual presence at the benchmark level.

Not relevant

High

Not sensitive

Low

High

Very low

Not relevant

Abrasion & physical disturbance

At the benchmark level, abrasion is likely to cause some mortality by moving stones and unearthing the worms. Disturbing rocks may also affect the survivorship of embryos in eggs attached to the rock surface. Therefore an intolerance of intermediate has been recorded.

Displacement

Cirratulus cirratus establishes under rocks in mud as a larva and there was no information on whether adults reburrow if disturbed. There is insufficient information to assess the intolerance of *Cirratulus cirratus* to displacement.

A Chemical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Synthetic compound contamination	High	Low	High	<mark>High</mark>
After a spill of fuel oil in Southam	npton Water, di	spersants were	used to clean ce	ertain areas and

Arter a spill of fuel off in Southampton Water, dispersants were used to clean certain areas and high mortalities of *Cirratulus cirratus* were observed (George, 1971). Three dispersants were tested for their effects on *Cirratulus cirratus* survivorship, BP 1002, Essolvene (which was used in Southampton Water) and Corexit 7664. BP 1002 and Essolvene become toxic at 100 ppm. BP 1002 caused 50% mortality at 129 ppm and 100% mortality at 144 ppm. Essolvene was slightly less toxic, causing 50% mortality at 162 ppm and 100% mortality at 200 ppm. Corexit was far less toxic than either BP 1002 or Essolvene. It took a concentration of 100,000 ppm of Corexit 7664 to cause 50% to *Cirratulus cirratus*. Longer exposure to sublethal concentrations of BP 1002 or Essolvene completely prevented the maturation of occytes (George, 1971). The evidence presented above suggests an intolerance of high to synthetic chemicals. For recoverability, see additional information below.

Heavy metal contamination Insufficient information.				Not relevant	
Hydrocarbon contamination	Low	High	Low	High	
A spill of fuel oil in Southampton water lead to widespread oiling of intertidal mud but this had very little effect on <i>Cirratulus cirratus</i> abundance. The thickness of the oil was not sufficient to prevent oxygen reaching the sediment and at high tide, the oil refloated so that <i>Cirratulus</i> <i>cirratus</i> could feed as normal. Embryo development was also unaffected by oil (George, 1971) and an intolerance of low has been recorded.					
Radionuclide contamination				Not relevant	
Insufficient information.					
Changes in nutrient levels	Tolerant*	Not relevant	Not sensitive*	Moderate	
<i>Cirratulus cirratus</i> is characteristic of areas of organic enrichment (Penry & Jumars, 1990) and therefore is probably tolerant [*] of an increase in nutrient levels.					
Increase in salinity				Not relevant	
No information on hypersaline conditions was found.					
Decrease in salinity	Low	High	Low		

Cirratulus cirratus can tolerate salinities down to 17 psu (Gibbs, 1971) and so is likely to survive the benchmark chronic change as it is normally found intertidally at full salinity. An acute change will probably stress a population of *Cirratulus cirratus* but not cause high mortality and an intolerance of low has been recorded.

Changes in oxygenationLowHighLowVery lowCirratulus cirratus is characteristic of areas of organic enrichment (Penry & Jumars, 1990),
although no further information was found. Therefore, an intolerance of low has been
recorded, albeit with very low confidence.Very low

Biological Pressures

C	Intolerance	Recoverability	Sensitivity	Confidence
Introduction of microbial pathogens/parasites				
Insufficient information				
Introduction of non-native species Insufficient information				
Extraction of this species	Not relevant	Not relevant	Not relevant	Not relevant
Cirratulus cirratus is not targeted for extraction.				
Extraction of other species	Not relevant	Not relevant	Not relevant	Not relevant
No co-occurring species to Cirratulus cirratus are known to be extracted.				

Additional information

Recoverability

The fecundity of *Cirratulus cirratus* is unknown but the larvae are entirely benthic throughout their development (Olive, 1970) and, if an area is completely defaunated, recolonization by *Cirratulus cirratus* may be slow (George, 1968). Recovery by populations that suffer partial mortality could take up to 2 years. However, populations that are completely wiped out may not recover at all due to the limited dispersal capability of the larvae of *Cirratulus cirratus* (George, 1968).

Importance review

Policy/legislation

- no data -

\star Status

National (GB) importance Global red list (IUCN) category

Non-native

Native -Origin -

_

Date Arrived

-

1 Importance information

-none-

Bibliography

Clay, E., 1967g. Literature survey of the common fauna of estuaries, 7. Cirratulus cirratusO.F. Müller. I.C.I. Research Laboratory, Brixham. PVM45/B/380.

Fauchald, K., 1977. The polychaete worms. Definitions and keys to the orders, families and genera. USA: Natural History Museum of Los Angeles County.

Fish, J.D. & Fish, S., 1996. A student's guide to the seashore. Cambridge: Cambridge University Press.

Garwood, P.R., 1982. Polychaeta - Sedentaria incl. Archiannelida. Report of the Dove Marine Laboratory Third Series, 23, 273p.

George, J.D., 1968. The effect of the 1962-63 winter on the distribution of the cirratulid polychaetes, *Cirratulus cirratus* (Müller) and *Cirriformia tentaculata* (Montagu) in the British Isles. *Journal of Animal Ecology*, **37**, 321-31.

George, J.D., 1971. The effects of pollution by oil and oil dispersants on the common intertidal polychaetes, *Cirriformia tentaculata* and *Cirratulus cirratus*. *Journal of Applied Ecology*, **8**, 411-420.

Gibbs, P.E., 1971. Reproductive cycles in four polychaete species belonging to the family Cirratulidae. *Journal of the Marine Biological Association of the United Kingdom*, **51**, 745-769.

Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.

Hayward, P.J. & Ryland, J.S. (ed.) 1995b. Handbook of the marine fauna of North-West Europe. Oxford: Oxford University Press.

Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

Levell, D., Rostron, D. & Dixon, I.M.T., 1989. Sediment macrobenthic communities from oil ports to offshore oilfields. In *Ecological Impacts of the Oil Industry*, Ed. B. Dicks. Chicester: John Wiley & Sons Ltd.

Olive, P.J.W., 1970. Reproduction of a Northumberland population of the polychaete *Cirratulus cirratus*. *Marine Biology*, **5**, 259-273.

Osman, R.W., 1977. The establishment and development of a marine epifaunal community. Ecological Monographs, 47, 37-63.

Penry, D.L. & Jumars, P.A., 1990. Gut architecture, digestive constraints and feeding ecology of deposit-feeding and carnivorous polychaetes. *Oecologia*, **82**, 1-11.

Petersen, M.E., 1999. Reproduction and development in Cirratulidae (Annelida: Polychaeta). Marine Biology, 8, 243-259.

Datasets

Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.

Fenwick, 2018. Aphotomarine. Occurrence dataset http://www.aphotomarine.com/index.html Accessed via NBNAtlas.org on 2018-10-01

Kent Wildlife Trust, 2018. Kent Wildlife Trust Shoresearch Intertidal Survey 2004 onwards. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.

NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

OBIS (Ocean Biogeographic Information System), 2019. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2019-03-21

South East Wales Biodiversity Records Centre, 2018. SEWBReC Worms (South East Wales). Occurrence dataset: https://doi.org/10.15468/5vh0w8 accessed via GBIF.org on 2018-10-02.