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Abstract 

Paracetamol (APAP) overdose is the leading cause of acute liver failure and a 

concerning global health issue. However, the current clinical treatment framework 

is heavily criticized for its sub-optimality. Within this thesis, a systems toxicology 

approach is taken in an attempt to provide further insight into the APAP overdose 

problem, and propose potential improvements to the current treatment framework. 

In Chapter 2, a proof-of-concept pre-clinical pharmacokinetic-pharmacodynamic 

(PKPD) model describing APAP metabolism and corresponding toxicity biomarkers 

(ALT, HMGB1, full K18, fragmented K18) is defined. A statistical model is combined 

with the PKPD framework to simulate in silico population groups with the aim of 

predicting initial APAP dose, time since overdose, and probability of liver injury. In 

chapter 3, an identifiability analysis is performed on the PKPD model to identify 

parameter uncertainties. The model is also extended, enabling predictions for 

individuals deemed both “healthy” and “high-risk”.  

In 2017 I was awarded the in vitro toxicology society mini-fellowship award, which 

funded 4 weeks of training in experimental wet-lab techniques. The training was 

used to investigate the effects of various combinations of APAP and its antidote, 

N’Acetylcysteine (NAC), on in vitro hepatocyte functionality. Subsequently, in 

chapter 4, the effect of the antidote (NAC) is incorporated into the PKPD model 

structure, and an additional toxicity measure is defined, describing severe loss of 

cell functionality. Different NAC regimens are tested, investigating their effect on 

both of our proposed toxicity measures. Through collaboration with the Royal 

Infirmary, Edinburgh, we obtained access to a clinical dataset of approximately 

3,600 APAP overdose patients. In Chapter 5, a population-pharmacokinetic (Pop-

PK) APAP model is defined, with PK parameters optimised based on this dataset. 

The framework has the ability to account for random inter-individual differences in 

PK parameter values. Current clinical toxicity thresholds are investigated and 

compared to those proposed by our model for various demographic groups. 
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1.1. Background 

1.1.1. Clinical problem 

Acetaminophen (paracetamol, APAP) is the most commonly used painkiller in the 

world [1] and, when taken in therapeutic doses, millions of people worldwide benefit 

from its effective and safe analgesic effects [2]. Whilst relatively safe and beneficial 

at therapeutic doses, APAP is also the most commonly used drug in overdose 

situations, accounting for 40% of all drug poisoning cases in the UK [3]. APAP 

overdose is the leading cause for acute liver failure (ALF) in the Western world [4] 

and therefore represents a concerning global health issue [5]. For example, in the 

USA, ALF is responsible for approximately 56,000 emergency room visits, 2,600 

hospitalizations and 500 deaths per year [6]. Between 2015-2016, there was an 

11% increase in deaths involving APAP in the UK [7]. In England and Wales, APAP 

poisoning results in approximately 40,000 hospital admissions, 20 liver transplants 

and 200 deaths per year [8].  

There is, however, an antidote for APAP overdose, N’acetylcysteine (NAC). Current 

decisions on whether this antidote should be given are based on the simple 

nomogram treatment framework [9]. This nomogram treatment framework can be 

seen in Figure 1-1. The red treatment line shown in Figure 1-1 defines a relationship 

between APAP concentration and time-since-APAP-dose. If a patient falls above 

this threshold, NAC treatment is given. It should be noted however that this 

treatment line is heavily dependent on accurate knowledge of time since APAP 

ingestion [10] information, which is often provided by the patient, and can therefore 

be highly inaccurate. Decisions of whether or not to continue NAC treatment are 

then guided by measuring changes in blood-based markers of potential liver injury: 

APAP concentration is measured to determine how much drug is currently 

circulating within the system; alanine aminotransferase (ALT) concentration is 

measured to determine liver injury status; and the international normalised ratio 

(INR) is calculated to determine hepatic transplant appropriateness [11].   
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Figure 1-1: The nomogram treatment framework used in the clinic to determine antidote 

necessity in the APAP overdose case. The red contour is the treatment line/threshold. Any 

patient with an APAP concentration – time since overdose related observation falling above the 

line should begin treatment, any patient with an observation below the line is deemed 

unnecessary for treatment. The nomogram treatment line has been reduced by 25% from the 

original threshold first defined in 1976 as a safety measure to account for patients who may 

potentially be high-risk prior to APAP overdose/measurement errors [9]. 

ALT is an enzyme within the liver that catalyzes the transfer of an amino group (L-

alanine) to a keto-group (𝛼-ketoglutarate) and, the products of this reaction are 

crucial for respiration [12]. Measurements of this biomarker within the blood, show 

that the enzyme has been released from hepatocytes, indicating cell death/damage 

[13]. INR is a measure of how long it takes for the blood to clot (prothrombin time) 

that is normalised to account for any potential differences in laboratories [14]. 

Measuring the rate of blood clotting is important; the liver is a primary source of 

circulating coagulation factors and liver injury is associated with alterations in blood 

coagulation [15]. Whilst ALT is currently the most widely used blood-based 

biomarker for measuring drug-induced-liver-injury (DILI) [16], it’s elevation is known 

to be non-DILI specific and only represents probable liver-injury post-occurrence 

[17]. Additionally, INR has been criticized for its lack of sensitivity; patients 

presenting with an acceptable INR measurement (too low to be deemed at risk), can 

be left untreated when they may in fact have a poor prognosis and could potentially 

benefit from a transplant [18].  
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Further increasing the complexity of the APAP toxicity identification problem, is the 

fact that some individuals may be more susceptible to toxicity than others, 

predominantly due to differences in the ability to synthesise or maintain sufficient 

glutathione (GSH) levels  [10]. Potential factors that may increase a patients 

susceptibility include age, pre-existing liver disease, concurrent use of alcohol or 

chronic APAP use [5]. A crucial factor is the patient’s nutritional state [19]. The 

nomogram treatment line shown in Figure 1-1 has been lowered by 25% from the 

original line that was first defined in 1976,  following recommendations from the 

Food and Drug Administration (FDA) in 1981 to account for such potential risk 

factors [9,20]. With an increase in both alcohol-related and eating disorder-related 

hospital admissions [21,22], there is an urgent need for further investigation of the 

utility of this “one-size-fits-all” threshold. 

Since uncertainty currently exists around accurate APAP overdose identification 

(due to the dependence on insensitive biomarkers and the requirement of an 

accurate knowledge of time since overdose), antidote (NAC) administration 

decisions can be imprecise. These imprecise decisions can result in either treatment 

refusal when it is in fact necessary, or unnecessary administration of the antidote to 

patients who are not likely to experience liver injury. Unnecessary NAC 

administration can cause a range of side-effects spanning from nausea and 

vomiting to anaphylactoid reactions, thereby exacerbating the problem of ill-

informed treatment [23]. Such inaccurate treatment decisions have led to an 

estimated cost of £58.1 million in the UK since 2012 [24]. It is clear that the sub-

optimal treatment framework for APAP overdose requires improvement. 

1.1.2. Biological overview 

In an attempt to improve the APAP overdose treatment framework, we build a 

mathematical model that is representative of the biological processes. This 

biological representation can be investigated computationally to provide both insight 

into the APAP overdose problem, and suggestions for improving the treatment 

framework. The biological processes that occur following an APAP dose are well 

defined in the literature. In this section, we define the key processes that form the 

basis of our mathematical model. 
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1.1.2.1. APAP metabolism 

Following APAP ingestion, metabolism predominantly takes place within the liver, in 

the phase II pathway, with a small proportion being metabolised in the Phase I 

pathway [25]. Within these two metabolic pathways, three principle mechanisms are 

involved: conjugation with a glucuronosyl group (UDP-glucuronic acid) in a process 

called glucuronidation within the phase II pathway; conjugation with a sulfo-group 

(PAPS) in a process called sulfation in the phase II pathway; and oxidation via the 

cytochrome P-450 dependent, mixed function phase 1 oxidative pathways [26]. 

These processes can be visualised in Figure 1-2. 

In therapeutic cases, metabolism occurs predominantly via glucuronidation and 

sulfation, with a small amount (<10%) being oxidized into the toxic metabolite, N-

acetyl-p-benzoquinone imine (NAPQI). Approximately 3-5% of APAP is excreted 

unchanged in the urine and less than 1% is recovered in the bile (an aqueous 

solution that is produced and secreted by the liver and consists mainly of bile salts, 

phospholipids, cholesterol, conjugated bilirubin, electrolytes and water [27]). 

Detoxification of NAPQI occurs via conjugation with hepatic stores of glutathione 

(GSH) [28]. In overdose cases, the UDP-glucuronic acid and PAPS pools deplete, 

leaving more APAP available for oxidation such that NAPQI can accumulate. If 

NAPQI levels become too high, the GSH pools will eventually be overwhelmed, 

resulting in excess levels of NAPQI which can bind to intracellular macromolecules 

causing lipid peroxidation of membranes and eventual hepatic toxicity [29]. The 

antidote currently used to treat APAP overdose, NAC, provides cysteine to 

hepatocytes, acting as a pre-cursor to GSH synthesis [30]. An increase in GSH 

synthesis increases detoxification capacity and reduces the likelihood of 

macromolecule binding, cell death, and subsequent progression into drug-induced 

liver injury (DILI). 
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Figure 1-2: APAP metabolism process. Extracellular APAP (𝐴𝑃𝐴𝑃𝑒) enters hepatocytes. 

Intracellular APAP (APAP) is predominantly metabolised through the phase II pathway. APAP 

conjugates with either a glucuronosyl group (UDP-glucuronic acid) to form APAP-glucuronide 

(𝐴𝑃𝐴𝑃𝐺) or a sulfo-group (PAPS) to form APAP-sulfate, 𝐴𝑃𝐴𝑃𝑆. When phase II pathways are 

saturated, APAP will also undergo phase I reactions. Here, APAP combines with the cytochrome 

P450 enzymes resulting in the production of a highly toxic metabolite, NAPQI. NAPQI is 

detoxified via conjugation with GSH and then excreted. In overdose cases, the GSH stores 

deplete and NAPQI is able to accumulate and react with various cellular components, forming 

toxic adducts and causing hepatocyte damage, which can result in toxicity biomarkers. The 

antidote for APAP overdose, NAC, works as a pre-cursor to GSH, therefore increasing the 

detoxification capacity in hepatocytes. 

1.1.2.2. Hepatocellular toxicity 

When toxicity occurs, cell death can usually be described by one of two forms: 

necrosis or apoptosis [31]. Necrosis is a rapid and irreversible form of cell death 

which occurs when an external trauma causes cells to quickly die.  Apoptosis is a 

much slower physiological process, occurring when the cell has the energy (ATP) 

to programme its own death [32]. In the APAP toxicity scenario, necrosis is thought 

to be the dominant form of hepatocellular cell death [33–35]. However, for mild 

APAP toxicity cases, the apoptotic form of cell death is also observed [33]. Having 

the capability to not only predict potential cell death in toxicity cases, but also gain 

further insight into the mechanism of cell death taking place can help to better 

understand the severity level of a toxicity case. In less severe cases, ATP stores 

may not be critically affected and therefore the cell may have the capability to 

programme its own death via apoptosis. If, however, the case of overdose is severe, 

this external threat may be too large, causing rapid inflammation of the cells and 

eventual necrosis. 
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1.1.2.3. Biological toxicity markers 

In terms of identifying potential liver toxicity, there have been many promising novel 

mechanistic biomarker candidates recently identified. The mitochondria within cells 

is the core of ATP and therefore energy production [36]. The presence of biomarker 

Glutamate dehydrogenase (GLDH) in circulation indicates mitochondrial 

dysfunction and subsequent loss of mitochondrial membrane integrity, which occurs 

during hepatocellular necrosis [37]. GLDH correlates with the currently used ALT, 

but is more tissue specific. Although GLDH has improved specificity when compared 

with ALT, this biomarker is not sensitive enough to predict APAP induced toxicity 

prior to the presence of ALT [38]. Another biomarker that correlates well with ALT 

and is released into the serum following tissue damage is an enzyme known as 

malate dehydrogenase (MDH), but this biomarker is known to be less tissue-specific 

[37]. Molecular forms of High-mobility group box 1 (HMGB1) and Keratin-18 (K18) 

have recently been experimentally established as blood-based biomarkers for 

APAP-hepatotoxicity [39]. Circulating hypo-acetylated HMGB1 and full-length K18 

illustrates cell necrosis. However, during apoptotic structural rearrangements, full-

length K18 undergoes caspase-mediated-cleavage and, subsequently, fragmented-

K18 can be released into the circulation, representing cell apoptosis [37]. Additional 

to these mechanism-based biomarkers, are microRNAs (miRNA) which are non-

coding RNAs involved in regulation of gene expression [40]. The most abundant 

hepatic miRNA, miR-122, is known to be released into circulation following liver 

damage and has been shown to have improved organ specificity over ALT [37]. 

1.1.3. Modelling overview 

1.1.3.1. Quantitative Systems Toxicology modelling 

As the number of drugs developed to improve the health of society quickly 

increases, so too does the requirement for efficient and accurate toxicity predictions 

[41]. The well-known Sulfanilamide tragedy (1937)  [42] caused over 100 deaths 

unexpectedly from nephrotoxicity (kidney toxicity), resulting in the Food Drug and 

Cosmetics Act (FDCA) being passed by congress in 1938. This set the precedent 

for the current toxicity testing strategy (assessing effects of drugs on animals prior 

to initial administration to humans) [43]. However, identifying toxicity following drug 

administration through such traditional preclinical testing strategies, particularly in 

the cases of rare adverse drug reactions (ADRs), has proven to be a difficult task 
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[44]. This issue has been recently improved by the advancement of technologies 

that now enable simultaneous measurements of transcriptomic, proteomic, and 

imaging readouts as well as organelle and cellular phenotypes [45]. In the 

informatics-accelerated healthcare sciences era, the goal is to combine systems 

modelling approaches with this increasing amount of data in order to efficiently and 

robustly make toxicity predictions [44]. Quantitative systems toxicology (QST) 

modelling comprises a useful tool to reduce and refine animal testing and is now 

considered as both an essential component of modern toxicity testing and a 

foundation for individualised therapeutic treatment [43]. However, since this 

approach is a computational representation of biology, and not the true biology itself, 

it is recognized that any uncertainty in predictions must be quantified and limitations 

specified, so that the models may be utilised to their full potential [46]. 

The three main current modelling approaches for toxicity identification are: 

Quantitative Structure Activity Relationship (QSAR) modelling, network based 

modelling, and pharmacokinetic-pharmacodynamic (PKPD) modelling [43]. These 

modelling techniques can be further separated into three main categories [47]: (i) 

“top down” modelling and simulation, which aims to understand the system’s 

characteristics based on observed data; (ii) “bottom up” highly mechanistic 

modelling, which is based on knowledge of the human biology and utilises in vitro 

experimentation for input data; and (iii) “middle out” which combines the “top down” 

and “bottom up” approaches, utilising in vivo data to determine unknown/uncertain 

model parameters.  

QSAR modelling is often used at the pre-clinical stage, due to its ability to screen 

through vast amounts of compounds and identify those that are likely to be active at 

a target site [48]. QSAR models are useful in situations when the mechanism of the 

toxicity is well understood, such as skin sensitization/mutagenicity [49,50]. In terms 

of DILI prediction, Cheng et al. [51] reported the first QSAR model in 2003. They 

built a training set of 382 drugs and drug-like compounds with dose-response data. 

They applied the model to a set of 54 external compounds, with 81% of the 

compounds being correctly classified. Typically, however, since this early study, 

most published QSAR models suffer from a low statistical performance or are limited 

to small, inaccurate datasets [52]. For example, a QSAR study of the permeability 

of drugs in the central nervous system (CNS) is based on incorrect descriptor values 

(including molecular weights differing by 14) for Acetylsalicylate and Aspirin [53]. 

Although guidance is provided, there are many issues that still exist within QSAR 
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modelling. Dearden et al. [54] reviewed 21 potential issues that exist within the 

approach which include: poor transferability;  unacknowledged omission of data-

points; and replication of compounds within a dataset. 

Network based modelling aims to understand how the integration of molecular 

events allows biological processes to occur [43]. The modelling is typically derived 

from the mathematical formalism of graph theory, aiming to describe complex 

qualitative relationships between multiple biological components. The resulting 

dynamical networks can be built using ordinary/partial differential equations, 

Boolean algebra or Bayesian inferences, ranging from continuous to discrete and 

deterministic to stochastic descriptions [43].  

The goal of pharmacokinetic (PK) data analysis is to estimate the parameters that 

determine the rates of drug absorption, distribution, metabolism and elimination [55]. 

Such models often contain both a pharmacokinetic component for the dose-plasma 

relationship and a pharmacodynamic component for the concentration-effect 

relationship [56]. Validated PKPD models have the capability, in theory, to predict 

responses at any time, following any dose administered, via any route. PKPD 

modelling now has a significant role in all phases of drug development: from pre-

clinical stages, to carry out toxicokinetic studies of chemical entities; to phase 1 

studies, to enable crucial decisions regarding tolerability/efficacy; and phase 2 

studies, to help analyse the dose-response relationship [57]. Successful PK studies 

resulting in clinical application span a wide variety of patients and conditions, 

including diabetes, clotting disorders, arthritis, organ transplantation and self-

poisoning [58]. In this thesis, we use a PKPD modelling approach to quantify the 

biochemical dynamics in APAP overdose. 

1.1.4. Review of relevant previously published models 

The drug induced liver injury (DILI)sim initiative is a partnership that has created a 

software (DILIsym), which applies various QST methods, aiming to better 

understand and predict liver toxicity [59]. Hepatotoxicity is modelled predominantly 

via the mechanisms of bile acid transporter inhibition, mitochondrial dysfunction, 

oxidative stress, and lipotoxicity [60]. DILIsym comprises of multiple sub models of 

these toxicity mechanisms, whilst additionally having the capacity to predict cell 

death mechanisms (e.g. via hepatic apoptosis, necrosis or regeneration) and also 

novel liver injury biomarkers concentrations [61]. The tool can be used to investigate 

the effect of various treatment regimens. For example, Woodhead et al. proposed 



10 
 

alterations to a novel antibiotic (BAL30072) treatment regimen in order to reduce 

potential liver injury side-effects using DILIsym [62]. Additionally, Longo and 

colleagues. used DILIsym to simulate hepatotoxic potential following treatment of 

adjunct therapies for Parkinson’s disease (Tolcapone and Entacapone) [63].  

Relevant to the work within this thesis, investigations through DILIsym suggest that 

newly proposed NAC dosing regimens are superior to the regimen currently used in 

the APAP overdose case, therefore recommending that modification of the current 

treatment nomogram should be considered [64]. Although promising, the modelling 

framework within DILIsym makes large simplifications of the underlying biology, and 

the predictivity of its results are heavily reliant on the (often in vitro) data used during 

parameter optimisation. We create a detailed mechanistic framework, for which the 

confidence of the data used during optimisation is tested and improved where 

necessary. Our final result is a modelling framework that accounts for individual 

variability between humans, and is optimised based on a clinical dataset of 3,616 

patients. Whilst DILIsym is currently the most comprehensive computational 

approach for integrating data into a DILI safety model, the approach is still in its 

infancy; it is based on a number of simplified modelling assumptions and has a 

reliance on parameterisation via only in vitro experimental data [65]. The addition of 

more detailed mechanistic descriptions and in vivo validation will further improve the 

potential of this computational framework.  

Promisingly, there has been much focus on further developing mechanistic models 

in the area of DILI. For example, researchers in the field have created many 

mathematical models to assess APAP metabolism and its effects on biological 

functionality. Reith et al. [66] provide a system of ordinary differential equations 

(ODEs). The parameters within the system are obtained by fitting to human data 

consisting of patients dosed with pain relief. The system has the aim of providing 

clarification of the role of the glucuronidation and sulfation pathways, outlining a 

basis for examining APAP metabolism in various disease states. Ochoa et al. [67] 

employ a multi-scale approach. They firstly create a spatiotemporal prediction of 

drug and metabolite concentrations within the liver, and then, at the whole-body 

level, include blood flow between organs.  Krauss et al. [68] further extend an 

already published physiologically based-pharmacokinetic (PBPK) model to include 

a genome scale network reconstruction of a human hepatocyte within the liver tissue 

compartment of the model. The model has the aim of quantifying the impact of 

paracetamol-induced liver failure by monitoring changes in 67 hepatic functions (for 
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example, production of cysteine, creatine, GSH and ATP) during a paracetamol 

overdose.  

Geenen et al. [69] also further develop a PBPK model by introduction of an 

additional sub-model. The group combine a PBPK model of APAP metabolism and 

disposition with a refined version of their previously developed mathematical 

systems model of hepatic glutathione homeostasis [70]. The combined model 

predicts that APAP-induced hepatic GSH depletion results in elevated 

concentrations of the biomarkers within their model (5-oxoproline and ophthalmic 

acid in blood and 5-oxoproline in urine). They also provide additional insight; the 

biomarker concentrations are also likely to be influenced by prolonged 

administration of APAP and by the concentrations of intracellular metabolites such 

as methionine. Using a system of ODEs with Michaelis-Menten kinetics to 

investigate the link between APAP, hepatic GSH status and concentrations of 

related intermediary metabolites, Stahl et al. [71] confirm the importance of 

methionine availability on hepatocellular GSH status. Leclerc et al. [72], investigate 

the effect of GSH depletion on reactive oxygen species (ROS) production by 

NAPQI by coupling a drug PK model with a systemic biology (SB) model (which 

uses a system of ODEs to represent the Nrf2 pathway). The group identify a 

transition between 0.025-0.25 μM APAP, from a NAPQI detoxification phase, to a 

NAPQI and ROS accumulation phase, due to depletion of GSH. 

Remien et al. [73] provide a predictive modelling framework for acetaminophen-

induced liver damage (MALD) by deriving ODEs describing changes  in AST, ALT 

and INR following an APAP dose. The authors optimise initial APAP dose amount 

and time since overdose by fitting the resulting ODEs to clinical data (from 53 

overdose patients). The model represents the first dynamical rather than statistical 

approach to determining poor prognosis in patients with APAP-induced-liver-injury, 

by using commonly measured patient biomarkers to estimate initial APAP dose 

amount, time since dose, and subsequent outcome. Remien et al. [74] extend this 

framework to a cell-based model. While the original MALD model has the ability to 

predict for acute APAP overdose cases, the extended model is aimed at also 

accounting for chronic overdose cases. The author’s results suggest that there is a 

threshold relating NAPQI and GSH production rates, where liver injury occurs 

rapidly. That is, when the rate of NAPQI production is less than that of GSH, the 

liver is unlikely to suffer damage. If, however, NAPQI production exceeds GSH, 

NAPQI accumulation will occur, leading to subsequent liver damage.  
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Ben-Shachar et al. [75] propose a retrospective study complementary to Remien’s 

model. Both models describe the detailed mechanisms by which APAP is detoxified 

in the liver in both therapeutic and overdose situations. Whilst Remien’s model aims 

to predict overdose occurrence, Ben-Shachar’s model aims to determine whether 

an overdose is likely to lead to fatal liver damage. The framework they propose is a 

multi-compartmental model (gut, plasma, liver, tissue, urine) consisting of 21 ODEs 

that describe APAP transport and metabolism. The liver compartment describes 

metabolism of APAP, with ODEs representing sulfation, glucuronidation, 

conjugation with GSH, production of toxic metabolites and subsequent liver 

damage. The study strengthens the evidence that APAP metabolism has a 

dependence on the expression level of certain key liver enzymes, but further 

extends the knowledge to include the effects of antidote treatment (NAC) on these 

aforementioned liver enzyme expression levels, and effects on subsequent toxic 

potential.  

Reddyhoff et al. [76] provide a cell-based model that describes the three major 

metabolic pathways that impact upon APAP clearance (sulfation, glucuronidation 

and oxidation). The aim of their model is to reduce the complexity of the APAP 

metabolism system so that analytical methods can be used for investigation. 

Sensitivity analysis is applied to investigate which parameters have the largest 

effect on progression to toxicity, identifying rates for glucuronidation and oxidation 

as key parameters. Results from this study suggest that the sulfation pathway is 

less influential on the dynamics of the systems when compared to the 

glucuronidation/oxidation pathways. Whilst predictive models for improving APAP 

overdose seem promising to date, most models rely on insensitive biomarkers, such 

as ALT, for the prediction of DILI [17]. Going forward, mathematical models that 

include the novel biomarkers discussed in Section 1.1.2 would be a significant 

addition to the current state of the art. In terms of these novel biomarkers for APAP 

toxicity there is currently only one modelling study within the literature that focuses 

on HMGB1, namely, Shoda et al. [60]. However, although insightful to the 

understanding of HMGB1, the focus of this work is on the role of HMGB1 with 

regards the innate immune response rather than APAP toxicity.  

Often, mathematical modelling approaches are applied to animal data, particularly 

at the proof-of-concept stage due to the quantity of data available and also the 

reduced amount of variability from the lab animals [77]. Translatability of these 

models to the human case is often then of particular interest [43,78]. In one such 
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translation study, Pery et al [79], find that toxicokinetic/toxicodynamic approaches 

based on alternative methods and modelling only, have the potential to predict in 

vivo liver toxicity with good accuracy comparable to in vivo methods. They conclude 

this result through the combination and calibration of a PBPK model with a 

toxicodynamic model for cell viability. There are also some human PBPK models 

already published which aim to improve treatment in the APAP overdose case. For 

example, Zurlinden et al [80] propose a mathematical model optimised against 

humans under overdose conditions. The model aim is to predict an APAP dose 

whilst elucidating the effects of blood sampling time and additional blood sampling 

requirements. Whilst the model can accurately predict initial dose for training and 

test datasets, it has poor predictability when applied to real clinical data. 

1.2. Research novelty 

Within this thesis, a new framework is provided for APAP toxicity identification using 

novel biomarkers to predict initial dose, time since ingestion and subsequent liver 

injury probability. Whilst Remien et al. [73] also suggest a predictive framework, the 

biomarker they use for toxicity prediction (ALT) is currently criticised for its lack of 

sensitivity. Within our framework, we combine this biomarker with additional novel 

biomarkers that are believed to have the potential to predict APAP-induced liver 

injury pre occurrence (namely, HMGB1, full K18 and fragmented K18). Whilst Shoda 

et al. [60] model HMGB1 in relation to the immune response, our focus with HMGB1 

differs, namely by using HMGB1 within a panel of DILI biomarkers, aiming 

specifically to improve APAP toxicity identification rather than immune function. In 

comparison to other biomarker based APAP toxicity studies, this study covers both 

overdose and non-overdose cases, identifying the key biomarkers that discriminate 

between the two situations.  

Whilst there is currently one APAP toxicity model which takes into consideration 

individuals that may have depleted GSH stores [81], the focus of their study is to 

understand how depleted nutritional levels and certain lifestyle choices affect GSH 

regeneration. We incorporate the fact that nutritional levels have subsequent effects 

on GSH levels, and use this to extend our model framework, enabling the 

quantification of how probable liver injury differs for nutritionally depleted individuals. 

In order to reduce the skepticism that often arises around QST models, we also 

propose an identifiability analysis technique, based on the profile likelihood 

approach [82]. This allows the assessment and improvement of any uncertainties in 
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the model predictions, whilst also enabling the modelling framework to be as 

biologically relevant as possible given the accessible data.   

Additionally, although Remien’s model [74] accounts for cell functionality dynamics 

following APAP dose, there is no accountability for effects of the NAC antidote. Our 

modelling framework extends previous work by predicting cell functionality 

dynamics in both APAP, and APAP plus NAC antidote cases. As a result, we have 

the ability to understand NAC effects on APAP dose likely to induce probable liver 

injury (based on novel biomarker concentrations) and also loss of cell functionality. 

Finally, we propose a new APAP overdose population pharmacokinetic model, 

optimised against approximately 3,600 overdose patients. We investigate various 

demographic groups (e.g. age, weight) with regards to their maximum tolerable 

APAP dose and find the demographic group that is predicted to have the lowest 

tolerance to APAP. We also compare current clinical toxicity thresholds against 

those predicted from our model and propose some potential adjustments that could 

provide substantial clinical impact. 

There have been limited mathematical approaches aimed at improving the APAP 

overdose problem to date. In the literature, there are deterministic approaches 

specifically aimed at modelling APAP metabolism. For example, the mechanistic 

models underpinning both DILIsym and the framework defined by Geenen et al. 

[69,83] are built using ordinary differential equations (ODEs) representing 

metabolism processes over time within various compartments of the body, including 

transfer of the drug between these compartments within a physiologically based PK 

(PBPK) framework. Parameters within these models are either fixed values from the 

literature, or optimised by fitting to experimental data. The predictivity of these 

models is therefore heavily dependent on the data used during optimisation, and 

with DILIsym, for example, having a large dependence on in vitro data, and Geenen 

et al basing their model on only limited data for clearance, uncertainty in parameter 

values remains a huge issue for these types of models.  

 Although we also take an ODE approach to modelling APAP metabolism and 

corresponding biomarkers, we consider these potential limitations by defining an 

uncertainty quantification technique. We define an identifiability analysis technique, 

which is able to determine areas of uncertainty within our model structure that 

require refinement/additional data during optimisation. We are subsequently able to 

define the uncertainty within our predictions, and improve confidence in our 

framework. Additional to this, we optimise our final clinical model against human 
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data from approximately 3,600 patients, rather than depending on in vitro/in vivo 

information. Mathematical models are often used as a basis for numerical analysis 

of the system to investigate the effects of variations in the mechanistic processes. 

For example, Remien at al. [74] conduct a local sensitivity analysis by perturbing 

parameters by 50% and analysing changes in subsequent biomarker outcomes. 

Additionally, in a secondary publication, they conduct a bifurcation analysis to better 

understand the thresholds for the transition from no liver injury, to severe liver injury. 

In a similar fashion, we conduct a local sensitivity analysis on our pre-clinical model 

parameters to determine those of particular importance prior to translation to the 

human clinical case, but we also apply an identifiability analysis to quantify the 

confidence in the parameters being perturbed. 

As well as modelling drug absorption, distribution, metabolism and excretion 

(ADME) processes over time, it is possible to also model spatial effects (e.g. spatial 

heterogeneity within tissues/organs). For example, Ochoa et al. [67] provide a 

model framework that uses coupled partial differential equations to model both 

hepatocyte and sinusoid functionality (with distribution described by an advection-

diffusion process), subsequently linking this spatial liver model to an ODE based 

PBPK whole body model. However, since our focus is to specifically model plasma 

(blood) toxicity biomarkers with the aim to better guide patient treatment, this organ 

level spatial detail is neglected to focus instead on identification of key relationships 

between plasma glutathione (GSH) as well as novel biomarkers. We particularly 

focus on the combination of biomarker simulations with statistical analyses to 

provide an improved APAP treatment framework.  

The key mathematical novelty of this study, is the combination of mathematical and 

statistical modelling approaches. Deterministic and statistical models are 

formulated, providing key mechanistic insight, particularly with regard to novel 

biomarker mechanisms, and also potential causes for inter-individual variability in 

the APAP overdose setting. Simulation of the mathematical models is utilised 

throughout to create virtual populations, which are combined with statistical 

visualisation and classification techniques, with the aim of predicting patient toxicity 

outcome. A more detailed description of the combination of mathematical and 

statistical approaches is represented by the schematic in Figure 1-3. Firstly, a dose 

is randomly selected from a uniform distribution, and the corresponding biomarker 

time-course profile is simulated using the mechanistic model (A). Similar to the dose 

selection, a time-point is randomly selected from a uniform distribution. From the 
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previously simulated biomarker time-course profile, the randomly selected time 

point is used as an index to extract the corresponding biomarker measurements (B). 

This information is combined to provide a single combination of biomarker 

concentrations for a simulated individual given a random dose of APAP, and having 

their biomarker concentrations measured at a random time-point (C).  

 

Figure 1-3: Schematic representation of process combining mechanistic and statistical 

modelling. (A,B,C) represent how the mechanistic model is used to retrieve simulated biomarker 

concentrations for an individual receiving a random dose, and having concentrations extracted 

at a random time-point. (D) represents how these biomarker concentrations are fed into the 

statistical models. (E,F,G) represents how the statistical models are used to visualise/predict 

the initial dose, time of biomarker extraction, and probability of liver injury. 

The mechanistic modelling is now combined with the statistical modelling (D) in one 

of two ways: the full combination of biomarker concentrations are used in 

conjunction with various statistical techniques to visualise /predict the initial 

dose/time of biomarker extraction (E,F), or the HMGB1 concentration alone is 

combined with a logistic regression model to predict the probability of liver injury. 

1.3. Thesis overview 

This thesis details the development of a systems toxicology approach with the aim 

of improving the current paracetamol overdose clinical framework. A PKPD 

modelling approach is taken, using systems of ODEs to represent paracetamol 

metabolism and the corresponding toxicity, represented by novel biomarker 

concentrations. The thesis consists of 4 research chapters, 3 of which have a pre-

clinical focus, with the final chapter focusing on the clinical application. 

Chapter 2 describes the development of a pre-clinical 2-compartment APAP PKPD 

model. The PK element represents APAP metabolism within the liver and the PD 



17 
 

element represents conventional (ALT) as well as novel (HMGB1, full K18 and 

fragmented K18) APAP toxicity biomarkers. Within our model, we assume that 

APAP toxicity is dependent upon the depletion of GSH. The panel of biomarkers are 

tested for significance in predicting the probability of liver injury (measured by 

experimental mouse histology scores), with HMGB1 alone being identified as the 

most significant predictor. The PKPD model is also simulated to create a virtual 

population of mice receiving an APAP dose between 0-600mg/kg. Biomarker 

concentrations are extracted at a random time-point to mimic the clinical scenario 

and are used to make predictions of initial dose, time since APAP administration, 

and subsequent liver injury. 

In Chapter 3 we refine the model developed in Chapter 2. The model refinement is 

led by the results of an identifiability analysis technique which is developed based 

on a profile likelihood approach [82]. I was introduced to this technique by Professor 

Jens Timmer’s research group during a two-week training visit, funded by the LJMU 

International Mobility Award that I received in 2017. In Chapter 2, all biomarkers are 

assumed to follow similar dynamics, which are represented by an indirect PD model 

(i.e. APAP is assumed to inhibit a pre-cursor, GSH, which then regulates the 

dynamics of the biomarkers). In Chapter 3, in order to improve the structural 

unidentifiability found in the original model, we develop piecewise linear equations 

to represent the biomarker dynamics of full and fragmented K18 (which are necrotic 

and apoptotic versions of the same biomarker). We also optimise the model against 

additional data, including fasted-mouse data. This data enables us to model the 

biomarker dynamics of a GSH-depleted mouse, relevant for the high-risk GSH-

depleted population that often present within the clinic. Robust, biologically relevant 

predictions for initial dose amount, time since administration and probability of liver 

injury are calculated for both “healthy” and “high-risk” populations using numerical 

and statistical methods. 

The framework described in Chapters 2 and 3 may be sufficient to make toxicity 

predictions upon initial investigation of a suspected APAP overdose case. However, 

the dynamics of those models do not take into account the effect of the APAP 

overdose antidote, NAC. Using the IVTS Mini-Fellowship Award that I obtained in 

2017, I undertook a four week wet-lab training placement at the University of 

Liverpool. The in vitro experimental data obtained is used within this thesis with two 

primary aims: (1) better understanding of the influence of NAC on the biomarker 

dynamics; and (2) better understanding of toxicity at the cellular level. The results 
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from the experiments are detailed within Chapter 4. The potential of biomarker data 

predicting cell functionality is discussed and modelled, as well as the effect of NAC 

administration schedules on our proposed toxicity thresholds (for both probable liver 

injury and loss of cell functionality). 

Chapters 2, 3 and 4 provide a predictive pre-clinical framework. However, having 

formed a new collaboration with Dr. James Dear (Queens Medical Research 

Institute QMRI, Edinburgh) we obtained access to a clinical dataset of approximately 

3,600 APAP overdose patients from 3 UK hospitals. Chapter 5 describes our clinical 

two compartment Pop-PK APAP model based on this data. We carry out a covariate 

correlation analysis and propose 3 human covariate factors that we predict are 

correlated with various PK parameters. We analyse differences in the maximum 

tolerable APAP dose in various patient groups, and find that younger, lower weight 

individuals have a lower tolerance to APAP. We also compare current clinical toxicity 

thresholds against those predicted from our model and propose some potential 

screening adjustments that with further investigation, could significantly impact the 

clinical environment.  



19 
 

Chapter 2: A pre-clinical systems 
toxicology framework – predicting 
liver injury potential from novel 
biomarker concentrations  
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2.1.  Background 

Whilst paracetamol/APAP is the most commonly prescribed painkiller worldwide [1], 

in the western world, this analgesic is also the leading cause of acute liver failure 

(ALF) [4]. There is an antidote to treat APAP overdose cases, N’acetylcysteine 

(NAC), which if provided in a timely manner following APAP doses, has been shown 

to reduce the likelihood of progression into drug-induced liver injury (DILI) [30]. The 

effectiveness of the antidote is thought to diminish in cases where it is  administered 

beyond 8 to 10 hours of initial APAP dose [84]. Although NAC is currently the most 

effective APAP overdose treatment, the antidote also has many associated adverse 

side effects. Typical side effects are those such as rash, vomiting and more 

uncommonly, anaphylactoid reactions [30]. The current decision to administer NAC 

is predominantly based upon the nomogram treatment line [9]. A visualisation of the 

treatment framework can be seen in Chapter 1, Figure 1-1. A patient’s point on this 

framework is found by determining the relationship between their measured APAP 

blood concentration and the time elapsed since APAP overdose. If the patient’s 

point on the framework falls above the nomogram treatment line, NAC 

administration should begin, however if they fall below the line, NAC treatment is 

deemed unnecessary. This initial decision to begin treatment is heavily dependent 

on the patient’s knowledge of time elapsed since ingestion [20]. However, this 

information is often highly unpredictable within the clinical setting. Once NAC 

treatment begins, the decision to continue treatment is based on measuring 

changes in the following biomarker concentrations – APAP and alanine 

aminotransferase (ALT). Additionally, the patient’s international normalised ratio 

(INR) is calculated [11].  

ALT elevation represents probable liver injury post-occurrence [17] and is the most 

widely used blood based biomarker for measuring DILI [16]. INR is an adjusted 

version of the prothrombin time (PT) test. The PT test evaluates an individual’s  

ability to appropriately form blood clots, and INR slightly adjusts this measurement 

to account for changes in PT reagents, allowing results from different laboratories 

to be compared [85]. AST is another DILI biomarker [16]. AST could be used for 

toxicity predictions as it accumulates in the blood due to liver damage, but it is not 

liver specific as it is also linked to other pathologies, e.g. heart injury [86]. Increased 

serum total bilirubin (TBL) is another potential marker; it is indicative of the 

substantial loss of functional hepatocytes [17]. However, since the marker identifies 

loss of hepatocytes, it does not predict hepatotoxicity potential but instead is a post-
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occurrence indicator, similar to ALT. In order to improve the treatment of APAP-

induced DILI via NAC therapy, biomarkers which can predict liver damage a priori 

are required. Recently, biomarkers K18 and HMGB1 have been shown to add value 

to the measurement of ALT [87] and have the potential to predict DILI pre-

occurrence. However, such new biomarkers are often examined singly and 

clarification of their functional relationships is required to aid clinical implementation 

[88]. In this chapter, we aim to combine these novel biomarkers with conventional 

biomarkers, with the objective of improving the prediction accuracy of APAP 

overdose cases. 

In silico modelling allows for the development of mechanistic understanding of 

biological systems which may not always be possible from in vitro/in vivo 

experiments alone. An inter-disciplinary, systems toxicology approach is a cost-

effective way of understanding and predicting drug efficacy and toxicology whilst 

additionally complying with the 3Rs (a scientific framework for the effective use of 

animals in research) [89]. There are many examples of successful in silico modelling 

frameworks that have been previously developed to study APAP metabolism and 

its associated toxic potential. Many are discussed in Chapter 1, but frameworks 

relevant to the work in this chapter are redefined here.  

For example, Reith et al. [66] propose a system of ODEs. The parameters within 

the system are obtained by fitting to human clinical data. The system has the aim of 

providing clarification of the role of the glucuronidation and sulfation pathways, 

outlining a basis for examining APAP metabolism in various disease states. Ochoa 

et al. [67] approach their modelling in a multi-scale manner, firstly creating a 

spatiotemporal prediction of drug and metabolite concentrations within the liver, and 

then, at the whole-body level, including blood-flow between organs. Remien et al. 

[73] derive ordinary differential equations (ODEs) describing changes  in AST, ALT 

and INR, creating a model (based on a single-time overdose) with the ability to 

predict acetaminophen-induced liver damage. The authors optimise initial APAP 

dose amount and time since overdose by fitting the resulting ODEs to clinical data 

(from 53 overdose patients). Remien et al. [74] subsequently provide a cell-based 

model extension to this framework. Reddyhoff et al. [76] also construct a cell-based 

model which describes major metabolic pathways impacting on APAP clearance. 

Sensitivity analysis determines the parameters that have the largest effect on the 

progression to toxicity. Ben-Shachar et al. [75] create a retrospective study 

complementary to Remien’s model. Whilst Remien’s model has the aim of predicting 



22 
 

overdose occurrence, Ben-Shachar’s has the aim of determining whether an 

overdose would lead to fatal liver damage. Our study also further extends Remien’s 

approach by combining ALT (used in their study) with additional novel biomarkers 

(K18 and HMGB1) that have the potential to predict APAP-induced liver injury pre-

occurrence. Additionally, the study is extended to non-overdose and overdose 

cases, attempting to identify the key biomarkers that discriminate between the two 

situations. Shoda et al. [60] also mechanistically model the biomarker HMGB1. They 

focus on the role of HMGB1 with regards to the innate immune response, concluding 

that HMGB1 is a key input for immune cell activation. Our focus is to instead 

investigate HMBG1 within a panel of DILI biomarkers, with the aim of predicting 

APAP toxicity in mice. 

In this chapter, we propose a novel framework with the aim of predicting initial APAP 

dose, time since administration and the probability of APAP-induced liver injury. The 

platform is distinctive primarily due to the use of novel biomarkers, optimised within 

the PKPD framework by combining the use of deterministic modelling with statistical 

PKPD analysis.  

The mouse is widely considered to be a good model for APAP toxicity prediction in 

humans [90] and due to the rich data sets available, we utilise mouse-derived data 

in this chapter to develop our new in silico framework. At this initial stage of model 

development, we wish to avoid the uncertainties associated with APAP human 

overdose data.  The human clinical APAP model is described in Chapter 5.  The 

basis of this current chapter is to demonstrate the development and validation of our 

new predictive framework using the more amenable mice data, prior to translation 

to the human situation.  

The results from our investigation define previously undocumented PK parameters 

for APAP in mice, which can now be used for further application throughout the field. 

Additionally, as mentioned above, novel biomarkers are included in the framework 

as a panel, rather than the current approach which is to consider them individually. 

The key aim of the modelling development at this initial stage is to determine which 

biomarkers are most predictive of APAP induced-DILI.  

 

 

 



23 
 

Chapter aims 

 Create a mechanistic PKPD model that represents APAP metabolism and 

corresponding biomarkers (ALT, HMGB1, K18) in mice. 

 Test biomarkers as a panel to determine the most significant in predicting 

DILI. 

 Combine analyses to provide a predictive DILI framework based on 

biomarker measurements only, eradicating the current requirement for verbal 

information regarding overdose amount and time elapsed since overdose. 

2.2.  Methods 

2.2.1.  Pharmacokinetic-Pharmacodynamic modelling 

2.2.1.1. Pharmacokinetic model development 

To understand how to effectively model the ADME processes, the observed APAP 

concentrations (from four datasets from two separate published studies [39,91] 

recording APAP concentration over time in mice following intraperitoneal 

administration of  50, 150, 500 and 530 mg/kg doses) were transformed into log-

space and plotted over time. From Figure 2-1, for the lower doses particularly (green 

and black profiles), and also the highest dose (red profile), it is clear to see that the 

distribution and elimination of APAP within these mice occurred over two phases. 

For the 500mg/kg dose, although this result did not seem so clear, the data had no 

observations beyond four hours and therefore the full course of distribution and 

elimination was difficult to conclude. Based on the results in Figure 2-1, we assumed 

that the distribution and elimination of APAP occurred over two-phases, and 

therefore a two compartmental modelling approach was necessary. A two 

compartmental model assumes that tissues within the body can be separated into 

two different compartments [92]. The first compartment mainly consists of the blood 

and well-perfused tissues such as heart, liver and brain etc. and the secondary 

compartment consists of poorly perfused tissues such as fat and bone. [93]. As 

mentioned, the liver is a well-perfused tissue, and therefore any liver-related 

dynamics within the model (sections 2.2.1.2 and 2.2.1.3) will occur within the central 

compartment. A two-compartmental model schematic is described in Figure 2-2. 
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Figure 2-1: Log-transformed paracetamol concentration versus time. The green profile 

represents the log-transformed APAP time course following an initial dose of 50mg/kg, the black 

profile represents the log-transformed APAP time course following an initial dose of 150 mg/kg, 

the pink profile represents the log-transformed APAP time course following an initial dose of 500 

mg/kg, and the red profile represents the log-transformed APAP time course following an initial 

dose of 530 mg/kg. 

 

Figure 2-2: Two-compartment PK model schematic. A dose of APAP is absorbed into the 

central compartment at a rate 𝑘𝑎. The central compartment has a theoretical volume, 𝑉𝑐. APAP 

is secondarily transferred to the peripheral compartment (theoretical volume 𝑉𝑝) at a rate 𝑘12. 

APAP is transferred from the peripheral compartment to central compartment at a rate 𝑘21. 

APAP is then eliminated from the central compartment at a rate 𝑘𝑒𝑙. 

 

Based on the model schematic in Figure 2-2, which is assumed to represent APAP 

metabolism in mice, two ordinary differential equations (ODEs) were used to 

represent changes in APAP concentration within the two PK compartments (central 

and peripheral) of the mice in the following system, 
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 𝑑[Cc]

𝑑𝑡
=
𝑘𝑎𝐷0𝑒

−𝑘𝑎𝑡

𝑉𝑐
+ 𝑘21[Cp]

𝑉𝑝

𝑉𝑐
− 𝑘12[Cc] − 𝑘𝑒𝑙[Cc], (2-1) 

where [Cc] represents the central compartment concentration of APAP (mol/l), 

[Cp] represents the peripheral compartment concentration of APAP (mol/l), 𝑘𝑎 

represents the absorption rate from the peritoneal cavity (h-1), 𝐷0 represents the 

initial dose (mg), 𝑘21 represents the transfer rate from the peripheral to the central 

compartment (h-1), 𝑘12 represents the transfer rate from the central to the peripheral 

compartment (h-1), 𝑉𝑝 represents the theoretical volume of the peripheral 

compartment (l/kg), 𝑉𝑐 represents the theoretical volume of the central compartment 

(l/kg), 𝑘𝑒𝑙 represents the overall elimination rate (summation of both excretion and 

metabolism processes) (h-1), and 𝑡 represents the time variable (h). Note that our 

model is representative of intraperitoneal administration. For applications to oral 

administration, the absorption rate parameter, 𝑘𝑎, would be multiplied by a 

bioavailability fraction to implicitly take into account effects of gastric emptying and 

absorbed fraction. 

We used the method of Laplace transforms [94] to solve the equations for APAP in 

the central and peripheral compartment. Briefly, Laplace transformation works by 

transforming differential equations on the time domain, 𝑡, to a frequency domain, 𝑠. 

It is then possible to analytically solve these simpler equations, and transform them 

back to the original time domain. The methodology of solving equations (2-1) and 

(2-2) via Laplace transformation is described below. 

If we wish to transform a function of time, for example, 𝐴(𝑡), via Laplace 

transformation ℒ, the Laplace notation can be applied: 

ℒ(𝐴(𝑡)) = ∫ 𝑒−𝑠𝑡𝐴(𝑡)𝑑𝑡
∞

0

, 
(2-3) 

 

where 𝑠 is the frequency domain we wish to transform the variable 𝐴 onto. 

The Laplace transform of a first order differential is, for example, defined by: 

𝑑𝐴

𝑑𝑡
≃ 𝑠ℒ(𝐴)−𝐴(0), (2-4) 

 

 𝑑[Cp]

𝑑𝑡
=  𝑘12[Cc]

𝑉𝑐
𝑉𝑝
− 𝑘21[Cp], (2-2) 
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where 
𝑑𝐴

𝑑𝑡
 is the rate of change of variable 𝐴 over the time (𝑡) domain, 𝑠 is the 

frequency domain we wish to transform the variable 𝐴 onto, ℒ(𝐴) is the Laplace 

transform of variable 𝐴 and 𝐴(0) is the initial concentration (at 𝑡 = 0) of variable 𝐴. 

We can now apply this theory and transform our differential equations ((2-1) and 

(2-2)) into Laplace form: 

𝑠ℒ([Cc]) − [Cc](0) =
𝑘𝑎𝐷0ℒ(𝑒

−𝑘𝑎𝑡)

𝑉𝑐
+
𝑘21ℒ([Cp])𝑉𝑝

𝑉𝑐
− 𝑘12ℒ([Cc]) − 𝑘𝑒𝑙ℒ([Cc]), 

(2-5) 

𝑠ℒ([Cp]) − [Cp](0) =
𝑘12𝑉𝑐ℒ([Cc])

𝑉𝑝
− 𝑘21ℒ([Cp]) 

(2-6) 

The Laplace transform of the exponential is found using the following: 

 
ℒ(𝑒−𝑘𝑎𝑡) = ∫ 𝑒−(𝑠+𝑘𝑎)𝑡𝑑𝑡 =

∞

0

1

𝑠 + 𝑘𝑎
 (2-7) 

For simplicity, we let 

𝑌1 = ℒ([Cc]),         𝑌2 = ℒ([Cp]) 

Therefore equations (2-5) and (2-6) can now be re-written: 

 
𝑆𝑌1 − [Cc](0) =  

𝑘𝑎𝐷𝑜 
𝑉𝑐(𝑆 + 𝑘𝑎)

+
𝑘21𝑉𝑝𝑌2

𝑉𝑐
− 𝑘12𝑌1 − 𝑘𝑒𝑙𝑌1 (2-8) 

 
𝑆𝑌2 − [Cp](0) =

𝑘12𝑉𝑐𝑌1
𝑉𝑝

− 𝑘21𝑌2 (2-9) 

Initially (at  𝑡 = 0), there is no APAP in either the central or peripheral compartment, 

therefore, 

[Cc](0) = 0,           [Cp](0) = 0 

We can now use this information to solve equation (2-9) for 𝑌2, namely: 

𝑆𝑌2 − 0 =
𝑘12𝑉𝑐𝑌1
𝑉𝑝

− 𝑘21𝑌2. (2-10) 

Rearranging gives,  
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𝑌2 = 
𝑘12𝑉𝑐𝑌1

𝑉𝑝(𝑆+𝑘21)
. 

 

(2-11) 

Substituting this result for 𝑌2 ((2-11)) into equation (2-8)) we can solve for 𝑌1 as 

follows: 

 𝑆𝑌1 = 
𝑘𝑎𝐷𝑜 

𝑉𝑐(𝑆 + 𝑘𝑎)
+
𝑘21𝑉𝑝𝑘12𝑉𝑐𝑌1

𝑉𝑐𝑉𝑝(𝑆 + 𝑘21)
− 𝑘12𝑌1 − 𝑘𝑒𝑙𝑌1. (2-12) 

Rearranging to give, 

 
𝑆𝑌1 + (𝑘12 + 𝑘𝑒𝑙)𝑌1 −

𝑘21𝑘12𝑌1
(𝑆 + 𝑘21)

=  
𝑘𝑎𝐷𝑜 

𝑉𝑐(𝑆 + 𝑘𝑎)
, (2-13) 

and factorising for 𝑌1 gives, 

 𝑌1 (𝑆 + 𝑘12 + 𝑘𝑒𝑙 −
𝑘21𝑘12
(𝑆 + 𝑘21)

) =  
𝑘𝑎𝐷𝑜 

𝑉𝑐(𝑆 + 𝑘𝑎)
. (2-14) 

If we allow 

 𝛼 + 𝛽 =  𝑘21 + 𝑘12 + 𝑘𝑒𝑙  (2-15) 

and 

 𝛼𝛽 =  𝑘𝑒𝑙𝑘21,  (2-16) 

then 

 
𝑌1 = 

𝑘𝑎𝐷𝑜 
𝑉𝑐

(
1

𝑆 + 𝑘𝑎
) (

𝑆 + 𝑘21
(𝑆 + 𝛼) + (𝑆 + 𝛽)

).  (2-17) 

 Taking the inverse Laplace transform of 𝑌1, we get: 

 [Cc](𝑡) = ℒ
−1(𝑌1),  (2-18) 

from which we get:  

[Cc](𝑡) =
𝑘𝑎𝐷0
𝑉𝑐

[
(𝑘21 −  𝛼)

(𝑘𝑎 −  𝛼)(𝛽 − 𝛼)
𝑒−𝛼𝑡 +

(𝑘21 − 𝛽)

(𝑘𝑎 −  𝛽)(𝛼 − 𝛽)
𝑒−𝛽𝑡

+
(𝑘21 − 𝑘𝑎)

(𝛼 − 𝑘𝑎)(𝛽 − 𝑘𝑎)
𝑒−𝑘𝑎𝑡], 

(2-19) 

 

where 𝛼 and 𝛽 are related to the model parameters as follows, 



28 
 

𝛼 =
1

2
(𝑘12 + 𝑘21 + 𝑘𝑒𝑙 + √(𝑘12 + 𝑘21 + 𝑘𝑒𝑙)2 − 4𝑘21𝑘𝑒𝑙), 

and 

𝛽 =
1

2
(𝑘12 + 𝑘21 + 𝑘𝑒𝑙 − √(𝑘12 + 𝑘21 + 𝑘𝑒𝑙)2 − 4𝑘21𝑘𝑒𝑙). 

We fitted equation (2-19) to the four aforementioned datasets simultaneously using 

a Nelder-Mead search algorithm [95] (Fminsearch tool in Matlab  [96]). Parameters 

𝑘𝑎, 𝑘21, 𝑉𝑐, 𝛼 and 𝛽 were optimised in order to minimise the difference between the 

model output and the observed APAP mice data. Note that all subsequent data 

fitting in this thesis also employs this algorithm. Optimised parameter values (from 

the model defined in this chapter) are defined in the results section of this chapter. 

2.2.1.2. Glutathione depletion model 

APAP is metabolised predominantly by the phase II pathway via glucuronidation 

and sulfation, but at high doses, the sulfation process saturates and an increased 

amount of APAP is then metabolised by the phase I (CYP) pathway. In this case, 

APAP combines with cytochrome P450 to create N-acetyl-p-benzoquinoeimine 

(NAPQI), a highly toxic metabolite [97]. NAPQI can be detoxified by glutathione 

(GSH). However, with large doses of APAP, GSH stores deplete [98] and NAPQI 

accumulates leading to the possibility of DILI. For this reason, the biomarker 

response dynamics were modelled to be dependent on GSH depletion. For a 

visualisation of the key APAP metabolism processes, please refer to Figure 1-2. 

To formulate the rate of change of GSH, the following mass-action-based ODE was 

considered 

𝑑[gsh]

𝑑𝑡
= 𝑘𝑖 − 𝑘𝑜[gsh] − 𝑘𝐺[𝑁𝐴𝑃𝑄𝐼][gsh], (2-20) 

 

where 𝑘𝑖 (h-1) is the background production rate of GSH, [gsh] (mol/l) is the 

concentration of GSH, 𝑘𝑜 (h-1) is the natural decay/background-usage rate of GSH, 

[NAPQI] is the concentration of NAPQI (mol/l) and 𝑘𝐺  (μM
−1h−1) is the decay rate 

of GSH due to binding with NAPQI. The model is extended by assuming the rate of 

change of NAPQI as follows, 

𝑑[NAPQI]

𝑑𝑡
= 𝜉𝑘𝑒𝑙[Cc] − 𝑘𝐺[NAPQI][gsh] − 𝑘𝑝[NAPQI], 

(2-21) 
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where 𝜉 is the proportion of CYP-activated APAP that is transformed into NAPQI,  

𝑘𝑒𝑙  is the total rate of APAP elimination as described above, and 𝑘𝑝 (h-1) is the rate 

at which NAPQI binds to other (non-GSH) cellular proteins.  

Because NAPQI is short-lived and the associated reactions are known to be rapid 

on the time-scale of APAP depletion, we assume [NAPQI] is at a quasi-steady state 

on the time-scale of APAP PK, namely, 

0 = 𝜉𝑘𝑒𝑙[Cc] − 𝑘𝐺[NAPQI][gsh] − 𝑘𝑝[NAPQI], (2-22) 

and thus, 

[NAPQI] =
𝜉𝑘𝑒𝑙[Cc]

𝑘𝐺[gsh] + 𝑘𝑝
. (2-23) 

Substituting this term into equation (2-20) we obtain, 

𝑑[gsh]

𝑑𝑡
= 𝑘𝑖 − 𝑘𝑜[gsh] −

[gsh]𝜉𝑘𝑒𝑙[Cc]

[gsh] + 𝑘𝑝𝑟
, (2-24) 

where 𝑘𝑝𝑟 = 
𝑘𝑝

𝑘𝐺
, represents the ratio of NAPQI forming other protein adducts relative 

to detoxification by GSH. We then assume a constant GSH background level to be 

𝑔𝑠ℎ0, so that in the absence of APAP and at steady-state we have  𝑘𝑖 = 𝑘𝑜𝑔𝑠ℎ0. 

Using this, we obtain 

𝑑[gsh]

𝑑𝑡
= 𝑘𝑜𝑔𝑠ℎ0 − 𝑘𝑜[gsh] −

𝜉𝑘𝑒𝑙[gsh][Cc]

[gsh] + 𝑘𝑝𝑟
. (2-25) 

In summary, the first term in equation (2-25) relates to the natural production of 

GSH. The second term in the equation represents the background usage of GSH. 

The final term in the equation represents the loss of free GSH due to interaction with 

NAPQI. 

2.2.1.3. Pharmacodynamic biomarker model  

In order to determine the most relevant model to represent the biomarker dynamics 

following an APAP dose, biomarker effect vs drug concentration plots were 

produced for each biomarker. This helped to visualise the relationship between the 

drug (APAP) and subsequent biomarkers (ALT, HMGB1, full K18, and fragmented 

K18). Effect versus concentration plots for each biomarker can be seen in Figure 

2-3. The results from Figure 2-3 identified a temporal delay between drug and 
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biomarker accumulation. This hysteresis relationship implies that APAP likely 

regulates a pre-cursor, (in this case GSH) which then influences each biomarker 

response, and therefore an indirect PD model was chosen to account for this 

hysteresis delay [99]. 

 

Figure 2-3: Biomarker effect versus concentration plots. A visualisation of the relationship 

between APAP and each biomarker. (A) shows the relationship between APAP and ALT, (B) 

shows the relationship between APAP and HMGB1, (C) shows the relationship between APAP 

and full K18 and (D) shows the relationship between APAP and fragmented K18. 

The toxic response to APAP overdose was mathematically described with 

individual, indirect PD models representing biomarker concentrations ([𝑟] = ALT, 

HMGB1, K18 and Fragmented K18) over time, as described in equation (2-26), 

𝑑[r]

𝑑𝑡
= 𝑟0𝑘𝑜𝑢𝑡 (

𝑅50
𝑛 + 𝑔𝑠ℎ0

𝑛

𝑅50
𝑛 )(1 −

[gsh]𝑛

𝑅50
𝑛 + [gsh]𝑛

) − 𝑘𝑜𝑢𝑡[r], (2-26) 

where 𝑟0 is the biomarker baseline concentration, 𝑘𝑜𝑢𝑡 is the natural decay rate of 

the biomarker (h-1), 𝑅50 represents the concentration of (GSH) which causes the 

biomarker production (response) to be half its maximal value (mol/l), and 𝑛 is a 

parameter that reflects the steepness of the biomarker production term [100]. Whilst 

parameter values 𝑟0 and 𝑔𝑠ℎ0 can be identified directly from the data (for each 
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biomarker, the baseline value was fixed at the average of all control values provided 

for that biomarker within the study by Antoine et al. that was used during 

optimisation [39]). Parameters 𝑘𝑜𝑢𝑡, 𝑅50 and 𝑛 were optimised by individually fitting 

the model output to the data measuring biomarker concentration over time following 

a 530 mg/kg dose of APAP [39]. 

All initial conditions for the PKPD model are detailed in Table 2-1. 

Model initial conditions 

Variable Initial condition (𝜇mol/l) 

[Cc]  0 

[Cp]  0 

[gsh]  696.9136 

[alt]  0.7621 

[hmgb1]  0.0005 

[fullk18]  0.0146 

[fragk18]  0.0642 

Table 2-1: Model initial conditions. Initial conditions for each variable within the dynamical 

system. Biomarker baseline values were fixed at the average values of control measurements 

from the data used for optimisation [39]. 

2.2.1.4. Sensitivity analysis 

The output of the model was analysed to determine its sensitivity with regard to any 

local perturbations in parameters. This was carried out using the sensitivity analysis 

tool in Mathworks’ Simbiology  [101].  Parameters were varied in ranges such that 

the lowest bound was one order of magnitude lower than the parameter value, and 

the highest bound was one order of magnitude higher than the parameter value. 

Sensitivity outputs were normalised to allow comparison.  

The general methodology of this analysis tool can be described with the case of an 

example. 

If we define the model output as 𝑥(𝑡) and a model parameter as 𝑦, then the time-

dependent sensitivity of output 𝑥 with respect to parameter 𝑦 is given by the scaled 

time-dependent derivative, 

  

𝜕𝑥 𝑥⁄

𝜕𝑦 𝑦⁄
, 

 

 

(2-27) 
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where the numerator is the sensitivity output and the denominator denotes the 

sensitivity input to the analysis given by parameter 𝑦. We then calculate the 

corresponding time-integral sensitivity coefficients (𝑆𝑞), which give an indication of 

the total sensitivity of the model parameter 𝑦 on output 𝑥 over the entire time course 

of the simulation 

  

𝑆𝑞 = ∫ |
𝜕𝑥/𝑥

𝜕𝑦/𝑦
|

𝑡=𝑡(𝑒𝑛𝑑) 

𝑡=0

𝑑𝑡. 

 

 

(2-28) 

Further details can be found in [102]; however, the ultimate result is a number for 

each parameter, representative of how sensitive the output is to perturbations in this 

parameter. A larger value indicates a higher sensitivity, and therefore only small 

changes in this parameter would result in large changes in the output, and vice-

versa. 

2.2.2.  Statistical modelling 

The PKPD model was used to create an in silico population for statistical testing. 

The aim was to determine whether or not we could predict the initial APAP dose, 

time elapsed since dose, and probability of liver injury for an in silico individual with 

a suspected overdose based on a single measurement of the panel of biomarkers. 

2.2.2.1. In silico population simulation 

Each computationally-derived dataset used within the analysis consisted of 1,000 

in silico individuals simulated under different scenarios: given a random APAP dose, 

and selected from a uniform distribution of range 0-1,000 mg/kg. Once a random 

dose was chosen, the mechanistic model (with all parameters other than dose fixed 

at their optimised value) was simulated for this dose. As visually displayed in the 

mechanistic modelling section of Figure 1-3, this resulted in corresponding 

concentration-time profiles (APAP, GSH, ALT. HMGB1, full K18, fragmented K18). 

A random time-point from a uniform range between 0-24 hours was selected. This 

time point was used as an index to extract a single observation from each biomarker 

time course. The result was a single combination of biomarker concentrations for an 

in silico individual (where the initial dose and time of biomarker extraction are 

random). This process was repeated 1000 times to create various scenarios for an 

in silico individual for testing. All biomarker concentrations in the computationally-

derived dataset were normalised in the range [0,1] using the min-max normalisation 



33 
 

method [103] to account for varying orders of magnitude. Experimental noise was 

replicated in silico by applying observed in vivo standard deviations in biomarker 

concentrations from an APAP study performed by Antoine et al. [39] (ALT s.d = 

11.22, HMGB1 s.d = 0.00097, K18 s.d = 2.39, fragmented K18 s.d = 0.12 mol/l). 

2.2.2.2. Visualisation 

To examine class structure and separability whilst retaining model variation, we 

applied Principal Component Analysis (PCA) and constructed two-dimensional 

scatter plots of the in silico derived data projected onto the first two principal 

components. Additionally, to visually expose class structure, a fast tree-based 

implementation of the T-distributed Stochastic Neighbour Embedding (T-SNE) 

method  was employed [104]. 

Principal component analysis (PCA) 

PCA is a common statistical technique used to reduce the dimensionality of high 

dimensional data [105]. This is a useful technique when data has more than 3 

dimensions (or variables) and is therefore difficult to visualize. The method works 

by identifying patterns in high dimensional data, expressing such data in a way that 

highlights any similarities and differences in the data points, and compressing in 

relation to the identified patterns. This subsequently reduces the dimensionality of 

the data with little loss of information [106]. 

In order to visualise the data in a new subspace with reduced dimensions, the 

following steps must be followed [107]: 

 Remove the label from each variable and assume that each is representative 

of a dimension. Include each dimension in a matrix, for example, 𝐴. 

 Compute the mean for every dimension within the dataset (column within 

matrix 𝐴) 

 Compute the covariance matrix of the whole dataset (𝐴) using the following 

formula for calculating the covariance between two variables: 

𝑐𝑜𝑣(𝑋, 𝑌) =
1

𝑛 − 1
∑ (𝑋𝑖 − �̅�)

𝑛

𝑖=1
(𝑌𝑖 − �̅�), 

 

(2-29) 

where 𝑋 and 𝑌 are the two variables we wish to calculate the covariance 

between. The total number of observations is represented by 𝑛, the current 

observation for variable 𝑋 is represented by  𝑋𝑖, the mean of all of the 

observations in variable 𝑋 is represented by �̅�, the current observation for 
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variable 𝑌 is represented by 𝑌𝑖 and the mean of all of the observations in 

variable 𝑌 is represented by �̅�. 

The covariance between each variable is calculated to form a covariance 

matrix for (𝐴), (cov(𝐴)). 

 Compute eigenvectors and corresponding eigenvalues of cov(𝐴). The 

eigenvalues of cov(𝐴) are roots of the characteristic equation, 

det(𝐴 − 𝜆𝐼) = 0 
 

(2-30) 

  

For each eigenvalue, 𝜆, we have:  

(A − λI)v = 0, (2-31) 

 where v is the eigenvector associated with eigenvalue λ. 

 Sort the eigenvectors by decreasing eigenvalues. For a 2-dimensional 

visualisation, choose the 2 eigenvectors with the largest eigenvalues, these 

two eigenvectors should then be used to form a new matrix, 𝐵. 

 Use the transposition of this new matrix (𝐵) to transform each original sample 

onto a new subspace by simply calculating: 

𝐶 = 𝐵′𝐴, (2-32) 

where 𝐵′ is the transformation matrix, 𝐴 is the original dataset matrix and 𝐶 

is the transformed dataset matrix (mapped onto a new subspace). 

While the original dataset can have any number of dimensions (or variables), matrix 

𝐶 will have 2 dimensions. These dimensions represent linear combinations of the 

original variables, with the first vector in matrix 𝐶 accounting for most of the variance 

in the original data, and the second vector in matrix accounting for the second most 

amount of variance in the original data. This explains why the eigenvectors with the 

highest eigenvalues are chosen to be included in matrix 𝐶. The transformed data 

can now be visualised in two dimensions, plotting one component of matrix 𝐶 

against the other, retaining most of the information (or variation) of the data. 

While the original dataset can have any number of dimensions (or variables), matrix 

𝐶 will have 2 dimensions. These dimensions represent linear combinations of the 

original variables, with the first vector in matrix 𝐶 accounting for most of the variance 

in the original data, and the second vector in matrix accounting for the second-most 
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amount of variance in the original data. This explains why the eigenvectors with the 

highest eigenvalues are chosen to be included in matrix 𝐶. The transformed data 

can now be visualised in two dimensions, plotting one component of matrix 𝐶 

against the other, retaining most of the information (or variation) of the data. 

t-distributed Stochastic Neighbour Embedding (TSNE) 

TSNE is a visualisation technique used to reduce high dimensional data, so that it 

can be visualised in lower dimensions.  The method works by minimizing the 

divergence between two distributions: one that measures pairwise similarities of the 

input objects (in high-dimensional space) and one that measures pairwise 

similarities of the corresponding low-dimensional points found from the embedding 

[104]. Calculating the conditional probability that a high-dimensional point 𝛺1𝑖 would 

choose the high-dimensional point 𝛺1𝑗 as its neighbour (if neighbours are picked in 

proportion to their probability density under a Gaussian/Normal distribution), results 

in determining the similarity of points 𝛺1𝑖 and 𝛺1𝑗  [108]. For nearby points, the 

conditional probability is relatively high, whereas for points that are widely 

separated, the conditional probability is almost infinitesimal [109]. 

Mathematically, the conditional probability, 𝑝𝑗|𝑖 , that the high-dimensional 𝛺1𝑖would 

pick the high dimensional 𝛺1𝑗 is represented by: 

𝑝𝑗|𝑖 =
𝑒
−(
∥𝛺1𝑖−𝛺1𝑗∥

2

2𝜎𝑖
2 )

∑ 𝑒
−(
∥𝛺1𝑖−𝛺1𝑘∥

2

2𝜎𝑖
2 )

𝑘≠𝑖

, (2-33) 

where ∥ ⋯ ∥ is the norm of the element, ensuring a strictly positive resultant vector, 

and  𝜎𝑖 is the variance of the Guassian that is centred on data point 𝛺1𝑖 . 

If we wish to define the pairwise similarities in the high-dimensional space, 𝑝𝑖𝑗, the 

obvious representation would be 

𝑝𝑖𝑗 =
𝑒
−(
∥𝛺1𝑖−𝛺1𝑗∥

2

2𝜎2
)

∑ 𝑒
−(
∥𝛺1𝑘−𝛺1𝑙∥

2

2𝜎2
)

𝑘≠𝑙

, (2-34) 

where 𝛺1𝑖 , 𝛺1𝑗 , 𝛺1𝑘, 𝛺1𝑙 are all different points within the high-dimensional data set 

𝛺1, and  𝜎 is the total variance of the high-dimensional dataset. This makes the 

pairwise distance relative to every other pairwise distance present within the 

dataset. 
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However, if the high-dimensional data point 𝛺1𝑖 is an outlier (all pairwise distances 

∥ 𝛺1𝑖 − 𝛺1𝑗 ∥
2 are large for 𝛺1𝑖) then 𝑝𝑖𝑗 will be extremely small for all values of 𝑗, 

so the location of its low dimensional map-point, 𝛺2𝑖 , has very little effect on the cost 

function, meaning that the position of the map point is not well determined by the 

positions of the other map points. To resolve this issue, we assume that the joint 

probabilities 𝑝𝑖𝑗 in the high-dimensional space, are symmetrized conditional 

probabilities. This allows each data point to make a significant contribution to the 

cost function. The joint probabilities in the high dimensional space can therefore be 

defined as 

𝑝𝑖𝑗 =
pj|i + 𝑝𝑖|𝑗

2𝑁
, (2-35) 

where 𝑝𝑖𝑗 are the pairwise similarities in the high-dimensional space, pj|i is the 

conditional probability that high-dimensional 𝛺1𝑖  would choose high-dimensional 

𝛺1𝑗 , pi|j is the conditional probability that high-dimensional 𝛺1𝑗 would choose high-

dimensional 𝛺1𝑖 and 𝑁 is the total number of observations. Since we are only 

interested in pairwise comparisons, we set 𝑝𝑖|𝑖 = 0. 

The similarities between the low dimensional counterpart points, 𝛺2𝑖 and 𝛺2𝑗 (which 

are the original data points 𝛺1𝑖 and 𝛺1𝑗 having been mapped onto a lower 

dimensional space) can be represented by the conditional probability (or pairwise 

similarity) 𝑞𝑖𝑗, which is normalized by the student t-kernel with a single degree of 

freedom. This normalization is preferred since the heavy tails of a student t-kernel 

allow dissimilar high-dimensional input objects 𝛺1𝑖  and 𝛺1𝑗 to be modelled by low 

dimensional counterparts 𝛺2𝑖  and 𝛺2𝑗 that are too far apart. More space is created 

during this normalization so that small pairwise distances can be accurately 

modelled in the low-dimensional embedding [104]. 

Mathematically, the conditional probability or pairwise similarity between the two 

points in low-dimensional space, 𝑞𝑖𝑗 , is represented by 

𝑞𝑖𝑗 =
(1+∥ 𝛺2𝑖 − 𝛺2𝑗 ∥

2)
−1

∑ (1+∥ 𝛺2𝑖 − 𝛺2𝑗 ∥2)
−1

𝑘≠𝑙

. (2-36) 

Again, since we are only interested in pairwise comparisons, we set 𝑞𝑖𝑖 = 0. 
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The locations of the embedding points are then determined by minimizing the 

Kullback-Liebler divergence between the joint distributions 𝑃 and 𝑄 (𝐾𝐿(𝑃||𝑄)): 

𝐶 = 𝐾𝐿(𝑃||𝑄) =∑∑𝑝𝑖𝑗 log (
𝑝𝑖𝑗

𝑞𝑖𝑗
)

𝑵

𝒋

𝑵

𝒊

, (2-37) 

where 𝐶 is the cost function to be minimized. This cost function is minimized by the 

gradient descent method. The gradient of 𝐶 can be given by 

𝛿𝐶

𝛿𝛺1𝑖
= 4∑ (𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝛺2𝑖 − 𝛺2𝑗)(1+∥ 𝛺2𝑖 − 𝛺2𝑗 ∥

2)
−1
.

𝑗
 (2-38) 

While the original dataset can have any number of dimensions (or variables), the 

embedded points will have 2 dimensions, making visualisation much easier, so that 

clusters may be better identified. These dimensions should represent the data in a 

way such that there is minimal difference to the structure (in terms of points that are 

nearby each other) in higher dimensions. 

2.2.2.3. Classification 

In order to test the predictive potential of biomarker concentrations, critical ranges 

for predicting time since administration were defined as (0-2], (2-5], (5-10], (10-15] 

and (15-24] hours. For dose, the ranges were [0-200], [201-400] and [401-1,000] 

mg/kg, capturing therapeutic, small, and large (overdoses), respectively. Various 

classification techniques were applied to determine the utility of the biomarkers. 

Multinomial logistic regression [110] was used as a method that fits well when 

multiple response categories are available. Since response categories were in an 

ordinal manner, ordinal multinomial logistic regression was also used. Both linear 

and quadratic discriminant analysis were employed [111]. A naïve Bayes classifier 

[112] was also used to predict class probability. Additional model-free classification 

techniques (k-nearest neighbour (k-nn) and optimal weighted nearest neighbour) 

were also employed [113,114] to test for robustness. Since classes are not 

previously defined for model-free classification techniques, observations group 

together based solely on their similarity, and the aim is to determine whether similar 

observations automatically group into our desirable classes.  The methodology of 

each classification technique is described below.  
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Multinomial logistic regression 

Multinomial logistic regression was applied in an attempt to predict time since 

administration and initial dose categories. This method uses more than one 

predictor variable (in this instance, multiple biomarkers) to predict the probability of 

falling in the class of a nominal outcome variable (in this instance, multiple 

categories for time since administration or initial dose). The observed data (𝑙𝑜𝑔𝑖𝑡(𝑌), 

representing either time since administration or initial dose) is assumed to be a 

linear function of the predictor variables ( 𝑋1, 𝑋2, 𝑋3, 𝑋4 and 𝑋5 representing 

biomarker concentrations APAP, ALT, HMGB1, Full K18 and Fragmented K18, 

respectively). The equation for the model is written in terms of the logit equation, 

since we are interested in predicting the probability of falling into a category rather 

than predicting a continuous value. If all of the predictor variables are significant, 

and therefore included in the model, the relationship between predictor and outcome 

variables can be represented using a generalised linear model: 

 𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4. 
(2-39) 

The objective of multinomial logistic regression is to optimise the parameters 𝐵𝑖, 𝑖 =

1…4, so that the model provides the best fit to the observed (either time since 

administration or initial dose) data. Since we are using a probabilistic model, 

Ordinary least squares will not suffice as a fitting method and maximum likelihood 

estimation should be used to optimise for the parameters. For various values of 

𝑋1, 𝑋2,𝑋3 and 𝑋4, the probability of falling into a particular class can be estimated by 

applying a logistic transformation to equation (2-39) according to the logistic 

cumulative distribution function, resulting in the following: 

 

𝜋 =
1

1 + 𝑒𝑙𝑜𝑔𝑖𝑡(𝑌)
.    

 

(2-40) 

The key assumptions are: 

 The dependent variable is measured on a nominal level. This assumption 

holds since the time since administration classes are sub-categories ranging from 

0-24 hours and the initial dose classes are sub-categories ranging from 0-600 

mg/kg.    

 One or more of the independent variables are continuous, ordinal or 

nominal. The predictor variables in our model are represented by biomarker 
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concentrations (APAP, ALT, HMGB1, full K18 and fragmented K18), all of which 

are measured on a continuous scale.   

 Observations must be independent. Additionally, the dependent variable 

should have mutually exclusive/exhaustive categories (i.e. each observation must 

belong to an outcome group, and they must only belong to one outcome group, not 

many). In the data used for this analysis, each in silico mouse is independent of 

one another, and each in silico mouse must fall into category [0-2, 2-5, 5-10, 10-15, 

15-24] hours for time since administration or [0-200, 201-400, 401-600] mg/kg for 

initial dose. For both models, each in silico mouse can only be assigned one score.   

 Multi-collinearity should not be present between any predictor variables. This 

assumption was tested using the Variance Inflation Factor (VIF) test. The VIF is 

indicative of the amount of variance an estimated regression coefficient is increased 

by due to multi-collinearity. Since the VIF is representative of increased variance, 

the square root of this result would be indicative of the increased standard error. As 

an example, a variable with VIF 9 has a standard error 3 times larger than it would 

be if the variable was uncorrelated with the other variables. A recommended 

reasonable range for the VIF is 1 – 10 [115]. Predictor variables for all models were 

tested and remained within this range, therefore multi-collinearity does not exist 

between the predictor variables and the assumption is met.  

 Outliers/highly influential points should not be present in the observed 

data. No outliers were detected.   

 Adequate sample size; a recommended sample size is 10 times the number 

of predictor variables. There were 5 predictor variables, and therefore 50 

observations would be sufficient. The in silico derived data consists of 1,000 

observations. 

 

Once multinomial logistic regression was deemed a feasible test for the data, 

variations of two models were investigated; one for predicting initial dose category 

and one for time since administration category. Biomarkers APAP, ALT, HMGB1, 

full K18 and fragmented K18 were the independent variables tested for predictivity. 

A forward stepwise logistic regression analysis was applied to test the panel of 

predictors. This means that the most significant predictor (biomarker) is entered into 

the model first, and one additional predictor is included at each stage, but only if the 

overall significance of the model is improved by its inclusion.  

Multinomial logistic regression assumes that the dependent variable is nominal, and 

makes no explicit use of the fact that categories may be ordered. Ordinal logistic 
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regression accounts for the fact the dependent variable is categorised on an ordered 

scale [116].  

Discriminant analysis 

Linear Discriminant Analysis (LDA) works by transforming high dimensional data 

into a lower dimensional space by maximizing the ratio of between-class variance 

and within-class variance [117]. Tharwat et al. [117] detail the three necessary steps 

for carrying out linear discriminant analysis: 

1. Calculate the between-class variance, 𝑆𝐵:  

 

𝑆𝐵 =∑(𝜇𝑐 − �̅�)

𝑐

(𝜇𝑐 − �̅�)
T, (2-41) 

where 𝜇𝑐 represents the mean of the class (𝑐), and �̅� represents the total mean of 

the data. Therefore, 𝑆𝐵 represents the separation distance between the mean of the 

𝑖th class and total mean (or the between class variance of the 𝑖th class). The 

superscript T represents the transpose operation. 

2. Calculate the within-class variance (covariance), 𝑆𝑊:   

𝑆𝑊 =  ∑(𝑥𝑖𝑐 − 𝜇𝑐)(𝑥𝑖𝑐 − 𝜇𝑐)
𝑇

𝑐

, (2-42) 

where 𝑥𝑖𝑗 represents the 𝑖th sample in the 𝑗th class, and 𝜇𝑗 represents the mean of 

the class. Therefore, 𝑆𝑊 represents the separation distance between the sample of 

interest, and the mean of the class to which the sample belongs (or the within-class 

variance of the 𝑗th class). 

3. Construct the lower-dimensional space 

Once the between-class variance and within-class variance have been calculated, 

the data can then be transformed into a lower dimensional space which shows the 

maximal variance between classes relative to the variance within classes. This is 

done by maximizing Fisher’s criterion: 

𝑊lda = arg max
𝑊

𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊
 , (2-43) 

where 𝑊 is the transformative (or projection) matrix of the LDA technique. 
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While LDA assumes a common covariance matrix between all of the classes, 

quadratic discriminant analysis (QDA) assumes that each class has its own 

covariance matrix [118]. 

Naïve Bayes 

The Naïve Bayes classifier is used to predict the probability that a sample of interest 

belongs to a particular class [112]. The classifier is based on Bayes’ theorem, which 

computes the probability of an event, based on the probabilities of other events that 

influence it [119]. This classifier adds strong (naïve) independence assumptions to 

Bayes’ theorem, assuming that the presence (or absence) of a feature of interest 

within a class is completely unrelated to the presence (or absence) of any other 

feature [120].  

Mathematically, the probability of a class is found using Bayes’ theorem 

 

𝑝(𝐶|𝐹1, … , 𝐹𝑛) =
𝑝(𝐶)𝑝(𝐹1, … , 𝐹𝑛|𝐶)

𝑝(𝐹1, … , 𝐹𝑛)
,      (2-44) 

where 𝐶 is the dependent class variable, which is conditional on several feature 

variables 𝐹1, … , 𝐹𝑛. The values of the features 𝐹𝑖 are given, so the denominator of 

equation (2-44) is effectively constant, and the numerator is equivalent to the joint 

probability model: 

𝑝(𝐶, 𝐹1, … , 𝐹𝑛). (2-45) 

 

Using applications of the definition of conditional probability, (2-45) can be rewritten 

as 

𝑝(𝐶)𝑝(𝐹1|𝐶)𝑝(𝐹2|𝐶, 𝐹1)𝑝(𝐹3|𝐶, 𝐹1, 𝐹2)…𝑝(𝐹𝑛|𝐶, 𝐹1, 𝐹2, 𝐹3, … , 𝐹𝑛−1). (2-46) 

With naïve Bayes, it is assumed that each feature 𝐹𝑖 , is conditionally independent of 

every other feature 𝐹𝑗 , for 𝑗 ≠ 𝑖. This means that 

 𝑝(𝐹𝑖|𝐶, 𝐹𝑗) = 𝑝(𝐹𝑖|𝐶)      
(2-47) 

for 𝑖 ≠ 𝑗, and so the joint model (equation (2-47)) can be expressed as  

 
𝑝(𝐶, 𝐹1, … , 𝐹𝑛) = 𝑝(𝐶)𝑝(𝐹1|𝐶)𝑝(𝐹2|𝐶)𝑝(𝐹3|𝐶)…𝑝( 𝐹𝑛|𝐶),         

(2-48) 

or, equivalently, 
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𝑝(𝐶, 𝐹1, … , 𝐹𝑛) = 𝑝(𝐶)∏𝑝(𝐹𝑖|𝐶).

𝑛

𝑖=1

      (2-49) 

This means that under the independence assumptions used in naïve Bayes, the 

conditional distribution over the class variable (𝐶) can be expressed as: 

 
𝑝(𝐶|𝐹1, … , 𝐹𝑛) =

1

𝑍
𝑝(𝐶)∏𝑝(𝐹𝑖|𝐶)

𝑛

𝑖=1

      (2-50) 

where 𝑍 (the evidence, or 𝑝(𝐹𝑖)) is a scaling factor dependent only on  𝐹1, … , 𝐹𝑛 and 

therefore a constant when the features are known [120]. 

K-nearest neighbour (KNN) 

The KNN method uses the local neighbourhood to make a prediction, and samples 

are classified based on their level of similarity [121]. The level of similarity between 

two samples is measured by their distance between one another. The number of 

samples chosen to be added to the class is defined by the user as K. When a new 

sample is added, the centre of the class is updated, and it is this point that is used 

to find the neighbour with the shortest distance. We used Euclidean distance as a 

distance measure, 𝐷: 

 

𝐷(𝑥1, 𝑥2) = √∑(𝑥1𝑖 − 𝑥2𝑖)
2

𝑛

𝑖=1

,      (2-51) 

 

where 𝑥1 and 𝑥2 are the points of interest we wish to measure the distance between, 

𝑥1𝑖 is the 𝑖th observation we wish to test as the current point, 𝑥2𝑖 is 𝑖th observation 

we wish to test as the new point and  𝑛 is the total number of pairwise combinations 

of points. 

Optimal weighted nearest neighbour 

The optimal weighted nearest neighbour extends the KNN classification method by 

assigning neighbours that are particularly close, a higher weight in the decision than 

neighbours that are further away. 

Rather than finding 𝑘 nearest neighbours, in the weighted classification, 𝑘 + 1 

nearest neighbours are found. This (𝑘 + 1)th nearest neighbour is used to 

standardise all other distances and results in the normalised distance function, 𝐷𝑁 

[122]. This via 
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𝐷𝑁(𝑥, 𝑥𝑖) =

𝑑(𝑥, 𝑥𝑖)

𝑑(𝑥, 𝑥𝑘+1)
   for 𝑖 = 1, … , 𝑘 ,  (2-52) 

where 𝐷𝑁 is the normalised distance, 𝑑 is the current distance of interest,  𝑥𝑖 is the 

current observation of interest, and 𝑥 is a new observation. The normalised distance 

𝐷𝑁 is then transformed into a weight 𝑊 with the use of a kernel function, 𝐾(𝐷𝑁), with 

the maximum weighted observation being assigned to the class at each iteration 

[122]. 

2.2.2.4. Predicting initial dose and time since administration as 

continuous variables 

Multiple linear regression 

To test the use of biomarkers in predicting time since administration and initial dose 

separately, multiple linear regression analysis was applied. This method takes a 

very similar approach to the multinomial logistic regression method, details of which 

can be found in section 2.2.2.3. However, in the linear regression setting, the 

outcome variable must be continuous rather than nominal/categorical. Since we are 

interested in predicting a continuous value, the relationship between predictor and 

outcome variables can be represented using a generalised linear model. The 

assumptions required for this analysis to be valid are similar to those necessary for 

multinomial logistic regression. There is one additional assumption required for 

linear regression analysis: 

 Residuals should be approximately normally distributed. A histogram and 

normal P-P plot of the standardized residuals in the models predicting both 

time since administration and initial dose were inspected, as shown in Figure 

2-4. 
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Figure 2-4: Data diagnostic plots. (A,C) Histogram – Visualisation of how the standardized 

residuals are distributed for the multiple linear regression models predicting time since 

administration and initial dose respectively. For data to be diagnosed as normally distributed, 

the mean value should be approximately 0 and the standard deviation should be approximately 

1. (B,D) Normal P-P plot of regression standardised residual for the models predicting time since 

administration and initial dose respectively. The cumulative probability expected from the model 

is plotted against the observed cumulative probability. For the data to be diagnosed as 

approximately normally distributed, most results (circles) should lie along the diagonal line. 

2.2.2.5. Predicting the probability of liver injury  

The biomarker time-course experimental data [39] used to create the PD model in 

this chapter also provided a corresponding histology score for each mouse from the 

range [0, 1, 2, 3]. These histology scores were binarised based upon previously 

published criteria [39]. Within this criteria, histology scores range from [0-4]: 0- 

normal histology; 1–minimal to mild necrosis; 2–mild to moderate necrosis; 3–

moderate to severe necrosis; and 4–severe necrosis. With advice from biological 

collaborators, we defined any mouse with an observed histology score of 0, 1 or 2 

as having a corresponding binary score of 0 (no liver injury) and any mouse with an 

observed histology score of 3 or above as having a binary score of 1 (liver injury), 

since our interest was in discriminating between liver injury or no liver injury. 
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Forward-stepwise binary logistic regression [123] was applied in order to 

understand the most significant biomarker, or panel of biomarkers for DILI. The most 

significant biomarkers were then used in combination with PK-PD model simulations 

to predict the DILI probability [124].  

2.3. Results 

2.3.1.  PKPD model optimisation 

Simulations of the PKPD models using the optimised parameters can be seen in 

Figure 2-5. Visually, the model simulations provide a good fit to the experimental 

data. Additionally, with an R2 value of 0.8304 for the PK model, and values of 

0.7513, 0.9634, 0.7413, and 0.6526 for the PD models for ALT, HMGB1, K18 and 

fragmented K18, respectively, the in silico model appears to recapitulate the in vivo 

experimental dynamics very well. Optimised parameters for all of the PK-PD models 

can be found in Error! Reference source not found.. A key parameter of interest i

s the 𝑅50 parameter in the biomarker PD models. This parameter defines a 

concentration of GSH at which the biomarker reaches half of its maximal production 

rate (MPR), and can therefore be used to determine the fastest responding 

biomarker following an APAP dose. For biomarkers ALT, HMGB1, K18 and 

fragmented K18, the 𝑅50 values are 227.67, 399.08, 212.87 and 72.09 mol/L 

respectively. Therefore, in the model, as GSH depletes from a baseline of 696.91 

mol/L [125] and reaches a concentration 399.08 mol/L (42.73% depletion), 

HMGB1 reaches half of its MPR and is therefore considered to be the fastest 

responding biomarker. GSH must be further depleted to 227.67 mol/L and 212.87 

mol/L (67-69% depletion), respectively, before biomarkers ALT and K18 reach half 

of their MPR. Approximately 90% GSH depletion is required for fragmented K18 to 

reach half of its MPR in the model.  
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Figure 2-5: In silico simulation outputs from the optimised model compared with the 

experimental data. (A) APAP PK simulations (solid lines) comparable to original data values 

with green, black, magenta and red representing APAP time-course following a 50, 150, 500, 

and 530 mg/kg dose respectively. (B) GSH simulations (black dashed lines) comparable to 

original data (blue). Individual PD simulation (black dashed lines) comparable to data (blue) for 

biomarkers ALT (b), HMGB1 (C), Full K18 (D), and Fragmented K18 (E). 
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Table 2-2: Parameters and corresponding standard error estimates 

for PKPD model. 

Model Parameter Optimised 

or Fixed? 

 Value Standard 

Error 

Parameter 

Description 

Optimising 

Dataset 

PK 𝑘a  

(h-1) 

Optimised 9.05 1.85 Absorption 

rate from 

peritoneal 

cavity 

[39,91] 

𝑘𝑒𝑙  

(h-1) 

Optimised 5.2 x 10-1 4 x 10-2 Total 

elimination 

rate 

𝑘12  

(h-1) 

Optimised 4.2 x 10-1 6 x 10-4 Distribution 

rate from 

central to 

peripheral 

compartment 

𝑉𝑐  

(l/kg) 

Optimised 2 x 10-2 1 x 10-3 Theoretical 

volume of 

central 

compartment 

𝑉𝑃  

(l/kg) 

Optimised 1 x 10-2 Fixed Theoretical 

volume of 

peripheral 

compartment 

𝑘21  

(h-1) 

Optimised 1.01 4.44 x 10-1 Distribution 

rate from 

central to 

peripheral 

compartment 

PD- GSH 𝑔𝑠ℎ0   

(mol/l) 

Fixed 696.9136   Baseline 

value of GSH 

[125] 

[39] 

𝑘𝑝𝑟  Optimised 71.06 

 

2848.6441 Ratio of 

NAPQI 

forming other 

protein 

adducts 

relative to 

detoxification 

𝜉  Optimised 6.8 x 10-1 1.73 x 10-1 Proportion of 

CYP activated 

APAP that is 

transformed 

into NAPQI 

𝑘𝑜  

(h-1) 

Optimised 2.5 x 10-1 2.3196 Natural 

decay/backgr

ound usage 

rate of GSH 

𝑘𝑒𝑙  

(h-1) 

Fixed  5.2 x 10-1  Total 

elimination 

rate 

PD-ALT 𝑅0 (mol/l) Fixed 7.62 x 10-1  Baseline 

value of ALT 

[39] 
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𝑛  Optimised 9.26 1.7422 Reflects the 

steepness of 

the biomarker 

production 

term 

𝑔𝑠ℎ0  

(mol/l) 

Fixed 696.9136  Baseline 

value of GSH 

𝑅50 

(mol/l) 

Optimised 227.67 

 

14.0245 Concentration 

of GSH which 

causes ALT 

concentration 

to be half its 

maximum 

value 

𝑘𝑜𝑢𝑡  

(h-1) 

Optimised 2 x 10-4 < 1 x 10-4 Natural 

decay/backgr

ound usage of 

ALT 

PD-

HMGB1 

𝑅0 (mol/l) Fixed 5 x 10-4  Baseline 

value of 

HMGB1 

[39] 

𝑛  Optimised 4.90 

 

1.57 x 10-1 Reflects the 

steepness of 

the biomarker 

production 

term 

𝑔𝑠ℎ0  

(mol/l) 

Fixed 696.9136  Baseline 

value of GSH 

𝑅50 

(mol/l) 

Optimised 399.08 24.8957 Concentration 

of GSH which 

causes 

HMGB1 

concentration 

to be half its 

maximum 

value 

𝑘𝑜𝑢𝑡  

(h-1) 

Optimised 3.5 x 10-1 1.59 x 10-1 Natural 

decay/backgr

ound usage of 

HMGB1 

PD-Full 

K18 

𝑅0 (mol/l) Fixed 1.46 x 10-2  Baseline 

value of full 

K18 

[39] 

𝑛  Optimised 10.42 

 

4.3 x 10-3 Reflects the 

steepness of 

the biomarker 

production 

term 

𝑔𝑠ℎ0  

(mol/l) 

Fixed 696.9136  Baseline 

value of GSH 

𝑅50 

(mol/l) 

Optimised 212.87 

 

1.23 x 10-1 Concentration 

of GSH which 

causes Full 

K18 

concentration 
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to be half its 

maximum 

value 

𝑘𝑜𝑢𝑡 (h
-1) Optimised 7 x 10-4 1.23 x 10-1 Natural 

decay/ 

background 

usage of Full 

K18 

PD-Frag-

K18 

𝑅0 (mol/l) Fixed 6.42 x 10-2  Baseline 

value of 

Fragmented 

K18 

[39] 

𝑛  Optimised 2.30 

 

1.46 x 10-2 Reflects the 

steepness of 

the biomarker 

production 

term 

𝑔𝑠ℎ0  

(mol/l) 

Fixed 696.9136  Baseline 

value of GSH 

𝑅50 

(mol/l) 

Optimised 72.09 

 

4.03 x 10-1 Concentration 

of GSH which 

causes Frag-

K18 

concentration 

to be half its 

maximum 

value 

𝑘𝑜𝑢𝑡 (h
-1) Optimised 2 x 10-2 1.17 x 10-2 Natural 

decay/backgr

ound usage of 

Fragmented 

K18 
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2.3.2.  PKPD model validation 

In order to test the accuracy of the in silico model, experimental data (from 

collaborators at University of Liverpool) consisting of 4 different APAP doses [0, 150, 

300, 530] mg/kg in mice and their corresponding biomarker concentrations at 5 h 

was used for validation. The in silico model was simulated using identical doses and 

the resultant biomarker concentrations were extracted at 5 h post-dose and 

compared to the corresponding in vivo mouse data. Both datasets comprised of CD-

1 type mice. For GSH, there appeared to be an adaptive response in the validation 

data at low doses which was not included in the in silico model and therefore was 

not portrayed in the simulation However, this is a minor discrepancy and given the 

large dose range in this validation, the in silico output matched the validation data 

very well. Results can be seen in Figure 2-6.   

 

Figure 2-6: In silico simulated data versus dose/response validation data used to test the 

accuracy of the in silico model in new scenarios. 
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2.3.3. Visualisation of in silico derived data 

The utilisation of biomarkers in class prediction (time since administration and initial 

dose) can be seen by the projection of the in silico derived biomarker data on to the 

first two principal components (which account for 97% of the variability within the 

dataset, Figure 2-7 (A)-(B)). Each PCA plot was separated with respect to time since 

administration and dose amount. Classes were clearly distinguished in both 

instances, however, the level of class overlap with respect to dose was much lower. 

Visualising the data with the T-SNE method (Figure 2-7 (C)-(D)) further enhances 

the PCA visualisation, allowing initial dose to be separated more clearly.  

Additionally, the time-since-administration classes were more separable with the T-

SNE method, particularly with earlier time ranges. 

2.3.4. Classification of in silico derived data 

The classification results were consistent across the different methodologies (Table 

2-3). Should a new observation arise, this framework could predict in which ‘time-

since-administration’ and ‘dose’ category it belongs in with 73.7% and 86.5% 

accuracies respectively.  

Classification Method Time Accuracy Dose Accuracy 

Multinomial Logistic Regression 72.8% 86.5% 

Ordinal Multinomial Logistic Regression 57% 85.9% 

Naïve Bayes 68.9% 84.4% 

Linear Discriminant Analysis 65.7% 86% 

Quadratic Discriminant Analysis 73.7% 85.3% 

K-nearest neighbour 66.4% 85.9% 

Optimal Weighted Nearest Neighbour 67.6% 85.8% 

Table 2-3: Classification results for predicting time since administration and initial dose 

based upon biomarker concentrations. 

2.3.5. Predicting initial dose and time since administration 

as continuous variables 

Virtual animals each have two values assigned to them: time since administration, 

and initial dose. These values can be within the ranges shown in Table 2-4. Using 

multiple linear regression analysis, the exact time-since-administration value could 
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be predicted with a residual standard error and accuracy of 3.6 h, whilst the exact 

dose could be predicted with only an error of 56.81 mg/kg (Table 2-5). 

In both models (predicting time, and dose) the APAP concentration was the highest 

model coefficient, meaning it was this biomarker that had the most influence on the 

resulting prediction. Whilst Full K18 was a predictive biomarker for both outcomes, 

fragmented K18 was not a significant biomarker for predicting time since 

administration. It was however, the second most important biomarker in predicting 

initial dose amount. HMGB1 was the second most important biomarker in 

determining the time since APAP dose, however was insignificant for predicting 

initial dose amount. For both models (predicting time since overdose, and initial 

dose amount) although the conventional biomarker (ALT) was significant, it had the 

least impact on the output when compared to the other biomarkers included in each 

model.     

 

 

Figure 2-7: Visualisation of time since administration and dose results. For time since 

administration, dark green represents class [0-2), orange represents [2-5), blue represents       

[5-10), pink represents [10-15) and pale green represents [15-24) hours. For dose, green 

represents [0-200], orange represents [201-400] and blue represents [401-600] mg/kg.  (A)-(B) 

2-dimensional PCA visualisation of in silico mouse observations with respect to time since 

administration and dose respectively. (C)-(D) 2-dimensional TSNE visualisation of in silico 

mouse observations with respect to time since administration and dose respectively. 
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Predicted value Potential range 

Time since administration [0-24h] 

Initial dose [0-600mg/kg] 

Table 2-4: Ranges of potential time since administration and initial dose values for virtual 

animals. 

 

 

 Dependent Variable 

(coefficient and related error) 

 

 Time (1) 

 

Dose (2) 

APAP Concentration -18.141*** 

(1.095) 

 

445.602*** 

(13.865) 

ALT concentration 2.402** 

(0.988) 

 

94.724*** 

(12.830) 

HMGB1 concentration -15.928*** 

(0.636) 

 

 

Full K18 concentration 8.964*** 

(0.837) 

 

241.527*** 

(12.958) 

Fragmented K18 concentration  310.574*** 

(13.260) 

 

Constant 14.812*** 

(0.268) 

 

67.068*** 

(3.193) 

Observations 

Residual Std. Error (df == 994) 

1,000 

3.593 

1,000 

56.805 

 

Note: *p<0.1; **p<0.05; ***p<0.01 

  

Table 2-5: Multiple linear regression analysis results. Summary statistics for models used 

to predict both time since administration and dose.  The first number in each element of the 

table represents the biomarker coefficient in the regression model, whilst the second number 

represents the coefficient’s corresponding error. For example, -18.141 is the APAP 

concentration coefficient in the model predicting time since administration, and this coefficient 

has an error of 1.095. The significance of each biomarker in the model is indicated by the 

number of asterisks (see note). 
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2.3.6.  Predicting the probability of liver injury 

From the forward-stepwise logistic regression analysis, it appeared that many 

panels of biomarkers could provide significant predictions of liver injury potential. As 

expected, the currently used panel (APAP and ALT) was significant (p-value 0.008). 

APAP alone was also significant at the same level (p-value 0.008). APAP and full 

K18 combined was also a significant panel (p-value 0.03). However, the model 

which used HMGB1 concentration alone as a predictor had the highest significance 

(p-value 0.003). 

Upon applying a binary logistic regression analysis in SPSS statistical software, the 

output was a logit equation based solely on HMGB1 concentration, 

  

𝐿𝑒𝑞  = 0.635[hmgb1] − 3.870. 

 

(2-53) 

This equation was substituted into a standard probability equation, resulting in the 

final liver damage probability equation used in our analysis, 

  

Probability of liver damage =
1

1 + e−𝐿𝑒𝑞
. 

 

(2-54) 

Figure 2-8 (A)-(F) represents the fold-changes in biomarker concentrations with 

respect to time following various doses. As expected, for higher doses, APAP and 

related toxicity biomarker concentrations were significantly increased during the 

time course, whilst conversely, GSH was significantly decreased, representing 

depletion of stores. Figure 2-8 (G) shows how the probability of serious liver injury 

(dependent only on HMGB1 concentration as predicted by the logistic regression 

model) changes over time for doses between 0-600 mg/kg. A threshold probability 

of 0.5 (i.e. 50% liver injury likelihood) was used to determine likeliness of DILI. Any 

observation within the white contour boundary was therefore predicted likely to be 

a concentration representative of liver injury (i.e. greater than 50% chance). For 

lower toxic doses, according to the model, HMGB1 concentrations that likely 

indicate liver injury were most apparent between 5 to 10 h post-dose. As the dose 

increased, HMGB1 concentrations appeared to remain higher for longer, and the 

time-frame for probable liver injury increased to approximately 5 to15 h.  

Currently, toxicity is thought to be apparent in mice after a 300 mg/kg dose, shown 

by the red line in Figure 2-8 (G). Application of our binary logistic regression model 
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(based solely on HMGB1 concentration) suggests that there is more than 50% 

chance of liver injury at a 200 mg/kg dose, shown by the white contour in Figure 2-8 

(G). The currently used toxic dose (300 mg/kg) coincided with around 90% GSH 

depletion which can be seen in Figure 2-8 (B). This toxicity threshold and GSH 

depletion level is  a relationship well known in the literature [97]. This toxic level was 

also the dose at which fragmented K18 elevations began, as shown in Figure 2-8 

(F). The toxic dose proposed by the in silico model (200 mg/kg) was the dose at 

which ALT and full K18 began to elevate (Figure 2-8 (C) and Figure 2-8 (E) 

respectively) and HMGB1 first reached peak concentration (Figure 2-8 (D)).  

With the aim to use biomarker concentrations to not only predict initial dose and 

time since ingestion, but also to get a quantitative prediction for probability of liver 

injury progression from one combined biomarker sample, the PCA/T-SNE analysis 

was combined with our proposed framework for predicting the probability of liver 

injury. Figure 2-9 shows the clear clustering of observations with biomarker 

concentrations that represent a high probability of liver injury (bottom left-hand 

corner of the parameter space). High probability cases were distinctively separable 

from low probability cases.   
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Figure 2-8: (A)-(F) Fold-changes in biomarker concentration relative to their baseline 

values over time [0-24] hrs for APAP, GSH, ALT, HMGB1, Full K18 and Fragmented K18 

respectively, following APAP doses ranging from 0-600 mg/kg. (G) Proposed framework 

for predicting probability of liver injury dependent upon dose, time and HMGB1 

concentration. The white contour indicates the threshold of probability 0.5 of liver injury, the 

red dashed-line represents currently used APAP dose for toxicity studies in mice, the white 

dashed-line represents toxic dose proposed by our model, the green dashed-line indicates 

current known therapeutic dose for mice. 
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Figure 2-9: Two-dimensional TSNE visualisation of in silico mouse observations with 

respect to estimated probability of liver injury. 

2.3.7.  Sensitivity analysis 

Whilst the results of the pre-clinical framework appear to be positive at this stage, it 

is important to think forward to translation. By determining sensitive parameters 

within the pre-clinical model structure, we can focus on ensuring we have 

confidence in these sensitive parameters at the translation stage. We therefore 

calculated time-dependent sensitivities of all model variables (APAP, GSH, ALT, 

HMGB1, Full K18 and Fragmented K18 concentrations) with respect to all model 

parameters using the sensitivity analysis tool in Mathworks’ Simbiology  [101].  

Details of the sensitivity analysis methodology can be found in Section 2.2.1.4. 

The results of the analysis in Figure 2-10 portray the level of sensitivity each of the 

in silico outputs has with regard to perturbations in each of the model parameters. 

With reference to Figure 2-10, we observe that any parameters deemed to be 

sensitive by this analysis also have small standard errors for the parameter 

estimates, providing confidence in the robustness of these predicted values. 

Although some parameters had greater standard error estimates e.g. 𝑘𝑝𝑟; and 𝑘𝑜, 

from the GSH model; the sensitivity analysis showed that these were not highly 

sensitive and therefore impact minimally on the outputs of the model.   
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Importantly, this sensitivity analysis allowed us to identify the most sensitive 

parameters which would potentially require most attention if translating this model 

to a human clinical Pop-PKPD framework. The most sensitive parameter was the 

baseline level of GSH, 𝑔𝑠ℎ0 (Figure 2-10). In addition to this parameter, the total 

APAP elimination rate, 𝑘𝑒𝑙 and the theoretical volume of the central compartment, 

𝑉𝑐 were also highlighted as being sensitive and so they should therefore be given 

special consideration when translating into the clinical context. For the PD element 

of the model, the proportion of CYP-activated APAP which is transformed into 

NAPQI, 𝜉, was also deemed sensitive. Since this quantity will be dependent on 

baseline GSH this result is not particularly surprising, and the importance of further 

investigation into this parameter has already been highlighted. Biomarkers ALT and 

Full K18 were identified as being sensitive to parameter changes. Biomarkers 

HMGB1 and Fragmented K18, however, were identified as being relatively less 

sensitive and more robust to parameter changes.  

 

Figure 2-10: Sensitivity analysis of the in silico model parameters – visualising the 

change in model output with regard to perturbations in model parameters. 
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2.4. Chapter discussion 

The current clinical framework for predicting whether or not APAP antidote treatment 

is necessary is highly dependent upon information provided by the patient such as 

when the dose was taken and in what quantity. This information is often vague 

and/or unreliable. Consequently, critically vulnerable patients are often left 

untreated or, conversely, NAC is unnecessarily administered. Changes in legislation 

have already led to an estimated increased cost of £8.3 million per year due to 

overused NAC treatment [24]. Within this chapter, we have used mathematical and 

statistical analysis to provide a proof-of-concept tool which has the ability of 

predicting individuals requiring treatment, based on a single measurement of 

biomarkers with improved sensitivity over those currently used within the clinic. 

Using a systems toxicology approach, we have developed an optimised PK-PD 

model for APAP and corresponding liver injury biomarkers. The model can be used 

to conduct various investigations within an APAP dosing range of 0-600 mg/kg 

without the requirement for further in vivo testing. Importantly, this provides greater 

scope for reducing the dependency on animal testing in toxicity and complying with 

3Rs principles [89]. A key result from our analysis could be used to refine 

experiments (i.e. our model proposed that toxicity in mice could be seen following 

any dose above 200mg/kg rather than the currently used 300mg/kg). That is, not 

only may experimentalists be dosing mice at amounts higher than necessary, they 

may also be missing vital information apparent at lower doses.  

We aimed to determine the most significant, and fastest responding biomarkers to 

be used in toxicity predictions. Currently, APAP-induced liver toxicity is thought to 

occur when GSH depletes by around 80-90% [97]. Our framework suggests that 

this coincides with elevated fragmented K18 levels. The in silico PD model, and its 

reported R50 values, suggest that levels of HMGB1, ALT and Full K18 elevate prior 

to this depletion level, elevating at 43%, 67% and 69% respectively. As a result, 

HMGB1 in particular could be considered as an earlier indicator of DILI. 

The identification of more accurate predictions of dose timing and amount, informed 

by biomarker concentration samples, will improve nomogram treatment line 

accuracy [20]. Predictions for the time since administration were successfully 

categorised into (0-2], (2-5], (5-10], (10-15], and (15-24] hour ranges based on 

APAP, ALT, HMGB1 and full K18 concentration values with 73.7% accuracy. Should 
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this framework be translated to a similar level of efficiency in the human clinical 

case, this information will have impact regarding the determination of the potential 

liver injury, with less dependency on patient information. Additionally, an exact time 

since overdose value was predicted with an accuracy of 3.6 h. Similarly, initial dose 

was able to be classified into [0-200], [201-400], [401-600] mg/kg categories with 

86.5% accuracy and an exact dose predicted with an expected error of ± 56.81 

mg/kg. A panel of biomarker measurements could be used in this manner to provide 

the dose and time information, which will identify a (time-dose) point on the liver 

injury framework, provided in Figure 2-8, from which one can read off an 

instantaneous probability of liver injury and how this probability is predicted to 

change as time progresses. Obtaining dose and time information based on 

biomarker concentrations and combining this with our proposed liver injury 

framework shows the utility of these biomarkers in predicting dose amount, time 

since ingestion and most importantly, the subsequent probability of liver injury.  

Although ALT concentration is currently used as a clinical measure to inform 

potential toxicity, it was found to have the least importance in the regression model 

for predicting time since administration and initial dose amount as continuous 

variables. Out of all the biomarkers used in the multiple linear regression analysis, 

HMGB1 was found to be the most predictive. This analysis suggests therefore, that 

not only is HMGB1 an earlier indicator of DILI, but it is also an important biomarker 

in accurately predicting the time elapsed since administration. Furthermore, logistic 

regression analysis identified HMGB1 as the most significant predictor for liver 

injury, in line with recent studies defining HMGB1 as a more sensitive DILI predictor 

[126]. As noted above, the focus of this chapter has been the biomarkers that work 

well for DILI prediction due to APAP with the aim to provide an improved proof-of-

concept framework. HMGB1 is highlighted by our analysis as the most important in 

DILI prediction.  

The pre-clinical framework proposed within this chapter has the potential for 

substantial clinical impact once translated to human. The analysis was applied to 

mice due to the relative abundance and quality of data (especially for toxicity cases) 

and the quantity of relevant biomarker data required to properly characterise such 

a mathematical and statistical predictive framework. The aim within this chapter, 

was to investigate the utility of the panel of biomarkers in DILI prediction, and to 

determine whether or not they warrant investigation in a human clinical study. Prior 

to translation to human studies, identifying sensitive parameters within the model is 
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vital. From our sensitivity analysis, the most sensitive parameter was the baseline 

level of GSH, 𝑔𝑠ℎ0 (Figure 2-10). Since this value was based on experimental 

estimates in this study [125], we are confident that the results are robust for the 

mouse situation. However, this parameter is clearly of importance for the predictivity 

of this model structure so will need to be of particular focus when translating to the 

clinical case. Additionally, biomarkers ALT and Full K18 were identified as being 

sensitive to parameter changes, highlighting the need for sufficiently dense data for 

these biomarkers if they are to be used in a translated human model. Our clinical 

research is discussed in Chapter 5.  

An advantage of the framework proposed in this chapter is that the same biomarkers 

can be measured in both humans and animals via the same methodologies. 

Moreover, the model hepatotoxin we have employed, APAP, is directly comparable 

between human and mice with respect to both the toxicity mechanism and the action 

of the antidote, NAC. Taking these points into consideration, in its current form, our 

framework is highly predictive and provides promise for clinical use in discriminating 

time since administration, initial dose amount and subsequent probability of liver 

injury. This would be a significant application and could instruct the determination of 

NAC intervention in patients suspected of APAP overdose. In the next chapter, we 

carry out an uncertainty analysis on our model framework to study the robustness 

of its predictions and quantify any parameter uncertainties. 
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Chapter 3: A pre-clinical systems 
toxicology framework – Improving 
the confidence, biological 
relevance and clinical application 
potential  
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3.1. Background 

In Chapter 2, we describe a modelling framework that uses a single sample 

approach to biomarker quantification (rather than the multiple sample approach 

currently required within the clinic) with the aim of predicting the probability of liver 

injury. The research in Chapter 2 identifies which biomarkers are the most significant 

in the prediction of liver injury, and provides a framework which, if extended to the 

human case, would be easily interpretable for clinicians, increasing the 

effectiveness of APAP overdose treatment. 

However, something which must be crucially noted, is that the utility of a 

mathematical model is limited by assumptions which are often necessary for 

simplification. This is due to mathematical models being an abstract representation 

of the true biology.  Consequently, there are often multiple aspects of a model that 

potentially contain uncertainty. Not all states of a dynamical model can be directly 

measured experimentally, and conversely, not all experimental data may be useful 

for model calibration, since the data itself may contain errors not accounted for by 

the model. These limitations can raise skepticism around the employment of model 

predictions. While it would be unrealistic to attempt to completely eradicate every 

level of error, it is crucial that any parameter uncertainties should be assessed, 

reported and minimised in order for model predictions to be truly useful [46]. There 

are many existing and developing techniques to quantify uncertainty, and the 

chosen method often depends on the aims of the model. For example, if there is a 

small level of uncertainty in parameters and the model of interest is relatively simple, 

a local sensitivity analysis may be sufficient (perturbing parameters individually and 

monitoring changes in output) [127]. For larger models, where parameters are 

reasonably known within some sort of range, Monte-Carlo (MC) probabilistic 

methods are usually the first method of choice, particularly in the health and 

environmental sectors [128]. The most highly used probabilistic method for 

stochastic inverse problems (attempting to estimate original parameters from noisy 

data) is Bayesian inference [129]. If both the structure of the model, and the data 

used in optimisation require testing for uncertainty, identifiability analysis can be 

employed to determine whether model parameters can be uniquely identified based 

upon the structure of both the model and data used [130]. 

In this chapter, we aim to quantify any uncertainties in the model defined in Chapter 

2 with the following ideas in mind: APAP is predominantly metabolised in the liver 
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via glucuronidation and sulfation pathways, with a small fraction being oxidised into 

the toxic metabolite, NAPQI; and detoxification of NAPQI occurs via conjugation 

with hepatic stores of glutathione (GSH) [28]. Therefore, although initial dose and 

time since ingestion are known to be the most important indicators of overdose 

severity level, additional factors affecting an individual’s ability to synthesise or 

maintain sufficiently high levels of GSH should also be considered [10]. Such factors 

may include age, pre-existing liver disease, concurrent use of alcohol and/or other 

liver-metabolised medications, genetic predispositions and acuity/chronicity of 

APAP use [5]. In 1981 the FDA recommended the original nomogram line should 

be reduced by 25% to account for potentially high-risk patients/measurement errors 

[9].  

The model defined in Chapter 2 optimises parameters by fitting to fed-mouse data 

and therefore is analogous to applications relating to individuals with unimpaired 

clearance capacity. Through the application of an identifiability analysis technique, 

in this chapter we identify areas within the model structure that require improvement 

and use this knowledge to make the structure more relevant to the current APAP 

toxicity clinical environment. There are many other in silico models that focus on 

describing and understanding APAP-induced toxicity (as described in Chapter 1). 

However, there is currently only one in silico APAP model which takes into 

consideration individuals that may have depleted GSH stores. Navid et al. (2013) 

define a multi-compartmental PBPK model of APAP metabolism, with the aim of 

understanding how nutritional deficiencies and certain lifestyle choices (such as 

alcohol consumption) may affect GSH regeneration [81]. Whilst they focus on how 

various factors may affect GSH synthesis, their model does not extend to how 

depleted GSH stores can subsequently alter toxic effects. Within the mathematical 

model defined in this chapter, we account for the fact that certain factors may affect 

GSH regeneration, but we also model how toxic effects may differ in individuals with 

both normal/suppressed GSH restoration ability.  

This chapter provides an extension to our modelling approaches defined in Chapter 

2, this time quantifying the effects of various factors impacting upon GSH availability. 

The mathematical model is refined using techniques from uncertainty analysis to 

account for mechanistic changes indicative of suppressed GSH capacity, and 

optimised against additional data to improve its scope and predictive potential. 

Crucially, the availability of GSH is known to be heavily dependent on the nutritional 

level of a patient. When optimising against additional data, we therefore choose to 
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include fasted mouse data to reflect this. The model defined in this chapter provides 

predictions of initial dose, time since ingestion and probability of liver injury for both 

healthy and high-risk populations, with a much greater level of confidence than the 

predictions provided in Chapter 2. 

Chapter aims 

 Carry out identifiability analysis on the model framework defined in Chapter 

2 to determine areas of uncertainty. 

 Refine the model structure dependent on results from identifiability analysis, 

and optimise against additional data where necessary. 

 Provide an improved model framework which is more biologically relevant, 

and which cannot only make predictions for the general individual, but also 

for individuals who are already deemed high risk. 

3.2. Methods 

3.2.1. Experimental data description 

The mathematical model in this chapter was parameterised against multiple 

experimental datasets. For the APAP PK element of the model, four datasets from 

two separate published studies [25, 26] recording APAP concentration over time in 

mice following intraperitoneal administration of  50, 150, 500 and 530 mg/kg doses 

were used for optimisation of both the framework defined in Chapter 2 and the 

framework defined within this chapter. For the biomarker PD element of the model, 

in Chapter 2, one experimental dataset was used during parameter optimisation [39] 

which recorded biomarkers (GSH, ALT, HMGB1, full and fragmented K18) over time 

following a 530 mg/kg APAP dose. In this chapter, this dataset was also used for 

optimisation of the PD model parameters, but with the addition of two other datasets 

from two separate studies by Antoine et al. and Mason et al. [35,131]. The first, [35], 

provided biomarker concentrations GSH, ALT, HMGB1, full and fragmented K18 at 

5 and 24 hours for both fed and fasted mice following a 530 mg/kg APAP dose. The 

second, [131], provided dose-response data for mouse biomarker concentrations 

GSH, ALT, HMGB1 and fragmented K18 at 5 hours following APAP doses 

[0,150,300,530,750,1,000] mg/kg. 
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3.2.2. Identifiability analysis 

Identifiability analysis was performed to visualise changes in the sum of squared 

errors (SSE) following parameter perturbations and, subsequently, to determine the 

identifiability of each parameter in the model. Since expertise around this 

methodology was not available at my home institution, I used funding from the LJMU 

International Mobility Award, obtained in 2017, to fund an uncertainty analysis 

training placement at the Freiburg Institute for Advanced Studies (FRIAS). I spent 

two weeks with Professor Jens Timmer’s research group, who introduced me to the 

methodology and applications of identifiability analysis; particularly, the profile 

likelihood approach they had developed [130]. Within this chapter, we apply a 

method of identifiability analysis similar to the profile likelihood approach defined by 

the (FRIAS) research group. Parameter estimates are either deemed identifiable, 

practically unidentifiable, or structurally unidentifiable [132]. During this analysis, 

each individual parameter was tested separately for identifiability. This “test 

parameter” was varied by 20% intervals (from -50% to +200% of its original value). 

In each iteration, the modified test parameter was fixed, while all the other 

parameters in the model were varied in two ways: either fixed at the optimum values 

(as found from previous multi-start optimisation); or randomly sampled from a Latin 

hypercube (bounds for sampling can be found in section 3.2.4 of this chapter). For 

each test parameter iteration, the parameter set corresponding to the lowest SSE 

value was then identified. During both sensitivity and identifiability analyses, model 

parameters are perturbed and subsequent changes in model output are studied. 

However, parameters are not re-optimised during sensitivity analysis. Identifiability 

analysis seeks to determine whether distinct model parameterisations could provide 

the same model solution. 

Examples of each resultant case for a parameter (identifiable, practically 

unidentifiable, structurally unidentifiable) can be visualised in Figure 3-1. Similar to 

the profile likelihood approach, an identifiable parameter is defined as a parameter 

which, when perturbed from its initial (optimal) value (both positively and negatively), 

results in an increased SSE and therefore predicts a greater error between the 

model output and the data. If the SSE increases on only one side (i.e. in the positive 

or negative direction) of the test parameter, and remains relatively unchanged on 

the other side, this parameter is defined as practically unidentifiable; that is, either 

increasing or decreasing the test parameter value causes an increased error 

between the model output and the data. However, since the error between model 
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output and data reduces as we head towards the test parameter, but then remains 

relatively unchanged for further perturbations in that direction, we cannot be 

confident that the parameter is uniquely optimal, since there are multiple values that 

provide the same approximate SSE. Since the optimum path does change in one 

direction, however, we have confidence that we are capturing some of the structure, 

and often these kind of ‘practical unidentifiabilities’ can be resolved by including 

more calibration data [130]. If the SSE value does not change either side (i.e. in the 

positive or negative direction) of the original test parameter value, this parameter is 

known as structurally unidentifiable. This means that parameter optimisation via 

data-fitting is relatively insensitive to the choice of this parameter; the parameter 

cannot be uniquely determined and therefore even if removed entirely, values of 

other parameters could be suitably adjusted to compensate for the change in the 

model structure.  

 

Figure 3-1: Identifiability definitions in relation to parameter perturbations and 

corresponding minimum SSE profile. As a parameter is perturbed (in both the positive and 

negative direction), if the minimum SSE increases, this parameter will be deemed identifiable. 

If the minimum SSE only increases in response to parameter changes in one direction (either 

negative or positive) this parameter is deemed practically unidentifiable. If a parameter is 

changed in both the positive and negative direction, and there is no corresponding change in 

the minimum SSE, this parameter is deemed structurally unidentifiable. 

3.2.3. Model refinement 

3.2.3.1. APAP pharmacokinetic model 

The PK model structure remained unchanged from the model defined in Chapter 2 

(see equations (2-1) and (2-2)), but is summarised below for completeness. Two 

ordinary differential equations (ODEs) were used to represent changes in APAP 

concentration within two PK compartments (central and peripheral) in the following 

system, 
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 𝑑[Cc]

𝑑𝑡
=
𝑘𝑎𝐷0𝑒

−𝑘𝑎𝑡

𝑉𝑐
+ 𝑘21[Cp]

𝑉𝑝

𝑉𝑐
− 𝑘12[Cc] − 𝑘𝑒𝑙[Cc], 

(3-1) 

 

 𝑑[Cp]

𝑑𝑡
=  𝑘12[Cc]

𝑉𝑐
𝑉𝑝
− 𝑘21[Cp], 

(3-2) 

 

where, as in Chapter 2, [Cc] is the central compartment concentration (mol/l) of 

APAP, [Cp] is the peripheral compartment concentration (mol/l) of APAP, and 𝑘𝑎 

represents the absorption rate (h-1) from where APAP is administered (the peritoneal 

cavity in this case). The initial dose (mol/kg) is given by 𝐷0, 𝑘21 represents the 

transfer rate (h-1) from peripheral to central compartment, 𝑘12 represents the transfer 

rate (h-1) from central to peripheral compartment, 𝑉𝑝 is the theoretical volume (l/kg) 

of the peripheral compartment, 𝑉𝑐 is the theoretical volume (l/kg) of the central 

compartment, 𝑘𝑒𝑙 represents the overall elimination rate (summation of excretion 

and metabolism processes) (h-1), and 𝑡 represents the time variable (h).  

3.2.3.2. Pharmacodynamic models 

In Chapter 2, the pharmacodynamic (PD) element of the model was parameterised 

using a dataset consisting of GSH and biomarker (ALT, HMGB1, full and fragmented 

K18) time-course concentrations following a 530 mg/kg intraperitoneal APAP dose 

[39]. In this chapter, we extended this optimisation to also include dose-response 

data consisting of plasma biomarker concentrations at 5 hours following APAP 

doses ranging from 0-1,000 mg/kg [131] and a dataset consisting of biomarker 

concentrations at 5 and 24 hours for both fed and fasted mice following a 530 mg/kg 

APAP dose [35]. This extension was necessary in order to account for differing 

mechanisms of cell death, i.e. apoptosis versus necrosis, and also to account for an 

increased dosing range more representative of the clinical environment. 

Glutathione depletion dynamics 

As in Chapter 2, paracetamol toxicity biomarker dynamics were assumed to be 

directly dependent on GSH depletion; i.e., during APAP overdose cases when GSH 

pools deplete, NAPQI accumulates, potentially leading to liver toxicity and 

associated biomarker release. The GSH model component remained identical to 

the model previously defined in Chapter 2 (see equation (2-25)), namely: 

𝑑[gsh]

𝑑𝑡
= 𝑘𝑜(𝑔𝑠ℎ0 − [gsh]) −

𝜉𝑘𝑒𝑙[Cc][gsh]

[gsh] + 𝑘𝑝𝑟
 , 

(3-3) 
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where, as in Chapter 2, 𝑘𝑜 is the basal removal rate (h-1) of GSH (including 

background usage), 𝑔𝑠ℎ0 is the baseline concentration (mol/l) of GSH in the APAP-

free steady state, 𝜉 is the proportion of eliminated APAP that is transformed into 

NAPQI, 𝑘𝑒𝑙 is the APAP elimination rate, 𝑘𝑝𝑟 can be thought of as the proportion of 

NAPQI forming other protein adducts, relative to being detoxified by GSH, although 

the parameter represents the GSH concentration at which GSH degradation due to 

binding with NAPQI has reached 50% of its maximal value (mol/l). The term 

[gsh] represents the concentration (mol/l) of GSH. Further details on the derivation 

of this GSH model can be found in Chapter 2. For the fasted case, basal GSH 

dynamics are modified to simulate a delay in GSH repletion due to depleted co-

factors stemming from the reduced food intake. These slower dynamics are 

incorporated by rescaling 𝑘𝑜 by an additional parameter, 𝛿 < 1 (so that 𝑘𝑜 becomes 

𝛿𝑘𝑜 < 𝑘𝑜). That is, the GSH model for the fasted case is now defined below: 

 

𝑑[gshf]

𝑑𝑡
= 𝛿𝑘𝑜(𝑔𝑠ℎ0 − [gshf]) −

𝜉𝑘𝑒𝑙[Cc][gshf]

[gshf] + 𝑘𝑝𝑟
 . 

(3-4) 

 

  

ALT and HMGB1 dynamics 

Following an APAP overdose, the toxic response of biomarkers ALT and HMGB1 

were mathematically modelled in the same way as the framework detailed in 

Chapter 2, namely: 

𝑑[r]

𝑑𝑡
= 𝑟0𝑘𝑜𝑢𝑡 (

𝑅50
𝑛 + 𝑔𝑠ℎ0

𝑛

𝑅50
𝑛 )(1 −

𝑔𝑚𝑎𝑥[gsh]
𝑛

𝑅50
𝑛 + [gsh]𝑛

) − 𝑘𝑜𝑢𝑡[r], 
(3-5) 

 

where, as in Chapter 2, [r] is the biomarker concentration (mol/l), 𝑟0 is the 

respective biomarker baseline (mol/l), 𝑘𝑜𝑢𝑡 is the natural decay rate (h-1) of the 

biomarker, 𝑅50 represents the concentration (mol/l) of (GSH) at which the 

biomarker response to GSH is half its maximal rate, and 𝑛 is a Hill coefficient 

indicating the steepness of the biomarker response [100]. Parameter 𝑔𝑚𝑎𝑥 is a new 

addition to this model and represents the maximal regulatory effect of GSH on 

biomarker production. In the fed case, we set 𝑔𝑚𝑎𝑥 = 1 such that GSH depletion is 

solely responsible for augmented biomarker production and therefore for the APAP-

free steady state, the biomarker is only produced at low, basal levels maintaining 

the background steady state value, 𝑟0. For the fed case, this element of the model 
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was therefore identical to that employed in Chapter 2. However, experimental 

observations showed that background biomarker levels were higher for fasted 

animals. We therefore allowed 𝑔𝑚𝑎𝑥 < 1 in the fasted case to account for these 

higher background values.  

K18 dynamics 

Keratin-18 (K18) is an intermediate filament protein expressed in abundant levels in 

hepatocytes [39]. This protein undergoes caspase-mediated cleavage during 

apoptosis, resulting in the release of fragmented K18 upon cell death [133]. This 

feature makes K18 a useful biomarker to distinguish between apoptosis and 

necrosis as the presence of full (as opposed to fragmented) K18 instead suggests 

the occurrence of necrosis [134]. Full and fragmented K18 were therefore modelled 

in this chapter as necrotic and apoptotic forms of the same single biomarker, K18. 

However, we could not find sufficient data for K18 to parameterise a model of the 

form shown in equation (3-5) for both full and fragmented K18. We were limited to 

data for full K18 following a 530mg/kg APAP dose; although we had access to dose-

response data spanning a wide range of doses for biomarkers ALT, HMGB1 and 

fragmented K18, this was unavailable for full K18 at the time of investigation. We 

therefore adopted a simple form of dynamics for K18 using piecewise linear 

representations of the non-linear terms in (3-5) , as illustrated in Figure 3-2. That is, 

the dynamics of the necrotic marker, full K18, were modelled in the following way,   

𝑑[k18]

𝑑𝑡
= 𝑟0

18𝑘𝑜𝑢𝑡
18 + 𝑘𝑚a𝑥𝑘𝑖𝑛

18𝐻(𝑔𝑠ℎ𝜃2 − [gsh]) − 𝑘𝑜𝑢𝑡
18 [k18], 

(3-6) 

 

where 𝑟0
18 is the baseline concentration (mol/l) of full K18; the natural decay rate 

of the biomarker is represented by 𝑘𝑜𝑢𝑡
18 ; the production rate of the biomarker is 

represented by 𝑘𝑖𝑛
18; the GSH threshold below which additional K18 production is 

induced due to cell death is represented by 𝑔𝑠ℎ𝜃2; the concentration of full K18 

(mol/l) is represented by [k18]; and 𝑘𝑚𝑎𝑥 is a measure of the production capability 

of full K18 (0<𝑘𝑚𝑎𝑥<1); since there is a finite quantity of cells, there is a maximum 

amount of biomarker that can be produced. In the fed case, we take 𝑘𝑚𝑎𝑥 = 1. Since 

fasting in mice causes extensive cell loss at early time points [35], the amount of 

biomarker able to be produced from a smaller amount of cells will therefore be 

smaller. To account for this, in the fasted case, we allowed  𝑘𝑚𝑎𝑥 < 1.  The Heaviside 

function 𝐻(𝑥) = 1 when 𝑥 ≥ 0 whereas 𝐻(𝑥) = 0 when 𝑥 < 0. 
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Figure 3-2: Relationship between full and fragmented K18 biomarker production and GSH 

concentration. Black lines represent the full K18 relationship, and red lines represent the 

fragmented K18 relationship (solid lines represent the fed case and dashed lines represent the 

fasted case). As GSH depletes from baseline, 𝑔𝑠ℎ0, and reaches a certain threshold, 𝑔𝑠ℎ𝜃2, 

production of full and fragmented K18 begins. Full K18 production continues for any GSH 

concentration below this threshold, however, fragmented K18 production ceases beyond a GSH 

concentration of 𝑔𝑠ℎ𝜃1 in the fed case and 𝑔𝑠ℎ𝜃1 + 𝜀 in the fasted case. 

 

Similarly, the dynamics of fragmented K18 were modelled in the following way,  

𝑑[fk18]

𝑑𝑡
= 𝑟0

𝑓18
𝑘𝑜𝑢𝑡
𝑓18

+ 𝑘𝑖𝑛
𝑓18

(𝐻([gsh] − 𝑔𝑠ℎ𝜃1 − 𝜀) − 𝐻([gsh] − 𝑔𝑠ℎ𝜃2))

− 𝑘𝑜𝑢𝑡
𝑓18[fk18], 

(3-7) 

 

Where [fk18] is the concentration (mol/l) of fragmented K18,  𝑟0
𝑓18

 is the baseline 

concentration (mol/l) of fragmented K18; the natural decay rate (h-1) of the 

biomarker is represented by 𝑘𝑜𝑢𝑡
𝑓18

, the production rate of the biomarker (h-1) is 

represented by  𝑘𝑖𝑛
𝑓18

 is the production rate, the GSH threshold below which 

augmented production of fragmented K18 production is initiated is represented by 

𝑔𝑠ℎ𝜃2, and the GSH threshold below which augmented production ceases due to a 

switch from apoptosis to necrosis is represented by  𝑔𝑠ℎ𝜃1. Since there is this switch 

from apoptosis to necrosis, we do not need a parameter within this model to 

represent the maximum production capability of fragmented K18 (𝑓𝑘𝑚𝑎𝑥); as 

extensive cell loss occurs, the mode of cell death switches from apoptosis to 

necrosis, and therefore production of apoptosis will completely cease. For the fed 
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case, production begins at the GSH concentration represented by 𝑔𝑠ℎ𝜃2(mol/

l)  and ceases at the GSH concentration represented by 𝑔𝑠ℎ𝜃1(mol/l). For the 

fasted case however, necrosis will be more apparent than apoptosis, and less GSH 

depletion will be required before apoptosis is no longer sustainable. To account for 

this, 𝜀 represents the change in GSH threshold denoting the switch to necrosis, i.e., 

𝜀 = 0 in the fed case and 𝜀 > 0 in the fasted case.  

 All initial conditions for this PKPD model are detailed in Table 3-1. The fed and 

fasted models will begin at different initial conditions. Lack of nutrition is known to 

have effects on GSH synthesis levels [81], therefore, even with no APAP present, 

GSH concentration is likely to be depleted at time 0. Since the biomarkers within our 

model are directly dependent on GSH depletion, this will in turn result in higher 

baseline levels for the biomarkers in the fasted case when compared to the fed case. 

Although our fed and fasted biomarker models begin at different concentrations, 

since food was re-introduced to the mice used in the experiments for optimisation, 

the biomarker profiles will eventually return to the fed steady-state. 

Model initial conditions 

Variable Initial condition (Fed 

case - 𝜇mol/l) 

Initial condition 
(Fasted case - 

𝜇mol/l) 

[Cc]  0 0 

[Cp]  0 0 

[gsh]  559.47497 374.0909 

[alt]  0.7626 0.9528 

[hmgb1]  0.0005 0.0007 

[fullk18]  0.0088 0.0113 

[fragk18]  0.0977 0.1634 

Table 3-1: Model initial conditions. Initial conditions for each variable within the dynamical 

system. For the fed case, the initial condition for GSH is an optimised value, found by fitting the 

fed GSH model to 3 different datasets for fed mice dosed with APAP [35,39,131]. The initial 

conditions for ALT, HMGB1, full K18 and fragmented K18 are fixed as the average of the control 

values for each respective biomarker in the fed case from each study  [35,39,131]. For the fasted 

case, the initial conditions for GSH ALT, HMGB1, full K18 and fragmented K18 are fixed as the 

average of the control values for each respective biomarker in the fasted case from Antoine et 

al.’s study [35]. 
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3.2.4.  Parameter optimisation 

A multi-start technique was applied during parameter optimisation in an attempt to 

find the globally optimal parameter set following refinement of the original model. All 

dynamical models were optimised by minimising the sum of squared errors (SSE) 

between model simulated output and experimental data (Fminsearch, Matlab [96]). 

As described in Chapter 2, the Matlab minimisation function uses a Nelder-Mead 

search algorithm to iteratively search the parameter space until a local minimum is 

found [95]. Although the algorithm is a local minimiser, Latin hypercube sampling 

(LHS) was used to generate 1,000 different initial estimates for each parameter. 

Ranges for the bounds of each parameter are defined in Table 3-2. 

3.2.5. Virtual population simulation 

Model predictions were made for three virtually simulated populations: healthy, high-

risk, and a mixture of healthy and high-risk individuals. Healthy populations were 

based on biomarker concentrations simulated with parameter values derived from 

the fed mouse data. High-risk populations were based on biomarker concentrations 

simulated with parameter values derived from fasted mouse data. The mixed 

population was based on a weighting of the biomarker concentrations simulated with 

parameter values derived from fed/fasted data, with respect to the proportion of 

healthy/high risk patients that are seen in the clinic. Namely, Craig et al. [135] 

analysed overdose patterns in 663 patients over 16 years and found that 42.3% 

patients had psychiatric history, 45.3% had alcohol abuse, and 44.7% combined the 

overdose with alcohol. We take the mean of these values (44.1%), and in line with 

this, in our mixed population case, 44.1% of the population were assumed to be 

high-risk and 55.9% were assumed to be healthy.  

As in Chapter 2, each virtual population dataset consisted of 1,000 independent and 

individually distributed in silico individuals. Within this chapter, the in silico mice were 

administered a random dose selected from a uniform distribution of range 0-1,000 

mg/kg. As in Chapter 2, biomarker concentrations were subsequently extracted at 

a random time-point from a uniform range between 0-24 hours. Simulated 

concentrations were normalised in the range [0,1] using the min-max normalisation 

method [103] to account for varying orders of magnitude. As in Chapter 2, 

experimental noise was replicated in the in silico data by applying observed in vivo 

standard deviations in biomarker concentrations from an APAP study performed by 
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Antoine et al. (2009) (ALT s.d = 11.22, HMGB1 s.d = 0.00097, K18 s.d = 2.39, 

fragmented K18 s.d = 0.12 mol/l). 

Latin Hypercube Sampling (LHS) parameter bounds 

Model Parameter Lower bound Upper bound 

PK 𝑘a (h
-1) 0 20 

𝑉𝑐 (l/kg) 0 1 

𝑉𝑃 (l/kg) 0 1 

𝑘12 (h-1) 0 1 

𝑘21 (h-1) 0 10 

𝑘𝑒𝑙 (h
-1) 0 1 

GSH 𝑔𝑠ℎ0 (mol/l)  0 700 

𝑘𝑝𝑟  0 100 

𝜉  0 1 

𝑘𝑜 (h-1) 0 1 

𝛿 (h-1) 0 1 

ALT 𝑛  1 6 

𝑅50 (mol/l) 0 700 

 

𝑘𝑜𝑢𝑡 (h
-1) 0 1 

gmax  0 0.99998 

HMGB1 𝑛  1 3 

𝑅50 (mol/l) 0 700 

 

𝑘𝑜𝑢𝑡 (h
-1) 0 1 

𝑟gmax  0 1 

K18 𝑘𝑖𝑛
18 (h-1) 0 6 

𝑘𝑜𝑢𝑡
18  (h-1)  0 1 

𝑘𝑚𝑎𝑥  0 1 

𝑔𝑠ℎ𝜃2 (mol/l) 0 700 

f-K18 𝑘𝑖𝑛
𝑓18

 (h-1) 0 6 

𝑘𝑜𝑢𝑡
𝑓18

 (h-1)  0 1 

𝑔𝑠ℎ𝜃2 (mol/l) 0 700 

𝑔𝑠ℎ𝜃1 (mol/l) 0 700 

𝜀 (mol/l) 0 100 

Table 3-2: Parameter bounds used for Latin Hypercube Sampling of initial estimates for 

the parameter optimisation. For each parameter within the mathematical model, initial 

estimates for parameter optimisation were chosen through Latin hypercube sampling. The lower 

and upper bounds for each parameter in this Latin hypercube is detailed. 
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3.2.6. Predicting time since administration and initial dose 

as continuous variables 

To test the use of biomarkers in predicting time since administration and initial dose 

separately, multiple linear regression analysis was applied to the in silico derived 

data, as in Chapter 2 (section 2.2.2). As described in Chapter 2, there are various 

assumptions that should be tested in order for multiple linear regression analysis to 

be applied. As a reminder, the key assumptions are: 

 The outcome variable is measured on a continuous level; 

 One or more of the predictor variables are continuous, ordinal or 

nominal; 

 Observations must be independent; and 

 Multi-collinearity/Outliers/highly influential points should not be 

present in the observed data.  

All of these assumptions held for the in silico derived data from this chapter. 

An additional assumption of multiple linear regression is: 

 Residuals should be approximately normally distributed; a histogram 

and normal P-P plot of the standardized residuals in the models 

predicting both time since administration and initial dose were 

inspected. Results for the ‘healthy’ dataset are shown in Figure 3-3, 

but results were similar in the ‘average’ and ‘high-risk’ datasets. 



76 
 

 

Figure 3-3: Data diagnostic plots. (A, C) Histogram – Visualisation of how the standardized 

residuals are distributed for the models predicting time since administration and initial dose 

respectively. For data to be diagnosed as normally distributed, the mean value should be 

approximately 0 and the standard deviation should be approximately 1. (B, D) Normal P-P plot 

of regression standardised residual for the models predicting time since administration and initial 

dose respectively. The cumulative probability expected from the model is plotted against the 

observed cumulative probability. For the data to be diagnosed as approximately normally 

distributed, most results (circles) should lie along the diagonal line. 

3.2.7.  Visualisation 

For each in silico individual, as in Chapter 2, the t-Distributed Stochastic Neighbour 

Embedding (T-SNE) method [104] was applied to visualise the dataset constituted 

by the aforementioned variables (APAP, GSH, ALT, HMGB1, K18, fragmented 

K18). Two-dimensional scatter plots of the embedded data were employed in order 

to examine class structure and separability whilst retaining model variation. For a 

more detailed description of the TSNE method, please refer to section 2.2.2 

(Chapter 2). 
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3.2.8.  Classification 

In order to test the predictive potential of biomarker concentrations, critical ranges 

for predicting time since administration were defined as (0-2], (2-5], (5-10], (10-15] 

and (15-24] hours. For dose, the ranges were [0-200], [201-400] and [401-1,000] 

mg/kg, capturing therapeutic, small, and large (overdoses), respectively. The same 

classification techniques applied in Chapter 2 were applied and compared here. 

Please refer to section 2.2.2 (Chapter 2) for a more detailed description of each 

technique. 

3.2.9.  Predicting the probability of liver injury 

The binary logistic regression framework described in Chapter 2 has been recently 

published [131]. The framework uses experimental biomarker time-course data, 

predicting a corresponding histology score for each mouse. When developing the 

framework, the whole panel of biomarkers (ALT, HMGB1, full and fragmented K18) 

were tested, and the analysis found HMGB1 concentration to be the most significant 

in predicting the probability of liver injury. The resultant logistic regression model 

was used within this chapter, in combination with PK-PD model simulations (from 

the newly refined model) to predict the drug-induced liver injury (DILI) probability.  

3.3. Results 

3.3.1.  Identifiability analysis – original model (defined in 

Chapter 2) 

In order to determine the robustness of the parameter set defined for our previous 

model (Chapter 2), we carried out an identifiability analysis on the model framework. 

This analysis allowed us to determine whether the parameters we proposed were 

unique within our system, helping to analyse whether or not these parameters are 

in fact representative of the mechanisms we desire. Additionally, the analysis 

provided information that allowed us to determine whether sufficient data had been 

included in the parameter optimisation, ensuring the parameters can be defined with 

confidence. Parameters in the model structure (defined in Chapter 2) were 

individually perturbed to visualise resultant differences between model output and 

experimental data. These changes were assessed to determine the identifiability of 
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each parameter in the original model structure. As seen in Figure 3-4, 10 out of 21 

parameters were identifiable. The ALT component of the model was identifiable, 

and all but one of the parameters in the PK component were identifiable. However, 

the HMGB1 component of the model was structurally unidentifiable, and practical 

unidentifiabilities exist in all other elements of the model. Five parameters were 

concluded to be practically unidentifiable. There were 3 practical unidentifiabilities 

within the GSH component: the ratio of NAPQI forming other protein adducts relative 

to being detoxified by GSH (𝑘𝑝𝑟), the proportion of eliminated APAP that is 

transformed into NAPQI (𝜉), and the basal removal rate of GSH (𝑘𝑜). The remaining 

practical unidentifiabilities were found within the K18 and fragmented K18 

components of the model: the decay rate of full K18 (K18−𝑘𝑜𝑢𝑡), and the fragmented 

K18 Hill coefficient (fragmented k18 - 𝑛). The remaining 6 parameters were 

structurally unidentifiable. These included the theoretical volume of the peripheral 

compartment (𝑉𝑝) from the PK component and all parameters from the HMGB1 

component:  the Hill coefficient (HMGB1 - 𝑛), the GSH concentration at which the 

augmented production rate of HMGB1 reaches 50% of its maximum (HMGB1 - 𝑅50), 

and the decay rate (HMGB1 - 𝑘𝑜𝑢𝑡). Two out of three parameters within the 

fragmented K18 component were structurally unidentifiable: the GSH concentration 

at which the augmented production rate of fragmented K18 reaches 50% of its 

maximum (fragmented K18 - 𝑅50), and the decay rate (fragmented K18 - 𝑘𝑜𝑢𝑡). 

3.3.2. Model refinement 

Following model refinement and re-parameterisation against the multiple datasets 

(increased dose range and fasted data), we identified a number of parameter 

adjustments. In cases where parameters are common to both model structures, 

percentage changes in their optimised values following re-parameterisation are 

shown in Table 3-3. The baseline level of GSH, 𝑔𝑠ℎ0, was optimised against the 

data in the new model structure, rather than fixed as in the previous model (Chapter 

2). The resultant value reduced by almost 20% to 559.47 mol/l. The proportion of 

CYP-activated APAP that is transformed into NAPQI, 𝜉, increased to around 80%, 

but there was also an increased level of NAPQI detoxification resulting from the re-

parameterisation (represented by a 22.1% decrease in parameter 𝑘𝑝𝑟, the ratio of 

NAPQI forming other protein adducts relative to detoxification). The new parameter, 

𝛿, incorporated an effective delay in GSH repletion in the fasted case due to 
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depleted co-factors. The optimised value was 0.0483 and considerably reduced the 

timescale of GSH dynamics in the fasted case.   

 

 

Figure 3-4: Identifiability analysis of the model structure defined in Chapter 2. Each test 

parameter is fixed at 20% intervals, and the other parameters in the model are allowed to vary. 

The percentage change of resultant optimised function values (SSE) are plotted at each interval 

(on log-scale). The lowest SSE change is represented by white; darker colours show an 

increase in SSE change. The highest SSE change is represented by black. Blue dashed bounds 

indicate where the parameter is identifiable at the 0.5% level. Red bounds indicate where the 

parameter is identifiable at the 1% level. A parameter is identifiable at the 1% level if it is 

bounded by red in both the positive and negative parameter-change directions. If the parameter 

is bounded by red in one direction and blue in the other direction, it is identifiable at the 0.5% 

level but practically unidentifiable at the 1% level. A parameter is practically unidentifiable if it is 

bounded by red/blue in either the positive or negative parameter change direction, and 

unbounded in the opposite direction. A parameter is structurally unidentifiable if it is unbounded 

in both positive and negative parameter-change directions (no red/black bounds exist for the 

whole range of parameter changes). For example (ALT- 𝑹𝟓𝟎) is identifiable at the 1% level, 

(K18- 𝑹𝟓𝟎)  is identifiable at the 0.5% level but practically unidentifiable at the 1% level, 

(fragmented K18- 𝒏) is practically unidentifiable, 𝑽𝒑 is structurally unidentifiable. 

Following model refinement, we found that an increased amount of GSH depletion 

was required for the GSH-induced ALT response to be half of its maximal value in 

the refined model structure. Namely, 67% GSH depletion was required in the 

framework described in Chapter 2, whereas almost 94% was required in the 

framework described within this chapter. Although more GSH depletion was also 

required for HMGB1 induction within the new framework, this biomarker response 

was still faster than that of ALT, since it had reached 50% maximal response rate at 
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around 86.5% GSH depletion. For Full-K18, results from the optimisation suggest 

that augmented production of the biomarker will occur when GSH decreases below 

174.5205 mol/l (~68.8% depletion). Fragmented K18 was also induced at this level 

of GSH; however, if GSH was further depleted to 167.3663 mol/l, augmented 

production of this apoptosis marker would cease, and the necrotic, full version of 

the biomarker would then dominate. In the fasted case, this threshold increased by 

5.0457 mol/l (𝜀) such that the necrotic switch (as indicated by the absence of K18 

fragmentation) occurred when GSH is depleted beyond 172.412 mol/l. Optimised 

model simulations were plotted and compared with the APAP PK time-course data 

(Figure 3-5), the biomarker PD time-course data (Figure 3-6) and the APAP dose- 

biomarker response data (Figure 3-7). The refined model provided a much better 

replication of the dose-response data, which is a key result from this chapter (Figure 

3-7). 
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  Optimised value  

Model Parameter Original 

(Chapter 2) 

Refined model % 

change  

APAP 𝑘a (h
-1) 9.05 8.6152 -4.8% 

𝑘𝑒𝑙 (h
-1) 0.52 0.5459 +5% 

𝑘12 (h
-1) 0.42 0.4502 +7.2% 

𝑉𝑐 (l/kg) 0.02 0.0220 +10% 

𝑉𝑃 (l/kg) 0.01 0.2102 +2000% 

𝑘21 (h
-1) 1.01 1.0315 +2.1% 

GSH 𝑔𝑠ℎ0 (mol/l) 696.9136  559.47497 -19.7% 

𝑘𝑝𝑟  71.06 55.33401 -22.1% 

𝜉  0.68 0.80571 +18.5% 

𝑘𝑜 (h-1) 0.25 0.78807 +215% 

ALT 𝑅0 (mol/l) 0.7626 0.7626 0% 

𝑛  9.26 4.3324 -53.2% 

𝑅50 (mol/l) 227.67 35.6531 -84.3% 

𝑘𝑜𝑢𝑡 (h
-1) 0.0002 0.0004 +1% 

HMGB1 𝑅0 (mol/l) 0.0005 0.0005 0% 

𝑛  4.90 2.3445 -51.2% 

𝑅50 (mol/l) 399.08 75.2828 -81.1% 

𝑘𝑜𝑢𝑡 (h
-1) 0.35 0.0964 -72.5% 

Full K18 𝑟0
18(mol/l) 0.0146 0.0088 -39.73% 

𝑘𝑜𝑢𝑡
18  (h-1) 0.0007 0.0031 +342.9% 

Fragmented-

K18 

𝑟0
𝑓18

(mol/l) 0.0642 0.0977 +52.2% 

𝑘𝑜𝑢𝑡
𝑓18

(h-1)  0.02 0.0031 -84.5% 

Table 3-3: Parameter changes following model refinement. Any parameter that remained 

within the new model structure is defined, with its original value and the re-parameterised value. 

Percentage changes are also defined. 
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Figure 3-5: APAP PK Model simulations versus time-course data. APAP 

concentration simulations are plotted for 50 (green), 150 (blue), 500 (pink) and 530 

(black) mg/kg doses of APAP.  

 

Figure 3-6: Biomarker PD Model simulations versus time-course data. Fed and 

fasted simulations (green and red respectively) are plotted for GSH and biomarkers 

(ALT, HMGB1, Full and fragmented K18) following a 530 mg/kg dose of APAP. 
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Figure 3-7: Model simulations versus dose-response data. Solid lines represent the 

experimental data used for calibration. Black dashed lines represent dose-response 

simulations of GSH and biomarkers (ALT, HMGB1 and fragmented K18) in fed mice for 

a range of APAP doses (0, 150, 300, 530, 750, 1,000 mg/kg) using the refined model. 

Red dashed lines represent dose-response simulations of GSH and biomarkers (ALT, 

HMGB1 and fragmented K18) in fed mice for a range of APAP doses (0, 150, 300, 530, 

750, 1,000 mg/kg) using the original model (defined in Chapter 2).  

 

3.3.3.  Identifiability analysis – refined model 

Following an identifiability analysis of the original model structure (results of which 

are defined in section 3.3.1 of this chapter), we refined the original model in an 

attempt to resolve some of the structural unidentifiabilities found from the analysis. 

This included, for example, rather than assuming similar dynamics for K18, 

modelling biomarkers full K18 and fragmented K18 to be necrotic and apoptotic 

versions of the same biomarker. All modelling refinements made in an attempt to 

improve structural unidentifiability issues are defined in section 3.3.2 of this chapter. 

As well as attempting to improve the structural unidentifiabilities concluded from the 

analysis, we also worked to improve the practical unidentifiabilities found within the 

model. To do so, we optimised the refined model against an extended experimental 

dataset. Whilst the initial model (Chapter 2) was optimised against data from one 

study [39], the refined model was optimised against data from three studies 

[35,39,131]. Since additional data was required, we chose to use fasted mouse data 

within optimisation, so that our model may be extended to make predictions for 
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individuals with suppressed GSH levels. While the identifiability analysis of the 

original model framework provided interesting insight, it was important to determine 

whether the changes made to improve the system were justifiable and had improved 

the confidence within the system. We therefore conducted an identifiability analysis 

on the refined model structure for comparison.  

To conduct this analysis, parameters in the refined model were individually 

perturbed to visualise resultant differences between model output and experimental 

data. These changes were assessed to determine the identifiability of each 

parameter. Results can be seen in Figure 3-8. In the refined model, 16 out of 27 

parameters were now identifiable. Parameter identifiability remained for the ALT 

component, and the GSH component of the model was now also completely 

identifiable. The PK component remained identifiable, other than the volume of the 

peripheral compartment (𝑉𝑝), which remained structurally unidentifiable. There were 

some unidentifiabilities still present within this updated model. Other structurally 

unidentifiable parameters included: 𝑅50, 𝑘𝑜𝑢𝑡  and 𝑔𝑚𝑎𝑥 from the HMGB1 

component; and  𝐾18𝑘𝑜𝑢𝑡, 𝑓𝑘𝑖𝑛, 𝑓𝑘𝑜𝑢𝑡, 𝑔𝑠ℎ𝜃1 and 𝜀 from the full and fragmented K18 

component. Practical unidentifiabilities remained for two parameters: the HMGB1 

Hill coefficient (𝑛) and the production capability of full K18 (𝑘𝑚𝑎𝑥). 

We now compare the results of applying an identifiability analysis to the original 

model structure defined in Chapter 2, and also the refined model defined here within 

this chapter. Comparative results can be seen in Figure 3-9. Less than half of the 

parameters (47%) were identifiable in the original model structure (only the ALT 

component of the model was completely identifiable), 24% of the model parameters 

were practically unidentifiable and 29% were structurally unidentifiable. However, 

following model refinement, the identifiability results improved; the percentage of 

identifiable parameters increased to above half of the parameters (60%). Parameter 

identifiability remained for the ALT component of the model and the percentage of 

practical unidentifiabilities reduced from 24% to 7%. The percentage of structural 

unidentifiabilities was approximately the same in both the original and refined model 

(29% compared to 33%). Whilst the GSH component was unidentifiable in the 

original model, it was completely identifiable in the refined model. Although 

unidentifiabilities improved for parameters in the HMGB1, K18 and f-K18 

components, some unidentifiabilities remained. 
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Figure 3-8: Identifiability analysis of the refined model structure. Figure annotation is the 

same as for Figure 3-4. Example results from figure: The ALT 𝑹𝟓𝟎 parameter is identifiable at 

the 1% level, the HMGB1 𝒏 parameter is practically unidentifiable, the PK 𝑽𝒑 is structurally 

unidentifiable. 
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Figure 3-9: Parameter identifiability comparison between the original and refined model. 

Each column represents a different sub-component of the APAP PKPD model. Each element 

(or square) represents the parameter’s identifiability within the model. Triangles in the bottom 

left-hand corner of each element represent the parameter’s identifiability in the original model 

structure. Triangles in the top right-hand corner of each element represent the parameter’s 

identifiability in the refined model structure. If the triangle is red, the parameter is structurally 

unidentifiable; if the triangle is yellow, the parameter is practically unidentifiable; if the triangle 

is green, the parameter is identifiable. If the triangle is grey, the parameter was not present 

within the corresponding model structure, and therefore could not be tested for identifiability. 
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3.3.4.  Predicting initial dose and time since administration 

as continuous variables 

We used the refined PKPD framework to simulate biomarker concentrations 

representative of 3 sub-populations; a “healthy” population, “high-risk” population 

and “mixed” population (virtual population details are described in section 3.2.5 of 

this chapter). Within each sub-population, each individual was provided a random 

dose of APAP, and biomarker concentrations were extracted at a random time-

point. As in Chapter 2 (section 2.3.5) a multiple linear regression analysis was 

applied to the in silico derived data in an attempt to predict the exact time since 

ingestion and initial APAP dose. For the healthy population, an exact time since 

administration could be estimated with an error of approximately 3.9 hours, and an 

exact initial dose amount could be estimated with an error of approximately 66.14 

mg/kg (Table 3-4). 

Time since administration could be predicted more accurately in the high-risk 

population, with a standard error of 2.118 hours. Initial dose was much harder to 

predict in the high-risk population, however, with the standard error being almost 

triple that of the model for the healthy population (184.1 mg/kg). Predictions for an 

assumed mixed population were similar to that of the healthy population, with a 

slight improvement in predicting time since administration (standard error 3.485 

hours) and a slight reduction in accuracy for predicting initial dose (standard error 

73.73 mg/kg). When predicting time since administration, in the healthy population, 

all biomarkers were significant, in the high-risk population, all biomarkers were 

significant, however, in the mixed population, ALT and fragmented K18 were no 

longer significant. When predicting dose, in the healthy population, all biomarkers 

except HMGB1 were significant, in the high-risk population, all biomarkers except 

fragmented K18 were significant, and in the mixed population, all biomarkers were 

significant.  
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Healthy Population 

 

 

High-risk Population 

 

Mixed Population 

Predictors 

 

Time 

 

Dose Time 

 

Dose Time 

 

Dose 

APAP Conc. -

16.549*** 

(1.1785) 

 

673.985*** 

(17.0745) 

-9.5093*** 

(0.5963) 

 

1295.366*** 

(47.8525) 

-18.122*** 

(0.9542) 

 

909.341*** 

(17.8005) 

ALT conc. 8.972*** 

(0.9533) 

 

 

515.625*** 

(13.8110) 

5.5034*** 

(0.6537) 

 

695.2118*** 

(52.4551) 

 

 

 

655.0837*** 

(17.2145) 

HMGB1 

conc. 

-

22.035*** 

(0.9113) 

 

 -8.8119*** 

(0.5440) 

 

367.0774*** 

(43.6578) 

-17.869*** 

(0.7705) 

 

289.2333*** 

(14.3736) 

FullK18 

conc. 

7.521*** 

(1.0632) 

 

479.137*** 

(15.4035) 

21.0427*** 

(0.4743) 

 

-

154.2403*** 

(38.0652) 

22.3833*** 

(0.9145) 

 

229.0486*** 

(17.0605) 

Fragmented 

K18 conc. 

-4.599* 

(1.3895) 

151.975*** 

(20.1309) 

 

3.8472*** 

(0.5962) 

 

 

 33.8383* 

(15.5231) 

 

 

Constant 14.918*** 

(0.3074) 

 

77.247*** 

(4.4529) 

5.8083*** 

(0.2527) 

-80.145*** 

(20.2759) 

12.6308*** 

(0.3694) 

 

-65.6354*** 

(6.8914) 

Residual 

Std. Error (df 

== 994) 

 

3.907 

 

66.14 

 

2.118 

 

184.1 

 

3.485 

 

73.73 

 

Note:  

 

*p<0.05 

 

**p<0.01 

 

***p<0 

   

Table 3-4: Multiple linear regression analysis results. Independent variable coefficients for 

predicting time since administration (Time) and initial dose (Dose) respectively for healthy, high-

risk and mixed populations. The first number in each element of the table represents the 

biomarker coefficient in the regression model and the second number represents the 

corresponding error. For example, -16.549 is the APAP concentration coefficient in the healthy 

population model predicting time since administration, and this coefficient has an error of 

1.1785. The standard error of overall model predictions is provided. The significance of each 

biomarker in the model is indicated by the number of asterisks (see note). 
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3.3.5. Visualisation and classification of in silico derived 

data 

As in Chapter 2, T-SNE visualisation was applied to the in silico derived data to 

investigate time/dose class structure/separability. Subsequently, various 

classification techniques were also employed, using the biomarker concentrations 

of the in silico observations in an attempt to classify a time/dose category. 

Differences in levels of discrimination regarding initial dose and time since 

administration for healthy, high-risk and mixed populations can be seen for each 

case by embedding the in silico derived data in two-dimensions using T-SNE (Figure 

3-10). Both variables, time since administration and initial dose, were reasonably 

separated in all healthy, high-risk and mixed populations. This result was supported 

by the reasonable accuracy rates of the classification techniques. Time since 

administration was difficult to discriminate from the biomarker concentrations in the 

healthy population, as shown by the cluster of observations of the right-hand side of 

Figure 3-10(A)). However, these same observations corresponded to low-dose 

situations, as shown in Figure 3-10(B) which visualises this same cluster of 

observations with regards to the initial dose,  

From measuring biomarker concentrations, a correct time since administration 

category could be predicted with 69.9% accuracy for the healthy population, and a 

correct initial dose category can be predicted with 91.5% accuracy. These results 

are indicated in Table 3-5. A time since administration category was easier to predict 

in the high-risk population (80.4% accuracy). However, predictions for initial dose in 

the high-risk population were less accurate than in the healthy population (79%). If 

an observation was assumed to be taken from a mixed population, the prediction 

accuracy was similar to that of a healthy population, with results of 69.94% and 

89.5% for time since administration and initial dose respectively. In our previous 

study, a correct time category could be predicted with 72.8% accuracy and a correct 

dose category could be predicted with 86.5% accuracy (Chapter 2, section 2.3.4). 

For a healthy population, the time classification results slightly worsened with our 

new framework. However, the dose classification results slightly improved. 
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A 

 

B 

 

C 

 

 

D 

 

E 

 

F 

 

Figure 3-10: Visualisation and classification of time-since-administration and dose 

results for healthy, high-risk and mixed populations. For time-since-administration, dark 

green represents class [0-2), orange represents [2-5), blue represents [5-10), pink represents 

[10-15) and pale green represents [15-24) hours. For dose, green represents [0-200], orange 

represents [201-400] and blue represents [401-1,000] mg/kg. TSNE visualisations of in silico 

mouse observations with respect to time since administration and initial dose can be seen in 

(A)-(B) for the healthy population, (C)-(D) for the high-risk population and (E)-(F) for the mixed 

population. 
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 Healthy 
Population 

High-risk Population Mixed Population 

Classification  
Method 
 

Time 
 

Dose Time 
 

Dose Time 
 

Dose 

KNN 
Regression 

66.2% 91.5% 80.4% 79% 69.5% 87.4% 

Naïve Bayes 
 

64.4% 91.3% 76.2%        72.7%      68.2% 88.5% 

Multinomial 
logistic 
regression 

68% 90.8% 73.1% 77.1% 75.7% 89.5% 

Ordinal 
logistic 
regression 

53.7% 90% 67.8% 78.1% 57.2% 87.5% 

Linear 
discriminant 
Analysis 

59.3% 90.7% 72.5% 77.9% 65.8% 87.8% 

Quadratic 
discriminant 
analysis 

69.9% 90.4% 76.8% 71.7% 69.94% 86.8% 

Table 3-5: Classification accuracy of predictions based on biomarker concentrations for 

healthy, high-risk and mixed populations. For example, the Quadratic discriminant analysis 

model can predict the correct time since administration category in the healthy population with 

69.9% accuracy. 

3.3.6.  Predicting the probability of liver injury 

Figure 3-11 shows how the probability of liver injury changes over time for both 

healthy and high-risk populations, for doses between 0-1,000 mg/kg. The model-

derived probabilities were dependent only on HMGB1 concentration (as predicted 

by our previous logistic regression model in Chapter 2). A threshold probability of 

0.5 was used to determine the threshold likelihood of DILI (white boundaries in 

Figure 3-11). Any observation within the white contour boundary was therefore 

predicted to be representative of probable liver injury.  

For the healthy population, the time-frame for biomarker concentrations 

representing those of probable liver injury was around 2 to 18 hours. The APAP 

dose threshold predicted to induce toxicity was approximately 350 mg/kg. Note that 

this prediction is only slightly above the currently used toxic dose (300 mg/kg) [97] 

whereas the framework provided in the previous chapter, predicted toxicity would 

be apparent at an APAP dose above 200mg/kg. The framework for a healthy 

population suggests that there is almost 100% chance of liver injury when the dose 

is only slightly higher than 350mg/kg. 
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A 

 

B 

 

Figure 3-11: Proposed framework for predicting the probability of liver injury dependent 

upon dose, time and HMGB1 concentration. The plotted frameworks are representative of 

both healthy (A) and high-risk (B) populations. In each, the white contour indicates the threshold 

of 0.5 probability of liver injury; the red dashed-line represents the currently used APAP dose 

for toxicity studies in mice; the white dashed-line represents toxic dose as proposed by our 

model; and the green dashed-line indicates currently considered therapeutic dose for mice. In 

the high-risk population, the toxic dose proposed by our model and the therapeutic dose are 

identical. 

For the fasted population, however, at the currently recommended therapeutic 

APAP dose (60 mg/kg), there was approximately 50% chance of liver injury 

progression. For any dose above the known therapeutic threshold, liver injury 

progression was predicted to be highly probable (above 60%); beyond 

approximately 2.5 h post-dose, HMGB1 concentrations remained indicative of highly 

probable liver injury for the whole time-course. 
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3.3.7.  Visualising the probability of liver injury following 

an APAP dosed based on biomarker concentrations 

In Chapter 2, we carried out a forward step-wise binary logistic regression analysis 

to determine the most significant panel of biomarkers in predicting the probability of 

liver injury. The analysis concluded that HMGB1 was the most significant biomarker 

for predicting DILI probability, with the output from SPSS software being a logit 

equation based solely on this biomarker concentration, 

 
𝐿𝑒𝑞  = 0.635[hmgb1] − 3.870. 

 

(3-8) 

Within this chapter, using the refined model, we simulated multiple in silico 

populations. For each observation within both the “healthy” and “high-risk” 

populations, simulated HMGB1 concentrations were substituted into equation (3-8). 

Then, using the standard probability equation, we calculated for each in silico 

individual the probability of liver damage as follows 

 
Probability of liver damage =

1

1 + e−𝐿𝑒𝑞
. 

 

(3-9) 

Each in silico observation was then visualised and discriminated by their resultant 

liver injury probability using the TSNE method (Figure 3-12). Relatively safe/unsafe 

observations were identifiable in both healthy and high-risk populations. For the 

healthy population (Figure 3-12(A)) most of the observations had less than around 

35% chance of DILI progression. The small group of observations representing at-

risk individuals can be identified at the top, right-hand side of the image, portrayed 

by red markers. In stark contrast, most of the in silico observations had almost 100% 

chance of liver injury progression in the high-risk population, as can be seen by the 

dominance of red markers in Figure 3-12(B). The observations corresponding to 

lower injury potential are indicated in both the central and the left-hand side of the 

plot. 
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A 

 

B 

 

Figure 3-12: two-dimensional TSNE visualisation of in silico observations with respect to 

their estimated probability of liver injury. Separated liver injury probabilities are visualised 

for a range of in silico generated inputs for both healthy (A) and high-risk (B) populations. 

Predicted DILI probabilities (0-1) for each individual observation are indicated by the colour bar. 

Dark blue represents 0% chance of liver injury progression, while dark red represents 100% 

chance. 

3.4. Chapter discussion 

The current clinical APAP treatment framework is known to be inaccurate, mainly 

due to a dependency on known time of APAP ingestion, but also due to inaccurate 

estimates of initial dose and being heavily based on biomarkers that are currently 

criticised for being insensitive [136]. In Chapter 2, we detailed a computational 

framework for predicting the probability of liver injury based on novel biomarker 

concentrations. Whilst mathematical models are increasingly being accepted as an 

efficient tool in toxicity testing [44,78], they are only a representation of the biology, 

and due to the necessity of assumptions for simplification, many uncertainties can 

arise (in both parameter estimates and subsequent output). For this reason, the 

most useful mathematical models are provided with a level of quantified uncertainty 

in their predictions, so that the frameworks can be utilised in the safest, most 
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efficient manner possible. We therefore used this chapter to determine any levels of 

uncertainty that were present in the framework defined in Chapter 2, and used the 

results to try and improve any uncertainties where possible. The identifiability 

analysis performed within this study did in fact highlight parameter unidentifiabilities 

within the original model that required addressing. The identifiability analysis 

established where the model defined in Chapter 2 required structural changes and 

also where more data was required in order to increase confidence in predictions. 

Using the results, we have re-structured the model where necessary and re-

parameterised against additional data (from both fed and fasted mice). A 

comparative identifiability analysis of the newly defined model structure found that 

only 7% of parameters are now practically unidentifiable (compared with 24% 

previously).  

As well as improving confidence in the mathematical representation of the system, 

we have now provided a model that is more representative of the clinical 

environment by firstly including a wider range of APAP doses (previously the model 

could account for an APAP dose range [0-600] mg/kg, whereas now we can account 

for a range of [0-1,000] mg/kg). Furthermore, the new treatment framework can now 

be adjusted for individuals considered to be at high risk of APAP-induced liver injury 

[5]. To account for the fact that many overdose patients tend to have an increased 

underlying susceptibility to APAP-induced liver injury, we chose to optimise our 

model against both fed and fasted mouse data. When training the biomarker models 

against multiple datasets and comparing to the model defined in Chapter 2, which 

is calibrated against only 530 mg/kg APAP dose time-course data, there were 

noticeable adjustments in the parameter values, particularly for the GSH model. 

Many of these changes are intuitive and may be representative of changes in 

mechanisms due to fasting. Additionally, changes may be attributable to the fact 

that the model can now better account for a larger variety of dosing scenarios. The 

significant changes in parameter values highlight the importance of optimising 

against a range of both therapeutic and toxic datasets and both healthy and 

unhealthy populations in the modelling field.  

The model we propose in this chapter is more biologically relevant than the previous 

model defined in Chapter 2. Originally, we assumed that full and fragmented K18 

had similar mechanisms and acted as independent biomarkers. However, full and 

fragmented K18 are known to be effectively necrotic/apoptotic versions of the same 

biomarker [88]. Incorporating this into our model framework we confirmed that 
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necrosis was the pre-dominant form of cell death in mice APAP overdose cases 

[137]. Also, an identifiability analysis on the new model structure established an 

increased confidence in parameter estimates for the GSH, HMGB1, full and 

fragmented K18 components of the model structure. There are, however, some 

unidentifiabilities remaining, particularly within the HMGB1 and fragmented K18 

components of the model, indicating that additional data and model development is 

still required in order to have full confidence in the uniqueness of the chosen 

mechanistic parameter values. 
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Chapter 4: Pre-clinical systems 
toxicology approach to treating 
paracetamol overdose: predicting 
cell death dynamics and 
investigating antidote treatment 
regimens
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4.1. Background 

Up until this point in the thesis, we propose an in silico framework based on mouse 

data which can provide accurate predictions regarding whether or not an APAP 

overdose has taken place (by quantifying dose amount and time since 

administration), and whether an overdose is likely to progress into liver injury. There 

are, however, aspects of the model which require improvement prior to 

contemplating eventual translation to humans.  

Throughout the analyses until this point, HMGB1 outperforms all other biomarkers 

in predicting overdose and probability of liver injury, including the current clinical 

favourite ALT. As well as lacking in sensitivity, ALT is also considered sub-optimal 

in the APAP overdose case due to its non-liver specificity [138]. Although the novel 

biomarkers used in our in silico framework provide enhanced mechanistic 

information relating to the underlying basis of APAP toxicity [87], and our results 

thus far suggest that HMGB1 is particularly sensitive, the non-liver specificity issue 

remains for all biomarkers.  

An additional issue is that currently, the mathematical model is built assuming that 

cell death is one general mechanism. In fact, cell death can usually be described by 

one of two mechanisms: necrosis and apoptosis [31]. Necrosis is rapid and 

irreversible and occurs when an external trauma causes cells to quickly inflame and 

become damaged. Apoptosis, however, is a much slower physiological process and 

occurs when the external stimuli has not caused so much injury to the cell, that is 

has the energy (Adenosine Triphosphate, ATP) to programme its own demise, with 

cellular metabolism and membrane integrity being maintained until very late stages 

[32]. There is extensive research-based evidence to demonstrate that necrosis is 

the dominant form of APAP-induced hepatocellular death in overdose cases [33–

35]. However, mild levels of APAP toxicity can cause apoptosis [33] and, in both low 

and high APAP dose cases, there is evidence that these modes of cell death can 

simultaneously exist until ATP levels deplete, with necrosis dominating for higher 

doses [139]. Identifying the mode of cell death can therefore be beneficial in 

determining whether or not a patient is a mild toxicity/overdose case. Coupling this 

with our dose and time since administration predictions will strengthen our 

framework. Our framework can predict, for the mouse case, individuals likely to 

develop liver injury, and therefore those who may benefit from intervention with 
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antidote therapy. This project has the aim of providing a proof-of-concept framework 

which cannot only predict cases where intervention may be necessary, but also 

provide the optimal treatment strategy. By incorporating information regarding the 

mode of cell death at different doses/time points, the accuracy of the model with 

regard to predicting when to intervene may be improved.  

The PKPD model is currently developed based upon mice dosed with various 

amounts of APAP and no treatment with the antidote, N’acetylcysteine (NAC). This 

means that up until this stage, we propose a proof-of-concept framework for initial 

patient presentation, however the model may not be useful as a platform for 

monitoring changes in liver injury potential following an antidote. Since NAC is not 

initially included in the modelling framework (defined in Chapters 2 and 3), we 

require additional data and model development. 

The In vitro Toxicology Society (IVTS) provide Mini-Fellowship awards, which allow 

early-career scientists to learn techniques which are useful for their research aims, 

but are currently unavailable at their home institution. The aim is to promote further 

career development within the in vitro toxicology field, and also to build strong 

collaborations between in silico and in vitro researchers. In 2017 I was successful 

in winning the IVTS Mini-Fellowship award, and used the £1.5k to fund experimental 

work in collaboration with the University of Liverpool to fill the aforementioned data 

gap and allow further model refinement. As well as providing additional data, the 

fellowship allowed me to obtain hands-on experience of the wet-lab environment, 

and form collaborations with in vitro experimentalists. The experiments were carried 

out in collaboration with a University of Liverpool PhD student, Nathalie De Bois-

Brillant. To obtain the necessary data, we exposed primary mouse hepatocytes to 

a range of antagonist (APAP) and antidote (NAC) concentrations to investigate their 

interaction, whilst conducting experimental tests to understand their effect on cell 

dynamics and mode of cell death. 

In order to provide experimental insight into the cell dynamics, we provide results of 

an ATP assay used to quantify cell viability. In order to determine the mode of cell 

death we provide results from experiments based on Western Blotting for Caspase 

3 (an apoptosis marker) and quantitative polymerase chain reaction (qPCR) 

analysis for miR-122 (a necrosis marker). The necrosis marker is chosen to be miR-

122 due to its high level of liver-specificity, something the model is hitherto lacking. 

Additional to these experimental findings, we provide results from a fluorescence-

activated cell-sorting (FACS) analysis which compares the amount of apoptosis 
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versus necrosis present at 24h. In order to test the predictivity of biomarkers in an 

APAP overdose case, and also in an APAP plus antidote treatment (APAP+NAC) 

case, we apply multiple linear regression analysis. The mathematical model defined 

in Chapters 2 and 3 is extended within this chapter in order to simulate cell viability 

dynamics in both the APAP and APAP+NAC cases. Administration schedules of 

NAC are investigated and compared, determining the effects on biomarker output, 

probability of liver injury and severity of cell damage. 

Chapter aims 

 Generate and analyse in vitro experimental data to better understand the 

influence of NAC administration on biomarker concentrations and their 

subsequent predictivity. 

 Obtain greater understanding of liver injury at the cellular level. 

 Investigate the effects of NAC administration on defined APAP toxicity 

measures. 

4.2. Methods 

All experiments were carried out at the University of Liverpool under the supervision 

of Nathalie De Bois-Brillant. The protocols described were undertaken in 

accordance with criteria outlined in a license granted under the Animals (Scientific 

Procedures) Act 1986 and approved by the University of Liverpool Animal Ethics 

Committee. 

4.2.1. Experimental methods 

4.2.1.1. Mouse hepatocyte isolation 

Hepatocyte isolation was carried out by Nathalie De Bois-Brillant at the University 

of Liverpool. Again, methods are detailed here for completeness. 

Mice were ordered 7 days prior to the planned experiment to allow for 

acclimatisation. Wash, perfusion and digestion buffers were prepared one day prior 

to the planned experiment and stored in the fridge until required. When preparing 

perfusion and digestion buffers, HEPES was added first to aid salt dissolution. 
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The perfusion buffer was made by the following method: 

Mouse 250 ml perfusion buffer 

5 ml HEPES (1M) 

217.6 ml ddH2O 

25 ml 10X HBSS 

1.2 ml 7.5% (w/v) NaHCO4 

1.25 ml EDTA (50 mM) 

pH to 7.35-7.46 

The digestion buffer was made by the following method before being split into two 

bottles: 150 ml (referred to as DGI) and 100 ml (referred to as DGII) 

Mouse 250 ml digestion Buffer  

5 ml HEPES  

216.3 ml ddH2O  

25 ml 10X HBSS 

1.2 ml 7.5% (w/v) NaHCO4  

25 mg MgSO4  

1.25 ml CaCl2 

pH to 7.35-7.46 

DGI was kept on ice and used only after hepatocyte isolation. DGII was warmed in 

the water bath, as was 2.5 mg of 20X collagenase which was then added to DGII 

immediately before tissue digestion. DGI did not contain collagenase and could 

therefore be used to spin cells whereas DGII could be used for digestion. 

4.2.1.2. Liver Perfusion 

Liver perfusion was carried out by Nathalie De Bois-Brillant at the University of 

Liverpool. 

The centrifuge was set to a 4°C cycle. The perfusion pump was set up to run at a 

speed of 8 ml/min (14G tube). Pentobarbitone was taken out of the fridge and diluted 

down 1:3 in 0.9% saline from a 200 mg/ml stock solution to 50 mg/ml and left aside 

to reach room temperature. Mice were dosed into the peritoneal cavity 

(intraperitoneally, i.p), which is situated just below the abdomen, with 1 µl/g of diluted 

solution. The level of anesthesia was determined by loss of corneal reflex response 

and foot withdrawal response. Once the mouse was completely sedated, the 
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perfusion was quickly performed via cannulation of the inferior vena cava and the 

portal vein was cut to relieve pressure. The liver was perfused with wash buffer until 

cleared and then perfused with digestion buffer until digested. The liver was then 

transferred to a petri-dish for release of cells. 

4.2.1.3. Cell release 

Cell release was carried out by Nathalie De Bois-Brillant at the University of 

Liverpool. Methods are detailed here for completeness. 

The liver was placed into a 50 ml falcon tube containing ice cold 1X DGI. On ice, 

the liver hepatocytes were cleaned by stripping the capsule at the edges. Using 

curved forceps, holes were made in the four lobes of the liver. The liver was flipped 

to the underside and this process was repeated. The liver was punctured many 

times, before being gently shaken in buffer until the biliary tree became visible. The 

crude cell mixture was then put through a 100-micron filter to remove connective 

tissue and aggregates. The hepatocytes were collected and 50 g were spun for 2 

minutes. The supernatant was discarded and the hepatocytes were then re-

suspended using ice cold digestion buffer (without collagenase). The spin was then 

repeated. This process (discarding, washing and spinning) was repeated to obtain 

a pellet of pure hepatocytes. The hepatocytes were then cultured in the following 

medium 

Hepatocyte culture medium (/100 ml) 

1 ml P/S 

1 ml L-Glutamine 

1 ml ITS 

100 µl of 100 µM DEX 

96.9 ml Williams Medium E 

10% FBS omitted since performing ATP assay 

Once the liver was perfused and cells released, I was then involved in carrying out 

each of the experiments that follow, under the supervision of Nathalie. We first 

investigated the effects of APAP and NAC on cell viability. Secondly, we 

investigated the effects of APAP and NAC on the mode of cell death 

(apoptosis/necrosis).  
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4.2.1.4. Dosing 

All cells were incubated for 24 hours. Following this, the primary mouse hepatocytes 

were exposed to a range of concentrations of APAP (0-20 mM) and one hour later 

were further exposed to varying concentrations of NAC (0-5 mM).  

4.2.1.5. Cell viability – ATP 

Adenosine Triphosphate (ATP) is the main energy source for all cells [140]. 

Measuring cellular ATP levels is therefore often used to measure cell functionality; 

reduction in cellular energy levels can in turn be assumed to represent reduction in 

cell viability. We therefore carried out an ATP assay to determine how different dose 

combinations of APAP+NAC effected cell functionality over time. 

ATP content of the cells was measured using a kit ATP bioluminescent somatic cell 

assay kit (Sigma-Aldrich) following the manufacturer’s instructions. 20 µl of assay 

reagent was added to each well and shaken for one minute. 100 µl from each well 

was then plated onto a 96-well flat-bottomed plate and left to incubate for five 

minutes. Luminescence was measured using VarioSkan flash plate reader 

(Thermo-Fisher).  

4.2.1.6. Bradford Assay 

A Bradford assay was used to measure the total protein concentrations in the cells. 

Within our experiments, the Bradford protein quantification assay was performed in 

accordance with the manufacturer’s instructions (BioRad, UK). Six 500 ug/ml 

dilutions of a protein standard (bovine serum albumin, BSA) were prepared. 

Duplicates of each protein standard and sample (20 µl) were pipetted into separate 

microtitre wells. Following this, 200 µl of diluted dye reagent (prepared by diluting 1 

part dye reagent concentrate with 4 part DDI water) was added to each well. They 

were then incubated at room temperature for 10 minutes. A standard curve was 

constructed using BSA (Sigma-Aldrich) between the concentrations 0-1 mg/ml. 

Absorbance was measured at 595 nm. 

4.2.1.7. Gene quantification– Western blotting  

Western blotting is an experimental technique that can detect and quantify particular 

proteins among a mixture of proteins [141]. Firstly, all proteins are separated into 

their linear chains and then separated according to their size using a method called 

gel electrophoresis. Once separated, each protein is transferred onto a blotting 
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membrane. The membrane subsequently undergoes a blocking procedure which 

disables any non-specific reactions. A primary antibody is then used to incubate the 

membrane, which specifically binds to the protein of interest. Any unbound primary 

antibody is washed away and the membrane is then incubated with a secondary 

antibody. The secondary antibody not only specifically recognises and binds to the 

primary antibody, but is also linked to a reporter enzyme that produces colour or 

light, allowing for the detection of the protein of interest. We carried out Western 

Blotting analysis to detect levels of protein markers, actin and caspase. 

Sample preparation 

A master mix of lithium dodecyl sulfate (LDS) sample buffer and reducing agent 

(70:30) was created. Each sample was added to 5 µl of the master mix, centrifuged 

for 30 seconds and placed in a heating block at 80ºC for 10 minutes. 

Loading Precast Gel 

Precast 4-12% Bis-Tris gel was locked into the electrophoresis unit. 1X MOPS 

running buffer was created by diluting 50 ml of 20X MOPS in 950 ml dH2O. The 

MOPS running buffer was mixed and poured into the central chamber of the 

electrophoresis unit. The outside of the chamber was filled with MOPS running 

buffer to approximately half of the total volume. The heated samples were pulse-

spun and loaded into the appropriate wells of the gel. 5 µl of protein marker were 

loaded in the first well whilst 10 µl of protein marker were loaded into each sample 

well. The gel was then run for 10 minutes at 90V followed by 1 hour at 170V. 

Electrophoretic transfer 

1X transfer buffer was prepared by mixing 100 ml 10X transfer buffer + 200 ml 

MeOH + 700 ml dH20. Each gel had 3x sponges, 2x filter papers, 1x transfer buffer 

and 1x nitrocellulose membrane (GE Healthcare, Little Chalfont, UK). The plastic 

plates were opened using a spatula and the gel remained attached to one plate. 

The wells were cut away from the top of the gel, and the ridge cut away from the 

bottom of the gel. Pre-soaked filter paper and a nitrocellulose membrane were 

placed onto the gel, and the gel was carefully peeled off the plate with a spatula. 

The gel was placed onto the bench (filter-paper down) and the pre-soaked 

membrane was placed on top of the gel. An additional pre-soaked filter paper was 

placed on top of the membrane. The transfer cassette was then assembled and 

locked into the transfer chamber. Both the cassette and cool pack were inserted into 
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the transfer tank. The transfer tank was filled with 1x transfer buffer until almost full 

and stirred for 1 hour at 230mA. 

Protein detection 

The membrane was rinsed in 0.1% TBST and stained with ponceau red for 10 

seconds. The membrane was then cut at 37 kDa marker for ß-Actin (42 kDa) and 

for caspase 3 (35 kDa). The actin membrane was blocked in 10% milk blocking 

solution overnight whilst the caspase membrane was blocked for 1 hour. The 

primary caspase 3 antibody was then added at the required dilution of 1:2000 in 2% 

milk and incubated overnight at 4°C. The actin membrane was incubated in 10% 

milk blocking-solution on a rocker overnight at 4°C. The primary actin antibody was 

added at a dilution of 1:10,000 in 10% milk blocking-solution and the actin 

membrane was incubated on the rocker for 30 minutes at room temperature. Both 

actin and caspase 3 membranes were washed for 4 x 10 minutes in 0.1% T-TBS. 

The secondary antibody solutions were prepared (anti-mouse HRP at a dilution of 

1:10,000 in 2% milk for actin and anti-rabbit HRP at a dilution of 1:10,000 in 2% milk 

for caspase 3) and added to the necessary membrane, each being incubated on the 

rocker for 1 hour at room temperature. Both membranes were then washed for 4 x 

10 minutes in 0.1% T-TBS. 

Visualisation of immune reactivity was completed using Enhanced 

Chemiluminescence Plus (ECP) (Perkin Elmer, MA, U.S.A) according to the 

manufacturer’s instructions. Membranes were blotted dry and covered with a 

chemiluminescence reagent for 2 minutes. Membranes were then covered in Saran 

wrap and exposed to ECL film in a dark room for 1-15 minutes. All western images 

were scanned and analysed using Quantity One 1-D analysis software (Bio-Rad, 

Hercules, CA, USA). 

4.2.1.8. microRNA quantification– qPCR 

We aim to measure genetic changes over time in order to quantify protein markers. 

During Deoxyribonucleic acid (DNA) analysis, amplification is required in order for 

there to be enough DNA to provide a detectable signal for quantification [142]. 

Polymerase Chain Reaction (PCR) is a technique for amplifying DNA. Firstly, all 

double stranded DNA is “melted” into single strands, with each half representing a 

template for a new molecule. A polymerase enzyme then synthesises a 

complementary sequence of bases to each single strand of DNA. Adding small 

pieces of DNA, complimentary to the gene of interest (known as primers), prepares 



106 
 

the DNA sample, ensuring the polymerase can bind. This eventually results in a 

copy of the gene of interest. In order to quantify this reaction, probes (or 

fluorescently labelled DNA oligonucleotides) can be added to the mixture, which 

bind downstream to one of the primers and give a fluorescent signal during the 

reaction. As the number of gene copies increases, so too does the fluorescence. 

This real-time analysis is often referred to as “quantitative” PCR or qPCR.  

Within our study, measuring the number of gene copies over time allowed for 

quantification of an apoptotic marker (Caspase) and a necrotic marker (miR-122). 

miRNA extraction 

For amplification to occur, miRNA must first be extracted and “melted” into single 

strands, with each half representing a molecule template for copying. All samples 

were stored in frozen conditions to ensure all DNA information remained intact and 

to ensure no enzymatic reactions could take place. Therefore, before miRNA 

extraction could occur, the samples were firstly defrosted and spun down. The 

amount of supernatant used for the extraction was up to 200 µl. 700 µl of Qiazol 

reagent was added and then mixed by vortexing. The mixture was incubated at room 

temperature for 3 minutes to ensure thorough nucleo-disruption. 140 µl of 

chloroform was added and the tubes were shaken vigorously by hand for 15 

seconds, before being left at room temperature for a further 5 minutes. Once 

centrifuged at 12,000 rpm for 15 minutes at 4°C, the samples were allowed to 

equilibrate at room temperature. 350 µl of supernatant was transferred to RNeasy 

mini-spin columns which were then placed inside collection tubes and centrifuged 

at 8,000 rpm for 15 seconds at room temperature. The flow-through was then finally 

transferred to a 2 ml micro-tube.  

Purification 

Purification of RNA is central to any gene expression/regulation investigation; it is 

essential to reduce the chance of degradation which could dramatically affect the 

quality of the qPCR data. Once extracted from the samples, the miRNA was then 

able to be purified.  

Within our experiments, in order to purify the miRNA, 450 µl of 100% ethanol was 

added to the previously collected flow-through and mixed by vortexing. Samples 

were applied (700 µl at a time) to RNeasy MinElute columns until the there was no 

sample remaining. They were then centrifuged at 8,000 rpm for 15 seconds at room 
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temperature before the flow-through was discarded. 500 µl of RPE buffer was added 

to the MinElute column and then centrifuged at 8,000 rpm for 15 seconds at room 

temperature. The flow-through and collection tubes were then discarded. The 

column was then placed in a fresh collection tube ensuring MinElute column had no 

residual flow-through to avoid contamination. The columns were then centrifuged 

with their lids open at 8,000 rpm for 5 minutes to ensure they were completely dry. 

The MinElute column was placed into a 1.5 µl micro-tube and 14 µl of RNAse-free 

water was pipetted onto the spin column membrane and centrifuged at 8,000 rpm 

for 1 minute at room temperature to elute the purified miRNA fraction. 

Reverse Transcription 

The reverse transcription (RT) stage is critical for accurate and sensitive RNA 

quantification [142]. It is at this point that a polymerase enzyme then synthesises a 

complementary sequence of bases to each single strand of DNA.  Within our 

experiments, reverse transcription was performed using the TaqMan miRNA 

reverse transcription kit (Applied Biosystems) following manufacturer instructions. 

The primers (or small pieces of DNA complimentary to the gene of interest) used 

were miR-22 and U6 (endogenous control). A GeneAmp PCR9700 machine was 

used to carry out the analysis. 2 µl of purified miRNA was used to synthesise 

complementary DNA (cDNA) with a total reaction volume of 15 µl in a 96-well PCR 

plate which was held in an ice block. RT was performed via thermal cycling (30 min 

at 16°C, 30 min at 42°C, 5 min at 85°C and then held at 4°C).  

miRNA PCR 

Primers (or small pieces of DNA complimentary to the gene of interest) allow the 

polymerase enzymes to bind and form a copy of the gene. In PCR, probes are 

added to the mixture which provide a fluorescent signal during the reaction, so that 

the number of copies can be quantified. For the quantification to take place within 

our experiments, 1.33 μl of cDNA from the RT were used in duplicate, with the use 

of corresponding specific qPCR primers (Life Technologies) and Taqman PCR 

Master mix (Life Technology) according to manufacturer’s instructions. 1.33 µl of 

cDNA was used and plated by a QIAgility (Qiagen) machine for high-precision 

automated PCR setup and analysed on a ViiA7 machine (Life Technologies). After 

undergoing thermal cycling (40 cycles of 15 sec at 95oC and 60 sec at 60oC), levels 

of miRNA were measured by the fluorescent signal produced from the Taqman 

assay probes.  
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4.2.1.9. Cell sorting– FACS 

Flow cytometry is a powerful tool used for analysing complex cell populations within 

a short space of time [143]. The process works by suspending cells into a stream 

that creates a laminar flow, allowing each cell to pass an interrogation point, where 

a beam of monochromatic light intersects the cells. The directions in which the 

emitted light from the cells are given off allows the computer to conclude various 

things about the cell, with particular focus on its shape and size. A derivate of flow 

cytometry, fluorescence-activated cell sorting (FACS) allows a researcher to 

physically sort a heterogeneous mixture of cells into different populations due to the 

use of highly specific antibodies tagged with fluorescent dyes [144]. With this in 

mind, we used FACS to sort our cell population with regard to the mode of cell death 

(apoptosis or necrosis). 

The following method was adapted from eBiosciences staining protocol. 

Supernatant, including cell debris, was harvested and transferred into 1.5 ml EP 

tubes on ice. The cells were then rinsed with PBS to remove serum and the adherent 

cells were harvested by using trypsin in the same 1.5 ml EP tube. The cells were 

then spun twice, firstly for 5 minutes at 3000 rpm and secondly for 8 seconds at 

12,000 rpm. The supernatant was removed and the cell pellets were put on ice, re-

suspended in 200 µl of cold PBS and transferred to round bottom 96-well plates. 

The 96-well plates were spun at 2300 rpm for 3 minutes at 4°C. The PBS was then 

discarded and the cell pellets re-suspended in cold PBS. The spinning process was 

repeated but once the PBS was discarded, the cells were this time re-suspended in 

2.5 µl annexin-FITC per well. The cells were mixed with a multichannel pipette and 

incubated in the dark, whilst shaking, for 10 minutes at room temperature. Following 

incubation, the cells were washed in 200 µl of binding buffer and centrifuged at 2300 

rpm for 3 minutes at 4°C. The supernatant was discarded and the cell pellets were 

re-suspended in 190 µl of binding buffer. 200 µl of binding buffer was added to the 

FACS tube and then 190 µl of cell suspension was also transferred. The samples 

were kept on ice. Just prior to acquiring the samples in the FACS, 10 µl of propodium 

iodide-A (PI) per tube was added. The FACS machine then acquired information 

regarding cell survival; flow cytometry was used to sort any dead cells with regard 

to their mode of cell death (apoptosis vs necrosis).  

4.2.2. Statistical methods 
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4.2.2.1. Multiple linear regression: predicting cell viability 

To test the use of biomarkers in predicting cell viability, multiple linear regression 

analysis was applied. This method uses more than one predictor variable (in this 

instance, multiple biomarkers) to predict an outcome variable (in this instance, cell 

viability). In the linear regression setting, the outcome variable must be continuous 

rather than nominal/categorical. The observed data (𝑌, representing cell viability) is 

a linear function of the predictor variables (𝑋1, 𝑋2, 𝑋3, 𝑋4 and 𝑋5, representing 

biomarker concentrations APAP, ALT, HMGB1, Full K18 and Fragmented K18, 

respectively). If all of the predictor variables were significant, and therefore included 

in the model, the relationship between predictor and outcome variables can be 

represented using a generalised linear model: 

 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5. (4-1) 

The objective of multiple linear regression is to optimise the parameters, 𝛽𝑖  (𝑖 =

0…5), so that the model provides the best fit to the observed (cell viability) data. 

Since a generalised linear model is assumed, ordinary least squares is a sufficient 

fitting method (minimising the distance from the model output and the data points 

[145]). In order to apply multiple linear regression analysis, there are several data 

assumptions that must be tested in order to ensure the method is appropriate for 

use and therefore the results are interpretable. The key assumptions are: 

 The outcome variable is measured on a continuous level. This assumption 

holds since cell viability is measured on a continuous level. 

 One or more of the predictor variables are continuous, ordinal or nominal. 

The predictor variables in our model are represented by biomarker 

concentrations (APAP, ALT, HMGB1, Full K18 and Fragmented K18), all of 

which are measured on a continuous level. 

 Observations must be independent. The Durbin-Watson statistic was used to 

test independence of the observations. This statistic tests for autocorrelation 

in the residuals from a statistical regression analysis. The test statistic 

created by Durbin and Watson summarises how each of the residuals vary 

in comparison to one another and the formula can be found in their study 

[146]. For independence to be present, the Durbin-Watson value can range 

between 0-4 but should be approximately 2 to indicate that there are no 

correlations between residuals (values from [0,2) indicate positive 

autocorrelation and values more than (2,4] indicate negative autocorrelation). 
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The Durbin-Watson statistic resulting from this dataset is 2.048 and therefore 

the independence of observations can be assumed. 

 Multi-collinearity should not be present between any predictor variables. This 

assumption was tested using the Variance Inflation Factor (VIF) test. The VIF 

is indicative of the amount of variance an estimated regression coefficient is 

increased by due to multicollinearity. Since the VIF is representative of 

increased variance, the square root of this result would be indicative of the 

increased standard error. As an example, a variable with VIF = 16 has a 

standard error 4 times larger than it would be if the variable was uncorrelated 

with the other variables. A recommended reasonable range for the VIF is 

[1,10]. Predictor variables were tested and remained within this range (all 

values within [1,3]). Therefore, multicollinearity does not exist between the 

predictor variables and the assumption is valid. 

 Outliers/highly influential points should not be present in the observed data. 

No outliers were identified. 

 Residuals should be approximately normally distributed. A histogram and 

normal P-P plot of the standardized residuals were inspected, and the data 

was found to be approximately normally-distributed. 

 

Figure 4-1: Data diagnostic plots. (A) Histogram – Visualisation of how the standardized 

residuals are distributed. For data to be diagnosed as normally distributed, the mean value 

should be approximately 0 and the standard deviation should be approximately 1. (B) Normal 

P-P plot of regression standardised residual. The cumulative probability expected from the 

model is plotted against the observed cumulative probability. For the data to be diagnosed as 

approximately normally distributed, most results (circles) should lie along the diagonal line. 
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Various regression models were created for subsets of the dataset (no antidote, 

1mM NAC, 2mM NAC, 3mM NAC, 4mM NAC, 5mM NAC) and then a regression 

model was created for the whole dataset 

A forward stepwise approach was used for each regression model. This means that 

the method (employed in SPSS) creates iterative multiple linear regression models. 

At each iteration, only the most significant predictor is included. An additional 

predictor is only included in the model if it provides improvement to the overall 

significance of the model. The resultant predictive biomarkers for each model 

created can be found in Table 4-1. 

4.2.3. Mathematical modelling 

4.2.3.1. Formulation 

We extended the PKPD framework described in Chapters 2 and 3 to account for 

cell functionality following an APAP dose. We employed a mathematical model 

defined by Remien et al. [73] which describes how functional and damaged cells 

change over time. In our model, we assumed that functional cells could be 

represented by viable cells, and therefore optimised the parameters against the cell 

viability data obtained from the experiments I carried out with my IVTS fellowship 

prize.  

The model for functional and damaged hepatocytes defined by Remien et al. is 

given by 

 𝑑𝐻

𝑑𝑡
= 𝑟𝐻 (1 −

𝐻 + 𝑍

𝐻𝑚𝑎𝑥
) − 𝜂[N]𝐻, (4-2) 

 𝑑𝑍

𝑑𝑡
= 𝜂[N]𝐻 − 𝛿𝑧𝑍, 

(4-3) 

where 𝐻 is the number of functional hepatocytes, 𝑍 is the number of damaged 

hepatocytes, 𝑟 is the functional hepatocyte regeneration rate (h-1), 𝐻𝑚𝑎𝑥 is the 

maximum number of hepatocytes, 𝜂 is the functional hepatocyte damage rate 

(l/µmol/h), [N] is the NAPQI concentration (µmol/l) and 𝛿𝑧 is the damaged 

hepatocyte lysis rate (h-1). Since our experimental data is expressed in terms of 

proportional cell viability, we set 𝐻𝑚𝑎𝑥 = 1 and effectively rescale such that 𝐻 

becomes the proportional number of functional hepatocytes and 𝑍 becomes the 

proportional number of damaged hepatocytes relative to the maximum. In Chapter 
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2, we described how the dynamics of NAPQI are assumed to be short-lived and the 

associated reactions are rapid on the time-scale of APAP depletion. In the model 

framework described in Chapters 2 and 3, we assume that NAPQI is at a quasi-

steady state on the time-scale of APAP PK. We re-introduce our NAPQI model here 

in equation (4-4): 

 𝑑[N]

𝑑𝑡
= 𝜉𝑘𝑒𝑙[Cc] − 𝑘𝐺[N][gsh] − 𝑘𝑝[N], 

(4-4) 

where 𝜉 is the proportion of CYP-activated APAP that is transformed into NAPQI, 

𝑘𝑒𝑙 (h
-1) is the total rate of APAP elimination, 𝑘𝐺  (l/µmol/h) is the decay rate of GSH 

due to binding with NAPQI, and 𝑘𝑝 (h-1) is the rate at which NAPQI binds to other 

non-GSH proteins. We can derive the expression for NAPQI concentration by 

making use of the quasi-steady state approximation, 𝑑[N]/𝑑𝑡 = 0. By substitution 

into equation (4-4), it follows that 

 
N =

𝜉𝑘𝑒𝑙[Cc]

𝑘𝐺[gsh] + 𝑘𝑝
. (4-5) 

In vivo, hepatocytes have the ability to regenerate, whereas in the in vitro 

environment, they do not. Our aim was to create a mathematical model describing 

cell functionality following APAP dose, for which the parameters were representative 

of the in vitro scenario. Bearing this in mind, we adjusted Remien’s in vivo functional 

hepatocyte model (equation (4-5)) to result in the model shown in equation (4-6): 

 𝑑𝐻

𝑑𝑡
= −𝜂[N]𝐻. (4-6) 

The dynamics of functional hepatocytes in vitro could now be described by the 

model defined in equation (4-6). The dynamics for damaged hepatocytes in vitro 

could be modelled in the same way as the in vivo scenario (equation (4-3)).  

As well as modelling the effects of APAP on cell functionality, it is also essential to 

model the effects of antidote (NAC) on cell functionality. The distribution of NAC 

throughout the body can be represented mathematically by a 3-compartment model 

[147], with one (central) compartment consisting of well-perfused tissues and two 

peripheral compartments that contain poorly perfused tissues such as fats and 

blood binding proteins for example. Whilst APAP quickly distributes to well perfused 

tissues (central compartment) and secondarily to poorly perfused tissues 

(represented as one peripheral compartment), the PK of NAC has been shown to 

require an additional peripheral compartment as physiological which accounts for 
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different affinity sequestrations (to peripheral tissues, binding proteins etc.). In line 

with these findings, we employed a 3-compartment model previously described by 

Shen et al. [148] (Figure 4-2). 

 

Figure 4-2: Schematic of N’acetylcysteine (NAC) dynamical model described by Shen et 

al. [148]. A dose of NAC is provided and instantaneously reaches the first compartment (nacA). 

There are then continual rates of transfer to and from other compartments, nacB (𝒌𝟏𝟐 and 𝒌𝟐𝟏) 

and nacC (𝒌𝟏𝟑 and 𝒌𝟑𝟏). NAC is eliminated at rate 𝒌𝒆𝒍 from the first compartment (nacA). 

 

The model schematic portrayed in Figure 4-2 can be mathematically described as 

follows, 

 𝑑[NA]

𝑑𝑡
=
𝑁𝐷𝑜𝑠𝑒

𝑉𝑁𝐴
+ 𝑘𝑁21[NB] (

𝑉𝑁𝐵
𝑉𝑁𝐴

) + 𝑘𝑁31[NC] (
𝑉𝑁𝐶
𝑉𝑁𝐴

)

− (𝑘𝑁12 + 𝑘𝑁13 + 𝑘𝑁𝑒𝑙)[NA],   

(4-7) 

 𝑑[NB]

𝑑𝑡
= 𝑘𝑁12[NA] (

𝑉𝑁𝐴
𝑉𝑁𝐵

) −  𝑘𝑁21[NB], 
(4-8) 

 𝑑[NC]

𝑑𝑡
= 𝑘𝑁13[NA] (

𝑉𝑁𝐴
𝑉𝑁𝐶

) −  𝑘𝑁31[NC], 
(4-9) 

 

where [NA] is the total NAC concentration in the central compartment (µmol/l), [NB] 

and [NC] are the total NAC concentration in either peripheral compartment B or 

peripheral compartment C (µmol/l), 𝑁𝐷𝑜𝑠𝑒 is the initial dose of NAC provided (µmol), 

𝑉𝑁𝐴 is the theoretical volume of the central compartment (l/kg), 𝑉𝑁𝐵 and 𝑉𝑁𝐶  are the 

theoretical volumes of peripheral compartments B or C respectively (l/kg), 𝑘𝑁12 is 

the rate of transfer of NAC from the central compartment to peripheral compartment 

B (h-1), 𝑘𝑁21 is the rate of transfer of NAC from peripheral compartment B to the 

central compartment (h-1), 𝑘𝑁13 is the rate of transfer of NAC from the central 
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compartment to peripheral compartment C (h-1),  𝑘𝑁31 is the rate of transfer of NAC 

from peripheral compartment C to the central compartment (h-1), 

and 𝑘𝑁𝑒𝑙 represents the overall elimination rate of NAC (summation of excretion and 

metabolism processes) (h-1). 

These equations are applicable when a bolus dose of NAC is assumed, with the 

dose amount being converted to a concentration as described in equation (4-7) but 

redefined here for completeness, 

 
𝑁𝐴𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑏𝑜𝑙𝑢𝑠 = 

𝑁𝐷𝑜𝑠𝑒

𝑉𝑁𝐴
. (4-10) 

 

However, NAC regimens are typically administered via intravenous infusion, and 

therefore an infusion rate 𝑘𝑖𝑛𝑓 (μmol/kg/h) needed to be defined in the model based 

upon both dose amount and infusion time. For example, if a dose of 50 mg/kg is 

administered over 4 hours, 𝑘𝑖𝑛𝑓 = 12.5 mg/kg/h. In this scenario the infusion 

parameter, 𝑘𝑖𝑛𝑓, replaces the bolus parameter, 𝑁𝐷𝑜𝑠𝑒, such that the initial 

concentration term of equation (4-7) becomes, 

 
𝑁𝐴𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝑉𝑖𝑛𝑓 = 

𝑘𝑖𝑛𝑓

𝑉𝑁𝐴
. (4-11) 

For the conventional NAC regimen (initial administration of 150 mg/kg over 1 hour, 

followed by 50mg/kg over 4 hours, followed by a final infusion of 100 mg/kg over 16 

hours) the infusion rate (𝑘𝑖𝑛𝑓 , mg/kg/h) was defined as follows: 

 

𝑘𝑖𝑛𝑓 =

{
 
 

 
 
150 0 ≤ 𝑡 < 1
50

4
1 ≤ 𝑡 < 5

100

16
5 ≤ 𝑡 < 21

 (4-12) 

For the shortened NAC (SNAP) regimen (initial administration of 100 mg/kg over 2 

hours, followed by 200 mg/kg over 10 hours, the infusion rate (𝑘𝑖𝑛𝑓 , mg/kg/h) was 

defined as follows: 

 

𝑘𝑖𝑛𝑓 = {

100

2
 0 ≤ 𝑡 < 2

200

10
 2 ≤ 𝑡 < 12

 (4-13) 

Regardless of whether administered as a bolus dose or intravenous dose, NAC is 

an effective pre-cursor of GSH [149], provided in the APAP overdose case to 

increase GSH levels and subsequently increase the rate of detoxification of NAPQI. 
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With this in mind, we amended the GSH model described in Chapters 2 and 3, 

assuming that GSH production is a function of NAC concentration in the central 

compartment: 

 𝑑[gsh]

𝑑𝑡
= 𝑘𝑜(𝑔𝑠ℎ𝑜 − [gsh]) + 𝜁[NA] −

𝜉𝑘𝑒𝑙[Cc][gsh]

[gsh] + 𝑘𝑝𝑟
 (4-14) 

Where 𝑔𝑠ℎ is the GSH concentration (µmol/l), 𝑘𝑜 is the basal removal rate of GSH 

(including background usage) (h-1), 𝑔𝑠ℎ𝑜 is the baseline concentration of GSH in the 

APAP-free steady state (µmol/l), 𝜁 is the NAC-induced production rate of GSH (h-1), 

[NA] is the NAC concentration in compartment nacA (µmol/l), 𝜉 is the proportion of 

eliminated APAP that is transformed into NAPQI, 𝑘𝑒𝑙 is the total elimination rate of 

APAP (h-1), [Cc] is the APAP concentration and 𝑘𝑝𝑟 is the ratio of NAPQI forming 

other protein adducts relative to being detoxified by GSH. It should be noted that 

NAC and GSH will have different apparent volumes of distribution because of their 

different chemistries. 

Parameters for the all of the APAP PK and some of the PD (ALT, HMGB1, full and 

fragmented K18) elements of the model remained fixed at the optimised values used 

in our framework in Chapter 3. Parameters for the NAC PK model were equal to the 

values provided by Shen et al. [148]. Since we aimed to provide parameter values 

that could describe cell functionality changes following APAP/NAC doses, and 

provide profiles replicative of the cell viability data found from our experiments, we 

optimised the following parameters: from the cell functionality component of the 

model, the functional hepatocyte damage rate (𝜂) and the damaged hepatocyte lysis 

rate (𝛿𝑧); from the NAPQI component of the model, the GSH decay due to binding 

with NAPQI rate (𝑘𝐺); and from the GSH component of the model, the NAC-induced  

production rate of GSH (𝜁). All parameters were optimised by fitting the 

aforementioned (cell functionality, NAPQI and GSH) models to the cell viability time-

course data from my experiments (ATP assay).  

Parameters within the cell functionality component of our model were optimised by 

fitting to our in vitro cell viability time-course data. When using the model to simulate 

for the in vivo scenario, we assumed these parameters (found from fitting to in vitro 

data) would be similar in the in vivo scenario. However, in vivo, hepatocytes have 

the ability to regenerate, and therefore we did not assume that the cell functionality 

model for the in vivo scenario should be completely identical to the in vitro scenario. 

The in vivo model structure for functional hepatocytes over time was identical to 



116 
 

equation (4-2). The functional hepatocyte damage rate, 𝜂, was optimised from our 

in vitro data, but since no additional in vivo data was available, the functional 

hepatocyte regeneration rate,  𝑟, remained fixed as the value provided in Remien’s 

in vivo study [73]. The in vivo model employed for damaged hepatocytes is 

described by equation (4-3), with the functional hepatocyte damage rate, 𝜂, and the 

damaged hepatocyte lysis rate, 𝛿𝑧 , optimised based on our in vitro study. 

4.2.3.2. Simulation 

The model was simulated for various NAC doses provided at 1h post-APAP dose to 

visualise any effects on the thresholds (APAP dose and time since administration) 

required for our probability of liver injury toxicity measure. This toxicity measure was 

defined by our previous framework, details of which are described in Chapter 3, 

section 3.2.9. Using the extended framework defined within this chapter, we also 

assessed how amending the dose of NAC impacted the thresholds for an additional 

toxicity measure, APAP-induced loss of cell functionality. Loss of cell functionality 

was defined as any simulated proportion of functional cells lower than 20%; Acute 

liver failure is thought to take place beyond 80% hepatocyte loss [150]. The exact 

threshold for when a liver should be deemed “healthy” or “unhealthy” is currently 

unknown and of particular clinical interest [151].  

4.3. Results 

4.3.1. Wet-lab experiments 

4.3.1.1. Microscopic images of hepatocyte culture 

Microscopic images of the hepatocyte culture were taken to visualise the viability of 

the cells. Images were taken at 24h, 48h and 72h (Figure 4-3). A lower and higher 

dose of APAP was compared (1 mM and 20 mM respectively), as well as the effects 

of providing antidote treatment 1 hour post-APAP dose. For the control images (No 

APAP or NAC) the cells became more confluent as time progressed, with little 

indication of any cell death. 

The smaller dose of APAP (1 mM) was comparable to the control images. For the 

higher dose of APAP (20 mM), however, negative effects upon the hepatocytes 

could be clearly be visualised. At the 24 h time-point, dead hepatocytes were visible 

and identified by dark brown masses. As time progressed, so too did loss of 
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hepatocyte functionality, with the 72 h time-point providing a clear visualisation of 

hepatocyte death. Providing antidote treatment (5 mM) to the 1 mM APAP case 

provided no real positive/negative effect, i.e. both the 1 mM APAP case and the 

1mM APAP + 5 mM NAC case were visually comparable to the control case. 

Providing antidote treatment to the 20 mM APAP dosed cells did, however, provide 

a positive visual effect on the cells. At the 24 h and 48 h time-points in the 20 mM 

APAP dose without antidote case, the cells were already dying/dead. In comparison, 

at these time-points the cells treated with antidote were visually healthy and 

comparable to the 1 mM APAP dose and control cases. Although the cells were 

visibly dying at 72 h in the 20 mM APAP + 5 mM NAC case, the amount of time 

taken for the cells to die was longer in the antidote case (72 h compared with 24 h 

in the no antidote case).  

4.3.1.2. Cell viability – ATP assay 

In order to quantify cell viability, we measured the intracellular ATP and calculated 

the changes relative to baseline ATP. We see in (Figure 4-4) how varying doses of 

APAP and NAC affected the cell viability of each case as time progressed.  

Figure 4-4(F) shows that the average proportion of viable cells decreased over time 

in all cases (± NAC). At 6 h, the NAC treated data had 80% of the hepatocytes in a 

viable state, reducing to approximately 10% at 72 h. For the hepatocytes which were 

not treated with the antidote, approximately 70% were viable at 6 h, reducing to 

around 10% at 72 h. At all time-points, the cells which had 0 mM NAC treatment 

provided (shown by the blue line) had reduced viability when compared to the cells 

who were given a dose of NAC (green line). At 72 h, regardless of whether the cells 

were provided with NAC treatment, cell viability was low, around 10%. This result 

was consistent with that found by visualising the microscopic hepatocytes (Figure 

4-3); NAC appears to slow down the onset of cell death, but not completely prevent 

it. 

At the 6-hour time-point (Figure 4-4(A)), cell viability was reasonably high for the 

1mM and 5mM APAP dose cases, averaging around 80% across all NAC doses. 

Providing 1 mM and 3 mM NAC in both of these cases seemed to protect the cells 

and allowed the cells to remain at full viability (100%) 6 h post-dose. For the higher 

APAP doses, 10 mM and 20 mM, viability was reduced to an average of 

approximately 60% and 40% respectively. In both of these instances, NAC did not 

seem to provide any clear protection, regardless of the dose. 
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Figure 4-3. Microscopic images at various time-points for various doses of APAP/NAC, 

visualising the effects of both the toxin (APAP) and antidote (NAC) on primary mouse 

hepatocyte viability. Live cells are indicated by pale coloured shapes with visible nuclei. Dead 

cells are represented by shapes of a much darker brown shade, with less visible nuclei. Images 

which show a high population of condensed live cells are representative of cell confluence, 

whilst images with distinct empty spaces represent wells where cell loss has occurred. 

  

 

 

  24 h    48 h    72 h 

 

 

 

 

 

Control 

1mM 

APAP 

20mM 

APAP 

1mM APAP + 5mM 

NAC 

20mM APAP + 5mM 

NAC 

Cell loss 

confluent 

cells 

Live 

cell 

Dead 

cell 



119 
 

 

Figure 4-4: The effect of varying APAP/NAC doses on hepatocyte viability. The primary 

hepatocytes were dosed with four APAP doses, [1, 5, 10, 20] mM. Each scenario was given a 

varying dose of NAC [0,1,2,3,4,5] mM 1 hour post-APAP dose Proportion of viable cells for each 

scenario was measured and represented as a score [0,1]: 1 for 100% viable (white); 0 for 0% 

viable (black). (A) shows the effect of varying APAP/NAC doses on hepatocyte viability 6 hours 

post-APAP dose, (B) shows the effects 10 hours post-APAP dose, (C) shows the effects 24 

hours post-APAP dose, (D) shows the effects 48 hours post-APAP dose, (E) shows the effects 

72 hours post-APAP dose and (F) shows the average proportion of viable cells across the whole 

time course, for scenarios given no NAC (green), and for scenarios provided with NAC treatment 

(blue).  
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At the 10 h time point (Figure 4-4(B)), a general reduction in cell viability could be 

clearly seen. At this time-point, no cases were completely viable (viability in all cases 

is less than 1). However, NAC did seem to have some sort of protective effect. For 

the [1, 5, 10] mM APAP dose cases treated with NAC, cell viability on average was 

approximately 70%. For the highest APAP dose (20 mM) cell viability was 

approximately 40% across all NAC dosed cases. Providing no NAC in the 1 mM and 

5 mM APAP cases reduced viability from approximately 70% in the NAC dosed case 

to approximately 20%. For the 10 mM and 20 mM APAP cases, cell viability was 

completely reduced to 0% if no NAC was provided.   

At 24 hours (Figure 4-4(C)), cell viability was reduced to 0% for the 5 mM, 10 mM 

and 20 mM APAP cases which were not given NAC. For the highest APAP dose (20 

mM), regardless of the amount of NAC provided, cell viability remained at 0%. For 

the 10 mM APAP case, cell viability was measured to be up to 50% at 24 h if 3 mM 

NAC treatment was provided. Providing the same dose of NAC in the 1 mM APAP 

case allowed cells to be measured as completely viable (100%) at 24 h, this was an 

increase of 40% from the 10 h time-point. For all of the cells dosed with 1 mM APAP, 

whether dosed with NAC or not, cell viability had recovered to above 90%, 

suggesting that for the 1 mM dose of APAP, NAC may not be required for ATP 

recovery to occur. However, we did begin to see the protective effects of NAC for 

other cases. There was no improved viability at 24 h for the higher doses of APAP 

([10, 20] mM) without NAC protection; for these doses, viability was 0% at 10 h and 

remained 0% at 24 h. For the 5 mM APAP case, providing NAC between 1-3 mM 

improved the viability almost completely at 24 h, increasing the viability from an 

average of 70% at 10 h to above 90% at 24 h. However, higher doses of NAC did 

not protect the viability of the cells at 24 h as viability was reduced from 

approximately 70% at 10 h to 20% at 24 h. For the 10 mM APAP case, NAC did not 

protect the cells at this time-point; for the NAC-dosed cases, viability reduced from 

an average of 70% at 10 h to approximately 30% at 24 h. Interestingly, providing 

the highest NAC dose (5 mM) resulted in 0% viability at 24 h, an identical result to 

cell viability at 24 h following no NAC dose at all.  

At the 48-hour time point, viability started to generally decrease again (Figure 

4-4(D)). The positive effects of NAC for the 1 mM APAP case at 24-hours were no 

longer seen here. If a NAC dose was provided, viability was measured at 100% at 

24 h, whereas at 48 h the maximum measured cell viability was approximately 70%. 

Although there was generally a decrease in viability for the 5 mM APAP case (an 
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average decrease of around 20% from the 24 h measurements), at 24 h, the cells 

were measured to be completely viable. Subsequently, a decrease to 80% cell 

viability at 48 h, when compared to a measurement of 40% viability for the case 

without antidote, suggests that the protective effects of NAC are still seen at 48-

hours for the 5 mM APAP case. For the 1 mM and 5 mM APAP cases, cell recovery 

was identified (40% and 20% increase in cell viability respectively) between 10 and 

24 h, but this recovery was not seen for the 10 mM and 20 mM APAP cases. At 48 

hours, we began to see recovery for the 10 mM APAP case (increase of 

approximately 80% cell viability from 24 h to 48 h). This increase was only seen for 

cells provided with the highest doses of NAC, [4, 5] mM, and this late recovery 

suggests it takes longer for the positive effects of NAC to be seen as the dose of 

APAP increases. This could correspond to the severe depletion of GSH stores in 

high APAP dose cases that would take longer to restore. For the 20 mM case, cell 

viability remained at 0%, regardless of the NAC dose given.  

At the 72-hour time point, the protective effects of NAC could not be seen (Figure 

4-4(E)). Cell viability completely reduced for the 10 mM and 20 mM APAP dose 

cases. Whilst providing a high NAC dose allowed cells to be measured as 100% 

viable at 48 h, at 72 h, regardless of whether NAC was provided or not, there were 

0% viable cells for the 10 mM and 20 mM APAP cases. For the 5 mM APAP case, 

all NAC-dosed cases had cell viability measurements less than 20%, with most at 

0%.  Even for the lowest APAP case (1 mM), cell viability reduced by an average of 

40% from 48 h to 72 h, regardless of the NAC dose initially provided. 

4.3.1.3. Cell sorting - FACS 

FACS analysis was carried out to investigate the mode of cell death (apoptosis or 

necrosis (Figure 4-5)). The clearest result from this analysis was that in almost all 

APAP dose cases, providing no NAC treatment resulted in the percentage of dead 

cells being greater than live cells. This result is reflected by the summation of the 

black and white (necrotic and apoptotic regions) in Figure 4-5, for the 0 mM NAC 

dose in all APAP cases being greater than 50%. Comparing the amount of necrosis 

against apoptosis when no NAC was provided, for the 1 mM APAP case (Figure 

4-5(A)), 42% of cells were necrotic whilst 8% were apoptotic. For the 5 mM APAP 

case (Figure 4-5(B)), 54% were necrotic whilst 2% were apoptotic. For the 10 mM 

and 20 mM APAP case, (Figure 4-5(C-D)) 56% of cells were necrotic whilst 0% were 
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apoptotic. The amount of necrotic cells dominated the amount of apoptotic cells in 

each of these cases. 

For the 1 mM APAP dose case with no NAC, approximately half of the cells died 

with around 42% of the cells being necrotic and 8% apoptotic. Providing any dose 

of NAC and comparing this to the case with no NAC, showed an increased amount 

of apoptosis and decreased amount of necrosis: 2 mM NAC decreased the necrotic 

percentage to 20% and increased the apoptotic percentage to 10%, 3 mM NAC 

decreased the necrotic percentage to 20% but increased the apoptotic percentage 

to 22%, 4 mM NAC decreased the necrotic percentage to 22% but increased the 

apoptotic percentage to 12% and 5 mM NAC decreased the necrotic percentage to 

8% but increased the apoptotic percentage to 22%. When providing 2 mM, 3 mM 

and 4 mM NAC, the proportion of apoptosis and necrosis were similar. Providing 

the highest dose of NAC (5 mM) resulted in apoptosis dominating with reduced 

levels of necrosis. 

For the 5 mM APAP case, when no NAC was provided, there was a greater amount 

of necrosis (52% versus 3% apoptosis) than seen in the 1 mM APAP case (40% 

necrosis versus 10% apoptosis). Providing the antidote in this 5 mM APAP case 

caused a distinctive switch to apoptosis for all doses of NAC. Specifically, providing 

2 mM NAC resulted in an almost negligible amount of necrosis (2%). The cases 

dosed with 3 mM and 4 mM NAC provided similar results to one another – 

approximately 10% of the cells were necrotic whilst approximately 25% were 

apoptotic. For the highest dose of NAC however, whilst apoptosis still dominated 

(25% of cells), it was to a lesser extent since the amount of necrosis had increased 

from 10% to 15%.  

Providing no antidote in the 10 mM APAP case did not allow any apoptosis to occur, 

with around 57% of the cells being necrotic. Providing 2, 3 or 4 mM NAC allowed a 

decreased percentage of necrotic cells (10%, 15% and 17% respectively), and 

increased percentage of apoptotic cells (22%, 22% and 25% respectively). 

Apoptosis remained the main form of cell death until the 5 mM NAC dose, where 

the percentage of apoptosis was very similar to necrosis, at approximately 30% 

each. 
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Figure 4-5: Quantifying the mode of cell death 24 hours post-APAP dose through FACS 

analysis. The mode of cell death (apoptosis vs necrosis) was compared for four APAP doses 

[1, 5, 10, 20] mM, at 24 hours post-dose. Additionally, the effect of NAC on this mode of cell 

death was analysed. Varying doses of NAC were applied and compared, [0, 2, 3, 4, 5] mM, 1 

hour post-APAP dose. Apoptotic cells are indicated by white regions on each bar, whilst necrotic 

cells are represented by black regions on each bar. 

Providing no antidote in the 20 mM case provided similar results to the 10 mM case 

with no antidote; around 57% cells were necrotic with no visible apoptosis. When 

providing 2 mM NAC in the 20 mM APAP case, the apoptotic and necrotic forms of 

cell death were identical (20% each). Interestingly, providing a 3 mM NAC dose 

seemed to completely reduce the number of necrotic cells, whilst 20% of the cells 

remained apoptotic. Increasing the NAC dose beyond 4 mM in the 20mM APAP 

case, however, did result in necrotic cells, however, he apoptotic dominance was 

not apparent; both apoptosis and necrosis levels were similar (20% each in the 4 

mM NAC case and 25% each in the 5 mM NAC case). 
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4.3.1.4. Gene quantification - qPCR 

qPCR was carried out in order to quantify and compare the amount of an apoptotic 

marker (caspase) and a necrotic marker (miR-122) following two different doses of 

APAP (5 mM and 20 mM), and how various doses of NAC ([0,1,2,3,4,5] mM) 

affected this subsequent output. 

Figure 4-6(A) clearly shows that apoptosis levels were higher for the 5 mM APAP 

case, and lower for the 20 mM APAP case. This was expected, since a higher dose 

of APAP is likely to result in relatively higher levels of necrosis, and therefore lower 

levels of apoptosis. NAC treatment did not cause a distinctive difference to the 

apoptosis levels except for the 20 mM APAP dose case, where NAC > 4 mM 

seemed to increase the amount of apoptosis. 

 

 

Figure 4-6: Comparing mode of cell death through quantification of apoptotic 

and necrotic markers. The effects of 5 mM and 20 mM doses of APAP (black and red lines 

respectively) in combination with various doses of NAC, [0,1,2,3,4,5] mM (1 hour post-APAP 

dose) were analysed at 24 hours post APAP dose. Firstly, with respect to the quantification of 

an apoptotic marker, (caspase, A) and secondly, a necrotic marker (miR-122, B). 

The levels of necrosis were higher for the 20 mM APAP case than they were for the 

5 mM case, as expected (Figure 4-6(B)). For the 5 mM APAP case, NAC did not 

seem to have any effect on necrosis levels. However, for the 20 mM case, it seemed 

that increasing the amount of NAC from 0-4 mM had a negative effect, increasing 

the amount of necrosis, until beyond 4 mM when necrosis levels started to decrease. 

Although this decrease in necrosis for the 20 mM case is mirrored by an increase in 

the caspase apoptosis marker in Figure 4-6(A), the overall results in Figure 4-6 are 

not consistent with the results from the FACS analysis carried out above in Figure 

4-5. When quantifying apoptosis by analysing changes in caspase for the 5 mM 

APAP case (Figure 4-6(A)), NAC seemed to have no impact. The FACS analysis 
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(Figure 4-5(B)) showed minimal levels of apoptosis for the 0 mM NAC case, but an 

increased level for NAC [2, 5] mM. This protection is not mirrored in the caspase 

quantification results. For the 20 mM APAP case, caspase remained stable and 

increased when NAC >4 mM. Again, this result does not reflect the result from the 

FACS analysis (Figure 4-5(D)), where the increase in apoptosis was seen only at 2 

mM, and then remained stable for all higher doses of NAC. 

With regards to the 5 mM APAP dose, the FACS analysis showed high necrotic 

levels when 0mM NAC was provided, with reduced levels when a dose of [2, 5] mM 

NAC was provided. Again, this result is not mirrored with the results from the miR-

122 quantification; miR-122 was low when 0 mM NAC was provided and remained 

stable throughout all doses of NAC. For the 20 mM APAP dose, Figure 4-6(B) shows 

that NAC did not impact on miR-122 as we may have expected – increasing the 

NAC dose also increased the amount of the miR-122 necrosis marker. This result 

is contrary to the result found in the FACS analysis, Figure 4-5(D), where high 

necrotic levels were found for the 0 mM NAC case, with a reduced amount for higher 

NAC doses. Carrying out more repeats of the experiments may help to explain this 

disparity. 

4.3.2. Multiple linear regression - predicting cell viability 

All biomarkers (APAP, ALT, HMGB1, full K18 and fragmented K18) were initially 

employed in the statistical analysis. Significant predictors from the forward stepwise 

multiple linear regression analysis for each subset of data are detailed in Table 4-1. 

Table 4-1: Table of significant biomarkers for predicting cell viability for various subsets 
of data. 

For the subset of data which had not been dosed with any antidote, cell viability 

could be significantly predicted by the full and fragmented versions of biomarker 

K18. For each subsequent NAC dosed subset, the combination of biomarkers 

APAP, HMGB1 and fragmented K18 could significantly predict cell viability. For the 

Dataset Significant predictors P-value 

0 mM NAC subset Full K18, Fragmented K18 0.001 

1 mM NAC subset APAP, HMGB1, Fragmented K18 <0.001 

2 mM NAC subset APAP, HMGB1, Fragmented K18 <0.001 

3 mM NAC subset APAP, HMGB1, Fragmented K18 <0.001 

4 mM NAC subset APAP, HMGB1, Fragmented K18 0.001 

5 mM NAC subset - - 

Full dataset ALT, Full K18, Fragmented K18 <0.001 
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subset of data that was dosed with 5 mM NAC, none of the biomarkers could 

significantly predict viability of the cells. When all of the subsets of data were 

combined into one full dataset (± NAC) viability of cells could be significantly 

predicted by ALT, full and fragmented K18 biomarker concentrations.  

Interestingly, currently used clinical biomarkers (APAP/ALT) were predictive of cell 

viability when NAC dosed data was tested. However, if the analysis was tested on 

data with no NAC provided, these clinical biomarkers were not significant, and only 

the novel biomarkers could significantly predict cell viability. 

4.3.3. Modelling the effect of NAC dosing regimen on the 

functionality of hepatocytes, and the probability of liver 

injury 

4.3.3.1. Model optimisation 

By extending our mathematical model within this chapter, our framework now has 

the ability to account for APAP, APAP toxicity biomarkers, and cell functionality 

profiles over time. For parameters affecting the cell functionality component of the 

model, so that model output could replicate our cell viability time-course data, the 

parameters were optimised by fitting the models to the cell viability data (resulting 

from the ATP assay). Optimised parameters affecting the cell functionality 

component of the model were as follows: from the functional hepatocyte model, 

functional hepatocyte damage rate, 𝜂 = 3.584 l/μmol/h; from the damaged 

hepatocyte model, damaged hepatocyte lysis rate, 𝛿𝑧 = 2.1891 h-1; from the NAPQI 

model, decay of GSH due to NAPQI, 𝑘𝑔 = 7.1437 l/μmol/h; and from the GSH model, 

increasing factor of GSH due to NAC, 𝜁 = 165.1162 h-1. The in vivo functional 

hepatocyte regeneration rate was fixed as the value from Remien’s study [73], 𝑟 = 

0.0417 h-1. The predictive output versus the data used for optimisation can be seen 

in Figure 4-7. 
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Figure 4-7: Predicted model output versus experimental data used for optimisation. (A) 

Proportional cell viability over time (in vitro) following a dose of 1 mM APAP. (B) Proportional 

cell viability over time (in vitro) following a dose of 5 mM APAP. (C) Proportional cell viability 

over time (in vitro) following a dose of 10 mM APAP. (D) Proportional cell viability over time (in 

vitro) following a dose of 20 mM APAP. In each instance, stars represent the experimental data 

used for optimisation and dashed lines represent the predicted model output. 

4.3.3.2. The effect of NAC administration time on biomarker 

profiles 

The optimal timing of NAC administration for the best protective effects is currently 

heavily debated within the clinic. Therefore, we used our model to simulate various 

scenarios, with differing times of NAC administration, and analysed subsequent 

effects on biomarker and cell functionality profiles (Figure 4-8). Note that the model 

was simulated to provide time-courses over a 24-hour period, since this was the 

latest time point observed in the biomarker data that was originally used for 

biomarker-related parameter optimisation. 
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For an APAP overdose of 350 mg/kg, providing no NAC at all resulted in very 

different predicted profiles compared to when 150 mg/kg NAC 1-hour-post-APAP is 

provided. These results can be seen in Figure 4-8. When no NAC was provided, the 

predicted GSH profile (Figure 4-8(B)) remained low for the entire time-course, 

whereas providing a dose of NAC at 1 hour caused great increases in the GSH 

concentration. The benefits of providing NAC can also be seen by the NAC dosed 

cases having lower predicted biomarker (ALT, HMGB1, NAPQI) concentrations than 

if no NAC was provided. While biomarkers ALT and HMGB1 began to increase 

following an APAP dose of 300 mg/kg, a slightly higher APAP dose (350 mg/kg) was 

required to see full and fragmented K18 profiles perturbed. However, at APAP doses 

higher than 350 mg/kg, all biomarkers followed a similar pattern– lower 

concentrations for the NAC-dosed case and higher concentrations when no NAC 

was provided. We report the findings for a 350 mg/kg APAP dose since this is the 

dose thought to induce toxicity in mice (predicted by our previous framework in 

Chapters 2 and 3). NAC dose is predicted to also have a positive effect on cell 

functionality: Figure 4-8(H) shows that when provided with a 350 mg/kg APAP dose 

and no NAC protection, the predicted proportional cell viability reduced to around 

10%, and only began to slightly recover at late time-points (beyond 24 hours). In the 

case where 150 mg/kg NAC was provided 1 hour post-APAP-dose however, the 

proportion of viable cells did not decrease beyond approximately 50%, and 

immediately after NAC intervention the cells began to recover. 

NAC is usually administered beyond 4 hours of the initial APAP overdose, and so 

therefore we simulated the administration of 150 mg/kg NAC 5 hours post APAP-

dose to visualise the effects on biomarker concentrations and cell functionality 

(Figure 4-9). 

Providing the NAC dose 5-hours-post-APAP-dose still provided favourable 

biomarker concentration/cell functionality profiles when compared to the cases 

where no NAC was provided. This is reflected firstly in Figure 4-9(B) where the GSH 

concentration profile in the NAC-dosed scenario (green) is much higher than the 

non-NAC-dosed scenario (red). These positive results are also mirrored by ALT and 

HMGB1 concentrations being lower for the NAC dosed case than the non-NAC 

dosed case Figure 4-9(C,D); and also the proportion of viable cells being slightly 

higher in the NAC case compared to the non-NAC case Figure 4-9(H). Generally 

though, NAC was predicted to provide less improvement if administered 5 hours 

post-dose (Figure 4-9) than if it is administered 1 hour post dose (Figure 4-8). 
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It is thought that NAC is no longer beneficial if provided longer than 8 hours post-

overdose [23]. We therefore simulated the administration of 150 mg/kg NAC 15-

hours-post-APAP-dose to investigate the effects on biomarker concentrations and 

cell functionality (Figure 4-10). 

Although Figure 4-10 (B) shows the expected positive effects of NAC administration 

on GSH concentration (the NAC-dosed profile is much higher than the non-dosed 

profile) beyond 15 hours, NAC administration only very slightly lowered ALT and 

HMGB1 concentrations (Figure 4-10(C,D)). Providing NAC 15-hours-post-APAP 

dose was predicted to have no protective effects on cell viability Figure 4-10 (H,I). 

 

Figure 4-8: Effect of administering antidote (NAC) 1-hour-post-APAP overdose on 

predicted biomarker and cell functionality profiles. Red lines show the simulated output if 

no NAC dose is provided, while green shows the simulated output if 150 mg/kg NAC is provided. 

If only a green simulation is present, this indicates it overlaps the non-NAC simulation, and 

therefore they are identical. (A) Predicted APAP concentration over time, (B) predicted GSH 

concentration over time, (C) predicted ALT concentration over time, (D) predicted HMGB1 

concentration over time, (E) predicted full K18 concentration over time, (F) predicted fragmented 

K18 concentration over time, (G) predicted NAPQI concentration over time, (H) proportion of 

healthy cells over time, (I) proportion of damaged cells over time. 
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Figure 4-9: Effect of administering antidote (NAC) 5-hours-post-APAP overdose on 

predicted biomarker and cell functionality profiles. Red lines show the simulated output if 

no NAC dose is provided, while green shows the simulated output if 150 mg/kg NAC is provided. 

If only a green simulation is present, this indicates it overlaps the non-NAC simulation, and 

therefore they are identical. (A) Predicted APAP concentration over time, (B) predicted GSH 

concentration over time, (C) predicted ALT concentration over time, (D) predicted HMGB1 

concentration over time, (E) predicted full K18 concentration over time, (F) predicted fragmented 

K18 concentration over time, (G) predicted NAPQI concentration over time, (H) proportion of 

healthy cells over time, (I) proportion of damaged cells over time. 
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Figure 4-10: Effect of administering antidote (NAC) 15-hours-post-APAP overdose on 

predicted biomarker and cell functionality profiles. Red lines show the simulated output if 

no NAC dose is provided, while green shows the simulated output if 150 mg/kg NAC is provided. 

If only a green simulation is present, this indicates it overlaps the non-NAC simulation, and 

therefore they are identical. (A) Predicted APAP concentration over time, (B) predicted GSH 

concentration over time, (C) predicted ALT concentration over time, (D) predicted HMGB1 

concentration over time, (E) predicted full K18 concentration over time, (F) predicted fragmented 

K18 concentration over time, (G) predicted NAPQI concentration over time, (H) proportion of 

healthy cells over time, (I) proportion of damaged cells over time. 

4.3.3.3. The effect of NAC dose amount on toxicity thresholds 

As well as investigating effects of the administration time of NAC, the effects of NAC 

dose alone (without changing the time of administration) was investigated with 

regard to the effect on both of our toxicity measures: probability of liver injury and 

proportion of healthy cells. Each NAC dose under investigation, [0, 150, 400] mg/kg, 

was administered 1-hour post-dose, and we calculated which APAP dose would 

indicate probable liver injury and severe reduction in the proportion of healthy cells. 
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If the NAC administration was beneficial, then a higher dose of APAP would be 

required to result in probable liver injury/severe reduction in cell viability. 

NAC resulted in protecting against much higher APAP doses when using the 

probability of liver injury based on biomarker concentrations as a toxicity measure, 

in comparison to using loss of cell functionality as a toxicity measure. This can be 

clearly visualised in Figure 4-11 by the order of magnitude difference in the scale of 

APAP doses reaching up to 10,000 mg/kg in the probable liver injury cases (Figure 

4-11(A,C,E)) and reaching only 1,000 mg/kg in the cell functionality cases (Figure 

4-11(B,D,F)). If no NAC was provided, the APAP dose threshold for toxicity was of 

the same order of magnitude. Using probability of liver injury as a toxicity measure 

(Figure 4-11(A)), toxicity was predicted for any APAP dose above approximately 

550 mg/kg. This is shown by the black contour – any observation above this contour 

is predicted to be highly probable to progress into liver injury. When using loss of 

cell functionality (or the percentage of dead/damaged cells being greater than 80%) 

as a toxicity measure (Figure 4-11(B)), toxicity was predicted for any APAP dose 

above approximately 400 mg/kg, with any APAP dose above approximately 500 

mg/kg predicted to result in 100% of cells being dead/damaged. 

Providing a dose of NAC (either 150 mg/kg or 200 mg/kg) appeared to make a slight 

change to the predictions when using cell functionality as a toxicity measure (Figure 

4-11(D,F)). The contour increased to a slightly higher APAP dose, and the 

progression from 80% to 100% hepatocyte death/damage was more gradual as the 

APAP dose increased, rather than any APAP dose above 500 mg/kg resulting in 

100% death/damage. When providing NAC and using biomarker-based-probable 

liver injury as a toxicity measure, the antidote benefits could be clearly seen. 

Treatment with the recommended 150 mg/kg dose of NAC increased the APAP 

dose predicted to cause liver injury from approximately 550 mg/kg (Figure 4-11(A)), 

to a much greater 7000 mg/kg (Figure 4-11(B)). This APAP dose was even further 

increased when 200 mg/kg NAC is provided (Figure 4-11(C)). 
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Figure 4-11: Effect of administering different doses of antidote (NAC) 1-hour-post-APAP 

overdose on the predicted probability of liver injury and proportion of healthy cells for 

various APAP doses. Black contours are thresholds where any observation above such would 

be predicted to have a high probability of liver injury (A,C,E) or a severe loss of cell functionality 

(B,D,F). Red regions are representative of 1 and blue regions are representative of 0. Therefore, 

in the liver injury probability plots (A,C,E) the red regions are representative of a predicted 

probability of liver injury of 100% and therefore severe toxicity. The red region in the cell 

functionality plots (B,D,F), is representative of cells being 100% dead/damaged, and therefore 

indicative of severe toxicity. (A,B) show the effects of providing no NAC dose on the APAP dose 

thresholds for probability of liver injury and cell functionality, respectively. (C,D) show the effects 

of providing a 150 mg/kg NAC dose on the APAP dose thresholds probability of liver injury and 

cell functionality, respectively. (E,F) show the effects of providing 200 mg/kg NAC dose on the 

APAP dose thresholds for probability of liver injury and cell functionality, respectively. 

The benefits of providing NAC at 1-hour-post-APAP dose (when using probable liver 

injury as a toxicity measure) is clearly represented in Figure 4-12(A) by the large 

difference in thresholds for the “No NAC” case (black contour) when compared to 

the NAC cases (blue and orange contours). 

The APAP dose predicted to induce severe loss of cell functionality when no NAC 

was provided was approximately 400 mg/kg (Figure 4-11(B)). Providing a NAC dose 

of 150 mg/kg slightly increased the APAP dose predicted to induce severe loss of 

cell functionality, however increasing the NAC dose from 150 mg/kg to 200 mg/kg 
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did not have any additional effect (Figure 4-12(B)). Our results suggest although 

NAC may slightly increase the APAP dose required to cause toxicity, this effect may 

be limited for cell functionality and increasing the NAC dose will not necessarily 

increase the APAP dose likely to cause toxicity. 

 

Figure 4-12: NAC dose effects on the APAP dose threshold for inducing liver toxicity 

based on two different measures: (A) probable liver injury based on HMGB1 

concentration (probability greater than 0.5) and (B) severe loss of cell functionality (80% 

reduction of cell viability). Any observation above any of the thresholds is predicted to be a 

toxic case. The black contour represents the toxic threshold when no NAC is provided. The blue 

dashed contour represents the toxic threshold when 150 mg/kg NAC is provided. The orange 

dotted contour represents the toxic threshold when 200 mg/kg NAC is provided. 
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4.3.3.4. Comparing the effects of two NAC regimens on biomarker 

profiles 

The current NAC regimen [24] (providing an initial dose of 150 mg over 1h, followed 

by a second dose of 50 mg over 4h, followed by a final dose of 100 mg over 16h) 

was compared to a NAC regimen in which the NAC is administered over a shorter 

time period (100 mg over 2h followed by 200 mg over 10h). This shorter NAC 

regimen is often referred to as SNAP and is proposed by Bateman et al. [152]. Both 

NAC protocols were applied and corresponding biomarker outputs were simulated 

(Figure 4-13). 

 

Figure 4-13: The effect of different NAC regimens on various time-course profiles (black 

profile – no NAC provided, red profile – current NAC regimen, blue dashed profile – SNAP 

regimen). (A) NAC concentration profile, (B) GSH concentration profile, (C) NAPQI 

concentration profile, (D) HMGB1 concentration profile, (E) Proportional cell viability profile. 

Of course, the NAC concentration remained at 0 throughout the whole time-course 

when no NAC was provided (Figure 4-13(A)). The current regimen allowed a high 

peak concentration which quickly declined. The SNAP regimen allowed a peak 
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concentration around half of that provided by the current regimen, but the 

concentration remained around this level for around 17 hours before declining. Both 

NAC regimens allowed the GSH concentration to far exceed its baseline (Figure 

4-13(B)) before decreasing to its baseline after approximately 24 hours. NAPQI 

concentration rapidly decreased following administration of both NAC regimens 

(Figure 4-13(C)). When no NAC was provided, as expected, HMGB1 increased from 

baseline, before returning to baseline around 50 hours post APAP-dose. When 

either NAC regimen was introduced, the biomarker decreased below the baseline 

value, before returning at around 50 hours. Both regimens maintained HMGB1 

concentration at around the same value for the first 20 hours post-dose, however, 

since the shorter NAC regimen did not continue beyond this point, HMGB1 

concentrations returned to baseline at a faster rate than the conventional regimen. 

If no NAC was provided, cell viability was predicted to almost completely diminish 

before starting to slowly recover beyond approximately 20 hours. Both NAC 

regimens were predicted to protect the function of cells, with viability reducing to 

approximately 40% in both scenarios, and recovering quicker than the case in which 

no NAC was provided. 

4.3.3.5. Comparing the effect of two NAC regimens on toxicity 

thresholds 

Both regimens (conventional and SNAP) were simulated and compared to 

investigate any differences in APAP dose threshold predicted to induce probable 

liver injury probability and severe loss of cell functionality (Figure 4-14). 

NAC administration had a much greater influence on the toxicity measure based on 

probable liver injury in comparison to the toxicity measure based on loss of cell 

functionality (Figure 4-14). This is reflected by APAP doses likely to induce toxicity 

being on a much greater scale (up to 10,000 mg/kg) in the probable liver injury plots 

(Figure 4-14(A,C)) when compared to the lower scale (up to 800 mg/kg) on the cell 

functionality plots (Figure 4-14(B,D)). This result (NAC having a greater effect on 

probable liver injury as a toxicity measure, rather than loss of cell functionality) 

mirrors the result found in (Figure 4-11). Our results suggest that if cell functionality 

is used as the toxicity measure, (Figure 4-14(B,D)), both NAC regimens have similar 

protective effects, with severe loss of cell functionality apparent for any APAP dose 

above approximately 450 mg/kg. When using probable liver injury based on HMGB1 

concentration as a measure however (Figure 4-14(A,C)), the NAC regimens 
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provided clearly different results. The current regimen only indicated probable 

toxicity when an APAP dose above 8,000 mg/kg had been taken, and this probability 

was only around 0.5. The SNAP regimen however, identified potential for cases 

where the APAP dose was above a much lower threshold of 4,000 mg/kg, with most 

cases having a probability greater than 0.8.  

Whilst the differences in the NAC effects on both toxicity measures can be seen in 

Figure 4-14, we looked more closely at comparing each regimen against the 

measures individually, with Figure 4-15(A) showing the regimen effects if probable 

liver injury based on HMGB1 was used as a toxicity measure, and Figure 4-15(B) 

showing the regimen effects if loss of cell functionality was used as a toxicity 

measure. 

When using probable liver injury based on HMGB1 concentration as a toxicity 

measure (Figure 4-15(A)), both NAC regimens were predicted to be highly 

protective (toxicity not predicted to occur for any APAP dose below 3,500 mg/kg). 

However, the protective effects were predicted to be much greater for the current 

regimen. Simulating the current regimen (black threshold) identified HMGB1 

concentrations that resulted in probable liver injury levels for APAP doses above 

8,000 mg/kg. It appears that the maximum APAP dose the SNAP regimen (blue 

dashed threshold) could protect against was 3,500 mg/kg APAP, although this is 

still a very high threshold.  

When cell functionality was used as a toxicity measure (Figure 4-15(B)), both NAC 

regimens were predicted to have similar protective potential, especially at early time-

points following the APAP dose. The current regimen (black threshold) enabled 

functionality to recover at a slightly faster rate than the proposed regimen (blue 

dashed threshold). For example, if two individuals were to take 430 mg/kg, with one 

being administered NAC according to the current regimen, and the other being 

administered NAC according to the SNAP regimen, at 2 hours-post APAP dose, 

both would be deemed toxic, since more than 80% cells would be predicted to be 

dead/damaged. At 25-hours-post-APAP-dose however, whilst the person following 

the SNAP schedule would remain in the toxic region (above the blue dashed 

threshold), the person following the current NAC regimen would no longer be 

deemed toxic. 
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Figure 4-14: Effect of two comparative NAC dosing regimens on the predicted probability 

of liver injury and proportion of damaged/dead cells for various APAP doses. Black 

contours are thresholds where any observation above such would be predicted to have a high 

probability of liver injury or a severe loss of cell functionality. Red regions are representative of 

1 and blue regions are representative of 0. Therefore, in the liver injury probability plots (A, C) 

the red regions are representative of a predicted probability of liver injury of 100% and therefore 

severe toxicity. The blue region in the cell functionality plots (B, D), is representative of cells 

being 100% damaged/dead, and therefore indicative of severe toxicity. (A,B) show the effects 

of providing the conventional NAC dosing regimen on the APAP dose thresholds for probability 

of liver injury and cell functionality, respectively. (C,D) show the effects of providing the proposed 

SNAP dosing regimen on the APAP dose thresholds for probability of liver injury and cell 

functionality, respectively. 
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Figure 4-15: NAC dosing regimen effects on the APAP dose threshold for inducing liver 

toxicity based on two different measures: (A) probable liver injury based on HMGB1 

concentration (probability greater than 0.5) and (B) severe loss of cell functionality (80% 

reduction of cell viability). Any observation above the thresholds is predicted to have a 

HMGB1 concentration indicating probable liver injury. The black contour represents the 

threshold when the current clinical NAC regimen is provided. The blue dashed contour 

represents the proposed shorter NAC (SNAP) regimen is provided. 
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4.4. Discussion 

In previous Chapters (2 and 3), we have been interested in the relationship between 

APAP and toxicity biomarkers and their subsequent predictive potential. Should the 

interest be to make predictions upon initial investigation of a suspected APAP 

overdose case, this may be sufficient. However, if we aim to use the toxicity 

biomarkers throughout a patient’s hospital admission, the relationship between 

APAP dose and these novel biomarkers requires extension to include the antidote 

(NAC). The aim with this chapter was to generate and analyse my own experimental 

data to better understand the influence NAC had on these biomarker concentrations 

and their subsequent predictivity, and also to obtain a further understanding of liver 

injury at the cellular level (cell death via necrosis or apoptosis). We firstly discuss 

whether NAC shows protective effects, and if so, how this changes the mechanism 

of cell death. 

Looking at the cell-viability time-course (Figure 4-4), as expected, there was a 

general decrease in viability as time progressed following an APAP dose. Also, the 

protective effects of NAC could be seen, especially for lower doses of APAP. 

Providing a high dose of NAC (5 mM) had similar effects as providing no antidote 

treatment at all, this was an interesting result. This may give further justification for 

the requirement to better optimise NAC treatment; our results suggest that providing 

too much antidote could cause as much damage as not intervening at all. This result 

was further justified by the conclusions from our FACS analysis; NAC provided a 

protective switch, where we observed the dominant form of cell death change from 

necrosis to apoptosis. However, the amount of NAC required to cause this switch 

was different for different APAP doses, and the relationship between NAC and 

APAP dose with regards to this switch was not clear from these experiments. It must 

be noted that these experiments have not yet been repeated; further repeats could 

help to understand the relationship between NAC and APAP dose and the switch 

from necrosis to apoptosis. 

Although an attempt was made to further investigate the relationship between 

APAP, NAC and mode of cell death by comparing quantification of apoptosis marker 

(caspase) and necrotic marker (miR-122), the results were inconsistent with our 

FACS analysis. These opposing results could be due to interference when the 

assays were carried out, and since we only have n=1, more repeats are required in 

order to clarify this discrepancy. At present, since NAC is known to have protective 
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effects in the APAP overdose case, the FACS analysis results are in line with what 

would be expected, and therefore can be included in the model with more 

confidence than the caspase/miR-122 quantification data, until more repeats are 

carried out. 

With the aim of further model development, note that the frameworks identified in 

the two previous chapters may only be applicable for a patient at initial hospital 

presentation with a suspected APAP overdose. However, following hospital 

admission, patients will likely be given NAC treatment. Additional to investigating 

NAC effects on hepatocyte functionality, we used multiple linear regression analysis 

to determine if introduction of therapy could alter the predictivity of the biomarkers. 

When looking at the subset of data which was not given any NAC therapy, 

biomarkers full and fragmented K18 could significantly predict cell viability. Upon 

initial presentation, before a patient has been given the antidote, these biomarkers 

may prove useful to predict how well the cells are functioning. Measuring these two 

values would make sense since they are necrotic/apoptotic versions of the same 

biomarker; quantifying both levels could therefore give insight into cell damage – 

high levels of necrosis compared to low levels of apoptosis for example may indicate 

the functionality of the cell is diminishing. For each NAC dose (other than 5 mM) the 

same biomarkers – APAP, HMGB1 and fragmented K18 could significantly predict 

cell viability. The fact that no biomarkers could significantly predict cell viability for 

the 5 mM NAC dosed subset could be due to the fact that the dose of NAC is too 

high and could have interaction effects with APAP.  

Combining all datasets (no antidote and various antidote dosed subsets) resulted in 

biomarkers ALT, full and fragmented K18 being significant predictors for cell 

viability. ALT is a biomarker already utilised clinically which gives credence to the 

proposal of our panel. Therefore, measuring these biomarkers (ALT, full and 

fragmented K18), whether previously given a dose of the antidote or not, could 

predict the level of cell viability and therefore give insight into cell functionality 

following an APAP dose. The fact that current clinical biomarkers only became 

significant in cases where the analysis was applied to data which included NAC 

doses, may suggest that these biomarkers are only useful for monitoring purposes 

following antidote treatment. However, if cell functionality is of interest at initial 

presentation when no NAC therapy has been provided, our analysis predicts that 

the novel biomarkers outperform those currently used in the clinic. 
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Whilst in previous Chapters (2 and 3) we describe a predictive framework for the 

probability of liver injury based on biomarker concentrations, we here provide an 

extension to this framework, which additionally uses severe loss of cell functionality 

as a marker for potential toxicity. Remien et al. [73] published a mathematical model 

which describes the dynamics of functional and damaged hepatocytes in the APAP 

overdose setting. Whilst their parameters are representative of cell functionality 

following APAP overdose, parameters within our model can describe cell 

functionality when both APAP plus NAC antidote are provided, rather than APAP 

alone.  

Simulating the administration of NAC at 1-hour-post-APAP dose provided lower 

predicted biomarker concentrations than the case that was simulated without any 

NAC administration. The longer the time period between APAP dose and NAC dose, 

the lower the effect NAC had on subsequent biomarker concentrations, which could 

further support the idea that NAC is no longer beneficial beyond 8 hours post-APAP 

dose [23]. When investigating how thresholds for probable liver injury (based on 

biomarker concentrations) differed, the effects of providing no antidote versus 

providing antidote could be clearly seen. This investigation was carried out by 

supplying different NAC doses at 1-hour-post-APAP dose and determining the 

resultant APAP dose threshold for probable liver injury. When no NAC was provided, 

liver injury was predicted to be probable following any APAP dose above 

approximately 550 mg/kg. Providing a 150 mg/kg dose of NAC increased the toxic 

APAP threshold to 7,000 mg/kg while providing a 200 mg/kg NAC dose increased 

the threshold even further to 9,000 mg/kg. Whilst this result supports the benefits of 

NAC intervention, it must be noted that this framework is based on the concentration 

of one biomarker (HMGB1). Further validation of the biomarker’s predictivity should 

be carried out. Should cell functionality be the preferred measure of toxicity, much 

lower APAP dose thresholds were predicted, even following administration of NAC 

at 1-hour-post-APAP-dose. Although increasing the amount of NAC did not greatly 

increase the toxic threshold, the distinction was still clear between no antidote, and 

antidote cases, as can be seen in Figure 4-12; the non-NAC case provided a lower 

APAP dose threshold than both of the NAC dosed cases.  

There has been much discussion around the uncertainty of the optimal combination 

of both NAC dose amount and time since administration. The current NAC regimen 

[24] was simulated and compared with a recently proposed shorter NAC protocol 

(SNAP regimen) [152] to visualise their effects on biomarker time-course profiles, 
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and also the predicted toxic APAP thresholds (for both probable liver injury and 

severe loss of cell functionality). As expected, providing NAC (following either 

regimen) caused large increases in peak NAC and GSH concentrations. The current 

regimen provided higher peaks which declined at a faster rate, whilst the SNAP 

regimen provided a lower peak, but with increased concentrations remaining for a 

longer time period. When using the probability of liver injury (based on HMGB1 

concentration) as a toxicity measure, the current regimen had better protective 

capability than the SNAP regimen; the current regimen was predicted to protect for 

APAP cases up to 8,000 mg/kg and the SNAP regimen was predicted to protect for 

APAP cases up to 3,500 mg/kg. However, the lower threshold (3,500 mg/kg) is still 

a really high APAP dose, and therefore the protective effects of this regimen should 

not be discounted.  

If loss of cell functionality was used as a toxicity measure, both regimens were 

predicted to provide a similar level of protection (for APAP cases up to 

approximately 450 mg/kg). Using cell functionality as a toxicity measure, our model 

predicted severe toxicity occurrence for any APAP dose beyond 400 mg/kg when 

NAC was not provided. Currently, the clinic suggest that any individual having taken 

an APAP dose above 250 mg/kg is likely to experience potentially fatal liver toxicity 

[8]. Our preliminary results suggest that this clinical threshold may have the potential 

to be increased, possibly leading to huge savings on unnecessary transplantations. 

However, since there are no repeats of this study, further investigation would be 

required before such suggestions could be confirmed. The initial results are 

promising though, and warrant further investigation.  

The fact that results differed greatly depending on the toxicity measure used 

(probability of liver injury based on HMGB1 concentration, or loss of cell functionality 

based on in vitro data) in each scenario when NAC was provided, supports the 

requirement for better understanding of the relationship between the two measures. 

Results from our investigation could be used to guide in vitro experiments to improve 

this understanding. Potential experiments could focus on monitoring multidrug 

resistance proteins (MRPs) over time following different APAP/NAC doses. These 

transporters are reported to transport GSH and also bind to ATP [153]. Further 

experimental repeats of the cell viability study would also be required to ensure 

confidence in the accuracy of the optimised parameters used in our cell functionality 

model. It must be noted however, that whilst the biomarker in our predictive liver 

injury framework is heavily dependent on GSH depletion, and although our cell 
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functionality model is also based on NAPQI accumulation (which is itself dependent 

on GSH depletion), we have optimised against cell viability data which is 

representative of intracellular ATP depletion. Our model framework could benefit 

from optimisation against more diverse cell functionality data such as albumin 

changes or ability to metabolise MTT. Albumin is the most abundant protein in the 

blood and decreased levels are widely used to indicate severely ill individuals [11], 

while MTT is a compound that viable cells with active metabolism can convert into 

a purple coloured formazan product [154]. When cells die, they lose the ability to 

convert MTT into formazan and therefore colour formation can serve as a 

convenient marker for cell viability. 

The results from our investigation have provided further insight and confirmation into 

the benefits of NAC administration in the overdose case. Although the results from 

our preliminary investigation are promising, the in vitro experiments used in the 

analysis were not repeated due to time and cost limitations. Therefore, before these 

results can be concluded with confidence, more repeats are highly recommended. 
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Chapter 5: Clinical paracetamol 
overdose model 
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5.1. Background 

Ultimately, this research has the aim of making predictions to better inform human 

safety. The current clinical treatment framework for APAP overdose is known to be 

highly sub-optimal, mainly due to its dependency on APAP dose amount; and time 

since overdose, information which is often highly inaccurate. In Chapters 2 and 3, 

we provide a pre-clinical framework that, once extrapolated to human, could have 

the potential to improve this current APAP clinical decision-making framework. 

Although APAP metabolism in mice is similar to that in human [155], humans are 

known to have much larger inter-individual variability in the metabolism processes 

in comparison to mice [77]. The modelling approach in the human case must 

therefore be more extensive than the pre-clinical case, ensuring this inter-

individuality is accounted for. In this chapter, we extend our mathematical modelling 

approaches described in previous chapters to the clinical case.  

Through collaboration with Dr. James Dear (Consultant and Honorary Senior 

Lecturer in Clinical Pharmacology at the Royal Infirmary Edinburgh, Edinburgh 

University) we obtained access to a database of approximately 3,600 APAP 

overdose patients, providing data for the optimisation of model parameters. We take 

a non-linear mixed effects modelling approach to account for both known and 

unknown errors in model predictions due to physiological differences between 

humans. The issues with the APAP toxicity framework can be further complicated 

by these physiological differences. Even though we are able to provide more 

accurate predictions of overdose amount and time since overdose, there are certain 

individuals that may respond to treatment differently for matters which are currently 

not accounted for within our modelling framework. For example, there is an apparent 

distinct global increase in accidental pediatric overdoses [156], and there have 

subsequently been many toxicological studies that have tried to understand 

metabolic differences in younger people versus older people, and whether these 

potential differences are linked to the increase in pediatric overdoses [157]. 

Additionally, there have been many cases where APAP toxicity has been apparent 

although APAP was prescribed and taken appropriately at the recommended 

therapeutic dosage [158,159], particularly for individuals of low weight (<50 kg) 

[160,161]. Identifying individuals that are particularly susceptible to APAP-induced 

liver injury has been heavily debated in the literature (for a review, see Caparrotta 

et al. [157]). Briefly, individuals are deemed ‘high-risk’ in the APAP overdose 



147 
 

scenario if they are known to have factors which may impair their ability to 

synthesise or maintain sufficient GSH levels [10]. Such factors may include pre-

existing liver disease, concurrent use of alcohol and/or other liver-metabolised 

medications, genetic predispositions and acuity/chronicity of APAP use [5]. The 

debate has been such that the threshold for providing NAC treatment (found by 

plotting measured APAP concentration against time since overdose) has been 

lowered by 25% from the original threshold to take into account individuals with 

potential risk factors and also to account for the possibility of measurement errors 

[20]. However, this of course bears the risk of treating more patients unnecessarily.  

In silico models are being increasingly used to make drug toxicity predictions, with 

focus on liver toxicity specifically. For a review, see Yang et al. who review in silico 

models for DILI prediction that were published between 2000-2015 [162]. In this 

chapter, we describe a nonlinear mixed effects modelling approach to 

pharmacokinetic modelling, which allows us to make population-pharmacokinetic 

(Pop-PK) predictions for individuals outside the region of the dataset used in 

optimisation. The APAP Pop-PK model is optimised against clinical data provided 

by Dr. James Dear at Queens Medical Research Institute Edinburgh and the focus 

of the modelling at this stage is firstly identifying and investigating any relationships 

between patient demographics and model parameters. Once the model is 

formulated and relationships identified, we conduct a model evaluation, 

emphasising its predictive utility in both acute and multiple dosing scenarios. 

Additional to this, numerical approaches are used with the aim of investigating of a 

current clinical problem, APAP toxicity in young, low-weight individuals.  

Chapter aims 

 Identify relationships between patient demographics and Pop-PK model 

parameters. 

 Investigate the effects of altering administration schedule on therapeutic 

effects. 

 Investigate the effects of age and weight on maximum tolerable dose, with 

particular focus on young, low-weight individuals. 
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5.2. Methods 

Detailed within this section is the mathematical modelling approach taken to 

computationally represent APAP metabolism in human. In order to ensure the 

parameters within the model were representative of the human APAP overdose 

case, we optimised the model parameters by fitting the model to data from over 

3,600 APAP overdose patients. A description of the data is provided within this 

section. During model development, we tested multiple variations of PK models to 

identify the most predictive model framework. The model selection criteria used at 

each stage during the model development are also defined within this section.  

5.2.1.  Clinical data description 

Clinical data was obtained from approximately 3,600 patients from 3 UK hospitals – 

Newcastle, Edinburgh and London. Data from 1,000 of these patients was published 

in the Lancet in 2017, within a study carried out by Clarke et al. [136]. The group 

aimed to determine whether novel biomarkers HMGB1 and K18 could accurately 

predict the requirement for prolonged hospital treatment, using ALT measurements 

as their predictive endpoint. This published data did not include all of the patient 

information. The full raw dataset was provided by our clinical collaborator, Dr. James 

Dear. For example, for each patient, the following information was obtained: 

Covariate/demographic information (namely, age, sex, and weight); APAP dose 

taken; time since APAP dose; and initial APAP concentration measurement (mg/l). 

The following observations were removed from the data set prior to analysis: 

patients with missing initial dose information; patients with missing time since dose 

information; patients with a missing initial APAP measurement; and patients with an 

initial APAP measurement below the lower limit of detection (LLOD), 10 mg/l [163]. 

5.2.2. Model selection criteria 

Various Pop-PK models were tested throughout the model development process to 

determine the most predictive. These variations included both one and two 

compartmental models (Figure 5-2), and models which included different 

combinations of potential parameter/demographic correlations. Further details of 

these models can be found in sections 5.2.5 and 5.3.1. In order to determine the 

most suited model, the Akaike Information Criteria (AIC) and Bayesian Information 
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Criteria (BIC) were compared at each stage of the development process. Within this 

analysis, model parameters (within the Pop-PK model structure) were obtained by 

maximizing their likelihood, in relation to the observational data provided (Maximum 

likelihood estimation) [164]. The parameter estimation methodology is explained in 

further detail in section 5.2.4 of this chapter, however we also mention it here briefly. 

AIC and BIC are defined by: 

𝐴𝐼𝐶 =  −2𝐿𝐿(𝑦; 𝜃) + 2𝑃, 

𝐵𝐼𝐶 =  −2𝐿𝐿(𝑦; 𝜃) + log(𝑁)𝑃, 

where 𝐿𝐿 is the log-likelihood function. Minimising minus two times the log-

likelihood, −2𝐿𝐿, is equivalent to maximizing the log-likelihood function, 𝐿𝐿 [82]. 

Minus two times the log-likelihood, −2𝐿𝐿, is a function of 𝑦 and 𝜃 which are 

representative of the observational data and the estimated parameter, respectively. 

The total number of parameters to be estimated is represented by 𝑃, while 𝑁 is the 

number of subjects. Both AIC and BIC measures were investigated at each stage 

in the model development process, and the model with the lowest combination was 

chosen to be best suited.  

5.2.3. Mixed effects modelling background 

If we assume that a sample dataset is quantitatively representative of the true 

population (for example, genetically homogeneous populations of mice  are often 

bred for medical research purposes, making results of medical trials more uniform 

[165]), then simple regression models may be sufficient. This would allow the 

modelling approaches applied in previous chapters to be suitable. These type of 

models contain leading order parameters that can be assumed to remain constant 

across individuals (fixed effects). However, if we have reason to believe that certain 

individuals may respond differently to others (as we do with the human population 

[166]), this model should be extended to include so-called higher-order random 

effects. These random effects account for the fact that there may be significant 

differences between the observations in the subset of data at hand, and the general 

population. Mixed effects models are necessary for clinical population modelling due 

to the requirement of both fixed (population averages) and random (individual 

variation) effects. Fixed effect variables are those that cause differences in 

observations for reasons of which we are aware, for example, different doses of 

drug, different time-point measurements of concentration, different weights and 
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heights of individuals [167]. Random effect variables are necessary to account for 

the fact that there will be additional differences between individuals in the general 

population for reasons of which we are unaware. These unknown differences cannot 

be accounted for solely by the residual error of the dataset that the model is based 

upon. 

Mixed effects modelling generally uses a two-stage hierarchical process [168], firstly 

creating the model at a population level and secondly at an individual level. This 

approach formalizes knowledge and assumptions about variation in outcomes and 

mechanisms both between (stage 1) and within individuals (stage 2) [169]. Once 

the model describing individual trajectories is embedded within the statistical 

population model, this then provides a suitable framework for inference of covariate 

effects (namely, obtaining a greater understanding of how much variance in model 

output may be attributable an individual’s covariate information) [170] .  

5.2.4. Model optimisation 

Monolix is an advanced computational software programme that provides robust, 

global solutions for even the most complex pre-clinical and clinical population PKPD 

models [171]. We used Monolix [172] to estimate parameter values that can 

represent the clinical human population. Subsequently, parameters were also 

estimated on an individual level for individuals within this population. Here, I 

describe how the parameters within our model were estimated, firstly at a population 

level and secondly at an individual level. 

5.2.4.1. Stage 1: Population level model 

The parameter component of the population model aims to quantify average values 

for the whole population: 

 𝜃𝑖 = 𝑑(𝛽, 𝑎𝑖, 𝑏𝑖),               𝑖 = {1,2, … ,𝑚}, (5-1) 

where 𝜃𝑖 is the population parameter estimate; a function of the fixed parameter, 𝛽 

(fixed effects) is given by 𝑑; parameter variation due to systemic association with 

individual attributes is given by 𝑎𝑖; and parameter variation that cannot be explained 

in the population is given by 𝑏𝑖.  The total number of population parameters to be 

estimated is represented by 𝑚. In our Pop-PK model (equation (5-23)), we have 

𝑚 = 5 parameters to be estimated: 𝑡𝑙𝑎𝑔, 𝑘12, 𝑘21, 𝑉, 𝑘𝑒𝑙. 
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5.2.4.2. Parameter estimation – Stochastic Approximation 

Expectation-Maximisation (SAEM) Algorithm 

Estimating the unknown population parameter estimates is a key task in non-linear 

mixed effect modelling. When faced with an incomplete dataset (clinical data is a 

perfect example – the data is clearly a subset and does not represent how the whole 

population behaves), from which unknown parameter estimates are to be estimated, 

expectation maximisation (EM) methods are particularly useful for parameter 

optimisation [173]. The key idea that underlies EM methods and differentiates them 

from other optimisation techniques is the introduction of a latent variable, 𝑍, which 

is representative of a “complete-data space”. This allows the enhancement of 

incomplete data by making reasonable guesses of any missing information. EM 

methods are used for solving maximum likelihood estimation problems (maximising 

the likelihood function of parameters over a given search space given observational 

data). EM algorithms are also iterative, meaning they maximize successive local 

approximations of the likelihood function.  

Each iteration 𝑘 has two phases, an exploratory phase and a smoothing phase.  

Exploratory phase – this searches the entire given parameter space to find the 

neighbourhood of maximum likelihood. 

During the exploratory phase, parameters for each individual within the dataset are 

generated from the conditional distribution first, and then the population parameters 

are generated based upon these. The conditional distribution is the probability 

distribution of the individual parameters and is defined for each iteration 𝑘 as follows: 

 𝑝(𝜓𝑖|𝑦𝑖, 𝜃
𝑘), (5-2) 

where the individual parameter estimate of individual 𝑖 is represented by  𝜓𝑖, the 

observation or data point for individual 𝑖 is represented by 𝑦𝑖 and the population 

parameter estimate from the previous iteration is represented by 𝜃𝑘. For the first 

iteration, this parameter estimate will be equal to the initial guess. 

There is no analytical solution to (5-2). Instead, Kuhn and Lavielle proposed 

combining the SAEM algorithm with a Markov-Chain Monte Carlo (MCMC) 

procedure [174]. When an estimated value is required but is difficult to obtain (in our 

instance individual parameter estimates, 𝜓𝑖), simulation approaches such as 

Metropolis-Hastings can sample from likely distributions to obtain the best estimate 

possible in the following way [175]. Firstly, the Markov-Chain Monte-Carlo approach 
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takes a random walk from a user defined initial point within the distribution, to 

another (more probable) point within the distribution. Then, at each iteration, the 

probability of the newly proposed point is only dependent on the one point previous, 

not every point previous. This general definition is applicable in our case, since the 

probability of the individual parameter, 𝜓𝑖, is only dependent on the population 

parameter from the previous iteration, 𝜃𝑘, and not all of the parameter estimates 

from all of the previous iterations. As seen in equation (5-2), the probability of the 

individual parameter also has a dependency on the data point for that individual, as 

this helps to pull the search closer to the true maximum likelihood [176]. Multiple 

iterations then allow the most probable value from the whole distribution to be 

obtained [177]. The general Metropolis Hastings algorithm described by Robert et 

al. [175] can therefore be altered to represent the concepts underlying the estimation 

of our population parameter estimates, as follows. 

1. Provide an initial estimate for the individual estimate value, 𝜓𝑖. 

2. Choose a nearby point within the parameter space to represent the newly 

proposed individual parameter estimate, 𝜓∗. 

3. Use the Metropolis Hastings algorithm as follows to determine whether the 

proposed point should be accepted/rejected 

I. Sample 𝑢 from a distribution 𝑈(0,1]. 

II. If 𝑢 < min {1,
𝑝(𝑦𝑖 |𝜓∗; 𝜃

𝑘
)

𝑝(𝑦𝑖 |𝜓𝑖; 𝜃
𝑘
)
} 

i. 𝜓𝑖+1 = 𝜓∗ 

else,  

ii. 𝜓𝑖+1 = 𝜓𝑖. 

4. The process is then repeated, choosing a different nearby point each time, 

until the most probable value is found. 

Once the most probable values are found for each individual, the average of the 

individual parameter estimates from this iteration is then taken to represent the 

proposed population parameter estimate, 𝜃𝑘+1, as 

 

𝜃𝑘+1 =
1

𝑁
∑𝜓𝑖

𝑁

𝑖=1

, (5-3) 

where 𝑁 is the total number of individuals within the dataset. This whole process is 

repeated 𝑘 times until results from iterations begin to converge and a resultant local 
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neighbourhood is found. This concludes the exploratory phase of this iteration of the 

EM algorithm. 

Following the exploratory phase, is the final (smoothing) stage of the EM algorithm. 

Smoothing phase – Once the local neighbourhood is found, this subsection of the 

parameter space is further explored. 

Individual parameter estimates are generated using MCMC as previously described 

(5-3). 

This time, the population parameter estimates are not taken to be the average of 

the individual parameter estimates at the current iteration, but instead the average 

across all previous iterations. This can be mathematically described as follows 

 
𝜃𝑘+1 =

1

𝑘
[
1

𝑁
∑𝜓𝑖

1

𝑛

𝑖=1

+
1

𝑁
∑𝜓𝑖

2

𝑛

𝑖=1

+⋯+
1

𝑁
∑𝜓𝑖

𝑘

𝑛

𝑖=1

], (5-4) 

Where 𝜓𝑖
1 is the individual parameter for individual 1, and 𝜓𝑖

2 is the individual 

parameter 2.This can be equivalently written as, 

 
𝜃𝑘+1 =

1

𝑘
[(𝑘 − 1)𝜃𝑘 +

1

𝑁
∑𝜓𝑖

𝑘

𝑛

𝑖=1

], (5-5) 

which simplifies to, 

 
𝜃𝑘+1 = 𝜃𝑘 +

1

𝑘
[
1

𝑁
∑𝜓𝑖

𝑘 − 𝜃𝑘
𝑛

𝑖=1

]. (5-6) 

This process is continued until there is negligible change in the objective function. 

5.2.4.3. The simulated annealing SAEM algorithm 

SAEM convergence can strongly depend on the initial guess if the likelihood 

possesses several local maxima [178]. To try to improve convergence towards the 

global maximum, the simulated annealing version of SAEM is introduced [179]. This 

simulated annealing version fixes the residual error variance to a large value when 

initially trying to optimise the model parameters. The large values of the variance 

allow the estimated values to be less concentrated around its mode. This allows the 

sequence (𝜃𝑘) to escape from the local maxima and converge to a neighbourhood 

of the global maximum. Once this initial process is complete, the usual MCMC-

SAEM algorithm is used [176]. 
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5.2.4.4. Stage 2: Individual level model 

Once average population (fixed effect, and corresponding error) parameters have 

been estimated, estimates for a new individual from that given population can be 

estimated: 

 𝑌𝑖𝑗 = 𝑓(𝑋𝑖𝑗; 𝜓𝑖) + 𝑒𝑖𝑗 ,               𝑗 = {1,2, … , 𝑛𝑖}, (5-7) 

where the outcome, 𝑌𝑖𝑗  (for each individual 𝑖 at each time point 𝑗) is a function of the 

variables, 𝑋𝑖𝑗 (for example, time); and fixed regression parameters, 𝜓𝑖; with the 

addition of some intra-individual error, 𝑒𝑖𝑗. The total number of observations for each 

individual 𝑖 is represented by 𝑛𝑖 . 

5.2.4.5. Parameter estimation – conditional distribution 

In order to calculate the most probable value of the individual parameter estimates, 

the conditional parameter distribution is firstly calculated, which is described by (5-2) 

but detailed here for completeness. In this case, the parameter definition is defined 

bty 

 𝑝(𝜓𝑖|𝑦𝑖, 𝜃), (5-8) 

where 𝜓𝑖 are the individual parameters for individual 𝑖, 𝜃 are the estimated 

population parameters and 𝑦𝑖 are the observations for individual 𝑖. This distribution 

is representative of the uncertainty in an individual’s parameter value taking into 

account the following: 

1. Information available for the individual, which includes: 

a. Observed data for the individual; and 

b. Covariate (or demographic) values for them 

2. The fact that the individual belongs to a population (for which the parameters 

have already been estimated). 

Within Monolix, there are two possible methods for estimating the most probable 

value arising from this distribution, either calculating Empirical Bayes Estimates 

(EBEs) or Markov Chain Monte Carlo (MCMC) sampling from a conditional 

distribution. I will now summarize both approaches. 

5.2.4.6. Empirical Bayes Estimates  

Empirical Bayes Estimates (EBEs) are alternatively referred to as the conditional 

mode, 𝜓𝑖
𝑚𝑜𝑑𝑒, which represents the most common individual parameter; they are 
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found by maximising the aforementioned conditional distribution and therefore 

represent the most likely value of the individual parameter, 𝜓𝑖 , given the 

observations, and a given population distribution: 

 𝜓𝑖
𝑚𝑜𝑑𝑒 = arg𝜓max𝑝(𝜓𝑖|𝑦𝑖; 𝜃). (5-9) 

It is therefore necessary to maximize the conditional probability with respect to the 

individual parameter value, 𝜓𝑖. In Monolix, the Nelder-Mead search algorithm is 

used to find this maximum. Since 𝑝(𝜓𝑖|𝑦𝑖; 𝜃) cannot be easily solved for a given 𝜓𝑖, 

this means that the conditional distribution does not have a closed form solution, 

and therefore Bayes’ Law is used to rewrite the conditional distribution in the 

following way: 

 
𝑝(𝜓𝑖|𝑦𝑖) =

𝑝(𝑦𝑖|𝜓𝑖)𝑝(𝜓𝑖) 

𝑝(𝑦𝑖)
. (5-10) 

If the individual parameter values 𝜓𝑖 are known, then the conditional density function 

of the data given these parameter values (𝑝(𝑦𝑖|𝜓𝑖)) is simple to calculate, as is the 

density function for the individual parameters (𝜓𝑖), since they both have closed form 

solutions. However, the denominator of (5-10) (the density function of the 

observations, 𝑝(𝑦𝑖)), has no closed form solution. Since the solution of 𝑝(𝑦𝑖) will 

have no dependency on 𝜓𝑖 however, this value would remain the same in each 

calculation of 𝑝(𝜓𝑖|𝑦𝑖), having no direct effect on the maximum value. This element 

𝑝(𝑦𝑖) is therefore removed from equation (5-10) for the optimisation procedure, and 

only 𝑝(𝑦𝑖|𝜓𝑖)𝑝(𝜓𝑖) is optimised. 

Once the most probable individual parameter values, 𝜓𝑖
𝑚𝑜𝑑𝑒 are known, using the 

population parameters and the covariates, the corresponding individual random 

effects can then be calculated using 

 𝜂𝑖 = 𝜓𝑖
𝑚𝑜𝑑𝑒 −𝜓𝑝𝑜𝑝 − 𝛽𝑐𝑖, (5-11) 

where 𝜂𝑖 is the individual random effect, 𝜓𝑖
𝑚𝑜𝑑𝑒 is the estimated conditional mode,  

𝜓𝑝𝑜𝑝 and 𝛽 are population parameters, and 𝑐𝑖 is covariate data for individual 𝑖. 

For each individual, then, we have a fixed effect and random effect. An individual’s 

parameter value is found by randomly sampling from a normal distribution with the 

mean value equal to the fixed effect and the standard deviation value equal to the 

random effect. 
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5.2.4.7. MCMC sampling of conditional distribution 

MCMC methods can be used to obtain samples from the previously predicted 

conditional distribution, when direct sampling is difficult for individual parameter 

optimisation. This approach involves a stochastic procedure which yields the most 

likely value from the probability distribution of interest. 

We can use this approach to conclude the most probable value of the individual 

parameter estimate as the mean value from all of the accepted MCMC draws, 

 𝜓𝑖
𝑚𝑒𝑎𝑛 =

1

𝛺
∑ 𝜓𝑖

𝛺𝛺
𝛺=1 , (5-12) 

where 𝜓𝑖
𝑚𝑒𝑎𝑛 is the average individual parameter value over all of the samples, 𝜓𝑖

𝛺 

is the individual parameter value for the current MCMC draw, and 𝛺 is the number 

of accepted MCMC draws. 

5.2.5.  Covariate model  

An individual’s covariate (or demographic) information such as age, gender and 

weight may affect one or more of that individual’s structural parameters. If this is the 

case, the individual parameter affected should be a function of this continuous 

covariate. Initially, no covariates were included within model optimisation, but all 

covariate relationships with individual parameters were tested to determine whether 

or not inclusion would improve the model fitting criteria. The Pearson correlation co-

efficient is calculated to determine the relationship between demographic 

(covariate) information, and the parameter value under investigation. For continuous 

covariates, the null hypothesis for this test is as follows, 

𝐻0: The Pearson correlation coefficient between the individual parameter and the 

covariate (demographic) value is zero. A small p-value indicates that the null 

hypothesis can be rejected, in which case a correlation is present and the covariate 

should be included within the model. 

Once it is determined that a significant correlation is present, the Wald test is then 

used to analyse whether including the covariate relationship brings enough change 

to the model output to validate its inclusion. The null hypothesis of the Wald test is 

as follows, 

𝐻0: The approximated beta parameter (from the Pearson correlation test) is equal 

to zero. A small p-value indicates that the null hypothesis can be rejected, and 
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therefore the estimated beta parameter is significantly different from zero, 

subsequently warranting inclusion within the model. 

5.2.6. The non-linear mixed effects model 

Now that we have described how an individual’s fixed effects and random effects 

can be approximated, we define a general non-linear mixed effects model for 

continuous outputs: 

 𝑌𝑖𝑗 = 𝑓(𝑋𝑖𝑗; 𝜓𝑖) + 𝑔(𝑋𝑖𝑗; 𝜓𝑖; 𝜉)𝑒𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛𝑖 , (5-13) 

where 𝑌𝑖𝑗  is the 𝑗th observation of subject 𝑖; the structural model 𝑓(𝑋𝑖𝑗; 𝜓𝑖) depends 

on both the regression variables 𝑋𝑖𝑗, and a vector of individual parameters 𝜓𝑖, the 

residual error model 𝑔(𝑋𝑖𝑗; 𝜓𝑖; 𝜉) depends on both the regression variables and 

individual parameters but also an additional vector of parameters, 𝜉, the residual 

error for individual 𝑖 is represented by 𝑒𝑖𝑗, the number of subjects is represented by 

𝑁; and 𝑛𝑖 is representative of the number of observations for subject 𝑖. 

As mentioned, the vector 𝜓𝑖 is a vector of individual parameters: 

 𝜓𝑖 = (𝜇, 𝑐𝑖, 𝜂𝑖), (5-14) 

where 𝑐𝑖 is a known vector of covariates, 𝜇 is an unknown vector of fixed effects, 

and 𝜂𝑖 is an unknown vector of normally distributed random effects. 

The residual errors (𝑒𝑖𝑗) are random variables with mean 0 and variance 1, and the 

residual error model is defined by the function 𝑔. This residual error model is further 

explained in the section below. 

5.2.6.1. Residual error model 

There are various potential reasons for which a model may not predict the exact 

observed paracetamol concentration. The structural model used for prediction may 

only be an approximation of the biology, or the PK responses may have been 

measured with some level of assay error, for example. The observed difference 

between actual values and predicted values is known as residual error. Each 

individual prediction (inclusive of model predictions and residual error predictions) 

can be described by equation (5-13). 

 With focus on the error component of the model, 𝑔(𝑋𝑖𝑗; 𝜓𝑖; 𝜉)𝑒𝑖𝑗, we are reminded 

that the residual errors are standardized Gaussian random variables with mean 0 
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and standard deviation 1. It follows then, that 𝑓(𝑋𝑖𝑗; 𝜓𝑖) is the conditional mean, 

𝐸(𝑦𝑖𝑗|𝜓𝑖) =  𝑓(𝑋𝑖𝑗; 𝜓𝑖). It also follows that 𝑔(𝑋𝑖𝑗; 𝜓𝑖; 𝜉) is the standard deviation, 

𝑠𝑑(𝑦𝑖𝑗|𝜓𝑖) =  𝑔(𝑋𝑖𝑗; 𝜓𝑖; 𝜉). 

In Monolix, the function 𝑔 is considered to be a function of the structural model, i.e., 

 𝑔(𝑋𝑖𝑗; 𝜓𝑖; 𝜉) = 𝑔(𝑓(𝑋𝑖𝑗; 𝜓𝑖); 𝜉), (5-15) 

which leads to an expression of the observation model of the form 

 𝑌𝑖𝑗 = 𝑓(𝑋𝑖𝑗; 𝜓𝑖) + 𝑔(𝑓(𝑋𝑖𝑗; 𝜓𝑖); 𝜉)𝑒𝑖𝑗 . (5-16) 

There are many functions that can be chosen to represent the residual error model 

𝑔. A constant error model assumes that the  𝑓(𝑋𝑖𝑗; 𝜓𝑖) element of 𝑔 is eliminated, 

resulting in the residual error function, 𝑔, being constant and the observation model 

can then written in the form  

 𝑦 = 𝑓 + 𝜉𝑒, (5-17) 

where 𝑦 is the predicted observation, 𝑓 is the structural model, 𝜉 is an error related 

parameter, and 𝑒 is the residual error. As a reminder, the structural model is 

dependent upon the model variables, 𝑋𝑖𝑗, the individual parameters, 𝜓𝑖.  

Alternatively, a proportional error model assumes that the residual error function, 𝑔, 

is proportional to the structural model, 𝑓, meaning that this element is no longer 

eliminated from 𝑔. The observation model can then be written in the form  

 𝑦 = 𝑓 + 𝜉𝑓𝑒. (5-18) 

However, in our analysis, we chose to model the residual error as a linear 

combination of a constant error term and a term proportional to the structural model. 

The observational model can therefore be written in the form 

 𝑦 = 𝑓 + (𝜉1 + 𝜉2𝑓)𝑒, (5-19) 

where 𝑦 is the predicted observation, 𝑓 is the structural model and 𝑒 is the residual 

error. In this case, there are two error related parameters 𝜉1, a constant error related 

parameter and 𝜉2, a proportional error related parameter. We chose this combined 

residual error model to firstly account for any error that may appear due to the 

structural model being only an approximation of the biology of APAP metabolism in 

human (proportional error), and secondly to account for any observations near to 
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the lower limit of detection to ensure that bioassay error is considered (constant 

error). 

Prior to optimisation, the data and parameters were transformed to the log-normal 

distribution, to ensure the Gaussian assumption is met, and to also ensure that no 

negative values could be predicted, since negative blood concentrations are not 

possible. The logit error model was extended to assume that observational 

concentrations, 𝑦, were bounded. Namely, A < 𝑦 < B, with A= 0 mg/l being the lowest 

possible concentration and B= 50,483 mg/l being the maximum observed 

concentration in the dataset.  

The transformed model can therefore be represented by 

 𝑇(𝑦𝑖𝑗) = 𝑇 (𝑓(𝑥𝑖𝑗, 𝜓𝑖)) + 𝑔(𝑥𝑖𝑗 , 𝜓𝑖 , 𝜉)𝑒𝑖𝑗 , 
(5-20) 

Where 𝑇 is the transform function, 𝑓 is the structural model and 𝑔 is the error model. 

In order to ensure strictly positive results ranging between A and B, the transform 

function can be represented by 

 
𝑇(𝑦) = log (

𝑦 − 𝐴

𝐵 − 𝑦
), (5-21) 

Applying this transformation to our model, we obtain: 

 𝑦 = 𝐴 + (𝐵 − 𝐴) (
𝑓−𝑎

𝑓−𝐴+(𝐵−𝑓)𝑒−𝑔𝑒
). (5-22) 

 

5.3. Results 

5.3.1. APAP Pop-PK model formulation 

To understand how to effectively model the clinical APAP dynamics, the observed 

APAP concentrations were transformed into log-space and plotted over time (Figure 

5-1).  
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Figure 5-1: Log-transformed paracetamol concentration versus time. The highest trend 

represents the 90th percentile, meaning that 90% of the observed data falls below this line at 

these time points. The middle trend is the 50th percentile, meaning that 50% of the observed 

data falls below this line. The bottom-most line is the 10th percentile, meaning that 10% of the 

observed data falls below this line. 

Since it was not clear whether the distribution/elimination phase of APAP occurs 

over one or two phases (Figure 5-1), we trialled both one and two-compartmental 

models. In a one-compartment model, all tissues within the body are assumed to be 

contained within one compartment [92]. A two-compartmental model assumes that 

tissues within the body can be separated into two different compartments [92]. The 

first compartment can be thought of as consisting of well-perfused tissues such as 

heart, liver and brain. The secondary compartment could represent poorly perfused 

tissues such as fat and bone. [93]. Schematics of both the one-compartment and 

two-compartment models can be seen in Figure 5-2. Models representing APAP 

concentration over time (𝐶𝑐𝑡) were built based on the laws of mass action, following 

a similar methodology as in our pre-clinical APAP model developed in section 2.2.1. 

Parameters from these models were optimised using the methodology defined in 

section 5.2.4 and models were selected based on their AIC/BIC values (a 

description of this criteria is defined in section 5.2.2). Model selection criteria for 

both the one-compartment and two-compartment models are described in Table 

5-1. 
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Figure 5-2: Pharmacokinetic model schematic. (A) One-compartment PK model 

representing the distribution of APAP. A dose of APAP is transferred to the central compartment 

but the rate of this transfer is limited by a parameter, 𝒕𝒍𝒂𝒈. APAP is then eliminated from the 

central compartment at a rate 𝒌𝒆𝒍. The central compartment has a theoretical volume, 𝑽. (B) 

Two-compartment PK model representing the distribution of APAP. A dose of APAP is 

transferred to the central compartment (well perfused tissues) but the rate of this transfer is 

limited by a parameter, 𝒕𝒍𝒂𝒈. The central compartment has a theoretical volume, 𝑽. APAP is 

secondarily transferred to the peripheral compartment (poorly perfused tissues) at a rate 

𝒌𝟏𝟐, and transferred back from the peripheral compartment to central compartment at a rate 𝒌𝟐𝟏. 

APAP is eliminated from the central compartment at a rate 𝒌𝒆𝒍. 

 

Compartmental model Akaike 

Information 

Criteria (AIC) 

Bayesian 

Information 

Criteria 

(BIC) 

-2LL 

One 2.67x105 2.67x105 2.67x105 

Two 2.64x105 2.65x105 2.65x105 

Table 5-1: Model fitting criteria for population pharmacokinetic models. AIC, BIC, and -

2LL are all compared for one- and two-compartment models. 

As can be seen in Table 5-1, the two-compartmental model provided marginally 

lower values for all three metrics, AIC, BIC and -2LL, and therefore was the PK 

model taken forward to represent the data. The chosen model is almost identical to 

the pre-clinical mechanistic APAP model defined in Chapters 2 and 3 (sections 2.2.1 

and 3.2.3 respectively), with the difference being that IP administration is not 

assumed and therefore an absorption rate from the peritoneal cavity is not required. 

Instead, we assumed an oral dose with absorption from the stomach, with a time 
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delay representing digestion/lag time. The corresponding model for APAP 

concentration over time in the central compartment (𝐶𝑐𝑡) can be written as follows: 

𝐶𝑐𝑡 = {
0, 𝑡 < 𝑡𝑙𝑎𝑔,

𝐷(𝐴𝑒−𝛼𝜔 + 𝐵𝑒−𝛽𝜔 − (𝐴 + 𝐵)𝑒−𝑘𝑎𝜔 ), 𝑡 ≥ 𝑡𝑙𝑎𝑔,
 (5-23) 

where 

𝛼 = 𝛽 (
𝑘21
𝑘𝑒𝑙
), 

𝛽 = 0.5(𝑘12 + 𝑘21 + 𝑘𝑒𝑙) + √(𝑘12 + 𝑘21 + 𝑘𝑒𝑙)2 − (4𝑘21𝑘𝑒𝑙), 

𝜔 = 𝑡 − 𝑡𝑙𝑎𝑔, 𝐴 =
𝑘𝑎
𝑉
(
𝑘21 − 𝛼

𝑘𝑎 − 𝛼
) (𝛽 − 𝛼), 𝐵 =

𝑘𝑎
𝑉
(
𝑘21 − 𝛽

𝑘𝑎 − 𝛽
) (𝛼 − 𝛽). 

The dose amount of APAP (mg) is represented by 𝐷, the parameter that limits 

transfer of the oral dose to the central compartment due to, for example, digestion 

is represented by tlag . The theoretical volume of the central compartment (l/kg) is 

represented by 𝑉,  the rate at which APAP is transferred to the peripheral 

compartment (poorly perfused tissues) (h-1) is represented by 𝑘12, the rate at which 

APAP transferred from the peripheral compartment to central compartment (h-1) is 

represented by  𝑘21, the rate at which APAP is eliminated from the central 

compartment (h-1) is represented by 𝑘𝑒𝑙  and 𝑡 represents the current time point (h). 

5.3.2. Identifying relationships between patient 

demographics and model parameters 

Multiple variations of the population PK model were fitted to the clinical dataset with 

the aim to optimise the APAP PK parameters such that computational simulations 

could mimic the clinical dataset provided. During initial model development, no 

demographic/parameter relationships were included in the model, although all 

possible combinations were statistically tested to determine whether their inclusion 

could improve the model fitting criteria. Results from the Pearson and Wald tests 

suggested that the final correlations to be included in the model should be between 

𝑡𝑙𝑎𝑔 and age (negative correlation); 𝑘12 and age (positive correlation); and 𝑘21and 

sex (positive correlation), where 1=male and 2=female. Literature searches were 

carried out to try and understand/confirm these potential relationships. Mian et al. 

reviewed 27 PK studies [180]. Of those defined within the review (that investigated 

a possible link between 𝑡𝑙𝑎𝑔 and age), none found a significant result. It must be 
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noted, however, that only a small number of studies investigated this correlation 

(n=3) and none of these studies incorporated inter individual variability.  

5.3.3. Model parameterisation 

The mixed-effects Pop-PK model resulted in optimised parameter values 

representative of the population, a random individual, and the level of correlation 

between an individual subject’s parameter estimate and their demographic 

information. Optimised population parameter values are provided in Table 5-2. 

Parameter Description Value 

𝑡𝑙𝑎𝑔𝜃 Parameter limiting the rate of transferring an APAP dose 
to the central compartment due to, for example, 
digestion 

3.16 

𝑘𝑎𝜃 APAP absorption rate 0.381 

𝑉𝜃 Theoretical volume of central compartment 0.0213 

𝑘12𝜃 Rate of APAP transfer from central to peripheral 
compartment 

0.929 

𝑘21𝜃 Rate of APAP transfer from peripheral to central 
compartment 

1.2 

𝑘𝑒𝑙𝜃 APAP elimination rate from central compartment 0.000479 

Table 5-2: Optimised population parameter estimates for clinical APAP Pop-PK model. 

Individual values, 𝜂𝑖, were randomly sampled for each individual and were assumed 

to be normally distributed, with mean of 0 and variance of 𝜔2. The variance for each 

parameter is provided in Table 5-3. 

Parameter Description Value 

𝑡𝑙𝑎𝑔𝜔 Variance of the parameter limiting the rate of 
transferring an APAP dose to the central compartment 
due to, for example, digestion 

1 

𝑘𝑎𝜔 Variance of the APAP absorption rate 1.24 

𝑉𝜔 Variance of the theoretical volume of central 
compartment 

1.75 

𝑘12𝜔 Variance of the rate of APAP transfer from central to 
peripheral compartment 

1.28 

𝑘21𝜔 Variance of the rate of APAP transfer from peripheral to 
central compartment 

1.02 

𝑘𝑒𝑙𝜔 Variance of the APAP elimination rate from central 
compartment 

4.17 

Table 5-3: Optimised variance of parameter values for each individual Pop-PK parameter. 

As detailed in Section 5.3.2, some parameter estimates were correlated with an 

individual’s demographic information. Coefficients for these correlations are detailed 

in Table 5-4. 
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Parameter Description Value 

𝛽_𝑡𝑙𝑎𝑔𝑎𝑔𝑒 Coefficient of the correlation between the APAP lag time 
in absorption into the central compartment, and an 
individual’s age 

-0.00585 

𝛽_𝑘12𝑎𝑔𝑒 Coefficient of the correlation between the rate of APAP 
transfer from central to peripheral compartment, and an 
individual’s age 

0.0163 

𝛽_𝑘21𝑠𝑒𝑥 Coefficient of the correlation between the rate of APAP 
transfer from peripheral to central compartment, and an 
individual’s gender 

0.5 

Table 5-4: Optimised coefficients of significant correlations between Pop-PK parameters and 

an individual’s demographic information. 

Assuming a log-normal distribution, to allow positive values only for predicted APAP 

concentration, the individual and population parameter values were combined to 

provide a parameter value for the 𝑖𝑡ℎ subject as follows: 

𝑘𝑎𝑖 = 𝑘𝑎𝜃𝑒
𝑘𝑎𝜂, 

𝑉𝑖 = 𝑉𝜃𝑒
𝑉𝜂, 

𝑘𝑒𝑙𝑖 = 𝑘𝑒𝑙𝜃𝑒
𝑘𝑒𝑙𝜂. 

For those parameters with significant correlations, the parameter values for the 𝑖𝑡ℎ 

subject were as follows: 

𝑡𝑙𝑎𝑔𝑖 = 𝑡𝑙𝑎𝑔𝜃𝑒
𝑡𝑙𝑎𝑔𝜂 + 𝛽_𝑡𝑙𝑎𝑔𝑎𝑔𝑒(𝐴𝐺𝐸) , 

𝑘12𝑖 = 𝑘12𝜃𝑒
𝑘12𝜂 + 𝛽_𝑘12𝑎𝑔𝑒(𝐴𝐺𝐸) , 

𝑘21𝑖 = 𝑘21𝜃𝑒
𝑘21𝜂 + 𝛽_𝑘21𝑠𝑒𝑥(𝑆𝐸𝑋), 

where 𝐴𝐺𝐸 and 𝑆𝐸𝑋 were the actual demographic values for the 𝑖𝑡ℎ subject. 

5.3.4. Model evaluation 

We tested the predictivity of the non-linear mixed effects model by plotting simulated 

output against the observed clinical data (Figure 5-3). For each individual observed 

data point, the corresponding individual model output is plotted as a blue circle. As 

a point of reference, in a model that was 100% predictive, these blue circles would 

fall along the black solid diagonal line. If observations fall above the diagonal line, 

this would be an example of model under-prediction, since the observed value would 

be higher than the predicted value. Conversely, if observations fall below the line, 
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this would be an example of model over-prediction, since the observed value would 

be lower than the predicted value.  

Additionally, individual weighted residuals (IWRES) were plotted versus both 

predicted time and APAP concentrations (Figure 5-4). In order for the model to be 

deemed predictive, predictions are required to remain within approximately +/-1.96 

standard deviations [181]. As can be seen in Figure 5-4, for the most part, this 

requirement is met, with only very few predictions falling outside of this range 

(approximately 1.05% in the IWRES versus time case and approximately 0.5% in 

the IWRES versus APAP concentration case). 

 

Figure 5-3: Observational data versus individual predictions. The black solid line is the 

reference 𝒚 = 𝒙 line. The black dotted lines define the region containing 95% of the data. 

 

Figure 5-4: Individual weighted residuals (IWRES) comparison. (a) IWRES versus time and 

(b) IWRES versus APAP concentration (Cc). The black dashed line is a reference line at 

IWRES=0. Observations should ideally fall between +/-1.96 standard deviations. 



166 
 

In Figure 5-5, we provide a Visual Predictive Check (VPC) of the predictivity of our 

population pharmacokinetic model. If our model was completely predictive of the 

real clinical environment, we would expect the predicted percentiles (--) to directly 

overlap with the empirical percentiles (-). Additionally, the prediction intervals 

(shaded regions) would ideally encase the empirical percentiles. The upmost 

percentile and prediction intervals are representative of the 90th percentile, meaning 

that 90% of the data is either observed (clinically) below this line (-) or are predicted 

by the model to fall below this line (--). The upmost prediction interval (blue shaded 

area) means that there is a 95% chance that the 90% predicted percentile will fall 

within this range. Following these descriptions then, we can see that although our 

model slightly over predicted the peak APAP concentration, the predicted outputs 

were reasonably similar to the observational outputs. 

 

Figure 5-5: Visual Predictive Check (VPC). Empirical percentiles are represented by blue solid 

lines. Predicted percentiles are represented by black dashed lines. The highest trend is the 90th 

percentile, central trend is the 50th percentile and the bottom-most trend is the 10th percentile. 

The blue shaded region around the 90th percentile is the 95% prediction interval, meaning there 

is a 95% chance the simulated prediction interval will fall within this range. The 95% prediction 

interval for the 50th percentile is indicated by a red shaded region. 

5.3.5. Model simulation 

5.3.5.1. Acute dosing 

Individual simulations 

The population-pharmacokinetic model was firstly used to simulate an individual 

taking acute doses of paracetamol. In the first instance, paracetamol concentration 

profiles were explored for a 25-year-old, 45kg female taking two different doses, 
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1,000 mg (2 tablets) and 336,000 mg (672 tablets, which was the maximum amount 

defined in the clinical data used within this investigation). Results of the simulations 

can be seen in Figure 5-6. 

Figure 5-6(A) shows the predicted APAP concentration profile following a 

therapeutically recommended dose of APAP (1,000 mg). Considering the 

therapeutic window for the maximum APAP concentration (Cmax) is predicted to be 

between 5-20 mg/l, and APAP is recommended to be taken every four hours, the 

predicted profile for an acute dose was as expected; almost reaching the therapeutic 

threshold a few hours-post-dose, but indicating that an additional dose may be 

required for full therapeutic effects. If a dose much higher than the recommended 

dose was taken acutely by the same individual, the predicted difference in profiles 

was clear (Figure 5-6(B)). The threshold for toxicity is thought to be any APAP Cmax 

above 25 mg/l. As expected, for a dose 336 times the recommended amount, the 

predicted peak concentration far exceeded this, at almost 3,000 mg/l. 

 

 

Figure 5-6: Simulated concentration over time for an individual taking two different acute 

APAP doses. Simulated APAP concentration over time for a 25-year-old female weighing 45kg 

following an APAP dose of 1,000 mg (A) and 336,000 mg (B). 
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Multiple individual simulations 

Although a patient may have similar demographics, e.g. weight, age and gender, 

their physiological parameters (e.g. rate of APAP absorption, rate of APAP 

elimination) will differ due to inter-individual variability. Taking this inter-individual 

variability into account, the model was used to simulate three individuals with the 

same demographic information (gender - female, age - 25 weight - 45kg) receiving 

a high APAP dose (336,000 mg) to see how their paracetamol concentration profiles 

differed. 

The clear differences between simulated individuals (with the same demographic 

information) receiving the same highly toxic APAP dose, can be seen in Figure 5-7. 

Although, as expected, all simulated individuals had predicted concentrations that 

far exceeded the toxic threshold (25 mg/l), the predicted profile shapes appeared to 

be very different for the three simulations. While two of the simulations showed fairly 

similar absorption and clearance of APAP, the third simulation had a much more 

rapid absorption of APAP, leading to a much higher maximum APAP concentration 

(Cmax), although the clearance was also much quicker, resulting in the APAP being 

cleared by around the same time as the other two simulations. The visual 

differences in profiles for only three simulations, shows the importance of 

accounting for this inter-individual variability when making population predictions. 

 

Figure 5-7: Simulation of APAP concentration over time for multiple individuals with the 

same demographic information taking the same 336,000 mg dose. Portrayal of the variation 

in simulated outputs when inter-individual variability of parameters is taken into account. 

Population simulations 

Since differences in APAP concentration profiles could be clearly seen in individuals 

with the same demographics, it was clear that simulations of a high number of 



169 
 

individuals would be necessary to make predictions for a more representative 

population. For this reason, acute dosing was simulated for 1,000 individuals, each 

having the same covariate/demographic information (gender, age, weight) but 

taking into account inter-individual variability in their physiological parameters. From 

these 1,000 simulations, predicted population profiles were calculated (Figure 5-8). 

Predicted population profiles were visually as expected. For example, in Figure 

5-8(A) we see that for an acute therapeutic dose of 1,000 mg, 95% of females who 

weigh 45kg were predicted to have a Cmax that was within the therapeutic range 

(5-20 mg/l). Figure 5-8(B) shows that by increasing this dose to 4,000 mg (a daily 

recommended dose in one acute instance), 95% of females were predicted to have 

a Cmax above the toxic threshold (25 mg/l). If this dose was increased even further, 

to an amount chosen to represent the maximum dose recorded in the clinical dataset 

(336,000 mg/672 tablets), visually, we see in Figure 5-8(C), that 95% of the 

population were predicted to far exceed the toxic threshold. 

 

 

Figure 5-8: Predicted population APAP concentration profiles for varying doses. For 25-

year-old women weighing 45kg, there is a 95% chance that their profile will be within the upper 

and lower bound (palest purple bounds). There is a 55% chance that their profile will be within 

the inner-most band (darkest purple). The therapeutic index for the maximum of the 

concentration profile (Cmax) is bounded by the green horizontal lines (5-20 mg/l). The threshold 

for toxicity is indicated by the red horizontal line (25 mg/l). If the Cmax is above this threshold, 

toxicity is predicted by the model.  (A) shows the population predicted profiles for individuals of 

this demographic taking an acute dose of 1,000 mg APAP. (B) shows the population predicted 
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profiles following a 4,000 mg dose. (C) shows the population predicted profiles following a 

36,000 mg dose. 

5.3.5.2. Multiple dosing 

Although the simulated output was as expected for the acute dosing situation, 

paracetamol is therapeutically advised to follow a multiple dosing regimen. Prior to 

using the model for further investigation, the model was exposed to a multiple dosing 

regimen for validation. 

Test population introduction 

To test the predictive capacity of the model in the multiple dosing scenario, three 

test subjects were exposed to the recommended APAP dose (1,000 mg) 4 times 

daily. Test subjects were created by providing demographic information on three 

known individuals – namely myself, Chantelle Mason (gender – female, age – 25 

years, weight 47 kg), and my supervisory team, Dr Steven Webb (gender – male, 

age – 44 years, weight 92 kg), and Dr Joseph Leedale (gender – male, age – 32 

years, weight 86 kg).  

Recommended dosing 

The recommended dose (1,000 mg, 4 x daily) was firstly assumed to be taken at 

times typical of breakfast (7am), lunch (12pm), dinner (5pm) and bedtime (9pm). 

Resultant paracetamol concentration profiles can be seen in Figure 5-9 for each test 

individual.  

In Figure 5-9 we see that for all test individuals, concentrations did not appear to 

reach the therapeutic window following the first dose. However, following a second 

dose, the therapeutic window was reached. Profiles appeared to be generally similar 

for all three individuals, the main difference being Chantelle (orange) had a greater 

lag time (parameter limiting the transfer of the oral dose to the central compartment) 

than both Steven (purple) and Joseph (green). While it took longer for Chantelle’s 

oral dose to enter the central circulation, Chantelle also took the longest to 

completely clear the APAP.  If this one-day approach to dosing was taken, 

therapeutic effects were predicted to diminish while each of the subjects were 

sleeping (beyond around 1am). If the targeted pain was short-lived (e.g. a 

headache), this may have been a sufficient schedule. However, if post-operative 

pain relief was required, for example, it may have been necessary for the therapeutic 

effects to remain for longer than a one-day period. For this reason, the model was 
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used to simulate a repeated administration schedule, the outputs of which can be 

seen in Figure 5-10. 

In this simulation scenario, the recommended dose (1,000 mg 4 x daily) was 

provided to all three test individuals, this time for two consecutive days. Figure 5-10 

shows that predicted concentration profiles for all three test individuals 

predominantly remained within the therapeutic window as expected. Similar to the 

one-day-dosing simulation scenario, for all test individuals, taking the first dose of 

APAP did not result in predicted therapeutic effects.  However, taking the first dose 

of APAP on the second day resulted in almost immediate therapeutic effects. This 

is likely due to the non-cleared APAP from the previous day having an accumulating 

effect on the total concentration. Consecutive doses (2nd, 3rd and 4th) on day 2 

resulted in similar peak concentrations to the previous day for all three test 

individuals.  

 

Figure 5-9. Predicted APAP concentration profiles for three test individuals following the 

recommended APAP dosing schedule – 1,000 mg administered at 7am,12pm,5pm,9pm. 

Purple - Concentration profile for test individual Steven Webb (44-year-old male weighing 92kg). 

Green - Concentration profile for test individual Joseph Leedale (32-year-old male weighing 

86kg). Orange – Concentration profile for test individual Chantelle Mason (25-year-old female 

weighing 47kg).  Green horizontal lines bound the therapeutic window (a peak APAP 

concentration within this window would be assumed to represent an efficacious case). The red 

horizontal line defines the toxic threshold (a peak APAP concentration reaching this level would 

be assumed to represent a toxic case). 
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Figure 5-10: Predicted APAP concentration profiles for three test individuals following 

the recommended APAP dosing schedule, repeated for 2 days – 1,000 mg administered 

at 7am, 12pm, 5pm and 9pm. Purple - Concentration profile for test individual Steven Webb 

(44-year-old male weighing 92kg). Green - Concentration profile for test individual Joseph 

Leedale (32-year-old male weighing 86kg). Orange – Concentration profile for test individual 

Chantelle Mason (25-year-old female weighing 47kg). Green horizontal lines bound the 

therapeutic window (a peak APAP concentration within this window would be assumed to 

represent an efficacious case). The red horizontal line defines the toxic threshold (a peak APAP 

concentration reaching this level would be assumed to represent a toxic case). 

An interesting result in both the one-day and two-day scenarios, was the time-period 

of drug holiday (time periods in which no therapeutic effects are caused by the drug). 

That is, with reference to the one-day dosing scenario for Chantelle (Figure 5-9), if 

the recommended dose was taken at 7am, 12pm, 5pm and 9pm, there are 8 hours 

throughout this period where no pain relief was achieved. Since no effective therapy 

was seen following the first dose (reflected by peak concentration resulting in a 

value lower than the therapeutic window requirement, 5-20 mg/l), this resulted in no 

therapeutic effects between 7am-12pm. Additionally, a drug holiday was seen 

between 2.30pm-5pm and finally between 8.30pm-9pm.  

Differing demographic combination responses to varying doses of APAP  

One important current clinical question is whether responses to the same APAP 

dose are different in younger, lighter individuals when compared to either older, 

average-weight or heavy-weight individuals. Once concentration profiles were 

confirmed to be as expected by our clinical collaborator (Dr. James Dear), for both 

the acute and multiple recommended dosing scenarios, we used the model to 

investigate differences in responses for the demographic groups of interest.  
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For this investigation a 15 years old was chosen to represent a “young” individual 

since “young” overdose cases are usually classed as those occurring in individuals 

aged between 15-24 [182]. 90-years-old was chosen to represent an “old” individual 

since this is beyond the general elderly age threshold of 75 [183]. Low weights were 

chosen to be below the average for the age group of interest [184] and heavy 

weights were chosen to be representative of obese/class 3 obese [185].  With this 

approach, a young, light weight individual was assumed to be aged 15, weighing 35 

kg. A young, heavy individual was assumed to be aged 15, weighing 90 kg. This 

weight (90 kg) was chosen since this is the threshold for obesity for an individual of 

average height [185]. An old, light individual was assumed to be aged 90, weighing 

40 kg. For elderly individuals, a weight beyond the class 3 obesity threshold was 

used [185]. An old, heavy individual was assumed to be aged 90, weighing 135 kg. 

For each of these demographic combination groups, an acute dose of 1,000 mg was 

provided, and simulated concentration-time profiles were compared (Figure 5-11). 

 

Figure 5-11: Predicted population APAP concentration profiles for various demographic 

groups following administration of a 1,000 mg APAP dose at 7am, 12pm, 5pm and 9pm. 

For each demographic group, there is a 95% chance that their concentration profile will be within 

the upper and lower bound (palest purple bounds). There is a 55% chance that their profile will 

be within the inner-most band (darkest purple). (A) predicted population APAP concentration 

profiles of young, low weight individuals. (B) predicted population APAP concentration profiles 

of young, heavy weight individuals. (C) predicted population APAP concentration profiles of old, 

light weight individuals. (D) predicted population APAP concentration profiles of old, heavy 

weight individuals. 
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For the recommended APAP dose, Figure 5-11 shows that all demographic groups 

were exposed to therapeutic effects, as expected. Interestingly though, individuals 

in the older groups (Figure 5-11(C-D)) were predicted to only see therapeutic effects 

following a third dose of APAP, whilst younger individuals (Figure 5-11(A-B)) were 

predicted to see therapeutic effects following the first dose.  The group with the 

highest variance in their profile were the young, light group of individuals (Figure 

5-11(A)), meaning that there was less certainty in predicting exact results for these 

individuals. This is a key result. For the younger group, if the weight was increased 

(Figure 5-11(B)), this seemed to improve confidence in the predictions, although any 

uncertainty in predictions was reduced further in the older population (Figure 

5-11(C-D)). Generally, there was a greater variance in model predictions for lower 

weight individuals. As both age and weight increased, there was an improvement in 

the confidence of predictions. 

The dose was then increased from the recommended 1,000 mg to 2,000 mg for an 

investigation into a higher dose in the same demographic groups. Resultant 

simulated concentration profiles are shown in Figure 5-12. 

 

Figure 5-12: Predicted population APAP concentration profiles for various demographic 

groups following administration of a 2,000 mg APAP dose at 7am, 12pm, 5pm and 9pm. 

For each demographic group, there is a 95% chance that their concentration profile will be within 

the upper and lower bound (palest purple bounds). There is a 55% chance that their profile will 

be within the inner-most band (darkest purple). (A) predicted population APAP concentration 

profiles of young, low weight individuals. (B) predicted population APAP concentration profiles 

of young, heavy weight individuals. (C) predicted population APAP concentration profiles of old, 
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light weight individuals. (D) predicted population APAP concentration profiles of old, heavy 

weight individuals. 

The main difference in the concentration profiles when increasing the dose, was the 

therapeutic effects being seen earlier for the older populations (Figure 5-12(C-D)). 

The younger populations (Figure 5-12(A-B)) were predicted to have therapeutic 

concentrations for the whole duration of the dosing schedule. For the older 

populations (Figure 5-12(C-D)), although there was a small drug holiday window 

between around 10h post-dose and 12h post-dose, the situation seemed to have 

improved for this higher dose, with therapeutic effects predicted following the first 

2,000 mg dose, rather than the third 1,000 mg dose.  

Differences in toxic responses for the demographic groups were investigated by 

simulating two highly toxic doses, 5,000 mg, and 10,000 mg.  

 

Figure 5-13: Predicted population APAP concentration profiles for various demographic 

groups following administration of a 5,000 mg APAP dose at 7am, 12pm, 5pm and 9pm. 

For each demographic group, there is a 95% chance that their concentration profile will be within 

the upper and lower bound (palest purple bounds). There is a 55% chance that their profile will 

be within the inner-most band (darkest purple). (A) predicted population APAP concentration 

profiles of young, low weight individuals. (B) predicted population APAP concentration profiles 

of young, heavy weight individuals. (C) predicted population APAP concentration profiles of old, 

light weight individuals. (D) predicted population APAP concentration profiles of old, heavy 

weight individuals. 

The predicted concentration-time profiles of individuals following 4x 5,000 mg doses 

can be seen in Figure 5-13 and the predicted concentration over time profiles of 

individuals following 4 x10,000 mg doses can be seen in Figure 5-14. 
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For a toxic acute APAP dose of 5,000 mg, as shown in Figure 5-13(A-B), toxicity 

(represented by concentrations higher than 25 mg/l) was predicted to be apparent 

almost immediately in the younger individuals. For the older individuals (Figure 

5-13(C-D)), following administration of one 5,000 mg dose, therapeutic 

concentrations were predicted, but following the third consecutive dose, toxic 

concentrations were predicted. As in previous results, the younger individuals 

(Figure 5-13(A-B)), particularly those who were also light-weight (Figure 5-13(A)), 

had the highest variance and least certainty in their predictions. 

 

Figure 5-14: Predicted population APAP concentration profiles for various demographic 

groups following administration of a 10,000 mg APAP dose at 7am, 12pm, 5pm and 9pm. 

For each demographic group, there is a 95% chance that their concentration profile will be within 

the upper and lower bound (palest purple bounds). There is a 55% chance that their profile will 

be within the inner-most band (darkest purple). (A) predicted population APAP concentration 

profiles of young, low weight individuals. (B) predicted population APAP concentration profiles 

of young, heavy weight individuals. (C) predicted population APAP concentration profiles of old, 

light weight individuals. (D) predicted population APAP concentration profiles of old, heavy 

weight individuals. 

For the highest dose of 10,000 mg (Figure 5-14), as expected, toxic concentrations 

were predicted in all demographic groups. There did appear to be a difference 

however, with regard to the extent of toxicity when comparing the younger (Figure 

5-14(A-B)) and older individuals (Figure 5-14(C-D)). For the younger individuals, 

(both light and heavy in weight) the predicted concentrations far exceeded the toxic 

threshold. For the older population (both light and heavy in weight), the toxic 

threshold was only just exceeded after the first dose. 
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5.3.5.3. Investigating the effects of demographic information on 

APAP tolerance 

Influence of age and weight 

Our clinical collaborator (Dr. James Dear) requested an investigation into the effects 

of a patient’s age and weight on APAP tolerance. This is of particular interest 

currently due to an increasing amount of toxicity cases being identified in young, 

low-weight individuals. These demographic factors were investigated in terms of 

their effect on maximum tolerated dose. For each age/weight combination for an 

individual, doses were increased until the toxic APAP Cmax threshold was reached. 

This process was repeated for 10 different virtual humans per age/weight class, with 

the average and standard deviation recorded.  The results can be seen in Figure 

5-15. The figure represents results for simulated females. The approach was 

repeated for males, however the visual difference in results was negligible and 

therefore to avoid repetition, the figures for males are not provided. 

On average, younger lighter people were predicted to have a lower tolerance to 

APAP (Figure 5-15(A)). This is indicated by the blue region, in the bottom left-hand 

corner of the plot, mainly accounting for individuals below age 40 and weight 80 kg 

(approximately). On average, individuals aged between 40-60 years and weighing 

between 80-100 kg had a slightly higher predicted tolerance to APAP dose 

compared to the younger, light-weight individuals. Individuals aged between 60-75 

years and weighing between 100-120 kg had an even higher tolerance, whilst 

individuals above 75 years old and also weighing above 120 kg were predicted to, 

on average, have the highest tolerance to APAP dose. 

The results from Figure 5-15(B) suggest that if a younger person has a higher 

weight, there is less variance in their predictions. This means that for these 

age/weight classes, we could predict their maximum tolerance with more certainty. 

This is indicated by the dark blue region in the bottom right-hand corner of the figure. 

This figure also shows that for any individual weighing less than 80 kg, the predicted 

maximum tolerable dose had a high potential to vary, with lower weight individuals 

over the age of 60 years having the highest variance in predictions.  Visualising the 

data in terms of relative standard deviation (Figure 5-15(C)) however, we see that 

regardless of age, there was predicted to be a higher variance in tolerance for low 

weight individuals. Both Figure 5-15(B and C) suggest that for older people (above 



178 
 

approximately 65 years), an increased weight does not necessarily reduce the 

variability in maximum dose tolerance. 

 

Figure 5-15: Maximum tolerated dose (the dose at which a toxic APAP Cmax is reached) 

for females with various age and weight combinations. Lowest values are indicated by a 

dark blue colour; as the value increases, the colour becomes green and eventually yellow at the 

highest values. (A) Average predicted maximum tolerated dose. (B) Standard deviation of 

predicted maximum tolerated doses. (C) Relative standard deviation of predicted maximum 

tolerated doses.  
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Age differences 

We investigated age-related differences in maximum tolerated APAP dose with 

particular focus on young individuals, regardless of weight. Whilst previously, we 

analyse APAP concentration (mg/l), upon arrival at the clinic, often an APAP dose 

(mg/kg) is the initial information provided to the clinician to aid in their decision of 

whether or not intervention is necessary. For this reason, our analysis is now 

conducted in terms of APAP dose (mg/kg) rather than APAP concentration (mg/l). 

We compared the predicted maximum tolerated doses with current thresholds used 

in the clinic which may deem a patient “unnecessary for intervention”, “potentially 

toxic” or “requiring transplant”. The aim of this was to determine whether or not “one-

size fits all” thresholds are predictive, or whether further accountability for age 

should be considered. Results of which can be seen in Figure 5-16. 

 

Figure 5-16: Predicted age effect on maximum tolerated APAP dose. Black lines indicate 

the average maximum tolerated dose predicted by the model, with error bars representing 

standard error mean in predictions. The green horizontal line represents a currently used clinical 

threshold (75 mg/kg) for which any patient reporting an ingested dose below this would be 

deemed unnecessary for intervention. The blue horizontal line represents a currently used 

clinical threshold (100 mg/kg) for which any patient reporting an ingested dose above this would 

be deemed potentially toxic and therefore would require treatment. The red horizontal line 

represents a currently used clinical threshold (150 mg/kg) for which any patient reported to have 

ingested a dose above this would be thought to require a liver transplant. 

The results from Figure 5-16 show that although the currently used potentially toxic 

dose threshold may be suitable for individuals above 40 years of age, keeping the 

threshold this high may mean that toxicity could potentially be missed for individuals 

below this age. For the youngest individuals in our investigation, the average dose 

at which toxic concentrations were present was 85 mg/kg. Should a young individual 

ingest a dose of approximately 85 mg/kg, clinically, they would currently be assumed 



180 
 

to be a non-toxic case. However, our predictions suggest that toxic concentrations 

may in fact be present in this scenario. Conversely, if a 75-year-old individual reports 

an ingested dose of 100 mg/kg, currently, they would be treated with 

N’Acetylcysteine. However, our results suggest that individuals of this age could 

tolerate a maximum dose of 120 mg/kg, and therefore this individual could 

potentially be unnecessarily treated under the current recommendations. The 

threshold currently used to advise transplant requirement (reported dose above 150 

mg/kg) lies above the average maximum tolerated dose predicted for all age ranges, 

and therefore our results suggest this threshold may be sufficient for this purpose. 

The threshold used to deem a patient unnecessary for intervention is 75 mg/kg. For 

all age ranges, the average maximum tolerated dose was predicted to be higher 

than this, and therefore this threshold may also be considered suitable.  

5.4. Chapter discussion 

The current clinical framework for treating paracetamol overdose is known to be sub 

optimal [10]. In previous chapters, specifically Chapters 2 and 3, we proposed a 

framework to improve the accuracy of predictions for initial dose and time since 

ingestion, and subsequently, the probability of liver injury. The mathematical 

approach we detailed is a proof-of-concept pre-clinical framework, which shows 

potential for translation to human and subsequent clinical application. Within this 

chapter, we provide a predictive framework applicable to humans. However, since 

biomarker data was unavailable at the time of investigation, within this chapter we 

detailed initial investigations on the PK aspect of the model only. The interesting 

results from these initial investigations provide additional support for further 

developing the model to include the pharmacodynamic aspect and strengthen the 

utility of the framework.  

Large differences in inter-individual susceptibility to APAP overdose have been 

reported, but the specific reasons for this variability remain unknown [77]. To 

account for this variability in responses we employed a mixed effect modelling 

approach. This modelling approach takes into consideration parameters that are 

representative of the average population, but additionally considers how much an 

individual may potentially deviate from this average, providing a range to sample for 

individual in silico investigations.  The parameters within our mixed effects model 

were optimised by fitting to data from approximately 3,600 APAP overdose patients. 

The optimised parameters (based on the clinical data) that varied greatest between 
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individuals were the APAP absorption rate (𝑘𝑎) and the theoretical volume of 

distribution (𝑉). There are many reasons which may justify variability in the 

absorption of a drug such as an individual’s nutritional state, gastrointestinal health, 

or necessity for drug co-administration [186]. Since the theoretical volume of 

distribution is associated with the weight of an individual, it is no surprise that this 

varies greatly within the population. The PK parameters predicted to vary the 

greatest were therefore those as expected.  

Simulating the model for three test individuals with different demographic 

information (gender, age and weight) allowed for the visualisation of differing 

concentration versus time profiles. There is persisting confusion regarding whether 

or not the weight of an individual should influence their oral APAP dose requirement. 

This has resulted in many independent clinics choosing to reduce the oral dose for 

low-weight individuals as a precautionary measure [157]. For just three test 

individuals, differences were identified in their predicted APAP concentration 

profiles, suggesting that profiles may vary greatly for a large amount of individuals 

with differing demographic information.   It must be recollected however, that the 

model parameters used for simulation were optimised based on overdose data, and 

further optimisation with non-overdose data would be necessary to make 

therapeutic predictions with improved confidence.  

With the potential effects of demographic information in mind, we investigated 

further the relationship between age and weight for large ranges which were not 

beyond the scope of the clinical dataset used for optimisation (10-90 years, 35-135 

kg), with the aim of determining how this information affected the maximum tolerated 

dose. Results from this more extensive analysis suggest that, on average, younger 

lighter people are predicted to have a lower tolerance to APAP. It must be noted, 

however, that there was also predicted to be a high level of variability in the 

maximum tolerated dose for the young, low-weight group of individuals. For heavier, 

younger individuals, the variability in profiles was predicted to be less, suggesting 

that we can have more confidence that a younger person can tolerate less than an 

older person, specifically if they are of a higher weight.  

Results suggest that regardless of age, there is much more variability in predictions 

for low-weight individuals, supporting the idea that some clinics take precautionary 

measures for these individuals. Since our findings thus far suggested that age was 

an important factor in differing responses to APAP, we used our model to compare 

predicted toxic thresholds for individuals ranging from 10-90 years with currently 
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used clinical thresholds. The key prediction from this analysis was that individuals 

below the age of 40 may not be investigated for potential toxicity under current 

clinical guidance (where 100 mg/kg is the considered toxic threshold). Results from 

our analysis suggest that individuals younger than 40 years old could have toxic 

APAP concentrations following a dose of 85 mg/kg. When simulating various four 

times daily doses and comparing how the concentration profiles differed for varying 

demographic groups, in every dosing scenario ([1,000; 2,000; 5,000; 10,000] mg) 

the group with the highest predicted variability in profiles were young, light weight 

individuals. Again, it must be noted that this model has been optimised against 

overdose data and therefore extrapolating predictions for therapeutic purposes may 

require additional optimisation against therapeutic data.  

Clinically, there has been much discussion around this demographic group with 

regards to their differing toxicity when compared with other demographic groups, 

although there is currently little evidence to guide clinicians on how to appropriately 

treat this group. Our study highlights the necessity for further investigation into this 

demographic group. Better understanding should be sought in terms of why this 

specific demographic group has such variability in APAP response, which should in 

turn be used to try and better guide clinicians to amend treatment. 
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Chapter 6: Discussion 
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6.1. Conclusions 

Paracetamol (APAP) overdose is a concerning global health issue [5]. Considered 

safe at therapeutic doses, this drug is also the most commonly used in overdose 

situations, accounting for 40% of all drug poisoning cases in the UK [3]. APAP 

overdose is the leading cause of acute liver failure (ALF) in the western world [4], 

with ALF being responsible for approximately 56,000 emergency room visits, 2,600 

hospitalisations and 500 deaths per year in the USA [6]. Considering the severity 

level of this public health concern, the current clinical treatment framework for APAP 

overdose is criticised for being sub-optimal. The two main issues with the current 

framework are: decisions to administer NAC are currently heavily dependent on the 

patients’ knowledge of time elapsed since overdose [10]; and, decisions to continue 

NAC treatment are heavily based on biomarkers ALT and INR, which are criticised 

for lacking sensitivity and specificity [11,17]. Further complexities arise as some 

individuals are more susceptible to toxicity from APAP overdose than others, 

particularly those with a weakened ability to synthesise or maintain sufficient 

glutathione (GSH) levels [10]. Such high-risk individuals may be of a particular age, 

suffer from pre-existing liver disease, concurrently use alcohol, or be malnourished, 

for example [5].  

While the decision of whether or not to administer NAC is currently sub-optimal, so 

too is the ideal treatment regimen (i.e. NAC dose amount and administration time), 

resulting in recent trials of newly proposed treatment protocols [136]. As well as 

known risk-factors that cause individuals to have a higher susceptibility to toxicity 

following overdose, there are also variations in the physiology of humans which may 

cause increased susceptibility [77], and more work is needed to try and quantify 

these effects in order to improve the treatment framework. Whilst pre-clinical animal 

testing remains an important element of toxicity identification methodology, 

quantitative systems toxicology (QST) modelling is a recently well-employed tool in 

modern toxicity testing, providing useful predictions efficiently and reducing the 

dependency on animal tests [43]. Within this thesis, we describe a QST modelling 

approach with the aim of improving the current APAP clinical treatment framework. 

Chapter 2 describes a pre-clinical proof-of concept framework representing APAP 

metabolism and corresponding toxicity biomarkers in mice. The biomarkers used 

within the investigation include the conventional (ALT), as well as the novel 

biomarkers (HMGB1, full and fragmented K18) that are thought to have improved 
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sensitivity over those currently used in the clinic [87]. We identified pharmacokinetic 

(PK) parameters for APAP in mice, which were previously undocumented within the 

literature. These values can now form a basis for other researchers within the field 

aiming to undertake similar pre-clinical APAP toxicity modelling investigations. All 

biomarkers were tested for their ability to predict potential liver injury against in vivo 

animal histology data via binomial logistic regression analysis. Although the 

biomarkers have been previously investigated individually [39], the biomarkers were 

tested in combinations within this study to better understand their relationship in the 

APAP toxicity setting. Although the current clinical combination of APAP and ALT 

turned out to be predictive for liver injury, HMGB1 alone was found to be the most 

significant predictor. This result formed the basis of our proposed liver injury 

identification framework.  

Whilst Remien et al. [73]  proposed a predictive liver injury framework based on a 

single measurement of biomarker concentrations, their study was focused upon 

conventional biomarkers e.g. alanine aminotransferase (ALT) and international 

normalised ratio (INR). Our study combined conventional and novel biomarkers with 

the aim of predicting the initial APAP dose, and how much time had elapsed since 

the dose was taken. The initial dose and time since administration predictions were 

found by combining PKPD modelling and simulation with statistical (visualisation 

and classification) techniques. The PKPD model was used to simulate a virtual 

population, with each individual receiving a random dose of APAP. Conventional 

and novel biomarker concentrations were extracted at a random time point to mimic 

the clinical situation. Measuring biomarker concentrations and combining with our 

proposed statistical framework allows the following to be predicted for each 

individual: initial APAP dose amount; time since overdose; and most importantly, a 

quantitative probability of liver injury (based solely on HMGB1 concentration).  

Currently, the clinical treatment framework is heavily dependent on knowledge of 

time since administration [10], information which is often unknown or highly 

inaccurate. We have developed a framework that can predict the time elapsed since 

overdose, based on biological information rather than verbal. The decision to 

continue NAC treatment is currently based on monitoring levels of biomarkers such 

as international normalised ratio (INR) and alanine aminotransferase (ALT), both of 

which are criticised for their lack of sensitivity and specificity [11,17]. An additional 

issue is the requirement of multiple invasive biomarker measurements, which has 

the potential to lead to incomplete results. Our proposed framework predicts the 
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probability of liver injury based on HMGB1 concentration (a biomarker defined to 

have improved sensitivity over those currently used [39]). Additionally, our 

framework requires only one measurement of biomarkers, eradicating the 

requirement for multiple invasive measures.  

Although QST models are being increasingly employed in the field of drug toxicity, 

skepticism around their utility still exists due to the necessity of underlying 

assumptions within the models. Therefore, any uncertainties that exist within the 

model should be explicitly defined to ensure the model may be used to its highest 

potential [46]. In Chapter 3, an identifiability analysis technique was defined with the 

aim to identify and quantify parameter uncertainty within the model. The technique 

was developed following a two-week award training placement at Freiburg Institute 

for Advanced Studies (FRIAS). In order to quantify any uncertainties in the model 

framework described in Chapter 2, we applied an identifiability analysis to the PKPD 

model which resulted in the identification of several model parameters that were 

unidentifiable. Structural unidentifiabilities (associated with the mechanistic 

structure of the model) were dominant in the HMGB1 and fragmented K18 

components of the model. Practical unidentifiabilities (associated with a lack of 

experimental data used during parameter optimisation) were dominant in the GSH 

component of the model, with additional practical unidentifiabilities in the full and 

fragmented K18 components.  

Chapter 3 describes the refinement of the model described in Chapter 2, adjusting 

the structure of the mechanistic framework and subsequently fitting the model to 

additional data to optimise the parameters. Since one of the complexities in APAP 

overdose treatment is that some individuals are more susceptible (“high-risk”) with 

regard to toxicity than others [10], we chose to extend our model framework to also 

predict toxicity in these “high-risk” individuals. We achieved this by modifying our 

pre-clinical PKPD model to represent both a fed and fasted state (fasted mice are 

known to have depleted GSH stores) and optimised parameter values by fitting to 

additional fed and fasted mouse data.  

The extended model can be used to make toxicity predictions for either healthy, 

high-risk or mixed populations. Prediction accuracy for time since APAP 

administration and initial APAP dose were similar for the healthy and mixed 

populations, with a 3-4 h error for time since administration and a 65-75 mg/kg error 

for initial dose. The initial dose was much harder to predict in the high-risk population 

(184.1 mg/kg error). This result is unsurprising since a much larger range of doses 
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may have a toxic effect if the liver is already impaired. Time since administration, 

however, could be predicted in the high-risk group more accurately than in a 

healthy/mixed population (2.118 h error). It has already been found that amending 

treatment thresholds  to account for high-risk individuals can better protect those 

with greater liver injury susceptibility [5].  

Results from this pre-clinical study further endorse the idea that there are likely very 

different outcomes with respect to liver injury potential for healthy and high-risk 

individuals. This was concluded from the visualisation of in silico individuals from 

both “healthy” and “high-risk” populations, with each observation being 

discriminated by their probability of liver injury. For the healthy population, most of 

the observations were predicted to have less than around 35% chance of DILI 

progression. In stark contrast, however, most of the observations in the high-risk 

population were predicted to have almost 100% chance of liver injury progression. 

More informed decisions could therefore be made regarding optimal treatment if 

clinicians can identify those who are more susceptible to overdose. This would 

significantly improve patient outcomes while reducing the cost and burden of 

unnecessary antidote treatment.  

In order to create a framework that has the potential to improve current APAP 

toxicity treatment in the clinic, it is important to include the antidote 

(N’acetylcysteine, NAC) and its effects on toxicity potential. In Chapter 4, we 

included in vitro experimental data showing the effects of APAP and NAC on cell 

functionality obtained through a laboratory experimental training placement at the 

University of Liverpool. The results of a multiple linear regression analysis 

concluded that, if biomarker measurements are taken throughout treatment, ALT, 

full and fragmented K18 could significantly predict cell viability. This insight was 

made possible by modelling full and fragmented K18 as separate necrotic and 

apoptotic versions of the same biomarker, suggesting its critical role in quantifying 

cell functionality. 

There has been much discussion around the uncertainty of the optimal combination 

of NAC dose amount and time of administration. In Chapter 4, we compared two 

NAC treatment regimens [24,136], the first, being the regimen currently used in the 

clinic, and the second being a proposed regimen that administers NAC over a 

shorter time period (SNAP) regimen. We assessed the regimens’ effects on the 

amount of APAP exposure allowed before toxicity was predicted. We used the 

thresholds defined by our framework: probable liver injury; and severe loss of cell 
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functionality. We found that when using probable liver injury as a marker of toxicity, 

the current NAC regimen was predicted to have better protective effects than the 

proposed SNAP regimen (protecting against APAP doses of 8,000 mg/kg compared 

to the SNAP regimen which protects against 3,500 mg/kg). When using loss of cell 

functionality as a measure, however, both regimens were predicted to provide 

similar protective effects. If cell functionality is used as a toxicity measure, our 

framework predicted toxicity occurring for any APAP dose beyond 400 mg/kg. 

Currently, the clinical expected fatal toxicity dose is thought to occur at APAP doses 

beyond 250 mg/kg [8]. Our preliminary results suggest that this clinical threshold 

may have the potential to be increased, possibly leading to huge savings on 

unnecessary interventions. However, further investigations would be required 

before such predictions could be confirmed. 

In Chapters 2 to 4, we have provided a proof-of-concept framework that is based on 

pre-clinical in vivo/in vitro scenarios. Chapter 5 describes a population-

pharmacokinetic (Pop-PK) model that can be applied to the human clinical case. 

The framework has parameters that were optimised by fitting the Pop-PK model to 

a clinical dataset of 3,616 patients (provided by our clinical collaborator, Dr. James 

Dear). The APAP overdose patients were from 3 UK hospitals – Newcastle, 

Edinburgh and London. For each patient, we had the following information: 

Covariate (demographic) information (age, sex, weight); APAP dose taken (mg); 

time since APAP dose (h); and APAP measurement upon hospital admission (mg/l). 

Once confident that the simulations from our Pop-PK framework were 

representative of the clinical data, we used the modelling framework to investigate 

some concerns which are currently of clinical interest.  

Firstly, large differences between inter-individual susceptibility to APAP overdose 

have been reported. However, specific reasons for this variability remain unknown 

[77]. We used modelling and simulation approaches to obtain a better quantification 

of this variability. Namely, the parameters that varied greatest between individuals 

were the APAP absorption rate, 𝑘𝑎, and the theoretical volume of distribution, 𝑉. 

There are many reasons which may explain differences in the absorption of a drug, 

such as an individual’s nutritional state, gastrointestinal health or polypharmacy 

[186].  

Secondly, within the clinic, there has been much discussion around a specific 

demographic group (young, lower weight individuals) with regards to their differing 

toxicity when compared to other demographic groups. At present, there is little 
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quantitative evidence to guide clinicians on how to appropriately treat this specific 

group. Through various simulations of our model, we were able to compare APAP 

concentration profiles for individuals in different demographic classes. We 

compared predicted population profiles from four different classes of individuals; 

young, light weight; young, heavy weight; old, light weight; and old, heavy weight.  

A consistent result, throughout testing various APAP doses, was that the 

concentration profiles for the young, light weight individuals were predicted to have 

much greater variance compared to the other demographic groups, suggesting less 

certainty in their predicted APAP profiles. We also simulated over 2,000 different 

age and weight combinations with the aim of investigating any differences in the 

APAP dose threshold predicted to induce toxicity. The results from this analysis 

clearly suggest that on average, younger, light weight individuals may have a lower 

tolerance to APAP. Something important to note, however, is that there was a high 

level of variability in the predicted maximum dose for this demographic group. As 

the weight of the young individuals increased, the relative variability in their 

predictions was much lower. This suggests that we can have more confidence that 

young individuals may have a lower APAP tolerance than an older person, if they 

are of a higher weight.  

One of the key highlights from our study suggests that under the current clinical 

guidelines, some patients who are deemed unnecessary for investigation, may in 

fact require treatment for APAP toxicity. An APAP dose of 100 mg/kg is thought to 

be the toxic APAP threshold at present. Results from our analysis suggest that 

individuals below the age of 40 years old could have toxic APAP concentrations 

following a dose of 85 mg/kg. Missing potential toxicity cases upon arrival at the 

hospital can have several detrimental downstream effects. For example, a 

nationwide study of over 12,000 subjects conducted by Huang et al. found that 

APAP poisoning is associated with increased long-term mortality and early referral 

for intensive after-care is essential [187]. 

In summary, this thesis aims to show the utility of mathematical modelling in toxicity 

predictions, with the particular objective of making improvements to the clinical 

APAP overdose treatment framework. We provide a proof-of-concept framework 

that, from a single measurement of conventional and novel biomarker 

concentrations, predictions about the amount of APAP taken and how long it has 

been since the overdose took place can be made. We also have the capability of 

predicting the probability of liver injury for each individual, and the severity of the 
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loss of cell functionality. We investigated the effects of NAC treatment and propose 

potential adjustments to the current framework which may improve the clinical 

situation. Finally, we provide a fully-optimised Pop-PK clinical model that has 

provided a better understanding of which physiological parameters could have the 

greatest influence on inter-individual susceptibility to APAP overdose. Whilst our 

clinical framework in its Pop-PK form has provided insight to the APAP overdose 

problem, once extended to include the biomarker dynamics (such as those 

investigated in Chapters 2-4), our hope is that our framework would have the utility 

to make toxicity predictions in the human case based on biomarkers that are more 

sensitive and specific than those currently used. 

There have been some mathematical approaches to improving the APAP overdose 

problem to date. For better understanding of APAP metabolism, mechanistic models 

often take the form of systems of ordinary differential equations (ODEs). These kind 

of mathematical models are useful for representing and making predictions of 

biological processes over time. Examples of such studies are defined by the DILI-

sim-initiative and Geenen et al.  [69,83]. We have taken a similar ODE modelling 

approach to represent APAP metabolism and the corresponding toxicity biomarkers. 

However, considering the limitation of data dependence, we define an identifiability 

analysis technique, which following application to the model defined in Chapter 2, 

enabled us to determine areas of uncertainty within our model structure that required 

refinement/additional data during optimisation. We were subsequently able to define 

the uncertainty within our predictions, and improve confidence in our framework.  

The key novelty of this study is the combination of mathematical and statistical 

modelling approaches. Simulations of the mechanistic models are combined with 

statistical visualisation and classification techniques to provide key mechanistic 

information that can be utilised by experimentalists, whilst additionally providing 

results from statistical analysis that can be easily interpreted and used by a clinician.  

6.2. Future work 

While the results of this research are promising, with additional time and resources, 

the utility of the model predictions could clearly be improved. With regard to the 

proof-of-concept framework defined in Chapters 2 and 3, although the results from 

the T-SNE method for visualisation showed clear separation, particularly with 

regards to the probability of liver injury, there was a slight overlap in the time-since-
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administration and dose plots. This result supports the possibility of defining further 

classes through unsupervised methodologies in future investigations. Also, the 

classification techniques used provided incredibly high accuracy levels considering 

the nature of the problem. However, a further investigation of interest could be the 

rate of misclassification between the classes with regard to critical errors at the 

edges of the variable ranges. 

Better understanding of the relationship between probability of liver injury (based on 

HMGB1 concentration) and loss of cell functionality is required. This is supported 

by our APAP tolerability results in Chapter 4 varying greatly depending on the 

toxicity measure used. Results from our investigation could be used to guide in vitro 

experiments to improve this understanding. For example, potential experiments 

could focus on monitoring multidrug resistance proteins (MRPs) over time following 

different APAP/NAC doses; these transporters are reported to transport GSH (which 

will affect HMGB1 concentration) and also bind to ATP (which will affect hepatocyte 

viability) [153]. Further experimental repeats of our cell viability study would also be 

necessary to ensure confidence in the accuracy of the optimised parameters used 

in our cell functionality model, and therefore the cell functionality metric.  

For QST models to be useful, relevant human biomarkers are essential [188]. During 

the time this research was carried out, the novel biomarkers used in our pre-clinical 

framework were unavailable within the clinical setting. Since this time, human 

biomarker data has been made available for HMGB1, full and fragmented K18 [136]. 

The next stage in this research will be to extend the currently developed APAP Pop-

PK model (Chapter 5) to include the pharmacodynamic components of the pre-

clinical novel biomarkers. A crucial investigation will be determining whether the 

predictions made from our framework defined in Chapters 2 and 3 are translatable 

to the clinical setting. Results from our pre-clinical analysis suggest that biomarkers 

ALT and full K18 are particularly sensitive to perturbations in parameters, and 

therefore sufficiently dense data will be required when translating the work to the 

clinical context. Dr. James Dear has expressed his interest in continuing our 

collaborative research. He and his team at the Queens Medical Research Institute, 

Edinburgh, predict that if translated to the clinic, our framework has the potential to 

save approximately 20,000 hospital bed days per year in the UK. This equates to 

an approximate saving of £8 million. Dr. Dear suggests that if translatability potential 

is deemed successful, their team could employ the framework within their clinic 

within a matter of months. 
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Appendices 
 
Model equations – Dynamic equations for the full pre-clinical systems toxicology 
model: APAP, corresponding toxicity biomarkers, NAC and hepatocyte functionality. 
Models for toxicity biomarkers are provided for the fed and fastedf cases (note that 
we use subscript f to denote parameters and variables in the fasted case). Note that 
for Full and Fragmented K18, 𝐻(𝑥) is the Heaviside function where 𝐻(𝑥) = 1 when 

𝑥 ≥ 0 and 𝐻(𝑥) = 0 when 𝑥 ≤ 0. 
PK 

 APAP central [𝐶𝑐]: 𝑑[𝐶𝑐]

𝑑𝑡
=
𝑘𝑎𝐷0𝑒

−𝑘𝑎𝑡

𝑉𝑐
+ 𝑘21[𝐶𝑝]

𝑉𝑝

𝑉𝑐
− 𝑘12[𝐶𝑐] − 𝑘𝑒𝑙[𝐶𝑐] (A-1) 

 APAP peripheral 

[𝐶𝑝]: 

𝑑[𝐶𝑝]

𝑑𝑡
=  𝑘12[𝐶𝑐]

𝑉𝑐
𝑉𝑝
− 𝑘21[𝐶𝑝] (A-2) 

GSH 

 Fed GSH [𝑔𝑠ℎ]:  𝑑[𝑔𝑠ℎ]

𝑑𝑡
= 𝑘𝑜(𝑔𝑠ℎ0 − [𝑔𝑠ℎ]) + ζ[NA] −

𝜉𝑘𝑒𝑙𝐶𝑐[𝑔𝑠ℎ]

[𝑔𝑠ℎ] + 𝑘𝑝𝑟
,  (A-3) 

 Fasted GSH 

[𝑔𝑠ℎ𝑓]: 

𝑑𝑔𝑠ℎ𝑓

𝑑𝑡
= 𝛿𝑘𝑜(𝑔𝑠ℎ0 − [𝑔𝑠ℎ𝑓]) + ζ[NA] −

𝜉𝑘𝑒𝑙𝐶𝑐[𝑔𝑠ℎ𝑓]

[𝑔𝑠ℎ𝑓] + 𝑘𝑝𝑟
,    𝛿 < 1 (A-4) 

ALT and HMGB1, (fed and fasted)  

 𝑟 = [𝑎𝑙𝑡] or 

[ℎ𝑚𝑔𝑏1]: 

𝑑[𝑟]

𝑑𝑡
= 𝑟0𝑘𝑜𝑢𝑡 (

𝑅50
𝑛 + 𝑔𝑠ℎ0

𝑛

𝑅50
𝑛 ) (1 −

𝑔𝑚𝑎𝑥[𝑔𝑠ℎ]
𝑛

𝑅50
𝑛 + [𝑔𝑠ℎ]𝑛

) − 𝑘𝑜𝑢𝑡[𝑟],  (A-5) 

  In the fed case, 𝑔𝑚𝑎𝑥 = 1, in the fasted case, 𝑔𝑚𝑎𝑥 < 1.   

Full K18 (fed and fasted) 

 Full K18 = 

[𝐾18]: 

𝑑[𝐾18]

𝑑𝑡
= 𝑟0

18𝑘𝑜𝑢𝑡
18 + 𝑘𝑚a𝑥𝑘𝑖𝑛

18𝐻(𝑔𝑠ℎ𝜃2 − [𝑔𝑠ℎ]) − 𝑘𝑜𝑢𝑡
18 [𝑘18],  (A-6) 

  In the fed case, 𝑘𝑚𝑎𝑥 = 1, in the fasted case, 𝑘𝑚𝑎𝑥 < 1.     

Fragmented K18 

 𝑑[𝑓𝐾18]

𝑑𝑡
= 𝑟0

𝑓18
𝑘𝑜𝑢𝑡
𝑓18

+ 𝑘𝑖𝑛
𝑓18

(𝐻([𝑔𝑠ℎ] − 𝑔𝑠ℎ𝜃1) − 𝐻([𝑔𝑠ℎ] − g𝑠ℎ𝜃2)) − 𝑘𝑜𝑢𝑡
𝑓18[𝑓𝑘18],   (A-1) 

 𝑑[𝑓𝐾18𝑓]

𝑑𝑡
= 𝑟0

𝑓18
𝑘𝑜𝑢𝑡
𝑓18

+ 𝑘𝑖𝑛
𝑓18

(𝐻([𝑔𝑠ℎ𝑓] − 𝑔𝑠ℎ𝜃1 − 𝜀) − 𝐻([𝑔𝑠ℎ𝑓] − g𝑠ℎ𝜃2)) − 𝑘𝑜𝑢𝑡
𝑓18[𝑓𝑘18f], 

 

(A-2) 
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 Fed fragmented K18 = [𝑓𝐾18], Fasted fragmented K18 = [𝑓𝐾18𝑓], 𝜀 > 0. (A-3) 

NAC 

 𝑑[𝑁𝐴]

𝑑𝑡
=
𝑁𝐷𝑜𝑠𝑒

𝑉𝑁𝐴
+ 𝑘𝑁21[𝑁𝐵] (

𝑉𝑁𝐵
𝑉𝑁𝐴

) + 𝑘𝑁31[𝑁𝐶] (
𝑉𝑁𝐶
𝑉𝑁𝐴

) − (𝑘𝑁12 + 𝑘𝑁13 + 𝑘𝑁𝑒𝑙)[𝑁𝐴],   
(A-10) 

 𝑑[𝑁𝐵]

𝑑𝑡
= 𝑘𝑁12[𝑁𝐴] (

𝑉𝑁𝐴
𝑉𝑁𝐵

) −  𝑘𝑁21[𝑁𝐵], 
(A-11) 

 𝑑[𝑁𝐶]

𝑑𝑡
= 𝑘𝑁13[𝑁𝐴] (

𝑉𝑁𝐴
𝑉𝑁𝐶

) −  𝑘𝑁31[𝑁𝐶], 
(A-12) 

Hepatocyte functionality 

 𝑑𝐻

𝑑𝑡
= 𝑟𝐻 (1 −

𝐻 + 𝑍

𝐻𝑚𝑎𝑥
) − 𝜂[𝑁]𝐻, (A-13) 

 𝑑𝑍

𝑑𝑡
= 𝜂[𝑁]𝐻 − 𝛿𝑧𝑍, 

(A-14) 

Model initial conditions 

Variable Initial condition (fed case) Initial condition (fasted case) 

[𝐶𝑐]  0 𝜇mol/l 0 𝜇mol/l 

[𝐶𝑝]  0 𝜇mol/l 0 𝜇mol/l 

[𝑔𝑠ℎ]  559.47497 𝜇mol/l 374.0909 𝜇mol/l 

[𝑎𝑙𝑡]  0.7626 𝜇mol/l 0.9528 𝜇mol/l 

[ℎ𝑚𝑔𝑏1]  0.0005 𝜇mol/l 0.0007 𝜇mol/l 

[𝑓𝑢𝑙𝑙𝑘18]  0.0088 𝜇mol/l 0.0113 𝜇mol/l 

[𝑓𝑟𝑎𝑔𝑘18]  0.0977 𝜇mol/l 0.1634 𝜇mol/l 

[𝑁𝐴]  0 𝜇mol/l  

[𝑁𝐵]  0 𝜇mol/l  

[𝑁𝐶]  0 𝜇mol/l  

[𝐻]  1  

[𝑍]  0  

Table A1: Initial conditions for each variable within the dynamic APAP systems toxicology pre-

clinical framework. 


