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ABSTRACT: Substitution of tin by indium in shandite-type
phases, A3Sn2S2 with mixed Co/Fe occupancy of the A-sites is
used to tune the Fermi level within a region of the density of
states in which there are sharp, narrow bands of predom-
inantly metal d-character. Materials of general formula
Co2.5+xFe0.5−xSn2−‑yInyS2 (x = 0, 0.167; 0.0 ≤ y ≤ 0.7) have
been prepared by solid-state reaction and the products
characterized by powder X-ray diffraction. Electrical-transport
property data reveal that the progressive depopulation of the
upper conduction band as tin is replaced by indium increases
the electrical resistivity, and the weakly temperature-depend-
ent ρ(T) becomes more semiconducting in character.
Concomitant changes in the negative Seebeck coefficient, the temperature dependence of which becomes increasingly linear,
suggests the more highly substituted materials are n-type degenerate semiconductors. The power factors of the substituted
phases, while increased, exhibit a weak temperature dependence. The observed reductions in thermal conductivity are
principally due to reductions in the charge-carrier contribution on hole doping. A maximum figure-of-merit of (ZT)max = 0.29 is
obtained for the composition Co2.667Fe0.333Sn1.6In0.4S2 at 573 K: among the highest values for an n-type sulfide at this
temperature.
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■ INTRODUCTION

The ability of thermoelectric devices to convert thermal energy
directly into electrical energy offers considerable scope for
improving the efficiency of industrial processes through the
harvesting of waste heat. Device performance is determined
principally by that of the constituent materials, commonly
expressed in terms of a thermoelectric figure-of-merit, ZT =
S2σT/κ encompassing the Seebeck coefficient (S), electrical
conductivity (σ), and thermal conductivity (κ), the last having
contributions from lattice vibrations (κL) and charge carriers
(κe).
Commercial thermoelectric devices are constructed from

bismuth telluride, appropriately doped to produce the n- and
p-type variants. However, the low abundance (1 ppb) and
availability of tellurium1,2 presents a barrier to the use of
telluride-based devices in large-volume applications. Moreover,
bismuth telluride exhibits its highest performance close to
room temperature. Performance falls off at higher temper-
atures, making such devices unsuitable for applications at
elevated temperatures, including the region 373 ≤ T/K ≤ 573,
where it has been estimated that ca. 80% of industrial waste
heat is released.3

The search for new high-performance alternatives to
bismuth telluride has led to the emergence of a number of
design strategies. These include effecting reductions in thermal
conductivity through the introduction of species with low-

energy localized vibrational modes (the phonon−glass electron
crystal (PGEC) approach),4 the manipulation of interface
scattering of phonons through grain-boundary engineering,5

the introduction of nanoinclusions6 or the formation of
nanocomposites with a second phase,7 or bringing about a
liquid-like state of one sublattice in a crystalline material (the
phonon−liquid electron crystal (PLEC) approach).8 Similarly,
electronic properties have been targeted through band
structure modifications including the creation of resonant
states,9 energy filtering,10 increasing the carrier effective mass
through magnetic interactions,11 enhancing the power factor
through spin fluctuations of itinerant electrons,12 or exploiting
low dimensionality to enhance the Seebeck coefficient.13

Much of the recent interest in the development of
alternatives to bismuth telluride has focused on sulfides due
in part to the high abundance of sulfur (350,000 ppb).1 A
number of recent reviews14−18 of sulfide thermoelectrics
underline the significant advances achieved in p-type materials.
Figures-of-merit which approach unity at elevated temper-
atures have been achieved in derivatives of tetrahedrite (ZT ≈
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1.0 at 723 K)19 and colusite (ZT ≈ 0.93 at 675 K),20 while the
copper-deficient binary phases, Cu2−xS show even higher
performance (ZT = 1.7 at 1000 K).21

Progress in n-type materials has generally been less marked.
Compared to their p-type counterparts, the figures-of-merit of
n-type materials are more modest. The n-type materials such as
Bi2S3 (ZT = 0.6 at 760 K),22 MnBi4S7 (ZT = 0.21 at 700 K),23

and chalcopyrite-related phases (ZT = 0.33 at 700 K),24 are
among those with the highest figures-of-merit.
In the search for new n-type materials, we have sought to

exploit the highly structured density of states N(E) that result
from low dimensionality in materials with the shandite
structure. Shandite-type phases, A3M2S2 (A = Ni, Co, Rh,
Pd; M = Pb, In, Sn, Tl), adopt a structure25 containing a
kagome-like network of corner-sharing A3 triangles, with M
atoms located in sites of 6-fold coordination by A (Figure 1).

Each A3 triangle is capped by a sulfur atom. Additional M
atoms are located in trigonal antiprismatic interlayer sites,
linking kagome layers into a three-dimensional structure. In
addition to fundamental studies to characterize the formal
oxidation states in shandites,26−29 materials in this family have
attracted considerable interest for their electronic structure and
properties27,30−32 and magnetic properties33−35 including the
recent observation of more exotic phenomena such as Weyl
semi-metal- and skyrmion-type behaviors.36−39

The low-dimensional character of the kagome layers is
reflected in a density-of-states N(E) that in the vicinity of the
Fermi level, EF, exhibits sharp, narrow bands, which band
structure calculations reveal to be of predominantly Co d-
character with small contributions from Sn 5p and S 3p
states.40 Since the Seebeck coefficient is proportional to the
derivative of N(E) at EF, through the Mott relation,41 tuning EF

to a sharp discontinuity in N(E) may offer a means of
increasing the Seebeck coefficient.42 Indeed the resulting sharp
peak in N(E) of Co3Sn2S2 at EF may contribute to the
relatively high Seebeck coefficient of the ternary phase.43

We have recently shown the applicability of such an
approach by demonstrating that enhancements in thermo-
electric performance can be realized by tuning EF through the
substitution of tin by indium in the series Co3Sn2−xInxS2.

44

This produces an almost 3-fold improvement in the room-
temperature figure-of-merit in Co3Sn1.15In0.85S2 (ZT = 0.2)
over that of the end-member phase Co3Sn2S2.

40

In a complementary approach to the tuning of electronic
properties through manipulation of the position of EF, we have
explored chemical substitution at the transition-metal site (A-
site).45 While electron doping through nickel substitution in
Co3−xNixSn2S2 (0 ≤ x ≤ 3) leads to loss of thermoelectric
performance, as materials become more metallic, hole doping
through the partial replacement of cobalt by iron in
Co3−xFexSn2S2 (0 ≤ x ≤ 0.6) leads to performance
enhancements. The power factor of Co2.4Fe0.6Sn2S2 reaches
10.3 μW cm−1 K−2 close to room temperature and ZT = 0.2 is
achieved at 523 K in Co2.6Fe0.4Sn2S2. Given the comparative
dearth of n-type sulfide thermoelectrics,14 we have sought to
achieve further enhancements in thermoelectric performance
through substitution of tin by indium in n-type iron-
substituted (x ≤ 0.5) phases, Co3−xFexSn2−yInyS2. Here we
report that this strategy results in n-type materials with figures-
of-merit that approach ZT = 0.3 at temperatures in the critical
373 ≤ T/K ≤ 573 region.

■ EXPERIMENTAL SECTION
Materials of composition Co2.5+xFe0.5−xSn2−yInyS2 (x = 0, 0.167; 0.0 ≤
y ≤ 0.7) were prepared by high-temperature synthesis from the
powdered elements. Mixtures of cobalt (Alfa Aesar, powder, 99.8%),
iron (Sigma-Aldrich, powder, 99.9%), tin (Sigma-Aldrich, powder,
≥99%), indium (350 mesh, Alfa, 99.99%), and sulfur (Sigma-Aldrich,
flakes, 99.99%) of appropriate stoichiometry were ground in an agate
pestle and mortar, prior to sealing into evacuated (10−4 mbar) fused-
silica tubes. Mixtures were fired initially for 48 h at 773 K and
subsequently, following an intermediate regrinding, at 973 K for a
further 48 h. A heating/cooling rate of 0.5 K min−1 was used.

Powder X-ray diffraction data for the products were collected using
a Bruker D8 Advance diffractometer, operating with Ge-monochro-
mated Cu Kα1 radiation (λ = 1.5406 Å) and equipped with a LynxEye
linear detector. Diffraction data were collected over the angular range
10 ≤ 2θ/° ≤ 120, counting for 3.6 s at each increment of 2θ = 0.018°
in detector angle. Powder X-ray diffraction data were analyzed by the
Rietveld method, as implemented in the General Structure Analysis
System (GSAS) program.46

Powder samples were consolidated into pellets by hot pressing for
25 min in graphite molds at 973 K and 60 bar under a nitrogen
atmosphere, using equipment constructed in-house. The resulting
pellets have a diameter of ca. 12.7 mm and a thickness of ca. 2 mm.
The density of the consolidated pellets was determined by the
Archimedes method using an AE Adam PW 184 balance. Densities in
excess of 98% of the crystallographic value were achieved for all
materials.

Electrical resistivity and Seebeck coefficient data were collected
simultaneously using a Linseis LSR3-800 system. Data were collected
in 10 K intervals over the temperature range 303 ≤ T/K ≤ 673. A
current of 100 mA was used for the four-probe resistivity
measurements and a temperature gradient of 50 K applied for the
determination of Seebeck coefficients. Thermal diffusivity data in the
temperature range 300 ≤ T/K ≤ 575 were obtained using a Netzsch
LFA 447 Nanoflash instrument. Data were collected in 25 K
increments on circular pellets coated with graphite. The thermal

Figure 1. Shandite structure adopted by Co3Sn2S2. Cobalt-centered
trigonal antiprisms are shown as blue polyhedra; cobalt, tin, and sulfur
atoms, as blue, magenta, and yellow circles.
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conductivity was calculated using values of the heat capacity (0.365−
0.368 J g−1 K−1, depending on composition) obtained by application
of the Dulong−Petit law. A recent round-robin exercise suggests
uncertainties in measured resistivities, Seebeck coefficients, and
thermal conductivities of 8%, 6%, and 11%, respectively, leading to
a 19% uncertainty in ZT.47

■ RESULTS AND DISCUSSION
Powder X-ray diffract ion data for composit ions
Co2.5Fe0.5Sn2−yInyS2 reveal that the shandite structure is
adopted throughout the composition range 0 ≤ y ≤ 0.6.
Similar behavior is observed in materials with higher cobalt
content, Co2.667Fe0.333Sn2−yInyS2, over the composition range
0.0 ≤ y ≤ 0.7. The previously refined structures of the
corresponding indium-free materials Co2.5+xFe0.5−xSn2S2 (x =
0.0, 0.2)45 were used to provide the initial structural models for
Co2.5+xFe0.5Sn2−yInyS2 phases, described in the space group
R3̅m. Similar atomic numbers of tin and indium prevent
discrimination between these two elements by X-ray methods.
However, a previous investigation of Co2Sn2−yInyS2 (0 ≤ y ≤
2) by neutron diffraction and DFT has revealed that indium
shows a preference for trigonal prismatic, interlayer sites over
those in the kagome layer.40 Site occupancy factors for the two
main-group elements were therefore set according to the
corresponding distribution in the iron-free materials. Thermal
parameters of all elements were constrained to be equivalent
and site occupancy factors fixed at those corresponding to the
nominal compositions. Refinement proceeded smoothly,
resulting in Rwp values of 2.8−3.1% and χ2 in the range
1.26−1.47. Representative profiles appear in Figure 2, with the
remaining provided as Supporting Information, while final
refined parameters are presented in Table 1.

The compositional dependence of the lattice parameters of
the two series of materials, Co2.5+xFe0.5−xSn2−yInyS2 (x = 0.0,
0.133) is similar (Figure 3). In particular, the crystallographic
c-parameter increases with increasing indium content, corre-
sponding to an increase in the separation between kagome
layers, while the in-plane a-parameter decreases slightly. An in-
plane contraction on hole doping has been attributed to
electronic factors, arising from the depopulation of antibond-

ing states of predominantly dxy and dx2−y2 character in the
vicinity of the Fermi level.40

The introduction of holes through the substitution of tin by
indium increases the electrical resistivity for both series
(Figures 4 and 5) as the upper conduction band is
progressively depopulated. With increasing indium content,
the weak temperature dependence of ρ(T) at y = 0.0, for which
dρ/dT is positive, is progressively transformed to temperature-
dependent, semiconducting ρ(T) behavior (dρ/dT negative).
The resistivity at room temperature is increased by a factor of
more than three across the series, with cobalt contents
corresponding to x = 0.0, and by a similar factor for the series
with x = 0.133.
The Seebeck coefficient (Figures 4 and 5) is negative for all

compositions investigated, consistent with the dominant
charge carriers being electrons. These materials therefore
provide a comparatively rare example of an n-type sulfide. The
absolute value of the Seebeck coefficient, |S|, increases with
increasing indium content in both series investigated,
consistent with the gradual loss of metallic behavior on
substitution of tin with indium. Moreover, the S(T) depend-
ence becomes increasingly linear with increasing indium
content, suggesting the more heavily substituted materials are
degenerate semiconductors.
The power factors (S2σ) of the indium-containing phases

(Figure 6) exhibit a relatively weak temperature dependence,
which contrasts with the behavior of indium-free (Co,-
Fe)3Sn2S2 phases.45 For example, the power factor for
Co2.5Fe0.5Sn1.8In0.2S2 shows a maximum variation of ca. 1.3
μW cm−1 K−2 over the whole of the temperature range
investigated: the variation in the more cobalt-rich phase
Co2.667Fe0.333Sn1.7In0.3S2, being similar. In both series, the
power factor initially increases with indium substitution before
decreasing at higher indium contents, suggesting there is an
optimum carrier concentration. Efforts to measure the carrier
concentration by Hall effect measurements were hampered by
difficulties in obtaining suitable contacts.
The thermal conductivity of materials of general formula

Co2.5Fe0.5Sn2−yInyS2 (0.0 ≤ y ≤ 0.6) decreases with indium
substitution (Figure 7), although, at the highest temperatures,
the thermal conductivity of all phases tends toward a common
value of 3.5−3.6 W m−1 K−1. The lowest thermal conductivity
is attained at a composition with 0.5 ≤ y ≤ 0.6. The series
Co2.667Fe0.333Sn2−yInyS2 (0.0 < y ≤ 0.7) shows a similar
decrease in thermal conductivity with indium substitution
(Figure 7), with the lowest values, of the order 3.0−3.1 W m−1

K−1, occurring at compositions in the region 0.6 ≤ y ≤ 0.7.
Using the Wiedemann−Franz law (L0 = 2.44 × 10−8 W Ω
K−2), the electronic contribution (κe) to the thermal
conductivity was determined and the lattice contribution
(κL) calculated as the difference (κ − κe). This demonstrates
that the reduction in thermal conductivity that occurs across
both series is principally due to the reduction in κe, with κL
showing a much weaker compositional dependence (Figures
S3 and S4). This is consistent with the expectation that little
mass-fluctuation scattering will result from the replacement of
tin with an element, indium, of similar atomic mass.
Combining the electrical-transport property data with the

measured thermal conductivities enables calculation of the
thermoelectric figure-of-merit, ZT (Figure 8). Hole doping in
the series Co2.5Fe0.5Sn2−yInyS2 leads to an increase in the
figure-of-merit at temperatures below 500 K, with a maximum
value of ZT = 0.23 being achieved for Co2.5Fe0.5Sn1.6In0.4S2 at

Figure 2. Final observed (crosses), calculated (full line), and
difference (lower full line) X-ray profiles for Co2.667Fe0.333Sn1.4In0.6S2.
Reflection positions for the shandite phase are indicated by the upper
set of vertical markers, while the lower set of markers refers to the
SnIn4S4 impurity phase (ca. 4.4 wt %).
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500 K. This can be associated principally with the improve-
ment in power factor since the thermal conductivity of this
substituted phase (3.35 W m−1 K−1) is comparable with that of
the indium-free end-member (3.45 W m−1 K−1) at this
temperature.
Slightly greater enhancements in the figure-of-merit are

observed in the series Co2.667Fe0.333Sn2−yInyS2, with the
maximum ZT = 0.29, being obtained for the composition
Co2.667Fe0.333Sn1.6In0.4S2 at 573 K. The compositional depend-
ence of the figure-of-merit (Figure 8) mirrors that of the power
factor, increasing gradually to y = 0.6, before an abrupt
decrease at y = 0.7, due principally to the increase in electrical
resistivity. The increase in the figure-of-merit up to
compositions with y = 0.6 can be associated with the marked
increase in the absolute value of the Seebeck coefficient that
occurs with increasing hole concentration, while the increased
electrical resistivity has a marked impact on κe, the reduction of
which combines with the increase in power factor to raise ZT.
The partial replacement of cobalt by iron in the end-member

phases Co2.5Fe0.5Sn2S2 and Co2.667Fe0.333Sn2S2 leads to the
creation of holes and depopulation of the conduction band.

The subsequent substitution of tin by indium, introduces
additional holes. Therefore, the total hole content in the series
Co2.5+xFe0.5−xSn2−yInyS2 is given by (0.5 − x) + y. Comparison
of the two nonstoichiometric series presented here reveals that
the optimum figures-of-merit are exhibited by compositions
corresponding to (0.5 − x) + y in the range 0.7−0.9 holes per
formula unit. In the previously reported series Co3Sn2−xInxS2
the maximum figure-of-merit in the temperature range 400 ≤
T/K ≤ 500 occurs at x = 0.8. The parent phase, Co3Sn2S2, has
47 valence electrons. Band structure calculations31,40 reveal
that the Fermi level crosses the narrow half-occupied 24th
(conduction) band. Hole doping, through substitution, at
either the transition-metal or main-group metal site, removes
electrons from this band moving EF toward the band edge,
until at a level of 1 hole per formula unit, the 24th band is
completely depopulated, EF moves into the band gap, and the
material becomes a semiconductor. Further doping can shift EF
into the lower energy 23rd valence band, leading to the re-
emergence of a metal-like state.44 A hole concentration of 0.7−
0.9 positions EF near the lower energy edge of the conduction
band, where the high degree of curvature may be the origin of

Table 1. Refined Parameters from Rietveld Analysisa of Powder X-ray Diffraction Data for (a) Co2.667Fe0.333Sn2−yInyS2 (0.2 ≤ y
≤ 0.7) and (b) Co2.5Fe0.5Sn2−yInyS2 (0.2 ≤ y ≤ 0.6)

y a/Å c/Å V/Å3 S(z) Uiso/Å
2 Rwp/% χ2

(a) Co2.667Fe0.333Sn2−yInyS2
0.2 5.35723(3) 13.2450(1) 329.203(5) 0.2833(3) 0.51(4) 3.0 1.41
0.3 5.35086(3) 13.2755(1) 329.17(1) 0.2828(3) 0.49(4) 2.8 1.25
0.4 5.34507(9) 13.3102(2) 329.32(1) 0.2829(3) 0.14(4) 3.0 1.26
0.5 5.33903(4) 13.3451(1) 329.441(6) 0.2820(3) 0.57(4) 3.0 1.37
0.6 5.33310(4) 13.3779(1) 329.516(6) 0.2819(3) 0.63(3) 2.8 1.28
0.7 5.32931(4) 13.4098(1) 329.833(6) 0.2817(3) 0.18(4) 3.1 1.47

(b) Co2.5Fe0.5Sn2−yInyS2
0.2 5.35674(3) 13.2564(1) 329.424(5) 0.2831(3) 0.76(4) 2.8 1.29
0.4 5.34644(4) 13.3197(1) 329.727(6) 0.2832(3) 0.58(4) 2.9 1.26
0.5 5.33952(8) 13.3538(2) 329.72(1) 0.2816(3) 0.62(4) 3.0 1.26
0.6 5.33508(4) 13.3930(1) 330.133(6) 0.2821(3) 0.30(4) 3.1 1.42

aSpace group: R3̅m. Co/Fe on 9d (1/2,0,1/2), Sn(1) on 3a(0,0,0), Sn(2) on 3b (0,0,1/2), and S on 6c (0,0,z).

Figure 3. Compositional variation of the lattice parameters of
Co2.667Fe0.333Sn2‑yInyS2 (upper plot) and Co2.5Fe0.5Sn2−yInyS2 (lower
plot), determined from Rietveld analysis of powder X-ray diffraction
data at room temperature.

Figure 4. Temperature dependence of electrical resistivity (upper
plot) and Seebeck coefficient (lower plot) of Co2.5Fe0.5Sn2−yInyS2
phases (0.0 ≤ y ≤ 0.6).
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the high Seebeck coefficient. Band structure calculations
indicate that the conduction band is predominantly of d-
character, with relatively little contribution from the p orbitals
of the main-group metal.40 The partial replacement of cobalt
by iron may have an impact on the detailed form of this band
and cause the critical region in which tuning of EF optimizes
the Seebeck coefficient to move to lower energies. The
maximum thermoelectric response may then require a higher
hole content in doubly substituted materials, than in materials
where substitution is carried out at the main-group site only.
As noted above the performance of n-type materials lags

behind that of their p-type counterparts, representing a barrier
to construction of an all-sulfide thermoelectric device. For
example, while Bi2S3, doped with BiCl3, exhibits a maximum
ZT ≈ 0.6 at 760 K,22 it shows a lower performance at
temperatures in the region (373 ≤ T/K ≤ 573), appropriate to
energy harvesting from waste heat associated with industrial

processes (ZT ≈ 0.25 at 473 K). Much of the focus on n-type
sulfides has been directed toward phases related to
chalcopyrite (CuFeS2)

14 and attempts to optimize the carrier
concentration through chemical substitution.48,49 Figures-of-
merit in the range of 0.1 ≤ ZT ≤ 0.2 have been achieved at
temperatures in the range 400 ≤ T/K ≤ 700. While ZT = 0.33
has been reported for Cu0.97Fe1.03S2,

24 this is at 700 K,
significantly above the temperatures relevant to industrial
waste heat. In the temperature range 373 ≤ T/K ≤ 573, a
figure-of-merit that approaches ZT = 0.3 in the shandite-
related materials reported here, exceeds that of the majority of
candidate n-type sulfides that have been explored (Figure 9).
Materials derived from shandite may therefore offer an
alternative n-type sulfide material for thermoelectric applica-
tions in the midrange of temperatures.

Figure 5. Temperature dependence of electrical resistivity (upper
plot) and Seebeck coefficient (lower plot) of Co2.667Fe0.333Sn2−yInyS2
phases (0.2 ≤ y ≤ 0.7).

Figure 6. Thermoelectric power factors (S2σ) for Co2.5Fe0.5Sn2−yInyS2
(0.0 ≤ y ≤ 0.6, upper plot) and Co2.667Fe0.333Sn2−yInyS2 phases (0.2 ≤
y ≤ 0.7, lower plot).

Figure 7. Temperature dependence of the total thermal conductivity
(κ) of Co2.5Fe0.5Sn2−yInyS2 phases (0.0 ≤ y ≤ 0.6, upper plot) and
Co2.667Fe0.333Sn2−yInyS2 phases (0.2 ≤ y ≤ 0.7, lower plot)

Figure 8. Temperature dependence of the thermoelectric figure-of-
merit for Co2.5Fe0.5Sn2−yInyS2 (0.0 ≤ y ≤ 0.6, upper plot) and
Co2.667Fe0.333Sn2−yInyS2 phases (0.2 ≤ y ≤ 0.7, lower plot).
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■ CONCLUSIONS
We demonstrate that hole doping through simultaneous
substitution at the transition-metal and main-group metal
atom site in Co3Sn2S2 results in an increase in the
thermoelectric figure-of-merit to a value that approaches ZT
= 0.3 at temperatures as low as 473 K. Such materials are
competitive with the more intensively investigated chalcopyr-
ite-type and Bi2S3-type n-type phases. Materials such as
Co2.667Fe0.333Sn1.4In0.6S2 are therefore attractive candidates for
further optimization of thermoelectric properties through
techniques such as nanostructuring and nanocompositing to
reduce the comparatively high thermal conductivity, without
impacting unduly on the promising electrical properties.
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(51) Guilmeau, E.; Breárd, Y.; Maignan, A. Transport and
thermoelectric properties in copper intercalated TiS2 chalcogenide.
Appl. Phys. Lett. 2011, 99, No. 052107.
(52) Bourges̀, C.; Pavan Kumar, V.; Nagai, H.; Miyazaki, Y.; Raveau,
B.; Guilmeau, E. Role of cobalt for titanium substitution on the
thermoelectric properties of the thiospinel CuTi2S4. J. Alloys Compd.
2019, 781, 1169−1174.
(53) Hashikuni, K.; Suekuni, K.; Watanabe, K.; Bouyrie, Y.; Ohta,
M.; Ohtaki, M.; Takabatake, T. Carrier concentration tuning in
thermoelectric thiospinel Cu2CoTi3S8 by oxidative extraction of
copper. J. Solid State Chem. 2018, 259, 5−10.
(54) Barbier, T.; Berthebaud, D.; Freśard, R.; Lebedev, O. I.;
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