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Abstract. The perceived I/O performance of a shared file system heav-
ily depends on the usage pattern expressed by all concurrent jobs. From
the perspective of a single user or job, the achieved I/O throughput can
vary significantly due to activities conducted by other users or system
services like RAID rebuilds. As these activities are hidden, users wonder
about the cause of observed slowdown and may contact the service desk
to report an unusual slow system.
In this paper, we present a methodology to investigate and quantify the
user-perceived slowdown which sheds light on the perceivable file system
performance. This is achieved by deploying a monitoring system on a
client node that constantly probes the performance of various data and
metadata operations and then compute a slowdown factor. This infor-
mation could be acquired and visualized in a timely fashion, informing
the users about the expected slowdown.
To evaluate the method, we deploy the monitoring on three data centers
and explore the gathered data for up to a period of 60 days. A verification
of the method is conducted by investigating the metrics while running
the IO-500 benchmark. We conclude that this approach is able to reveal
short-term and long-term interference.

Keywords: Parallel File Systems; Performance Analysis; Latency

1 Introduction

HPC centres are highly motivated to improve efficiency and utilization of their
systems. The estimation of the current system state is often based on a few
metrics, which are continuously observed by a monitoring system.

Although, basic metrics are sufficient for identification of the most typical
problems, they are less suitable for special tasks, e.g., one major difficulty for
the file system state assessment is that many I/O metrics depend on both: ap-
plication behavior and file system state. In case of non-obvious I/O issues, i.e.,
when all metrics looks good except I/O performance, it’s not easy to say what is
the cause just by looking at them. Understanding the quality of the file system
health and quantifying its performance is another challenge. Users may wonder
if the subjective experienced performance (“today the system is very slow”) is
actually true and, particularly, when jobs are aborted since the I/O phases take
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subjectively longer than normal3. This may lead to additional queries for the
help-desk – which might be busy to resolve an issue. Knowing that the observed
file system behavior is monitored and already classified as “slow” due to a de-
graded system state has a prospect to help users (but also staff) to understand
the situation and reduce the queries.

To be able to identify the misbehaving component, it is beneficial to have a
reliable metric that refers to file system only, i.e., it must be independent from
any application. It would be also beneficial to quantify current file system state
and to measure reaction to different I/O workloads. The latter specially useful
to assess recurring I/O-intensive tasks such as backup of data.

The key contribution of this paper is the introduction of a systematic I/O
performance monitoring using a probe with low intrusion and the investigation
of means to derive a user-understandable slowdown factor.

The paper is structured as follows: First, we discuss related work in Section 2.
Next, in Section 3, we discuss the methodology that we use for this work. The
experimental results are presented in Section 4. Finally, the work is concluded
in Section 5.

2 Related Work

There are various monitoring systems for cluster activities. Darshan [2, 3] is
an open source I/O characterization tool for post-mortem analysis of HPC ap-
plications’ I/O behavior. Its primary objective is to capture concise but useful
information with minimal overhead. Statistics are captured in a bounded amount
of memory per process as the application executes. When the application shuts
down, it is reduced, compressed, and stored in a unified log file. Utilities included
with Darshan can then be used to analyze, visualize, and summarize the Darshan
log information. Because of Darshan’s low overhead, it is suitable for system-
wide deployment on large-scale systems. In this deployment model, Darshan can
be used not just to investigate the I/O behavior of individual applications but
also to capture a broad view of system workloads for use by facility operators
and I/O researchers.

In [9] Uselton and Wright claim that conventional I/O performance analysis
based on transferred data volume and bandwidth doesn’t provide reliable infor-
mation about the state of file systems. They investigate a new metric called file
system utilization (FSU) that takes into account the number and the size of disk
I/O operations. A mathematical I/O transaction model brings all parameters
together. On NERSC’s Hopper Cray XE6 system they detect a busy file system
with FSU, even if I/O performance indicates an idle state. This approach re-
quires a complicated setup, that captured and collects I/O data from client and
server nodes.

A machine learning approach for anomaly detection was investigated by
Tuncer et al. in [8]. This approach targets two aspects. First, data reduction

3 When the specified job walltime limit is hit, jobs are terminated.
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by mapping large raw time series to a few relevant statistics. Second, automatic
anomaly detection and classification with machine learning algorithms. With
sufficient data, a model can be adapted to several anomaly types, e.g. hardware
issues, memory leaks, system health status. In the experiments on a HPC clus-
ter and a public cloud the resulting ML-model a high accuracy (F-score higher
than 0.97). Probably, the biggest challenge of this approach the machine learn-
ing technology. Creation of well trained models requires a lot of expertise in this
area.

The LASSi Tool [7] captures I/O behavior and computes risk metrics that
are related to application’s I/O behavior. While this is similar to the goal of this
approach, the interpretation of the synthetic LASSi metrics is difficult.

Sometimes developers or users utilize the principle of performance regression
testing, i.e., to run an application periodically and measure the performance
development while developing the code further. Typically this serves the purpose
of identifying introduced performance issues but it is sometimes also used to
identify slowdown in the system. For instance, in [10] the authors run benchmarks
with Jenkins periodically to monitor system health. In [6], IOR is run daily
to track the performance behavior. Additionally, performance of I/O motifs is
analyzed over time.

This information is targeted to the data center staff and able to track changes
in long-term system behavior (e.g., after updates), while our probing approach
addresses the user side focusing on giving feedback of the perceived system load
in a timely fashion.

3 Methodology

To quantify the user-slowdown, we periodically gather the response time from
the client side and then apply statistics to reduce data points to meaningful
metrics.

3.1 Probing

An accurate analysis of client-perceived response time can be done by running
probes on a compute node periodically; a probe executes a small I/O operation.
We assume that the response time of the probe is representative for similar I/O
operations during the time of execution.

As the file system performance depends on the type of the operation per-
formed, in this paper, we cover several data and metadata patterns as follows:
Data I/O: a block of 1 MB is read and written each at different random loca-
tions in a large file. Metadata: the operations create, stat, read, and delete of
small files (3901 Byte) are executed on a pool of files, i.e., the number of files of
the pool remains identical as each iteration accesses the oldest created file and
deletes it, and then creates a new file.

These six operations are executed sequentially periodically by the probing
tool and the response time is measured for each operation individually. We use
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the dd tool to measure data I/O latency and for metadata the MDWorkbench [4]
– this test allows to iterate on a working set for regression testing. The purpose
of this process is not to mimic the behavior of a parallel application but to probe
the system performance from the user-side – this is the performance a user would
see.

Discussion. The frequency of the polling could be adjusted to minimize the
impact on the file system – we use 1s as the generated load with 2 MB/s and
5 metadata operations/s is negligible. Instead of running sequentially, the tests
could be run in parallel or by spawning one thread for each operation. However,
this would increase the load of the file system when the file system is already
overloaded and makes it more difficult to assess the results as the measurements
interfere with each other.

Running such a tool requires additional compute resources and storage ca-
pacity. Firstly, to reduce the impact of caching, it is required that a sufficiently
large file is pre-created (exceeding the memory of the client) and that the pool
of files is sufficiently large. Additionally, a file should be spread across all servers
and storage media. Depending on the system configuration, a random I/O oper-
ation may access only a single server or storage media. As the probing frequency
is very high, we claim this is still representative for storage systems with 100
servers – to increase the accuracy for large systems, multiple I/O probes could
be executed, one per server.

The probing tool could run as a service on a maintenance node, on compute
nodes, or on shared/interactive nodes. As additional I/O operation performed on
the probing server (e.g., by users) influences the response time, for most accurate
results, the probing tool should be run on a compute node exclusively – which
implies some costs. Our experiments have shown that deployment on a shared
node still produces meaningful results.

3.2 Data Reduction using Statistics

When measuring small I/O requests, the response time is expected to vary fre-
quently between two consecutive measurements but also statistics of longer se-
quences of measurements differ. The former is caused by short events like con-
current accesses, cache misses, or network congestion, while sequences of mea-
surements are impaired by the long-term effects we are interested in.

In order to report meaningful slowdown metrics for longer intervals, high-
frequent changes must be dampened. A typical approach is to compute the
mean value in an interval. The arithmetic mean, however, is sensitive to outliers,
therefore, we explore the use of various statistics particularly, the median, and
the 90% and 95%-quantiles. Reporting the statistics for a quantile allows to
understand the fraction of I/O operations that are slowed down in a certain
interval, e.g., reporting a waiting time of 0.1s for the 90%-quantile means that
90% of the operations are faster and 10% are slower than 0.1s. Depending on
the intended service level agreement with users, this is more appropriate than
reporting high means caused by single stragglers.
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3.3 Computing the Slowdown

Generally, we could define the user-perceived slowdown of a particular operation
naturally as the observed response time of the operation divided by the expected

response time: s =
tobserved
texpected

. Thus, the reported slowdown is a factor by which

I/O is expected to take longer. An issue is the robust determination of texpected.

A production system is typically experiencing slowdown over an empty system.
This might confuse users to see that a system is typically slow by 3x, sometimes
by 5x. Therefore, we define texpected as median of all observed values (for the

specific operation)4. The reported slowdown is then computed based on the
statistics for each interval.

4 Evaluation

4.1 Test Systems

JASMIN is the national data analysis facility of the UK for the European climate
and earth system modelling community [5]. For each file system a 200 GB file is
precreated a pool of 200k files for MDWorkbench. The script is run exclusively
on one node and after 20 hours the job is restarted; as there are many nodes
available, typically a host runs only one or two 20 hour periods during the 60
days of recording.

Archer is the UK national supercomputing service5 consisting of a 4,920 node
Cray XC30 utilizing the Sonexion Lustre storage. The file system used for testing
provides 1.6 PB of capacity on 14 OSSs and 56 OSTs. For each file system a
200 GB file is precreated and a pool of 200k files for MDWorkbench. The jobs
are executed on one of two interactive nodes that are shared with the users.

Mistral the High Performance Computing system for Earth system research
(HLRE-3), is DKRZ’s supercomputer. The HPC system has a peak performance
of 3.14 PetaFLOPS and consists of approx. 3,300 compute nodes, 100,000 compute
cores, and 266 Terabytes of memory. The total capacity of two Lustre file sys-
tems attached to the system is 54 PB (lustre01: 21PB and lustre02: 33 PB). All
components are using FDR Infiniband interconnect.

For each file system a 1.3 TB file is precreated and a pool of 100k files for
MDWorkbench. During the experiments the I/O-Probing tool runs on a login
node, sharing the system with other users. The tool is executed on an interactive
node that is shared with the users.

4 The value could be updated periodically in a sliding window to cover the typical
operational conditions or it could utilize other statistics than the median.

5 http://www.archer.ac.uk
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4.2 Probing Tool

Our first measurements are done with a BASH script, that implements the be-
havior from Section 3.1. On systems with older kernels, we encountered an issue
with frequent forking of probes in new processes. Over long time period, it causes
high CPU load and makes compute nodes unresponsible. Therefore, we created
a tool – I/O-Probing 6 that exhibits the same behavior; it is a single process
solution written in C programming language. With corresponding program pa-
rameters it emulates the behavior of the script. It is using the sophisticated
functions from MDWorkbench to get reliable response times and to calculate
statistics. In the read/write test, the I/O-Probing tool accesses a large file with
random patterns using POSIX read64()/write64().

4.3 Timeseries of Individual Measurements

First, we investigate the gathered data for JASMIN on various levels of detail
starting from individual measurements. Figure 1 shows the response time of
each individual probe on two file systems for a duration of 10 minutes. It can
be observed that the performance on the home directory is very predictable for
all operations, as this is a PureStorage system and not used for parallel data
production, this is expected. The 1 MB read operations express two bands of
accesses, one around 0.1ms and one around 10ms – the latter are caused by disk
accesses while the former is caused by caching on client or server7.

The work file system is at the beginning also robust but after 1.5 minutes, the
behavior changes, a fraction of operation is now 10-100 times slower (stat and
delete remains low). As only isolated operations are slow, this is likely caused
short-period load on the data and metadata servers.

4.4 Host variability

As hosts are typically connected identically to the storage, it is expected that
the reported response time is independent from the node, where the script is
executed. This is important as we assume that the observed response time on
the probing host is similar to the response time on other (non-monitored) hosts.

We verified this by running the script on JASMIN in parallel on five different
nodes for a period of one hour covering at least 2,000 measurements of each met-
ric per host. The obtained statistics are visualized in Figure 2 as boxplot. Most
metrics are indistinguishable for the different hosts and the systematic differ-
ence in behavior between home and work directory is observable. However, the
first and third quartile for the write and read performance are slightly different
and so is the median for Host 5. Still, we assume that the metrics are robust as
different nodes observe them similarly.

6 https://github.com/joobog/io-probing
7 To minimize this, the precreated file size could have been increased.
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Fig. 1: Jasmin every data point for 10 minutes from one node

Fig. 2: Jasmin boxplot statistics from five different hosts
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4.5 Understanding Application Behavior – The IO-500

The IO-500 [1] is a benchmark suite that establishes I/O performance expecta-
tions for naive and optimized access; a single score is derived from the individual
measurements and released publicly in a list to foster the competition.

The IO-500 is built on the standard benchmarks MDTest and IOR8 and
represents various metadata and data patterns:

– IOREasy: Applications with well optimized I/O patterns
– IORHard: Applications that require a random workload
– MDEasy: Metadata and small object access in balanced directories
– MDHard: Small file data access (3901 bytes) of a shared directory
– Find: Locating relevant objects based on name, size and timestamp

The workloads are executed in a script that first performs all write phases and
then the read-phases to minimize cache reuse. To investigate the behavior of the
risk for running applications, we executed the IO-500 benchmark on 100 nodes
on Archer resulting in a total IO-500 score of 8.45.

As they are designed to be part of the user-side monitoring, the probes are
run concurrently with the benchmark (and any other I/O operation) and, in
case of server-side contention, the latency is expected to increase. The response
time of the probe is shown in Figure 3(a) correlating directly to the slowdown
in Figure 3(b) – note that the slowdown factor is still computed based on the
median for the 30 day period. In many cases, the influence of a metadata or data
heavy benchmark is directly observable; for metadata benchmarks, the response
varies more. The biggest impact has the MDHard benchmark leading to a 1000x
slowdown followed by the 100x slowdown of IOREasy.

To show the impact of data reduction by applying statistics, Figure 3(c)
computes the slowdown by using the mean for 60s intervals reducing the noise
and short-term influences. As most phases of the IO-500 are several minutes,
these remain well represented. A key difference is that the mean of the stat()

call of a 60s period still behaves as the mean for all stat calls while individual
calls are delayed.

4.6 Long-Period

Next, we investigate the measured statistics for a 60 day period on JASMIN,
30 day period on Archer and 18 day period on Mistral. Metrics for data and
metadata are aggregated for intervals of 4 hours; this reduces the data points
for visualization, and allows to investigate long-term influences on performance.
The observed performance statistics for various access types and the three data
centers are shown in Figure 4 and selected timelines in Figure 5. Note that the
observations differ significantly between the three data centers and between file
systems.

8 https://github.com/hpc/ior
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(a) Response time (all measurements)

(b) Slowdown (all measurements)

(c) Slowdown (60s mean statistics)

Fig. 3: IO-500 on Archer with annotated phases
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JASMIN. Write looks actually very similar to read and is therefore omitted.
The boxplot (Figure 4a) shows the distribution of the statistics for the 60 days;
indicating that all statistics including mean vary by three orders of magnitude
for work and by 10-100x for home. The interquartile distance indicates that 50%
of time the statistics are rather robust.

The timeline in Figure 5a shows that consecutive statistics typically exhibit
similar behavior indicating that some longer-running I/O-heavy activity creates
interference. The 95% and 99% quantiles are less robust but tell us something
about the distribution of performance; the slowest operation of a 4 hour period
takes at least a few seconds but also sometimes 10-100s!

The metadata statistics (Figure 4b) indicates that the metadata performance
varies stronger. The timeline reveals that consecutive accesses often achieve sim-
ilar performance (not shown due to space constraints).

Archer. The timeline for metadata probing is shown in Figure 5b (the data
timeline is not so interesting for work). A weekly slowdown of the small read
and delete operations is observable (similarly for the large read accesses too, not
shown) on home, this is likely due to the backup. On work, the statistics of a 4
hour interval stays robust, except for the first days and the last few days.

The statistics for some 4h intervals are 100x slower than typically (see Fig-
ure 4c, Figure 4d). The read statistics with a median of 5 ms indicates that data
is often served not from the HDD; the 200 GB files still lead to cache hits.

Mistral. During the experiment we started two instances of the I/O-Probing
tool, for each file system one. On the lustre01 file system, we couldn’t observe
anomalies (results are omitted). Generally, the data and metadata performance
is worse compared to the two other data centers (compare Figure 4).

On lustre02, there is one 27x slowdown compared to typical performance for
read (see Figure 5c). It takes almost 6.5 days for the system to recover from the
I/O load. One reason could be an I/O intensive chained job, that was running
on a shared SLURM partition as shared partitions allow for a runtime up to 7
days. It could also have been a degraded file system, e.g., server outage in the
active-active fail-over.

4.7 Slowdown

The computation of a slowdown factor and presentation to the users was the
main goal of this article. As we discussed in Section 3.3, longer interval length
lead to a smearing of short-term effects. In Figure 6, the slowdown for JASMIN
and Archer is presented that is computed on a 4 hour and 10 minute interval,
respectively (using the median). Note that the normalization by the median leads
to cases where the reported performance is actually faster than the median, and
thus a slowdown below 1 – which is the normal behavior – is observable. These
fast responses could be caused by caching effects.

By looking at the graphs, the expected slowdown of the I/O could be de-
termined, for example, a slowdown of 10 can be seen for read operations on

10/14



Tracking User-Perceived I/O Slowdown via Probing 11

(a) JASMIN read (60 days) (b) JASMIN metadata (60 days)

(c) Archer read (30 days) (d) Archer metadata (30 days)

(e) Mistral read (18 days) (f) Mistral metadata (18 days)

Fig. 4: Statistics for 4 hour intervals

JASMIN for several 4 hour periods. Remember, the slowdown for a given type
of operation quantifies the expected slowdown compared to normal operation.
Thus, for I/O, the reading/writing is expected to take x times longer than nor-
mal. This is expected to be true for small application runs. However, I/O intense
hero runs are expected to cause the I/O slowdown. The impact of running them
on other applications is the cause of the experienced slowdown factor.

Generally, the effects on JASMIN take longer and are well visible, while
the work directory on Archer exhibits mostly short-term bursty behaviors that
is invisible in 4 hour intervals. The home directory exhibits a slowdown of 3
during the weekly service activities. We conclude that by setting the interval
length appropriately, short-term and long-term influences can be detected and
communicated to the user.
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(a) JASMIN read timeline

(b) Archer metadata timeline

(c) Mistral metadata timeline

Fig. 5: Timelines for Data or Metadata – statistics for 4 hour intervals
12/14



Tracking User-Perceived I/O Slowdown via Probing 13

(a) JASMIN, computed on 4 hour intervals

(b) Archer, computed on 10 minute intervals

Fig. 6: Computed slowdown compared to median

5 Conclusion

In this article, we introduced an approach to monitor the system performance
and derive the user-experienced slowdown by constantly running small I/O
probes. This allows users and data center experts to investigate and track system
performance over time but also to quantify the slowdown compared to normal
operation. The slowdown factor is expected to correspond to the delay of par-
allel applications for data bound and metadata bound applications. The data
could be feed into a monitoring system such as Grafana allowing stakeholders to
investigate the slowdown in a timely fashion – for instance, helpdesk employees
can answer the question if the storage is currently overloaded.

A key issue is the statistical reduction of the sampled data, depending on
the selection of the selected metric, the effect on the user can be investigated.

13/14
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We demonstrated the effectiveness of this approach on the IO-500 workload and
showed the high variability of 4-hour statistics for three data centers. We were
particularly surprised to see small individual I/Os that can take up to 100s.

In the future, we will combine this approach with additional server-side data
and user-utilization and perform long-term studies.
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