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birds but not in other vertebrates
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Abstract

Larger testes produce more sperm and therefore improve reproductive success in the face of sperm
competition. Adaptation to social mating systems with relatively high and low sperm competition
are therefore likely to have driven changes in relative testes size in opposing directions. Here, we
combine the largest vertebrate testes mass dataset ever collected with phylogenetic approaches for
measuring rates of morphological evolution to provide the first quantitative evidence for how rela-
tive testes mass has changed over time. We detect explosive radiations of testes mass diversity dis-
tributed throughout the vertebrate tree of life: bursts of rapid change have been frequent during
vertebrate evolutionary history. In socially monogamous birds, there have been repeated rapid
reductions in relative testes mass. We see no such pattern in other monogamous vertebrates; the
prevalence of monogamy in birds may have increased opportunities for investment in alternative
behaviours and physiologies allowing reduced investment in expensive testes.Ecology Letters (2019)

Keywords
Adaptation, evolutionary rates, relative testes mass, social mating system, sperm competition,

vertebrates.
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BACKGROUND

Testes mass is extremely variable across vertebrates, even after
considering its association with body mass (e.g. MacLeod &
MacLeod 2009, this variation is visualised in Figure 1). Many
decades of research have shown that one of the most impor-
tant factors explaining variation in relative testes size (includ-
ing mass) among species is sperm competition. Sperm
competition arises when sperm from multiple males compete
for the fertilisation of a single female (Parker 1970). Increas-
ing testes size is one way of improving male reproductive suc-
cess in the presence of high levels of sperm competition
(Parker et al. 1997; Parker & Pizzari 2010; Vahed & Parker
2012). Larger testes are likely to produce more sperm (Meller
1988, 1989; Stockley et al. 1997) which is a key determinant
of competitive fertilisation success (Parker & Pizzari 2010).
Accordingly, sperm competition has repeatedly been demon-
strated to be linked to differences in testes sizes both within
individual species (Hosken & Ward 2001; Schulte-Hostedde &
Millar 2004; Simmons & Garcia-Gonzdlez 2008) and amongst
whole taxonomic groups including (but not limited to) butter-
flies (Gage 1994), bats (Hosken 1998) and frogs (Byrne et al.
2002) — reviewed in Parker ez al. (1997).

The level of sperm competition a species faces can be
approximated using social mating system (e.g. Harcourt et al.
1981; Pitcher et al. 2005). Socially polyandrous species —
where females form social bonds with two or more males
within a single breeding season — have ample opportunity to

mate with multiple males and thus have relatively high levels
of sperm competition (Smith 1984). In comparison, socially
monogamous species form pair-bonds between a single male
and a single female that persist throughout an entire breeding
season. Although extra-pair copulations occur within socially
monogamous species (e.g. DeWoody & Avise 2001; Griffith
et al. 2002), compared with socially polyandrous species they
have less opportunity for mating with multiple males and
therefore lower levels of sperm competition. The amount of
sperm competition faced by socially polygynous species, where
a single male forms social bonds with multiple females within
a single breeding season, may be different from both socially
polyandrous and monogamous species (e.g. Hasselquist &
Sherman 2001; Soulsbury 2010). There are two opposing pre-
dictions made for the level of sperm competition faced by
socially polygynous species. Firstly, where males invest in
increasing the number of socially-bonded females, they are
unlikely to be able to mate-guard as effectively, potentially
leading to increases in the level of sperm competition com-
pared with social monogamy (Birkhead & Maoller 1992). Sec-
ondly, female choice may lead to a reduced investment of
females seeking or accepting extra-pair copulations (Mpller
1992; Hasselquist & Sherman 2001). This reduction in female
investment in extra-pair mating coupled with a reduced ability
of male investment in extra-pair mating owing to defense of
his territory may actually decrease the amount of sperm com-
petition faced by polygynous species (Hasselquist & Sherman
2001).
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Figure 1 Testes mass and body mass for 1913 vertebrate species. Testes
mass is highly variable even after accounting for body mass: in a maximum
likelihood phylogenetic generalized least squares (GLS) regression model
across this data, > = 0.231. All silhouettes are taken from phylopic.org.

Here, in line with the expectations outlined above, we con-
sider the following social mating systems separately: mono-
gamy, polygyny, and social polyandry (including
polygynandry, where multiple females and males form social
bonds within a breeding season). In general, the testes of males
belonging to social mating systems comprising multiple males
are likely to be larger than those comprising only a single male.
Such an expectation has been upheld in many groups spanning
the vertebrate tree of life (e.g. Harcourt ez al. 1981; Jennions &
Passmore 1993; Parker et al. 1997; Pitcher et al. 2005), though
reportedly not in all cases (e.g. lossa et al. 2008).

We seek to provide the first comprehensive phylogenetic
analysis of how testes mass diversity has evolved in combina-
tion with social mating system across vertebrates. We now
have the opportunity to use phylogenetic approaches that
simultaneously characterise the underlying testes-body mass
relationship whilst detecting rapid bursts in the rate of relative
testes mass evolution (Venditti et al. 2011; Baker ez al. 2016).
Where the rate of evolution is faster, testes mass changes
more than expected along an individual branch given the
background rate of evolutionary change acting across all ver-
tebrates and the amount of time that it has had to evolve (see
Methods). Testes are energetically expensive to develop and
maintain (e.g. Meerlo et al. 1997; Schulte-Hostedde er al.
2005; Hayward & Gillooly 2011). Therefore, any rapid
changes in testes mass along the branches of the vertebrate
phylogenetic tree are likely to be a consequence of natural
selection (most likely sexual selection imposed by sperm com-
petition), reflecting periods of intense adaptive change (Baker
et al. 2016; Baker & Venditti 2019).

We expect sperm competition to be a key driver of such
intense adaptation in testes mass, and possibly may have even

driven long term directional change in relative testes mass
over millions of years. Directional trends in relative testes
mass could occur in either direction. For example, social poly-
andry may have maintained high levels of sperm competition
and thus exerted pressure for adaptive (i.e. rapid) increases in
relative testes mass. On the other hand, in social mating sys-
tems with relatively lower levels of sperm competition it may
have been beneficial to minimise investment in expensive
reproductive tissues in favour of other expensive tissues such
as brains (Aiello & Wheeler 1995; Pitnick et al. 2006) or alter-
native adaptations for improving reproductive success such as
weapons, displays, or paternal care (e.g. Moller 2000; Liipold
et al. 2014; Buzatto et al. 2015; Dunn et al. 2015). In such
cases, we might expect to see rapid relative testes mass reduc-
tions. Such bursts of directional rapid evolutionary change —
in either direction — if repeated over millions of years along
many branches of the vertebrate tree of life, could combine to
give rise to sustained directional changes in relative testes
mass over the last 400 million years of vertebrate evolutionary
history (Baker et al. 2015). Thus, we might expect to see a
trend towards larger relative testes mass in socially polyan-
drous species, and smaller relative testes mass in socially
monogamous and polygynous species — with potential differ-
ences between the two.

MATERIAL AND METHODS
Data and Phylogenetic tree

We collected testes mass (grams, g) and body mass (g) from
the literature for 1913 vertebrate species matched to the time
tree of life (Hedges et al. 2015). Sample sizes for each group
are shown in Figure 2. We included only a single source per
species in order to avoid conflicts among datasets; more detail
on our data collection procedure can be found in the supple-
mentary text. We log;o-transformed all testes masses and body
masses (Figure 1).

We collected information on the social mating system from
the literature, assigning a total of 1445 of the species for
which we had testes mass to one of three possible states
(monogamy, polygyny, polyandry/polygynandry). For birds,
we excluded species where the social mating system is to be
considered ‘cooperative’ as in many cases, group composition
in terms of numbers of males and females was unspecified.
For frogs, only coarse data were available and so the mating
system of these species was collected as a dichotomous vari-
able: monogamous/polygynous and polyandrous/polygynan-
drous. More details on how species were classified can be
found in the supplementary text. Our total sample sizes for
species with social mating system data were as follows: 63 fish,
169 frogs, 845 birds, and 358 mammals.

Our full protocol, reference list, and dataset are available in
the online supplementary material (see Appendix S1 and
Table S1).

Rate heterogeneity

We detected variation in the rate of testes mass evolution
after accounting for body mass using the variable rates

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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Figure 2 Testes mass allometry in vertebrates. (a) The posterior distribution of regression coefficients (slopes) inferred from our variable rates regression
model estimating the relationship between testes mass and body mass for each of the five major vertebrate classes. Inset: The posterior distribution of
intercepts for each group. Colours link to silhouettes in both (b) and (c) which show post-hoc pairwise comparisons assessing the posterior distribution of
the differences between each pair of estimated parameters. In (b) values represent the proportion of the posterior distribution of differences that cross zero,
P and in (b) values represent mean differences. In both (b) and (c), the upper right half of the table shaded in grey shows values for intercepts and the
lower left half shows values for slopes. The sample size for each group is shown along the diagonal. All silhouettes are taken from phylopic.org.

regression model (Venditti et al. 2011; Baker et al. 2016).
This Bayesian Markov chain Monte Carlo regression tech-
nique acts within a phylogenetic generalised least squares
(GLS) framework to estimate the rate of evolution in the
phylogenetically structured residual error of a regression
model along the branches of a tree (Baker et al. 2016). The
model simultaneously estimates an underlying Brownian
motion process (background rate, o;) along with a set of
rate scalars r defining branch-wise shifts (identifying
branches evolving faster (r > 1) or slower (0<r<1) than
the background rate. The model then multiplies the original
branch lengths (measured in time) by the corresponding r
for each branch, resulting in a scaled phylogeny where
longer branches (compared to their original length in time,
r > 1) indicate faster rates of morphological evolution, and
shorter branches (0 <r<1) have slower rates. These branch-
specific scalars therefore optimise the fit of the phylogeny to
the underlying background rate Gi given the inferred pheno-
typic change along each branch.

We used Bayes Factors (BF) to identify evidence for rate
heterogeneity, calculated as BF = —2log,[m;/my|, comparing
the marginal likelihood of our variable rates model (1) to
that of a model with a single underlying o7 (mp). Marginal
likelihoods were estimated using stepping-stone sampling (Xie
et al. 2010) implemented in BayesTraits (Pagel et al. 2004).
For each of 200 stones, we ran 1 million iterations drawing
values from a beta-distribution (o0 = 0.40, B =1) (Xie et al.
2010) and discarded the first 250 000 iterations as burn-in.
The variable rates model is implemented within a Markov
Chain Monte Carlo framework, giving us a posterior distribu-
tion of estimated r and o7. We visually checked all traces to
ensure models were robust and had reached convergence. We
ensured effective sample sizes of greater than 500 for all
parameters, and results were replicated over multiple indepen-
dent chains.

For each branch, we calculate an optimised rate(c? = opr).
We then identified branches where o? differs from the back-
ground rate (7). For a given branch, where r > 1 in more
than 50% of the posterior, we considered o2# Gi; this is
where more than half of all iterations in the MCMC chain
show an increase (or decrease where r < 1) in the rate of

morphological evolution. All other branches were assumed to
be evolving according to the background rate(c? = 7). We
then identified clades of 10 or more species across the verte-
brate phylogeny that have inherited wholescale increases in
the rate of relative testes mass evolution by comparing ances-
tor-descendant branch pairs. These clades are termed heritable
rate shifts and are defined on the basis of two criteria: (1)
where a branch differs in rate (c2) from its ancestor in > 50%
of the posterior distribution and (2) where all descendant
branches inherit this new rate; i.e. all descendant branches do
not differ in rate from the initial ancestral lineage. In this
way, we define heritable rate shifts on the basis of an increase
in variance throughout the entire clade — the clade has more
variation about the regression line than would be expected
given the underlying relationship between testes mass and
body mass (Baker et al. 2016). Rate decreases are identified in
the same way; in these cases, the clade would have a reduction
in variation about the regression line. All branches where
o2 Gi are considered instances of rapid evolutionary change
(or decelerated evolution, where r < 1).

Characterising the testes-body mass relationship

We identified rate heterogeneity using a bivariate regression
between testes mass and body mass across all vertebrates
(N = 1913). Metabolic theory predicts a simple linear relation-
ship between testes mass and body mass with scaling differ-
ences among groups (Hayward & Gillooly 2011) much like
that observed for other organs (Peters 1986). We therefore
additionally ran a model estimating an interaction between
taxonomic group and body mass as a fixed effect, allowing a
different slope within each major clade (fish, frogs, birds,
mammals, and reptiles).

We calculate the proportion of the posterior distribution of
each regression parameter that crosses zero (P,). Where
P, < 0.05, this means that less than five percent of the poste-
rior distribution overlaps with zero, and we consider a vari-
able to be substantially different from zero. To compare
between parameters, we calculated the difference between each
pair of parameters at each iteration and looked at the poste-
rior distribution of differences. Where the proportion of this

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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distribution crossing zero is less than 5% (P < 0.05), we
consider two parameters to be different from one another.

Directionality in testes mass evolution and the role of social mating
system

Our method of detecting rate heterogeneity introduces mean-
ingful variation into the branch lengths of a phylogeny, which
makes it possible to study adaptive trends in trait evolution
(Baker et al. 2015). Longer branches represent an increase in
the rate of evolution arising from selective influences (Baker
et al. 2016; Baker & Venditti 2019); they have experienced
more relative testes mass change than would be expected
given their length in time. The sum of all the rate-scaled
branches along the evolutionary path of a species (path-wise
rates) can therefore be used to measure the total amount of
adaptive change that species has experienced during its history
(Baker et al. 2015). We used this logic to determine whether
there has been any long-term adaptive trends in vertebrate rel-
ative testes mass evolution and whether they differ among
species experiencing different levels of sperm competition.

In order to estimate whether there has been any adaptive
directionality in relative testes mass evolution, we incorpo-
rated social mating system, path-wise rate and an interaction
between the two variables as additional explanatory factors
into the testes-body mass regression model. We term these
our trends analyses. We only do this where we have 10 data
points per parameter (Freckleton & Watkinson 2001) i.e.
N > 20 (we estimate a slope and intercept for the relationship
between testes mass and path-wise rate after accounting for
shared ancestry and body mass). Sample sizes for individual
mating systems are shown in Figure 4 and details are found
in the supporting information. We have too few monogamous
(N = 15) and polygynous fish (N = 8) to estimate two separate
slopes, so for this group, we combined monogamy and polyg-
yny into a single category (as in frogs). Too few data were
available for reptiles and so these taxa were excluded from
these analyses.

We performed all trends analyses within a maximum-likeli-
hood phylogenetic GLS framework (Pagel 1999). We used the
median path-wise rate as our predictor variable (but results
do not qualitatively differ using the mean or mode). We
assessed significance of parameters using standard P-values
and compare model fit using likelihood ratio (D) tests. All
trends analyses were conducted on the median rate-scaled
phylogeny in order to account for differences in the amount
of testes mass change expected owing to rate heterogeneity
(Baker et al. 2015) and were limited to the data to the species
for which we could collect mating system data (see above and
electronic supplementary material). To account for multiple
hypothesis testing (multiple categories of mating system within
each group), we adjust P-values using Bonferonni corrections.

Where the slope of the relationship between testes mass and
median path-wise rate was determined to be non-significant,
we ran an additional model that estimated the difference in
the intercept of the testes-body mass regression relationship
for the mating system of each group. This was to determine
whether there were significant differences in the average rela-
tive testes mass of species belonging to each social mating

system — after accounting for phylogenetic shared ancestry
and the rate of testes mass evolution.

Code availability

All analyses in the present study were conducted using the
freely available software BayesTraits v3.0, available at the fol-
lowing  website:  http://www.evolution.rdg.ac.uk/BayesTra
itsV3/BayesTraitsV3.0.1.html.

RESULTS

We find that testes mass evolution across vertebrates is best
described by a model that allows a different relationship with
body mass (i.e. a different allometric slope) for each of the
five major classes we include (mammals, birds, fish, reptiles,
and amphibians). There are substantial differences in slope
among groups (Figure 2), with very little overlap in estimated
parameters. With the exception of reptiles, less than 5% of
the proportion of the posterior distribution of differences
between each pair of slope parameters P.;uy;; crosses zero.
The magnitude of the difference varies from group to group
and can be observed in Figure 2. Our results conform to the-
ory predicting a simple linear relationship between testes
mass and body mass, with variation amongst major groups
(Hayward & Gillooly 2011). Deviations away from the
underlying relationships arise in the form of rate heterogene-
ity (Figure 3).

Our results indicate rapid evolutionary change in both
directions throughout the vertebrate tree of life (Figure 3). We
find ‘very strong’ support (Raftery 1996) for rate heterogene-
ity compared to a model estimating only a single rate of evo-
lution (BF = 660.86, Methods). The rate heterogeneity we
identify arises in the form of 11 independent heritable rate
shifts (Figure 3, Table S2) wherein a monophyletic group of
10 or more species inherits a single accelerated rate, resulting
in a radiation of relative testes mass diversity (Methods). The
heritable rate shifts we identify are distributed across the ver-
tebrate phylogeny, occurring within all major vertebrate
groups except reptiles (Figure 3). We additionally observe rate
increases in 22 smaller clades (N ranging between 2 and 9) as
well as 11 individual species (Table S2) — these increases in
rate might indicate incipient heritable shifts. We observe only
a single mean shift, where a change in the intercept of the
regression relationship between testes mass and body mass
manifests as a rate increase along an internal branch (Baker
et al. 2016). This is observed within mammals, and more
specifically, within rodents — along the branch leading to Aus-
tralian hopping mice (genus Notomys, Table S2). The branch
leading to Notomys cervinus, the fawn hopping mouse, was
identified as a rate decrease — this species has experienced less
change in testes mass than expected for its body mass and its
branch length in time.

We find a significant negative relationship between testes
mass and mean path-wise rate for monogamous birds only
(P <0.01, Figure 4). There is no such significant relationship
in birds belonging to any other social mating system. These
results are supported using cross-validation tests (see supple-
mentary text for details).

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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comparison.

In no other social mating system for any other group do we
find a significant relationship between path-wise rate and
testes mass. However, it is significantly better to estimate sep-
arate intercepts allowing differences between the average testes
mass of species belonging to different mating systems for each
of these groups (frogs: D = 16.094, P <0.01, d.f. = 1; fish:
D =6.07, P=0.05 d.f. =2; mammals: D =11.97, P <0.01,
d.f. = 2). In all three groups where we estimate mean differ-
ences between testes mass of species belonging to different
social mating systems (fish, frogs, and mammals), we find that
polygynandrous species have significantly larger testes than
monogamous species (Figure 4). In mammals, polygynandrous

species also have larger testes than polygynous species (Fig-
ure 4). No other comparison is significant (Figure 4). Correct-
ing for multiple hypothesis testing (Bonferroni correction)
does not alter our results, with one exception: statistical sup-
port for the differences in testes sizes between mating systems
for fish is marginal, and is non-significant after correcting for
multiple hypothesis testing.

DISCUSSION

Our results highlight that social mating systems (and associ-
ated variation in sperm competition) are likely to have played

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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to the significant estimated slope. All silhouettes are taken from phylopic.org.

a key role during the evolution of vertebrate testes. In line
with expectations, we find that vertebrates with polyandrous
mating systems tend to have significantly larger relative testes
mass than monandrous vertebrates (Figure 4). Furthermore,
several bursts of rapid testes mass change have punctuated
vertebrate evolutionary history that are likely to have been
linked to changes in reproductive biology. For example, we
observe a heritable rate shift in the tree frog family Rha-
cophoridae (Roberts & Byrne 2011) (Figure 3j, Table S2)
which has a high occurrence of polyandry (Roberts & Byrne
2011) and includes the grey foam-nest tree frog (Chiromantis
xerampelina), described as the most polyandrous of all verte-
brate species (Byrne & Whiting 2011). We find rapid evolution
leading to very tiny testes in a ‘classic’ example of a monoga-
mous species (Ribble 1991), the California mouse Peromyscus
californicus (nearly ten times the rate observed among other
therian mammals, Table S2). The single mean shift we identify
is a reduction in relative testes mass found within the monog-
amous hopping mouse genus Notomys, the remarkably small
testes of which are thought to be linked with increased sperm
efficiency (Breed & Jason 2000). A small group of pipefish —
renowned for unusual reproductive biology (Kvarnemo &
Simmons 2004) — have testes evolving at nearly twice the
background rate (Figure 3, Table S2). Sex role reversal such
as that observed among some pipefish (Berglund & Rosen-
qvist 2003) can lead to low levels of sperm competition even
in species with high levels of polyandry (Rose et al. 2013)

which might explain some of the rapid testes mass changes
observed in this group. Although sex role-reversal could lead
to some of the other rapid evolutionary changes in relative
testes masses that we observe, this phenomenon is relatively
rare in vertebrates (Eens & Pinxten 2000) and thus our overall
results are unlikely to be affected.

We find that there has only been very limited adaptive
directional evolution in testes mass during the course of verte-
brate evolutionary history. In birds only, rapid rates of testes
mass change (i.e. where path-wise rates are largest, see Meth-
ods) have overwhelmingly been towards smaller mass in the
social mating system where sperm competition has been low-
est: monogamy. We observe no such association in any other
vertebrate group. This means that after an initial increase in
size associated with the evolution of social polyandry, there
has been no strong pressure within socially polyandrous spe-
cies driving continued increases. This lack of continued adap-
tation suggests that there has not been increasing levels of
sperm competition within groups over time. Additionally,
non-directionality in the evolution of testes mass of socially
polyandrous vertebrates may be owing to the different types
of polyandry observed in nature. Simultaneous polyandry,
where a female produces a single brood after mating with
multiple males would predict very high levels of sperm compe-
tition whereas sequential polyandry, where a female produces
a brood with multiple males one after the other may predict
relatively less — though sperm competition can still be very
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high in these species owing to sperm storage (Moller 1988;
Oring et al. 1992).

One obvious reason for the observed differences between
monogamous birds and other vertebrates is that flight
restricts the available energy budget to birds (Butler &
Bishop 2000). Any opportunity to reduce investment in
expensive tissues (e.g. in the case of reduced sperm competi-
tion) may have been advantageous in such a scenario. How-
ever, we find no significant directionality in testes mass
change along the branches of bats — the only other group of
flighted vertebrates (N =49, P =0.71), so this explanation
seems unlikely. An alternative explanation is the overall
prevalence of monogamy in birds. Over 75% of all bird spe-
cies are socially monogamous (Mock & Fujioka 1990; Dunn
et al. 2001; Lukas & Clutton-Brock 2013), and although
social monogamy does exist in other vertebrates (Bull 2000;
Whiteman & Coté 2004; Lukas & Clutton-Brock 2013), it
tends to be much rarer (Mock & Fujioka 1990; Bull 2000).
Frogs also have high levels of monogamy (Liao ef al. 2011)
(88% in our dataset, Table S1), but most species are external
fertilizers (Beck 1998), which imposes a unique set of selec-
tion pressures on testes compared with species with internal
fertilisation (Parker 2014). The prevalence of single-partner
mating systems in combination with internal fertilisation in
birds may have increased opportunity for the evolution of
diverse behaviours and morphologies where investment in
testes mass are less important (Parker 2014; Parker 2016).
Sexual traits used for mate acquisition such as ornamentation
or weapons have been shown to be more important invest-
ments than testes mass in several animal groups (Simmons &
Emlen 2006; Fitzpatrick et al. 2012; Buzatto et al. 2015;
Dines et al. 2015; Dunn et al. 2015) — although these tend to
be associated with polygynous or lekking mating systems
(Moller & Pomiankowski 1993; Savalli 1995). It therefore
warrants further investigation to reveal whether any costly
traits in particular are more prevalent in monogamous birds
than those of other mating systems.

In general, a negative relationship between testes mass and
its rate of evolution such as the one we find here for monoga-
mous birds could imply a trade-off between testes and other
behaviours (see above). Trade-offs between expensive organs
like testes, brains, and guts are predicted by the expensive-tis-
sue hypothesis (Aiello & Wheeler 1995; Isler & van Schaik
2006) although there has been little evidence for this in testes
(e.g. Schillaci 2006; Lemaitre et al. 2009; Bordes et al. 2011;
Kelley er al. 2014). However, at least across species, it may be
difficult to observe trade-offs owing to the numerous potential
morphologies, physiologies, and behaviours that have the
potential to trade-off with testes at macroevolutionary scales
(Lipold et al. 2014; Somjee et al. 2018). An alternative expla-
nation for such a negative relationship might be a continued
reduction in the level of sperm competition (by some
unknown mechanism) observed in monogamous species over
time. Whilst an interesting concept — it implies increased spe-
cialisation to monogamous mating systems — this remains dif-
ficult to test in the face of present data. It is also hard to
imagine that the level of sperm competition has continually
decreased in monogamous birds over time when we consider
the fact that there is variation in the level of sperm

competition faced by monogamous species (Griffith et al.
2002; Ophir et al. 2008; Biagolini-Jr et al. 2017).

The fact that monogamous species are increasingly shown to
face sperm competition and vary in their level of extra-pair
paternity has led to a general acceptance that social and genetic
mating systems may not directly correlate among different ani-
mal groups (DeWoody & Avise 2001; Griffith et al. 2002; Clut-
ton-Brock & Isvaran 2006; Isvaran & Clutton-Brock 2006;
Ophir et al. 2008; Biagolini-Jr ez al. 2017). An explicit empirical
link between sperm competition and social mating system
across vertebrates is desirable, though we currently lack the
data to show this at large scales. This is owing to the fact most
genetic data measures extra-pair paternity (EPP) (e.g. Griffith
et al. 2002; Biagolini-Jr et al. 2017) which is not clearly compa-
rable to paternity within social systems comprising multiple
partners. The proportion of offspring sired by a male outside a
social group (i.e. extra-group paternity) (e.g. Westneat & Ste-
wart 2003), is not comparable to EPP and actually tells us very
little in terms of sperm competition — it would be better to mea-
sure the number of offspring fathered by the non-dominant
male (e.g. Moller & Briskie 1995). Per-brood measures of multi-
ple-paternity such as number of sires per brood (Rowley et al.
2018) or the frequency of broods with mixed paternity (Taylor
et al. 2014; Biagolini-Jr et al. 2017; Rowley et al. 2018) can also
give us an indication of sperm competition but are not without
their problems. For example, the frequency of extra-pair copu-
lations does not correlate with the frequency of extra-pair fertil-
isation in pair-bonded species (Birkhead & Moller 1995) and it
is unclear whether “mixed paternity” can be measurable or
meaningful in species which routinely produce only a single off-
spring per clutch/brood. In any case, most studies identify vari-
ation in multiple-paternity within socially monogamous species
(reviewed in Griffith et al. 2002) — but this amounts to, on aver-
age, only 11% of all offspring being sired by a male that is not
the social parent (Griffith ez al. 2002), at least within birds.

Social mating system is still a reasonable proxy for the relative
amount of sperm competition faced by species. Social mono-
gamy clearly does not eliminate sperm competition but rather
there is less scope for sperm competition compared with social
polyandry. This has been shown in mammals, where socially
monogamous species have significantly lower multiple paternity
rates than those with multi-male social systems (Soulsbury
2010). Sociality and mating system are also significantly linked
to the occurrence of multiple-mating by female birds (Moller &
Birkhead 1993). Distinct social mating systems have also been
maintained in an evolutionary sense and are repeatedly linked
to testes size in many animal groups (e.g. Harcourt et al. 1981,
Jennions & Passmore 1993; Parker et al. 1997; Pitcher et al.
2005) (also supported here across vertebrates, Figure 4). The
fact that there is also an association between different genetic
measures of multiple paternity and testes size across vertebrates
(e.g. Moller & Briskie 1995; Ramm et al. 2005; Rowley et al.
2018) makes it almost impossible to imagine a scenario where
social mating system provides no information on the relative
amount of sperm competition faced by species.

Sperm competition clearly has an important role in driving
changes in testes mass (Harcourt er al. 1981; Gage 1994,
Moller & Briskie 1995; Hosken 1997; Parker et al. 1997; Birk-
head & Moller 1998) (Figure 4), but exactly how changes in
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social mating system can explain the radiations of testes mass
diversity that we see across vertebrates (Figure 3) remains
unclear, and warrants further investigation. We hope that our
results will inspire researchers to investigate what factors
might have been driving the strong selection on relative testes
mass that manifest as rapid bursts of evolutionary change
during the course of vertebrate history. For example, as more
data on both testes mass and mating systems become avail-
able in other groups, it may be possible to reveal nuances in
the evolution of relative testes mass that are currently other-
wise impossible. Factors such as geography, dispersion, mat-
ing rates, or migratory behaviour (Dunn ez al. 2001; Pitcher
et al. 2005; Vahed & Parker 2012), etc. may also have played
key roles in driving bursts of testes mass change.

Many radiations of testes mass diversity (Figure 3,
Table S2) have punctuated the last 400 million years of verte-
brate evolutionary history. These radiations reveal clades in
the vertebrate phylogeny where there has been intense adap-
tive change in testes mass. However, in most vertebrates, these
adaptive bursts of testes mass evolution have not led to any
sustained directional changes (Figure 4). In socially monoga-
mous birds only, we observe adaptive reductions in testes
mass that almost certainly arise from a combination of differ-
ent factors and trade-offs. One key outcome of our analysis is
that we highlight a novel opportunity to reveal historical
trends in traits after considering the effect of other factors
such as body mass. Soft tissues like testes are often preserved
poorly in the fossil record (Brusatte 2012), and we reveal pat-
terns and processes of evolution that occurred deep in time
that may otherwise have been impossible to detect.
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