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Seasonal predictions of wintertime climate in the Northern Hemisphere mid-latitudes,

while showing clear correlation skill, suffer from anomalously low signal-to-noise ratio.

The low signal-to-noise ratio means that forecasts need to be made with large ensemble

sizes and require significant post-processing to correct the forecast distribution. In

this study, a recently introduced statistical model of seasonal climate predictability is

adapted so that it can be used to examine the signal-to-noise ratio in two versions of the

ECMWF seasonal forecast system. Three novel features of the low signal-to-noise ratio

are revealed. The low signal-to-noise ratio is present only for forecasts initialised on

November 1st and not for forecasts initialised on December 1st. The low signal-to-noise

ratio is predominantly a feature of the lower and middle troposphere and is not present

in the stratosphere. The low signal-to-noise ratio is linked to low signal amplitude of

the forecast systems in early winter. Future studies attempting to examine the signal-to-

noise ratio should focus on the extent to which this early winter variability is predictable.

12
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1. Introduction and Motivation14

Recent studies have clearly shown that skillful prediction of climate in the North Atlantic is possible on season ahead (Scaife et al.15

2014; Stockdale et al. 2015) or even year ahead timescales (Dunstone et al. 2016). The increase in the capability of seasonal forecasting16
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LOW SIGNAL TO NOISE RATIO IN ECMWF FORECAST SYSTEMS 2

systems to skilfully predict North Atlantic climate has been partially attributed to the improved representation of stratospheric processes17

in seasonal forecasting systems (Scaife et al. 2016). The polar stratosphere can provide a pathway for remote sources of predictability,18

such as ENSO or the QBO, to the North Atlantic (e.g. Kidston et al. 2015). Comparison of high and low-top models shows that high-top19

models are better able to capture the lower stratospheric response to ENSO and QBO variability (Butler et al. 2016). The importance20

of stratospheric variability in producing skillful forecasts of North Atlantic climate is quantified by Domeisen et al. (2015) and Scaife21

et al. (2016), who show that the NAO forecast skill vanishes when ensemble members that produce Sudden Stratospheric Warming22

(SSW) events are excluded from the forecast ensemble.23

An interesting aspect of the skill of NAO or Arctic Oscillation (AO) forecasts in both the Met Office and European Centre for24

Medium-Range Weather Forecasts (ECMWF) systems is the apparent signal-to-noise paradox in these forecasts (Eade et al. 2014).25

This paradox is clearly illustrated in Fig. 1 of Scaife et al. (2014) and Fig. 1 of Stockdale et al. (2015), the ensemble mean forecast26

of the seasonal climate state is highly correlated with the observed state but has unexpectedly low variance. Further evidence for the27

signal-to-noise paradox, and the extent to which this is a ubiquitous feature of climate models, is reviewed extensively by Scaife and28

Smith (2018).29

For seasonal predictions, the unexpectedly low signal-to-noise ratio can be quantified either by the Ratio of Predictable (RPC)30

components diagnostic Eade et al. (2014) or by explicitly quantifying the signal-to-noise ratio in the forecast system and observations31

(Siegert et al. 2016). The Bayesian framework introduced by Siegert et al. (2016) makes it possible to state with high confidence32

(posterior probability of 0.99) that the Met Office GloSea5 system ’underestimates the predictability of the real-world’. Baker et al.33

(2018) use the RPC diagnostic to examine forecasts from seven different seasonal prediction systems and show low signal-to-noise34

ratio can be clearly diagnosed in four systems, indicating that this is a widespread and common problem for seasonal prediction. For35

ECMWF System 4, Baker et al. (2018) calculate that the RPC diagnostic does not indicate anomalously low signal-to-noise ratio for36

the NAO index. However, Weisheimer et al. (2018) show that, at least over Greenland and calculated over a longer period, RPC is37

significantly greater than one in both System 4 and System 5. Weisheimer et al. (2018) also show the large sampling variability of the38

RPC diagnostic when applied to short hindcast sets. For the Arctic Oscillation, Stockdale et al. (2015) show that ECMWF System 439

has anomalously low signal-to-noise ratio for DJF forecasts.40

While both Eade et al. (2014) and Siegert et al. (2016) provide post-processing techniques that can be used to re-calibrate forecasts41

to account for the low signal-to-noise ratio of the forecast systems for practical use, understanding the origin of the low signal-to-noise42

ratio would help to determine if and how it can be eliminated. In this study, we adapt the methodology of Siegert et al. (2016) in order43

to study the signal-to-noise ratio of two ECMWF seasonal forecasting systems in more detail. Our key objective is to understand over44

which time periods and in which part or parts of the atmosphere the low signal-to-noise ratio emerges.45

2. Methodology46

2.1. Statistical Model47

To describe the statistical model, we first begin by defining observations of the seasonal mean climate as {Y (t), t = 1, 2, . . .} and the48

corresponding forecasts as {Xk(t), t = 1, 2, . . .}. In particular, the ensemble members at time t will be denoted by X1(t), . . . , XK(t)49

and there are K members in each ensemble. The starting point for our analysis is splitting of the ensemble members and the observations50

into what might be called the predictable part and the noise. I(t) is the information available to the forecaster at the point when the51

forecast X(t) is issued (roughly speaking this will be t minus the lead time). We then have the decomposition52

Xk(t) = U(t) + ηk(t)

c© 2019 Royal Meteorological Society
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LOW SIGNAL TO NOISE RATIO IN ECMWF FORECAST SYSTEMS 3

where we define U(t) := E(Xk(t)|I(t)) and ηk(t) := Xk(t)− E(Xk(t)|I(t)). Our first assumption is that U(t) is the same for all53

ensemble members. Note that ηk(t) and U(t) will be uncorrelated. Likewise, we decompose54

Y (t) = V (t) + ε(t)

with V (t) := E(Y (t)|U(t)), and we can interpret V (t) as the predictable part of the observation and ε(t) as the noise. Note that the55

predictable part V (t) is a function of U(t), and that ε(t) is uncorrelated with the predictable part and in fact also with U(t) itself. Our56

second assumption is that ε(t) is also uncorrelated with ηk(t) for all k = 1, . . . ,K.57

We define the signal-to-noise ratios of the observations and the forecast as58

SNRy =

√
E(V (t)2)− E(V (t))2

E(ε(t)2) ,

SNRx =

√
E(U(t)2)− E(U(t))2

E(ηk(t)2)
,

respectively. Our third assumption is that these numbers do not depend on k or t. Our final assumption is that forecasts and observations59

share a common source of predictability. Mathematically, this means that U(t) indeed carries some information about the verification60

Y (t) and hence that V (t) = E(Y (t)|U(t)) is not constant but exhibits some variability.61

With these preparations, it is now a simple matter to show that the correlation coefficient R between the observations Y (t) and the62

ensemble mean m(t) =
∑K
k=1Xk(t) satisfies the relation:63

R(Y (t),m(t)) = R(V (t), U(t)) ·

√
K · SNR2

x

1 +K · SNR2
x

·

√
SNR2

y

1 + SNR2
y

≤

√
K · SNR2

x

1 +K · SNR2
x

·

√
SNR2

y

1 + SNR2
y

(1)

The signal to noise paradox arises if we assume that SNRy ∼= SNRx, while the former is in fact slightly larger. As a consequence, the64

correlation between observations and the ensemble mean might turn out to be much larger than our incorrect assumption, in combination65

with the estimate in Equation (1), would suggest. To analyse the signal to noise paradox statistically, Siegert et al. (2016) use a more66

specific model for seasonal forecast data. In essence, they assume that U(t), ε(t), η1, . . . , ηK(t) are normal random variables that have67

the correlation properties derived above but in addition are independent over time. Further, V (t) is essentially a linear function of U(t).68

These are highly idealistic assumptions, but pending the development of a more powerful statistical methodology, we will use a variant69

of this model in the present study.70

Siegert et al. (2016) fit this model to seasonal forecast data using Markov chain Monte Carlo (MCMC) method. While this method

has many advantages and is widely used, it is necessary to specify a prior distribution for the parameters since the method is an

approximation of a fully Bayesian analysis. Since a key aim of this study is to fit the model over a range of different vertical levels and

seasons, careful specification of a prior for the large numbers of cases considered becomes difficult. Instead, a new method is developed

that allows us to fit the same statistical model to sets of forecasts from two ECMWF seasonal forecasting systems. Essentially, we will

use a Maximum Likelihood approach. This can also be interpreted as finding the most probable parameter values in a Bayesian setting,

albeit with uninformative or “flat” priors for a certain parametrisation of the problem, namely through the covariance matrix M and

parameter σ2m defined below. It needs to be stressed that if a problem is reparametrised, the priors for the former parameters imply

priors for the new parameters that are not flat. The equivalence between Maximum Likelihood estimates and most probable parameters

c© 2019 Royal Meteorological Society
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for a given parametrisation is only valid whenever a flat prior is chosen for that parametrisation. Siegert et al. (2016) found that

specifying any sort of informative prior had a strong (but, in our view, unwarranted) influence on the parameters, given the small

hindcast set typically available from most seasonal forecasting systems. We also found that the regularising effect that comes with

informative priors was not necessary in our case to stabilise the estimates. One further advantage of this method, is that it is slightly

computationally less intensive than the MCMC analysis, even with bootstrapping of model parameters as discussed below. We first

rewrite the statistical model as:

Y (t) = µy + βyS(t) + εO(t) (2)

Xk(t) = µx + βxS(t) + ηPk(t) for k = 1, . . . ,K (3)

where S(t), O(t), P1(t), . . . , PK(t) are independent standard normal random variables that are also independent over time (i.e. for71

different t). The parameters of the model are µy, µx, βy, βx, ε and η which represent the observational mean, model mean, observational72

signal amplitude, forecast signal amplitude, observational noise amplitude and forecast noise amplitude respectively. We note here that73

the signs of ε and η can be changed separately or jointly; we will therefore consider only nonnegative estimates of these two parameters.74

Secondly, βy and βx can be replaced simultaneously with −βy and −βx; this however is irrelevant as we are interested in quantities75

involving the magnitude of these parameters, only. We note that β1 · β2, the correlation between Y and X still has a well defined sign.76

It turns out to be convenient to transform the forecasts, X using contrasts. A K–dimensional contrast w is an element of RK such77

that
∑K
k=1 wk = 0. We let {w(l) ∈ RK , l = 1, . . .K − 1} be a set of K − 1 orthogonal and normalised contrasts (superscripts are used78

to distinguish between different contrasts). Such a set can contain at most K − 1 elements as the space of K–dimensional contrast has79

dimension K − 1. In section A we describe the algorithm used to find such a set of contrasts.80

By means of the contrasts, we introduce new random variables (m(t), ζ1(t), . . . , ζK−1(t)) that are in one–to–one relationship with

(X1(t), . . . , XK(t)) by setting:

m(t) =
1

K

K∑
k=1

Xk(t) (4)

ζl(t) = 〈w(l),X(t)〉 for l = 1, . . . ,K − 1 (5)

where 〈., ..〉 denotes the standard scalar product on RK . Clearly, m(t) is the ensemble mean. The reason for transforming the variables81

using contrasts and introducing the new variables Y (t),m(t), ζ1(t), . . . , ζK−1(t) is the rather simple dependence structure among82

them. Indeed, a simple calculation reveals that:83

1. The variables ζl(t), l = 1, . . . ,K − 1, t = 1, 2, . . . are independent (both for different l and in time) and normally distributed84

with mean zero and variance η2.85

2. The two–dimensional variables Z(t) := (Y (t),m(t))T, t = 1, 2, . . . are independent in time and from the ζl(t); further, they are86

normally distributed with mean (µy, µx)
T and some covariance matrix M .87

3. The covariance matrix M has the form88

M =

 β2y + ε2 βyβx

βyβx β2x + σ2m

 (6)

where σ2m := η2/K.89

c© 2019 Royal Meteorological Society
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The statistical model in Equations(2,3) can be equivalently parametrised in terms of σm andM . We find maximum likelihood estimators90

of the parameters βy, βx, ε, η by first finding maximum likelihood estimates of M,σm and subsequently inverting Equation 6 and the91

relation σm = η2/K. This gives indeed the maximum likelihood estimators for these parameters, except for certain combinations92

of M,σm which are not admissible; see the discussion in the next section. More details about this approach can be found in the93

supplementary material.94

σ̂2m =
1

K(K − 1)N

∑
l≤K−1,t≤N

ζ2l (t) (7)

M̂ =
1

N

∑
t≤N

Z(t)ZT(t)−

 1

N

∑
t≤N

Z(t)

 1

N

∑
t≤N

Z(t)

T

(8)

To analyse the signal-to-noise properties of each forecast system we wish to estimate the signal-to-noise ratio of the observations and

the forecasts, defined as:

SNRy =
βy
ε
,

SNRx =
βx
η
,

Estimators for these terms are:

ˆSNRy =
M̂1,2√

det(M̂)− σ̂2mM̂1,1

(9)

ˆSNRx =
1√
K

√
M̂2,2

σ̂2m
− 1, (10)

Estimators for all other parameters of the model can be similarly derived from M̂ and σ̂m.95

2.2. Bootstrapping96

Uncertainty estimates for the parameters of the model are derived by parametric bootstrapping of the estimators M̂ and σ̂m. In97

essence, parametric bootstrapping means to draw samples from a distribution that is known up to parameters which are replaced98

by estimators, see for instance Schervish (1995). In the present example, the distributions of M̂ and σ̂m are known structurally except99

for the parameters M and σ2m. Namely, M̂ follows a Wishart distribution with N degrees of freedom and scale matrix M which we100

estimate by M̂ , so samples of M̂ are drawn from a Wishart distribution with N degrees of freedom and scale matrix M̂ . Similarly,101

samples for σ̂2m are calculated by randomly drawing from a χ–square distribution with (K − 1) ·N degrees of freedom and multiplying102

with σ̂2m. Note also that the resulting bootstrap samples for M̂ and σ̂2m do not only have the correct distribution but are furthermore103

independent. This is the correct dependence structure in view of the fact that M̂ and σ̂2m are independent, since they are functions of ζ(t)104

and Z(t), respectively, which are independent. One reason for transforming the data using contrasts was to obtain this relatively simple105

dependence structure. It turns out that for some bootstrap resamples the SNR’s are not well defined. Indeed, if either det(M̂) ≤ σ̂2mM̂1,1106

or M̂2,2 ≤ σ̂2m, then ˆSNRy or ˆSNRx, respectively, are not well defined. These cases are identified and discarded. The fraction of such107

cases varies between experiments but is never more than 0.1 % of samples and typically less. The reason that such cases occur is that108

there are instances of a covariance matrix M paired with a value for the parameter σm that are incompatible with the representation of109

M in Equation (6). If for instance M22 < σ2m, we get β2x < 0 which is impossible; likewise det(M) < σ2mM1,1 would imply ε2 < 0.110

c© 2019 Royal Meteorological Society
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LOW SIGNAL TO NOISE RATIO IN ECMWF FORECAST SYSTEMS 6

These are precisely the (M,σ2m)–pairs for which SNRx or SNRy , respectively, are not defined, and we will refer to such pairs as111

not admissible. We stress, however, that there is nothing unusual about pairs that are not admissible except that they cannot occur in112

connection with our model (2,3). But they can, with a small but nonvanishing probability, occur as values for the estimators (7, 8),113

even if the samples are drawn from our model (2,3). This is the reason why a small proportion of the parametric bootstrap resamples114

(M̂, σ̂2m) cannot be translated into SNR resamples, as they are not admissible. Our approach of discarding these samples is equivalent115

to drawing M̂ and σ2m from Wishart resp. χ2–distributions, censored to values that are admissible and thus also provide well defined116

values for the SNR’s. A Bayesian approach as for instance used in Siegert et al. (2016) will not produce inadmissible resamples for the117

parameters if only because such resamples are deemed impossible apriori.118

As an aside, if the estimates M̂ and σ̂2m from Equations (7, 8) are inadmissible then they are in fact not the Maximum–Likelihood119

estimates for M and σ2m. Rather, the correct Maximum–Likelihood estimates will lie on the boundary of the set of admissible pairs, as120

a more refined analysis will reveal. This is not relevant for our purposes though, since this boundary is precisely the set of all (M,σ2m)121

for which ε2 or η2 (or both) are zero, and the SNR’s are still not defined in this situation. For all calculations in the paper, sampling122

intervals for all parameters are calculated from 105 valid bootstrapped samples.123

2.3. Seasonal hindcasts and diagnostics124

We present results from the two most recent operational versions of the ECMWF seasonal forecasting system. SYS4 was based on125

IFS Cy36r4, run at TL255 spectral resolution with a linear reduced gaussian grid of 80km and 91 vertical levels, with a model top at126

0.01 hPa. SYS4 was coupled to a 1x1 deg configuration of the NEMO ocean model, and sea-ice in the forecasts was specified based127

on sampling the previous 5 years, thus capturing the trend and uncertainty in sea-ice cover, but not predicting it. Atmospheric initial128

conditions for the re-forecasts are taken from ERA-interim (Dee et al. 2011) up to 2010 and the operational ECMWF analysis thereafter.129

The system is described in Molteni et al. (2011), and its performance in predicting the AO is described in Stockdale et al. (2015). SYS4130

was operational for six years until October 2017, and was replaced by SEAS5 in November 2017. SEAS5 is based on IFS Cy43r1,131

run at Tco199 spectral resolution with a cubic octahedral reduced gaussian grid of 36 km and 91 vertical levels, with a model top at132

0.01 hPa. SEAS5 is coupled to an ORCA025 configuration of the NEMO ocean and LIM2 interactive sea ice models. Atmospheric133

initial conditions for the re-forecasts are taken from ERA-interim up to 2016 and the operational ECMWF analysis thereafter, while134

ocean initial conditions are taken from OCEAN5 (Zuo et al. 2019). Details of SEAS5’s configuration and performance, including135

stratospheric biases, are documented in Johnson et al. (2018).136

We examine hindcasts for the November initialisations of SYS4 and November and December initialisations of SEAS5 for the137

period 1985 to 2016. The November initialisations have 51 ensemble members and the December initialisations have 25 ensemble138

members. The ERA-Interim dataset (Dee et al. 2011) is used as an estimate of the true, observed climate state. For both the hindcasts139

and observations, daily instantaneous values at 00UTC are used to derive averaged quantities.140

Following Stockdale et al. (2015), two diagnostics are used to characterise large-scale climate variability in the Northern Hemisphere.141

At the surface, we calculate the Arctic Oscillation index (AO) from mean sea-level pressure (MSLP) data and at a range of pressure142

levels from 1000hPa to 10hPa we calculate the Northern Annular Mode (NAM) index from zonal mean geopotential height data. The143

AO pattern is defined as the first EOF of the monthly mean MSLP anomalies calculated between 1980 and 2010 for the ERA-Interim144

dataset. The daily AO index for the re-analysis and for each ensemble member is calculated by projecting daily MSLP anomalies onto145

the AO pattern. A similar procedure is used to calculate the NAM index, using zonal-mean geopotential height anomalies, following146

Baldwin and Thompson (2009). NAM patterns and projections are calculated separately for each pressure level.147

The AO index calculated for the winter season (DJF) is shown in Fig. 1 for three different sets of forecasts from ECMWF hindcasts.148

In the figure, the ensemble mean is scaled by a constant factor so that variations in the ensemble mean can easily be observed. A149
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Figure 1. Observed (black line) and ensemble mean hindcast (coloured, solid line) for AO index for DJF from (a) forecasts initialised on November 1st using SYS4, (b)
forecasts initialised on November 1st using SEAS5 and (c) forecasts initialised on December 1st using SEAS5. In (a) and (b), the ensemble mean is scaled by a factor of 6
and in (c) by a factor of 3 for ease of viewing the ensemble mean variation. The correlation coefficient between the ensemble mean and the observations and the Ratio of
Predictable Components is reported at the bottom right of each plot. The distribution of forecasts for each year is shown by the grey box plots, with the median plotted in
the white line, the inter-quartile range (IQR) shown in the box and the whiskers show the range of the data. Outliers are plotted as grey dots if they are more than 1.5 times
the IQR away from the upper or lower edge of the box.

constant factor of 6 is used in panels (a) and (b) and 3 in panel (c). For forecasts initialised on 1st November, for both SYS4 and150

SEAS5, there is a moderately high correlation between the observed AO index and ensemble mean hindcast for this period (0.54151

for SYS4 and 0.42 for SEAS5) but the size of variations in the ensemble mean is very small. The boxplots showing each ensemble152

member illustrate the large ensemble spread. As a first estimate of signal-to-noise biases in each hindcast set, the Ratio of Predictable153

Components (Eade et al. 2014) is shown for each combination of hindcasts and observations in the bottom right of each panel. For both154

the SYS4 and SEAS5 hindcasts, the RPC is larger than 1, suggesting over dispersion in these two hindcast sets. The remainder of the155

paper will use the statistical method outlined above to explore the origin of this anomalously low signal-to-noise ratio in the ECMWF156

systems.157

3. Results158

3.1. Signal-to-noise biases at the surface159

To characterise signal-to-noise biases in the ECMWF forecast systems, we first make MLE estimates of model parameters for DJF160

hindcasts of the AO, the same data used to construct Fig. 1. Estimates of several key parameters from the model are shown in Fig. 2.161

Fig. 2(a) shows the bootstrap estimate of the correlation. For both systems, there is high confidence that the correlation between the162

hindcasts and observations is positive (in both cases, Pr(Correlation < 0) < 0.01). However, as shown by both Siegert et al. (2016) and163

Weisheimer et al. (2017) with a small sample size, the sampling distribution of the correlation is very broad, and it is not possible to164

say with confidence that the correlation of SYS4 is greater than that of SEAS5 for DJF forecasts of the AO. It is also possible to be165

confident that the signal-to-noise ratio of each system is too small. Fig. 2(b) illustrates this point by showing the distribution of the ratio166

between the signal-to-noise ratio estimated for each system and for the observations. Values less than one for this diagnostic mean that167

the signal-to-noise ratio in the hindcasts is smaller than the observations. There is high confidence that the signal-to-noise ratio is too168
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Figure 2. Bootstrap sampling distributions of parameters of the MLE statistical model for hindcasts of DJF initialised on 1st November. The blue,solid lines show
SYS4 and red, dashed lines show SEAS5. Distributions are estimated using a kernel density estimator from the 105 bootstrap samples of each parameter. (a) shows the
correlation (ρ), (b) shows the ratio of the signal-to-noise ratio in the hindcasts and observations (SNRx/SNRy), (c) show the ratio of the signal amplitude in the hindcasts
and observations (βx/βy) and (d) shows the ratio of the noise amplitude in the hindcasts and observations (η/ε).

low in SYS4 (Pr(SNRx/SNRy < 1) = 0.998) and good confidence that the signal-to-noise ratio is too low in SEAS5 (Pr(SNRx/SNRy169

< 1) = 0.905).170

To further understand the origin of the low signal-to-noise ratio in each system, the bottom two panels of Fig. 2 consider the signal171

and noise amplitudes separately. In both systems, there is good confidence that the signal amplitude is too weak, as shown in Fig.172

2(c). Additionally, for SYS4, there is high confidence that the noise amplitude is too large (Fig. 2(d)). Therefore, in SEAS5 the low173

signal-to-noise ratio is primarily linked to weak signal amplitude whereas for SYS4 it is a combination of weak signal amplitude and174

enhanced noise amplitude. This is consistent with the analysis of Siegert et al. (2016) for GloSea5.175
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Figure 3. Bootstrap sampling distributions of parameters of the MLE statistical model for forecasts from SEAS5. JFM forecasts initialised on 1st December are shown
in the green, solid line and DJF forecasts initialised on 1st November are shown in the red, dashed line (and reproduce the results shown in Fig. 2). Distributions are
estimated using a kernel density estimator from the 105 bootstrap samples of each parameter. (a) shows the correlation (ρ), (b) shows the ratio of the signal-to-noise ratio
in the hindcasts and observations (SNRx/SNRy), (c) shows the ratio of the signal amplitude in the hindcasts and observations (βx/βy) and (d) shows the ratio of the noise
amplitude in the hindcasts and observations (η/ε).

However, for SEAS5, the low signal-to-noise ratio present in forecasts initialised in November is not present when the system is176

initialised in December. Fig. 3 shows the same diagnostics as Fig. 2 but calculated for forecasts of JFM initialised on 1st December and177
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reproduces the diagnostics for the 1st November hindcasts of SEAS5 shown in Fig. 2. For this case, correlation between the hindcasts178

and observations is weaker than for November forecasts of DJF, but there is still good confidence that the correlation is positive.179

In contrast to the November forecasts, the signal-to-noise ratio, signal amplitude and noise amplitude of the forecast system are all180

consistent with estimates from the observations. Note, also, that the smaller ensemble size of the 1st December hindcasts that were181

analysed results in a large spread on the estimates of signal and noise in Fig. 3.182

3.2. Signal-to-noise biases throughout the atmosphere183

To further characterise the signal-to-noise biases in the forecast systems throughout the atmosphere, the same MLE estimates of the184

model parameters in Eq. 2 and 3 are made for the NAM index on pressure levels from 1000hPa to 10hPa. Estimates for the November185

forecasts for SYS4 are shown in Fig. 4 for SYS4 and for SEAS5 in Fig. 5.186
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Figure 4. Bootstrap sampling distributions of parameters of the MLE statistical model for SYS4 forecasts of DJF initialised on 1st November. In each panel, the median
estimate is shown by the solid line, the inter-quartile range (25th to 75th percentile) of the 105 bootstrap estimates is shown in dark shading and the 5th to 95th percentile
is shown in the light shading. In all cases, estimates are plotted as a function of pressure level. (a) shows the correlation (ρ), (b) shows the ratio of the signal-to-noise ratio
in the hindcasts and observations (SNRx/SNRy), (c) shows the ratio of the signal amplitude in the hindcasts and observations (βx/βy), (d) shows the ratio of the noise
amplitude in the hindcasts and observations (η/ε).

For SYS4, the low signal-to-noise ratio bias is most pronounced at the surface and decays throughout the troposphere (Fig. 4(b))187

so that for pressure levels close to the tropopause there is no obvious difference between the signal-to-noise ratio in the hindcasts and188

the observations. As in the analysis for the surface AO, the low signal-to-noise ratio in the troposphere is the result of a combination189

of weak signal amplitude (Fig. 4(c)) and slightly enhanced noise amplitude (Fig. 4(d)). In the stratosphere, median estimates of the190

signal-to-noise ratio and signal amplitude are slightly weaker than the observations, but there is no clear and significant bias.191

For SEAS5 (Fig. 5), a similar pattern to SYS4 is present. Signal-to-noise biases are strongest at the surface and through the lower192

and mid-troposphere and largely absent at and above the tropopause. As in the analysis of SEAS5 at the surface, the noise amplitude193

throughout the atmosphere is broadly consistent with the observations.194

3.3. Development of the signal-to-noise ratio bias in time195

The two previous sections show that both SYS4 and SEAS5 suffer from the widely reported low signal-to-noise ratio when skilfully196

forecasting the winter mean AO. This signal-to-noise bias, however, is only present for forecasts initialised on 1st November and is197

limited to the surface and lower and mid-troposphere. To further understand the development of this bias, it is necessary to examine how198

the low signal bias (the major cause of the low signal-to-noise bias in both systems) develops over the course of winter. To examine this199
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Figure 5. Bootstrap sampling distributions of parameters of the MLE statistical model for SEAS5 forecasts of DJF initialised on 1st November. In each panel, the median
estimate is shown by the solid line, the inter-quartile range (25th to 75th percentile) of the 105 bootstrap estimates is shown in dark shading and the 5th to 95th percentile
is shown in the light shading. In all cases, estimates are plotted as a function of pressure level. (a) shows the correlation (ρ), (b) shows the ratio of the signal-to-noise ratio
in the hindcasts and observations (SNRx/SNRy), (c) shows the ratio of the signal amplitude in the hindcasts and observations (βx/βy), (d) shows the ratio of the noise
amplitude in the hindcasts and observations (η/ε).

development, MLE estimates of parameters of Eq. 2 and 3 are calculated for 30-day averages of the AO and NAM index. To determine200

how the low signal amplitude bias evolves in time, this procedure is repeated for each 30-day period, beginning at the initialisation201

time of each hindcast. For example for the 1st November forecasts 120 parameter estimates are produced beginning with the 1st to 30th202

November and ending with the 28th February to 29th March.203

3.3.1. Surface signal204

The development of the signal amplitude for the AO is shown in Fig. 6. The two sets of November 1st forecasts result in a very different205

development of the signal amplitude. In SYS4, (Fig. 6(a)) the signal amplitude drops rapidly from forecast initialisation so that through206

December, January and February the amplitude is very small, typically less than 0.3. For SEAS5, (Fig. 6(b)) the amplitude of the signal207

is similarly small during early winter, but increases appreciably for the late winter, particularly for forecasts covering February, as seen208

in other forecast systems (e.g. Jia et al. 2017). During this period, the signal amplitude in the hindcasts and observations is similar and209

the signal-to-noise ratio in the hindcasts and observations is comparable (not shown).210
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Figure 6. Bootstrap estimates of the signal term for the (a) 1st November forecasts from SYS4, (b) 1st November forecasts from SEAS5 and (c) 1st December forecasts
from SEAS5. Estimates of the signal amplitude of the observations are shown in the black dashed line and grey shading, estimates of the signal amplitude for the hindcasts
are shown in the solid coloured line and coloured shading. In both cases, the inter-quartile range (25th to 75th percentile) of the 105 bootstrap estimates is shown in dark
shading and the 2.5th to 97.5th percentile is shown in the light shading.
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The clearest divergence between the signal amplitude in the hindcasts and observations is during early winter for both systems.211

During December, the estimated signal amplitude for the observations is very large in the analysis, exceeding 1 in both cases, with212

either SYS4 or SEAS5. This suggests that for this set of years, there is a large, predictable signal present in the real climate system,213

that neither system is able to adequately capture. A similarly large amplitude signal in the observations during early winter is also214

present in early winter for the SEAS5 forecasts initialised in December and January (Fig. 6(c)). As in the analysis of Fig. 3, the smaller215

ensemble size of the analysed 1st December hindcasts likely influences the spread of the hindcast signal estimate. The anomalously216

low signal-to-noise ratio present in both SYS4 and SEAS5 is a result of the mismatch of signal amplitude during early winter in both217

systems.218

3.3.2. Development of early winter signal219
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Figure 7. Maximum likelihood estimate of the signal amplitude of the observations (βy) (a)-(d) and hindcasts (βx) (e)-(h) on different pressure levels for 30-day periods
beginning at the date plotted on the x-axis. The observational estimate differs depending on the set of hindcasts used in each calculation. All calculations are made for the
NAM index. (a) and (e) show estimates for hindcasts initialised on 1st November for SYS4 and (b) and (f) show 1st November forecasts for SEAS5 (c) and (g) show 1st
December forecasts for SEAS5 and (d) and (h) show 1st January forecasts for SEAS5.

To further investigate the origin of the mismatch in signal amplitude in early winter, the analysis in the previous section is repeated220

for other levels in the atmosphere using the NAM diagnostic. The diagnosed amplitude of the signal term in the observations is shown221

in Fig. 7 (a)-(d). It is immediately obvious that, as in the previous section, the structure of the predictable signal is different in early and222

late winter. In both SYS4 and SEAS5, the large signal amplitude at the surface in early winter is largely confined to the surface with223

much smaller signal amplitude through the majority of the troposphere. In contrast, in late winter, there is a second peak of large signal224

amplitude throughout the troposphere for monthly periods during February. A similar second peak of signal amplitude in late winter is225

also present for the SEAS5 forecasts initialised in December (Fig. 7(c) and (d)).226

Comparing the observed signal amplitude with the signal amplitude in the hindcasts (Fig. 7 (e)-(h)) shows that the two periods in227

which there is significant signal amplitude in the observations are captured differently by the two systems. In early winter, in both228

SYS4 and SEAS5, the signal amplitude decays rapidly from the initialisation date in the lower troposphere. By December, in both229

systems, the amplitude of the signal in the troposphere is very weak (typically less than 0.2). In contrast, the signal amplitude in the230

lower stratosphere in both systems (100-300hPa) remains large throughout the winter season. By late winter, the signal amplitude in231

this region is comparable in the hindcasts and observations. In SEAS5, larger signal amplitude extends through the troposphere to the232
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surface, consistent with the AO diagnostics in Fig. 6. In SYS4, the signal amplitude in the lower stratosphere and its extension to the233

surface is weaker. For SEAS5 forecasts initialised in December (Fig. 7(g)) a similar amplification of the hindcast signal occurs in late234

winter.235

4. Discussion and Conclusions236

In this study, the statistical model of Siegert et al. (2016) is used to explore the signal-to-noise properties of forecasts of the Northern237

Annular Mode and Arctic Oscillation made by two ECMWF seasonal forecasting systems. By adapting the methodology from its238

original Bayesian framework it is possible to explore the origin of the signal-to-noise problem (Eade et al. 2014) in SYS4 identified239

by Stockdale et al. (2015) and common in other systems (Baker et al. 2018). The analysis in the present study confirms that both240

SYS4 and SEAS5 suffer from anomalously low signal-to-noise ratio for DJF forecasts when initialised on November 1st. However, by241

fitting the Siegert et al. (2016) model to other pressure levels and forecasts initialised at other times of the year it is possible to refine242

understanding of the properties of the signal-to-noise problem, at least in the ECMWF systems, namely that:243

• A significant contribution to the low signal-to-noise ratio in both systems is related to an anomalously small signal amplitude as244

has previously been shown for other systems (e.g. Siegert et al. 2016).245

• In SEAS5, the low signal-to-noise ratio is present for forecasts initialised on November 1st but not for forecasts initialised on246

December 1st.247

• The low signal-to-noise ratio is present at the surface and through the lower and mid-troposphere but not the stratosphere.248

• The low signal amplitude in the forecast systems is dominated by a mismatch in signal amplitude between the hindcasts and249

observations in early winter.250

• The low signal amplitude in early winter is predominantly a lower tropospheric feature.251

Together, these conclusions suggest that in order to further understand (and ultimately correct) the low signal-to-noise problem in252

the ECMWF seasonal forecasting systems, further experimentation should be focussed on processes that dominate the predictability of253

early winter at the surface. Our results are consistent with the statement in Stockdale et al. (2015) that in SYS4 ”The weakness of the254

stratosphere to troposphere coupling in the model results in a weak signal at the surface and a major underestimate of predictability”255

and show that this problem is somewhat ameliorated in SEAS5. It would be extremely interesting, but beyond the scope of the present256

study, to repeat some of the analysis with other well-studied seasonal forecasting systems such as GloSea5. In particular, it is important257

to establish if the low SNR is confined to DJF forecasts and the lower troposphere as it is in SEAS5.258

The period of apparently large predictable signal during early winter is particularly interesting and also deserves further study. The259

characteristics and predictability of early winter circulation may be affected by longer term variability. As noted by Hanna et al. (2015),260

during recent winters there has been a large increase in the variability of the NAO and analysis of hindcasts initialized over a 110-year261

period (Weisheimer et al. 2018) suggests that there is significant variation of over and under confidence during the 20th century linked262

to long-term variability of the global circulation and teleconnections (e.g. O’Reilly 2018). Analysis of a much longer set of seasonal263

forecasts such as that described in Weisheimer et al. (2017) would be a useful first step in exploring differences in predictable signals264

in early and late winter. Weisheimer et al. (2018) also see differences in over and under confidence when they are measured with265

different diagnostics, and suggest that when the predictable signal in the hindcasts is too weak, some diagnostics of over and under266

confidence are more sensitive to a change in the amplitude of the signal than others. It is important to note, though, that the results of267

Weisheimer et al. (2018) might not be applicable to the kind of analysis proposed for two reasons: 1) because the initialization contains268

little stratospheric information prior to 1979, which is now known to be important for NAO prediction skill, making comparison of269

different periods is misleading and 2) the simulations are not seasonal forecasts but rather atmosphere only simulations.270
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Analysis of forecasts initialized in December, when the hindcast signal is larger, could shed further light on how different measures271

of over and under confidence compare. As noted by other authors, estimates of many of the parameters in our statistical model are272

very uncertain given the short hindcast record. We have attempted to exercise caution in interpreting differences in estimates of, for273

example, the signal term in the observations since these estimates are sensitive to the modelling system used in the analysis.274

There are a number of possible reasons why the ECMWF forecast systems might be unable to capture the available skill in early275

winter. O’Reilly et al. (2018) showed evidence that the link between the Quasi-Biennial Oscillation and the NAO was too weak in a276

version of the ECMWF model. QBO effects in the polar stratosphere, while often hard to untangle from other drivers of variability, are277

thought to be most significant from October to December (Garfinkel and Hartmann 2007). Shaw et al. (2010) show that wave reflection278

in the stratosphere has two distinct peaks, one in early winter and one in late winter, but they also show that wave coupling between the279

stratosphere and troposphere is not significantly enhanced during early winter in the years studied (1979-2001). The extent to which280

the ECMWF forecast system is able to capture wave reflection in early winter, and if this reflection played a role in the predictable281

signal, remains to be studied.282
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A. Deriving contrasts286

The following algorithm is used to create a set {w(m) ∈ RK ,m = 1, . . . µ} of contrasts, where necessarily µ < K.287

1. Let V be a matrix of dimension K × (µ+ 1) with rank (µ+ 1) (i.e. the columns are linearly independent) and the first column288

being a constant vector (i.e. all entries are the same and not zero). For instance we could take:289

Vk,l =

(
k

K + 1
− 1

2

)l−1

2. Let Q,R be matrices of dimension K × (µ+ 1) and (µ+ 1)× (µ+ 1), respectively, so that290

(a) the columns of Q are normalised and mutually orthogonal;291

(b) R is right upper triangular;292

(c) V = QR.293

Such matrices can be found by applying a Gram–Schmidt procedure to the columns of V or equivalently through a QR–294

decomposition of V.295

3. Now ignore the first column of Q which will have constant entries; the remaining µ columns form the desired contrasts.296
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