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Abstract— Support Vector Machine (SVM) is a learning-based 
algorithm, which is widely used for classification in many 
applications. Despite its advantages, its application to large scale 
datasets is limited due to its use of large number of support vectors 
and dependency of its performance on its kernel parameter. This 
paper presents a Sliding Mode Control based Support Vector 
Machine Radial Basis Function’s kernel parameter optimization 
(SMC-SVM-RBF) method, inspired by sliding mode closed loop 
control theory, which has demonstrated significantly higher 
performance to that of the standard closed loop control technique. 
The proposed method first defines an error equation and a sliding 
surface and then iteratively updates the RBF’s kernel parameter 
based on the sliding mode control theory, forcing SVM training 
error to converge below a predefined threshold value. The closed 
loop nature of the proposed algorithm increases the robustness of 
the technique to uncertainty and improves its convergence speed. 
Experimental results were generated using nine standard 
benchmark datasets covering wide range of applications. Results 
show the proposed SMC-SVM-RBF method is significantly faster 
than those of classical SVM based techniques. Moreover, it 
generates more accurate results than most of the state of the art 
SVM based methods. 

Keywords—support vector machine, sliding mode control, radial 
basis function, classification, classification speed. 

I. INTRODUCTION

Support Vector Machine (SVM) is a machine learning 
algorithm that widely used for classification. SVM is one of the 
robust and efficient classification methods amongst the well 
know classification algorithms such as nearest neighbor, 
boosted decision trees, regularized logistic regression, neural 
networks, and random forests [1], [2], [3]. When dealing with 
non-linearly separable data, SVM maps the data into higher 
dimensional space using kernels prior to performing the 
classification [4]. SVM formulates a quadratic programming 
(QP) problem to find a separating hyperplane, which 

maximizes the margin between two classes of the data [3], [5], 
[6]. Since SVM achieves a unique solution and learns from 
dimensionality of feature space, it is more robust than other 
techniques to over fitting [4], [6], [7]. Despite all the advantages 
and applications of the SVM [8], [9], its classification speed is 
deteriorated when dealing with large scale problems as it uses 
large number of support vectors. In addition, its training 
computationally expensive and timely [10], [11]. Over the last 
two decades, many techniques have been proposed to speed up 
the test and training time of the SVM [5], [10], [11], [12], [13], 
[14], [15], [16], [17], [18] which have been resulted in 
techniques that reduce the number of SVs. However, there are 
demands for more powerful techniques. In some branches of 
control such as nonlinear [19], [20] and optimal control [21] 
SVM has been used due to its capabilities. However, the 
application of the Sliding Mode Control (SMC) to speed up the 
training period of the SVM and improving its performance has 
not been reported in the literature. 

This paper presents a closed loop method based on Sliding 
Mode Control (SMC) to find optimum value for RBF kernel 
parameter of the SVM. Application of the slide mode control 
significantly improves the learning speed of the SVM and 
improves the performance of the resulting classifier in term of 
accuracy and matching computation cost. The proposed method 
uses a first order equation solution to solve an n-order problem 
for non-linear systems with some level of uncertainty. The 
proposed method first defines an error equation and the sliding 
surface and then uses the closed loop SMC algorithm to find an 
optimum value for RBF kernel parameter, γ, of the SVM. This 
significantly reduces the SVM training time. Experimental 
results on nine benchmark datasets show that the proposed 
method significantly outperforms the anchor SVM in terms of 
accuracy at lower number of Support Vectors (SV). This 
implies that the proposed method is faster than the anchor 
SVM. Experimental results also show that the proposed method 



achieves superior or very competitive performance in term of 
accuracy to those of the state-of-the-art techniques. Results also 
shows that the propose method is faster than the state-of-the-art 
techniques in term of classification time, as it generates smaller 
number of SV. The rest of this paper is organized as follows. 
Sections II and III give an overview on Support Vector Machine 
(SVM) and the Sliding Mode Control (SMC) technique, 
respectively. The proposed method is introduced in Section IV. 
Section V presents the experimental results and finally paper is 
concluded in Section VI. 

II. SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) is a linear classifier, which 
is widely used to split a linearly separable dataset into its two 
classes. It determines an optimum hyperplane to classify the 
input dataset that maximizes its distance and margin from the 
data of the both classes. Hard margin SVM is usually used to 
classify data within a linearly separable dataset. Assume that 
there are n data points with labels either 1 or -1 are in the input 
dataset. SVM takes the following steps to find the initial margin 
and then optimize it. Assume that  wTx + b = 0 is the hyperplane 
equation, where 𝑤 is an orthogonal vector to the hyperplane and 
b is its bias, then the distance of a point to the hyperplane can be 
determined using (1):  

𝑑௜(𝑥) =  
௪೅௫೔ା ௕

‖௪‖
 (1) 

where xi  is a data point and di (x) is xi’s signed distance from 
the hyperplane, the sign of the di (x)  is xi’s label and shown by 

yi. The margin is the defined by 𝑚𝑖𝑛 ቄ𝑦௜
௪೅௫೔ା ௕

‖௪‖
ቅ. To make the 

distance of all points to the hyperplane greater than 1, w and b 
can be rescaled as follows: 

𝑦௜(𝑤்𝑥௜ +  𝑏) ≥ 1
௬௜௘௟ௗ௦
ሱ⎯⎯ሮ  𝑚𝑎𝑟𝑔𝑖𝑛 =

ଵ

‖௪‖
 (2) 

Therefore, the SVM algorithm searches for the maximum 
margin. Based on (2), this can be formulated as a Quadratic 
Problem (QP) as shown in equation 3: 

min
௪

1

2
‖𝑤‖ଶ 

𝑠. 𝑡.  𝑦௜(𝑤்𝑥௜ +  𝑏) ≥ 1   ∀𝑖 = 1, … , 𝑛  (3) 

The resulting QP is a convex problem, which results in a global 
minimum or maximum solution. Consequently, the hyperplane 
w is calculated by solving this QP. Classifying a nonlinear 
dataset using a linear algorithm such as SVM can be achieved 
by reshaping and increasing the dimension of the data. 
However, this results in the curse of dimensionality. To 
overcome this issue, SVM uses the concept of the kernel, which 
is known as soft margin SVM. In this case, the decision 
boundary is non-linear, and the data is not linearly separable. 
Hence, some points within the dataset may cross the margin or 
not correctly classified. Therefore, the hard margin SVM’s 

constrain is not valid anymore. The constrain can be modified 
to include the nonlinear cases as well, as shown in (4), [22]: 

min
௪

1

2
‖𝑤‖ଶ + 𝐶 ෍ 𝜉௜

௡

௜ୀଵ

𝑠. 𝑡.  𝑦௜(𝑤்𝑥௜ +  𝑏) ≥ 1 − 𝜉௜ , 𝑤ℎ𝑒𝑟𝑒 𝜉௜ ≥ 0   (4) 

In equation 4, ξi is added to the constrain for the points, which 
violate the constrain. But by changing the constraint in this way, 
all points within the dataset can violate the constraint. 
Therefore, the number of points, which can violate the margin 
are restricted by adding a penalty or regularization parameter, 
C. One can solve the dual formula (4) as [23], [24], [25]:

max
ఈ೔

෍ 𝛼௜

௡

௜ୀଵ

−
1

2
෍ ෍ 𝛼௜𝛼௝𝑦௜𝑦௝𝑥௜

்

௡

௝ୀଵ

௡

௜ୀଵ

𝑥௝ 

𝑠. 𝑡. ∑ 𝛼௜𝑦௜  ௡
௜ୀଵ = 0  ,    0 ≤  𝛼௜ ≤ 𝐶   (5) 

Where αi is a dual variable, which is obtained via the QP. The 
points with αi greater than zero are support vectors and the 
points with αi equal to C are the ones that violate the constrain 
of the hard margin SVM. Finally, the class of each input data 
point by using RBF kernel can be determined as follows: 𝑦 =
𝑠𝑖𝑔𝑛[∑ 𝛼௜𝑦௜𝑒𝑥𝑝(−𝛾‖𝑥 −  𝑥௜‖ଶ) +  𝑏௡

௜ୀଵ ] , where n is the 
number of training data, αi is the dual variable, xi is the training 
data, x is the input data point, yi is the corresponding label of  xi 
and γ is RBF kernel parameter.  

III. SLIDING MODE CONTROL

Sliding Mode Control (SMC) is a powerful technique for 
controlling a non-linear system, particularly when there is not a 
precise mathematical model for the system or the model does 
not represent all system’s parameters [26], [27], [28]. SMC 
assumes that controlling a first order system is much easier than 
controlling an nth-order system. This allows an nth-order 
problem to be replaced by its equivalent first order problem. For 
the transformed problem, perfect performance can be achieved 
in principle despite the presence of inaccuracy of arbitrary 
parameters [26].  This creates a sliding surface and drives the 
state of the system toward the surface in its state space. Once the 
state of the system reached the sliding surface, SMC keeps the 
state of the system in a close neighborhood of the sliding surface 
[28]. SMC consists of two parts: the sliding surface and the off-
surface dynamics. For a single input dynamic system of form x 
=  f(x) + b(x)u ,where 𝑥 is the scaler output, 𝑢 is the scaler input, 
𝒙 is the state vector, f(x) and b(x) are system model, which are 
not exactly known and have uncertainties. The track error can be 
written as: 

𝑒 = 𝑥 −  𝑥ௗ  (6) 

where 𝑥 and 𝑥ௗ are the output and desired output respectively. 
A time varying surface S(t) in the state space 𝑅 can be defined 
by the scaler space s(x; t)=0, where: 

𝑠(𝑥; 𝑡) = (
ௗ

ௗ௫
+ 𝜆)௡ିଵ𝑒 (7)



Where 𝜆 is a strictly positive constant and for n =2, (7) can be 
written as: 𝑠 =  𝑒 ̇ + 𝜆𝑒 .                                                                                              
The problem of tracking 𝑥 ≡ 𝑥ௗ  is equivalent to that of 
remaining on the surface S(t) for all 𝑡 > 0 ; indeed 𝑠(𝑥, 𝑡) ≡ 0 
represents a linear differential equation whose unique solution 
is 𝑒 ≡ 0 , given its initial condition. Thus, the problem of 
tracking the n-dimensional vector 𝑥ௗ can be reduced to that of 
keeping the scalar quantity 𝑠  at zero. 

 𝑠 =  𝑒 ̇ + 𝜆𝑒 ≡ 0  (8) 

When the surface is driven to zero, the error drives to zero too, 
for 𝑡 → ∞  [26]. To show that, we work backwards by 
postulating the off-surface dynamics that must be of the form: 

𝑆̇ =  −𝑓(𝑆)  (9) 

where f(S) could be any non-decreasing odd function. This 
shows that the change in S and the 'distance' of the current state 
of the sliding surface, it is always opposite the sign of S. The 
control input should force the states to approach it. So, 𝑆̇ must 
be a function of the input, u. 𝑆̇  must be a function of the second 
derivative of the error to just be a function of the input. This 
implies that S should only be a function of error and its first 
derivative. The simplest form of such function, which 
guarantees e→0 as t→∞ is given in equation 8 [28]. 
Consequently, as S approaches zero, so does the tracking error. 
For equation 8, the sliding surface is a line with the slope of −𝜆 
in phase plane. Starting with any initial condition, the state 
trajectory drives to the sliding surface and then slides along the 
surface exponentially towards the desired value, 𝑥ௗ , with the 

time constant of  
ଵ

ఒ
, as This illustrated in Fig. 1 [26]. 

SVM has widely used to classify non-linear separable data 
where there is always some uncertainty in selection of its 
parameters such as regularization and kernel. This has inspired 
the author to use the concept of sliding mode control to improve 
the performance of the SVM algorithm. 

Fig.1. Graphical configuration of equation 8 [26]. 

IV. PROPOSED METHOD

Fig. 2 shows a block diagram of the proposed Sliding Mode 
Control based Support Vector Machine Radial Basis Function’s 
kernel parameter optimization (SMC-SVM-RBF) method. The 
proposed method split the dataset into three parts named 

training, validation and test-subsets. The Trian SVM block takes 
the training subset and initial parameters including RBF kernel 
parameter, 𝛾௡௘௪  regularization parameters, C,  𝜆, d, VE, which 
represent the state of the training error and train the SVM 
generating Support Vectors (SVs) and their numbers, NSVs. The 
Classification block takes the SVs, NSVs and the train subset, and 
classifies the train subset data into two classes. The classified 
train data are then assessed by the Assess classified data. If the 
Training Error (TE) equals to zero, it implies that the value of 
the RBF kernel parameter is not appropriate, and the 
optimization algorithm has arrived into a local minimum. 
Therefore, the value of the RBF kernel parameter is perturbed 
and backs to Training SVM block. This procedure is repeated 
until TE reaches a non-zero value. Classification and assessing 
the train and validation data generate the following information: 
the number of misclassified training data (MC), the labels of the 
misclassifiedtraining data (MC-lbs), the training error (TE) of 
the classified training data and the validation error (VE) of the 
classified validation data. MC and MC-lbs are used to update the 
RBF kernel parameter, TE is used to define the when  it is 
necessary to perturb the RBF kernel parameter and VE is used 
as a measure to terminate the training procedure. For perturbing 
value of 𝛾  the algorithm checks, if TE is zero, 𝛾௢௟ௗ  will be 
perturbed until a non-zero TE is achieved. To perturb the value 
of the RBF kernel parameter, the value of the RBF kernel 
parameter is assessed when TE is zero; if its value is smaller than 
a threshold, it will be perturbed by a small value, otherwise it 
will be perturbed by a bigger value. The perturbing procedure 
can both increase or decrease the RBF kernel parameter. 
Experimental results presented in this paper are generated using 
small initial value for the RBF kernel parameter. When TE 
reaches a non-zero value, the training procedure starts as 
follows. First, three counters and three thresholds are initialized 
as follows: r1,  r2, and r3 are set to one, thr1, thr2 and Maximum 
Number of iterations that are acceptable for enhancement in 
Validation Error (MNVE) are set to the Number of Mis-
Classified train data (NMC), Number of Training Data (NTD), 
and a constant value, respectively. Then the algorithm goes 
through each element of Mis-Classified training data using its 
label, MC-lbs[r1], calculating  its respected p and Q. If MC-
lbs[r1] = -1, q will be calculated using 𝑞 =  −

ଵ

ଶ
𝑄ϯ𝑝். After that 

the algorithm goes through elements of q using counter r2 and 
for each positive element of q , 𝛾ଶ

௥ଶ  is calculated, when all 
elements of 𝛾ଶ

௥ଶ are calculated, it computes  𝛾ଵ =  
ଵ

௟
∑ 𝛾ଶ

௜௟
௜ୀଵ  but 

if MC-lbs[r1] in not equal to -1, it assigns 𝛾୬ୣ୵ to  𝛾ଵ . The 
algorithm then assigns 𝛾ଵand 0 to 𝛾ᇱ and 𝛾ଵ , respectively and 
increment r1 to point to the next mis-classified train data. This 
procedure is repeated for all mis-classified train data (NMC). 
When 𝛾ᇱ is calculated for all misclassified train data, the 
algorithm will check  r3, to see if r3 has reached its  Maximum 
Number of iterations that are acceptable for enhancement in 
Validation Error (MNVE) threshold value. If not, a new value 
for 𝛾  is calculated as 𝛾௡௘௪  =  ∑ 𝛾ᇱ௠

௝ୀଵ  and it backs to Train 
SVM block and the procedure is repeated until MNVE reaches 
its predefined threshold, otherwise the training is completed and 
𝛾௡௘௪   is taken  𝛾 and used to calculate the SVs. The resulting 
SVs are used to classify the test subset. The proposed Sliding 
Mode Control based Support Vector Machine Radial Basis 
Function’s kernel parameter optimization (SMC-SVM-RBF) 



method has been mathematically proved but the proof has not 
been included in this manuscript.   

V. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed SMC-SVM-RBF 
method, experimental results were generated using nine 
datasets from UCI machine learning repository [29] called: 
Letter Recognition (LR) (letters ‘A’ and ‘N’ are used for this 
experiment), Wisconsin Breast Cancer (WBC), Liver Disorder 
(LD), Heberman, Diabetes, Heart Disease, Ionosphere and 
Sonar datasets. The number of instances and dimension of the 
datasets used in this experiment, are tabulated in Table I. 
To generate experimental results, all the datasets are 
normalized and then each dataset is randomly divided into three 
subsets called: train, test and validation subsets of size 70, 20 
and 10 percent, respectively. The following setting are used to 
generate results:  f(S) = 50 ∗ arctan (S/10)  , λ = 0.3 and 
regularization parameter, C = 100.1. The results are presented 
in two sections. In section 1, the number of resulting numbers 
of Support Vectors (SVs), achieved accuracy for the train and 
test data of the proposed technique are compared to those of 
anchor SVM and tabulated in Table II. From Table II, the 
proposed technique generates significantly higher performance 
in term of accuracy and number of SVs than that of anchor 
SVM. In section 2, the performance of the proposed methods is 
compared to those of Zhang’s and Zhiliang Liu’s methods [16], 
[12], using four datasets and the results are tabulated in Table 
III. From Table III, it can be seen that the propose method gives 
either superior or very competitive results to those of Zhang’s 
and Zhiliang Liu’s methods. 

TABLE I  NUMBER OF INSTANCES AND DIMENSION OF THE DATASETS. 

Dataset #Instances #Dimension 

Letter 1536 17 

Wbc 683 11 

Liver disorder 346 7 

Heberman 306 3 

Diabetes 
Sonar 
Heart  
Ionosphere 
Parkinson 

804 
208 
303 
351 
400 

8 
60 
75 
34 
22 

 

VI. CONCLUSIONS 

In this paper the concept of Support Vector Machines (SVM) 
and Sliding Mode Control (SMC) technique was first reviewed 
and then a Sliding Mode Control based Support Vector 
Machine Radial Basis Function’s kernel parameter 
optimization (SMC-SVM-RBF) method was presented. The 
proposed method generates significantly higher performance to 
that of anchor SVM in terms of accuracy and number of support 
vectors, which implies lower computational complexity. 
Moreover, the proposed method gives either higher or very 
competitive performance to the state of the art SVM based 
techniques such as Zhang’s and Zhiliang Liu’s methods. 
 
 

TABLE II. PERFORMANCE OF PROPOSED METHOD VERSUS ANCHOR SVM IN TERM OF ACCURACY AND NUMBER OF SVS. 

 
Dataset 

 
Number of SVs 

 
Accuracy (%) for Test subset 

 
Accuracy (%) for Training 

subset 

 
fewer SVs 

SVM Proposed SVM Proposed SVM Proposed 
Liver disorder 
Letter 
Wbc 
Heberman 
Diabetes 
Sonar 
Heart  
Ionosphere 

171 
441 
75 
183 
552 
149 
217 
251 

158 
286 
41 
119 
471 
149 
217 
135 

72.46 
92.23 
99.27 
67.74 
67.53 
85.71 
83.60 
78.87 

73.91 
99.68 
99.27 
72.58 
66.88 
85.71 
91.80 
95.77 

98.79 
97.17 
97.35 
88.12 
64.13 
75.83 
80.18 
85.71 

98.79 
100 

97.14 
78.53 
100 
100 
100 
100 

7.6 
35.14 
45.33 
34.97 
14.67 

0 
0 

53.78 
Parkinson 66 58 92.30 94.87 83.57 97.14 12.12 

TABLE III. PERFORMANCE OF PROPOSED METHOD VERSUS ZHANG [16] AND ZHILIANG  LIU [12] METHODS. 

 Zhang’s method Zhiliang  Liu’s method Proposed method 
Dataset Accuracy (%) 

for Test subset 
Optimal γ value  Accuracy (%) 

for Test subset 
Optimal γ value Accuracy (%) 

for Test subset 
Optimal γ value 

Parkinson 93.51 2.59 93.35 3.61 94.87 0.0006748792225280603 
Ionosphere 93.80 5.82 95.23 3.99 95.77 0.059792421140318186 
Sonar 83.66 18.31 87.31 5.88 85.71 3.753491664198852 
Haberman 71.03 1.59 71.37 1.40 72.58 0.017403710412551898 

 
 



Fig 2. Block diagram of the proposed algorithm. 
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