
Understanding Multi-objective Evolutionary Algorithms through
Component Oriented Design

Claus Aranha†, Felipe Campelo††, Lucas S. Batista††,

筑波大学システム情報工学系 †, Federal University of Minas Gerais, Brazil††,

1 Introduction

Evolutionary Algorithms (EAs) are powerful

meta heuristic methods that can be divided into

multiple constituent components such as selection

operators, variation operators, and stop criteria.

Traditionally, EAs have been proposed as mono-

lithic “novel algorithms”, in the worst cases using

metaphor-based nomenclature that masks similari-

ties between different methods, such as “Gray Wolf

Optimization” or “Cat Swarm Optimization”. We

argue that this focus presents at least two main

drawbacks: (i) it obscures the exact contribution

of each proposed method in comparison with for-

mer and concurrent approaches; and (ii) it does not

lend itself well to the study of individual contribu-

tions of algorithmic components. These issues can

lead to duplication of efforts and, incidentally, to

a multiplication of methods in the field 16) .

Recently, however, there has been an effort to-

wards a more component oriented approach to al-

gorithmic design and analysis. In this approach,

an EA optimizer is seen not as a monolithic bloc,

but rather as a composition of multiple, special-

ized components. This component oriented ap-

proach to algorithm investigation and development

allows researchers to identify more clearly the level

of contribution of each component to the overall

performance of the algorithm. They also allow

users to more easily implement and test each com-

ponent, streamlining the development, adaptation,

Understanding Multi-objective Evolutionary Algo-
rithms through Component Oriented Design

† Claus Aranha(caranha@cs.tsukuba.ac.jp)
†† Felipe Campelo(fcampelo@ufmg.br)
†† Lucas S. Batista(lusoba@ufmg.br)
Faculty of Systems and Information Engineering, University

of Tsukuba (†)
Department of Electrical Engineering, Universidade Federal

de Minas Gerais (††)

and test of new ideas, as well as the reproducibility

of results. Moreover, this approach also allows for

automated algorithm generation and fine tuning of

parameters based on existing components 1) .

In this paper, we discuss how a component ori-

ented view can be used to provide a more transpar-

ent understanding of new developments, promot-

ing the exchange of ideas and the reproducibility

of results. To illustrate this idea, we describe the

Multi-Objective Evolutionary Algorithm based on

Decomposition (MOEA/D) 21) in a component-

oriented framework. We show how this framework

can be used to facilitate the comparison of different

algorithms, the automated parameter tuning, and

even the automated discovery of new algorithms.

This framework is available as an open source R li-

brary, so that other researchers can also apply this

methodology to their own works.

This paper is organized as follows: Section 2 re-

views the MOEA/D algorithm and describes the

component oriented framework. Section 3 shows

the case study that illustrates how to use the pro-

posed framework to auto-configure and compare

different algorithms using the same component ori-

ented standard. Finally, Section 4 concludes the

paper, describing the open source R package and

future directions for this work.

2 Component Oriented MOEA/D

2.1 Background

The Multi-Objective Evolutionary Algorithm

Based on Decomposition (MOEA/D) approaches

the Multi-objective Optimization Problem (MOP)

by generating a set of scalar sub-problems. Each

sub-problem is a weighted linear combination of

the original problems. This process of generat-

ing scalar sub-problems is called a decomposition.

If decomposed correctly, the optimization of each

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/266983356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sub-problem in parallel generates a set of non-

dominated solutions to the original MOP.

The MOEA/D in its current form was pro-

posed by Zhang and Li 21) , while earlier exam-

ples of decomposition approaches can be traced

to Ishibuchi 9) and Murata 13) . In recent

years, many researcers have tried to improve on

the MOEA/D, and develop new algorithms derived

from it. Trived et al. 19) made a recent survey of

MOEAs based on decomposition.

In this context we present a component-oriented

formulation of the MOEA/D that tries to tie to-

gether these different works under a similar lan-

guage. In this framework, we define the differ-

ent algorithms as different combinations of a uni-

fied pool of components. These components can

be independently added, removed, modified or re-

combined from the algorithmic composition, either

manually, or by automated testing and tuning pro-

grams.

2.2 The MOEA/D Component-wise

Let f(x) be a continuous Multi Objective Prob-

lem with m objectives, subject to inequality and

equality constraints. The goal of the MOEA/D is

to find a set of N solutions X = {x1,x2, . . .xN}
that approximates the Pareto Front by solving a

set of N scalar sub-problems which decompose the

original MOP.

In the proposed framework, we re-define the

MOEA/D and its derivations as a composition of

multiple functions, each performing a different role

in the method. Algorithm 1 summarizes the rela-

tionships between the different component types.

In more specific terms, we can describe four stages

in an algorithmic composition of the MOEA/D.

First, the algorithm uses a Decomposition Strat-

egy to generate the sub problems from the origi-

nal MOP. This generates a set of N weight vector

which defines the decomposition into subproblems.

To each subproblem is assigned a particular incum-

bent solution xi ∈ X.

Second, the set X of solutions is generated. In

the first iteration, this set is generated randomly.

In subsequent iterations it is generated based on

a Variation Stack. The variation stack is com-

posed of a set of Variation Operators, which are

applied sequentially to X in order to generate new

solutions. Our definition of a variation operator

includes Repair Operators and Local Search Oper-

ators as special cases of variation operators in the

variation stack.

Additionally, a Neighborhood Assignment Strat-

egy is often employed to improve the performance

of algorithm. It defines limits to the exchange of

information between incumbent solutions when ex-

ecuting the variation stack.

Third, the solutions are evaluated on the original

subproblem, and then a Objective Scaling Strat-

egy and an Aggregation Function are applied. Ob-

jective Scaling defines how to treat differences in

the ranges of objective values. Aggregation Func-

tion describes how the weight vectors are trans-

lated into the objective value of the sub problems.

The simplest approach is simply a weighted sum

of the weight vector defined by the decomposition

strategy, but more complex methods do exist.

After this, an Update Strategy is used to deter-

mine whether which of the new solutions generated

by the variation stack are assigned to which sub-

problems as incumbents. In this stage the neigh-

borhood assignment is also used to limit the ex-

change of information between subproblems.

Finally, a Termination Criteria defines at what

point the algorithm stops, usually based on total

number of evaluations, or running time.

The open source R package MOEADr, made

available by the authors in the CRAN repository2)

, offers an implementation of this framework, in-

cluding examples of some components from each

class, drawn both from MOEA/D literature and

the wider body of Multi objective Evolutionary Al-

gorithms in general. While a detailed description

of their implementation is outside the scope of this

work, a list of components from the literature in-

cluded in the package is summarized in Table 1.

When implementing components in this frame-

work, special care must be taken to guarantee the

modularity of the definitions so that each compo-

nent is independent from design choices made for

the others. This characteristic allows the free ex-

change of components while guaranteeing the cor-

rect flow of the MOEA/D, at the cost of some



Algorithm 1 Component-wise MOEA/D structure

Require: Objective functions f(·); Constraint functions g(·); Component-specific input parameters;

1: t← 0; run← TRUE

2: Generate initial population X(t) by random sampling.

3: Generate weights Λ ▷ Decomposition strategies

4: while run do

5: Define or update neighborhoods B ▷ Neighborhood assignment strategies

6: Copy incumbent solution set X(t) into X′ (t)

7: for each variation operator v ∈ V do

8: X′ (t) ← v(X′ (t)) ▷ Variation Stack

9: end for

10: Evaluate solutions in X(t) and X′ (t) ▷ Aggregation functions and Constraint handling

11: Define next population X(t+1) ▷ Update strategies

12: Update run flag; t← t+ 1 ▷ Stop criteria

13: end while

14: return X(t); f
(
X(t)

)
implementation overhead. This also simplifies the

use of automated algorithm assembly and tuning

methods, as well as efforts for replicating and test-

ing algorithms from the literature.

3 Case Study

We present a case study that demonstrate

some possible applications of the component

wise approach to the study and development of

MOEA/Ds. We focus on two aspects that we be-

lieve may be of immediate interest for researchers:

fast replication of existing methods, and auto-

mated algorithm assembly and tuning.

3.1 Replicating Published Variants

One key aspect of scientific research that is of-

ten challenging in the field of evolutionary com-

putation is the ability to independently replicate

published methods and results. Reproducibility is

essential, not only for promoting faster develop-

ment of the field, but also to allow independent

researchers to quickly and easily audit published

methods so that inconsistencies can be quickly de-

tected and corrected.

In this aspect, using component-based ap-

proaches, such as the one proposed in this work,

can facilitate the task of expressing and studying

new contributions to the MOEA literature. The

MOEADr package allows researchers to quickly

test new proposed improvements by providing a

standard implementation of existing modules from

the literature and, therefore, requiring minimal ad-

ditional implementation in order to reproduce ex-

isting variants. Together with other packages avail-

able in the R ecosystem, such as smoof or emoa, it

is possible for researchers to reproduce whole ex-

perimental sections from the published literature

relatively easily.

As an example, we present the component-wise

description of two classic MOEA/D versions in Ta-

ble 2: the first MOEA/D presented in Section V-E

of Zhang and Li’s work21) , and the MOEA/D-DE

presented in Li and Zhang’s 2009 paper10) . By

expressing these two methods in terms of compo-

nent values, their similarities become immediately

apparent, and their differences are similarly high-

lighted.

It is interesting to highlight how the component-

wise modeling helps a straightforward comparison

of MOEA/D variants. By expressing the original

MOEA/D and the MOEA/D-DE as in Table 2, at-

tention is quickly drawn to what actually differs be-

tween the two methods – the replacement of SBX

by Differential Mutation, the possibility of out-of-

neighborhood sampling for variation (δp = 0.9),

and the use of the restricted neighborhood re-

placement to alleviate the greediness of the orig-



Table 1 Components currently available in the MOEADr package

Component Class Name User Parameters

Decomposition Method

SLD21) h ∈ Z>0

MSLD5) h ∈ ZK
>0; τ ∈ (0, 1]K

Uniform18) N ∈ Z>0

Scalar Aggregation Function

WS –

WT12) –

AWT14) –

PBI21) θpbi ∈ R>0

iPBI15) θipbi ∈ R>0

Objective Scaling – type ∈ {none; simple}

Neighborhood Assignment4, 8) –
type ∈

{
by λi; by x

(t)
i

}
δp ∈ [0, 1]

Variation Operators

SBX recombination7) ηX ∈ R>0; pX ∈ [0, 1]

Polynomial mutation6) ηM ∈ R>0; pM ∈ [0, 1]

Differential mutation17)
ϕ ∈ R>0

basis ∈ {rand; mean; wgi}

Binomial recombination17) ρ ∈ [0, 1]

Truncation –

Local search3, 18)

type ∈ {tpqa; dvls}

τls ∈ Z>0; γls ∈ [0, 1]

ϵ ∈ R>0 (if type = tpqa)

Update Strategy

Standard21) –

Restricted10) nr ∈ Z>0

Best20) nr ∈ Z>0; Tr ∈ Z>0

Constraint Handling

Penalty functions βv ∈ R>0

VBR
type ∈ {ts; sr; vt}

pf ∈ [0, 1] (if type = sr)

Termination Criteria

Evaluations maxeval ∈ Z>0

Iterations maxiter ∈ Z>0

Time maxtime ∈ R>0



Table 2 Original MOEA/D vs. MOEA/D-DE

MOEA/D 21) MOEA/D-DE 10)

Decomp. SLD

Agg. Fun. WT

Scaling none

Neigh.
by λ, T = 20

δp = 1.0 δp = 0.9

Variation

SBX Diff. mut

ηX = 20; basis = “rand”;

pX = 1 ϕ = 0.5

Polynomial mutation

(ηM = 20; pM = 1/nv)

Update Standard Restric. nr = 2

Constr. none

Stop Number of Iterations

inal MOEA/D update method. In other words,

we cease to see these two methods as two different

algorithms, and now see them as different composi-

tions of the same base algorithm, which facilitates

their comparison and analysis.

3.2 Automated Assembly and Tuning

Next we illustrate how the component-based

framework could be used to facilitate the auto-

mated assembly and tuning of the MOEA/D. In

this case study we use a set of benchmark problems

as a training base to select a promising algorith-

mic configuration. The set of training problems is

composed of ten test problems from the CEC 2009

competition, with dimensions ranging from 20 to

60.

The pool of components avialable for selection,

from those listed in Table 1, is as follows: SLD

or Uniform for the decomposition strategy; WT,

PIB or AWT for the scalar aggregation function;

weight-based or incumbent solution-based neigh-

borhood assignment strategy; standard, restricted

or best sub problem update; and stop criteria of

100, 000 evaluations.

The the variation stack pool required a bit more

care. We defined a variation stack with five com-

ponent slots, where the first two could be any of

SBX, Polynomial Mutation, Differential Mutation,

or Binomial Recombination; the third slot could be

any of those, or “none”, the fourth could be one of

the local search operators, or “none”, and the fifth

operator was fixed as a trucation repair operator.

To select the components out of this pool, as

well as each component’s parameters, we used the

Iterated Racing procedure11) (irace). A total of

20, 000 runs were allocated for the procedure, and

the inverted generational distance (IGD) was used

as a measure of quality for the candidate composi-

tions.

The irace procedure returned seven “final” con-

figurations, which are summarized in Table 3. The

“consensus” column indicates the proportion of

these final configurations that had the specified

values. As can be seen from the table, a unanimous

consensus was obtained for almost all the compo-

nents selected. The few exceptions are shown in

Figure 1, where we can see that even when full con-

sensus was not achieved, the solutions converged

around a few values.

Fig. 1 Values of the numeric parameters returned

by Iterated Racing.



Table 3 Final MOEA/D configuration returned

by Iterated Racing.

.

Value Consensus

Decomp. SLD 1.00

Agg. Fun. AWT 1.00

Scaling simple Fixed

Neigh.

by x 1.00

T = 11 see Fig. 1

δp = 0.909 see Fig. 1

Var.

Diff. mut. 1.00

basis = “rand” 1.00

ϕ ∼ U(0, 1) Fixed

Binom. recomb. 1.00

ρ2 = 0.495 see Fig. 1

Binom. recomb. 1.00

ρ3 = 0.899 see Fig. 1

Truncate Fixed

Update

Restricted 1.00

nr = 1 1.00

Let us discuss some interesting characteristics of

this configuration. First we immediately observe

that it selected two identical Binomial Recombina-

tion components for the variation stack, with dif-

ferent values for the ρ parameter. Using the defini-

tion of the Binomial Recombination and some cal-

culations we can verify that this is equivalent of a

single application of the operator using ρ = 0.445.

This indicates that using some sort of parsimony

pressure might be useful for future uses of this au-

tomated composition technique. We also note that

the final composition used a smaller neighborhood

size than what is usually found in the literature

(T = 11), and that a very strict neighborhood up-

date parameter (nr = 1). This indicate that the

algorithm is aggressive in trying to limit the lo-

cality of the exchange of information, which might

indicate an advantage to trying to maintain diver-

sity in the population.

4 Conclusion

In this paper, we proposed a new formulation for

the MOEA/D algorithm based on the concept of

component based software architecture. In this for-

mulation, the algorithm is broken up into indepen-

dent components that can be separately replaced

or configured. We showed that, using this configu-

ration, it is possible to more directly compare and

analyze different “algorithms” by identifying their

common and diverging points. We also showed an

example of using the component oriented architec-

ture to automatically develop new algorithmic con-

figurations.

To support this proposal, the authors have pub-

lished an open-source R package that implements

the proposed framework 2) . This package includes

components derived from many recent works on

MOEA/D and other MOEAs. We expect that this

package may help current and future researchers in

the field to perform more rigorous comparisons of

existing algorithmic compositions, and to develop

new components based on current ideas.

Our current interest is to use this package

to further explore the automatic generation of

MOEAD/R algorithmic compositions. A small

sample of this idea was presented in section 3.2

of this paper. Due to time constraints, this sam-

ple was limited regarding the size of the variation

stack, and the types of problems explored. Also,

we did not investigate issues such as parsimony of

the composition. We intend to solve these issues

in our future works.

Acknowledgements

This research was partially funded by Brazilian

agencies Fapemig (grant TEC-APQ-01099-16) and

CNPq (grant 404988/2016-4).



参考文献

1) Leonardo C. T. Bezerra, Manuel López-

Ibáñez, and Thomas Stützle. To DE or not

to DE? multi-objective differential evolution

revisited from a component-wise perspective.

In Lecture Notes in Computer Science, pages

48–63. Springer Nature, 2015.

2) Felipe Campelo and Claus Aranha. MOEADr:

Component-Wise MOEA/D Implementation,

2017. R package version 0.2.2.9012.

3) Bili Chen, Wenhua Zeng, Yangbin Lin, and

Defu Zhang. A new local search-based mul-

tiobjective optimization algorithm. IEEE

Trans. Evolutionary Computation, 19(1):50–

73, 2015.

4) Tsung-Che Chiang and Yung-Pin Lai.

MOEA/D-AMS: Improving MOEA/D by

an adaptive mating selection mechanism.

In Proc. IEEE Congress on Evolutionary

Computation (CEC), pages 1473–1480, 2011.

5) K. Deb and H. Jain. An evolutionary

many-objective optimization algorithm using

reference-point-based nondominated sorting

approach, Part I: Solving problems with box

constraints. IEEE Trans. Evolutionary Com-

putation, 18(4):577–601, 2014.

6) Kalyanmoy Deb and Samir Agrawal. A

niched-penalty approach for constraint han-

dling in genetic algorithms. In Artificial Neu-

ral Nets and Genetic Algorithms, pages 235–

243. Springer Science + Business Media, 1999.

7) Kalyanmoy Deb and Hans-Georg Beyer. Self-

adaptive genetic algorithms with simulated bi-

nary crossover. Evolutionary Computation,

9(2):197–221, 2001.

8) H. Ishibuchi, N. Akedo, and Y. Nojima. Rela-

tion between neighborhood size and MOEA/D

performance on many-objective problems.

In Evolutionary Multi-Criterion Optimization

(EMO), volume 7811 of Lecture Notes in Com-

puter Science, pages 459–474. Springer, 2013.

9) H. Ishibuchi and T. Murata. A multi-objective

genetic local search algorithm and its appli-

cation to flowshop scheduling. IEEE Trans.

Systems, Man, and Cybernetics, Part C: Ap-

plications and Reviews, 28(3):392–403, 1998.

10) H. Li and Q. Zhang. Multiobjective optimiza-

tion problems with complicated Pareto sets,

MOEA/D and NSGA-II. IEEE Trans. Evolu-

tionary Computation, 13(2):284–302, 2009.

11) Manuel López-Ibáñez, Jérémie Dubois-

Lacoste, Leslie Pérez Cáceres, Mauro

Birattari, and Thomas Stützle. The irace

package: Iterated racing for automatic al-

gorithm configuration. Operations Research

Perspectives, 3:43–58, 2016.

12) Kaisa Miettinen. Nonlinear Multiobjective

Optimization. Kluwer Academic Publishers,

Boston, 1999.

13) T. Murata and M. Gen. Cellular genetic al-

gorithm for multi-objective optimization. In

Proc. 4th Asian Fuzzy System Symposium,

pages 538–542, 2000.

14) Yutao Qi, Xiaoliang Ma, Fang Liu, Licheng

Jiao, Jianyong Sun, and Jianshe Wu.

MOEA/D with adaptive weight adjustment.

Evolutionary Computation, 22(2):231–264,

2014.

15) Hiroyuki Sato. Inverted PBI in MOEA/D and

its impact on the search performance on multi

and many-objective optimization. In Proc.

Genetic and Evolutionary Computation Con-

ference (GECCO), pages 645–652, Vancouver,

BC, Canada, 2014.

16) Kenneth Sörensen. Metaheuristics - the

metaphor exposed. International Transactions

in Operational Research, 22(1):3–18, 2013.

17) Rainer Storn and Kenneth Price. Differen-

tial evolution - a simple and efficient heuristic

for global optimization over continuous spaces.

Journal of Global Optimization, 11(4):341–

359, 1997.



18) Yan-yan Tan, Yong-chang Jiao, Hong Li, and

Xin-kuan Wang. A modification to MOEA/D-

DE for multiobjective optimization problems

with complicated Pareto sets. Information

Sciences, 213:14–38, 2012.

19) Anupam Trivedi, Dipti Srinivasan, Krish-

nendu Sanyal, and Abhiroop Ghosh. A sur-

vey of multiobjective evolutionary algorithms

based on decomposition. IEEE Trans. Evolu-

tionary Computation, PP(99):1–23, 2016.

20) Z. Wang, Q. Zhang, M. Gong, and A. Zhou.

A replacement strategy for balancing conver-

gence and diversity in MOEA/D. In Proc.

IEEE Congress on Evolutionary Computa-

tion (CEC), pages 2132–2139, Beijing, China,

2014.

21) Qingfu Zhang and Hui Li. MOEA/D: A multi-

objective evolutionary algorithm based on de-

composition. IEEE Trans. Evolutionary Com-

putation, 11(6):712–731, 2007.


