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ABSTRACT

Hybrid energy storage systems (HESS) involve syimergetween multiple energy storage technologidb wi
complementary operating features aimed at enhartbmgeliability of intermittent renewable energyusces
(RES). Nevertheless, coordinating HESS throughntipéd energy management strategies (EMS) introduces
complexity. The latter has been previously additsgethe authors through a systems-level graplité$ via
Power Pinch Analysis (PoPA). Although of proveniaéincy, accounting for uncertainty with POPA hasib
an issue, due to the assumption of a perfect dagchfDA) generation and load profiles forecastsTgaper
proposes three adaptive PoPA-based EMS, aimedjating load demand and RES stochastic variabliaich
method has its own merits such as; reduced conipoghtcomplexity and improved accuracy dependinghean
probability density function of uncertainty. Thesti and simplest adaptive scheme is based on aingce
horizon model predictive control framework. Theastt employs a Kalman filter, whereas the thirdasdd on

a machine learning algorithm. The three methodsamsessed on a real isolated HESS microgrid huilt i
Greece. In validating the proposed methods ag#imesDA PoPA, the proposed methods all performetkbet

with regards to violation of the energy storagerapeg constraints and plummeting carbon emissatpirint.
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Nomenclature

AEEND Available excess energy for the

next day
BAT Battery
G The capacity of accumulatér
DSL Diesel generator
EL Electrolyser
FC Fuel cell
HT Hydrogen Tank
G A fixed reward
J Identity matrixe R™"
LD Load
MAE Minimum absorbed energy
MOES Minimum outsourced energy
supply
s~ Previous state before a transition
by the agent
SOAcct State of accumulatdr
Sto Lower pinch limit or utility
St Upper pinch limit or utility
POW Power flow
PGCC Power grand composite curve
R Zero mean Gaussian noise
€ iRnxn
U Inpute R™*?

wi,w2 Penalty weights which control the
propagation of the negative
reward exerted on the agent.
wT Water tank

Ak

)

ey, N, MFeo TEL

& (k)

ic
pi

Time interval

The proportion of flowy

DC converter, PV panel,
fuel cell, electrolyser
efficiency factors

Binary variable for the
state of the'l
dispatchable unit

The binary variable
related to the temporal
conditions of the
accumulator

Subscripts/super scripts

SOAcc

Avl

Gen

Req

max
min

m,n

Accumulator or energy
storage
Availability of resources

Override logic for PoOPA
energy dispatchable units
FC andEL

Demand for resources

Time step

Index of Converter
Accumulator

maximum
minimum

Model and the plant
respectively

A set of controllable
energy converter elements
for POPA targeting

The arrow head indicates
the direction of flow of
energy/material from
source to sink
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1. Introduction

Growing concerns over the impact of greenhogas emission on the environment has led to policy
initiatives to advance the proliferation of reneleabnergy sources (RES) (such as wind turbines satet
panels), for distributed generation (DG). Furthemmadn remote areas without access to an electgitd) RES
are a favourable electrification alternative whempared to the cost of deploying high-voltage tmaission
lines and associated power losses [1-3]. The useES (particularly in a standalone microgrid (MGgn
reduce the reliance on backup diesel generatord)(dMich have a high carbon emission impact on the
environment [4, 5]. Nevertheless, due to weatheclststicity, some RES can have predictable butbkei
power output and so, incorporating energy storaghrtology with RES can mitigate this variabilityuNMple
energy storage technologies (e.g. battery and lggaowith complementary properties (such as lifeley
seasonality, power and energy density etc.) aenafombined to further mitigate the RES variahilithis is
the concept of hybrid energy storage systems (HESShown in Figure 1 [6, 7]. This system was desigand
built in Xanthi, Greece in collaboration with CERTathd SUNLIGHT [8] and it is been used here as & cas
study. The mathematical model of each asset has pesviously validated [9] by the authors and real

load/weather profiles have been used.

Load (LD)

AC BUS

AC AC

DC ( ) DC
H2

Diesel Generator (DSL)
DC BUS v
T A A H:z0
Y Electrolyser (EL) ‘Water
DC — DC Tank (WT)
DC DC
A
Battery (BAT) H20
A
Hydrogen
Tank (HT)
Fuel Cell (FC)
PV Array

Fig. 1. Schematics of the experimental Islanded HESS4@Has a case study
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In such systems, when supply exceeds demand amchbHattery is completely charged, the energy ftben
RES can, for example, be converted to hydrogei Il an electrolyser (EL) for long term storage ¢aposed

to the battery that can be seen as short-termggooption). Then, the hydrogen can be used wheradém
exceeds supply, by means of a fuel cell (FC) [1, The HESS thereby can reduce the dumped loaich&stof
excess supply, and further reduce the need forupaBISL in times of excess demand [11]. Newer intigea
hydrogen production approach, which relies on mdkrather than external reforming of fuel mixtuiat
mass production of electric and thermal energyiea:rwith high efficiency, based on the use ofiGaxide
Fuel Cells (SOFCs) have recently been investigatad[12], an intermediate temperature solid oxide
electrolyser stack is fed with carbon dioxide @E€team mixture at the anode. Here the fuel mixisre
reformed into CO - KHmixture while at the cathode, oxygen fed into #lystem is converted into ions. The
oxygen ions generate current by moving througteteetrolyte towards the anode to combine with tke-GH,
mixture to produce CQand water. Furthermore, authors [13] investigateduse of low weight as well as low
cost high temperature steam electrolysis (HSTEQksfar durability and performance to highlight cemt
density and steam conversion ratio at the temperati800C. In [14] the anion exchange membrane (AEM)
FC which is attractive due to its outstanding falgtctrochemical kinetics, low dependence on nogipus
catalyst and water removal mechanisms was preseimgd5] an analytic model for alkaline anion eacige
membrane FC is proposed. The authors in their tiga®n, illustrated more anode humidification iroped
performance. Nevertheless, a systems-level anadygisoach has been implemented in this work, hethee,
impact on the HESS as a result of integrating timeseer H technological innovations which were highlighted
will be an interesting subject for future investiga.

Despite the advantages offered by a HESS, #terdgeneity of the components/devices introduces
complexity due to the need to account for differfarims/characteristics of energy flows between ipigt
assets and for numerous decision parameters iigyenenagement strategies (EMSs) used for HESSatontr
To address such complexity, several studies haspoged the use of if-then-else rules, artificiaéligence
(Al) (such as fuzzy logic controllers, neural neti8®y and genetic algorithms), linear and dynamic
programming and advanced control techniques taseeBIMSs for HESS [16-18]. Development of EMSs gsin
if-then-else rules in the form of hierarchical diams is widely used in published literature dueitto
computational efficiency [16].

In [19] a rule-based EMS was proposed for domestarogrid. The rules are such that the load requénat at
each time interval is compared with the PV powed amich only fulfils the load power requirement,dan
whenever the output power of the PV is greater ginén the battery level, any excess is either used
charging operation or arbitrage or to cover theicitefThe rule based EMS had accurate result astefa
processing time in comparison with an optimisatimsed EMS. However, this approach is largely k&ari
and limited to very few potential options, omittimumerous alternatives which may improve the HESS
performance, as illustrated in [7]. In additionzZy logic controller which is classically rule-bddeas enhanced
adaptation and robustness in contrast to a cororaitrule base controller as depicted in the cdsenergy
management (EM) of islanded MG in [20].

In [21] self-organising and dynamic fuzzy logic téen making was used to improve electric vehid®
efficiency by estimating the required output powéia FC based on the driving load requirement datk of

charge of a BAT in MATLAB environment. In [22], the merits underling theemntation of hybrid energy
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systems, specifically; a FC, BAT and supercapaditaan EV are first analysed. Thereafter, an activever
flow control technic is proposed based on optinmadtml theory with the objective of optimising BAife and
total energy cost while meeting vehicle loads damanuirements based on the minimisation of a gjeeor
cost function between the desired and actual paemeln [23] an energy calculation tool is propbsend
implemented in MATLAB, for hybrid polymer electray FC based on a generic users predefined route. Th
calculator tool accounted for electric energy rexable downhill and in the course of deceleratieriqu. In

[24] an optimal control strategy based on a twoatisional Pontryagin’s minimum principle, was proguob$or

EM of a batteries and super-capacitor in a plugnibrid electric vehicle. The optimisation approdet to
improved battery degradation and a 21.7% reductioriotal economic; fuel, electricity outsourcingdan
maintenance cost. In [25] a dynamic EMS was proghdseresponse to deviation in dc-link voltage engui
from dynamic load and RES uncertainty in a gridremnted HESS microgrid which comprised a batterykban
and ultra-capacitor. In [26] a piecewise robustmjsation EMS was proposed for combined coolingtimg

and power MG with the objective of minimising totast under the worst case scenario to carter darep
uncertainty. In [27] a dual stage robust MPC optation is proposed, in order to reduce the impadbad
demand and RES uncertainty in an islanded MG. Hewerobust optimisation method is considered as a
pessimistic approach and can result in over budgeti real world application [28]. More so, stodasnd
chance constrained based optimisation which haga bpplied if29-32] and [33 -35] respectively for Energy
management of MGs are not only computationally cemsdme and but also intractable. Hence, the use of
approximate solutions which largely depend on tteueacy of probabilistic distribution or explicitadelling

of the underlying uncertainty parameters, whichpractically limiting in real-world applications athe
distribution might be unavailable [26, 34]. Furtmere, in [36] MPC strategy with corrective feedbaghs
proposed for energy management of a domestic micregas shown to achieve better energy savings tifvan
standard rule based control strategy. In [37] MRnlgined with adaptive-Markov chain prediction was
proposed for energy management of a dual hybrid M. MPC based method achieved better fuel economy
over a rule base strategy. In [38] real-time EMirmopt control algorithm for a dual mode split HE\fffioulated

as a multivariate quadratic optimisation problenvet offline to obtain control laws which was theiter
applied in real time in a traditional MPC manneheTproposed strategy had reduced computationalacait
fuel economy of 97.46% and 23.3% respectively caorgb#o the traditional MPC.

On the other hand, Al or mathematical prograngrapproaches are able to investigate a vast nuofber
options and to identify optimum solutions. Howeviiey may suffer from increased computational defean
due to combinatorial complexity or non-linear systenodels, making them inefficient for on-line démis
making [39, 40]. Furthermore, they only provide dimal solution which hinders the opportunity toride
insights from intermediate solutions and analyseHESS operation. To address such shortcoming®dier
Pinch Analysis (PoPA) [41, 42] was proposed botlaragffective means of graphical EMS analysis atmbh
which may enhance the computational efficiency atlramatical optimization approaches. PoPA is aga®c
integration technique, inspired from the originaldh Analysis for heat exchange networks [43] aml\eed to
sophisticated tools [44] that allow the analysieofplex energy systems based on the identificationsights
pointing toward promising design and operating sieas [45]. The PoPA, used as a graphical and/or
numerical tool, aids in the identification of défior surplus targets for energy recovery by the o$

dispatchable resources to satisfy a conservativémmim energy target. It considers power demandsaipgly
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requirements with respect to time in the form oé thower grand composite curves (PGCC) to identify
inflection points (called pinches) where power decthanust be satisfied. The PoPA, which has mostinbe
used for optimal sizing, planning of energy supphyd demand management in hybrid energy systems, has
recently grown in use compared with mathematicalgmamming techniques [46]. Some of the promising
aspects of PoPA are reduced computational effoalytical insights derived through a graphical ifaee tool,

as well as the systematic consideration of thetsigsgerdependence and intrinsic complexity [5].

1.1. Applications of PoPA for Electric Power syssesizing and design

Several researchers have considered PoPAdoitriel power systems sizing and design. In [41,tAé]grand
composite curve was realised by integrating theggndemand and supply over time, and then it wasl us
optimally size an isolated power generation systé&uditionally, in [47] the PoPA was utlised as a
combination of both the graphical analysis and micakapproach with the aid of the power cascadsdyais
and storage cascade table for optimal sizing ofhijyiwid power system. The extended Power Pinclysisa
(EPOPA) in [48] was proposed as an enhancemeihieté®dPA in order to optimally design renewable gyer
systems integrated with battery-hydrogen assetgetisas a DSLThese studies on PoPA for sizing MG assets
with the exclusion of [46] in which chance consted programming was used to achieve technical and

economic feasibility, were realised without receuts uncertainty.

1.2. Applications of PoPA for energy management

Apart from the use of PoPA in electric powestsyns sizing and design, it has also been useithebguthors,
as an EM tool, as first reported in [5, 7, 49]. Elapecifically, in [7] the power grand compositeveu(PGCC)
was realised within a model predictive control (MPi@mework for the first time with a day ahead (DA
forecast to infer and effect (EM) decisions in a3¥stand-alone MG. By shaping the PGCC, a series of
optimal control decisions for the activation andradion of the HESS operation were determined. The

effectiveness of this approach was limited by tbsuaption of a perfect DA weather and load forecast

1.3. Generic approaches to uncertainty

The pinch analysis despite being a well-esthblil process integration recovery and conservégichmique
for assets such as waste management, water, hdatagbon emission requires consideration and eskpaiin
power systems application [42]. Also, as highlightmost literature on PoPA have not dealt with uiadety,
as these studies have mostly relied on the assomgtiperfect (or ideal) weather forecast and Ipadafile with
the exception of [46] where uncertainty was condein the sizing of a MG asset. Consequently, the
significant impact of uncertainty, imposes the néedntegrate PoPA tools with a complementary téapin
especially when consistency is so desired. Thénigoes which account for uncertainty in EM can
fundamentally be classed as either predictive actiee approach [50]. These predictive or reactipproaches

may perhaps be considered in PoOPA application, ellyerthe scheduling of dispatchable units are sedlivith
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or without prior consideration for the impact of mmpending uncertainty respectively. The reactippraach
uses the latest state feedback for re-computatipon model mismatch due to uncertainty, which may b
expensive when seeking an optimum solution in treneof frequent perturbation. The predictive tegha
may employ stochastic programming, fuzzy prograngninbust optimisation, machine learning technigires
order to infer the optimal control action that neegathe effect of uncertainty [51-53]. Furthermdtes linear
Kalman filter, first presented by Kalman in 1960 feolving the Wiener problem has since been applied
extensively in areas of control system, short-tggradiction, navigation tracking and for systemstesta
estimation associated with uncertainty [54]. In][Bte ensemble Kalman filter was combined with dtipie
regression model to enhance forecasting accura®ecfricity load. Similarly, in [56] the Kalmanltér was
used recursively to estimate short-term hourly Idathand forecast parameters based on the histtoazhland
weather data and the current measurements ofrtigevarying parameters. Moving away from the welbwn
prediction methods, the work of [57] on tempordfedence (TD) learning, a model-free reinforcemiearning
(RL) algorithm, introduced a prediction method whielies on the experience of successive predgtioninfer
the behaviour of an unknown system. This was adigma shift to the conventional approach which dejeeh
only on the difference between the actual and ptedioutcome. Hence, RL is a machine learning igclen
suitable for solving a Markov decision process (MBich involves sequential optimal decision makimgler
uncertainty. Thus, many researchers have sougthtptoy several machine learning algorithms in an”MI
[58], machine learning algorithms such as polieyation and value iteration Dynamic programming] &i
techniques such as the least squares policy tera®-Learning, and SARSA were reviewed for MDPs.
Specifically of interest, is the Q-learning, a slag model-free RL, a similar algorithm to Sutto1988) TD
learning [56], first introduced by Watkins in 198@hich proffers an intelligent agent with the Idamability to
act optimally in a MDP based on experience [59].Qfearning, an agent seeks to maximise the sum of
expected reward by acting optimally with respecany given circumstance (referred to as a statgically,

an agent will evaluate a state, and will then utadker an action either in an exploitative or exptiona manner
thereafter and finally will receive an instant rediawhile transitioning to a new state. Q-learnihgs
tremendous success in robotics, especially in raabibot navigation and obstacle avoidance [60, Bil][62]
the Dyna Al architecture was proposed to integbatin learning, and experience, based on onlinenpign as
well as reactive execution in a stochastic envirenim

Furthermore, in [63] a comparative study of M&@ Monte Carlo RL on a non-linear determinisyistem
with known uncertainty dynamics was undertaken. d/i@cently, [64] harnessed the merits of the MPCRIn
control strategies to form an adaptive controlterd heat pump thermostat based on the suggest[68]oThe
adaptive controller maximised energy savings whibcking a varying temperature set-point for thdrma
comfort, more effectively than the MPC or RL alone.

The application of RL based energy managema@nHESS has mostly been considered in literatuté wi
respect to hybrid Electric vehicle while only a fdvave considered microgrid systems. In [65] energy
management based on a 2 steps-ahead RL framewarkpreposed for a grid connected microgrid which
comprised consumers load, ES, wind turbine. TheiRformulated as a multi-criteria decision makioglt
aided by a 2 steps-ahead prediction of availabielywiower via a Markov chain model. This approadtvmad
the learning agent to optimally utilise the WT, épendently of the grid to charge the ES, while mésing the

use of the ES during peak demands. Hence, enaalingtelligent consumer to learn a stochastic &ges

-7-|Page



while incorporating experience based optimal agtidn [66] deep RL EMS which uses a convolutionraku
net to extract relevant time series informatiomgnfra large continuous non-handcrafted feature spmce
proposed to address stochastic electricity prodadt a residential MG. In [67] the authors propaseEMS
which applies a decentralised cooperative multhRggenabled Fuzzy Q-learning to a standalone MGz Th
formulation of the continuous input states ent#iks use of five membership functions and the actipace
comprising a fuzzy set pertaining to each MG aaset rules base in conjunction with a reward forrioig
shapes the agent’s continuous action policy. I {68 authors proposed a real-time EM algorithnoptimise
performance and energy efficiency with power sptintrol for a hybrid (battery and ultra-capacittigcked
vehicle for various road driving conditions. A sggeQ-Learning algorithm is used to accelerate the
convergence of a multiple transition probabilitytmawhich is also updated whenever the error nexteeds a
set criteria. In our work we have excluded the afse& Markov chain to model a stochastic transipoobability
matrix (TPM) of the MDP, as this not mandatorylie development a RL framework [69]. Though in [@aH
[68] Markov chain is used to model a stochastic TRMch is updated periodically when a specificeiin is
exceeded by the magnitude of an induced matrix reordhkull-back divergence respectively. This isdmtrast

to an earlier proposed method in [71] where thehanst for the first time applied reinforcement léamn
technique (specifically TDJ) to minimise the fuel consumption of a hybridafe vehicle without the need
for prior knowledge or stochastic information oéttiriving cycle, and uses only a partial hybricctle vehicle
model. Nevertheless, our proposed RL formulatiaquires only the (corrected) adaptive Pinch analigiget,
strictly for evaluating the environment state andlar reward which the dyna-Q learning agent rexenfter
taking an action in a given state. Furthermore,stiee wise non-linear optimisation used to derhe dptimal
control strategy in [70] and [68] and a backwardking optimisation in [71] is replaced with a hestic
graphical based adaptive power pinch analysis MR@déwork, which we have proposed in our work. Thus,
eliminating the computational cost associated Witlilding a TPM offline, as well as solving a compleon-
convex optimisation EMS for HESS (particularly wiihterogeneous energy and flow mix as in our calsere

we have to deal with the intrinsic interaction adwer, hydrogen, and water flow between subsystems).
Furthermore, we have omitted detailed operationakitierations with regards to losses associated device
level operation, since the considered EM approsét the systems level.

Nevertheless, evaluation and formulation of shelar reward in aforementioned RL papers exctydiiio]
which applies a backward-looking optimisation, hawestly been implemented subjectively and without
recourse to a systematic approach which deterntivgesleal optimal action strategy as in the usa obrrected
adaptive PoPA. Hence, these rewards are basedaralamaximisation which increases the operatiauest
and incurred excess energy losses in contrastangibbal maximum insight which the corrected adepBoPA
offers.

1.4. Main Contributions and Novelties

It is clear that POPA has rarely addressedsthee of uncertainty and only in a case of HESBgjavhile the
PoPA approach has significant advantages (descrlbede) in cases of adaptive EM. To this end, such

advantages have been previously exploited by thi@oesiwithin an MPC framework, however under limgfi
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assumptions of perfect weather and load forecastihg focus of this work is therefore on addressirgissue

of RES/load forecast error which is bound to odouwa realistic scenario, in the context of the Pafroach.
Three novel adaptive POPA schemes are proposed basan EMS algorithm for an islanded HE&Sed at
significantly reducing the effect of forecast ermhile shaping the PGCC. It has to be noted hea¢ tthe
islanded HESS that is being used here as a cadg $tas been designed and built by the authorE&RTH in
collaboration with  SUNLIGHT [8], and the mathematicmodels of the assets have been previously

experimentally validated [9].

More specifically, the main contributions ofstlvork are as follows:
I. The DA PoPA in [49] for EM of HES8as been adapted for the first time, to realisé\daptive PoOPA’ [72],
by re-shaping the PGCC in a multi-step, look aheadeding horizon MPC framework as shown in Figaire

This method offers a simple but effective meansownter the effects of forecast error.

| * Day-Ahead Power Pinch Analysis .

Prediction Horizon

|
|
|:
| i Input PV and / Com
: pute
| i Load demand Predicl ftale of | PGCC and
|
|
|

vy

Profile A Charge [lcN-1] Control EMS

State Feedback Loop for Error correction

e —— Eaa—a—= - —
| ' v
Control : ; | ;
Horizon | Evaluate forecast error at time 1 Activate the
| step k, and update the State of . Control EMS
| charge | on HESS
|
|

Fig. 2. Schematics of the Adaptive Power Pinch AnalysisSEr HESS [40]

II. A Kalman filter for the first time, has beenagkin conjunction with the aforementioned AdapfRaPA [72],
to predict the State of Charge of the battef9A4ccgyr) based on the likelihood estimation of uncertaiftye

algorithm is more sophisticated than the Adaptie® R but nevertheless computationally efficient afférs a
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preventive measure as an improvement. Furtherntioeepccurrence of the forecast error is not depende

the corrective action, as in case (I), which magriove the algorithmic performance.

lll. A RL-based adaptive PoPA (RL+Adaptive) methiwas been proposed for the first time, in the cdnbéx
the dynaQ-learning algorithm. Thdyna Q-learning algorithm entails learning a policy fagans of rewarding
an agent based on the next state of the systemiafégring a control action given the current staf the
system. Thus, the agent learns an EMS by sohanghie optimal action policy. Additionally, with ¢haction
policy, the agent decides the de/activation ofdispatchable units in accordance with a correcte@® shaped
with the Adaptive PoPA. This approach does notrassthat the underlying uncertainty is normally rilsited
in the procedure that minimizes the mean squanex &rthe estimated state-of-charge, as in cdxeTfhis may

improve the algorithmic performance, hence it istivinvestigating.

The three approaches are analysed in this pgpghermore, a sensitivity analysis with hydrogecertainty
is used to evaluate the proposed methods agam$dAhPoPA. The rest of the paper is structuredods\fs:
Section 2 briefly describes the Power Pinch concBpttion 3 presents the formalisation of the riexed
adaptive MPC-PoPA concept. In section 4 and 5,pifupposed Kalman filter state estimator approactn wit
Adaptive PoPA and the RL Adaptive PoPA algorithrres presented, respectively. The results are predent

Section 6, and Section 7 provides a conclusion.

2. Power Pinch Analysisfor Energy Management of Hybrid Energy Storage Systems
2.1 Generic description

In order to understand how Pinch Analysis caruged to determine an EMS in a HESS (as showigimd-
1), infer a generic islanded energy system withtiplel energy carriers (like electrical and hydrogamultiple
storage assets (like a BAT and a HT), generatisataglike photovoltaic panels (PV)), controllabksets that
can transform an energy from one carrier to andfiler a FC and an EL) and a load (possibly forheawergy
carrier). Also, for each storage component we paiperating limits that should not be violated, SayandSyp
which is the minimum and maximum allowed storedrgpénaterial respectively.

The first step to apply the PoPA concept isi¢fine the Power Grand Composite Curve (PGCC) émhe
energy carrier, which is the integration of all antrolled energy demands and generation in thesy$br that
carrier for each instance. When the system is spiegific instank, we predict the PGCC as shown in Figure
(2a) by assuming that the controllable assets atractivated and we check if the predicted PGCCatés any
of the aforementioned limits. The predictive honzis based on an hourly interval which spans fon 24
[k:N] , wherek is theit" hour in a day and indicates the end of the day (or"2d). The hourly intervalk is
expressed as the difference between two successigesteps; Ak = [(k + 1) — k] where,k andk + 1 are the
current and next time step respectively. The irdiebetween the current time ste@and the end of the horizon
N is given agN — k)/Ak, and the entire horizon would ha28 intervals, ifk is the first hour01: 00h and
N = (k + 23) is the24: 00h of the day. If the PGCC violates a limit at a sfieénstant, then at an appropriate
instant before the violation occurs, a suitabletidied asset will be activated in a control horizof interval

24he [k: N] with equivalent time duration as in the predictharizon in order to provide/remove the necessary
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energy/material so that the system limits are nateeded. In order to better describe the aforemesd

concepts, a specific motivating case will be presgim the next subsection.

2.2 Motivatingcase

In the HESS as shown in Figure 1, let the sk@lectrical energy (i.e. state of chgi§@Acc) be the quantity
that we wish to control within specific operatirignits. Therefore, an EMS is derived in predictioorihon
using a DA strategy and implemented on the HES& @ontrol horizon. In the prediction horiza$)Acc is
plotted (dotted black line in Figure 3a) at an ytime stepk, for a daily (24 h) span as defined in section 2.1
The PoPA enables the identification of deficit amdtess energy targets, which must be successivetlyim
order to prevent th€0Acc in the control horizon from falling below the lowpinch utility (or limit) S;, (say
30%) and/or rising above the upper pinch utifity, (say 90%).

At first, the control strategy aims to deterenithe deficit energy target at the minim8tcc, denoted
asSmin. In this case study, the deficit results from #irsence of sufficient energy supply by the PV. The
deficit energy target is then the amount of energgded to ensusAcc avoids the violation of thg,, limit at
timek + kmin. The PGCC determines the minimum amount of outsslielectricity supply (MOES) required
in order to violateS o. A dispatchable asset, (such as a FC) indicateal fegl arrow pointing upward at tirke
shown in Figure 3b, supplies the energy needebitbtke PGCC abovs, .

Secondly, the control strategy aims to deteentlre excess energy target at the maxirSQuicc, denoted
asSMax. The excess energy target is then the amounterfygrthat needs to be dumped in order to avoid the
violation of the Sy, limit at time k + kmax. This is denoted as the minimum excess energystmrage
(MEES). Thus, the MEES is recovered for storageabglispatchable asset (such as an electrolyser) (EL)
denoted by the red arrow pointing downwards showrigure 3b.

Thirdly, to preserve the duty cycle of the gyestorage, the available energy for the next ddsEND) i.e.
SOAcc at time steV has to be matched to ti@Acc at time stek, by activating dispatchable assets (either the
FC or EL) at time stefy — 1.

Consequently, by shifting the entire PGCC updown (black dot-dashed line in Figure 3b), there a
instances where the PGCC reaches (but no longerdsy thes;, or Syp at timesk + kmin andk + kmax,
which is termed the Pinch point. Therefore, thétetiiPGCC which resolves the PoOPA EMS is respoadin
the instant and duration for which the energy tangeresources are activated/deactivated in thérabnorizon
[5, 7, 49, 73].

However, effectively realising the optimal POFEMS via DA operation requires an accurate load and
weather forecast model for an ideal PGCC plot, tvhis impractical due to uncertainty for most real
applications. The effect of uncertainh due to RES variability and stochasticity of eleity demand, causes
a mismatch between the actual (red line) and pedli¢blue line)SOAcc as illustrated in Figure 3c and
consequent violation of;, and the duty cycle constraint. Therefore, thesatiion of a feedback loop is crucial
to improve the excess energy recovery and reltghbiidices. It can also reduce the need for (pabnthigher

carbon emission) energy imports to the system.
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Fig. 3. (a) Original PGCC; (b) Shaped PGCC and (c) thectsfof uncertainty with the DA-PoPA

3. Adaptive Power Pinch Analysis

The effects of uncertainty on renewable ena@yrces and electricity demand with respect tdXAePoPA
operation have been highlighted in section 2. Thuthis section we adapt the DA-PoPA, to creatédaptive
PoPA which uses a receding horizon MPC approacha lrediction horizon spanning 24 h with hourly
intervalAk and time stef, as defined in section 2, the dispatchable contabbleU, (k) is determined based
on the PoPA targets. Accordingli/, (k) determined in the prediction horizon is activaitedontrol horizon at
each time intervat. Furthermore, th60Acc as a function of the minimum energy recovery isiewed with

regards to the Adaptive PoPA expressed as follows:

Joimen ="y SR £ (), SOACE (), U (1) @

Subject to the Power Pinch analysis constraints:

Sty < SOAcc (k) < S, 2)
SO0Acc!'(ky) = SOAcc*(N) 3)
ep (k) +epc(k) <1 (4)

wherek; is the first hour , g (t) is a binary variable for the dispatchableetissstatei € [FC,EL], (see
appendix 1), U, (k) represents the PoPA EMS control variable and sigisaere {FC,EL} indicates the
dispatchable asset. BOAcc™™ the superscripter andn refers to the predicted and res0Acc respectively,

and subscript € {BAT,HT,WT} indicates the energy storage of note.
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The constraints imposed by (2) ensures thehpaperating limits are not violated. The duty cyafehe energy
storage is preserved by the terminal constrainto(®)fer the available energy at the end of thedlfmtion horizon
N (AEEND). The binary variable constraint (4) pretgethe simultaneous dispatch of assets that caertlyr
consume and produce the same energy carrietF€.gndEL).

The following explanation is for one asset, BT, but is relevant to all asset types. At evimye stepk,
the proposed algorithm compares the forecast addS@Accj (k) for inconsistency or forecast deviation via
a state feedback close loop [72]. As illustrated=igure 4a,AH exceeds 5% at time+ 2. Therefore, state
correction is effected at the next tihe- kmin, to decrease the forecast deviation between tkdigied
SOAccgyr and actuaOAccp,r. The re-computation of the PGCC (dotted black limeFigure 4a) which
follows reveals an anticipated violation of thig, such thatSOAccgy; is a maximumat timek + 11, and the
AEEND. Thus, the predicted PGCC is re-shaped as shov#igime 4b (blue line) with the EL dispatched at
timek + 10 andN — 1.

The errore (k) and magnitude of uncertainyd between the forecast and real state of chargeeoBattery

are expressed in (5) and (6) respectively as falow
e(k) = SOAccgr (k) — SOAcchyr (klk — 1) (5)
AH(k) = |e(k)] (6)

where,SOAcclyr (k|k — 1) is the predicted battery state of charge at thriEased on a prior time stép— 1
andSOAccg (k) is the actual battery state of charge at time ktep

Furthermore, iAH is greater than the deviation threshgldt any sampling instance, the PoPA is repeated in
the predictive horizon in order to determine theiropl dispatch and schedule sequence from thaarhstp
until timeN. £ (which may be varied or decreased for a tightemid is set at 5%, to ensure minimal forecast

deviations as well as to reduce any computatioost. ¢ike-computation of the PGCC uses equations(g))as

follows:
m . - | FAHW) if AH(k) > &
SOAccsu (k): = {SOACCE’}}W(klk -1) Otherwise Vi
(7)
Where f(A# (k)) correctsSOAccly, as follows:
_( SOAccyr(klk — 1) + AH (k) e(k) >0
f(AH(k)) - { SOACC{;'}qAT(k|k —1)—AH(k) e(k) <0 8)
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Fig. 4. (a) State error correction and (b) re-shaped PGGICAdaptive POPA

4. Kalman Filter Adaptive Power Pinch Analysis

In the previous section a reactive error adioa strategy has been presented, the adaptiva,Rafich does
not consider the effect of future un-modelled utaiaty. This may result in a limit violation as stvin Figure

5a. Therefore, the Kalman filter is incorporatetbithe Adaptive PoPA framework for robustness, tes t

battery’s future stateSQAccpyr(k + 1|k) is predicted while incorporating the effect ofcartainty at each

time interval upon the availability of the most eat battery stateSQAccg,r(k)) measurement. In order to
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predict the battery's state, a priori error covatiP,_, matrix with respect t60Acc;, updates the Kalman

gainKg x, as follows:

Koty = Prca I [T Py I7 + Ry ] )

The updated Kalman gain is used to update fit@a covariance matrix:

P =7 = Koy 7] Pre—r (10)
The most recent output state measure@Atc;* (k) is used to update the estimated state as follows:
SOAcc* (k) = SOAcc™ (k|k — 1) + K; (SOAcc* (k) — 3,SOAcc]" (k|k — 1)) (11)

The posterior error covariance matrix is alpdated:
Prrr = AP AT + R, (12)

Where, A€ [x 1 is an identity state transition matrix for the myyestorage$, J, € [x ! is an identity matrix
andR, is thecovariance noise matrix related to the uncertam§OAcc]™.

Therefore, this formulation can be used to m®rsa multi-vector case of uncertainty in the gyestorages.
Nevertheless, in this work only tt#aAcc of the BAT is the parameter directly impacted bg tD and RES
uncertainty since it acts as the central integgats, and a change in ti#®Acc of HT and WT can be
considered deterministic as well as contingenthencontrolled activation of FC or EL. Therefores thariance
and co-variance of SoAcc of HT and WT in®P, matrix are set to 0. Furthermore, t88Accgyr (k) €
[SOAcc* (k)] is determined in (11) in order to identify the artainty over successivie- steps ahead and
consequently to compute the PGCC. Thereafter, ®&®is re-shaped via POPA minimum energy targetmg
before. Thus, a sequence of dynamic EMSs whichsfeegti both the PoPAS o and Syp constraints with
uncertainty projection is realised in the prediatizorizon for the optimal dispatch and schedulifigerergy
resources in the control horizon. The conceptustilated in Figure 5b, where the cyan plot indisahe PGCC
re-shaped via the Kalman+Adaptive POPA. The viotaidf theS;, at timek + 11, which occurred with the
Adaptive POPA EMS in Figure 5a, is avoided by dispig the EL to recover correct MESS at time k+10.
Likewise, the procedure is repeated for the AEENIDstraint. Figure 6, shows the Kalman+Adaptive POPA

algorithm.
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5. Reinfor cement L earning Adaptive Power Pinch Analysis

The approach presented in this work involvesnfdating the uncertainty problem as a MDP congden
the discrete time stép where an agent has to act optimally by inferdngaction in each state as determined by
the adaptive MPC PoPA trajectory.

The MDP is a tuples, A,R,S * , A’ ) where:

§:is a set of discrete-statesS = {s;, s,,...,s, }ands, denotes the state of the environment at timelstep

In this work,sy: = f(SOAccpyr (k), SOAccgar(k), e(k)) (13)
A :is a discrete set af-actions for selection by the ageAt= {a, ,a,, ...,a; } anda, indicates the selected
action at timek.

Furthermore, the set of dispatchable asseth&PGCC shaping is expressed as follows:

U.(t) € Ay :={ay, 6,FC,8,FC,85FC,8,EL,§sEL, S¢EL }
Where,s,, x € [1: 6], represents percentage proportions {10, 50, 9@Ha0, 50, 100} of corresponding flow

of energy/materiaf 2%, .r (k) andFESY. ., (k) respectively to a selected action agdienotes null action.

T(s,a,s’ ): is the probability of transitioning to a nexttsta ”~ from states over a given set of transitions
when an actiom is chosen.

S x A — R: An immediate reward, is received as a result of the system state tiansii(s, a) to the next
states by mapping state and action pair (s, a) due tecisibn making policyr.

Therefore, both the transition and reward pbdlig distributions are implicitly Markov propegs where the
future states © only depends on the present stat&he current action is independent of the past state(s)
that lead to the present state [74, 75].

T(s' |s7,s,a)=T(s’ |s,a)
(14)

The model of the system is required for initraining of the agent in order to infer the cohtction on the
actual system from the MPC-PoPA. The agent adaptdd real system over time and retrains on newer
samples. The MDP learning agent learns the optpobity n*(a|s) from accumulated past experience which
maps an optimal action to a given state. Hence,t@ximises the cumulative scalar reward returshasvn in
(15).

V7 = B[S, v sy, aym)|
(15)
The Q-functiorQ™ (s, a) for a given MDP represents the optimal véluetion)V ™.

The agent learns the optimal action to take ingheironment through experience by taking actionshim

environment while learning the optimal policy.

The Q-learning rule after taking an acti@in a states, obtaining a rewara and transitioning ta * is as

follows:
Qu(s,a) + a [ +y " Qeaa(s’ 12’ ) = Q(s,a)] Vk=[12..N-2]
Qu(s,2) = Qs+ o [, —Qlsa)l vk=N-1 @y €[0<I]
Qk(s,a) Vk=N

(16)
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Whereq, y are learning rate and future reward discount fagith the future discounted reward omitted during

the update of the agent at a terminal state at $iey@V — 1.

5.1 Planning stage for the Q-learning Agent
The MPC-PoPA model is used to bootstrap thed@ring agent to ensure that the agent acts opyimiéh

respect to tracking the PoPA trajectory, computiline prior to online deployment so as to minimiaad
avoid exploiting costly mistakes on the real systéime advantage of the Q-algorithm is that the agamers
experience from the real environment and retraffime by replaying the experience after each egésat time
N to further reinforce the learning agent’s Q - wato guarantee optimality. The model-free learrtingpens
using the Q-learning algorithm and switches to andcCarlo algorithm ai — 1 which denotes the terminal
state (horizon) for the agent, as shown in (18gr€&fore, the learning involves two steps; a disgxt indirect

learning, from the model and from the actual systenvironment) respectively.

5.2 Action Selection

The action selection approach in (17) which tsn modified to include safety precautions iticai states
(near the Pinch limits), is based on the probab(lit - ) of selecting agreedy policy m(s) over a random
action with probability o [76, 77]. This approach exploits the best actisindicated by the maximum value
function Q™ (s,a) for a given state while performing exploration twihe inverse probabilityd) of acting
greedily. This strategy strikes a balance betweguloeation and exploitation while satisfying thenfaus
Bellman’s principle of optimality [78], minimizin¢he deviation of the system controlled by the lesgragent
from the Pinch target, and exploring the state spHdheSOAccp (k) is less than Lo or greater thai/p, the
FC and EL are dispatched by the agent respectifeighermore, the AEEND constraint imposed at tine @f
the day is achieved by overriding the agent’s actiith the Adaptive PoPA’'s EMS. The action policgs) is

expressed as follows:

a,(s) If U < greedy action probability (1 — 0)
63FC if U> greedy action probability (1 — 0) ASOAccg,r (k) < 30%
m(s)= S8¢FC if U> greedy action probability (1 — 0) ASOAccE,r(k) = 90%
select a random action Otherwise
17
Where,

U is a randomly generated value between 0 and hgaehk time step.
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8,FC SOAccl,r (k) < 30%
86EL SOAcchr (k) = 90%

argmax Sk, @
a(s) Sfas, w‘g} nef1:3] Qs @) SOAccgr(k) = 30% A SOAccpyr (k) < 40%
a,(s): =

argmax  Q(sk, ay)
ak(s) €{aq, 6nEL} ne[4:6]

SOAccgar (k) = 80% A SOAccg 7 (k) < 90%

argmax Q(Sy, ay) otherwise
a(s) € At

(18)

5.3 Reward Function Formalisation

In order to train the Q-learning agent, a du@aeward function is expressed mathematicallyis T such
that the agent follows the optimal poligy(s) which minimises the cost function between the #Hgeoff-
policy and the adaptive MPC PoPA trajectory, aneisressed as follows:
J= (SOAccpyr) = k _)li;,n_ 2
(19)

Thus, it follows that:

E [ZIIX=_12 |SOAccgyr — SOAccgar|* + (V]n (5k+1))]

. lim argmax o _ -1
miny, J (SOAccg,r) £ k - oo ay € Ay E [Zk:N—Z(yk LR (Sk41 A1) ]

(20)

The reward function in (21) is aimed at acalag learning. It comprises of a fixed rewa&rdwith penalty

factorsiW, andW,, representing a squared error penalty cost funetfmhconstant penalty factor respectively.

The magnitude of th&/; penalty factor is such that it increases propodily to the absolute squared error
deviation from the pinch target at that instant #imel systems state if the agent takes a suboptiotan as
shown in equation (22). Furthermore, the rewardetttion in (23) - (25) is able to update the age(, a)
regardless of whether the availability propositigi’ (k) (see appendix 1) for both the FC and EL assets are
met, while exploiting an action which minimises #reor cost.

A typical illustration if the operating point dictated by Adaptive PoR#ticipates future energy deficit and
requests activation of the FC, while the agentvatts the EL, a penalty would suffice. Thus, theatty
function, serves as a closed loop negative feedbmt¢ke agent. Therefore, in order to obtain theximam
reward G at a given time step, the action perforrogdhe agent, must satisfy the consequent comgitio
proposition. As shown in (23)c,,;, is contingent on function D and E in equation (84§ (25) respectively.
Where, functions D and E are performed abstracylyiterating over all actions; the agent can perform.

Specifically, assuming th60Accpyr (k + 1) is less than 80%, function D is used and thugdrating over all
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actionsa; i € [1: 7], Ucyn becomes the minimum (infimum) action which resiuitsSOAccpyr(k + 1) being
greater or equal t&0Accg - (k + 1). This supresses the excessive usage of the FQa8imwhere function E
suffices, the maximum (supremum) action which rmassuh SOAccpyr(k +1) being less than or equal
to SOAccg v (k + 1) becomedic,,;, such that the EL is used optimally.

Furthermore, if the action performed by the agemtat equa{—=) to Uc,,,;, and consequentl§OAccg ,r (k +

1) becomes less than or equal $6Accpyr(k + 1) a negative penalty denoted by r\Wnsues in other to
apprise the agent from exploiting adverse actiohislwover discharges the BAT.

Also, where the agent performag not equal tdUc,,;,, but which results in th§0Accg,(k + 1) becoming
greater than or equal 80Accpyr(k + 1), a penalty Wis deducted from the maximum reward G in order to
dampen excessive usage of the FC. Similarly, alfyer@W; + W,) is used to accelerate the agent's learning

curve if successive violations of any of the pitiatits occur as a result of suboptimal action.

The reward function proposition férx A : R(S,A) is implemented as follows;

G SOAccgar(k+1) = SOAccgyr(k+ 1) Aa, == Ucpp A
[SOAcchr(k + 1) > Si, A SOAccpar(k + 1) < Sg]

[SOAcch r(k + 1) < SOAccpyr(k + D] Aag == Ucpn A

M [SOAccar(k +1) > Sty A SOAcchur(k + 1) < Shp]

G—W, [SOAccg 7 (k + 1) = SOAccpyr(k + DA ap == Ucpin A
R(sp @) = ! [SOAcchr(k 4+ 1) > Si, A SOAccpar(k + 1) < Sg] l

[SOAccEar (k) = Shy, ASOAccEar(k +1) = Sh,]1 A
@y == Ucpin V SOAcchr(k +1) = Sk, A ay == Ucpn

\Y

[SOAccg 7 (k) < SOAccgr(k + 1)) A
[SOAccEr (k) = Sh, ASOAcchar(k +1) = Sh,]1 A
lay == Ucpmin V SOAcchr(k +1) < Sty A ag == Ucyin

]
|
|
|
1
|
|
|
|

(21)
Where, W, and W, are penalty factors for reward shaping.
Wy = [(SOAcc] (k + 1)=SO0Acchyr (k + 1)) /SOAcchyr (k + 1)]?
(22)

The action which results in the minimum optimal wohaction is derived abstractly as follows:
D SOAccyr(k +1) > Sk, A SOAccPyr(k + 1) < (Sh, — 10%) }

U i t—=
Cmin {E SOAccgyr(k +1) > (Sf, + 50%) A SOAccgyr(k + 1) < (i)
(23)
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Where,
D := inf{(SOAccgyr (k + 1| X721 Q(a;, Sk+1)) = SOAccgr(k + 1)} (24)

E: = sup{(SOAccgyr (k + 1| X721 Q(ai, Sk+1)) < SOAccr(k + 1)} (25)

During the online deployment, the PoR¥get is modified respectively with the MOES or K& so as to
capture the effect of uncertainty affgp andSyr violation occurs at any instant as follows:
Stp SOAccpar(k) > Si

SOAccgyr(klk): =
sar (klk) {Sll,o SOACCZ;IAT(k)<SLlO

.V, if 3AH() # 0 (26)

The reward function is modified to incorporétte MOES or MEES thus guaranteeing the model-fgsnta

will act optimally in the event of uncertainty tcamimise the expected reward:
n min n
Jpincn (SOAccpar) + . (AH) = U, J= (SOAccpar)

(27)

Furthermore, by performing the optimal policythe corresponding cost is as follows:

J#(SOACCExr) = Nimy . E |2, Upinen (SOACCHar) + Jo (8H))]
(28)

Since the cost of the error due to uncertdigtyls to zero when following the optimal polighi(s), the agent

incorporates the uncertainty estimation into the&o

’lim Jroy(SOAccgar) < V)pinchky (SOACCEar) (29)

The expected cost following the pinch analysisl uncertainty propagation is less than followamdy the
PoPA model. Hence, the experience of the agergriated into the MPC Adaptive POPA framework gusrast
optimal operation, as long as the conditions ofrogk action selection and learning rate decay atisfged.
Figure 7 and 8, illustrates the RL+Adaptive PoP&hédecture and algorithm respectively. Furthermahe,

pseudo codes for the proposed algorithms are pezbeanAppendix |.
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6. Results and Discussion

The three new methods are evaluated again®dAhBoPA in a short (three days (72h)) and longratéone
year (8760 h)) deployment in a stand-alone HESS iRfitial conditions for th6€0Acc™ is such that €
{BAT, HT and WT} corresponds to 70%, 80% and 30% respectively. TEB8$parameters used as case study
are derived from an existing real system [9] assshim Table 1. Also, real load demand profiles dotypical
residential home and solar irradiance data pergirto Newcastle, United Kingdom, are sourced from
ELEXON [79] and NREL [80] respectively.

Tablel
HESS Micro-grid parameters [9]
System Components Specification
Load (peak) 2200 W
PV (66.64 W rated power) 217
DSL 2210 W
BAT 3000 Ah /48 YV
FC 3000 W
EL 4000 W
HT 30 bar, 15 i

N0 Mee 0.95, 0.10, 0.87, 0.87
. %

The performance main indices (30) - (32) usedvaluating the EM approaches are with respettiddotal

number of times ths}, (30%) andS,l,p (90%) Pinch limits are violated and the DSL adtdh as follows [42];

Sum of Deficit=x¥=576° {1 Sto > SOAcchr(k) } (30)
B 0 otherwise
Sum of SurplusEy=8760 {1 Sop > SOAcciyr(k) } 1)
N 0 otherwise
n
Sum of DSL activation EN=8760 {1 20% > SOAccpr (k) } (32)
0 otherwise

6.1 Short-term operation
6.1.1 Day — Ahead Power Pinch Analysis

As illustrated in Figures 9(a), the original ®G show theSOAccgy, would dip successively below tt8o
due to impending energy deficit within the first @2if electricity is not outsourced in advanceusthe PGCC
is shaped accordingly by activating the FC fouresmas shown in Figure 9 (b). However, the PGCC
continuously violateds o 14 time instances which led to the activationlef DSL twice due to uncertainty

indicated by the error plot as shown in Figurer8gardless of hydrogen availability.
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Figure 9: a) DA-PoPA response and b) Dispatchabtgd state for the first 72h of the year

6.1.2 Adaptive Power Pinch Analysis Energy ManagerS&ategy for Uncertainty

The energy deficit and consequent forecastr etewiation exhibited by the DA-PoPA was reducedthy
dynamic shaping of the PGCC within a receding adntrorizon as shown in Figure 10(a). Figure 10(b)
illustrates the state error correction at the itiogpof the 11:00 Hr aftehH became greater than 5% at 10:00 h.
However, theSOAcck,, dipped atthe 33 34" 47" 57" 58" 70" and 71 h, without activating the
DSL. Furthermore, despite dispatching the FC shefi, as shown in Figure 10(c) after the occurreidbe
unforeseen dip, a further violation §f, re-occurred. This was because the MOES deliveyatdidbFC was less
than required, due to deficit energy target valighiThe successive dips underscore the need fmegentive

approach since the reactive approach only respafteisthe forecast error has occurred.
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6.1.3 Kalman Filter Adaptive PoPA

The Kalman + Adaptive approach results in tECE violatingS o 7 times at time 49:00 - 56:00 h and at

time 64:00 - 70:00 h, as shown in Figure 1ladditionally, the FC was activated 20 times in @ge to

uncertainty with the DSL never activated as showrFigure 11 (b). The Kalman+Adaptive PGCC closely

matched the actual state of the plant as shownigar& 11(a), with the uncertainty adequately praped

within the first 48h, hence, the performance waiebehan using the Adaptive PoPA alone. Howevke, t

uncertainty (previously unknown until now, but exfesl to be a normal Gaussian distribution) wasrdissky

non-Gaussian (bimodal). Thus, further investigatanillustrated in Figure 12(a) and 12(b) showd tha

Kalman+Adaptive PoPA performs better as the vagaoicforecast error is reduced when the uncertamty

normally distributed. Figure 12(b) shows the cotemelogic. Hence, a more sophisticated approachhvthe

uncertainty is unknown should suffice.
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Fig 11. (a) The estimated and real Batt§Acc response with the Kalman Adaptive PoPA for 72 tieuin

Gaussian uncertainty; (b) converter logic
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Fig 12: a) The estimated and real Batt®d\Acc response with the Kalman Adaptive PoPA for 72 tienrNon-
Gaussian (Bimodal) uncertainty, b) Comparison efrgalSOAcc response under both Gaussian and Non-

Gaussian uncertainty, and c) converter logic und@-Gaussian uncertainty.
6.1.4 RL+Adaptive PoPA

The RL+Adaptive PoPA had only one violationSd, which occurred at the #5h as shown in Figure 13a.
Also, the DSL was never activated. However, theah@ EL were activated 28 and 20 times respectively
bid to track the Adaptive PoPA’'s PGCC as shownigufe 13b.
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Fig. 13. (a) shows the performance of the RL+Adaptive Pstcategy for 72h; (b) converter logic

The violation of S as indicated in Table 2, evidently showed Kalmataptive PoPA had the most
significant improvement from 7 to § o violations and none for th&,p under Gaussian uncertainty and non-
Gaussian case respectively. The RL Adaptive halihmbviolations under the Gaussian uncertainty.iM/the
Adaptive PoPA had an improvement when the uncdytaivas Gaussian, there was negligible in the DA-
PoPA’s performance.

Table2
Summary of the performance indices for 72h.
Non-Gaussian Uncertainty Gaussian Uncertainty
DA-  Adaptive Kalman+ RL+ DA-  Adaptive Kalman+ RL+
PoPA PoPA Adaptive Adaptive | POPA PoPA Adaptive Adaptive
PoPA PoPA PoPA PoPA
Lower Pinch 14 7 7 1 13 3 0 0
violation
Upper Pinch 0 0 0 0 0 0 0 0
violation
DSL 2 0 0 0 4 0 0 0
Activation

6.2 Long-term operation

The proposed methods are evaluated againfAkBoPA over a period of 8760 h and the resultssavn
in Table 3. From Table 3, the DA PoPA method hael worst performance indices as regards excessive
charging of BAT §0Accg,+>90%) and over-dischargingS@Accp,r<30%) and consequently fossil fuel
utilisation due to the DSL activation, despite @ately sized HT of 15f(initialised withSOAccl, at 100%).
The lower limit §0Accy,r<30%) of the BAT was violated 804 times and acawgtyi the DSL was activated
229 times. Also the upper pinch lim{SOAccg .+ > 90%) of the BAT was violated 756 times.

Thus, benchmarked against the performanceeoDih, the Adaptive, Kalman+Adaptive and RL+Adaptive
PoPA methods led to a reductionSr, violation by 66%, 92% and 94%, as well as a dexaréathe upper limit
violation by 60%, 65% and 70%, respectively. Aduitlly, the DSL was activated only once with theaptive
PoPA and was never activated with the Kalman, ab#iARaptive PoPA. Consequently, a reduction in fossi
fuel emission by 99.59%, 100% and 100% was achiewtdthe Adaptive, Kalman, RL+Adaptive PoPA EMS
respectively. Furthermore, the reduction in uppeitlviolation by the Adaptive, Kalman and RL+Adaj
PoPA methods led to an increase in PV penetratio®%, 6% and 7% respectively, due to the decreased

violation of the PV (ON/OFF) protection constraint.
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The RL+Adaptive method had the best performanitk the least violations 0§ o and Sy». However, to
counteract the uncertainty, the learning agentemsed activation of the FC and EL in the contraiZom by
642% and 425% respectively, compared to the dictatiee Adaptive PoPA in the predictive horizon.

Also, the activation of the FC and EL with #hdaptive POPA was seen to have increased by 95%1 50
and similarly for the Kalman +Adaptive PoPA, it wa20% and 255 % respectively, compared to the DA-
PoPA.

The available hydrogen in HT at 8760 hrs is fabows: 55% (DA-PoPA), 45% (Adaptive), 44%
(RL+Adaptive) and 19% (Kalman+Adaptive). TB®Accy; and SOAcch,r are shown in Figure 14-17. The
Kalman+Adaptive POPA had the most usage of thedgelr energy carrier, with the DA-PoPA having treeste

utilisation.

Table3
Performance metrics characterizing the proposedhPimethods for one year (8760 hr) with HT Volume of

15nT.

Day — Adaptive  Kalman+Adaptive RL+Adaptive
Ahead PoPA PoPA PoPA
PoPA
Lower Pinch violation§0Accg,; < 30%) 804 271 64 51
Upper Pinch violation§OAccg ,+>90%) 756 303 265 226
FC start-stop (cycles/year) 296 577 1837 3802
EL start-stop (cycles/year) 262 654 931 3503
DSL start-stop (cycles/year) 229 1 0 0
PV start-stop (cycles/year) 8004 8457 8495 8534
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Fig. 15. (a) The response of the BAT and (b) HT with theapiive POPA method
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6.3 Sensitivity Analysis of HT Size with the PoleBefthes

As shown in Figure 18, a sensitivity analysiaswcarried out to investigate the impact of hydroge
uncertainty by varying the HT capacity between 80and 1 m with the EMS’s. The RL+Adaptive PoPA
scheme with HT at 10 had the fewes§ o andS,p violations of 68 and 256 times respectively, vifte DSL
never activated. The Kalman Adaptive POPA ha®amandSp violation of 264 and 87 times. The DA-PoPA
S o andSyp violations were 756 and 804 times, and the adapti@PA violations were 303 and 271. However,
the Kalman Adaptive PoPA activated the DSL at Biances in response to 87 lower limit violatiormnpared
to the Adaptive POPA which activated the DSL onhc®. Decreasing the HT capacity to 8and 1 m, the
RL+Adaptive PoPA lower limit was violated 1553 a2@il6 times respectively, which consequently leathé¢o
activation of the DSL 440 and 782 times.
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Fig.18. Sensitivity analysis of the PoPA Energy ManagenSafitemes with 10, 5 and it T capacity.

When considering upper limit violations forfdilent HT sizes, the RL+Adaptive POPA had the begter
limit violation for an HT of 10mand 5 m, and the second-best upper limit violation withHh of 1n7.

The RL+Adaptive PoPA had the least DSL actomtioverall for HT sizes of 5fnand 1mi, which
consequently implies that despite thg violation of 1203 and 2616 times in that order evenly better than
the Kalman Adaptive PoPA’s 1553 and 3468 times getipely. Additionally, as seen in Figure 17, the
preventive methods were more effective when thedgeh is adequately available (i.e. HT > 9 fsee Figure
A.1 in the appendix).

The DA-PoPA violation of the upper limit remathalmost unchanged despite the HT size variafibis
clearly indicates the weakness of the DA-POPA toeutainty, in event of an unanticipated excess adicid

energy not considered during the daily energy tautgnning.

7. Conclusion

The Adaptive, Kalman+Adaptive and RL+AdaptivePA methods have been proposed to counteract
uncertainty caused by PV and load profile variatigimich may impact the reliability of the HESS. Taes
methods were compared against the existing DA-PstPaiegy using real-world data. The Adaptive PoRA h
a better performance than the DA-PoPA, as a reduhe inclusion of a feedback loop which minimisheé
effect of forecast deviations. However, the metlodidred a reactive strategy whose correction meishan
relied on the occurrence of the forecast errortHeumore, the Adaptive PoPA incorporated a recetorigzon

without uncertainty propagation. The Kalman + AdaptPoPA had a better performance than the adaptive
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PoPA. However, the formulation of the estimatoresbn the assumption of a normally distributedeutainty
which was not the case. The RL+Adaptive methodchviricorporates a learning agent illustrated farsand
long-term operation, was shown to maximise the etgquereward by acting optimally to meet the ideadif
pinch targets. The RL+Adaptive had the best respargoss all performance indicegy and Syp limits
violation as well as reduced diesel carbon footpsinen the HT was sized at 1&nowever, even though the
RL +Adaptive PoPA method offers the best resulth wespect to an avoided violation of operatingiténon
the storage devices this excellent performance sahthe cost of increased complexity. Therefdre,mhethod
used will be dependent on the application. For extanif there is a high confidence in the load/\keatforecast
then the DA PoPA method can be used, but if theome error in the forecast, then the first AdapBoPA
method, which does not require heavy processingepdoat is less accurate, should be used. Howelvdrei
difference between the real and the forecastedwesdher profile is significant and the uncertaihfys specific
statistical properties, then the right choice stidid the use of the Adaptive PoPA with Kalmanffiltnally, if
the error is large with no information about thpayof uncertainty, then the RL+Adaptive PoOPA shdgdthe

choice.
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Highlights

» Adaptive Power Pinch achieved enhanced results over the Day-ahead Power Pinch
» Adaptive based Power Pinch achieved 6% reduction in fossil fuel usage
« Kaman based Adaptive Power Pinch was optimal only under Gaussian uncertainty

« Reinforcement learning based Adaptive Power Pinch analysis had the best performance



