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CHAPTER 1

CHAPTER 1 - Introduction

In this work an error control scheme, Generalised Hybrid Type-II ARQ (GH- 
ARQ) is discussed. We then study a recently introduced class of linear codes called KM 
codes discovered by Krishna and Morgera. Finally, we observe how KM codes may 
be employed in GH-ARQ schemes.

However, to begin we shall briefly mention linear codes and some important 
factors concerning error control in digital communications systems.

1.1 - Codes, Error-Detection & Error-Correction

1.1.1 - Why do we need Error-Correcting Codes ?

It is unavoidable that from time to time, interference in the transmission channel 
will produce errors in the transmitted signal.

Speech channels do not usually require correction since there is sufficient 
redundancy in speech to allow for these errors.

However, in digital communications systems, this interference will result in the 
receipt of erroneous data. Hence error-correcting codes are used. These encode the 
message so that after transmission and possible distortion, the original information can 
still be recovered.

Information
Source

ENCODER
Trans­

mission
Channel

DECODER Destination

Figure 1.1- Basic Elements of Telecommunications System (using an error-correcting code).

Figure 1.1 above illustrates the main features of a communications system. The 
information to be delivered is encoded and then the transmitter sends it along the 
transmission channel. It is at this point that the message is in danger of being corrupted.

Upon arrival, the message is checked for errors. If errors are found to be 
present, the receiver will deal with these as specified by the protocol. In some schemes 
errors are corrected while in others the receiver requests that the message be 
retransmitted.

There are two fundamemtal techniques for error control in digital 
communications systems, namely forward error control (FEC) schemes and automatic 
repeat request (ARQ) schemes. These shall be discussed in Chapter 2.
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CHAPTER 1

1.1.2 - Block & Convolution Codes

Although, there are many different types of codes, in general, codes may be 
divided into two classifications

(a) Block Codes - The information is presented as k bits. This is encoded into 
an /z-bit codeword. The (n-k) additional bits, called parity check digits enable error- 
detection and correction. Each individual packet is independent of all other packets.

(b) Convolution Codes - Codewords of a convolution code are formed in the 
same way as for the block code. However, in addition, there is a dependency between 
successive incoming frames. The memoiy order of these codes is the number of 
previous frames having an influence on the way in which the present frame was 
encoded.

By adding parity-check bits, codes will provide the dedundancy required for 
eiror-detection and correction. The error-detecting capability of a code depends on the 
number of parity bits. Clearly these parity bits reduce the rate at which Teal' data is 
transmitted. Error-correction is a more difficult process and so additional bits are 
needed. Thus codes can correct fewer errors than they detect.

1.1.3 - Errors

If c is a codeword and y  is the corresponding received codeword after 
transmission through a possibly 'noisy' channel, then e = y  - c is called the error 
vector. When e -  0, then no errors have occurred. Otherwise errors have taken place. 
Errors may be divided into two types :

(a) Random Errors - A random error is an isolated erroneous bit in a sequence 
of correct bits. The probabilty of error is the same for all bits regardless of whether the 
previous bits were correct or not.

(b) Burst Errors - Errors of this type occur in blocks. Usually a stream of good 
bits (low bit error rate) is followed by a stream in which the occurence of errors is great 
(high bit error rate), followed by a stream of good bits.

An error burst of length h will be defined to be a sequence of h error symbols; 
the first and the last of which are non-zero.

1.1.4 - Lineai* Codes

A very important class of codes is linear codes. We shall 'remind' the reader of 
some of the basic properties these codes pocess.

A linear code C is a linear* subspace of Fn, some field F. If C has dimension k 
then C is called an (n, k) code. The information is presented in a block of A-bits which 
is encoded into a longer word of zz-bits, a codeword. The (n-k) parity bits enable error- 
detection and correction.

Let C be an («, k) linear code, then we may define the following.
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CHAPTER 1

Definition 1.1

(a) G, the generator matrix of code C is a (k x n) matrix for which the rows are 
a basis of C. i.e. every codeword is a unique linear combination of the rows of G. If 
u = (mi, U2 ». • • • then the following simple rule maps messages u into 
codewords c — (c i, C2,. . . • ,cn)T :

cT = u?G .

(b) An (n-k) x n matrix H  such that cTHT -  0 iff c e  C is called a parity-check 
matrix of C. cTHfr  is called the syndrome of c.

Note A received codeword is assumed error-free only if its syndrome is zero. 

Definition 1.2

(a) The rate of C is kin.
(b) C is invertible if knowing only the (n-k) parity bits the associated k 

information bits can be uniquely recovered.

Definition 1.3

(a) Let x  and y  be codewords of C, then the hamming distance is defined to be 
the number of places in which x  and y  differ.

(b) The minimum distance of C is the least distance between any two distinct 
codewords.

(c) The weight of a non-zero codeword is the number of non-zero digits it has,
(d) The least weight of any non-zero codeword in C is equal to the minimum 

distance of C.

Lemma 1.1

Let d denote the minimum distance of C, it can be shown th a t:

(a) C can detect up to d-1 errors
and

(b) C can correct e errors if d > 2 e + 1.

1.2 - Error Control in Digital Communications

We have already stated that FEC and ARQ are the 2 basic techniques for error 
control in digital communications. Both these schemes shall be studied in Chapter 2. 
However, first we must define some very important terms related to communications 
systems.

PAGE 6



CHAPTER 1

Definition 1.4

A buffer is used to store information which may be required later. In most error 
control systems, both the receiver and the transmitter have a buffer and systems are 
chosen to reduce the buffer size where possible.

Definition 1.5

We require to study and compare the performance of different error control 
schemes. Two important measures of system performance are :

( a )
Throughput _  average no. of data bits accepted
Efficiency total no. data bits transmitted

per unit of channel time
and

(b)

_ probability of the occurrence of undetected errors
Reliability =  ------------------------------------------------------------  .

probability that decoding succeeds

1.3 - Shift Registers[l]

In Chapter 6 , we shall see how shift registers may be used in the encoding of 
KM codes. Below, the basic elements of shift registers are mentioned and then we 
illustrate that shift registers may be used to multiply or divide one polynomial by 
another.

In these linear switching circuits, the information is assumed to be some 
representation of the elements of GF(q). There are three types of devices commonly 
used in these circuits, namely

(a) An adder - This has two inputs and one output. The output is the sum of the 
two inputs modulo q,

(b) A storage or delay unit - This device has only one input and one output. It is 
a delay device in that the output after one unit of time is equal to the input of the 
previous unit of time
and

(c) A multiplier - Again, this has only one input and one output. The output in 
this case being simply the input multiplied by a constant a, where a e  GF(q).

The above devices may be used to construct a shift register. In a shift register, 
there is a shift signal which causes the element stored in a delay unit to shift to the next 
delay unit. The entry of the final delay device is simply output.

When the input or the output is a polynomial, only the coefficients appear* and 
the high-order coefficients are transmitted first.
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e.g. If h(u) = /20+ h\u  + h2U2 + . . . . +  hr.\ur_1 + hrur, then hr would be input 
first, followed by hr. 1, . . . . , followed by hi and the final input coefficient would be 
*0.

(a) An Adder (c) A Multiplier(b) A Storage Device 

Figure 1.2-3 Common Devices Of Linear Switching Systems.

1.3.1 - Multiplier & Division Circuits

The circuit shown in the Figure 1.3, will multiply any polynomial a(u) = a.}<uk + 
ctk-iuk-1 + . . . . +  a\u  + ao by the fixed polynomialf(u) = frur + / r-iMr' 1 +. . . . + f\u  + 
/o-

Initially, the storage elements are assumed to contain zeros. The coefficients of 
/(« ) are assumed to enter high-order first followed by r zeros. The first input is the 
coefficient a* resulting in an initial output of a/fr. At this stage all the storage devices 
contain zeros. After one shift signal, ak-1 is the new input while is stored in the first 
device. This results in the output af,-]fr + akfr- 1. Clearly after the next time unit, a^i  is 
stored in the first device, a.y_ in the second and cik-2 is the current input. The output will 
be a^ifr + Uk-ifr-i + atfr-2‘ The shift register continues in this manner until r + k  shifts 
have occured. After this final shift, the shift register contains 0, 0 ,. . . . ,  0, ao and the 
final output is a(fo.

From the above, it is obvious that the first output a./fr is the first coefficient of 
a(u)f(u). Similarly, the second output is the second coefficient of the product a(u)f(u),.
. . etc. Hence the shift register does indeed multiply any polynomial by f(u).

OUTPUT

► a a a a a 3 _
1 i + 1 i +2 j + r - 3 H r - 2 i + r - 1

INPUT

Figure 1.3 - A  M ultiplier Circuit.
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We are also able to construct shift register circuits which perform division by a 
fixed polynomial. A circuit for dividing d(u) -  dnun + . . . . + do by p(u) -  p rur + p r. 
iw,vl + , . . . +  p\ii + po is shown below.

OUTPUT

r -~P I

INPUT
Figure 1.4 - A Division Circuit.

All storage devices are initially set to zero and consequently the output of each 
of the first r shifts will be zero.

The first non-zero output will be dnp r~l, the first coefficient of the quotient.
For each quotient qj, the polynomial qjp{u) must be subtracted from the 

dividend. This is done using feedback connections.
After n shifts, the complete quotient has appeared as output and the remainder is 

stored in the shift register.
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CHAPTER 2 - Digital Communications Systems

As stated in Chapter 1, there are two fundamental techniques for error control in 
digital communications - FEC and ARQ. In FEC schemes, one code is employed for both 
eiTor-detection and correction. However, in some circumstances, when a message is found 
to contain errors, it is more reasonable, simply for the information to be retransmitted. This 
idea forms the basis of ARQ schemes. In this chapter both these schemes are described 
briefly. Their relative advantages and disadvantages are also discussed. As a measure of 
their performance, we consider their throughput efficiency and system reliability (see 
Definition 1.5).

However, sometimes neither of these schemes are suitable - perhaps the channel is 
too 'noisy' to guarantee the required throughput using ARQ while the desired system 
reliability cannot be achieved by FEC alone. One solution is to employ a combination of 
ARQ and FEC. Schemes of this type are known as Hybrid ARQ  schemes. Section 2.2 
discusses Hybrid ARQ in more detail.

Finally, a recently introduced error control procedure, Generalised Hybrid Type-II 
ARQ (GH-ARQ) is presented in Section 2.3 [2],[3]. In later chapters, codes particularly 
suited to GH-ARQ will be developed.

Throughout Chapter 2, let T denote the transmitter and R denote the receiver.

2.1 - Fundamental Error Control Techniques

2.1.1 - FEC - Forward Error Control

An error-correcting code is employed in this scheme and so the bit redundancy 
together with mathematically based encoding/decoding procedures enable all errors to be 
corrected provided that channel conditions are within some tolerance.

A A-bit message D is encoded into a m-bit codeword I  using a («, k) linear code. I  
is then transmitted. Let 7A denote the received codeword.

On receiving 7A, R computes its syndrome. If this is found to be zero, then 7A is 
assumed to be error-free i.e. I = IA and 7A is delivered to the data bank. Otherwise, the 
code attempts to correct the errors in 7A and the corrected block is sent to the data bank.

However, in some cases the code will be unable to correct the errors and so an 
erroneous block will be sent to the data bank.

FEC has large overheads since the code is used for both error-detection and 
correction. As there are no retransmissions, it has a high throughput efficiency. This is set 
by the code rate kfn and so is constant and independent of the channel conditions. 
However, since it is possible for incorrect data to be accepted it has low system reliability 
especially in very 'noisy' conditions. Clearly, the reliability is strongly dependent on the 
channel conditions. If a great deal is known about the channel, it is possible to choose a 
code with an appropriate error-correcting capability in order to maintain an acceptable level 
of reliability [4].
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2.1.2 - ARQ - Automatic Repeat Request

This scheme requires a high rate error-detecting code. A message is encoded at T 
and the codeword is then transmitted. At R, the received codeword is tested for errors. 
However no error-correction is performed at R.

If the received codeword is found to be error-free then it is delivered to the data 
bank and R sends a positive acknowledgement {ACK) to T. When T gets this ACK, a new 
block is transmitted. If, however errors are detected in the received codeword, R discards it 
and awaits the retransmission of the codeword. This retransmission process continues until 
the block is successfully received.

Erroneous data is delivered to data bank only when R fails to detect the presence of 
errors and so is much more reliable than FEC schemes. The throughput efficiency depends 
largely on the number of requested retransmissions which in turn is controlled by the 
channel quality. Hence the efficiency falls rapidly with increasing channel error rate. There 
are many different types of ARQ schemes based on use of buffer storage and efficient use 
of the transmission channel. Below is a description of two of the most commonest forms.

(a) Idle RQ  (Send & Wait) - This is by far the simplest ARQ scheme. T sends an 
information frame and initialises a timer. A copy of this frame is stored in T's buffer.

On receiving the I  - frame, R checks for errors. If the frame is found to be error- 
free then it is delivered to the data bank and ACK is sent to T. When T gets this ACK, it 
then transmits the next frame. On the other hand, if the received I  - frame is found to be 
erroneous, then R simply discards it.

If after the time-out period, T has not received ACK (either because the received /  - 
frame contained errors or because ACK itself was corrupted) then T retransmits the same 
frame. To avoid duplicates, which could occur when ACK is corrupted, R must check that 
a new frame is distinct from previously received ones. Sequence numbers are used to 
distinguish frames - R keeps a record of the sequence number of last frame accepted and if 
it receives a duplicate I  - frame it will discard it.

In this system, flow control is strict across the link (T can only have one frame 
awaiting ACK at a given moment). The main drawback with this protocol is that the time 
between the transmission of a block and the receipt of ACK is wasted time. For T, the idle 
tune is at least equal to the round-trip delay time. For satelitte applications where the delay 
is approximately 1/4 second, such time waste is significant. This scheme could be 
improved by extending the protocol to include the transmission of NACKs (negative 
acknowledgements) when errors are found in a received block and so cutting the time 
delay. A clear advantage of Idle RQ is that minimal buffer storage is required at both T and 
R.

(b) Continuous RQ - With this scheme, datablocks are continuously sent off by T 
without waiting for individual responses from R. T retains a copy of each I  - frame it sends 
in a retransmission list and sequence numbers are used to identify different frames.

At R, the blocks are tested for errors. For each correctly received /  - frame, R 
returns ACK together with the corresponding sequence number. R retains an ordered list 
containing the sequence numbers of the last correctly received /  - frames.
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On receipt of ACK, T deletes the corresponding I  - frame from the retransmit list. 
Suppose errors do occur. Then either T detects out of sequence ACKs or R detects the 
receipt of out of sequence I  -frames. There are two different protocols which can be used :-

(i) Selective Retransmission - T must process the ACKs to determine if any frames 
in the retransmission list have not yet been acknowledged. If T receives ACK for the 
(AM-l)th frame but the iVth frame has not been acknowledged then T resends a copy of 
frame M  It is posssible that either the M h frame was corrupted during transmission or 
simply that ACK corresponding to frame N  was corrupted on its way to T. So on getting a 
frame, R must check the receive list to determine whether or not this frame has already been 
correctly received. If a received frame is found to be a duplicate it is discarded. However, 
for every correctly received frame (whether it is an original or a duplicate), R must 
acknowledge its receipt to ensure that it is removed from the retransmission list at T.

This error control protocol ensures that exactly one copy of each I  - frame is 
correctly received. However the ordering is not maintained. This is acceptable if each frame 
is a self contained packet. Often, a frame is part of a larger message and so we would have 
to buffer out of sequence frames at R before reassembling the message. Thus, there are 
substantial buffering overheads at R.

(ii) Go-Back-N  ~ When R detects an out of sequence error-free I  - frame, it 
requests T to retransmit all /  - frames since the last correctly received one. i.e. if the 
(AM-l)th frame is corrupted, then R will find the (AM-2)th frame out of sequence. R then 
returns an NACK together with the sequence number of the last correctly received frame
(frame N  in this case). R discards frames (AM-3), (AM-4), and all successors until the
correct receipt of frame (AM-1), It then continues normally in sequence. If ACK for the Mh 
frame is corrupted but ACK for the (AM-l)th frame is correctly received by T, both frames 
N  and (AM-1) can be removed from the retransmission list - since R ACKs in strict order.

G-B-N maintains frame sequence and therefore reduces the buffering requirements 
at R. However, as the retransmission of correct frames is increased, the throughput 
efficiency is reduced.

Clearly continuous repeat request schemes improve link utilisation by allowing T to 
send multiple frames before receiving ACK/NACKs. This is at the expense of increased 
buffering. Link efficiency can be further improved by Piggybacking i.e. I  - frames flow in 
both directions of the link simultaneously and each end maintains both a retransmission and 
a receive list. I - frames in the reverse direction carry ACK/NACKs for the forward 
direction and vice-versa, thus avoiding where possible separate ACK/NACK control 
frames.

2.1.2.1 - A Comparision of ARQ Schemes

The Send & Wait scheme is very simple but inefficient due to time delay.
The main drawback of the G-B-A ARQ scheme is that whenever a received block 

is found to contain errors, the next (M l) blocks which arrive at R are rejected, regardless 
of whether they are error-free. Hence, these (M l) blocks must also be retransmitted, 
reducing the efficiency of the overall system.

PAGE 12



CHAPTER 2

As the ordering of the blocks is not maintained in the Selective Repeat ARQ 
scheme, adequate buffer storage (infinite) must be available so that the received blocks may 
be reassembled in consecutive order. If the buffering is insufficient, an overflow could 
occur, resulting in the loss of some of the blocks.

2.1.3 - FEC versus ARQ

The occurrence of a decoding error during correction is much more likely than the 
occurrence of an undetected error. Hence, since ARQ schemes perform only error- 
detection, they are far more reliable than FEC schemes.

Error-detecting codes are not very sensitive to error patterns and so detect most 
error patterns. Hence, ARQ, unlike FEC, is effective in most channels. Further, error- 
detection with retransmission is adaptive, i.e. transmission of redundant information is 
increased when errors occur. Therefore in some circumstances we get better performance 
with ARQ sytems, than would be theoretically possible using FEC.

Further, ARQ schemes are a great deal cheaper than FEC schemes since error- 
detection is, by its nature, simpler to perform than error-correction.

So, ARQ schemes offer high system reliability fairly independently of the channel 
conditions. However as the channel conditions decline, more retransmissions are required 
and so the throughput is reduced.

On the other hand, FEC provides constant throughput regardless of the channel 
conditions but system reliability falls rapidly as channel degrades.

We have seen that ARQ schemes increase the reliability of the system at the 
expense of reduced throughput efficiency. When the channel error rate is too high to 
guarantee the desired throughput using ARQ and where the required system reliability is 
too high to be met by FEC, it is possible to combine the best attributes of these two 
schemes to give hybrid. ARQ.

2.2 - Hybrid ARQ Schemes

Combining ARQ and FEC, hybrid ARQ  schemes are able to offer higher 
throughput than could be achieved by ARQ and greater reliability than with FEC alone. 
Such schemes are based on ARQ with an underlying subsystem using FEC. The function 
of FEC is to reduce the frequency of retransmissions by correcting errors whenever 
possible. Hybrid ARQ schemes can de divided into two classes [5]:

(1) Type-I hybrid ARQ schemes.
(2) Type-II hybrid ARQ schemes.

We shall deal with each class separately.

2.2.1 - Type-I Hybrid ARQ schemes

This is the simpler of the two schemes where a code is used for simultaneous error- 
detection and correction.

When a received codeword is found to contain errors, R first attempts to correct the 
errors. If the number of errors is within the capability of the code, they will be corrected,
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the decoded message will be delivered to the user and ACK sent to T. However, if the error 
pattern is found to be uncorrectable, R rejects the received codeword and requests a 
retransmission.

On receiving the retransmitted word, R again tries to correct any errors. If 
decoding is still not possible, the word is rejected and a second retransmission is requested. 
This error-correction and retransmission process continues until the codeword is accepted 
at R.

The code in this scheme, being for both error-detection and correction requires 
more parity-check bits than a code used only for error-detection. So the overhead for each 
transmission is increased. If channel error rate is low, type-I has a lower throughput than 
its corresponding ARQ scheme (due to the extra parity bits). However, in poorer 
conditions, the correction (where possible) of erroneous codewords reduces the frequency 
of retransmissions. Hence, under these conditions, type-I ARQ has a higher throughput 
than a corresponding ARQ scheme.

2.2.2 - Type-II Hybrid ARQ Schemes

This scheme is based on the idea that the parity check bits for error-correction are 
sent to R only when they are required. Two linear codes, CO and Cl are required. CO is 
an (n, k) error-detecting code and Cl is a (2n, n) half-rate invertible code (see Definition 
1.2 (a)).

A message is encoded with a number of parity check bits for error-detection only. 
When R detects errors, it stores the erroneous codeword in the receiver buffer and requests 
T to send a block of parity check bits based on the original message and the invertible code. 
When this block is received, it is used to try to correct the erroneous codeword (which is 
stored in the buffer). Either, the errors are successfully rectified and the corrected 
codeword is delivered to the data bank; or the errors are found to be outwith the capabilities 
of the code and R requests a second retransmission. Depending on the retransmission 
protocol, this second retransmission will be either the original codeword or again a parity 
block.

Provided that the code used for error-correction and the retransmission strategy are 
chosen well, type-II should provide better results than type-I.

2.2.3 - A Type-II Hybrid ARQ Scheme

We shall now detail a particular type-II hybrid ARQ scheme [2].
Two linear codes are used - a high rate (/t, k) code CO for error-detection and a 

half-rate invertible (2n, n) code Cl for simultaneous error-correction and detection. Using 
the code CO, T encodes a k-bit message D into an n-bit codeword I. Block I is then 
transmitted. T also computes the codeword (/,/*(/)) based on the block / and the code C l. 
Here P(I) represents the n parity check bits. P(I) is not transmitted but stored in the 
retransmission buffer for possible later use. Note Cl is invertible and so from a parity 
block the original message may be obtained, i.e. P(I) may be inverted to give l(P) an 
estimate of /.

Let /A denote the received codeword corresponding to I. At R, error-detection based 
on CO is performed on /A. If the syndrome is zero, /A is assumed error-free. It will be
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accepted by R and ACK sent to T. While if the syndrome is non-zero, then / A contains 
errors. / A will be saved in the buffer at R and NACK is sent to T.

On receiving this negative response, T sends P(I) to R. Let P{1)A denote the 
received codeword corresponding to P{I). On receipt of P(I)A, R computes its inverse, 
I(P)A. I(P)A is then tested for errors using C l. If it is found to be error-free, then R 
assumes that I(P)A = I  and ACK is sent to T. Otherwise, the blocks P(I)A and IA are used 
together for error-correction based on the (2n, n) code C l. L et/ 0 denote the decoded block 
after this error-correction process. /° (a codeword in CO) is now tested for errors using CO. 
If no errors are detected, it is assumed that 7° = I  and ACK is sent to T. However, if errors 
are found to be present, R discards IA, stores P(I)A in its place and a second NACK is sent 
toT .

The second retransmission will be the block I  itself. So the retransmissions alternate 
between the block I  and the parity block P(J) until the block is successfully received.

The most important feature of this type-II hybrid ARQ is the parity retransmission 
based on the half-rate invertible code C l. Although this protocol can be used with any of 
the three basic types of ARQ, it is particularly effective with selective repeat ARQ. Since 
C l is invertible, the message I  can be uniquely determined from the parity block P(T) and 
so I  and P(I) contain the same amount of information. If the channel error rate is low this 
scheme maintains the same throughput as the corresponding ARQ scheme. While, if the 
channel error rate is high, the error-correction capibility provided by the code C l and the 
parity retransmission reduces the frequency of retransmissions and so the throughput 
remains good.

2.2.4 - A Comparision of Type-I & Type-II Hybrid ARQ Schemes

The main disadvantage of type-I is that the overhead due to the extra parity check 
bits for error-correction is included in each transmission regardless of whether or not it is 
required. When the channel is quiet this is very wasteful. It is best suited for channels 
whose characteristics are fairly constant. Type-II removes this drawback since error- 
detection with retransmission is adaptive. It is particularly attractive for error control over 
channels where the data rate is high, the round trip delay large and the error rate 
changeable.

The decoding complexity for type-II is only slightly greater than that for a 
corresponding type-I scheme designed to have the same error-correcting capability. The 
extra circuits needed in type-II are an inversion circuit based on C l and an error-detection 
circuit based on CO.

In Figure 2.1, typical plots of throughput efficiency versus channel error rate for 
selective-repeat, type-I and type-II hybrid selective-repeat ARQ schemes are presented for 
comparision [5].

For bit error rate of up to about 10'5, the throughput of both S-R ARQ and type-II 
hybrid ARQ are seen to be constant and close to one. Hence over channels, with these 
conditions, both these schemes perform well. Type-I hybrid ARQ remains constant, 
although less than one, for channel error rate up to 10-4.

When the channel error rate is greater than 10-5, the throughput efficiency of SR- 
ARQ declines to almost zero. Simarily, if the error rate is more than 1(H, the throughput of 
type-I hybrid ARQ decrease rapidly. However, the throughput of type-II hybrid ARQ does

PAGE 15



CHAPTER 2

not fall at such a rate under degrading conditions. In fact, the throughput of this scheme, 
has an inflection at 0.5 - since error-correction is performed upon the first retransmission, 
the probability of further retransmissions is reduced.

T
H
R
0  
U 
G 
H 
P 
U 
T

E
F
F
1
C
I
E
N
C
Y

BIT ERROR RATE
KEY
1. Selective Repeat ARQ
2. Type-I Hybrid Selective Repeat ARQ
3. Type-II Hybrid Selective Repeat ARQ

Figure 2.1 - Throughput efficiency o f  various ARQ schem es.

2.3 - GH-ARQ - Generalised Type-II Hybrid ARQ Schemes

In type-II hybrid ARQ schemes, the second retransmission is the same as the 
original codeword. Clearly the performance of the system could be improved if the second 
retransmission is another parity block which can be used to form a (3//, n) error-correcting 
code. This scheme can be generalised to any number of retransmissions before T resends

0.6

0.4

0.2-----
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the blocks in repetition again. This is a Generalised Type-II Hybrid ARQ scheme (GH- 
ARQ) [2], [3].

GH-ARQ uses two codes - namely a high rate (n , k) code CO for error-detection 
only and a (mn , n) code C l which is used adaptively for error-correction. Code Cl is an 
(m n , n) error-correcting code having distance d  and generator matrix G. G can be 
partitioned into m subblocks G\t . . . .  t Gm , each of dimension (n x n). m is referred to as 
the depth of the code.
Then

G = [Gi I G2 I  1 G J .

For code C l to perform as required, it is assumed that the subcode C F f) with generator 
matrix GO) where

G(') = [Gi I G2 I  1 G;]

has minimum distance di such that di < dj for all 1 < i < j < m. By definition, the depth of 
the subcode CIO) is / and obviously CIO”) is just C l,

Let I  denote the block obtained from the message D using the (n, k) code CO. A mn 
- bit codeword, c, is formed using I  and the (mn,n) code C l. 
i.e.

c -  (c i> c2 , ......» cm) =IG  and so c,- = /G/

The data block I  can be uniquely determined from knowledge of c,- if and only if the
corresponding (n x n) matrix Gi is invertible.
i.e.

I  = c/G' 1

Hence the matiix G i is assumed invertible so the data block can be recovered from c\ 
alone (first transmission). It is desirable although not essential that G /, i -  2 ,. , .  m also 
be invertible. This is particularly important when a burst of errors may destroy one of the 
transmissions, yet leave the others relatively error-free.

For I  to be transmitted, T sends the following sequence of blocks until a block is
accepted by R : c\ , c2 , . . . . , cm , ci, c2, --------   cm , c\............

Let R\ denote the received block corresponding to the transmitted block C\. When R 
receives a block Rj , R will either :

(i) compute Et -  R iG f1, an estimate of I, provided G; is invertible. Then, using 
CO, perform error-detection on If Et is found to be error-free then it is assumed that 
Ei = I  and ACK is sent to T. On the otherhand, if Et contains errors, then decode [ R j . . 
Ri] using the subcode Crf). This provides 7°, an estimate of I. Using CO, 7°, is tested for 
errors. If 7°, is found to contain errors, NACK is sent to T and7?i, . Ri are stored in the 
R buffer. Otherwise, it is assumed that 7° = 7 and ACK is sent to T.
or

(ii) If Gp1 does not exist, then decode [7?i . . /?,•], using the subcode CF') to obtain 
7°, an estimate of 7. Error-detection based on CO is then performed on 7°. If no errors are
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found in 7°, ACK is sent to T while if 7° contains errors R\, . Ri are stored in the R 
buffer and NACK sent to T.

For the above sequence of blocks transmitted, R performs error-correction based on 
the codes C F 2), C F 3), C F 4) , .  . . . ,C Fm'F, C l, C l, . . . .  having minimum distance
^2* d-3 , d-4 , . . . . d, d,............ So, with each retransmission, a code with a larger
distance, and hence a greater error-correcting capability is used for error correction until the 
code C l is obtained.

Obviously, the type-II hybrid ARQ scheme, described in Section 2.2.3, is a special 
case of GH-ARQ where m -  2.

For a block 7, T computes a codeword of length mn based on the code C l and so a 
buffer of size mn is needed at both R and T for each block transmitted, T also needs an 
encoder for CO and C l and R requires decoders for each of the codes C F2) , C F3) , . .  . .  , 
C F"1"1), C land an invertor circuit for each a  , i = 1,. . .  . , m.

This scheme may seem rather complex and expensive to impliment. If the 
decoding process for each code C F 2), . . . . , C Fm“F, C l were different, this could 
well be the case and in fact could offset any gain in system performance. Alternatively, 
if the decoding process for these codes were the same, then the GH-ARQ scheme could 
be a great deal better than any type-II hybrid ARQ schemes without overwhelming 
additional system complexity. There follows (Chapters 4-6) a study of a class of codes 
having these necessary properties.
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CHAPTER 3 - Bilinear Forms & Linear Codes

In this chapter, the correspondence between bilinear forms and linear codes is 
presented. Firstly, the mathematics required to illustrate this relationship is given.

3.1 - Mathematical Background

Definition 3.1

A function B(u , v) of two vectors u and v in a given field Fn is called bilinear if 
the following conditions hold :

(i) B (u i + u 2, v) = B (wi, v) + B ( u 2, v ) ,
(ii) B(ru, v) = rB(u, v),
(iii) B(m, vi + v2) = B(m, v i )  + B (u , y2)

and
(iv) B(u, rv) = rB(u , v)

V «, u i,  U2 , v, vi, V2 e  Fn and r e  F.

Definition 3.2

Let F  be a given field and x \ , X2 , . ,  xr be indeterminates over F. The extension 
of F , denoted F |A i, x 2, . .  . .  , x r] is the smallest commutative ring R  such that
Z7 u  ____R- To determine the multiplicative complexity of an
algebraic function over F, we consider the function as an element of F[x\ji2> • . , xr]. F 
is referred to as the field of constants and multiplications by fixed elements of F are not 
counted. The multiplicative complexity of an element aeF{xipc2^ •. . , xr] is defined to 
be the minimum number of multiplications involving a pair of elements from 
F[x\Pt2,. * * • > *r3 that are needed to compute a ,

For example, if a -  X3X1 + X3X2 + X3X3 then the multiplicative complexity of a is 
one since a = x^Qci + x 2 + X3).

Let M(B) denote the multiplicative complexity of a bilinear form B.

Theorem 3.1 - Chinese Remainder Theorem for Polynomials

Consider the following system of congruences,

Y(u) = Yi(u) modulo P\(u)
Y(u) = Y2(u) modulo P 2 (u)

Y(u) = Yt(u.) modulo P{(u) 

where P\(u), P2(uX' F t(«) are relatively prime polynomials.
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The Chinese Remainder Theorem for  polynomials states that Y(u) can be uniquely
t

reconsructed from these congruences modulo P(u), where P (u ) — f j  R  (u )
i =1

The method employed to solve such a system is described below:

Y (u )= S{ (u )Yt (u ) modulo/ 5 (u ),
i =1

where the polynomials Sfu)  satisfy the following congruences,

x= f° modulo/J (w ) j  = 1, 2 , . . , /  ; j  
1 }“ {l  modulo Pf (u )

and the polynomials Sfu)  are given by

Si (u )= R i (u ) Pj (u )
7=1  
j  * i

where the polynomials Rfu)  ai‘e determined from the congnience,

t
P i (u ) J !  Pj (u ) -  1 modulo Pi (u ).

7=1
j

Definition 3.3

Let ri denote a set of k bilinear forms.
i.e.

ri

f x  i , i j y  i \ , i y  2 +  • • + X  i >s y s

r i 2
=

x  u y  i i , i y  2 +  • • + x  2 ,s y s

Xk . i y  i + X k>2y  2 +  . • y s

r

where A, j  is of the form X  amij x m > i = 1* 2 , . . ,k, j  = I, 2 , . . ,s.

#

m = 1

Then, we may express ri as
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■*i, i  X lt2

x  2,1 X  2,2
X  i ,s y i "

' X  2 ,S y  2
=

Xic, 1 X k 2

= Xy

Formally, a computation of ri is defined to be an expression of the form

ri = C(A:e xB y)

where A, B and C are matrices of dimension (n x r), (n x s) and (k x n) respectively over 
F, x  = (r i, X2 x r )T and x represents component-by-component multiplication
of vectors [6].

Informally, a computation is simply deciding on how the terms of the bilinear form 
shall be grouped and on the order of the operations required to compute die bilinear form.

A computation of the form above is said to be non-commutative (NC),[7], since it 
involves component-by-component multiplication between elements of the form

r XT'!
ai x i and -S  Pi yj •

/ = i j  = i

Since the straightforward method of evaluating C (A x  x B y )  involves n 
multiplications between elements of the form above, the computation is said to have 
multiplicative complexity n [6].

It should be noted that matrices A, B and C are not unique, however they are 
related. Let D (x ) denote the (n x n) diagonal matrix whose diagonal elements are the 
elements of the column vector A x  . Then, any computation C(Ax  x jBy) of can be 
written as

Conversely, given a decomposition of X  into C'D'(x)Bf where Cr and B' are over 
F  and D'(x) consists of linear forms of x  on its main diagonal and zeros everywhere else, 
then we have an algorithm, C f(A'x x B'y) for computing Xy where (A'x x B'y) -  
D'(x)B'y . We may therefore conclude that there exists a one-to-one correspondence

= C(Ax x By) -  CD(x)By.

Xy = CD(x)By

and since this holds for every y, it follows that

X = CD(x)B. (3 A)
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between NC algorithms C(Ax x By) for computing d- and the decomposition of X  
described above(3.1).

A decomposition of X  of the form (3.1) is said to be minimal if n is the least integer 
for which such a decomposition exists. Clearly, every minimal decomposition defines an 
algorithm for computing with minimum multiplicative complexity and vice versa [7].

Example 3.1.1

Consider i3-, a system of 3 bilinear forms given by :

=

' X i y i  +  * 2 ) > 2  +  ^ 1 ^ 2  +  * 2 ) > 3  

*  2.y 2 + - ^ 2 ^ 3  + X 3y 3
X 3y 1 + X 3y 3 + X 2y 3

We may express d- in the form d- = Xy.

i.e.

=

Reairanging the terms, we see

>  r

y  2

J 3 .

X i X 1 + X 2 X 2 

X 3 X 2 X 2 + X 3

x  3 0 x  2 3

' * 2 (y 2 +}>3 ) + x  1 (y 1 + y  2) 
( * 2 + *  3 ) ?  3 +  x 2y 2 + ^ 3 ^ 1  

x 3 ( y i + y 3) T x  2y  3

' x 2 (y 2 + J 3 )' 
x  1 (y 1 +y  2 ) 

(x.2 + x i ) y  3 
x 2 y 2 

x  3 J  1 
x 3 (y 1 3 )

x 3

"1 1 0 0 0 0 0"

0 0 1 1 1 0 0
0 0 0 0 0 1 1

From this, we obtain the following computation of ft,
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"1 1 0 0 0 0 0~

#  = 0 0 1 1 1 0 0
.0 0 0 0 0 1 1_

“0 1 0"

1 0 0
0 1 1
0 1 0
0 0 1
0 0 1
0 1 0

x  1 

X 2 

X  3.

X

"0 1 r
1 1 0
0 0 1
0 1 0
1 0 0
1 0 1
0 0 1

y  i 

y  2

J 3 .

This computation of ft has 7 multiplications. It was stated above that a computation of i3- is 
not unique. There are many other computations, including the one below, which is 
minimal.

=

1 1 0  0 
0 1 1 0  
0 0 1 1

'1 0 0"
0 1 0
0 0 1

.0 1 0_

x  1

x 2
x  3.

X

”1 1 0"
0 1 1
1 0 1

_0 0 1_

y  i 

y  2

L? 3.

Definition 3.4

Let z = (zi, Z2*..... , Zk)T and let C(Ax x By) be a computation of i>, a system of
k bilinear forms. The P-dual of the computation is the algorithm AT(CTz x By) and the R- 
dual is B T(Ax x CTz) [2],

Example 3.1.2

The P-dual of the minimal computation of 'B given in Example 3.1.1 is

■ 1 0 0 0~
<& = 0 1 0 1

.0 0 1 0_

while the R-dual is

'1 0 1 0“
¥  = 1 1 0 0

0 1 1 1

~1 0 O'
1 1 0
0 1 1

0 1 _

‘1 0 0"
0 1 0
0 0 1

.0 1 0.

2 i 
22 
.2 3

X 1 

X 2 

A  3.

X

X

"1 1 0"
0 1 1
1 0 1

_0 0 1_

1 0

o
'

1 1 0
0 1 1
0 0 1_

y  i 

y  2

y  3 .

2 1 
2 2 

.2 3 .

Theorem 3.2

The following statements are equivalent
(i) there is a computation having n multiplications for the system C{Ax x By),
(ii) there is a computation having n multiplications for the system AT(CTz x By),
(iii) there is a computation having n multiplications for the system Br{Ax x CTz),
(iv) there is a computation having n multiplications for the system BT(Crz x Ax),
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(v) there is a computation having n multiplications for the system AT{By x CTz) 
and
(vi) there is a computation having n multiplications for the system C(By x Ax) [6].

Proof

Suppose x = (xi,x2,- •>*;-), y  = (yuy 2 >- - Js)  and z  = (zi,z2,.

(i) (ii) Suppose (i) holds, then matrices A , 5  and C are of dimension (n x r), (w x j) and 
(£ x «) respectively. Thus CTz  and By are column vectors of length n and (CTz  x By) 
involves « component-by-component multiplications. It follows that AT(CTz  x By) has n 
multiplications and so condition(ii) is true.

(ii) (i) Since system (ii) can be computed using n com ponent-by-com ponent 
multiplications, the matrices A , B  and C are of dimension (n x /*), (n x  5) and (k x n) 
respectively. Further, (A* x By) involves n component-by-component multiplications, 
so that the computation C(Ax x By) has n multiplications. Hence result.

A similar argument can be applied repeatedly to show the equivalence of all six 
statements.

#

The following theorem establishes either a row or a column orientated lower bound 
on the number of multiplications necessary to compute a system of k bilinear forms, 
while Theorem 3.4 gives a lower bound which is both row and column orientated.

Theorem 3.3

Let Xy be a system of bilinear forms over F where X  is a (t x n) matrix with entries 
Xij e f [ r ]  and y = (yi, . . ,  y n)T. If the column rank of X  is a ,  then any algorithm 
computing Xy  requires at least a  multiplications [8],

Dually, if the row rank of X  is p, then any computation of the system requires at 
least p multiplications [2],

In order to prove Theorem3.3, we require the following definition.

Definition 3.5

Let fl = (L, Q) where L  is called the carrier of the algebra and Q. denotes the set 
of (possibly partial) operations. Let D  be the cartesian product of i copies of L.

An i - aty operation on L is a map
CO ^  L

while a partial i - aiy operation on L is a map
co ■. Y1 —̂ L

where Y-, is a non-empty subset of D.
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In constructing an element a e  R ,  we start with B, a certain subset of fl and 
construct other elements of fl from elements in B using the operations in O.

Then, an N-step algorithm T  over (fl, B) is a mapping

r  : {1,2 ,. „ N  } ---- > B u ( . U  {<*>; } x { l ,2 „  „N  J

subject to the constraint that if r ( 0 =(co/,y’i , , .,ym-) then j s < t  for s = 1,.
A ssociated w ith each algorithm  T , there is a (partial) function 

er  : {1,2,. ,,N} —> fl given by
(a) erO) = TO  i f F ( / ) e B
(b) er (0  = coj(er(/i)» • •» er(JW)) if r(*)=(co,-Jj, . and er(js), s = 1,. „nt 

and co/(^r(/j)» . er(/w)) aie defined.

Further, the function er  is total provided er(i) is defined, i =1, 2 ,.., A.
So, the function F(z) is the sequence of operations which the algorithm executes 

while er(i) is the sequnce of elements which F computes.

Example 3.1.3

Let F  = GF(2), fl = F(^i, x%, *3) and B = f u j r p  x2, X3}. Further let T  be the
following 8 -step algorithm over (fl, B) where coi and CO2 denote multiplication and
addition respectively : T ( l )  = x \ ,  T (2 ) = ;t2, T (3 ) = * 3 , F (4 ) = ((»!, 2, 3),
r ( 5 )  = (coi, 1, 3), r ( 6 ) = (co1? 1, 1), T(7) = (co2, 5, 6) and T (8) = (co2, 4, 7).

It is easily verified that ep is total and

er (8) = x2x3 + xix3 + xixi.

Proof of Theorem 3.3

To prove Theorem 3.3, we shall first consider the number of multiplications 
necessary to compute Xy + p where matrix X  and vector y  are as stated in Theorem 3.3 
while p = (pi, . ., p,)7’; p,- e F, i -  1, 2, . .,f. Within this proof, it will be assumed that 
all algorithms are over (fl, B) where fl = F(y 1, . ., yn) and B -  F u { y i, . ., y„}.

Let r  be an algorithm computing Xy + p. Recall, multiplications by fixed elements 
of F do not contribute to the multiplicative complexity of the algorithm. So if T  has a step t,
such that r ( f)-(* , 7*1, 7*2) where ertii) & F and erij i)  £ F, then this 'multiplication is 
counted’. Otheiwise the step t does not involve a multiplication which is counted.

Suppose that the first k steps of F do not involve a multiplication which is counted. 
Then, clearly step z, i -  1, 2 ,. k does not involve any multiplications between any y/s. 
Hence, <?rO), i = 1, 2, . A: must be of the form
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e r ( i  ) -  S jJ v  yj + 8 i (3.2)
j= i

for some f/^-e Z7, z = 1, 2, . .,&,/ = 1, 2, . ., n and some g,-e F.  Infact, these elements 
form a vector space over F.

To prove that if X has column rank a , then any algorithm T  computing Xy  + p, 
has at least a  multiplications which are counted, we shall use induction on a.

a  -  1
Suppose r  involves no multiplications which are counted.
Since the column rank of X  is one, there must exist *’*, j*  (1 < i* < t , 1 <j* < n) 

such that xi*j* £ F. Now, T computes Xy + p and so some step s must be of the form

^ r  %i * ,j yj T f i * (3.3)
; =i

for some i> e F.

The first s steps of F do not involve a multiplication which is counted and so it 
follows from (3.2) that there exist f j e F , j -  1 ,2 , . n and g e F  such that

e r (,y ) -  IL f j  yj + 8  ■ (3,4)
y' = i

Comparing the expressions (3,3) and (3.4), we see that jt/ * - contradicting 
Xi*j* £ F. Hence T  must have at least one multiplication which is counted.

We shall assume that our assertion is true for a . Let T be an algorithmn minimising 
the multiplicative complexity of the system Xy + p and let the column rank of X be a+1.

Let k  be the smallest integer such that a multiplication that is counted occurs at step 
k. Then r (£)=(*, y i,7*2) where er(/i)£ F and <?r(/2)  ̂ F . However, since no steps before 
step k have multiplications which are counted, we may express erO’i) and eyiji) in the 
form (3.2). Then,

er(k) = er(Ji) * er(/2)

= ( £ / *  + * ) * ( & ! ' * ■  V

for s o m e  Z7, i = 1, 2,. n and some g, g ’ e F.

Observe,(at the very least) either one of the// or one of the //1 must be non-zero. 
For otherwise, er(j\) -  g ^ F  and erfc) = g'e F and the multiplication at step k would not 
be counted. Without loss of generality, we assume that one of the/)1 is non-zero. Infact,
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we may assume that/„' ^  0. Moreover, since multiplications by /„' are not counted, we
n -  I

may take f n  — 1. Let h  e  F  be such that if we substitute y n  with h -  g  ' -  ' L f  'yi ,
i =1

the resulting algorithm F  is such that e r is total. Consider this substitution, we have

'*11 *12 
* 2 1  *  22

X t 1 * r  2

*  I n  

* 2  />

* / / i

y  i 

y  2

yn -1 
h - g  ' - ' L f l f f i  fy t

_p r

P  2

+ *

_P f  _

*  n y  i +  * 1 2 ^ 2 +  . * T  *  1 n - l ^ / i  - 1 *  i / i  ( h ~ g - I j  ~ ? f  %  ) ' p r

* 2 1 ?  1 +  *  2 2 ^  2 +  . +  X  2,1 - l ^ / i  - 1 + * 2 / i  i f - g 'y i  ) P  2

* + •

* f i y  i +  x t 2 y 2 . +  * f « - 1 )>/i - 1 + X tn ( h  ~ % i = i f  %  ) j P t  ,

( *  11 - f \ ' x  1/t )>? 1 +  ( *  12 • " / 2 *X 1« ) y  2 + .  • +  ( *  1« - 1  ~ f n  - l ' x  1„ ) y „  - I  

( x  2 1 —/  1 ' x  2n ) y  1 +  ( *  22  “ / 2  ' x  2 n 2 +  ■ • +  ( *  2n -  1 ~ f n  -  1 *X 2 n ) y n  -  1

( * f  1 ~ f  1 % n  ) y  1 +  ( * f  2 2 ' X tn ) y  2 +  • • +  ( * f  n - 1  ~ f n  -  1 ' x [n ) y n _ j

+

P  1 +  *  In {h ~ g  ' )  

P  2 +  *  I n  ( h  ~ g  0

P t + x t„ (h - g  0

*  11  - f l ' x  u  X 12 - f l X  Ul

* 2 1  f  \  *X 2 n * 2 2  ~ / Y * 2 , i

* r  1 ~~f 1 'Xtn X-t 2 “ /  2  'x t

*  1 n — 1 f n  — 1 * 1 / j

* 2 h — 1 jCi — 1 *2/i

* f  n — 1 f n  — I X {

+

1
y i

yn - 1
p” i +A' i„ (A - g  O' 
P 2  + * 2 / ,  (h ~ g  0

p t  + x tn ( h  - g  o
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Let X\,  X2, . X n denote the columns of matrix X.  Then clearly after the above 
substitution, we have an algorithmn F' which computes X'y' + p', where X'  is a 
t x (n -1) matrix with columns X /  given by X /  ~ X j - f f X n, j  = 1, 2, . ., n - 1, 
/  = O iO ^- *>y«-i)T and p' = p + (h - g')Xn. Step k of F' is not a multiplication which

n — 1

is counted. Further, *F, the algorithm computing h -  g ' -  'yj has no
/ = 1

multiplications which are counted. Hence, the multiplicative complexity of F  is at least one 
less than that of F. But the column rank of matrix X' is at least a  and so by our induction 
hypothesis F  has at least a  multiplications which are counted. It follows that T involves at 
least (cx+1) multiplications which are counted. Thus, we have proved the result for 
computing the system Xy + p.

To prove theorem 3.3 - simply take p = 0.
#

Theorem 3.4

Let Xy  be a system of bilinear forms over a field F, where F contains the entries of 
X  as indeterminates. If X  has an (a  x P) submatrix S such that

uTSv e F iff u = 0 or v = 0.
V k g  Fa and v e F$

Then, the multiplicative complexity of Xy is at least a  + P - 1 [9].

Proof

Suppose X is a (m x n) matrix and y = (y\,y2 -,yn)T’ Further, suppose that Xy 
may be computed in t multiplications.

Let X1 be the (a  x n) submatrix of X, which contains the (a  x p)  submatrix S. 
Then, since Xy can be computed with t multiplications, there exist matrices A, B and c of 
dimension (a  x t), (a  x n) and (a  x 1) respectively, with entries from F, such that

X'y = A p + By  + c .

Recall,(V O&i e Fa and O^v e FP), utSv £ F and so the rows of X' must be 
linearly independent over F. Then, by Theorem 3.3, a >  t.

Now partition matrix A into 2 matrices A1 and A2 such that A2 has a  rows and a -1  
columns. Then, there exists a, a (1 x a) vector over F such that

c1A 2 = 0.
Then, writing ji = (pi,p2)T, where pi corresponds to the first t - a+1 elements of 

p, we have
aX'y =u{[Ai I A2](Pi,P2)T’ + Fy + c]
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= flAijii + aBy + ac 
— ft'jiii + by + d.

So, aX' is a non-trivial linear combination of the rows of X' such that aX'y  can 
be computed in r-a+1 multiplications. However, uTSv <£ F  and thus aX' must have at 
least (3 linearly independent columns over F. Then, by Theorem 3.3, aX'y has a 
multiplicative complexity of no less than (3. 
i.e.

t - a  + 1 > p 
t > (3+ a  -1

Hence result.
#

3.2 - The Multiplicative Complexity of Bilinear Forms & Linear’ Codes

The following theorem establishes a correspondence between linear (n, k, d) codes 
and algorithms for computing a system t3- of k  bilinear forms [2].

Theorem 3.5

Consider a system 'd = Xy of k linearly independent bilinear forms. The (k x n) 
matrix C in a computation d  = C(Ax x By) is the generator matrix of a linear (n , k, d') 
code over F  where

d '> d  = min {p(uTX ) }
V u e Fk , u ^  0

and d = design distance and d~  actual minimum distance.

Proof

Recall, M{d) denotes the multiplicative complexity of the system We observed 
previously that for any integer n > ri may be computed as d  = C(Ax x By) where 
matrices A, B and C are of dimension (n x r), (n x s), (k x n) respectively.

The row rank of X , p(X), is k, then by Theorem 3.3, any computation of d  will 
require at least k multiplications, i.e. n > M(A) > k. Hence n > k.
Further, (Ax x By) involves n component-by-component multiplications. So the above 

computation of has n muliplications provided all k rows of C are linearly independent. If 
C had any dependent rows, this computation will require fewer multiplications. It follows 
that p(C), the rank of C must be k.

So we have shown that C is a (k x n) matrix where n > k and all k rows of C are 
linearly independent. Thus, matrix C can be considered the generator matrix of a linear 
(h, k) code over F.  A typical codeword is c7’= (ci, C2, • • • • , cn) where
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cT -  u TC and u T=(ii\, 112, . . . . , «*)*
We have

$  = Xy  = C(Ax  x By)
which implies

uTXy -  u TC{Ax  x By). ( 3.5)
i.e.

uTXy -  cT(Ax x By).

Consider any entry c,* of a non-zero codeword c (i = 1 ,2 , . . ,  «)• Observe if

(i) Cj & 0 then zth component-by-component multiplication of (Ax x By) is 
necessary.

while if
(ii) Cj = 0 then the zth multiplication need not be done as it will disappear when 
multiplied by q .

It follows that the weight of any non-zero codeword c (i.e. the number of non-zero entries
of c) cannot be less than the multiplicative complexity of cT(Ax x By).
i.e.

w(c) > M( cT(Ax x By))

Further, by (3.5) the multiplicative complexity of cT(Ax x By) is equal to the multiplicative
complexity of uTXy .
i.e.

M( c t ( A x  x By)) = M(uTXy)

Finally, by Theorem 3.3, the number of multiplications necessary to compute uTXy is 
greater than or equal to the row rank of uTX. 
i.e.

M(uTXy) > p( uTX)
Hence, we have

w(c) > M( cT(Ax x By)) = M(uTXy) > p ( u TX  ).

Hence result. ^
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3.3 - A Particular Bilinear Form

We shall now study i3, a particular system of k bilinear forms given below :

= X y =

■ x  0 X  1 X  2 Xd  - 2

X i X  2 x 3 Xd „ i x d

X  2 X  3 X 4 Xrf Xd +1

X k - 1 Xk ** +1 k + d  — 3 Xk + d  —

y  i

yd- i

(3.6)

Consider aTXb for any non-zero a e  Fk and non-zero b e  Fd.

aT X  b = [ a 0 a i . . ak - 1]

j =o Vi =o

■| * o X . . .  Xd _!  - ~ b  o "

x  1 X 2 . . . Xd

IX
... 

1

• -Tt + a - 2 _ ”1
1

i

•J >
* O, i Xi + j bj
0 )

Let / be the largest integer such that 0 < / < k-l and ai ^  0. Similarity, let m be the largest 
integer such that 0 < m < d-l and bm̂ 0. In otherwords, #/, bm are the last non-zero entries 
of vectors a and b respectively. Then,

m_ {  _l^

%i + j  
j  -  0 \ , i  = 0  J

bj .

Clearly, a[bnix.i+m ^0 and since this is the only term, of the above summation, involving 
xi+m, it follows that aTXb & 0, for all non-zero a € Fk and b e Fd.
Moreover,

p( aTX ) -  d V non-zero a e  Fk.
For,

aT X  = Xi , S f r o x i + u  . . , X ■ Tq a, x-t +</_ i]  .

and if there exist/o ,/i, . . ,/Xi e / \  not all zero, such that

f  o l  Qi x i +  f i L  Qi * i  +1  +  • ■ +  f d - 1 2L a i X i  + d - 1  =  0
/ = 0  i =0 /' =0

fd-1  F Xi
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then taking b = ( /o ,/ i , . . ,/</. 1), we have

&T X  b = ^  | X  « / +j fj = 0 
j =o v* =o y

-contradicting arXb  ^  0. Hence f i  = 0 y = 0, 1 , . . ,  d-1 and p( -  <1

Thus, if -0- is computed in the form C(Ax x By), it follows from Theorem 3.5 that 
C is the generator matrix of a (n, k , d') linear code over F where d' > d -  p (aTX). n 
denotes the multiplicative complexity, which by Theorem 3.4, is at least k+d-1. When n is 
actually equal to this lower bound, the corresponding code is known as maximum- 
distance-separable codes.

In an attempt to derive an algorithm for computing system (3.6), consider the P- 
dual of the computation, C(Ax  x By). Recall, the P-dual  <E> is AT(CTz  x By)  where 
z = (zq, z i, zjfe-i)r . It can be shown that the P-dual  computation corresponds to
the lower triangular sytem of bilinear forms (3.7) given below (for details see Appendix A):

<D

00
0 i

*

= Z y  =

0w - l

zo 0 0
Z 1 zo 0

z 2 z 1 z 0

zk -1 zk - 2 zk -3
0 zk -1 zk -2
0 0 Zk -  1
0 0 0

0

zo

z* -1 zk -2 
0 0 0 0 Z * _ !

y  o 
y  i

y d -1

Consider the polynomials
k - 1„  , d - 1

Z ( u )  -  2L zj u J and Y (u ) = X  Yi 11
j =o /= o

Looking at the form of matrix Z in (3.7), it is obvious that the N = k+d-1 bilinear 
forms <j)o, l of ̂  are simply the coefficients of the polynomial 0(u) where

N - 1
0(M ) = L  0/ 111 = Z (M )Y (M ) 

/ = 0
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and

<k = X  JV .
o<y <k - l
0 < /  < d - l  

j  + t  - i

We say that the sequence 0o» • 0am is the simple aperiodic convolution of the sequences 
z j , j  = 0,1,. ., k-1 and yi, / = 0, 1, . d-1. Hence, the dual bilinear form (3.7) may be 
computed as the polynomial product

®(u)=Z(u)Y{u) (3.8)

Two methods which can be used to find this product will be studied in Chapter 4.
Recall, <b is the P-dual  of the computation ri = C(Ax x By). Thus, <E> may be 

expressed in terms of matrices A, B and C as <J> -  A T(CTz x By). Also, we stated 
previously that if ri is computed as C (Ax  x By),  this computation requires n 
multiplications. It follows from Theorem 3.2 that the P-dual  computation <J> has n 
multiplications. So, by (3.8), n is the multiplicative complexity of the aperiodic convolution 
of length N  -  k+d-l. Finally, if this P-dual is computed as <I> = P(Qz  x Ry), then C = 
QT. Thus we have shown that by computing the aperiodic convolution of two sequences, 
we compute the P-dual 0  given by (3.7) . From this, we may obtain the matrix C - the 
generator matrix of a («, k, d') linear code over F (where d'>d).

PAGE 33



CHAPTER 4

CHAPTER 4 - Efficient Algorithms for the Aperiodic Convolution of 
Two Sequences

We are now aware of the importance of the aperiodic convolution of two 
sequences in the generation of a special class of linear codes. The multiplicative 
complexity of the aperiodic convolution is equal to the length of the corresponding 
lineai* codes. Thus, we wish to develop efficient algorithms to compute the aperiodic 
convolution of two sequences. We shall look at two methods [2] :

(i) a large degree polynomial product is represented as a number of small 
degree polynomial products.
(ii) a one-dimensional polynomial product is converted into multidimensional 
polynomial products.

4.1 - Convolution Algorithms Based on the CRT

Consider the polynomial product

<X>(w) = Z(u)Y(u)

where the polynomials Z(u) and Y(u), of degree k-1 and d -1 respectively, are as 
described in Chapter 3. Recall, N  = k+d-l. d>(«.), being of degree N -l, is unchanged if 
it is defined modulo any polynomial P(u), provided degtP(w.)] > N. 
i.e.

$(w)sZ(m)7(«) modulo P(u) and degfP(/./)] > N.

Suppose P(u) is the product of t co-prime polynomials, 
i.e.

t t

P (w ) = Pi (u ) where deg [P,-(w.)] = oq and ^  cq > N  .
i = 1 i = l

Then, <f>(z/) may be found by first reducing the polynomials Z(w) and Y(u) modulo
Pi(u) (i = 1, 2, . t).
i.e.

Z,-(m) = Z(u) modulo P{(u)
Y,(u) = Y(u) modulo Pj(u) 

for / = 1, 2 , , . , t .

These form t congruences d>,(w) given by,

<!>,■(//) = Z;(w)7/(w) modulo Pj(ju) 
for i =1,2,. . , t .

Using the CRT, may be uniquely reconstructed from these products. Let M(a,) be 
the number of multiplications required to calculate the polynomial product
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<3>i(u) = Zi(«)F/(H) modulo P{(u) where deg[P/(w)] = a,-. It should be noted that 
M(ai) depends on both the degree of P&u) and on the actual form of P/(«).

n, the length of the linear code generated is equal to the multiplicative 
complexity of the above computation and is given by

We noted earlier, the wish to develop algorithms with as low a multiplicative 
complexity as possible for desired values of k and d. If P{u) has degree D, its factors 
Pi(u) (7 = 1, 2 ,.., t) are chosen so as to minimise the complexity of the computation 
Z(u')Y(u) modulo P(u). It has been found that a large number of small degree coprime 
polynomials tends to result in an efficient algoritlim and hence the following conditions 
should be satisfied:

(i) Pi(u) and Pj(u) have no nontrivial common factors, 1 < i <j  < t, i & j>

(iii) Each of the polynomials Pi(u) is of the lowest possible degree.

Obviously the resulting P(u) will depend on the field of constants F. For 
example, if D -  3 then over GF(2), P(u) -  (u+\)(u2+u+l) would be the 'best' choice 
while over GF(3), P(u) = u(u+l)(u+2) would minimise the complexity of computing 
Z(u)Y(u) modulo P(u).

The efficiency of the algorithm can be further improved by modifying the above 
procedure to permit intentional wraparound of the polynomial coefficients.

e.g. if M(N-1) < M(N)  then it is more efficient to calculate <!>(«) from the 
product Z(u)Y(u) modulo P'{u) where deg[F'(u)] =N -1, with one extra multiplication 
Zk-i-yd-i-

Similarly, where M(N~2) < M(N-1)~2 < M(7V)-3, it may be desirable to 
compute <F(w.) from the product Z(u)Y{u) modulo P"(u), deg[F"(u)] = N-2 with thi*ee 
additional multiplications.

Further, it should be noted that the computation Z(w.)7(w) modulo Pi(u) where 
Pi{u) = (u - ai)a i requires fewer multiplications than a similar computation where 
Pi(u) -  (m -aj)aj ..(u - ak)ak and deg[P;(w)] = a,-.

The modified algorithm to compute the product Z(u)Y(u) where deg[Z(w.)] = k-1 
and deg[T(z^)] = d-1  can be generalised by the following :

Method 1 Computation of Z{u)Y{u)

If k = d = 1, then clearly the result is obtained by one multiplication. 
Otherwise, an integer s is chosen so as to minimise the total number of multiplications 
needed to compute

(i) Z(u)Y(u) modulo P(u) where deg[P(z<)] = ACy,

n -  M (N ) = Z , M  (Oi ) .
i =i

i =i
and
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and
(ii) Z (u ) Y  (u ) modulo u s where Z {u ) = Z (11 1) u k ~1 and 
~ T ( u )  = Y (u ~l )u  d~l 

Then, s denotes the number of wraparounds and N  = deg[/5(w)]+1?.

Method 2 To find Zj(u)Yj(u) modulo Pi(u)

There are two cases:

2(i) Pi(u) -  (u - ai)ai , a ie  F  then use method 3
2(ii) Pi(u) * (u - dif-i then compute the ordinary polynomial product Z;(«)7;(w) 

and reduce modulo Pj(u)

Method 3 To find Z/(w)F,(w) modulo Pi(u) where P,-(w) -  (u- di)ai, dt e F

Again there are two cases :

3(i) a i -  0 then use which ever of the following 2 methods has lower 
multiplicative complexity

(a) Use method 2(ii)
or

(b) Let
Zi (u ) — z o' + z \ 'u. . . + za. _ i 'u at “ 1

U  (it ) = y  o 7 +  y  1 +  . .  +  y ai - 1  'u  “ ■ 1

and define
f $ 2 \ f  s 2

I v  X Vms  \ S  2

Then,
lJ  2 " f  f f l s  1 + 1,5 2 "  I 1 2 ~  5 _  1 + 1 ,S 2 ] 3^5 2 f  2 3 s  1

and [10]
f 3 (B + 1 ) -1  for <Xi = 2 3  - 1  

M (Z, (u )Y; (u ) modulofl (« ) ) = |  p  ^  +2) for ^

3(ii) d{^  0,define

Z/(m)* =  Z iu .  +  fit/)
1%*)* = Yi(u + dd

Now, compute d>;(z/)* = Z;(w)*7,(i/-)* modulo wai as described in 3(i). Then, 
<!>,•(«) = d>/(w - fir,-)*.

If all the computations Z,(w)T,(w) modulo (».+fl/)ai are performed using method 
2(ii) above. Then, for a,- < 2, this does not result in any increase in multiplicative
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complexity and so the length of the code remains unchanged. For a,- >2, although there 
is an increase in complexity , it is very small and dependent on the field of constants 
[2].

Using the basic procedure outlined above, it is possible to design bilinear 
algorithms for a given value N  . Examples using this algorithm as presented in 
Chapter 5.

4.2 - Multidimensional Convolution Algorithms

We shall now describe briefly a second method which may be used for 
computing the polynomial product

®(u)=Z(u)Y(u)

where, as before, <3>(«), Z(u) and Y(u) are polynomials of degree N -1, £-1 and d- 1 
with coefficients <|);, i = 0,1,. ., N - 1, z j , j  -  0, 1, . ., k-1 and y/, 1 = 0, 1, . ., d - 1 
respectively.

Let k and d be composite numbers sharing a common factor c.
i.e.

k -  k\c and d = d\c

Then define j  = C/2+ /W 2 = 0, 1 ,. ., & i-l,/i=  0, 1, . ., c -1 ,1 = c/2+/i, h  = 0, 1, . .,
d \ -1, l\ = 0, 1,. ., c-1 and u\ = uc.

Let Z(w, « i), Y{u, u\) and d>(w., u\)  be the two dimensional polynomials
corresponding to the polynomials Z(w), Y(u) and O(w) respectively. So

Z (u ) = Z  (u,u 1) = 2 j Z j 1 ( u \ ) u  Jl
7 1=0 

C-1
Y (u ) = Y (« ,« ,)  = 2 .  Yh ( u , ) u  h

I 1=0
where

k^ 'Zj 1 (u 1) — 2 j  zcjz+ji i i { 2 
j 2 = 0

dj- l
Yi , (mi) = X  yci2+ h u t 2

l 2 = 0
and so

c - 1  c - 1

® («.« 1) = Z  Z  Z j , (« )Y, ,(«  ) « ' 1 +' 1 . (4.1)
J1=0/1=0

Then Z(u, u{) is a polynomial of degree c-1 in u where each coefficient is a 
polynomial of degree k\-l in u\. An analogous statement may be made about Y(uy u{).
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d>(«, zq) is computed as the product of two polynomials each of degree c-1. In 
this computation, every multiplication is substituted by the product of two polynomials 
of degrees k\-\  and di-1. If

n\ = no of multiplications required to compute the product of 2 polynomials of 
degrees £ i-l and di-1

and
ti2 = no of multiplications required to compute the product of 2 polynomials 
each of degree c-1.

Then, using (4.1), <f>(w) = Z(u)Y(u) has multiplicative complexity n where,

n = n\ti2 .

This method may be extended to obtain m-dimensional convolution algorithms 
(m>2). In the 2-D case, it should be noted that the first dimension corresponds to the 
generation of a code Ci where code dimension = minimum distance = c. While, the 
second dimension corresponds to the generation of a code C2 of code dimension k\ and 
minimum distance d\. The resulting code is simply the product of C\ and C2. Such 
codes are referred to as product codes. Since a great deal is already known about these 
codes, we will not develop this topic any further. An example of this multi-dimensional 
approach for computing 0(u) = Z(u)Y(u) is given in reference[2].

The aperiodic convolution algorithm and the multi-dimensional convolution 
algorithm are compared by their associated multiplicative complexity. Since the 
multiplicative complexity is equal to the length of the associated linear code, usually the 
algorithm involving the least multiplications would be favoured. However, when k or 
d is prime or when k  and d share no non-trivial common factor, we have no alternative 
but to use the aperiodic convolution algorithm.
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CHAPTER 5 - KM CODES

We now wish to compute the aperiodic convolution of 2 sequences of length k  and 
d respectively over a specified field F and hence obtain the generator matrix of the 
corresponding linear code. These codes shall be referred to as KM (Krishna & Morgera) 
codes. The convolution algorithm based on the CRT (see Section 4.1) will be used. The 
non-commutative algorithms for small degree polynomial multiplication of Appendix B are 
used in these examples.

5.1 Binary Codes

Firstly, we will work over GF(2) in order to obtain binary KM codes.

Example 5.1.1 - Bilinear Convolution Algorithm of Length N  = 8 & the Corresponding 
Code

N  — 8 = k+d-1. Hence k+d — 9. Let k = 6 and d = 3.
Then Z(u) = zq + zyit +z2«2 +Z3M3 + Z4M4 + Z 5115 , Y(u) = yo + y\u  + yiu2 and d>(w) = tj>o + 
§yu + (J)2«2 + (j)3W3 + <j>4w4 + 05u5 + 06M6 + 07W7. Since deg[P(«)] + s = N  , and P(u) has to 
be chosen so as to minimise the multiplicative complexity of the algorithm, we take 
deg[P(z/)] -  6 and allow for two wraparounds i.e. s = 2

Note This choice for D and s is not unique. D = 7 and s = 1 would also produce a code of 
'minimal' length.

Then,
P(u) = u2(u2 + 1)(«.2 + u + 1) = Pi(ii)P2(u)P3(u).

We begin by reducing Z(u) and Y(u) modulo P\(u), i -  1, 2, 3. 

i -  1
Z\(u) = Z(u) modulo u2 

=  ZQ +  Z \ U

and
K^w) = Y(u) modulo it2 

= yo + yiit.
Let,

mo = z0.yo,
m 1 = zi.yi

and
m 2 = (zo + zi)*(yo + y i).

Then,
<Y>i(u) =<Y>(u) modulo it2

— mo + (mo + my + 1112)11 .
i -  2
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and

Let,

and

Then,

i = 3

and

Let,

and

Then,

Z2(zz) =Z(w) modulo (m2+1)
= (z0 + z2 + z4) + (zi +z 3 + z5)u

Y i (m) = Y(u) modulo (w2+ l)
= Cyo+y2) +y\u.

m3 = (z0 + z2 + z4).(yo + yi),  
m4 = (z i + z3 +z5).yi

= (zo + zi + z2 + z3 + z4 + Z5).(y0 + y i  +  y i)  •

d>2(w) s  <3>(zz) modulo (w2+ l)
= (m3 + m4) + (m3 + m4 + W5)m .

Z3(«) ~Z(u)  modulo (w2+w+l)
= (z0 + z2 + z3 + Z5) +(zi + z2 + z4 + z5)u

F3(m) = F(w) modulo (m2+«+1)
= O0+J2) + (y\+yi)u.

m6 = (z0 + z2 + z3 + z5). (y0 + y i) , 
m i  = (zy +z2 + z4 + z5).(y! + y2)

m8 = (^o + zi + z3 + z4).(y0 + y 1).

0 3(w) = <J>(w) modulo (zz2+zz+l)
= (me + m7) + (me + m%)u .

Using the CRT, we are able to recover the polynomial <D(w) modulo P(u), from the 
polynomials d>j(zz). 
i.e.

3

i =1
d>(« ) = (w )<£>,• (zz ) modulo E (u )

The polynomials S;(zz), i =1, 2, 3 are found as follows (using the same notation as in 
definition of the CRT(Theorem 3.1)):

i = 1
^i(m)jP2(m)^3(m) = 1 modulo zz2 

i.e. Ei(zz)(zz2+1)(zz2+zz+1) = 1 modulo u2 
i.e. Ri(iz)(iz4+zz3+zz+l) = 1 modulo u2

Hence R y ( i t )  -  u+l and S y ( u )  -  zz5+zz3+zz2+ 1.
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i = 2
R2{u)Pi{u)P2,{u) =1 modulo (w2+ l)  

i.e. R2(u)u2(u2+u+1) = 1 modulo (w2+ l)  
i.e. R2(u)(u4+u3+u2) = 1 modulo (w2+ l)

Hence /?2 (w) = u and 82(11) = u5+u4+u3.

i = 3
Rs(y)Pi(u)P2(u) = 1 modulo (u2+u+1) 

i.e. /?3(m)m2(w2+ 1) == 1 modulo (w2+w+l) 
i.e. R3(«)(m4+m2) = 1 modulo (u2+u+l)

Hence Rs(u) = 1 and S^(u) -  u4+u2.

Then,

3I
i =1

<3>(u ) = ^ 5 /  (w )<E>, (u ) modulo P (u )

= (1 +u2+u3+u5)(mo+(mo+m 1 +ni2)u)
+ (u3+z/4+w5) (m 3+W4+(m 3 +w 5) u) 
+(u2+u4)(m6+m2+(m(,+ms)u) modulo P{u)

~m o  + (rno+mi+m2)u + (mo+m6+m7)zz2
+ (mi+m2+m3+m4+m6+m$)u3 + (mo+mi+m2+m5+m6+m7)w4 

+ (mo+W5+m6+mg)M5 + (mo+mi+m2+m3+m4+m5)w6
modulo (u6+u5+u3+u2)

= mo + (mo+mi+W2)w + (mi+m2+W3+m4+m5+m6+m7)a2
+ (mQ+ms+me+m^u3 + (mo+mi+m2+m5+m6+m7)w4

+ (mi+m2+m3+m4+m6+m.8)w5

Hence, if <1>A(«) = <3>(z/) modulo P(u) then,

0 A(ll)  =  0 o A +  ( j ) i A W +  ( |) 2 A 22.2 +  {{>3A Zy3 +  (j>4A ZZ4 +  §5 All5
where,

<>0A = mo>
( } ) iA  =  m o + m i + m 2 ,

cj)2A = 7Hi+m2+W3+m4+m5+m6+/W7,
(f>3A = mo+m5+w?6+fflg,
<t>4A = Wo+mi+m2+W5+7??6+m7

and
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c|)5a _ /?21-fm2+m3+m4+m6+m8.

Intentional Wraparound

Since two w raparounds are involved , we wish to calcu la te  
Z (u ) Y (u ) modulo u 2

Now,

Z (u ) = z5+z4 u+z3u2+z2u?+zlu4+z0u5 

= Z5+Z4U modulo u2

and
T ( u  ) = y 2+yiu+y0u2

= y 2+y\u modulo u2.
Let,

W-9 = zs.y2j
m 10 = z4.yi

and
m u  = (^4+Z5).(yi+),2)-

Then,

Z (u ) Y (u ) =mg+(m9+miQ+mn )u modulo u2.

Recall, the ordinary polynomial product is d>(zz) = Z(ii)Y(u) = tj>o+ §\u+ §2ul+ 
c()3W3+ (j)4W4+ (j>5u5+ (})6«6+ <{>7u1 and <I>A(«) = <X>(w) modulo P(u). So the coefficients (j>,-, 
i = 1, 2, . ., 7 are given by :

<|>o = mo>
<j>i -  mo+mi+m2,
(j)2 = mi+m2+m3+m4+m5+m6+W7+mio+mn,
4*3 = wo+m5+m6+m8+m9+mio+mn,
<j)4 = wo+mi+m2+m5+m6+m7+m9,
$5 -  mi+m2+m3+m4+m6+m8+mio+mn,
(j)6 = coeff. of u6 = z4y 2+zsyi~ my+miQ+mn

and
(f»7 = coeff. of u1 = 25^2 = W9.

It follows that the bilinear foim for the computation of the aperiodic convolution of two 
sequences of length 6 and 3 respectively is P(Qz x Ry) where matrices P, Q and R are 
given by,
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‘1 0 0 0 0 0 0 0 0 0 0 O'
1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0 0 1 1
1 0 0 0 0 1 1 0 1 1 1 1
1 1 1 0 0 1 1 1 0 1 0 0
0 1 1 1 1 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 1 1

_0 0 0 0 0 0 0 0 0 1 0 0_

'1 0 0 0 0 0" “1 0 0"
0 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 and/? = 1 1 1
1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1
1 1 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0

.0 0 0 0 1 1_ _o 1 1_

C, the generator matrix for the corresponding binary (12, 6, 3) KM code is given by
C = QT.
i.e.

"1 0 1 1 0 1 1 0 1 0 0 O-
0 1 1 0 1 1 0 1 1 0 0 0  

c = 0 0 0 1 0 1 1 1 0 0 0 0  
0 0 0 0 1 1 1 0 1 0 0 0  
0 0 0 1 0 1 0 1 1 0 1 1  

_0 0 0 0 1 1 1 1 0 1 0 L

Example 5.1.2 - Bilinear Convolution Algorithm of Length N  = 9 & the Corresponding 
KM Code

Since N  = k+d-1=9, take k - 1  and d = 3. Therefore Z(w) = zq + z\u + Z2 it2 + 
Z3113 + Z4 U4 +Z5U5 + Z6W6 and Y(u) = yo +yiw + y2W2- We must have N  = dQg[P(u))+s. 
We shall take P(m) = k(w2+1)(h2+h+1)(w3+m2+1) and s=  1.

Proceeding as in Example 5.1.1,

/ -  1
Z\(u) = Z(f/) modulo u

PAGE 43



CHAPTER 5

and

Let,

Then,

i -  2

and

Let,

and

Then,

i = 3

and

Let,

and

Then,

/ = 4

=  20

7i(m) = Y(u) modulo u
= yo-

mo ~ z0.)>o •

<E>i(w) = <h(w) modulo u 
= m0 .

Z2(«) = Z(w) modulo (w2+ 1)
=  ( Z 0 + Z 2+ Z 4 + Z 6 )  +  ( Z l + Z 3 + Z 5 ) l l

T2(w) = Y(u) modulo (w2+ l)
= (>0+^2) +y iu. 

mi  = (zo+22+Z4+26).(yo+:>>2),
m 2 =  ( z i + z 3+ z 5) . y i  

m 3 = (zQ+zi+Z2 +Z3+Z4+z5+z6).(yo+yi+y2) .

0 2(w) = <E>(w) modulo (w2+ l)
= (wi+m2) + (mi+m2+m3)w.

Z3(u) = Z(u) modulo (u2+u+l)
=  (Z0+Z2+Z3+25+Z<5) +  (Zi+Z2+Z4+Z5)w

Y3(u) = Y(u) modulo (u2+u+1)
= (yo+^2) +(y\+y2)u-

m4 — (z0+Z2+Z3+25+26)- (>0+^2), 
m5 = (z1+z2+z4+z5). Cyi+3̂ 2)

me = (zo+ zi+z3+ z4 +z6). (yo+yi).

<J>3(w) = <T(w) modulo (u2+u+1)
= (m4+ms) + (m4+m6)M.

Z4(w) =Z(u) modulo (m3+m2+1)
=  ( z 0 + Z 3 + Z 4 + Z 5 )  +  ( 2 ! + Z 4 + Z 5 + Z 6 ) w

+  ( z 2 + z3 + z4 + z 6 ) w
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and
7 4(u) = Y(u) modulo (u3+u2+\)

- y  o + y\u  + ^ 2W2-
Let,

mi  = (Z0+23+Z4+Z5). jo ,
m8 = (zi+z4 +z5+z6). y  1, 
m 9 = (z2 +z3+z4+z6). y 2, 

wio = Oo+zi+Z3+Z6>- (yo+^i), 
m u = (Z1+Z2+Z3+Z5). (yi+ yi)

and
m i2 = (z0+Z2+Z5+zg). ( jo + ^ 2).

Then,
<h4(w) = d>(w) modulo (m3+w2+ 1)

=  (m7+m8+mn) + (m7+mg+m9+mio)w
+ (m7+m9+mn+mi2)w2.

Let,
^ ( 11) = <J>(«) modulo / J(w).

Then, the polynomial <E>A(z/) may be recovered from the polynomials i = 1, 2, 3, 4
using the CRT.
i.e.

4

^ ( k ) = X  Si (« )* . (« ) (5.1)
f = 1

It is straightforward to establish that Si(u) = (u1+u5+u3+u2+u+l), S2 (u) = (zz7+w3+w2), 
S3OO = (h7+w4+w2+m) and 54(zz) = (w7+K5+n4+it2).
Let,

O a ( w )  =  ( j)o A +  0 1 A J / +  0 2 A W2 +  0 3 A i<3 +  <j>4A M 4 +  0 5 A ZZ5 +  0 6 A W 6 +  0 7 A M 7  .

Then, by (5.1), we find 

0oA = wo,
01A — mo+mi+m2+m3+m5+m6+m7+m8+m9+mio, 
02a -  mo+m3+m4+m5+m7+mio+mi2,
03a = mo+wi+7722+W7+m9+mii+mi2,
04a = m5+m6+m9+mio+mn,
05A = mo+m4+m6+m7+mio+mi2,
06a = 7?7i+m2+m3+m4+m6+m7+m9+mn+mi2

and
07a = mo+mi+W2+m4+/775+m7+m8+mn.
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Wraparound

Clearly, Z (u ) =z6 + z5u + z^u2 + z3u3 + z2 u4 + zxu5 + z0u6 and Y (u ) = 
y 2 + y\u  +yoit2. Recall s —  1, thus we compute,

Z (w ) = z6 modulo m
and

Y (u ) = y 2 modulo u .
Let,

w 13 = Z6.J 2-

If, O(w) = Z(u)Y(u) = 0o + 01« + 02M2 + 03« 3 + 04« 4 + 05«5 + 06W6 + 07W7+0gW8. 
Then, since ^ ( u )  = <!>(«) modulo P{u), we find

00 = w0,
01 -  mo+mi+/??2+W3+m5+m6+W7+m8+W9+mio+wi3,
02 = W0+W3+/7I4+W5+W7+WJ10+/W12+W13,
03 = mo+wi+m2+W7+m9+mii+mi2+wi3,
04 = W5+W6+W9+mio+mii+mi3,
05 = Wo+m4+W6+W7+mio+Wi2,
06 = mi+m2+m3+m4+77Z6+W7+m9+/72n+mi2+wi3,
0 7  =  /7Z 0+ m i+ ffl2+ W 4+ m 5+ W 7+ n 28+ rttn

and
08 = coeff. of w8 = 77Z13.

Hence, the polynomial product O(w) -Z(it)Y(u)  may be computed using the bilinear 
convolution algorithm P(Qz x Ry) where the matrices P, Q and R are given by,

"1 0 0 0 0 0 0 0 0 0 0 0 0 0“

1 1 1 1 0 1 1 1 1 1 1 0 0 1
1 0 0 1 1 1 0 1 0 0 1 0 1 1
1 1 1 0 0 0 0 1 0 1 0 1 1 1
0 0 0 0 0 1 1 0 0 1 1 1 0 1
1 0 0 0 1 0 1 1 0 0 1 0 1 0
0 1 1 1 1 0 1 1 0 1 0 1 1 1
1 1 1 0 1 1 0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
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" 1 0 0 0 0 0 0“ "1 0 0“
1 0 1 0 1 0 1 1 0 1
0 1 0 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 1 0 1
0 1 1 0 1 1 0 0 1 1
1 1 0 1 1 0 1 and R = 1 1 0
1 0 0 1 1 1 0 1 0 0
0 1 0 0 1 1 1 0 1 0
0 0 1 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1 1 0
0 1 1 1 0 1 0 0 1 1
1 0 1 0 0 1 1 1 0 1

. 0 0 0 0 0 0 1_ _0 0 1_

C, the generator matrix of the associated (14,7, 3) binary code is given by C = QT. 
i.e.

“1 1 0 1 1 0 1 1 0 0 1 0 1 0
0 0 1 1 0 1 1 0 1 0 1 1 0 0
0 1 0 1 1 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 1 1 0 1 1 1 0 0
0 1 0 1 0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 1 1 0 0 1 1 0

.0 1 0 1 1 0 1 0 1 1 1 0 1 1

5.2 - Some Advantages & Important Features of KM Codes

Using the above algorithm, Krishna and Morgera have derived linear codes of this 
type of up to length n < 100 and distance d < 41 [2]. (With the KM Codes Program of 
Appendix D, it is possible to derive KM codes of length and distance greater than these 
values.)

The columns of the generator matrix C correspond to the multiplications required to 
compute:

(i) the product Z(u)Y(u) modulo P(u)
or

p )  the wraparound Z (u ) Y (ii ) modulo u s
Hence, by shortening the columns of C, it is possible to decrease k and so increase d (since 
N  = k+d-l is fixed). The columns corresponding to (i) are shortened from the bottom while 
those associated with (ii) are shortened from the top. This suggests that a change in k does 
not result in a significant change in the encoding/decoding procedure. This shall be 
illustrated in Section 6.6.2, when the decoding procedure is generalised. As k+d-1  is fixed 
during these alternations, we can group these codes by then* length n. 
i.e. (18,9,3), (18,7,5), (18,5,7) all belong to the same set.

For a given value of k, we are able also to
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(a) decrease the minimum distance, d, of the code by deleting columns of the 
generator matrix and so reducing the length n of the code
or alternatively

(b) increase d and thus n by adding columns to the generator matrix.
Properties (a) and (b) will be proved later (see Lemma 6.2 and Corollary 6.1). Further, the 
decoding of these families of codes where k is fixed is discussed in Section 6.7.

We have observed how versatile it is to alter the minimum distance d. Hence the 
error-correction capability of these codes can be easily changed, which is especially 
important in channels where the error rate is unstable.

Example 5.2.1

In example 5.1.1, we found that the generator matrix C of the binary (12, 6 , 3) 
KM code was:

_1 0 1 1 0 1 1 0 1 0 0 0“
0 1 1 0 1 1 0 1 1 0 0 0
0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 0 1 1 0 1 1

_0 0 0 0 1 1 1 1 0 1 0 1_

where the first nine columns correspond to (i) above and the final three to (ii).
Hence by reducing the length of the columns as described above,we may obtain C 

the generator matrix of a (12,4,5) KM code. In fact, C ' is given by :

"1 0 1 1 0 1 1 0 1 0 0 0"
0 1 1 0 1 1 0 1 1 0 0 0
0 0 0 1 0 1 1 1 0 0 1 1

_0 0 0 0 1 1 1 0 1 1 0 1_

Example 5.2.2

In example 5.1.2, we obtained the generator matrix of the (14, 7, 3) binary KM
code:

"1 1 0 1 1 0 1 1 0 0 1 0 1 0’
0 0 1 1 0 1 1 0 1 0 1 1 0 0
0 1 0 1 1 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 1 1 0 1 1 1 0 0
0 1 0 1 0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 0 1 1 1 0 1 1_

The first thirteen columns of C correspond to the computation of Z{u)Y(u) modulo 
P{u) and only the final column corresponds to the wraparound. By reducing the lengths of
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the columns, as described above, we obtain C ', the generator matrix of a (14,5,5) binary 
KM code.

"1 1 0 1 1 0 1 1 0 0 1 0 1 0"
0 0 1 1 0 1 1 0 1 0 1 1 0 0
0 1 0 1 1 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 1 1 0 1 1 1 0 0

_0 1 0 1 0 1 1 1 1 1 0 0 0 1

Example 5.3 - A Comparision of the CRT-Based Convolution of Length 7 & the Related 
Code Over GF(2) & GF(3)

It was stated earlier that the choice of P(u) depends on the field of constants. To 
illustrate this, we shall derive a bilinear convolution algorithm of length N  = 7 {k = 5, 
d = 3) and hence obtain the corresponding code over

(a) GF(2)
and

(b) GF(3).

(a)
Over G F ( 2), the 'best1 choice of P( u)  is P( u)  =u 2 ( u 2 + l ) ( u 2 +u+l) -  

Pi(u )P i{u )P 3(m) with one wraparound. Now, Z{u) = zo+ziM.+Z2 U2 +z^u3 +Z4 U4 and 
Y(u) -  yo+yiu+y2U2". Reducing the polynomials Z{u) and Y(u) modulo each of P/(w), we 
obtain,

Z\{u) s  Z(u) modulo u2
=  Z Q + Z \ U

and
Y\(u) = T(w) modulo m2 

= yo+yiu.
Let,

^ 0  = 20*^0, 
m i = z i.y i

and
W2 = ( 2o+zi)*0 ?o+}'i)-

Similaily,
Z26/) =Z(u) modulo (u2+1)

= (Z0+Z2+Z4)+(Z1+Z3)Z/
and

Y2 (u) = Y(u) modulo (i/2-fl)
= (yo+i;2)+3;i«-

Let,
w 3 = (zo+ 22+ 24). (y o + y i) ,

m 4 = (z i+z3)-Vi
and
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Also,

and

Let,

and

Wraparound

=  (z0 + 2 l+ 2 2 + z3 +  24)-Cy0+>l+}?2)-

Z3(zz) = Z{u) modulo (u2+u+l)
=  (Z0+Z2+Z3) + (Z1+Z2+Z4)«

T3(zz) = Y(u) modulo (u2+u+1)
= (yo+3;2)+(yi+3;2)M-

m 6  =  ( z 0 + z 2 + z 3 ) . ( J o + > ?2 ) j 
m 7 =  ( z i+ z 2+ z4) . ( y i + y 2)

m 8 = (z0+ z i+ z 3+ z 4) . ( j o + ^ i ) .

W e need  to com pute Z (u ) Y (u ) modulo u w here Z (u ) = 
z4+z3u+z2u2+ZiU3+zqU4 and ~Y~(u ) = 3;2+37im+>,om2-

Let,
W 9 =  z 4 - ) ;2-

Then,
Z (u ) Y (u ) = m 9 modulo u.

The multiplications m o,. . , mg are sufficient to compute the product <&(u) = Z(u)Y(u), It 
follows that, Ci, the generator matrix for the associated (10, 5, 3) KM code over GF(2) is

" 1 0 1 1 0 1 1 0 1 O'
0 1 1 0 1 1 0 1 1 0
0 0 0 1 0 1 1 1 0 0
0 0 0 0 1 1 1 0 1 0

. 0 0 0 1 0 1 0 1 1 1_

(b)

Over GF(3), the multiplicative complexity is minimum when deg[/5(w.)] = 6 and 
one wraparound is allowed. Hence we take P(u)  = w2(w +1)(«+2)(w 2+m+2) = 
P\(ii)P2(u)P-s(ii)P4 (ii). Reducing Z(u) and Y(u) modulo each Pi(u), we find

Zi (u) =Z(u) modulo u2 
-  ZQ+ZlU

and
Tj(m) = Y(u) modulo u2 

= yo+yiu .
Let,

m o = z0.yo,
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and

Similarly,

and

Let,

Also,

and

Let,

Also,

and

Let,

and

m i -  z i .y i

m 2 = (zo+zO-Oo+^i).

Z2(u) =Z(u) modulo (w+1)
=  z o + 2 z i + z 2 + 2 z 3 + z 4

Y2(u) = Y(u) modulo (w+1)
= y  o+2yi+y2-

m3 =  (zo+2zi+Z2+2z3+z4).Cyo+2yi+y2). 

Z3(w) = Z(u) modulo (u+2)
=  Z o + Z i + Z 2 + Z 3 + Z 4

T3(m) = Y(u) modulo (u+2)
= yo + yi+ y2 .

m 4 = (zo+z l + 22+z3+ z4) . (y o + y i+ 3,2).

Z4(«.) = Z(u) modulo (u2+u+2)
-  ( z o + z 2 + 2 z 3 + 2 z 4 ) + ( z i + 2 z 2 + 2 z 3 ) m

Y4{u) = 7(w) modulo (u2+u+2)
= (yo+};2)+ (Ji+ 2y2)w-

m 5  =  ( z 0 + z 2 + 2 z 3 + 2 z 4 ) .  ( ^ 0 + ^ 2 ) ,  
m 6 =  ( z i + 2 z 2 + 2 z 3 ) .  ( y i + 2 y 2 )

m 7 = (z0+ z 1+ z 3+ 2 z 4) .(y 0+};i ) .

Wrapai'ound

As in (a), we need to compute Z (u ) Y (u ) modulo u .
Let,

Then,
m g = z4 .y2.

Z (w ) 7 (w ) = m8 modulo w .

C2> the generator matrix for the associated (9, 5, 3) KM code over GF(3)
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" 1 0 1 1 1 1 0 1 O'
0 1 1 2 1 0 1 1 0
0 0 0 1 1 1 2 0 0
0 0 0 2 1 2 2 1 0
0 0 0 1 1 2 0 2 1

Conclusion

For k = 5 and d = 3, the associated binary KM code has length 10 while the ternary 
KM code has length 9.

As the field of constants is extended, the number of polynomials of any degree 
over this field is also increased. Hence working over GF(3), rather than GF(2) results 
in a larger number of small degree polynomials, which we noted earlier usually leads to 
a more efficient algorithm.
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CHAPTER 6 - A More Detailed Look at the Properties Of KM Codes

In this chapter, we shall discuss the process of encoding and decoding the linear 
codes generated by an aperiodic convolution algorithm based on the CRT (KM Codes).

The problem of error-detection and error-correction of these codes will also be 
studied.

Throughout, let the polynomial Z(u) -  z0 + zx« + . . . .  + of degree
(k-1) represent the information vector.

6.1- Complexity of Encoding
t

Recall, P (u ) — U *  <« )•
i =1

Encoding corresponds to the following three steps :
(i) Compute Zfoi) = Z(u) modulo Pi(u) i=  1,2, . .,f
(ii) Form the required linear combinations of Z,(w) s o  that the product Z,-(m)7/(m) 
modulo Pf(u) may be computed i = 1, 2 , .  .,f
(iii) Form the required linear combinations of Z(u) so that the product 
Z(u) Y (u ) modulo u s may be computed.

As step (iii) is a special case of step (ii), we shall discuss only steps (i) and (ii).

Step (i) - Z;(h) is the remainder obtained when Z(w) is divided by Pj(u). This 
operation may be implemented by a division circuit, where the multipliers and adders 
are over the appropriate field. Hence, to implement step(i), a total of t such circuits are 
required, one for each Pi(u) i = 1, 2 , .  ,,t.

Step(ii) - When Pfyi) is irreducible, the product Z;(w)Tf(u) modulo P&u) is 
obtained by computing the ordinary polynomial product Z,(w)F/(i/) and then reducing it 
modulo Pi(u). In such a case, the equations for the linear combinations of the 
coefficients of Zj(u) are independent of R;(w).

Shift registers which perform division by certain polynomials are given in 
Figure 6.1 while Figure 6.2 shows the linear combinations of the coefficients of Z-(w.) 
for some polynomials over GF(2), Figure 6.3 shows the shift register which may be 
used as an encoder for the (12, 6 , 3) binary KM code derived in Example 5.1.1. 
Recall, P(u)-u2(u2+l)(u2+u+l) and s = 2. Hence the encoder has in total 4 division 
circuits; 3 corresponding to the computation Z^u)  = Z(u) modulo Pi(u) (i = 1, 2, 3) 
and one for the wraparound. The circuit has 8 storage units and 7 adders.
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P(u) = u2 + u + 1

P(ll) = u3 + u2 + 1

Fig 6.1 - Shift Register cicuits for division by polynomial P(u).

Zo

#  Z ,
P(u) = w2, u2+1, u2+u+ 1

Zo +  Z i

Figure 6 .2 - Lineai' combinations o f  the coefficients o f Z{it) required for the computation Z(it)Y(u) 
m odulo P(u).
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Wraparoundfor u for u + 1 for u. + u+ 1

Figure 6.3- A  shift register implementation of the encoder o f (1 2 ,6 , 3) binary code.

6.2 - The Block Structure of the Generator Matrix of KM Codes

The block structure of the generator matrix C of these codes has been observed 
previously. Since this structure plays such an important role in the decoding 
procedures, we shall now discuss it in more detail.

There are (f+1) blocks in the generator matrix C of an («, k, d) KM code. We 
shall denote each of these blocks as Cp i = 1, 2, . . . . , t+1.

The first t blocks arise from computations of the form 
<E>;(w) = Zi(u)Yi(ju) modulo 

one for each of the t relatively prime polynomials P^u)  of degree a,- (z = 1, 2 , . . , / )
t t

where P (u ) = (u ) and 2  ai =D = deg[P(w)].
r =1  i = l

The final block corresponds to the computation Z(u) Y (u. ) modulo u s (where 
D+s — N ) , the wraparound coefficients.

Each block has M(a,) columns , i = 1 , 2 , . . . .  ,/+l (a /+1 = s). As each block 
corresponds to a computation of the type described above, it is clear that in block C,-, a,- 
columns are linearly independent and the remaining columns are dependent
on them.

i.e. each block corresponds to the computation <&,-(//) = Zi{u)Yi(u) modulo
Pi(u) where deg[P,*(zz)] = a,-. Then d>,(w) has degree If +. . . . -k^ 5

then the a / coefficients §i,l >........» fy.ai-i 316 linearly independent.
Further, the columns of C;- (z =1, 2,. . . . ,t) can always be re-airanged so that

the first columns coiTespond to the polynomial
Z t(u) = Z(u) modulo Pj(u) i = 1 , 2 ,  t
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while, the remaining [M(aj)-at] columns are due to the multiplicative complexity of the 
block C,-.

Lemma 6.1

If the polynomial P t{u) is irreducible, then the block C{- corresponding to the 
com putation <!>;(«) s Z ;(« ) f j (« )  modulo P t{u) is an {nit a i} aj) code where 
«,■ = M(0Cj;) and deg[P,(w)] [2 ],

Proof

When Pfii) is irreducible, the above computation is performed in two stages :
(i) The ordinary polynomial product <I>/(w) = Z^ujY^u) is found
(ii) <E>/(w) is reduced modulo P^u) to obtain <E>;(w)

i.e. d>/(«) s  d>/(«) modulo P;(w)
The multiplicative complexity of step(ii) above is = M(o0 and so the corresponding 
block C;- will have columns. Consider C{ to be the generator matrix of a code. Then 
the rows of C(- are codewords each of length nv

We observed above that in each block Q  there are exactly cq linearly 
independent columns. Hence since the number of linearly independent columns is equal 
to the number of linearly independent rows, it follows that C, has cq linearly 
independent rows. Hence there are a t linearly independent codewords within the matrix 
C,-. Clearly the dimension of the code C; generates must be ccf. By a similar argument, 
it follows that the minimum distance of this code is a

In conclusion, Cr- is a (nif a;, a,) code (i = 1,2,  . ., t).
#

N ote
Although Lemma 6.1 refers to an irreducible polynomial P/(w), the result holds 

for any polynomial P;(u) provided <3>/(k) s  Zfiu)Y;(u) modulo is calculated via the 
above 2 stages.

Lemma 6.2

If the block Cy corresponding to the computation <E>y(w) = Zj(u)Yj(u) modulo 
Pj(u), is removed from C, the generator matrix of a (n, k, d) code, then the resulting 
matrix is the generator matrix of a {n-tij, k, d-aj) code where degLPyOr)] = ay and 
nj ~ M (ay) [2 ].

Proof

Recall,
C = [C j I C 2 I . . . . I  C ;+1]
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where block Cj {7=1 , 2 , .  .,t) corresponds to a computation of the form

&j(u) = Zj(u)Yj(u) modulo Pj(u) deg[P/(w)]=a/-

while block C,+1 coiresponds to the wraparound at s points.
Also,

p  (u ) = Y I fj ( « )
j -1

and

N  = X  aj + s
j= i

Then, letting a t+l=s, we obtain

JV = X = £ + d - 1  (6.1)
/ - i

Suppose, blocks C77 , Cj2, . . . .  are deleted from C , giving a reduced matrix 
C \ Recall that associated with each block Q  (i = 1 , 2 , . .  , t+l) of C there is a 

cc-, a,-) code. Rearranging (6.1), we have,

k +
( \ 
d -  X  aj

V j =j IJ 2 , . .  y

i.e.

'x -1
1 = Z j a i 

i =1 
i 1 ,j 2,..

t +1
* + 1= X « (6.2)

where

i =i
/ *j 1J  2 , . .

d ' = d ~ X
j =j 1J 2,..

The length of the code with generator matrix C is given by

t +i

i =1
n  =  X  M  ( Oi  ) ( 6 -3 )

Rearranging (6.3), we see

f + i
n -  X  M (dj ) = X  M («i )

j  = j  1 J 2,.. / =1
i * j  ] J  2 , . .

(6.4)
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From (6.2), it is clear that we may obtain a code of dimension k and distance 
d \  simply by excluding the computations u) =Zj(u)Yj(u) modulo Pj(u),j = j l , j2 ,

Moreover, from (6.4), it may be observed that the generator matrix C ' of the 
reduced code is obtained by removing the blocks Cj (j =j 1, 7*2 ,..) from C, (6.4) also 
gives the length n' of the new code, 
i.e.

n ' = n -  5^ M  (0Cj )
j = j  1 J  2 , . .

For a given value of d \  the blocks Cj (J = j l ,  j2,  . . . .) are selected to 
minimise n', the length of the reduced code.

#

Corollary 6.1

Suppose C -  [Cj \C2 I. . . IC/+1] is the generator matrix of a (n, k, d) code
where each Cj corresponds to a computation of the form, <Jx(w) = Zj{u)Yj(u) modulo 

= 1, 2, . „t+1. By adding new blocks C(- to C, where C(- corresponds to the
computation 0,(m) =Z;(u)Yj(u) modulo Pfu)  (performed as described in the proof of 
Lemma 6.1), provided gcd(P/(u), Pj(u)) = 1, j  -  1, 2, . ., t, we may obtain the
generator matrix df an extended (n , k, d )  code (n >n and d' > d).

Proof
Trivial - extension of Lemma 6.2.

#

Example 6.2.1

C onsider the (14, 5, 5) code corresponding to the com putation 
O(w)  = Z ( u ) Y ( u )  where the polynomials are P i (u )  = u , P 2 (.u) = (w+1) ,
P 2 (u) = (m2+m+1) and P4.(14)  = (m3+m2+ 1 ) and s = 2.

It can be shown that the generator matrix of this code is :

T 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0'
0 1 1 0 1 1 i 0 1 0 1 1 0 0 0 0
0 1 1 1 1 0 1 0 0 1 0 1 1 0 0 0
0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1

.0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1-
! It It It ft
c, c 2 C3 c C5

where each block C(- corresponds to the computation O f-(w) = Z^t/OT^tOmodulo P^u) 
i = 1, 2, 3, 4. C5 corresponds to the wraparound.
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By dropping block C3 from C, we obtain the generator matrix of the (11, 5, 3) 
code. Or, we can obtain the generator matrix of the (13, 5, 4) code by dropping either 
block Ci or C2. It is possible to obtain the generator matrices of a number of other 
codes by deleting other blocks or groups of blocks.

Example 6.2.2

Recall, in Example 5.1.1, we obtained the generator matrix of the (12, 6 , 3) 
code by computing the aperiodic convolution <E>(«) = Z(u)Y(u). P(u) was taken to be 
P(u) = u2(u2+l)(u2+u+1) and the computation involved two wraparounds.

T 0 1 1 0 1 1 1 0 1 0 0 or
0 1 1 0 1 1 1 0 1 1 0 0 0
0 0 0 1 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0 1 1 0 1 1

.0 0 0 0 1 1 1 1 1 0 1 0 L

It ft If ft
Cl C2 C3 c4

We wish to illustrate Corallary 6.1. Let P 4(u)  =  u 3+ u + 1. Then P 4(u)  is 
coprime to P\(u) ,  P 2(ii) and P3(n). Reducing Z(u) and Y(u)  modulo P 4(u) we obtain :

Z4(u) = Z ( u )  modulo ( iP+u+l  )
— (zq+z^+z^) -f ( z j + z 3+ z 4+ z 5 )u

+ (z2+24+Z5 )W2
and

Y4 (u) =  Y(u)  modulo ( u3+ u + l  )
= y 0 + y i u  + y 2u2.

Let,
m 9  ~  ( z 0 + z 3 + z 5 ) ‘ ^ 0 ’ 

m j 0 = ( z i + z 3 + z 4+ z 5) . y i ,
/72„ =  ( z 2+ z 4+ z 5) , y 2 ,

m  1 2 =  ( 2 0 + z l + z 4 ) - 0 ;0 + ) ; l ) ’ 
m n  =  ( z j + z 2+ z 3) . (  y x+ y 2)

and
m u  =  ( z 0 + z 2+ z 3) . ( y 0 + y 2) .

It follows that C 5, the block corresponding to the computation 
d>4(«) = Z4(u)Y4(u) modulo P^iu) is :
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Cs —

i o o i o r
0 1 0  1 1 0  
0 0 1 0  1 1  
1 1 0  0 1 1
0 1 1 1 0  0 

Ll 1 1 0 0 0-

By adding this block to the generator matrix of the (12, 6 , 3) code , we obtain 
the generator matrix of (18, 6 , 9), given by :

‘I 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1'
0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0
0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1
0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0

.0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0-
ft ft ft ft ft

C, C2 c 3 C4 C5

6.3- Error-Detection

An (n, k, d) linear code forms a vector space of dimension k, with a 
corresponding null-space of dimension (n-k). This null-space is spanned by (n-k) 
linearly independent equations.

Every codeword received is tested to determine whether or not it is a valid 
codeword. A received block is assumed error-free if it satisfies the (n-k) parity check 
equations spanned by the null space. The only time errors in a received vector will 
remain undetected is when this erroneous codeword is identical to one of the non-zero 
codewords.

Below is a procedure which may be used to obtain these parity check equations 
for the KM (n, k) codes generated by the aperiodic convolution algorithm based on the 
CRT.

Consider C = [C^ ! C2 I I C?+i], the generator matrix of such a code. It
has been noted that each C,- (i ~ 1 , 2 , . . .  ,t+l) has a,- columns which are linearly
independent while the \M(a)-a^  remaining blocks are dependent on these. So each of
the (1+ 1) blocks gives rise to [M(a-)-^/] parity check equations. For simplification, it is
assumed that a t < k (i = 1 , 2 , . . .  ,1+1). So, on receiving a vector r, it can be divided 
into 1+1 segments i.e. r  = (jq, r2, . . . ., rt+1) where the segment r, corresponds
to the block C(-. If r,- is error-free, it should satisfy the [M(a;)-cq] parity check 
equations associated with C-r We shall illustrate how to obtain these parity check 
equations shortly (See Example 6.3.1).
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For each block C?-, we have [M(a;)-cq] corresponding parity check equations. 
Further, each set of equations is linearly independent of the t other sets of
[M(0Cj)-(Xj] equations, j  = 1, , t + l , j ^ i .  Hence the total number of linearly
independent parity check equations obtained so far is given by ,

t +1 i i t  + 1

(M (Of ) -  Cfy ) = 2 h M  (a-, ) -  X  a i
i  =  1 / =  1 i =  1

= n - N
= n - (k + d -1)
= (n - k) - (d-  1)

and so we require a further (d~ 1) equations which must be linearly independent of the 
(n-N) equations already obtained.

Consider blocks Cy, C2, . . . . , Ct. Assume that the columns of these blocks
are arranged so that the first a* columns correspond to the polynomial 

ZfjiC) =Z(u)  modulo P;(m) i = 1, 2 , . . . .,t.

To derive a further (D-k) parity check equations we are interested only in these 
columns. Using the CRT, the polynomial Z(«) may be recovered from the residue

t

polynomials Z,(m) {i -  1, 2, . . . „r). If the polynomial P (u ) = (m ) is of
i =1

degree D , then the reconstructed polynomial Zr(u) will have degree (D-l ). 
i.e.

Zr(u) = z0+z1m+.......+Z£,_1m£>-1.

However, the information polynomial is always of degree (k-1). In order that the 
information polynomial and the reconstructed polynomial match, the last 
[(Z)-l)-(£-l)] =D-k coefficients of the reconstructed polynomial must be zero, 
i.e.

z,- = 0 i = k ,k+ l , . . t D-l.  (6.5)

This provides (D-k) more paiity check equations.
In the final block C/+1, the first a t+l -  s columns are associated with the 

polynom ial Z (u ) modulo u s . Provided no errors have occured, the 
corresponding coefficients of ^ Z ( u )  and Z(m) should be the same, thus leading to 
another s parity check equations.

T-t = zi i = k - 1, k - 2 ,  . . ,k - s  (g.6)

Together (6.5) and (6 .6) give (D-k)+s -  (D + s)~k equations. However, 
(.D + s ) — N = (k+d-l)  and so (D+s)-k  = (k+d-l)-k -  (d-l).  Thus we have found 
the remaining (d-l) parity check equations. It should be noted that these equations are
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linearly independent since no coefficient of a polynomial can be expressed as a linear 
sum of die other coefficients.

Example 6.3.1

Consider the (10, 5, 3) code. We have k -  5 and d  = 3 and so 
N  = k + d - 1 = 7 . In example 5.3(a), we found the polynomials are Z(u)  = 
z0 + z 1u + z2u 2+ z3u 3+ z4 u4 and Y(u) = yo+y\U+y2u2. Also P(u) = w2(w2+ l)(« 2+w+l) 
= /,1(m)/52(m)^>3(w) and s, the number of wraparound points equals 1. By reducing Z(u) 
and Y(u) modulo P;(u) i -  1, 2 , 3 and then computing O,-(w) = Z,{k)F;(k) modulo 
Pj(w), we found the multiplicative complexity to be 10, where

m l =
™2 = (^o+z^.Cyo+^i). 

m3 = (zo+z2+z4).(y0+y2) >
m4 = (z1+z3).y1, 

m5 = (z0+z1+z2+z3+z4).(y0+y1+y2),
™6 = (z0+z2+z3).(y0+y2), 
m 1 = ( z l +Z2+z4) . ( y l + y 2),  

m$ = (zo+Zi+Zg+z^.Oo+y^
and

m 9 = z 4.y2.

Further, the generator matrix C of the corresponding (10, 5, 3) code is

1 0 1 1 0 1 1 0 1 1 0
0 1 1 0 1 1 0 1 1 1 0
0 0 0 1 0 1 1 1 0 1 0
0 0 0 0 1 1 1 0 1 1 0
0 0 0 1 0 1 0 1 1 1 1_

IT t IT It
Ci C2 C3 C4

We stated above that each block will contribute [M(0Cj)-(Xj] parity check 
equations. So blocks Cj, C2, C3 each provide one equation ((6.7) below) while the 
fourth block provides no equations. Let c,- denote the i th digit of the code vector 
c = (cq, Ci , . c9). Then the equations are :

For Pj(u) £o+ci+c2 = 0
For P2{u) c3+c4+c5 = 0 (6.7)
For Pj(u) c6+c7+c8 = 0
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Further, the first a  t columns of each block C if co rrespond  to
Z/(m) = Z(u) modulo P&u). Then, in terms of c0,. . ,c9, we have Z ^ u )  = cq+c^u

modulo u2, Z 2(u) = C3+C4W modulo (u2+l ) and Z3(zz) = c6+c2u modulo (z/2+zz+l). 
The polynomial Zr(u) -  Zq+Zi II+z2u2+z3u3+z4u4+z5u5 may be reconstructed from
these congruences Z,-(w) = Z(u) modulo P^u) using the CRT. 
i.e.

3

Zr (u ) = X  Si (u )Zi (u ) modulo P (u )
i = 1

The polynomials S,-(w) 1 =1, 2, 3 are found as follows. 

i = 1

Ri(u)P2(u)P3(u) = 1 modulo Pi(u) 
i.e. Ri(u)(u2+l)(u2+u+l) s  1 modulo u2 

i.e. ^ 1(w)(w4+z/3+w+l) = 1 modulo u2

Hence Ri(u) -  (w+1) and Si(u) -  1 +u2+u3+u5.

i = 2
R2(u)Pi(u)P3(u ) = 1 modulo P2(u) 

i.e. R 2(u)u2(u2+u+l) = 1 modulo (u2+ l)  
i.e. R 2(u)(u4+u3+u2) = 1 modulo (m2+1)

Hence R 2(u) = u and S2(u) = u3+u4+u5.

i = 3
R3(u)P1(u)P2(u) = 1 modulo />3(m) 

i.e. R^(u)u2(u2+1) = 1 modulo (u2+u+1) 
i.e. i?3(M)(z/.4+H2) = 1 modulo (u2+u+1)

Hence R 3(u) = 1 and S3(u) = w4+zv2.

It follows that,

Zriii) = (l+z/2+zz3+u5)(c0+c1zz) + (zz3+«4+zz5)(c3+c4zz.) +
(u2+û ){c6+c1u) modulo P(u)

=  C0 +  C \ U  +  (Cq+ C 6) u 2 +  (C o + C ^ ^ + C y )^ 3 +

(c1+c3+c4+c6)z/4 + (C0+C3+C4+C7)zz5 + (c1+c4)w6
modulo (zz2+z/3+z/5+z/6)

=  Cq +  C \ U  +  (£?Q+Cj+C4+Cg)zZ2 +  (Co+C3+C4+C7)zZ3 +

(Cj+C3+C4+Cg)zz4 + (Cq+Cj+C3+C7)z/3.
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Then Zr(u) = z0+z1u+z2u2+z3u3+z4u4+z5u5 
where

zo
Z |  — C\  ,

z2 = t’Q+C i + C4+Cg,
Z 3  =  C Q + C 3 + C 4 + C 7 ,

Z4 =  c l+c3+c4+c6

z 5 -  c 0 + c l + c 3 + c 7*

For this reconstructed polynomial of degree 5, to correspond to the original
polynomial, of only degree 4 we must have z5 = 0.
i.e.

Further, if Z(u) = z 0 + z 1 w + z 2 u 2 + z 3 W 3 + z 4 « 4 ,  then Z (u ) = z 4 + z 3 w + z 2 m 2 + z 1 zz3 + z q « 4 .

The wraparound corresponds to the coefficient z4 and therefore z4+c9 = 0.
i.e.

In total, we have found 5 parity check equations, (6.7), (6 .8), (6.9). Since 
n-k = 10-5 = 5, tins is the complete set of parity check equations.

6.4 - Parity Check Equations of Families of Codes where N  = k + d-l  = constant

Suppose C, the generator matrix of an (n, k, d) code is altered to C \ the 
generator matrix of an (n, k \  dr) as described in Section 5.2, keeping k+d- 1 = N  and 
thus n (the code length) constant. The parity check equations obtained from (6.6) are 
altered and if

(i) k < k '  then (k'-k) equations are dropped from (6.5) 
while if

(ii) k > k' then k-k' equations are added to (6.5).
The remaining (n-N) equations remain unchanged [2],

Example 6.4.1

From, C, the generator matrix of the (10, 5, 3) code obtained in example 
5.3(a), we may obtain C , the generator matrix of a (10, 3, 5) code by appropriately 
shortening the columns of C.

Since N = k+d-I -  7, for both of these codes, n is fixed and so the parity check 
equations (6.7) obtained in Example 6.3.1, also hold for this example. However, we

C0+C1+C3+C7 = 0 (6.8)

C1+C3+C4+C6+C9 — 0 (6.9)

'I 0 1 1 0 1 1 0 1 O'
C’= 0 1 1 0 1 1 0 1  1 0  

-0  0  0  1 0  1 1 1 0  1-

PAGE 64



CHAPTER 6

require (/?.-&)=10-3=7 check equations in total and so we must now seek 4 more 
equations.

Now, since k — 3, Z(w.) = z0+z1u+z2u 2, However, the reconstructed 
polynomial Zr(u) — zq+z i U+z2u2+z3u3+z4u4+z5u.5 is of degree (£>-1) = 5 and so 
23= z4= z5 = 0 . 
i.e.

Cq+C3+C4+C7= 0
Cj+C3+C4+Cg= 0 (6 .10)

Finally,
Z(u) = z0+z1u+z2u2 and ~Z~(u ) = z2+z1u+z0u2 *

The wraparound corresponds to the coefficient z2 and therefore z2+c9 -  0. 
i.e.

C0+C1+C4+C6+C9 = 0 (6.11)
Hence, (6.10) and (6.11) provide the 4 remaining parity check equations. Any 
codeword must satisfy equations (6.7), (6.10) and (6.11).

6.5 - Burst Error-Detection Capability

We now wish to establish the burst error-detection capability of these codes.

Lemma 6.3

For any information vector, the sum of the degrees a t of the polynomials P/(w) 
such that the associated blocks of the codevector are nonzero cannot be less than d [2].

Proof

The information vector is expressed as Z(w), a polynomial of degree (£-1). 
Consider

Zj(u) = Z(w) modulo P;(w)
Clearly,

Z;(u) = 0 iff Z(u) -  hPi(u) for some integer h.

Hence, if P,-(m) divides Z(u), then the block C, corresponding to the computation
<Ft-(w) = Zi(u)Yi(u) modulo P/(m.) is zero.

Suppose that the blocks C;1, Cj2„ . . . ,Cjm are all zero. Then the blocks of a 
codevector corresponding to C;1, Cj2, . . . .,Cjm will be zero.
Further, we have

PjX{u) I Z(u) deg[Pjxiu)] = ajX
and

Pj2(u) I Z(u) deg[Fj2(u)] = ccj2 ■

Since gcd( Pji(u), Pjoiu)) = C then it follows that

(Pji(u) Ppjii)) I Z(u) and deg[ Pjx(u) PpSu)] = «yi+ a /2.
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Hence the degree of (P;1 (u) P}2 (m)) cannot be greater than the degree of Z(u).
i.e.

« /!+  0Cj2

Continuing the above argument, it is clear that since (Pji(u)Pj2(u). .Pjm{u)) 
divides Z(w), we must have

X «y < (£ - 1) (6.12)
j  = j  1 J  2 . . . j ' m

Recall,

So that,

f _ ± . l

X  a* -  k + d -  1
i = 1

r + 1X ai + !X aj -  d + (k -  1)
i = l  j  = j  1 J  2 , . . , j m

i.e.

f ŷ 1 ,y 2,. .ym

t +  \. X 0$ = + (£ - 1) - X ay
r = l  

i  * }  1 J  2 , .  J m

By (6.12), it follows that

v1X  (Xi > d + (k -  1) -  (k -  1) 
i -  1 

i  * j  1 J  2 , . J m

i.e.
t + 1X a  -t > d.
i =  1 

/ \J 2 ,..;m
Hence result.

#

This lemma, together with the assumption that the computations 
d>f-(t/) ee Z;(u)Y£u) modulo P;(ii) are performed in such a way that each block C; is an 
(fj, a;, ) code may be used to determine the burst error-detection capability of the
code [2 ] .

6.6 - Error-Correction

We saw previously that if the polynomial Pj (u)  is irreducible then the 
computation 0,-(w) = Zt-(«)T,-(w) modulo Pfai) is performed in 2 steps
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(i) 0 / ( k )  = Z f a ) Y f a )
(ii) Oj-(w) = <b/(w) modulo P fa).

However, if the polynomial P/(w) takes the form P fa )  = uai or P fa )  = (w+£Z()°v, the 
above procedure is not usually employed. As is true for the wraparound computation. 

For simplicity, we shall assume that all computations Zfa )Y fa )  modulo Pfa)
are performed using steps (i) and (ii) above. (As noted earlier, for a t <2, this does not 
result in an increased multiplicative complexity, while for a t >2  there is an increase but 
it is small and dependent on the field of computation.)

This assumption, together with Lemma 6.1 means that each block C, is an
(«,-, a,-, 0Cj) code where a i = deg[Pfa)], a (+l =s and n(*= M { a ) .  Each such code is 
capable of correcting up to [(a r l)/2] errors (i = 1, 2 , .  .,r+l).

Below, is an error-correcting procedure which Krishna and Morgera devised 
for KM codes. However, we do not believe it to be correct

To decode a received vector r, the following was suggested [2]:

Partition vector r  into (t+1) sub-vectors i.e. r  = ( r 1} r2, . . . ,r,+1). The 
sub-vector rf- corresponding to C;- is then decoded independently. Let ZD f a ) denote the 
decoded vector corresponding to the block C-{ . There are two possibilities of this 
decoding:

(a) When up to [(c^-l)/2] errors are present in /*,•, this is within the error-correcting 
capability of the (ni} a }, cc,) code associated with block Ch Hence decoding is 
successful.
i.e.

ZD fa )  = Zfa)

(b) If more than [(a,-l)/2] errors occur in ri during transmission, then the code 
associated with Ci is unable to recover Zfa). A  decoding failure takes place.
i.e.

ZD f a )  5* Z fa )

If Zfa)  is decoded erroneously, the corresponding block C; is eliminated from 
any further analysis. So block C, is removed from C to give a modified matrix C\

i.e.

C f = [Cl I C2 I . .1 CM I C /+1 I . . ICf+1]
By Lemma 6.2, C' is the generator matrix of a k , d - a )  code which may
correct up to [((rf-Of/)-1)/2] errors. However, as block C; has been excluded, we have 
effectively removed at least [(cnr l)/2]+l errors. Therefore, if Z(u) is recovered using 
C\  the maximum number of errors that can be corrected in the received vector r  is 
[ ( ^ l ) /2].

So, by eliminating the block C;-, we have not restricted the error-correcting 
capability of our decoding procedure.
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What they failed to observe is that when a decoding failure (condition (b)) 
occurs, the code is not aware of it. For example, suppose x  andy are code vectors of 
an (n , k, d) code differing from each other in d places. Further, suppose xA, the 
received word corresponding to x  contains d-l  errors and xA+(l,0,. . ,0)-y. Then 
since xA and y differ in only one digit, x A will be decoded to y. The code would 
assume that correct decoding had taken place when in fact it had not. Therefore, it is not 
possible to eliminate erroneous blocks.

The error-correcting procedure Krishna and Morgera describe is based on 
Theorem 6.1, below [2].

We are able to recover Z(u) from the received vector r, provided no more than 
[(c/-l)/2] errors have occurred. The information polynomial Z(u), being a polynomial 
of degree (£-1), can be recovered, using the CRT, from any set of residues of the type 
Z h{u) = Z{u) modulo P h(u), /r=/z1, h2, . • provided that X a h > £, h = h2, .

Let g, = no. of errors in r, (- the received vector corresponding to Q  ) Then 
it is possible to recover Z(u) from r  provided:

f +iX
i = 1

( d - i y

So, the two possible outcomes of the decoding of r, may be rewritten as :

(a) (7; < [(ocr l)/2] .
(b) ct(* > [(ar l)/2] .

Theorem 6 .1

Let d be the minimum distance of a KM code with generator matrix 
C -  [Ci IC2 I. .1 C ,+I]. Provided no more than [(d-1)/2] eirors are present in a code 
vector r =(/*!, r2> . . , rJ+1), then after each subvector is decoded according to its
minimum distance ait there exists at least one set of error-free subvectors such that the 
sum of the degrees of the polynomials Pj(u) corresponding to these blocks is at least k 
[2] .

Proof

Recall, G/ is the number of errors in the received sub-vector r,, Suppose that 
condition (b) above holds for o^ , (Ji2 , , <7,y. Then the corresponding blocks
Cii, Cj2, . . . Cjf all suffer decoding failure and the smallest value each such may 
take is [a/ - l/2 ]+ l( i = il ,  i l ,  . . . ., if). Hence, in these circumstances, the least 
number of errors in received vector r (assuming all the other subvectors to be 
completely error-free) is :

CCj - 1
mini X  <3

(  i = i  I , /  2 , . . . i f
+ 1
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The decoder is able to correct these errors provided it is within the error-correcting 
capability of the reduced code which we have already shown to be [(d-l)/2], 
i.e. we require the following condition to hold :

i.e.

i.e.

( d - l )
* . £i  = /  1 , i  2

a; - 1
+ 1

d CC;
T  > ^  ~2i = ;  l , i

and

d > X  ai
i = i  l , i  2

(6.13)

Recall,

It follows

A = deg[P (u )] + s -  X  aj
j =i

f+ iX «/ + X aj - N
i =i 1 ,i 2 . . . ,if j — 1

j *i l,i 2

f_ +1
X  a, = N -  X  Oi

7 = 1  / = /  1 , i 2 , . . , / /
7 l.« 2,..,//

= (& + * / - ! ) -  X
/ =i 1,/

> ( k  + d - l ) - d  

= k -  1.

by (6.13)

i.e.

i+ iX a, > k
7 = 1  

j  * i  1, /  2 —  / /
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We have shown that the sum of the degrees of all the polynomials Pfiu)  
corresponding to correctly decoded blocks Cj (j = 1, 2 , . ., 12, . ., i f ) is
at least k.

#

Upon decoding, using a KM code of minimum distance d, we will not be aware 
of the actual number of errors which were present nor will we be aware which blocks 
have been decoded erroneously. We will look at the validity of Theorem 6 .1 when it is 
guaranteed that no more than [(d-1)/2] errors are present in the received vector r and 
when the erroneous blocks remain. Since the error-correcting capabilty of the full KM 
code is [(77-l)/2] , the basis of the proof of Theorem 6.1 still holds under these new 
conditions. Hence, it is true that after decoding, there is always at least one set of error- 
free residues of the form Zh(u) =Z(m) modulo P h(u), h = h lr h2, . . . . where 
S  a h > k , h -  hj, h2, . . . However it is not possible to determine which residues 
are error-free.

For the remainder of Section 6.6 and Section 6.7 , let us assume that there is 
some way of determing which residues are error-free.

Let /  ={ 1 , 2 , . .  . . , H-l}. The integer i in the set /  corresponds to the 
polynomial P{(u) of degree a,- for i = 1,2, .  ., t, while the integer (t+l) corresponds 
to the wraparound. From /, we form subsets I x, / 2, . . . . such that each subset is the 
minimal set with respect to the property that the sum of the powers of the polynomials 
corresponding to the integers in each subset is at least k.

Let ki be the sum associated with subset /• (/ = 1, 2, . . . .). Then associated 
with each subset we have the set of residues

Zh{u) s  Z(w) modulo P/^u) h e I ;.

Since k-t > k, we may use the CRT to reconstruct a polynomial Z,-*(w) = z*,-0 + 
z*itiU + ..............+ of degree (£/-1) from the residue polynomials Z h{u)
where h e  However, the original information polynomial Z(u ) = z0+zl u+.
. . . +zkAukT is only of degree (k-1). For Z^{u)  to be considered a candidate for the 
information polynomial Z(u), Z^(u)  must satisfy the following (kr k) equations :

z*/,/£ = 0 h -  k, k+1, . . . kr  1

Suppose Z x*(zO, Z2*(u),. . are candidates for the information polynomial. 
Since the code is of minimum distance d, the code vector corresponding to a valid 
information polynomial will differ from the received vector in at most [{d-1)/2] places. 
Let CFf/j denote the code vector corresponding to the candidate polynomial Z,-*(w). 
Thus if CV(i) differs from the received vector r, in no more than [(d-1)/2] places, then 
Z,-*(u) is accepted as a valid information polynomial. Theorem 6.1 guarantees the 
existence of at least one candidate polynomial which is a valid information polynomial.

To summarise, the complete decoding algorithm for these codes is [2] :
(1) Partition the received vector r into (/+1) segments,
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r = (rj ,  r 2, . . . r,+ 1)

where sub-vector ri corresponds to block C, of the generator matrix C , i = 1 , 2 , . .  
. . , t +  1
(2) Perform decoding on ri using the (nit a,, a,) code associated with block C, , / = 
1, 2, . . . t + 1 .
(3) Eliminate the blocks for which the decoding fails.
(4) Use the CRT, to construct the candidates Zj*(m), Z2*(m),. . . . from the residue 
polynomials obtained from the blocks known to be error free by the previous step.
(5) Find the candidate code vectors CV^  for each of the candidate information 
polynomials Z*(u).
(6) Accept as a valid code vector if it differs from the received vector r in no more 
than [(d-1)/2] places.

1 D e c o d e r R e c o n s t r -
C od ef o r fct io n  for _ C a n d i d a c y

b l o c k  r 
1 1 1

. s e t  1 
1

T e s t e r V e c t o r  1 
g e n e r a t i o n

I d e n t i f y
e a c h  b lo c k t

D e c o d e r  I  X I  
f o r  1

/  HH—

R e c o n s t r -  
t io n  for  ̂ C a n d i d a c y

i n

C od e  
■'Vector i  

g e n e r a t i o n
r b lo c k  r \IU / I J s e t  I T e s t e r

D e c o d e r  III 1 L R e c o n s t r -
Code  

^ V e c t o r  '< for (HI y
b l o c k  r Hi 7

^ t i o n  for  
s e t  l

C a n d id a c y  
T e s t e r  "

t h 7 ..  M - !
g e n e r a t i o n

—  —

I C o m p a r a t o r  
and  

l S e l e c t o r

D e c o d e d
Code
V e c t o r

L D e c o d e r  1f A1 R e c o n s t r -
\ f o r  [ ^ t i o n  fo r

b l o c k  r s e t  l
..

C a n d id a cy
T e s t e r

C od e  
• V e c t o r  
g e n e r a t i o n

Figure 6.4 - Block Diagram o f decoding algorithm.
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Example 6.6.1

Again, consider the (10, 5, 3) code. P(u) is taken as u2(u2 +l)(u2+u+l) and 
j  = 1. The received vector r  is partitioned into 4 subvectors r l t r 2 , r 3 , r 4 

corresponding to Pj(u), P2(u), P3 QZ) and the wraparound respectively.
Recall, the generator matrix of this code is given by :

1 0 1 1 0 1 1 1 0 1 0

0 1 1 0 1 1 1 0 1 1 0

0 0 0 1 0 1 1 1 1 0 0

0 0 0 0 1 1 j 1 0 1 0

0 0 0 1 0 1 1 0 1 1 1_

ft ft ft ft
C, C2 C3 c 4

By Lemma 6.1, each block Ct is a (/?,•, 07, aj) code where /*,- = M(aj). Hence 
block C4 is a (1, 1, 1) code for which no decoder is required. While block C^, C2, C3 
being (3, 2, 2) codes require decoders. The set /  is given by :

/ = { 1 ,  2, 3, 4}

and the possible subsets are / j  = {1, 2, 4), I 2 = {1, 3, 4}, / 3 = {2, 3,4} and 
I 4 = {1.  2, 3}.

6.6.2 - Complexity of Decoding

We wish to know just how easy it is to implement the decoding algorithm 
described above.

We shall begin by considering the implementation of step (4) of the decoding 
algorithm - the reconstruction for each set /,• using the CRT. Associated with /;, we 
have the residues:

Zh{u) = Z(u) modulo P/Xu) h e /,•

and using the CRT, these residues are combined to reconstruct the polynomial Z-*{u). 
i.e.

Z; * (« ) = Sh (u )Zh (u ) modulo Pi * (u )
h e  Ii

where

Pi * (u) = Y l  Ph (w )
h e Ii
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Knowing the polynomials P},(u), h e/,-, the polynomial Sh(u) may be determined in 
advance and so the above expression for Z(*(m) may be obtained by :

(i) Compute Sh(u)Zh(u), h g I i

(ii) Find the sum S  $h (w )%h (u )
ft <=/i

(iii) Reduce the polynomial obtained in (ii) modulo P(*(u)

Steps (i) and (iii) can be implemented by a multiplicative circuit and a division circuit 
respectively. Step (ii) may be implemented using a series of adders, one for each 
coefficient of the sum. Hence, step(4) of the decoding algorithm is implemented 
relatively easily.

Step(2) requires (f+1) decoders, one for each subcode (nh a h a,), i=  1 , 2 , .  
t+1. Step(5), forming candidate codewords from candidate information polynomials, 

may be performed using a multiplication circuit. Step(6) requires a comparator followed 
by a counter and a threshold detector set at [(d-l)/2]+l.

Suppose k  is altered to k ', keeping n, the length of the code constant. This will 
result in d  being changed to d \  Clearly steps (1), (2), (3) of the decoding algorithm 
will remain unaffected. The circuits described above to implement step (4) will have to 
be suitably adjusted. Since a change in k does not mean a great change in the encoding 
circuit, alterations to step (5) will be minimal. Finally, the threshold of the comparator 
used in step (6) will have to be reset at [(</'-l)/2], the error correcting capability of the 
new (n, k '} d ’) code.

Hence, as expected, the decoder is not significantly altered by a change in k.

Example 6.6.2

Consider the (14, 5, 5) KM code where P{u) = u(u2+l)(u2+u+l)(u3+u2+l)  
Pi(u)P2(ii)P3(u)P4(u) and s = 1. The generator matrix C has 5 subblocks, C b C2, C3, 
C 4 and C 5 corresponding to Pi(u) ,  F 2(m), F 3(w), P 4 (u) and the wraparound 
respectively. Subblocks C2, C3 are (3, 2 , 2) codes, C i, C5 are (1, 1, 1) codes and 
C4 is a (6,3,3) code. Decoders are required for the codes corresponding to C2, C3 and 
C4. The set /  is given by

/= {  1,2,  3, 4, 5}

and there are 10 possible subsets, namely, / j  = {1, 2,3},  72 ={2 ,  3 , 5} ,  
/ 3 = {3 , 4} ,  I 4 ={  2 , 4} ,  / 5 ={ 1 , 4 , 5 } ,  / 6 = { l , 2 , 4 } ,  I 7 = { 1 , 3 , 4 } ,
/ 8 ={2 , 4 , 5 } ,  / 9 ={3, 4, 5}, / 1 0= { 2 ,  3, 4}.

Since the sum of the degrees of the polynomials associated with /,-, i =  1, . ., 5 
is 5, the reconstructed polynomials Z(*(w), i — l, . 5 being of degree 4, are
candidate information polynomials. However, — 6 , . 9 have degree 5 and
will only be accepted as candidate information polynomials if

*j.5* =  0 .
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Further, Z1Q*(u) has degree 6 and will only be considered as a candidate if

Z l 0 , 5 *  =  * 1 0 , 6 *  =  0 .

Hence a candidacy tester is required for / 6, . I \q. A code generator is required to 
obtain the candidate codevectors corresponding to the candidate information 
polynomials. Finally, a comparator accepts a candidate code vector as a valid code 
vector if it differs from the received vector in at most 2 places. The comparator is a set 
of 14 exclusive-OR gates followed by a counter and a threshold detector set at 3.

From the (14, 5, 5) code we may obtain (14, 3, 7) code. We shall see how 
its decoding requirements differ from that of the (14, 5, 5) code. The generator matrix 
of the (14, 3, 7) code also has 5 subblocks; C2, C3 are (3, 2 , 2 ) codes, and C5 
are (1, 1, 1) codes and C4TS a (6 , 3, 3) code. Thus the decoders for these subblocks 
are essentially the same as those above. In this case there are 9 possible subsets given 
by, 7t = {4}, I 2 = {1,2},  / 3 = {1,3},  I 4 = { 2, 5} ,  / 5 = {3, 5}, / 6 ={2, 3}, 
h  ={4, 5}, /g={2, 4} and / 9 ={3, 4}. Only subsets / 6, / 7, / 8 and / 9 require a 
candidacy test. The design of the code vector generator and the comparator is as before. 
However, the threshold is now set to 4.

6.7 - Decoding of Families of Codes where k is Fixed

By Lemma 6.2, the blocks {Cy} -  {Cpj  = ip z2,. .} may be deleted from C, 
the generator matrix of an (n, k, d) code to obtain C ', the generator matrix of the 
reduced code (n', k, d'). We wish to see how the decoder of an («, k, d) code may 
be modified to obtain the decoder of an (n', k, d 1) code. Let { /y (« } }  denote the set of 
polynomials corresponding to the blocks {Cy}.

Since all the blocks in C' were present in C, steps (1), (2 ) and (3) of the 
decoding algorithm remain essentially unaltered - the decoders corresponding to the 
blocks {Cy} are simply disabled.

In step (4), the reconstruction corresponding to the subset // is not performed if 
this subset involves any residue associated with {Pj(u)}. The other subsets undergo 
reconstruction as expected.

Outputs of the shift register used in step (5), corresponding to the blocks {Cy}, 
are disabled. Hence codewords of length d  are obtained.

Finally, in step (6), the threshold of the comparator is adjusted to [(d-1)/2], the 
error-correcting capability of the new code.

So, in summary, the decoder of the (d,  k, d f) code is obtained from the 
decoder of the (n, k, d) code simply by disabling any part of the original decoder 
associated with {C y}. Clearly, as you would expect, the decoder structure of the 
(n'r k, d0 code is simpler than that of the (n, k, d) code.

We can obtain a (nr, k, d') code from an (n, k, d) code where d  >n and
d' >d by adding groups of columns to C, the generator matrix of the (n, k, d) code. 
Each group of  col umns  w ill cor r espond to a comput a t i on  
<J>y(i/) = Zj(u)Yj(u) modulo Pfiu) where Pj{u) is relatively prime to Pi(u) i -  1, 2 , .

t. The decoder structure for this (/?', k, d *) code will be more complex.
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Example 6.7.1

Suppose block C2 is deleted from the generator matrix of the (14, 5, 5) KM 
code of Example 6.6.2, to give the generator matrix of a (11, 5, 3) KM code.

The decoder of the (11, 5, 3) code may be obtained from the decoder of the 
(14,5,5) code simply by disabling any part of the original decoder associated with C2. 
Hence in step(4) of the decoding algorithm reconstruction of subsets I\, I2 ,14 , h
and /10 is not performed. Also, the threshold of the comparator is reduced to 2.

6.8 - A Discussion of the Results

We have seen that the multiplicative complexity of these aperiodic algorithms 
depends strongly on the choice of the modulo polynomial P(u) and the wraparound 
coefficient s. Hence there exists P(u) and s such that the multiplicative complexity of 
the corresponding algorithm is minimal for given values of k  and d. Our aim was to 
find these in order to obtain the associated KM codes with length n as small as 
possible. The examples presented throughout this work, although varied, illustrate only 
a tiny part of the wide range of KM Codes which may be derived.

However, the complexity of the decoding is proportional to t, the number of 
relatively prime factors , P ,•(«), of P(u). Further t division circuits are required for 
encoding , one for each P (-(w). So large number of small degree factors will result in 
increased complexity but reduced length n for a given value of k  and d. Thus a balance 
point must be found where both the complexity and the code length are reasonable.

We had to question the validity of the decoding algorithm Krishna and Morgera
[2 ] suggested.

Definition 6.1

The companion matrix of a monic polynomial f(u) = <20+<2iW+. . +an^un-l+un 
of positive degree n over a field F is defined to be the {n x n) matrix :

■0 0 0 . . 0 -a  0
1 0 0 . . 0 -a  1

0 1 0 . . 0 -a  2

0 0 0 . . 1 -a„ -1

Further, f(Cfi  = 0.
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Example 6.8.1

Let /(».) = 1+k2+m3+m4 be a polynomial over GF(2). Then

' 0  0 0 1'

1 0 0 0
C/ 0  1 0 1

_0  0 1 1_

We state (without proof) Lemma 6.4 which is necessary to prove Lemma 6.5. 

Lemma 6.4

Let Xy  be a system of bilinear forms where X  is a matrix with entries of the 
form Xapq, ct; e  F  and let t be the minimum number of multiplications needed to 
compute Xy.

Then, there exists 2t linear forms L h . Lt, L { , L t' of X['s and y /s  with
coefficients in F such that Xy = Um  where U is a matrix with entries in F ,
m -  (ffij, . ., m ()T and m ?-= (i = 1, . . ,0  [11].

Lemma 6.5

Let

Z (u. ) = Zj u ‘ and Y (u ) = y£- u 1
i =0 i =0

be two polynomials with indeterminates z/ and y,- respectively as coefficients and let,

a -1
P (u ) = U a + 2  ai U 1

i =0

be a polynomial of degree a  where a-t e  F.
Further, suppose P(u) = Q(u)P where Q(u) is iixeducible over F. Then the 

minimum number of multiplications required to compute
d>(«) = Z(u)Y(u) modulo P{u)

is 2a  -1 [11].

Proof

The coefficients of the polynomial <3>(w) = Z(u)Y(u) modulo P{u) are a system 
of bilineai* forms, which we shall denote by Tp. We will prove the lemma, by showing
that the minimum number of multiplications needed to compute Tp is 2a  -1 .

Let Cp be the companion matrix of the polynomial P and let
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Vp = { v e F a | 3 polynomial r ^ 0 ,  deg[/* ] < a  andvr (Cp ) = 0}

Since Q is irreducible, r(Cp) is non-singular whenever Q does not divide r. Let 
v e Vp, then by definition vr(Cp) — 0, for some polynomial r. A sa  non-trivial linear 
combination of the rows of r{Cp) is zero, the rank of r(Cp) is less than a . It follows 
that r(Cp) is singular and so r = Qsr where P >s >0 and gcd(<2, r )  = 1. We have,

0 = vr(Cp) = vQs(Cp) r \ C p)

Since Q and r are coprime, r(Cp) is non-singular. Thus

0 =vQs(Cp)
Consequently,

0 =vQP-‘(Cp).
Hence, Vp can be defined as,

V„ = { v e  F a \vQ 11- ' ( C p )  = 0}  ■

Clearly, Vp is a subspace of Fa and dim(Vp)< a .

Let Tp -  Zy (for details see Appendix C), then

Z = (z  | Cp z | Cp 2z | . . . | Cp a lz ) where z  =  (z0 , z lt . . ,zaA)T

Let t be the minimum number of multiplications required to compute Tp. By 
Lemma 6.4, Z y  =Um  where U is a (a  x t) matrix with entries in F and 
m = (mj, m2,. . ,mt)T. For all non-zero w e F a, wZ  ^  0 and thus the rank of matrix 
Z is a. Since Zy = U m t it follows that the rank of U is also a. So U has a  linearly 
independent columns. Without loss of generality, assume that the first a  columns of U 
are linearly independent ( where necessary can permute the columns of U and m/s to 
achieve this). Hence there exists a non-singular (a  x a) matrix W  such that

WZy -  WUm = (I I U')m (6.14)

where I  is the identity matrix of dimension a  and Uf is a (a  x Fa) matrix.
W, being non-singular*, spans Fa and consequently there exists a row,w, of W 

which is not in Vp. Suppose w is the yth row of matrix W . Then, by (6.14)

w Zy  = (0, . . , 1, 0, . .,0  I u i \  u2\.
T

y'th position

illustrating that WZy may be computed in f-a+1 multiplications.
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We claim that the rank of wZ is a . For, if there exist y0, . Yot-1 e f  such
that

0 =wz  . ( Y0, . ., Y a - l )
i.e.

Then,

w Yi C p  ' =  0
i = o

and w g - contradiction. Hence, %■ = 0, i = 0, 1,. . ,a - l  and indeed p (wZ) = a .  
Thus, by Lemma 3.3, any computation of wZy has at least a  multiplications. We 
observed above that w Z y  may be computed in r-a+1 multiplications, therefore

t - a + 1 > a
i.e.

t > 2 a - l ,
which proves the lenima.

#

Lemma 6.5 may be expanded to obtain a lower bound on the number of 
multiplications required to compute

<E>(w.) = Z(u)Y(u) 
using the convolution algorithm based on the CRT.
Suppose, a polynomial P(u)  is chosen to have t coprime factors P^u)  and the 
computation is to involve s wraparound coefficients.

Recall, we begin by reducing both Z(u) and Y(u) modulo P^u)  to give Z^u)
and Y;(u) respectively. <E>,(w) is then computed as

<I>/(w) = Z{(u) Yi(u) modulo P/(w) 
which by Lemma 6.5 will involve at least (2a r l) multiplications. Similarily, the 
wraparound computation will require at least (2M ) multiplications.

Finally, the CRT is used to reconstruct However, this involves only
additions and multiplications by elements of the field F and so does not contribute to the 
multiplicative complexity. Hence, the minimum number of multiplications, nmin,
required to compute d>(w) = Z(u)Y(u), using this convolution algorithm, is given by :

t l n u n  =  -  1) +  (2s -  1)
i = 1
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2 + 2s -  -  1

 ̂r 1 \  r +1
= 2 2 î a i ~ 2* 1 where a f +1 = s

V i  =  1 J  i - 1
= 2N - (t + 1).

This bound is very useful in determining the efficiency the (n, k, d) code 
obtained from the algorithm for computing an aperiodic convolution of length N

There is no 'useful' upperbound on the multiplicative complexity of the 
aperiodic convolution. However, trivially, the product of two polynomials of degrees 
(k-1) and (d-1) can be computed in kd multiplications.

Example 6.8.2

Consider the aperiodic convolution of length N  = 9, where P { u ) = 
u(u2+l)(u2+u+l)(u3+u2+l) = Pi(u)P2(u)Pi(u)P4(w) and s = 1. Then t = 4 and (by 
above), nm;n = 2(9)-(4+l) = 13. The convolution algorithm based on the CRT, results 
in a corresponding KM code of length 14. Thus the code obtained is of length very 
close to the theoretical lower bound of this algorithm.

Lemma 6.6

A bilinear algorithm with field of constants GF(p) which is valid for input data 
over GF(p) remains valid for input data over GF(pm) [12].

where x  and y  are vectors over GF(p).
Then, as observed previously, an algorithm to compute ri may be of the form

where A, B and C are matrices of appropriate dimension over GF(p) and x denotes 
component-by-component multiplication of vectors. We wish to show that this 
computation is valid when x  andy are vectors over GF(pm).

Let a  be an element of GF(pm) and of no smaller field. Recall, that if u is a 
vector over GF(pm), then it can be expressed as

(=k+d-1).

Proof

Consider ri a system of bilinear forms. Suppose

ri = C(Ax x By) (6.15)
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U = Y u , a
i =1

where ut is a vector over GF(p).
Then if x  andy are vectors over GF(pm), we have

x = 2a xf a  1 and y = 2ii yj a
i =i j =i

where x i and y;-are vectors over GF(p).

Then

m  -  1 m  -  1

xi a  1 * JL yy a  J
j =ir =1

= YY a  '  +J (Xi  * yj )

Xj * y.-. So,

i =i  j  = i

Also, since and y;- are over GF(p) ,  we may use algorithm (6.15) to compute

m -  1 n \ — 1

B = 2< Zu & ' +J C (A Xi x  B yj )
/=i j =i

= c  f *£ ! £  (A x,- a  ; x  B yj a  > )
V* = i ; - i
(  m - 1

= c
m - 1 \

A Xi a  1 x B 2 j yj a  J
V * = 1 j= 1

= C(A x  xf?y)

Hence, the same algorithm can be used to compute over GF(p) and over
GF(pm).

#

By Lemma 6 .6 , it follows that the aperiodic convolution algorithms described in 
detail earlier will remain valid over GF(2m), GF(3m), etc. Working over such a field, 
increases the field of constants. This reduces the multiplicative complexity of the 
algorithm which we saw earlier results in codes of shorter length for given values of k 
and cl
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CHAPTER 7 - GH-ARQ Schemes Based on KM Codes

We shall now illustrate how KM Codes may be incorporated into GH-ARQ 
Schemes. The performance of such schemes will then be investigated.

7.1 - A GH-ARQ Scheme Based on KM Codes

We shall now describe how a KM code may be employed for error-correction in 
a GH-ARQ scheme. Recall, two codes must be chosen; CO - an (n, k) code for error- 
detection and Cl - an (mn, n) code used for adaptive error-correction.

If a KM code is to be used in such a scheme, it must be an (ml',I') KM code 
having generator matix C = [OilC^I • • • ICm] where C/is an (/' x /’) invertible matrix. 
Further, the (wf k) code CO, must be chosen such that /' divides n.

Using CO, the k  - bit message D is encoded into the n - bit datablock I . Let 
/  = (ij, z2, . . . The encoding and decoding procedures of such a scheme may 
be described in two equivalent ways.

First consider encoding, the two methods are

(a) From matrices C h (i = 1, 2,. . ,m) , m (n x n ) matrices G : , G 2,. . , G m are 
defined by

where In/p denotes an identity matrix of order n //' and © denotes the Kronecker
product of two matrices.
i.e.

Then, G = [Gj IG2I. , .IGm] is the generator matrix of the (mn, n) code which shall be 
used for adaptive error-correction. Using I, the transmitter computes m (1 x n ) 
vectors cf- (i = 1, 2 ,. . ,m) where

Since C/ is invertible, it follows that G/ is also invertible ( i -  1 , 2 , . .  jri). In fact,

Further, the data block /  may be uniquely recovered from c(- (z = 1, 2, . .,m), since

G ;= C ; © I,

-q o o
0 Q 0

0 0 0 0 0 Ci
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I  -  CiG f l.
Equivalently, we may

(b) Subdivide block /  into {n //') subblocks, each of length /'. 
i.e.

I  0"l »i2»* • "̂/'+1 *■ ’’ 2̂/' .̂............*̂ 'n-2' + l )
= (/l ^2 I..I/*//')

Each of these subblocks is multiplied by C, the generator matrix of the (ml'J') KM
code.
i.e.

I f  = Ij [CXC 2. . . Cm] = [IjC1 I I f  2 1. . . I IjCm] 7 = 1, 2 , .., n //'

It is obvious that the /' digits of I f x coirespond to the {V (J -l)+ l)th  up to V j  th digit 
of cXy the V digits of I f 2 correspond to the (/' (J -l)+ l)th  up to V j  th digit of c2> 
and finally I f m corresponds to the (/’ (j -l)+ l)th  up to Vj  th digit of cm (/' = 1, 2 , 
. n IV ). 
i.e.

Ci=U\C i \I2Ci I. . . . (/„//' C J  / = 1, 2, . . ,772.

Let denote the block received corresponding to the transmitted block c t 
(i = 1 , 2 Fr om R h we may obtain Eit an estimate of the block I  in one of two 
ways.

(a) Recall,

Hence 

or,

(b) Subdivide block R; into n //' subblocks of length / '.  Then multiply each subblock 
by the matrix C,"1, to give an estimate of the corresponding subblock of £, (7=1,2,..,ra)

In either case, if no errors have occurred, then R,- = c* and E't - 1. Blocks Cj, 
c2,. . cm are ti'ansmitted in turn until ACK is delivered to the transmitter.

The full receiver configuration corresponding to method (a) is detailed in 
Section 2.3. For completeness, the receiver configuration related to method (b) is now 
given;

On receiving Rit decoding as described in (b) above is performed, to obtain Eh 
an estimate o f/. Then using CO, E{ is checked for errors. If E{ is found to be error-free, 
then it is assumed that £ = /  and ACK is sent to the transmitter. If however, Et contains 
detectable errors, R x, R2,. . are each divided into n/V subblocks of length l\ The 
y'th subbblocks of R Xt R 2,. . >Ri are combined to form a vector vj of the (?/',/’) KM 
code, CFO, with generator matrix [CilC2l. . IC/] (/'= 1,2 ,. . n/l'). Vector vj is decoded, 
using CF'), to obtain I f ,  an estimate of //. Then /°= [/i0l/2°l. . I Inj f ]  is tested for errors 
using CO. If 7° is found to contain errors, NACK is sent to the transmitter and R v, R2,-

Ci = IG'r 

Ei = R f i , -  *
/ = 1,2,. . ,m
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. M i are stored in the receiver buffer. Otherwise, it is assumed that I°= I  and ACK is 
sent to the transmitter.

Example 7.1.1

In the above general form, the receiver configuration may appear very 
complicated, so we shall consider a specific example where CO is a (500,480) code 
obtained from (1023,1003) BCH code and a (15,5,5) KM code with (10,5,3) subcode 
is used. This is a depth 3 GH-ARQ scheme.

Consider the first transmission. Suppose that 7?j contains errors as shown 
below. Then

c\ = 5 5 5 5. . . .  5 >transmit—>—> R \ -5  5* 5* 5* . . . .  5
100 blocks each o f length 5 ^contains errors

£ i ,  an estimate of 7 based on is found to contain errors - another 
transmission is requested. Suppose that E2 also contains detectable errors. Then

Ri= 5 5*5*5*___  5 5 5 5
i  4 i i

Decode each vector of (10,5,3) KM code
i  i  4' '1'

R 2= 5 5*5 5 ____ 5*5 5*5
4, 4, a

I l°  h °

Each paii* of corresponding blocks is combined to form a vector of the (10,5,3) 
KM code. Each of these vectors is decoded to I f  ( j - 1,2,. .,100). Then 
7° = (7i°,../ioo°), an estimate of 7 is formed. However, the (10,5,3) code fails to 
correct all the errors present. Thus 7°^7 and another transmission is required.

If the estimate of 7 obtained from R3 is found to be incorrect, then

Ri= 5 5*5*5*. . . . 5  5 5 5
4, 4- i i

R2= 5 5*5 5 . . . . 5*5 5*5
i  i i i

Decode each vector of (15,5,5) KM code
i  i i i

3= 5*5 5*5 . . . . 5 5*5 5
i  i i i

Ii° I f ^99%  00°

This time each triplet of corresponding blocks combine and are decoded, using 
the (15,5,5) KM code, to form I f  (/= 1,2,. . ,100). The errors in the blocks are
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removed. Decoding is successful, 7°= (/]0,../ioo0)> a codeword of CO is found to 
be error-free. We assume I°=I and ACK is sent to the transmitter.
Note If this 1° had been found to contain errors, R i would be discarded and NACK 
sent to the transmitter. The blocks will continue to be transmitted in turn until decoding 
is successful.

7.2 - The Partitioning of die Generator Matrix of KM Codes

Recall, C, the generator matrix of a (n, k, d) KM Code has (f+1) blocks. Each 
block Cj, corresponds to a computation of the form

= Z,-(m)7(-(w) modulo Pj(u) where deg[/>,<«)] = a {-.

Further, it was noted that block C; has a,- linearly independent columns which 
correspond to the computation

= Z(w) modulo Pf(u).

Each a f- is small and so the computation of u) can be performed such that the 
rank of the remaining (nr a,-) columns is equal to max(oq, nr a,-). This ensures that the 
partitions of the generator matrix are invertible.

If the polynomial P;(u) corresponding to the block C/, is of the form (u+ai)ai, 
fl/e F, then this block may be divided into sub-blocks given by,

Ci= [C,-1! C t2I ....IC/«i] 

where the sub-block C,1 coixesponds to the computation

d>/u) = Z-(w)7/(») modulo (u+aj) 

and the sub-blocks [C^IC,-2!...... ICj\ coixespond to the computation

<£/(m) = Z ^ Y i i u )  modulo (u+a$,  
for 7 = 1 , 2 , . . ,  a  i

This property holds also for block Ct+ j, the wraparound block.

The following example illustrates how this partitioning procedure suggests a 
way in which to arrange the columns of the generator matrix of a KM code so that it 
may be divided into (k x k) invertible subblocks.

Example 7.2.1

Consider the (15,5,5) KM code. Here P(u) -  w3(«2+ l ) ( n 2+w+l), s = 2, 
Z(«.) = z0+zlu+i2 u2+z3u'i +z4u4 and Y(u) = yo+),in+y2I/2'f>,3i/3+V4W4.
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Note With k = 5 & d -  5, it is possible to obtain a KM code of length 14 by taking 
P(u)  = u(u2+ l ) (u 2+u+ l)(w3+w2+l)  and 5 = 1. Indeed up until now, we have 
concerned ourselves with finding a KM code of minimal length for given k and d. 
However, as we previously observed, in order that these codes may be employed in a 
GH-ARQ scheme, it is required that the generator matrix can be divided into subblocks 
of dimension (k  x k). Hence the length must be an integral multiple of the dimension k. 
For this particular k and d, the minimal KM code does not meet these requirements. 
This is not always the case. For example with k = 4 and d ~ l , the minimal KM code 
is of length 16 and so clearly could be employed in a GH-ARQ scheme as described in 
Section 7.1,

Reducing the polynomials Z(u) and Y(u) modulo each Pfai), we obtain

i = l

and

Let,

and

i = 2

and

Let,

and

Zi(u) =Z(u) modulo u3 
= Z0+Zlw+Z2w2

Y i (u) = Y(u) modulo u3
= yo+y\u+y2^2-

= ^ o .  
m l = z t f x ,

z2^ 2>
m 3 = (z0+zi).(y0+yi),  
w 4 "  ( z 0 + z 2 )* 0 ;0',"3?2)

m 5 = (zi+z2).(yl+y2).

Z 2(u) =Z(u) modulo (zz2+ l)
= (z0+z2+z4) + ( z 1 + z 3 ) m

Y2(u) = Y(u) modulo (z/2+ l)
= Oo-QWa) + Cyi+^w-

w 6 = (z0+z2+z4),(y0+y2+y4), 
m 7 = (z1+z3).Cy1+y3)

m8 = (z0+zi+z2+Z3+Z4).(y0+y1+y2+y3+y4).

i = 3
Z3(z/) = Z(u) modulo (u2+u+1)

— (Zo+Z2+Z3) + (Zj+Z2+Z4)z/.
and
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T3(u) = Y(u) modulo (u2+u+1)
= (yo+^2+^3) + (yi+y2+y d 1̂

Let,
m9 = (z0+z2+z3).(y0+y2+y3),
"*10 =  ( 2 1 +  z 2+ z4)*0 , 1+ 3;2+ 3'4 )

and
m n  = (zo+z1+z3+z4).0>0+>’1+>'3+j>4).

Wraparound

Z (u ) = z 4 + z 3» modulo u 2
and

y ( h )  s  y 4 +) i j M modulo w 2 .
Let,

m 12= z4.y4, 
m  13 =  z 3 A 3

and
"*1 4 =  ( z 3+ 2 4 ) • (.y 3 + ^ 4 ) •

It follows that C, the generator matrix of the (15, 5, 5) KM code is given by ,

‘1 0 0 1 1 0 1 0 1 1 0 1 0 0 0

0 1 0 1 0 1 0 1 1 0 1 1 0 0 0

0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1

.0 0 0 0 0 0 1 0 1 0 1 1 1 0 1

ft ft ft It
Cl C2 C3 C4

The block corresponding to the com putation Z 1(m)71(«) m odulo u3 is C x. This block 
m ay be divided into three sub-blocks Q 1, C j2 and C j3 where [C ^ ] coiTesponds to the 
com putation  Zi(u)Yi(u)  modulo u, [C ^ IC i2] coiTesponds to Z 1(u)Yi (u) m odulo u2 
and [C jd C ^ IC j3] coiTesponds to Z ^ i ^ Y ^ u )  m odulo «3. 
i.e.

T '0 r '0 1 O'
0 1 1 0 0 1
0 Cf = 0 0 C? = 1 1 1
0 0 0 0 0 0

.a .0 a -0 0 0.
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Similarly, C , the block corresponding to the computation Z (u ) Y (u ) modulo u2 
m ay be parti t ioned into two subblocks, C 4 1 and C 42 . [C 4 1] i s  
associated with the computation Z (u ) Y (u ) modulo u while [C 1 IC42] is
associated with the computation Z {u ) Y (u ) modulo ip. These are given by :

■ff ‘0 O'
0 0 0
0 0 0
0 1 1

LiJ .0 L

By removing the subblocks C p  and C42 from C and rearranging the remaining 
columns, we obtain C', the generator matrix of a (10, 5, 3) code corresponding to 
P(u) = m2(m2+1)(m2+w+1) and s = 1. C may be partitioned into two subblocks, Cj* 
and C2 each of which is invertible, 
i.e.

1 1 0 1 0 0 1 1 0 1

0 0 1 0 0 1 1 1 1 1

0 1 0 1 0 0 0 1 1 0

0 0 1 1 0 0 0 1 0 1

0 1 0 0 1 0 0 1 1 1

n n

c; c;

The columns of C 23 and C42 may then be added to the end of C'  to give Cm, a 
modified generator matrix of (15, 5, 5) code. Cm consists of three invertible 
partitions,
i.e.

'1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0'

0 0 1 0 0 1 1 1 1 1 0 1 0 0 0

0 1 0 1 0 0 0 1 1 0 1 1 1 0 0

0 0 1 1 0 0 0 1 0 1 0 0 0 1 1

.0 1 0 0 1 0 0 1 1 1 0 0 0 0 1

It It II
pi p i p3'-'ni

Figure 7.1 shows the transmission procedure while Figure 7.2 shows the 
receiver configuration for a depth 3 GH-ARQ scheme based on a (15,5,5) KM code.
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7.3 - Error-Detection

We now consider the error-detection capability of the GH-ARQ scheme - an 
important factor of the system performance.

Recall, an («, k) code CO is employed for error-detection in GH-ARQ 
schemes. Let Pe be the probability that an error will pass undetected and £ be the bit 
error rate of the channel. If an (n,k) code satisfies [4]

Pe < [l-(l-e)*]2-(«-*> 0<e<l/2 (7.1)

then Pe may be reduced simply by using more parity check bits (i.e.by increasing n-k). 
Although, it is not possible to prove the existence of families of codes which satisfy 
this bound, for specific n and k, it is usually possible to find an (n, k) code satisfying
(7.1) [2].

Assuming the (n, k) code CO employed in our GH-ARQ scheme satisfies bound
(7.1), Pe can be made arbitrarily small.

Recall, in GH-ARQ schemes, the receiver obtains , an estimate of the 
original codeword / , by taking the inverse of the received vector Rr CO is then used to 
determine whether £; is a valid codeword. That is,

Ei is a codeword in CO iff R p i  - lHT = 0

where the subscript i represents the i th transmission.

Let Hj ~T — Gi -lPP'. Then an error pattern e in the i th transmission of a block 
will be undetectable if and only if e is a codeword of a linear code having parity check 
matrix //,- ~.

At present, it is not possible to prove that the probability of undetected error of a 
general GH-ARQ scheme satisfies the above bound. However, below is an example of 
a specific GH-ARQ scheme which does indeed satisfy bound (7.1) [2].

Example 7.3.1

Consider a GH-ARQ scheme employing the following codes; CO for error- 
detection - (500, 480) code obtained by shortening the distance 5 (1023, 1003) BCH 
code and C l for error-correction - (1500, 500) invertible code obtained from the 
(15, 5, 5) KM code derived in Example 7.2.1 .

Figure 7.3 shows the probability of undetected error for successive 
transmissions in the above GH-ARQ scheme. Note, that since this GH-ARQ scheme is 
of depth 3, there are three plots for the probability of undetected errors corresponding 
to the first transmission and the first and second retransmissions.

We notice that the probability of undetected error is a monatomic function of £, 
0 < £ < 1/2. This condition is necessary and sufficient for a code to satisfy bound
(7.1) [13] •
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KEY

n = 500 
k = 480

1. 1st transmission
2 . 1st retransmission
3. 2nd retransmission
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E
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D

[r

R
R
0
R

l 0.5

BIT ERROR RATE

Figure 7.3 - Probability of undetected error for the GH-ARQ scheme using (15, 5, 5) KM code for 
error-correction.
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7.4 - Burst EiTor-Detection Capability of GH-ARQ Schemes

We now turn our attention to the burst error-detection capability of the error- 
detecting codes used in GH-ARQ schemes. (n, k) cyclic codes are commonly chosen 
for error-detection in ARQ schemes as they have a fairly good burst-error detection 
capability. In fact, an {n, k) cyclic code can detect error-bursts of up to length (n -k).

Recall, for GH-ARQ schemes, the receiver multiplies subblocks of the received 
vector by the corresponding inverse matrix to find an estimate of the transmitted data 
block /. Thus, any errors which occur in a received subblock will also be present in the 
inverted subblock. We wish to determine the maximum length of an error burst which 
can be detected in this scheme. Consider the worst case. Assume that if a received 
subblock contains at least one error, then all the digits of the corresponding inverted 
subblock will be in error. Let V be the length of each subblock and let n' be the 
number of received blocks containing an error burst. Then, after inversion, for the 
worst case, the length of the burst will be l'n\ If this error burst is to be detected by the 
(n, k) cyclic error-detecting code, we must have :

Vn’ < (n -k ).
i.e.

« ' < [(,n -k)/l' ]

Hence, the maximum number of received subblocks affected by a burst of errors which 
will be detected by the receiver is given by :

n m a x ' =  K "  - * ) / / ' ] •

It can be shown that the maximum length of a detectable error burst which affects nmax' 
subblocks is /'(/imav' - 1) + 1 [2]. Thus the burst error-detection capability of the 
GH-ARQ scheme is underbounded by l'{nmax' - 1) + 1.

Example 7.4.1

Consider the GH-ARQ scheme described in Example 7.3.1 where CO = 
(500, 480) code and C l = (15, 5, 5) KM code.

Then n -k = 500 - 480 = 20 and V = 5. So nmaxr = 20/5 = 4 and the burst 
error-detection capability is at least 5(4-l)+l = 16.

7.5 - Performance Analysis of GH-ARQ Schemes

To determine the system performance of a GH-ARQ scheme, we shall consider 
its throughput efficiency and its reliability. Throughout, the following analysis, let Tqc, 
T0d and T0e be the events that a data block contains no errors, detectable errors and 
undetectable errors respectively, in the first transmission. Also, let/?/7, B f ,  B f  denote 
the events that the i th retransmission of a block contains no errors, detectable errors 
and undetectable errors, respectively. Further, upon the i th retransmission, let £)(c, 
Df1, D f  be the events that the block obtained by decoding the blocks received up to the 
/ th retransmission is error-free, contains detectable errors and contains undetectable
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errors, respectively. Finally, upon the i th retransmission, let E f  be the event that the 
receiver recovers the data block correctly; Ef1 be the event that the receiver fails to 
recover the data block, is aware of the presence of errors and thus requests another 
retransmission; and E f  be the event that the receiver recovers the data block incorrectly 
but declares it error-free. Clearly,

Pr(r0c) + P r ( V )  + P r(r0O  = l
and (7 .2)

Pr ( B f ) + Pr(B f ) + Pr ( B f ) = 1. >

Further, let the probability that one given bit will be received incorrectly be e, then the 
probability that it will be error-free is (1-e). As a block contains n bits,

Pr(r0c)=Pr(5/O =(l-e)«. (7.3)

If the event E f  takes place then either
(a) the i th retransmission of a block is successful and so the receiver may obtain the 
data block from this
or
(b)the i th retransmission for a block contains detectable errors.These errors are 
corrected and the block obtained by decoding all the blocks received up to the i th 
retransmission is error-free.
Hence,

Ef '  -  B f  u  B f D f .  (7-4)

When the event E f  occurs then
(a) the i th retransmission for the block is found to contain errors 
and
(b) decoding all the blocks received up to the i th retransmission, results in a block 
which again is found to contain errors.
Hence,

E f  = B f D f .  (7.5)

Finally the event E f  means
(a) the receiver fails to detect the presence of the errors which have occured in the i th 
retransmission for a block
or
(b) the receiver does detect the presence of errors in this block but when the blocks
received up to the i th retransmission are decoded, the recovered block contains errors.
However, the receiver fails to detect these errors.
Hence,

E f  =  B f  u  B f D f .  (7 -6)

Let T denote the total number of transmissions required to recover a block successfully 
in a GH-ARQ scheme. Note that here the i th retransmission corresponds to a total of 
(i + 1) transmissions for a block.
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7.5.1 - Throughput Efficiency of GH-ARQ Schemes

We wish to investigate the throughput of a GH-ARQ scheme. Selective-repeat 
ARQ is the most efficient ARQ scheme and so we shall study the throughput of the 
GH-ARQ scheme in the selective-repeat mode. The throughput of such a scheme 
depends on the buffer size. To simplify our analysis, the buffer is assumed to be of 
infinite size. Further, we shall assume that the feedback channel is noiseless. (Note, e 
denotes the bit error rate of the forward transmission channel.)

Then, E  [T ], the expected value for T  is given by

E IT ] =  P r [T ^ + r 0e ] +  2 P r [ V  ( £ 1c+ £ 1e )] + 3'9rlTQdE ld ( £ 2c+ £ 2e )l + . . .
+ (i +1) Vr[T0dEldE1d..Ei Ad (E f+Ef  )] + . . .  (7.7)

andrj, the throughput efficiency of this system is given by

where kin is the rate of the error-detecting code CO.
The inequalities Pr[£)c ] » Pr[£/Q and P r[7 y ] » Pr[T0e ] may be used to obtain an 
excellent approximation of E [T ]. However, the expression (7.8), above for E [T ] 
involves the probability of joint events which are difficult to determine. Thus another 
approach must be sought to continue any further analysis.

In particular, we shall look at the performance of a GH-ARQ scheme which 
employs a depth 3 code C l for error-correction. Let C l be the code derived from a 
(3/', / ' )  KM code as described in Section 7.2 (method (a)). Then, G, the generator 
matrix of Cl is given by

G = [G1 IG2 I<?3]

and let C F2> be the code with generator matrix IG2]. Then C F 2) is obtained from
the (2/', V ) KM code, a subcode of the (3/', / ')  KM code. Also, let and t2 be the 
error-correcting capability of the (3/', / ')  and (2/', V ) codes respectively. Clearly
*1 > h-

We shall introduce two systems, each having a reduced throughput compared to 
the proposed system.

System A - error-correction using C F2) is performed at every odd retransmission while 
only error-detection is performed at every even retransmission.

System B - error-correction based on the code C l takes place at every third 
transmission and only error-detection is performed on all other transmissions.

Each of these inferior schemes can be easily analysed. Thus we may obtain the 
throughput of both System A and System B. The throughput of the actual GH-ARQ 
scheme is underbounded by the maximum of the throughputs of the two inferior 
systems. This approach is very similar to that used by Wang and Lin in reference [15].
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Recall, error-detection in the GH-ARQ scheme is performed using codes having 
parity check matrices H t ~ (//,- ~T = G, -lHT where H  is the parity check matrix of 
code CO). Let Pet be the probability of undetected error for these codes and let,

Pe = m ax^,-, i -  1, 2, 3).

We shall assume that Pe satisfies bound (7.1) and so Pe can be made arbitrarily small.
Let Pc be the probability that the j  th transmission of any block received is error- 

free and let Pd be the probability that errors are detected in this transmission. From 
(7.3), Pc is given by :

P c = (1 - e)".

Also, for the j  th transmission,

P d — 1“ (probability that no errors occur) - (probability that undetected errors occur).

However, as the probability of a transmission being error-free is significantly larger 
than Pei (i = 1 , 2, 3), we may use the approximation,

^ = 1- ^ .  (7.9)

We are now ready to analyse systems A and B.

System A

For R t and R , two consecutively received blocks corresponding to a data 
block /, let,
50 = Probability that correct decoding takes place based on C F 2), 
y  -  Probability that

(a) decoding based on C F2) is correct and
(b) at least one of Rt and Rt is error-free,
= Conditional probabilty that decoding based on C F 2) is correct given that Rj_i and 

Rj are found to contain errors.

Now Pr[5;c ] = Pc and Pr[£(_^ ] = Pr[5/* 3 = P d = 1 ~PC (by (7.9)).

Consider, the joint probabilty Pi'[T0ciE1d..Ei_lcl(Eic+Eie)]. This may be expressed as

Pr[7'0rf E jd . . E; dx (Ei c +£■ e )] =

f P r [ r 0rf E f  ]P r[£  2d E ^  ] .  . Pr[£; t x (£J c + £) e )] for i odd
[ P r [ r 0<i£ 1‘' ] P r [ £ 2‘i £ 3' ' ] .  . Pr[£, j'2 t; ]P r[£, ' + £) » ] fori even '

(7.10)

We must deal with each of these cases separately.
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/ odd
Then only error-detection is performed upon transmission (/ -1) and so

(7.11)

Thus for / odd,

Pr[£,--\d ( E f +E f  )]
< PrfE)- -idE f  ]
= Pr[£Tf- _!rf ] Pr[E,c I _±d ]
= P i l ^ . ^ J P r f ^  u  B f D f  \BiA d]
-  P r f ^ . / r f P r f ^ ]  + P rt^ Z V  15,■_!<*]
= Pr[£;- V  ]{Pr [B f  ] + Pr [ B f  ]Pr[D^ IB,- . f B f  ]} 

= (1 -Pc ) {Pc + (l-Pc ) .P r[D f \B i _1‘tB J ] h

by (7.11) &(7.4)

(7.12)

Pr[ D f  1 is the conditional probability that the block obtained by decoding 
the blocks received up to the / th retransmission will be error-free, given that the 
(/ -l)th and the i th retransmissions for the block contain errors.

where Pt = [Pc +(1-PC )5J.

Looking at our expansion of PrfE,- (E f  + E f  )] (/ odd), we can see that 
Pr[£f-C \E; ] has been replaced by Pt. Hence, Pt is the event that the receiver recovers
the data block correctly, upon the /th retransmission, given that received block R,- is 
detected in error.

Then, on the / th retransmission, only error-detection takes place. Hence, if the 
receiver recovers the data block correctly upon the / th retransmission, the / th 
retransmission of the block must have been delivered error-free,
i.e.

Then

(7.13)

Hence, substituting (7.13) into (7.12), we have for i odd,

Pr[£; y ( E ,■<+£*)] < (1-/>C)[/’C+(1-.PC)51]
= (1 -PC)P, (7.14)

i even

E f  = B f (7.15)
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Then,

V v l E f +E f  ] < Pr[£;c ]
= Pr[^/C]
= *V

Now consider the probability Pr[£. irlE.d ] fory odd.

Pr[£y -i % “ ] = P r [ E ; ] P r [ E /  \Ej ]
=Pr[Ej ] { 1-Pr[£/1Ej ] -P r [£ /  \EJA* ] }

SPr[S>.1rf]{ l-P r[£ /l£ ; .1-']}
= ( l-£ c){ l-P r[E /l£ / .,'i]}
= (1-PC)(1-P,).

Further, it can be shown that [2],

S o  =  

and

£ ( V  W e >« w
j=oV J J

n II '

t 2 I '
- X i 1,. M  (1 - e ) '  ' J

u ’ =  0  w

b n '
d - e ) "

Let a  = 1-(1-PC )(l-i>r), combining the above inequalities, we obtain

\Pt (1 ~PC ) ( l - c r )  2 for i odd

Pc (1 -C 7 ) 2 for i even

H ence for system  A,

£ [ £ ] , =  l .Pr[7V + 7 V ]  + 2.Pr[T0" (E ic + £ Y ) ]  + 
3 .P r [r0‘' £ , ' '  (E2 + £ 2' ) ]  + - -

. . + ( /  + l ) . V x [ T 0 d . .E- . f^Ei  c +E, e)] +

<  Pc + 2  P, (1 - P c ) +  3 Pc ( 1 - t J )  + 4Pr (1 — )(1 — <7 ) +
5Pc ( 1 - f f ) 2 + 6 P, (1 - P c )(1 - o f  +

1 P C ( 1 - c t ) 3 + 8P, ( l - P c )(l -<7 )3 + . .
oo oo= Pc X(2i +1)(1 —a)' + 2  P, (1-PC)X O '  +l)(l-o- y

i = 0

2 - P c 
Pc + Pt — Pc Pt

j  = °

by (7.15)
(7.16)

by (7.11)

(7.17)

(7.18)

(7.19)
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E [T ]A < 2 ~PC (7.20)
Pc + Pt - P c Pt

System B

For Rf^2y P i -i and/?,*, three consecutively received vectors corresponding to
/, let,
5q = Probability that decoding based on C l is correct, 
y  = Probability that

(a) decoding based on Cl is correct and
(b) at least one of R x _2, /?,• 4  and R x contains no errors,

§1  = Conditional probability that decoding based on C l is correct given that 
/?/_!, R x all contain errors.
Using a similar method as that for system A, it can be shown for system B  that the 
probability of correctly obtaining /  from /?/_2, Rx.j and R; given that Rx _2, and R iA 
contain eixors is given by [2]:

Pt = Pc+( l-Pc )dx. (7.21)

Further, for system B ,

E [T ]b < (Pc (1 + 2a 1 ) + a.2 (2 + a 1) + 3a. 3 ) .—-------------- (7.22)

where aj = ( l-Pc )2(l -Pt), 
a2 = (1 -PC)PC 

and a3 = (1 -Pc)2Pr
(7.23)

The probabilities 50 and y  may be shown to be [2],

and
(7.24)

n I I  '

n I I  '

— 5(1 — £ )

Finally §] for system B is given by the right hand side of (7.13).
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Using equation (7.8) and E ]T and E [ T ] B , we may obtain the throughput 
of Systems A and B . The throughput of the actual GH-ARQ scheme is underbounded 
by the maximum of these two inferior throughputs.

Consider a GH-ARQ scheme of depth 2 employing an (8 , 4, 3) KM code for 
error-correction. Figure 7.4 shows how the throughput of such a scheme varies with 
decreasing channel conditions.

As a comparision, Figure 7.4 also shows the throughput of Type-II hybrid 
ARQ systems using C l, with error-correcting capabilities fj -  5, 10, 20.

It should be noted that the throughput of the GH-ARQ scheme decreases slowly 
as it approaches 0.5, Precise explanations are difficult to give. However, since the 
receiver performs error-detection and error-correction upon the first retransmission, 
obviously the probability of further retransmissions will be greatly reduced. This 
reduction will result in an increased throughput. Provided, the probability of error- 
correction upon the first retransmission is high, throughput will remain close to 0.5.
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KEY

1. Pure ARQ
2. Cl : (2/?, n) code derived from (8 , 4, 3) KM code
3. C l : (2/j, n) code, t { = 5
4. Cl : (2/2, n) code, t { = 10
5. C l : (2/2, n) code, = 20

1.0

T
H 0.8 
R
0  
U 
G

p  0 . 6
U
T

E
F
p 0.4
1
C
I
E
N
C 0.2 
Y

10-6 10-5 10-4 10-3 10-2
BIT ERROR RATE

Figure 7.4 (i) - Throughput efficiency of the selective-repeat GH-ARQ schemes using depth 2 codes for 
error-correction (/i = 500).
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KEY

1. Pure ARQ
2. Cl : (2n, n )  code derived from (8 , 4, 3) KM code
3. C l : (2/i, //) code, t x = 5
4. Cl : (2//, n )  code, t x = 10
5. C l : (2«, n )  code, t x = 20

T
H 0 8 ------
R
O
U
G

p 0 . 6 ____

U
T

E
F
p  0 . 4 ____

C

E
N
C 0 .2  
Y

BIT ERROR RA T E

Figure 7.4 (ii) - Throughput efficiency of the selective-repeat GH-ARQ schemes using depth 2 codes 
for error-correction (n = 1000).
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KEY

1. Pure ARQ
2. C l : (2n, n) code derived from (8 , 4, 3) KM code
3. C l : (2/i, n) code, = 5
4. C l : (2n , n) code, t x = 10
5. Cl : (2/i, //) code, t x = 20

T
H 0.8 _ _
R
O
U
G

0.6
U
T

E
F
F 0 . 4 ____

C

E
N
C 0.2 
Y

BIT ERROR RATE

Figure 7.4 (iii) - Throughput efficiency of the selective-repeat GH-ARQ schemes using depth 2 codes 
for error-correction (n = 2000).
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7.5.2 - Reliability of GH-ARQ Schemes

Type-II hybrid ARQ systems have been shown to provide the same order of 
reliability as ARQ systems [15]. We now wish to show that the GH-ARQ schemes 
offer the same order of reliabilty as ARQ systems.

For a GH-ARQ system, let E be the event that the receiver accepts a block 
containing undetectable errors. Then, the reliabilty of this system can be found via the 
probability of the event E , Pr[£ ].
Clearly,

Pr[E ] = Pr[7y  ] + P r p y ^ ]  + Pr[ T ^ E ^ \  + . . .
. . .+ P r [ T 0dE 1d. +

QQ
= Pr[7V  ]+  X  Pr[To“ E td . . Et dt E,, c ]  (7.25)

i  =1

Again, we are faced with the problem of computing joint probabilities. As an 
alternative, we aim to find an upperbound for each term in equation (7.25) above.

Recall, in a GH-ARQ scheme of depth m, a received vector Rt is a codeword 
iff R ? H i ~t = 0; i = 1, 2, . ., m. Let Pei be the probability of undetected errors, 
associated with the error-detecting code, which has parity check matrix Hi ~ and let

Pe = max(Pet-; i = 1, 2, . ., m ) Pj- = min (Pe,-; i -  1, 2, . ., m ).

Assuming that P ei; i = 1, 2, . ., m satisfy bound (7.1), Pe can be made arbitrarily 
small. Therefore,

P r[7 V ] < P e
and

Pr[Bf ]  < Pe i = 1, 2, ..,??2.

Again, let Pd be the probability of errors being detected in any transmission. Then,

P(i ~ 1- (Probability that errors do not occur) - (Probability that errors are undetected) 
< i - p c - p f .

We shall use the approximation

Pd ~ \ - P c -Pf . (7.26)

Consider the term Pr[7orf£ i rf- • Ei-\dEie ] °f equation (7.25). Recall E fl = B f D f 1 and 
E f  = B f kj BidD f  . Then,

Pr[ T ^ E ^ .  . E ^ E n  < Pr[7y'B i<' •
= Pr[T0dBid . . B ^ W r i E f  .BiAd }
< {Pdy  Pr[Bf  u  B f D  f  I V  . . BiAd ]

by (7.6)

PAGE 103



CHAPTER 7

= (Pd y  {Pr[Pf e] + Pr[Pjd ] Pr[D f 1T0d • • BiAd ]}
^  (Pdy  {Pe + Pd>M£>ie . .Bf1]}. (7.27)

Pr [D f \TQdB xd • • B d ] denotes the probability that the block recovered by decoding 
blocks up to the i th block will contain undetectable errors given that all transmissions 
resulted in detectable errors. Since the decoded data block is checked for the presence 
of errors at every retransmission, we must have,

Pr[D^ \T§dB id . . B  d ] < P e.

By substituting (7.28) into equation (7.27), we get,

P r [ 7 W . . E ^ E f ]  < ( P dy ( P e + P dP e )  

=  P j ( l + P d ) P e .

And after, substituting (7.29) into (7.25) we obtain,
06

Pr[E ] < Pe +  X V  (1 + P d ) P e
i =1

=  P. +
Pd (1 +Pd)Pe

1 ~Pd

Pe (1 - P d ) + P d (1 +Pd )Pe 
Pc +Pf

Pe ~Pe Pd +Pe Pd + Pe Pd 2
Pc +Pf

= ( l  +pR ) .  

= ( i + ^ 2)- 

= ( i + p „ 2) .

Pc +Pf

Pr + P,
Pr "I" Pf Pr T Pp

1 + Pr - P f  \  ( Pr
Pr +Pf . Pr + Pe J

For GH-ARQ systems, P d < 1, P c » P e and P c » P f. Therefore,

l+ P ^  < 2

and

, Pe ~Pfl + „£ L  = i .
Pr + Pr

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)
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Using (7.31) and (7.32), we are able to simplify equation (7.30) to obtain the 
approximation,

Pr[E ] < 2.1. f '
Pr +Pr

Consider a pure ARQ-system which employs the error-detecting code CO. Suppose, for 
this system, the probability of undetected error is P e. Then, the probability of event E 
(P rfP J^q) can be shown to be [4] ,

P r [ £  ] a r q  =  F '
Pc +Pe 

And, so

P r [ £ ] < 2 P r [ £ ] ARQ.

Hence, the GH-ARQ system provides the same order of reliability as a pure ARQ 
scheme, using the same error-detecting code CO, with the same probability of 
undetected error Pe .

7.6 - A Discussion on the Suitability of KM Codes to GH-ARQ Schemes

We have illustrated above, how KM-Codes can be incorporated into GH-ARQ 
schemes. Further, it has been shown that the throughput of such schemes reaches the 
required standard, even over poor channels. The reliability is of the same order as that 
provided by pure ARQ schemes.

It was noted previously, that KM-codes are simple to implement. The decoding 
is straightforward and does not involve excessive overheads.

We may conclude that KM-Codes are an ideal candidate for error-correction in 
GH-ARQ schemes.
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CHAPTER 8 - Summary

8.1 - Summary

This work has illustrated a way of obtaining a recently introduced class of linear 
error-correcting codes, namely KM codes, from a particular bilinear form. It has been 
shown that the dual of this bilinear form may be computed as the aperiodic convolution 
of two sequences. The generator matrix of the corresponding KM code was found to be 
a direct result of this computation. Further, the length of this code is equal to the 
multiplicative complexity of the computation.

Two algorithms for the aperiodic convolution of sequences were described, 
although more interest was shown in the Convolution Algorithm based on the CRT. It 
was noted that a great number of codes may be obtained from this method. A few 
examples, illustrate some of the unique properties of these codes.

The encoding/decoding procedures were also studied and the limitations of 
Krishna and Morgera's decoding scheme were discussed. We observed that the 
minimum distance (hence the error-correcting capability) and the length of the code can 
be varied easily with little change to the encoding/decoding configuration. Moreover, 
the complexity of the decoding algorithm is proportional to the number of relatively 
prime factors of P(u). A large number of small degree factors results in a shorter length 
code but the decoding of this reduced code is more complex.

Although, our main concern was binary codes, an example of these codes over 
GF(3) was given. We noted that it is possible to obtain these codes over GF(pm) and in 
particular* GF(2m).

An error control scheme, GH-ARQ was described and a GH-ARQ scheme 
based on KM codes was studied. This scheme can provide high throughput even under 
poor channel conditions and offers the same order of reliability as pure ARQ schemes. 
Since the decoding procedures of small codes form the basis of the overall decoding 
procedure for these codes, the decoder can process parts of the received vector 
independently. This reduces the overall decoding time and is of particular importance in 
high data rate communications systems. We concluded that KM codes perform well in 
GH-ARQ schemes. Their unique block structure means they are ideal for providing 
adaptive error control.

8.2 - Future Topics of Research 

These include:

(1) Generalise the procedures to obtain efficient algorithms and the associated linear 
codes over GF(2W).
(2) All the codes in this work originated from a particular bilinear form. Study the 
possibilty of other classes of codes which may perhaps be obtained from a different 
bilinear form.
(3) Study the complexity of decoding and find the 'balance' between this complexity 
and the length of codes.
(4) Study the performance of the GH-ARQ scheme when
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(a) The buffer is of finite size,
(b) The feedback channel is noisy.

(5) Study the possibility of using other known codes in GH-ARQ schemes.
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APPENDIX A

In this appendix, we wish to show that given 0, a system of k bilinear forms in the form 
(3.6), it is possible to express d>, the P-dual of in the form (3.7). 

d  in the form (3.6) is given by,

" * 0 X ] . xd - \  ~ '  y  o '  

y  ix  1 x 2 . xd

x k - 1 x k . • X k + d - 2 _
•

. y d - i .

(A - 1)

Expanding (A-l), we obtain

& =

x 0y o + x \ y  i + .  •

X  i y  o + x 2y  1 +  . • • + X d  y d .  1

x k - i y 0 + x k y  i +.  • . + x k +d - 2y d - i _

(A- 2)

Looking at (A-2), it is obvious that d  may be computed using only the following kd terms, 
Xi+jyj , i = 0,1,. . ,A:-1, j  = 0,1,. . 4 - 1. Thus, d  may be expressed as C( Ax  x By)  
where

C =

1 1
0 .

1 0 . .
. 0 1 1 1 0

0 1 1
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“1 0 0 0 • 0 O' ' 1 0 0~
0 1 0 0 0 0 1 0 0

0 0 1 0 0 1
0 1 0 , 0 1 0 0
* 0 1 0 * 0 0 1 0 0

0 0 * • 0 1 0 0 1

B =

1 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0

0 0 1 0 0 1
0 1 0 0 and 1 0 0

0 1 0 0 0 1 0 0

_0 0 0 0
•

1_ _0 1_

Recall, <E>, the P-dual of may be expressed in terms of matrices A, B and C, 
Infact, if z -  (zo,zi, . >z*_i) then

<3> = A T(CTz x B y )
Multiplying out these matrices and re-arranging terms, it is possible to express <I> in the 
form (3.7)
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d> =

^ o y  o 

2 iy o  + zo y  i 
z 2y o+ z \y  \ +z oy 2

z k -1  v 0 +  z* - 2 y  1 +  • • 1

Zk - \ y  1 +  z * - 2 ^  2 +  • • +  z* + \ y d  _!

z* -2 + z* -2^4 -1
z* - 1 yd - 1

" z 0 0 0 . . 0 0

z 1 z 0 0 . . 0 0

Z 2 z l z 0 . . 0 0

z k  -1 z k  - 2 z* -3

0 Z k  -1 Z k  -2

0 0 z k  -  1
0 0 0

. . Z 0 0

• z 0

. . Z k  -  1 Z k  -2

0 0 0 0  0  0 Z k  -1

Jd

Hence result.
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Non-commutative Algorithms for Small Degree Polynomial Multiplication

Algorithm Multi 1 is due to Karatsuba. Multi 2B can be found in [12] while Multi 
2A may be obtained from Multi 2B by making suitable alterations. Algorithm Multi 3B 
was derived from Multi 2B using multi-D techniques. A few alterations result in Multi 3A. 
Algorithm 4A and 4B were derived by the author using 'trial and error'. Using multi-D 
techniques, Multi 5B was obtained from Multi 1 and Multi 2B. Finally, making some 
changes Multi 5A was obtained.

Algorithm Multi 0
Degree 0 z0.yo = <j>o

Computation : direct 1 multiplication

Algorithm Multi 1
Degree 1 Oo+ziw).(yo+.yi«)

= (|)o+(j)i«+<{)2«2

Computation: 3 multiplications 
Let m 0 = z0.yo 

m \-  z \.y \
W2=(zo+zi)-Cyo+3,i)

then
(J)0=W0
(j)i=-mo-m i+7?i2 
$2=^1

Algorithm Multi 2A
Degree 2 (zo+ziii+Z2U2).(yo+yiu+y2u2) modulo u3

= (j)o+([)lU+(j)2U2

Computation: 5 multiplications 
Let mo=zo-yo

w i=zi .yi 
nt2=Z2-y2 
m 3=(zo+zi) . (yo+yi)  
m4=(zo+z2).(yo+y2)

then
{j)0=/7?0

(J)i=-mo-m 1+7773 

^ 2~-mo+m\-m2+m4

Algorithm Multi 2B
Degree 2 (zq+z \ u+z2u2) . (yo+y 1 u+y2U2)

= <|>0+((>lW+*|>2W2+<l>3W3+(()4M4
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C o m p u ta t io n : 6  m ultip lica tions 
L e t m<y=zo,yo

m - Z 2 . y 2
m 3= ( z o + z i ) . ( y o + y 1)

m 4 = (z i+ z 2) . ( y i+ y 2)
m 5= ( z 0+Z2) . (yo+y2)

th en

4>o=wo
(t>l=-m o-m i+m 3 

<{>2=-mo+/721-W2+W 5 

§ 3= - m  1 -7722+7774 

§4=m2

Algorithm Multi 3A
D eg ree  3 ( zo+ z iu +Z2U2+ z 3u3) . ( y o + y i u + y 2U?'+y3u 3) m o d u lo

= (jJo+ l̂W+^W2^ ^ ^
C o m p u ta tio n  : 8 m u ltip lica tio n s 
L e t m 0= z 0.y0 

m i = z h y i

M 2 = z 2. y2 •
"73=z3A3
7774= ( z 0+ z i ) . ( y o + y i )

7?75= (z 0+z2).(yo+y2)
m 6= ( z i + z 2 ) . ( y \ + y 2)
m i = ( z o + z 3) . ( y o + y 3)

then

({>0=7770

<j>l =-7770-7771+7774 

(j)2=-7?70-7772+7775 

(|)3=-7770-7771-7772-7773+7776+7777

A lg o rith m  M u lti 3B
D egree  3 (zo+ziM +Z2W2+Z3M3).(y o + y iw + y 2« 2+ y 37/3)

= ([)0+(j)lW+({)2W2+<t>3773+(i>4i74+(j)5W5+(|)6W6
C o m p u ta t io n : 9 m u ltip lica tio n s 
L e t m 0= z 0.yo

m i = z i . y i
7722=(zo+zi).(yo+yi)
m 3^ z 2.y2
777 4 = Z 3 . 373
W5=(72+73) .( j2+y3)
777 6= (z q + z 2) . (yo+ y2)
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77Z7=(z1+z3).(yi+y3)
7778 = ( z o + z i + Z 2 + Z 3 ) . O o + y i + y 2+ y 3 )

then

<t>o=wo
(J>1 =-7720-7771+7772

§2=-mo+m 1-7723 +7776

(j) 3 =7770+7771-777 2+777 3 + 7774-7725 - 777 6 "777 7+772 8

(}>4=-7771+7723-7774+7777

<)>5=-̂ 3-7774+7725
(j)6=77l4 

Algorithm multi4A
Degree 4 (zo+ziu+Z2 U2+z3u3+Z4 U4).(yo+yiu+y2 U2+y3u3+y4 U4) m odulo

= 0o+0lW+(l)2272+(i>3773+(j)4W4 
Computation: 11 multiplications 
Let, m 0=z0.yo 

m i- z i .y i
m 2=(zo+zi).(yo+yi)
7723 = Z 2 A 2

7?74=(zo+Z2) ‘0 ?0+y2)
7725=z 3 A 3

7776 = ( z o + z 3) .C y o + y 3 )
7727= (z i+ z 2).(y i+ y 2)
77?8=z 4 A 4

7779=(zo+z4).(yo+y4)
777 i o = ( z i + z 3 ) . 0 > i + y 3)

then

(|)0=7770

$ 1  -"7770-7721+777 2 

({) 2 = ~  7770+7771 -  7723+7724 

(j)3 =-7720-7721-7773“ 7775+/776+7727 
(j)4=-7?2o-7721+7773-7725-777 8+7779+77710 

Algorithm multi4B
Degree 4 (zq+zi 7/+z2«2+z3«3+Z4J74). (yo+y 1 u+y2U2+y3u3+y4U4)

Computation: 14 multiplications 
Let, mo=ZQ.yo

m i= z\.y i
7722=(zo+zi).(yo+yi)
777 3 = Z 2 .y 2

7774=(ZO+Z2).(yO+V2)
772 5 = z 3 .y 3

777 6 = (zI+Z3).CVl+y3)
772 7= (z2+z3).(y2+y3)
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w  8 K z o + z  1 + 2 2 + 2 3 )  • ( y o + y i + y 2 + y 3 )
7 7 ? 9 = Z 4 . y 4

m 10=(20+24). (y 0+^4)
w n = ( z i + Z 4) .C y i+ y4)

Wl2=(22+24).6,2+374)
7?7l3=(z3+24).(j3+y4)

then
<j)Q=m0
(f) ] =-7770-777 1 +m2
02=-7?2o+7?21-7723+7774

<{)3=mo+mi--m2+m3-/7J4+m5-W6-m7+m8
(j>4=-mo-W l+ 7773-m5+/n6-7729+W 10
<J)5=“m i-m 3-7?75+m7-W9+mii

<|»6=-W3+7W5-m9+nii2
0 7 = -7 7 ? 5 -7 7 2 9 + 7 ? ? 1 3

<|>8=m9 
Algorithm multiSA

Degree 5 (zo+ziu+z2U2+z3u3+Z4U4+Z5ii5).(yo+yiu+y2U2+y3U3+y4U4+y5U5)
modulo w6

= 00+017/+02M2+03«3+04W4+05«5
Computation: 14 multiplications 
Let

w o = z o . y o
m x=zi.yi
W2=(zo+2i).(yo+yi)
" i 3 = 2 2 - y 2

m4=(zo+z2).(yo+y2)
m 5 = z 3 . y 3

772 6 = 2 4 ^ 4

w7=(22+z3).(y2+y3)
m8=(2i+z3).(yi+y3)
7779=(zo+zi+z2+z3).(yo+yi+y2+y3)
777 i0=(z0+24).(yo+y4)
7?7ll=25.y5

7?7i2=(zo+z5).Cyo+y5)
7?7l 3 =  ( 2i + 24) . ( y i+ y 4)

tlien
00=7770
0 1  = - 7 7 7  0 -7 7 2 1 + 7 7 7  2  

0 2 - - T 7 7 O + 7 7 ?  1 -7 7 2 3  + 7 7 7 4

0  3 = 7 7 7  0 + 7 7 7  1 -  777 2  + 772  3  -7 7 7 4  + 772  5  -T727  -  777 8 +777 .9 

0 4 = -  777 0 - 7 7 7 1 + 777  3 " 7775 -  777 6 +  777 8 + 777  1Q
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0 5 = - 'W o - / w i - 7 ? i 3 - m 5 - m 6 + W 7 - m i i + m i 2 + / w i 3  

Algorithm multi5B
Degree 5 (zo+ziz/+z2Z/2+z3Z73+z4M4+z5W5).(yo+yi«+y2«2+y3z73+y4Zz4+y5775)

- 0 0 + 0 1  W .+ 02W 2 + 0 3 W 3 + 0 4 W 4 + 0 5 W 5 + 0 6 W 6 + 0 7 W 7 + 0 8 W 8 + 0 9 W 9 + 0 1 O W 10

Computation: 18 multiplications 
Let

wo=zo.yo
m i = z \ . y i

r n 2 = Z 2 - y i

m 3= (z0+ z i) .(y 0+ y i)
W24=(2l+z2)*(>?l+y2)
w5=(zo+z2)Cyo+y2)
m  6 = z 3 .y 3 

m 7= z4 .y4 
m 8 = z 5 . y 5

W 9 = (z 3 + z4) . ( y 3+ y 4)

^ 1 0 = ( z 4 + z 5 ) . 0 ,4 + y 5 )

™ n = ( 2 3 + z 5 ) . ( y 3 + y 5 )

™ 12= 00+ 23)-(yo+y3>
^ i 3 = ( z i + 2 4 ) . ( y i + y 4 )

W i4= ( z 2+ z 5) . ( y 2+ y 5)

^ i 5 = ( 2 o + z i + 2 3 + 2 4 ) - O o + y i + y 3 + y 4 )  

m  1 6 = ( 2 i  + Z 2 + Z 4 + Z 5 ) .  ( y  i  + y 2+ y 4 + y s )

wi7=(zo+22+23+z5).(yo+y2+y3+y5)then
0o=m o

0 1 = - W o - W i +7??3

0 2 = - 7 7 7 o +777 1-7772+777-5

0 3 = - 7 ? 7 o - 7 ? 7 1 -7772+7774-7776+77712

04=777 0+777 ] - 7?73 +777 6+ 7777-7779-77712-Wi13 +W 15

0 5  =7770-777 l+ 7 7 7 2 “ 7775 +7776-T777+777 8-7771 1 -77712+ 77713 -?771 4 + 7 7 7 17

0 6 = 7 7 7 1 + 7772-7?74+7776+7777+7778-777 i o -777 i 3 -777 1 4 + 7 7 7 1 6

0 7 = -7 ?7 2 -7 7 7  6-7777-777 8+ 7779+ 77714 

0 8 = -7 7 7 6 + 7 7 7 7 -7778+77711 

0 9 = -7 T ? 7 -7 7 7 8 + 7 ? 7 iO  

010= 777-8
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where

Using the same notation as Lemma 6.5, we aim to show that

Tp ^ Z y  .

Z = ( z \ Cp z I Cp2 z  I . . I CpaAz ).

This may be proved for any a  > 1, however we shall simply show that the result holds for 
a  = 3. Then, Z(u) = z 0 + z 1w. + z 2 m2 , Y(u) = yQ+yiU+y2u2 and P (u ) = a0+aiu+a2u2+u2. 
Further,

<D(u) Z(u)Y(u) modulo P(u)

s  (z0>,0“fl0z2)? 1 ~a0z iy2+a0a2z2y2) +
(ziyo+z0y r aiz2y r a1z1y2-aQZ2y 2+a1a2Z2y2)u +

( z 2y 0+ z l 3 ' r « 2 z 2>;l + z 0)?2 -Cf2z l5?2 -f l l z2>J2 + « 2 2 z2);2 )w2-

Recall, Tp is the system of bilinear forms given by the coefficients of <E(w).
i.e.

z 0^ 0 — &0z 2y i  ~ i y 2 + Oo02Z 2y 2 
Tn = Z Q + Z 0 y  x ~  a xz 2y \ -  a xz xy  2 -  a 0z 2y 2 + a \ 0.2 z zy 2

z zY o + z xy I -  a 2z 2y I + z ojy 2 ~ o 2z 1y 2 ~ a i z 2y 2 + a 2 z 2y 2

z o —Oq z 2 —a Q Z \ + a o a 2z 2
z i z o — a \ Z i ~o qz 2 — a \ Z \ + a. \ a 2z 2
z 2 z \  -  a 2z 2 Z 0 — a 2z i -  a xz 2 + a f z 2

>  o"
y 1

J 7 2 _

Now,

so that,

'0 0 — 0
c = 1 0 1

_0 1 - a  2 _

0Z 2
r

—a 02 i + a o a 2 z 2

■T
> N il Z  o — £/ 1 z 2 and 2.z = Z 1 “ # 0Z 2 + Cl \ Cl2 Z 2

_z i — a 2 z 2_ ci2 z i — a  \ Z 2 Cl2 z 2

Clearly,

Tp = (z I Cpz I Cp2z)y .
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There follows a progam (in THINK Pascal) which I have written to obtain the 
generator matrix of certain binary KM codes.

The user is asked to enter starting values for k and d, the amount by which k and d 
are to be increased after each stage is complete (kstep, dstep) and finally the limit.

For the initial values of k and d ,N  = k+d-l is computed. D , the degree of the 
reducing polynomial P(u), is set to N  and s , the number of wraparounds, is set to 
zero. The generator matrix, the actual minimum distance and the burst error-detection 
capability of the corresponding KM code are found. Then D is reduced by one and s 
increased by one and the procedure is repeated until s > min(6, k , d). At this point, 
k  := k + kstep i  d := d+dstep , N  is updated and provided N  < lim it , the whole 
process is repeated for these new values of k  and d. The program terminates when N  is 
no longer less than the limit.

Recall, when deriving the generator matrix of a (k, d) KM code, we reduced the 
polynomials Z(u) and Y(u) of degree fc-1 and d -1 respectively by each P,-(u); t = 1,2, 
. t . The corresponding reduced polynomials Z,(w) and T,(«) were then multiplied 
together using the algorithms given in Appendix B. However, when degP,(u) > 
min(k, d), these algorithms cannot be used since the reduced polynomials Z,(w) and 
7;(«) will not be of the same degree. Under these circumstances, the program states 
that it is not able to compute the corresponding KM code.

Suppose, the overall calculation, including the wraparound has multiplicative 
complexity then the multiplications mo, • m n-\ are sufficient to compute 
&(u) = Z(u)Y(u). Recall, 0 (« ) = P(Qz x Ry) , where QT is the generator matrix of 
the corresponding KM code. Looking closely at how the matrix C is formed, it is clear 
that C consists of n columns where column i corresponds to m,-, i -  0, 1 ,. ., n-1. In 
fact, if m/ = (aozo+aiZi+. . +£U'-N*-iM&o);o+&DT + • • +bd-iyd-i) then the i th 
column of C would be (ao, a \ , . • , i.e. C is controlled by the coefficients of
the reduced polynomial Z/(m). Since, for the puiposes of this program, we are only 
interested in the matrix C, the above observation is taken into account.

A linked list is used to store the m,-'s and the procedure ProduceMatrix goes 
through this list and attains the corresponding columns of the generator matrtix C.

t
It was stated previously that if the reducing polynomial P (u. ) = P (u ) where

i =1
deg[/>(«)]=Z), is chosen such that the polynomials Pi(u) are coprime and of least 
possible degree, then the corresponding KM code should be the shortest possible KM 
code for this value of D. We will refer to this choice of polynomial P(u) as the minimal 
j'educing polynomial. I have designed an algorithm which will find, what I believe to be 
a minimal reducing polynomial of degree D (procedure ComputePolyP). The 
polynomials P i(w),. Pt(u) are stored in a linked list of type 'PList'.

In addition to computing the generator matrix, the actual minimum distance is 
found. As you would expect, the algorithm finds every possible non-zero codeword 
and its distance. The actual minimum distance is simply, the least value among these 
distances.

Finally, I have designed an algorithm which determines the burst error detection 
capability of the code. It is based on the idea suggested in Section 6.5.
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The results are delivered to a text file, where they can be kept for future reference.

program KMCODES; 
const

degmax = 50; {max value of N-k+d-1} 
matrixmax = 125; {max length of any code generated} 

type
binary = 0 ..1; 
degtype = 0 ..degmax;
PArray = array[0 ..degmax] of binary;
Prec = record

P: PArray; 
degP: degtype; 

end;
{a record to store a reducing poly, P i ( u ) ,  in binary form and its degree}

PolyPtr = APList;
PList = record

PolyP: Prec; 
link: PolyPtr 

end;
t

{a linked list stores the reducing polys, />i(w),„,Pf(^)iwhere P  (m ) = 0 0 }
i =1

{and deg[P(w)]=D}"
Polys = array[0..degmax] of Prec;
Poly Array = airay[0..degmax] of array [0..degmax] of binary;
Polyrec = record

poly: Poly Array; 
deg: degtype 

end;
{a record to store the poly Z (u)-zo+z\u+. . +z^iuk-1 of degree £} 

multi = array[0 ..degmax] of binary; {stores one multiplication} 
multiptr — Amultinode; 
multinode = record 

m: multi; 
next: multiptr 

end;
{a linked list stores all the multiplications }

SubCodeArray -  aiTay[0..matiixmax] of binary;
Matrix = array[0..matrixmax] of SubCodeArray;
MatrixRange = 0..matrixmax;
wraprange -  0..7; {range of values s - the number of wraparounds } 
reducerecord = record

RAPoly: PolyPtr; 
maxdeg: degtype 

end;
Reduce Array = array [1.. degmax] of reducerecord;
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{used to store the reducing polynomials P(ii) as they are computed}
{at position i, the minimal reducing polynomial P(u) of degree i is stored} 

subcoderec = record
len: degtype; 
kfield: degtype 

end;
{each KM code can be subdivided into a certain number of subcodes}
{subcoderec stores the length and dimension of one subcode} 

subcodeptr = Asubcodelist; 
subcodelist = record

sub: subcoderec; 
next: subcodeptr 

end;
{this linked list stores subcoderec - one for each subcode of the actual code}
{this is required to compute the burst error - detection capability} 
var

Kdim: kstep, dimstep, l im i ts  ,td, pd , nd, rd,remove: degtype; 
multihead: multiptr;
A: boolean;
RA: ReduceArray; 
len: matrixrange;
M x l: Matrix;
F: text;

{The following 7 procedures produce all possible monic binary polys, of degree 1,..,6} 
procedure GenPolysl (var A l: Polys);
{monic binary polynomials of degree 1} 
var

/: degtype; 
i: binary; 

begin  
/ := 0 ;
for i := 0 to 1 do 

begin
Al[/].degP := 1;
A1[/].P[0] :=/;
A1[/].P[1] := 1;
/ : —/ + !

end
end;
procedure GenPolys2 (var A2: Polys);
{monic binary polynomials of degree 2 } 
var

/: degtype; 
i, j: binary; 

begin
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/ := 0;
for i := 0 to 1 do 

for j  := 0 to 1 do 
begin

A2[/].degP := 2; 
A2[/]JP[0] := i- 
A2[//.P[1]
A2[/].P[2] := 1;
/ : = /  + 1 

end
end;
procedure GenPolys3 (var A3: Polys); 
{monic binary polynomials of degree 3} 
var

/: degtype; 
i, j, k : binary; 

begin  
/ ~ 0 ;
for i := 0 to 1 do 

for j 0 to 1 do 
for k  := 0 to 1 do 

begin
A3[/].degP := 3; 
A3[/].P[0] := /; 
A3[/].P[1] :=y; 
A3[/].P[2] := k\ 
A3[/].P[3] := 1;
/ := / + 1 

end
end;
procedure GenPolys4 (var A4: Polys); 
{monic binary polynomials of degree 4} 
var

/: degtype; 
it j, k , m: binaiy; 

begin
/ :=  0;
for i := 0 to 1 do 

fory := 0 to 1 do 
for k \= 0 to 1 do 

for m := 0 to 1 do 
begin

A4[/].degP := 4; 
A4[/].P[0] := i; 
A4[/].P[1] :=y; 
A4[/].P[2] := k;
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A4[/].P[3] := m\ 
A4[/].P[4] := 1;
/ := / + 1 

end
end;
procedure GenPolys5 (var A5: Polys); 
{monic binary polynomials of degree 5} 
var

I: degtype; 
i, j, k , m, n : binary; 

begin  
/ := 0;
for i := 0 to 1 do 

for j  := 0 to 1 do 
for k := 0 to 1 do 

for m := 0 to 1 do 
for n := 0 to 1 do 

begin
A5[/].degP := 5;
A5[/].P[0] = /;
A5[/].P[1] =y;
A5[/].P[2] = k;
A5[/].P[3] = m;
A5[/].P[4] = n;
A5[/LP[5] = 1;
/ : = / + !

end
end;
procedure GenPolysd (var A6 : Polys); 
{monic binary polynomials of degree 6 } 
var

/: degtype;
Uj, k, m, n , o : binary; 

begin  
/ := 0;
for i := 0 to 1 do 

fory := 0 to 1 do 
for k := 0 to 1 do 

for m 0 to 1 do 
for n 0 to 1 do 

for o := 0 to 1 do 
begin

A6 [/].degP := 6 ; 
A6[/].P[0] := i\ 
A6[/].P[1] :- j\  
A6[/].P[2] := k',
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A6[/].P[3] :=m;
A6[/].P[4] := n;
A6[/].P[5] := <?;
A6 [/].P[6] := 1;
/ : -  / + 1 

end
end;
procedure GenPolys (var A: Polys; q: degtype); 
begin  

case q of 
1:

GenPolys 1(A);
2:

GenPolys2(A);
3:

GenPolys3(A);
4:

GenPolys4(A);
5;

GenPolys5(A);
6 :

GenPolys6 (A);
end

end;

procedure InitalisePoly (var £7: Polyrec; gl: degtype);
{generates the polynomial El(u)= eo + e\u + ..+  £g7_i«s7 1 } 
var

i,j: degtype; 
begin

for i 0 to g l - 1 do 
begin

for j  := 0 to g l - 1 do 
£7.poly[z',/| := 0;

£7,poly[i, /] := 1 
end;

£7.deg := g l - 1 
end;
procedure Findlnverse (var £ 8: Polyrec; g8 : degtype);
{computes the inverse of polynomial £ 8(w),namely,eg8-i + <?g8-iw +• .+eon881 }
{which is required for the wraparound calculation}
var

i j :  degtype; 
begin

for i := 0 to g8 - 1 do 
begin
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for; := 0 to g8 - 1 do 
£8.poIy[7,/] := 0 ;

E8 .poly[z, g8 - 1 - i] := 1 
end;

£ 8 .deg := g8 -1  
end;

{The multiplication algorithms for reduced polynomials of degree 0,..,5 now follow} 
procedure multiO (£0: Polyrec; gO: degtype; var ref0: multiptr);
{multi algorithm where reduced polynomials are of degree 0 } 
var

i; degtype; 
q: multiptr; 

begin  
newO?);
7*£/0A next := q\ 
r e f 0 : = q \
for i :-  0 to gO - 1 do

/*̂ /0A.m[j] := E0 .poly[i, 0];
end;
procedure multi 1 (El: Polyrec; g l: degtype; var refl: multiptr);
{multi algorithm where reduced polynomials are of degree 1} 
var

i: degtype; 
q: multipti'; 

begin
new(<7);
re flA. next := q\ 
refl := q;
for / := 0 to g l - 1 do

re fl\m [i]  := £l.poly[/, 0]; 
new(<;);
ref lA. n t x t q \  
refl := q;
for i 0 to g l - 1 do

re flA.m[i] := £l.poly[/, 1}; 
new(#);
re flA. next := q\ 
refl := q\
for i 0 to g l - 1 do

7' e / l A.m [i]  := (£l.poly[z, 0] + £l.polyj7, 1]) m o d  2;
end;
procedure multi2A (E2: Polyrec; gl: degtype; var refl: multipti');
{multi algorithm where reduced polynomials are of degree 2 and reducing poly. P(u)-u3} 
var

i: degtype;
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q: multiptr; 
begin

new (q)\
reflA.next := q\ 
refl := q\
for i := 0 to g l  - 1 do

)-eflA.m[i] £ 2 .poly[z, 0]; 
new(^);
reflA.m xt := q; 
refl := q\
for i 0 to g2 - 1 do

?'£/2A.m[i] :=E 2 .poly[z, 1]; 
new(<?);
ref2A.next := q\ 
refl := q;
for i := 0 to g2 - 1 do

ref2\m [i\ := £ 2 .poly[/, 2]; 
new (<7);
re flA.next := q\ 
refl := q;
for i := 0 to g l  - 1 do

reflA.m\i] := (£2 .poly[/, 0] + £ 2 .poly[/, 1]) mod 2 ; 
new(<?);
reflA.nvxt := q\ 
refl q\
for i := 0 to g2 - 1 do

reflA.m[i] (£2.poly|7, 0] + £ 2 .poly[t, 2]) mod 2 ;
end;
procedure multi2B (El: Polyrec; gl: degtype; var refl: multiptr);
{multi algorithm where reduced polynomials are of degree 2 and reducing poly. P(u)^u3 } 
var

i: degtype; 
q: multiptr; 

begin
new (q);
reflA.next := q\ 
refl := q\
for i := 0 to g l  - 1 do

reflA.m[i] := £ 2 .poly[/, 0]; 
new(^);
re flA.nQxt := q\ 
refl := q\
for i := 0 to g l  - 1 do

reflA.m[i] := £ 2 .poly[/, 1]; 
new(<7);
re flA.next := q\

PAGE 126



APPENDIX D

refl := q;
for i := 0 to g l  - 1 do

re flA.m[i] := £ 2 .poly[i, 2]; 
new(<7);
r e f l \ next q;
refl := q;
for i 0 to g2 - 1 do

?’e flA.m[i] (£2 .poly[/, 0] + £ 2 .poly[/, 1]) mod 2 ; 
new(<7);
re /2A next := q; 
refl ;= q;
for f := 0 to g2 - 1 do

reJ2A.m[i] := (£2.poly[/, 1] + £2.poly[7, 2]) mod 2 ; 
new(g);
re/2A.next ;= q; 
refl := ?;
for i := 0 to g2 - 1  do

reflA.m[i] := (£2 .poly[/, 0] + £ 2 .poly[/, 2 ]) mod 2 ;
end;
procedure multi2 (El: Polyrec; gl: degtype; var refl: multiptr);
{decides which algorithm should be used for reduced polynomials of degree 2 } 
begin

if A then
multi2A(A2, g l, refl)

else
multi2B(£2, g l, refl);

end;
procedure multi3A (£3: Polyrec; gl: degtype; var refl: multiptr);
{multi algorithm where reduced polynomials are of degree 3 and reducing poly. P(u)~iA } 
var

/: degtype; 
q: multiptr; 

begin  
new(<7);
re flA.n ex t:- q; 
refl ;= q;
for i := 0 to g l  - 1 do

re/3A.m[i] := £3.poly[/, 0]; 
new(^);
re/3A.next := q; 
refl := q;
for i := 0 to g3 - 1 do

re flA.m[i] := £3.poly[z, 1]; 
new(^);
re flA.nzxt := q; 
refl := q;

PAGE 127



APPENDIX D

for i := 0 to g3 - 1 do
re/3A.m[/] := £3 .poly [z, 2]; 

new(<?);
ref3A.next := q\ 
ref.3 := q\
for i := 0 to g l  - 1 do

reflA.m[i] :=£3.poly[z, 3]; 
new(^);
re/3A.next := q\ 
refl := q\
for z := 0 to g l - 1 do

re flA.m[i] := (£3 .poly [z, 0] + £3.poly[z, 1]) mod 2 ; 
new(<7);
re flA.next := q; 
refl := q\
for z := 0 to g l  - 1 do

re/3A.m[z] := (£3.poIy[z\ 0] + £ 3 .poly[z, 2 ]) mod 2 ; 
new(g);
re flA.next := q; 
refl := q;
for z := 0 to g3 - 1  do

?'eflA.m[i] := (£3.poly[z, 1] + £3.poly[z, 2]) mod 2; 
newfa);
re flA.next := q\ 
refl := q\
for z :- 0 to g l  - 1 do

reflA.m[i] := (£3.poly[z, 0] + £3.poly[z, 3]) mod 2;
end;
procedure multi3B (El: Polyrec; gl: degtype; var refl: multiptr);
{multi algorithm where reduced polynomials are of degree 3 and reducing poly. P (u)^if}  
var

z: degtype; 
q: multipti” 

begin  
new(<?);
/*e/3A. next := q\ 
refl := q\
for i := 0 to g3 - 1 do

re flA,m[i\ := £3.poly[z, 0]; 
nev/(q);
re flA.n ex t:- q\ 
refl := q\
for i := 0 to g3 - 1 do

re flA.m[i\ :=£3.poly[z\ 1]; 
new (q);
ref I A. next := q;
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refl := q;
for z := 0 to g3 - 1 do

re flA.m[i] := (£3.poly[z, 0] + £3.poly[z, 1]) mod 2; 
new(<y);
reflA.next := q; 
refl := q;
for z := 0 to g l  - 1 do

re flA.m[i] := £3.poly [z, 2]; 
new(<?);
re flA.next := #; 
re/3 q;
for z := 0 to g l  - 1 do

re flA.m[i] E l.poly[z, 3];
new (q);
reflA.next := q; 
r e f l q ;
for z := 0 to #3 - 1  do

reflA.m[i] := (£3.poly[z, 2] + £3.poly [z, 3]) mod 2; 
new(<?);
re flA.next := <7; 
refl := q;
for z := 0 to g3 - 1 do

n?/3A.m[z] := (£3.poly[z, 0] + £3.poly[z, 2]) mod 2; 
new (q);
re/3A next := q\ 
refl := <?;
for z := 0 to g3 - 1 do

re/3A.m[z] := (£3.poly[z, 1] + £3.poly[z, 3]) mod 2; 
new(#);
re/3A next := q; 
refl := <7;
for z := 0 to #3 - 1 do

?'e/3A.m[z] := (£3.poly[z, 0] + £3.poly[z, 1] + £3.poly[z, 2] + £3.poly[z, 3]) mod 2;
end;
procedure multi3 (El: Polyrec; gl: degtype; var refl: multiptr);
{decides which algorithm should be used for reduced polynomials of degree 3} 
begin

if A then
multi3A(£3, g l, refl)

else
multi3B(£3, g l, refl);

end;
procedure multi4A (£4: Polyrec; g4: degtype; var ref4: multiptr);
{multi algorithm where reduced polynomials are of degree 4 and reducing poly. P(u)-u5} 
var

i: degtype;
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q: multiptr; 
begin

new(<?);
re/4A next := q; 
re/4 ;= q\
for z := 0 to g4 - 1 do

ref4A.m[i] :=£4.poly[z, 0]; 
new(<?);
re/4A.next := q; 
re/4 := q\
for z := 0 to g4 -1  do

re/4A m[z] := £4.poly[z, 1]; 
new(<?);
re/4A next := q; 
re/4 := q\
for i 0 to g4 -1  do

re/4A.m[z] := (£4.poly[z, 0] + E4.poly[z, 1]) mod 2; 
new(/);
re/4A.next := q; 
ref4 := q;
for z := 0 to g4 - 1 do

re/4A.m[z] := £4.poly[z, 2]; 
new(^);
re/4A.next := q\ 
ref 4 := q;
for z := 0 to g4 - 1 do

z’e/4A.m[z] := (£4.poly[z, 0] + £4.poly[z, 2]) mod 2; 
new(</);
re/4A next := q; 
ref4 := q\
for z := 0 to g4 - 1 do

ref4A.m[i] ~£4.poly[z, 3]; 
new(/);
re/4A.next := q; 
ref4 := q;
for z := 0 to g4 - 1 do

z*e/4A.m[z] := (£4.poly[z, 0] + £4.poly[z, 3]) mod 2; 
new(</);
ref4A. next := q\ 
ref4 := q;
for i  := 0 to g4 - 1 do

ref4A.m[i] := (£4.poly[z, 1] + £4.poly[z, 2]) mod 2; 
new(V/);
re/4A.next := q\ 
re/4 ;= q\
for i 0 to g 4  - 1 do
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re/4A.m[z] :=£4.poly[z, 4]; 
new(<?);
?'e/4A.next := q; 
ref4 := q;
for i := 0 to g4 - 1 do

re/4A.m[z] := (£4.poly[z, 0] + £4.poly[z\ 4]) mod 2; 
new(<?);
re/4A n e x t q\ 
ref4 := q;
for i 0 to g4 - 1 do

ref4A.m[i] := (£4.poly[z, 1] + £4.poly[z, 3]) mod 2;
end;
procedure multi4B (£4; Polyrec; g4: degtype; var re/4: multiptr);
{multi algorithm where reduced polynomials are of degree 4 and reducing poly. P(u)*u5 } 
var

i: degtype; 
q: multipti*; 

begin  
new(/);
ref4A. next := q\ 
ref4  := q;
for i := 0 to g4 - 1 do

re/4A.m[i] := £4.poly[z\ 0]; 
new(ry);
re/4A next := q\ 
ref4 := q;
for i := 0 to g4 - 1 do

re/4Am[z] :=£4.poly[z, 1]; 
new(<y);
re/4A next := q\ 
re/4 := q\
for i := 0 to g4 - 1 do

re/4A m[z] := (£4.poly[/, 0] + £4.poly[z, 1]) mod 2; 
new(^);
re/4A next := q; 
ref4 := q;
for i := 0 to g4 - 1 do

re/4A. m[z] := £4.poly[/, 2]; 
new (q); 
re/4A.next := q; 
re/4 := q\
for i := 0 to g4 - 1 do

re/4A.m[z] := (£4.poly[z\ 0] + £4.poly{z, 2]) mod 2; 
newfa);
/*e/4A.next := q; 
re/4 := q;
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for z := 0 to g4 - 1 do
re/4A m[z] := £4.poly[z\ 3]; 

new(<7);
re/4A. n e x t q\ 
re/4 := q\
for z 0 to g4 - 1 do

re/4A.m[z] := (£4.poly[z, 1] + £4.poly[z, 3]) mod 2;
newto);
re/4A.next := q; 
ref4 := q\
for z := 0 to g4 -1  do

re/4A m[z] := (£4.poly[z, 2] + £4.poly[z, 3]) mod 2; 
newto);
re/4A next := q; 
ref4 := q;
for i := 0 to g4 - 1 do

re/4A.m[z] := (£4.poly[z, 0] + £4.poly[z, 1] + £4.poly[z, 2] + £4.poly[z, 3]) mod 2 
newto);
re/4A.next := q\ 
re/4 := q;
for z := 0 to g4 -1  do

re/4A.m[z] := £4.poly[z, 4]; 
new to);
re/4A.next := q\ 
ref4 := q;
for z := 0 to g4 - 1 do

re/4A.m[z] := (£4.poly[z, 0] + £4.poly[z, 4]) mod 2; 
new (q);
z‘e/4A next := q; 
ref4 := q\
for z := 0 to g4 -1  do

ref4A.m[i\ := (£4.poly[z, 1] + £4.poly[z, 4]) mod 2; 
new (^);
re/4A next := q\ 
ref4 := q\
for z := 0 to g4 - 1 do

ref4A.m[i] (£4.poly[z, 2] + £4.poly[z, 4]) mod 2; 
new to); 
ref 4A.next := q; 
ref4 := q;
for z := 0 to g4 - 1 do

/•e/4A.m[z] := (£4.poly[z, 3] + £4.poly[z, 4]) mod 2;
end;
procedure multi4 (£4: Polyrec; g4: degtype; var ref4: multiptr);
{decides which algorithm should be used for reduced polynomials of degree 4} 
begin
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if A  then
rnulti4A(£4, gA, ref4)

else
muIti4B(£4, g4, refA)\

end;
procedure multi5A (E5: Polyrec; g5: degtype; var ref5: multipti*);
{multi algorithm where reduced polys are of degree 5 and the reducing poly. P(u) 
var

i: degtype; 
q\ multiptr; 

begin 
new(<7);
ref5A.next := q\ 
ref5 := q\
for i := 0 to #5 - 1 do

ref5A.m[i] := £5.poly[i, 0]; 
new(q)\
re/5 A. next := q\ 
ref5 := q\
for i := 0 to g5 - 1 do

ref5A.m[i] ;=E5.poly[z, 1]; 
new (<?);
ref5A.next := q; 
ref5 := q\
for i := 0 to g5 - 1 do

ref5A.m[i] (£5.poly[/, 0] + £5.poly[/, 1]) mod 2; 
new(<?);
re/5A.next := q\ 
ref5 := q\
for i := 0 to g5 -1  do

ref5A.m[i\ :=£5.poly[/, 2]; 
new(q)\
ref5A. n e x t q \  
ref5 := q\
for i 0 to g5 - 1 do

ref5A.m[i] := (£5.poly[z, 0] + £5.poly[i, 2 ]) mod 2; 
new(q)\
ref5A.next := q\ 
ref5 := q\
for i := 0 to g5 - 1 do

ref5A.m[i] := £5.poly[z, 3]; 
new(q);
re/5A.next := q\ 
ref5 := q\
for i 0 to g5 - 1 do

re /5A.m[7] := £5.poly[7, 4];

PAGE 133



APPENDIX D

/iew(<y);
ref5A.next := q; 
re/5 := <7;
for z := 0 to g5 - 1 do

re/5A.m[z] := (£5.poly[z, 2] + £5.poly[z, 3]) mod 2; 
ttew(<?);
re/5A.next := <7; 
refS := <7;
for i := 0 to g5 - 1 do

re/5A m[z] ;= (£5.poly[z\ 1] + £5.poly[z, 3]) mod 2 ; 
ziewfa); 
z*e/5A next := <7; 
re/5 := <7;
for i := 0 to g5 - 1 do

re/5A.m[z] := (£5.poly[z, 0] + £5.poly[z, 1] + £5.poly[z, 2] + £5.poly[z, 3]) mod 2; 
new(q); 
re/5A next := <7; 
ref5 := q\
for / := 0 to #5 - 1 do

re/5A.m[z] := (£5.poly[z, 0] + £5.poly[z, 4]) mod 2;
/iew(<7);
re/5A.next := q\ 
ref5 := q;
for i := 0 to g5 - 1 do

re/5A m[z] :== £5.poly[z, 5]; 
new(<7);
re/5A.next := q; 
re/5 := <7;
for £ := 0 to g5 - 1 do

re/5A.m[i] := (£5.poly[z, 0] + £5.poly[z, 5]) mod 2; 
zzew(<7);
?*e/5A next := <7;
/'e/5 := q;
for z := 0 to g5 - 1 do

re/5A.m[z] := (£5.poly[z, 1] + £5.poly[z, 4]) mod 2 ;
end;
procedure multi5B (£5: Polyrec; g5: degtype; var re/5: multipti');
{multi algorithm where reduced polys are of degree 5 and the reducing poly P ( u) ^ li6 } 
var

z: degtype; 
q: multipti'; 

begin  
new(<7);
re/5A. n e x t q\ 
re/5 := <7;
for i := 0 to g5 - 1 do
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re/5A.m[z] := £5.poly[z, 0];
«ew(<7);
re/5A. n e x t q\ 
ref,5 := q;
for i := 0 to g5 - 1 do

ref5A.m\i] :=£5.poly[z, 1]; 
nev/(q);
ref5A.next := q; 
ref5 := q\
for i := 0 to #5 - 1  do

re/5Am[z] :=£5.poly[z, 2]; 
new(q); 
re/5A.next := q; 
re/5 := q;
for i := 0 to g5 - 1 do

re/5A.m[zj := (£5,poly[z, 0] + £5.poly[/, 1]) mod 2; 
«ew(<7);
re/5A. next := q; 
ref5 := q;
for i := 0 to #5 - 1 do

re/5A m[/] := (£5.poly[/, 1] + £5.poly[z, 2]) mod 2; 
nev/(q);
ref5A.next := q; * 
ref5 := q\
for i := 0 to g5 - 1 do

re/5A.m[z] := (£5.poly [i, 0] + £5.poly[/, 2]) mod 2; 
new(q);
re/5A.next := q\ 
re/5 := q\
for i := 0 to g5 -1  do

re/5Am[£] :=£5.poly[z, 3]; 
new(^);
re/5A next := q\ 
re/5 := q\
for i := 0 to g5 - 1 do

re/5A m[£] := £5.poly[z, 4]; 
new(q);
ref5A.next q\
re/5 := q\
for i := 0 to g5 - 1  do

re/5A.m[z] := £5 .poly[i, 5]; 
new(<7);
re/5A.next q\ 
re/5 := q\
for i 0 to g5 - 1 do

re/5A.m[z] := (£5.poly[z, 3] + £5.poly[z, 4]) mod 2;
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newto);
re/5A next := q\ 
r e p  :=  q\
for / := 0 to g5 - 1 do

re/5A.m|)'] (E5.poly[z\ 4] + £5,poly[z, 5]) mod 2; 
newto);
re/5A next := q; 
r e p  :=  q;
for i := 0  to g5 - 1 do

re/5A.m[i] := (£5.poly[z, 3] + E5.poly[z\ 5]) mod 2; 
fiew(q);
re/5A.next := q; 
r e p  :=  <7;
for i := 0 to g5 - 1  do

re/5A m[z] := (£5.poly[z, 0] + £5.poly[z, 3]) mod 2; 
newto);
r e p A.n e x t :=  q; 
r e p  :=  <7;
for z := 0  to g5 - 1 do

re/5A.m[z] := (£5.poly[z, 1] + £5.poly[z, 4]) mod 2; 
newto);
/*e/5A.next := <7; 
re/5 := <7;
for z := 0 to g5 - 1 do

re/5A.m[z] := (£5.poly[z, 2] + £5.poly[z, 5]) mod 2;
/iew (^);
re/5A.next := q\ 
r e p  :=  <7;
for z := 0 to g5 -1  do

r e p A.m [i]  := (f?5,poly[z, 0] + £5.poly[z, 1] + £5.poly[z, 3] + £5.poly[z, 4]) mod 2; 
newto);
re/5A next := q\ 
r e p  :=  q\
for i := 0 to g5 - 1 do

re/5A.m[z] := (£5.poly[z, 1] + £5.poly[z, 2] + £5.poly[z, 4] + £5.poly[z, 5]) mod 2; 
newto);
re/5A.next := q\ 
r e p  :=  <7;
for z := 0 to g5 -1  do

re/5A.m[z] := (£5.poly[z, 0] + £5.poly[z, 2] + £5.poly[z, 3] + £5.poly[z, 5]) mod 2;
end;
procedure multi5 (E5: Polyrec; g5: degtype; var re/5: multiptr);
{decides which algorithm should be used for reduced polys of degree 5} 
begin  

if A then
multi5A(£5, g5, rep)
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else
multi5B(£5, #5, re/5);

end;
procedure Mult (E : Polyrec; g: degtype; var ref: multipti');
{decides which multi algorithm should be used depending on the degree of reduced polys} 
begin

case L.deg of 
0:

multi0 (£, g, ref);
1:

multi 1(£, g, ref);
2:

multi2 (£, g, ref);
3:

multi3(£, g, ref);
4:

multi4(£, g, ref);
5:

multi5(£, g, ref);
end

end;

{This procedure enables us to get the generator matrix} 
procedure ProduceMatrix (k l : degtype);
{The multi coefficients are used to obtain the generator matrix} 
var

i: (Lmatrixmax; 
j: degtype;
LI: integer; 

begin
multihead := multiheadA.next; 
i := 0 ;
while multihead o  nil do 

begin
for j  := 0 to k l - 1 do

Mxl[j, /] := multi he adA.m[j]; 
m ultiheadm ultiheadA.nsxt; 
i := i + 1; 

end;
LI := i;
for j  := 0 to k l - 1 do 

begin
for i := 0 to LI - 1 do 

Write(F, M xl\jt /] : 1);
WriteLn(F);

end;
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end;

{The next three procedures determine whether or not two polynomials are coprime} 
{-these procedures are necessary when finding the minimal reducing polynomial P(u)) 
function polymod (x l,y l:  Prec): Prec;
{computes y l m odxl where are polynomials such th a ty l> x l} 
var

i j :  degtype; 
temp: Prec; 

begin
temp := y l; 
with temp do 

begin
if (xl.degP = 0) and (xl.P[0] -  1) then 

begin
degP := 0;
P[0] ;= 0 

end 
else

begin
while xl.degP < degP do 

begin
for i 0 to xl.degP - 1 do 

begin
ifxl.P[i] = 1 then

P[degP - xl.degP + i] := (PfdegP - xl.degP + i] +
P[degP]) mod 2

end;
PtdegP] := 0; 
repeat

degP := degP -1 
until (degP = 0) or (P[degP] <> 0); 

end
end;

end;
polymod := temp 

end;
function gcd (x2, y2: Prec): Prec;
{computes the gcd of polynomials x 2 andy2 assuming y2>x2 } 
begin

if (x2.degP = 0) and (x2.P[0] = 0) then 
gcd := y2

else
gcd := gcdCpolymod^, y2), ,r2)

end;
function CoPrime (m, n: Prec): boolean;
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{determines whether or not polynomials m and n are coprime where n>m) 
var

temp: Prec; 
begin

temp := gcd(m, n);
if (temp .degP -  0) and (temp.P[0] = 1) then 

CoPrime := true
else

CoPrime '.-false
end;

{The next section of procedures find the minimal reducing polynomial P(u)}
function Power (a, b : degtype): integer;{computes ab}
begin

if b — 0 then 
Power := 1 

else
Power := (a * Power (a, (b -1)))

end;
function CheckPoly (W: Prec; headW: PolyPtr): boolean;
{determines whether polynomial W is coprime to each of the polynomials in the list} 
var

OK: boolean; * 
temp: PolyPtr; 

begin
OK := true;
if (/ieadlTA.PolyP.P[0] = 0) and (/teadVEA. Poly P.degP = 0) then 

OK := true 
else

begin
temp :- headW;
while (tempA. link <> nil) and (OK) do 

begin
if not CoPrime(tempA.PolyP, W) then 

OK := false
else

temp := tempA.link;
end

end;
CheckPoly := OK 

end;
procedure ProcessPolysDeg (Dl: integer; var headl, taill: PolyPtr); 
var

count, i: integer;
B : polys; 
temp: PolyPtr;
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begin
count := 0 ;
GenPolys(2?, pd); 
if pd = rd then 

begin
while (count < Power(2, pd) - remove) and (pd + td < D 1) do 

begin
if CheckPoly(B[count + remove], headl) then 

begin
for i := 0 to B[count + remove].degP do

toi71A.PolyP.P[i] := B[count + remove].P[/]; 
fa//lA.PolyP.degP := B[count + remove].degP; 
t d t d + pd; 
new (temp); 
taillA.]ink := temp; 
taill := temp; 
fcw71A.link := nil 

end;
count := count + 1; 

end
end

else
begin

while (count < Power(2, pd)) and (pd + td< D  1) do 
begin

if CheckPoly(5[cozwr], headl) then 
begin

for i ;= 0 to B[count].d&gP do
ta ilW PolyP.P[i] := B[count].F[i]; 

^i71A.PolyP.degP := 5[co««?].degP; 
td := td + pd; 
new (temp);
?az71A.hnk := temp; 
ta i l l t e m p ;  
faz71A link := nil 

end;
count := count + 1; 

end
end

end;
procedure Update (D2: integer; var head2y ta ill: PolyPtr); 
var

temp: PolyPtr; 
begin

if td o  D2 then 
begin

PAGE 140



APPENDIX D

if (td > D2) or (td + nd > D2) then 
begin

pd  := rd.;
remove := remove + 1; 
head.2 := headlWmk; 
headlAlm k  := nil; 
tail! := headl; 
new (temp); 
tail2AX\vk := temp; 
taill := temp; 
taz72A link := nil; 
td := /z££ZC?2A.PolyP.degP; 
nd := pd + 1; 

end
else if td + nd < D2 then 

begin
pd  :=pd+  1; 
nd :=pd+ 1 

end;
if remove -  power(2, rd) - 1 then 

begin
pd  := rd+  1;
I 'd  := rd+  1;
td := /ze<2fif2A.PolyP.degP; 
r e m o v e 0 

end
end

end;
procedure ComputePolyP (D3: integer; var first: PolyPtr); 
{computes the minimal reducing polynomial P(ii) of degree D 3} 
var

i: integer; 
head, tail: PolyPtr; 

begin
mw(head);
/z^c/A.PolyP.P[0] := 0; 
headA.PolyP.degP := 0; 
new (tail); 
tail := head; 
pd  := 1; 
rd := 1; 
td := 0 ; 
nd := 2 ; 
remove := 0 ; 
while t d o  D3 do 

begin
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ProcessPolysDeg(D3, head, tail);
Update(D3, head, tail); 

end; 
f i r s t h e a d ;  

end;
procedure InitialiseArray;
{initialises the reduce aiTay which will store the minimal polys, when they are computed} 
var

i: integer; 
begin

for i 1 to 50 do 
RA[i].RAPoly := nil

end;
procedure FindPolyP (DO: integer; var headO: POlyPtr); 
var

temp: polyptr; 
maxd: degtype; 

begin
if RA[DO].RAPoly = nil then 

{if the minimal polynomial has not been determined, then it is found & stored in &4[D0]} 
begin

ComputePolyP(D0, headO);
/?A [DO] .RAPoly := headO; 
temp := headO; 
maxd := 0 ;
if terapAJink = nil then 

begin
7M[D0].maxdeg := tempA.PolyP.degP 

end 
else

begin
while temp A.\mk o  nil do 

begin
if tempA. PolyP.degP > maxd then 

m a x d t e m p A.PolyP.degP; 
temp := tempA.link

end;
i?A[D0].maxdeg := maxd; 

end
end

else
{ if die minimal reducing polynomial was found previously-simply get it from &4[D0]} 

head.0 :=RA[DO].RAPoly;
end;
procedure WritePolyList (first: PolyPtr);
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{ P (m ) -  (w ) > then Px(u)^,P t(u) are written in binary form}
i =1

var
temp: PoIyPtr; 
i: integer; 

begin
temp :=first; 
if tewi/Alink -  nil then 

begin
with tempA do 

begin
for i := 0 to PolyP.degP do 

Write(F, PolyP.P[i] : 2);
WriteLn (F) 

end
end

else
begin
while tempA.link o  nil do 

begin
with tempA do 

begin
for i := 0 to PolyP.degP do 

Write(F, PolyP.P[z] : 2);
WriteLn(F)

end;
temp := temp A.\mk. 

end
end

end;
procedure WraparoundPoly (var Plyl: Prec; si: integer);
{ expresses us in binary form} 
var

i: degtype; 
begin

with Plyl do 
begin

degP := si; 
for i := 0 to s i - 1  do 

P[/] := 0;
P[sl] := 1 

end
end;
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procedure ReducePoly (var E2: Polyrec; g2: degtype; Ply2\ Prec);
{computes E2(u) modulo Ply2} 
var

i j :  degtype; 
begin

with Ply2 do 
begin

while degP <= £2.deg do 
begin

for i 0 to degP - 1 do 
begin

if P[i] = 1 then 
begin

for j  0 to g l  - 1  do
E2.poly{j, E2.deg - degP + i] :=
(£2.poly[/, £2.deg - degP + i] + L2.poly[/', E2.deg])

mod 2 ;
end

end;
for i := 0 to g2 - 1 do

£2.poly[z, E2.deg] 0;
£ 2 .deg := L2 .deg - 1; 

end
end;

end;
^ jj» Jij> jj* jjl »J> jJ* *J» *|* jjj jjj |̂> l|l vj* l|> a|i jJ* kj> t|< jJj tj» »|< ^  ^  s|* jjj* jJ* vjj \J> ^

{the following procedures are used to find the actual minimum distance of the code} 
function AddCodeWord (word!, word2: subcodearray; L2 : degtype): subcodearray; 
var

i: degtype; 
temp: subcodearray; 

begin
{each corresponding bit of the 2 codewords is added to obtain}
{ the corresponding bit of the new codeword} 

for i := 0 to L2 - 1 do
temp[i] := (wordl [/] + word2[i\) mod 2 ;

AddCodeWord := temp; 
end;
procedure Dist (wordl: subcodeaiTay; LI: degtype; var mindistl: degtype); 
var

/, count: integer; 
begin

count := 0 ;{count records the no of l's found in wordl so far} 
for i := 0 to LI - 1 do

count := count + wordl [i];
{now, cowzzz^distance of w ordl}
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if (0 < count) and (count < mindistl) then 
{if distance of wordl<mindist then mindist is updated} 

mindistl := count;
end;
procedure FindCodeWord (word3: subcode Array; /, K3, L3: degtype; var mindist3 
degtype);
{ this is a recursive procedure which ensures that all the codewords are found} 
var

temp: subcodearray; 
j: degtype; 

begin
while i < K3 do 

begin
temp := AddCodeWord(vwrd3, Mxl[i], L3);
Dist(temp, L3, mindist3); 
j  := i + 1;
FindCodeWord(tem p j, K3, L3, mindist3);
?";=/' + 1; 

end;
end;
procedure FindMinDist (L7: matrixi'ange; A7: degtype);
{finds the actual minimum distance of the code} 
var

row, ind, mindist: degtype; 
codeword: subcodearray; 

begin
:= 0 ; 

mindist := L7; 
while < k l  do 

begin
codeword : = Mx 1 [row];
Dist(codeword, L I, mindist); 
zhd := row + 1;
FindCodeWord(c<?devtwGf, ind, k l, L I, mindist); 
row := row + 1 

end;
WriteLn (F);
WriteLn(/% 'The actual minimum distance is m indist: 3); 

end;

procedure GetDims (var k3, kstep3, deg3, degstep3, Umit3, N 3 : degtype);
{prompts the user to enter initial data} 
begin

WriteLn(’Please enter a value for k’);
Read(£3);
WriteLn('and a value for d:’);
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Read(t/eg3);
N3 k3 + deg3 - 1;
WriteLn('Now, enter kstep and dstep respectively');
Read(£step3, degstep3);
WriteLn('and finally the limit');
Read(/zmz73);
W riteLn(F, 'k = k3 : 3 , ' d = deg3 : 3, ' kstep = ', kstep3 : 3);
WriteLn( ' dstep = degstep3 : 3 , ' limit = ', limit3 : 3);
W riteLn(F,'_____________________________________________________ ');
W riteLn(F, ’ k= \k3  : 3 , ’ d = deg3 : 3); 

end;
procedure UpdateDims (var M, kstepA, deg4, degstepA, N4: degtype);
{after data for (k ,d ) KM code has been produced,k:-k+kstep,d:=d+dstep}
{ and procedures repeated} 
begin

k4 := k4 + kstep4\ 
deg4 := deg4 + degstep4\
W riteLn(F,'______________________________________________________');
W riteLn(F, 'k and d are increased to k4 : 3, 1 and ', deg4 : 3, ' resp.');
N4 := k4 + deg4 - 1; 

end;
function min (a, b: integer): integer;
{finds the minimum of integers a and b) 
begin

if a < b then 
m i n a

else
min := b

end;
procedure SetD (N4: degtype; var D 4 : degtype; var 54: wraprange);
{for each k  and d, the degree of P(u) is initially set to k+d-1 and the number of wraps to 0} 
begin

WriteLn(F, 'We must have N = D + s = ’, N4 : 3); 
s4 := 0;
D4 :=N4; 

end;
function UseMultiA (X: Prec): boolean;
{if P(u)~uc - then a different multi algorithm must be used} 
var

count: integer; 
begin

count := 0;
while X.P[count] = 0 do 

count := count + 1; 
if count = X.degP then 

UseMultiA := true
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else
UseMultiA := false;

end;
function Multi Wrap (s i : integer): integer;
(gives the number of multis required for different wraparounds} 
begin

case s i  of 
0:

MultiWrap := 0;
1:

9 .
MultiWrap := 1;

MultiWrap := 3;
3:

MultiWrap := 5;
4:

MultiWrap := 8;
*

MultiWrap := 11;
u*

MultiWrap := 14
end

end;
function MultiComp (M: Prec): integer;
(gives the number of multis required for reducing polynomials } 
begin

if UseMultiA(M) then
MultiComp := MultiWrap(M.degP) 

else
begin

case M.degP of 
0 :

MultiComp := 0;
1:

MultiComp := 1;
2:

MultiComp := 3;
3:

MultiComp := 6 ;
4:

MultiComp := 9;
5:

MultiComp := 14;
6:

MultiComp := 18
end
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end
end;
procedure FindCodeLength (var L5: matrixrange; D5: degtype; s5: wraprange); 
{computes the length of code simply by adding the number of multis corresponding}
{ to each reducing polynomial} 
var

temp: PolyPtr; 
j: degtype; 

begin  
L5 := 0;
FindPolyP(D5, temp); 
if tem p\ link = nil then

L5 MuhiComp(to??/?A.PolyP) 
else

begin
while temp W ink o  nil do 

begin
L5 := L5 + MultiComp(tew/?A Poly P); 
temp ;= tempA,link 

end
end;

L5 :=L5 + MultiWrap(55); 
end;
procedure DisplayResult (var L6 : matrixrange; D6, k6: degtype; s6 : wraprange;

head: PolyPtr);
begin

FindCodeLength(L6 , D 6 ,56);
WriteLn(F
W riteLn(F, 'D =JD6 : 3,'s - ,  s6 : 3, 'length of code =', L6 : 4, 'with gen. matrix:1); 
ProduceMatrix(A'6);
WriteLn(F);
WriteLn(F, 'The reducing polys used (in binary form) are:1);
WritePolyList(/?ead);
FindMinE)ist(L6 , A:6); 

end;
function CheckValid (D9, k9, deg9: degtype): boolean;
{program only has algorithms for multiplying reduced polynomials of the same degree}
{- if they are not of the same degree then code is not produced} 
var

valid: boolean; 
begin

valid := true;
if i?A[D9].maxdeg > min(A:9, deg9) then 

valid := false;
CheckValid := valid 

end;
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procedure ProcessPoly (Dl, kl: degtype; si: wraprange); 
{will produce some the data for specifiedD,s and k } 
var

Pref, PP: PolyPtr; 
multiref: multiptr;
Pu: Prec;
E: Polyree; 

begin
new (multihead); 
new (multiref:); 
multihead:- nil; 
multiref; := multihead;
FindPolyP(D7, PP); 
new (Pref);
Pref:—PP; 
if F7‘£ /\link  = nil then 

begin
InitalisePoly(£, kl);
ReducePoly(£, k l, P ref'.PolyP); 
if UseMultiA(Pre/\PolyP) then 

A :-  true 
else

A :=false;
Mult(£, k l, multiref:);
Pref := /Ve/Mink 

end 
else

begin
while Prc/U ink <> nil do 

begin
InitalisePoly(is, kl);
ReducePoly(£, k l, PrefA.PolyP); 
if UseMultiA(Pre/\PolyP) then 

A true 
else

A := false;
Mult(£, k l, multiref:);
Pref := Pref*. link 

end;
end;

if s i  o  0 then 
begin

A := true;
Findlnverse(£\ kl);
WraparoundPoly(P«, si);
ReducePoly(£, k l, Pu);
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Mult(£, k l, multiref:); 
end

else
A := false; 

multiref:*.n e x t n i l ;
DisplayResult(/e«, D l , k l, s i, PP); 

end;
procedure Statelnvalid (D8 : degtype; 58: wraprange);
{states that data cannot be produced since reduced polys, would be of different degrees} 
begin

WriteLn(F, 'The program was not able to compute the KMcode');
WriteLn(F, 'for D= ', Z)8 : 3, 'and s= sS : 3);
WriteLn(F, 'An algorithm for multiplying polys of different degrees is needed'); 
WriteLn(F 

end;
r *i* '2> *1* *Jj j t  4* i t  4* i t  4* »t 4* *J> 4* 4* >£* i t  *£* ii* 4* 4* iA* *4» 4* 4* 4« 4> *i» vl> 4j *1* 41 »A* 4* vL* 4* »1> 4> 4* 4* 4* vl» 4« L̂* 4* 4* 4- 4> <t 4* 4* *4* 4i sU 4* 4< st« *4» 4* *4* *1* 4« 4* 4* 'II »r» »f* 4* 4* T’ 4’ 4* *f* 4* 4* *t* 4* rT* *T* 4* 4* *T» 4» 4* 4* 4* •t' *T* •t* 4* 4* 4* 4* 4* 45444^45 4* *T* *4* •T’ v  4* 4* 4> f t 4* 4* «j» 4! 4* 4> 4> v  4* 4  ̂4* *T* 4* 4* fp 4» 4> 4; 4* rjv •js rp 4% 4! I

procedure GetCodeDims (var SL: subcodePtr; DP: degtype; sP: wraprange);
{the dims of each subcode are required to compute the burst error-detection capability} 
var

tempPP: PolyPtr; 
leader, q: subcodeptr; 

begin
new (SL); 
new(/6tfder); 
leader:- SL;
FindPolyP(DF, tempPP); 
if rm pP PA link = nil then 

begin
leaderA.sub Aon ;= MultiComp(/mpPPA.PolyP);
/<?ad^rA.sub.kfield := tempPP A.PolyP.degP 

end 
else

begin
while tempPPWink o  nil do 

begin
/£<7de/‘A.sub.len:=MultiComp(tempPPA.PolyP); 
feade/A sub.kfield := tempPPA.PolyP AogP; 
new (q);
leaderA. next := q; 
leader := q;
tempPP := tempPPA.link 

end; 
if sP o  0 then 

begin
/<?ad<?rA.sub.len MultiWrap(^P);
/£tfderA.sub.kfield := sP;
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new(<7);
leaderA> next := q; 
leader := q 

end; 
leaderA. next := nil 

end;
end;
procedure CheckThisCycle (SL1: subcodeptr; var GotBound: boolean; CA:

subcodeArray; diml: degtype);
var

i, NonZero, start, count: integer; 
nonCodeword: Boolean;
SL: subcodePtr; 

begin
nonCodeword := false;
NonZero := 0;

{nonZero records the number of nonzero subblocks} 
start := 1;
SL := SL1; 
if SLA.next = nil then 

begin
count := 0;

{count records the number of nonzero bits in the current subcode} 
for i := start to start + SLA sub.len -1  do 

count := count + CA[i]; 
if count o  0 then

NonZero := NonZero + SLA sub.kfield; 
if (0 < count) and (count < SLA sub.kfield) then 

{this subblock is nonzero yet it has less then required no of l ’s- it will be detected} 
NonCodeWord := true; 

start := start + SLA sub.len;
SL := SLA.next 

end  
else

begin
while SLA.next <> nil do 

begin
c o u n t 0;
for i := start to start + SLA.sub.len - 1 do 

count := count + C4[/]; 
if count o  0 then

NonZero := NonZero + SLA.sub.kfield; 
if (0 < count) and (count < SLA.sub.kfield) then 

NonCodeWord := true; 
s t a r t s t a r t  + SLA.sub.len;
SL := SLA.next
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end;
end;

if (NonZero >- dim \) and (not {NonCodeword}) then 
{number of nonzero subblocks is greater than dim and each block has sufficient l's}
{- error will not be detected} 

gotbound := true;
end;
procedure CheckAllCycles (SL2: subcodeptr; var gotboundl: boolean; error2, len2,

dim !: degtype; var CA2: subCodeArray);
var

in d j:  integer; 
begin

for ind:~  1 to lenl do 
CA2[ind\ ;= 0;

j := i;
while (j <= lenl - error2 + 1) and (not (gotboundl)) do 

begin
for ind :=J to J + error2 -1  do 

CA2[ind] := 1;
CheckThisCycle(SL2, gotbound2, CA2, dim!);
CA2\j\ := 0;

+ 1;
end;

end;
procedure FindErrorBurst (D, len3, dim3: degtype; s: wraprange);
{determines the burst error-detection capability of the code} 
var

error, length: degtype;
SC: subcodeptr;
CA: subcode Array; 
gotbound: boolean; 

begin
gotbound ;= false;
GetCodeDims(,SC, D,s);  
error := 1;
while (error <= len3) and (not (gotbound)) do 

begin
CheckAllCycles(5C, gotbound, error, len3, dim3, CA); 
error:- error + 1; 

end;
WriteLn(F);
WriteLn(F, The bmst eixor detection capability is', error - 2); 

end;
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procedure ProcessData (kk, kkstep, dd, ddstep, lim, NN: degtype);
{gets initial input, produces the required data, updates the variables until limit is reached} 
var

D: degtype;
,s: wraprange; 
temp: PolyPtr; 

begin
while NN  < lim do 

begin
SetD(AW, D, s); 
repeat

FindPolyP(D, temp); 
if CheckValid(Z), kk, dd) then 

begin
ProcessPoly(Z>, kk, s);
FindErrorB urst(D, len, dd, s) 

end 
else

StateInvalid(D, s);
D : = D - 1; 
s :=s + 1; 

until s > min(6, min(&£, dd));
UpdateDims(M, kkstep, dd, ddstep, NN); 

end;
WriteLn(F, 'N greater than limit'); 

end;

{Main Program} 
begin

ShowText;
ReWrite(F, 'Results');
InitialiseArray;
GetDims(£, kstep, dim, dimstep, limit, N);
ProcessData(A kstep, dim, dimstep, limit, N);
WriteLn('The program has finished running. The results can be found in a file') 
WriteLn('called Results - use 'miniWRITER' to open i t ');
Clos e(F); 

end.
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STATEMENT OF ORIGINALITY

This thesis is the author's own work, except where it is explicitly stated 
otherwise. In particular, the following are original:

CHAPTER 3

Example 3.1.1 
Example 3.1.2 
Example 3.1.3

CHAPTER 5

Example 5.1.1 
Example 5.1.2 
Example 5.2.1 
Example 5.2.2 
Example 5.3

CHAPTER 6

Example 6.2.1 
Example 6.2.2 
Example 6.3.1 
Example 6.4.1 
Example 6.6.1 
Example 6.6.2 
Example 6.7.1 
Example 6.8.1 
Example 6.8.2

CHAPTER 7
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APPENDIX A - Showing (3.6) -  (3.7) for any k  and d.
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polynomials of degree 4 or 5 (i.e Multi 4A, Multi 4B, Multi 5 A, Multi 5B).

APPENDIX D - KM Codes Program.
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