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SUMMARY
Much has been sald about the classical and the inverse methods
of calibration for the univariate and to some extent about the
multivariate case also in the existing literature, see Brown(1982).
We have explored the possibilities of using the best linear predictor
both in the univariate and the multivariate situations.

First four chapters deal mainly with the wunivariate case,
chapters five and six deal with the multivariate situation and
éhapter seven is devoted to the‘ Bayesian wversion of best linear
predictor,

First chapter introduces calibration and discusses different
methods of calibration in the univariate situation. Chapter 2 gives
a review of the calibration literature for classical, Bayesian and
best linear predictor approaches with some comments. Chapter 3
deals with the derivation of the best linear predictor and
approximates its unconditional mean squared error by Taylor's series.
A simulation study is made to compare the approximated and the
simulated values. Chapter 4 starts with the interval estimates and
possible aims. Two situations with the known and unknown parameters
are studied. Tail probébilities are calculated for different P(t).

Chapter 5 introduces multivariate calibration and reviews the
literature. Much attention is focussed on the case when there are q
response variables and there is only one explanatory variable p i.e.
general q and p = 1. Best linear predictor is derived and its mean
squared error in canonical form is studied by simulation. In chapter
6 approximation to mean squared error 1is obtained by regressing
simulated data and the interval estimates are studied.

Chapter 7 gives a Bayesilan treatment of the best linear predictor

both in the univariate and the multivariate case.



CHAPTER 1
UNIVARIATE CALIBRATION

1.1. INTRODUCTION

The word Calibration is being used in two different contexts in
statistical literature

(i) in connection with regression;

(ii) in conmection with probability forecasts.
We restrict ourselves to the calibration of first kind, for the
second kind see Dawia (1985).

First kind is wusually referred to as calibration, inverse
regression, inverse prediction or very rarely discrimination as by
Lieberman et al. (1967) because of sharing similar features with
calibration problem. The only difference between discrimination
problem and calibration problem lies in the fact that fixed variable
is continuous in calibration while it is a finite set in
discrimination.

Williams (1969a) emphasized the need to-differentiate between two
activities, both being called calibration in statistical literature,
and categorized as under,

(a) absolute calibration;

(b) comparative calibration.

In absolute calibration non-standard measurement technique is
calibrated agalnst a standard measurement technique whereas in
comparative calibration one instrument is calibrated against the
other (or possibly others) with neither being standard. Both are
conceptually differenﬁ and lead to different issues in statistical
modelling. For more details see Williams (1969a) and Rosenblatt and
Spiegleman's discussion to Hunter and Lamboy (1981). We would

concentrate on absolute calibration only,




Altchison and Dunsmore (1975) used the terms, natural calibration
and designed calibration to distinguish between the two types of
regression experiments regarding the way in which the values of the
fixed variable arise,

In natural calibration the wvalues of fixed wvariable in the
experiment occur naturally as if it can be assumed that future values
would also arise in the same way as in the past. Thus the regression
experiment provides some information about the pattern of
6bservations. Range of defined values is not controlled which may
have some effect on the accuracy of estimated calibration curve.

In case of controlled calibration the values of the fixed
variable in regression experiment are at fixed prechosen levels
preferably such that they give a reasonable cover to the range of
values of controlled variable expected in future, This helps to
improve the design of experiment.

Brown (1982) termed the calibration as random calibration when
both the response and explanatory variables are random. This appears
to agree with the idea of natural calibration discussed above. 1In
our opinion this is a prediction p;oblem rather than a calibration
problem because both variables are random and the regression of

either on the other, for given values, is reasonable.

1.2. DESCRIPTION OF THE PROBLEM

A calibration problem consists of
(a) A regression experiment comprising N pairs (ti,xi): i=1, 2,
.., N with t; fixed and xj; independent random variable;
and
(b) A current or future situation involving a bivariate random
variable (T,X) independent of regression experiment where instead of

observing a pailr (t,x), only the observation x has been made.




There can be two situations
(i) Only one value of X is observed;

(ii) More wvalues X,, X,, X ., X (i.e. k > 1) are observed,

30
with mean ff.
The problem is to estimate t on T corresponding to the observation(s)
x on X, from the information provided by regression experiment and
the current situation. Two types of estimation on t are required.
(i) Point estimation,
(ii) Interval estimation.
This problem of estimation of t is called calibration problem. It
can be more clarified by the following two examples, as discussed by
Aitchison and Dunsmore (1975). We will describe it as simple linear
calibration if there 1is only one response variable X and one
explanatory variable T and the regression in the experiment is

linear. The "regression experiment" in calibration situations as (a)

above 1s sometimes referred to as the "calibration experiment".

Example 1: Measuring Water GContent Of Soil Specimens

Water content in agricultural soils is of interest for
cultivation purposes. It can be measured by two methods, namely, (a)
Laboratory method and (b) On—-site method. On-site method is cheaper
and quicker as compared to the laboratory method but less accurate,
It is recommended that in future on-site method be used. Now the
objective is to predict the observation by the laboratory method
corresponding to the observation by the on-site method. Let the
linear regression between the two methods hold, denoted by the
following relation

X=q@+ ft + e
where x denotes the observation by on-site method and t denotes the
observation by laboratory method, e is a random error with zero mean

and constant variance ¢2y4,¢ (conditionally on t).




A regression experimeﬁt is performed to obtain N pairs of
observations (ty,xy), 1 =1, 2, ..., N, 1In the current situation an
observation x 1s observed by the on-site method and the corresponding
observation t by the laboratory method is to be estimated.

The data now consists of (N+l) pairs (t,,x,), (t,,%x,), ...,
(tn.xN); (.,x) where the dot in the last pair indicates unknown value
t to be estimated, x is referred as current observation and the pairs
(tg.,xy), 1 =1, 2, ..., N are observations from the regression
.experiment. |

The problem is to make statements about the water content t by
laboratory method wusing the information from the regression

experiment and the water content observation x by the on-site method.

Example 2: Antibiotic Assay

Different concentrations of an antibiotic drug applied to an
infected medium clear different circular areas and so the diameter of
the cleared area may be used to help in estimating the concentration
of an antibiotic. It has been observed that average diameter of the
area cleared by a given concentration is a linear function of the log
concentration level of the drug. Different log concentration levels
ti's of the drug are prepared and the corresponding diameters xi's of
areas cleared are mnoted. The pairs (tj,xy) , 1 =1, 2, ..., N are
related by the regression model

Xx=0+ ft+ e

In the current situation 2 patient is under treatment and the
clearance diameter has been measured. The problem is to infer about
‘the patient's concentration level i.e. we want to estimate the
unknown log concentration value t corresponding to the known diameter
value x.

As our technique applies to the situations where X and T have

linear relationship, Box and Tidwell (1962) and/or Box and Gox (1964)




transformations can be applied to get the desired relationship if
necessary. These are demonstrated in chapter 4 on the data of

antibiotic assay example taken from Aitchison and Dunsmore (1975).

1.3. ASSUMPTIONS FOR THE REGRESSTION EXPERIMENT

Let the pairs (ty{,xy), 1 =1, 2, ..., N be related by the linear
relationship

Xi = o + ft; + e4

which can be written as

X{ = a* + 6(ti—€)+ ej

E(xi1ty)

a*x + B(ti-t)
VAR(x1ty) = 0?4 ¢, for any ty
The least squares estimators of o%, § and ¢24,¢ based on N pairs of
observations are denoted by a¥, B and &2x|£ where
a¥ = Ixg/N
B = Syr/StT
T2y e = Llxg = & - Beg~6)12/(8-2)
Syr = L(xy — x)(ty - £) and Spp = I(ty - £)2.
Assuming P(x|t) is normal, the estimators &* and 3 are distributed
according to N(o*, 02x,¢/N) and N(B,. 024 ,¢/STr) respectively. The
unbiased estimator &let is ¢2¢;¢ x2/(¥-2). It is well known that
a*, B and &2xlt are mutually independent under the normality

assumption.

1.4, ASSUMPTIONS FOR THE CURRENT SITUATION

In the current situation a bivariate random variable (T,X) is
thought to be under consideration with distribution P(t,x). The
practical situation draws attention to the conditional distribution.

P(xyit) P(v)
P(tix) =

jP(x.t) P(t) dt




From the regression experiment P(xjt) is distributed as
N(at+ft, o024 ¢) and about T it is assumed that E(T) = p and
VAR(T) = o2 are known.

We assume that the regression experiment and the current
situation share a common conditional distribution P(xit). In the
regression experiment values of T are fixed while in the current
situation T is a random variable, in our situation with known mean p

and variance o2.

1.5, THE BEST LINEAR PREDICTOR C+DX
To avoid modelling the distributional shape of P(t) in the
bivariate situation, we consider
E[T - (C + DX}]2 (LD
which is minimised by )
C = E(T) - DE(X)
D = COV(T,X)/VAR(X)
the minimum mean squared error (1.1) being
oeix = (1 - p?)VAR(T)

Note that E(TiX) is not necessarily linear in X, and 0%y |y is not
necessarily a variance. If E[T - m(X)]? is minimised instead.of
(1.1) where m(X) is any function of X, then the solution is
m(X) = E(T1X), with minimum mean squared error E(VAR(T1X)).

It should be clear that within the regression experiment G + DX

has no particular role.

1.6, THE BEST LINEAR PREDICTOR g+t

In the regression experiment
E(Xity) = a + fty
VAR(X1ty) = 0% ¢
In the current situation which is bivariate, o and f minimise

unconditional mean squared error




EX - (w+ pgTY12 ... (1.2)
because here also, by the assumption about P(xit) made in
section 1.4,

E(X\1T) = a + Bt
Arguing as in section 1.5, the mean squared error (1.2) is minimised
by

o = E(X) - BE(T)
8 = COV(X,T)/VAR(T)
‘and |
02x ¢ = (1= p2)VAR(X)

where p is the correlation coefficient between X and T.

1.7. CALIBRATION METHODS
Two most commonly used methods to estimate t are
(a) classical estimator approach;
(b) inverse estimator approach.

These are the outcome of “inverse regression" and
"direct regression". Controversy over the relative worth of the two
estimators is not yet clearly resolved because of its philosophical
. nature. We propose another approach (compare Brown (1979a)).

(¢) best linear predictor approach.

These are discussed briefly.

(a) Classical Estimator Approach

The usual regression model P(x|t) is used to predict the value of
t for an observed value of x. This is just the regression line in
reverse using only P(xjt).

Let the estimated least squares 1line from the regression
experiment be

X =+ B8

then the corresponding equation for predicting t becomes




t=(x-a)y/B
or

t =t + Spp/Sxr (% - X) . (1.3)

(b) Inverse Estimator Apptoach

The line for predicting t is fitted using data from regression

experiment (xiy,ty), 1 =1, 2, ..., N, as if it were truly bivariate
data, that is as if t,, t,, ..., ty were a random sample from the
distribution P(t). Thus the least §quares estimated 1line for

predicting t is
t = t + Srx/Sxx (%) co (14
‘This is a "direct regression" assuming T a random variable whereas it

is fixed in the regression experiment.

(c¢) Best Linear Predictor Approach

It is suggested that t should be estimated using the relation
t =0C+ DX
where C and D are functions of bivariate moments as in section 1.5
i.e. -
C = E(T) - DE(X)
D = COV(T,X)/VAR(X)

Three mathematically independent functions o, @ and o2y ¢ of the
five bivariate moments as in section 1.6 can be estimated from the
regression experiment and the moments E(T) = u and VAR(T) = ¢? are
assumed known. So we have numerical values (estimated or exact) of
five functions of the five moments. Solving these equations,
estimates of the moments are obtained and thus the estimates of C, D
and ¢2¢,x are |

_ (-a/B + pr2)
Cﬂ

(1 +72)




(1 + 72)
32t|x - (1 - 52)02
where
72 - 32Xft/(02&2)
= (1 - p?)/p?
and
p? = B202 (B202 + G2y, )7 . (1.5)
G, D and &2t|x are in terms of a, ﬁ, alet from the regression
experiment and E(T) = u, VAR(T) = o2 which are assumed to be known.

Thus the best linear predictor is

t =0+ DX
(-a/B + pr2) px
= +
(1 +72) (L + 72)
(X - &) 72
- +

B+ 7 1+ 7))
~ - DA Q- e .18
So the best linear predictor 1is weighted average of the classical
estimator and the g,
If we put g = t in relation (1.6) then
€=t +p2/B (x - %)
and also if we take ¢2 = Spp/(N-2), then 52 in relation (1.5) becomes
S2yr/(SprSgx), B 1s Sgr/Spri thus t is
£ =t + Sxp/Sxx (x - %)
which is the inverse estimator (1.4).
It is of interest that the classical estimator and the inverse
estimator are special cases of the best linear predictor. Best
linear predictor gives classical estimator when 62 = 1 or

equivalently 32X|t/(02§2) = 0. If we omit the uninteresting




possibilities &2xlt = 0 (perfect fit of regression) or B = ©
(all t3 = t), we conclude that the best linear predictor coincides
with the classical estimator i1f and only if 02 = «». The inverse
estimator is obtained with u = t and 02 = Str/(N-2) as shown above.

Thus both the classical estimator and the inverse estimétor rest
on implicit assumptions about the distribution of T in future.
g2 = » has some theoretical appeal, in expressing the idea of
complete ignorance about T, but an infihite variance is unrealistic
in practice especially since it suggests the need to extrapolate the
experimental regression.

The combination of values g = t, g2 = S7r/(N-2) suggests that the
inverse estimator will be satisfactory if the experimental design
{ti; 1 =1, 2, ..., N} agrees in first and second moments with the
distribution of T in future. Any choice between the two estimators
should depend therefore on ¢2, and perhaps on u. Such choice is
impossible without at least some consideration of the distribution

P(t).

1.8. SOURCES OF g and g?

In practice p and o2 are not known exactly. Sometimes may be
assessed as follows

(a) an assumption implicit in any calibration technique is
ty < T < t*, Otherwise the experimental regression has to be
extrapolated. Bounds for x and ¢? can be deduced.

(b) Sometimes a random sample of T's (or more commonly of X's,

Tallis (1969)) is available. Natural estimates ﬁ and g2 result.

]

E(X) = EE(X|T) = o + fp

VAR(X)

VAR(E(X1T)) + E(VAR(XIT))

B2 + o7e
(c) In the absence of (b) p and ¢2 may be regarded as the

parameters of a subjective probability distribution.

10




Diagramatically the best linear predictor can be represented as

under.,

|Regression expt. P(x|t)] lcurrent #(X,t)1 | (
| (Xi,t4),i=1,2, ..., N | | (.,%x) | | #0% |
1 s i
N ! | t =C+ DX i
| @8,0%,¢ | | G,D depend on «,f,0% ¢;H,02]
1 1
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CHAPTER 2
REVIEW OF LITERATURE

The purpose of this part is to review the work done so far in the
area of linear and non-linear univariate calibration, Estimation and
optimal design aspects are described and some comments have been made

wherever necessary.

2.1. CALIBRATION ESTIMATION
In general the theory of calibration can be classified under the
following three types of models.
(a) Traditional approach;
(1) classical approach
(ii) inverse approach
(b) Bayesian approach;
(c) Best linear predictor approach.

These are elaborated separately in the following pages.

(a) TRADITIONAL APPROACH o
As pointed out above traditional approach comprises the classical
estimator and the inverse estimator. 1In classical approach p(xiIt) is
assumed N(x + ft, 02%it). The point estimate is
t=(x-0a)/B =%+ S7p/Sgy (x - X)
and an interval is available conditional on T i.e.
p(Int. will contain TiT=t) = 0.95
If 8 is not significantly different from zero at 5%, then the
above interval for t will be either the entire real line or the
complemenﬁ of an interval in the ordinary sense Williams (1959) and
Miller (1966).
In the inverse approach point estimate is derived using least

squares, as if T was random in the experiment whereas it is fixed

12




i.e
t =t + STx/Sxx (%-X)
There 1is no theory of interval estimation associated with this
estimator in a natural way. Both the classical and the inverse

estimator agree when there is a perfect correlation between X and T.

Eisenhart (1939) was the first to discuss calibration problem who
selected the classical estimator more appropriate as compared to the
inverse estimator arguing "the fitting should be done in terms of
deviations which actually represent error". This viewpoint was
supported by Williams (1959).

Fieller—Creasy (1954) proposed methods for obtaining the
confidence intervals for the ratio of two parameters (i.e. classical
estimator) and Herson (1975) compared Fielier's method with that of
so called Delta method ( based on first order Taylor series expansion
to approximate variance). He gave many rules of thumb for deciding
when to approximate Fieller's interval by Delta interval. Mandel
(1958) constructed simultaneous confidence intervals (for several T)
to the problem of classical type and Miller (1966) gave another
solution to this problem. Lieberman et al. (1967) gave a solution to
this problem In terms of wunlimited simultaneous discrimination
intervals. They compared two methods for constructing these
intervals, one based on Bonferroni inequality and the other on the
idea of Lieberman and Miller (1963) and concluded that Bonferroni
type interval is shorter,

Halperin (1961) considered éhe case when both wvariables are
subject to error and derived confidence intervals under several
different assumptions about the kind of information available. He
gave the idea of uncertainty which was later on elaborated by Scheffée

(1973). In (1970) he found that Inverse estimator is superior in the

sense of "closeness" for large samples if the values of explanatory.

13




variable are restricted to a certain closed interval near t; and is
inferior elsewhere. He emphasized that the interval in which inverse
estimator is superior is trivially small. Saw (1970) also gave this
kind of views and found the use of inverse estimator unappealing.

Easterling (1969) considered point and interval estimates based
on classical estimator and gave a procedure for obtaining exact
confidence intervals by comparing them with Fieller's type (1954)
and like Bonferroni intervals discussed By Lieberman et al. (1967).

Krutchkoff (1967) raised this problem. of comparing these two
estimators again on the basis of mean squared error. He simulated
their mean squared errors and concluded ( not quite correctly ) that
inverse estimator has a uniformly smaller mean squared error in the
range of controlled variable in the expe;iment. He (1969a, 69b)
claimed that inverse estimator is better for extrapolation for some
cases while the classical 1Is better for others. Using the Pitman
closeness criterion he (1971) again concluded that inverse estimator
is superior or equivalent to the classical estimator,

Williams (1969b) criticised the mean squa}ed erroxr as criterion
in the problems of this kind and favoured the classical estimator
even though it has infinite mean and mean squared error. We connect
the latter with the implicit assumption 02 = « discussed at the end
of section 1.7c. He argued that inverse estimator is based on wrong
regression. In (196%a) he considered some calibration situations and
suggested some formulae to be used accordingly. He discussed the
idea of Tallis (1969) of using supplementary information in the
calibratiqn situations and concluded that the wuse of additional
information provides closer estimates,

Berkson (1969) showed that inverse estimator is inconsistent and
mean squared error (asymptotic in N) for single x is smaller only for

a limited range. TFor large N if t is estimated from the mean of

4




k > 1, then there is always a k, such that for all values of k > k,
the mean squared error of classical estimator is smaller than the
inverse estimator except at t = t. We discuss the question of
consistency in section 3.4.

Martinelle (1970) concluded that the inverse estimator has
smaller mean squared error than the classical estimator for t near t
but 1f more observations are made on the response variable i.e.
(k>1), the advantage of the inverse é;timator is reduced.

Cox (1971) showed how the individual x Qalues should be used for
interval estimation in the cases where residual variance is constant,
proportional to x or to x2,

Shukla (1972) obtained asymptotic expressions for bias and mean
squared error of both the classical and the inverse estimator. He
concluded that if large number of observations are taken in the
calibration experiment with small error and unknown t is estimated by
large number of observations on x ( i.e. large k ) then it is
unlikely that the inverse method will be advantageous over the
classical method except iIn very trivial~ cases. However he
recommended the use of inverse estimator for k = 1 and t close to t
and classical estimator for large sample sizes N, k in the absence of
any prior information about T. Again Shukla and Datta (1985)
obtained exact expressions for the mean and mean squared error of the
inverse estimator and compared them with the conditional classical
estimator which they obtained from the classical estimator based on
the test of hypothesis about the regression coefficient to overcome
the difficulty of unbounded mean and variance.

Scheffe (1973) considered in detail the estimator of classical
type for a polynomial in t. He used the idea of multiple compari;ons
and constructed the tables of interval estimates taking into account

the intrinsic uncertainty in the estimation of regression parameters.

15




Oden (1973) found classical type simultaneous confidence
intervals with large k. He gave a more precise form in probabilistic
terms and good deal of improvement of Miller's method (1966).

Perng and Tong (1974) tackled the problem of classical type by
proposing a two-stage sequential procedure for the construction of a
fixed width confidence intervals for t, an unknown parameter. They
showed that the limiting probabilities of "correct decision" are
equal to a pre-assigned number p*. _

Minder and Whitney (1975) used the marginal likelihood methods to
compare and make inferences about the unknown wvalue t for both the
methods. They found that a good number of cases considered by
Krutchkoff (1967, 69a) give non—-informative likelihood functions but
cases which are common in practice tend to give likelihood functions
which are informative and approximately normal in shape.

Schwartz (1975,76,77,78,79) considered different aspects
i.e. non-linear calibration, calibration with non uniform wvariance,
in practical problems from chemistry and made suggestions in some
situations. Morris (1983) and Leary and Messick (1985) commented on
practical calibration situations in chemistry. Makowski and Downing
(1980) also solved a practical problem from chemistry by taking the
relationship between x and t, both 1linear and quadratie, They
constructed single and joint confidence intervals and compared them.

Naszodi (1978) proposed a modified form of the classical
estimator, based on estimates of the first two moments of the
estimator obtained from a Taylor's series expansion, which is
practically unbiased, more efficient than the classical estimator and
has advantage of consistency over the inverse estimator. He also
discussed a mode of eliminating the error by experimental desipgn.

Theobald and Mallinson (1978) considered the problem of

estimating the calibration equations in both its structural and

16




functional relationship forms and showed that Barnett's (1969)
structural relationship version of the problem is equivalent to a
standard factor analysis model used by them. They discussed maximum
likelihood estimators for certain constrained models and concluded
that maximum likelihood method applied in Williams (1969a) is
unworkable under some situations. Jansen (1980) raised the objection
on the model proposed by them for not taking into account the
goodness of fit test of the model. He suggested a model and compared
fesults with them.

Brown (1978,79b) solved two practical situations. He used the
method of generalised least squares and considered the error in both
variables.

Trout and Swallow (1979) constructed uniform confidence bands of
classical type for the simple inverse regression problem to provide
joint confidence intervals for t in a specified range t; < t < ty.
They compared relative efficiencies of their intervals with that of
Scheffe's procedure (1973) and concluded that one has not to pay
price in efficiency for the convenience of the uniform procedure.

Clark (1979,80) discussed practical aspects that arise while
fiﬁting smooth regression function to radio—carbon dates on tree
rings data, He obtained estimates of the smooth function and
calibration using bilased estimators of the regression function. The
cross—validation mean squared error has been proposed for selecting
an appropriate regression estimator and its bias., He also proposed
adjustment for intervals after theoretical calculations .and
simulation experiments.

Lundberg and DeMare (1980) advocated that in applications with
small measurement errors, simple approximate confidence intervals in
calibration problems serve quite well when the relation of non-linear

type in t is considered. They compared their results with simulation
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results.

Lechner et al. (1980) discussed about pressure-volume calibration
curve. They explained the appropriateness of applying splines to
this curve and presented overview of the associated statistical
uncertainties. In (1582) they implemented Scheffe's type calibration
procedure on a pressure-volume example and compared results with a
method as in Naszodi (1978).

Turiel et al. (1982) made simulation study about the linear
calibration problem and inverse median estimation problem. They
compared the classical estimator, the inverse estimator and the
Naszodi (1978) estimator for small and large samples wusing the
criteria of mean squared error, Pitman closeness and probability of
over—estimation and suggested different'e;timators under different
situations.

Grassia and Sundberg (1982) comsidered the statistical precision
of class frequency estimates for populations of items. They took
into account contributions of error from calibration, from sampling
the population and from random mis—classificafién in the sorting of
the sample,

Swallow and Trout (1983) presented the methodology for
determining objectively the lower ( or upper ) limit associated with
a simple linear regression i.e., the point below ( or above ) which a
regression model fails. They gave methods for diagnosing, whether
problems observed beyond the limit are due to increased variability
or due to breakdown of the linear relationship, with multiple
observations at some t value.

Schwenke and Milliken (1983) considered nonlinear models and
picked the problem of classical type. They gave three techniques for
obtaining confidence intervals for t based on asymptotic theory.

They investigated small sample properties by a simulation study and
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compared results.

Hochberg et al. (1983) proposed two new estimators for
calibrating unknowns from dose-response curves in a system of quality
controlled assays. The new estimators utilize the results of all
other assays through the replications of the control samples in the
system in contrast with classical estimator which only uses the
results of one assay in which response of the unknown dose is
measured. They compared results with an eﬁample.

Mandel (1984) dealt with the problem when both variables are
subject to error and showed how the least squares formulae are
modified in this situation. He explained this process in detail.

Knafl et al. (1984) solved a problem of classical type where
Scheffe's (1973) procedure did not give goéd results because of the
particular linear model assumed. They assumed a more general model
and gave procedures for confidence intervals.

Spiegelman (1984) gave a method that divides the data into
training and test groups. The test group is iteratively checked to
see that a prechosen nominal confidence probé%ility of coverage is
met as in Scheffe (1973). It is shown that nominal probability level
is still wvalid. In (1984) he gave a statistic for identifying
influential observatiéns in Scheffe's (1973) type calibration curve.

Oman (1984) analysed residuals in a calibration problem of
classical type and proposed a statistic that is appropriate to
specific situations and is similar to Cook's Distance. In (1985b) he
gave an exact formula for the mean squared error of the inverse
estimator in the linear calibration independent of Shukla and Datta
(1985). He compared his results with simulation results of
Krutchkoff (1967), asymptotic results of Berkson (1969) and Shukla
(1972). These results were quite close to the simulation results but

differed slightly from asymptotic results because of small N as one
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can expect.

Mckeon and Chhikara (1985) compared the c¢lassical, inverse and
Naszodi estimator from ﬁhe point of view of regression estimation in
sample surveys. They concluded that inverse estimator is more
efficient than the classical estimator.

Carroll et éli (1985) and Garroll and Spiegelman (1986) discussed
the cases where both wvariables are subject to error. They studied
Fhe effect of measurement errors in simple linear regression and
emphasized that both criteria which define what is small measurement
error, Draper and Smith for the first criterion and Scheffe (19873)
and Mandel (1984) for the second criterion, are useful for point
estimation and interval estimation respectively for calibration
purposes. -

Reilman and Gunst (1986) also discussed errors in both wvariables
and contrasted maximum likelihood estimators of regression parameters
with corresponding least squares estimators.

Lwin and Spiegelman (1986) took into account the error in the
explanatory wvariable having a known finite ‘bound. They gave an
easily implementable accurate calibration curve procedure and
produced conservative confidence intervals.

Among others Rothman (1968), Lindley (1972), Pepper (1973),
Wins}ow (1976), Seber (1977), Dietrich and Marks (1979), Draper and
Smith (1981), Sinclair (1982), Kurtz (1983), Branco (1985), Heldal
and Spjgtvoll (1985), Schaffrin (1985), Lee and Yum (1985) and Currie
(1985) have also considered the calibration problems with different

situations.

(b) BAYESTAN APPROACH
Usually P(xIt) is assumed N(a+ft, ¢2;;¢) and in addition only

prior distribution of T denoted by #x(t) or both =(t) and
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n(a, B, 02x,¢) are assumed known. Special cases also include
improper priors
w(a, B, 02x ¢)dx df do?y ¢ = do A8 4 0%y /0% k-
The required property of an interval estimate is
p(Int., will contain t|x; expt.) = 0,95

Dunsmore (1968) assumed that X and T have bivariate normal
distribution in the experiment. He derived that posterior
distribution =x(tgiexpt.; =xg) is the Student's t distribution which
gave Inverse estimator t as the conditional mean of p(tgiexpt.; X£)
where xg and tg denote the values in the future situation.

Hoadley (1970) considered the linear regression problem and
showed that among a class of Bayes estimators, the inverse estimator
t is a particular solution for a certain informative prior, He
showed that if x(x, B, 1n ¢) 1s uniform and x(tg) is t distribution,
then posterior of Ty is also Student's t distribution and t 1is
resulting Bayes estimator. His comment on Dunsmore’'s (1968)
bivariate model is "the estimation of t is really a prediction
problem ( as opposed to a reverse prediction pbelem)".

KRalotay (1971) applied the structural technique of analysis to
solve the linear calibration problem where there are k observations
in the current situation to predict a single value of t. He derived
a marginal structural distribution for t and compared results with
Hoadley (1970).

Frazier (1974) determined the worth of Hoadley's intervals (1970)
in practical situations when the distribution of true t is unknown
which is usually the case. He made a simulation study and concluded
that the .confidence interval is always wvalid for t within the
experimental range using end point design.

Aitchison and Dunsmore (1975) considered the problem of both the

natural and designed calibration and derived the posterior




distribution of tg. They assumed vague prior distributions for the
parameters and a student's t for tg having expectation t and variance
(1+1/N)Spp/(N-5). The resulting calibrative distribution of t came
out to be Student's t centred on the inverse estimator. We recall
the characterization in section 1.7 of the inverse estimator as the
best 1linear predictor when g =t and o2 = Spp/(N-2). Aitchison
(1977) analysed a practical problem of system transfer and suggested
some modifications.

Williford et al. (1979) derived a posterior distribution of tg
r(tglexpt; XY, They assumed the prior distribution of tg normal,
Xi's as N(a+ft, 024,¢) and =n(x, B, 02y |¢) ml1/02x|t, which resulted
in posterior distribution of ty as approximately normal. They
compared their confidence regions with that of Dunsmore (1968) and
made a monte carlo study to compare their own posterior confidence
intervals with Hoadley's posterior intervals (1970).

Hunter and Lamboy (1981) in their paper, which appeared with
discussion, assumed locally uniform distributions for regression
parameters and the response variable X, éince'the observations of
the regression experiment are independent of the future situation,
they derived the distribution of T from the posterior densities of
regression parameters and X, They obtained the posterior
distribution of T approximately mnormal for unknown o2y ¢ using
density of T along with the calibration line. Their posterior
distribution of T is equivalent to the structural solution obtained
by Kalotay (1971) and has infinite mean and variance suggesting
classical estimator satisfactory against Hoadley (1970).

Davis and DeGroot (1982) considered all the four possible
combinations of, "regression experiment" and "future situation",
being controlled or random. They derived the posterior distribution

of tf assuming prior distributions for t and regression parameters.
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They commented on these models as "since the value of tg is unknown
to the experimenter in the discussion, ty must be regarded as
stochastic (even though its wvalue may have been "controlled" by
someone else)",

Ansley and Wecker (1984) amalysed the non-linear calibration
problem. In their Bayesian analysis they derived the predictive
distribution for the future observation xf for given tg conditional
on the experiment in the first step and then they obtained the
-distribution x(tgixg) conditional on the. experiment by assuming
uniform prior distribution for t. They compared their results with
the Lechner et al. (1982).

Bermudez and Bernardo (1985) have done a Bayesian testing of a

calibration procedure. -

(¢) Best Linear Predictor and related approaches

Usually P(x1t) is assumed N(o+ft, o024,¢) and the first two
moments of T i.e. ET = u and VAR(T) = ¢2? are assumed known and thus

the unconditional interval

- -

p( Int. will contain t) = 0.95‘
may seem appropriafe. This formulation is discussed further in
chapter 4.

Tallis (1969) considered the problem of obtaining a satisfactory
estimate of a variable T from another variable X where X and T have
joint distribution and experimental samples of X and (xj, ty) i =1,
2, ..., N have been observed. The estimate of t depends upon
regression parameters and the first two moments of T. He used the
information on X to get the first two moments of T and obtained the
estimates of regression parameters from the pairs (xj, ty) i =1, 2,

., N. He illustrated this situation when X and T have bivariate
normal distribution.

Brown (1979a) proposed the integrated mean squared error (IMSE)
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as an optimising criterion for the linear inverse regression problem.
He derived a predictor which depends upon regression parameters and
first two moments of T. Like Tallis (1969) he suggested to replace
the regression parameters with their estimates £rom regression
experiment and mean and variance of T may be known "apriori™. His
estimator is inverse estimator when t = p and VAR(T) = Spp/(N-2). It
is to be noted that replacing the regression parameters with their
estimates 1Introduces some uncertainty ‘but he did not take into
account this uncertainty.

Rao (1975, 8l) considered a linear regression problem with a
bivariate situation. In the later paper he assumed o and 8 known and
proposed the best linear predictor as an estimate of T. Like others
he also assumed first two moments of T i.e. p and ¢2 known. This
problem is mathematically much simpler with known o and § as compared
to the problem when « and f# are unknown.

Lwin and Maritz (1980) suggested the estimator t = E(T1X=x,)
which has minimum mean squared error and is optimal when regression
parameters are known, They assumed that the ﬁéirs (t3, %x1) 1 =1, 2,

., N, can bhe observed and the calibration curve exists. In
practical situations regression parameters are not known and can be
replaced by their estimates from regression experiment. They
suggested to calculate the distribution of T from the ti's in the
data. In (1982) they used the total mean squared error as criterion
and derived classical and inverse estimators from it. They compared
the mean squared error of both the estimators in the asymptotic sense
and showed that the inverse estimator is superior if the current t
value is sampled from the same population as the previous t values.

Lwin (1985) took this problém again and discussed it from the
point of wview of Tallis (1969) and Lwin and Maritz (1980). He

empasized the need of improvement in the estimation of parameters
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where moments of I are obtained from the supplementary infomation on
X or T and regression parameters are replaced by their estimates from
the regression experiment,

Copas (1982) stressed the need to assume about the distribution
of T in future. He explained how the predicted t value may vary
depending upon the situation.

Muhammad and McLaren (1985) reporting some of results of the
present thesis, assumed a bivariate random variable (X,T) in the
current situation with E(T) = p and VAR(T) = g2 known and replaced
regression parameters by their estimates from the regression
experiment to estimate the best linear predictor. They showed that
unconditional mean squared error of the best linear predictor depends
only on four invariants and splits into ‘

(a) Intrinsic uncertainty in the bivariate situation;
and

(b) uncertainty due to estimation of regression parameters from

the experiment.

They approximated mean squared error usiﬁg Taylor's series and

made a simulation study to check the accuracy of approximations.

2.2, OPTIMAL CALIBRATION DESIGNS

Very few material is available on this aspect of calibration
problenm. The few found only cover traditional approach and are
reported here.

Ottt and Myers (1968) were probabily the first to embark on
optimal designs in calibration. They considered the classical
estimator  and wused the criterion of minimizing integrated mean
squared error. They concluded that for symmetrical designs with N
even, N/2 observations should be taken at t = 1 and N/2 at t = -1.

Similarly for odd N the optimal design is

t1, to, t3, ..., t(N—l)/2 - -1
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tN+1)/2 = 0
EN+3)/2y -ty = 1

They also derived optimal designs using linear approximation for the
particular cases when the true model is linear or qpadratic.

Thomas and Myers (1973) looked into the designs for inverse
estimator following the designs for classical estimator because of
the long controversy between these estimators. They used the
criterion of integrated mean squared error and developed designs for
linear approximation when true model is linear or quadratic. The
designs depend upon unknown parameters which are not stable. They
showed that optimal designs exist and are near optimal and do not
depend upon unknown model parameters. In their integrated mean
squared error criterion, T is uniform over the range of the
experiment but their wuse of the inverse estimator suggests
p=E(T) =t and VAR(T) = ¢2 (Brown, 1979a). This may mnot be
appropriate, depending on the design.

Andrews and Herzberg (1973) adopted sequential designs for the

classical estimator in two stages. In the first stage they obtained

‘the estimate from regression experiment and in second stage centred

the design at this estimate. They proved that asymptotically
parameter estimates approach their expected values with probability
one, Perng and Tong ( 1977) also considered this problem by
sequential procedure and made a monte carlo study. They reached the
same conclusion as Andrews and Herzberg (1973) that the procedure is
asymptotically optimal.

Ford (1976) considered the bivariate situation in the linear
regression model and assumed I to be N(u, o2). He reached the
conclusion that end point design is D-optimal. He also considered
designs for the subset of parameters.

Naszodi (1978) proposed a mnew estimator by modifying the




classical estimator based on an approximate bias correcting factor.
He notes that use of the blas correcting formula might be complicated
or inconvenient in some situations. An alternative procedure of
reducing the bilas is proposed based on experimental design. The end
point design is the design which optimises the proposed criterion and
the criterion is based on the integrated absolute bias over a
specified range of T.

Spiegelman and Studden (1980) discuss;d designs in the context of
Scheffe's approach and gave class of appropriate designs which depend
upon location knots and slopes of the segments in linear splines.

Buonaccorsi (1986) used the criterion of minimizing asymptotic
variance, average asymptotic variance and maximum asymptotic variance
over the range of explanatory variable. ﬁis criterion of average
asymptotic variance is close to Ott and Myers (1968), He has

discussed the influence of designs on confidence regions.
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CHAPTER 3
DERIVATIONS AND SIMULATIONS

3.1 DERIVATION OF THE BEST LINEAR PREDICTOR
As already discussed under section 1.2 we have a regression

experiment and a current situation for the calibration problem; let
us consider first the simple linear regression model

X=qa+ ft+ e -

or E(XiI1t) = o+ ft
and VAR(XIT) = 02?x,¢ = VAR(X) - {COV(X,T)}2/VAR(T)

The experiment provides least squares estimates of o, f, 02yt which
have the following meaning in the current situation

o = E(X) - BE(T) -

8 = COV(X,T)/VAR(T)

024t = VAR(X) - {COV(X,T)}2/VAR(T)

In the current situation consider a bivariate random wvariable (X,TS,
where only X has been observed and t is to be predicted by the best
linear predictor t =C + Dx. Here C and B -are required to be
estimated which are defined by minimizing (1.1)

C = E(T) - DE(X)

D = COV(T,X)/VAR(X)

02¢x = VAR(T) - {COV(T, X)}2/VAR(X)
To calculate three functions C, D, 02¢yxs five unknown moments

EX, cov(r, X), VAR(X), E(T) and VAR(T) are needed. These are
obtained from the regression experiment because P(xI1t) is the same
in both the situations and E(T) = p and VAR(T) = ¢? are assumed
known. So

E(X)

EE(X\T) = o + B

VAR(X) = a2yt + %02

COV(T, X) = fo2
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thus
po? !
D = = . (3.1)
620-2 + 0-2x|t 1 + 1-2
g (-o/B + pr?)
C=p -~ (x + Bp) = ... (3.2)
1+ 72 1+ 72
-o*/8 + (t - p)
-+ ...(3.3)
1 +m72
B204
620‘2 + o-let
- 02{1 ~ (1 + 72)77} L. (3.48)
S0
1 - T2
- [ r-a ] + g ..(3.5)
1+ 72 6] 1+ 72
where T2t B?c?
B2g2? B202 + azxit
S0
E=p2 i+ (L-p2)p ... (3.6)

It is clear that the best linear predictor is weighted average of
classical estimator and p.
In terms of regression estimates o = a, B = B and 02, ¢ = 32xlt;

the best linear predictor would be

t=p2 L+ (L-p2) L (3.7
where 32 _ 32 o2

B202 + 02 ¢

3.2 BIAS AND MEAN SQUARED ERROR OF THE BEST LINEAR PREDICTOR

These can be calculated under these two situations
(a) o, B and szlt known

(b) @, B and 03¢ unknown

\ ] -
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(a) o ,B, 024 ¢ known
bias = E[T - (C + DX) ]
= E(T) - C — DE(X)
= E(T) - p + DE(X) - DE(X)
=0

so 1t is unbiased,

(b) «, B, 02xit unknown
When «, 5,62X|t are unknown, these can be replaced by their estimates
from the regression experiment, then
bias = E[T - (C + Dx) ]
= pu — E(C) - EDE(X) -
= p - E©) - Eb(a + Bp)

(substituting approximations to EC and ED from appendix A and

simplifying)
= o2/S7p(t - p(1 - p2)(2p2% - 1)
_¢%GMﬂ1—MN%&1D@m%] L 3.8)
(N - 2)
0, so biased
where

Cy = [02(N - 2) }/S1¢

By = [(t = p)2(N - 2) }/Sqp

3.2,2 MEAN SQUARED ERROR

(a) «, B and 0?g ¢ known

MSE = E[{T - (C + DX)}2?]

E[{(T - DX) - C}2]

VAR(T ~ DX)

L}

(1 - p2)a?
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(b) o, B and 02y ¢ not known
When «, # and ¢2x,¢ are not known, these can be estimated and the
values substituted would give the mean squared error as
MSE = E[{T - (C + Dx)}?]

- EE[{T - (C + D0)}21¢, D]

I

E[ET2 — 2CET - 2DETX + G2 + 28DEXx + D2Ex?]

E[ (€ - 6)2+ 2(EX)(E ~ ¢)(D - D) + (Ex2)(D - D)2+ (1- p2)o2?]
because the expression in square brackets is quadratic in ﬁ, D whose
ﬁinimum (1 - p2)r? is achieved wﬁen ¢ = c, D = D. Note also that
(T,X) and (6,3) are independent. So

MSE = E(C - C)2+ 2(EX)E(€ ~ ¢)(B - ») + (Ex2)E(D - D)2+ (1 - p2)0?]

= (1L - p2)o?[1 + Qg ] .. (3.9)
where R
Qg = E(C = )2+ 2(EXNE(E ~ &) (D - D) + (mXxH)E(D - D)2 ...(3.10)
(1 - p2)o2
S0 -
§§g = (1 - p?2)[1 + Qg] L (3.1

Using the approximations to VAR&, VARD and‘CQY(a, D) from (appendix
A), as mean squared error = var + (bias)?, and ignoring the (bias)?
being of order (1/N)2, we get the approximated value of Qg. This is

denoted by Qa

Qs - _fi + 1 [gpz(l - p2) + (1-2p2)202(N-2) _ ,2(p ~ t)z(N-2)]
N N-2 St ST
or
p? 1

Qp = +__ [292(1 - p2) + (1 - 2p2)2(Cy) + p2(BN)]...(3.12)

N N~-2

Qs ® Qa and equation (3.9) can be written approximately as

MSE = (1 - p2)0?[1 + Qa] 0 (3.13)
The expression (3.13) has two components

(1) (1- p2)g?, the intrinsic uncertainty about t|x in a bivariate

situation;
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and

(2) Qa(1l - p2)02, the uncertainty due to estimation of o, § and
02t in the experiment.

The main interest is in Q. It is quite clear from equation
(3.12) that Qa or Qg or equivalently MSE/c? is a function of the
following four dimensionless quantities.

(1) N, size of the experiment,

(2) Cg = (N - 2)02/Sp, relative concéntration of the experiment.

(3) By = (N = 2)(p — t)2/Spr, relative bias of the experiment,

(4) o2 = B202/(B2%02 + 024 ,¢), squared correlation coefficient.

The first three quantities are known and p? can be estimated from
the regression experiment using known u and ¢2?. It should be clear
that p? is mnot a function of the regression experiment alone as
p?2 = B202(B202 + 024,¢)”' where ¢2? is mnot a parameter of the
regression experiment,

Now we can prove the following theorem.

THEOREM 3.1 MSE/¢2 DEPENDS ONLY ON THE ABOVE MENTIONED FOUR
INVARTANTS

PROOF:

It can be proved through the following steps
Step 1:
MSE/c¢2 depends only on
a, B, 024 |¢; p, 02(defining five bivariate moments)
and

N, t, St (defining the experiment)
Proof:
In the expression (3.11) EX, EX2, p? and ¢2 are all (true rather
than estimated) moments of the bivariate future distribution, so are
functions of «, @, 02y ¢; p and o2,

The best linear predictor is
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A

t =C+ Bx
where G, D are functions of &, a, 32x|t; u, a2
Thus the distribution of G, D depends on u, ¢? and parameters of the
distribution of &, B, alet.
Under the normality assumption of P(xjItj), the following are
independent:
&let Is 0%t x*(w-2)/ (N-2)
B is N(B, 0%y )¢/STT)
o is N(a*, 02y /N
where
af = a + ft
It concludes that the distribution of &, D depends on ¢, 02 and o, g,
o2 e, N, €, Spr. -
Step 2:
MSE/0? is not changed by changes of origin/scale of T and/or X
Proof
What happens 1f origin and scale of I' are changed ?
Define I = £ + gT T
p=ET" = £ + gpu
02 = VAR(E + gT) = gig?
E(X1T) = « + BT
= o+ (I - f)/g] =&+ BT
where & = o ~ (£/g)6, B = /g |
(07xye)” = VAR(XIT ) = VAR(XIT) = 0% ¢
N=N; T=£+gT; S qp = g2pp
What happens if also origin and scale of X are changed?

Define X"™= 1 + mX

po=h=1f+ gu
L -
g =0 = g0 as above

E(X1T7) = 1 + mE(XIT )




=1+ my + mBT'

i.e
" =1+ ma=1+m[a - (£/8)8]
g" = mB = (m/g)B
(024 £)" = VAR(XIT") = m202y ¢
N" = N; T"=f + gT; S qp =g2Spr
We have

‘ G+ Bx = p2{(x - &)/B} + (L —p2)p
Note that ( p2)" = p2
Consider E[(T - (¢ + ﬁX)}2]
- a" =1 +m¥ - [1+nfa - (£8)8}]
= m(X - &) +n (£/g)f
[x" -a")y/B"] =[x -a)/B]+ £
(using the well known fact that a transforms in the same way as o,
ete.)
(€ + DXY" = g (X - /B + £]+ (L ~ p2)(E + gp)
-5 p2[(X - /B] + gl - p2)p + £
T" = £ + gT )
by last two lines

T - (G + DX)" = g[T - (C + D1y ]

So

E[{T" - (€ + Dx)}2] = MSE" = g2 MSE
finally

MSE"/(02)" = MSE"/(g202) = MSE/c?
Step 3:

MSE/0c? depends only on
N, p, (BN)%, Cn, E, Str, @, B; a transformation of 8
variables listed in step 1

Step 4:

MSE/c? depends only on the first four invariants given in step 3;
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i.e. N, p, (By)? and cy.

Proof

The four invariants are not affected by changes of scale and
origin in X and T.

Consider two calibration situations or "systems" A and B with
same values of N, p, (BN)f and Cy.
We can transform system A to system A” having t = 0 (by origin of T),
Srr = (N-2) by scale of T, @ = 0 (by origin of X), g8 = 1 (by scale of
x.
MSE/c2? is same for A" and for A; by step 2.

Similarly B can be transformed to a system B~ having t = 0, etc;
where MSE/¢? is same for B as for B,

Since N, p, (BN)ﬁ, Cy are unchanged by-transformations, they have

- -

the same wvalues for B', B, A, A", So B, A agree in all 8
quantities listed in step 3. Hence MSE/¢2? is same for B as for A”.
Thus MSE/¢? for A is same as for B.

In other words MSE/¢? is a function of N, p, (BN)i, CN-

Diagramatically
System A System B
\ /
\ '
use \ . use
/
step 2 ' . step 2
\
‘ /
/
v
e hpp—— -
use
step 3
System A’ System B~
t = 0, etc. t = 0, etc.

This completes the proof,




3,3 SIMULATIONS
By now it is quite clear that Qg or Q4 is a function of four
invariants, so to study Q we take the following set of values for
these invariants.
N = 10, 30, 50
Cy = 0.25, 1.0, 4.0
By = 0.0, 1.0, 4.0
p2 =0.7, 0.8, 0.9
All the 81 (34) possible combinations of these four invariants
are made and the approximated values of Ea, Eﬁ, VAR&, VARﬁ, COV(a, ﬁ)
} and Qa are calculated for these combinations using the formulae in
appendix A for k = 1,

To check the accuracy of approximationé, simulated estimates of
the above quantities namely Eé, ﬁﬁ, VﬁRé, VﬁRﬁ, CaV(a, ﬁ) and Qg for
the same B8l combinations are needed. To obtain these G and D are
required to be simulated which are not independent but

C is a function of n, 02, &*, E, 32x|tr t
and R
D is a function of j, 32X|t» o?
where
o* is N(a™, a2y, ¢/N)
B is N(B, o2,¢/STT)
02t 1s [02g ¢/ (N-2) x2(N-2)
From the distribution theory &*, ﬁ and alet are independent.

The values of o = 0, § = 1, p = 0 and ¢2 = 1 are taken for
convenience in simulations and t, Spr and 0?%g |+ are calculated from
the invariants. so ‘

Str = (N-2)02/Cy
T = p+ By/opto

o2 e = [(L - p?)/p2]B%02

' B -
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10000 values of each &*, a and szlt are generated using NAG and thus
values of G and D using these simulated values in formulae (3.3) and
(3.1) respectively. From these 10000 ¢ and D values, the following

simulated estimates are calculated.

EC = £84/10000 ED = £B;/10000
VARG = x(C4-£C)2/10000 VARD = x(D;-ED)2/10000

I+

Confidence interval(G.I) = EG & 1.96[ VARC/10000 ]}

M

Confidence interval(C.I) = ED = 1.96] vArD/10000 ]
cov(¢, Dy = [ (&; - EC)(D; - ED) J/10000.

Comparative study of the approximated and simulated values
indicated that all the approximations are always good for N = 30, 50
and COV(&, ﬁ) is good even for N = 10.

A detailed study is made for N = 10, at p2= 0.7, 0.8, 0.9
separately, for the approximated wvalues E&, Eﬁ, Qa versus their

simulated values by graphs. The labels in the graphs are according

to the following table.

By
0.0 1.0 4.,0.-
0.25 A B c
ey 1.0 D E F
4.0 G H I

The approximated EC's are plotted against the 95% confidence
interval of simulated wvalues, EC for N=10 and p?2 =0.7, 0.8,
0.9,separately which indicate a reasonable approximation except at
the point H and I, in figure 3.1, where By and Cy have high values.
The approximations tended to be better with p2?= 0.9.

The approximated and simulated values of the biés, (Ea - C) and
(Eé - C), respectively are calculated where C is calculated by the

formula (3.3) using =0, 8=1, p =0 and ¢2 = 1, qhe approximated

bias values plotted against the interval estimates of simulated bias .
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values indicate the approximations to bias ¢ are rather bad except
where By is zero, figure 3.1. We also see in this figure that EG - C
is small as compared to EC - C. Presumably true bias small compared
to EC - ¢. It is interesting that approximations to bias G are not
used in approximating Qp, so zero is better approximation than EG - ¢
to true bias.

The ED values are plotted against 95% confidence interval of ED

. for different wvalues of p2= 0.7, 0.8, 0.9 in figure 3.2 which show
approximations are good except at G, H and I where high values of Cy
are observed. The approximations are better for p2 = 0.9.

The approximated bias (Eﬁ — D) and simulated bias (ﬁﬁ - D) are
calculated where D is calculated by relation 3.1. Their plots in
figure 3.2 indicate that approximations are good except at points G,
H, I, where Cy is high. The bias approximations are good for
p2= 0.9,

To compute the values of Qa, expression (3.12) 1is used and to
compute the values of Qg expression (3.10). The values of Qg are
calculated in two ways. ‘

(1) Qg 1Is calculated exactly, apart from the simulation error,
and the terms E(C - G)2, E(C - ¢)(DB - D) and E(D ~ D)2 in (3.10) are
replaced by

E(C - C)z = VARG + (EC - ©)2

E(D - D)2 = VARD + (ED - D)?

E(C - ¢c)(d - p) = cdv(E, D) + (EC - G)(ED ~ D).
We will continue denoting this by Qg

(2) Qg 1s calculated by considering the simulated values as true
values and ignoring the bias terms in the above expressions i.e.

E(C - C)2 = VARG only etc.

We will denote it by Qgq.

The comparative study of Q4 and Qg, table 1, indicates that the

o y
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values are in agreement except at high wvalues of Cy. Because a
confidence interval based on Qg would be complicated, two independent
simulations were carried out.

The values of Qp plotted against the two independent sets of
simulated Qg values (including bias) individually for each value of
p2 =0.7, 0.8, 0.9, indicate a reasonable accuracy of approximations
except for G, H, I, where Cy has high values,see figure 3.3.
.Approximation error Qy — Qg can be split into two components

(1) Omission of bias terms altogether i.e (Qg — Qgo)

(2) Approximating error of VAR@, VARﬁ, COV(&, ﬁ) i.e. (Qq — Qgo)-
Mathematically

Qa = Qs = (W ~ o) - (Qs ~ o)
I Qa — Qgol >>1 Qg — Qgol

(Qa — Qgo) is plotted against (Qg - Qgo) for p%? = 0.7, 0.8, 0.9,
figure 3.3, separately and it can be concluded that there is no point
in adding approximated bias terms to improve Qp values unless also
added 0(1/N2) terms in approximated variance and covariance terms.

Qa 1s inversely proportional to N i.e: with the increase in the
size of the experiment, Q4 tends to be small. It is quite obvious
from table 3.1, It is an increasing function of Cy. A look at the
table indicates that values of Q4 at N =30, p2 = 0.7, By = 0.0,
Cy = 0.25 and N = 50, p?2 =0.7, By = 0.0, Oy = 4.0 are 0.039762 and
0.036083 respectively. Similarly the wvalues of Q4 at N = 30,
p?2 = 0.8, By=1.0, Cy = 0.25 and N = 50, p2= 0.8, By = 1.0, Cy = 4.0
are 0.069881 and 0.069333 respectively which are approximately equal.
This indicates the importance of Cy and suggests that Cy should be as
small as possible or equivalently S¢p/(N-2) should be large.

Qa 1s also an increasing function of By. It is quite evident

from table 3, 1. 1In the table the values of Qy at N = 10, p2 = 0.7,

Cy = 1.0, By = 0.0 and N = 30, p2 = 0.7, Cy = 1.0, By = 4.0 are’
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0.142500 and 0.144048, Similarly the wvalues of Q4 at N = 10,
p2 =0.8, CGy=1.0, By = 0,0 and N = 30, p? = 0.8, Cy = 1.0, By = 4.0
are 0.165000 and 0.165238 respectively. These values are
approximately equal by fixing p? and Cy and changing only the size of
the experiment. This brings to light the inherent weakness in the
planning of the experiment. It suggests that the experiment should
be conducted in the right place i.e. with t = ®

Qa 1is quadratic in p?2. To see how it depends on p2, the

derivative of Qa with respect to p? is

Np. L, 1 [ 2(1 - 2p2) - 40y(1 - 2p2) + By ]
Op? N N-2

9Qa/0p2 > 0 always if both Cy > 0.5 and p? > 0.5 for all By and
N; so Q is monotonically increasing function for these values of Cy
and p2. In most practical situations the range 0.5 < p2 < 1 is of
particular interest. 8Qa/0p2 < 0 for p2 = 1, Cy = 0.25 and By = 0.0
for all N but the value of p2 = 1 1is not of interest in practical
situations.

0Qa/0p2 < 0 for high values of Cy i.e. at Cgy = 4.0 and low
values of p2(p2 < 0.4), So Qa is monotonically decreasing function
for high values of Cy and low values of p2?, otherwise it is always
monotonically increasing function.

Shukla and Datta (1985) and Oman (1985b) gave an exact formula
for the conditional mean squared error of the inverse estimator as

under;

(Condit) MSE = (t — E)2[1 + N - 81, N - (-4)B(N-3, x)}]
2

+[1 + _3;]522{(N—2)@(N—1, A) - (N-4)O(N-3, N)}...(3.14)
N 72

2
where A = G287y

and @(J, \) = E[ L

] J >0
J + 2k

2
k1t

k 1s a Poisson random variable with-parameter A2,
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Unconditional mean squared error, which we are denoting in our

work by MSE can be derived easily from (3.14) as under

(UYMSE = E(t - E)2[1 + N [-6)d(m-1, \) - (N-4)&(N-3, x)}]
2

+ [1 + 1_]ST_T{(N—2)¢(N—1, N) - (N-4)B(N-3, \)}..(3.15)
N 72

Inverse estimator is a special case of our estimator with

g = t and E(t - )2 = Str

: N -2
So exact MSE of our estimator for By = 0.0, Gy = 1.0 is
A

(UYMSE = 02[1 + N
2

[(N—s)cb(N—l, N) — (N-4)B(N-3, \) ]

+[1 + _1] [N_ - 1]{(N—2)¢(N-—1, A) - (N-4)B(N-3, x)}]..(s.:us)
2

According to formula (3.9)
MSE = (1 - p2)02(1 + Qg) . (3.17)
(N-2)p?

(1 ~ p?)

In our simulations inverse estimator corresponds to By = 0.0 and

A in (3.16) and p2?2 in (3.17) are related by \ =

Cy = 1.0. To compare the results of (3.16)-‘énd (3.17), we took
p?2 = 0.7, 0.8, 0.9 and N = 9 and computed these three cases. Results

are as under,

MSE(theirs)/0? MSE (ours)/0?

g2 = 0.7

0.351333 0.355470
N = 16.66
p2 = 0.8

0.242043 0.241784
AN~ 28
p2 = 0.9

0.123424 0.123471
N = 63 .

It is quite clear that the exact results MSE(theirs)/02 and simulated

results MSE(ouyg)/0? are quite close.
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3.4 CALIBRATION BASED ON A SAMPLE MEAN iﬁ OF k OBSERVATIONS

If the k replicated measurements X,, X,, ..., Xg, with mean Xg,
corresponding to the unknown T wvalue are used, then the best linear
predictor based on the estmates, a, 8, alet» would be

E s ﬁ + ﬁif

<

where = E(T) - DE(Xg)

_ COV(T, Xg)

o

and
VAR(Xg) -

~

VAR(?f)

B2

-~ 2
B2gz + T xIt

and . .

Bo2(o+ Bup)

B202 + Tt
k

(9}
I
=

and
{cov(Xg, T)}2

o8 1xg~ VAR(T) - -
VAR(Xf)

So t=0C+ ﬁff




If N 5 o a - a; ﬁ > 8, 72 5 72 and if also k - w, then
£ - }_ff - o

g
which 1s the classical estimator,

Like the classical estimator, the best linear predictor is

consistent when N, k - «.

The approximations to the EC, ED, VARG, VARD, cov(G, D), bias
and mean squared error of the best 1linear predictor for this
situation are obtained using Taylor'sw series and are given in
appendix A,

Berkson (1969) pointed out that the inverse estimator is
inconsistent, and we showed in section 1.7c that the best linear

predictor coincides with the inverse estimator if p = ¢,
0% = Srp/(N-2) when k = 1. For- general k, however,
02 = k™1 Spp/(N-2) would be necessary. The inconsistency of the
inverse estimator when N, k -5 « may perhaps be traced to the fact

that it does mot correspond to any fixed combination of p and ¢2.
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TABLE 3.1

Approximated Qa and simulated Qg values for the 81 combinations.

Qa Qg
Cn 0.25 1.00 4.00 0.25 1.00 4.00

By p2 = 0.7 N = 10

0.0 0.127500 0.142500 0.202500 0-.133973 0.162922 0.343772

1.0 0.215000 0.230000 0.290000 0.231629 0.258394 0.414560

4.0 0.477500 0.492500 0.552500 0.520980 0.541941 0.622605
p2 = 0.7 N = 30

0.0 0.039762 0.044048 0.061190 0.039907 0.045299 0.061460

1.0 0.064762 0.069048 0.086190 0.065927 0.071134 0.085475

4.0 0.139762 0.144048 0.161190 0.142287 0.147220 0.156220
p2 = 0.7 N = 50

0.0 0.023583 0.026083 0.036083 0.023933 0.026764 0,036014

1.0 0.038167 0.040667 0,050667 0.038384 0.041207 0.050053

4.0 0.081917 0.084417 0.094417 0.081933 0.084722 0.092415
p?2 = 0.8 N =10

0.0 0.131250 0.165000 0.300000 0.135583 0.186052 0.375541

1.0 0.231250 0.265000 0.400000 0.244554 0.301440 0.483354

4.0 0.531250 0,565000 0.700000 0.567710 0.644115 0.803068
p?2 = 0.8 N = 30

0.0 0.041310 0.050952 0.089524 0.041152- 0.051864 0.091395

1.0 0.069881 0.079524 0.118095 0.070665 0.081792 0.122379

4.0 0.155595 0.165238 0.203810 0.157536 0.169960 0.213805
p2 = 0.8 N = 50

0.0 0.024542 0.,030167 0.052667 0.024706 0.030663 0.053485

1.0 0.041208 0.046833 0.069333 0.041197 0.047328 0,070650

4.0 0.091208 0.096833 0.119333 0.090843 0.097467 0.122241
p2 = 0.9 N = 10

0.0 0.132500 0.192500 0.,432500 0.135293 0.208648 0.554168

1.0 0.245000 0.305000 0.545000 0.254600 0,335410 0,711015

4.0 0.582500 0.642500 0.882500 0.608789 0.711931 1.178437
p2 = 0.9 N =30

0.0 0.042143 0,059286 0.127857 0.041677 0.059580 0.134697

1.0 0.074286 0,091429 0.160000 0.074682 0.093120 0,170378

4.0 0.170714 0.187857 0.256429 0.171870 0,191938 0.275592
p2 = 0.9 N = 50

0.0 0.025083 0.035083 0.075083 0.025062 0.035249 0.077233

1.0 0.043833 0.,053833 0.093833 0.043566 0.053962 0.096713

4.0 0.100083 0.110083 0.150083 0.099224 0.110216 0.155178
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CHAPTER 4
INTERVAL ESTIMATION

Here we discuss possible interval estimates I for T with their
justification and emphasize more on unconditicnal interval estimates
using the best linear predictor t based on Ef, #, 02 and the
regression parameters a, £, 0%z . There can be two situations.

(a) @, B, 02, known

b)) o, B, Uzilt unknown and estimated by their estimates &, ﬁ,

A

2
4 B o

&2§lt means &zx[t/k and p?y means correlation coefficient between
T and Xg, where Xg is the mean of k observations in the current

situation.

4.1, CASE (a) «, 8, dzi-lt KNOWN.

We discuss this case mainly for the light it will throw on

case (b) which occurs more commonly in practice.

4.1,1 POSSIBLE AIMS

There are three possible aims which are discussed as follows. -

(a) _Conditional confidence given Ef, P(T e I1Xg) should be 0.95,

If it were possible to calculate, it would be desirable because
Xf is known; for instance if a specific distribution of P(t) is
assumed, P(tiXf) can be deduced by Bayes formula. In particular if
P(t) is N(p, 02), then P(tI%g) is N[C+DXe, (1- p2g)o?].

Thus an interval estimate

I¥: C+DXg ¢ 1.96[ (1~ p2g)o? ]} oo (401)

would have conditional confidence 0.95 given ff = X¢

However in our approach, no specific distribution is assumed for
P(t), only E(T) = pu and VAR(I) = ¢? are assumed known. The

conditional confidence of the interval I* would depend upon the shape




of P(t). Consider exponential shape P(t) = e~ %, (t > o). For Xg¢
sufficiently negative, interval I* would be entirely mnegative so
P(T ¢ I*I1Xg) = 0.

Thus from the point of view of P(T e¢ IIXg), the interval I* is
appropriate when T is N(u, ¢2) and is not appropriate when

P(t) = 7Y, (t > o).

(b) Conditional confidence given T, P(T ¢ I1T) should be 0.95.

It can be calculated (simulated)h because it only involves
P(Eflt). It resembles classical approach té calibration problem. It
is not suitable aim because for P(t) specified exactly, P(t|§f) can
be deduced and conditional confidence given Xg, P(T ¢ LiXg) would be
relevant., In our approach moments of P(t) are known and this partial
information about P(t) makes conditional confidence given T not a
guitable aim, Information about P(t) is available and it is not
appropriate to insist that P(T ¢ I11T) =~ 0.95 for all T. We show this
by returning to the case P(t) is N(g, ¢2), for which I* is the
appropriate interval, and showing that conditional confidence given T
of interval I¥ o

P[T within C+DXg % 1.96[(1l ~ p2g)o2]¥|T] co(4.2)
does depend on T,
For any P(t), this probability is
P[ (T-C)/D within X¢ * (1.96/D)[(1 ~ p2g)02)¥iT]
=P[X¢ within (T-C)/D * (1.96/D)[(L - p2g)c2]#iT]

Using expressions for C and D

T2C B+ r2) + o - pprog

=+ T + frg*(T - ©)

= P[Xg within a+BT + Br2g(T - p) * (1.96/D)[(1 - p2g)02]2IT]

Note that VAR(XgIT) does not depend upon T as P(xglt) is
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N(a+fT, 024,¢/k) but width of interval for Ef unchanged, see the

following diagram for the two intervals when T = p and T > u.

s0 P[ff within o+t + B72x(T - p) * (1.96/D)[(1- ng)az]ftT] depends
on T.

P(T ¢ I*IT) is a decreasing function of |T - p1 as following.

1.00

0.95 .

il T
The interval I* in aim (a) above, was seen appropriate when P(t) is
N(p, o2). Such information about P(t) thus conflicts with the
requirement that P(T ¢ I|T) = 0.95 for all T. It is strongly linked
with the fact that
T+ pr2g
E(C+DX£1T) = # T "biased"

2
1+ 7%
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Unbiasedness (conditional on I) is not appropriate if there is
information about P(t). 1In our approach p and ¢2? are assumed known

and conditional confidence given T is still not appropriate.

(¢) Unconditional confidence, P(T e I) should be 0.95.

We recall that aim (a), conditional confidence given ff is
desirable but not attainable with our limited assumptions. On the
other hand aim (b), conditional confidence given T is not desirablé
(given p and ¢2).

The unconditional confidence, P(T ¢ I) 6f any interval is

P(Telip,02; ,B,02% 1) = [P(T € TIT=t; ,6,0%,)P(T1p,02)dt. .. (4.3)

Based on the best linear predictor C+fo, the proposed interval is
C+DXg t 1.96[(1 - p2g)o2]}
= [Xg -~ )/Ble%x + (1 - p2p)p ¢ 1.96[(1- p2g)o2]?
=t p2g + (1 - p2)p * 1.96[ (L —p2g)02]? oo (b))
Now E(C+fo - T) =0, and
VAR(C+DXg — T) = E(C+DXg — I)2 = (L —p2g)0?,
due to definition of the best linear predictor t. We suggest that
P(T € I) dépends on P(t) less strongly than does P(T ¢ Ilff). So
P(T € I) = 0.95 is an aim easier to achieve approximately than ideal
aim discussed in (a),
Note that for any interval, aim (c) would be implied by aim (a).
Also-aim (¢) would be implied by the inappropriate aim (b).
By Chebychev's inequality
P[1C+DXg — T1 > 1.96[(l-pg2)02]%] < (1/1.96)2 = 0.26
The unconditional confidence (4.3) can be evaluated approximately
for I* for specified P(t). Different choices of P(t) are discussed

below.
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4.1.2 UNCONDITIONAL CONFIDENCE, AS A FUNGTION OF P(t)
Four different distributions, normal, expomnential, uniform and

triangular are considered as P(t) in (4.3) and the tail probabilities

are calculated,

(a) P(t) Normal
From discussion on aims it can be concluded that Error
probability is 0.025 for each tail for al} normal distributions.
For P(t) is N(p, 02) ——)» P(T,Xg) is bivariate normal
-—=» P(TiXg) is N[C+DXg, (1- p2g)e2]
~—% P(T ¢ I*1Xg) = 0.95  (all Xg)
—=3 P(T ¢ I¥) = 0.95 because (a) ——>» (c)

P(T e I*) can be evaluated as under.
Error probability for upper tall
P(T>C+DXg+1.96[ (1-p2g)a? J)=[ [P(T-(C+DXg) >1.96[ (1-p2p)o? Jhim) ]P(t)dt

referring to C+DXg = Eng +(1-p2x)p

v » 2—
ECEIT) = T; VAR(EIT) = TXIt
62

so E[T — (C+DX£)IT] = T - p2gT —(l-p2g)p
= (1-p2x) (T-p)

— 2
and VAR[T-(C+DXg)IT] = (p2g)2 7 Kit
62

- (02§)2{ - p2§]02
Px

=Y pzi (1— P2s{-)0-2

= [P[N[(1- p2g) (T-p),p2(1-p2g)02]>1.96[ (1~ p2g)o? EP(t)de
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= [of 1-96[ (- p2p)02]E - (1- 92§)(T“#)]p<t)dt
[ [p2g(1- pPg)o2 2
- |g] 196 _ [ 1 - px? ]*[t"*‘]]zr(tmt . (4.5)
] LU (p%x)3 p*x ¢
[ [ 1.96 1 - p2: 1% 4 ] Sy g
-l _ b € P(E®)de ... (4.6)
[(Pzi : [ Pix ]

where t¥ = [ E:ﬂ ]
"

!
‘ and ¥(2) = P[ N(0,1) > 2]
' Error probability for the lower tail

Similarly as above

| P(T<C+DXg-1.96[ (1-p2)o? J =|a| 1% - 1"bzi]5[t‘ ”]]P(t)dt...(4.7)
b U ()t P3x o
-lo|2% 1“p2i]% t*]p(t*>dt* e (4.8)
L (p2g) 4 px

where & = 1 - ¥(2),.

Considering P(t) mnormal and p2x = 0.1(0.01)0.99 in (4.5) and
(4.7), Gauss—Hermite formula from NAG was used to solve the integral
numetrically énd the results came out to be 0.025 for both upper and
lower tail probabilities upto three decimal places. This confirms

the accuracy of numerical integration.

{(b) P(t) Exponential
The error probabilities when P(t) is exponential i.e
P(t) = e7 %, (£t 2 o)
can be calculated wusing (4.5) and (4.7) or alternatively the
following procedure can be adopted.
Upper tail probability
P(T>C+DXg+1.96[ (1-p2g)02 ]#) = P[T>C+D(a+BT)+Dog cZ+1.96[ (1-pgz2)o2]14]

as Xg = o + BT + ozt £

‘-
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Z is N(0,1) and Z and T are independent

= P[T(1-DB)-Dog ¢Z > C+Da+l.96{(1-p2x)02]4]

N P[T - Doxie 4 C+Da+l.96[(l—p2g)02]%]
(1-DB) (k) % (1- DB)
Note that DB = p2x < 1
= P(T-aZ > f) = P(T > aZ+f)

2_ 2—
where a = D _ ‘%It - 0[ P°X ]% = [ P x _]% since ¢ = 1

(1-DB) (k) ? 1-p% 1 - p2g
a g ODa+ L96[( 1- p?pa?]t
(1 - DB)
= [n(l - p2g) + 1.96[ (1~ p2g)0o2]¢]
(1 - p%
1.96
=14+ since p =1 and ¢ = 1
(1 - p2yp)?

thus

=+

- [P( T > aZ+f1Z)P(z)dz

—Cc0

—f/a [+<]
- jp(r >aZ+£1Z)P(z)dz + IP(T > aZ+f12)P(z)dz
—co -f/a

-f/a o -
- jl. P(z)dz + [e*az-f‘P(z)dz
~co -f/a

aZ?

= P(Z < -f/a) + e_f i I(2 m— gt Ea) Ty,

-f/a
-f + -a%
- P(Z < —f/a) + e * W(a - £/a)
-f + —al
=¥ (f/a) + e 2 ¥(a -f/a) )
where ¥(s) = P[N(0, 1) > s]
similarly
Lower tail probability
gL
P(T<C+DXg-1.96[(1-p2g)02]1)= 1-[U(£ /a)+e * ¥(a - £/a)]..(4.10)

where £ = 1 - 1.96/(1- p2z)#i.

I




Gauss—Laguerre formula from NAG 1Is used to evaluate (4.5) and
(4.7) for P(t) to be exponential. Numerical integration results are
produced in table (4.1). The results obtained by using (4.9) and
(4.10) are the same as the results of (4.5) and (4.7).

From (4.5) it can be seen that error probability is a function of
p3x for all shifted exponential distributions

P(t) = ge—0(t-ty), t 2 t,

If shape of P(t) as exponential is -fixed but pu and ¢? change,

then t* is same but p2? changes as illustrated in table 4.1.(Db)

For the case of P(t) = e~%, (t > 1), results are given in table

4.1 when p?25 = 0.1(0.01)0.99. To find error probabilities for
‘ P(t) = Oe'e(t‘to), (t2t, ) and given 62/02§|t’ one must first
calculate p? = (2¢2(B%02 + 02%,¢)” ! as in table 4.1.(b). By relation
(4.5) and (4.7) this determines the error probabilities for P(t) of
exponential shape, therefore table 4.l.(a) can be used and table 4.2

illustrates the results.

(C) P(t) Uniform snd Triangular -

For numerical integration of P(t) uniform.;nd triangular in (4.5)
and (4.7) Gauss-Legendre formula is used with p2g = 0.1(0.01)0.99.
Results for lower and upper tail probabilities are given in table
4.3.(a) and 4.3.(b) respectively.

To find error probabilities for P(t) = 1/(b-a), a < x < b and
given (2/02g |, one needs to find p2'= B202(B%02 + o%g )7 as in
table 4.4.(a). By (4.5) and (4.7), this determines the error
probabilities for P(t) of uniform shape, therefore the table 4.4.(a)
can be used and table 4.5.(a) illustrates the results,

Similar type of results are calculated for P(t) to be triangular

and are given in tables 4.3.(b), 4.4.(b) and 4.5, (b).

~
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4.2. CASE (b) @, B, 02t UNKNOWN

The unknown parameters can be estimated, then the interval for T
would reflect uncertainty about o, B, o% ¢-

To study the error probability by simulation, following four
pivotal functions are considered. Each function would lead to a
slightly different interval for T using the approximation that the

function is N(0, 1). This is further discussed under section 4.2.3.

4,2.1. PIVOTAL FUNCTIONS

The possible pivotal functions are

T - (C+DXg)

¥y =
(MSE)
Fp - T - (C+DXg+Br) ’
(MSE - B2q)?
Fy = T = (C+DXp)
(MSE - B2q)?
¥, = T — (C+DXp+Br) -

(MSE) 3
where By is the bias defined in appendix A,
It can be shown that the distribution of the above four functions

depends mainly upon the four invariants already studied i.e. By, Cy,

N and p?y.

Consider the first two moments of Fy, for instance,

E[T - (E+DXg) ]

EFl 2
E(MSE)?
- By
EMSE)$
~ By

(MSE) ?
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while E(F12) = MSE ~ 1
E(MSE)
Now approximately
By = E[T- (C+DXg) ]
k 3 2 2 5
=0|—_ (O 2(1l- p2x) (2p2g — 1) (By) e (4010
N-2 K
and
MSE = (1L - p2g) o?[1 + Q] . e (6.12)

Thus the first two moments of Fj depend approximately on

Br/o

(MSE/c2) %
wvhere Bp/oc and (MSE/UZ)f both are functions of the same four

invariants as shown in theorem 5.2 and theorem 3.1 respectively.

4.2.2. SIMUILATIONS
Fi, Fo, F3 and F; are calculated by assuming a specific P(t) and
generating T from it. ff is simulated from P(;flt). To calculate 6,
ﬁ, B2§, ﬁT and M§E, we take k = 1, o¥ = 0, g =1, pu=0, 02 =1,
Spr and t are derived from By and Cy as-in'Séction 3.3 and
o2gle = [(1 - p20)k Vo2
o*, B and alet are simulated from the usual normal theory and thus C

and D as in section 3.3 so

il

£=T - €+ (02,¢/k)? N(O,1)
P2 = BB + 3% /)7

ET and MSE are calculated by the relations given in appendix A.

The same four invariants studied in section 3.3 each at three
levels are taken i.e.

By = 0.0, 1.0, 4.0,

Cy = 0.25, 1.0, 4.0,

N = 10, 30, 50

p?g = 0.7, 0.8, 0.9.




81 combinations are made of the values of these invariants and values
of F1, Fp, Fq and F; are calculated by simulating o*, B, 32X|t and
the other quantities as mentioned above 10000 times for each
combination. The point estimates of the lower tail probability
Pi1, = P(F4 < -1.96) and upper taill probability Pyy = P(Fy > 1.96)
i1 =1, 2, ..., 4 are calculated and also interval estimates for these
tail probabilities.

The‘same 10000 values of T and of the N(0, 1) random variables
defining ff, a*, B and the x% random variable defining glet are used
for all the four pivotal functions, for all the 81 combinations.
This reuse of the simulated values permits "paired data" rather than

"two sample"” comparisons particularly between pivotal functions.

4,2,3, UNCONDITIONAL CONFIDENCE., AS IT DEPENDS ON P(t)

Four distributions, normal, exponential, triangular and uniform
as in section 4.1.2. are tried as P(t) to simulate Fq, Fy, F3, Fsy and
all the four P(t) are generated with location parameter zero and
scale parameter one, L

1000 values of each of the pivotal functions are used to see
their distribution. Normal probability plots indicate that Fp, Fp,
F3 and F; are normal for N = 30, 50. For N = 10, they are normal
most of the times but for high By, Cy where some outliers appear in
tails. For normal probability plots when N = 10, By = 4.0, Cy = 4.0
and p?g = 0.7 and for each P(t), see figure 4.1,

Summary statistics table 4.6 and inspection of individual values
of Fq, Fp, F3 and F,; indicate that F; = F3 and Fy = Fy4 with
difference in the third decimal place only quite a small number of
times. It is because B2y, bias squared term, is small compared to
MSE and correcting denominator makes little difference. They have

approximately zero mean and unit variance which confirms the

assumption made at the end of section 4.2.1.
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As it is evident that Fi = F3 and Fy = F;, so we would deal with

F{ and Fy only.

(a) P(t) NORMAT
Point Estimates
It is observed that ﬁlL = §2L whereas ﬁlU > §2U for all the 81
combinations.
For N = 10

Pq1, ranges from 0.042 - 0.057

Pop, " " " 0,042 - 0.064
Piy » « w 0.026 - 0.046
Poy " " " 0.025 - 0.046

Sum of both tails; ﬁlL + ﬁlU < §2L + ﬁ2U and individual sums are
nearly 0.088, greater than 0.05.

For N = 30, 50; ﬁlU & ?2U and ﬁlL = ﬁZL and are between
0.021 - 0.030 and 0.029 - 0.035 respectively. Pyp + Py < Pop + Poy
and sums for N - 30, 50 are nearly 0.06 and 0.055 > 0.05

respectively.

It is observed that there is more variation in Fyp as compared
with Fq and it has also been noted that there is not much change in
tail probability because of the change in p2; from 0.7 to 0.9.
Interval Estimates

The intervals for the estimates Py, Pyy, 1 = 1, 2; are
calculated by the formula

By + 1.96 [P;(1-B1)/10000]
Their study indicates that for N = 10, Pj; and §2L are significantly
greater than 0.025 all the times and also ﬁlU and §2U'

For N = 30, 50; Py, Py are significantly different from 0.025
but Piy, Poy are almost non-significant all the times.

Contingency Table

81 contingency tables are made for the 81 combinations and for
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each contingency table 3 conditional tests are made for comparing Fj
and F5. Example follows which explains the procedure of tests in the
tables.
Example for tests in contingency table

Consider the following contingency table

Fp < -1.96 ~-1.,96 < Fp < 1.96 >1.96 TOTAL

F1
< -1.96 417 2 . 0 419
1.96 < F1 <1.96 8 9150 _ 7 9165
> 1.96 0 1 415 416
TOTAL 425 9153 422 10000

(a) Comparison of PlL and Pop, -
refer 8 to Bi(8+2, 1/2)
two sided P value = 00,1719 > 0.05 non-significant
{(b) Comparison of ﬁlU and §2U
refer 1 to Bi(l+7, 1/2)
two sided P value = 0.070 > 0.05 non-significant
(c) Comparison of Pyy + Pyy, Poy + Por
refer 8+7 to Bi(8+7+2+1, 1/2)
two sided P value = 0.0076 > 0.05 significant
(1) For N = 10, comparis.on of ﬁlL» §2L indicates that ﬁlL < §2L
and is significant only when both By and Cy are high; otherwise
non-significant.
For N = 30, 50; Py, < P9y, but usually non-significant.
(2) For N = 10; ?1U > ﬁZU and is significant only when both By
and Cy are high,
For N = 30, 50; ﬁlU > ﬁZU and is non-significant.
(3) BPyy + Pyp, < Boy + Pyp, For N = 10, 30, 50.

For N =10; it is significant for both By and Cy high but for N = 30,

|




50 they are non-significant almost everywhere.

Inspection of the contingency tables indicates that confidence
probability i1s almost 0.91 for N = 10 and for N = 30, 50, it is
nearly 0.94 for both F; and Fs in all the cases.

From the above results it is concluded that F; is better than F»y
for N = 10 and in case of N = 30, 50, they are almost equal. It is

advisable to use F1 always as it is simpler compared with Fj.

kb) P(t) Exponential

Point Estimates
N = 10

It is observed that

and

P11, + P1y £ Poy, + Poy

ﬁlL ranges between 0.030 — 0.056 -

Byy ranges between 0.032 - 0.050
Bor  w w 0,030 — 0,056
Boy m ow " 0.030 - 0.050

Py + Py < Pop, + Pyy and is between 0.079 — 0.086

For &, B, 0?4t known and p?;3x = 0.7, Py, = 0.018, Py = 0.032 and
P;, + Py = 0.050.
N = 30, 50

There is less variation in Pyy, By, Piy, Poy and lower limits
have tendency towards 0.018 and upper towards 0.032, the true values
when o and # and 024 are known at p2? = 0.7.
Interval Estimates

Lower tail probability 0.018 is not but upper tail probability

0.032 is mostly in the interval for N = 30, 50 . For N = 10 these
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probabilities are not usually in the interval,

In the present situation both tails are being overestimated
because of the uncertainty in the estimation of «, @, T3t
Interval for t is also wider because of Q in the denominatoxr, than
when o, @, 02x|t are known.

Contingency Table
N =10

ﬁlI. < §2L and is significant only  for both By and Cy high,
otherwise non-significant.

Pyy > Pyy and is significant for both By and Cy high only.

By, + By < Byp, + Poy and is non-significant.

N = 30, 50
Same types of inequalities hold for both lower and upper tails as

for N = 10 and are usually non-significant,

(e¢) P(t) Uniform
N =10

Pq1, ranges between 0,039 — 0.059

Poy, v om " 0,039 - 0.066
Py ¢ " " 0,020 - 0.044
Boy " " 0.019 - 0.044

Pip + ﬁlU 5'?2L + Poy and ranges between 0,078 — 0.088.

When o, @, 024,;¢ are known, ﬁlU = §2U = ﬁlL = ﬁ2L = 0.011 for
p2x = 0.7.

From above it is clear that the lower and upper limits are always
greater than 0.011. This 1is because of the uncertainty in the
estimation of regression parameters from the regression experiment.

N = 30, 50

Point estimates ﬁlL = Pogy, =~ 0.030 and Poy = Pqy ~ 0.030 for




N = 30 and are about 0.022 for N = 50 most of the times and the
variation decreases with the increase in N.
Interval Estimates

Lower and upper tail intervals never contain the wvalue (.01l
either for F; or for Fy in all the 81 cases.

Contingency Table

N = 10

In the contingency tables -
ﬁlL < §2L and is significant only for both By and Cy high.
ﬁlg = ﬁZU and is significant only when both By and Cyj have high
values.
PlL + 131U < f’QU + f’ZL and is non-significant all the times and
confidence probability is 0.92 approximately.
N = 30, 50

Same types of inequalities hold as for N'= 10 for lower and upper
tail probabilities. Most of the times counts tend to be smaller but
significance is still there for high By and Cy most of the times,

ﬁlL + ﬁlU vs §2L + ?ZU are mostly non-significant every where and
confidence probability is 0.94 and 0.95 for N = 30 and 50

respectively.

(d) P(t) Triangular

Point Estimates
N =10
It is noted that

lle < ?21‘ and

§1L ranges from 0.038 - 0.054
Po;, » " v 0,038 - 0.060
ﬁlU = §2U and

ﬁlU ranges from 0.023 - 0.045
Boy " " v 0.023 - 0.045
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Pyp, + Piy < Py + Py and range 1s 0.077 - 0.086

Upper and lower tail probabilities are always greater than 0.01,
which is the value corresponding to p2 = 0.7 when regression
parameters are known, because of the uncertainty of estimation.
N = 30, 50

Same types of inequaiities are observed for ﬁiLr ﬁiU, i=1, 2

and the sum of lower and upper tail prababilities for both F; and Fo

1is approximately 0.060 for N = 30 and 0.053 for N = 50.

Interval estimates
Both upper and lower taill confidence intervals never contain the
value 0.01.
Contingency Table
N = 10 -
ﬁlL < ﬁZL and is significant for high values of By and Cy at the same
time,
ﬁlU > §2U and is significant when both By and Cy have high values.
ﬁlL + ?lU < ?ZL + §2U and is nmon—significant.
The confidence probability is 0.92 s
N = 30 and 50
The same inequalities hold and are mostly non-significant. The
confidence coefficients are 0.94 and 0.95 for N = 30 and 50
respectively for both Fi and Fjp.
It can be concluded from above that
(i) Error probabilities depend on N, By, Cy and to some
extent on p?2,
(ii) Correcting for bias in Fy (if any) leads to using Fp,
Fy3 or F4 instead of Fp, but F; appears to be as good

as any of these, in terms of error probabilities.




4.3, BOOTSTRAPPING

In the previous work it is assumed that conditionally on T, X is
normal but in cases where we do not know the distribution of X, It
remains to show how does it affect the mean squared error and
ultimately confidence coefficient.

Bootstrapping is a resampling procedure to assess the accuracy of

an estimator and is in fact computing power as a substitute for

‘theoretical analysis.
Bootstrap algorithm is as follows

(1) We have pairs (xy,ty), i =1, 2, ..., N where Xj's are
random and ti's fixed. We call this regression experiment.

(2) Assign equal probabilities to each Xy for i =1, 2, ..., N,

* *
I’X

(3) Construct hootstrap sample x 21 e X*N as follows
(a) Obtain ey = xj = ﬁi
where §i= a + Eti
& and f are the values of regression parameters estimated from the
regression experiment,
(b) X*i -+ Bti + 3*1
e

Where E*i is selected from e 21 «++, €N using sampling with

1
replacement with the help of discrete uniform distribution between 1
and N from NAG.
(4) Calculate ¢*, D* from the bootstrap sample (x*i, tj) 1 =1,
2, ..., N using g and ¢? calculated from the following relation with
By and Cy known.
p=t + [(By) Spp/(N-2) ]}
a2 =[(Cy) ( S7p) 1/(N-2)
t and Spr are calculated from the data.
(5) Repeat 3(b) and 4, B times and calculate
&*-):c*j/n j=1,2, ..., B

¥ - ZD*j/B
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VAR(C¥) = [Z(C*y -~ C*)2]/B
VAR(D*) = [Z(D*y - b*)2 1/
cov(C*, B*) = [z(c¥y - T%(D*y - D*) /B
As B tends to infinity all these parameters tend to the true values.
(6) MSE* 1s calculated by substituting these values in the
expression (3.9) taking EX = &+ B(ﬂ - E)
EX2 = B2¢2 + 82y ¢ + (EX)?2
E(C - ¢)2 = VARG + (EC - ©)*
and p? = B202(B202 + G2y 1)
where o*, B, T2k 1t t, C, D are estimated from the regression

experiment.

4.3.1. EXAMPLES
Data of two examples from Aitchison and Dunsmore (1975), already

discussed in chapter 1 have been taken to illustrate the bootstrap

procedure in our calibration situation.

Example 1: Measuring water content of soil specimen

Plot of the‘ data (xy, ty) i = 1, ..., 16 indicates linear
relationship between X and T. This points out the suitability of our
technique and there is no need to apply any transformation to make
the relationship linear.

On the other hand C¥*, D%, VARC*, VARD® and ©OV(C*, D*) are
calculated to obtain the MSE® using the formula (3.9) for the same 9
combinations. The results are given in table 4.7.

The bootstrap procedure is as under

(1) The data set (x3, ty) 1 =1, 2, ...., 16,

(2) o, B are calculated by the usual formulae and %3¢ is
calculated by RSS/N instead of RSS/(N-2), refer to 3(b).

(3) ey'si=1,2, ..., 16 are calculated by

ey = x§ — Xy
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where ;‘i - & + ﬁti

(4) Bootstrapped x*1, x*z, ceey x*1s are obtained by the

relation

x¥; = a + Bty + ¥y
where e*i is selected from the e,,e,, ..., e, with replacement using
discrete uniform distribution between 1 and 16 from NAG.

(5) (xi*,ti) i=1, 2, ..., 16 are used to calculate 6*, D¥* and
MSE* by the relation given in the bootstgap algorithm,

Nine values of C, D and MSE are calculated for 9 different values
of p and ¢2 which arose as a result of three values of each By =
0.0, 1.0, 4.0 and Cy = 0.25, 1.0, 4.0, using our formulae (3.13).

On the other hand ﬁ*, ﬁ*, VERC*, VARD* and 65V(C*, D*) are
calculated to obtain the MSE¥® using the fofﬁula (3.9) for the same 9
combinations. The results are given in table 4.7.

A look at the table indicates that there is quite a good

agreement between the two set of parameter values calculated.

Example 2: Antibiotic Assay .

The data (dy,cy) L = 1, 2, ..., 120 as in Aitchison and
Dunsmore (1975) shows a mnon-linear relationship between dj(diameter
cleared) and cj(concentration). As our approach works for linear
relationship, following criteria were applied to achieve the
linearity and equality of variances.

(1) For the response variable Box—-Cox (1964) transformation is

applied as under. Let

A
W_{(d—-l)/)\ for X\ # 0
In d for N\ =0

We used the data to estimate parameter A\ as well as the regression

parameters in the model to be fitted,
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W=o0+ fc + ¢ o (4.13)
and

N
Lpax (M) = -N/2(RSS/N) + (A - 1)X In(d;)
1

where RSS is residual sum of squares after fitting the model (4.13).

Several values of N\ and Ly,4(\) are given below

A Lnax(\)
2.0 -119.625
2.5 -113,828
3.0 ~-109.964
3.5 -107.878
4.0 -107.415
4.5 -108.440
5.0 -110.806
5.5 -114.394

This gives N\ = 4 as the appropriate transformation but d4 against c

gives unequal variances as

concentration Mean S.D
1 14364 7096
2 84208 20647
4 139539 25320
8 189912 - 31087
16 223066 -~ 36683
32 229635 L4424

To get the equality of variances, dj2? was tried against c¢j which gave

the following values.

concentration Mean $.D
1 115.22 33.8

2 288.25 34.3

4 372.19 32.7

- 8 434 .39 35.8

16 470.66 40.3

32 477.25 44,2

di? looks appropriate for equality of variances and then to get the
linearity Box-Tidwell (1962) transformation is applied on cj.

let

v‘{ciA A#0O
In cj A=0




and the linear model is

d2 = By +B1V + ¢ o (6.14)
We define Z = V log V and the fitted model is

d? = By + BV + 42 .o (4.15)
The approximate estimate of A is obtained by the following relation
starting usually with A = 1

A= [(&/Bl)+1)](current value of A) o (4.16) .

The procedure with A obtained from (4.165 is repeated until the
decrease In residual sum of squares (RSSA) is small. This

transformation gave the following results.

Value of A RSSp
1.000 1135373
~1.55076 253984
-0.611635 173165
~0.807527 159560
-0.817510 159531
-0.740777 161299
-0.816020 159531
-0.817573 159531
-0.817574 159531
-0.817574 159531

Thus the linear relationship is d2 = o + B/c with almost equal
variances. So xj = dj? and ty = l/cy.

. Using the data (d;2?, 1/ec) i = 1, 2, ..., 120, the same set of 9
parameters as in the previous example 1 are calculated by the same
procedure. The results are given in table 4.7

It is evident from the table 4.7 that the values of the
parameters obtained by bootstrapping are in good agreement with the
values calculated wusing our formula obtained by Taylor's series

approximations.

4.3.2. EFFECT OF NON-NORMALITY OF ERRORS
In the data of the above two examples errors are approximately
normal. To show the effect of the non—normality of errors, data with

shifted exponential errors 0x t(v-1) where v is standard exponential
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(e7V) were simulated by generating errors from the exponential
distribution using NAG.

C, D and MSE are calculated for both the examples by both the
methods i.e. our method and bootstrapping. The results are produced
in table 4,7 for example 1 and example 2.

Comparison of table mean squared errors indicates that the
corresponding wvalues are close by both the methods for all the 9
combinations of By and Cy although errors are strongly non-normal

This clearly indicates that our method works quite well whatever

is the distribution of errors.
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TABLE 4.1

71

(a) Upper and Lower tail probabilities for the exponential

(t>0) ie. with p =¢2 =1,

P(t) = e~t
p? upper tail prob.
0.10 0.049
0.20 0.047
0.40 0.041
0.50 0.038
0.60 0.035
0.70 0.032
0.80 0.029
0.90 0.027
0.99 0.025

62/02i|t

P(t)

(1/8)e /8

(1/a)e /4

(1/2)e~t/z
e—C
23—2?:
qe—4at

Be_at

lower

tall prob.

0.

000

.001
.007
011
.015
.018
.021
.023°

.025

scale of the exponential distributionm,

total
0.049
0.048
0.048
0.049
0.050
0.050
0.050
0.050

0.050

(b) The values of p? = $202/(B20? + 02x,¢) calculated by fixing the

values of regression parameters i.e 2/02% ¢ and changing the

0.67 1.0 2.33 4.0 9.0
0.977 .984 0.993 0.996 0.998
0.91 .94 0.97 0.98 0.99
0.72 .80 0.90 0.94 0.97
0.40 .50 0.70 0.80 0.90
0.14 .20 0.37 0.50 0.69
0.04 .05 0.13 0.20 0.36
0.01 .02 .04 0.06 0.12




TABLE 4.2
Upper (U) and Lower (L) tail probabilities for different scales
of exponential distribution for fixed wvalues of the parameters

of the experiment i.e. §2/0%g,¢.

B2/02%%, ¢ 0.67 1.0 2.33 4.0 9.0
P(t)
U 0.025 0.025 0.025 0.025 0.025
(1/8)e~t/s
L 0.025 0.025 0.025 0.025 0.025
U 0.026 0.026 0.026 0.025 0.025
(1/4)e"t/4
L 0.024 0.024 0.024 0.025 0.025
U 0.031 0.029 0.026 0.026 0.025
(1/2)e"t/2
L 0.019 0.021 0.024 0.024 0.025
U 0.041 0.038 0.032 0.029 0.026
-t
e
L 0.007 0.011 0.018 0.021 0.024
U 0.048 0.046 0.042 0.038 0.032
2e""2t :
L 0.003 0.001 0.006 0.011 0.017
U — —_— 0.048 0.046 0.042
4e—4t
| Fp——— — 0.003 0.001 0.006
|4 S— —_— — — 0.048
ae_at
L — —_— —_— _— 0.000

Missing wvalues in the table correspond to very low values

of p?2 < 0.10. (numerical integration not done).




TABLE 4.3

Lower and upper tail probabilities for P(t) as uniform

and triangular distributions.

(a) P(t) Uniform

.10
.20
.30
.40
.50
.60
.70
.80
.90

.99

(b) P(t) Triangular

.10
.20
.30
.40
.50
.60
.70
.80
.90

.99

P(t) = 1/(b - a)

lower tail

0.
0.

0.

0.
0.

0.

000
000

001

.002
.004
.007
.011
.015
.020

.024

000

000

000

.001
.003
.006
.010
014
.019

024

ra4t

P(t) = 4

th(1-t)

a

1A

upper tail

0.
0.

0.

0.

0 <t
1/2< t
0.
0.

0.

000
0C0

001

.002

.004

.007

.011

.015

.020

024

=

=

000

000

0060

.003

.006

.010

.014

.019

.024

1/2

.001

total

0.000

0.000

0.002

0.004

0.008

0.014

0.022

0,030

0.040

0.048

0.000

0.000

0.000

0.002

0.006

0.012

0.020

0.028

0.028

0.048
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TABLE 4.4
Values of p2 = B2¢2/(F202 + % 1t) by fixing the values of
B?/0?*z ¢ and changing the scale of the uniform and symmetrical

triangular distribution.

(a) P(t) Uniform

B%/0%z¢ 0.67 1.00  1.50 _2.33  4.00 9.00

02 = (b-a)2/12

1/12 0.05 0.08 0.11 0.16 0.25 0.40
a/12 0.18 0.29 0.33 0.43 0.59 0.75
18/12 0.47 0.57 0.67 0.76 0.84 0.92
as/12 0.67 0.75 0.82 0.87 0.92 0.96
sa/12 0.78 0.84 0.89 0.93 0.96 0.98
;44/12 0.89 0.92 0.95 0.97’7‘ 0.98 0.99

(b) P(t) Triangular

02 = (b-a)?/24

1/24 0.03 0.04 0.06 0.09 0.14 0.27
a/24 0.10 0.14 0.20 0.28 0.40 0.60
16/24 0.31 0.40 0.50 0.61 0.73 0.86
3/ 24 0.50 0.60 0.69 0.78 0.86 0.93
6a/24 0.64 0.73 0.80 0.86 0.91 0.96

144/24 0.80 0.86 0.90 0.93 0.96 0.98




TABLE 4.5
Probabilities (same for both tails) for different scales of
uniform and triangular distribution for fixed values of the

parameters of the regression experiment i.e §2/0%x,¢.

(a) P(t) Uniform

82/0%g,c 0.67._ 1.00 1.50  2.33  4.00 9,00

02 = (b-a)2/12

1/12 0.000 0.000 0.000 0.000 0.000 0.002
a/12 0.000 0.000 0,000 0.003 0.007 0,013
18/12 0,003 0.006 0.010 0.015 0.017 0.020
3s/12 0,001 0.013 0.016 0.018 0.021 0.023
64/12 0.014 0.017 0.020 0.021 0.023 0.024
14a4/12 0.020 0.021 0.022 0.023 0.024 0.024

(b) P(t) Triangular

0% = (b-a)2/24

1/24 0.000 0,000 0.000 0.000 0.000 0.000
/24 0.000  0.000 0,000 0.000 0.001 0.006
16/ 24 0.000  0.001L 0.003 0.006 0.011 0.017
s6/24 0.003  0.006 0.010 0.013 0.017 0.021
54/ 24 0.008  0.011 0.014 0.017 0.020 0.023

14a/24 0.014 -0,017 0.020 0.021 0.023 0.024




TABLE 4.6

Summary statistics for Fy, F9, F3 and F, based on a sample of

1000 simulated values of each with different P(t) and By = 4.0

Oy = 4.0, N =10, p2x = 0.7.

(a) P(t) Normal and Exponential

Normal Exponential
Fp Fy Fgq Fg Fq Fa Fq Fg
Mean -0.123 -0.154 -0.123 -0.155 -0.075 -0.101 -0.074 -0.,103
Med -0.039 -0.062 -~0.040 -0.062 -0.066 -0.083 -0.067 -0.083
s.D 1.149 1.179 1.156 1.171 1.097 1.136 1.103 1.124
MIN -8.363 -8.394 -8.366 -8.391 -4.675 -4.770 -4.690 4,754
MAX 5.789 5.716 5.820 5.686 4,320 4,302 4,320 4,301
(b) P(t) Uniform and Triangular
Uniform Triangular
Fq Fy F3 Fy Fqp Fo Fg Fy
Mean -0.066 -0.093 -0.066 -0.094 -0.091 -0.116 -0.091 -0.117
Med 0.032 0.012 0.032 0.012 -0.015 -0.015 -0.015 -0.015
§.D 1.114 1.146 1.121 1.138 1.161 1,189 1.167 1.182
MIN -5.979 -6,076 -5.,997 -6.057 -6.688 -6.733 -6.678 -6.725
MAX 3.488 3.470 3.488 3.470 5.913 5.845 5.939 5.820
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TABLE 4.7
MSE by our method and by bootstrapping for example 1 and

example 2

P(x|It) empirical P(x|t) exponential
MU VART MSE(our) MSE(poot) MSE (our) MSE (boot)
{a) Example 1
26.300 19.045 2.8896 2.8898 2.7792 2.7976
26.300 76.180 3.4363 3.3811 3.2903 3.2162
26.300 304.720 4.1999 4.,1635 4.0162 3.9943
35.028 19.045  2,9637 3.0658 2,8526 2.9737
35.028 76.180 3.5723 3.5963 3.4214 3.4512
35,028 304.720  4.3583 4,3908 4.1680 4,1326
43.756 19.045 3.2601 3.,5861 3.1463 3.4556
43,756 76.180  4.1164 4,2382 3.9461 4.,0568
43.756 304.720 4.9921 5.0707 4,7751 4.7425
{b) Example 2

0.3281 0.0291 0.0075 0.0075 0.0069 0.0069
0.3281 0.1164 0.0094 0.0093 0.0084 0.0084
0.3281 0.4658 0.0102 0.0102 0.0091 0.0091
0.6694 0.0291 0.0075 0.0076 0.0069 0.0066
0.6694 0.1164 0.0094 0.0094 0.0084 0.0084
0.6694 0.4658 0.0103 0.0103 0.0091 0.0092
1.0106 0.0291 0.0076 0.0077 0.0069 0.0071
1.0106 0.1164  0,0096 0.0097 0.0086 0.0087

1.0106 0.4658 0.0105 0.0105 0.0093 0.0093
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CHAPTER 5
MULTIVARTATE CALIBRATION

5.1. INTRODUCTION

Multivariate calibration is a topic of current interest and has
many practical applications. The aim is to make inferences about a
p—vector T from an observed q—vector X where p < q. The relationship
between the response vector X and vector of explanatory variables T

is determined from the data of the multivarilate regression experiment

(Xy,Ty), 1 =1, 2, ..., N, where X;y and Ty are gqx1 and pxl vectors
respectively. In this experiment the Ty's are fixed and Xji's are
( random,
f

Consider the multivariate linear regression model
X =T8% + ¢ e (5.1)
where X 1s a Nxq matrix of q vresponse variables for each of N
individuals. T 1is Nx (p+l) matrix whose first column consists of
1's, the other columns listing p explanatory variables measured on N
individuals. 3# is a (p+l)xq matrix of reéression parameters and e
is a matrix of Nxq random errors whose rows eyl are independent and
normally distributed with
Eey = 0
and
E(egeyT) =T
The maximum likelihood estimates of f# and I' are
gt = (1TT)—1 TIX
f = (XT - (1T -1 ThHXy/N .. (5.2)
The unbiaéed estimate of I' is
f = XT(1r - T(TIT) ' TDHX) /(N-p-1)  ...(5.3)
In the future situation a gxl1 vector X is observed and pxl vector

T is to be predicted using the multivariate regression experiment.
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Both the classical and inverse estimator have been studied by
Brown (1982) along with the extension to the Lwin and Maritz (1980)
approach, ]

If ﬁ# is partitioned r al 1, where 8 is gxp,

U et
the classical or maximum likelihood estimator for pxl vector T is

=T+ (BT i1 p)—18T f—1(x-X) ... (5.4)
and the inverse estimator is h

T =T+ Spy S7'xx (X - %) ... (5.5)
where Spy 1s pxq matrix of sums of products corrected for the mean
and Syy 1s gxq matrix of sums of corrected squares and products.

We give the derivation of the best linear predictor in section
5.3 for gemeral q and p = 1. It is interesting to note that the best
linear predictor in ehis situation also gives classical estimator for
‘02 = o and inverse estimator for [T t and 02 = Spp/(N-2) 1like the
simple linear calibration problem discussed in chapter 1. The proof
is given in appendix B.

For p = q = 1, the model (5.1) be;oméé the simple linear
regression model and the whole calibration situation and the

estimators become univariate estimators already discussed in section

1.2 and 1.7.

EXAMPLES

A very common practical example is to get the estimate of age
based on different body measurements in thé current situation
Wood (1982), Oman and Wax (1984). The relationship between X and T
is estimated from the data of the regression experiment (X,T) where X
is a q-vector of response variables and T is a p-vector of
explanatory variables, in this situation p is wusually 1, so T is 1x1l

i.e. (scalar).
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Another example is by Brown (1982), analysed as one of his
examples, on wheat quality data where p = 2 are the accurately
determined measurements on moisture and protein content and q = 4 are
the derived infrared reflectance measurements at different
wavelengths., He estimated the moisture and proteiﬁ content from the
observations on infrared reflectance measurements. We will discuss
this example in detail at the end of chapter 6. Some other examples

are given in Williams (1959).

5.2. REVIEW

Most of the existing literature originates from early 1980's and
is briefly described below.

Henschke (1980) constructed simultaneous confidence intervals for
the multivariate linear calibration of classical type. Two of the
three methods discussed are the extensions of methods first discussed
by Miller (1966) based on Bonferroni inequality and the union
intersection principle for univariate case. Third method developed
is only applicable to univariate case,

Brown (1982) was the first to discuss the multivariate linear
calibration problem in detail. He considered both the classical and
the Bayesian approaches along with the multivariate extension of Lwin
and Maritz (1980) and compared the results of the three approaches,

The results regarding the comparison of three approaches in table
3 of his paper are based on small samples of size five similar to
simulations of size five so are not reliable. Large samples are
neede& for comparison particularly for Lwin and Maritz (1980).

In classical type calibration the interval estimates sometimes
become empty or disjoint 1like the simple 1linear calibration
problem.

He distinguished the calibration as controlled or natural

depending upon T whether it is controlled or random respectively in
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the experiment,

He has suggested that 1t 1s ©beneficial to treat the
characteristics of the explanatory wvariable one at a time, forgetting
the existence of the other p-1 variables.

Brown and Sundberg (1987) looked into the controlled calibration
problem from the point of view of the profile likelihood function and

compared confidence 1intervals with Brown (1982). When an

inconsistency statistic is large in this method, there would be large

regions for T.

Wood (1982) proposed an alternative method to overcome the
difficulty of empty confidence intervals in the case of controlled
calibration problem. He partitioned the quadratic form in T,
obtained from the log-likelihood, into two parts, the first part
showing the consistency of X with the model and second part a
suitable expression for non-empty confidence intervals. The
distribution of second part is quite complex and may be approximated
by F distribution asymptotically, This method gave smaller
confidence intervals compared with Brown (15825;‘ His method can also
be applied to non-linear models that can be approximated by linear
models within approximate intervals.

Sjdstrdm et al. (1983) described the use of partial least squares
(PLS) in latent variables for multivariate calibration problems in
analytical cheniistry.  They compared this method with principal
component analysis combined with multiple regression and concluded
that PLS approach has some obvious advantages over the traditiomal
approach.

Oman énd Wax (1984) solved a specific problem by applying Brown's
classical approach (1982). They estimated the gestational age using
femur length ¥ and the biparietal diameter BPD individually and

combining F and BPD. They discussed model choice in detail and also
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tried quadratic regression making p = 2 instead of one.

Oman (1985a) also discussed the classical interval estimates
following Brown (1982) and suggested some changes.

Naes (1985a) compared the classical and Bayesian approach
( assuming the distribution of T only ) in multivariate Ilinear
calibration. He took the risk function as criterion of comparison,
He again (1985b, 86) considered calibration situations with error
;ovariance matrix having linear factor structure and covariance
adjustment respectively. He proposed new solution to this problem.
Naes and Martens (1984), Naes et al. (1986) and Martens and Naes
(1984) have described and clarified with examples the situations for
multivariate calibration and applied different techniques to
NIR ( near infrared ) instruments, -

Fujikoshi and Nishii (1984) derived an asymptotic expansion up to
order N~2 based on chi-squared percentiles for the distribution
function of the statistic which 1is quadratic in T, proposed bf Wood
(1982) for confidence intervals. They (1986) obtained the asymptotic
expression for bias and mean squared error of the classical estimator
by expanding the estimate by Taylor's series. They used this
information and the Akaike's criterion for selection of the best
subset and compared them by applying on the wheat quality data
analysed by Brown (1982). Nishii (1986) derived the cross validation
criterion and obtained the asymptotic properties of it and the two
criteria 6f Fujikoshi and Nishii (1986).

Spazzaférri (1985) wused the Shannon information to derive the
distributisn of T given data and X. He adopted the Bayesian approach
and solvéd a problem of choosing among k different calibration
experiments associated with k different instruments considering equal

and unequal costs for the instruments.
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Sundberg (1985) compared classical and inverse estimators on the
basis of mean squared error and derived the regions where inverse
estimator has smaller mean squared error. This is the generalization
of Berkson's (1969) work in the univariate case. Sundberg and Brown
(1985) investigated unique natural extensions of the traditional
solutions to estimation and prediction problem when there are more

variables than observations.

'5.3 DERIVATION OF BEST LINEAR PREDICTOR (p=1 and general g )

Very often p =1 is of interest in practical situations as we
have seen above in the first example in section 5.1. It has also
been suggested by Brown (1982) and Brown and Sundberg (1987) to
consider the one explanatory variable at a time forgetting the
existence of the other p-1 variables, |

Consider the multivariate normal linear regression model with

response g-vector X and an explanatory variable T

Xi =a+ Tyf + €4 i=1,2, ..., N.
gxl gxl gxl gxl
E(ey) = 0 )
and E(eiéiT) =T
but ¢4y are independent for i = 1, 2, .,.., N.

In the future situation (X,T), where g-vector X is observed and T
is to be predicted; the joint distribution P(x,t) is such that
P(xiT=t) is same as above i.e. N(a + TS, I").
P(t) is such that E(T) = ¢ and VAR(T) = 02 are known.
Future situation with p = 1 is described by the following
parameters,

@, B, r» p, o2
gx1l gxl gxq

These parameters define all the first and second order moments of

future P(x,t).
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E(X§) = EE(Xj1T) = E(aj + TBj)
-y + pby i=1,2, ..., q
E(T) = n
VAR(Xj) = VAR[E(X§1T) ] + E[VAR(X{IT) ]
=~ VAR(ey + B4T) + Ty

= Bj?o? + Ty;

COV(Xj X)) COV[E(Xj IT) ,E(Xx1T) ] + E[ COV(Xj X1 ]
- COV(aj+6jT, o tBRT) + l"j”k

- ﬁjﬁkd’z + ij

cov(X) = a288T + COV(X) is a gqxgq ...(5.6)
VAR(T) = o2
COV(Xy,T) = COV(ay+ByT+ey,T) ej 1s independent of T
- Bj o2 *

Conversely «, B, I' may be written in terms of the moments.
To derive the best linear predictor we minimize

E[T - (C + DTx) )2 . (5.7)
Expression (5.7) 1is minimized by

¢ = E(T) - DIE(X)

= p - DT(a + pB) ...(5.8)
For given D mean squared error is thus
VAR(T - DIX) = VAR(T) - 200v(T,DTX) + VAR(DTX)

= ¢2 - 2DTcov(T,X) + DIcov(X)D ...(5.9)
qx1 qxq

differentiating this quadratiec in D
0 = —-2C0V(T,X) + 2C0V(X)D
Thus
D = {COV(X)}~1 COV(T,X)
= o2{I" + o2pFT} 1 ... (5.10)
so best 1inea£ predictor ¢ + DIX is

¢ + DX = E(T) + DT[X - E(X) ]
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- u(1l - DIg) + DT(x - @)
= pu(l - p2) + (X - a)Te2{T+ ¢26pT}16...(5.11)

where p2 = DIg,

5.4. BIAS AND MEAN SQUARED ERROR

There are two situations
(1) o, B and I'" known
(2) o, B and I' unknown
‘(a) BIAS
(1) o, B and I" known
bias = E( T - (C + DIX)

= u - C - DIE(X)

p - C - Dl(a + Bp)
-0 (using value of € from (5.8))
(2) &, B and I' unknown

bias = E[T - (C + ﬁTX)]

= E[T - (C + Dyxy + Doxp 4 ... + DgXq]
- p - E@ - EGDE@E) + ...+ EQQEXY
- - E@) - ED) o + )

p— E@ - dT{a + g} - [ED - D]T{c + By}
~E@) -¢] - [ED - DJT{a + Bu} '

20 ...(5.12)

so the estimator is biased in this situation. We will discuss it
further in theorem 5.2 where it is proved that bias/¢ depends upon

the same invariants as the MSE/o2,

(b) MEAN SQUARED ERROR
(1) o, 8 and I" known

Substituting the value D from (5.10) in (5.9) we get
MSE = ¢2 — DIcov(T,X)

- o?[1 - 28T + UzﬁﬁT)"'ﬁ]
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- g2(1 - p2)
by definition of p2.
(2) o, B and I' unknown

MSE = E(T - ¢ - BTx)2

- EE[(T - ¢ - BTx)218,D)
E[(T - ¢ - ﬁTX)zlé,ﬁ] is quadratic in G, D and is minimised by ¢ =¢C
and D = D and its minimum is o2(1 - p2),
Thus . -

o . c-cT ¢ -c
E[(T - & - DTx)218:D] ~ [ ] M [ ] + 02(1l - p?)

B-p b -p

where M is a (q+l)x(q+l) symmetric matrix

1 EX;... EXq
EX{... EX1Xg
symmetric’
2
EXq
Now
MSE = ¢g2(1 - p2) + E trace MN
where
N = [S B C][& -C pT - pT ]
D -D
Finally
MSE = E(C - G)2+ 2(EX))E(C ~ ¢)(Dy - Dy)+. . . +2(EXQ)E(E ~ C)(ﬁq_ Dg)
+ EQp2)EBy - pp) 2+ Lo+ 2(ERxED-D1) (By - D)
+ .
N +E(Xq)E(Bg - Dg)*
+02( 1 - p2) ... (5.13)
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THEOREM 5.1. MSE/c? DEPENDS ONLY UPON N, By, Cy, e and q when p=-1

It would be proved in five steps.
STEP 1:
MSE/c? depends upon
(1) the unconditional moments u, o2, EX, COV(X), fo?2

and

(ii) the parameters of the distribution of (évﬁ).

PROOF
Note that p? is merely a function of (i) so MSE/¢? depends only
on
(L p, 02, a, B, T
and
(ii) the distribution of a, §, [
(Anderson (1984) theorem 8.2.2)
so MSE/¢? depends only on
p, 02, a, B, I'; £, Spp, N.
STEP 2: -
MSE/¢? not changed by
.(i) Changes of origin/scale of T
(1i) Changes of origin of X
(iii) X - HX where R is non-singular,
These may be proved as in step 2 of theorem 5.2,
STEP 3:

MSE/c? depends only on

(@), N, p, (€~ w)/(S7r/(N - 2))%, (N - 2)02/Spp; €, Str, 0,

g, I.
PROOF

This follows at once from step 1. Note that (q), N, p,
(EFu)/(STT/(N - 2% and (N - 2)02/Syr are invariants for




transformation (1), (ii) and (1ii) of step 2.
STEP 4:

Consider two calibration situations or systems A and B which have
the same values of q, N, p, (BN)f and Cy.
By transformation of T, X of types mentioned in step 2, system A
becomes system A" with
t=0, Spy =N-2, a=0, '=1

0 : ) T

g8 - ., 0, ., 0 ... (5.14)
[(8-2)02/Spp]2(1- p2)

Possibility of this transformation is shown in step 5.
By transformation of similar type, system B becomes system B with
t=0, Spp=~N-2, a=0, =1
and § is same as above in relation (5.14).

By step 3, A" and B’ agree iIn all quantities on which MSE/¢?2

depends.
By step 2,
(MSE/02)p = (MSE/c2)x -
and
(MSE/az)g - (MSE/0?)g
thus

(MSE/c?)y = (MSE/o?)p.
In other words MSE/¢2? depends only on q, N, p, (By), Cy.
STEP 5:

To show the possibility of A » A", by (i) ,(ii) and/or (iii) of
step 2, where A" has t = 0, Sppr = N-2, @ = 0, ' = I and B is as in
(5.14) in step 4, |

Firstly t = 0 and Spr = N-2 are ensured by choice of origin/scale
of T. These values will not be disturbed by transformations of X,

which are about to be described.
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After a linear transformation X - HX has achieved simultaneously
I' = I and the required B, a change of origin in X will ensure & = 0,

without disturbing I' or .

The transformation X = HX can be done in the following stages.

(a) Linearly independent combinations Yy, Y3, ..., Yq are chosen
with zero regression on T; i.e. Yj - ijX, where ijﬁ =0, (j -2,3,

vy Q).

(b) Yp = nH1§{ is chosen to be uncorrelated ( conditional on T )
with Yg, ..., Yg. Thus m,T I'my = 0 (g =2,3, ..., Q.

(¢) Write Y = (¥, Y3, ...,Y)T and cov(¥iT) = GGT where G is
(g-1)x(gq—-1) and non-singular.

Now COV(G'YIT) = G™166TG¢™T = 1.
The components of Z = G™'Y are uncorrelated (conditional on T) with
Y,, by (b). Change of scale of Y, is all that is needed to achieve
I'=I. Z has zero regression on T by (a).

(d) Consider

scaled version of Y,
HX = |. . . . A

A

If its regression vector is B*, 0, 0, ..., OOT and its conditional

covariance matrix is I then the identity

p?2 = 02BT(I + o2p8T)™1 g

shows that
a28%2 0 ... 01177 (8"
p2 = o2(g%, 0, 0, ..., 0){I+[0 0 o]} [o ]
0 ‘0 "0 0
*
- o p .. (5.15)
1 + og2p3%2
thus
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B¥2 - P ... (5.16)
o2(1 - p2)

Since system A" has Spp = N-2, we replace 02 by (N-2)¢2/Spr.
Thus

6*2 - -02
[(82)0%/S7p](L - p?)

- p? ) .. (5.17)
Cn(L - p2)
THEOREM 5.2. ¢~1BIAS DEPENDS ONLY ON g, N, p, By and Cy
PROOF':
From equation (5.12) )
Bias/o = —[[EC - ¢] - [ED -~ DT {a + Bu} Vo ...(5.18)

Following proof that bias/c depends upon q, N, p, By, Cy follows

closely similar proof for MSE/¢2?. Only step 2 is slightly different,

STEP 1:

Same as above in theorem 5.1,
STEP 2:
Bias/o is not changed by
(1) changes of origin/scale in T;
(11) changes of origin in X;
(iii) X - BHX, where H is non-singular.
PROOF':
D=oc2 {I+ o287} g
| G = p - Dl + pB)
(1) Change of origin/scale in T.
Consider &’, where T = £ + g T

o + BT = o + B'T'
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o+ Bf + BT =o'+ BT
thus 8= Bg and o= a + Bf
also p'= E(T") = E[(T-£)/g] = (p~£)/g
0”2 = VAR(T ) = VAR[(T-£f)/g] = 02/g?
I’ unchanged, i.e. ' =T,
Results above‘show of unchanged, so {I' + 0266T} unchanged and
D = U'z{r'+ &23'6'T}—1ﬁ’

= oD/o

= D/g
similarly E(D") = E(D)/g so [E(D")~ D] = [E®) - DYs

Now @  + B p” = a + B + gf[ (u-£)/8]
= o + puf
so second term in bias/¢, namely —[E(ﬁ)—D]T{a + Bu}/c is invariant.
Now
¢m - DT (a"+ pf")

= [w-D)/8] - [DT/g][a + uB) = (C - £)/g
similarly ¢" = (& - £)/g and E(C") = [E() - £)/s
so first term in bias/c, namely —[E& ~ C)/o"1is .also invariant.

Thus bilas/¢ invariant for changes of origin or scale in T, as
required for (1i).
(ii)
X =m+ X

i, o unchanged,

¢+ BT = EQXIT) =m + o + BT

so
¢ =m+ o and ﬁ'n B
- r; D = D; D ﬁ;
C'=p - DT(a"+ ug") = ¢ —~ DIm
similarly
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A

¢’=C - bBTm and EG"= EC - E(DT) m
thus bias becomes

—[Eﬁ —EDBTm - (C - DTm) ] - [Eﬁ ~D{m + « + B}

- —[Eﬁ -Cc] - [Eﬁ - DT {@ + Bu}, i.e. not changed.
so bias/o is also invariant,

Note that EC - C is not invariant.
(iii)
X" = HX where_H is gxq non-singular
i, ¢ unchanged.
o + 6'T = E[X'|T] = H(a + BT)

80 o = Ho and ﬁ' = HE

" = cov(x IT) = COV(HXIT) = H I" HT

thus .
{r"+ 628”87} = HT-1{I" + o2ppT}~" H
and
D= HI-1 D
Similarly
B = uT-1 B, ED = HT-1 ED, oL
and

[ED"- D" ] = HT-1 [ED - D]
so second term in bias becomes
[Eﬁ -DJT H~1 H{o + By}, i.e. unchanged.
C= p -~ DT(a + #8) is also unchanged so &, EG, (Ea — Q) and first
term in bias/¢ are seen successively to be unchanged.
Thus bias/¢ 1s invariant for non-singular transformations ¥'= Hx
as required for (iii).
STEPS 3, 4 and 5:
Same as in theorem 5.1,

All the above steps complete the proof.




5.5, SIMUIATION STUDY (p=1; general
We have proved in theorem 5.1 that MSE/¢?2 depends only on the

same four invariants (as for the univariate case) and on q for any
value of q and is also invariant under changes of origin/scale of T
and X. So it is enough to simulate the canonical system with t = 0,
Sgr = N-2, a =0, =1, g~ (6% 0,0, ..., 0)F where

B* ~ p/[Cx(L - p?) ]} .. (5.19)

p= (Bt and o2 = gy
In the canonical form we have

EX] = B*u

, EXy = EX3 = ,..., = EXq = 0

q
EX 2= (%252 + 1 + (B*p)?

- g*¥2(g? + n?) + 1 -

EX92m EXq2 =, o Equ =1
EX X9 = EX1X3 =~ , ..., EXq_lxq = 0,

Substituting above terms in the expression (5.13) we have

MSE = g2(1- p?)+E(C-C)2+28%uE(C~C) (D1-D1)+{B*2(02+p2)+1}E(Dy-D1) ?

+ (q ~1)E(Dy - Dy)?2 . .. .(5.20)
Last term by symmetry of Xp, X3 ..., Xq-
T
D - [___fiff_. 0, ..., 0] L. (5.21)
1 + g2@+*2
(i.e. Dy, D3, ..., Dg = 0)

C=p-Dl(a+ )

20%2
1 + g2p*2
-_F .. (5.22)
1 + g2@3*2

and the best linear predictor is

C + DIx = ¢ + Dyxy

p o+ 02p¥xy
-ET:f—;;E;;— ...(5.23)
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To evaluate (5.20) we require to simulate é, D and thus estimate
VAR(C), VAR(Dy), Var(Dy), cov(C,by), EC - ¢, EDy - Dy, EDy and
E(C - C)2 = VAR(C) + (biasC)? ete.
These can be simulated by simulating &, ﬁ, f* from their
distributions. |
Anderson ( 1984), theorem 8.2.2. states that if

X, is N (B ty, T) a= 1,2, ..., N
qx1l qxp px1l qxq

ﬁ =p + 1 Wheremp is the number of

explanatory wvariables.

1
ty - | Sra
tpa.
then )
B ois N (B, ...)
qxp
COV(ith and j*R rows of B) 1s vjj A™7  ...(5.24)
where

’A’- p tataT and r -*{Vij}'
PXp a -

N ﬁMLE is W(T, N—ﬁ), independent of ﬁ.

In linear calibration when p = 1

o, 8, 1
Xa is N &, {.32 ta , Fx a=1, 2,...,N
gx1l . . 9
oq  fq
and in the canonical form
Bty
x, is 8 [ % |, 1] a=4, 2 ..., N
0
1 oty N 0 _
Thus I' = I and A = Z [ } - [ ] because £t = 0,
t, t2, 0 S
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&i' ai (L1 =1, 2, ..., q) are independent by (5.24) and also by
-~ A -1
(5.24) covariance matrix of (oy,By) is A7 [N E ]
0 STT1
&y is N (0, 1/N) 1i=1,2, ..., q
By is N (8%, 1/(x-2))
By 1s N (0, 1/(N-2)) 1=2, ..., q -

Also independent
N yg is W (I, N-2) -
and unbiased I is (N-2)"1V W (I, N-2),
Bartlett's decomposition of a Wishart matrix Anderson, (1984)
corollary 7.2.1, was used to simulate f.
&ir 31, ' were simulated 10000 times, and a, B calculated from
the following formulae. -

C=p - DT + up)

(=34

- g2 {ﬁ + o2BRTy 1B

Natural estimates of VAR(&), VAR(ﬁl), VAR(ﬁz), oov<6,ﬁl), EG - C,
Eﬁl - D7 and Eﬁz were obtained from these simulations.

Now MSE/02? can be calculated using (5.50)‘for any set of wvalues
of the inﬁariants N, By, Cy, p? and q.

Q is defined as in relation (3.11)

MSE/o2 = (1 - p2)(1 + Qg)
so
Qg = MSE/[03(1 - p2)] - 1
MSE/0? is invariant so would be Q.

Qg is calculated for the 81 combinations of the set of invariants
made in section 3.3 by the procedure described above for q = 1, 2, 3
4, 8 and are given in table 7.2 where 52 should be read as p2. The
simulated values for q = 1 quite agreed with the simulated values of
section 3.3, The simulated values of q = 2, 3, 4 and 8 are further

discussed in the following chapter.

L____;AAAA? - B -
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CHAPTER 6
APPROXIMATIONS AND INTERVAL ESTIMATES

Approximation to Qg(N-2) when q > 1 and p = 1 is obtained using
simulated values and then this approximation is used to define an
interval for T. Confidence probabilities are studied in section 6.5
using this approximation.

The procedure to obtain the approximation is described below.

6.1, APPROXIMATING Q(N-2) BASED ON REGRESSiNG SIMULATED VALUES
For any particular value of g, Qg is a function of N, p2, By, Cy
i.e. Qg(N,p?,By,CN). An extensive study has already been made in
chapter 3 for simple linear calibration p¥oblem (p=q=1) considering
simulated values Qg and approximated values Qp, obtained with the
help of Taylor's series.
Using Taylor's series we got a mathematical expression Qa when
q-=1,
Qa = p?2/N + 1/(N-2)[2p%2(1- p2?) + (1~ ?e?)ch +p2By]...(6.1)
This expression suggests following linear model for q > 1
Qa1 = 1/(N-2)[b, + b,p2 + b,p4 + (b, + b2 + bgpd) Cy
+ (b + b,p2 + byp4) By] ... (6.2)
Simulated values Qg corresponding to any set of wvalues of the
invariants for any q > 1 can be generated by the procedure described
in section 5.5 and Qa1 in equation (6.2) can be replaced by those
simulated wvalues Qg. Thus the following quadratic multiple
regression model can be fitted. )
Qs(N-2) = by + b,p? + byp + (by + byp? + bop4)Cy
+ (bg + b,p2 + bp4)By + error ...(6.3)
Where the regression coefficients by's (i = 0, 1, 2, ..., 8) may

depend on N and q.

97




Here to increase the scope of study, sample space for the
invariants p?, By and Cy is increased and now five values of each
instead of three values (as in section 3.3) are considered i.e. now
p? = 0.3, 0.5, 0.7, 0.8, 0.9; By =0.0, 1.0, 2.0, 3.0, 4.0; Cy =
0.25, 0.50, 1.0, 2.0, 4,0, The values of N are the same as before
i.e. N = 10, 30, 50.

125 values of Qgq(N-2) corresponding to 125 (5x5x53) combinations
of p?, By, Cy are calculated for each N = 10, 30, 50, making a total
of 375 instead of 81 in the previous simulations.

Linear model (6.3) is fitted by ordinary least squares for q = 1,
2, 3, 4 and 8 using 125 values of Qg for N = 10, 30; 50 separately.
Estimates of partial regression coefficients along with other
relevant statistics are given in table 6;1. R? is coefficient of
determination, § is such that (125-9)S? = residual sum of squares, q
is the number of response variables in the multivariate regression
experiment. |

Table 6.2 summarizes Qg(N-2), Qu(N-2) and Qr(N-2) where Qg
represents fitted values. S

First we discuss the case of simple linear calibrationm.

6.2, RESULTS WHEN g = 1

Table 6.1(a) indicates that the values of R? are greater than 98%
and S decreases with the increase in N; § = 0.2320 for N = 10;
S = 0.0935 for N = 30; S = 0,0580 for N = 50. This along with graphs
Qg(N-2) versus Qp(N-2) figure 6.1 shows that model fits to the
situation very well. The Qu(N-2) values calculated from relation
(6.1) are also plotted against Qg(N-2) in figure 6.1 to see how the
approximation works. 95% interval estimates constructed for
regression parameters by's (1 = 0, 1, ..., 8) of expression (6.3)
overlap for N = 30, 50 and also most of the times for N = 10. The

approximation (6.3) suggested that the bj's would depend only
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slightly on N,
To compare mathematical expression (6.1) and multiple linear

regression model (6.3), we define two quantities

Sa = E[Qs(N-2) - Qa(N-2) ]2

L B Qe(2) - qu-2) ]
125

-and

Sg = E[Qs(N-2) - Qp(N-2) ]2

- L EQs(2) - qr(¥-2) J2
125-9

~

- g2
Qa comes from mathematical approximation obtained by Taylor's series
and Qg is from regression model where coefficients of p2, p4, etc. in
Qr are functioms of Q,, Q,, ...., Qy25-

Sp and Sp for each N are given as under

PR

N 10 30 50
Sp 0.054 0.009 0.0034
Sp 0.445 0.045 0.0150
Sa/Sr 8.2 5.0 4.0

These results along with the graphs of Qg(N-2) versus Qp(N-2) figure

6.1 indicate that the approximations are getting better for large N.
It looks reasonable to pool the results of three regressions i.e.

N = 10, 30, 50 because there is a reason to think that three

functions are the same ( mathematical approximation ).

COMBINATION OF ESTIMATES

Let the linear model (6.3) be represented by
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E(X) = A¢

where A, ., 15 a matrix of p2, By, Oy and 6,4, is a parameter vector

also
COV(X) = 02I
then
§ = (ATa)—1aTx
and COV() = o2(ATaA)—
If we assume Xy (M =1, 2, ..., 125) is N(A#, 02I) then

Log 1lik = Const — 125 logo - 1/(202)[X - A0 |T[X - A6]
= Const - 125 logo - 1/(202)[ (6-6)TATA(9-8)+RsSS ]
We have three independent sets of data for N = 10, 30, 50 with 125
observations in each. Let @,0, 330, 550, be the estimates for N =10,
30, 50 with erroxr variances 02,0, 02,44, 0?s, respectively.

Combined log lik = const-125 ¥ logoi-1/2 T (1/c2y)[ 6-8y JTATA] -0y ]
(ATA is same each time because values of A are determined
by p?, By, Cy and is not diagonal; RSSy absorbed in const.)

- const-125%1ogoy~1/2(0-0)T(1/02, (+1/02,,+1/02 ) (ATA) (8-8)
for appropriate choice of § and const. -
By comparing linear terms in 6
-28TKe =- 2[1/02, 6T,  (ATA)6+1/02, 8T, (ATA)6+1/02, 8T, (ATAYG ]
where
K= [1/02,+ L/o2,+1/02, |(ATA)
coefficlent vector K§ = I 1/02(ATA) By
b = szﬁN
COV(§) = T wy2COV(By)

where

1
2
—_ o2y
1 + 1 + 1
02, 024 0%50

and ¥ wy = 1
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Using the above theory combined estimates for N = 10, 30, 50 are

as follows

w.coefficient w.5.D. Interval Estimate  Coeffi. (bj) in Q

-0.3001 0.0813 -0.4595  -0.1407 0

4.3100 0.2991 3.7238 4.8962 2.80%
-3.2438 0.2483 -3.7304 -2,7572 ~2.00

1.5092 0.0288 1.4528 1.5656 1.00
-5.5310 0.1058 -5.7384  -5.3235 —-4,00

5.1647 0.0878 4.,9925 5.3370 4.00
-0.0150 0.0278 -0.0694 0.0394 0.00

0.8633 0.1021 0.6631 1.0634 1.00

0.2049 0.0847 0.0389 -0.3710 0.00

% This value is for N = 10 and the values for any other N can be
calculated by the relation 2+(N-2)/N.

In the above results only some of the bj's corresponding to Qu(N-2)

i.e. coefficients derived from equation ( 6.1) lie in the pooled

interval from regression. Presumably Qg 11s a better approximation

than QA.

6.3, RESULTS WHEN g = 2, 3, 4, 8

Linear model (6.3) is fitted to 125 values each of Qg(N-2) for
q=2, 3, 4, 8 and N = 10, 30, 50. Results for q= 2, 3, 4 are given
in table 6.1(a) and results for q = 8 are gi?én.in table 6.1(b). 1t
1ls clear from the table that R2 is always very high i.e. for q = 2 it
is 99.2% for N = 10, 99.8% for N = 30 and 99.9% for N = 50. S is
very small i.e. for q = 2 it 1s 0.1641 for N = 10 ; 0.0738 for N = 30
and 0.0564 for N = 50, Similarly for q = 3, &, For g = 8 R?2 is
still high but S has increased.

Parameters for q = 8 and N = 10 are not reported here because of
high estimation error as 1in multivariate regression experiments
N > ptq+l is required to avoid singularity of the error covariance
matrix ﬁ, Sundberg and Brown (1985).

The above statistics along with the graphs of Qg(N-2) versus

Qr(N-2), given in figure 6.2 indicate that linear model (6.3) fits
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reasonably well.
The nature of the fitted model is shown by contours of Qp(N-2)

discussed in next section 6.4.

6.4. CONTOUR PIOTS

Contour plots are drawn for q = 1, 2, 3, 4 and 8 to see the
behaviour of Qr(N-2). For each q they are of the following three
types at N = 10, 30, 50.

(a) Qr(N-2) against Gy and By, fixiﬂg eZ.

(b) Qr(N-2) against p? and Gy, fixing BN-

(¢) Qp(N-2) against p2 and By, fixing Cy.
All these contours are given from figure 6.3 to figure 6.62, There
are four contours in each figure for the same value of N and either
By or Oy or~p2 but for different q = 1, 2; 3, 4. These are fifteen
in number of each type (a), (b), (¢).

Contour key indicates different heights and is same for q = 1 and
q=2; and g = 3 and q = 4 is the same.

p2 is denoted by A in the contours. i

In figures 6.3 to 6.47, contour key starts at height 1.00 and
goes up in steps of 0.75 for q = 1, 2 whereas for q = 3, 4; it starts
at height 2,50 and goes up in steps of 0.75.

In figures 6.48 to 6.62 where q = 8, contour height starts at
7.00 and goes up in steps of 0.75.

The above types are now discussed.

(a)

A look on these contours indicates that Q(N-2) is linear in Cy
and By. At low values of p2? there is more distance between the
contours for q = 1 as compared with q = 2, 3 and 4 which means that

more By and Cy are required to go towards higher values of Q(N-2).




For p2 = 0.5; @ = 1; N = 50, contours are almost wvertical
indicating that all the increase is because of By. This connects
with the fact that the mathematical approximation Qa(N-2) for q = 1
has zero coefficients of Oy, when p2 = 0.5, Contours with p2 > 0.7
are becoming more symmetrical.

One thing 1s quite clear that with the increase in g, height of

the contours have increased.

(b)

To describe this type some cases are picked and discussed. Let
us take the case with N = 10; By = 4; q = 3. For p? fixed and
greater than 0.7, there is steady increase in Q(N-2) with Cy. p?2
fixed and less than 0.6 there is a quadratic increase with Cy.

For N = 10; By = 4; ¢ = 1. p? fixed, Q(N-2) increases with Cy.
Cy fixed and greater than 1.5, Q(N-2) decreases with p2, reaches a
minimum, then increases as p? increases.

For N = 10; By = 4; q = 4. Q(N-2) is not an increasing function
of Cy. The same pattern is found when N = 10; By=1; q - 4. For
small N this behaviour may be because of estimation error or because
of terms omitted from the model.

For N = 10; By = 0.0; q = 1, there is a plateau that indicates a
slowly inereasing function.

It is clear that Q(N-2) has increased with the increase in q.

(e)

Some intéresting cases are discussed for this type i.e. Q(N-2)
against p? afnd By, fixing values of Oy, N, q. For N = 50; Cy = 0.25;
q=1, Q(N;2) increases with increase in p2?, Increase is slow at low
levels of By but with increase in By and p2?, the lines are becoming

straight which mean lihear relationship.
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For N = 10; Cy = 4; q = 1. p2? fixed, Q(N-2) increases slowly
with the increase in By. By fixed Q(N-2) decreases with p2, reaches
its minimum, then increases as p? increases.

Overall the shape of contours changes with change in N and q and
Q(N-2) increases with increase in q.

For q = 8, cases only with N = 30, 50 are considered. Contours
for N = 10 and q = 8 are not drawn because these are not reliable for
the same reason as is given in section 6.3 for not reporting the
results of parameter estimates.

Following observations have been made from the contours drawn for
q =8 and N = 30, 50.

(i) Contours Q(N-2) have linear relationshif i.e. for type (a)
above and are almost same but start from hiéher heights for N = 30 as
compared with N = 50,

(11) Contours of Q(N-2) versus p2 and Cy look to depend more on
Cy than p2? and contours of Q(N-2) versus p? and By look linear for

Cn<1.

Overall the shape of the contours have chaﬁgéd with N and q.

The folloﬁing message 1s obtained from the contours.

(1) Q(N-2) is an increasing function of q when p2?2, By, Cy, N are
fixed,

(11) Q(N-2) is greater for small values of N as compared with
large values of N i.e., Q(N-2) is greater for N = 10 than for N = 30

and 50 ( p2, By, Cy, q fixed ).
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6.5. INTERVAL ESTIMATES

We have discussed the interval estimates for q = 1 in section 4.2
where Qa is used to obtain the tail probabilities. It is concluded
there that the tail probabilities do not change very much with p2? and
the pi§0t31 function Fy gave better results compared with Fg9, F3 and
Fz. So here only Fy based on p? = 0.7 and 27 (3x3x3) combinations of
the invariants By, Cy and N with the same values is simulated. Qp is
used instead of Qa in the calculations” of F; and the expression
(4.12) becomes as under

MSEyeg = (1- p2)o?[1 + Q] oo (6.4)

where QR comes from the equation (6.2) substituting p? = 62

and
p2 = BTD. '
Fy is defined as
Fp - [T - (ﬁ+ﬁTX)]/(M§Ereg)% ...(6.5)
The EFy and E(F{?) are
EFy ~ E[T - (E+DTX) I/ (MSE p) ¥

1

~[ (EC-¢) ~ (ED-D)T{a + Bu} }/ (MSErep)?

E(F12) = E[(T - (C+DTx) J2/E(M8Eyep)
= MSE/E(MSErq,)
~ 1

It follows from Theorem 5.1 and 5.2 that at least approximately both
E(F1) and VAR(F1) depend only on the invariants q, N, p, By and Cy.
To simulate the upper tall probability P(¥F1>1.96) and lower tail
probability P(Fj< -1.96), it is required to obtain pivotal function
F1. To this end following are required to be simulated.
(i) T, X, which are simulated using canonical form as
in section 5.5.

(ii) &, B, f are generated from the distribution theory
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as is described in section 5.5 to get the estimates
of C» D and 52.
Two cases are studied for T;
(a) T is generated from normal distyibution with mean p
and variance ¢?2-

(b) T is genérated from exponential distribution with p

and 02?2 as location and scale parameters.
.where
g and 02 are calculated from the values of By and Gy.
B* is calculated by the relation (5.19) and X's are generated
from the standardized normal distribution. QR comes from the linear

model (6.3) with regression coefficients bjy's (i =0, 1, ..., 8) as

are given in table 6.1(a) for q = 2, 3, and 4. For the cases N = 10,
30, 50; the corresponding bj's of the table 6.1(a) were used at
first. Then the cases N = 30, 50 were repeated with bji's
corresponding to N = 10, and slightly lower tail probabilities were
usually found. So these latter bj's were finally chosen for q = 2, 3
and 4. The coefficients used for q = 1 are tﬁéwweighted coefficients
given at the end of section 6.2 under the combination of estimates,

Three extreme cases are picked to see the distribution of Fq. |
Normal probability plots in figure 6.63 and summary statistics in
table 6.3 are given for 1000 values of Fi corresponding to normal and
exponential distributions of T for q = 1, 2, 3, 4 and three
combinations of the invariants.

It is clear from the table 6.3 that mean 1is approximately zero

for the case (i) and (iii) where By = 4.0, Cy = 0.25 and By = 0.0,

Cy = 4.0 respectively for q = 1, 2, 3 and 4. In case (ii) with
By = 4.0, Cy = 4.0; means have increasing tendency with increasing

value of q.
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In all the cases standard deviation has increased for the higher
values of q.

The tail probabilities for P(t) to be normal and exponential are
given in table 6.4 for N = 10, 30, 50 and q = 1, 2, 3 and 4,

For N = 10, the error probabilities are high and have increasing
trend with the increasing q. For q = 1, the sum of lower and upper
tail probabilities is around 0.085 for P(t) to be normal and 0.080
for P(t) to be exponential., This agrees with the results already
obtained for ¢ = 1 in section 4.2 case (b).

It should be made clear that using the procedure of canonical
form as at the end of chapter 5, the upper and lower tail
probabilities were same for By = 0O or t = p as with the procedure of
chapter 4 casé (b) but when t # p the values of the upper and lower
tail probabilities exchanged., This happened because in the procedure
of chapter 4 case (b) u < t always whereas it is opposite here i.e.
t < p. The change of sign of T exchanges the numerical values of the
lower and upper tail probabilities and this is discussed as under.

Lower error prob. = P(F1<—1.9é) -
Upper error prob. = P(Fy>+1.96)
Let T = - T
T =-T
St r = Str
E(XIT) =+ T =a - T = + BT
¢ = a, g = - 8
o2T = 03T
p=-p i 02=o0?

N, p2, By, Cy are unchanged so MSE unchanged

¢ +DX@®)=-T=-¢~-0Dx

C =-2C




los
D" =--D
Lower error prob., = P[F1’ < -1.96]

= P[T 7= (E7+D°X) < -1.96]
(MSE) %

P[- 1;__(9_11%_19 > 1.96]
(MSE)
P[T - (€ +br) > 1.96]
(MSE)

P[Fp > 1.96] = wupper error prob.

i

For N = 30 and 50, sum of error probabilities is very close and
is always between 0.05 and 0.06. ‘

It is observed from the table that the lower and the upper tail
probabilities are near to each other for By = 0.0 and get apart for

higher values of By.

6.6. EXAMPLE: WHEAT QUALITY DATA

The wheat quality data analysed by Brown (1982) consists of 21
samples of response variables &4-vector X and the 2-vector T of
explanatory variables. Xy, X9, X3 and X4 are the infrared
reflectaﬁce measurements and Tp, Ty denotéAthe percentage of water
and protein contents.

We are discussing only one explanatory variable at a time and
that we select the protein percentage. The set of first 16
observations on X3, X9, X3, X4 and T is used as the regression
experiment and the next set of 5 to test the predicted values. Thus
p~ t and ¢2 = Spp/15. Hence approximately, By = 0.0 and Cy = 1.0.

To predict T, different subsets of the response variables can be
used but we confine ourselves to the following subsets.

(1) Xy only

(i1) Xp and X
(iii) Xy, Xo and Xj3

(iv) Xj, X9, X3 and X,.




The values of ¢ and D are calculated for the above subsets, from
the values of &, 3, {* obtained from the first 16 observations and y
02 from By = 0.0 and Gy = 1.0. The point and interval estimates for
protein percentage values T, ,, 'f,a, T,qs Ty, T,, are calculated and
are reported in table 6.5 along with the data.

It is clAear from the table 6.5 that the wvalues to be predicted
are always in the 95% interval for all the four subsets of response
variables. The interval estimate is -getting shorter with the
increase in q until q =~ 3 and it is almost  the .same for q = 3 and

q==4.
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TABLE 6.1(a).

R2

10
30
50

10
30
50

10
30
50

10
30
50

10
30
50

10
30
50

10
30
50

10
30
50

10
30
50

10
30
50

10
30
50

-0,
-0.
-0,

-4,
-3,
-3,

q-

5422 (0.
4081 (0.
2441 (0.

.4520( .
.6982(o.
.0942(o.

5930¢(1.
5677 (o.
0357(o.

.6681(o.
.6608(0.
4414 (o,

.4357(o.
L9741 (o,
.3675(o0.

.1623 (0.
.4846(0.
.0425(0.

.2302(o.
.0064(o.
.0337(o.

.1597(e.
.8041 (0.
.9501(o.

.2038(o.
.2833 (0.
L1124 (0.

0.2320
0.0935
0.0580

98.0%
99.6%
99.8%

1

3915)
1578)
0978)

4400)
5804)
3587)

1350)
4818)
2988)

1388)
0559)
0346)

5096)
2054)
1273)

4230)
1705)
1057)

1336)
0539)
0334)

4815)
1981)
1228)

4080)
1645)
1019)

NN O

-1

e

[=RoN e

q=2

.2306(o0.
.1111(e.
.1838(o.

015 (1.
.9255(o.
.9598(q.

.0116(0.
.8512(o.
.8091(o.

.9969 (0.
.1445 (o,
.3670(o0.

.4705(o.
-5,
-5,

2029¢(o.
9353 (o.

.6352(o.
.0896(o.
.6463 (0.

.6018(o.
.2276(o0.
.1329(o.

.5000(0.
.3100(o.
.5582(o.

.2048(o,
.5443(o.
.3982¢(o.

0.1641
0.0738
0.0564

99.2%
99.8%
99.9%

2768)
1248)
4952)

0180)
4581)
3501)

8452)
3802)
2906)

0980)
0441)
0337)

3604)
1621)
1238)

2892)
1348)
10628)

0945)
0425)
0325)

3476)
1563)
1195)

2885)
1298)
0992)

o

-0

-2

w M O

|
W o

o O

-0.
-0,

-0

SO

q=3

.8386(o0.
.3101(o.
.0243(o.

.9560(1.
.2021(o.
.6386(o0.

4754 (0.
.2225(o0.
.4855(o.

.1286(o0.
.6063(o0.
.0648(o.

.6764(0.
.5158¢(o.
.9277(o.

4441 (0.
.8833(e.
.8767 (e

.0525(s.
A4776(0.
.3067(o.

6582 (o.
1125(o.

.2529(o.

.0786(o.
.7398(o.
.5442 (0.

0.1913
0.1122
0.0737

99.3%
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3229)
1894)
1244)

1870)
§964)
4574)

9856)
5781)
3797)

1143)
06790)
0440)

4202)
2465)
1619)

3488)
2046)
1344)

1102)
0646)
0425)

4053)
2377)
1561)

3364)
1973)
1208)

oo

-0.
-0.
-0.

(e No N

Also S and R2.

q=4

.9605(o.
.9699 (o,
.3425 (0.

.3600(1.
.4810(1.
.1038(0.

.1730(1.
.8138(o.
.0672(o0.

L4228 (o.
.9120¢(o.
.5284 (0.

.0521(o.
.8032(o.
.3840(o.

,0651 (0.
.8909 (0.
.8491(q.

.6213(0.
.7367(o0.
.5147 (o,

7725(0.
4330(o.
0652(a,

,8851 (o,
.8692(o0.
.6540(0.

0.2508
0.1908
0.1353

99.2%
99.4%
99.7%

Partial regression estimates along with their S.E.'s in
brackets for different q and N.

4232)
3221)
2283)

5560)
1840)
8395)

2820)
9831)
6968)

1498)
1140)
0808)

5509)
4192)
2871)

4573)
3480)
2466)

1445)
1089)
0779)

5313)
4043)
2865)

4410)
3356)
2379)
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TABLE 6.1(b). Partial regression estimates with S.E's for q = 8
N
10 30 50

b, —— 6.9410(1.,3190) 3.2410¢(1.03860)

b, — 1.5610(4.8490) 5.0630(s.8t900)

b, _— 2.7340(4.0250) 1.4990(s.1820)

b, —— 2.0545(0.4567) 4.4555(0.3667)

b, —— 3.4460(1.7180) -1.2680(1.3480)

by —— -4.3480(1.4250) -2.2510(1.1190)

b, —— 2,1522(0.4501) - 1,5559(0.as3s)

b, - -1.4080(1.6550) -1.0510(1.3000)

by ——— 0.5670(1.3740) 0.6640(1.0790)

S - 0.7814 0.6139

R? - 96.3% 98.,0%
TABLE 6.2. Summary statistics of 125 values of Qg(N-2), Qr(N-2),

: Qa(N-2) for different N and q.
Minimum Median Maximum
N 10 30 50 10 30 50 10 30 50
q=1 -
Qg(N-2) 0.865 0.745 0.795 2.819 2,514 2.449 9.427 7.717 7.749
Qr(N-2) 0.806 0.768 0.782 2,782 2.489 2.461 8.720 7.616 7.411
Qa(N-2) 0.700 0,740 0,748 2.400 2.467 2.480 7.060 7.180 7.204
A

q=2
Qg(N-2) 2.104 1.415 1.361 4.972 4.029 3,971 11.064 8.953 9.040
Qr(N-2) 2,130 1.348 1.303 4.917 3.965 3,920 10.817 8.900 8.990
q=3
Qg(N-2) 4.025 2,167 1.958 7.935 5.557 5.348 14.784 10.688 10.468
Qr(N-2) 4.231 2.048 1.852 7.907 5.576 5.361 14.760 10.604 12.882
q=4
QSEN—Z; 7.845 3,070 2.677 12.496 7.173 6.626 20,015 13.204 13.158
Qr(N-2) 7.986 2.936 2.530 12.394 7.130 6.703 20.164 12.956 12.882
q=-28
Qg (N-2) ——- 8.325 6.099 ~—— 15,100 12.816 --— 26,557 26.310
Qr(N-2) —- 8.330 5.863 — 15,743 12.719 -~~~ 25,579 25,587




TABLE 6.3.
some combinations of invariants, q and P(t).
Mean S.D Median
P(t)
(i) By =4.0, Cg=0.25, N =10
q-1
Normal 0.0702 1.1700 0.0389
Exponential  0.0057 1.1291 - -0.0140
q~2 ‘ -
Normal -0.0084 1.1850 -0.0567
Exponential 0.0531 1.2486 0.0323
q=3
Normal 0.2175 1.2977 0.1382
Exponential  0.2347 1.3996 0.1779
q-4
Normal 0.1340 1.7104 0.106t
Exponential 0,1998 1.4431 0.1625
(ii) By = 4.0, Cy = 4.0, N = 10,
q-1
Normal 0.1327 1.1386 0.0314
Exponential  0.0846 1,1332 ~0.0141
q=2
Normal 0.1915 1,2272 0.0591
Exponential 0.2845 1.2310 0.1297
q=3
Normal 0.5012 1.4123 0.3243
Exponential 0.5530 1.6689 0.3151
q=4
Noxrmal 0.6224 1.7630 0.4296
Exponential 0.6704 1.8015 0.4627
(iii) By = 0.0, Cy 4.0, N = 10,
q-1
Normal 0.0488 1.1372 0.0185
Exponential 0.0082 1.1399 -0.0933
q=2
Normal -0.0969 1.3277 ~0.0543
Exponential -0.0144 1.2386 -0.0553
q=3 .
Normal 0.0442 1.4863 0.0291
Exponential 0.0775 1.7132 -0.0461
q=4
Normal -0.0130 1.7648 -0.0632
Exponential 0.0278 1.9025 -0.0887

Minimum

-6

-k
-2.

.3230
.7439

L2699
.1363

L3242
.8286

.7849
L4561

.2836
.0603

8218
5214

. 0407
.9202

.0558

.0706

.9947

4736

.4903
.6546

.2817
.5343

.5979
.2309

Maximum

[+=JR S|

10.
17.

~N B

Summary statistics regarding Fy based on 1000 values for

L4797
.0664

.0908
.6905

L1449
.0021

.8618
.3756

.9210
.3807

.2986
.5332

. 5045
.1340

6921
9137

.8935
.0026

.1451
.9887

L1712
.2303

.8095
.3228

112




TABLE 6.4. Lower(L) and Upper(U)

(a) P(t) Normal.

By
Cn
0.25 L
U
1.0 L
U
4.0 L
U
0.25 L
U
1.0 L
U
4.0 L
U
0.25 L
U
1.0 L
U
4.0 L
U

0.25 L
U

1.0

4.0

ar ar

0.25

1.0

4.0

cr A ap

0.25

1.0

4.0

q=1, 2, 3 and 4 for

103 x error probabilities of Fp for

different P(t) and N.

q=1 q=2 q=-3 q =4
0.0 1.0 4.0 0.0 1.0 4.0 0.0 1.0 4.0 0.0 1.0 4.0
S N = 10
40 38 37 50 44 39 60 S1 44 80 68 57
42 47 49 46 54 57 62 70 76 76 91 103
39 36 32 53 40 31 63 46 34 84 61 45
4, 50 53 49 6L 67 65 81 92 80 106 126
40 31 22 58 40 22 80 49 27 103 65 36
46 52 56 55 71 83 78 104 124 100 141 170
N = 30
29 27 26 32 30 27 29 26 24 30 26 23
29 29 32 30 32 33 29 32 31 29 32 33
30 27 24 34 29 24 28 25 20 31 92 19
39 31 33 31 34 36 31 34 37 31 36 39
31 27 23 3% 28 23 34 25 18 39 27 18
30 34 36 33 38 42 34 42 48 38 47 S5
N = 50
29 27 27 26 24 22 26 2% 22 29 27 23
29 29 29 27 28 29 28 28 29 22 9% 94
29 27 25 24 23 21 27 24 20 31 26 21
29 30 31 27 30 32 29 31 32 23 27 29
31 27 26 25 23 20 29 24 18 33 27 19
29 32 34 28 33 36 32 36 39 28 33 38
(b) P(t) Exponential B
N = 10
34 31 33 45 38 37 54 47 42 74 61 54
44 47 47 49 52 56 60 69 76 76 87 98
35 28 27 45 33 27 51 39 28 76 53 39
45 48 49 51 58 63 64 80 93 82 102 121
31 21 17 41 25 15 57 30 15 88 49 24
47 50 51 S6 69 78 76 97 114 97 126 152
N = 30
26 24 24 26 24 22 26 23 20 93 19 18
37 36 35 38 38 38 38 37 37 32 33 34
25 23 22 24 23 19 25 22 17 24 17 14
37 36 38 38 40 41 39 41 41 34 38 39
264 21 18 23 18 13 25 17 12 27 16 10
36 39 42 40 43 47 43 51 54 43 52 57
N = 50
23 23 22 23 22 21 22 19 17 20 18 16
37 37 38 36 37 37 36 37 36 33 34 31
23 21 21 21 21 19 22 18 15 19 17 14
36 38 39 36 38 38 36 38 40 34 36 37
23 20 18 22 18 15 21 17 12 19 15 11
38 39 41 38 41 39 44 47

ot S o

42 39 43 46

113
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TABLE 6.5(a). Point and interval estimates for wheat quality data for
different subsets of response variables.

point estimate interval estimate MSE
(1) X,
9.4704 8.7515 10.189%4 0.1345
10.0894 9.3705 10.8083 —
9.2641 8.5452 9.9830 —
12,9780 12,2591 13,6969 -
12.7717 12.0527 13.4906 -—
(i1) X,, X,
9.1669 8.7369 9.5969 0.0481
10.0420 9.6120 .10.4720 -
9.2325 8.8025 9.6625 ——
12,5773 12.1473 13.0073 —
12,8811 12.4511 13.3112 —
(1i1) X,, X,, X,
9.1295 8.7509 9.5080 0.0373
10.1736 9.7951 10.5522 ~—
9.1149 8.7364 9.4935 -
12,6602 12.2816 13.0387 —_
12.7719 12.3934 13.1505 —
(iv) X,, X,, X,, X,
9.2490, 8.8729 9.6265 0.0368
10.1817 9.8055 10.5579 -
9.1522 8.7760 9.5284 —
12.7134 12.3372 13.0895 -
12.7666 12.3904 13.1428 —
(b) Wheat Quality Data. -
Observation X . X X, X, % protein
number
1 361 108 96 243 10.73
2 361 107 98 245 11.05
3 362 110 9% 241 9.86
4 362 105 94 246 11.41
5 362 104 70 221 11.57
6 367 113 75 221 9.42
7 366 108 82 233 10.93
8 360 104 86 236 11.61
9 362 113 85 229 8.82
10 360 103 90 242 11.81
11 351 97 88 238 12.33
12 353 95 73 227 12.93
3 ¢ 352 97 77 228 12.69
14 355 96 52 206 13.13
15 357 106 69 216 10.41
16 351 93 69 222 13.57
17 363 113 88 231 9.26
18 363 110 101 248 9.82
19 366 114 79 224 9.46
20 350 96 85 235 12.85

21 355 97 63 216 12.81
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CHAPTER 7
BAYESIAN BEST LINEAR PREDICTOR

7.1. INTRODUCTION

Let P(Xit;0) be the distribution of X in the regression
experiment Qhere 6 = (a,8,I') and prior distribution of 6 denoted by
7(6) is required in the Bayesian analysis and also #(t) to get the
distribution of x(tiexpt.;X) becau;e by Bayes formula

r(tlexpt. ;X) = _ T8 v(Xit;expt.)

Iw(t) (X1t;expt.) dt

Note that w(tilexpt.) = x(t) because experimental wvalues tell us
nothing about future T.
Now i
»(X1t;expt.) = Sfxa(X,01t,expt.)ds
= fx(X10,t;expt.) n(01t;expt.)ds
= [P(X10;t) w(f1expt.)dd
P(X16;t) will be taken as Nq(a+6t; I’), as in earlier chapters. For
fuller discussion see Aitchison and Dunsmore (%9?5) chapter 10,
The best linear predictor of t using
x(t,X1expt.) = x(t) w(Xlt;exﬁt.)
is denoted by
Cp +D,.TX S (7D
and its Bayesian mean squared error is defined by
MSE, = E[ {T-(C,+D,TX)}21expt. ] . (7.2)
The advantage of using this linear predictor (Hartigan, 1969) instead
of E(Tlexpt.;X) is that the former depends on #x(t) only through its
moments pu, 2. |
There are two situations under large N where E(T|expt;X) can be

easily approximated.

(1) If N is very large then §ML = 0;




x(0lexpt.) is concentrated on point ¢
a(X1t;expt.) = P(X|6;t)
thus

r(tlexpt.;X) = _a(t) P(X18:t) (7.3
fx(t) P(Xi16;¢t)

If also x(t) 1s N(g,0?), then x(tjexpt.;X) is -
N[ c+DTX; (1- p2)o2]
If x(t) is not normal then x(tiexpt.;X) is not normal.
 Best linear predictor, using w(t;Xlexpt.) = x(t) P(X16;t) is
Cp + D,Tx ~ & + DIx
and
MSE, ~ MSE
(1i) If N is large but still some uncertainty about ¢ would lead
to uncertainty about C and D,
When «(6) has special form, formula for «(Xit;expt.), namely
Student's t can be approximated by normal with mean vector and some
covariance matrix. Thus »(t;Xjexpt.) is approximately normal.
Main idea below is not to use approximatiqu to E(T|expt.;X) but
instead to use relation (7.1).

We will discuss first p = q = 1 and then general q and p - 1.

7.2, BAYESIAN LINEAR PREDICTOR FOR q = p = 1
If #(e,B,02%|t) is such that a,B,logo?g ¢ are independent uniform
(-» < a,8,logo?g ¢ < @), i,e. "vague prior information", then:

m(xlt;expt.) is such that

x - (o + @;) is ty_o.
Oyt 1+1/N +(t—€)2/Spr ]F
then
X = aft + oy o L+1/N +(t-t)2/Spp ]t tyoo
Consider «(t,xlexpt.), then the Bayesian linear predictor of t

would be
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CptDyX = t, = E(T) + COV(X,T) (x — E(X)) e (7.8)
VAR(X)

Where all the moments are conditional on "experiment" and

MSE, = (1- p,2)VAR(T)

= (1- py?)o? ... (7.5)

where p,? is given in expression (7.8).

We have

assumed E(T) = p and VAR(T) = ¢? known and the values of

COV(X,T), VAR(X) and E(X) can be calculated using w(Xi1t;expt.).

cov(x,T)

E(X) = EE(XIT) = E(& + Bt)
=+ B p
VAR(X) = VAR[E(X1T)] + E[VAR(XIT) ]
- VAR(G+BT) + EG2y ¢ 1+1/N+(t—T) 2/Sqp VAR ty_2)
= B202+(N-2)/(N-4)0 2y, ([ 1+1/N+ {02+ (p—T) 2} /Spr ]

[E(t-t)2 = E(T- p + p - £)2]

E(XT) - E(X)E(T)

= EE(XTIT) - E(X)E(T)

= E(aT + BT2) - (& + Bu)p

- ap + Blo? + p2) - (@ + By

- 30'2

After substituting the values of these moments in (7.4) we get

Er

and MSE, (7.

p o+ COV(T X)(X — & — Bp)

VAR(X)
= p+ Bo2B [(X - a)/B - p]

VAR(X)
-y o+ B2¢? [(X-0)/B - )]

B20 2+ (N-2) / (N-4) Jo 2y, o[ L+1/N+ {02+ (p~t) 2} /Spr ]
= p o+ pg? [Xz - p ]
B
= pg? (X-a) + (1 - p.2) L. (7.6)
B

5) would be
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MSE, = o2[1- B2g4 ]
02 B202+((N-2) /(N-4))5 25| ¢[ 1+1/N+ {07+ () 2} /S ]
= a2[1 - pg?] (77D

where

pr? = B2g? . (7.8)
B0 2+ ((N-2) / (N-4))0 2 | ¢[ 1+1/N+ {02+ (p—t) 2} /Sp7 ]

When N 5 »; t fixed and so Spr » «, then (7.6) would be
ty = p + Bo[x - (a+fp) ]
3202 + 32x|t )
= (1~ p2p + p2 (x-1)/B
-G + ﬁX, which is the best linear predictor (3.7)
and the mean squared error MSE, (7.7) would be equal to MSE (3.11).
For N < o, p, 2 # p? and px? can be written in terms of the
invariants already discussed i.e. N, By, é& and 32 and after simple

algebra it would be

pr? = p? . (7.9)
p2+(N-2)/(N-4) {(1- p2)}[1+ 1/N +By/(N-2)+ Cy/(N-2) ]

So MSE, (7.7) i.e. mean squared error (Bayesian) depends on the above

L e

four invariants N, By, Gy and 52.
It should be noted that both the Bayesian (7.6) and the best
linear predictor (3.7) are weighted average of classical estimator
and the p., Since p,? < 02, Bayesian gives less weight to classical
estimator, In particular when p = t; o2 = Spp/(N-2),
Cp +D X # inverse estimator,
The expression (7.7) can be written as under

MSE, = ¢2(1 - p,?2)

= 02(1 - p2)(1 + Q)
SO
Q =_rT"Pr*_ .. .(7.10)
1~ p2

As p,? (7.9) is a function of the four invariants; N, By, Cy and




p? so would be the Q-

8l values of the Q, are calculated for the same combinations of
the invariants as iIn chapter 3 to compare with the simulated values
of Qg (3.10). These values of Q, are given in table 7.1 and

simulated values Qg are given in table 7.2.

7.3. BAYESTIAN LINEAR PREDICTOR FOR GENERAL g and p = 1

Suppose (X,T) has a g+l dimensional -joint distribution which is
known. Then we derived the best linear prediétor (5.11l) which is
t = E(T) + pI(Xx - EX)
where D = {COV(X)}~' COV(T,X)
covariance covariance
matrix vector
and has mean squared error
MSE = VAR(T) - DIcov(T,X)

There are two cases here.

(a) CASE 1
Known joint distribution is ~frquency distribution
(non—-Bayesian).
P(x,tia,B,Fps02) = P(x1t;0,8,T) P(tip,0?)

then

o
L]

o2 {I' + UzﬁﬁT}—1 g
E(T) - dT E(X)

(@]
i

and

MSE = ¢2[1 - o26T(" + 0268T)~18]

og2(l - p?)
where p2? = ¢28T(I + ¢288T)~18

This case has already been discussed in chapter 5.

(b) CASE 2

Known joint distribution «(X,tjexpt.) arises in Bayesian
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analysis. This is a marginal distribution of

(X, tiexpt.) = x(XIT,t;expt.) = (Tit;expt) «(t1,expt;p,0?).
It is convenient to consider these conditional factors in finding
moments of x(x,tlexpt.)

These moments will give the Bayesian linear pfedietor Cr +D1TX as

follows;
CxtD,TX = p + [X-EX) T {COV(Xi1expt.)}™1 COV(T,Xtexpt.)...(7.11)
posterior posterior
covariance covariance
- matrix vector

Now we derive all the posterior moments from the standard prior
stated after the relation (7.12) for the regression parameters, and
assuming as always that E(T) = p and VAR(T) = ¢?2.
(X", t,expt.) is such that i
X =+ 8t + N[O, D{l+1/N + (t-t)2/Sqr} ]
By E(X) in equation (7.11l) we mean
E(Xlexpt.) = EE(Xit,expt.) = EEE(XII',t,expt.)
- EE(a+Bt)
-a+fp -

E[X(T-E(T))|expt. ] = E(XTiexpt.) - E(T)E(Xi1expt.)

ap + Bp2 + 02) - (@ + Bup
- Bo?
COV(X1expt.) = COV[E(XII';t,expt.) ] + E[COV(XIT;t,expt.) ]

where both COV and E are posterior, i.e. conditiomed on experiment.

cov(a+ft) + E{T[1 + 1/N + (t-t)2/Spp ]}

o2BAT + E(I) E[1+1/N + (t-t)2/Syp]

o 2BBT+[ (N-2) / (N-q-3) J[ 1+1/N+{o2+(p-t) 2}/Spp ]
= o288T + £
where

£ = (N-2)/(N-q=-3)[ 1+1/N + {02 +(u—t)2}/SpT]

= (N-2)/(N-q-3)[1 + 1/N +By/(N-2) + Cy/(N-2)] ...(7.12)
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18y

= f£(N,By,CON,q)
Following Press (1972), the prior densities for «, @ and I' are
assumed as under,
x{a,f) « constant;
(M « 1/ (a+)/2,
The E(Tiexpt.;t) = [(N-2)/(N-q-3)] [ is obtained from
Press (1972) theorem (8.6.3), where f* is the usual unbiased estimate.
Using the above moments the Bayesian-linear predictor (7.11) can
be written as follows,
Cy + D,IX = p + [X-E) [T [£f+02BRT T Bo? .. (7.13)
and
MSE, = ¢2[1 - o2BT{fl + o2pETy 18]
= 02[1 - p,?] - o (7.14)
P52 has been defined as
P2 = GzﬁT[fﬁ + azﬁBT]—1 g
= bT{A + kbbI}~1b
where b = off, A = fI' + fo028fT and k = 1 - £

By result following lemma (7.1), p,? is o

- BT A~1b
1 + kbTA=1b
- a2RTF 1 (P g23RT) 13
1 +(1-H)o BT 1 (F + o2BBT) 1B

~

= p2 . (7.15)
£+ (1- f) p>2

LEMMA 7.1
If A is any non-singular square matrix, b a vector and k a scalar
such that A + kbbl is non-singular, then

(A + kbbT)=1 = [1 - k A71pbT ] AT
1 + kbTA™"D




PROQOF:

Premultiply by (A +kbbT) and postmultiply by A we obtain

A=A+ kpbIT]r - k A~1bbT]
1 + kbTA™1D
~ A + gbbT
where
g =k - k - k2 bTA-1b = 0.

1 + kbTA™'b 1 + kbTA-1D
Now we express bI{A + kbbT}"1b in terms of bTA~'b and k.

bT{A + kbbT}~1b = bI[1 - k A~bbT JA- D
1+kbTA-1Db

w bTA—1b - k (bTA-1b) 2
1+kbTA-1b

- __bIpATb
1 + kbTA—1b

By (7.14) MSE, = ¢2[1 - p,?]
=01 - p2][1 + Q]
Here 52 is the familiar non-Bayesian quantity. This 1is the

definition of Q,.

MSE,/02 = [1 - p2][1 + Q] ... (7.16)
and
MSE/02 = [1 - p2][1 + Qg ] e (7.17)
So comparing Q, and Qs is equivalent to comparing MSE. /02 and M§E/62.
— 2
Qe = L7t g
(1 - p2)
-~ £+ (1 -F) p2-p2 -1
(1~ [ £ +(1- £)p?]

- _—(1- £)p2
£+ (1- £)p2

- (£f-1)p?2 ... (7.18)
£~ (f - 1)p2

where f is as in (7.12).
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Note that when N is large; MLE or unbiased estimators of I’ {(as in
case 1 above) are approximately equal to posterior expectation
E(Ftexpt.). Also when N is large; t remaining fixed and St > @,
then £ = 1. Thus

Cp + D, T X =&+ DT x
and
MSE = MSE,

To make a comparative study qf Qr and QS, we calculate the 81
‘vélues of Q, for the same values of the four invariants (N,BN,CN,52)
as have already been used to calculate Qg in section 5.5 for q = 1,
2, 3, 4 and 8. The values of Q, are given in table 7.1 and the
values of Qs are given in table 7.2 for q = 1, 2, 3, 4.

One question the tables may help to answer is whether Q,, for
which there is a simple formula (7.18), is a good approximation to
Qs, the non-Bayesian quantity which has had to be simulated.

In general Q, and QS may be quite different as the tables 7.1 and
7.2 show, but we note that in the favourable case with 62 = 0.9,
N = 50 (for instance); oL

Qe — 0.057 < Qg < Q, ~ 0.030
for all the 3x3g4 combinations of By, Cy and q.
The tabulated values are such that
(i) Qs < Qn for 52 = 0.9 ;
(i1) Qg < Q,  for p2 = 0.8 and q = 1,2;

(11i) Qg < Q, for p2 = 0.7 and q = 1.

7.4 INTERVAIL ESTIMATES

In section 7.3 we derived the Bayesian linear predictor Cw+DwTX
with mean squared error, conditional on the estimates &, ﬁ, I from
the experiment as,

MSE, = ¢2(1 - p2)(1l + Q)
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This leads us to propose

Cp + D.TX £ 1.96 (MSE,)?
as an interval for T, in the hope that its Bayesian confidence
w[ interval contains Tia, f, f] is roughly 0.95. This confidence
probability will depend on the shape of #(t).

The inequalities Qs < Qy noted at the end of section 7.3 show

that this Bayesian interval will often be wider than the interval

¢ + BTx + 1.96 (MSE)?
proposed in chapter 6, since MSE = (1 - p2)(1 + Qg). However, this
comparison of widths does not indicate which interval is to be
preferred, for they aim to satisfy different criteria,

We end by recalling the different ways in which the linear
predictors are defined: )
(a) &, D are estimates of C, D minimising
E[{T - (C + DTX)}21,8,I"]
(b) GC,, D, minimise
E[{T - (G, + D,TxX)}%1a,8.1"]
so they are the functions of &, 3, f'ﬁihimising
EI{T - (Cy + DTTX)}Z]
which can be written as
JE[{T -~ (G, + D,TX)}?1,8,T'] = (e, 8,T") daxdBdl’
In (b) we ignore any difficulties due to the priors =(a,@,I') used

in sections 7.2 and 7.3 being improper.




TABLE 7.1 81 values of Q, for q = 1, 2, 3 and 4.
q=1 -2 -3 Q=24
Cy 0.25 1.0 4.0 0.25 1.0 4.0 0.25 1.0 4.0 0.25 1.0__4.0

p2 = 0.7 N =10

By

0 0.309 0,373 0.592 0.456 0.522 0.744 0.641 0.707 0.928 0.880 0.944 1.155

1 0.393 0.452 0.655 0,543 0.602 0.806 0.728 0,788 0.988 0.965 1,022 1.212

4 0.608 0.655 0.818 0.760 0.806 0,967 0.943 0.988 1.143 1,170 1.212 1.353
p2 = 0.7 N = 30

0 0.083 0.101 0.173 ©.112 0.130 0.203 0.142 0.161 0.234 0,174 0.194 0.268

1 0.107 0.126 0.196 0.137 0.155 0.226 -0.167 0.186 0.258 0.200 0.219 0.291

4 0.179 0.196 0.261 0,209 0.226 0.292 0.240 0.258 0.325 0.274 0.291 0.359
p2 = 0.7 N = 50

0 0.048 0,059 0.101 0.064 0.075 0.118 0.080 0.091 0.134 0.097 0.108 0.152

1 0.062 0.073 0.115 0.078 0.089 0.132 0.095 0.106 0.148 0.112 0.123 0.166

4 0.105 0.115 0,156 0.121 0,132 0.172 0.138 0.148 0.189 0.155 0.166 0.207
p2 = 0.8 N = 10 X

0 0.369 0.450 0.739 0.558 0.644 0.951 0.806 0.899 1,222 1.150 1.248 1.581

1 0.476 0.552 0.825 0.672 0,753 1.041 0,929 1.015 1.315 1.279 1.368 1.674

4 0.761 0.825 1.059 0.974 1.041 1.283 1.246 1.315 1.561 1.605 1.674 1.917
p2 = 0.8 N = 30

0 0.096 0,117 0.203 0.130 0.152 0.239 0.166 0.188 0.277 0.204 0.227 0.318

1 0.125 0.146 0.230 0,159 0.181 0.267 0.196 0.218 0.306 0.235 0.258 0.347

4 0.209 0,230 0.310 0.246 0.267 0.349 0,284 0.306 0,389 0.325 0.347 0.432
p2 = 0.8 N = 50

0 0.055 0.068 0.117 0.073 0.086 0.137 0.093 0.106 0.157 0.112 0.125 0.177

1 0.072 0.084 0.134 0.091 0.103 0.153 0.110 0.123 0.173 0.130 0.143 0.19%

4 0.122 0.134 0.182 0.141 0.153 0.202 0.161 0.173 0.223 0.181 0.194 0.244
p2 = 0.9 N = 10

0 0.435 0.536 0.916 0.674 0,788 1.215 1.009 1.140 1.623 1.510 1.663 2.216

1 0.569 0.667 1.035 0.826 0.935 1.347 1.182 1.308 1.771 1.713 1.857 2.382

4 0,946 1,035 1.373 1.248 1.347 1.718 1.661 1.771 2.182 2.258 2.382 2.836
p2 = 0.9 N = 30

0 0.109 0.134 0.234 0.148 0.174 0.277 0.190 0.217 0.323 0.236 0.263 0.373

1 0.143 0.168 0.266 0.183 0.209 0.311 0.226 0.253 0.358 0.273 0.300 0.408

4 0.242 0.266 0.363 0.285 0.311 0.410 0.332 0.358 0.460 0.382 0.408 0.514
p2 = 0.9 N = 50

0 0.062 0.077 0.134 0.083 0.098 0.156 0.105 0.120 0.180 0.128 0.143 0.204

1 0.082 0.096 0.153 0.103 0.118 0.176 0.125 0.140 0.199 0.148 0.164 0.224

4 0.139 0.153 0,209 0.161 0.176 0.233 0.185 0.199 0.258 0.209 0.224 0.283
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TABLE 7.2 81 values of stor q

O

o

PO rRO o RO RO

o

Cn

ol o]

(=N ool

OO [oN el (oMo Ne)

loNeNe]

1, 2, 3 and 4,

q=1 -2 q=3 q=4
0.25_1.0 40 0.25 1.0 4.0 0,25 1.0 4.0 0.25 1.0 4.0

p2 = 0.7 N =10

.134 0,163 0.344 0.308 0,377 0.711 0.560 0.662 1.108 1.015 1.110 1.562

.232 0.258 0.415 0.426 0,487 0.802 0.709 0.800 1.239 1,212 1.298 1,746

.521 0,542 0.623 0.773 0.809 1.069 1.158 1.221 1.635 1.804 1.862 2.294
p2 = 0.7 N =30

.040 0.045 0,061 0,072 0.086 0,142 0,110 0,131 0.224 0.152 0,181 0.304

.066 0,071 0.085 0.099 0,112 0.165 0.138 0.159 0.250 0,183 0.212 0.335

.142 0.147 0,156 0.179 0.190 0.235 0.222 0,242 0.327 0.276 0.304 0.426
p2 = 0.7 N = 50

.024 0.027 0,036 0.042 0.049 0.081 0,060 0.072 0.124 0.082 0,099 0.170

.038 0,041 0.050 0.057 0.065 0,095 0.077 0.088 0.139 0,098 0.115 0.186

.082 0.085 0,092 0.104 0.110 0,137 0.125 0.136 0.183 0,148 0.165 0.235
pz = 0.8 N =10

.136 0.186 0.376 0,313 0.397 0.714 0.567 0.683 1.140 1.012 1.131 1.652

.245 0.301 0.483 0.443 0.525 0.826 0.725 0.836 1.277 1.216 1.328 1.841

.568 0.644 0,803 0.824 0.902 1.150 1.203 1.304 1.694 1.829 1.918 2.401
p2 = 0.8 N = 30

.041 0.052 0,091 0.075 0.092 0.157 0.116 0.138 0.227 0.159 0.188 0.300

.071 0.082 0.122 0.106 0.122 0.186 0.147 0.169 0.257 0.194 0.222 0.334

.158 0.170 0,214 0.196 0.212 0.271 0.242 0.263 0.345 0.296 0.324 0.433
p2 = 0.8 N = 50

.025 0.031 0.053 0.044 0.054 0,091 0.064 0,077 0.127 0,087 0.103 0.167

.041 0.047 0,071 0.062 0.071 0,108 0.082 0.095 0.144 0,105 0.121 0.185

.091 0,097 0.122 0.115 0.124 0.159 0.137 0.149 0.197 0.161 0.177 0.239
p2 = 0.9 N =~ 10

.135 0.209 0.554 0.317 0.416 0.805 0.572 0.698 1.195 1.006 1.153 1.712

.255 0.335 0,711 0.458 0.559 0.951 0.739 0.864 1.355 1.219 1.359 1.909

.609 0,712 1.178 0.869 0.978 1.383 1.243 1.370 1.848 1.854 1.978 2.502
p2 = 0.9 N = 30

.042 0,060 0.135 0.078 0.100 0.185 0.121 0.146 0.244 0.166 0.195 0.309

.075 0.093 0.170 0.112 0.134 0.219 0.155 0.180 0.278 0.204 0.233 0.347

.172 0.192 0.276 0.213 0.234 0.320 0.260 0.287 0.382 0.316 0.345 0.458
p2 = 0.9 N = 50

.025 0.035 0,077 0.046 0.059 0,109 0.067 0.081 0.137 0.092 0,108 0.172

.044 0,054 0,097 0.066 0,078 0.128 0.088 0.102 0.158 0.112 0.128 0,192

.099 0.110 0.155 0.125 0.138 0.188 0.149 0.162 0.218 0

.174 0,190 0.253
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APPENDIX A

The asymptotic expressions E&, Eﬁ, VAR(&), VAR(ﬁ), COV(&,ﬁ)
are obtained by expanding the estimate by Taylor's series and these
are used to calculate blas and mean squared error of the best linear
predictor. The following results are based on a sample mean §f of k
values in the future situation and the results for a single value x

can be achieved by putting k = 1.

A.1 Some facts
(1) E@Xg) = o + BE(T)
=a¥ + B(p - t)
(2) VAR(Xg) = E(VAR(XgIT))+ VAR(E(X£IT))

(3) o = (1 - p2x)VAR(Xs)

From (1), (2), (3) we can easily derive that

B o E(Xg)
(a) (t - p) = -
8 B
_ szlt .
(b) VAR(Xg) = _____ + B?0?
k
(EXg ~ 0®)2  p2g(p - ©)?2
(e) =
VAR(XF) o2
L-p? 1-0% gyt
(4) - -
kp? p2x kB202
D20'2x|t
(5) = Pﬁ‘i(l = pzi-) o2
k
p2g VAR(Xg)
(6) p2=__ (from (3) and (b) above)
o2 .
o1t
(7) (1 - p2x)VAR(T) = k
szlt
g2 +
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-g2 + %% 1t] ? 2 z
(8) Al I
B2 + x|t 1+ %%t
o2 320-2

A.2 E(B), E(D), VAR(C), VAR(D)., cov(C, D)

& - 6+ Et wes “ .
o *k%t 021t = VAR(0?x¢)

T2a% = VAR(E)

o2g = VAR(E)

Q@ = F h(ﬁ» &;,t, &*), where the three arguments are

independent random variables with expectations M = (8, azx,t, o).

~ o2 2 2 2 2 2
ES ~ h(g, Uilt: o) + 98 92h 0g2x t 9%h . %a* 9%h

+ D
2 3p2 (M 2 302x|t|M 2 Ook2i{M
- + (t-p)B? 4
=K + 1 + 20X|t
szlt 2 2
pz + o (N+k~3)k204[ﬁ2 + UXIt]
ko?
Tzt 302 2% 16,7 .+ |02
+ a*ﬁ[‘ﬁz + Xlt]+ Xlt(t—p) xlt_362
[Bz + o-ixlt]s ko2 ko? ko2
ko?
STT

or

* 2, ? 2 *
- L ) oy [1e 20D 4 B0 [ aag)
k= TT

b (Lopg) (B (1o |




A ~ ~ ~ 2
VAR(C) = VAR h(B, 0% ¢, a*)“[ —éﬁ ]“é* *[ éE—
Barx oB
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2

i |

2
2 * ——— t
- x|t g + [cx Bz + IXIL (26(t-p) - o¥)
— .| o
g+ Txit : : 2
ko2 ST [ B
ko-z
2
L 2w 67 [0 - G- e ]2
N+k-3 ’
k%o [ g2+ Txit ]
k o2
D = 6
2
1+ X1t
kgz
A ﬁ - (B: szlt)
D~ gB .08,
ED - Eg(B, 02,¢)
2 2
~ g(B , ogqp) + B ° 8 V(B o :
Xjt) 5 —552 N +C"OV('S"(T}Z;H:) os
8680'}%“: ﬁ
2
+1/2 o2, e
XI1T 2
3 (o2x¢) IN
2
_ 8 - 1t [ 2+ 3o%1¢ ]
2
o o2 e St ko 2
ko? [ g7 + it
k0-2
4
+ 2 o-x't

(N+k—3)k5‘[32+

2 2
x|t
ko-2
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VAR(D) - VAR g(B, ‘Aﬁzclt)”[ag}aéJr[ i ]02

2
ko2 ] + 262"Izélt

2 A Attt ettt
67+ _——Uk::t] STT k20 (N+k=3)

2
= IxIt

o (2] (3] e (] ()

86 aﬁ a.O:ZXIt ao-let

2 2
2 - 2+ Oxit *n2, Ox |t 28 (Tmp)—ar®
2 Ox1t . [ g —ka—z][aﬁ"'——fc—o_-;{ﬁ(t#)ﬂ}]
[52+ G;lt ] STT
ko2

+ 20%231¢ B [_ *g 4 (E_”)ﬁz]
(N+k-3) k2¢4




A.3 Bias and Mean squared error of the best linear predictor

Bias = Bp = E(T - (€ + DX¢)

= u - EG - ED(a + Bp)

- u — EC - BD[o* - B(E - p)]
substituting EG, ED and simplifying we get

s (t - y)[l - p% ][29% - 1] ko2
Str
-t [ﬁf_ e iepi[i - o2 ][202 - 1]] (A1)

Mean squared errox

MSE = E[T - (C + fff)]z ;
= EE[(T - (C + DXg))*1 €, D)
= E(C - 6)%+ 2E(X)E(C - ¢)(D - D) + (EXPE(D - D)2
+(1 =~ p2)VAR(T)
plugging in values of VAR(&), VAR(ﬁ) and CO&(afﬁ), ignoring

(bias)? being of order (1/N)?

2 2 2
1 —_ -
" UX|t26 2N ' il E{Xf - E(Xf)}2
2 o Xt 2 2
[6 + R ] kzaq(N+k—3)[62+ 0x|t2]
ko
2 2 2 ?
+ _Ixit . .|E -8+ “X': Te+lo*p®+ zfét{—ZE?f+a*}
STT[ﬁz"‘ x,t] ko ko

+ [1 - p2 ]VAR(T)
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2
“xic 202
- 32 1 + 1 + xit ,
k ok o2
L+ TRt N[l 4 XIT ] k§2(N+k—3)32[1 + XIt }
242 2,42
kB2 2 kB0 k@20
2 - 2
v 9 - 2 P
STT 1 + sz!t STT[]‘ + o-let]
: KB202 - k@202
272 2
= 02[1 - p;] 1+ k + x + K0 [1 -2 ]
2 271 2 N-2 1 + 72
N[1 + Ti] (N+k-3) [1 + 72] z
+ KBy . (A.2)

m-2) [1 +r;]

where

' 2
Cy = Relative concentration of the experiment = o (N-2)

Spr

(t - W - 2)
ST

By = Relative bias of the experiment =

and

1-p2 gt

.02'}_{ kB2o~2

Equation (A.2) can be written as
- 2 2
o?[1 - pi] [1 + QA]

where Q is the quantity in the big brackets to the right of 1
in (A.2). Since p2g = 1/(1 + 72%), Qa is a quadratic in p?g, with

coefficients depending on k, N, By, Cy.
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APPENDIX B

Two results concerning the best linear predictor of section 5.3,

for p = 1 and general q.

B.1

When ¢2?2 » », Best Linear Predictor -» Classical Estimator.

Proof:
Using lemma 7.1 with A = ', k = ¢2, b = B,
D = o2f1B/[1 + o2BTf-13].
Thus
p2 = DIg 51 as 2% 5 oo,
Equation (5.11) implies
&+ BTx = p (1 - p2) + BT(X - &)
= p (L =52 + BT(x - & + Bo)
=g (L= p?) + p?t + BT(x - )
Since B - ﬁ“‘&/[&Tﬁ_‘ﬁ] as 02 o o,
¢+ 0Ty » T+ BTh1(x - X)/[RTT1R]

which is the classical estimator (5.4) when p - 1.

B.2

When p = t and ¢2? = Spp/(N-2), the Best Linear Predictor for

general g and p = 1 is the Inverse Estimator,

Proof;

We use the standard results from multivariate regression, derived
from relation (5.2) when p = 1,
B = sTry/sor
-2)f = sgx - STrx Spr 7' Srx
thus

o2f = STpy/(N-2) when o2 = Spp/(N-2)
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and
N-2)[* + 02B8T] = (-2 + Ty Spy/Str
= Sxx
SO
B - o2[[ + 02B8TT' B f£rom (5.10)

= Str Sxx 7' STry/Syr

- Sxx ~' STpy
in agreement with (5.5).

Also when gt = t

¢ = p - DT(a + pf) from (5.8)
=t - BTax
-t - BT%

in agreement with relation (5.5) when p=1.
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