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SUMMARY

Much has been said about the classical and the inverse methods 

of calibration for the univariate and to some extent about the 

multivariate case also in the existing literature, see Brovm(1982). 

We have explored the possibilities of using the best linear predictor 

both in the univariate and the multivariate situations.

First four chapters deal mainly with the univariate case, 

chapters five and six deal with the multivariate situation and 

chapter seven is devoted to the Bayesian version of best linear 

predictor.

First chapter introduces calibration and discusses different 

methods of calibration in the univariate situation. Chapter 2 gives 

a review of the calibration literature for classical, Bayesian and 

best linear predictor approaches with some comments. Chapter 3 

deals with the derivation of the best linear predictor and 

approximates its unconditional mean squared error by Taylor's series. 

A simulation study is made to compare the approximated and the 

simulated values. Chapter 4 starts with the interval estimates and 

possible aims. Two situations with the known and unknown parameters 

are studied. Tail probabilities are calculated for different P(t).

Chapter 5 introduces multivariate calibration and reviews the 

literature. Much attention is focussed on the case when there are q 

response variables and there is only one explanatory variable p i.e. 

general q and p = 1. Best linear predictor is derived and its mean 

squared error in canonical form is studied by simulation. In chapter 

6 approximation to mean squared error is obtained by regressing 

simulated data and the interval estimates are studied.

Chapter 7 gives a Bayesian treatment of the best linear predictor 

both in the univariate and the multivariate case.



CHAPTER 1

UNIVARIATE CALIBRATION

1.1. INTRODUCTION

The word Calibration is being used in two different contexts in 

statistical literature

(i) in connection with regression;

(ii) in connection with probability forecasts.

We restrict ourselves to the calibration of first kind, for the 

second kind see Dawid (1985).

First kind is usually referred to as calibration, inverse 

regression, inverse prediction or very rarely discrimination as by 

Lieberman et al, (1967) because of sharing similar features with 

calibration problem. The only difference between discrimination 

problem and calibration problem lies in the fact that fixed variable 

is continuous in calibration while it is a finite set in 

discrimination.

Williams (1969a) emphasized the need to'differentiate between two 

activities, both being called calibration in statistical literature, 

and categorized as under,

(a) absolute calibration;

(b) comparative calibration.

In absolute calibration non-standard measurement technique is 

calibrated against a standard measurement technique whereas in 

comparative calibration one instrument is calibrated against the 

other (or possibly others) with neither being standard. Both are 

conceptually different and lead to different issues in statistical 

modelling. For more details see Williams (1969a) and Rosenblatt and 

Spiegleman's discussion to Hunter and Lamboy (1981). We would 

concentrate on absolute calibration only.



Aitchison and Dunsmore (1975) used the terms, natural calibration 

and designed calibration to distinguish between the two types of 

regression experiments regarding the way in which the values of the 

fixed variable arise.

In natural calibration the values of fixed variable in the 

experiment occur naturally as if it can be assumed that future values 

would also arise in the same way as in the past. Thus the regression 

experiment provides some information about the pattern of 

observations. Range of defined values is not controlled which may 

have some effect on the accuracy of estimated calibration curve.

In case of controlled calibration the values of the fixed 

variable in regression experiment are at fixed prechosen levels 

preferably such that they give a reasonable cover to the range of 

values of controlled variable expected in future. This helps to 

improve the design of experiment.

Brown (1982) termed the calibration as random calibration when 

both the response and explanatory variables are random. This appears 

to agree with the idea of natural calibration discussed above. In 

our opinion this is a prediction problem rather than a calibration 

problem because both variables are random and the regression of 

either on the other, for given values, is reasonable.

1.2. DESCRIPTION OF THE PROBLEM

A calibration problem consists of

(a) A regression experiment comprising N pairs (t-f x-t), i = 1, 2,I
..., N with t̂  fixed and x^ independent random variable; 

and

(b) A current or future situation involving a bivariate random 

variable (T,X) independent of regression experiment where instead of 

observing a pair (t,x), only the observation x has been made.



There can be two situations

(i) Only one value of X is observed;

(ii) More values Xt , X2, X3, X^ (i.e. k > 1) are observed,

with mean Xf.

The problem is to estimate t on T corresponding to the observation(s) 

x on X, from the information provided by regression experiment and 

the current situation. Two types of estimation on t are required.

(i) Point estimation,

(ii) Interval estimation.

This problem of estimation of t is called calibration problem. It 

can be more clarified by the following two examples, as discussed by 

Aitchison and Dunsmore (1975). We will describe it as simple linear 

calibration if there is only one response variable X and one 

explanatory variable T and the regression in the experiment is 

linear. The "regression experiment" in calibration situations as (a) 

above is sometimes referred to as the "calibration experiment".

Example 1: Measuring Water Content Of Soil Specimens

Water content in agricultural soils jLs of interest for 

cultivation purposes. It can be measured by two methods, namely, (a) 

Laboratory method and (b) On-site method. On-site method is cheaper 

and quicker as compared to the laboratory method but less accurate. 

It is recommended that in future on-site method be used. Now the 

objective is to predict the observation by the laboratory method 

corresponding to the observation by the on-site method. Let the 

linear regression between the two methods hold, denoted by the 

following relation

x - a + £?t + e

where x denotes the observation by on-site method and t denotes the 

observation by laboratory method, e is a random error with zero mean 

and constant variance <T2X|t (conditionally on t).



A regression experiment is performed to obtain N pairs of 

observations (t^.x^), i - 1, 2, ..., N. In the current situation an 

observation x is observed by the on-site method and the corresponding 

observation t by the laboratory method is to be estimated.

The data now consists of (N+l) pairs (t^Xj), (t2,x2),

(tjj,xjj); (.,x) where the dot in the last pair indicates unknown value 

t to be estimated, x is referred as current observation and the pairs 

(ti.xi), i - 1, 2, N are observations from the regression

experiment.

The problem is to make statements about the water content t by 

laboratory method using the information from the regression 

experiment and the water content observation x by the on-site method.

Example 2: Antibiotic Assay

Different concentrations of an antibiotic drug applied to an 

infected medium clear different circular areas and so the diameter of 

the cleared area may be used to help in estimating the concentration 

of an antibiotic. It has been observed that average diameter of the 

area cleared by a given concentration is a linear function of the log 

concentration level of the drug. Different log concentration levels 

t-j/s of the drug are prepared and the corresponding diameters x^'s of 

areas cleared are noted. The pairs (t^,x^) , i = 1, 2, ..., N are

related by the regression model

x ■= oi + (St e

In the current situation a patient is under treatment and the 

clearance diameter has been measured. The problem is to infer about 

the patient's concentration level i.e. we want to estimate the 

unknown log concentration value t corresponding to the known diameter 

value x.

As our technique applies to the situations where X and T have 

linear relationship, Box and Tidwell (1962) and/or Box and Cox (1964)
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transformations can be applied to get the desired relationship if 

necessary. These are demonstrated in chapter 4 on the data of 

antibiotic assay example taken from Aitchison and Dunsmore (1975).

1.3. ASSUMPTIONS FOR THE REGRESSION EXPERIMENT

Let the pairs (t^,x^), i - 1, 2, ..., N be related by the linear 

relationship

xt - a + 0tt + e±

which can be written as

x^ = a* + (3(t£-t)+ e^ 

i?(xit£) - a* + 0(t^-t)

VAR(x|tj[) - c2x|t* f°r any fci 
The least squares estimators of ct*, 0 and <r2X |t based on N pairs of 

observations are denoted by a*, 0 and (F2X|t where

a* - Xbt̂ /N

0 - sxt/stt 

*2xit - Et*i - S* - PCtj.-t)] V(N-Z)
SXT = £(xi “ x)(fci ” and Stt - L(t£ - t)2.

Assuming P(x|t) is normal, the estimators a* and 0 are distributed 

according to N(ot*, c^xit/N) an(* °‘2x|t/^TT) respectively. The

unbiased estimator 0‘2X |t a‘2x|t X2/(N-2)- is well known that

a*, 0 and <J'2X |t are mutually independent under the normality
assumption.

1.4. ASSUMPTIONS FOR THE CURRENT SITUATION

In the current situation a bivariate random variable (T,X) is

thought to be under consideration with distribution P(t,x). The

practical situation draws attention to the conditional distribution.

P(x|t) P(t)
P(tjx) - _____________

Jp(x|t) P(t) dt



From the regression experiment P(x|t) is distributed as 

N(ce+j3t, ^2X |t) an<i about T it is assumed that E(T) “ /x and

VAR(T) - a2 are known.

We assume that the regression experiment and the current

situation share a common conditional distribution P(x|t). In the

regression experiment values of T are fixed while in the current 

situation T is a random variable, in our situation with known mean (i 

and variance a2.

1.5. THE BEST LINEAR PREDICTOR C+DX

To avoid modelling the distributional shape of P(t) in the 

bivariate situation, we consider

E[T - (C + DX)]2 ...(1.1)
which is minimised by

G - E(T) - DE(X)

D - COV(T,X)/VAR(X) 

the minimum mean squared error (1.1) being

°-2t|x " <1 " P2)VAR(T)
Note that E(T\X) is not necessarily linear in X, and c2t|X is not 

necessarily a variance. If E[T - m(X)]2 is minimised instead ■ of 

(1.1) where m(X) is any function of X, then the solution is 

m(X) = E(T\X), with minimum mean squared error E(VAR(TlX)).

It should be clear that within the regression experiment C + DX 

has no particular role.

1.6. THE BEST LINEAR PREDICTOR ct+Bt 

In the regression experiment

E(X11̂ ) - a + (3tj_

VAR(X\t±) - <72x|t

In the current situation which is bivariate, a and 0 minimise 

unconditional mean squared error



7

E[X - (a + (3D] 2 .... (1.2)

because here also, by the assumption about P(x|t) made in 

section 1.4,

E(X\T) - a + |St

Arguing as in section 1.5, the mean squared error (1.2) is minimised 

by

a - E(X) - 0E(T)

0 - COV(X,T)/VAR(T)

and

^2x|t "  <1- P2)VmX) 
where p is the correlation coefficient between X and T.

1.7. CALIBRATION METHODS

Two most commonly used methods to estimate t are

(a) classical estimator approach;

(b) inverse estimator approach.

These are the outcome of " inverse regression” and 

"direct regression". Controversy over the relative worth of the two 

estimators is not yet clearly resolved because of its philosophical 

nature. We propose another approach (compare Brown (1979a)).

(c) best linear predictor approach.

These are discussed briefly.

(a) Classical Estimator Approach

The usual regression model P(x|t) is used to predict the value of 

t for an observed value of x. This is just the regression line in 

reverse using only P(x|t).

Let the estimated least squares line from the regression 

experiment be
A A Ax “ a + 0t

then the corresponding equation for predicting t becomes



a
t - (x - cO/j3

or

t “ t + SXT/SxX (x — x) ...(1.3)

(b) Inverse Estimator Approach

The line for predicting t is fitted using data from regression 

experiment (x^t-jO, i - 1, 2, N, as if it were truly bivariate

data, that is as if t,, t2, tjjj were a random sample from the

distribution F(t). Thus the least squares estimated line for

predicting t is

t - t + STX/Sxx (x_x) ...(1.4)
This is a "direct regression" assuming T a random variable whereas it 

is fixed in the regression experiment.

(c) Best Linear Predictor Approach

It is suggested that t should be estimated using the relation

t - C + DX

where C and D are functions of bivariate moments as in section 1.5 

i.e. ~

C - E(T) - DE(X)

D - COV(T,X)/VAR(X)

Three mathematically independent functions ctt |3 and a2X |t t̂ ie 

five bivariate moments as in section 1.6 can be estimated from the

regression experiment and the moments E(T) ** fjt and VAR(T) - <r2 are

assumed known. So we have numerical values (estimated or exact) of 

five functions of the five moments. Solving these equations, 

estimates of the moments are obtained and thus the estimates of C, D 

and c2tjx are

( - & / $  + f i r 2 )
C ™ ___________

(1 + T2)
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(1 + 7 2 )
^2t|x " (1 - P2)tr2

where

t-2 - c^xitA0-2̂ )

" (1 - P2)/p2
and

P2 “ 320"2 (j32er2 + (^xit)*”1 ...(1.5)
Gt D and cr2t,x are in terms of a, 0, <r2X |t from the regression

experiment and E(r) - fi, VAR(T) «= c2 which are assumed to be known.

Thus the best linear predictor is
A A At ■» C + DX

(-a/(3 + /it2) p-'X

(1 + T2) (1 + T2>

(X - a) t 2/i
-   + _______

i?(i + t 2) (i + f2>

- ?3[(X - a)/f] + (1 - P) n ...(1.6)

So the best linear predictor is weighted average of the classical 

estimator and the p.

If we put /i = t in relation (1.6) then

t - t + p2/(& (x - x) 

and also if we take a2 = S^^/(N“-2), then p2 in relation (1.5) becomes
_ Ak. a

S2xt/(sTTsXx) » 0 is SXT/STT; tllus t is

t - t + sXt/sXX (x “ x) 
which is the inverse estimator (1.4).

It is of interest that the classical estimator and the inverse 

estimator are special cases of the best linear predictor. Best

linear predictor gives classical estimator when p2 — 1 or 

equivalently <r2X | t/C0"2̂ 2) “ 0. If we omit the uninteresting



possibilities P‘2X |t *  ̂ (perfect fit of regression) or |3 = «>

(all t^ — t), we conclude that the best linear predictor coincides 

with the classical estimator if and only if a2 — <». The inverse 

estimator is obtained with /i — t and cr2 - Sxt/(N-2) as shown above.

Thus both the classical estimator and the inverse estimator rest 

on implicit assumptions about the distribution of T in future. 

a2 “ <» has some theoretical appeal, in expressing the idea of 

complete ignorance about T, but an infinite variance is unrealistic 

in practice especially since it suggests the need to extrapolate the 

experimental regression.

The combination of values fi ~ t, a2 = Sxx/(N_2) suggests that the 

inverse estimator will be satisfactory if the experimental design 

{t̂ ; i = 1, 2, ..., N} agrees in first and second moments with the

distribution of T in future. Any choice between the two estimators 

should depend therefore on a2, and perhaps on fi. Such choice is 

impossible without at least some consideration of the distribution 

P( t).

1.8. SOURCES OF u and or2

In practice fi and <r2 are not known exactly. Sometimes may be 

assessed as follows

(a) an assumption implicit in any calibration technique is 

£ 2* < t*. Otherwise the experimental regression has to be

extrapolated. Bounds for n and cr2 can be deduced.

(b) Sometimes a random sample of T's (or more commonly of X's, 

Tallis (1969)) is available. Natural estimates /i and a2 result.

E(X) = EE(X |T) - a + 0fi 

VAR(X) - VAR(E(X\T)) + E(VAR(X\T))

- @2(r2 + 0‘2X|t

(c) In the absence of (b) /i and <r2 may be regarded as the 

parameters of a subjective probability distribution.
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Diagramatically the best linear predictor can be represented as 

under.

iRegression expt. F(x|t)| icurrent ir(x,t)| | |
] (Xi.ti) fi-i , 2 N j | ( • ix) | | it,a2 |

I | | t “ C + D X  i
j a’jS.ô x, t | | C,D depend on a,(3 ,(X2̂ lt:; ft,a2 \

T ----- A '"A .t - C + BX



CHAPTER 2

REVIEW OF LITERATURE

The purpose of this part is to review the work done so far in the 

area of linear and non-linear univariate calibration. Estimation and 

optimal design aspects are described and some comments have been made 

wherever necessary.

?.l. CALIBRATION ESTIMATION

In general the theory of calibration can be classified under the 

following three types of models.

(a) Traditional approach;

(i) classical approach

(ii) inverse approach

(b) Bayesian approach;

(c) Best linear predictor approach.

These are elaborated separately in the following pages.

(a) TRADITIONAL APPROACH

As pointed out above traditional approach comprises the classical

estimator and the inverse estimator. In classical approach p(x[t) is

assumed N(o: + j8t, d2X |t). The point estimate is

t — (x - cO/jS *= t + St t/Sx 'j (x  - x)

and an interval is available conditional on T i.e.

p(Int. will contain TlT=t) =0.95 

If is not significantly different from zero at 5%, then the 

above interval for t will be either the entire real line or the 

complement of an interval in the ordinary sense Williams (1959) and 

Miller (1966).

In the inverse approach point estimate is derived using least 

squares, as if T was random in the experiment whereas it is fixed
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i.e.

t « t + Stx/sXX (x_x)
There is no theory of interval estimation associated with this 

estimator in a natural way. Both the classical and the inverse 

estimator agree when there is a perfect correlation between X and r.

Eisenhart (1939) was the first to discuss calibration problem who 

selected the classical estimator more appropriate as compared to the 

inverse estimator arguing "the fitting should be done in terms of 

deviations which actually represent error". This viewpoint was 

supported by Williams (1959).

Fieller-Creasy (1954) proposed methods for obtaining the 

confidence intervals for the ratio of two parameters (i.e. classical 

estimator) and Herson (1975) compared Fieller's method with that of 

so called Delta method ( based on first order Taylor series expansion 

to approximate variance). He gave many rules of thumb for deciding 

when to approximate Fieller’s interval by Delta interval. Mandel 

(1958) constructed simultaneous confidence intervals (for several T) 

to the problem of classical type and Miller (1966) gave another 

solution to this problem. Lieberman et al. (1967) gave a solution to 

this problem in terms of unlimited simultaneous discrimination 

intervals. They compared two methods for constructing these 

intervals, one based on Bonferroni inequality and the other on the 

idea of Lieberman and Miller (1963) and concluded that Bonferroni 

type interval is shorter.

Halperin (1961) considered the case when both variables are 

subject to error and derived confidence intervals under several 

different assumptions about the kind of information available. He 

gave the idea of uncertainty which was later on elaborated by Scheffe 

(1973). In (1970) he found that inverse estimator is superior in the 

sense of "closeness" for large samples if the values of explanatory



variable are restricted to a certain closed interval near t; and is 

inferior elsewhere. He emphasized that the interval in which inverse 

estimator is superior is trivially small. Saw (1970) also gave this 

kind of views and found the use of inverse estimator unappealing.

Easterling (1969) considered point and interval estimates based 

on classical estimator and gave a procedure for obtaining exact 

confidence intervals by comparing them with Fieller's type (1954) 

and like Bonferroni intervals discussed by Lieberman et al. (1967).

Krutchkoff (1967) raised this problem of comparing these two 

estimators again on the basis of mean squared error. He simulated 

their mean squared errors and concluded ( not quite correctly ) that 

inverse estimator has a uniformly smaller mean squared error in the 

range of controlled variable in the experiment. He (1969a, 69b)

claimed that inverse estimator is better for extrapolation for some 

cases while the classical is better for others. Using the Pitman 

closeness criterion he (1971) again concluded that inverse estimator 

is superior or equivalent to the classical estimator.

Williams (1969b) criticised the mean squared error as criterion 

in the problems of this kind and favoured the classical estimator 

even though it has infinite mean and mean squared error. We connect 

the latter with the implicit assumption <r2 “ <» discussed at the end 

of section 1.7c. He argued that inverse estimator is based on wrong 

regression. In (1969a) he considered some calibration situations and 

suggested some formulae to be used accordingly. He discussed the 

idea of Tallis (1969) of using supplementary information in the 

calibration situations and concluded that the use of additional 

information provides closer estimates.

Berkson (1969) showed that inverse estimator is inconsistent and 

mean squared error (asymptotic in N) for single x Is smaller only for 

a limited range. For large N if t is estimated from the mean of



k > 1, then there is always a kQ such that for all values of k > k Q, 

the mean squared error of classical estimator is smaller than the 

inverse estimator except at t = t. We discuss the question of 

consistency in section 3.4.

Martinelle (1970) concluded that the inverse estimator has 

smaller mean squared error than the classical estimator for t near t 

but if more observations are made on the response variable i.e. 

( k > 1 ), the advantage of the inverse estimator is reduced.

Cox (1971) showed how the individual x values should be used for 

interval estimation in the cases where residual variance is constant, 

proportional to x or to x2.

Shukla (1972) obtained asymptotic expressions for bias and mean 

squared error of both the classical and the inverse estimator. He 

concluded that if large number of observations are taken in the 

calibration experiment with small error and unknown t is estimated by 

large number of observations on x ( i.e. large k ) then it is 

unlikely that the inverse method will be advantageous over the 

classical method except in very trivial cases. However he 

recommended the use of inverse estimator for k = 1 and t close to t 

and classical estimator for large sample sizes N, k in the absence of 

any prior information about T, Again Shukla and Datta (1985) 

obtained exact expressions for the mean and mean squared error of the 

inverse estimator and compared them with the conditional classical 

estimator which they obtained from the classical estimator based on 

the test of hypothesis about the regression coefficient to overcome 

the difficulty of unbounded mean and variance.

Scheffe (1973) considered in detail the estimator of classical 

type for a polynomial in t. He used the idea of multiple comparisons 

and constructed the tables of interval estimates taking into account 

the intrinsic uncertainty in the estimation of regression parameters.



Oden (1973) found classical type simultaneous confidence 

intervals with large k. He gave a more precise form in probabilistic 

terms and good deal of improvement of Miller's method (1966).

Perng and Tong (1974) tackled the problem of classical type by 

proposing a two-stage sequential procedure for the construction of a 

fixed width confidence Intervals for t, an unknown parameter. They 

showed that the limiting probabilities of "correct decision" are 

equal to a pre-assigned number p*.

Minder and Whitney (1975) used the marginal likelihood methods to 

compare and make inferences about the unknown value t for both the 

methods. They found that a good number of cases considered by

Krutchkoff (1967, 69a) give non-informative likelihood functions but

cases which are common in practice tend to give likelihood functions 

which are informative and approximately normal in shape,

Schwartz (1975,76,77,78,79) considered different aspects 

i.e. non-linear calibration, calibration with non uniform variance, 

in practical problems from chemistry and made suggestions in some

situations. Morris (1983) and Leary and Messick (1985) commented on 

practical calibration situations in chemistry. Makowski and Downing 

(1980) also solved a practical problem from chemistry by taking the 

relationship between x and t, both linear and quadratic. They 

constructed single and joint confidence intervals and compared them.

Naszodi (1978) proposed a modified form of the classical 

estimator, based on estimates of the first two moments of the 

estimator obtained from a Taylor's series expansion, which is 

practically unbiased, more efficient than the classical estimator and 

has advantage of consistency over the inverse estimator. He also 

discussed a mode of eliminating the error by experimental design.

Theobald and Mallinson (1978) considered the problem of 

estimating the calibration equations in both its structural and



functional relationship forms and showed that Barnett's (1969) 

structural relationship version of the problem is equivalent to a 

standard factor analysis model used by them. They discussed maximum 

likelihood estimators for certain constrained models and concluded 

that maximum likelihood method applied in Williams (1969a) is 

unworkable under some situations. Jansen (1980) raised the objection 

on the model proposed by them for not taking into account the 

goodness of fit test of the model. He suggested a model and compared 

results with them.

Brown (1978,79b) solved two practical situations. He used the 

method of generalised least squares and considered the error in both 

variables.

Trout and Swallow (1979) constructed uniform confidence bands of 

classical type for the simple inverse regression problem to provide 

joint confidence intervals for t in a specified range ta < t < t̂ . 

They compared relative efficiencies of their intervals with that of 

Scheffe's procedure (1973) and concluded that one has not to pay 

price in efficiency for the convenience of the uniform procedure.

Clark (1979,80) discussed practical aspects that arise while 

fitting smooth regression function to radio-carbon dates on tree 

rings data. He obtained estimates of the smooth function and 

calibration using biased estimators of the regression function. The 

cross-validation mean squared error has been proposed for selecting 

an appropriate regression estimator and its bias. He also proposed 

adjustment for intervals after theoretical calculations and 

simulation experiments.

Lundberg and DeMare (1980) advocated that in applications with 

small measurement errors, simple approximate confidence intervals in 

calibration problems serve quite well when the relation of non-linear 

type in t is considered. They compared their results with simulation



results.

Lechner et al. (1980) discussed about pressure-volume calibration 

curve. They explained the appropriateness of applying splines to 

this curve and presented overview of the associated statistical 

uncertainties. In (1982) they implemented Scheffe's type calibration 

procedure on a pressure-volume example and compared results with a 

method as in Naszodi (1978).

Turiel et al. (1982) made simulation study about the linear 

calibration problem and inverse median estimation problem. They 

compared the classical estimator, the inverse estimator and the

Naszodi (1978) estimator for small and large samples using the

criteria of mean squared error, Pitman closeness and probability of 

over-estimation and suggested different estimators under different 

situations.

Grassia and Sundberg (1982) considered the statistical precision 

of class frequency estimates for populations of items. They took 

into account contributions of error from calibration, from sampling 

the population and from random mis-classification in the sorting of 

the sample.

Swallow and Trout (1983) presented the methodology for 

determining objectively the lower ( or upper ) limit associated with 

a simple linear regression i.e., the point below ( or above ) which a

regression model fails. They gave methods for diagnosing, whether

problems observed beyond the limit are due to increased variability 

or due to breakdown of the linear relationship, with multiple 

observations at some t value.

Schwenke and Milliken (1983) considered nonlinear models and 

picked the problem of classical type. They gave three techniques for 

obtaining confidence intervals for t based on asymptotic theory. 

They investigated small sample properties by a simulation study and



compared results.

Hochberg et al. (1983) proposed two new estimators for 

calibrating unknowns from dose-response curves in a system of quality 

controlled assays. The new estimators utilize the results of all 

other assays through the replications of the control samples in the 

system in contrast with classical estimator which only uses the 

results of one assay in which response of the unknown dose is 

measured. They compared results with an example.

Handel (1984) dealt with the problem when both variables are 

subject to error and showed how the least squares formulae are 

modified in this situation. He explained this process in detail.

Knafl et al. (1984) solved a problem of classical type where 

Scheffe's (1973) procedure did not give good results because of the 

particular linear model assumed. They assumed a more general model 

and gave procedures for confidence intervals.

Spiegelman (1984) gave a method that divides the data into 

training and test groups. The test group is Iteratively checked to 

see that a prechosen nominal confidence probability of coverage is 

met as in Scheffe (1973). It is shown that nominal probability level 

is still valid. In (1984) he gave a statistic for identifying 

influential observations in Scheffe's (1973) type calibration curve.

Oman (1984) analysed residuals in a calibration problem of 

classical type and proposed a statistic that is appropriate to 

specific situations and is similar to Cook's Distance. In (1985b) he 

gave an exact formula for the mean squared error of the inverse 

estimator in the linear calibration independent of Shukla and Datta 

(1985). He compared his results with simulation results of 

Krutchkoff (1967), asymptotic results of Berkson (1969) and Shukla 

(1972). These results were quite close to the simulation results but 

differed slightly from asymptotic results because of small N as one



can expect.

Mckeon and Chhikara (1985) compared the classical, inverse and 

Naszodi estimator from the point of view of regression estimation in 

sample surveys. They concluded that inverse estimator is more 

efficient than the classical estimator.

Carroll et al. (1985) and Carroll and Spiegelman (1986) discussed

the cases where both variables are subject to error. They studied 

the effect of measurement errors in simple linear regression and

emphasized that both criteria which define what is small measurement 

error, Draper and Smith for the first criterion and Scheffe (1973) 

and Mandel (1984) for the second criterion, are useful for point 

estimation and interval estimation respectively for calibration 

purposes.

Reilman and Gunst (1986) also discussed errors in both variables 

and contrasted maximum likelihood estimators of regression parameters 

with corresponding least squares estimators.

Lwin and Spiegelman (1986) took into account the error in the 

explanatory variable having a known finite bound. They gave an

easily implementable accurate calibration curve procedure and 

produced conservative confidence intervals.

Among others Rothman (1968), Lindley (1972), Pepper (1973), 

Winslow (1976), Seber (1977), Dietrich and Marks (1979), Draper and 

Smith (1981), Sinclair (1982), Kurtz (1983), Branco (1985), Heldal 

and Spj^tvoll (1985), Schaffrin (1985), Lee and Yum (1985) and Currie 

(1985) have also considered the calibration problems with different 

situations.

(b) BAYESIAN APPROACH

Usually P(x|t) is assumed N(a+(St, <T2X [t) anc* addition only

prior distribution of T denoted by x(t) or both ir(t) and



ir(0t, (B, 0-2XJt) are assumed known. Special cases also include

improper priors

ir(o:, (3, <r2xlt) do; d0 d<r2x|t - da d0 d cr2xt t/cr2x , t.

The required property of an interval estimate is

p(Int. will contain tix; expt.) « 0,95

Dunsmore (1968) assumed that X and T have bivariate normal 

distribution in the experiment. He derived that posterior

distribution 7r(tf|expt.; X f )  is the Student’s t distribution which 

gave inverse estimator t as the conditional mean of p(tf|expt.; X f )  

where Xf and tf denote the values in the future situation.

Hoadley (1970) considered the linear regression problem and 

showed that among a class of Bayes estimators, the inverse estimator 

t is a particular solution for a certain informative prior. He 

showed that if 7r(of, (9, In cr) is uniform and Tr(tf) is t distribution, 

then posterior of Tf is also Student's t distribution and t is 

resulting Bayes estimator. His comment on Dunsmore's (1968) 

bivariate model is "the estimation of t is really a prediction 

problem ( as opposed to a reverse prediction problem)".

Kalotay (1971) applied the structural technique of analysis to 

solve the linear calibration problem where there are k observations 

In the current situation to predict a single value of t. He derived 

a marginal structural distribution for t and compared results with 

Hoadley (1970).

Frazier (1974) determined the worth of Hoadley's intervals (1970) 

in practical situations when the distribution of true t is unknown 

which is usually the case. He made a simulation study and concluded 

that the confidence interval is always valid for t within the 

experimental range using end point design.

Aitchison and Dunsmore (1975) considered the problem of both the 

natural and designed calibration and derived the posterior



distribution of tf. They assumed vague prior distributions for the 

parameters and a student's t for tf having expectation t and variance 

(l+l/N)S^f/(N-5). The resulting calibrative distribution of t came 

out to be Student's t centred on the inverse estimator. We recall 

the characterization in section 1.7 of the inverse estimator as the 

best linear predictor when ^ = t and a2 = Stt/(N-2) . Aitchison 

(1977) analysed a practical problem of system transfer and suggested 

some modifications.

Williford et al. (1979) derived a posterior distribution of tf 

ir(tf|expt; Xfj_ They assumed the prior distribution of tf normal, 

Xf's as N(a+|3t) a2X |t) and 7r(a, 0, c2X|t) K l/<r2xit> which resulted 

in posterior distribution of tf as approximately normal. They 

compared their confidence regions with that of Dunsmore (1968) and 

made a monte carlo study to compare their own posterior confidence 

intervals with Hoadley's posterior Intervals (1970).

Hunter and Lamboy (1981) in their paper, which appeared with 

discussion, assumed locally uniform distributions for regression 

parameters and the response variable X. Since the observations of 

the regression experiment are independent of the future situation, 

they derived the distribution of T from the posterior densities of 

regression parameters and X. They obtained the posterior

distribution of T approximately normal for unknown o^xit using 

density of T along with the calibration line. Their posterior 

distribution of T is equivalent to the structural solution obtained 

by Kalotay (1971) and has infinite mean and variance suggesting 

classical estimator satisfactory against Hoadley (1970).

Davis and DeGroot (1982) considered all the four possible 

combinations of, "regression experiment" and "future situation", 

being controlled or random. They derived the posterior distribution 

of tf assuming prior distributions for t and regression parameters.



They commented on these models as "since the value of tf is unknown 

to the experimenter in the discussion, tf must be regarded as 

stochastic (even though its value may have been "controlled" by 

someone else)".

Ansley and Wecker (1984) analysed the non-linear calibration 

problem. In their Bayesian analysis they derived the predictive 

distribution for the future observation Xf for given tf conditional 

on the experiment in the first step and then they, obtained the 

distribution x(tfjXf) conditional on the experiment by assuming 

uniform prior distribution for t. They compared their results with 

the Lechner et al. (1982).

Bermudez and Bernardo (1985) have done a Bayesian testing of a 

calibration procedure.

(c) Best Linear Predictor and related approaches

Usually P(x|t) is assumed N(a+j3t, <i2x|t) an(* t*ie first two 

moments of T i.e. ET — fi and VAR(T) — a42 are assumed known and thus 

the unconditional interval

p( Int. will contain t) = 0.95 

may seem appropriate. This formulation is discussed further in 

chapter 4.

Tallis (1969) considered the problem of obtaining a satisfactory 

estimate of a variable T from another variable X where X and T have 

joint distribution and experimental samples of X and (xf, tf) i -= 1, 

2, . . . ,N have been observed. The estimate of t depends upon

regression parameters and the first two moments of T, He used the 

information on X to get the first two moments of T and obtained the 

estimates of regression parameters from the pairs (Xf, tf) i -= 1, 2,

. . . , N. He illustrated this situation when X and T have bivariate 

normal distribution.

Brown (1979a) proposed the integrated mean squared error (IMSE)



as an optimising criterion for the linear inverse regression problem. 

He derived a predictor which depends upon regression parameters and 

first two moments of T. Like Tallis (1969) he suggested to replace 

the regression parameters with their estimates from regression 

experiment and mean and variance of T may be known "apriori". His 

estimator is inverse estimator when t — fi and VAR(T) *= Sf-p/(N-2) . It 

is to be noted that replacing the regression parameters with their 

estimates introduces some uncertainty but he did not take into

account this uncertainty.

Rao (1975, 81) considered a linear regression problem with a

bivariate situation. In the later paper he assumed a and 0 known and 

proposed the best linear predictor as an estimate of T. Like others 

he also assumed first two moments of T i.e. p and c 2 known. This 

problem is mathematically much simpler with known a and 0 as compared 

to the problem when a and 0 are unknown.

Lwin and Maritz (1980) suggested the estimator t - 2?(riX=x0) 

which has minimum mean squared error and is optimal when regression 

parameters are known. They assumed that the pairs (tf, Xf) 1 — 1, 2, 

N, can be observed and the calibration curve exists. In

practical situations regression parameters are not known and can be 

replaced by their estimates from regression experiment. They

suggested to calculate the distribution of T from the tf's in the 

data. In (1982) they used the total mean squared error as criterion 

and derived classical and inverse estimators from it. They compared 

the mean squared error of both the estimators in the asymptotic sense 

and showed that the inverse estimator is superior if the current t 

value is sampled from the same population as the previous t values.

Lwin (1985) took this problem again and discussed it from the 

point of view of Tallis (1969) and Lwin and Maritz (1980). He

empasized the need of improvement in the estimation of parameters
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where moments of T are obtained from the supplementary infomation on 

X or T and regression parameters are replaced by their estimates from 

the regression experiment.

Copas (1982) stressed the need to assume about the distribution 

of T in future. He explained how the predicted t value may vary 

depending upon the situation.

Muhammad and McLaren (1985) reporting some of results of the 

present thesis, assumed a bivariate random variable (X,T) in the 

current situation with E(T) - p and VAR(T) « cr2 known and replaced 

regression parameters by their estimates from the regression 

experiment to estimate the best linear predictor. They showed that 

unconditional mean squared error of the best linear predictor depends 

only on four invariants and splits into

(a) Intrinsic uncertainty in the bivariate situation;

and

(b) uncertainty due to estimation of regression parameters from 

the experiment.

They approximated mean squared error using Taylor's series and 

made a simulation study to check the accuracy of approximations.

2.2. OPTIMAL CALIBRATION DESIGNS

Very few material is available on this aspect of calibration 

problem. The few found only cover traditional approach and are 

reported here.

Ott and Myers (1968) were probabily the first to embark on 

optimal designs in calibration. They considered the classical 

estimator and used the criterion of minimizing integrated mean 

squared error. They concluded that for symmetrical designs with N 

even, N/2 observations should be taken at t = 1 and N/2 at t = -1. 

Similarly for odd N the optimal design is 

*1. t-2» •••» t(N-l)/2 " -*1



fc(N+l)/2 “ 0 

t(N+3)/2» •* * » tN * 1
They also derived optimal designs using linear approximation for the 

particular cases when the true model is linear or quadratic.

Thomas and Myers (1973) looked into the designs for inverse 

estimator following the designs for classical estimator because of 

the long controversy between these estimators. They used the 

criterion of integrated mean squared error and developed designs for 

linear approximation when true model is linear or quadratic. The 

designs depend upon unknown parameters which are not stable. They 

showed that optimal designs exist and are near optimal and do not 

depend upon unknown model parameters. In their integrated mean

squared error criterion, T is uniform over the range of the 

experiment but their use of the inverse estimator suggests

fi — E(T) = t and VAR(T) — a2 (Brown, 1979a). This may not be 

appropriate, depending on the design.

Andrews and Herzberg (1973) adopted sequential designs for the 

classical estimator in two stages. In the first stage they obtained 

the estimate from regression experiment and in second stage centred 

the design at this estimate. They proved that asymptotically

parameter estimates approach their expected values with probability 

one. Perng and Tong ( 1977) also considered this problem by

sequential procedure and made a monte carlo study. They reached the 

same conclusion as Andrews and Herzberg (1973) that the procedure is 

asymptotically optimal.

Ford (1976) considered the bivariate situation in the linear 

regression model and assumed T to be N(/i, <j2) . He reached the

conclusion that end point design is D-optimal. He also considered 

designs for the subset of parameters.

Naszodi (1978) proposed a new estimator by modifying the



classical estimator based on an approximate bias correcting factor. 

He notes that use of the bias correcting formula might be complicated 

or inconvenient in some situations. An alternative procedure of 

reducing the bias is proposed based on experimental design. The end 

point design is the design which optimises the proposed criterion and 

the criterion is based on the integrated absolute bias over a 

specified range of T.

Spiegelman and Studden (1980) discussed designs in the context of 

Scheffe's approach and gave class of appropriate designs which depend 

upon location knots and slopes of the segments in linear splines.

Buonaccorsi (1986) used the criterion of minimizing asymptotic 

variance, average asymptotic variance and maximum asymptotic variance 

over the range of explanatory variable. His criterion of average 

asymptotic variance is close to Ott and Myers (1968). He has 

discussed the influence of designs on confidence regions.



CHAPTER 3

DERIVATIONS AND SIMULATIONS

3.1 DERIVATION OF THE BEST LINEAR PREDICTOR

As already discussed under section 1.2 we have a regression 

experiment and a current situation for the calibration problem; let 

us consider first the simple linear regression model

x = a + /St + 6 - 

or EQ.fit) - a + (St 

and VAR(JTir) ~ cr2x|t - VAR(X) - {COV(X,T)}2/VAR(T)

The experiment provides least squares estimates of a, /3, cr2X jt which 

have the following meaning in the current situation

a - E ( X )  -  (3E(T) - 

0 - COV( Xt T ) / V A R ( T )

<r2X |t = VAR(X)  -  { C O V ( X , T ) } 2/ V A R ( T )

In the current situation consider a bivariate random variable (X,T), 

where only X has been observed and t is to be predicted by the best 

linear predictor t - C + DJT. Here C and B are required to be 

estimated which are defined by minimizing (1.1)

C - E ( T )  -  DE ( X )

D - C O V ( T , X ) / V A R ( X )  

o-2t)x = V A R ( T) - {COVCr, X)}2/VAR(X)

To calculate three functions C, D, o-2t|X; five unknown moments 

EX,  C O V ( T, X ), VAR( X) , E ( T ) and VAR( T) are needed. These are 

obtained from the regression experiment because P(x|t) is the same 

in both the situations and F(T) — /i and VAR(T) = cr2 are assumed 

known. So

E{X) -  EE(X\T) -  a  + pfi 

VAR(X) = <r2x | t  + /3 2cr2 

OOV(r, X) -  per2
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thus

so

(3(T:

p 2 cr2 + or2x | t  ^ 7-2

...(3.1)

p  1 ( - a / p  +  f.i t 2 )
C “  fi -  (ct +  p f i ) _________ =   . . . ( 3 . 2 )

1 + T2 1 + 7" 2

-a*/p + (t - p)
(I +

o-'tix “ O'2 -

1 + 7 2
p 2 <rA

P2 o'2 + o-2X jt

<j-2{1 - (1 + r2)-1} 

1 f X -  a

1 + T2 1 + r2

...(3.3)

...(3.4)

ft , ..(3,5)

where

so

^ X|t

j32<r:

0zo-;

p*a2 +  cr2x | t

t “ p2 t + (1 - p2 ) /* ..(3.6)

It is clear that the best linear predictor is weighted average of 

classical estimator and fi.

In terms of regression estimates a ■= a, P “ P and cr2X |t “ °'2xit5 

the best linear predictor would be
A A Vt “ p2 t + (1 - p2) n ...(3.7)

where
P2 <X2

0V 3 + ?3xlt

3.2 BIAS AND MEAN SQUARED ERROR OF THE BEST LINEAR PREDICTOR 

These can be calculated under these two situations

(a) a, P and cr2X j t known

(b) a, p and ff2X |t unknown
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3.2.1 BIAS

(a) a ,(3, 0-2x ,t known
bias - E[T - (C + DX) ]

- E(T) - C - DE(X)

= E(T) - fi + DE(X) - D£(X)

- 0

so it is unbiased.

(b) a, 0, <r2X |t unknown

When a, |3,or2X |t are unknown, these can be replaced by their estimates

from the regression experiment, then

bias - E[T - (C + DX) ]

- ~ E(C) - EDE(X) .

- fi - E(C) ~ ED (a + 0/0

(substituting approximations to EC and ED from appendix A and

simplifying)

- crVSTT(t - fi) a  ~ P2)(2p2 - 1)

- ± " P2X 2P2--' D < % > *  ] ...(3.8>
I (N - 2) J

£ 0, so biased

%  - [O'2(N - 2) ]/S>j"r

BN - [<t - fi)2(N - 2) ]/STT

3.2.2 MEAN SQUARED ERROR

(a) a, 0 and cr2x]t known

MSE = E[{T - (C + DX)}2 ]

- E[{(T - DX) - c}2 ]
- VAR(T - DX)

- (1 - p 2)o-2

where



(b) a, 0 and o‘2X |t not known
When a, 0 and crzx(t are not known, these can be estimated and the

values substituted would give the mean squared error as 

MSE - E[{T - (C + DX)}2 ]

- EE[{T - (G + DX)}2 |C, D ]

- E[ET2 - 2CET - 2DETX + C2 + 2CDEX + D2£X2 ]

= £[(C - C)2+ 2(£X)(C - C)(D - D) + (£X2)(D - D) 2+ (1- p2)<72 ] 

because the expression in square brackets is quadratic in C, D whose

minimum (1 - p2)<r2 is achieved when C — C, D = D. Note also that

(2\X) and (C,D) are independent. So

MSE - E(C - C)2+ 2(EX)E(C - C) (D - D) + (EX2)E(D - D) 2+ (1 - p2)<r2 ]

- (1 - p2)<t2[1 + Qs ] . . .(3.9)
where

Qq - EC C - C)2+ 2(EX)E(G - CUD - D) + (EX2)E( D - D) 2 ...(3.10)
(1 - p2)cr2

so

MSE - (1 - p2)[l + Qs ] ...(3.11)
<7 2

Using the approximations to VARG, WA£D and' COV(C, D) from (appendix 

A), as mean squared error - var + (bias)2, and ignoring the (bias)2 

being of order (1/N)2, we get the approximated value of Qs. This is 

denoted by QA

QA - J l  +_L_f2p = (l - P2> + (1~2P2)V;(K-2) + PH » -
N N — 2 I S-p<j S'j'rj. J

or
QA “ -if- + -I—  fcpHl - P2) + (1 - 2p2) 2 (Cj,) + p2(BN)]...(3.12)

N N - 2l J

Qs ^ QA an<i equation (3.9) can be written approximately as 

MSE - (1 - p2)<r2[ 1 + Qa ] ,..(3.13)

The expression (3.13) has two components

(1) (1- p2)<r2, the intrinsic uncertainty about t|x in a bivariate 

situation;
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and

(2) Qa(1 - P2)&2, the uncertainty due to estimation of a, (3 and 

<r2X |t in the experiment.

The main interest is in Q̂ . It is quite clear from equation 

(3.12) that Qa or Qs or equivalently MSE/<r2 is a function of the 

following four dimensionless quantities.

(1) N, size of the experiment.

(2) Cjj “ (N - 2)o’2/stt» relative concentration of the experiment.

(3) (N- 2)(fi - relative bias of the experiment.

(4) p2 = 020-2/(1320-2 + 0'2X |t)» squared correlation coefficient.

The first three quantities are known and p2 can be estimated from

the regression experiment using known /i and a2. It should be clear 

that p2 is not a function of the regression experiment alone as 

p2 « 020-2(020-2 + (j-2X |t:)-1 where cr2 is not a parameter of the

regression experiment.

Now we can prove the following theorem.

THEOREM 3.1 MSEAr2 DEPENDS ONLY ON THE ABOVE MENTIONED FOUR 

INVARIANTS

PROOF:

It can be proved through the following steps 

S tep 1:

MSE/a2 depends only on

a, (3, c2X |t; /*, c2(defining five bivariate moments)

and

N, t, S-jvj (defining the experiment)

Proof:

In the expression (3.11) EX, EX2, p2 and a 2 are all (true rather 

than estimated) moments of the bivariate future distribution, so are 

functions of o\ (3, c2X |t» t1 an<* 0-2 •
The best linear predictor is
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A A At « C + DX

where C, D are functions of a, (3, or2x|t* <f2
Thus the distribution of C, D depends on f t ,  c r 2 and parameters of the 

distribution of a, j3, °'2x|t

Under the normality assumption of PCx̂ it-̂ ), the following are 

independent:

<j2x|t -*-s °r2x|t X 2 (N-2)/(N~*2) 
j3 is N((3, o-2X|t/STT) 

oi* is N(cx*, o-2x|t/N)
where

a* " a + fit

It concludes that the distribution of G, D depends on f t ,  c r 2 and a ,  ( 3 ,

°‘2x|t» t» STT-
Step 2:

MSE/c2 is not changed by changes of origin/scale of T and/or X 

Proof

What happens if origin and scale of T are changed ?

Define t ' - f + gT ■

£ - ET' - f + g f t  

<r2 - VAR( £  + gT) - g2a 2 

E(XiT) - a + 0T

- ot + flcr" - f)/g] = a +
where a = a - (f/g)jS, jS - (3/g

<<3r2x|t> = VAR(XlT') - ^AKUlD = o-2xtt 

N*=N; T = f + g T; S = g2S-j»j 

What happens if also origin and scale of X are changed?

Define 1 + mX

jtt" - /* - f + g/i
o*1' =» = g0- as above

£(X"ir') - 1 + mE(X\T")
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= 1 + ma + mj3T

i.e.

a" - 1 + ma - 1 +m[a: - (f/g)(3]

(3” - m(3 = (m/g)0 

(<r2x ,t)" - VAR(x'lT') - m2cr2x|t

N" - N; r”»f + gf; S'XT =g2Sxx

We have

C + DX ■= p2{(X ~ £)/£} + (1 ~ p 2)p 

Note that ( p 2)" - p 2

Consider £[ {r - (C + DX)}2]

X"- a" - 1 + mX - [1 + m{a - (f/g)jS}]

» m(X - a) + m (f/g)0

[(X" - a”)/0n] * g[(X - a)/0] + f

(using the well known fact that a transforms in the same way as a, 

etc. )

(C + DX)" - pi[g (X - a)/0 + f] + (1 - jS2)(f + g/0

- g £2[<X - S>/0] + g(l - £2)p + f

r" - f + gr
by last two lines

T" - (C + DX)” - g[T - (C + DX) ]

So

E[{TU - (C + DX)}2] - MSE" « g2 MSE

finally

MSE'VCo-2)" - MSEu/(g2(72) - MSE/<r2

Step 3:

MSE/o-2 depends only on

N, p, (B^)if Cjg t, Sxx> a, /3; a transformation of 8 

variables listed in step 1 

Step 4:

MSE/a2 depends only on the first four invariants given in step 3;
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i.e. N, p, (Bfl)i and CN.

Proof

The four invariants are not affected by changes of scale and 

origin in X and T.

Consider two calibration situations or "systems" A and B with 

same values of N, p, (B^)i and Cjq.

We can transform system A to system A having t = 0 (by origin of T) , 

S'p-p = (N-2) by scale of T, a “ 0 (by origin of I), (3=1 (by scale of 

*).
MSE/c2 is same for A and for A; by step 2.

Similarly B can be transformed to a system B having t = 0, etc; 

where MSE/c2 is same for B" as for B.

Since N, p, (Bĵ )i, Cjj are unchanged by transformations, they have 

the same values for B , B, A, A". So B , A agree in all 8 

quantities listed in step 3. Hence MSE/cr2 is same for B as for a ".

Thus MSE/o-2 for A is same as for B.

In other words MSE/o-2 is a function of N, p, (B^)it Gjq.

Diagramatically

System A System B

\ (
\ iuse . . use
\ /

step 2 *. / step 2
>. /

\ /

< >
use

step 3

System A System B"

t “ 0, etc. t ** 0, etc

This completes the proof.
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3.3 SIMULATIONS

By now it is quite clear that Qs or Qa is a function of four 

invariants, so to study Q we take the following set of values for 

these invariants.

N = 10, 30, 50 

CN - 0.25, 1.0, 4.0 

BN = 0.0, 1.0, 4.0 

p2 - 0.7, 0.8, 0.9

All the 81 (34) possible combinations of these four invariants 

are made and the approximated values of EC, ED, VARG, VAKD, COV(C, D) 

and Qa are calculated for these combinations using the formulae in 

appendix A for k = 1.

To check the accuracy of approximations, simulated estimates of 

the above quantities namely EC, ED, VARG, 7ARD, COV(G, D) and Qs for 

the same 81 combinations are needed. To obtain these C and D are 

required to be simulated which are not independent but 

C is a function of ft, &2, a*, ft, tf2X |tf t

and

. D is a function of ft, ^2X |t' 0-2
where

a* is N(a*, <r2x ,t/N)

@ is N(0, cr2X|t/STT)

^2x|t is [(r2x| t/(N-2) ]x2(N-2)
From the distribution theory a*, ft and <r2X |t: are independent.

The values of a* 0, ft ** 1, ft *= 0 and cr2 = 1 are taken for 

convenience in simulations and t, S-p-p and are calculated from

the invariants.so

STT = (N-2)<72/CN 

t - /i + (B̂ /Cfj) £ a 

^ 2X|t - [(1 - P2)/P2 ]@2& 2



A x A A10000 values of each a , /3 and er2Xjt- are generated using NAG and thus
A Avalues of G and D using these simulated values in formulae (3.3) and 

(3.1) respectively. From these 10000 C and D values, the following 

simulated estimates are calculated.

EG - ECi/10000 ET) - ED.j/10000

FARC - I(G^-RC) 2/10000 FARD - I^-RD) 2/10000

Confidence interval(C.I) - EC ± 1.96[ FARC/10000 ]£

Confidence interval(C.I) - RD ± 1.96.[ FARD/10000 ]£

COF(C, D) - E[(Ci - EC)(Dt - ED) ]/10000.

Comparative study of the approximated and simulated values 

indicated that all the approximations are always good for N = 30, 50 

and COV(C, D) is good even for N — 10.

A detailed study is made for N — 10, at p2= 0.7, 0.8, 0.9

separately, for the approximated values EG, ED, versus their

simulated values by graphs. The labels in the graphs are according 

to the following table.

bn

0.0 1.0 4.0

0.25 A B C

1.0 D E F

4.0 G H I

The approximated EC's are plotted against the 95% confidence 

interval of simulated values, RC for N=10 and p2 “0.7, 0.8,

0.9,separately which indicate a reasonable approximation except at 

the point H and X, in figure 3.1, where B^ and Cjsf have high values. 

The approximations tended to be better with p2= 0.9.

The approximated and simulated values of the bias, (EC - C) and 

(EC - C) , respectively are calculated where C is calculated by the 

formula (3.3) using a* - 0, 0 = 1, /x - 0 and a2 *= 1. The approximated 

bias values plotted against the interval estimates of simulated bias



values indicate the approximations to bias C are rather bad except 

where B^ is zero, figure 3.1. We also see in this figure that RC - C
Ais small as compared to RC - C. Presumably true bias small compared 

to RC - C. It is interesting that approximations to bias C are not 

used in approximating Q̂ , so zero is better approximation than RC - C 

to true bias.

The RD values are plotted against 95% confidence interval of RD 

for different values of p2»= 0.7, 0.8, 0.9 in figure 3.2 which show

approximations are good except at G, H and I where high values of C^

are observed. The approximations are better for p2 - 0.9,

The approximated bias (RD - D) and simulated bias (RD - D) are 

calculated where D is calculated by relation 3.1. Their plots in 

figure 3.2 indicate that approximations are good except at points G, 

H, I; where Cjg is high. The bias approximations are good for 

p2“ 0.9.

To compute the values of Q̂ , expression (3.12) is used and to 

compute the values of Qs expression (3.10). The values of Qs are 

calculated in two ways.

(1) Qs is calculated exactly, apart from the simulation error, 

and the terms R(C - C)2, R(C - C)(D - D) and R(D - D)2 in (3.10) are 

replaced by

R(C - C)2 - FARC + (RC - C)2

R(D - D)2 - FARD + (RD - D)2

R(C - C)(D - D) - COV(C, D) + (RC - C)(RD - D).

We will continue denoting this by Qs

(2) Qs is calculated by considering the simulated values as true 

values and ignoring the bias terms in the above expressions i.e.

R(C - C)2 = FARC only etc.

We will denote it by Qso.

The comparative study of and Qs, table 1, indicates that the



values are in agreement except at high values of Ĉ . Because a 

confidence interval based on Qs would be complicated, two independent 

simulations were carried out.

The values of plotted against the two independent sets of 

simulated Qs values (including bias) individually for each value of 

p2 =0.7, 0.8, 0.9, indicate a reasonable accuracy of approximations 

except for G, H, I, where has high values,see figure 3.3. 

Approximation error Qa - Qs can be split" into two components

(1) Omission of bias terms altogether i. e (Qs - Qso)

(2) Approximating error of VARG, VARD, COV(C, D) i.e. (Q^ - Qso). 

Mathematically

Qa  " Qs = (Qa  ~ Qso) - (Qs “ Qso)
i Qa  - Qso i >:> 1 Qs - Qso1

(Qa - Qso) plotted against (Qs - Qso) for p2 =0.7, 0.8, 0.9, 

figure 3.3, separately and it can be concluded that there is no point 

in adding approximated bias terms to improve Qa values unless also 

added 0(1/N2) terms in approximated variance and covariance terms.

Qa is inversely proportional to N i.e. with the increase in the 

size of the experiment, Qa tends to be small. It is quite obvious 

from table 3.1. It is an increasing function of Cjj. A look at the 

table indicates that values of Qa at N =30, p2 = 0.7, Bjg = 0.0, 

CN = 0.25 and N = 50, p2 =0.7, BN » 0.0, CN = 4.0 are 0.039762 and

0.036083 respectively. Similarly the values of Qa at N = 30,

p2 = 0.8, Bn = 1.0, CN = 0.25 and N = 50, p2= 0.8, BN = 1.0, CN = 4.0 

are 0.069881 and 0,069333 respectively which are approximately equal. 

This indicates the importance of and suggests that Cjj should be as 

small as possible or equivalently Sfj,/(N-2) should be large.

Qa is also an increasing function of Bjq. It is quite evident 

from table 3.1. In the table the values of Qa at N = 10, p2 = 0.7, 

CN = 1.0, BN - 0.0 and N - 30, p2 = 0.7, CN = 1.0, BN = 4.0 are



0.142500 and 0.144048. Similarly the values of QA at N = 10, 

p2 B 0.8, *= 1.0, " 0.0 and N *■= 30, p2 ™ 0.8, Cjj ■= 1.0, Bjj = 4.0

are 0.165000 and 0.165238 respectively. These values are

approximately equal by fixing p2 and and changing only the size of 

the experiment. This brings to light the inherent weakness in the 

planning of the experiment. It suggests that the experiment should 

be conducted in the right place I.e. with t ■» ft

QA is quadratic in p2. To see how it depends on p2, the 

derivative of QA with respect to p2 is

BQa -* ____ + 1 [ 2(1 - 2p2) - 4Cn(1 - 2p2) + Bn
8p2 N N - 2 I

8QA/8p2 > 0 always If both Cjj > 0.5 and p2 > 0.5 for all Bjj and 

N; so Q is monotonically increasing function for these values of 

and p2. In most practical situations the range 0.5 < p2 < 1 is of 

particular Interest. 8QA/8p2 < 0 for p2 — 1, = 0.25 and B^ « 0.0

for all N but the value of p2 - 1 is not of interest in practical 

situations.

8QA/8p2 < 0 for high values of I.e., at = 4.0 and low

values of p2(p2 < 0.4). So QA is monotonically decreasing function 

for high values of Cjj and low values of p2, otherwise it is always 

monotonically increasing function.

Shukla and Datta (1985) and Oman (1985b) gave an exact formula 

for the conditional mean squared error of the inverse estimator as 

under;

(Condit) MSE - (t - t)2|l + {(N - 6)$(N-1, X) - (N-4)$(N~3, X)}

+ fl + -J_lflI{<N-2)<I>(N-l, X) - (N-4)$(N-3, X)}...(3.14)
I N J 2

where x „ tf^T and crj, - e \ 1 1 .J > 0
( 7 2ĵ j £ L J + 2kJ

k is a Poisson random variable with parameter X/2.



Unconditional mean squared error, which we are denoting in our 

work by MSE can be derived easily from (3.14) as under

(U)MSE - E(t - t)2|l + X {(N-6)$(N-1. X) - (N-4)$(N-3, X)}j

+ fl + __l!TT{(N-2)4(N-lf X) - (N-4)$(N-3, X)}..(3.15)
L N J 2

Inverse estimator is a special case of our estimator with

fi and E(t - t)
N - 2

So exact MSE of our estimator for ** 0.0, Gjj = 1.0 is

(U)MSE = (T211 + _^_j’(N-6)$(N-l, X) - (N-4)$(N-3, X)

+ |l + — ][—  " lJ{(N-2)^(N-l, X) - (N-4)$(N-3, X)}

According to formula (3.9)

MSE - (1 - p2)o-2(l + Qs)

(3.16)

(3.17)

X in (3.16) and p2 in (3.17) are related by X = (N-2)p2
(1 ~ P 2)

In our simulations inverse estimator corresponds to Bjsy - 0.0 and 

Cjj — 1.0. To compare the results of (3.16) and (3.17), we took 

p2 “ 0.7, 0.8, 0.9 and N — 9 and computed these three cases. Results 

are as under,

0.7

16.66

0.8
28

0.9

MSE (theirs)/0"2 

0.351333

0.242043

0.123424

MSE(ours)/(r:

0.355470

0.241784

0.123471
X - 63

It is quite clear that the exact results MSE(tke:Lrs)/cr2 and simulated 

results MSE(ours)/<r2 are quite close.
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3.4 CALIBRATION BASED ON A SAMPLE MEAN Xf OF k OBSERVATIONS

If the k replicated measurements X, , X2, Xj,., with mean Xf,

corresponding to the unknown T value are used, then the best linear
f A A Apredictor based on the estimates, a, /3, o‘2X |t, would be

A A A —t “ C + DXf 

C - E(T) - D£(Xf)

COViT,  X f )

where

and

and

D
VAR(Xf)

M l
V A R ( X f )

{3(T2
02^2 + ^Xlt

k

where r 2 = U x 1 
(32(r2

1 +

(9o-2(a+ j(3/0

02<r2 + V 2̂̂ t 
k

1 +

and

t u f- VAR( T)  -

So



A A A .If N -> «; or -» a; /5->/3, 7 2 -» r2 and if also k -> <», then
£ _ *f ~ a 

0
which is the classical estimator.

Like the classical estimator, the best linear predictor is 

consistent when N, k -» to.

The approximations to the EC, ED, FARC, FARD, COV(G, D) , bias 

and mean squared error of the best linear predictor for this 

situation are obtained using Taylor's series and are given in 

appendix A.

Berkson (1969) pointed out that the inverse estimator is 

inconsistent, and we showed in section 1.7c that the best linear 

predictor coincides with the inverse estimator if fi = t, 

0-2 . StT/(N-2) when k — 1. For general k, however,

O'2 - k~1 S^t/(N“2) would be necessary. The inconsistency of the 

inverse estimator when N, k oo may perhaps be traced to the fact 

that it does not correspond to any fixed combination of pt and o2.



TABLE 3.1

Approximated and simulated Qs values for the 81 combinations.

CN

%
0.0
1.0
4.0

0.0
1.0
4.0

0.0
1.0
4.0

0.0
1.0
4.0

0.0
1.0
4.0

0.0
1.0
4.0

0.0
1,0
4.0

0.0
1.0
4.0

0.0
1.0
4.0

0.25

0.127500
0.215000
0.477500

0.039762
0.064762
0.139762

0.023583
0.038167
0.081917

0.131250
0.231250
0.531250

0.041310
0.069881
0.155595

0.024542
0.041208
0.091208

0.132500
0.245000
0.582500

0.042143
0.074286
0.170714

0.025083
0.043833
0.100083

Qa
1.00

0.142500
0.230000
0.492500

0.044048 
0.069048 
0.144048

0.026083
0.040667
0.084417

0.165000
0.265000
0.565000

0.050952
0.079524
0.165238

0.030167
0.046833
0.096833

0.192500
0.305000
0.642500

0.059286
0,091429
0.187857

0.035083
0.053833
0.110083

4.00 0.25

0.7 N - 10

0.202500
0.290000
0.552500
p2 - 0.7
0.061190
0.086190
0.161190
p2 - 0.7
0.036083
0.050667
0.094417
p2 - 0.8
0.300000 
0.400000 
0.700000
p2 - 0.8
0.089524
0.118095
0.203810
pz - 0.8
0.052667
0.069333
0.119333
p2 - 0.9
0.432500
0.545000
0.882500
p2 - 0.9
0.127857
0.160000
0.256429
p2 - 0.9
0.075083
0.093833
0.150083

0-. 133973 
0.231629 
0.520980
N - 30
0.039907
0,065927
0.142287
N ~ 50
0.023933
0.038384
0.081933
N - 10
0.135583
0.244554
0.567710
N - 30
0.041152
0.070665
0.157536
N - 50
0.024706
0.041197
0.090843
N - 10
0.135293
0.254600
0.608789
N - 30
0.041677
0.074682
0.171870
N - 50
0.025062
0.043566
0.099224

Qs
1.00

0.162922
0.258394
0.541941

0.045299
0.071134
0.147220

4.00

0.343772
0.414560
0.622605

0.061460
0.085475
0.156220

0.026764 0.036014
0.041207 0.050053
0.084722 0.092415

0.186052
0.301440
0.644115

0.051864
0.081792
0.169960

0.030663
0.047328
0.097467

0.375541
0.483354
0.803068

0.091395
0.122379
0.213805

0.053485
0.070650
0.122241

0.208648 0.554168
0.335410 0.711015
0.711931 1.178437

0.059580
0.093120
0.191938

0.134697
0,170378
0.275592

0.035249 0.077233
0.053962 0.096713
0.110216 0.155178
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CHAPTER 4

INTERVAL ESTIMATION

Here we discuss possible interval estimates I for T with their 

justification and emphasize more on unconditional interval estimates 

using the best linear predictor t based on X f ,  f i ,  a 2 and the 

regression parameters a, 0, cr2x|t- There can be two situations.

(a) a, 0, t^xit known
A A(b) a, 0, 0"2x|t unknown and estimated by their estimates a, 0, 

^2x|t-
A Acr2x|t means c2x[t/k and p2x means correlation coefficient between 

T and Jff, where X f  is the mean of k observations in the current 

situation.

4.1. CASE (a) a, 0, cr2x,t KNOWN.

We discuss this case mainly for the light it will throw on 

case (b) which occurs more commonly in practice.

4.1.1 POSSIBLE AIMS

There are three possible aims which are discussed as follows. •

(a) Conditional confidence given Xf. P(T e IlXf) should be 0.95.

If it were possible to calculate, it would be desirable because 

xf is known; for instance if a specific distribution of F(t) is 

assumed, P(t|Xf) can be deduced by Bayes formula. In particular if 

P(t) is N(fi, <r2), then P(t|Xf) is N[C+DXf, (1- p2x)cr2 ].

Thus an interval estimate

I*: C+DXf + 1.96[ (1- p2-)cr2 ]£ ...(4.1)

would have conditional confidence 0.95 given Xf = Xf

However in our approach, no specific distribution is assumed for 

P(t), only E(T) — fi and VAR(T) — cr2 are assumed known. The

conditional confidence of the interval I* would depend upon the shape
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of P(t). Consider exponential shape P(t) *= e-t, (t > o) . For Xf 

sufficiently negative, interval I* would be entirely negative so 

P(T e I*ixf) - 0.

Thus from the point of view of P(T e I|Xf), the interval I* is 

appropriate when T is N(p, a2) and is not appropriate when 
P(t) ~ e-t, (t > o).

(b) Conditional confidence given T. P(T e I]T) should be 0.95.

It can be calculated (simulated) because it only involves 

P(xf|t). It resembles classical approach to calibration problem. It 

is not suitable aim because for P(t) specified exactly, P(t|Xf) can 

be deduced and conditional confidence given Xf, P(T e IlXf) would be 

relevant. In our approach moments of P(t) are known and this partial 

Information about P(t) makes conditional confidence given T not a 

suitable aim. Information about P(t) is available and it is not 

appropriate to insist that P(T € I|T) *0.95 for all T. We show this 

by returning to the case P(t) is N (fi, <T2) , for which X* is the 

appropriate interval, and showing that conditional confidence given T 

of interval I*

P[T within C+Dlf ± 1.96[(1 - p2̂ )<r2]̂  |T] . . . (4.2)

does depend on T,

For any P(t), this probability is

P[(r-C)/D within X f  ± (1.96/D)[(1 - p2̂ )a2)i\T]

-P[X f  within (T-C)/D ± (1.96/D)[(1 - p2x)o-2 ] * IP ]

Using expressions for C and D

T ~ c - pr(l + TJx) + a - n 
D

“ a + {3T + ^Txz(P - p)

- P[Xf within a+(3T + (3t 2̂ (T - p) t (1.96/D)[(1 - p2x)(F2 ] * IP ]

Note that UAR(Xf|P) does not depend upon T as P(xf|t) is
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N(a+<3T, o'2X|t/k) but width of interval for Xf unchanged, see the 

following diagram for the two intervals when T -* /x and T > /i.

a+(3t

* T > 11

*f

so P [ X f  within ot+(3t + /3r2x(r - t̂) ± (1.96/D)[(1- P2x)°'2]^lT] depends 
on T.

P ( T  € I*|!T) is a decreasing function of |T - as following.

1.00

0.95

r
The interval I* in aim (a) above, was seen appropriate when P(t) is 

N(fi, <j2) . Such information about P(t) thus conflicts with the 

requirement that P(T e I|T) - 0.95 for all T. It is strongly linked 

with the fact that

T + fir 2X

^(C+DXflT) “ _________  ¥ T "biased11

1 + T 2X



Unbiasedness (conditional on T) is not appropriate if there is 

information about P(t). In our approach fi and cr2 are assumed known 

and conditional confidence given T is still not appropriate.

(c) Unconditional confidence. P(T e I) should be 0.95.

We recall that aim (a) , conditional confidence given is

desirable but not attainable with our limited assumptions. On the 

other hand aim (b), conditional confidence given T is not desirable 

(given ft and a2).

The unconditional confidence, P(T e I) of any interval is

P(TeIi^,<72; “ Jp(T e I|T=t; a,/3,(i2x| t)P(Pî ,<r2)dt. . . (4.3)

Based on the best linear predictor C+D.Xf, the proposed interval is

C+DXf ± 1.96[ (1 - p2x)<r2j*

- [(Xf - a)/|8]psx + (1 - P*x)/* i 1.96[<1- P25t)^2]4
- t p ^  + (1 - p2s)p ± 1.96 [ (X -pJx)<r2] 4 ...(4.4) 

Now P(C+DXf - T) - 0, and

VAR(C+DXf - T) - P(C+DXf - T) 2 - (1 ~~p2K)ff2, 

due to definition of the best linear predictor t. We suggest that 

P(T e I) depends on P(t) less strongly than does P(T e I\Xf). So 

P(T e I) — 0.95 is an aim easier to achieve approximately than ideal 

aim discussed in (a).

Note that for any interval, aim (c) would be implied by aim (a). 

Also aim (c) would be implied by the inappropriate aim (b).

By Chebychev1s inequality

P[|C+DXf - T | > 1.96[(l-ps2)o-2]*] < (1/1.96)2 - 0.26 

The unconditional confidence (4.3) can be evaluated approximately 

for I* for specified P(t). Different choices of P(t) are discussed 

below.



4.1.2 UNCONDITIONAL CONFIDENCE. AS A FUNCTION OF Pft^

Four different distributions, normal, exponential, uniform and 

triangular are considered as P(t) in (4.3) and the tail probabilities 

are calculated.

(a) PCt1) Normal

From discussion on aims it can be concluded that Error 

probability is 0.025 for each tail for all normal distributions.

For P(t) is N(/a, cr2)   ̂P(T,Xf) is bivariate normal

 > P(TlXf) is N[ C+DXf, (1- p2x)<r2]

 > P(T e I*|Xf) - 0.95 (all Xf)

  ̂P(T e I*) — 0.95 because (a) ---  ̂ (c)

P(T e I*) can be evaluated as under.

Error probability for upper tail

P(r>C+DXf+1.96[ (l-p2x)o2]*)“j[P(r-(C+DXf) >1.96[ (l-p^cr2 ]* iT)]p(t)dt 

referring to C+DXf - tp2x +(1-p2x)p

E(tlT) - T; VAR(t\T) - °~2x|t
(32

so E[T - (C+DXf)|T] = r - p2xP -(l-p2x)p

-= (l-p2x)(P-p)

and VAR[T-(C+DXf) |P] - (p2x)2
@2

(P2x) 2 f P2X 
L P2x

P2x P2x)^2

-  J p [ N [ ( l -  p*x)(r-,i>,pVl-P*x)«fJ]>l-96[(l- P2x)cr2]iP(t)dt
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1.96[ (1- P2̂ )cr2 ]i - (1- P2x><r-/i)lp^ dt
L \p2v (1~ P2v)<r2l* J

* 1,96
<P2x>*

[PJxd- P3x)^2]4

r 1 - P5c; j * p-<*j
P 2X O'

F(t)dt ...(4.5)

■where t*

* " 1.96 1 - P 2X 1* t*
U p 2*)* I 2 . jp X

t--P 1 -

F(t*)dt* ...(4.6)

a

and ¥(Z) - P[ N(0,1) > Z]

Error probability for the lower tail 

Similarly as above

p ( r < c + M r f - i .96[ ( i - p 2x )<r2 ]i -  $  1,96 - fii!*l4ri_?!llp(t)dt...(4.7)
I (P2x)^ P2x ^ -I

-1.96
P2X

P(t*)dt* ...(4.8)
<p2x>*

where $ -= 1  - ¥ ( Z )  .

Considering P(t) normal and p2̂  “ 0.1(0.. 01)0.9 9  in (4.5) and

(4.7), Gauss-Hermite formula from NAG was used to solve the integral 

numerically and the results came out to be 0.025 for both upper and 

lower tail probabilities upto three decimal places. This confirms 

the accuracy of numerical integration.

(b) F(t) Exponential

The error probabilities when P(t) is exponential i.e 

P(t) « e“t, (t > o) 

can be calculated using (4.5) and (4.7) or alternatively the 

following procedure can be adopted.

Upper tail probability

P ( r > C + D ^ f + 1 . 9 6 [  ( 1 - p 2x ) < r 2 ] * )  “  P [ r > C + D ( a + / 3 r ) + D o ' x , t Z + 1 . 9 6 [ ( l - p x 2 )o -2 ]  ̂ ] 

as Xf - a + (3T + tr̂ it Z
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Z is N(0,1) and Z and T are independent

- P[r(l-D|S)-Do-x,tz > C+Da+1.96[(l-p2s)(r2]4]

*3 p ̂2* — "̂xlfc 2 > ^  [ (1~P 2x)^2 ] ̂
(1_D|S) (k) £ (1- D/3)

Note that D/3 — p2x < 1
= P(r-aZ > f) = P(T > aZ+f)

where a — D  ̂ - oT  ̂x 1 ̂ =* f  ̂x 1 ̂ since cr = 1
(1-D0)(k)i >■ i _ p2_ J I i _ p 2_J

and f _ C+Da + 1.96[( 1-
<1 - DP)

- |>(1 - p>s) + 1.96[(1- P2x>o-2 ]*]
(1 - P2x)

1.96
“ 1 + ________  since ju. = 1 and cr *= 1

(l - p*2 )i
thus

w

|p( r  > aZ+f|Z)P(z)dz

-f/a co
Jp(r >aZ+f|Z)P(z)dz + jp(r > aZ+f|Z)P(z)dz 
-co -f/a

-f/a oo -
fl. P(z)dz + fe”aZ_  ̂P(z)dz 
— oo -f/a

a2 oo-f +
P(Z < -f/a) + e (2 t)-i S « Z+a)2dz2 [

- f / a

a 2-f + -f-
P(Z < -f/a) + e ¥(a - f/a)

-f + a
¥ (f/a) + e 2 ¥(a -f/a) ...(4.9)

where ^(s) = P[N(0, 1) > s] 

similarly

Lower tail probability

- f  V  aJ
P(r<C+DZf-1.96[(l-p2x)cr23i)- l-[¥(f'/a)+e 2 *(a - f"/a) ]. . (4.10)
where f — 1 - 1.96/(1- p2x)^.



Gauss-Laguerre formula from NAG is used to evaluate (4.5) and

(4.7) for P(t) to be exponential. Numerical integration results are 

produced in table (4.1). The results obtained by using (4.9) and 

(4.10) are the same as the results of (4.5) and (4.7).

From (4.5) it can be seen that error probability is a function of 

p2x for all shifted exponential distributions

P(t) - 0e“0(t“to), t > t0

If shape of P(t) as exponential is -fixed but p and <j2 change, 

then t* is same but p2 changes as illustrated in table 4.1.(b)

For the case of P(t) — e-t, (t > o), results are given in table

4.1 when p2̂  “ 0.1(0.01)0.99. To find error probabilities for 

P(t) = 0e“^(t_to), ( t > t0 ) and given 02/o'2x|t» one must first

calculate p2 * (32cr2((32a2 + ^xit)-1 as fR table 4.1. (b). By relation 

(4.5) and (4.7) this determines the error probabilities for P(t) of 

exponential shape, therefore table 4.1.(a) can be used and table 4.2 

illustrates the results.

(G) P(t) Uniform and Triangular

For numerical integration of P(t) uniform and triangular in (4.5) 

and (4.7) Gauss-Legendre formula is used with p2̂  = 0.1(0.01)0.99. 

Results for lower and upper tail probabilities are given in table 

4.3.(a) and 4.3.(b) respectively.

To find error probabilities for P(t) « l/(b-a), a < x < b and 

given j52/<r2x|t» one nee<*s to find p2 ■= (32a2 ((32cr2 + o^xit)”1 as -̂n 
table 4.4. (a). By (4.5) and (4.7), this determines the error 

probabilities for P(t) of uniform shape, therefore the table 4.4.(a) 

can be used and table 4.5.(a) illustrates the results.

Similar type of results are calculated for P(t) to be triangular 

and are given in tables 4.3.(b), 4.4.(b) and 4.5.(b).



4.2. CASE (b) a, jS, a2x\t UNKNOWN

The unknown parameters can be estimated, then the interval for T 

would reflect uncertainty about a, {3, o"2x|f

To study the error probability by simulation, following four 

pivotal functions are considered. Each function would lead to a 

slightly different interval for T using the approximation that the 

function is N(0, 1). This is further discussed under section 4.2.3.

4.2.1. PIVOTAL FUNCTIONS

The possible pivotal functions are

Fl * T ~ <a+D%>
(MSE) i

p2 - T ~ <C+D*f+BT)
(MSE - B2t)*

f3 « T ~ (e+̂f)
(MSE - B2t)£

F4 . T ~ (C+DXf+BT)
(MSE)i

where is the bias defined in appendix A.

It can be shown that the distribution of the above four functions 

depends mainly upon the four invariants already studied i.e. B̂ , Cĵ, 

N and p2̂ .

Consider the first two moments of F̂ , for instance,

EFX * Etr “ <6+6%>]
F(MSE)i

„ bT
E( MSE)i

(MSE)£



57

while E(Fi2)
F(MSE)

Now approximately

Bt “ E[r- (C+DXf)]

cr
N-2 

and
MSE _ (1 - PJX) <r2[l + _ ...(4.12)

Thus the first two moments of Fp depend approximately on

bt/°~
(mse/(t2)£

where Bt/ct and (MSE/<r2)£ both are functions of the same four 

invariants as shown in theorem 5.2 and theorem 3.1 respectively.

4.2.2. SIMULATIONS

F̂ , F2, F3 and F4 are calculated by assuming a specific P(t) and 

generating T from it. X f  is simulated from P(xf|t). To calculate C, 

D, p2x, B-p and MSE, we take k - 1, a* - 0, /3 - 1, p. ■= 0, <r2 = 1.

SxX an(*  ̂are derived from and Cjj as in''section 3,3 and 

<r2x*t “ [ (1 “ p2x)k ]/p 2x
A _» A A aor, and cr2X |t are simulated from the usual normal theory and thus C

Aand D as in section 3.3 so

X£ - T - t + (<r2X |t/k)i N(0,1) 
p 2_  _  + J=x|t/k)-i

A AB-j and MSE are calculated by the relations given in appendix A.

The same four invariants studied in section 3.3 each at three 

levels are taken i.e.

Bjj = 0.0, 1.0, 4,0,

CN - 0.25, 1.0, 4.0,

N — 10, 30, 50 

p2x - 0.7, 0.8, 0.9.



81 combinations are made of the values of these invariants and values 

of F̂ , F2, F3 and F4 are calculated by simulating a*, (3, a2X |t and 

the other quantities as mentioned above 10000 times for each 

combination. The point estimates of the lower tail probability 

PiL - P(F^ < -1.96) and upper tail probability P^u " F(F^ > 1.96) 

i == 1, 2, . .., 4 are calculated and also interval estimates for these 

tail probabilities.

The same 10000 values of T and of the N(0, 1) random variables 

defining Xf, a*, (3 and the x2 random variable defining c2X |t are used 

for all the four pivotal functions, for all the 81 combinations. 

This reuse of the simulated values permits "paired data" rather than 

"two sample" comparisons particularly between pivotal functions.

4.2.3. UNCONDITIONAL CONFIDENCE. AS IT DEFENDS ON P(t)

Four distributions, normal, exponential, triangular and uniform 

as in section 4.1.2. are tried as P(t) to simulate F̂ , F2» F3, F4 and 

all the four P(t) are generated with location parameter zero and 

scale parameter one.

1000 values of each of the pivotal functions are used to see 

their distribution. Normal probability plots indicate that F]_, F2, 

F3 and F4 are normal for N — 30, 50. For N * 10, they are normal 

most of the times but for high Bjj, Cĵ where some outliers appear in 

tails. For normal probability plots when N - 10, Bn ™ 4.0, CN * 4.0 

and p2̂  — 0.7 and for each P(t), see figure 4.1,

Summary statistics table 4.6 and inspection of individual values 

of F̂ , F2, F3 and F4 indicate that F^ *= F3 and F2 = F4 with 

difference in the third decimal place only quite a small number of 

times. It Is because B2̂ , bias squared term, is small compared to 

MSE and correcting denominator makes little difference. They have 

approximately zero mean and unit variance which confirms the 

assumption made at the end of section 4.2.1.



As it is evident that F]_ - F3 and F2 “ F4, so we would deal with 

F]_ and F2 only.

(a) P(t) NORMAL 

Point Estimates

It is observed that Pfy < P2L whereas P^u > P2y for all the 81 

combinations.

For N - 10

P^l ranges from 0.042 - 0.057 

P2l " " " 0.042 - 0.064
Pjjj « h u 0.026 — 0.046

?2u " " " 0.025 - 0.046

Sum of both tails; P^y + Pxu 5 P2L + ^2V anc* individual sums are 

nearly 0.088, greater than 0.05.

For N - 30, 50; P^y « P2U and P^y ^ ?2L and are between

0.021 - 0.030 and 0.029 - 0.035 respectively. P^y + ^1U < ^2L + 2U 

and sums for N — 30, 50 are nearly 0.06 and 0.055 > 0.05

respectively.

It is observed that there Is more variation in F2 as compared

with F^ and it has also been noted that there is not much change in

tail probability because of the change in p2x from 0.7 to 0.9. 

Interval Estimates

The intervals for the estimates Pi l> F-jjj, * " are
calculated by the formula

P± ± 1.96 [Pi(l-Pi)/10000]

Their study indicates that for N « 10, Pyy and P2y are significantly 

greater than 0.025 all the times and also Pyy and P2U*

For N •= 30, 50; Piy, F2y are significantly different from 0.025 

but Piy, P2U are almost non-significant all the times.

Contingency Table

81 contingency tables are made for the 81 combinations and for



each contingency table 3 conditional tests are made for comparing 

and F2. Example follows which explains the procedure of tests in the 

tables.

Example for tests in contingency table

Consider the following contingency table

*1

VCM[it -1.96 -1.96 < F2 < 1.96 >1.96 TOTAL

< -1.96 417 2 . 0 419

1.96 < Fi <1.96 8 9150 7 9165

> 1.96 0 1 415 416

TOTAL 425 9153 422 10000

(a) Comparison of P^l an<i ^2L 
refer 8 to Bi(8+2, 1/2)

two sided P value - 0.1719 > 0.05 non-significant

(b) Comparison of P^u and ?2xj 

refer 1 to Bi(l+7, 1/2)

two sided P value — 0.070 >0.05 nonsignificant

(c) Comparison of P^j + P^l, ?2xj + ?2L 

refer 8+7 to Bi(8+7+2+l, 1/2)

two sided P value — 0.0076 >0.05 significant

(1) For N — 10, comparison of P]_l, ?2L indicates that P^l < P2l 

and is significant only when both B^ and C^ are high; otherwise 

non-significant.

For N — 30, 50; P ^  < P2L but usually non-significant.

(2) For N - 10; Pqjj > P2u and is significant only when both B^ 

and Cfj are high.

For N — 30, 50; P^u > ^2U an<̂  non-significant.

(3) -̂ lU + ^1L - ̂ 2U + ^2L for N - 10, 30, 50.
For N “10; it is significant for both Bjj and Cjj high but for N * 30,



50 they are non-significant almost everywhere.

Inspection of the contingency tables indicates that confidence 

probability is almost 0.91 for N * 10 and for N == 30, 50, it is

nearly 0.94 for both and F2 in all the cases.

From the above results it is concluded that F^ is better than F2

for N - 10 and in case of N « 30, 50, they are almost equal. It is

advisable to use F^ always as it is simpler compared with F2.

(b) P(t) Exponential

Point Estimates 

N - 10

It is observed that

FlL ^ H l

On the other hand

FlU £ f 2u
and

FlL + Flu 5 F2l + F2U
PlL ranges between 0.030 - 0.056 

FlU ranSes between 0.032 - 0.050 

P2L » » » 0,030 - 0.056

P2U " " " 0.030 - 0.050

FlL + Flu — F2L + F2U an<* *-s between 0.079 - 0.086

For a, {3, tr2X |t known and p2̂  - 0,7, Py *= 0.018, Py = 0.032 and

Py + Py “ 0.050.
N - 30, 50

There Is less variation in Piy, P2y, Piu> F2U and lower limits 

have tendency towards 0.018 and upper towards 0.032, the true values 

when a and /3 and cr2X |t are known at p2̂  — 0,7.

Interval Estimates

Lower tail probability 0.018 is not but upper tail probability

0,032 is mostly in the interval for N - 30, 50 . For N - 10 these



probabilities are not usually in the interval.

In the present situation both tails are being overestimated 

because of the uncertainty in the estimation of a, (3, c2x|t- 

Interval for t is also wider because of Q in the denominator, than 

when a , (S » <j2x It are known.
Contingency Table 

N - 10
A A*P]_L < P2L anc* significant only" for both B^ and high,

otherwise non-significant.
A A

PlU > P2U anc* -̂s significant for both Bjj and high only.
A A A A

PlL + Pixj < P2L + ̂ 2U anc* *-s non-significant.
N - 30, 50

Same types of inequalities hold for both lower and upper tails as 

for N — 10 and are usually non-significant.

(°) Pft^ Uniform 
N - 10

*1L ^ ̂ 2L 

*1U ^ ^2U 
P]_L ranges between 0,039 - 0.059 

P2L " " 11 0.039 - 0.066
PlU " 11 " 0.020 - 0.044

P2U " " " 0.019 - 0.044

PlL + ^1U — '̂ 2L + -̂ 2U an(̂  ranges between 0.078 - 0.088.

When a, 0, 0'2X |t are known, Piu “ P2u “ ^1L ” ^2L “ 0.011 for 

P2x " 0.7.
From above it is clear that the lower and upper limits are always 

greater than 0.011. This is because of the uncertainty in the 

estimation of regression parameters from the regression experiment.

N - 30, 50

Point estimates Pil « ** 0.030 and P2u ** -PlU ** 0.030 for
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N — 30 and are about 0.022 for N - 50 most of the times and the 

variation decreases with the increase in N.

Interval Estimates

Lower and upper tail intervals never contain the value 0.011 

either for or for F2 in all the 81 cases.

Contingency Table 

N - 10

In the contingency tables 

PlL < ^2L and *s significant only for both Bjj and Cjg high.

PlU > P2U and *-s significant only when both and have high 
values.
/S. A 1 A A
Pil + Piu < ^2U + ^2L and *-s non-significant all the times and
confidence probability is 0.92 approximately.

N - 30, 50

Same types of inequalities hold as for N 10 for lower and upper 

tail probabilities. Most of the times counts tend to be smaller but 

significance is still there for high B^ and Cjj most of the times.
A A A A -
PlL + 2*lu vs ^2L + ^2U are mostly non-signi-ficant every where and 

confidence probability is 0.94 and 0.95 for N = 30 and 50

respectively.

(d) Pft*) Triangular 

Point Estimates 

N -10

It is noted that

Hi, $ h h  and
PlL ranges from 0.038 - 0.054 

P2l " " " 0.038 - 0.060

*1U £ ^2U and
PlU ranges from 0.023 - 0.045 

P2u " " " 0.023 - 0.045



^1L + **1U — ^2L + ^2U and tange is 0.077 - 0.086
Upper and lower tail probabilities are always greater than 0.01, 

which is the value corresponding to p2 -> 0.7 when regression 

parameters are known, because of the uncertainty of estimation.

N - 30, 50

Same types of inequalities are observed for PiLf ^iU, i = 1, 2 
and the sum of lower and upper tail prababilities for both and F2 

is approximately 0.060 for N — 30 and 0.053 for N ** 50.

Interval estimates

Both upper and lower tail confidence intervals never contain the 

value 0.01.

Contingency Table 

N - 10
A APlL < P2L and significant for high values of Bjj and Cjg at the same 

time.
A A
PlU > jP2U and *-s significant when both Bjj and Cjj have high values.
A A A A

PlL + ĵ lu < ^2L + ^2U and *-s non-significant.
The confidence probability is 0.92 '

N - 30 and 50

The same inequalities hold and are mostly non-significant. The 

confidence coefficients are 0,94 and 0.95 for N = 30 and 50 

respectively for both Fi and F2.

It can be concluded from above that

(i) Error probabilities depend on N, Bfj, Cjg and to some 

extent on p 2.

(ii) Correcting for bias in Fi (if any) leads to using F2,

F3 or F4 instead of Fi, but Fi appears to be as good 

as any of these, in terms of error probabilities.



65

4.3. BOOTSTRAPPING

In the previous work it is assumed that conditionally on T, X is 

normal but in cases where we do not know the distribution of X, It 

remains to show how does it affect the mean squared error and 

ultimately confidence coefficient.

Bootstrapping is a resampling procedure to assess the accuracy of 

an estimator and is in fact computing power as a substitute for 

theoretical analysis.

Bootstrap algorithm is as follows

(1) We have pairs (x^t-^), i - 1, 2, .... N where X^'s are

random and t^'s fixed. We call this regression experiment.

(2) Assign equal probabilities to each for i -= 1, 2 N,

(3) Construct bootstrap sample x*1, x*2, x*N as follows

(a) Obtain e^ - x^ - x^ 

where x̂ *- cx + j3t£
A Aa and (3 are the values of regression parameters estimated from the 

regression experiment.

(b) x*i - ct + /3t± + e*£

Where e*^ is selected from e, , e2, ..., ejj using sampling with

replacement with the help of discrete uniform distribution between 1 

and N from NAG.

(4) Calculate C*, D* from the bootstrap sample (x*-̂ , t̂ ) i = 1,

2, ..., N using fi and c r 7 calculated from the following relation with 

B]$ and C^ known.

H - t + [(B̂ ) Stt/(N-2)

<r2 D[ (Cjq) ( Stt)]/(N-2) 

t and S-p-j- are calculated from the data.

(5) Repeat 3(b) and 4, B times and calculate

C* - IC*j/B j - 1, 2, ..., B

D* - £D*j/B
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VAR(C*) - [X(C*j - C*)2]/B 

FAR(D*) - [ H<D*j - D*)2 ]/B 

C0P(C*, D*) - [£(C*j - C*)(D*j - D*) ]/B 

As B tends to infinity all these parameters tend to the true values.

(6) MSE* is calculated by substituting these values in the 

expression (3.9) taking EX = a* + @(n - t)

EX2 - @2<r2 + d 2x 11 + (EX)2 
E(C - C)2 = VARC + (EC - C)2- 

and p2 - 02a2((32<r2 + ^2X jt)"1 
where a*f (3t <T2xjt, t, G, D are estimated from the regression 

experiment.

4.3.1. EXAMPLES

Data of two examples from Aitchison and Dunsmore (1975), already 

discussed in chapter 1 have been taken to illustrate the bootstrap 

procedure in our calibration situation.

Example 1: Measuring water content of soil specimen

Plot of the data (x^f t-j_) i - 1, 16 indicates linear

relationship between X and T, This points out the suitability of our 

technique and there is no need to apply any transformation to make 

the relationship linear.

On the other hand C*. D*, VARC*, VARD* and COV (C*, D*) are

calculated to obtain the MSE* using the formula (3.9) for the same 9 

combinations. The results are given in table 4.7.

The bootstrap procedure is as under

(1) The data set (x̂ , t̂ ) i -= 1, 2, ...., 16.

(2) a*, 0 are calculated by the usual formulae and c2X |t is

calculated by RSS/N instead of RSS/(N-2), refer to 3(b).

(3) e^’s i — 1, 2, . .., 16 are calculated by

ei " xi - *i



where x-̂ - a +

(4) Bootstrapped x*1 , x*2, . .., x*16 are obtained by the

relation

x*;j_ - a. + fit-i + e*^

where e*^ is selected from the e1(e2.... e1 6 with replacement using

discrete uniform distribution between 1 and 16 from NAG.

(5) (x-j*,t̂ ) i - 1, 2, . .., 16 are used to calculate C*, D* and
A jr, "*MSE* by the relation given in the bootstrap algorithm.

Nine values of C, D and MSE are calculated for 9 different values 

of n and a2 which arose as a result of three values of each B^ * 

0.0, 1.0, 4.0 and — 0.25, 1.0, 4.0, using our formulae (3.13).

On the other hand C*, D*, VARC*, VAKD* and CW(C*, D*) are

calculated to obtain the MSE* using the formula (3.9) for the same 9 

combinations. The results are given in table 4.7.

A look at the table indicates that there is quite a good 

agreement between the two set of parameter values calculated.

Example 2: Antibiotic Assay

The data (d^.c^) i - 1, 2, 120 as in Aitchison and

Dunsmore (1975) shows a non-linear relationship between d^(diameter 

cleared) and c^(concentration), As our approach works for linear 

relationship, following criteria were applied to achieve the 

linearity and equality of variances.

(1) For the response variable Box-Cox (1964) transformation is 

applied as under. Let 

f ^W _ |(d - 1)/X for X * 0
I In d for X = 0

We used the data to estimate parameter X as well as the regression 

parameters in the model to be fitted,
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W - ot + 0c + e ... (4.13)

and
N

Lmax (X) " -N/2(RSS/N) + (X - 1)1 ln ^ )
1

where RSS is residual sum of squares after fitting the model (4.13). 

Several values of X and Ljnax^) are g^ven below

X bmax(^)

2.0 -119.625
2.5 -113,828
3.0 -109.964
3.5 -107.878
4.0 -107.415
4.5 -108.440
5.0 -110.806
5.5 -114.394

This gives X — 4 as the appropriate transformation but d4 against c 

gives unequal variances as

concentration Mean S.D

1 14364 7096
2 84208 20647
4 139539 25320
8 189912 31087
16 223066 ' 36683
32 229635 44424

To get the equality of variances, d^2 was tried against which gave 

the following values.

concentration Mean S.D

1 115.22 33.8
2 288.25 34.3
4 372,19 32.7
8 434.39 35.8
16 470.66 40.3
32 477.25 44.2

dj[2 looks appropriate for equality of variances and then to get the 

linearity Box-Tidwell (1962) transformation is applied on ĉ . 

let

V -= f ciA A * 0
I In ci A — 0



and the linear model is

d2 — Bq +B]V + c ...(4,14)

We define Z - V log V and the fitted model is

d2 - B0 + BxV + yZ ...(4.15)

The approximate estimate of A is obtained by the following relation 

starting usually with A — 1

A “ [ (y/B̂ )-fl) ](current value of A) ... (4.16) .

The procedure with A obtained from (4.16) is repeated until the 

decrease in residual sum of squares (RSS^ is small. This 

transformation gave the following results.

Value of A rssa

1.000 1135373
-1.55076 253984
-0.611635 173165
-0.807527 159560
-0.817510 159531
-0.740777 161299
-0.816020 159531
-0.817573 159531
-0.817574 159531
-0.817574 159531

Thus the linear relationship is dJ « a '+ /3/c with almost equal

variances. So x^ - d^2 and t^ - 1/ĉ .

Using the data (d^2, 1/c) i — 1, 2, ..., 120, the same set of 9 

parameters as in the previous example 1 are calculated by the same 

procedure. The results are given in table 4.7

It is evident from the table 4.7 that the values of the

parameters obtained by bootstrapping are in good agreement with the 

values calculated using our formula obtained by Taylor's series

approximations.

4.3.2. EFFECT OF NON-NORMALITY OF ERRORS

In the data of the above two examples errors are approximately 

normal. To show the effect of the non-normality of errors, data with 

shifted exponential errors 0'x|t(v-'-O where v is standard exponential



(e"v) were simulated by generating errors from the exponential 

distribution using NAG.

C, D and MSE are calculated for both the examples by both the 

methods i.e. our method and bootstrapping. The results are produced 

in table 4.7 for example 1 and example 2.

Comparison of table mean squared errors indicates that the 

corresponding values are close by both the methods for all the 9 

combinations of and Cjg although errors are strongly non-normal

This clearly indicates that our method works quite well whatever 

is the distribution of errors.
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: 4.1 

Upper and Lower tail probabilities for the exponential

P(t) *= e ( t > 0 ) i.e. with p - a2 - 1.

P2 uriDer tail nrob. lower tail nrob. total

0.10 0.049 0.000 0.049

0.20 0.047 0.001 0,048

0.40 0.041 0.007 0,048

0.50 0.038 0.011 0.049

0.60 0.035 0.015 0.050

0.70 0.032 0.018 0,050

0.80 0.029 0.021 0.050

0.90 0.027 0.023' 0.050

0.99 0.025 0.025 0.050

(b) The values of p2 — /32cr2/(j82cr2 + a^xit) calculated by fixing the 

values of regression parameters i.e |32/cr2x )t and changing the 

scale of the exponential distribution,

(32/<r2x |t 0.67_____ 1.0 2.33 4.0_____ 9J)

P(t)

(i/e)e fc/8 0.977 0.984 0.993 0.996 0.998

(i/4)e-t/4 0.91 0.94 0.97 0.98 0.99
(i/2)e“t/2 0.72 0.80 0.90 0.94 0.97

e-t 0.40 0,50 0.70 0.80 0.90

2e— 2*- 0.14 0.20 0.37 0.50 0.69

4e-4^ 0.04 0.05 0.13 0.20 0.36
ee—8t 0.01 0.02 0.04 0.06 0.12



TABLE 4.2

Upper (U) and Lower (L) tail probabilities for different scales 

of exponential distribution for fixed values of the parameters 

of the experiment i.e. jS2/<r2x|t*

/32/<r2x,t 0 .67______ U)_____ 2.33_____ 4^0______ 9.0
P i t )

(i/a)e-t/8

(1/4)0 *-/4

(172)6^/2

»-t

2e— 21

— 41

ee— 81

U 0.025 0.025 0.025 0,025 0.025

L 0.025 0.025 0.025 0.025 0.025

U 0.026 0.026 0.026 0.025 0.025

L 0.024 0.024 0.024 0.025 0.025

U 0.031 0.029 0.026 0.026 0.025

L 0.019 0.021 0.024 0.024 0.025

U 0.041 0.038 0.032 0.029 0.026

L 0.007 0.011 0 .J018 0.021 0.024

U 0.048 0.046 0.042 0.038 0.032

L 0.003 0.001 0.006 0.011 0.017

U     0.048 0.046 0.042

L     0.003 0.001 0.006

U --        0.048

L --        0.000

Missing values in the table correspond to very low values 

of p2 < 0.10. (numerical integration not done).
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TABLE 4.3

Lower and upper tail probabilities for P(t) as uniform 

and triangular distributions.

(a) P(t) Uniform P(t) - l/(b - a) a < t < b

p2 lower tail upper tail total

0.10 0.000 ~  0.000 0.000 
0.20 0.000 0.000 0.000
0.30 0.001 0.001 0.002

0.40 0.002 0.002 0.004

0.50 0.004 0.004 0.008

0.60 0.007 " 0.007 0.014

0.70 0.011 0.011 0.022

0.80 0.015 0.015 0,030

0.90 0.020 0.020 0.040

0.99 0.024 0.024 0.048

f4t 0 < t < 1/2
(b) PCt) Triangular P(t) -

i4(l-t) l/2< t < 1

0.10 0.000 0.000 0.000

0,20 0,000 0.000 0.000

0.30 0.000 0.000 0.000

0.40 0.001 0.001 * 0.002

0,50 0,003 0.003 0.006

0.60 0.006 0.006 0.012

0.70 0,010 0.010 0.020

0.80 0.014 0.014 0.028

0.90 0.019 0.019 0.028

0.99 0.024 0.024 0.048
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TABLE 4.4

Values of p2 - (32(T2/((32<x2 + o"2xjt) by fixing the values of 

j32/<72x|t aric* changing the scale of the uniform and symmetrical 
triangular distribution.

(a) P(t) Uniform

(82/(r2x|t 0.67 1.00 1.50 2.33 4.00 9.00

<i2 - (b-a) 2/i 2

1 /l 2 0,.05 0. 0 0
0 0,,11 0.16 0.,25 0.,40

4/l 2 0..18 0..29 0..33 0.43 0.,59 0,,75

1 e/i 2 0,.47 0,.57 0.,67 0.76 0,.84 0,.92

3 e/1 2 0,,67 0..75 0..82 0.87 0,,92 0.,96

64/1 2 0,.78 0,.84 0,,89 0.93 0.,96 0,,98

1 44/12 0..89 0,.92 0.,95 0.97 0,,98 0..99

(b) Fft) Triangular

a2 -  ( b - a ) 2/ 2 4

1 / 2 4 0,,03 0,.04 0..06 0,.09 0,.14 0,.27

4 / 2 4 0..10 0,.14 0,,20 0,,28 0,.40 0,.60

1 6 / 2 4 0,.31 0,.40 0,.50 0,.61 0,.73 0,.86

3 6 / 2 4 0,.50 0..60 0,.69 0,.78 0,.86 0,,93

6 4 / 2 4 0.,64 0.,73 0.80 0.86 0.,91 0..96

1 4 4 / 2 4 0.80 0.,86 0.90 0.93 0.96 0.98
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TABLE 4.5

Probabilities (same for both tails) for different scales of 

uniform and triangular distribution for fixed values of the 

parameters of the regression experiment i.e (S2/or2x|t-

(a) P(t) Uniform

0Vo-2x |t 0.67 1.00 1.50 2.33 4.00 9.00

<r2 - (b-a)2/i2
i/i2 0.000 0.000

4 / 1 2  0.000 0.000
16/12 0.003 0.006

3 6 / 1 2  0,001 0.013

6 4 / 1 2  0.014 0.017

1 4 4 / 1 2  0.020 0.021

(b) P(t) Triangular

0*2 - (b-a)2/24

1 / 2 4  0.000 0.000
4 / 2 4  0.000 0.000

i e / 2 4  0.000 0.001

3 0 / 2 4  0.003 0,006

6 4 / 2 4  0.008 0.011

1 4 4 / 2 4  0.014 0.017

0..000 0,,000 0..000 0,,002

0,,000 0..003 0,.007 0,,013

0..010 0,.015 0..017 0,.020

0,.016 0,.018 0,.021 0..023

0,.020 0,,021 0,.023 0,,024

0..022 0..023 0..024 0,,024

0,.000 0,,000 0,.000 0..000

0,,000 0,,000 0..001 0..006

0,.003 0.,006 0,,011 0.,017

0,.010 0,,013 0,.017 0..021

0,,014 0..017 0..020 0,,023

0..020 0,,021 0,,023 0,.024
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TABLE 4,6

Summary statistics for F̂ , F2, F3 and F4 based on a sample of 

1000 simulated values of each with different P(t) and - 4.0 

,CN - 4.0, N - 10, p2̂  - 0.7.

(a) Pit) Normal and Exponential

Normal Exponential

F1 f2 f3 f4 F1 f2 f3 f4

Mean -0.123 -0.154 -0.123 -0.155 -0.075 -0.101 -0.074 -0.103
Med -0.039 -0.062 -0.040 -0.062 -0.066 -0.083 -0.067 -0.083
S.D 1.149 1.179 1.156 1.171 1.097 1.136 1.103 1.124

MIN -8.363 -8.394 -8.366 -8.391 -4.675 -4.770 -4.690 -4.754
MAX 5.789 5.716 5.820 5.686 4.320 4.302 4.320 4.301

(b) Pit) Uniform and Triangular

Uniform Triangular

F1 f2 f3 f4 f1 f2 f3 f4

Mean -0,.066 -0..093 -0,.066 -0..094 -0.,091 -0..116 -0,,091 -0,.117

Med 0,.032 0,.012 0,.032 0,.012 -0..015 -0,,015 -0.,015 -0..015

£> .D 1,.114 1..146 1,.121 1,.138 1,.161 1,,189 1..167 1..182

MIN -5,.979 -6,.076 -5,.997 -6..057 -6,.688 -6..733 -6.,678 -6,.725

MAX 3..488 3,.470 3..488 3,.470 5..913 5..845 5,,939 5..820
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TABLE 4.7

MSE by our method and by bootstrapping for example 1 and

example 2_____________________________________________

F(x|t) empirical P(x|t) exponential

MU VART MSE(our) MSE(k00t-) MSE(our) MSE(b00t

: ample 1 
26.300 19.045 2.8896 2.8898 2.7792 2.7976
26.300 76.180 3.4363 3.3811 3.2903 3.2162
26.300 304.720 4.1999 4.1635 4.0162 3.9943
35.028 19.045 2,9637 3.0658 2.8526 2.9737
35.028 76.180 3.5723 3.5963 " 3.4214 3.4512
35.028 304.720 4.3583 4.3908 4.1680 4.1326
43.756 19.045 3.2601 3.5861 3.1463 3,4556
43.756 76.180 4.1164 4.2382 3.9461 4.0568
43.756 304.720 4.9921 5.0707 4,7751 4,7425

(b) Example 2

0.3281 0.0291 0.0075 0.0075 0.0069 0.0069
0.3281 0.1164 0.0094 0.0093 0.0084 0.0084
0.3281 0.4658 0.0102 0.0102 0.0091 0.0091
0.6694 0.0291 0.0075 0.0076 0.0069 0.0066
0.6694 0.1164 0.0094 0.0094 0.0084 0.0084
0.6694 0.4658 0.0103 0.0103 0.0091 0,0092
1.0106 0.0291 0.0076 0.0077 0.0069 0.0071
1.0106 0.1164 0.0096 0.0097 0.0086 0.0087
1,0106 0.4658 0.0105 0.0105 0.0093 0.0093
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CHAPTER 5

MULTIVARIATE CALIBRATION

5.1. INTRODUCTION

Multivariate calibration is a topic of current interest and has 

many practical applications. The aim is to make inferences about a 

p-vector T from an observed q-vector X where p < q. The relationship 

between the response vector X and vector- of explanatory variables T 

is determined from the data of the multivariate regression experiment

(X^,!^), i - 1, 2...... N, where and are qxl and pxl vectors

respectively. In this experiment the T^'s are fixed and Xĵ 's are

random,

Consider the multivariate linear regression model

X - T(ft + e ___ (5.1)

where X is a Nxq matrix of q response variables for each of N

individuals. T is Nx (p+1) matrix whose first column consists of

l's, the other columns listing p explanatory variables measured on N 

individuals. (ft is a (p+l)xq matrix of regression parameters and e 

is a matrix of Nxq random errors whose rows are Independent and

normally distributed with

-  0
and

*<ei«iT> - r
The maximum likelihood estimates of (ft and T are

(S# - (TtT)_1 TtX 

f - {XT(I - T(Tt T)“’Tt)X}/N ...(5.2)

The unbiased estimate of T is

f - {XT(I - T(TTT)"1TT)X}/(N-p-l) ...(5.3)

In the future situation a qxl vector X is observed and pxl vector 

T is to be predicted using the multivariate regression experiment.



Both the classical and inverse estimator have been studied by- 

Brown (1982) along with the extension to the Lwin and Maritz (1980)
r

approach.

If ft is partitioned r cF 1 , where jS is qxp,
I I
L ft J

the classical or maximum likelihood estimator for pxl vector T is
T - T + (j(?T f"1 jg)”i^T p-1 (X-X) . . . (5.4)

and the inverse estimator is

T - T + STX S-'xx U  ~ X) ..,(5.5)

where is pxq matrix of sums of products corrected for the mean

and Sxx is qxq matrix of sums of corrected squares and products.

We give the derivation of the best linear predictor in section 

5.3 for general q and p - 1 .  It is interesting to note that the best 

linear predictor in this situation also gives classical estimator for 

tr2 - oo and inverse estimator for n - t and cr2 - S<tt/(N-2) like the 

simple linear calibration problem discussed in chapter 1. The proof 

is given in appendix B.

For p - q - 1, the model (5.1) becomes the simple linear 

regression model and the whole calibration situation and the 

estimators become univariate estimators already discussed in section

1.2 and 1.7.

EXAMPLES

A very common practical example is to get the estimate of age 

based on different body measurements in the current situation 

Wood (1982), Oman and Wax (1984), The relationship between X and T 

is estimated from the data of the regression experiment (X,T) where X 

is a q-vector of response variables and T is a p-vector of 

explanatory variables, in this situation p is usually 1, so T is lxl

i.e. (scalar).



Another example is by Brown (1982), analysed as one of his 

examples, on wheat quality data where p - 2 are the accurately 

determined measurements on moisture and protein content and q - 4 are 

the derived infrared reflectance measurements at different 

wavelengths. He estimated the moisture and protein content from the 

observations on infrared reflectance measurements. We will discuss 

this example in detail at the end of chapter 6. Some other examples 

are given in Williams (1959).

5.2. REVIEW

Most of the existing literature originates from early 1980's and 

is briefly described below.

Henschke (1980) constructed simultaneous confidence intervals for 

the multivariate linear calibration of classical type. Two of the

three methods discussed are the extensions of methods first discussed 

by Miller (1966) based on Bonferroni inequality and the union 

intersection principle for univariate case. Third method developed 

is only applicable to univariate case.

Brown (1982) was the first to discuss the multivariate linear 

calibration problem in.detail. He considered both the classical and 

the Bayesian approaches along with the multivariate extension of Lwin 

and Maritz (1980) and compared the results of the three approaches.

The results regarding the comparison of three approaches in table 

3 of his paper are based on small samples of size five similar to 

simulations of size five so are not reliable. Large samples are 

needed for comparison particularly for Lwin and Maritz (1980).

In classical type calibration the interval estimates sometimes 

become empty or disjoint like the simple linear calibration

problem.

He distinguished the calibration as controlled or natural

depending upon T whether it is controlled or random respectively in



the experiment.

He has suggested that it is beneficial to treat the 

characteristics of the explanatory variable one at a time, forgetting 

the existence of the other p-1 variables.

Brown and Sundberg (1987) looked into the controlled calibration 

problem from the point of view of the profile likelihood function and 

compared confidence intervals with Brown (1982). When an 

inconsistency statistic is large in this^method, there would be large 

regions for T.

Wood (1982) proposed an alternative method to overcome the 

difficulty of empty confidence intervals in the case of controlled 

calibration problem. He partitioned the quadratic form in T, 

obtained from the log-likelihood, into two parts, the first part 

showing the consistency of X with the model and second part a 

suitable expression for non-empty confidence intervals. The 

distribution of second part is quite complex and may be approximated 

by F distribution asymptotically. This method gave smaller 

confidence intervals compared with Brown (1982). His method can also 

be applied to non-linear models that can be approximated by linear 

models within approximate intervals.

Sjbstrbm et al. (1983) described the use of partial least squares 

(PLS) in latent variables for multivariate calibration problems in 

analytical chemistry. They compared this method with principal 

component analysis combined with multiple regression and concluded 

that FLS approach has some obvious advantages over the traditional 

approach.

Oman and tfax (1984) solved a specific problem by applying Brown's 

classical approach (1982). They estimated the gestational age using 

femur length F and the biparietal diameter BPD individually and 

combining F and BPD. They discussed model choice in detail and also



tried quadratic regression making p - 2 instead of one.

Oman (1985a) also discussed the classical interval estimates 

following Brown (1982) and suggested some changes.

Naes (1985a) compared the classical and Bayesian approach 

( assuming the distribution of T only ) in multivariate linear 

calibration. He took the risk function as criterion of comparison. 

He again (1985b, 86) considered calibration situations with error 

covariance matrix having linear factor- structure and covariance 

adjustment respectively. He proposed new solution to this problem. 

Naes and Martens (1984) , Naes et al. (1986) and Martens and Naes

(1984) have described and clarified with examples the situations for 

multivariate calibration and applied different techniques to 

NIR ( near infrared ) instruments.

Fujikoshi and Nishii (1984) derived an asymptotic expansion up to 

order N-2 based on chi-squared percentiles for the distribution 

function of the statistic which is quadratic in T, proposed by Wood 

(1982) for confidence intervals. They (1986) obtained the asymptotic 

expression for bias and mean squared error of the classical estimator 

by expanding the estimate by Taylor's series. They used this 

information and the Akaike's criterion for selection of the best 

subset and compared them by applying on the wheat quality data 

analysed by Brown (1982). Nishii (1986) derived the cross validation 

criterion and obtained the asymptotic properties of it and the two 

criteria of Fujikoshi and Nishii (1986).

Spezzaferri (1985) used the Shannon information to derive the 

distribution of T given data and X . He adopted the Bayesian approach 

and solved a problem of choosing among k different calibration 

experiments associated with k different instruments considering equal 

and unequ&l costs for the instruments.



Sundberg (1985) compared classical and inverse estimators on the 

basis of mean squared error and derived the regions where inverse 

estimator has smaller mean squared error. This is the generalization 

of Berkson's (1969) work in the univariate case. Sundberg and Brown

(1985) investigated unique natural extensions of the traditional 

solutions to estimation and prediction problem when there are more 

variables than observations.

5.3 DERIVATION OF BEST LINEAR PREDICTOR ( p - 1 and general a )

Very often p — 1 is of interest in practical situations as we 

have seen above in the first example in section 5.1. It has also 

been suggested by Brown (1982) and Brown and Sundberg (1987) to 

consider the one explanatory variable at a time forgetting the 

existence of the other p-1 variables.

Consider the multivariate normal linear regression model with 

response q-vector X and an explanatory variable T

X± - a + Ti/3 + e± i - 1,2, ..., N.
qxl qxl qxl qxl

*<«i> “ 0 
and ^(e^eiT) - T

but €£ are independent for i - l ,  2, N.

In the future situation (X,T), where q-vector X is observed and T

is to be predicted; the joint distribution P(x,fc) is such that

P(x|T“t) is same as above i.e. N(ct + T|3, T) .

P(t) is such that E(T) — ft and VAR(T) = cr2 are known.

Future situation with p - 1 is described by the following

parameters.

a, 0, r, f t , a 2  
qxl qxl qxq

These parameters define all the first and second order moments of

future P(x,t).
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E(Xj) - EE(Xj |T) - £(aj + T(5j)

“ OL j + ftp j j - 1 f 2, . . .

E ( T ) -
FAR(Xj) - 7AJ?[E(Xj |T) ] + E[VAR(Xj |T) ]

- WkR(0!j + /3jT) + Tjj

- ^ 2<t2 + Tjj

<707Uj,Xk) - CW[£aj|T),£(Xk |T)] + £[CW(Xj,Xk |T) ]

- £70F(«j+^T, Ĉ +/3kT) + Tjk

- 0j0kC2 + rjk
CW(X) - <r2jS/ST + T <707(X) is a qxq

ttAK(r) - a2

COV (Xj , T) — C07(aj+(SjT+ej ,T) ej is independent of T

Conversely a, jS, r  may be written in terms of the moments.

To derive the best linear predictor we minimize

E[T - (C + DTX) ]2 

Expression (5.7) is minimized by

C - E(T) - DtE(X)

- ft - D^(a + m 3)

For given D mean squared error is thus

VAR(T - DTX) - VAR(T) - 2C,0F(r, DTX) + WLR(DTX)

-  O'2 - 2DTC0y(r,X) + DTCW(X)D 
qxl qxq

differentiating this quadratic in D

0 -- 2C0V(T,X) + 2C0V(X)V

Thus

D - {COV(X)}~' COV(T,X)

-  0-2{r + <r2f3fi}-'(3 

so best linear predictor C + Uftx is

C + DtX - E(T) + DT[X - E(X) ]

.(5.6)

.(5.7)

.(5.8)

.(5.9)

.10)
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- /t(l - DTjS) + DT(* - a)

- fi( 1 - p2) + (X - a)T(J2{r+ cr2/?^}-1/?. . . (5,11)
where p2 - D̂ j3,

5.4. BIAS AND MEAN SQUARED ERROR 

There are two situations

(1) a, 0 and r known

(2) a, (8 and r unknown

(a) BIAS

(1) a, 0 and r known

bias - E( T - (C + DTJC)

- it - C - DtE(X)

- p, - C - DT(a + /fy)

- 0 (using value of C from (5.8))

(2) a, |9 and r unknown

bias - E[T - (C + DTJQ ]

- E[T - (C + 6x*i + $2*2 + • • • + $q*q]
- fi - E(C) - ̂ (Dx^ax) + . . . + E(Dq)E(Xq)
- ^ - E(C) - £(D)T{a + pfi

- fi - E(C) - DT{a + (3fLj - [ED - D]T{a + (3fi}

- ~[E(C) -C] - [ED - D]t{0! + Qfi}

* 0 ...(5.12)

so the estimator is biased in this situation. We will discuss it 

further in theorem 5.2 where it is proved that bias/or depends upon 

the same invariants as the MSE/cr2.

(b) MEAN SQUARED ERROR

(1) a, (8 and T known

Substituting the value D from (5.10) in (5.9) we get 

MSE - o-2 - dTcOV(T,X)

- <r2[l - (r20T(f + o-2̂ ) - ^ ]
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- cr2(l ~  P 2 )

by definition of p2.

(2) a, and T unknown

MSE - E(T - C - DtJO 2

- ££[(T - C - DTjf)2,c,D]

£[ (T - C - D^X)2|C,D] is quadratic in C, D and is minimised by C
Aand D - D  and its minimum is cr2(1 - pz).

Thus

E[ (r - C - DT^)2|C.D]
01<o T c - c-

- M
,D - D. D - D.

+ cr2(l - p2)

where M is a (q+l)x(q+l) symmetric matrix

1 EX1. . . EXq

... EX±Xq

symmetric’
2

Now

where

ex:

MSE — <r2(l - p2) + E trace MN

N 'c - cl[c - c dT - dT ] 
D - DJ

Finally

MSE - E ( C  -  C)2+ 2( E X i ) E ( C - C) (Dx - Dx) + ... +2 ( E X q ) E ( C - C)(Dq- Dq) 

+ E(X^)E(D! - Di)’+ ... + 2(i?XL.rq)£(D1-D1)(Dq - Dq) 

+ , , ,

+ . . . + £ a q2)£(Dq - Dq)2

+ a 2( 1 - p*) ...(5.13)



THEOREM 5.1. MSE/tr2 DEPENDS ONLY UPON N, BN, CN, p and q when p-1

It would be proved in five steps.

STEP 1:

MSE/tr2 depends upon

(i) the unconditional moments p,  cr2 , EX, COV(X), (3cr2

and

(ii) the parameters of the distribution of (C>D).

PROOF

Note that p2 is merely a function of (i) so MSE/tr2 depends only

on

(i) n, tr2, a, jS, T

and

(ii) the distribution of a, {3, f

(Anderson (1984) theorem 8.2.2) 

so MSE/tr2 depends only on

(i, ff2, ot, /3t T; t, STT, N.

STEP 2: -

MSE/tr2 not changed by

(i) Changes of origin/scale of T

(ii) Changes of origin of X 

(iii) X HZ where H is non-singular.

These may be proved as in step 2 of theorem 5.2.

STEP 3:

MSE/tr2 depends only on

(<l) > N, p, (t - fi)/(S<px/(N - 2))£, (N - 2)tr2/SxxI a>

iff, r.

PROOF

This follows at once from step 1. Note that (q), N, p, 

(t-p)/(Sxx/(N - 2))i and (N - 2)tr2/Sxx are invariants for



transformation (i), (ii) and (iii) of step 2.

STEP 4:

Consider two calibration situations or systems A and B which have 

the same values of q, N, p, (Bjg)i and Cflj.

By transformation of T, X of types mentioned in step 2, system A 

becomes system A with

t — 0, Spx " N—2, a = 0, F = I

 L  |   , 0, 0..... 0
[(N-2)<r2/STT]*(l- P2)*

T ...(5.14)

Possibility of this transformation is shown in step 5.

By transformation of similar type, system B becomes system B with 

t - 0, STT - N - 2, a - 0, r - I 

and is same as above in relation (5.14).

By step 3, A and B agree in all quantities on which MSE/c2 

depends.

By step 2,

(MSE/<t2)a - (MSE/o“2)A
and

(MSE/ff2)B - (MSE/o-2)b

thus

(MSE/<r2)A - (MSE/cr2)B.

In other words MSE/o2 depends only on q, N, p, (B̂ ) , Cjj.

STEP 5:

To show the possibility of A ^ a ", by (i) ,(ii) and/or (iii) of

step 2, where A has t - 0, SpT - N-2, a ■= 0, T = I and /? is as in

(5.14) in step 4,

Firstly t — 0 and Spp — N-2 are ensured by choice of origin/scale

of T. These values will not be disturbed by transformations of X,

which are about to be described.
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After a linear transformation X -» HY has achieved simultaneously 

T « I and the required 0, a change of origin in X will ensure a ~ 0, 

without disturbing T or (3.

The transformation X - HY can be done in the following stages.

(a) Linearly independent combinations Y2, Y3, ..., Yq are chosen 

with zero regression on T; i.e. Yj - mĵ JC, where mj Tp - 0, (j - 2,3,

(b) Y^ - *-s chosen to be uncorrelated ( conditional on T )

(c) Write Y - (Y2, Y3, . . . ,Yq)T and CW(YiT) - GGT where G is 

(q-l)x(q-l) and non-singular.

Now <70y(G-1Y|T) - G-^GGTg-^  - I.

The components of 2 - G"1Y are uncorrelated (conditional on T) with 

Y, , by (b). Change of scale of Y1 is all that is needed to achieve 

T - I. Z has zero regression on T by (a).

(d) Consider

If its regression vector is (/?*, 0, 0, ..., 0)^ and its conditional 

covariance matrix is I then the identity
p 2 _  , , . 2 0 T ( f  +  o - 2 0 0 T ) - l  0

shows that

with Y2 Yq. Thus mtT T mj - 0 (j « 2,3, .. . , q) .

scaled version of Y
HY -

Z

p* - <rHP*, 0, 0, 0)

...(5.15)
1 + cr2£*2

thus
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B*2 - p ...(5.16)
0-2(1 - p2)

Since system A has S<jt - N-2, we replace <r2 by (N-2)o-2/Sy x - 
Thus

/3*2
[(N-2)c72/STT](l - p 2)

fl _ *" ...(5.17)
CN (1 - P 2)

THEOREM 5.2. tr“1BIAS DEFENDS ONLY ON a. N. o. BN and CN 

PROOF:

From equation (5.12)

Bias/o' - -[[EG - C] - [EVt - D ]T {a + 0/x} ]/<? ...(5.18)

Following proof that bias/cr depends upon q, N, p, B̂ , follows 

closely similar proof for MSE/cr2. Only step 2 is slightly different. 

STEP 1:

Same as above in theorem 5.1.

STEP 2:

Bias/o" is not changed by

(i) changes of origin/scale in T;

(ii) changes of origin in X;

(iii) X HX, where H is non-singular.

PROOF:

D - a2 { r + o-2|SjST}-1 (3

C — p, - DT(a + (i@)

(i) Change of origin/scale in T.

Consider T^, where T - f + g t" 

a + (ST - a +
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a + |3f + 0gT^- ck*"+ |3 

thus /3g and a*"- a + |3f

also E(t') - 4  (T-f)/g] - (/i-f)/g

<r'2 - yAR(T") - ^AR[(T-f)/g] - <r2/g2 

r unchanged, i.e. T — T ,

Results above show cr/3 unchanged, so {T + or2|3/3T} unchanged and

d "- o-"2{r"+ o-2j3''/3'T}-1̂ "

- aD/a

-  D / g

Similarly £ ( D " )  -  E ( D ) / g  so [£(d")- D] -  [£(D) -  D ]/g

Now a + $ \C - a + |3f + g|£3[ f )/g ]

—  ol +

so second term in bias/cr, namely ]T^a + 0/i}/cr is invariant.

Now

C"- ji - (a"+ Jl/f)

" [<M-f)/g] ~ [DT/g][a + /tt/3) - (G - f)/g 
similarly c "  -  (C -  f ) / g  and E { c " )  -  [£(C) -  f ]/g

so first term in bias/c, namely - [ E G  - C ]/o-~is .also invariant.

Thus bias/a invariant for changes of origin or scale in T, as

required for (i).

(ii)
Xr - m + X

ft, or unchanged,

a + /3T = £(*'iT) - m + a + <3T

so

a - ra + a and j3 - (3

f - T; D"» D; 6'- D;

cT= /i - DT(oi**+ ) - C - DTm

similarly



93
A ̂  A A m  A A A mC - C - DTm and EC'- EG - E(DT) m

thus bias becomes

-[EC -EDTm - (C - DTm) ] - [ED - D]T{m + a + 0fi}

— -[EC - C] - [ED - D ]T {a + , i.e. not changed,

so bias/o- is also invariant.

Note that EC - C is not invariant.

(iii)

X - EX' where H is qxq non-singular

H, a unchanged.

a + (3**T - E[x'|T] « H(a + (ST) 

so a - Ha and (3* — H(S

r" - GOV(X |T) « COVXHXiT) - H V HT

thus

{r% - HT-i{r + c-2̂ } - 1 h-1

and

D"- ht-’ D

Similarly

6' - Ht"1 D, ED"« Ht“1 ED, " -

and

[ED"- D'] - Ht-’ [ED - D] 

so second term in bias becomes

[ED -D H-1 H{g: + i*e. unchanged.

C — pi - D̂ (oi + /i|3) is also unchanged so C, EC, (EC - C) and first 

term in bias/cr are seen successively to be unchanged.

Thus bias/cr is invariant for non-singular transformations X = HX 

as required for (iii).

STEPS 3 , 4 and 5:

Same as in theorem 5.1.

All the above steps complete the proof.
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5.5. SIMULATION STUDY (p-1: general a)

We have proved in theorem 5.1 that MSE/<r2 depends only on the 

same four invariants (as for the univariate case) and on q for any 

value of q and is also invariant under changes of origin/scale of T 

and X. So it is enough to simulate the canonical system with t -=> 0,

STT - N-2, a - 0, T - I, (3 - (0*, 0, 0......0)T where

#3* “ P/[CN(1 - p2) ..,(5.19)
fi - (Bfl)i and <r2 » Ojj 

In the canonical form we have 

EXi - (3*tt

EX2 - EX$ - , . . . , •EX q - 0 

EXx2- 0*2(r2 + 1 + (/8*fi)2 

- <3*2(<r2 + /i2) + 1 

EX22~ EX32 , EXq2 - 1

EXtf2 - £*1*3 EXq_!Jq - 0.

Substituting above terms in the expression (5,13) we have 

MSE - <r2(l- p2)+F(C-C)2+2jS*^(C-C)(D1-D1)+{/3*2(cr2+^2)+l}E(D1-D1)2

+ (q -1)J?(D2 - D2)2 
Last term by symmetry of X2, X^t ..,, Xq

D - * 2e* o olT— ■ I U  9 * * * I  W

.1 + (72|S*2

(i.e. D2, D3, . . , , Dq

C - fi - DT(a + ftp)

„ u _ /wr20*2
1 + (r2(3*2

(5.20)

(5.21)

0)

1 + o"2|3*2 

and the best linear predictor is

C + DtJ: - C + J*iXi

H + v20*X1 
1 + <T2 jS*2

.(5.22)

(5.23)



To evaluate (5.20) we require to simulate C, D and thus estimate

7AR(C), VAR(Dx), VAR(D2), £707(0,1̂ ), EG - C, £DX - D1? £D2 and

E(G - 0)2 - VAR(G) + (biasC)2 etc.

These can be simulated by simulating a:, |3, P from their
distributions.

Anderson ( 1984), theorem 8.2.2. states that if

Xa is N ( § ta, r ) a - 1,2, ..., N
qxl qxp pxl qxq

p — p + 1' where p is the number of
*

explanatory variables.

ia

then
-pa

0 is N J  0, ...)
q x p

where
£707(it*1 and rows of (3) is A 1 ...(5.24)

A ~  E tataT and r “ {Yij} pxp a

N Ijile is W(r, N-p) , independent of j8, 
In linear calibration when p - 1

Xa is N 
qxl

■«1 ^ 1 - i -
a2 ? 2 t a r a*=i• • qxq

q ^q -

and in the canonical form

Xa is N
[^ai0

, I
. 0 .

1 ta "N 0 -
Thus T — I and A - J -

a -̂a fc2a- .0 STT-
because t -» 0



A A (i — 1, 2, q) are independent by (5.24) and also by

(5.24) covariance matrix of (a^,^) is A 1 N-1 0
0 S-pT1

at is N (0, 1/N) i - 1, 2..... ..

01 is N (.0*, l/(N-2)>

01 is N (0, 1/(N-2)j i - 2...... q

Also independent

N fMLE is W (I, N-2) 

and unbiased f* is (N-2)*-1 W (I, N-2).

Bartlett's decomposition of a Wishart matrix Anderson, (1984) 

corollary 7.2.1, was used to simulate f.

ot£, 01, r were simulated 10000 times, and C, D calculated from 
the following formulae.

Aw A m  A AC - n ~ Di(a + fi0)
A _ _A A Am. AD - <f2 {r +

Natural estimates of VAR(C) , 7AK(D^), 7AR(D2), 007(6,6!), EC - G, 

.Eh! - and i?D2 were obtained from these simulations.

Now MSE/cr2 can be calculated using (5.20)- for any set of values 

of the invariants N, Bjj, Cjj, p2 and q.

Q is defined as in relation (3.11)

MSE/cr2 - (1 - p2) (1 + Qs)
so

Qs “ MSE/[cr2(1 - p2) ] - 1 
MSE/cr2 is invariant so would be Qs.

Qs is calculated for the 81 combinations of the set of invariants 

made in section 3,3 by the procedure described above for q — 1, 2, 3 

,4, 8 and are given in table 7.2 where p2 should be read as p2. The 

simulated values for q - 1 quite agreed with the simulated values of 

section 3.3. The simulated values of q - 2, 3, 4 and 8 are further 

discussed in the following chapter.



CHAPTER 6

APPROXIMATIONS AND INTERVAL ESTIMATES

Approximation to Qs(N-2) when q > 1 and p - 1 is obtained using 

simulated values and then this approximation is used to define an 

interval for T. Confidence probabilities are studied in section 6.5 

using this approximation.

The procedure to obtain the approximation is described below.

6.1, APPROXIMATING Q(N-2) BASED ON REGRESSING SIMULATED VALUES

For any particular value of q, Qs is a function of N, p2, Bj$, Cjq

i.e. Qs(N,p2 ,Bjj,%) . An extensive study has already been made in 

chapter 3 for simple linear calibration problem (p“q=l) considering 

simulated values Qs and approximated values Q̂ , obtained with the 

help of Taylor's series.

Using Taylor's series we got a mathematical expression when

q - 1,

Qa  - P V N  + l/(N-2)[2p2(l- p2) + (1- 2p2)2CN +p2BN ]...(6.1)

This expression suggests following linear model for q > 1
Qai - l/(N-2)[b0 + b,p2 + b2p4 + (b3 + b4p2 + b5p4) CN

+ (bG + b ?p2 * beP4) % ]  ...(6.2)
Simulated values Qs corresponding to any set of values of the 

invariants for any q > 1 can be generated by the procedure described 

in section 5.5 and Q^i in equation (6.2) can be replaced by those 

simulated values Qs. Thus the following quadratic multiple

regression model can be fitted.

Qs(N-2) - b0 + b,p2 + b2p4 + (b3 + b4p2 + bsp<)CN

+ (be + b 7p2 + b8p4)Bfl + error ...(6.3)

Where the regression coefficients b^'s (i — 0, 1, 2, ..., 8) may

depend on N and q.



Here to increase the scope of study, sample space for the 

invariants p2, Bjj and C]\j is increased and now five values of each 

instead of three values (as in section 3.3) are considered i.e. now 

p2 - 0.3, 0.5, 0.7, 0.8, 0.9; BN - 0.0, 1.0, 2.0, 3.0, 4.0; CN -

0.25, 0.50, 1.0, 2.0, 4.0. The values of N are the same as before

1,e. N - 10, 30, 50.

125 values of Qs(N-2) corresponding to 125 (5x5x5) combinations 

of pz, Bjg, Cjj are calculated for each N — 10, 30, 50, making a total 

of 375 instead of 81 in the previous simulations.

Linear model (6.3) is fitted by ordinary least squares for q - 1,

2, 3, 4 and 8 using 125 values of Qs for N - 10, 30, 50 separately.

Estimates of partial regression coefficients along with other

relevant statistics are given in table 6rl. R2 is coefficient of 

determination, S is such that (125-9)S2 - residual sum of squares, q 

is the number of response variables in the multivariate regression 

experiment.

Table 6,2 summarizes Qs(N-2), Q^(N-2) and QR(N-2) where QR

represents fitted values.

First we discuss the case of simple linear calibration.

6.2. RESULTS WHEN q - 1

Table 6.1(a) indicates that the values of R2 are greater than 98% 

and S decreases with the increase in N; S - 0.2320 for N - 10; 

S — 0.0935 for N « 30; S — 0.0580 for N — 50. This along with graphs 

Qs(N-2) versus Qr (N-2) figure 6.1 shows that model fits to the

situation very well. The Q^(N-2) values calculated from relation

(6.1) are also plotted against Qs(N-2) in figure 6.1 to see how the

approximation works. 95% interval estimates constructed for

regression parameters b^’s (i - 0, 1, ..., 8) of expression (6.3)

overlap for N — 30, 50 and also most of the times for N — 10. The

approximation (6.3) suggested that the b^'s would depend only
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slightly on N.

To compare mathematical expression (6.1) and multiple linear 

regression model (6.3), we define two quantities

SA “ £[Qa(N-2) - QA(N-2)]2

1 1£5r
125

'fs[Qs(N-2) - Qa (N-2) ]2

and

Sr - Qb(N-2) - QR(N-2) y

1 1£5
125-9

fs[Qs(N-2) - Qr (N-2) ]:

- a*

QA comes from mathematical approximation obtained by Taylor's series 

and Qr is from regression model where coefficients of p2, p4, etc. in

Qr are functions of Q, , Q2   Q12S.

SA and SR for each N are given as under

N 10 30 50

SR 0.054 0.009 0.0034
S A 0.445 0.045 0.0150

sa/sr 8.2 5.0 4.0

These results along with the graphs of Qs(N-2) versus QA(N-2) figure 

6.1 indicate that the approximations are getting better for large N.

It looks reasonable to pool the results of three regressions i.e. 

N «= 10, 30, 50 because there is a reason to think that three 

functions are the same ( mathematical approximation ) .

COMBINATION OF ESTIMATES

Let the linear model (6.3) be represented by
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E(X) - A6

where A12SXg is a matrix of p2, B̂ , C^ and 89X1 is a parameter vector 

also

COV(X) - cr21

then

$ « (aTa)-iaTj

and COV(8) - (72(ATA)-'1

If we assume (M - 1, 2, . .., 125) is N(A0, a21) then

Log lik - Const - 125 logo- - l/(2<r?)[* - Ad f[X - A8 ]

- Const - 125 logo- - 1/(2<f2)[ (0-0)TATA(0-0)+RSS]

We have three independent sets of data for N - 10, 30, 50 with 125

observations in each. Let 01o, 03O* ^so> be the estimates for N =10,

30, 50 with error variances o-210, <t23 0 , or2s‘0 respectively.

Combined log lik = const-125 I logo-£-l/2 I (l/cr2fl)[ 0-0^ ]TATA[ 0-% ] 

(A^A is same each time because values of A are determined 

by p2, B̂ , Cjq’ and is not diagonal; RSSĵ  absorbed in const.) 

- const-125Llogo-i-l/2(0-0)T(l/(r21o+l/o'23O+l/o-25o)(ATA)C^) 

for appropriate choice of 8 and const*.

By comparing linear terms in 8
-2pKD —  2tl/<r2109T,ll(ATA)«+l/0-23oeT3(i(ATA)e+1/o.2s()5T5o(ATA)e] 

where

K - [ 1/cr2, o+ l/<r*s0+l/ff=60]<ATA)
coefficient vector K0 = I l/o-2{j(ATA) %

8 “ ^WN^N 

C0V(8) - I wN2C0W(0N)
where

wN 0-JN
1 + 1 + 1
r2 (t 2 n-2

1 0  v 3 0 u S 0

and E w^ = 1



Using the above theory combined estimates for N - 10, 30, 50 are

as follows

w.coefficient w.S.D. Interval Estimate Coeffi. (b̂ )

-0.3001 0.0813 -0.4595 -0.1407 0
4.3100 0.2991 3.7238 4.8962 2.80*
-3.2438 0.2483 -3,7304 -2.7572 -2.00
1.5092 0.0288 1.4528 1.5656 1.00

-5.5310 0.1058 -5.7384 -5.3235 -4.00
5.1647 0.0878 4.9925 5.3370 4.00

-0.0150 0.0278 -0.0694 0.0394 0.00
0.8633 0.1021 0.6631 1.0634 1.00
0.2049 0.0847 0.0389 -0.3710 0.00

* This value is for N «= 10 and the values for any other N <

calculated by the relation 2+(N-2)/N.

In the above results only some of the b^’s corresponding to Q^(N-2)

i.e. coefficients derived from equation ( 6.1) lie in the pooled

interval from regression. Presumably Qĵ  'is a better approximation 

than

6.3. RESULTS WHEN a - 2. 3. 4. 8

Linear model (6.3) is fitted to 125 values each of QS(N~2) for 

q - 2, 3, 4, 8 and N - 10, 30, 50. Results, for q ■= 2, 3, 4 are given 

in table 6.1(a) and results for q — 8 are given in table 6.1(b). It 

is clear from the table that R2 is always very high i.e. for q = 2 it

is 99.2% for N - 10, 99.8% for N - 30 and 99.9% for N = 50. S is

very small i.e. for q - 2 it is 0.1641 for N = 10 ; 0.0738 for N = 30

and 0.0564 for N - 50. Similarly for q *= 3, 4, For q ■= 8 R 2 is

still high but S has increased.

Parameters for q -» 8 and N — 10 are not reported here because of 

high estimation error as in multivariate regression experiments 

N > p+q+1 is required to avoid singularity of the error covariance 

matrix f, Sundberg and Brown (1985).

The above statistics along with the graphs of Qs(N-2) versus 

Qr (N-2), given in figure 6.2 indicate that linear model (6.3) fits



reasonably well.

The nature of the fitted model is shown by contours of QR(N-2) 

discussed in next section 6.4.

6.4. CONTOUR PLOTS

Contour plots are drawn for q - 1, 2, 3, 4 and 8 to see the

behaviour of QR(N-2) . For each q they are of the following three

types at N - 10, 30, 50.

(a) Qr (N-2) against Ĉj and Bjq, fixing p2.

(b) Qr(N-2) against p2 and Gjq, fixing Bjj.

(c) Qr(N-2) against p2 and B̂ , fixing Cjj.

All these contours are given from figure 6.3 to figure 6.62, There 

are four contours in each figure for the same value of N and either 

Bjj or Cjj or p2 but for different q - 1, 2, 3, 4. These are fifteen 

in number of each type (a), (b), (c).

Contour key indicates different heights and is same for q “ 1 and 

q - 2; and q - 3 and q — 4 is the same. 

p2 is denoted by A in the contours.

In figures 6.3 to 6.47, contour key starts at height 1.00 and 

goes up in steps of 0.75 for q - 1, 2 whereas for q - 3, 4; it starts 

at height 2.50 and goes up in steps of 0.75.

In figures 6.48 to 6.62 where q - 8, contour height starts at

7.00 and goes up in steps of 0.75.

The above types are now discussed.

(a)

A look on these contours indicates that Q(N-2) is linear in Cjj 

and Bfj. At low values of p2 there is more distance between the 

contours for q - 1 as compared with q - 2, 3 and 4 which means that 

more Bjj and Ĉj are required to go towards higher values of Q(N-2) .



For p2 - 0.5; q - 1; N - 50, contours are almost vertical 

indicating that all the increase is because of B̂ . This connects

with the fact that the mathematical approximation Q^(N-2) for q « 1 

has zero coefficients of Cjj, when p2 - 0.5. Contours with p2 > 0.7 

are becoming more symmetrical.

One thing is quite clear that with the increase in q, height of 

the contours have increased.

(b)

To describe this type some cases are picked and discussed. Let 

us take the case with N - 10; Bjj ™ 4; q «= 3. For p2 fixed and 

greater than 0.7, there is steady increase in Q(N-2) with Ĉ . p2 

fixed and less than 0.6 there is a quadratic increase with Ĉ ,

For N — 10; Bjj-4; q - 1 .  p2 fixed, Q(N-2) increases with CR. 

Cjj fixed and greater than 1.5, Q(N-2) decreases with p2, reaches a 

minimum, then Increases as p2 increases.

For N — 10; Bjj-4; q - 4 .  Q(N-2) is not an increasing function

of Cjg. The same pattern is found when N — 10; B ^ - l ;  q - 4 .  For 

small N this behaviour may be because of estimation error or because 

of terms omitted from the model.

For N - 10; Bjj— 0.0; q - 1, there is a plateau that indicates a 

slowly increasing function.

It is clear that Q(N-2) has increased with the increase in q.

(c)

Some interesting cases are discussed for this type i.e. Q(N-2) 

against p2 and Bjj, fixing values of Cjg, N, q. For N - 50; - 0.25;

q — 1, Q(N-2) increases with increase in p2. Increase is slow at low 

levels of Bjj but with increase in B^ and p2, the lines are becoming 

straight which mean linear relationship.



For N — 10; Cj^-4; q - 1. p2 fixed, Q(N-2) increases slowly 

with the increase in Bjj, B^ fixed Q(N-2) decreases with p2, reaches 

its minimum, then Increases as p2 increases.

Overall the shape of contours changes with change in N and q and 

Q(N-2) increases with increase in q.

For q — 8, cases only with N — 30, 50 are considered. Contours 

for N ■= 10 and q “ 8 are not drawn because these are not reliable for 

the same reason as is given in section 6.3 for not reporting the 

results of parameter estimates.

Following observations have been made from the contours drawn for 

q - 8 and N - 30, 50.

(i) Contours Q(N-2) have linear relationship i.e. for type (a) 

above and are almost same but start from higher heights for N « 30 as 

compared with N - 50.

(ii) Contours of Q(N-2) versus p2 and C^ look to depend more on 

C$ than p2 and contours of Q(N-2) versus p2 and Bjj look linear for 

CN < 1.

Overall the shape of the contours have changed with N and q.

The following message is obtained from the contours.

(i) Q(N-2) is an increasing function of q when p2, Bj$, Ĉ , N are

fixed,

(ii) Q(N-2) is greater for small values of N as compared with 

large values of N i.e. Q(N-2) is greater for N = 10 than for N = 30 

and 50 ( p2, B̂ , Ĉ , q fixed ).



6.5. INTERVAL ESTIMATES

We have discussed the interval estimates for q — 1 in section 4.2 

where is used to obtain the tail probabilities. It is concluded 

there that the tail probabilities do not change very much with p2 and 

the pivotal function F]_ gave better results compared with F2, F3 and 

F4. So here only F^ based on p2 — 0,7 and 27 (3x3x3) combinations of 

the invariants B̂ , and N with the same values is simulated. QR is 

used instead of QA in the calculations' of F^ and the expression 

(4.12) becomes as under

MSEreg - (1“ P2)<r2[l + QR ] ...(6,4)
where QR comes from the equation (6.2) substituting p2 « p2 

and

2* - jŝ D.

Fjl is defined as

FX - [r - (C+fiTx)]/(MSEreg)i ...(6.5)

The £FX and J?(F12) are

EF1 « E[T - (C+DT )̂ ]/(MSEreg)i

- -[ (FC-C) - (ED-D)T{a + frt}]/(MSEreg)*
.£(FX2) « 4 ( T  - (C+jDTJf) ]2/£(MSEreg)

- MSE/£(MSEreg)

« 1

It follows from Theorem 5.1 and 5.2 that at least approximately both 

E(F^) and VAP(Fi) depend only on the invariants q, N, p, and Cjq.

To simulate the upper tail probability P(Fi>1.96) and lower tail 

probability P(F^< -1.96), it is required to obtain pivotal function 

F]_. To this end following are required to be simulated.

(i) T, X, which are simulated using canonical form as 

in section 5.5.

(ii) a, (8, f are generated from the distribution theory
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as is described in section 5.5 to get the estimates 

of C» D and p2.

Two cases are studied for T;

(a) T is generated from normal distribution with mean p, 

and variance <r2*

(b) T is generated from exponential distribution with jx 

and (72 as location and scale parameters.

where

ft and cr2 are calculated from the values of and Gĵ. 

j8* is calculated by the relation (5.19) and X's are generated

from the standardized normal distribution. QR comes from the linear 

model (6.3) with regression coefficients b^'s (i - 0, 1, . .., 8) as

are given in table 6.1(a) for q - 2, 3, and 4. For the cases N - 10,

30, 50; the corresponding b^'s of the table 6.1(a) were used at

first. Then the cases N - 30, 50 were repeated with b^’s

corresponding to N — 10, and slightly lower tail probabilities were 

usually found. So these latter b^'s were finally chosen for q * 2, 3

and 4. The coefficients used for q - 1 are the weighted coefficients

given at the end of section 6.2 under the combination of estimates.

Three extreme cases are picked to see the distribution of F̂ .

Normal probability plots in figure 6.63 and summary statistics in 

table 6.3 are given for 1000 values of F^ corresponding to normal and 

exponential distributions of T for q - 1, 2, 3, 4 and three

combinations of thfe invariants.

It is clear from the table 6.3 that mean is approximately zero 

for the case (i) and (iii) where Bjj - 4.0, Gjq - 0.25 and Bjj «* 0.0,

Cjj - 4*0 respectively for q - 1, 2, 3 and 4. In case (ii) with

Bjj “ 4.0, — 4.0; means have increasing tendency with increasing

value of q.
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In all the cases standard deviation has increased for the higher 

values of q.

The tail probabilities for P(t) to be normal and exponential are

given in table 6.4 for N - 10, 30, 50 and q - 1, 2, 3 and 4,

For N — 10, the error probabilities are high and have increasing

trend with the increasing q. For q — 1, the sum of lower and upper

tail probabilities is around 0.085 for P(t) to be normal and 0.080

for P(t) to be exponential. This agrees with the results already-

obtained for q - 1 in section 4.2 case (b).

It should be made clear that using the procedure of canonical

form as at the end of chapter 5, the upper and lower tail

probabilities were same for Bjj - 0 or t » |t as with the procedure of

chapter 4 case (b) but when t * ft the values of the upper and lower

tail probabilities exchanged. This happened because in the procedure

of chapter 4 case (b) ft < t always whereas it is opposite here i.e.

t < ft. The change of sign of T exchanges the numerical values of the

lower and upper tail probabilities and this Is discussed as under.

Lower error prob. - P(F^<-1.96)

Upper error prob. - P(Fj>+1.96)

Let T' - - T

f - - T 
*•» >S-p ■= S'fp

EQf|T) “ a + (ST - ct - /ST^ a + /3̂ T 

a - a,

<r2x|T “ cr2x|T
ft - - ft ; <r2 - <r2

N, p2, B|q, Cjj are unchanged so MSE unchanged 

C" + D"j (f") “ - T - - C - D X  

Q  C
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D" - - D

Lower error prob. - P [ < - 1.96]

“ P[T"- {[c'-t-rTjQ < -1,96]
(MSE)£

“ P[“ T"- ((T+fTjO > 1,96]
(MSE)i

- P[T - (G +DX) > 1.96]
(MSE)i

- P[FX > 1 .96] - upper error prob.

For N -= 30 and 50, sum of error probabilities is very close and 

is always between 0.05 and 0.06.

It is observed from the table that the lower and the upper tail 

probabilities are near to each other for Bjj “ 0.0 and get apart for 

higher values of Bjj.

6.6. EXAMPLE: WHEAT QUALITY DATA

The wheat quality data analysed by Brown (1982) consists of 21 

samples of response variables 4-vector X and the 2-vector T of 

explanatory variables. Xj_, X2, X3 and X4 are the infrared 

reflectance measurements and T̂ , T2 denote the percentage of water 

and protein contents.

We are discussing only one explanatory variable at a time and 

that we select the protein percentage. The set of first 16 

observations on X^, X2, X3, X4 and T is used as the regression

experiment and the next set of 5 to test the predicted values. Thus 

ft « t and cr2 « S^t/IS. Hence approximately, — 0.0 and Cjj - 1.0.

To predict T, different subsets of the response variables can be 

used but we confine ourselves to the following subsets.

(i) X2 only

(ii) X^ and X2

(iii) Xlf X2 and X3 

(iv) Xlt X2, X3 and X4.
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A AThe values of C and D are calculated for the above subsets, from 

the values of a, 0, f1 obtained from the first 16 observations and /*,

(t2 from Bjj - 0.0 and Gjj — 1.0. The point and interval estimates for 

protein percentage values T1?, T18> Tig, T20, T21 are calculated and 

are reported in table 6.5 along with the data.

It is clear from the table 6,5 that the values to be predicted 

are always in the 95% interval for all the four subsets of response 

variables. The interval estimate is - getting shorter with the 

increase in q until q - 3 and it is almost the same for q “ 3 and 

q - 4.
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TABLE 6.1(a).

N

Partial regression estimates along with their S.E.'s in 
brackets for different q and N. Also S and R2.
-1 q - 2 q - 3 q = 4

10 -0.5422(o.3915 
30 -0.4081(o.1576 
50 —0.2441(o.o978

10 5,4520(1.44oo
30 4.6982(o. 5 8 0 4

50 4.0942(o.3597

10 -4.5930(i.19so 
30 —3.5677(o.48i8 
50 -3.0357(o.29ee

10 1.6681(0 . 1 3 8 8

30 l,6608(o.0 5 5 9

50 1.4414(o.0 3 46

10 -5.4357(o.5o9 e 
30 -5 .9 7 4 1 (0 . 2 0 5 4  
50 -5 .3 6 7 5 (0 . 1 2 7 3

10 5.1623(o.423o
30 5.4846(o.i705
50 5.0425(o.io s 7

10 0.2302(0.1338
30 —0.0064(o.os39 
50 —0.0337(o.o334

10 -0.1597(0.491s 
30 0.8041(0.1981
50 0.9501(0.1228

10 1.2038(0.4080
30 0.2833(o.1645
50 0.1124(0.1019

1.2306(0 . 2  7 6 9  

- 0 . 1 1 1 1 ( 0 . 1 2 4 6
0.1838(0.0952

3.015 (1.0180 
4.9255(o.4S8i 
4.9598(o.3501

-2,0116(o. 8 4 5  2 

-2. 8512 ( 0 . 3802 
-2.8091(0.2906

0.9969(o.0980 
2.1445(0.0441 
2.3670(0.0337

-1.4705(0.3604 
-5,2029(0.1621 
-5.9353(0.1239

1.6352(o.2 9 9 2  
4.0896(0.1346 
4.6463(0.1028

0.6018(o. 0 9 4 5  
0.2276(0.0425 
0.1329(0 . 0  3 2 5

-0.5000(0 . 3 4 7 6  
0.3100(0.1563 
0,5582(0.1195

1.2048( 0,2 8 8 5 

0.5443(0.12 9 a 
0.3982(0,0992

3.8386(0.3229 
0.3101(0 . 1 8 9 4  

-0.0243(0.1244

0.9560(i.18 7 0  
5.2021(0. 6 9 6 4  

5 .6386(0.4574

-0.4754(0 . 9 8 5 6  

-2.2225(0 . 5  7 8 1  

-2.4855(0.3797

0.1286(0.1143 
2.6063(0. 0 6 7 0  
3.0648(0.0440

1.6764(o.4202 
-4.5158(0.2 4 6 5  

-5. 9277 ( 0 .1 61 9

-0,4441(0 . 3 4 8 8  

2.8833(0,2 04 6 
3.8767 ( 0-. 1 344

1.0525(o.1102 
0.4776(o.0646 
0,3067(0.042 5

-0.6582(0.4053 
-0.1125(0.2377 
-0.2529 ( 0 .1 5 e 1

1.0786(0.3 3 6 4  

0.7398(0.1973 
0.5442(0.12 9 6

8.9605(0.4232) 
0.9699(0.3221) 
0.3425(0.2 2 8  3 )

-2.3600(i.5 5 6 0) 
5.4810(1.1840) 
6.1038(0.8395)

1.1730(i.2920) 
-1. 8138 ( 0 . 9 b 31) 
-2.0672(0 . 6 9 6 8 )

-1.4228(o.149s) 
2.9120(0.1140) 
3.5284(0 . 0 8 0 s )

5.0521(0.5509) 
-3.8032(o.4192) 
-5.3840 (0.2971)

■2.0651(0.4573) 
1.8909(o.3 4 8 0) 
2.8491(0. 2 4 6 6 )

1 .6213(0.1445)
0.7367(0.1099) 
0.5147(o.0779)

-0.7725(0.5313) 
-0.4330(0.4043) 
-0.0652(0 . 2sss)

0 . 8 8 5 1 ( 0.4410) 
0 , 8 6 9 2 ( 0 . 3  3 5 6 )  

0 . 6 5 4 0 ( 0 .2 3 7 9 )

R2

10
30
50

10
30
50

0.2320
0.0935
0.0580

98.0%
99.6%
99.8%

0.1641
0.0738
0.0564

99.2%
99.8%
99.9%

0.1913
0.1122
0.0737

99.3%
99.7%
99.9%

0.2508
0.1908
0.1353

99.2%
99.4%
99.7%



TABLE 6.1(b). Partial regression estimates with S.E's for q — 8

R2

TABLE 6.2

N
q » 1

Qs(N"2)
Qr (N-2)
Qa (N-2)

q - 2
Qs(N-2)
Qr (N-2)
q - 3
Qs(N-2)
Qr (N-2)
q - 4

Qs(N-2)Qr (N-2)
q - 8
Qs<N-2)
Qr (N-2)

N

10 30 50
6.9410(i.3190) 
1.5610(4. 8 4 9 0) 
2.7340(4.025 o) 
2.0545(0. 4 6  6 7) 
3.4460(1.7iso) 
-4.3480(i.42 5 0) 
2.1522(o.45oi) 
-1.4080(i. 6 5 5 o) 
0.5670(1.3740) 

0.7814 
96.3%

3.2410(i.o 3 e o) 
5.0630(3.sioo) 
1.4990(3 .1 6 2 o) 
4.4555(o.3667) 
-1.2680(1. 3 4 8 0 )  

-2.2510(i.1190) 
1,5559(0 . 3  5 3 6)  
-1.0510(1.3 o o o) 
0.6640(i.o 790) 

0.6139 
98.0%

Summary statistics of 125 values of Qs(N-2), Qr (N-2) 
Q^(N-2) for different N and q.

Minimum Median Maximum

10 30 50 10 30 50 10 30

0.865 0.745
0.806 0.768
0.700 0.740

2.104 1.415
2.130 1.348

4.025 2.167
4.231 2.048

7 i845 3.0707.986 2.936

8.325
8.330

0.795 2.819
0.782 2.782
0.748 2.400

1.361 4.972
1.303 4.917

1.958 7.935
1.852 7.907

2.677 12.496 2.530 12.394

6.099 --
5.863 --

2.514 2.449
2.489 2.461
2.467 2.480

4.029 3.971
3.965 3.920

5.557 5.348
5.576 5,361

7.173 6.6267.130 6.703

15.100 12.816
15.743 12.719

9.427 7.717
8.720 7.616
7.060 7.180

11.064 8.953
10.817 8.900

14.784 10.688 
14.760 10.604

20.015 13.204 20.164 12.956

  26.557
  25.579

50

7.749
7.411
7.204

9.040
8.990

10.468
12.882

13.15812.882

26.310
25.587



TABLE 6.3. Summary statistics regarding based on 1000 values for 

some combinations of invariants, q and P(t).

Mean S.D Median Minimum Maximum

P(t)

(i) B^ - 4.0, Cfl 

q-1

0.25, N - 10

Normal 0
Exponential 0

q-2

q-3

q-4

Normal -0
Exponential 0

Normal 0
Exponential 0

Normal 0
Exponential 0 

(ii) Bjg — 4.0, Cjj * 

q-1

0702
0057

0084
,0531

,2175
,2347

,1340
,1998

q-2

q-3

Normal 0,
Exp onent i al 0

Normal 0
Exponential 0,

Normal 0
Exponential 0,

0,
q-4

Normal 
Exponential 0 

(iii) Bjj — 0.0, Cjj

1.1700
1.1291

1.1850
1.2486

1.2977
1.3996

1.7104 
1.4431

4.0, N - 10.

q-1

q-2

q-3

Normal 0,
Exponential 0.

Normal -0.
Exponential -0.

Normal 0.
Exponential 0.

1327
0846

1915
2845

5012
5530

6224 
6704 
4.0, N

0488
0082

0969
0144

0442
0775

1.1386
1.1332

1,2272
1.2310

1.4123
1.6689

1.7630 
1.8015 
■ 10.

1.1372
1.1399

1.3277
1.2386

1.4863
1.7132

0.0389
-0.0140

-0.0567
0.0323

0.1382
0.1779

0.1061
0.1625

0.0314
-0.0141

0.0591'
0.1297

0.3243
0.3151

0.4296
0.4627

0.0185
-0.0933

-0.0543
-0.0553

0.0291
-0.0461

-5.3230
-5.7439

-5.2699
-5,1363

-4.3242
-5,8286

-9.7849
-10.4561

-3.2836
-6.0603

-5.8218
-2.5214

-4.0407
-3.9202

-7.0558
-7.0706

-5.9947
-5.4736

-9.4903
-3.6546

-8.2817
-5.5343

4.4797
4.0664

5.0908
5.6905

6.1449 
10.0021

9.8618
6.3756

5.9210
8.3807

6,2986
6.5332

6.5045 
20.1340

10.6921
17.9137

4.8935
7.0026

5.1451
5.9887

6.1712
19.2303

q-4
Normal -0.0130 1.7648 -0.0632 -7.5979 7.8095
Exponential 0.0278 1.9025 -0.0887 -10.2309 17.3228
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TABLE 6.4. Lower(L) and Upper(U) 
q - 1 f 2, 3 and 4 for

(a) P(t) Normal.
q - 1  q -

Bvr 0.0 1.0 4.0 0.0 1.0
CN

0.25 L 40 38 37 50
N -
44

U 42 47 49 46 54
1.0 L 39 36 32 53 40

U 44 50 53 49 61
4.0 L 40 31 22 58 40

U 46 52 56 55 71

0.25 L 29 27 26 32
N -
30

U 29 29 32 30 32
1.0 L 30 27 24 34 29

U 39 31 33 31 34
4,0 L 31 27 23 34 28

U 30 34 36 33 38

0.25 L 29 27 27 26
N -
24

U 29 29 29 27 28
1.0 L 29 27 25 24 23

U 29 30 31 27 30
4.0 L 31 27 26 25 23

U 29 32 34 28 33
(b) P(t) Exponential 

0.25 L 34 31 33 45
N -
38

u 44 47 47 49 52
1.0 L 35 28 27 45 33

U 45 48 49 51 58
4.0 L 31 21 17 41 25

U 47 50 51 56 69

0.25 L 26 24 24 26
N -
24

U 37 36 35 38 38
1.0 L 25 23 22 24 23

U 37 36 38 38 40
4.0 L 24 21 18 23 18

U 36 39 42 40 43

0.25 L 23 23 22 23
N -
22

U 37 37 38 36 37
1.0 L 23 21 21 21 21

U 36 38 39 36 38
4.0 L 23 20 18 22 18

U 38 39 41 38 41

103 x error probabilities of for
different P(t) and N.

2 q - 3 q - 4
4.0 0.0 1.0 4.0 0.0 1.0 4J

L0
39 60 51 44 80 68 57
57 62 70 76 76 91 103
31 63 46 34 84 61 45
67 65 81 92 80 106 126
22 80 49 27 103 65 36
83 78 104 124 100 141 170
30
27 29 26 24 30 26 23
33 29 32 31 29 32 33
24 28 25 20 31 24 19
36 31 34 37 31 36 39
23 34 25 18 39 27 18
42 34 ‘ 42 48 38 47 55
50
22 26 24 22 29 27 23
29 28 28 29 22 24 24
21 27 24 20 31 26 21
32 29 31 32 23 27 29
20 29 24 18 33 27 19
36 32 36 39 28 33 38

L0
37 54 47 42 74 61 54
56 60 69 76 76 87 98
27 51 39 28 76 53 39
63 64 80 93 82 102 121
15 57 30 15 88 49 24
78 76 97 114 97 126 152
30
22 26 23 20 23 19 18
38 38 37 37 32 33 34
19 25 22 17 24 17 14
41 39 41 41 34 38 39
13 25 17 12 27 16 10
47 43 51 54 43 52 57
SO
21 22 19 17 20 18 16
37 36 37 36 33 34 31
19 22 18 15 19 17 14
38 36 38 40 34 36 37
15 21 17 12 19 15 11
42 39 43 46 39 44 47
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TABLE 6.5(a) Point and interval estimates for wheat quality data for 
different subsets of response variables.

point estimate interval estimate MSE

(i) X.
9.4704 
10.0894 
9.2641 
12.9780 
12.7717

8.7515
9.3705
8.5452
12.2591
12.0527

10.1894
10.8083
9.9830
13.6969
13.4906

0.1345

(ii) Xt, X.
9.1669
10.0420
9.2325
12.5773
12.8811

8.7369
9.6120
8.8025
12.1473
12.4511

9.5969
.10.4720
9.6625
13.0073
13.3112

0.0481

(iii) Xlf X2, Xj
9.1295 
10.1736 
9.1149 
12.6602 
12.7719

8.7509
9.7951
8.7364
12.2816
12.5934

9.5080
10.5522
9.4935
13.0387
13.1505

0.0373

(iv) X1f X2, X3, X,
9.2490,
10.1817
9.1522
12.7134
12.7666

8.8729
9.8055
8.7760
12.3372
12.3904

9.6265
10.5579
9.5284
13.0895
13.1428

0.0368

(b) Wheat Quality Data.

Observation
pumber

x, . X2 x3 *4 % protein
1 361 108 96 243 10.73
2 361 107 98 245 11.05
3 362 110 94 241 9.86
4 362 105 94 246 11.41
5 362 104 70 221 11.57
6 367 113 75 221 9.42
7 366 108 82 233 10.93
8 360 104 86 236 11.61
9 362 113 85 229 8.82
10 360 103 90 242 11.81
11 351 97 88 238 12.33
12 353 95 73 227 12.93
13 ' 352 97 77 228 12.69
14 355 96 52 206 13.13
15 357 106 69 216 10.41
16 351 93 69 222 13,57
17 363 113 88 231 9.26
18 363 110 101 248 9.82
19 366 114 79 224 9.46
20 350 96 85 235 12.85
21 355 97 63 216 12.81
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CHAPTER 7

BAYESIAN BEST LINEAR PREDICTOR

7.1. INTRODUCTION

Let P(Yit;0) be the distribution of X in the regression 

experiment where 0 — (of,j3,r) and prior distribution of 0 denoted by 

7r(0) is required in the Bayesian analysis and also ?r(t) to get the 

distribution of 7r(t|expt. ;X) because by Bayes formula

7r(t|expt. ;X) - *(t) >
fx(t) x(X|t;expt.) dt

Note that ?r(t|expt.) = 7r(t) because experimental values tell us

nothing about future T.

Now

tt(Y| t;expt. ) - fic(X, $ I t,expt. )d0

- /7r(Z| $ , t;expt.) 7r(0 I t;expt. )d0 

« /P(.Y|0;t) 7r(0 iexpt. )d0 

P(-3i|0;t) will be taken as Nq(tt+0t; T), as in earlier chapters. For 

fuller discussion see Aitchison and Dunsmore (1975) chapter 10.

The best linear predictor of t using

ir(t, Y| expt. ) - 7T(t) 7r(X| t; expt. )
is denoted by

Cx +Dxr* ...(7.1)
and its Bayesian mean squared error is defined by

MSEt - E[ {r-(CT+DTTjOp|eXpt. ] . . .(7.2)

The advantage of using this linear predictor (Hartigan, 1969) instead 

of fCTiexpt. ;X) is that the former depends on 7r(t) only through its 

moments f i, <r 2 .

There are two situations under large N where E(Tjexpt;X) can be 

easily approximated.

(i) If N is very large then 0$^ - 0;



x(0|expt.) is concentrated on point 0 

x(Y|t;expt.)

thus

ir(t|expt, ;Y) - T(t) P(X\$:t) ..,(7.3)
/x(t) P(JP|0;t)

If also x(t) is N(jLt,cr2), then ir(t|expt. ;X) is

N[C+DTX; (1- p2)tr2]

If x(t) is not normal then x(t|expt.;X) is not normal.

Best linear predictor, using x(t;X\expt.) “ x(t) P(X|0;t) is

CT + D^X « C + DtX

and

MSEt » MSE

(ii) If N is large but still some uncertainty about 0 would lead 

to uncertainty about C and D.

When ir(0) has special form, formula for x(Y|t;expt.), namely 

Student's t can be approximated by normal with mean vector and some 

covariance matrix. Thus 7r(t;Y|expt.) is approximately normal.

Main idea below is not to use approximations to jE?(!T|expt. ;Y) but 

instead to use relation (7.1).

We will discuss first p - q - 1 and then general q and p = 1.

7,2. BAYESIAN LINEAR PREDICTOR FOR a - p - 1

If tt(q;,/3,o'2X [ j-) is such that a, (3,logcr2X | t are independent uniform

(-<» < a, j3, logo-2x j £ < a>) , i.e. "vague prior information", then:

7r (x 11; expt. ) is such that

_____ x - (a + Bt)________  is tN_2.
<*x|t[l+l/N +(t-t) 2/sTT

then

x “ a+j3t + <7X |t[l+l/N +(t-t) 2/sTT fcN-2 

Consider x(t,x|expt.), then the Bayesian linear predictor of t 

would be



Cr+\>̂ x - tT - E(T) + COV(X.T) (x - E(X)) ...(7.4)
VAR(X)

Where all the moments are conditional on "experiment11 and 

MSEt - (1- pr*)VAR(T)

- (1- px2)£T2 ...(7,5)

where p^2 is given in expression (7.8).

We have assumed E(T) — n and VAR(T) — cr2 known and the values of

COV(XtT), VAR(X) and E(X) can be calculated using ir(X| t; expt. ) .

E(X) - EE(X\T) - £(a + gt)

“ o: + /t 

WAR(X) - VAR[£(XtT) ] + £[WAi?U|T)]

- VAR(a+/3T) + £o2x|t[l+l/N+(t-t)2/STT]WAR(tN_2)
- |S2(r2+(N-2)/(N-“4)ff2x j t[ l+l/N+{<r2+(/i-t) 2}/STT ]

[F(t~t)2 - J?(T- p. + ft - t)2] 

COV(X,T) - £(X!T) - E(X)E(T)

« £f(iriT) - E(X)E(T)

- £(aT + j3T2) - (a + 0/i)/i

- a/i + |8(<r2 + /i2) - (a + j&pt)ju

- ô-2

After substituting the values of these moments in (7.4) we get

t* " M + gQWfr.XHX - £ - & * )
WAP(X)

A A

/t + [ (* ~ a)/(3 - /i]
VAR(X)

p + ________ gv2 [a-S>/8 - U) ]
02<j2+[ (N~2)/(N-4) ]̂ 2x(t|’1+1/N+fcr2+(/,_t)2j/STT]

P + P*2 - fi ]
A

0

Px2 l£=sl + <1 " P-jp2) M ...(7.6)
A

0

and MSE (7,5) would be
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MSEX - <r2[ 1- ___________________ B2(T*___________________ ]
(r2[ j32<r2+( (N-2)/(N-4) )oL2x , t[ l+l/N+{<r2+(/i-t) 2}/STT ]

- <r2[ 1 - pT2] ...(7.7)

where

pT 2 - __________________________Biel________________________ ...(7.8)
PJo-2+((N-2)/(N-4))j2x|c[l+l/N+{<^+ 0,-t) 2}/STT]

When N -» »; t fixed and so to, then (7.6) would be
tT « /* + fltr2[x - (ryt-ftii) ]

0 2<r2 + ff2x l t  

” (1- p2)p + p2 (x-ct)/|S

- C + DX, which is the best linear predictor (3.7)

and the mean squared error MSET (7.7) would be equal to MSE (3.11).
AFor N < <», pT2 * p2 and pr2 can be written in terms of the 

invariants already discussed i.e. N, Bjj, Cjj and p2 and after simple 

algebra it would be

Pr2 “ ___________________ Ql_______________________  ...(7.9)
p2+(N-2)/(N-4){(1- P2)}[1+ 1/N +BN/(N-2)+ Cn/(N-2) ]

So MSET (7.7) i.e. mean squared error (Bayesian) depends on the above

four invariants N, B̂ , and p2.

It should be noted that both the Bayesian (7.6) and the best

linear predictor (3.7) are weighted average of classical estimator

and the /t. Since pT 2 < p 2, Bayesian gives less weight to classical

estimator. In particular when /t - t; a2 » S-£t/(N-2) ,

+D.JJX * inverse estimator.

The expression (7.7) can be written as under

MSE* - cr2(l - p*2)

- d2(l - p2)(l + QT) ■
so

Qt - 1 “ p*2 - 1 ...(7.10)

As pT2 (7.9) is a function of the four invariants; N, Bj$, Cjj and



Ap2 so would be the QT.

81 values of the QT are calculated for the same combinations of 

the invariants as in chapter 3 to compare with the simulated values 

of Qs (3.10). These values of are given in table 7.1 and

simulated values Qs are given in table 7.2.

7.3. BAYESIAN LINEAR PREDICTOR FOR GENERAL a and p - 1

Suppose (X,T) has a q+1 dimensional ~joint distribution which is

known. Then we derived the best linear predictor (5.11) which is

t - E(T) + DT(X - EX)

where D - {iCOV(X)}~1 COV(TtX)
covariance covariance 
matrix vector

and has mean squared error

MSE - VAR(T) ~ DtCOV(T,X)

There are two cases here.

(a) CASE 1

Known joint distribution is -frequency distribution 
(non-Bayesian).

P(x,t|a,/3,r;/t;<r2) - P(x|t;a,/3,r) P(t\fi,v2)
then

D - <x2 {r + <r200T}-i (3 

C - E(T) - Dt E(X)

and

MSE - tr2[ 1 - <720T(r + cr2̂ T)“^]

- <r2( 1 - p2) 

where p2 — <r2/3̂ (r + cr2{3@P)'~'i @

This case has already been discussed in chapter 5,

(b) CASE 2

Known joint distribution x(X,tjexpt.) arises in Bayesian



analysis. This is a marginal distribution of 

ir(r,X, tiexpt. ) - ir(X|r,t;expt. ) ir(ri t;expt) ir(t t , expt; p,<r2) .

It is convenient to consider these conditional factors in finding 

moments of x(x,t|expt.)

These moments will give the Bayesian linear predictor +D^TX as 

follows;

C^+D^X - p + [X-E(X) ]T {COW (X | expt.)}-’ <70W(r,X|expt. ) . . . (7.11)
posterior posterior
covariance ~ covariance
matrix vector

Now we derive all the posterior moments from the standard prior

stated after the relation (7.12) for the regression parameters, and

assuming as always that E(T) - p and VAR(T) - c r 2.

ir(Xir; t,expt. ) is such that

X - a + 0t + N[0, r{l+l/N + (t-t)2/STT}]
By E(X) in equation (7.11) we mean

E(X|expt.) ■» EE(Xlt,expt.) - EEE(X\r,t,expt.)

- EE(a:+0t)

“ ot + @p
E[X(T~E(T)) lexpt. ] - E(XT|expt.) - E(T)E(Xl expt. )

- ap + 0(p2 + o'2) - (a + 0p)p
- 0o-2

C£W(X|expt.) - COV[E(Xir;t,expt.)] + E[COV(X|T;t,expt.)] 

where both COV and E are posterior, i.e. conditioned on experiment.

-  c w ( £ + 0t) + £ { r [ i  + 1/ n  +  ( t - t ) v s T T ]}
- o-200t + E(V) £[ 1+1/N + (t-t)2/STT3

- cr200T+[ (N-2)/(N-q-3) ]f[ l+l/N+{o-2+(/i-t) 2}/sTT ]

- o-200t + ff
where

f - (N-2)/(N-q-3)[1+1/N + {a2 +(p-1)2}/STT ]

- (N-2)/(N-q-3)[1 + 1/N +BN/(N-2) + %/(N-2) ] ...(7.12)
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“ f(N,Bfl,%,q)

Following Press (1972), the prior densities for a, |3 and V are 
assumed as under,

*-(q!,/3) « constant; 

t (d  « i/iri(<i+l)/2.

The ^(riexpt. ;t) - [ (N-2)/(N-q-3) ] T is obtained from

Press (1972) theorem (8.6.3), where T is the usual unbiased estimate.

Using the above moments the Bayesian “linear predictor (7.11) can 

be written as follows,

Cr + - pi + [X~E(X) ]T[ff+<r2&3T r i &r2 ...(7.13)
and

.MSE* - ff*[l -
-<r*[l-pT»] - ..,(7.14)

pT2 has been defined as

PT2 - <r20T[ff + <j2j3j3T ]_1 0

“ b^{A + kbb^}“1b

where b - <r@, A - ff + fa2@(3F and k = 1 - f

By result following lemma (7.1), pT2 is

“ A~1b
1 + kbTA_1b

“  <rjATf-'( f+
1 +(l-f)tr2̂ Tf-1(r +

“ _______ Ql_____ ...(7.15)
f + (1- f) p 2

LEMMA 7.1

If A is any non-singular square matrix, b a vector and k a scalar

such that A + kbb^ is non-singular, then

(A + kbbT)-1 - [I - k A^bbT] A~1
1 + kbTA-1b



PROOF:

Premultiply by (A +kbb^) and postmultiply by A we obtain

A - [A + kbbT ][I - k A_1bbT ]
1 + kbTA_1b

“ A + gbbT
where

g - k - k - k2 bTA-1b - 0.
1 + kbTA-’b 1 + kbTA_1b

Now we express bT{A + kbbT}“1b in terms of bTA”’b and k.

bT{A + kbbT}-ib - bT[I - k A“1bbT ]A-1b
l+kb^A“1b

- bTA-ib - k (b^A-ib)2
1+kb^A"1b

-  b ^ b
1 + kbTA~1b 

By (7.14) MSEt - a2[l - pT2 ]

- <r’[l - ?2][ 1 + Qir]

Here p2 is the familiar non-Bayesian quantity. This is the 
definition of QT. ...

MSE^/o2 - [1 - p2][l + Qt ] ...(7.16)
and

MSE/ff2 * [1 — p2][l + Qs] ...(7.17)

So comparing Qx and Qs is equivalent to comparing HSE^/o2 and MSE/o2.

qt -  (1 -  -  1
(1 - P 2)

“ -f + (1 - f) o2 - o2 - 1 
(l- ?2)[f +(i- f)32]

“  - ( 1 -  f)o2 
f + (1- f)p2

“ ____(f-l)p2 ...(7.18)
f - (f - l)p2

where f is as in (7.12).
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Note that when N is large; MLE or unbiased estimators of T (as in

case 1 above) are approximately equal to posterior expectation

^(riexpt.)* Also when N is large; t remaining fixed and -> <»,

then f « 1. Thus

Cx + Dtt X - C + Dt X

and

MSE - HSEt

To make a comparative study of Qx and Qs, we calculate the 81 

values of Qx for the same values of the four invariants (N,BN,Cjfl,p2) 

as have already been used to calculate Qs in section 5.5 for q — 1, 

2, 3, 4 and 8. The values of Qx are given in table 7.1 and the

values of Qs are given in table 7.2 for q - 1, 2, 3, 4.

One question the tables may help to answer is whether Q̂ , for 

which there is a simple formula (7.18), is a good approximation to 

Qs, the non-Bayesian quantity which has had to be simulated.

In general Qx and Qs may be quite different as the tables 7.1 and 

7.2 show, but we note that in the favourable case with p2 - 0.9, 

N - 50 (for instance); -

Qx - 0.057 < Qs < Qx - 0.030 

for all the 3x3x4 combinations of Bjq, and q.

The tabulated values are such that

(i) Qs < Qx for p2 - 0.9 ;

(ii) Qs < Qx for p2 — 0.8 and q =* 1,2;

(iii) Qs < Qx for p2 *=■ 0.7 and q *= 1.

7.4 INTERVAL ESTIMATES

In section 7.3 we derived the Bayesian linear predictor CX+DX^J 

with mean squared error, conditional on the estimates <x, (3, f from 

the experiment as,

MSEX - (r2(l - p 2 ) (1 + Qx)



This leads us to propose

Cx + DxtX ±1.96 (MSEx)i 

as an interval for T, in the hope that its Bayesian confidence 

x[ interval contains Tia, (3, f1] is roughly 0.95. This confidence 

probability will depend on the shape of u-(t) .

The inequalities Qs < Qx noted at the end of section 7.3 show 

that this Bayesian interval will often be wider than the interval

C + DtX ±1.96 (MSE)£ 

proposed in chapter 6, since MSE - (1 - p2)(l + Qs) . However, this 

comparison of widths does not indicate which interval is to be 

preferred, for they aim to satisfy different criteria.

We end by recalling the different ways in which the linear 

predictors are defined:

(a) C, D are estimates of C, D minimising

£[{r - (C + DTX)}2|a,/3,r]

(b) Gx, Dx minimise

£[{r - (CT +

so they are the functions of a, (3, f minimising
E[{T - (CT + DtT?)}2]

which can be written as

/e[{t - <cT + la.o.r] T(a,/s,nda<i|3dr
In (b) we ignore any difficulties due to the priors 7r(a, jt?,r) used 

in sections 7,2 and 7,3 being improper.
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TABLE 7.1 81 values of QT for q - lt 2, 3 and 4.

q - 1 q - 2 q - 3 q - 4
Cn 0.25 1.0 4.0 0.25 1.0 4.0 0.25 1.0 4.0 0.25 1.0 4.0

p2 - 0.7 N - 10
Bn
0 0,.309 0,.373 0..592 0,.456 0.522 0..744 0,,641 0.,707 0.,928 0..880 0.,944 1.155
1 0 .393 0.452 0,.655 0,.543 0,602 0..806 0.,728 0,,788 0.,988 0,.965 1,,022 1.,212
4 0 .608 0.655 0,.818 0,.760 0.806 0..967 0.,943 0..988 1.,143 1,.170 1.212 1.353

P 2 - 0,,7 N - 30

0 0,.083 0.101 0..173 0,.112 0.130 0..203 0,.142 0,.161 0,.234 0,.174 0.,194 0..268
1 0.107 0.126 0,.196 0.137 0.155 0.,226 0,.167 0,.186 0,.258 0,.200 0.,219 0.,291
4 0.179 0.196 0,.261 0.209 0.226 0..292 0..240 0,.258 0,.325 0 .274 0..291 0,.359

Ap* - 0,.7 N SES 50

0 0.048 0.059 0,.101 0.064 0.075 0,.118 0,.080 0.091 0,.134 0.097 0,.108 0,.152
1 0.062 0.073 0,.115 0.078 0.089 0,.132 0..095 0.106 0.148 0.112 0,.123 0,.166
4 0.105 0.115 0.156 0.121 0.132 0.172 0..138 0.148 0.189 0.155 0,. 166 0,.207

Ap 2 _ 0.8 N - 10 -

0 0.369 0.450 0.739 0.558 0,644 0.951 0.806 0.899 1.222 1.150 1,.248 1.581
1 0.476 0.552 0.825 0.672 0.753 1.041 0.929 1.015 1.315 1.279 1.368 1.674
4 0.761 0.825 1.059 0.974 1.041 1,.283 1.246 1.315 1.561 1.605 1..674 1.917

A*P2 - 0.8 N - 30
0 0.096 0.117 0.203 0.130 0.152 0 .239 0,.166 0.188 0.277 0.204 0 .227 0,.318
1 0.125 0.146 0.230 0.159 0.181 0,.267 0,.196 0.218 0.306 0.235 0,.258 0,.347
4 0.209 0.230 0,.310 0.246 0.267 0,.349 0,.284 0. 306 0. 389 0.325 0,.347 0,.432

y\p2 - 0,.8 N - 50

0 0,.055 0.068 0,.117 0,.073 0.086 0..137 0..093 0,.106 0,.157 0.112 0.,125 0,.177
1 0,.072 0,.084 0..134 0,.091 0.103 0,.153 0,.110 0,.123 0,.173 0 .130 0..143 0,.194
4 0..122 0,.134 0..182 0,.141 0.153 0.,202 0.,161 0,.173 0,.223 0,.181 0.,194 0,,244

Ap2 - 0.9 N - 10

0 0.,435 0.,536 0.916 0..674 0.788 1.215 1.009 1.,140 1.623 1.,510 1.663 2.216
1 0.,569 0.,667 1.035 0.,826 0.935 1.347 1.182 1.308 1.,771 1.,713 1.857 2.382
4 0.946 1.035 1.373 1.248 1.347 1.718 1.661 1.771 2.182 2,,258 2.382 2.836

Ap2 - 0.9 N - 30
0 0.i09 0.134 0.234 0.148 0.174 0,277 0.190 0.217 0.323 0.236 0.263 0.373
1 0.143 0.168 0.266 0.183 0.209 0.311 0.226 0.253 0.358 0.,273 0.300 0.408
4 0.242 0.266 0.363 0.285 0.311 0.410 0.332 0,358 0.460 0.,382 0.408 0.514

AP2 - 0.9 N 50

0 0.062 0.077 0,134 0.083 0.098 0.156 0.105 0.120 0.180 0.,128 0.143 0.204
1 0.082 0.096 0.153 0.103 0.118 0.176 0.125 0.140 0.199 0..148 0.164 0.224
4 0. 139 0.153 0.209 0.161 0.176 0. 233 0.185 0.199 0.258 0.209 0.224 0.283
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TABLE 7.2 81 values of O^for a - 1. 2. 3 and 4.

q -
CN 0.25 1.

Bn
0 0.134 0.163
1 0.232 0.258
4 0.521 0,542

0 0.040 0.045
1 0.066 0.071
4 0.142 0.147

0 0.024 0.027
1 0.038 0.041
4 0.082 0.085

0 0.136 0.186
1 0.245 0.301
4 0.568 0.644

0 0.041 0.052
1 0.071 0.082
4 0.158 0.170

0 0.025 0.031
1 0.041 0.047
4 0.091 0,097

0 0.135 0.209
1 0.255 0.335
4 0.609 0.712

0 0.042 0.060
1 0.075 0.093
4 0.172 0.192

0 0.025 0.035
1 0.044 0,054
4 0.099 0.110

4.0 0.25

0.344 0.308
0.415 0.426
0.623 0.773

0.061 0.072
0.085 0.099
0.156 0.179

0,036 0.042
0.050 0.057
0.092 0.104

0.376 0.313
0.483 0.443
0.803 0.824

0.091 0.075
0.122 0.106 
0.214 0.196

0.053 0.044
0.071 0.062
0.122 0.115

0.554 0.317
0.711 0.458
1.178 0.869

0.135 0.078
0.170 0.112
0.276 0.213

0.077 0.046
0.097 0.066
0.155 0,125

q - 2 
1.0 4.0

p 2 - 0.,7 N
0.377 0.,711 0
0.487 0.,802 0
0.809 1.,069 1
A
P2 " 0..7 N “

0.086 0,.142 0
0.112 0,.165 .0
0.190 0,.235 0
Ap 2 „ 0..7 N -

0.049 0,.081 0
0.065 0 ,.095 0

0.110 0 ,.137 0

Ap 2 ™ 0 ,.8 N -

0.397 0 ,,714 0
0.525 0 ,.826 0

0.902 1..150 1

fCM
< 

Q
. 0 .,8 N -

0.092 0 . ,157 0
0.122 0 .,186 0
0.212 0 . ,271 0

lCM
< 

Q
. 0..8 N -

0.054 0 . 091 0
0.071 0 . 108 0
0.124 0.159 0
A

P2 “ 0 . ,9 N -

0.416 0 . 805 0
0.559 0 . 951 0
0.978 1 ..383 1
p2 „ 0 . 9 N -

0.100 0,185 0
0.134 0 . ,219 0
0.234 0 . 320 0

a

P2 “ 0 . ,9 N “

0.059 0 . ,109 0
0.078 0 . ,128 0
0.138 0 .,188 0

q - 3 
.25 1.0 4.0

10
560 0.662 1.108 
709 0.800 1.239 
158 1.221 1.635

30

110 0.131 0.224 
138 0.159 0.250 
222 0.242 0.327

50

060 0.072 0.124 
077 0.088 0.139 
125 0.136 0.183

10
567 0.683 1,140 
725 0.836 1.277 
203 1.304 1.694

30

116 0.138 0.227 
147 0.169 0.257
242 0.263 0.345

50

064 0,077 0.127 
082 0.095 0.144 
137 0.149 0.197

10
572 0.698 1.195 
739 0.864 1.355
243 1.370 1.848

30

121 0.146 0.244 
155 0.180 0.278 
260 0.287 0.382

50

067 0.081 0.137 
088 0.102 0.158 
149 0.162 0.218

q - 4 
0.25 1.0 4.0

1.015 1.110 1.562 
1.212 1.298 1.746 
1.804 1.862 2.294

0.152 0.181 0.304 
0,183 0.212 0.335 
0.276 0.304 0.426

0.082 0.099 0.170 
0.098 0.115 0.186 
0.148 0.165 0.235

1.012 1.131 1.652 
1.216 1.328 1.841 
1.829 1.918 2.401

0.159 0.188 0.300 
0.194 0.222 0,334 
0.296 0.324 0.433

0.087 0.103 0.167 
0.105 0.121 0.185 
0.161 0.177 0.239

1.006 1.153 1.712 
1.219 1,359 1.909 
1.854 1.978 2.502

0.166 0.195 0.309 
0.204 0.233 0.347 
0.316 0.345 0.458

0.092 0.108 0.172 
0.112 0.128 0.192 
0.174 0.190 0.253
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APPENDIX A

The asymptotic expressions EC, ED, VAR(C) , VAR(D), COV(C,D) 

are obtained by expanding the estimate by Taylor's series and these 

are used to calculate bias and mean squared error of the best linear 

predictor. The following results are based on a sample mean Xf of k 

values in the future situation and the results for a single value x 

can be achieved by putting k = 1.

A.1 Some facts

(1) E(xf) - a + 0j?(r)
- a* + 13(fi - t)

(2) VAR(Xf) - E(VAR{XfiT))+ VAR(E(Xf\T))

<3> °*2xit - a  - p2*)var(xf)
From (1), (2) , (3) we can easily derive that

a* E(Xf)
(a) (t - fi) - ____  -______

0 0

— ^2x|t(b) VAR(Xf) -   + 020-2 - •
k

(EXf - a*) 2 p2_(/t_t)2
(c) _________  * ___________

VAR(xf) o'2

1 - p 2 1 - p 2~  (f2X|t
(4)   - ___  -  _______

kp2 p2x k02cr2

D2̂ 2x,t
(5) ______  - P2x d  - P2x> O'2k

p2s VARUf)
(6) 02 «   (from (3) and (b) above)

a2

<?2x\t

(7) (1 - p2̂ )VAR(T) - k
<r2x|t02 + _______
ko-2
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-Q2 + °'2X|t" 2
f1 " 2(8) a2 -

Q2 + °‘2X|t 1 + ^ 2x|t
O*2 /32<r2

E(C) E(D). VAR(C). VAR(D). COV(C.D)

£ „ -a 0 + (t-/t)(S
Q2 + (r2X]t

" k<r~2

% 2
+ /I

o-2x|t - ™ ^ 2x|t> 
<r2a* - 7A£(a*) 

o-2̂  « V-AR(jff)

A A A 2 A-I,
EC -» £ h(|3' o'xjt* )i where the three arguments are 

independent random variables with expectations M = (/3, cr2X jt, a*)

EC « h<0, <r*|t, a*) + t l
2 3(3=

+ <V2x|t 92h + ° c t* 8 2h
M 2 9c2X |t M 2 8or*2 M

fi + -or (3 + (t-/i)|52

|3 2 + t
k<j2

1 + 2(7X | t

(N+k-3)k2cr4 f|32 + ^itl
I ko-2J

+
^ 2X|t

a*,S — Q  2 +3°'2X|t £r2X|t_3j82
0 2  +  0’2X|tl3 k<T2 kcr2 „ ktr2

k n 2 J S TT
or

p+|- + <t—/a>J
2

Px 2(1 px) + (1 Px) ko-2ra* 2 2 _ Px(3~4px)
N+k-3 J SxT

+ (l"px) (b î) (1 4px)
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VAR(C) - VAR -v .  r 3h i  2 r 3h i  2 r 9h j  2
htfl ^ lt. «*>[ _  ]*** +[ —  y ,  [ ̂ J V xlt

2
°X [ t

f 0 2+ ffX | t
I kcr2

r a * 0 2  + _Q-X|t { -  a*}
I  _____________kcr2

N
£3tt f (52+ _̂ 2LL̂  1

I ko-2 J

+ 2<T*it: & 2 [ a* ~ ~ ^  ] 
N+k-3 , 2 4  k cr 0 + °xit 

k cr2.

1 + rx i t

kcr'
N - (0 , c 2x|t)

12 - ITgCiJ, x̂it)

S<0 * ^x|t) + JZ&- L ®2 d0
Z2 .n 9*8

N
dpd&x|t N

+ 1 /2  cr2„ 8 scr2x,— -----  2
8 <<r2X]t) N

1 -

o2+ crx | t  
kcr2

x j t  

}TT

_ 0 2+ 3<7x | t  
kcr2

^x i t  
kcr2

2 crx | t

(N+k-3)k^4r/32+|>2+ gx|t 1 
I  kcr2 J
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VAR(D) VAR g(/3, 3-x|t) w 3g
30

3g
So-2x i tJ cr'X| t

+ 2 3g
30

3g

9cr
COV((3, ai ,t)

X| tJ

x 11

[*2+ 01 x|t| 
kcr2

f - 0 2+ 1
I kcr2 J

Stt
2g^xit 
k V  (N+k-3)

CQYXC, D) » cr2* f_^L 1 L?!L 1 + cr2 2 [ 06 I f
p I d(3 J L Bp J * xit [ a^rrj I

ah
3q:zxitJ *■ 3cr2x| t

2^Xi t

02+
kcr2

f -jS2+ °x|t 1 [„*£’+ fxit 
________ ko-z kffZ J

,TT

+ 2tr2x|t P f-a*/3 + ( t ~ n ) @ 2 
(N+k-3) k2cr4 I



A,3 Bias and Mean squared error of the best linear predictor

Bias - BT - E(T - (C + DXf)

** H - EC - ED (a + fift)

- - EC - ED[a* - 0(t - /i) ]
substituting JSC, JSD and simplifying we get

(t fi) [l px j [2px lj kcr:
>tt

± <7 W  *<%>*[> - P* ] [2pI " l]LN-2
...(A.l)

Mean squared error

MSE - E[T - (C + DXf)

EE[ (T - (C + DXjf) ) 2 | C, D]

£(C - C)2+ 2E(Xf)E(C - C) (D - D) + (EXf)E(D - D)2

+ (1 - pg)VAR(T)

plugging in values of VAR(C), W1R(D) and COV(G;D), ignoring 

(bias)2 being of order (1/N)2

2^x|t 0 
!+ ^2x|t

kcr2

2(7x 11
N

E{Xf - E(Xf)}

k2cr 4 (N+k-3) 02+ °~x|t
kcr'

2°X| t

S*37Tf02+ (7x
I kcr

2 It
-02+ ^xit

kcr2
Xf+ a*|32+ ^xit f -  

kcr:
{-2£Xf+c**}

+ [l - p| ]7AR(D
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<7X| t
m
X| t
k (32a2

2ct2
x| t

N 1 +
(T *X| t
^20-2

W 2 (N+k-3 )|32
cr

1 + x| t 
k/320-2.

<r- 1 -

1 + X| t
k(32cr:

(t - /*)

t̂ t \1 + — ^ |tlI ~ k<32o-2j

°'2 i1 ~ 4 ]
k 2r.

N [1 + r’] (N+k-3) [l + t~]

k(CN)
N-2

1 -
1 + £j

k(%)
(N-2)[l +rl]

...(A.2)

where

Cjj “ Relative concentration of the experiment *■= a ^  ^
S'j’fj’

Bjj “ Relative bias of the experiment (t - /O (N - 2)

and

2
T_X

1 ~ pi ^xit

P 2X kj32cr:

Equation (A.2) can be written as

*2(l - P*] 1 + Qa

where QA is the quantity in the big brackets to the right of 1 

in (A.2). Since p2̂  ":t 1/(1 + t2̂ ), QA is a quadratic in p2x> with 

coefficients depending on k, N, Bfj,



APPENDIX B

Two results concerning the best linear predictor of section 5.3, 

for p — 1 and general q.

B.l

When a2 oo, Best Linear Predictor -» Classical Estimator.

Proof:

Using lemma 7.1 with A ■= f , k - o'2, b»=j3,

D - <r7r~'(3/[l + o-zj&Tf-ig].

Thus

p2 - D̂ /3 -> 1 as o’2 co.

Equation (5.11) implies

C + DTX - pi (1 - p2) + DT(Z - a)

- fi (1 - p2) + D^(X - a* + |3t)

» /i (1 - p2) + p2t + DT(J - X)

Since D -» r~13/[ /3Tf_1/3] as o-2 -» co,

c + D TJf t + ^ r -1 (x -  x)/[(3Tr - l $]

which is the classical estimator (5.4) when p - 1.

B.2

When fi — t and tr2 — S^/(N-2), the Best Linear Predictor for 

general q and p - 1 is the Inverse Estimator.

Proof:

We use the standard results from multivariate regression, derived 

from relation (5.2) when p -= 1,

/? - st:tx/stt 

(N“2)f - SXx - STTX stt -1 srx
thus

O’2/? “ ^TX/(N~2) when cr2 “ S<jfj'/(N—2)
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and

(N-2)[f + (T2j3(ST ] - (N-2)f + STrx STX/STT 

"
so

D — o-2[r + cr2/?^ ]-i £ from (5.10)

“ STT SXX _1 sTTX/sTT

“ “1 sTTX
in agreement with (5.5).

Also when jtt *= t

C -= ft, - DT(a + jt/3) from (5.8)

=** t - D^a*

- t - i>Tx

in agreement with relation (5.5) when p - 1.



REFERENCES

Aitchison, J. (1977). A calibration problem in statistical

diagnosis. Biometrika 64(3):461-472.

Aitchison, J. and Dunsmore, I.D. (1975). Statistical Prediction 

Analysis. Cambridge University Press, Cambridge.

Anderson, T.W, (1984). An Introduction to Multivariate Statistical 

Analysis. 2nd edition. John Wiley and Sons, Inc. New York, 

pp. 247, 291.

Andrews, D.F. and Herzberg, A.M. (1973). A simple method for

constructing exact tests for sequentially designed experiments. 

Biometrika 60(3) *.489-497.

Ansley, C.F. and Wecker, W.E. (1984). A non-parametric Bayesian 

approach to the calibration problem. Proceed.Business Economics 

section. Amer.Statist.Assoc. pp. 96-101.

Barnett, V.D. (1969). Simultaneous pairwise linear structural 

relationships. Biometrics 25:129-142.

Berkson, J. (1969). Estimation of a linear function for a 

calibration line; consideration of a recent proposal. 

Technometrics 11(4):649-660.

Bermudez, J.D. and Bernardo, J.M. (1985). Bayesian testing of a 

calibration procedure. Proceed.Intern.Statist.Institute, 45th 

session, contributed papers. 12-22 August, Amsterdam. pp. 

119-120.

Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations. 

J.Royal Statist.Soc. B, 26: 211-252.

Box, G.E.P. and Tidwell, P.W. (1962). Transformation of the 

independent variables. Technometrics 4(4):531-550.

Branco, J.A. (1985). A comparative calibration model for replicated 

observations. Proceed.Intern.Statist.institute. 45th session, 

contributed papers. 12-22 August, Amsterdam, pp. 101-102.



Brown, G.H. (1978). Calibration with an ultra-structural model.

Appl.statist. 27(1):47-51.

Brown, G.H. (1979a). An optimization criterion for linear inverse 

estimation. Technometrics 21(4):575-579.

Brown, G.H. (1979b). A method for calibrating frequency

distributions. Textile Research J. 49(2):101-104.

Brown, P.J. (1982). Multivariate calibration (with discussion).

J.Royal Statist.Soc. B, 44(3):287-321.

Brown, P.J. and Sundberg, R. (1985). Multivariate calibration with 

more variables than observations. Institute of Actuarial 

Mathematics and Mathematical Statistics. Univ. of Stockholm, 

Sweden. Research Report No. 139,

Brown, P.J. and Sundberg, R. (1987). Confidence and conflict in 

multivariate calibration. J.Royal Statist.Soc. B, 49(l):46-57. 

Buonaccorsi, J.P. (1986). Design considerations for calibration.

Technometrics 28(2):149-155.

Carroll, R.J. and Spiegelman, C.H. (1986). The effect of ignoring 

small measurement errrors in precision instrument calibration. 

J.Quality Technology 18(3):170-173.

Carroll, R.J.; Spiegelman, C.H. and Waters, R. (1985), Calibration 

when both X and Y have error. Proceed. Intern. Statist. Institute. 

45th session, contributed papers. 12-22 August, Amsterdam. pp. 

559-560.

Clark, R.M. (1979). Calibration, cross-validation and carbon-14. I.

J.Royal Statist.Soc. A, 142(1):47-62.

Clark, R.M. (1980). Calibration, cross-validation and carbon-14. II.

J.Royal Statist.Soc. A, 143(2):177-194.

Copas, J.B. (1982). Discussion on paper by Brown. J.Royal.Statist.

Soc. B, 44(3):312-313.

Cox, C.P. (1971). Interval estimation for ^-predictions from linear



Y-on-X regression lines through the origin. J.Amer.

Statist.Assoc. 66(366):749-751.

Creasy, M.A. (1954). Limits for the ratio of means. J.Royal 

Statist. Soc. B, 16:184-194.

Currie, L.A. (1985). The limitations of models and measurements as 

revealed through chemometric intercomparison. J.Research. 

National Bureau of Standards 90(6):409-422.

Davis, W.W. and DeGroot, M.H. (1982). A look at Bayesian prediction 

and calibration. Statistical Decision Theory and Related Topics 

III. Volume 1. Academic Press London, pp.271-289.

Dawid, A.P. (1985). Calibration based empirical probability. The 

Annals of Statistics 13(4):1251-1273.

Dietrich, F.J. and Marks, R.G. (1979). Analysis of factorial quantal 

response assay using inverse regression. Comm.Statist.Theory and 

Methods. A, 8(1):85-98.

Draper, N.R. and Smith, H. (1981). Applied Regression Analysis, 

2nd edition, John Wiley and Sons, New York. pp. 47-51, 125.

Dunsmore, I.D. (1968). A Bayesian approach to calibration. J.Royal 

statist. Soc. B, 30:396-405.

Easterling, R.G. (1969). Discrimination intervals for percentiles in 

regression. J.Amer.Statist.Assoc. 64:1031-1041.

Eisenhart, C. (1939). The interpolation of certain regression 

methods and their use in biological and industrial research. 

Annals of Mathematical Statistics 10:162-184.

Fieller, E.C. (1954). Some problems in interval estimation. J.Royal 

Statist.Soc. B, 16:175-185.

Ford, I. (1976). Optimal static and sequential designs: A critical 

review. Ph.D Thesis, Deartment of statistics, University of 

Glasgow, Glasgow, pp. 44-46.

Frazier, L.T. (1974). An analysis of a Bayes inverse regression



method of confidence intervals in linear calibration.

J.StatIst.Comput.Simul. 3:99-103.

Fujikoshi, Y. and Nishii, R. (1984). On the distribution of a

statistic in multivariate inverse regression analysis. Hiroshima 

Math.J. 14:215-225.

Fujikoshi, Y. and Nishii, R. (1986). Selection of variables in

multivariate inverse regression problem. Hiroshima Math.J. 

16:269-277.

Grassia, A. and Sundberg, R. (1982). Statistical precision in the 

calibration and use of sorting machines and other classifiers. 

Technometrics 24(2):117-121.

Halperin, M. (1961). Fitting of straight lines and prediction when 

both variables are subject to error. J.Amer.Statist.Assoc.

56:657-669.

Halperin, M. (1970). On inverse estimation in linear regression.

Technometrics 12(4):727-736.

Hartigan, J.A. (1969). Linear Bayes methods. J.Royal Statist.Soc.B, 

31:446-454.

Heldal, J. and Spj^tvoll, E. (1985). Calibration of categorical 

variables in registers - A study of the 2 x 2  case.

Proceed.Intern.Statist.Institute. 45th session contributed 

papers, 12-22 August, Amsterdam, pp. 311-312.

Herischke, K. (1980). Simultaneous confidence procedures in 

multivariate calibration problems. Maths.Operationsforsch. 

Statist. Ser.Statistics 11(2):193-206.

Herson, J. (1975). Fieller's theorem vs. the Delta method for 

significance intervals for ratios. J.statist.Comput.Simul. 

3:265-274.

Hoadley, B, (1970). A Bayesian look at inverse linear regression, 

J .Amer.Statist.Assoc. 65(329):356-369.



Hochberg, Y. , Marom, I., Keret, R. and Peleg, S. (1983). On improved 

calibrations of unknowns in a system of quality controlled 

assays. Biometrics 39: 97-108.

Hunter, W.G. and Lamboy, W.F. (1981). A Bayesian analysis of the 

linear calibration problem (with discussion). Technometrics 

23(4):323-350.

Jansen, A.A.M. (1980). Comparative calibration and congeneric 

measurements. Biometrics 36:729-734.

Kalotay, A.J. (1971). Structural solution to the linear calibration 

problem. Technometrics 13(4):761-769.

Knafl, G. , Spiegelman, C.H., Sacks, J. and Yivisaker, D. (1984). 

Non-parametric calibration. Technometrics 26(3):233-241.

Krutchkoff, R.G. (1967). Classical and inverse regression methods of 

calibration. Technometrics 9(3):425-439.

Krutchkoff, R.G. (1969a). Classical and Inverse regression methods 

of calibration in extrapolation. Technometrics 11(3):605-608.

Krutchkoff, R.G. (1969b). Letter to editor. Technometrics 

12(2):433-434.

Krutchkoff, R.G. (1971). The calibration problem and closeness. 

J .Statist.Comput.Simul. 1:87-95.

Kurtz, D.A, (1983). The use of regression and statistical methods to 

establish calibration graphs in chromatography. Anal.Chim. 

150:105-114.

Leary, J.J. and Messick, E.B. (1985). Constrained calibration 

curves: A novel application of Lagrange multipliers in analytical 

chemistry. Anal.Chem. 57:956-957.

Lee, S.H. and Yum, B.J. (1985). Choice of statistical calibration 

procedures when the standard measurement is also subject to 

error. J.Korean Statist, Soc. 14(2):63-75.

Lechner, J.A., Reeve, C.P, and Spiegelman, C.H, (1980). A new method



for assigning uncertainty in volume calibration. National Bureau 

of Standards. Washington, D.C., 108p. Report No. NBSIR-80-2151.

Lechner, J.A., Reeve, C.P. and Spiegelman, C.H. (1982). An 

implementation of the Scheffe approach to calibration using 

spline functions, illustrated by a pressure-volume calibration. 

Technometrics 24(3):229-234.

Lieberman, G.J., and Miller,JR. R.G. (1963). Simultaneous tolerance 

intervals in regression. Biometrika 50:155-168.

Lieberman, G.J., Miller, JR. R.G. and Hamilton, M.A. (1967). 

Unlimited simultaneous discrimination intervals in regression. 

Biometrika 54(1-2);133-145.

LIndley, D.V. (1972). Bayesian Statistics: A Review. Society for 

industrial and applied mathematics, Philadelphia.

Lundberg, E, and DeMare, J. (1980). Interval estimates in the 

spectroscopy calibration problem, Scand.J.Statist. 7:40-42.

Lwin, T. (1985). Calibration with supplementary information. 

Proceed. Intern.Statist.Institute, 45th session contributed 

papers, 12-22 August, Amsterdam, pp. 65-66.

Lwin, T. and Maritz, J.S. (1980). A note on the problem of 

statistical calibration. Appl.Statist. 29(2):135-141.

Lwin, T. and Maritz, J.S. (1982). An analysis of the

linear-calibration controversy from the perspective of compound 

estimation. Technometrics 24(3):235-242.

Lwin, T. and Spiegelman, C.H. (1986). Calibration with working 

standards. Appl.Statist. 35(3):256-261.

Makowski, G.G. and Downing, D. (1980). Confidence interval 

calibration of a standard curve. Technometrics 22(3):381-388.

Mandel, J. (1958). A note on confidence intervals in regression 

problems. Annals of Math.Statist. 29:903-907.

Matidel, J, (1984). Fitting straight lines when both variables are



subject to error. J.Quality Technology 16(1):1-14.

Martens, H. and Naes, T. (1984). Multivariate calibration. I.

Trends in Analytical Chemistry 3(8):204-210.

Martinelle, S. (1970). On the choice of regression in linear 

calibration; comments on a paper by R.G.Krutchkoff. 

Technometrics 12(1): 157-161.

Mckeon, J.J. and Chhikara, R.S. (1985). Linear regression estimates 

in sample surveys under calibration. Proceed.Survey Research 

Methods. Amer.Statist.Assoc, pp 286-290.

Miller,JR. R.G, (1966). Simultaneous Statistical Inference.

McGraw-Hill Book Co. New York.

Minder C.E. and Whitney, J.B. (1975). A likelihood analysis of the 

linear calibration problem. Technometrics 17(4):463-471.

Morris, A.G.G. (1983). Some comments on calibration procedures.

Analyst 108:546-548.

Muhammad, F. and McLaren, A.D. (1985). An approach to linear 

calibration. Proceed.Intern.Statist.Institute. 45th session 

contributed papers, 12-22 August, Amsterdam, pp. 15-16.

Naes, T. (1985a). Comparison of approaches to multivariate linear 

calibration. Biometrical J. 27(3):265-275.

Naes, T. (1985b). Multivariate calibration when the error covariance 

matrix Is structured. Technometrics 27(3):301-311.

Naes, T, (1986). Multivariate calibration using covariance 

adjustment. Biometrical J. 28:99-107.

Naes, T. , Irgens, C. and Martens, H. (1986). Comparison of linear 

statistical methods for calibrations of NIR instruments.. 

Appl.Statist 35(2):195-206.

N&es, T. and Martens, H. (1984). Mutivariate calibration. II.

Trends in Analytical Chemistry 3(10) *.266-271.

Naszodi, L.L, (1978). Elimination of bias in the course of



calibration. Technometrics 20(2):201-205.

Nishii, R. (1986). Griteria for selection of response variables and 

the asymptotic properties in a multivariate calibration.

Ann.Inst. Statist.Math, 38:319-329.

Oden, A. (1973). Simultaneous confidence intervals in inverse linear 

regression. Biometrika 60(2):339-343.

Oman, S.D. (1984). Analysing residuals in calibration problems.

Technometrics 26(4):347-353.

Oman, S.D. (1985a). Confidence regions in multivariate calibration. 

Proceed.Intern.Statist.Institute, 45th session, • contributed 
papers, 12-22 August, Amsterdam, pp. 617.

Oman, S.D. (1985b). An exact formula for mean squared error of the

inverse estimator in linear calibration problem. 

J.Statist.Planning and Inference 11:189-196.

Oman, S.D. and Wax, Y, (1984). Estimating fetal age by ultra-sound

measurements: An example of multivariate calibration. Biometrics 

40:947-960.

Ott, R.L. and Myers, R.H. (1968). Optimal experimental design for 

estimating the independent variable in regression. Technometrics 

10(4):811-823.

Pepper, M.P.G. (1973). A calibration of instruments with non-random 

errors. Technometrics 15(3):587-599.

Perng, S.K. and Tong, Y.L. (1974). A sequential solution to the 

inverse linear regression problem. The Annals of Statistics 

2(3):535-539.

Perng, S.K. and Tong, Y.L. (1977). Optimal allocation of 

observations in inverse linear regression. The Annals of 

Statistics 5(1):191-196.

Press, S.J. (1972). Applied Multivariate Analysis. Holt, Rinehart 

and Winston, Inc. New York, pp. 232.



Rao, C.R. (1975). Some thoughts on regression and prediction.

Sankhya Ser. C, 87(2):102-120.

Rao, C.R. (1981). Some comments on the minimum mean square error as 

a criterion of estimation. Statistics and Related Topics. 

North-Holland publishing company, Holland, pp.123-143.

Reilman, M.A. and Gunst, R.F. (1986). Stochastic regression with 

errors in both variables. J.Quality Technology 18(3):162-169,

Rinco, S. and Chuiv, N.N. (1985). Multivariate calibration problem. 

Proceed.Intern.Statist.Institute, 45th session contributed 

papers, 12-22 August, Amsterdam, pp.95-96.

Rothman, D. (1968). Letter to editor. Technometrics 10(2):429-431.

Saw, J.G. (1970). Letter to editor. Technometrics 12(4):937.

Schaffrin, B. (1985). A calibration model for geodetic applications. 

Proceed.Intern.Statist.Institute, 45th session, contributed 

papers, 12-22 August, Amsterdam, pp. 523-525.

Scheffe, H. (1973). A statistical theory of calibration. The Annals

of Statistics 1(1):1-37.

Schwartz, L.M. (1975). Random error propagation by monte-carlo 

simulation. Anal.Chem 47(6):963-964.

Schwartz, L.M. (1976). Non-linear calibration curves. Anal.Chem. 

48(14):2287-2289.

Schwartz, L.M. (1977). Non-linear calibration. Anal.Chem, 

49(13):2062-2068.

Schwartz, L.M. (1978). Statistical uncertainties of analyses by 

calibration of counting measurements. Anal.Chem. 50(7):980-984.

Schwartz, L.M. (1979). Calibration curves with non-uniform variance. 

Anal.Chem. 51(6):723-727.

Schwenke, J.R. and Milliken, G.A. (1983), On the calibration problem 

extended to non-linear models. Proceed.Biopharmaceutical

section, Amer.Statist.Assoc. pp. 68-72.



Seber, G.A.F. (1977). Linear Regression Analysis. John Wiley and 

Sons, New York. pp. 187-191,

Shukla, G.K. (1972). On the problem of calibration. Technometrics 

14(3):547-553.

Shukla, G.K. and Datta, P. (1985). Comparison of the inverse 

estimator with the classical estimator subject to a preliminary 

test in linear calibration. J.Statist.Planning and Inference 

12(1):93-102.

Sinclair, S.D. (1982). A new approach to calibration intervals. 

Proceed. Intern. Assoc.for Statistical computing, Vienna. pp. 

245-246.

SjtSstrdm, M. , Wold, S., Lindberg, W. , Persson, J. and Martens, H. 

(1983). A multivariate calibration problem in analytical 

chemistry solved by partial least squares models in latent 

variables. Anal.Chim.Acta. 150:61-70.

Spezzaferri, F. (1985). A note on multivariate calibration 

experiments. Biometrics 41:267-272.

Spiegelmam, C.H. (1984). A new statistic for detecting influential 

observations in a Scheffe type calibration curve. 

Austral.J.Statist. 26(3):290-297.

Spiegelman, C.H. (1984). An iterative calibration curve procedure. 

J.Research, National Bureau of Standards, 89(2):187-192.

Spiegelman, C.H. and Studden, W.J. (1980). Design aspects of Scheffe 

calibration curve using linear splines. J.Research, National 

Bureau of Standards, 85(4):295-304.

Sundberg, R. (1985). When is the inverse regression estimator 

MSE-superior to the standard regression estimator in multivariate 

controlled calibration situations?. Statist.Prob.Letters

3:75-79.

Swallow, W.H. and Trout, J.R. (1983). Determination of limits for a



linear regression or calibration curve. J.Quality Technology 

15(3):118-125.

Tallis, G.M. (1969). Note on a calibration problem. Biometrika 

56(3):505-508.

Theobald, C.M. and Mallinson, J.R. (1978). Comparative calibration, 

linear structural relationships and congeneric measurements. 

Biometrics 34:39-45.

Thomas, M.A. and Myers, R.H. (1973). Optimal designs for the inverse 

regression method of calibration. Commu.Statist. 2(5):419-433.

Trout, J.R. and Swallow, W.H. (1979). Regular and inverse interval 

estimation of individual observations using uniform confidence 

bands. Technometrics 21(4):567-574.

Turiel, T.P., Hahn, G.H. and Tucker, W.T. (1982). New simulation 

results for the calibration and inverse median estimation 

problems. Commu.Statist.Simul.Comput. 11(6):672-713.

Williams, E.J. (1959). Regression Analysis. John Wiley and Sons 

Inc. New York.

Williams, E.J. (1969a). Regression methods in calibration problems. 

Bull.ISI. 43:17-28.

Williams, E.J. (1969b). A note on regression methods in calibration. 

Technometrics 11(1):189-192.

Williford, W.O., Carter, M.C. and Field, J.E. (1979). A further look 

at the Bayesian approach to calibration. J .Statist.Comput.Simul.

Winslow, G.H. (1976). Some statistical aspects of the calibration 

and use of linear measuring systems. Nuclear Material Management

Wood, J.T. (1982). Estimating the age of an animal: An application

9:47-67.

5:55-59.

of multivariate calibration. Proceed.11th Intern.Biometric

Conference. 6-11 September, Toulouse (France), pp. 117-121.
GLASGOW
UNIVERSITY
LIBRARY


