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A bstract

In this thesis we will attem pt to classify a particular class of KM codes (named after 

H. Krishna and S.D. Morgera). The construction of these codes is based mainly on the 

multiplicative complexity problem of multiplying two polynomials together, as this relates 

directly to a particular type of bilinear form and the main theorem linking codes and bilinear 

forms (Theorem 3.11) can then be invoked.

We review work done by Winograd, Hopcroft and Musinski and Fiduccia on the general 

multiplicative complexity problem and work done by Lempel, Seroussi and Winograd on 

the topic of using the Chinese Remainder Theorem on this problem. We introduce a new 

method of looking for algorithms for polynomial multiplication, by way of diagrams. This 

will then enable us to produce many more related algorithms. We also develop two new 

bounds for the minimum number of multiplications needed to multiply two polynomials 

modulo uv over F2 (which we denote by M2(77 — 1 , uv)), namely one lower bound of |(r/ — 1)
2 2 c

and an attainable upper bound of \  +  77 +  1 for rj even and +  77 — |  for 77 odd. This 

attainable bound is used in the construction of the KM codes with wraparound later in the 

thesis. We also develop an attainable upper bound for the number of multiplications needed 

to multiply two polynomials modulo P{u) over F2 (which we denote by M 2(77 — 1, P(u)))\ 

again this turns out to be of the order ?72, but the algorithms are easily generalised for any 

77.

We fully classify KM codes for the parameter N ( — k d — 1) < 4  using these results 

on complexity and algorithm formation, and attempt the case of IV — 5. This enables us to 

find that the optimal weight enumerator is obtainable by KM codes for N  <  5.

Next we introduce constant degree codes and obtain tables of the weight enumerators



for the shunted (the idea of reducing/increasing k while increasing/decreasing d) families 

for w (the degree of the coprime polynomials used in the CRT) equals 2 and give the reader 

the proof of the generalising nature of our worlc. This last section is done in two separate 

ways, firstly we obtain results via the dual code weight enumerator and then dualise back 

to the primary code using the MacWilliams identities, and then we further develop the 

idea of using the dual code and look at the sets of the relations found and obtain results 

that use some complex linear algebra and operations on the vectors to express the weight 

distribution of the codes. The results obtained should serve as a basis for anybody using 

KM codes.
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C hapter 1

Introduction

In this thesis we look further at KM codes in a more mathematical sense than the way they 

were first investigated by Krishna in his doctoral thesis and further in Krishna and Morgera 

(1987), Krishna (1987) and Krishna (1993).

In Chapter 2, we give a thorough background on where the KM codes are useful, in par

ticular in a GH-ARQ scheme of coding. We explain some relevant coding theory, concerning 

mainly the weight enumerators and the relation between the dual codes and the primary 

codes. Some finite field theory is explained that will be used mostly when dealing with 

multiplying polynomials modulo another polynomial over a particular field. For the most 

part of the thesis we are concerned only with the finite field F2, but any results that are 

applicable for a larger field will be stated as so. Next we introduce the polynomial form of 

the Chinese Remainder Theorem and further an improved procedure for using the Chinese 

Remainder Theorem to multiply two polynomials together.

In Chapter 3 we introduce KM codes. Initially we look at systems of bilinear forms and 

what are known as computations and concern ourselves with the multiplicative complexity of 

these computations. This work was done by Hopcroft and Musinski (1973), Winograd (1977) 

and Fiduccia (1971). An important link by Krishna (1987) exposing the multiplicative 

complexity and bilinear forms is then explained. Further to the ideas in Krishna (1987), we 

look at polynomial multiplication and produce a bilinear form relating to this so that all 

the results of this chapter can be applied. So we have that from a computation G{Ax  x By)
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of a system of bilinear forms 0 — X y 1 G generates a linear code. The parameters of the 

code are explained in the chapter.

In Chapter 4 we move away slightly from coding theory and investigate complexity 

theory, specifically that concerned with multiplying two polynomials together, both directly 

and modulo another polynomial. We use specifically the theory developed in Chapter 3 to 

investigate the problem of finding m  from the coefficients of polynomial multiplication, 

3> =  ATm  — A t (Gx  x By) .  In Section 3 we give some already known bounds, on the 

degrees of the two polynomials, for the number of multiplications needed. In Section 4 

we develop a new lower bound for — 1 , U11), the number of multiplications needed

to multiply two degree y — 1 polynomials modulo vP. The proof is based on the work in 

Winograd (1977), but the result is new. In Section 5 we develop a totally new way of looking 

at the idea of polynomials multiplication, that of a diagrammatic representation. This idea 

is developed so that we can develop new algorithms from old ones so as to eventually (in our 

case anyway) find the maximum number of KM codes for a given set of parameters. Indeed 

in Section 6 we develop a new infinite algorithm, known as the square, P(u) algorithm that 

is used to multiply two degree 77 — 1 polynomials. A quadratic bound is found for this 

attainable algorithm. We next look in Section 7 at some previously known algorithms and 

obtain the upper bounds from them. The LSW upper bound is directly from the paper 

of Lempel, Seroussi and Winograd (1983), but we extend this using techniques from the 

improved Chinese Remainder Theorem of Chapter 2, and also some known facts about 

the minimum number of multiplications needed for particular values of y. This gives a 

good upper bound over the values we choose but a closed form of the upper bound cannot 

be found. The Knuth algorithm and upper bound that we find is obtained by converting 

the multiplication of two numbers to that of multiplying two polynomials, giving another 

quadratic bound. A graphical comparison is then given to visually let the reader perceive 

the advantages and disadvantages of the algorithms explained. Finally we develop a new 

upper bound M2 (77 — 1 , rt7?) and associated algorithm which we will use later in the thesis 

for the wraparound part of the KM codes (that associated with the improved procedure of 

the Chinese Remainder Theorem).
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In Chapter 5 we start to use all the techniques developed to classify KM codes for par

ticular values of the parameter N  (= k +  d — 1). First of all we explain a little about the 

structure of KM codes and some of the powerful attributes associated with them, in partic

ular their ability to shunt (the idea of increasing/decreasing k in order to decrease/increase 

d). We then look at all the KM codes for N  < 4 and tabulate all the possible cases. We 

concern ourselves mainly with the optimal codes in the way of having weight enumerator 

with least A WminJ but also consider other obtainable weight enumerators. Next we look at 

the N  = 5 problem and bring in the usage of the diagrammatic representation as developed 

in Chapter 4. This way enables us to find KM codes with optimal weight enumerator and 

some (but not all) of the non-optimal weight enumerators. We state a conjecture that says 

that we can never get all the possible weight enumerators from KM codes.

In Chapter 6 we are concerned with finding the weight enumerators of shunted families 

of constant degree KM codes (with w =  2). We first investigate the periodicity exhibited by 

the blocks associated with the coprime factors of P(u ) of the generator matrices. Next we 

develop some important results about where we are to find the n — k required independent 

relations that we will use to form the dual code and then dualise back to the primary code 

using the MacWilliams transform. On the way we explain how instead of using the Chinese 

Remainder Theorem to obtain the relations it can be done directly from the generator 

matrix G, by removing certain columns. For the constant degree codes we take P(u) — 

u2(u2 +  l)(ii2 +  u +  1) with s =  0 , 1 ,2  and construct tables of the weight enumerators. 

The intention is both to construct tables and also to relate the weight enumerators for 

various values of k. This we do as best possible by finding im portant results on the sets 

of relations tha t we are to use. Finally we consider the larger case of — 3, taking 

P{u) = «3 (u3 +  l)(u 3 +  u +  l)(u 3 T u 2 +  1). The resulting codes are much bigger and so 

this is only given a brief overview, but the ideas developed previously are still applicable.

In Chapter 7 we work closely with the ideas of Hoggar (1997), but keeping our ideas 

of increasing s using the algorithm developed in Chapter 4. We introduce new vectors and 

their shifts and related operations and use these to further develop the theory needed to 

find the weight enumerators of shunted families of KM codes. Using the extra knowledge
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we are easily able to contain the s =  3 case and obtain a table of the weight distribution.

It is useful to note that often in Chapters 6 and 7 results obtained for one part that 

appear to be overkill are essential for making a future problem much easier and so overall 

all results are necessary.

Finally in the thesis we look to the future and indicate where the work can move onto. 

It is hoped that all fields will be pursued further as the topic sheds light for many areas of 

mathematics.
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C hapter 2

Background

2.1 Digital Communication Systems

In this section we very briefly describe the two fundamental methods for error control in 

digital communication systems, those of FEC (forward error correction) and ARQ (au

tomatic repeat request), and their hybrid combinations, see McFarlane (1992), Lin and 

Costello (1983), Krishna and Morgera (1987). A generalised version of one of the hybrid 

combinations is given at the end of the section, see Krishna (1987).

2 .1 .1  F E C  S y stem s

Using this scheme the receiver will make use of an error-correcting code. The transm itter 

will send a codeword over the channel and the receiver will, if an error has been detected, 

attem pt to correct it. The problem with this scheme is tha t in some cases the receiver may 

not be able to correct the errors. In this case the erroneous word is sent to the user and it 

is assumed to be error free. This scheme uses one way traffic only along the channel. If we 

introduce some feedback we can get the following.

2 .1 .2  A R Q  S y ste m s

These schemes utilise a system that requires two-directional channels, to enable the trans

mitter to keep a record of what the receiver is doing. There are essentially two types of
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ARQ: stop-and-wait ARQ, and continuous ARQ. No error correction is employed by these 

systems, only error-detection.

Stop-and-W ait ARQ

Here the transm itter sends a codeword to the receiver, then waits for a reply from the 

receiver in the form of ACK (acknowledge that the codeword has no detectable errors) or 

NACK (the receiver has detected errors). If ACK is received the transm itter then sends the 

next codeword. If NACK is received the transmitter resends the preceding codeword. This 

will go on until the codeword is received with no detectable errors.

Continuous ARQ

In this scheme the transm itter sends codewords continuously to the receiver, and the re

ceiver ACKs/NACKs continuously (after the initial round trip delay, where N  — 1 codewords 

have been sent). Two methods exist for the retransmission of codewords that have resulted 

in NACK, as follows:

Go-back-AT ARQ For this when a NACK is received for a particular codeword, the trans

mitter resends that codeword plus all the codewords that follow. So in all a further N  

codewords are sent regardless of whether the following IV — 1 were erroneous. The main 

advantage of this method is that the codewords are kept in order all the time, obviously the 

time spent sending the extra codewords is a waste and we may wish to use the following 

method.

Selective R epeat ARQ In this the transmitter only resends those codewords that result 

in a NACK. This method obviously will result in the ordering of the codewords being upset 

and so the receiver must have adequate buffering facilities.

Many drawbacks exist for each of the FEC and ARQs, and there exist schemes that 

incorporate parts of each of FEC and ARQ.
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2 .1 .3  H y b rid  A R Q  S y stem s

By combining both FEC and ARQ we are able to build schemes that offer higher throughput 

than can be achieved by ARQ alone and a higher reliability than with FEC alone.

T ype I H ybrid ARQ

In this system, when a received codeword is found to contain errors, the receiver first 

attempts to correct them. If this is possible (i.e. the number of errors is within the error- 

correcting capability of the code) they will be corrected, the decoded word then delivered 

to the user and ACK sent to the transmitter. The transm itter will then send the next 

codeword. If errors are not correctable, the receiver will send a NACK to the transm itter 

thus requesting the sending of the codeword again. The transm itter will then send the 

codeword, the receiver attempts to correct any errors and so on.

Type II H ybrid ARQ

This scheme is based on the parity check bits for error-correction being sent to the receiver 

only when required. Two linear codes are used for this scheme; one is a high rate (n, k) 

error-detecting code Co, the other is a half-rate invertible1 (2 /c, k) code Ci.

First of all the message to be sent is encoded using Co then sent across the channel. 

At the receiver the codeword is checked for errors, if none are detected then the receiver 

assumes that none have occurred, ACK is sent to the transm itter and the receiver decodes 

the codeword for the user. If errors have been detected, but can’t be corrected by Co, the 

receiver sends NACK to the transm itter and stores the erroneous codeword in a buffer. This 

indicates to the transm itter that the receiver requires more information. The transm itter 

then encodes the original message using C\ and sends only the parity check bits. Then 

combining the previous erroneous codeword and the new parity check bits a new codeword 

is formed and then checked for errors using C\. If the number of errors is not within the 

error correcting capabilities of Ci, then a NACK is sent to the transm itter and a second

1An invertible code is one such that the original information word can be obtained from just the parity 

check bits of a codeword, see Krishna (1987).
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retransmission occurs. This retransmission can be either the original codeword or again 

the parity check bits depending on the setup of the system. If the errors are within the 

capability of Ci, then the codeword is decoded for the user.

2 .1 .4  G en era lised  T y p e  II H yb rid  A R Q  (G H -A R Q )

In Type II Hybrid ARQ schemes the second retransmission is either the same as the original 

codeword or the parity check bits following this. If it was possible to introduce more parity 

blocks then the performance of the system could be improved. For example, if instead of 

an invertible (2 k, k) code we had a (3k,k)  code then there would be the possibility of two 

extra parity blocks to assist in error-correction. If the (3k, k) code was invertible this would 

enable an extra chance to decode the parity check bits if the previous codeword or parity 

checks had been totally destroyed by for example a burst of errors. This scheme can be 

generalised to any number of extra parity check blocks before repetition starts, and we can 

get GH-ARQ as follows. We again use two codes; one a high rate (n, k ) error-detecting code, 

Co, and a (maybe invertible) (m k , k ) code C\, which is used adaptively for error-correction. 

The quantity m  here, is known as the depth of the code.

W hat we require is that the generator matrix of C\ should be of the form

G = [G1 \ G 2 \ . . . \ G m)

with at least Gi invertible. Also that if

G «  =  [Gi | G2| . . . | G i ]

has minimum distance di then di < dj for all 1 < i < j  < m.  The exact method of imple

mentation is simply an extension of Type II Hybrid ARQ, and can be found in McFarlane 

(1992), Krishna and Morgera (1987), Krishna (1987).



2.2 Coding Theory

In this section we give a brief explanation of the types of codes we will be looking at and 

some aspects of the codes that will prove to be useful and interesting. For a more complete 

look at the sections see among others MacWilliams and Sloane (1977), Hill (1986), van Lint 

(1982) or Lin and Costello (1983).

2 .2 .1  L inear C odes  

P r im a ry  an d  d u a l codes

D efin ition  2 .1  (i) Let Vq denote the set of all all ordered n  - tuples over Fry. The value n  

will be obvious in the context.

(ii) By a linear ( 77,, ft) code, C , we shall mean a k - dimensional subspace of Vq.

(iii) By a generator matrix G of C  we shall mean a (k x n) m atrix such that the set of all 

linear combinations of the rows of G over ¥ q form the code C.

(iv) By the dual code C 1- of C  we shall mean the set of all vectors in Vq orthogonal to each 

vector in C. It is also linear and so has a generator matrix, which we shall usually denote 

as H.  This matrix H  is known as the parity check matrix of the code (7, because for any c 

in c G C H c t  — 0, i.e. we get parity check equations of the form

hiQCQ T  ' ' ' T ~  0 (2.1)

from (row i of H)cT . These parity check equations are sometimes known as the defining 

equations for the codewords of C, as they define every codeword in C completely. I I  has 

rank n — ft, the dimension of C 1- so we can get n — ft linearly independent parity check 

equations.

M in im u m  D is tan ce

From now on we will refer to the n  - vectors in a code C as codewords in C.

D efin ition  2 .2  (i) The (Hamming) distance between two codewords co — cqo • • ■ co,n-i an<̂  

c i — cio ■ ■ ■ ci)U_i is the number of places where they differ, denoted by dist ( cq , c i ).
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(ii) The (Hamming) weight of a codeword c =  cq . . .  cn_i is the number of non-zero compo

nents, and is denoted by wt (c). Obviously dist (co, Ci) =  wt ( c q  — c i)

(hi) The minimum distance of a linear (n, k ) code C is the minimum (Hamming) distance 

between distinct codewords of C:

d — min {dist (co, cx)}

— min {wt (Co — ci)}

with co, cx e  C, co 7  ̂ c i.

From now on a linear (n, k ) code with minimum distance d will be called an (n, k, d) 

code. Finding d seems a daunting task for large codes but if some structure is known about 

the parity check matrix the the following two theorems may help.

Theorem  2.3 The minimum distance of a linear code is the minimum weight of any non

zero codeword.

T h eo re m  2.4 I f  H  is the parity check matrix of an (n, ft, d) code C then every d— 1 columns 

of H  are linearly independent, but some d columns are linearly dependent.

2 .2 .2  W eig h t E n u m erators

In this section we introduce a well known way of classifying codes in a polynomial form (see 

MacWilliams and Sloane (1977), MacWilliams (1963)).

D efin ition  2.5 Let Ai  denote the number of codewords of weight i in C. Then the poly

nomial
n

A{z) =
i= 0

is called the weight enumerator of C . Note that this can also be written

A(*) =  J > wt
cec

10



Similarly let Bi  denote the number of codewords of weight i in C 1-. The weight enumerator 

of C1- is
n

B(z)  = Y , B i z \
i- 0

The following theorem due to MacWilliams (1963) is a remarkable one relating the 

weight enumerator B(z)  of the dual code to the weight enumerator A(z) of the primary 

code . The proof can be found in many texts, obviously in MacWilliams and Sloane (1977) 

and MacWilliams (1963), but a rather nice version for the binary case (which we are mainly 

interested in here) can be found in Hill (1986).

T heorem  2.6 (M acW illiam s (1963)) I f  G is a (?̂ ,/c,(̂ ) code over¥q with dual C 1-, then

The MacWilliams Identities are symmetric in the sense that we can find the weight 

enumerator of the primary code uniquely from the weight enumerator of the dual code from

^ )  =  ^ (i + (? - i ) ^ ( r T ^ ) .  (2 .2)

The usefulness of these identities is obvious when we have to calculate the weight enumerator 

of a primary (n, d) code where k is large. To enumerate all qk codewords may require vast 

computation time. However n — k may be small compared with A;, then the dual code is 

smaller and so if we find the weight enumerator of the dual code, then use (2 .2), the weight 

enumerator of the primary code can be found with less computation.
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2.3 The Finite Fields Wq

Here we give a brief look at some ideas we will be using throughout the thesis, concerning 

finite fields. The theory in this section holds for any field although generally we will be 

looking at the fields F2.

2 .3 .1  P o ly n o m ia ls  over ¥ q

Unless otherwise stated let /(# ) , g(x) and h{x) be polynomials over F9. We give a few 

definitions just to make this section fully understandable.

D efin ition  2.7 (i) A polynomial f ( x)  is irreducible if f ( x )  has positive degree and f ( x )  = 

g(x)h(x)  implies that either g(x) or h(x) is a constant polynomial.

(ii) Let f ( x )  be a non-constant polynomial. If /(0 ) 7  ̂ 0, then the least positive integer e 

for which f ( x )  divides x e — 1 is called the order of / ,  denoted ord( /) . If /(0 ) =  0, then 

f ( x)  = x lg(x),  where i is a positive integer and </(0) 7  ̂ 0. Here i and g(x) are uniquely 

determined and we define ord ( /)  =  ord (g) .

(iii) Define the reciprocal polynomial, f ( x)  of f ( x)  as

2 .3 .2  R e d u c tio n  o f  P o ly n o m ia ls  M od u lo  A n o th er  P o ly n o m ia l

In the next chapter we must have a thorough understanding of the residue class ring 

¥ q[x]/ ( f ) , where /  is an arbitrary non-zero, non-constant polynomial so we give some 

theory here (see Lidl and Niederreiter (1993)).

T h eo re m  2.8 The residue class ring F9[m]/ ( / )  is a field iff f  is irreducible over ¥ q.

The residue class ring F^fxj/f/) consists of residue classes

Two residue classes [g\] and [<72] are identical if gi = g2 (mod / ) ,  i.e. if — g2 is divisible 

by / .  This is equivalent to requiring that <71 and #2 leave the same remainder after division

[9] =  9 +  ( / ) ■
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by / .  Each residue class [g] has a unique representative r £ F(/[a;] with deg(r) < deg(/) , 

where r is the remainder on dividing g by / .  The process of passing from g to r  is known 

as reduction modulo / .  So we can now see that the residue classes are distinct and are 

T +  ( /)  where r runs through all the polynomials in ¥ q[x] with deg(r) <  deg(/).

Once we look at the residue class ring F^ [&]/(/), which may be a field, a natural question 

to ask is whenever we have g(x) and f ( x ), when do we have an inverse of g(x) in ¥ q[x]/(f) 

i.e. does there exist h(x) such that

g{x)h{x) =  1 (mod f{x)).

This exists iff gcd(p(£), h(x)) — 1 as ¥ q[x] is a Euclidean domain.

The residue class ring F9[a:]/(/), /  irreducible, can easily be seen to represent a field 

in a vector form by taking the coefficients of the powers of x  of the polynomials reduced 

modulo f ( x)  as the elements of the vectors.

E xam ple 2.9 We look at x 2 +  x +  1 over F2[re]. This polynomial is irreducible over IF2[^], 

so ¥ 2 [x]/(x2  +  x +  1) is a field. Let a  be a root of the polynomial f ( x )  (so a  G F22), then 

each element of the field F22 can be represented by a polynomial of degree less than 2 (the 

degree of f ( x) )  in a. Here we have a 2 = a  +  1, so we can write the elements of the field as 

{ 0 , 1, ck , a  +  1}.

D efinition  2.10 Let (5 — +  ' be an element of a finite ring ¥ q[x] / (/($ )),

with m  — deg { f (x) )} and a a root of f (x) .  Then the vector form  of the element (3 is

(<2o • • • Um—l)-

So we see that the field in Example 2.9 may be equivalently written as {00,01,10,11}.

D efinition  2.11 By the matrix form of (a reduction polynomial) f {x) ,  we shall mean the 

matrix R  in the following. If we have Y  (x) of degree h — 1 and we reduce it modulo f ( x)  

of degree D, say, to give a (a;), then there are constants such that

.D— 1

x l (mod f (x) )  =  ri jxj . (2.3)
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Hence
h -1  D —l

a(x) njXJ . (2.4)
i= 0  j = 0

We may write this in terms of the h x  D  matrix R  =  [r^-], where obviously the first D  rows 

(if h >  0) form the identity matrix,

a =  y R  =  y
I d

(2.5)

E x am p le  2 .1 2  Let f ( x )  = x 3 +  x 2 +  x + 1  be over F2. As f ( x )  is not irreducible, the finite 

ring F2[.t]/(/(& )) is not a field. If we let a  be a root of f{x)  then ck3 +  a 2 4- a  +  1 =  0, and 

as we are working over F2 we get a 3 = a 2 + a + 1 , and all the powers of a  (reduced modulo 

ck3 +  a 2  +  a  +  1) are cr, a 2, a 2 +  a  +  1. In the matrix form as Definition 2.11 we get:

1 0 0 

0 1 0 

0 0 1 

1 1 1

Now the matrix R  can easily be seen (when f ( x )  is irreducible) to contain each non-zero 

element of the finite field ^ q[x]/(f(x)) in vector form. We now give an example to show 

how this matrix R  can be used in practice.

E x am p le  2.13 Taking the general degree 5 polynomial g(x) — qq +  g\x  +  g2 X2  +  g^x^ +  

g±xA +  g^x5 modulo x 2  +  x +  1 we could work this out via

1 0 

0 1 

1 1 

1 0 

0 1 

1 1

9 0  g 1 £2 g 3 9 4  9s (2 .6 )

giving the result 9o +  92 +  <73 +  9 5  9i +  9 2  +  94 +  £5 as expected.
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2.4 The Chinese Remainder Theorem

The main results in this section can be applied to any finite field (q a prime power), but

all the examples will be done over Fqt?.

2 .4 .1  S e tt in g  th e  S cen e

We are trying to find a way to find an algorithm for multiplying two polynomials, Z(u)  of 

degree k — 1 and Y ( u ) of degree d — 1, together. If we take a polynomial P(u ) of degree 

N  =  k +  d — 1 then (multiplying Z(u)  and Y(u)  to give $(n),) reducing 4>(ii) mod P (u ) 

will have no effect on This forms the basis of our reason for using the CRT. Define

formally

$(u) =  Z{u)Y(u)  (2.7)

so <fr(u) of degree iV — 1 is unchanged if it is reduced modulo P(ii)- 

Now suppose
L

p iu) =  I I - P i M )  deS [-Pi(u )] =  ai (2 -8)
i = l

and gcd (Pj(u), Pj{u)) = 1, 1 < i < j  < L.

Let Zi(u) be the unique reduction of Z(u ) modulo Pi(u), to a polynomial of degree less

than that of Pi(u). We can now form the 2L congruences

Zi{u) =  Z(u) (mod Pi(u))
1 1 , . . , ,  L, (2.9)

Yi(u) = y (« ) (mod Pi(u)) 

and hence the L  congruences

^ ( u) =  Zi{u)Yi(u) (mod Pi(u)), i =  1 , . . . ,  L. (2.10)

Prom these L  congruences we can find a unique solution mod P (u ) using the

Chinese Remainder Theorem.

2 .4 .2  T h e  C h in ese  R em ain d er  T h eo rem  for P o ly n o m ia ls

Here we state and prove the version of the Chinese Remainder Theorem we will be using

throughout this thesis. For a very general proof of the CRT see Lang (1993).
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Theorem  2.14 (The CRT for polynom ials) Let P[u) — Pi(u)P 2 {u) . . .  P l{u ) be 'pair- 

wise relatively prime polynomials. Then the system of congruences

<&(u) = $ i(n ) (mod Pi('a))

$(u) =  $ 2(«) (m odP 2 (u))

<3>(u) =  (mod Pl {u))

has a unique solution, modulo P{u),

$(u) =  §i{u)Q 1 (u)Ri{u) H p ^ l { u )Q l{ u )R l (u )  (2.12)

where Qk{u) ~  P{u)/Pk{u)> and P/c(w) is an inverse of Qk{u) modPk{u)} i.e.

Qk{u)Rk(u) = 1 (mod Pk(u)).

Proof. Let Qk(u) = P(u) /Pk (u). We know that gcd [Qfc^JjPfcOu)] =  1, since 

gcd [Pi(u), P j (u)j — 1 whenever i ^  j.  Hence we can find an inverse R k(u) of Qjt(n) 

modulo Pfc(u), so that

Qk(u)Rk{u) = 1 (mod Pk{u)).

We now form the sum

$(u) =  ®i(u)Qi(u)Ri(u)  +  ■ • • +  $ l (u)Ql (u)R l (u). (2.13)

The polynomial (2.13) is a simultaneous solution of the L  congruences. To demonstrate 

this we must show that

4>(u) =  $/fc(u) (mod Pjfe(it)), fc =  l , . . . , L .

Since Pj{u)\Qk(u) whenever j  ^  ft, we have

Qj{u) =  0 (mod Pk(u)).

Therefore, in the sum (2.13), all the terms except the ftth term are congruent to zero modulo 

Pfc(u). Hence

$(n) =  $k(u)Qk(u)Rk{u) =  $*(«) (mod Pk{u)), 

since Qk(u)Rk(u) = 1 (mod Pk(u)). □
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D efin ition  2.15 When using the CRT with L pairwise relatively prime polynomials 

P l ( u ) , . . . ,P l (h), we say that we are using the CRT with L blocks. This then enables 

us, when using the CRT to section the work into blocks.

E x am p le  2.16 Let deg [Z(u )] =  3 and deg [T(u)] — 1. Therefore k — 4, d = 2 and N  =  5. 

We need, in order for the product Z(u)Y(u)  to be unaffected by taking it modulo P(it), to 

have deg [P(tt)] — 5. For this example let P(u) — u2(u +  1) (« 2 +  u +  1), so we have L — 3 

and hence three blocks.

Now
Z(u) — Zq +  ZiU +  Z2 U2  +  Z3 V?

Y{u) =  t/o +  i/iu 

and Pi(u) — u2, P2 (u) — u -f 1 and P$(u) — u 2 +  u +  1.

We reduce Z (u ) and Y(u)  modulo Pi{u): i = 1,2,3.

i) modulo u 2

Z\(u) =  Z{u) (mod u2)

=  20 +  Z \ U

Yi(u) =  Y ( u ) (mod u2) 

=  yo +  yiu-

Then
=  Zi(u)Yi(u)  (mod u2)

=  (* o  +  z i u ) ( y o  +  2/i'm) (mod u2)

=  zoVo +  {zoyi +  ziyo)u +  z iy iu 2  (mod u2) 

=  zqi/q +  (^02/1 +  (mod u2).

ii) modulo n +  1

^ 2(«)

Then

— Z(k) (mod m +  1)

=  2^0 +  Z \  +  Z2 +  23

^(w ) =  T'(u) (mod u +  1)

=  2/0 H- 2/1 -

$ 2  (it) — Z 2 (u)Y2 (u) (mod u +  1)

=  (zo + Zi + 2:2 +  ^3)(yo + 2/1) (mod i t +  1).

iii) modulo u 2  +  u +  1

Zs(u) = Z(u)  (mod u 2 +  u +  1)

— ( # 0  +  Z2 +  £ 3 )  +  (2:1 +  Z2 ) U

y3(u) =  ^(w) (mod u 2 + it 4 -1 )

=  yo +  yiu.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Then
$3 (if) — Z3(u)Y3(u) (m odu2 +  u + l )

=  (Z 0 + Z 2 + Z 3 ) y 0

+ ( ( z o  +  Z2 + z3)y0 +  (zi +  z2)yi 

+ (^ o  +  z\ +  23) (i/o +  yi))u  +  (21 +  z2)yiu2 

(mod u2 +  u + 1)

=  ( z q i j o  +  Z2IJ0 +  23 yo +  z \ y i  +  222/1)

+ (2 2yo +  ^oyi +  212/0 +  ziyi  +  z3yi)u  

(mod u2 +  u +  1).

Now we must find Ri(u), i = 1, 2, 3.

i) modulo u2

Ri(u)P2(u)P3(u) =  1 (m odPi(u))

P i (u) (us +  1) =  1 (mod w2).

Therefore Ri(u) — 1.

ii) modulo u 1

R 2(u)Pi(u)P3(u) = 1 (mod P2(u))

R 2(u)(u4 +  u3 -t- u2) =  1 (mod u +  1).

Therefore R 2{u) ~  1.

iii) modulo u2 -f- u +  1

R 3(u)Pi(u)P2(u) =  1 (mod P3(u))

P 3(u)(u3 +  u2) =  1 (mod u2 + w  +  l).

Therefore R 3(u) =  u +  1.

Now we can form the sum, <h(u), as follows

$(u) =  $i(u)Ri(u)Qi(u)  +  § 2(u)R2(u)Q2(u) 

+d>3 (u)R3(u)Q3(u)

=  ^oi/o +  (202/1 +  Z i y Q) u  +  (212/1 +  2 2 y o ) u 2 

+(22yi +  23y0)u3 +  23yiu4.

(2 .20)

(2 .21)

(2 .22)

(2.23)

(2.24)
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W hat we are interested in is looking at the algorithms for finding the multiplication of 

two polynomials, so in order to do this we must introduce the notion of the multiplications 

needed to construct the algorithm. The reason we only need concern ourselves with the 

multiplications and not the additions will become clear later, but originates from the fact 

that the time for a computer to execute an addition is far less than the time for a mul

tiplication. More on the multiplications needed to compute an algorithm can be found in 

the next chapter but here we will give a brief flavour so that the rest of this section can be 

understood to be useful.

E x am p le  2 .IT Let Z (u ) =  z q  +  z \u  and Y(u) = yo yiu, then the polynomial product 

Z (u )Y (u ) is

Z(u)Y{u) = z 0 y0 +  (202/1 +  z iy0)u +  Ziyxu2. (2.25)

W ritten like this it takes four multiplications, but if we define:

m 2  -  { z q  +  2i)(yo +  yi).
(2.26)

mo — 20 yo

m i  =  21 yi

then we can write

Z(u)Y{u) ~  mo +  (mo +  m i +  m 2)u +  m iit2 (2.27)

which on a computer would take less time than the above method. This method can be

implemented directly into the CRT, which as we will see converts the problem of multiplying 

two large degree polynomials into the problem of multiplication of many smaller degree 

polynomials.

We have good algorithms for smaller polynomials (see the next chapter) so the recur

sive method proves very good. Let us do the example above (Example (2.16)) again to 

demonstrate this idea.

E x am p le  2.18 We reduce Z(u) and E(u) modulo Pi(u), i =  1,2,3.

i) modulo v?

Z\{u) — Z{u) (mod m2) W(^) — ^ ( u ) (mod u2)

=  2 0 T  Z i u  =  yo  +  y \ u .
(2.28)
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Let

Then

™o =  2o2/o 

m i =  ziyi

m 2  =  (zo + zi)(y0 +yi) .

$1  (u) = Z\{u)Yi{u) (mod w2)

=  mo +  (mo +  mi +  m 2)u +  m iu 2  (mod u2) 

=  mo +  (mo +  m i +  m 2)u (mod u2).

ii) modulo u +  1

Z2(u) =  Z{u) (mod w +  1) 

=  ^0 +  2 1 + ^ 2  +  23

Y2 {u) =  T(n) (mod u +  1)

-  2/0 +  2/i-

Let

Then

m 3 -  (20  +  2 1 + z 2 + 2 3 X 2 /0 + 2 /1 ) .

$ 2(«) =  Z2(u)Y2(u) (mod u +  1)

=  m 3 (mod u +  1).

iii) modulo u 2  +  u +  1

Let

Z$(u) = Z(u)  (mod u 2 +  u +  1)

— (20 +  22 +  2 3 )  +  {zi +  Z2)u

m 4 =  (z0 +  22 +  23)2/0 

m 5 -  (zi +  z2)yi

Ys(u) — Y(u)  (mod u2 + u  +  1) 

=  2/o +  yiu.

m G =  (20+  21+  ^3)(2/o+  2/i)-

Then
^s(u)  =  ^ 3(n)Y3(u) (mod u2 +  u +  1)

— m4 +  (m4 +  m3 +  m G)u +  m$u2 (mod u2 +  u +  1)

=  (?n4 +  ms) +  (m4 +  m G)u (mod u2 +  u +  1).

Now the Ri(u), i — 1,2,3 are the same as before and we can form the sum,

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36) 

^(u), as
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follows

$(n) =  +  <f>2 {u)R2 {u)Q2 {u) +  §z(u)R 3 (u)Q3 (u)

-  $ l{u)R 1 {u)P2 {u)P3 (u) +  $ 2 {u)R2 (u)Pi(u)P3 (u)

+  $ 3  (u) Rs {u) Pi (U) P2 (U)

: (2.37)

- mo +  (mo +  m i +  m 2)u +  (m3 +  ms +  uiq)u2  

+(mo +  m 3 +  W4 +  ?n6 )us

+(mo + m i +  ?7i2 +  m 3 +  m 4 +  m-s)?/1 (mod P(u)).

This sum can be seen to use 7 multiplications, which is not known to be optimal, and 

indeed we can do better (i.e. less multiplications used) using an improved version of the 

CRT which can be found in the next section.

D efin ition  2.19 Further to the previous two examples, if we can find a set of multiplica

tions mo , . . . ,  m n - 1 (either by the CRT or any other method), so tha t each coefficient of <&(u) 

is a linear combination of the mj , i  =  0 , . . . , n —1, then we say tha t the rm,i — 0 , . . .  — 1

reconstruct the polynomial §(u)  or the polynomial <h(ii) can be reconstructed (using the 

mj, i =  0 , . . .  , n  — 1).

Note here that for each block in the CRT a new set of multiplications is introduced. 

For Example 2.18, the multiplications mo , mi , m2 are introduced for the first block, m 3 is 

introduced for the second block and 7724, 7715,7715 are introduced for the third block.

D efin ition  2.20 When a multiplication is introduced for a particular block, we say that 

the multiplication is associated with that particular block.

So for Example 2.18, ms is associated with block three.
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2.5 An Improved Procedure

The above procedure can generally be improved if we permit intentional wraparound, that 

is if we obtain the top coefficients of the polynomial product Z (u )Y (u ) and then use the 

CRT to find the others. One way is to find the first coefficients of the polynomial product 

Z(u)Y(u)  modulo us, where s is called the number of wraparound points. The idea is as 

follows: it may require less multiplications if we take P(u)  of degree N  — 1 and allow 

a wraparound multiplication (found from Z(u)Y{u)  modulo u ) z^-iyd-i-  This can be 

generalised to taking P(u)  of degree N  — s and finding the other multiplications from 

Z(u)Y(u)  modulo u s. Using this idea we can always do at least as good as the basic 

procedure by taking s > 0 (where s =  0 is just the basic procedure with no wraparound). 

Formally put we have the following.

D efinition  2.21 Let Z(u) be of degree A;—1 andU(u,) of degreed— 1. IfdegjP(u)] <  ft+d—2 

then $(ii) =  Z(u)Y(u)  is altered by taking it modulo P (u), and we denote <&(u) modulo 

P{u)  by l>(u). Of course if deg[P(u)] > k +  d — 1 then 3?(tf) =  <l(u) as in this case it is 

unaffected by taking it modulo P(u).

Theorem  2.22 I f  we have Z{u) of degree k — 1 and Y(u) of degree d — 1 and P(u ) =  

P i H  . . .  Pl{u)} deg [P(ti)] =  k + d — 1 — s, then if we use the CRT to find the multiplications 

corresponding to &(u) =  Z(u)Y(u)  (mod P{u))} the other multiplications necessary to 

form Z(u)Y(u) can be found from

Z (u ) Y (u ) (mod tis) .

Proof. Let the degree of P(u)  be D. Let <I?(n) =  Z(u)Y(u) = X ^ o S_1 <Piu%- The reciprocal 

of <&(u) is <h(u) =  4)D+s~\-i‘C with a reduction mod us of Thus

<f>D, • - - ? 4>d -\-s~i are determined by the wraparound multiplications. Moreover by definition 

of <l>(ii), there are coefficients hi such that

<h(u) — &(«) +  {bo +  biu H h 6s_ iu s_1)P(u). (2.38)
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Now let the (s x s) matrix

M  —

P d  P d - i ■■■ Pa 0 . . .  0

0 p D . . .  p i  po . . .  0 (2.39)

So equating coefficients of the top s powers of u from (2.38) gives

[<I>d+s- i • • • 4>d+\4>d] =  [b8- i  ■ ■ ■ b0] M; (2.40)

but M  is invertible, as po — 1, so the bi can be determined by (2.40), as the =  

0 , . . . ,  D  +  s — 1 are known, and as we can obtain <b(u) we can obtain all coefficients. □

Note when we use the wraparound in the CRT we are increasing the number of blocks

by one (i.e. there is another set of multiplications associated with the wraparound part of 

the CRT).

E xam p le  2.23 We attempt the same problem as Example 2.18 but using wraparound to 

show that it can be more efficient. Again let deg [Z(u)\ = 3 and deg [T(u)] =  1. Therefore 

k =  4, d ~  2 and N  = 5. Here we will have deg [P{u)] — 4 and s =  1. For this example let 

P(u) — u(u T l ) (u2 +  u +  1).

Now
Z(u) = Zo +  Z\U +  Z2 U2 +  Z3 U3

Y(u)  =  yo + yiu

and Pi (it) — u, P2 (u) = u +  1 and Ps(u) — u2  +  it +  1.

We reduce Z (u) and T’(u) modulo Pi(it), i — 1,2,3.

i) modulo u

(2.41)

Zi(u) =  Z(u)  (mod u) 

=  ^0

Let mo =  ^o?/Oj then

Yl (u) =  Y(u)  (mod u )

— yo.
(2.42)

$i(u)  =  Zi{u)Yi{u) (mod u)

=  mo (mod u).
(2.43)
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Y^ri) =  Y ( u ) (mod u -f 1) 

-  2/o +  J/i-

ii) modulo u Y  1

Z 2 {u) = Z(u)  (mod u +  1)

=  Zq +  Z \  +  Z2 Y  23

Let m i =  {zq +  z\ Y 22 +  23)(?/o +  2/i)» then

§>2 (11) = ij2(u)y2(u) (mod w +  1)

=  m i (modu +  1).

iii) modulo u 2 Y  u Y  1

Z${u) — Z{u ) (mod u2 +  w +  1) Y^u) =  Y{u)  (mod u 2 Y  u Y 1)

=  (20 +  22 +  23 ) +  (21 +  Z 2 ) u  =  yo +  2/ i u .

Let m 2 =  (20 +  22 +  23)y0, =  (zi +  z2)yi and m4 =  (z0 +  21 +  z$){yo +  yi),  then

$ 3(11) =  Zz{u)Y3 (u) (mod u 2 +  u  +  1)

=  m 2 +  (m2 +  m 3 +  m4)u +  ms-u2 

(mod u 2 Y  u +  1)

=  (m2 +  m 3) +  (m2 +  m 4)«

(mod u2 +  u Y  1).

Now we must find Ri(u), i — 1,2, 3.

i) modulo u

Ri(u)P2 {u)Ps (u) =  1 (mod Pi(u))

P i (u) (u3 +  1) =  1 (mod u).

Therefore P i(u ) =  1.

ii) modulo u +  1

P 2(u)Pi(ii)P3 (n) =  1 (mod P2 (u))

P 2 (,n)(u3 +  u2 Y  u) =  1 (mod u Y  1).

Therefore R 2 (u) =  1.

iii) modulo u 2 Y u  Y  1

P 3(u)Pl(u)P2 (u) =  1 (mod P3(n))

R^(u)(u2  Y u )  =  1 (mod u2  Y  u Y  1).

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)
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Therefore Rs(u) — 1.

Now we can form the sum, <]>(T), as follows

$(u) =  §i{u)Ri(u)Qi(u)  +  § 2(u)R2(u)Q2(u) +  ^ s (u )R s (u)Qs(u)

=  §i(u)R i (u)P2{u)P3(u) +  § 2(u)R2(u)Pi(u)P3(u)

R ^ s(u)R3(u)Pi (u)P2(u) (2-51)

=  m o  +  ( m i  +  m2 +  7773)77 +  ( m i  +  m 3  +  m ^u 2 

+  (?no +  m i  +  m 2 +  m ^ ) u 3 .

We now need to use the wraparound, with s — 1. We have

(2.52)

(2.53)

Z ( U ) =  £3  +  Z2 U  +  Z \U 2 +  Z()U3

Y  (u) =  yi +  3/0u,

so
Z(n) =  23 (mod 77)  

y (u) =  3/1 (mod 7 7 ) .

Let m.5 — ^3?/i> then we have according to the theorem

<h(u) =  <1(77)-|-7775̂ ( 77)

=  mo +  (m i +  777,2 +  m3 +  7775)77 +  (m i +  m3 +  m ^T i2 

+  (mo +  m i +  7772 +  7774)t73 +  m ^ u A

=  zoyo +  (zoyi +  213/0)77 +  (213/1 +  227/0)n2

T  (223/1 +  2 3 7/o ) t 7 3 +  2 3 7/ i 774

using only six multiplications.

This example shows that the improved version of the CRT may be more efficient in 

calculating the number of multiplications necessary to multiply two polynomials.

(2.54)

25



C hapter 3

K M  C odes

3.1 Introduction

This section will introduce KM Codes. These are expressed as codes formed from noting 

some linkages between bilinear forms and linear coding theory. See Krishna (1987), Krishna 

(1993), Krishna and Morgera (1987) and McFarlane (1992).

For the following, unless otherwise stated let the field, F , we shall be working over be 

(q a prime power). The work in the section is based on many papers, stated when 

necessary although in Section 3.4 we have tried to approach the theory from a different 

angle than previous. The resulting notion is then hopefully clearer enabling the other areas 

to be considered.
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3.2 Bilinear Forms

Consider a vector 0 — (0q, . . .  >&k~i)T °f k bilinear forms over F. The most general form of 

the bilinear forms Oi is (by looking at the coefficients of yi)

Oi — (aooixo +  aoux l H 1- ao,r~i,iXr-i)m H-----

(^d—1,0,i^0 ~t~ &d—l , l , i&l  T  * ' ‘ T  CLd~l,r~l,ix r —l ) y d —li  

and we may then express 0 as

(3.1)

6 =  X y  =

X 0>Q X 0,i

X 1>Q X hl

Xo^d-i

X14-1

_ -X'fe-1,0 ^ jfe-1 ,1  1 * 1 X k - 1 4 - 1

y 0

Vd-l

(3.2)

where

7*— 1
^  7 ajmixmi i> — 0 , 1 , . . . ,  A; 1} j  — 0 , 1 , . . .  , d 1 . (3.3)
m= 0

D efin ition  3.1 Define a computation of 0 (with n  multiplications) to be an expression of 

the form

d =  G{Ax  x By)  (3.4)

where .A, B  and G are matrices of dimension (n x r), (n x d) and (k x rt) respectively over E, 

x  — (^0:^i> ■ ■ ■ )®r-i )r 5 V — (y0)?/i, ■ ■ ■ ■>yd~i)T and x represents component-by-component 

multiplication of vectors.

It is easy to see that a computation is simply deciding on how the terms of the linear 

forms shall be grouped and on the order of the operations required to compute the bilinear 

forms. Hence it is not unique. Let us illustrate this with an example.

E x am p le  3.2 Let the field we shall be working over be F2. Let us consider

e  =

xqVo +  xiVi 

xoyi +  xiyo 

x\y\

(3.5)

27



This can be written on the one hand as

9 =

1 1 0  0 

0 0 1 1  

0 1 0  0

1 1  0 1  0 \

0  1 rc0 0  1 yoX
1  0

.  Xl 0  1 . y i  .

-
V 0  1 1  0 J

(3.6)

involving four component-by-component multiplications, but if we write it as

e =
xqVo +  xiVi 

(ar0 +  xi )(yQ +  iji) +  x QijQ +  xiyi

x-iUi

(3.7)

then it can be written as

1  1  0 f 1  0 r ~\

1Oi—
1

i

r i \

9 = 1 1 1 0  1

Xq
X 0  1

yo

0  1  0- { 1  1
- ^  .

1  1
.  Vl .

/

(3.8)

involving only three component-by-component multiplications. This example illustrates 

that n, the number of component-by-component multiplications, is not fixed for the com

putation and we get the following.

D efin ition  3.3 The smallest n, denoted nmin, such that a computation exists is known as 

the (minimum) multiplicative complexity of the computation.

D efin ition  3.4 (H opcro ft an d  M usinski (1973)) Let z  =  (zq, z i , . . . ,  Zk-\)T and let 

G(Ax  x B y)  be a computation of 0, a system of k bilinear forms. The P-dual of the 

computation of 6 is the computation A T (GTz  x By).

Do not confuse the P-dual of a computation with the dual code C 1- of G as defined in 

Definition 2.1 (iv).

R e m a rk  3.5 The word ’dual’ in the above definition is valid in that the dual of the dual 

is the original. If we take the three tuple (G, A, B)  as the computation G(Ax  x By)  then

(G, A, B)  P^ H al(AT, Gt , B)  P^ al(G, ,4, B)
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as expected. The prefix P  is used as other types of dual computations do exist although 

they will not be used in this thesis.

The following theorem links the multiplicative complexity of the original computation 

and its P-dual.

T h eo re m  3.6 (H opcro ft an d  M usinski (1973)) There is a computation for the system 

of expressions represented by G { A x x  B y)  having n multiplications iff there is a computation 

having n multiplications for its P-dual A T (GTz  x By).

T h eo re m  3.7 (W in o g rad  (1970)) Let X y  be a system of bilinear forms over F,  where 

X  is an (k x d) matrix whose elements are linear forms in the indeterminants {rco,. . .  ,a;r_i} 

over F and y  ~  (yo? • ■ ■ ,yd-1) • f f  the column rank of X  is a, then any algorithm computing 

X y  requires at least a multiplications.

T h eo re m  3.8 (F iduccia  (1971)) Let X y  be a system of bilinear forms over F. I f  X  has 

an (a  x (3) submatrix S  such that

Then} the multiplicative complexity of X y  is a,t least a + (3 — 1.

Finally in this section we give the details about another way of writing the computation, 

as defined in Definitions 3.1 and 3.4. If we have

u T Sv  E F  iff u  — 0 or v — 0 

Vu E F a and v E F@ .
(3.9)

6 = G(Ax  x By) (3.10)

then we can expand the right hand side to give

9 = G m (3.11)

where m  =  (Ace x B y)  and consists of elements of bilinear forms of the form

m i  =  m i f f x ^ i f f y ) (3.12)
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and rrii0(x )  is a linear form in £0, ■ ■ ■, £r- i ,  and similarly for

This form is introduced as it will be used quite extensively throughout the thesis to 

prove some interesting and useful results.

E x am p le  3.9 Looking again at Example 3.2 we can write 0 in the form G m  as follows. 

For (3.6) we have

0 =

and for (3.8) we have

1 1 0  0 

0 0 1 1  

0 1 0  0

£oyo

%iVi

Xovi
-*

_  %iyo _

(3.13)

1 1 0 xqVo

0 = 1 1 1 x m

0 1 0 (®o +  Xi){y0 +  yi )

(3.14)
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3.3 The Relationship Between Bilinear Forms and Linear 

Codes

D efin ition  3.10 Denote the following

(i) the multiplicative complexity of the system (or expression) G by M (G), and

(ii) the row rank of X  by p{X).

T h eo re m  3.11 (K rish n a  (1987)) Let G = X y  be a linearly independent set of bilinear 

forms. The (k x n) matrix G in the computation (3.4) is the generator matrix of a linear 

{n^k^d1) code over F  where

d' > d  — min {p(uTX )  : u  e  F k, u  ^  0}. (3.15)

P ro o f. We know that for any integer n >  M(G), G may be computed as (3.4).

If p{X) — k then by Theorem 3.7, any computation of G will require at least k multipli

cations, i.e. n > M{6) > k.

Further, {Ax  x B y)  involves n  component-by-component multiplications. So the com

putation (3.4) has n multiplications provided all k rows of G are linearly independent. If G 

had any dependent rows, this computation would require fewer multiplications, hence the 

rank of G, p{G) must be k.

So here we have shown that G is a (k x n) matrix where n > k and all k rows of G 

are linearly independent. Thus G may be considered the generator matrix of a linear (n, k ) 

code over F.

Now a typical codeword is cT — (co, c i , . . . ,  c„_i) where

cT = u t G  and u T = (w0, u i , . . . ,  uk- 1).

We have

0 — X y  — G{Ax  x By)

which implies

u TX y  — u t G ( A x  x B y )  (3.16)
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i.e.

u TX y  — c t ( A x  x By) .  (3.17)

Consider any entry q  of a non-zero codeword c (i = 0 , 1 , . . . ,  n — 1). Observe if

i) Ci 7  ̂ 0 then i th component-by-component multiplication of (H® x B y)  is necessary, while 

if

ii) Ci =  0 then i th multiplication need not be done as it will disappear when multiplied by

Ci.

It follows that the weight of any non-zero codeword c, cannot be less than the multi

plicative complexity of cT (Ax  x By) ,  i.e.

w(c) > M ( c r (Ax  x By)) .  (3.18)

Further, by (3.17) the multiplicative complexity of cT ( A x x B y )  is equal to the multiplicative 

complexity of u TX y , i.e.

M ( c t ( A x  x By))  — M ( u TX y ) .  (3.19)

Now by Theorem 3.7, the number of multiplications necessary to compute u TX y  is greater 

than or equal to the row rank of u TX .  i.e.

M { u TX y )  > p(uTX )  (3.20)

Hence we have

u j ( c )  >  M ( c t ( A x  x By))  =  M { u r X y )  >  p(uTX) .  (3.21)

□
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3.4 A Form Directly Related to Polynomial M ultiplication

Consider the multiplication of two polynomials, Z(u) of degree k — 1 and T(u) of 

degree d — 1 , i.e.

$(u) =  Z(u)Y(u)

=  zoyo +  (212/0 + zQyi)u + ----- h zk- i y d- i u M ~2.

If we look at the coefficients of <h(u) as the vector:

=  [0 o 0 i. . .  <f>k+d-2]T

then
00 — ZqUq

0 1  =  213/0 +  Z o r n

0 i “  zjVk

(3.22)

(3.23)

(3.24)

0 fc+d—2 =  Zk-lVd-l

and we can write this is the matrix form

$  =

1

00

0N
t

T

Z i  Z q  ■■ ■  0

0 0 Z k —  1  Z k — 2  Z k ~  3 2 / 0

0 1 0  z k - i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 / 1

=  Z y  =

_  0 f c + d - 2

0

0

_  2 / d — 1  _

:  :  :  z q

I

t-H1

OOO

1

(3.25)

The following, based on Lempel and Winograd (1987), will expose the link between 

polynomial multiplication and bilinear forms, and further to linear codes.

33



We have here a system of bilinear forms =  Z y  =  A Tm , say, where AT is a ((k +  d — 

l ) x n )  m atrix with elements in F,  and m  is an n-vector, (n here is the same multiplicative 

complexity as we introduced in Definition 3.3) with elements of the form mi — nidi, such 

that 7n is a linear form in the entries of z  — ( zq, .  .. , Zk- i)T and di is a linear form in the 

entries of y  = (yo,. . . ,  y^_i)T . We can thus write

(3.26)
ai = S t y , Si  e  F d.

Now, let A(z) denote the ( n xn )  diagonal matrix with (A(z))u =  and let S  denote 

the (n x d) matrix whose ith  row is Si.  Then the algorithm A T m  can be written as

ATm  — A T A (z )S y ,  (3.27)

and since this holds for every y  it follows that we have the following decomposition for Z

Z  = A t A ( z )S. (3.28)

Now let </>o,. . . ,  denote the k bilinear forms of the system $  =  Z y ,  let x  — 

(xq,  . . . ,Xk~i), and form the trilinear form (also known as the def in ing  p o ly n o m ia l)

k - 1

x TZ y  = ^ 2 x i<h- (3-29)
i=0

From this form we can extract a dual system 0 =  X y  of k bilinear forms in the entries of 

x  and y  which satisfy
k - l

x TZ y  =  ^  ZiQ{ — z TX y  (3.30)
i= 0

and where X  is a (k x d) matrix whose entries are linear forms of the elements of x.

We can form a similar decomposition to the Z in (3.28) for the X  as follows. From 

(3.30) we see that

x TZ = z TX  (3.31)

i.e.

x t A t A ( z )S  =  z TX  (3.32)
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Looking at the full version of A (z) we see that

x  XJ

P qz 0 

0 P i z

0 0 . . .  P n_lZ

S  =  z TX , (3.33)

i.e. if A t  = [A0 . . .  A n_i] then

(.x t A 0) ( P 0z ) (xTA i ) ( P i z )  . . .  (xT A n^ i ) {P  n^ iz )  S  =  z TX, (3.34)

i.e.

z AP

x t A o 0 

0 x T A i

0 0 . . .  X T  A r,-n —1

S  = z TX , (3.35)

i.e.

(3.36)X  -  P D { x )S ,

where P{ is the zth column of P , and (P(aj))ii =  x T A ^

As X  is uniquely defined, we can see that the multiplicative complexity of 9 — X y  is 

the same as the multiplicative complexity of <3? =  Zy.  Looking again at the matrix Z  in

(3.25) we would like to obtain the decomposition of Z  in the form (3.28), i.e.

Z  =  A TA(z)S. (3.37)

to obtain the decomposition of X  and hence X. We can alternatively find X  itself from the 

defining function as follows. We know

~  ^   ̂ 2/i—j > i — 0 , . . . ,  k +  d 2
j =o

(3.38)
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so

= E S o " 4 * iE } = o ^ w -i
_ ^pk+d-2 ^k+d-2
— 2-ui- o  Zl X r j =  0 d">-+3 Uj 5

where ^  =  0, i >  A: — 1 and yj — 0, j  > d — 1. This can be written as

fc-l
x J’zw =  E=  >

i= 0

where d-1

x i+jVj
i =0

and we write 9 — X y  where X  is the following matrix,

X  =

£0 Xi . . . £<2-1

£l £2 ■ ■ ■

£fc-l ■ £fc+d- 2

So we have (using the decomposition of Z  as in (3.28))

3? =  Z y  — ATm  — A T (A(z )Sy)

-  A t {Pt z  x Sy)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

and the ’dual’ we have just worked out as (using the decomposition of X  as in (3.36))

$ = X y  = P{D{x)Sy)  -  P ( A x  x Sy) (3.44)

and so by Definition 3.4 on comparing (3.43) and (3.44) we see that $  is the P-dual of 9.

The following theorem together with Theorem 3.11 will prove to be foundational in 

linking bilinear forms and coding theory.

T h eo re m  3.12 For the above form of X ,  Va G F k, a  ^  0 and V6 G F d,b ^  0, we have 

aTX b  7  ̂ 0. Moreover p(aTX ) =  d for all a G F k, o ^ O .
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P ro o f. Look at aTX b . This can be written

d- 1 / k - l  \  k + d - 2  /  \

aTX b  =  ) bj  =  ^ O i b j X i + j  =  ^  a ^ '  ^  1 (3'45)
j = 0  \ j = 0  /  i j  7’1—0  /

Now consider the polynomial product

fc-M-2  /  \

(Eâ ) (E6T) = E E a' bo y r ■ (3-46)
7 --0  \ i + j = r  J

Notice the coefficient of Xi in (3.45) is the same as the coefiicient of y% in (3.46), for 

i — 0 , . . . , k T  d ™~ 2.

Now if a ^  0 and 5 / 0 ,  then we have from (3.46) the polynomial product of two non

zero polynomials which equals a non-zero polynomial, and so at least one of its coefficient 

is non-zero and aTX b  ^  0 .

But aTX b  is an arbitrary linear combination of the columns of aTX  with not all coef

ficients zero, so a TX  has independent columns, hence the rank is d. □

Hence, if G(Ax  x By)  is a computation of a system of bilinear forms, 0 = X y  then G 

generates a (n, k, d) linear code over F  with d > d, n  the multiplicative complexity of the 

computation, which by Theorem 3.8 is at least k +  d — 1.
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C hapt er 4

A lgorithm s for Polynom ial 

M ultip lication

4.1 Introduction

In this chapter we will introduce and expand on the idea of general algorithms for the mul

tiplication of two polynomials Z(u ) and Y(u). Usually the degrees of the two polynomials 

will be the same (taken as rj — 1), but occasionally (when stated) they will be different, in 

which case deg [Z(u)] = k — 1 and deg [Y(u)j =  d — 1.

Of course algorithms that are developed for deg[Z(u)] =  deg[Y (u)] can easily be amended 

to algorithms for which deg[Y(u)] ^  deg[Y(u)], by setting the relevant coefficients to zero.

E x am p le  4.1 If we have an algorithm for 4>(u) — Z(u)Y(u)  where deg[Z(u)] =  deg[Y(u)], 

then to obtain the algorithm for deg[Z(u)] =  k — 1 and deg[Y(u)] — d — 1 (where k > d) 

we simply set

Vd = Vd+i =  • • • =  Vk-i =  0 

and as such some of the multiplications from the original algorithm may get set to zero 

and are therefore not needed. This method is similar when d > k, in this case we set the 

relevant z^s  to zero.

N o te : When we say that an algorithm X is better than an algorithm Y, we shall mean that
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using algorithm X requires less multiplications to achieve the required reconstruction than 

it would using algorithm Y.
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4.2 General Background

The most general case that we can consider is when we are trying to find the multiplications 

to form a valid algorithm for the product

4?(u) — Z(u)Y(u)  (4.1)

where deg [Z(u)] — k — 1 and deg [K(u)j =  d — 1. We have seen in the previous chapter that 

since we are trying to find the coefficients of 4>(u) the problem can equivalently written as

$  =  Z y

— A Tm  (4-2)

-  AT {GTz x B y )

where the coefficients of <&(u) are the elements of <F. It is the matrix GT we are interested

in, as by Theorem 3.11, G is the generator matrix of a KM (n, &,d) code, where n is

the multiplicative complexity, k is 1+deg [Z(u)\, and d is 1+deg [K(u)]. While for most 

purposes we would like n to be as small as possible, it is sometimes necessary to give n 

a particular value. For example, the length may need to be a multiple of the dimension. 

For this reason optimal algorithms are not always required. We therefore seek a method of 

obtaining m  and then G, since m  uniquely defines GT and B  (and vice versa) in (4.2), or 

alternatively obtaining GT directly. In the following we are concerned with the problem of 

finding m , as this subject is of interest to many authors.

First of all we introduce some lower bounds on n, the minimum number of multiplications 

necessary for certain polynomial multiplication.
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4.3 Lower Bounds on n

There are essentially two types of lower bounds:

1 . finite lower bounds -  these are true for all finite values of the variable, e.g. 

M  >  3?7 means M  is greater than or equal to 377 for all finite 77.

2 . asymptotic lower bounds -  these are true only as the variable tends to infinity, 

e.g. M  > 3r/, 77 —» 00 means M  is greater than or equal to 377 only for sufficiently 

large 77, it does not say anything about M  for small values of 77.

Our interest in this thesis lies with finite lower bounds only as we would like to be able 

to construct algorithms of a practical use.

We now give some known lower bounds over Fry, and some over F2 only. First we must 

introduce some definitions.

D efin ition  4.2 (i) Let M q(rj — 1) denote the number of multiplications needed to multiply 

two degree 77 — 1 polynomials, over Wq.

(ii) Let M q{r)i — 1,772 — 1) denote the number of multiplications needed to multiply a degree 

771 — 1 polynomial by a degree 772 — 1 polynomial, over F^.

(iii) Let M q(rj — 1, P(u)) denote the number of multiplications needed to multiply two degree 

77 — 1 polynomials and reduce the the product modulo P(u),  over Fq.

(iv) The function f ( x )  — o(g(x)) as x tends to infinity, means > 0 as x  —̂ 00.

Of course M q(rj — 1) >  M q(rj — 1 ,P(u)),  so the lower bounds for M q(rj — l ,P(u) )  are 

extremely useful. Winograd (1977) and then more explicitly Averbuch, Galil and Winograd 

(1986) proved that

so over F2 this provides a relatively weak, but still useful bound. Lempel, Seroussi and 

Winograd (1983) prove that

M q(r) — 1) > 2r) — 1 if q < 2rj — 2 (4.3)

+  log5e (4.4)
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and so over F2 we have

M2(r] — 1, P(u)) >377 —
In 277I11 2 

In 2
1

In 2
(4.5)

for multiplication of two degree 77 — 1 polynomials modulo an irreducible polynomial P (u ) 

of degree 77. Bshouty (1992) proves that a similar result

M q(r) — 1,P(u)) > ^2  H 77 — 0 (77) as x  -> 00 (4.6)

applies for any polynomial P(u)  of degree 77. Chudnovsky and Cliudnovsky (1988) prove 

that
(77 - l ) ( g»J-*-1 - l ) g - ’J+i+ 2

M g{n -  1) >

for i — 0 , . . . ,  77, which provides for the field F2

q -  1
(4.7)

M 2 (?7 -  1 ) >  (77 -  l ) ( 2 7 ? -i-1  -  l ) 2 -7 ? + i+ 2 , (4.8)

for i — 0 , . . . ,  77.
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4.4 A New Lower Bound for M2  ( 7 7 — 1 , r7?)

We provide here a new lower bound for M 2 (r/ — 1, u7]), that proves useful when assessing how 

good some of the algorithms are in the next sections. The reason that we are concerned with 

modulo un stems from study into the wraparound part of the Improved CRT (see Chapter 

2, Section 5). The proof is based on Winograd (1977), but amended for the problem.

Let

9 =  T  (x)y

be the system of bilinear forms of coefficients of the polynomial product

0(u) = X(u)Y(u)  (mod u7]), 

where X(u)  — xq +  ■ ■ ■ +  and F(u) =  yo H-----+

(4.9)

(4.10)

D efin ition  4.3 Define the companion matrix of a polynomial P(u) — pq +  p\u  +  - - ■ +  

+  u1] to be the matrix

O p  —

0 0 ■ • 0 ~Po

1 0 • ■ 0 - P i

0 0 • ■ 0 - P n - 2

_ 0 0 ■ • 1 P Tj — 1. _

(4.11)

L em m a 4.4 I f  the elements of the vector T (x)y of bilinear forms are the coefficients of

_  (4-12)
J \^=o )

where the degree of P{u) is rj, then

0 7 - 1  \  /  77— 1

Y ^ X i U l ) ^ 2 y j u 3 1 (m o d
v.i=0 /  \ j = 0

T (^) = X Gpx GpX c r 1* (4.13)
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P ro o f. We prove by induction, first the intial case, let k ~  0, C°x = x. Now the case 

k =  1 ,

C x  =  — p o ^ 7 7 - 1  +  (1  —  PlX 7 ? - 1 )  +  (x  — p2%1]~ 1) +  ■ ■ ■ +  ( x v ~ 2 — p v- I X 11-1)

=  1  +  a ;  H------------ h  x v ~ 2  —  ( p 0  +  p i  H------------ b p ^ - i ) ^ ” 1 ) .

Now let X(u,)ufc — tQ + tiu-\ (mod P{u)) with [to ti  . . .  =  Cp®, then

(4.14)

Cp = CpCp x

=  C p [ t 0 t i

- P o t v - i  

to P l t q —1 

t l  — P2trj~l

trj—2 Pq— i t q — 1

(4.15)

and

X (u )u k+1 =  (X(u)uk)u

=  (io +  t iuH -------

=  £()« +  t \ U 2 +  ■ ■ ■ +  t v - \ U n

=  -Fofy-i +  (*o-pi fy- i JuH h (ijj-2 - p ^ - i ^ - i ) ^  1 (mod P(u))
(4.16)

as expected. □

L em m a 4.5 (C o lum n R a n k  L em m a) Let Y(a?) be as in (4-9) and v be any non-zero 

vector then v T ( x )  has column rank max{i  : vi ^  0} over Fg .

P roo f. By Lemma 4.4, i?Y(») has columns vC lx,  where C is the companion matrix of u77, 

i.e.

T(x)  = x Cx C2x C ^ x

Now let A be a non-zero p - vector. Then
q -1  / q - 1
E  AivC lx  = E  K v C 1 ) x
i=o V?;=o

=  o
7J~ 1E A^C1 = 0.
i - 0

(4.17)
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If we look at the matrix with rows v C l then we get

V V q V I  ■ Vrj—2 Vjj—i

v C
=

V i V 2 • ■ v v - i  0

v C ^ - 1 v ?l— l 0 . 1

00

and the rank of this matrix is what we require. □

L em m a 4.6 (W eight L em m a) Let u,  v be k - vectors over ¥ 2 . I f  wt (u ) > k — r then 

wt (u + v) < k -f- r — wt (v).

P ro o f. W ithout loss of generality let u  — [1 • • • 10  • • • 0], with the number of l ’s being 

k — r  +  e, and v — [0 • • • 0 1 ■ • ■ 1] be the worst case (i.e. the overlap of l ’s is the biggest, 

and no zeros overlap), then overlap is wt(u) — (r — e), so

w t(u +  v) < k — wt(u) +  (r — e)
(4.19)

< k + r — wt(u)

as e > 0. □

Let G = T (x)y  be the system of bilinear forms as in (4.9). In the same way as explained

in Section 3.2  we may put this in the form of a computation and further in the form

G =  ATm . (4.20)

Let m  be of length n, and be the least n such that an AT exists. Now AT is (rj x n ). As 

the rj bilinear forms G are linearly independent then the matrix AT is of rank 77, therefore 

by rearrangement, if necessary, of the columns of AT and the elements of m , we may have 

the first 77 columns of A T being linearly independent. Thus there exists a matrix W , say, 

such that

W T { x ) y  = W A Tm  =  [/ |(A ')r ] m . (4.21)

D efin ition  4.7 Let (i) a\ =row i of (d/)T,

(ii) V  = VS =span {eo,. . . ,  e s_i}, — ( 0 , . . . ,  0 ,1 ,0 , . . . ,  0) £ F2^, with the 1 in position i,



(iii) C R  — column rank,

(iv) n  =  77 4 * A;,

(v) s — 2/u — 277 T 4.

T heorem  4.8 Let n —row; i o f W .  (a) if — 1 then wt (a'f) >  77 — 1, 

(b) if Vrj = 0 £/ien wd (a^) < s — 1 and -u E V̂ .

P ro o f, (a) We have

Therefore

v T ( x ) y  -
- "

a i .
m .

l  +  w t(a j)  =  MC (uT(a;)^) 

> GR(uT(®))

=  77,

by Column Rank Lemma (Lemma 4.5).

(b) W  is non-singular so some row j  (say w) has wv = 1. Now as — 0, we have

(v +  w)v -  1

and

(4.22)

(4.23)

(4.24)

(u +  w ) T ( x ) y  — 

But, by part (a) and (4.24)

0 . . .  1 . . .  1 . . .  0 m .

(4.25)wt (dj +  d j ) >77 — 2

By (a) we have w t(a ' ) > 77 — 1 as wv — 1. Now putting this in the form of Lemma 4.6, i.e. 

w t(at) =  length — r, we have

w t(a' ) > k — (k — 77 +  1)

Now using Lemma 4.6 we have

wt(dj T d̂ -) ^ fc -}- (/c — 77 T l) — wt(dj). (4.26)
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Therefore substituting (4.25) into (4.26) and rearranging we get

wt(aj) < 2k — 2n +  3 =  s — 1.

Now

so, by Theorem 3.7

v T ( x ) y u'- m ,

s > CR (uT(®)).

Therefore, the biggest i such that V{ = 1 is s. So, by Lemma 4.5 v  6 Vs. □

T h eo re m  4.9 I f  rows v, w  £ W  end in 1, then

v +  w G Vs

P ro o f. First of all we write

< + e'i a'i + o'- m .(v  +  w ) T ( x ) y  ■

Now by Theorem 4.8, wt(a-),wt(a'-) > y — 1. Hence as

w t (a i) > 7) — l  =  h — (k  — T) +  l )

then
wt (aj -f a'-) < k +  (k — 77 +  1) -  wt (a'-)

< k +  (k -  rj +  1) -  (77 -  1)

=  2k — 2rj + 2

=  5 - 2 .

Therefore s >  CR ((v +  m)T(®)), and as in Theorem 4.8 we have

v +  w  G Vs.

□

(4.27)

(4.28)
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T h eo re m  4.10 The value n, the minimum number of multiplications for the polynomial 

product 6(u) = X(u)Y(u)  (mod where X ( u ) =  xq +  ■ ■ • + x T]- i u v~1, and T(u) =  

2/0 +  • • • +  Vrj-iun~1} and 0 — T (x)y  =  A Tm ,  m  being a n-vector is bounded as follows

n >

P ro o f. Let the rows of W  ending in 0 be i t i , . . . ,  up, and let the rows of W  ending in 1 be 

v o , v i t . . . t v q. So p Y q  + l  = r).

Now u i , . . . ,  Up E Vs, by Theorem 4.8. Similarly no +  i? i,. . . ,  no +  v q £ Vs by Theorem

4.9. Now because the rows of W  are linearly independent, these p +  q vectors are distinct 

and linearly independent, thus using Definition 4.7 (v)

P  +  q <  dim Vs =  s  =  2k — 2rj +  4.

Combining this with p +  q =  r] ~  1 gives n — 1 < 2k — 2rj +  4. Substituting n = 77 +  k from 

Definition 4.7 (iv) we get 77 —  1 <  2n —  4?y +  4 and the result follows by rearrangement. □
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4.5 A New Diagrammatic Representation

We have seen in the previous chapter that one way of describing an algorithm is of the form:

$  =  ATm ,  (4.29)

in other words we have a set of multiplications m o , , m n_i and each row i of A T will pick 

out the necessary multiplications to form the «th coefficient of <3>(w,).

We now introduce a slightly different way of displaying the vector m  in a diagrammatic 

form. We are interested less in the matrix AT (as long as one exists of course) as it is the 

m  directly tha t enables us to obtain the generator matrix G as explained in Section 4.2, so 

for the rest of this section we will refer to an algorithm as the vector m , whether it is in 

vector form or the diagrammatic form to be explained.

If we plot a (z, y ) grid where the £ values range from 0 to the degree of Z{u) and similarly 

for the y values, and mark each integer point we get Figure 4.1.

Figure 4.1: The (z, y) grid for algorithm representation

Now if we label the bottom left point ;?oyo, the next point right Zq‘IJi and generally label 

point as ZiVji A easY to see that the coefficients of 4>(u) =  Z(u)Y(u)  are simply the 

left-right-down diagonals, as in Figure 4.2.

Multiplications can then be represented by circling the appropriate points. For example 

to represent (^o+^i)j/o we would circle z^y^ and ziyo and join them together, as in Figure 4.3.
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z

Figure 4,2: The fa as represented on the (z,y)  grid

From now on we will omit the z and y labels on the axes, as they are not needed. For 

more complex multiplications (and algorithms) we can simply join two multiplications by a 

line as in Figure 4.4.

This method of displaying can be easily extended to any multiplication and indeed any 

algorithm, however complex, for example consider the multiplication 

m  = (zq + z2 + Zs)(yo +  y2), then this can be represented as in Figure 4.5.

We now give an example to show the diagrammatic representation of an algorithm.

E x am p le  4.11 Let Z(u)  =  zq +  z\u  +  Z2 U2  and Y(u) — yo +  yiu,  with 4>(a) =  Z(u)Y(u).  

Then we can have the following multiplications

mo =  z0 y0 m 3 -  (zi +  z2)yi

m i  =  ziyi 7 7 1 4  — (z0 + z2)yo (4.30)

m 2 = (zo + z^iyo + yi)

to reconstruct the $(u) as follows:

4>(n) — m  0 +  (mo +  m  1 +  m 2)u +  (mo + m  1 +  m^-a2 +  (mi +  ms)u3. (4.31)

So the algorithm can be represented in diagrammatic form as in Figure 4.6. Note here
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y

Figure 4.3: The multiplication (zq +  z\)yo represented in diagrammatic form

(♦ ♦) 0 H 0
------------  is equivalent to

Figure 4.4: The multiplication zo{yo + yi) as the join of zoyo and zoyi represented in 

diagrammatic form

for example that the multiplication z\y\  appears in three multiplications above and three 

circles below, as expected.

One of the main reasons for introducing this new way of displaying algorithms is that 

it gives us a handle on finding new algorithms from old ones. Basically if, for example, we 

had the two multiplications mo =  zoyo and mi =  (zq +  )yo, then we can form all the 

combinations of these two using m 2 =  z\yo and m 3 =  (2:0 +  zi)yo, or indeed = zoyo and 

rri5 = z iy0, i.e.

zoyo =  m 0 =  m 2 +  m 3 =  m 4

z\yo = m0 + m i =  m 2 =  m 5 (4.32)

[zo + z\)yo = mi =  m 3 =  m 4 + m 5.

D efin ition  4.12 Consider two sets of multiplications

{mai, m a.2, . . . ,  m an } and {m6l, m b.2, . . . ,  m bn }.
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(*X  ♦is equivalent to

Figure 4.5: The multiplication ( zq -|- ^2 +  23) (yo + 2/2) represented in diagrammatic form

Figure 4.6: The algorithm of Example 4.11 represented in diagrammatic form

We will call these sets equivalent if all combinations of the elements of the first set can be 

made from particular combinations of the elements of the second set. In the description 

above we are concerned only with pairs of multiplications. We will call the operation of 

moving from one set of multiplications to an equivalent set swapping.

When we say that a set {?7ia i, m a2, . . . ,  m an } is equivalent to a set {m bl, m b2, . . . ,  m bn } 

we mean there exists an invertible matrix W  =  [w{j] such that

(4.33)

Obviously when the number of multiplications in each set becomes large, finding whether 

another set is equivalent becomes quite hard. For this reason we are concerning ourselves 

only with sets of pairs of multiplications. Being concerned with sets of pairs of multiplica

tions, if we label the sets {ma i, m a2} and , m b.2} then if they are equivalent the following 

must hold.
'm on™ 0/1-1« f

(4.34)

mai 7Tlbl
m a2 = w mb 2

- . . m &n .

m a i Wqo W i o mbl

ma2 _ W01 wn  _ _ rnb2 _
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Now if we are working over F2 then there are only two possibilities for the matrix W  

such that the sets are distinct. So from one set of multiplications {rn(n, rria2} we get two 

equivalent sets {m ai, m ai + m a2} and {mai +  m a2,m a2}.

This technique of finding equivalent multiplications is not very easy when they are not in 

the diagrammatic form and indeed as the multiplications get more complex so does this idea. 

Prom the diagrams however it is much more easy to see when this multiplication swapping 

can take place. In Figure 4.7 we have the multiplications mo — zoyo and m \  = Z2 yo and 

the equivalent multiplications that will enable the algorithm to reconstruct the original 

polynomial.

\ 7 1

Figure 4.7: Diagrammatic representation of operation one on the multiplications

Of course the idea of multiplication swapping can be generalised and we give two gen

eralisations in Figures 4.8 and 4.9.

J* 1
*  * *  *

#  *
I

*  *■w *

*  *

*  *

/
•  *

t... .. - - “*l
*  *

*  * #  *

> L."

Figure 4.8: Diagrammatic representation of operation two on the multiplications
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♦  •

•  •

•  #

•  •  I J A

#

Figure 4.9: Diagrammatic representation of operation three on the multiplications

Further to the above operations we introduce the reciprocal operation. This is so because 

if Z Y  is an algorithm for then Z Y  is an algorithm for <E>. This is represented in Figure

4.10.

•  (• • •
<-------->

1®.
I

♦

Figure 4.10: Diagrammatic representation of the reciprocal operation

W ith these swapping operations we can make many other algorithms from a given 

algorithm and this idea will be used in the next chapter to find all the KM codes (up to 

our technique of multiplication swapping) for a given value of k and d. There are other 

ways of swapping multiplications but they get very hard to generalise and so for now we 

will consider only the above four.
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4.6 A New General Algorithm

In this section we develop a new algorithm, known as the square, P (u ) algorithm, the 

construction based on the diagrammatic approach introduced in the last section, and the 

resulting upper bound, known as the square, P(u ) (upper) bound.

Here we select 77 — 1 -b deg[Z(u)] =  1 +  deg[Y(u)], so tha t if we were reducing some 

polynomials to Z(u) and Y(it) modulo P{u), then P{u) would have degree rj. So for the 

simplest case, 77 =  1, we get Z(u) — zq and Y(u)  =  7/0, both of degree 0. The algorithm is 

obvious (we simply multiply Zq by 7/0) and given in Figure 4.11.

Figure 4.11: Our algorithm for 77 =  1

Now for the case 77 =  2, we get the 2 x 2  grid. If we place the 77 =  1 case in the bottom 

left and top right corner we can get (J)q and r/j2, and (f)\ can be obtainable by simply including 

the multiplication (zq +  Zi){yo +  2/i) &nd we get Figure 4.12.

Now looking at the case 77 — 3, the 3 x 3  grid is therefore used. Placing the 77 =  2 

case in the bottom left and top right corners we get an overlap occurring at z\ y \ . Now 

we can get 0, (f> 1, ^3 and c/q and to obtain <f>2 we can simply include the multiplication 

(^0 +  ^1 +  22) (yo +  Vi  +  2/2) a n d  we get the algorithm as in Figure 4.13.

For the cases 77 =  4 onwards we can generalise the construction of these algorithms. If 

we place the 77 — 2 algorithm in the bottom left and top right corners of the 77 x 77 grid, 

then we need three extra multiplications ( z q  + zv-z)(yo +  yv- 2 ), (^1 +  ^ - i ) ( y i  + 1/77- 1) and

#

#

Figure 4.12: Our algorithm for 77 =  2
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*  *  (# )

*  (*'l *

( 0  *  •

Figure 4.13: Our algorithm for 77 =  3

( zq +  z \  +  • • • 4- 2 ^ - 1  ) ( y 0 +  Vi  +  1 ■ ■ +  y ? j - i )  to make up the algorithm. We therefore have 

the case 77 ~  4 in Figure 4.14.

Now for the case 77 =  5 we get an overlap between the two 77 =  3 algorithms. This 

overlap is at the centre and is equivalent to the 77 =  1 algorithm. The construction is shown 

in Figure 4.15, giving the algorithm as in Figure 4.16.

Using this method we can easily construct the 77 =  6 case as shown in Figure 4.17. 

The enclosed part in each doted box is the algorithm for the 77 =  4 case. Note the overlap 

between the two 77 =  4 algorithms is the 77 =  2 algorithm. The full algorithm for the 77 =  6 

case can be seen in Figure 4.18.

This construction is easily generalised for any 77 > 5 by taking the three multiplications

Figure 4.14: Our algorithm for 77 — 4
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f i \  * + /fi— V
< ?

4> t

71

Figure 4.15: Constructing the 77 — 5 algorithm

{zq +  Zjj-2 ){yo 4- yv- 2), (zi 4- zn- i ){yx + yn- 1) and (z0 4- zi 4- ■ • ■ 4- zn- X) (y0 4- yi 4- ■ ■ ■ 4- y ^ -i) 

and then placing on the diagram the 77 — 2 cases in the same way as we did with Figure 4.17 

to get Figure 4.18. We can therefore get the number of multiplications needed to multiply 

two degree 77 polynomials using our algorithm, which we shall denote by SQ 2{y)} as follows:

SQ 2{rj) =  2SQ2{r] -  2) -  SQ2{y -  4) +  3, 77 >  5 (4.35)

and if we set S Q 2{0) =  0 then this holds for 77 > 4.

We can solve these recurrences to get a closed form for the number of multiplications as 

follows:

S Q 2 M  =
+  v  odd

I1?2 + fa ,
(4.36)

77 even.
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*  I.* '-

5 ^ "

§ r

Figure 4.16: The ij = 5 algorithm 

We are going to prove this by induction. We have that

SQ2('n) = 2SQ2{t] -  2 ) -  SQ2(t] -  4) +  3 ,7 /  > 4

with the initial values as:
deg[P(u)] -  1 1 2 3

no. mults 1 3 6

(4.37)

(4.38)

Now (4.36) is true for 0 <  77 < 4, so assume true for 77 < k, k > 4, and we will look at 

7/ =  k.

So for k even we have

SQ2{k) = 2SQ2(k -  2) -  SQ 2(k — 4) +  3

I 1

4

2 . § ( f c - 2 ) 2 +  2 . f ( A - 2 )  

- ! ( *  -  4)2 -  | ( f c - 4) +  3
(4.39)

37.2 , 3f, g ft -f 4 ft
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Figure 4.17: The making of the r] = 6 algorithm 

and for k odd we have

SQ2(k) =  2SQ2{ k - 2 ) - 2 S Q 2{ k - 4 )  +  3 

=  2.§(fc — 2)2 +  2,|(fc — 2) — 2 . |  

- | ( & — 4)2 - f ( f c - 4 )  +  |  +  3
3 r.2 , l. _  3q rb I A/ q

(4.40)

as expected. So by induction the result (4.36) is true for all k > 4, and hence as it is true 

for 0 < rj < 4 it is true for all k > 0.
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Figure 4.18: The 77 =  6 algorithm
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4.7 Some Other Upper Bounds via Algorithms

In this section we state some existing upper bounds (algorithms) and where they originated. 

We first introduce what we shall call the L S W  algorithm and bound (named after the paper 

Lempel, Seroussi and Winograd (1983)), and then provide two improvements to the basic 

procedure, namely the LSW*  and the LSW* with wraparound. We will also introduce the 

algorithm and bound that is based on the numerical approach used in Knuth (1981). In the 

next section we will display some graphs comparing all the upper bounds we have discussed.

4 .7 .1  T h e  L S W  B ou n d s

Lempel, Seroussi and Winograd (1983) develop an algorithm using the Chinese Remainder 

Theorem using ideas similar to those we were use to develop KM codes in Chapter 3. The 

closed bound they arrive at is not very close to the actual obtainable values so we will only 

consider the algorithm for small values of r]. The theory can be found in the paper cited 

but here we give an example to demonstrate the idea fully.

E x am p le  4.13 Suppose we want to find the number of multiplications needed to multiply 

two degree 3 polynomials. Using the construction of Lempel, Seroussi and Winograd (1983) 

we have
Z(u) =  zo +  Z \ U  +  Z2 U2 +  z%uz

(4.41)
Y  (u) =  y0 +  yiu  +  y2u2 +  ysu3

and select P(u)  =  u(u +  V){u2 +  u +  l)(w3 +  u +  1). Let <I?(ia) =  Z(u)Y(u).  Then using the 

CRT (in the same way as Example 2.23) we get the following

i) modulo u

Zi(u) — Z(u) (mod u) 

=  0̂

Let mo = zoyo5 then (u) = mo (mod u ).

ii) modulo u +  1

Z2{u) — Z (u ) (mod u +  1 )

=  20 + 2 l + ^ 2 + 2 3

Yi(u) =  Y(u)  (mod u )

= yo-
(4.42)

Y2(u) — Y(u)  (mod u +  1) 

— Vo +  Vi +  V2 +  S/3-
(4.43)
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Let mi =  ( z q  + zi +  z2 +  £3)(yo 4 - yi +  y2 4 - 2/3), then $ 2 (u) =  mi (mod u +  1 ).

iii) modulo u2 +  u 4 - 1

^(■a) =  (mod «2 4  u 4  1 )

=  (^0 +Z2 + 23) +  (^1 +  ^2)^
(4 .4 4 )

Ys(u) — T(u) (mod u 2 4  u 4  1)

=  (yo +  y2 4- y3) +  (2/1 4- V2 ) u .

Let m2 =  («o4-^2+«3)(2/o+2/2+2/3),m3 = (2 1 + 2 2 )(2/1 + 2/2 ) andm4 = (^o+^i+^)(2/o+2/i+l/3) 

then
$ 3(14) =  m2 +  (m2 4  m 3 4  m4)u 4  m 3u 2 (mod u2 4- u 4  1)

=  (m2 4 m 3) +  (m2 4  m 4)u (mod u2 4- u 4-1).

iv) modulo u3 +  u 4 -1

(4 .4 5 )

Z4(u) — Z(u)  (mod u3 4  u 4  1)

=  { z q  +  Z3) + (zi ~\~ Zs)u + Z2U2

y4 (u) =  y(u) (mod u3 4- u  4 - 1 )

=  (yo +  2/3) +  (2/1 + 2/3 )^ +  2/2̂ 2-
(4 .4 6 )

Let
m 5 = {z0 +  23) (2/0 +3/3)

m Q = (zi + z$)(yi + y$)

my == z2y2

=  (20 +  ^i)(yo + y i )  

m g  =  (^1 + 2 2  +  23) ( j / i  + y 2 + y 3)

W10 =  {Zq +  22 4- 2 3 )  (y o  +  y2 4- y3)

(4 .4 7 )

then

+ 4(u) =  m 8 +  (ms +  me +  m 8)u 4 -(ms +  m 8 +  m7 4-mio)u2

+(me +  m 7 4- mg)u3 +  (mod u3 4- u  4* 1)

=  (ms 4  m6 4  m7 4  mg) +  (ms 4- m 8 4- mg)u 4- (ms +  m6 +  mjo)

(mod u3 4- u 4  1).

Now we must find P i(u ),i  — 1 , .. . ,4 .

i) modulo u
Ri  (u)P2(u)P3(u)P4(u)

Ri(u){uG +  u4 +  u +  1)

Therefore Ri(u) = 1.

ii) modulo u 4 l

R 2 (u) Pi (it) P3 (it) P4 (it)

P 2 (^) {u6 4- u5 4- it)

(4 .4 8 )
u

1 (mod Pi(u)) 

1 (mod it).

1 (mod P2(u)) 

1 (mod u +  1 ).

(4 .4 9 )

(4.50)
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Therefore P,2 (u) — 1.

iii) modulo u2 +  u 4- 1

Rs(u)Pi(u)P2(u)P4 {u) = 1 (mod P 3(u)) 

i?3(u)(u5 + u 4 + « 3 + « )  =  1 (mod u2 +  u -f 1).
(4.51)

Therefore P 3(u) =  u2.

iv) modulo u3 +  u +  1

R4(u)Pi (u)P2(u)Pz(u) = 1 (mod Pi^u))

i?4(u)(u4 +  u) = 1 (mod u3 + u + l ) .
(4.52)

Therefore P 3(u) = u5.

Now we can form the sum 4>(u), as follows

$ ( « )  =  $i(u)Ri (u)Qi(u)  +  ®2{u)R2(u)Q2{u) +  $ 3 ( w ) P 3 ( u ) Q 3 (u )  +  $ 4  (*0#4  (u ) Qi iu) 

(mod P(u ))

— 4>i(li)Pi(u)P2(u)P3(u)P4(u) +  <h2(u)P2(u)Pi(u)P3(u)P4(u) 

+$3(li)P3(u)Pi(u)P2(u)P4(li) -f ^4('u)P,4(li)Pi(u)P2(u)P3(u)

(mod P{u))

- -  m  o +  (m o  +  m i  - f  m 3 +  m 4  +  m s  +  777,7 +  m s  +  m i o ) u  

+ ( m .2  +  m 3  +  m 3 +  m g  +  rr ij  +  m g ) u 2 

+ ( w 3 +  ?7i 4  +  m,Q +  7777 +  m s ) u 3 

+  (m o  +  m 2 +  777,4 +  m s  +  m y  +  m s  +  m i o ) u 4 

+ ( m i  +  m 2 +  7774 +  m 5 +  m g  +  m j  +  i t i q ) u 5 

+(m o  +  m i +  m 2 +  m 3 +  mg +  my +  m s ) u 6

(mod P(u))
(4.53)

and as expected this gives

$ ( u )  =  2r0yo +  (^oyi +  ^iyo)™ +  (202/2 +  212/1 +  222/0) w2

+ ( 202/3 +  *12/2 +  ^22/1 +  Z3yoW  +  (212/3 +  ^22/2 +  2 3y i)u 4 (4.54)

+ (2 2 2 /3  + z^y2)u5 +  z3y3uG.

Thus to multiply two degree three polynomials using the LSW algorithm takes eleven mul

tiplications.
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Note this method is recursive in that we use the algorithms for smaller degree polynomial 

multiplication to obtain algorithms for larger degree polynomial multiplication. We can 

get the following table of number of multiplications needed to multiply two degree r] — 1 

polynomials.

?7 — 1 0 1 2 3 4 5 6 7 8 9 10 11

no. mults 

(LSW)

1 3 6 11 16 22 27 33 38 44 49 55

W ith the above paragraph in mind if we can find better algorithms for small degree 

polynomial multiplication then this will result in the large degree polynomial multiplication 

taking less multiplications. We can improve on this algorithm by noting firstly (as proved 

in Kaminski (1985)) that M2(4, P(u)) — 9, and secondly (via our square, P{u ) bound) 

that M 2 (b,P(u)) < 14. So we can get better algorithms for smaller degree polynomial 

multiplication and this will then enable us to construct better algorithms for larger degree 

polynomial multiplication. Further, if we choose the P(u)  and its factorisation (obviously 

ensuring that the factors are pairwise coprime) we can get a better algorithm, which we 

denote by LSW*. Let us demonstrate this with an example.

E x am p le  4.14 If we wish to multiply two degree 13 polynomials using the LSW algorithm 

then we need P{u) — u(K +  l)('a2 +  n +  l) ( ,u3+iA +l)(,u3+'u2 +  l)(ii4 +  u +  l)(ii4 +  'U3 +  l)(u 4 +  

u3 +  u2 +  u +  1 ){u5 4- u3 +  1) and thus this takes 1 +  1 +  3 +  6 +  6 +  11 +  11 +  11 +  16 =  66 

multiplications. Now if we use the LSW* with the same P(u)  the algorithm will take 

1 +  1 +  3 +  6 +  6 +  9 +  9 +  9 +  14 =  58. For this particular example the P(u)  is the best 

possible to reduce the number of multiplications needed.

We therefore get the following table for the number of multiplications needed when using 

the LSW* algorithm.

77- I 0 1 2 3 4 5 6 7 8 9 10 11

no. mults 

(LSW*)

1 3 6 9 14 18 25 29 34 38 43 49
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Now, further to the standard version of the CRT we may use the Improved version as 

found in Section 2.5 and apply the wraparound method to try  to reduce the number of 

multiplications needed to multiply two polynomials. We denote the algorithm designed this 

way as the LSW* with wraparound. We give here an example and point the reader for 

reference to Example 2.23 for the full construction method.

E x am p le  4.15 We want to multiply two degree 6 polynomials using the least possible 

number of multiplications. Using the LSW algorithm we could choose P(u ) — u(u2 +  u + 

l)(u 3+ u + l) (u 3+ u 2+l)('ii4+ii-f 1). Thus the reconstruction would take 1+3+6+6+11 =  27 

multiplications. Now using the LSW*, firstly using the same P{u ) would result in the 

number of multiplications being 1 +  3 +  6 +  6 +  9 =  25. Secondly, we could choose a new 

P(u)  as u2(u2 + u +  l)(u 3 +  u +  l)(u 3 +  u2 + 1)(^3 +  u2 +  u +  1) and this would result in 

an algorithm taking only 3 +  3 +  6 +  6 +  6 =  24 multiplications.

Now we wish to apply the wraparound technique. If we take P(u ) =  (u +  1 )u2(u2 +  

u +  1)(‘U3 +  u  +  l)(u 3 +  u2 +  1) and s = 2 then this would result in an algorithm taking 

1 +  3 +  3 +  6 +  6 +  3 =  22 multiplications.

So we can get a table of the best possible number of multiplications for polynomial 

multiplication using the LSW* with wraparound method as follows.

77 — 1 0 1 2 3 4 5 6 7 8 9  10 11

no. mults 

(LSW* with wrap.)

1 3 6 9 14 18 25 29 34 38 43 49

It must be noted here that the LSW* with wraparound algorithm is not always better than 

the LSW* algorithm but always at least as good (obviously as we can take the wraparound 

to be zero).
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4 .7 .2  T h e  K n u th  b ou n d

In the book Knuth (1981) Page 178, there is a numerical approach to multiplying two 

numbers. We can get a polynomial equivalent of this as follows. For 77 = 2s, if

z ( u )  =  Zq +  Z \ U  H +  Z2s - l U 2 s ~ 1

y{u) =  yo + yiu-]-------bj/2s - iu 2s_1,
(4.55)

write

Then

z =  usz ^  +  ^  ; z ^  — zs +  zs+iu  H------- b z2s- i u s~1

=  zq +  21 u  H----------- b ^ 5_ i u s _ 1

7/ =  u V L) +  7/(°) ; 7/C1) =  ys +  ys+17i H-------- b y2s- i ^ s_ 1

y(0) =  s/o +  yi^H-------t-ys- iu s_1.

z(u)y(u) — (u2s +  +  7 / ( 2 ^  — 2^°))(?/0) — y ^ )  +  (us +  1 ) 2 ^ 7/

(4.56)

(0 )

This reduces the problem of multiplying a pair of degree 77 — 1 (77 even) polynomials to that 

of multiplying three pairs of degree ^ — 1 polynomials.

This method can also be used (with slight modification) for 77 — 2s +  1, and we can get 

the following.

(4.57)

write

(4.58)

z ( u )  =  Zq +  Z \ U  -\---------- b Z2 s U 2s

y ( u )  =  7/0 +  y \ u  +  • • • +  V2sU2s ,

z  =  u s z M +  2 ^  ; z ^  — z s +  z s + ±u  4----------b z 2su s

jj(°) =  zo +  z \ u  H +  za- \ u a~l

y  =  u s y W  +  7/(°) ; 7/W =  7/a +  y s+1u  H------- b 7 /2X

=  yo +  y i^ 4  b ys-iu*"1.

*(u)y(u) =  (u2fl + « V 1)J/(1) + « a(»(1) - « (0))(l/(0) - ! / (1)) +  («a +  l)* (0)S/(0).

This reduces the problem of multiplying two degree 77 — 1 (77 odd) polynomials to that of 

multiplying two pairs of degree polynomials and one pair of degree — 1 polynomials.
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If we let K(rj) be the number of multiplications needed to multiply two degree r\ — 1 

polynomials using above method then we get that the Knuth bound can be written as the 

recursive formula
3K  (S ) , 77 even

K M  = 1 \ 2> \  , . . (4.59)
2K  ( s ± i)  + K  , Tf odd
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4.8 A Comparison of Some of the Upper Bounds

In this section we give graphical comparisons for some of the upper bounds for M2(r/), that 

we found in the previous sections. As we are only really interested in the values for smallish 

77, we plot the graphs up to 77 =  14 (7/ even), and 7/ =  15 (77 odd).

First of all we give the graphs of the bounds for 77 odd in Figure 4.19, and the graphs 

of the bounds for 77 even in Figure 4.20.

Figure 4.19: The graph of the five upper bounds for 77 odd.
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The graphs are labelled as follows:
□ Square, P(u)

Upper +  Knuth

Lower +  LSW

O  LSW*

O LSW* with wraparound

Figure 4.20: The graph of the five upper bounds for 77 even.

These graphs show that LSW* with wraparound algorithm is the best over the range 

indicated. However, as stated in Section 4.7, the LSW* algorithm is sometimes as good as 

the LSW* with wraparound.
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4.9 A Generalised Upper Bound for -^2 ( 7 7  — 1 ,uv)

The algorithm we develop here will be known as the s q u a r e , u v a lg or i t h m .

Starting from a base code and extending the length of the codewords we may be able to 

increase the minimum distance while keeping k the same. Using this idea we may consider 

a family of KM codes to be those having constant k and increasing d, by taking a constant 

P (u) and letting s, the number of wraparound points, increase from 0. We therefore need 

a general algorithm for obtaining &(u) =  Z ( u ) Y (u) modulo us for varying s. Below we will 

develop such an algorithm.

Of course for s = 0 there is nothing to do so the first case we need to look at is s = 1. 

We get for this value

Z(u) = Zg (mod u)
W   ̂ ; (4.60)

Y  (u ) =  yg (mod u )

and by letting m g  =  zgyg  we get $(u) =  Z { u ) Y ( u ) (mod u ) =  mo-

For the case s = 2 we get that

Z(u) = zq +  z \u  (mod u2)
(4.61)

Y(u) =  yg + y i u  (mod u  ) 

and by letting m 0 =  Zgyg,  m i  =  z i y i  and m 2 =  {zg +  Z i ) ( y g  +  y { j  we get

=  Z(u)Y(u)  (mod u2) =  mg +  (mo +  m \  +  m 2)u. (4.62)

The case s — 3 is the first case to need less multiplications than the square, P (u ) 

algorithm for n — 3. We get that

Z(u) = zg T  z\u  +  z2u2 (mod u3)
(4.63)

Y(u) =  yg + yiu + y2u2 (mod u3)

and by letting m g  = zgyg ,  m \  =  z i y i  and m 2 =  z 2y 2 , m 3 ~  (zg  +  Z i ) ( y g  +  y \ )  and 

m4 =  (20 +  z 2) { yg  +  y 2) then

<3?(u) =  Z(u)Y(u)  (mod u3) — mo +  (mo +  m i T mg)u +  (mo + m i  +  m 2 +  m^)u2. (4.64)

70



This can be easily generalised for a given even value of s, to use the following multipli

cations

m0 = zq yo
mi  =  ziyi

m s-1 =  Zs- iVs - i

m s = (zQ + zi)(yo + yi)
m s+1 =  (20 +  22) (yo +  2/2)

m 2s~ 2 =  («o +  ^s-i)(yo +  2/s—1) 

m 2s- i  =  (zi + 2 2 ) (?/i +V2)

mos- 3  =  (^1 +  ^ -2 X 2 /1  +  2/5-2) 

7773s- 2  =  {Z2 +  Z3) (2/2 +  2/3)

m4s_6

77245—5

” l 5 s - l l

^5s-10

m ^ + - 3

^ + . - 2

m 4 +S- l

^2 +  2 s - 3 ) ( y 2  +  2 /a -3 )

3̂ +  24)(2/3 +  2/4)

23 +  2 s _ 4 ) ( y 3 +  3/ s —4)

24 t  zs—o){yA T 2/^-5)

2 |-2  +  2 |- i ) ( ^ |_ 2  +  2 |_ i )  (4.65)

2 § -2 + 2 § ) (2 § -2 + 2 |)

^ - 1  +^#)(2/4-l +2/#)

W ith the coefficients <fo,i =  0 , . . . , S “ l given as follows.

0 0  - 777.0

— 777s — m o — m\

02 =  m i +  777s + l  -  7770 ~  7772

03 =  m 2 s- l  -  7771 -  7772 +  777s _|_2 ~  7770 -  7773

0 4  =  7772 +  7772 s -  777i  -  7773 +  777s + 3  -  7770 ~  7774

05 -  7773 s—2 -  7772 -  7773 +  7772 s+ l  ~  777i -  7774 +  m s+4 -  7770 -  7775
(4.66)

06 =  7773 +  7772 s+ 2  -  ?77i  -  7775 +  7773 s_ l  -  7772 -  7774 +  777s + 5  -  7770 -  7776

0 a_ 2 =  7 7 7 ^  +  7772 s - 2  “  7770 -  777s - 2 +  7773 s _ 4 -  ?77i -  777s - 3
2

-H 7 l4 s _ 7  -  7772 ~  777s _ 4 H h 777^2+ s _ 2 -  7 7 7 |_ 2 -  777|

0 S - 1  =  7772 s - 2  -  7770 -  777s _ i  +  7773 s_ 3 -  777i -  777s - 2  +  7774 s _ 6

—7772 — 777s_3 H H 777s 2 , — 777® _ i  -  7771^-4-5-1 2 1 2
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and similarly for s, odd, we use the following multiplications

mo -

m i -  ziyi

m s- i  = zs- \ y s- i

m s =  (20 +  £1X2/0 H- 2/1)

m s+1 =  {z0 +  z2)(yo +  V2 )

4 tJ 4
—  ( ^ s - l  

2

m2 s _ 2 =  (*o +  £ s-i)(2/o +  7/s—1) _ + s „ „ - -  ( Z s - 1  
2

77123-1 =  (£l +  z2)(yi + 2/2)
4 7  ̂ 4

— ( Z s - 1  
2

to4s_6 =  ( z 2 +  z s s ) ( y 2 +  ys_ 3)

m 4 s - 5  =  (£3 +  £4X2/3 +  2/4)

17155-11 = (£ 3  + £3- 4 ) (2/3 + 2/5- 4 )

77153-10 = (£ 4  +  £ 3 - 5 )  (2/4 + 2/3-5

m 3 s _  3  =  ( z i  +  ^ -2 ) (2/1 +  '2/3-2) 

m3s_2 — (£2 +  £3) (2/2 +  2/3)

W ith the coefficients <pi, i — 0 , . . . ,  s — 1 given as follows.

0  0 — rrio

(pi — m s — m 0 -  m i

(p2 — m i  +  m s+i -  m 0 -  m 2

03  =  m 2a- i  - m i - m 2  +  m s + 2  -  m 0  -  m 3

0 4  =  to 2 -4- m 2s — m i  -  to 3 +  to s+3 -  mo -  m 4

0 5  =  m 3s_2 -  to2 -  m 3 +  to2s+i -  toi -  to4 +  m s+4 -  m 0 -  m 5

06 =  m 3 +  t o 3s_ i  -  m 2 — m 4 +  m 2s+2 — m i  — 7715 +  m s+5 -  t o 0 -  m 6

(4.67)

(4 .6 8 )

0 3 - 2

0S-1

m2s_3 -  77i0 -  ms_2 +  to3 s _ 4 -  mi -  ms_3 +  7B4s_7

-to2 -  m s_4 -1-------1- m s2—-4-3—-,1  /I
TO s—1-1 m s- 1

2

m s-i +  t o 2 s _ 2  -  t o 0  ~  t o s _ x  +  m 3 s _ 3  —  t o i  —  m s _ 2
2

+to4s_g — to2 — ms_3 H h 771*2 , 5
4 ~r 5  4

7riszli _ 1 — m s - i  11
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Using the square,'t/d7 algorithm we may construct an infinite family of KM codes where 

the wraparound part of the matrix is increased to increase the minimum distance of the code. 

Obviously if the P(u)  part of the matrix remains the same then the decoding procedure 

stays essentially the same (see Krishna (1987)), in that a circuit that was used to decode a 

codeword from the code with say s —  0 can be easily extended to the cases s = 1 , 2 , . . . .

E x am p le  4.16 Take P(u) — u2(u2 +  1) and 5 =  0. For this example take k =  3 and d = 2 

then
z(u) =  Zq  -F Z \ U  +  Z 2 U 2

Y  (u ) =  y0 +  yiu.

Now using the process of the CRT we have P(u) =  Pi(u)P2(u) so

(i) modulo Pi(u) = u2

Kl(u) =  K(n) (mod u2) 

=  2/o +  yiu

Zi{u) — Z (u ) (mod u2)

=  Z q +  Z \ U

Let rriQ =  zQyo, m i  =  ^ y i  and m 2 =  (^o +  £i)(2/o +  2/i)- Then

<l?i(ti) =  Z\[u)Y\{u)  (mod m2)

=  mo +  (mo +  m i +  m 2)u +  m 2u2 (mod u2) 

=  mo +  (mo +  m i +  m 2)u (mod u2)

(ii) modulo Pi(u) =  u2 +  1

Y2(u) — Y(u)  (mod u2 T 1) 

=  2/o +  yiu

Z2(u) =  Z(u ) (mod u2 +  1)

=  (zq +  z2) +  Z\U  

Let m 3 =  ( z q  +  22)j/o, rn^ — z\yi  and m 5 =  ( z q  + z\ +  z2)(yQ +  2/1) ■ Then

$ 2(n) =  Z2(u)Y2(u) (mod u2 +  1)

— m 3 +  (m3 +  m 4 T  m$)u +  m 4u2 (mod u2 +  1)

- - (m3 +  m4) +  (m3 +  m4 +  m§)u (mod u2 +  1) 

Now we must find the Ri(u) t i = 1 ,2  as follows.

(i) modulo u2

R\(u)P2(u) =  1 (mod P i (u))

R\(u)(u2 + I) = 1 (mod u2)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)
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Therefore Ri(u) — 1.

(ii) modulo u2 -f 1

R 2 (u)Pi(u) = 1 (mod P2 {u)) 

R 2 (u)(u2) = 1 (mod u2 +  1)

Therefore R 2 {u) ~  1.

Now we can form the sum, $(«,) as follows.

<1>(u) =  <&i(u)Ri(u)P2 {u) +  <$2 {v>)R2 {u)Pi(u) (mod P(w})

— (m0 +  (m0 +  mi +  m 2)u)(u2 +  1) +  ((m3 +  m4) +  (m3 +  m 4 +  m 5)u)u2

(mod (P(u))

=  mo +  (mo +  m i +  m,2 )u +  (mo +  m 3 +  m 4)u2 

+(mo +  m i +  m 2 +  m 3 +  m 4 +  m^)u3
(4.76)

Now considering the ideas of Sections 3.2 and 3.4 we would like to put the above recon

struction of 4?(u) into a computation of the form

$  =  At {Gt z x By) (4.77)

with 2  =  (z0, . . .  , 2fc_i)r , y  =  (yo, ■ • ■ ,l/d-i)T and $  =  (w o ,^ o 2/i +«iyo, ■ ■ ■ , ^ - iy d - i ) T as 

(3.23).

Now as explained at the end of Section 3.2 (G2 z  x B y)  is simply a way of writing 

the multiplications m o,. . . ,  m7?_i as a column vector and the AT is simply picking out the 

relevent multiplications to form the coefficients of 4?(u).

Take m o  as a start. This is equal to Zoyo, s o  i n  vector form this would be

m 0 1 0 0 z  x 1 0 y- (4.78)

So the zero’tli row of GT is [1 0 0] and the zero’th  row of B  is [1 0]. Considering all the
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multiplications we get

Gt z  x B y

1 0 0 1 0

0 1 0 r 0 1

1 1 0
Z q

1 1

1 0 1
Z i X

1 0

0 1 0
_ 2 : 2  .

0 1

_ 1 1 1 1 1

V o 

Vi
(4.79)

where, for example m 5 is expressed by row 5 of GT and B , i.e.

m 5 1 1 1 z  x 1 1 y- (4.80)

Now to form $  we must pick out the relevent multiplications. This is done by refering to 

(4.76). We see that

4> 0 — m o,

so in matrix form this is

mo 

m i

m 2

m 3 

m 4 

m 5

</>o 1 0 0 0 0 0 (4.81)

1 0 0 0 0 0

a t  =

and so row 0 of A T is 

of AT and get

r 1 0 0 0 0 0 

1 1 1 0  0 0 

1 0  0 1 1 0  

1 1 1 1 1 1  

Now the whole expression can be written as

#  =  A t (Gt z  x B y )
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as we wanted.

Now by Theorem 3.11 and Section 3.4, G is the generator matrix of KM(6 , 3,2) code.

G —

1 0  1 1 0  1 

0 1 1 0  1 1  

0 0 0 1 0 1

(4.83)

We extend the ideas of blocks as in Definition 2.15 and further in Section 2.5 to partition 

the matrix G into blocks. A particular block of the matrix is now associated with a particular 

block in the CRT. For Example 4.16 this will result in us writing G as

(4.84)

A powerful feature of these codes is the ability by increasing N  then keeping k the same 

automatically guarantees d to increase (as N  = k -\- d — 1 — s). One way to implement this 

is to start with s — 0 and increase s.

E x am p le  4.17 (i) So let us redo Example 4.16 with P{u) the same and let s =  1. Keeping 

k the same will result in us increasing d by 1. We thus have k — 3 and d =  3 and so

1 0 1 1 0 1

G — 0 1 1 0 1 1

0 0 0 1 0 1

Z(u) Zq +  Z \ U  +  Z 2U*

Y(u) = yo + yxu -{-y2u2.
(4.85)

Now from block one (i.e. Pi(u) =  u2) we get the same multiplications i.e. mo =  

m i =  ziyi  and m 2 — (20 +  zi){ya +  Vi) and from block two (i.e. P2 {u) — u2 +  1) we get as 

m 3 =  (z0 +  z2){yo +  s/2), =  ziyi  and m 5 =  {z0 +  z1 +  z2)(y0 + y1 +  y2).

Now 4>i(u), ^ 2(u), Ri{u) and R 2 (u) are the same as Example 4.16 so we get (using 

Section 2.5 and noting that as we are using s > 0 then we get 4>(u))

4>(u) — ?no +  (mo4-mi+77i2)u+(mo+m3-}-m4)u2-j-(mo+mi-{-m2+?7i3+m4+m5)u3. (4.86)

Now consider the wraparound block of the CRT. We have
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(4.87)

(4.88)

(4.89)

z ( u ) =  Z2 +  Z\U +  ZqU2

Y  (w) =  1/2 +  2/1W +  2/o^2
and as s =  1 we get

Z(u ) =  ^2 (mod u)

y  (u) =  1/2 (mod it).

Let m q ~  ^22/2) then according the Theorem 2.22 we have

<L(ii) — & ( u ) m s P ( u )

— d('u) +  m e(n4 +  u 2)

— m o +  (mo +  m i +  m 2 )u +  (mo +  m 3 +  m 4 +  m,Q)u2 

+(mo +  m i +  m 2 +  m 3 +  m 4 +  m,5)u3 +  mgu4,

which can be checked to be correct.

Now writing this in the form of a computation as (4.77) we see that (now partitioned 

into three blocks corresponding to Pi(u), p 2(^) and s — 1)

(4.90)

and the first two blocks are the same as Example 4.16. Here G is the generator matrix of 

a KM(7, 3, 3) code as expected.

(ii) Now let us redo Example 4.16 with P(u ) the same and let s = 2. Keeping k the same 

will result in us increasing d by two. We thus have k =  3 and d = 4 and so

1 0 1 1 0 1 0

G i  = 0 1 1 0 1 1 0

0 0 0 1 0 1 1

Z(u) = Zq +  Z \ U  T  Z2V?

h (̂w) =  y o + y iu  + 1/2U2 +  1/3U3.
(4.91)

Now from block one (i.e. Pi{u) — u2) we get the same multiplications i.e. mo =  zoVo, 

m i — ziyi  and m2 — (20 + ^1)(3/0 +  yi) and from block two (i.e. P2(u) — u2 +  1) we get as 

= (zo +  z2){yo +  2/2), m4 =  z\(y\  +  1/3) and m5 -  (z0 +  z\ +  22)(2/0 +  2/1 +  2/2 +  2/3)- 

Now $i(w), $2 (u), Ri(u)  and B.2(u) are the same as Example 4.16 so we get (using 

Section 2.5 and noting that as we are using s > 0 then we get $(«))

4?(ii) =  mo +  (m o+m i+m 2)u+(?7io+m 3+m 4)u2 +  (?77,o+mi+m2+m3+?ri4+m5)n3. (4.92)
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Now consider the wraparound block of the CRT. We have

Z ( u ) =  Z 2  +  Z \ U  +  Z q U 2

Y  (u ) =  y3 +  y2u  +  y \ u 2 +  y0
(4.93)

and as s — 2 we get

(4.94)
Z(u)  = z2 T  Z\U (mod it2) 

y (« ) =  ys + y2u (mod tt2).

Let rriQ = z2y%, m-j — z \y 2 and m g  — {z\ +  z2)(y2 + y3). We could now use Section 2.5 to 

reconstruct the polynomial in the same way as part (i) of this example, but it is sufficient 

to form G2 directly from $  =  ^ { G ^ z  x  B y )  giving

(4.95)

Now as can be seen here the matrix G2 is just the matrix G\  with two extra columns 

corresponding to the increase in s. Note here that if we are using the square, u 11 algorithm 

then Gj  is contained in G% for 0 < i < j.

So as k remains the same, this procedure can be used for any s, and we can thus get an 

infinite family of KM codes.

We will see in the following three chapters some general methods introduced to obtain 

the weight enumerators of this type of code (i.e. with increasing s).

1 0 1 1 0 1 0 0

1
o

g2 = 0 1 1 0 1 1 0 1 1

0 0 0 1 0 1 1 0 1
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C hapter 5

T he W eight Enum erators o f K M  

C odes

5.1 Introduction

We have seen in the previous chapters how KM codes were developed and constructed. 

In this chapter we take this a step further and move away from the direct construction 

of the polynomial approach. We would like, given simply the P{u) and the number of 

wraparound coefficients s, to be able to construct the weight enumerator of the KM codes 

for any k and d. Obviously along the way it will be necessary to have knowledge of the way 

the algorithms for polynomial multiplication are used but in the end the families (defined 

by k +  d — constant, for a given P(u) and s) will be dependent only on k (or alternatively 

d).
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5.2 Shunting of the KM codes

Looking at the construction of KM codes, we may intuitively hope that as a decrease in ft 

results in an increase in d we may simply reduce the number of rows of the generator matrix 

of a KM(n, k , d) code to get a KM(n, k — 1, d +  1) code.

Thinking more carefully we would hope to remove the bottom row of the generator 

matrix of a KM(n, ft, d) code corresponding to the non-wrapround blocks and the top row 

corresponding to the wraparound block, as reducing ft by one implies reducing the powers 

of u in Z(u)  by one. Then using the CRT we firstly will not have use for the coefficient 

of uk~x in Z(u), and secondly Z(u ) will now equal 2 +  Zk-3U +  • • ■ +  Zouk~2 implying a 

shift up one for the wraparound part of the matrix. We define this action.

D efin ition  5.1 Consider the generator matrix, G , of a KM(n, ft,d) code formed by the 

CRT. Let G be partitioned into blocks corresponding to the factors P i(n ) , . . .  , P l (u ) and 

s, the wraparound. If we remove the bottom row of the blocks corresponding to the factors 

Pi ( u) , ,  P l  (u ) and remove the top row of the block corresponding to the wraparound and 

move this block up one we get a ((ft — 1) x n) matrix. We say that we have shunted the 

generator matrix of the KM(n, ft, d) code. If we have formed the generator matrix without 

using any wraparound then to shunt it we simply remove the bottom  row.

We now show an example of shunting taking place and prove that (in this case at least) 

it does indeed form a KM code.

E x am p le  5.2 Let N  = 7 and take P(u) = u2(u2 +  l ) ^ 2 +  rz +  l ) , s  =  l, ft =  6 and d = 2. 

We thus have

Now using the Improved version of the CRT (in the same way as Example 4.17) we will 

form the generator matrix of a KM(n, 6,2) code. Let us now form the code.

(i) modulo u2

Z{u) =  Z q  +  Z \ U  +  Z2U 2 +  £3 u 3 +  Z4 u 4 +  Z 5 U 5 

Y  (u) = yo + yiu.
(5.1)

Zi(u) — zq + ziu (mod u2) 

^i(w) =  yo + y iu  (mod u2).
(5.2)
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Let m 0 =  z0yo, m x =  z xyx and m2 =  (z0 +  zi)(yQ +  yx) then

t&i(u) r-- mo +  (mo +  mi +  m2)it (mod it2) (5 -3 )

(ii) modulo it2 +  1

Z2{u) =  (2 0 +  22 +  24) +  (21 +  23 +  25)it (mod u2 +  1 )
(5.4)

¥2 (it) — yo +  2/W (mod it2 +  1).

Let m3 =  (£0 +  22 +  24)2/0, m4 =  (21 +  23+25)1/1 andm*, =  (20+21+22 +  23 +  24 +  25X2/0+1/1) 

then

d?2(u) =  (m3 +  m4) +  (m3 +  m4 +  ms) it (mod it2 +  1 ) (5 .5 )

(ii) modulo it2 +  it +  1

Z3(it) =  (20 +  22 +  23 +  25) +  (21 +  Z2 +  24 +  25)11 (m od it2 +  u +  1)
(5 .6 )

^3(«) =  2/0 + yiu  (mod it2 +  it +  1 ).

Let m6 =  (20 +  22 +  23 +  25)^0, m7 =  (21+  22 +  24 +  25)2/1 and m8 =  (2 0 +  2 i +  2 3 +  2 4 )(i/o+ 2/i) 

then

$3 (it) =  (mo +  mj)  +  (mg +  mg)u (mod it2 +  u +  1 ) (5 .7 )

We must now find Ri(u), i  — 1 , 2 , 3 .

(i) modulo it2

R i (u)P2{u)P3{u) =  1 (mod Pi (it))

P i (it) (it4 +  it3 +  it +  1) =  1 (mod it2)

Therefore P i (it) =  (it +  1 ).

(ii) modulo it2 +  1

P 2(it)Pi(it)P3(it) -  1 (mod ?2 W )

P 2(it)(it4 +  it3 +  it2) =  1 (mod it2 +  1 )

Therefore P 2(it) =  it.

(iii) modulo it2 +  it +  1

(5.8)

(5.9)

P 3(it)Pi(it)P2(it) =  1 (mod P3(it)) 

Ps(it)(it4 +  it2) =  1 (mod u2 +  it +  1)
(5.10)
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T h e r e f o r e  P 2 O - O  =  1 .

N o w  w e  f o r m  $(u)  a s

®(u)  =  ®i(u)Ri(u)Q\{u)  +  +  $s(u)Rs(u)Qa(u)

= (mo +  ( m o  +  m i  +  7772)74) (u +  1) ( n 4  + 7 4 3  +  u +  1)

+ ( ( m , 3  +  7774) +  ( m 3  +  m  4 +  m 5 ) u ) u ( u 4  +  u3 +  u2)

+  ( ( m g  +  777,7) +  ( m 6  +  m s ) n ) ( u 4  +  u 2 )

=  mo +  (mg +  mi +  m2)u +  (mo +  me +  m ^ u 2 

+ ( m l  +  m 2 +  m 3  +  m i  +  m g  +  7777)743

+ ( m 0 +  m i +  m2 +  m 5 + m e +  m 7)u4 (5-11)

+ (m o  +  me +  me +  m s)u 5 

+ (m o  + m i  +  m2 +  m3 +  777,4 +  m s) 7i 6  

=  mo +  (mo +  m i +  m2)u +  (m i +  m2 +  m3 +  7774 +  777,5 +  me +  mj)u2 

+ (m o  +  m s  +  777-6 +  m g ) 7 i 3  

+ ( 7 7 7 0  +  m i  +  m 2  +  m s  +  m e  +  7777)744  

+ ( m i  +  m2 -t- m3 +  7774 +  me +  m s)w 5  (m od P ( t 4)).

N o w  l o o k i n g  a t  t h e  w r a p a r o u n d  w e  h a v e

Z(u) =  Z5 +  £ 4 7 4  +  £ 3 U 3  +  Z2U4 +  z \u 5 +  zou6
  (5.12)
Y (74) — yi H- you.

Then
Z(u)  =  z$ ( m o d  74)
_  (5.13)
Y ( u )  =  7/1 ( m o d  74).

L e t  m g  =  £ 5 7 /1 , s o  w e  h a v e

$ ( 7 4 )  =  $ ( 7 4 ) + m g P ( 7 4 )

=  $ ( 7 4 )  +  m g ( 7 4 6  +  7 4 5  +  7 4 3  +  7 4 2 ) .

S o  w e  h a v e

$ ( 7 4 )  —  7 7 7 o +  ( ^ 7 o +  m i  +  m2)u  +  ( m i  +  m 2  +  7773 +  7774 +  ms +  me  +  7777 +  mo)u2

+  ( m 0  +  m 5  +  ?7 7 6  +  m 8  +  7 779 ) t 43  

+  ( m o  +  m i  +  m 2  +  7775 +  m g  -T  rrij)u^

+ ( m i  +  7772 +  m 3  +  7774 +  m e  +  m s  +  m 9 ) 745  +  m 9 7 4 6 .

(5.15)
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Prom the multiplications m ^ i  =  0 , . . . ,9  and using the computation form of $  = 

^ { G ' i Z x B i y ) we get

Gi =

'  1 0 1 1 0 1 1 0 1 0 ’

0 1 1 0 1 1 0 1 1 0

0 0 0 1 0 1 1 1 0 0

0 0 0 0 1 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0

_  0 0 0 0 1 1 1 1 0 1 _

(5.16)

the generator matrix of a KM(10,6,2) code.

Now we wish to shunt this, so according to Definition 5.1 we remove the bottom row 

from blocks one, two and three, and remove the top row from block four (the last column). 

This will result in the matrix

1 0 1 1 0 1 1 0 1

]
0

0 1 1 0 1 1 0 1 1 0

0 0 0 1 0 1 1 1 0 0

0 0 0 0 1 1 1 0 1 0

0
t 0 0 1 0 1 0 1 1 1

(5.17)

We must now decide if this is a KM(10,5,3) code, or indeed any linear code with the 

parameters (10,5,3). To prove this is a KM(10,5,3) code we will do the example again 

with all the parameters the same except we will now take k — 5 and d = 3.

(5.18)

Exam ple 5.3 We have now

z(u) — Zq +  Z \ U  +  Z 2 U 2 +  2 3 l i 3 +  Z^U 4"

Y{u)  =  yo +  y iu  +  y2u 2,

so the problem becomes

(i) modulo u 2. We get m o =  zoyoi =  z iVi a n d  m 2 — (^0 +  ^ l)(? /0  +  Vl ) i  with ^>(w) (in 

terms of the m-,) the same as the previous example.

(ii) modulo it2 +  1. We get m 3 =  ( z q  +  Z2  +  z±) (yo +  2/2), ^ 4  =  {z\ +  23)2/1 and ms =

( z q  +  z \  +  z ^  +  23 +  24) ( y o  -t- y i  +  2/2); with < & ( u )  the same as the previous example.
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(iii) modulo u 2  +  u +  1. We get rriQ =  (20 +  22 +  ^3) (yo +  3/2)9 wii =  (21 +  22 +  24X2/1 +  2/2) 

and tti2 = (20 +  21 +  zs +  24) (yo +  2/i)» with the same as the previous example.

Further Rj(u), i  = 1,2,3 are the same as before and so we get <h(ii) the same as before(in 

terms of the rrii, i — 0 , . . . ,  8). Now the wraparound will give

Z(u) ~  Z 4  +  Z 3 U  +  Z 2 U 2  +  £ i U 3 +  Z o U 4

Y(u) = y2 +  2/1 u + 2/0 u2-

Then
Z(u) = Z4 (mod u)

Y(u)  =  7/2 (mod u).

Let 777.9 — 247/2 j so we have

$ (77) =  l*(7i) +  mgP(u)

=  $ ( u )  +  777-9 (w 6 +  U 5 +  U 3 +  772 ) ,

giving the same (in terms of the rrii) as the previous example. We therefore get from

4> =  ^ { G ^ z  x B 2 y)  (note here that A  is the same as before),

(5.19)

(5.20)

(5.21)

G2 —

1 0 1 1 0 1 1 0 1

1
0

0 1 1 0 1 1 0 1 1 0

0 0 0 1 0 1 1 1 0 0

0 0 0 0 1 1 1 0 1 0

1 0 0 0 1 0 1 0 1 1 1

(5.22)

the generator matrix of a KM(10, 5,3) code. Therefore as G2 — G\ we have shown that G1 

shunts.

Unfortunately though, shunting does not always guarantee the formation of a generator 

matrix of a KM(n, k — 1 , d +  1) code from the generator matrix of a KM(n, fc, d) code, nor 

indeed does it guarantee the formation of a non KM (77, k — 1, d — 1) code as the following 

example will show.

E x am p le  5.4 Let N  — 5 and take P(u ) =  772(t73 +  1), k — 4 and d =  2. We thus have

Z(u) = zq +  z\u  -f z2u2 + X3773 

Y  (it) =  7/0 +  7/177 +  y2u2.
(5.23)
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Now using the CRT we will form the generator matrix of a KM(77,4, 2) code,

(i) modulo u2

Zi(u)  =  zq +  ziu  (mod u2)

Yi(n) =  y o + y iu  (mod u2).

Let m 0 =  zoyo, m i  =  ziyi  and m 2 = (zQ +  £i)(yo +  yi) then

(5.24)

$ 1(77) =  mo T (t^o +  m i  +  7772)77 (mod 772) (5.25)

(ii) modulo 77 3  +  1

Z 2(u) =  ( zq  +  Z 3 )  +  Z \ U  +  z2u2 (mod 773 +  1)
(5.26)

^ 2 ( 7 7 )  =  7/0 +  yiu (mod 77 +  1).

Let 7773 =  ( z q  H- 2 3 )2 /0 , 7774 =  z iyu  m 5 =  ( z q  +  z\ +  2 3 X 2 /0  +  2/1), r n 6 — ( z q  -h z2 ~t~ z3)y0 and

7777 =  (zi +  z2)yu  then

4*2(77) =  (7773 + 7774 +  7777) + (7773 + 7774 + 7775)77 + (7773 +  7774 +  7776)t72 (mod 7 73 +  1) (5.27)

We must now find Ri(u), i  =  1, 2.

(i) modulo 77 2

Therefore R\(u) — 1.

(ii) modulo 773 +  1

Ri(u)P2(u) =  1 (mod P i (77)) 

P i (77) ( t73 +  1) =  1 (mod 772)

R 2{u)Pi(u) = 1 (mod Pziu)) 

R 2{u)u2 = 1 (mod 773 +  1)

(5.28)

(5.29)

Therefore R 2(u) — u.

Now we have

$(77) =  $ i ( T 7) P i ( l 7)Q i(T 7) +  $ 2(u)R2(u)Q2(u)

=  ( m 0  +  (?7 1 q +  7 7 7 1  +  7 7 7 2 ) 77 ) ( U 3  +  1 )

+  ((7773 +  7 7 7 4  +  7777) +  (7773 +  7 7 7 4  +  7775)77 +  (7773 +  7 7 7 4  +  7 7 7 5  ) t 72  )  77  (T72 )

=  7 7 7 0  +  ( t 7 7 0  +  7 7 7 1  +  m 2 ) u  +  ( ™ - 3  +  7774  +  7 7 7 6 ) t 7 2

+  (777o +  7773 +  7774 +  7777)t73 +  (mo +  7771 +  7772 +  7773 +  m 4 +  ?T7s)u4 (mod P(77)).
(5.30)
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Therefore we get from the computation $  — A 1'(Gj 'z  x B \ y )

Gi =

I 0 1 1 0 1 1

1o
0 1 1 0 1 1 0 1

0 0 0 0 0 0 1 1

O
i 0 0 1 0 1 1 0

(5.31)

l 0 1 1 0 1 1

1
o

IIH 0 i 1 0 1 1 0 1

0 0 0 0 0 0 1 1

the generator matrix of a KM(8,4, 2) code. Now if we shunt this matrix we get (since no 

wraparound was used we simply remove the bottom row) we get

(5.32)

It is obvious that this is not the generator matrix of a KM(8, 3, 3) code (or indeed any linear 

(8,3,3) code) as there is at least one codeword of weight two. Therefore G\ does not shunt.

So we would like to know when shunting does indeed produce a KM(?i, k — 1, 1) code

from a KM(n, &,d). Due to the complexity of the problem of when shunting does give a 

KM code we have to restrict ourselves to certain cases.

In Example 5.2, note that we have shunted in a block wise fashion, in that the blocks 

are all remaining the same size, and the algorithm used (i.e. the 3?(it) in terms of the 

mi) remains the same. We further define the 2th  block to be independent if for block 

2, requires only those multiplications that are associated with block i. Note that in

Example 5.2 all the blocks are independent. However, shunting is not restricted to generator 

matrices only having independent blocks, and we will consider shunting for other cases later 

in this chapter. For now we are considering only when shunting occurs where the blocks 

are independent and the algorithm remains the same for the shunted and the original code.

We are now in a position to give the standard version of the shunting theorem, first of 

all proving a necessary lemma.
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L em m a 5.5 Let k > 2  and d > D (~deg[P(u)J). Suppose that for certain constants kij, 

k-vectors Aj  and d-vectors Pj,  the multiplications m,j — ( z \ J ) ( y  p j )  yield the identity:

D - 1 j n - 1
Z(u)Y(u) = I Y ^ k i j m j  | u1 (mod P(u)).

i=o \ j=Q

Then there are d +  1 -vectors <jj such that the following identity holds:

D - 1 / j i - 1  \

Z(u)fY{u)  +  ydud) =  X̂  X  u% (mod
i= 0 \ j = 0 /

where m'j = ( zX j ) (y \yda j ) .

(5.33)

(5.34)

P ro o f. First assume (5.33) holds. Let a  = (ao . ..  a ^ - i )  be a vector of indeterminants. Set 

y  equal to a  extended by 0's up to length d, and let p j  be the truncation of Pj down to 

length D. Crucially, the latter two operations are well defined because d >  D. We now 

have y p j  = a p j ,  and so

Z(u)(a0 +  aiu  H 1- aD- i u D x) — X  k i j ( z \ J ) ( a p J ) u l . (5.35)

Having dropped the j/’s, start again with yo, . . - ,yd  &nd let X^^o1 aiu% be the reduction 

modulo P{u ) of yo +  y\u  +  ■ • • +  ydud. Then a — (yo - - - Vd)R for the d +  1 by D  matrix R  

given in Definition 2.11, and substituting for a  in (5.35) gives (5.34). □

We will now give an example to show this lemma in action.

E x am p le  5.6 Let P{u) — u2 +  l, Z(u) =  z o P z iu + z 2u2 andY"(u) — yo-\-yiu+y2u2 Pyzu5. 

Now let

(5.36)

m4 =  {zi + z2)(yi + yi)

=  zQyo m5 =  (20 + z2){yo + y2)

m i  — ziiji m G = ^oyz

m 2 =  z2y2 77T.7 = 21 S/3

mz = (zo+z i ){yo+yi ) m8 =  z2ijz
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then
00 — mo

01 = mo 4- m\ 4- mz

02 — mo T m i +  m 2 4* nig

03 =  mj 4- m2 4  ^ 4  +  mg

04 =  m 2 +  m j

05 = m8.

(5.37)

Now we have

Z ( u ) Y (u ) (mod P(u)) = (0o +  02 +  04) +  (01 +  03 4- 0g)w

=  (mi 4- mg +  7717) 4- {m0 4* m 2 +  m 3 4- m 4 4- mg 4- mz)u
(5.38)

so in the same way as Lemma 5.5 we let

kij —

0 1 0 0 0 1 0 1 0 

1 0  1 1 1 0  1 0  1
(5.39)

Let a = (ao ai), and set y  — (cto &i 0 0) and let Pj  be the truncation of pj down to length 

2, (where we obtain pj  in the same way as Lemma 5.5). So we have

Po — (1 0 0 0) P o =  ( io )

P i  = (0 1 0  0) P i =  (0 1 )

P 2 = (0 0 1 0 ) P 2 =  (0 0)

P 3 = ( 1 1 0  0) P 3 =  ( 1 1 )

P A = (0 1 1 0 ) P 4 =  (0  1)

Pg = ( 1 0  1 0 ) P 5 =  ( 1 0 )

P g — (0 0 0 1) Pe =  (0  0)

P i  — (0  0 0 1) p7 =  (0  0)

Ps = (0 0 0 1) P8 =  (0 0 )

(5.40)

We now have y p j  =  a p j ,  as Lemma 5.5 requires . Further we have

Z(u)(ao 4- n iu) =  'ŝ k i j ( z \ J ) ( a p J ) u l (mod P{u)) (5.41)
h3

by letting ^ (ii) — ao 4- a±u and mj — ( z X j ) ( a p J ) y as done in Lemma 5.5.

So we have effectively set yo — a0j Vi — ai> 1J2 — 0, y3 =  0 in both sides, which is possible 

as the y’s are indeterminates.



Now extend the Y ( u ) we originally stated to Y ( u ) =  yo +  y\u  -f y2 U2 +  J/3W3 +  S/4U4, 

and let T  (u) modulo P(u ) equal ]T)i=o aiuli fhen a ~  (yo • • • Vd)R^ where R  is the reduction 

matrix of P(u ) (see Definition 2.11), i.e.

R

1 0 

0 1 

1 0 

0 1

(5.42)

for P{u) = u2 +  1. Now substituting a  into (5.41) gives

Z(u)({yQ + y 2 + Va)  +  (yi +  yz)u) = ^ ( z A j ) ( [ y 0 +  y2 +  2/4 yi +  S/3] m J K  (mod (P{u))
i,3

(5.43)

and as we are working modulo P{u) =  v 2 +  1 this gives the expected result, as shown by 

Lemma 5.5.

Theorem  5.7 (Shunting Theorem ) A K M  (n:k,d) code with independent blocks may be 

shunted to a K M  (n,£ — l ,d  +  1) code if  k > 2 and d > maxt (deg[Pt(u)J, s).

our multiplications required 

Proof. First consider the case s — 0. By the block structure of the KM(n, k, d) code we

firstly have from P(u)  — Pi{u) . . .  P l(u ), for each block t, 1 < t  <  L,

$t(u) =  (zq H +  1)(2/o H-----+  S/d-iu4* *) (mod Pt (u))d-1> (5.44)

is reconstructible using a unique set (as the blocks are independent) of multiplications, 

{mt0, . . .  ,777,^}, say. Further by the CRT

$(u) =  (zq H +  zk_ iuk x)(y0 H H yd- iua L) (mod P(u))d-1' (5.45)

is reconstructible using all the multiplications, m ^ i  = 0 , . . . ,  n — 1.

For the following part of the proof we will denote the application of Lemma 5.5 on ^t(u)  

(=  Zt(u)Yi(u)) by (and similarly for 4>(u) and ^(w)).
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Now since d >  deg[Pt(u)], 1 < i  < L  we have by Lemma 5.5, for each block i, 1 < £ < L 

that

$ t(u) =  (^o +  ■ ■ ■ +  «fc-iwfc“ 1)(yo H +  Vdud) (mod p t(u)) (5-46)

is reconstructible using a new set of multiplications { m ^ ,. . .  }. Further by the CRT

(Theorem 2.14)

$'(«) =  (zq H b «jfc-i«fc_1)(yo +  ■ • • +  VdUd) (mod P{u)) (5.47)

is reconstructible using all the multiplications, m(, i — 0 , . . .  , n  — 1.

Since d > s is also given, a slight modification of Lemma 5.5 shows that if there is a set

of multiplications {m^+i)  > • • • j m (L+i) } that reconstruct

$(ii) =  (zk- i  H b «0wfc-1)(yd-i +  b youd-1) (mod us) (5.48)

then there are multiplications . . . ,  } that reconstruct

$ '(u) = {zk~i -------b ZQÛ ~^){jjd H b youd) (mod us) (5.49)

and by using the Improved Version of the CRT (Theorem 2.22), (5.47) can be reconstructed 

using all the multiplications, m'^i — 0 , . . . , n  — 1, even if s ^  0.

Therefore we can reconstruct $ ;(u) itself provided deg[0'(u)] <  D  +  s (see Theorem 

2.22). But this inequality is achieved subject to the required & +  <2 — D +  s +  l, provided 

we set zk- i  — 0, which is precisely what we do in shunting. Applying Theorem 3.11 with k 

replaced with k — 1 and d replaced by d +  1 completes the proof. □

This proof gives sufficient parameters for shunting although in some other cases these 

parameters can be amended slightly. This proof is extremely general in its approach in 

that the only real condition is that the blocks of the generator are independent. If we look 

more carefully at some algorithms we can see that as long as the shunted generator matrix 

represents a genuine algorithm, then it is a valid KM code. Let’s look at an example where 

we shunt a KM code and the independent block structure is lost, but the shunted matrix is 

still a KM code.

90



E x am p le  5.8 If we let P(u)  =  (u2 +  u +  l)^ 4, s =  1. Then we get for k ~  5 (and hence

d =  3) the generator matrix of the KM (12,5,3) code as

G

1 0 1 1 0 0 1 1 1 0

1o

0 1 1 0 1 0 1 0 0 1 0

1 1 0 0 0 1 0 1 0 1 0

1 0 1 0 0 0 0 0 1 0 0
1“
.... o 1 1 0 0 0 0 0 0 0 1

(5.50)

If we shunt this once then we get

G =

1 0 1 1 0 0 1 1 1 0

1
o

0 1 1 0 1 0 1 0 0 1 0

1 1 0 0 0 1 0 1 0 1 0

, 
...

.

0 1 0 0 0 0 0 1 0 1

(5.51)

which is a KM (12,4,4) code. This is no surprise given the next theorem.

T h eo re m  5.9 I f  P (u ) =  Pi(u)P2 {u) . . .  Pl{u), with one of the Pi{u) =  um, m  = k — 1, 

and the rest having deg[Pj(u)]< d, j  ^  i, and s > 0, then starting from k — d +  2 the code 

will shunt at least once,

P roo f. By Theoren 5.7 all the blocks Pj{u), j  ^  i will shunt. The block P-ifv) — um is the 

problem. We have

Z ( u )  =  Zq H-------- \ - Z k - i U

Y  (u)  =  j/o H-------+  V k - 3U

which reduce modulo u m to give

Z(u) =  Zq H--------

y (« ) =  2/o + ------l-2/A-3ti

A-l

k ~  3

Jfe-2

Jb- 3

(5.52)

(5.53)

So there is no multiplication z/0_2y/c-25 but this is needed when shunting takes place. If

however we look at the wraparound block for k =  d, i.e. k — 1 — d — lw e  see

Z(it) =  %k—2 H h^owfc_2

^  («) =  2/A-2 +  • ■ ■ +  youk~2
(5.54)
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Then reducing these modulo u s , s  >  0 will always result in a multiplication Z k -2 U k -2  as 

required in the reconstruction. □

We now give the polynomial explanation of why in Example 5.8 the generator matrix 

does indeed shunt.

E x am p le  5.10 We have P(u) — (u2 +  u +  l)u 4, s =  1. Taking k = 5 and d — 3 we have

Z(u)

Y(u)  =  j/o +  yi« +  !/2« 

we get the required multiplications can be

Z q +  Z \ U  +  Z 2U 2 +  Z3V? +  z ^ u ^

7770 =  (2 0  +  32 +  3 3 X 3 /0  +  7/2) 7776 = (2 0  +  2 i ) ( y 0  + 2 / 1 )

777i =  (2 1  +  2 2 +  2 4 )  (7/1 + 7/2) 7777 = (2 0  +  22) ( t/o +  3/2)

7772 =  (2 0  +  21  +  23  +  2 4 )  (7/0 +  7/1) 7773 = (2 0  +  23 )2 /0

7773 “  207/0 7779 = (2 1  +  2 2 )  (2/1 +  2/2)

7774 =  217/1 77710 = 242/2

7775 =  227/2

and the CRT gives the reconstructed polynomial as

$(u) — 7773 +  (7773 +  7774 +  UIq)u  +  (7773 + 777,4 +  7775 +  7778 ) 772

(m 3 +  7774 T  7775 +  7778 +  7779)?73 +

( 777,1 +  7 7 7 2  +  7 7 7 3  +  7 7 7 5  +  77 7 0  +  m 8  +  7 7 7 g +  7 7 7 i o ) w 4  +

(?77o +  777i +  7773 +  7777 +  777s +  7779 +  777io)775 +

777,1077

(5.55)

(5.56)

(5.57)

(5.58)

If we now wish to shunt this code then we will get:

Z(u)  =  Z q  +  Z \ U  +  Z 2 U 2  +  Z s U 3  

Y  ( 77) =  7/0 +  7/177 +  W lU 2 +  T/3773 

and the multiplications directly turn out to be fine apart from in the block where we reduce 

the Z(u)  and Y (u) modulo u A where there is no multiplication 237/3, but this multiplication 

is actually the wraparound so the polynomial can be reconstructed, and hence by Theorem 

3.11 results in a KM code.
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5.3 Minimum Length Codes for N < 4

5 .3 .1  P re lim in a r ies

One way of finding all the possible weight enumerators of KM codes for a particular N  is 

to vary the following:

1. k and d subject to the obvious that k and d are positive and they satisfy k~\-d— 1 =  

N.

2. P (u), its factors and their number L.

3. The wraparound value s.

4. The choice of the multiplications for each algorithm.

Also if we are looking at minimum length codes then it will not always be possible to 

have independent blocks.

D efin ition  5.11 Let the number of blocks (and hence the number of coprime factors of 

P(u)  in the CRT) be L  if no wraparound was used or L + l  if a wraparound was incorporated. 

We say that a generator matrix of a KM Code has semi-independent blocks if =

1 can be reconstructed using only those multiplications from the blocks less than or 

equal to i. Obviously if a wraparound was incorporated then ^?(u) and hence ^(u) and 

3? (a) modulo us can be constructed using all the blocks.

Before moving on we need to clarify our idea of obtaining minimum length KM codes.

5 .3 .2  R ed u c in g  th e  le n g th  o f  K M  C odes

Due to the construction of KM codes being directly from the multiplications needed to 

multiply two polynomials, any reduction in the length of the generator matrix can only be 

achieved if multiplications can be removed from the reconstruction of the polynomial - for 

the new matrix to still be a generator matrix the reconstruction must still possible. Let us 

demonstrate this with a simple example.
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E xam p le  5.12 Let N  =  3 and take P ( u ) =  u3, A: =  2 and d — 2, then

^(u) =  +  ^l'ti
(5.59) 

Y(u)  =  j/o +  2/iu.

Now
Z(u) — zn + Z\u (mod u3)

V v '  (5.60)
Y(u) — yo + yiu (mod u3).

Let mo =  zo2/(b m i = z iVi and m 2  = {zo +  z i)(yo +  yi) then by the CRT we can get

<h(u) =  mo +  (mo +  mi +  m,2)u +  m i u 2 (5.61)

and we get the generator matrix of a KM(3,2,2) code as

G
1 0 1 

0 1 1
(5.62)

Now looking at the matrix we may initially say that we can remove column two as it is 

the sum of columns zero and one. However removing column two means that m 2 has 

been removed from the reconstruction (5.61). Now using only mo and m i the polynomial 

will not reconstruct, hence the reduced G is not guaranteed to be the generator matrix of a 

KM(2, 2, 2) code. It is easy to see that the minimum distance would in fact be one, violating 

our expectation that the minimum distance would be two.

5 .3 .3  S tan d ard  Form  o f th e  G enerator M a tr ix

It is well known that the generator matrix of any (n, d) code may be converted to a 

standard form with the same weight enumerator as the original, so we can obtain all the 

possible weight enumerators if we look at all the standard forms. The valid operations for 

converting a generator matrix, (?, to its standard form are

• reduce G to its unique reduced echelon form by elementary row operations, i.e. switch

ing distinct rows i, j  (Ri R j ) or adding a row to another, (Ri  —>■ Ri  +  Rj).

• perform column interchanges C{ O  Cj.
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We get

G ~  [ h  | U

where the k x  (n — k) matrix U is determined up to the order of its columns, and «  denotes 

equivalent up to the two operations above.

5 .3 .4  E x t r e m a l  C ases

For the extremal cases of k = 1, and k, — TV we can easily find the weight enumerators as 

the following theorem shows:

T h eo re m  5.13 For any value of N ,  in extremal cases we have n  =  N  and the weight 

enumerator of the codes is as follows:
N(a) k = 1, G — [l7'7] and vl(a:) — 1 +

(b) k = N ,  G = [I*] and A(rc) =  (1 +  x)N ,

where 1N represents a N-vector of l ’s, and I n  represents the (N  X N) identity matrix.

P roo f. For (a) we have d = N  and k = 1, so from a KM point of view we have Z(u)Y(u)  —

M v o l  h y N - i u 1*-1 ), so the number of multiplications is exactly N.  Thus G = [l^]-

For (b) we have d — 1 and k — N,  so Z(u)Y(it) = [zq +  ■ ■ • +  again using N

multiplications. This time however k = N  and we get G ~  [In ]- The number of codewords 

of weight r  then equals the coefficient of x r in (1 +  x )N . □

5 .3 .5  T h e  C ases  N  =  1 ,2 ,3

We first investigate the cases N  — 1,2, 3 as these are the easiest, in fact they can be simply 

stated and proved in the following theorem.

T h eo re m  5.14 The following are the only possible weight enumerators for K M  codes for

N  =  1,2,3:

(a) N  =  1, k =  1, d =  1, G «  [1], A(z) =  1,

(b) N  = 2, k =  1, d = 2, G ~  [11], A{x) =  1 +  a:2, N  =  2, k = 2, d =  1, G «  [I2],

A(k) =  (1 +  x)2,
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1 0 i—
*

1

1 +  z 3 , N  = 3 ,  k = 2 , d  = 2, G «
0 1 1

T-f

A(z) =  1 +  3.T2, N  =  3, k =  3, d =  1, G «  [/3], A(z) =  (1 +  a;)3.

P ro o f. All follow from Theorem 5.13 except (c) N  — 3, A; =  2, d — 2. We have in this case

Z(u)Y(u) — (zq -\-z\u)(yo +  yiii)} and we know that the minimum number of multiplications
-i T

for this is 3, hence G ~  [tyU], with U — 

□
U 0 u  1 , but d — 2 implies that uq — u\ =  1.

5 .3 .6  T h e  C ase N  — 4

As the length of the codes for the extremal cases is 4, for the other cases, i.e. k =  2, d =  3 

and /c — 3, d =  2, we must have the length greater than or equal to 4. We will show now 

that for both of these cases the minimum number of multiplications is actually 5.

L em m a 5.15 For the case N  = 4, with k — 3, d = 2  and k =  2, d = 3 we have that 

nmin — 5.

P roo f. We will do the case k = 3, d = 2. The other case follows similarly from this. We 

can write the problem as the following:

Z o y o Zo 0

z o y i  +  ^ iy o Z 1 Zo

* i y i  +  z 2 y o Z2 Z l

Z2Vl 0 Z2 _

y o

yi (5.63)

E { z ) y .

We know the problem can be done in five multiplications, so it remains to show that 

four multiplications are not sufficient. Suppose m o,. . .  m 3 suffice, then the right hand side 

of (5.63) equals

U [m0 . . .  m3]T ,

where U is a 4 x 4 matrix over F2. Since the 4 forms of (5.63) are linearly independent, so 

are the 4 rows of U> which therefore has an inverse W, say. Now denoting the ith  row of
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A W o W i W 2 w3

1 0 0 0 0 arbitrary

0 1 arbitrary 0 0 0

1 1 W i W 2 w3 arbitrary

Table 5.1: Table of all admissible values for A and y.

W  by w  =  [uio ■ • • w3] we have

w E ( z ) y  — mi (5.64)

of complexity 1, and hence the inequalities

1 =  M (w E (z ) y )  > col. rank of w E (z ) .  (5.65)

So for some scalars A, y  not both zero

A(wqZo +  W\Z\ +  W2 Z2 ) =  y{wizo +  W2 Z1 4 - W3 Z2 ), (5.66)

which implies by equating the coefficients of zo,zi, Z2 that

Awq — ywi,  Awi — yw 2 , Aw2 =  y w 3. (5.67)

Using all admissible values of A and y  we get Table 5.1.

Therefore there does not exist a valid 4 x 4  matrix W, hence 4 multiplications are not 

sufficient. □

Now we are in a position to look at all the weight enumerators of (5, 3, 2) and (5,2,3) 

codes. The case (5, 2,3) is easily shown in the next theorem.

T h eo re m  5.16 The only weight enumerator for a (5}2, 3) code is A(a;) =  1 +  2rc3 +  x A.

P ro o f. The standard form of the generator matrix will be of the form

G «  [I2\U] (5.68)

where the rows of U are 3-vectors uq, iq , say. Since the minimum weight is three we must 

have tha t uq 7  ̂ u j, and uq and u\  have weight at least two. Thus uo5 ^1 £ {101,110, Oil, 111}.
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It is now easy to see that the four vectors formed from the linear combinations of the rows 

have weights 3,3,4 in some order, and so the weight enumerator is as stated. □

Obviously therefore any KM code that is formed with the parameters (5, 2, 3) will have 

a weight enumerator as above.

The case for the (5,3, 2) code is more interesting as more weight enumerators are possible 

as we shall now see.

T h eo re m  5.17 The following are the only possible weight enumerators for a (5,3,2) code.

A q n A(a?)

2 1 +  2a?2 +  4a?3 +  x 4

3 1 +  3a?2 +  3o?3 +  a?5

4 1 +  4a?2 +  3a?4

P ro o f. First of all we know that the standard form of the generator matrix is of the type

G re [h\U] , (5.69)

where the rows of U are 2-vectors uo,ui,U 2- Note here that these vectors may be permuted 

amongst themselves, or the two columns of U may be swapped without affecting the weight 

enumerator. Now we have that the minimum distance possible is 2 so the Ui,i = 0,1,2 

are all non-zero. They need not be distinct but obviously a column of zeros is forbidden, 

so if identical they must be 11. By a case by case analysis we can see in Table 5.2 that 

five distinct cases are possible (up to the permutation and column swapping as explained 

above).

It is now easy to obtain the weight enumerators as stated above, (1) and (2) having 

4 mtlI =  2) (3) and (4) having A Wmin =  3 and (5) having AWmin =  4. □

When designing codes we often ask for the largest possible d for a given n and k. In this 

thesis we would further like the number of codewords of weight d to be as low as possible, 

thus to have the maximum number of codewords with weight larger than d, leading to 

error correction in practice better than that guaranteed by the value of d. We thus get the 

following definition.
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Case Uq,Uu U2

(1) 10, 01,11

(2) 10 , 11,11

(3 ) 10 , 10,11

(4 ) 11 , 11,11

(5 ) 10, 10,01

Table 5.2: Table of all possible vectors (up to the equivalence explained above) of Ui for

(5,3,2) codes in standard form.

D efin ition  5.18 We say that the weight enumerator of a (n, &, d) code is optimal if A Wmin 

is the minimum for all codes with the parameters n, fc, d.

Also to be complete we would like to know when for all the possible choices 2-4 in 

Section 5.3.1 what weight enumerators are formed and when is it possible to convert a non- 

optimal weight enumerator code to an optimal weight enumerator code. For the current 

value of N  (i.e. N  — 4) we can easily see that there are only a few choices of P{u), s 

and the multiplications when using the CRT such that the number of multiplications is the 

minimum (i.e. 5).

5.3 .T  U s in g  th e  C R T  to  fo rm  K M  (5 ,3 ,2) co d es

In Table 5.3 we give the weight enumerators of all the KM codes that are directly formed 

(without any amendment of the multiplications) from the CRT for the parameters N  = 

4, k ~  3,d =  2. Note Table 5.3 is complete as no other factorisation of P(u) together with 

s — 0,1 or 2 will, using the CRT, result in a KM code of length 5, using the parameters 

k — 3 and d — 2.

We can see from Table 5.3 that all the possibilities of P{u) and s result in KM code 

with the optimal weight enumerator for the parameters used. We can however choose P{u) 

and s and try to find linearly dependent multiplications to remove. The next example will 

illustrate this.
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P(«) s Weight Enumerator, A(x)

u(u +  l)(u 2 +  u +  1) 0 1 +  2a;2 +  4.t3 +  cc4

u(u2 +  u +  1) 1 1 +  2a;2 +  4a;3 +  x 4

u(u2 +  1) 1 1 +  2a;2 +  4a;3 +  x 4

(u +  1 )u2 1 1 +  2a;2 +  4a;3 +  x 4

(u +  l)(ri2 +  u +  1) 1 1 +  2a;2 +  4a;3 +  x 4

u(u +  1) 2 1 +  2a;2 +  4a;3 +  x 4

Table 5.3: The Weight Enumerators for KM codes where N  — A formed by the CRT

E xam p le  5,19 W ith N  — 4, k — 3, d — 2, take P (u ) =  u3 and s =  1. This initially appears 

to need the following 6 multiplications

m 0 =  z0 y0

m i  =  z iyi

m 2 -  {zq +  zi)(yQ P y i )

=  ( z q  +  z2)yo

m 4 =  (z\ +  z2)yi

ms =  z2yi,

(5.70)

1 0 1 1 0

G — 0 1 1 0 0

0 0 0 1 1

and in order to keep a separate block for each P (u )}z — 1,2 we could choose mo, m i, m2, m 3 

and m 5 as these are sufficient to reconstruct (see Definition 2.19) <f?(u)(— mo +  (mo +  m i +  

m 2)u +  (mo +  m i + m 3 )u2 P m ^ u 3) giving (using the same construction as in Example 4.16)

(5.71)

a different generator matrix than can be formed by Table 5.3 but still giving the optimal 

weight enumerator. This technique has removed the guarantee of independent blocks but 

still results in a valid KM code as the polynomial $(u) =  Z(u)Y(u)  can be reconstructed.

Of course it is not necessary to start by selecting a P{u) and s then use the CRT, we 

may in fact be able to see a minimal algorithm straight away. The method of using the 

CRT to find algorithms (and hence generator matrices) is a very powerful one in that the 

selection of the multiplications is a recursive one, but we may use any of the algorithms
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found in Chapter 4 (with maybe some amendments as explained in Section 4.1). For now 

we will concentrate on using the CRT.

E x am p le  5.20 Let N  — 4, k = 3, d =  2, P{u) — u2 +  1 and s — 2. We thus get by the 

CRT
m 3 =  Z2 V1mo =  (^0 +  22)7/0

m i = ziyi

m 2 =  {z0 + ^ 1  +  3z) (2/0 +Vi)

m 4 =  2:iy0

ms = (z\ + z2){yo +  yi).

(5.72)

and

(5.74)

$(u) — (mo+7774+7773+7774+7775) + (mo+7774+7772+7773)77+(m3 +7714+ m 5)'a2+ m 3u3 (5.73)

But this takes six multiplications and they are all linearly independent. We can however 

get the reconstruction to work using the first three multiplications and another two if we 

choose carefully. Take ?n'3 = ( zq +^i)(t/o +  2/i) and m 4 — ( z i  +  22)2/1, then with mo, 7771, 777,2 

as (5.72) we get

$ ( 7 7 )  =  ( m o  +  m i  +  m 2  +  7773 +  777,4) +  ( m o  +  m 2  +  7 7 7 4 )7 7

+ (m 2 +  7773 +  m'4)u2 +  (mi +  m'4)u3.

The blocks are semi-independent (see Definition 5.11) as we can always get <k(u) (mod us) 

if we have <&(u). We thus get the following generator matrix

(5.75)

with weight enumerator A(a;) =  1 +  2a;2 +  4a;3 +  a;4.

We extend this idea further to have a suitable set of multiplications such that the blocks 

are at least semi-independent and all the codes have optimal weight enumerator.

1 0 1 1 0

G = 0 1 1 1 1

1 0 1 0 1

5 .3 .8  M u ltip lica tio n s  for O p tim al A(x)

As proved before in Lemma 5.15 we can actually achieve the product §>(u) = (zq +  2:474 +  

z2u2)(yo +  y\u) in 5 multiplications directly, but it is not easy to tabulate. In this section
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we consider a set of multiplications such that the algorithms can be built up. Also we are

insisting that the blocks are semi-independent for the given P{u). First of all let us define

some notation relating the multiplications and columns of the generator matrices formed 

from them.

D efin ition  5.21 Define the following

(i) If we have a set of multiplications 7Bi0,m q , . . . , 771̂ ,  then we abbreviate the sum mj0 +

m il +  ' ■ ■ +  m in Tni0ili2'„in,

(ii) The columns of G are denoted g j  and can be defined by

m  = iz 9 l ) { y h i )  (5.76)

where

z  = (z0 . . .  zk- i )  and y  = (yQ . . .  yd-i)-  (5.77)

(iii) Similarly to item (i), the generator matrix [G^G^  . . .  G jJ  is written as

Table 5.4 contains a set of multiplications which give the optimal weight enumerator, 

A(x), together with a set of alternatives rn\ and m f '  such that if exactly one rrii is replaced 

by an m* or m** the optimality of the weight enumerator remains. For example if we 

use mo, m i, m 2,7713 and 777,4 then we get the optimal weight enumerator, similarly we may 

use 771Q, m i ,m 2, m 3 and m 4 to obtain the optimal weight enumerator. However, if we use 

m o ,m i,m 2,m 3 and 777,3 then we cannot even reconstruct the polynomial 3?(u). The * and 

** carry over to the abbreviating notation given in Definition 5.21.

N ote : i) as we stated before once $(u) is found we automatically obtain 4>(u) (mod us) 

for any s. For example, if 4>(u) =  mo +  (m o+m i + m 2)w +  (mo +  m i + m s)u 2 +  (mi + m 4)u3 

then <fr(u) =  (mi +  7714) +  (mo +  m i +  777,3)77 + (mo +  m i +  rri2 )u2 +  moti3 and this can be 

reduced to the required s.

ii) calculating 4?(u) =  Z(u)Y(u)  (mod u2 + aiu + ao) requires three multiplications except 

in the case when a\ =  l,ao  — 0 as u2 u — u(u + 1) and by the CRT this requires only
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Optimality Set Alternative 1 Alternative 2

m Q -  ZQiyQ 

m i  -- zyiji

m 2  = { z q  + 2 1 )  (y0 + y i)  

m 3 =  (20  +  22)7/0  

m4 =  (21 + 2 2 ) 2 /1

^ 0  =  (*o +  +  22X 2/0 +  2/l) 

m l  =  (20 +  2 1 +  2 2 ) (t/o +  yi)

=  zm

m l -  222/1

^ 3 *  =  *2(2/0 +  2/1) 

=  22(7/0 +  2/1)

Table 5.4: Set of multiplications that can be used to form KM (5,3,2) codes that have 

optimal weight enumerator. Note that m \ = and 777,4* =  m T-

two, i.e. mo =  2ot/q and m$ — ( z q  +  z\ +  22X2/0 +  2/i)- To generalise this idea slightly 

Z (u )Y (u ) (mod u2 +  a\u  +  ao) =  m'Q +  (m'Q +  m[ +  m ’2)u +  m ’x (a\u +  ao) where

m'2 =  (20 +  2 i +  a0z2){yo + yi) .
(5.78)

m'v =  (20 +  a0z2)yo 

m[ =  (*i +  a>0 Z2 )yi

We are now in a position to give all the generator matrices for KM (5,3,2) codes for 

all admissible choices of P(u) — P i{u ) . . .  Pl (u) and s. They can be found in Table 5.5. A 

little explanation of the table is necessary before we display and prove its contents.

The multiplications are chosen to satisfy that the blocks of the generator matrix are 

semi-independent, and that -A(a) is optimal. Qi stands for an arbitrary monic polynomial 

of degree i. Note however that as Z Y  modulo Q3, where Q:$ /  u3 takes more multiplications 

than Z Y  modulo u3 we consider this case separately and hence Q3 7- u3.
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Option L s Generator Matrix Ind. Blocks kmin

1 1 0 Q4 [^ 0123^ 0] Yes 1

2 a 2 0 [G0IG1234] No 2

2b (u +  1)Q3 [G0IG1234] No 2

2c (u +  l)u 3 [G0IG0123] Yes 1

2d a 2 (a2 +  1) [C?oi21^0^31 No 1

2e (u2 +  l) (a 2 +  u +  1) [Gi3G*0\G2i] No 2

2 / h2(u2 +  u +  1) [G012IG34] No 2

2 9 (a2 +  u ) ^ 2 +  u +  1) [G0C?5|C?234] Yes 1

3 3 0 u{u +  l)(n 2 +  u +  1) [Go|C?5|C?234] Yes 1

4a 1 1 Qi [G4IG0123] (wrap first) No 1

4b u3 [GouslGl] Yes 1

5 a 2 1 uQ2 [Go\G'Q12\Gl] Yes 1

5 b (u +  1)Q2 [Gt\G’Ql2\Gl] Yes 1

6a 1 2 u2 P 012IG34] No 2

65 u2 +  1 [G13G0 G24] No 2

6c u2 +  a 4-1 [g 234|g 0G8] No 3

6d u2 +  n [GoGq|G i4G|] Yes 1

7 2 2 +  1) [G0IG0 IG14G3] Yes 1

8 a 1 3 u Yes 1

8b u +  1 [G5|Gi34GJ] Yes 1

Table 5.5: Generator Matrices G for KM (5,3,2) codes for all admissible choices of P (u ) —

P l M  • ■ • Pl (v )  and s
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5.3 .9  M ultip lications for N on-O ptim al A (a;)

A natural question to further the study of the weight enumerator is to ask whether all the 

other weight enumerators for the given n, d can be found as KM codes. For the case 

k — 3, d — 2 here it is easy to see that the other weight enumerators are possible. See the 

next example for proof of this.

E x am p le  5.22 (i) P{u) = Q4, then the algorithm can be 

mo - z0y0

m i =  ziyi

m 2 =  {zq + z i){yQ + y i)  

m 3 =  z2yo 

m 4 = z2yx

(ii) or the algorithm could be

mo = ziyi

m i = (zo +  zi){vo +  yi)

m 2 =  (zo +  z 2 )yo G =  [Gm G*sGH

m 3 = z2yo

m A = z 2y i A (a;) =  1-1- 3a;2 +  3a;3 +  a;5

G — [G012G3G4] (5.79)

A(x)  =  1 +  4a;2 +  3a;4,
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5.4 Shunting of th e  K M (5,3, 2) codes

Theorem 5.7 says that each KM(5,3,2) code will shunt to a KM(5,2,3) and a K M (5,1,4) 

code if the blocks are independent and d > max (deg [Pi (a )], s ). This happens for Options 

2c, 2g, 3, 4b, 5a, 5b, 6d, 7, 8a and 8b of Table 5.5. Theorem 5.9 doesn’t hold in the case 

k = 3,gJ =  2. Notice that in Option 1 of Table 5.5 even though we have an independent 

block Theorems 5.7 and 5.9 do not hold so it is fortuitous (over our theorems) that this 

generator matrix shunts to k — 1. Another algorithm that can be used for P(u) = Q<\ is 

m Q = zoyo.mi — z iy u m 2 = {z0 + Zi)(yo +  ?/i),m3 =  ( z q  +  Z2 )yo,mA =  (zi + z2)yi- These 

multiplications will form a valid algorithm, the block is independent (obviously!) but it 

only shunts to k — 2.
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5.5 Minimum Length Codes for N =  5

We now move onto the harder case and try to construct all the minimum length codes for 

N  — 5. As will be found in this chapter this problem is much harder than the N  <  5 cases. 

We continue with the knowledge of Section 5.3.1 — 4.

5 .5 .1  S tan d ard  Form  o f  th e  G enerator M a trix

In order to find all the weight enumerators that may be possible via KM construction we

must find all the weight enumerators for any kind of linear binary code. We do this in the 

same way Section 5.3.3 by looking at the standard form of the generator matrix.

For N  — 5 we can have the following possibilities for k and d.

k = A , d =  2

k = 3 , d -  3 (5-81)

k — 2 , d = 4.

We must first find out the minimum length that these codes can have and for this we return 

to the polynomial approach of KM.

T h eo re m  5.23 The minimum number of multiplications needed to multiply two polynomi

als Z (u ) — z q -\ V z k - i u ^ 1 and Y(u) = yo-\ f or Mie values given in (5.81)

is 6 for each of the three cases.

P ro o f. This is done in a similar way to Lemma 5.15. □

Now the cases for k — 3, d — 3 and k =  2, d =  4 are the simplest and so shall be dealt

with first.

T h eo re m  5.24 The only possible weight enumerators for (6,3,3) linear codes and (6,2,4) 

linear codes are
A(a;) =  1 +  4a;3 +  3a;4

 ̂ J (5.82)
A(x) — 1 +  3a;4,

respectively.
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P roo f. First consider the case for the (6,3, 3) linear code. Looking at the standard form 

of the generator matrix we get

G = . (5.83)

U q U i U 2

with TJ = V q vi v2 . Now by similar arguments to those given in Theorem 5.17, we

W q W \ w2
can see that the only possibilities for u , v }w  are

Case U, V, w

(1)

(2)

111,110,011

110,011,101

all giving the weight enumerator of 4 (a ) =  1 + 4a3 +  3a'4. For the (6,2,4) linear code we 

have the standard form of the generator matrix as

G =  [I2\U] (5.84)

with U
u o rii u2 W3

, easily giving that the only possible vectors u, v  are u, v

1110, 0111, and so the only possible weight enumerator is .4(a) =  1 +  3a4. □

From Theorem 5.23 we know that KM codes exist for k =  3, d = 3 and k = 2, d — 4 of 

length six and so by Theorem 5.24 must have the weight enumerators as stated.

Now the case for the weight enumerators of a (6,4,2) linear code is far more interesting 

as the following theorem will show.

T h eo re m  5.25 The only possible weight enumerators of a (6,4,2) linear code are

AWmin 4(a)

3 1 +  3a2 +  8a3 +  3a4 +  a 6

4 1 +  4a2 +  6a3 +  3a4 +  2a5

6 1 +  6a2 +  4a3 +  a 4 +  4a5

1 +  6a2 +  9a4

7 1 4- 7a2 +  7a4 +  a 6

108



P ro o f. For the values of n, k } d we have the standard form of the generator matrix is

G = [I4\U] (5.85)

with U — and vfo = (uq^, ) , i — 0,1,2,3. Now, as in Theorem 5.17,

we get the following table for the and the corresponding weight enumerator:

Case «(°) u t1) A(x)

(1) 11 11 11 11 1 +  6a;2 -f- 4a;3 +  a ;4 +  4a;5

(2) 11 11 11 01 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

(3) 10 10 10 11 1 +  6a;2 +  4a;3 +  a;4 +  4a;5

(4) 10 10 10 01 1 +  7a;2 +  7a;4 +  a;5

(5) 11 11 01 10 1 +  3a;2 +  8a;3 +  3a;4 +  a;5

(6) 10 10 01 11 1 +  4a;2 -f 6a;3 +  3a;4 +  2a;5

(7) 11 11 01 01 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

(8) 10 10 01 01 1 +  6a;2 +  9a;4

giving all the possible weight enumerators as stated. □

As in Section 5.3-4, we would like to be able to to show that firstly the optimal weight 

enumerator can be found for a KM code and secondly what other weight enumerators can 

be found from KM codes.

5 .5 .2  D ir e c t u se  o f  th e  C R T  to  form  K M  (6 ,4 ,2 ) C od es

Below we display as examples, the only two KM codes that are formed directly from the 

CRT (i.e. without any amendments to the multiplications) such that the code length, n, is 

six. For each we have N  — 5, fc =  4, d — 2.

E x am p le  5.26 Let P(u) — (u l)u 3 and s — 1. Then using Appendix 1 we get the 

multiplications as follows:

?n0 =  (z0 +  21 +  ^2 +  *3) (yo +  y 1)

m i -  z0y0

m 2 -  ziyi

m 3  =  (20 +  21X2/0 +  2/1)

7714 =  [zq +  z2)2/o (5.86)

m$ =  £3J/i5
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where mo is from u +  1, m i , . . , ,  m 4 are from u3 and m 5 is from the wraparound. This gives 

the generator matrix as

G =

1 1 0  1 1 0  

1 0  1 1 0  0 

1 0 0 0 1 0 

1 0 0 0 0 1

, A(rr) =  1 +  4a;2 +  6a;3 +  3a;4 +  2a;5. (5.87)

E x am p le  5,27 Let P (u ) — u(u +  1) and s =  3. Then using Appendix 1 we get the 

multiplications as follows:

(5.88)

m 0 -  ZqUq

m i -  (20 +  zi +  z2 +  23) (yo +  yi)

m 2 =  ^3^1

where mo is from u , mi is from u + 1 and m 2, . • •, ms are from the wraparound. This gives

the generator matrix as

m 3 =  z2yo

m4 =  (z2 +  ^3) (yo + yi)  

m 5 =  (^ i+ ^3 )y i,

G

1 1 0 0 0 0 

0 1 0 0 0 1 

0 1 0  1 1 0  

0 1 1 0  1 1

A(x) =  1 +  4a;2 +  6a;3 +  3a; +  2a;" (5.89)

This, in the first instance does not look too good as the optimal weight enumerator does 

not occur using this method. However, as we shall see soon the optimal weight enumerator 

can be found by using the diagrammatic techniques introduced in Chapter 4. Before we use 

this method let us show what other weight enumerators are possible by certain amendments 

of the CRT in order to reduce the number of multiplications necessary.

R u les  for m u ltip lica tio n  am end ing

1. If the multiplication occurs in any other part of the algorithm then one of them 

can be omitted.

2. If three multiplications are linearly dependent then one of them can be omitted.
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3. If two multiplications say, always occur together in the reconstruction

of $(u), then we might be able to invent a new multiplication, m n.j_i, say, such 

that m n + 1 together with c, say, of the other multiplications, not including m a 

and m b gives the sum of the original two, i.e.

m (5.90)

4. If when we look at the reconstruction of 4>(u) a multiplication is not needed, it 

may be left out.

Using these rules we are able to use the CRT to construct algorithms where the number 

of multiplications needed is greater than six and then possibly reduce the number needed to 

six (while still being able to reconstruct 4?(w)). Obviously this may not always be possible. 

We give a comprehensive example to explain the intricacies of some of these rules, then 

using the algorithms of Appendix 1, we shall show all the options for P{u) and s such that 

the number of multiplications can be reduced to six.

E x am p le  5.28 We have N  — 5, k — 4, d — 2. Let P (u ) = (u2 +  l)(ii3 +  u2 +  u), so using 

Appendix 2 we have, firstly from reducing modulo u2 + 1 the multiplications

m 0 =  (20 +  z2)yo m2 =  (2̂0 +  21 +  +  23X2/0 +  Vi)

mi  =  (zi +  23)3/1

and secondly from reducing modulo ii3 +  u2 +  u the multiplications

m$ = z0y0 m Q =  (21 + z 2)yi

m 4  =  {zi  +  2 3 ) 3 / 1

m 5 =  ( 2 0  +  zi +  23) (3 / 0  +  3/1)

But finding (I*2(n) does not need 777,4 so it can be omitted at this stage. Now the rest of the 

multiplications are linearly independent so Rules (1) and (2) do not apply. We need to look 

at the reconstruction if we want to try and apply Rules (3) and (4). We have

(5.91)

m7 =  (2 0 -1 -2 2  +  2 3 )3/0 . (5.92)

0o — m 3

0 ! -- mo +  m i +  m 3 +  mg +  m 7

02 =  m 2 +  m 5 +  m 6

03 =  m2 +  m 3 +  m.5 +  m j

04 — mo +  m i +  m 2 +  m 3 +  mo +  777,6- (5.93)
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G = A(a;) =  1 +  4rc2 +  6a;3 +  3.t4 +  2xl (5.94)

All the multiplications are used at least once and so Rule (4) cannot be used, but we see 

that m o and m i always occur together, so we might be able to use Rule (3). Indeed, if we 

define m$, =  zsyi, then ttiq -f- m i =  ms T m 2  +  ms  +  ms +  me and the reconstruction can be 

achieved using m 2,m 3, m s,m g,7717, ms, giving the generator matrix as

1 1 1 0  1 0  

1 0  1 1 0  0 

1 0  0 1 1 0  

1 0  1 0  1 1

Further to the above example we are able to use the coprime factorisation of all poly

nomials of the required degree from Appendix 2, and the algorithms of Appendix 1 to form 

Table 5.6.

We have thus shown by our standard algorithms of Appendix 1 that only two of the 

possible weight enumerators for any (6,4,2) linear codes are possible as KM codes. We now 

move on to using the diagrammatic representation of Chapter 4.

5 .5 .3  U sin g  th e  D ia g ra m m a tic  R ep resen ta tio n  for N  =  5

We will first show the diagrams for the examples in the previous sub-section. Firstly the 

algorithm of Example 5.26 is displayed in Figure 5.1, then in Figure 5.2 can be found the 

diagrammatic representation of the algorithm of Example 5.27. Figure 5.3 contains the 

diagrammatic representation of Example 5.28.

Figure 5.1: Diagram of the algorithm for Example 5.26

Also we can reduce our square, P(u) algorithm of Section 4.6 to the present problem. 

Indeed if we take the k = 4, d — 4 case of Figure 4.14 and reduce it to k =  4, d =  2 we get 

Figure 5.4.
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P(u) s A(x)

(u2 +  l)(li3 +  U2 +  u) 0 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

u2(u3 +  u2 4- u +  1) 0 1 +  6a;2 +  9a;4

u(u +  l)(u 2 +  u +  1) 1 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

(u2 +  u)(u2 +  u +  1) 1 1 +  4a;2 +  6a;3 +  3a;4 -F 2a;5

u(u3 +  1) 1 1 +  4a;2 +  6a;3 +  3a,-4 +  2a;5

(u +  l ) ^ 3 +  u2 +  u) 1 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

u2(u2 +  1) 1 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

(u +  l)u 3 1 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

u(u3 +  u2 +  u +  1) 1 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

u3 2 1 +  6a;2 +  9a;4

u(u2 +  l)u 3 2 1 +  4a;2 +  6a;3 -F 3a:4 +  2a;5

u3 +  u 2 1 +  4a;2 +  6a;3 -f- 3a;4 +  2a;5

u2(u +  1) 2 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

CO + to 2 1 + 4a;2 +  6a;3 +  3a;4 +  2a;5

u3 +  u2 +  u +  1 2 1 4- 4a;2 +  6a;3 +  3a;4 +  2a;5

u2 3 1 +  6a;2 +  9a;4

u2 T 1 3 1 -f 6a;2 +  9a;4

u(u +  1) 3 1 +  4a;2 +  6a;3 +  3a;4 +  2a;5

(u2 +  u) 3 1 +  4a;2 +  6a:3 +  3a;4 +  2a;5

Table 5.6: Weight Enumerators of all the KM codes formed by the CRT with amending 

rules as above

Figure 5.2: Diagram of the algorithm for Example 5.27
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Figure 5.3: Diagram of the algorithm for Example 5.28

i l l X  * FV1

d v *
\  J

Figure 5.4: Reduced version of our square, P(u) algorithm

The algorithm of Figure 5.4 has a weight enumerator associated with it as A (a) =  

1 +  6a;2 +  9a:4.

Now we use the operations described in Figures 4.7-10 to obtain other algorithms. This 

may enable us to find some other weight enumerators for KM codes. It is noted here 

tha t operation four (as described in Figure 4.10) will not change the weight enumerator 

as it is the same as rotating the generator matrix by 180 degrees. It turns out that up 

to the four allowed operations there are two equivalence classes of algorithms with typical 

representatives as in Figure 5.5.

•  c* ®

®  • [(*] *)
and

Figure 5.5: The two typical representatives of the equivalence classes

Looking at the weight enumerators associated with each algorithm of the two classes 

we see for example, that the algorithm in Figure 5.6 gives the optimal weight enumerator, 

A(x) — 1 +  3a:2 +  8a;3 +  3a;4 T a;6, for the given values k = 4, d = 2.

Note here tha t this is not the only algorithm (obviously since one of the operations is 

operation four) with the optimal weight enumerator associated with it. The results obtained
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•  (♦ •) <§>1
m • (♦ •)

Figure 5.6: Algorithm with the optimal weight enumerator 

here lead us to state the following.

T h eo rem  5.29 Using the algorithms of Appendix 1, the CRT construction and the opera

tions described in Figures 4.7-10, the only weight enumerators of KM  codes for k = 4, d = 2 

are
A(a;) =  1 +  3a:2 +  Sx3 +  3a:4 +  a:6

A(x) = 1 +  4x2 + 6a:3 + 3a:4 + 2a:5

A(x) = 1 +  6a:2 + 9a:4.

We also pose the following.

C o n je c tu re  5.30 For k = 4, d = 2, the only weight enumerators that KM codes can have 

are those given in Theorem 5.29.

So we have shown that for N  < 5 there exist KM codes of minimum length possible for 

the given k and d having optimal weight enumerator.

5.6 KM codes for N > 6

The techniques used in the previous sections results in data that requires more time than 

available, and will be attempted at a later stage.
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C hapter 6

T he W eight Enum erators o f  

Shunted Fam ilies o f K M  C odes, I

6.1 Introduction and Dual Codes

If we wish to find the weight enumerator of a KM(n, k, d) code and if k is large but n — k 

is small, it is computationally more efficient to calculate the weight enumerator of the dual 

KM code (an (n,?i — &,<f) linear code) and then use the MacWilliams Identities (equations

(2.2)) to dualise back to the weight enumerator of the primary (original) KM code.

As stated in Definition 2.1 we need to find n — k independent relations on the codeword 

entries cq . . .  cn~ i, say, as this will then enable us to find the dual KM code and hence the 

weight enumerator of the dual KM code.

We will develop a method of finding the weight enumerators of families of KM codes. In 

this chapter we will consider families to mean codes with the same P(u) but with a range 

of values of s, starting with s — 0. We will study the effect on the weight enumerator as s 

increases.
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6.2 Further Ideas on Reduction

We extend here the ideas of Section 2.3.2 in order to apply them directly to the present 

material. In the same style as Definition 2.11, if we have X ( u ) of degree h — 1 and we reduce 

it modulo P(u) of degree D , (D < h — 1), to a(u) then obviously a(u) will have degree D — 1

and there are constants such that

D - 1

(mod P(u )) — ^  TijU1. (6.1)
i- 0

Hence we have that
h - l  D —l

a(u) (mod P{u)) — (6.2)
j'=0 i=0

giving
h - l

ai = sjT l Xjrij. (6.3)
j=0

Again we may write this in the matrix form a — xR ,  where R  = [r -̂] is h X D. We will

explain a little further after noting the shift in the rows of R, i.e.

row i +  1 of R  — 0 r ifi ... r i n_2 +  n , D - l Po P i  • ■ • P D - l

where the pi are the coefficients of P(u). Now if we have an algorithm for the product 

modulo P (u ) of two polynomials a(u) and b(u) of degree D — l  we have the multiplications

rrii — (a \ J ) ( b p f ), where \ f  and p j  are d - vectors. We can form a vector a S , with

S  = ...]  for the a  part of the multiplication.

Note here that the first D columns of S  commonly form the identity matrix Id . Now if 

Z{u) reduces modulo Pt{u) to a(u) then from Definition 2.11 we have

a  =  z R , (6.4)

where R  is defined as above, and so a S  — z R S , and finally we see that

Gt = R S  (6.5)

where z R  represents reduction modulo Pt(u).

We are now in a position to use these techniques to assist our goal of finding the weight 

enumerators.
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The Periodicity of R  and Gt

We look a little further at the structure of R  and Gt and note some periodicity properties 

tha t are exhibited by them. For the following we shall consider L — 1 only, although for 

the case L > 1 we simply apply the L — 1 case to each block. First a definition concerning 

period is needed.

D efin ition  6.1 The following are equivalent definitions of e, the order of u modulo P (u )

• e is the least positive integer, such that ue = 1 (mod P(u)),

• e is the least positive integer such that P(u)\(ue — 1).

Now, row i of R. is the vector ri0 ■ ■ ■ ri,D-1 ’ so we liave from 6.1

row i =  row j  u 1 =  u3 (mod P(u)) e| ( j —i). (6-6)

In particular the rows (if they are present) of R  repeat with period e, and hence so do 

the rows of Gt — RS.
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6.3 Obtaining the n — k Independent Relations

If we encode the information word z  = zq . . .  z^~1 to the codeword c ~  co . . .  cn_i then the 

equation relating these two can of course be written

zG  — c. (6-7)

We would like to find the Z{ in terms of the c% as this will then give at least some of the 

required relations. Returning to the polynomial approach we have

T h eo re m  6.2 (a) The coefficients in Z(u ) (— Z(u) (mod P (u ))) are linear combinations 

of zG,

(b) The rank of Gt equals the degree Dt of Pt(u)

P ro o f, (a) First all by the definition of a computation we know tha t the multiplications, 

mi, giving block Gt, say a < i  < 6, satisfy

Dt- l  /  b \
Zt {u)Yt {u) =  j uj (mod Pt {u)) (6.8)

j =0 \i=a )

for certain constants k i j } where as we know from (5.76) m i  =  (z g f ) ( y h j ), g f  being the 

ith. column of G and h j  being a d-vector. In particular, we may set ijq =  1 and \n — 0, t =  

1 , . . . ,  d, so that Yt(u) =  1 and

Dt- l  f  b \

E M z s D K  (6-9)
j = 0 \i=a /

where lij equals k{j multiplied by the Oth entry of Hj. Since equality holds for each t, the

CRT shows that the coefficients in Z(u) are linear combinations of the z g j , (0 < i <  n — 1).

(b) There are Dt coefficients of powers of u in (6.9), hence D t < column rank of Gt- But 

the latter cannot exceed D t: since each z g j  is a linear combination of the Dt columns of 

the matrix z R , with R  as in (6.4). This proves (b). □

We will separate the relations we can find into three distinct categories for ease of 

underst anding.
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D efin ition  6.3 (i) A linear relation between entries c* is of inner type if it corresponds to 

a relation between columns of the same block.

(ii) If s — 0 then the expressions for z^, ■ ■., ^ d - i must all equal zero, giving D — k — 

k + d — 1 — k = d — 1 relations known as outer relations. If s >  0 then the outer relations 

refer to zi and Theorem 6.4 is used to convert these back to the zfis.

(iii) If s > 0 then we can get inner relations from the wraparound block. These are known

as wraparound relations and are converted to relations among the cfis by equating columns

in (6.7)

T h eo re m  6.4 Let P (u ) have reciprocal Q(u) — qo +  q\u H +  qEUE, of degree E. Define

Q j(x) =  go +  qix H +  qjX3', 0 < j  < E. Then

(a) with coefficients di independent of k,

zi = if  0 < i < D — E  case D  > E  (6.10)

Zj j—j  =  Zj j—j  +  E dizo+i {D +  i <  k), if 1 < j  <  E ,  (6 .1 1 )
>̂o

where dn — q\dn- \  -f q2 dn - 2  +  ■ ■ * +  qsdn-E  with initial values d - s — 5sj, (1 < s <  E).

(b) Let G j(x) — S r> o  dr- j x r = d - j  T  d-j+ \x  H . Then Gfix) — ■

P ro o f, (a) By definition Z(u) satisfies Z(u) =  Z(u) +  a(u)P(u) for some polynomial 

a(u) =  Z]i=o1_D aiul• Writing this in matrix form we get
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ZQ -  Z o  

Z 1 -  Z l

Z d -  1 ~  Z D - 1 

ZD

Z m + D

qn 0 0 0

Q D - l  QD 0 0

q d —2 q d - i  qD 0

5i

5o

0

0

0

0

52

51

53 ■ ■ ■ Qd  0

52 53 ■ ■ • qD 0

0

0

QD- 2 QD- 1 QD 

Q D - 2 5 D- 1

5 o 51

0 50

a o

ai

=  M a
(6 .12)

but the definition of Q(x) implies that the first D — E  rows of M  are zero so Z{ — Zi — 0 for 

i = 0 , . . . D - E .

(b) Let Mi denote the polynomial equivalent of row i of M .  We thus have

M D- j  =  x~j (Q(x) -  5 0 -q j- ix j ~1)i 1 < j < D  (6.13)

and as each of the first D — l  rows is a linear combination of the last m  rows we get

M D- j  = Y ,  diXiQ(x), 1 < j < D .  (6.14)
i>0
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Equating equations (6.13) and (6.14)

x~3(Q(x) -  g0  q j - \ x j ~ l ) =  Y  diXlQ(x )
i>0

- x ~ 3(q0 H 1- gy_!^_1) =  - x ~ 3Q(x) +  Y  dix%Q(x)
i> o

x~3Qj^i{x) — [ Y  diX1 +  ] Q(a:)
.*>o j

Y  diOrM Q(rc), 
j > - D  J

where d -p  . . .  d - \  =  0 . . .  010 . . .  0, the 1 being in position —j.

Now equating coefficients of x n+3 (n > 0) in the last equation of (6.15) we have

’ 3Q j-i{x) = j ^ 2  diX% j Q(x). 
A > —D

Expanding this we get

qox 3  +  q i x  3 + 1  4-----------+  qjX  1 =  ( d - o x  D +  d - E + \ x  D + 1  H---------

• ■ • +  d—jX 3 -(-■■■ -j- d—\x   ̂ -f- ■ ■ ■)

(g0 +  q\x  H h g^ar®)

=  qod^Dx ~ D +  (god-D+i +  giGL^a;- -041!- 

{ q o d - D + 2  +  01 <^-£>+1 +  ^2^ - jd )^ _jD+2 +  ■ - ■

• ■ • +  (godn +  Qldn—1 +  ’ • • +  qEdn~E)xn +

as qs-j-i,. . .  are zero. Now equating coefficients of x n+3 (n > 0) we get

0 =  qodn +  g id n _ i  +  ■ ■ ■ +  qEdn- E

and as go =  1 we get

dn ~  Q\dn—1 "h ’ ' ’ 4* qEdn-E

as required.

For (b) look again at (6.15). We have

(6.15)

(6.16)

(6.17)

(6.18) 

(6.19)



Now as gJ_£) . . .  d ^ j- i  — 0 . . .  0 this can be written

Q j - i ( x )  -  d i - j x ' j  Qlx) ,  (6.21)

^  =  W ’ (6'22)

and that completes the proof. □

We now give some more results on the Gi(x)  and the Qi{x).

T h eo re m  6.5 (a) Ge {x ) — 1 — %EGi(x), hence G\(x) and Ge {%) have period ord[Q(x)J 

and satisfy do =  1,

(b) I f  qj — 0 then Gj+i(x)  — Gj(x) .

Proof, (a )  G b ( x ) =  QEQ~{lJ f ) =  Q % \ ~ f  =  1 -  x E ^ - } =  1 -  x E G 1 ( x ) .

(b )  L e t  q j  =  0 , t h e n  Q j ( x )  =  so  , i .e . G j + ] ( x )  =  G j ( x ) .  □

T h eo re m  6.6 Let G j(x ) have period e, fixed j ,  then

(a) e | ord[Q(x)J,

(b) e  >  max( [ f  ] , j  -  1, E  -  j )  .

P roo f, (a) Let e1 — ord[Q(a;)]) so g^y has a period e h  Therefore,

(1 +  x e>) is a polynomial

^  ĈQ(x^ +  xe') ls a polynomial (6.23)

îas Peri°d e>

and as period Gj(x)  — e, it follows that e| ord[Q(a;)].

(b) We know Gj(x)  = ■ Now the maximum degree of Gj(x)  is E —j  and ord[Gy(a;)3 =

period (m)] > deg[Gy (a;)], so e >  E  — j.

There cannot be j  zeros otherwise no recurrence would occur, so e  > j  — 1.

Amongst initial values d -E , - - -, d_i there exists a run of at least [ ^ ] , but no run of e 

zeros occurs, else all di — 0, therefore e > [y ] . □
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6.3.1 T he M atrix  M ethod

If s — 0, then if we let z  = ( z q  . . .  z d - i) we are able to obtain the 2  by matrix inversion.

We know by the CRT, Theorem 2.14, the equation z G  — c  has a unique solution for z  

in terms of the c. We shall reduce G to an invertible matrix. Now, the columns of Gt — R S  

are linear combinations of those of R.  Since by Theorem 6.2 the rank of Gt  is Dt  we may, 

by rearranging if necessary, take the first Dt columns as independent. Indeed, for simplicity

where Rt  corresponds to reduction Pi(u). Now the equation z Q  — c  is obtained from 

z G  — c  by deleting certain columns of G and their counterparts in c, and so has a unique 

solution for £ in terms of c. But since G is a D  x D  matrix, uniqueness implies that G is 

invertible, and 2: =  cG ~l . Thus with the same entry deletions indicated by underlining,

than the CRT calculation. A type of code fairly easily handled by this type of calculation

KM code has constant degree or it is a constant degree K M  code. We apply this definition 

for all values of s.

Since the Pt{u) must all be coprime, one way when considering constant degree KM 

codes, is to let Pi{u) — uw,P 2 (u) =  (uw -f 1) and take Pt(u) as an irreducible of degree w 

for t  > 2. Note here that the definition allows a wider choice than this, but for our purposes 

this shall be kept rigid.

We will pursue the rest of this chapter concerning ourselves with the constant degree 

KM codes with w — 2, the work can be relatively easily generalised.

we shall assume that, as is usually the case, these first Dt columns are R  itself, and write

G = [R!R 2 . . . R l ] (6.24)

(6.25)

where zi — Cic T 5 (0 ^  * 5: D  — 1).

The method of matrix inversion is most useful and applicable when finding G is easier

is given in the following definition of which the idea was first introduced in Hoggar and 

Piclcavance (1995), and formally defined in Hoggar (1997).

D efin ition  6.7 If the degree of Pt(u) is a constant w for each 1 < t < L  we say the resulting
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E x am p le  6.8 Looking at the constant degree KM code with w — 2 and L — 3 (the 

maximum for the given w ) we must have P (u ) =  u2(u2 +  l)(u 2 +  u +  1). So

G =

and so the reduced matrix G is

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1

0 0 0 1 0 1 1 1 0

L J

(6.26)

G =

T—
!

1
0 1 0 1

r""o

0 1 0 1 0 1

0 0 1 0 1 1

L ■ J

(6.27)

If G has six rows then it is square and as explained before, by the CRT, it has an inverse 

G_1. This can easily be obtained as

G - 1 =

~  1 0 1 1 0 1

0 1 1 0 0 1

0 0 0 1 1 1

0 0 1 1 1 0

0 0 1 0 1 0

1 o 0 0 1 0 1 _

(6.28)

Then z — cG_ 1 or alternatively going back from the underlined matrix to the original,
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z  — cG^ 1̂ , where

G(_1) -

1 0 1 1 0 1

0 1 1 0 1 1

0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 1 1 0

0 0 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1—
 o 0 0 0 0 0

= [ c ? . . . c n (6.29)

So the outer relations (see Definition 6.3 (ii)) can be obtained.
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6.4 The KM(9, k,7 — k) Codes

As in Example 6.8 we will use P(u ) =  u 2 (u2 -fi 1 )(u2  +  u +  1). We have three inner relations 

(see Definition 6.3 (i))

E i -  111000000

E 2 =  000111000 , (6.30)

E 3 -  000000111

and the outer relations (see Definition 6.3 (ii)) . . . ,  Cd - i obtained from (6.29).

Before continuing with the study we will give some general notation from vector space 

theory, that will help in the explanation of the work in this section and subsequent ones.

D efin ition  6.9 Let U be the space of n -vectors over F2, viewed as sequences of m  triples

(from the number of blocks) u  = u \ u 2 . . .  u m followed by n  — 3m single digits. As will be

shown in subsequent sections the number of single digits can conveniently be kept below

three. Now if V  is any subset of U, then define the following
E  The span of the set {E i ,E 2} . . . ,  E m} : where Ei is the generalised version

of (6.30).

u  +  V  The translate of V  by tt, i.e. the set {u  +  v : v 6  V}.

Sk The span of the set {Cfc? Cit+i , • • •, Cd-i}- Note this is considered a subset

of U and is extended by zeros up to length n. Here 0 < k <  D — 1, and

if k > D — 1 or k < 0 then Sk = {0}.

Cq;2...;n The sum of tlie vectors <fl, Ci2> * ■ ■ > ^  ■

t(u) The number of nonzero triples of u, i.e. # { u i  7  ̂ 000 : i — 1, 2 , . . . ,  m}.

Thus £(0) — 0.

ti(V)  The number of vectors u  £ V, with t(u) = i, i.e. # { u  G V : t(u)  ~  i}.

R(V) The weight enumerator of V.

Now back to the present problem, we have m — 3 and D = 6 . As we need 9 — k 

independent relations to form the dual code, and as we are only concerned with the weight 

enumerator, it does not m atter which relations we use. We thus can say that the dual code
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is generated by E i , E 2, E 3, C/., • ■ ■, or

Dual KM(9, k, 7 -  fc) code -  ( J  (n +  E) (6.31)

Now we could simply obtain the dual code by obtaining the whole set from (6.31) and 

looking at each vector, but we would like a more systematic approach. The next few lemmas 

prove vital in taking the problem away from looking at every single vector in the dual code.

L em m a 6.10 For vectors of length 3m, we have R ( u  +  E) =  (x +  +  x 3^m-t(u)

P ro o f. Split each vector of u  + E  into ra triples, i.e. +  E \ , u 2 + E 2, . . . ,  u m + E m. Then

letting Vi — Ui +  Ei we have

u  +  E  =  Vi X K2 x ■ • • x Vm (6-32)

and

R {u  + E) — R{Vi)R{V2) . . .  R(Vm). (6.33)

Now by the construction of the the third digit of each triple is 0, so Ui is one of 

000,100,010,110. Hence R(Vi) — 1 +  .t3 if U{ — 000 or x  +  x 2 otherwise, and R ( u  +  E) 

is as stated. □

Note here that R (E )  — (1 +  x 2 ) 3 since the only vector u  such that u  +  E  =  E  consists 

of three triple zeros.

We have in Lemma 6.10 the ability to find the weight enumerator, B ( x ), of the dual 

code if we obtain the extra relevant relations. These extra relations can arise via Definition

6.3 (ii), so for k = 5 we have Z5  =  0 leading to £5 being a relation and we have thus

Dual KM (9,5,2) code -  {J (u + E)
ues5 (6.34)

— EU(Cs 4" -®)'

For k =  4 we have £4 =  0 and z$ ~  0 leading to C5, C4 and their sum, £45, being the 

required generators so

Dual KM(9,4,3) code -  [j {u +  E)
UES4 (6 .35)

=  EufCg +  E) U(C4 +  E) U(C45 +  E).
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Now using Lemma 6.10 we can find the weight enumerators using this method, for 

example for the KM (9,5,2) code

B(x)  = R { E ) + R ( C 5 + E),

and as £5 =  110100010, £(Cs) — 3 and

B{x)  — (1 +  a;3)3 +  (x + a;2)3
(6.36)

=  1 +  4x3 +  3a:4 +  4a:6 +  3a;5 +  a;9.

Now if we let fit =  (x +  a:2)*(l +  x 3)3~l then for the dual KM(9, A:, 7 — k) code

B(x)  =  A(u) (6-37)
uesk

and using the MacWilliams identities (see Theorem 2.6 and the subsequent paragraph) we 

can obtain the weight enumerator of the KM(9, /c, 7 — k) code as

A.{x) 2 G~k ^  a t(u)
uesk (6.38)

— 2̂ ^  (a°a ° P a2 a 2  +  <23^ 3)) say,

where at =  (1 — a:2)^ !  +  3a:2)3_t, the MacWilliams transform of fit.

The following lemma will enable us to produce a table of weight enumerators of the 

KM(9, k,7  — k) codes.

L em m a 6.11 With t(u) defined as in Definition 6.9 we have for 2 <  k <  5

J 3  for u  =  z j: 2 < j  < 5, and z 23, z A5 
t{u) — < (6.39)

I 2 otherwise

P ro o f. By inspection of the vectors ^ ,2  < i < 5 we see that all the sums except z^, ^23 

and Z4 5  result in only one 000 appearing. □

In Table 6.1 we can see the weight enumerators of the primary and dual KM(9, fc, 7 — k) 

codes, together with the at, the coefficients of at in A(a;), as in (6.38). Note we also include 

the case k — 1, d — 6 as the results from this will be used for a more complex problem later 

on in this chapter. The results for this particular case are shown in Lemma 6.12, they are 

either obtained by direct methods or using the results of Chapter 7.
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L em m a 6.12 For k — 1 we must use £i which will introduce vectors with t(u) — 1, and

we get for this value of k

g.0 — 1, ai = 3,02  =  15,03  =  13. (6.40)

k d GO 0.1 02 03 A(x) B(x)

5 2 1 0 0 1 1 +  3a;2 15a;4 +  13a;6 1 4- 4a;3 +  3a;4 +  3a;5 +  4a;6 +  a;9

4 3 1 0 0 3 1 +  9a;4 +  6a;6 1 +  6a;3 +  9a;4

3 4 1 0 3 4 1 +  3a;4 +  4a;6 1 +  3a;2 +  13a;3 +  15a;4

2 5 1 0 9 6 1 +  3a;6 1 +  9a;2 +  27a;3 +  27a;4

1 6 1 3 15 13 1 +  x 6 1 +  3a; +  18a;2 +  46a;3 +  60a;4 +  60a;5 

+46a;6 +  18a;7 +  3a;8 +  a;9

Table 6.1: Weight enumerators of KM(9, fc, 7 — k) codes

6 .4 .1  E x p lic it  F orm ulae for th e  Ai

We need a systematic way of obtaining ai{d). As a first step we deduce a compact expression 

for the Ai from (6.38). We have

(6.41) 

and

A(a;) =  2fc~6 ^  a t^  = 21~d (a0a0 +  aiati +  a2a 2 + a3a 3) . (6.42)
u€Sk

Now we know ao — 1 and ao +  a\ +  02 +  0,3 = 2d_1, i.e. a\ +  a2 T  0.3 — 2d~l — 1. So for

d > 2 we have Ao =  1, A± — 0 and equating the constant coefhents of (6.42) gives

1 — 2  ̂ 6(1 +  a\ +  a2 +  03), (6.43)

the same as we found above.

a t = ^ 2  btrx2r where [btr] =
r=0

1 9 27 27

1 5 3 - 9

1 1 - 5 3

1 - 3 3 - 1
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1 1 0
and I 1 =

1 0 0

1 0 0 0 1 0

r i A A + r r "

Ui u 2 U3 — A fj,
A  + 11 A r

L em m a 6.13 With t(u) defined as in Definition 6.9, (a) t{u) /  1 for u  E Sk and k > 2,  

(b) t(u) ^  2 for u  G Sk and k >  4.

P ro o f, (a) Let u  = U1U2 U3 be in S 2 , with t(u) = 1. Then u  is a linear combination of

C2) - - - j C5> with not all coefficients zero. So with A  =  

for some 2-vector A and fj, not both zero

. 1  A A _ l  T> T>
(6.44)

Now, t(u) — 1 means that exactly two of the Ui are zero. But u \  = U2  = 0 implies

XA  +  fj,{A +  I ')  =  0 =  A {A + 11) +  fiA,

which implies A =  fj, ~  0. Similarly for U2 ~  u 3 — 0 and u \  =  1x3 =  0. Hence t(u)  7  ̂ 1 for 

u  <E S 2  and k > 2.

(b) Simply inspect C4 X 5 and C45. 1=1

Now Lemma 6.13 says that ai — 0 for d <  5 so, replacing k — 6 by d — 1, (6.43) becomes

a2 +  a3 =  2d- 1 - l .  (6.45)

Now if we let d > 3 then A% — 0 and 0 — 21-d(9ao + 5ai + «2 — 3a3), i.e.

o,2 — 3a3 — 9- (6.46)

Now solving (6.45) and (6.46) we get <22 =  3(2d-3 — 1) and a3 — 2d~3 +  2 . So for d > 3, we 

have A^ = 3(25_d — 1) and A q = 25~d +  2. Thus we have the more general version of Table

6.1 as Table 6.2.

k d H(a;)

k =  5 d = 2 1 +  3x2 +  15a;4 +  13a;6

2 < k <  4 3 < k < 5 1 +  3(25~d -  l)a;4 +  {25~d +  2)a;6

Table 6.2: Weight enumerators of KM(9, k, 7 — k) codes in terms of d
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6.5 E xten d in g  th e  K M (9 ,& ,7 — k) C odes to  KM(10,&,8 — k)

C odes

We now extend the method of Section 6.4 to incorporate wraparound, s — 1. The gener

ator matrices of the KM(10, fc, 8 — k) codes will be those of (6.26) with the extra column 

[00 . . .  01]T, corresponding to the multiplication z^-iyd -i  required for Z (u )Y (u ) modulo us. 

As we discussed in Section 5.2 the 1 in the last column is always in the last row of this 

column, whatever the value of k. This being so we are able to get the equation zk-1  — eg 

from

zo Zk—l Co C9 (6.47)

Implicitly we can extend the ^  by one zero, to have length 10. This will also leave their 

values of i unchanged. In the same way as Section 6.4 we can now give the necessary 10 — A 

independent generators for the dual code, and further

Dual KM(10, fc, 8 -  k) code =  ( J  (u + E).
uesku(crk-i+Sk)

(6.48)

Concerning the weight enumerator of this code we see that 

R (u  T  •£■) —
if

if

u  6 Sk

u  e  C'k-i +  Sk
(6.49)

Now as the code length has increased to 10 the MacWilliams transform of /3t^  is changed 

to a t(u) =  {l + x){l — x 2)t(u}(l + 3x2)3~~t(u\  and the MacWilliams transform of x/3t(u) which 

we shall denote by c4(u} e<4ual (l+ -̂j (1 — £2)£̂ ( 1  +  3a;2)3_t(u). So we have the weight 

enumerator, B ( x ), of the dual KM(10,fc,8 — k) code as

B (x ) = Y  &(“) + Y  x (6.50)
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and for the primary KM(10, fc, 8 — k) code as

=  2 ^  E  +  E  a '
Kuesk ’v ' vs(Ck-i+Sk) t{V)J  (6-51)

”  2 7 - k (^ O ^ O  T  O l̂CKi +  0 .2 ^ 2  d* ^ 3 0 :3  +  a^CKj +  ̂ 2 ^ 2  d" ^ 3 ^ 3 )  *

Now using Lemma 6.11 we can produce a table of the weight enumerators of the

KM(10,&,8 — k) codes. These are given in Table 6,3.

k d d2 a2 a 3 a3 A(a)

6 2 0 0 0 1 1 +  3a;2 +  6a:3 +  15a;4 +  12a;5 +  13a;6 +  14a;7

5 3 0 0 1 2 1 +  3a;3 +  9a;4 +  6a;5 +  6a;6 +  7a;7

4 4 0 3 3 1 1 +  3a;4 +  6a;5 4a;6 +  2a;7

3 5 3 6 4 2 1 +  3a;5 +  3a;6 +  x 7

2 6 9 12 6 4 1 +  a;6 +  2a;7

Table 6.3: Weight enumerators of KM(10, fc, 8 — k) codes

6 .5 .1  E x p lic it  F orm ulae for th e  Ai

Once again it would be nice to find a systematic way to obtain a formula for the A{. This 

can be obtained by finding formulae for the and a-, expressing them all in terms of d. 

First we must look at the a, and a'- and note that

where

Also we have that

<*t = E ? = o  {bt>rx2r + bt>rx 2r+1)

a t =  E , 3=0 {Krx2r -  h r X 2r+l) >

[btr] —

27

3

- 5

27

- 9

3

3 -1

A(x)  =  2k—7
a *(“ ) +  S  °4(«)

,uesk veCk-i+Sk

(6.52)

(6.53)

(6.54)
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Now from (6.52) and (6.54), replacing k — 7 by 1 — d we obtain for d >  2 

2d -1A2r =  5o,r +  &i,r(ai +  ^i) +  52,?’( -̂2 +  a2) +  52)7-(a2 +  a2)
(6.55)

2  M . 2 r + 1  =  60, r +  &i,r(ai  - a i ) + 6 2lr ( 0 2 - ^ 2 ) +  ^ ( “ 2 - 0 2 )

Looking at the construction and size of Sk and Cjt-i +  Sk we can see that as the dashed 

values for d become undashed for d +  1 , for 2 < d < 6 ,

a i ( d + l )  — ai(d) +  £̂ (<2)

a2(d +  l) =  a2( d ) a ' 2(d) (6.56)

U3( d + 1) =  a3 (d) +  a3 (d)

and
a 1 +  a 2 +  a 3 =  2 ^ - 1  ^

a^ T a2 4~ =   ̂■

Now the cii and a[ are trivial to determine for d =  2, so we can use them for initial values 

in (6.56). For d — 2 we have ao =  1, =  a[ = a2 — a2 — a 3 =  0, a3 — 1. Note for d = 2 we

also have Ao =  1 and A\  — 0 (obvious) giving from (6.55) for 2 <  d <  6 ,

2rf—i — 1 +  (ai +  a^) +  (a2 +  a2) +  (03 +  a3) ^

0 =  1 +  (ai 4* £&]_) +  (a2 ~  a2) +  (03 — a3),

We will obtain the formulae for this in two ways. Firstly we will use the known fact from 

Lemma 6.13 that for Cs? ■ • •»C2 tliere are no vectors with two zero triples (i.e. a\ — a[ — 0)

and consider the case where we need to use £ 1 separately. Secondly we will keep it (initially)

more general (at least in the sense of we will not assume that a\ =  a[ =  0 and involve them 

in the calculation.)

We know from Lemma 6.11 that ai =  a[ — 0 for 2 <  d <  5 so we restrict ourselves 

to that for the moment. As both of the equations in (6.58) can actually be obtained from 

(6.57) we must find another. If we set d >  3 then we have that A2 =  0 and can obtain from 

(6.55) for 3 < d < 5

0 — 9 +  (a2 +  a2) -  3(<23 +  a3). (6.59)

Now solving the first equation of (6.58) and (6.59) we get for 3 <  d < 5

a2 +  a ‘2 = 3(2d_3 -  l ) ,a 3 +  a '3 =  2d~3 +  2. (6.60)
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Using these we can obtain A 2r directly from (6.53) and (6.55), but to find A 2r+i we must 

find <22? 4 ’ &3 and 4  individually. For this we use (6.60) and (6.56) and obtain for 4 < d < 5

a2 = 3(2d~4 -  1), 4  =  3.2rf- 4, a3 -  2rf“ 4 +  2, a'3 =  2d~4. (6.61)

Note that the formulae for A 2r apply for d >  3 as (6.56) is not used. We therefore get Table 

6.4. Note in the table that the weight enumerators for k = 1,2 are determined trivially in 

the usual way.

k d A(:r)

6 2 1 +3a;2 +6a:3 +15&4 +12z5 +13rc6 +14a;7

5 3 1 +3x3 +3(25-ct — l)rc4 +6a:5 +(25-d +  2)a:6 +7rr7

4 4 1 +3(25_rf — l)a;4 +3.25_da;5 +  (25-d +  2)s6 +25" da;7

3 5 1 +3(25-d — l)a;4 +3.25~dx 5 +(25_d +  2)xQ +25~dx 7

2 6 1 + xG +2x7

1 7 1 + x7

Table 6.4: Weight enumerators of KM(10, k,8 — k) codes

Now we will consider the more general form of starting with ai and 4 . i — 1 ,2 ,3  un

known. We will however see that this leads to a less general result.

Here if we set d > 3 then we get the equation

0 =  9 +  5(ai +  4 )  4" (a2 +  4 )  — 3(o&3 +  4 ) -  (6.62)

But unlike before there are too many unknowns to solve the first equality of (6.58) and

(6.62) so we must find another equation. Setting d > 4 will not result in a new equation

from (6.55) so we must try d > 5. Therefore we can set Ai =  0 and obtain

0 =  27 +  3(ai +  4 )  5(«2 +  4 )  +  3(&3 +  4 ) -  (6.63)

We can now solve part one of (6.58), (6.62) and (6.63) to give

f f l l  +  4  =  3 ( 2 d _ 5  —  1 )

02 +  4  =  3(2d“ 4 +  1) , (6.64)

a3 +  4  =  7(2d~5 — 1)
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Giving for 5 < d < 7, that A q = 27~d — 1. Now to find A j  we must use (6.56) and so obtain 

.A7 =  27~d for d > 6 only. This provides only a limited amount of information, but is still 

useful in our study.
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6.6 E xten d ing  to  KM(12, k, 9 — k) Codes

Here we incorporate the wraparound s = 2 to the existing model of Section 6.4. The 

generator matrices for the KM(12, k, 9 — k) codes will be those of (6.26) with the extra 

column shown below in the scheme for general k.

Z k - l

0 0 0

0 0 0 

0 1 1 

1 0 1

co cn (6.65)

The extra multiplications come from the calculation Z (u )Y (u ) modulo it2, and are 777,9 =  

Z k - W d - I ^ I Q  =  Z k -2y d -2, m n  =  (Zk~2 +  2fc-i)(s/d-2 + Vd-i)- The last three columns of the 

generator matrices sum to zero, giving the relation eg +  cio +  cn  =  0, which if we express as 

E 4 CT — 0 then we can take m  = 4 in Definition 6.9. This implies extending the vectors £$ 

by three zeros to be of length 12 also. In a similar way to the s =  1 case, we can consider 

columns 9 and 10 of both sides of (6.65) and get

Z k - l  =  C9 , Z k - 2 =  CIO- (6 .66 )

Now using Theorem 6.4 we have Z{ = Zi — £iCT for 0 < i < 5 if k < 6 with corresponding 

dual code generators of

Cfc-l — Cfc-l +  e9, Cfc-2 — Cfc-2 +  e10- (6.67)

However, when k — 7 we have quite an individual case to consider. This is due to the fact 

that at first sight we need £6 as /c — 1 =  6, and yet we do not have a Ce- If we revert back to 

the construction of the polynomial Z(u)Y(u)  modulo P{u) , then we can only reconstruct 

Z(u) uniquely using the CRT, because deg[2”(u)] <  deg[P(u)]. This is not the case here 

and in fact we have

Z(u) =  Z{u) +  \ P { u ) ,  (6.68)

137



and equating coefficients of u 1 gives

Zq — X
(6.69)

z§ =  h  +  A

so we have 250 =  £5 .

Note here that this is a special case of the generalised theory given by Theorem 6.4, 

which we will show in action now. We have P(u) = uQ +  u5 +  u3 +  u2, hence the reciprocal 

polynomial Q(u) =  n4 +  u3 +  u +  1, so D  — 6 and E  — 4. Now we have k = 7 and d = 2 

and we want (from (6.11)) D — j  =  5, so j  — 1. This gives

k - D - l
Z§ — Z5 ~b~ £  diZQ-j-i

i> 0 , (6.70)
-- Z5  +  ^0^6

where do — <7id_ i +  f/2d_2 +  qsd-s +  (?4d_4 and d_4 . . .  d_i =  0001. So with Q(u) as stated 

above we get do =  1 , and hence £ 5  = z^q.

Now from the matrix (6.65) we see that z§§ — cn- Note this is not unique. So the 

generator we can use is £5 +  en . The dual KM (12,7,2) code is thus obtained as the span 

of £1234 and Cs +  en-

We now have a formula for the dual KM(12, k, 9 — k) code as follows:

Dual KM(12, &, 9 — k) code =  U (u, +  E) , 1 < k < 6

MeSpan{Cl„2,C!_i,Cfcv-,C5}

=  Span {C'5 + E]  ,fc =  7
(6.71)

Now we have vectors of length 12, i.e. 4 x 3 ,  so we use Lemma 6.10 with m  = 4. We 

can easily find the weight enumerator of the dual code and hence the primary code in the 

same way as Section 6.4. The results are given in Table 6.5.

6.6.1 Explicit Formulae for the A i

We have
A ( x )  = 2*-8 £  at(tt)

u<=Span{C'fc_1>C'fc- 2,s/!} (6.72)

=  2 1 ~ d  ( a 0 a:o +  a iQ f i  +  a 2 a :2 +  0 3 ( 2 3 ) ,
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k d A (a;)

7 2 1 +  4a;2 +  30a;4 +  52a;6 +  41a;8

6 3 1 +  17a;4 +  24a;6 +  21a;8

5 4 1 +  6a;4 +  16a;6 +  9a;8

4 5 1 +  12a;6 +  3a;8

3 6 1 +  4a;6 +  3a;8

2 7 1 +  3a;8

Table 6.5: Weight enumerators of KM(12,&, 9 — k) codes

where

and

at(u) — Xv bt(u),rx
2 r

[M  =

Now we know no — 1 and so

r=0

1 12 54 108 81

1 8 18 0 -2 7

1 4 - 2 -1 2 9

1 0 - 6 8 - 3

1 - 4 6 —4 1

(6.73)

(6.74)

Q>i T 0,2 T o>3 +  — 2d * — 1. (6.75)

Also if d > 2 then Ao =  l,A i =  0 and equating the constant coefficients in (6.72) gives 

1 =  21-rf(l +  a\ +  a-2 +  &3 +  aq), which is the same as (6.75).

The following lemma will help with the solving of the problem.

L em m a 6.14 For d < 7 we have a\ — 0.

P ro o f. Prom Lemma 6.12 the only time for n — 9 that ai 7  ̂ 0 is when Ci is used, but in the 

present problem these are always dashed if used, and hence the fourth triple is non-zero, 

adding one to the value of /;. Hence a\ — 0 for d < 7. □
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Now from Lemma 6.14, a\ — 0 for d <  7 so (6.75) becomes

2d~ 1 — 1 — a,2 +  ^3 +  04 . (6.76)

Now if we let d > 3 then A2 — 0 and 0 — 21_rf(12ao +  8&1 +  4a,2 — 4^4), i.e.

12 — 4a4 — 4a2. (6-77)

We need the following lemma to proceed further.

L em m a 6.15 For 3 < d < 5 we have a2 — 0.

Proof. This can be seen by looking at the vectors £5 , ■ ■ •, £ 2 from Section 6.4. The only

way to obtain t(u) — 2 is £34} £24, £234, £235 and £245, but for the given values of d these

will always be dashed and so t will increase by one. Also we could obtain t (u ) — 1 and the

dashed vectors will increase t to two, but t(u) = 1 cannot occur. Therefore t(ii) ^  2. □

Back to the problem. Solving (6.76) and (6.77) we get for 3 < d < 5,

ct4 =  3, a3 — 2d~1 — 4 • (6-78)

So we have d = 2 and 3 < d < 5, but can we find a relation for d > 5. If we set

d > 4 then we do not get a new relation from (6.72) so set d > 5, i.e. A 4 = 0 and get

0 — 21~d (54 — 2a2 — 60,3 +  6a4), i.e.

54 =  2a2 +  603 — 6a4. (6.79)

Now solving (6.76),(6.77) and (6.79) we get

a2 = 6(2d" 5 -  l ) ,a 3 =  8(2d- 6 +  l ) ,a 4 =  3 (2 ^ 4 -  1), (6.80)

and Table 6.6 can be formed.

6 .6 .2  A n o th er  L ook  at th e  D u a l C ode C o n stru ctio n

We finish off this section by noting that

Span {£jt_i, £fc_2j Sk} — Sk U(£ /fc_ 1 +  Sk) U(£ ^_ 2 +  Sk) ^{Ck-2 ,k-i +  Sk): (6.81)
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k d A(a;)

7 2 1 +  4a;2 +  30a;4 +  52z6 +  41a;8

4 < k < 6 3 < d < 5 1 +  6(25"^ -  l)(c4 +  8(24_d +  l)a;6 +  3(26“ d -  l)a;8

2 < k < 4 5 <  d < 7 1 +  4{27~d -  l)rc6 +  3a:8

Table 6.6: Weight enumerators of KM(12, k, 8 — k) codes

but note that the 4th triple of C&_ii C'k-2 ail4 Ck-2 ,k-i never equal 000 and so the value 

of t  for these vectors will be one plus the value of t for the undashed versions.

So if we write (6.72) as

A(ai) =  21 d |  Qft(«)+i j (6.82)
\ueSk uesk-2\Sk J

and further as

then

A(x) = 21- d Y / aia i (6.83)
i=Q

(6.84)<H =  t i(Sk) + t i - i ( S k - 2 \ S k )

=  t i(Sk) +  U-i(Sk-2) -  U-i{Sk),

and we can use the results of Section 6.4 (in particular Table 6.1) to solve the problem 

directly. (Note that a similar idea is also used in Hoggar (1997), and will be investigated 

further in the next chapter.) We present one of the cases as an example to illustrate this 

method.

E x am p le  6.16 Prom Table 6.1 we see for the KM(9,3,4) code U0123 =  1.0.3.4 and for the 

K M (9,1,6) code aoi23 =  1.3.15.13. So for the present problem if we require the weight 

enumerator for the KM (12,3,6) code, then we use (6.84) and the above values.

For the KM(12, 3,6) code

a0 =  t0{S3) + t - i ( S i )
(6.85)

=  1 + 0 - 0

and similarly a\ — 0 +  1 — 1 =  0, <22 =  3 +  3 — 0 =  6 , 0.3 — 4 +  15 — 3 =  16,0,4 =  0 +  13 — 4, 

and A(x) can be found from (6.83) as 1 +  4&6 +  3cc8, as expected.
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Now using this method we can obtain the same results as Table 6.5 apart from the 

k =  2, d =  7 case as this needs the k — 0,d =  7 case from Table 6.1. However this is not 

much of a loss since the case k =  2, d =  7 is easy to work out independently. We will obtain 

a method to get round this in Section 7.4.

6 .6 .3  F u tu re W ork

Using the ideas developed here and the infinite scheme for the wraparound introduced in 

Section 4.9 we can develop theory and obtain results for any value of s. Time, however, did 

not permit this.
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6.7 Constant Degree Codes with w =  3

We can with P (u ) =  u3(u3 +  l)(u 3 +  u +  1)(^3 +  u2 +  1) get a base code, G 7 of length 24, 

as follows

1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0

0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0

0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0

0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1

0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1

From this we can invert the reduced matrix G to give G 1 and therefore to get the
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twelve available relations , i =  0 . . .  11 as

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Io

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0

1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0

0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0

0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0

0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0
(6.87)

Here instead of having the vectors divided as triples, we divide them into six-tuples. 

This of course may increase the complexity quite considerably but still the same method is 

used. We get the inner relations for each block as 111000, 001110 and 010101 and so if we 

set S  =  Span{111000,001110,010101} then the contribution to the weight enumerator for 

each of the eight possible possible six-tuples are given in Table 6.7. Note that we do not 

need to look at the sixty-four possible six-tuples as there can never be a one in the third, 

fifth or sixth position. This eases our problem quite considerably.

Weight Enumerator Vector Associated t

1 +  4 z 3 +  3z4 000000 to

3 z 2 +  4z3 +  26 100100 ti

z + 2z2 + 2z 3 + 2z 4 -f z5 100000, 010000, 110000, 000100, 

010100, 110100

t 2 = (4 -  ti -  t 2)

Table 6.7: Table of the contributions to the weight enumerator
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D efin ition  6 .IT Define the following 
Eiti The vector 111000 in the «th six-tuple of a 24-vector.

Ei t2 The vector 001110 in the zth six-tuple of a 24-vector.

Ei$  The vector 010101 in the zth six-tuple of a 24-vector.

E  The span of the set {jEn, E i2,-Ei3,-E2i, • • • , E 43}.

Sk The span of the set (Cfe> • ■ ■ Cn}*

to(u) The number of times the six-tuple 000000 appears in u.

t i ( u ) The number of times the six-tuple 100100 appears in u  (see Table 6.7).

L em m a 6.18 The weight enumerator of u  -j- E  is

(1 +  4z3 +  324)*°M(322 +  4z3 +  z 6)tl(u\ z  +  2 z 2 +  2z3 +  2z4 +

P roo f. This is proved in the same way as Lemma 6.10. □

Now knowing the =  0, . . . ,  11, we can easily form the family of K M ( 2 4 , 13 — k) 

codes by setting the relevant Ci to zero, and using the general formula as

Dual KM(24, fe, 13 -  k) code =  | J  (u +  E). (6 .88)
u e s k

So if we take f y j  =  (1 +  4z3 +  3z4y{z  +  2z2 +  2z3 +  2z4 +  z 5y (3 z 2 +  4^ 3 +  zG)4~l~i then 

we have

B(x)  = Y ,  Ao(»).ti(») ' (6-89)
u e s k

We could now try and develop the theory in the same way as in the w = 2 case by forming 

the p i j  for all the possible values of i and but as can easily be seen there are fifteen. 

Forming a matrix of the Mac Williams transforms of these was seen as too out of the scope 

of this chapter, but the problem, although being harder could be approached in the same 

way as the w — 2 case. We therefore opt at the present to obtain the weight enumerators by 

looking at all the necessary vectors. For example if we want to know the weight enumerator 

of the KM (24,11,2) codes then we need 13 generators. We have 12 given by S  and the other

one can be found as £n  =  0. Now £n  — [010100000100100000110000] and so to(Cn) =  0,
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M C n) =  0 and ^ (C n ) =  4- So the weight enumerator of the dual KM(24,11,2) code is

B(z)  = (1 +  4z3 +  3z 4 ) ° ( z  +  2 z 2 +  2 z3 +  2 z4 +  z5)4 (3£2 +  4.z3 +  £6)0 +  (1 +  4z3 +  3^4)4

-  1 +  16^3 +  13^4 +  82s +  128js6 +  232j?7 +  242^8 +  584*9 +  1056^10 +  1032^n

lOldz12 +  1368^13 +  1344z14 +  760;z15 +  269^16 +  8 8 ^17 +  32z18 +  8^19 +  220
(6.90)

Then we can use the MacWilliams identities to find the weight enumerator of the primary 

code. We thus get Table 6 .8 .

We could now develop, in association with the theory of Sections 6.4-6.6 , the weight

enumerators of the KM(25, k, 14 — k) codes (5 =  1) and further. Instead we just give a brief

view of the s — 1 case to show the generalising nature of this theory.

6 .7 .1  T h e  K M (25 , /c, 14 -  k) C o d es

W ith the inclusion of the s =  1 part of the matrix the dual code can be formed as (using 

the same ideas as Section 6.3)

Dual KM(25, &, 14 -  k) code -  [ j  (u +  £ )  +  | J  (u +  E)  (6.91)
uesk vEC'k-i+sk

and therefore the weight enumerator of the dual code is

B [x ) — 'y  ̂ Ao(u),ti(u) 4" ^   ̂ x @to(v),ti(v) ■ (6.92)
uES}. v££f._i+Sk

Again the theory could be further developed here but we feel that it has been explained and 

proven that the theory developed for the w =  2 case can be naturally extended to larger 

cases. Finally, by looking at the necessary vectors we are able to form the dual code weight 

enumerator and then dualise back to the primary code, the results of which are shown in 

Table 6.9.
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k Ao A\ A '2 A3 A\ A5 A g A? As A 9 A10

12 1 16 12 0 96 144 54 256 576

11 1 8 4 0 48 72 30 128 288

10 1 1 3 0 28 37 13 64 136

9 1 14 20 8 32 68

8 1 5 10 3 16 38

7 1 2 3 1 8 20

6 1 4 12

5 1 2 4

4 1 4

3 1

2 1

k An A12 A13 A14 A15 Al6

12 432 364 768 864 432 81

11 216 180 384 432 216 41

10 115 89 192 220 103 22

9 56 44 96 110 52 11

8 28 22 48 53 26 6

7 18 10 24 26 11 4

6 12 4 12 12 4 3

5 6 4 6 4 2 3

4 0 4 0 4 0 3

3 0 4 0 0 0 3

2 0 2 0 0 0 1

Table 6.8: Weight Distribution of KM(24, k, 13 — k ) codes
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48 120 102 152 416

200

100

k A n ^12 -̂13 A u ^15 ^16 A\7

12 504 396 568 816 648 257 40

11 267 190 283 412 315 135 19

10 124 103 141 206 162 62 11

9 58 50 70 101 83 32 5

8 36 20 36 50 38 19 2

7 20 10 18 24 18 10 1

6 14 10 6 10 10 5 0

5 0 10 0 10 0 5 0

4 4 4 0 0 4 3 0

3 0 2 2 0 0 1 2

2 0 1 1 0 0 0 1

Table 6.9: Weight Distribution of KM(25, 14 — k ) codes
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C hapter 7

W eight Enum erators o f Shunted  

Fam ilies o f K M  codes, II

7.1 Introduction

In this chapter we will introduce and develop some theory concerning the relationship 

between sets of vectors and KM Codes. The work has strong links with that of Hoggar 

(1997) but here we give a more thorough explanation of it. Also we try to consistently keep 

the idea of our general families of KM Codes at the forefront. The results obtained from 

Hoggar (1997) will be indicated as such.
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7.2 Shifts and Related Topics

We start this section, off with a definition.

D efin ition  7.1 Let a CLq . . .  CI71—I , of length n and define a_i =  an =  0. Then

(i) The operator S acts on a  as

a s = S(a) —

to form a vector of length n +  1.

(ii)The operator A acts on a  as

a A — A(a) =

Q,q £t_i til O'Q ■ ■ ■ G'n—1

Cio — al an—1 &t

to form a vector of length n.

(iii) The operator cr, known as the shift of a, acts on a  as

a a =  cr(a) = 0 do . . .  tin-1

to form a vector of length n +  1.

(iv) The operator r  acts on a  as

a r(a )  = <20 do d  fll ■ • * an—1 T  ar

to form a vector of length n + 1.

We now introduce a few new vectors to investigate and demonstrate the usefulness and 

power of these shifts

(v) a {m ) =  Q:0 a\  . . .  a m ,«* =  (1 -  x2)*(l T  3.r2)m_t.

This way of representing the <Vs (as defined in the previous chapter) is to investigate 

the using of the vectors and relating the weight enumerator to the weight distribution.

(vi) b(n) = 1 - n  (J )  . . .  ( - l ) n .l . Thus 6(0) =  1,6(1) =

R e m a rk  7.2 For a vector a of length n we interpret a.a(jn)  as a 0m~n -ct(m) if 

n < m  and not defined if n > m.
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Lemma 7.3 b(n)5 — b(n + 1).

P roo f.
(ib(n)‘ )i =  ( - l ) j ( " )  -  t - i r 1 ( a )

=  ( - ! ) * ( ( ? ) +  0 - - 0 )  (7 1)
-  ( - i m 1)

□

L em m a 7.4 a  =  [ao, ■ ■ ■, an]. I f J 2 ai — 0 then a  = b6 for some b — (&o,. . . ,  6n_ i) .

P ro o f. The (n +  1) - vectors e* — ej+i, (0 <  ? < n — 1) are linearly independent and lie in 

the vector space E Mn+1 : Y l x i ~  0}5 and so form a basis of that space. Hence a  is a
n — 1

unique linear combination ^  h(ei — ef+i) =  — S{b). □
*=o

We now give a few Lemmas that demonstrate the power of the shifts when applying to 

a(m ), especially the ability to reduce the length of a .

T h eo re m  7.5 We can link 8 to the length of a. by the following,

(a) a s .a(m )  =  4x 2a .a (m  — 1).

(b) b(n).a(m)  =  (4a;2)” .(1 +  3x2)m~n .

P roo f. A proof of (a) can be found in Hoggar (1997), but is a consequence of the following 

two lemmas. To prove (b) we also use Lemma 7.3. □
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Lemma 7.6 Let a = [ao,. . . ,  an_i], 6 = [bo, ■ - ■, bn\, then as.b — a.bA .

P roo f. We have n
a 6.b = ai~i)k

i= 0
7i—l  n

=  I ]  Oik ~  a-i-lk 
i= 0

77 — 1 f n \

=  £  (ai k  -  aik+ 1 ) k  '
7 = 0  
77 — 1

=  ^ i i k  ~  ^ i + l )
7= 0

—  a.6A .

□

L em m a 7.7 A (a(m )) — 4a;2a (m  — 1).

P ro o f. For 0 < i < m  — 1, we have

(A (cx(m)))i = a i ~ a i+i,

= (1 -  x2Y (1 +  3x2)m~i -  (1 -  x 2)i+l  (1 +  'ix2)m~1~i 

=  (1 — x2)l (l +  3^2)m -1-t(l +  3a;2 — (1 — a;2))

=  4a;2(a(?n — l))i .

□

For interest we show that the operator a has a similarly powerful effect on the vector 

ct(m).

T h eo re m  7.8 (H oggar (1997))

a a.ct(m) — (1 — a;2)a.o:(m — 1). (7.4)

P roo f.
777 — 1

a a.a(m) — J2 ai(l ~  ^2)i+1(l +  3a;2)m_l_1
7= 0

777—1 c \

=  (1 -  * 2) £  “ i ( l  -  ®2) (1 +  3x 2)m~ 1- '  I7'5)
7 = 0

=  ( 1  —* x2) a .a (m  — 1 ) .

□

(7.3)
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7.3 B ack  to  K M  C odes

We start this section with a definition.

D efinition  7.9 (i) If we have the set of vectors then let abc = abck — a>Ck-i +  &C/c- 2 +  

cC/c-3 +  Sk, with the shorter writing of ab — ab0 =  aC/c-i +  &Cfc- 2 +  *5/c-

(ii) Let a(3fc) denote vector [ao - ■ • am], such that m is the number of triples in each vector 

of Sk and a% =

(iii) When confusion may arise, we will explicitly write B [m ) for the matrix B  used in the 

construction of the weight enumerators where the vectors have number of triples equal to 

m. This should save any confusion between the B 1 s.

Exam ple 7.10 There are various ways of using the short notation in Definition 7.9, part 

(i), and here we show a few useful examples, which can be proved easily.

1. 10 =  (Sfc-1 \  S*),

2. Ol*.! =  1.001,101),

3. o ( 5 fc_ i \ 5 Jfe) =  o ( 5 fc- 1) - o ( 5 0 -

These will be used later on in this section.

We now state the link between all the previous results in this chapter (i.e. those of 

Lemma 7.3 - Theorem 7.8) and the possible use of the matrices B  in the previous chapter, 

which will prove excellent when trying to standardise our methods for finding the weight 

enumerators. We extend this from the version found in Hoggar (1997) (where Lemma 7.3

- Theorem 7.8 are used) to include the k — 7 which can be proved directly, with £7 = {0}

and S - i  = 2S q.

Lem m a 7.11 The following relate 6 and a for our present problem,

(a) a(Sk)lrB ( i )  = 2 (0 <  k < 7),

(b) a (Sk)sB (4) =  28- t a(S'6_<;r ,  (0 < k <  7).

Now in a similar manner to Hoggar (1997), we will develop new ways using these shifting 

techniques to find the weight enumerators of the shunted families of KM codes.
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7.3.1 T he K M (9 ,k , 7 -  k) Codes

For ease of reading let us repeat the matrix B  from (6.41) that we shall need during this 

section.
1 9 27 27

1 5 3 - 9

1 1 - 5 3

1 - 3 3 - 1

B  = . (7.6)

Now we know that we can write the general formula for the weight enumerator as

1 A 2  A 4  .Aq j — 2fc-6 1 ax a2 0,3 B , (7.7)

but by Lemma 6.13, the fact that Ai =  0, for 1 < i < d and by noting that only have

even powers of x  we can divide (7.7) as

[10 0 A q] = 2 k ~ 6 [1 01 a2 a3] B , 0 <  k <  2

[1 0 A4 A q] =  2k~6 [10 a2 a3 \B ,  2 < k < 4 • (7.8)

[1 A 2 A 4 A 6] = 2h~G [10 0 03] B,  4 <  & < 6

Now we state and prove in a slightly different way the following lemma which can be found 

in Hoggar (1997).

L em m a 7.12 (H oggar (1997)) With matrix B  as in (7.6) and any scalars /a, v and A

we have (a) if [1 0 0 r] =  //[ 1 a b c\B then [abc] — [3 (^  — 1) 3(^ | +  1) 7 ( ^ )  — 1] and

r = ^ - l  n ’
(b) if [1 0 q r] =  z/[l 0 b c]B then [b c] =  [3 (| — 1) v +  2] and [q r] =  [3 ( ^  — l)  — +  2],

(c) if  [1 p q r] =  A[1 0 0 c]B then c — A — 1 and \p q r] =  [3 (^ — l) 3 ( |  +  l)  ^  — 1].

P ro o f. This is generally the same as the proof in Hoggar (1997), but here we are keeping 

the factors out of the A and so we get three different scalars. □

We now use this fact and examine the first and third cases from (7.8). Comparing (7.8) 

and Lemma 7.12 (a) we have that ji — 26_fc and then part one of (7.8) becomes

1 3(22" /c -  1) 3(23" fc -  1) 7.22~k - 1  H =  26 f c [ i  0 0 2fc — 1 ] , 0 <  k < 2. 

(7.9)
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Similarly comparing (7.8) and Lemma 7.12 (c) we have tha t A =  26 k and then part three 

of (7.8) becomes

1 0 0 2 ° - fc — 1 ] B =  26_t 1 3(2*“4 -  1) 3(2fc—3 -  1) 7.2fc” “ -  1 , 4 < fc < 6.

(7.10)

W ith these results we can state the following theorem.

T h eo re m  7.13 A 2 i{k) — a^So-fc) an d  a(Sk)B  =  2Q~ka(SQ-k) for  0 < k <  6.

P ro o f. The case 2 <  k < 4 can be seen in Hoggar (1997). The other two cases 

0  < k < 2 and 4 < k < 6 can be seen in the explanation above. □

So we can get a complete table of the weight enumerators of the KM(9,ft, 7 — k) codes 

as Table 7.1.

ft A(a:)

0 <  ft <  2 1 + (2fc -  l ) x 6

2 <  ft <  4 1 +3(2fc~2 -  l)a;4 + (2k~2 + 2)xG

4 <  ft <  6 1 + 3 (2 fc- 4  _  - ^ 2  + 3 (2fc~3 _  1 ) rc4 +(7.2fc“4 -  l ) z 6

Table 7.1: Complete table of weight enumerators of KM (9, ft, 7 — k) codes

We can also obtain a complete table of the a?; for each k which can then be used for the 

construction of the larger family in the way of Section 6.6.2. These are shown in Table 7.2, 

and can also be found in Hoggar (1997).

ft ao ai 02 a  3

0 <  ft < 2 1 3 (22-/= _  -Q 3(23-fc +  ^ 7.22~k -  1

2 < ft < 4 1 0 3(24-fc _ to I ?r + to

4 < ft < 6 1 0 0 2$-k _  i

Table 7.2: Complete table of the ai for KM(9, ft, 7 — k) codes
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7.3.2 T he KM (10, ft, 8 — ft) C odes

We have a new generator which gives (the dash automatically being taken care of by the x 

in the second sum)

b (x ) = Y ,  A w  +  E  x ^ y  (7-n )
u£Sj< u£C,k_i+Sk

Now we know the MacWilliams Transform of j3t is ( l+ .r ;)^  and similarly xf3t gives {l — x)cxt. 

Also as S k - i  =  Sk U(Ca_i +  Sk)> i-e. Ck-i +  s k = s k - i  \  Sk, then

t i(Sk-i) -  ti{SkU{Ck-i  +  -SW )

=  t i ( s k) - t i t e k- i + S k )

= UiS^-itiiSk^-UiSk))  
=  2t i (Sk) - t i (Sk- i )  .

So

A(x) = 2k 7 f E  (1 + %)a t(u) +  E
\u£Sk /

=  2 k~ 7

and we can write as is seen in Hoggar (1997),

E  &t(u) t  ^ I E  (%t(u) E
u^Sk-i \ u£Sk u^Ck-i+5’fc

and

1 A2 A4 Ae

0 A3 A5 A7

=  2 '
k~ 7

jft-7 ZtoiSk) -  io{Sk-i) 2t i (£&) — ti(jSj5-_i)

%h{Sk)  ~  *2(8k - l )  %h{Sk)  ~  ^3(*S*A:—1) 

Using Theorem 7.13 we can simplify these to

=  a  (£7-*)

£

and

1 A2 A4 Af

Ai A3 A5 A7 a(S6-k ) -  a (5 7_jfc).

(7.12)

(7.13)

(7.15)

(7.16)

(7.17)

Now we can get Table 7.3, the even weights of the KM(10, ft, 7 — ft), Table 7.4, the vectors 

a(,5V,_fc), and Table 7.5 which contains the largest possible ranges for ft. Note here that we 

are again taking the unusual step of finding a(»5Ti), which we are taking as 2 a ( S o )  as we 

are just adding the zero vector £_1.
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k ^ 0 A 2 A a

0 1 0 0 0

1,2,3 1 0 0 2 k — 1

3,4,5 1 0 3(2fc“ 3 -  1) 2fc~ 3 +  2

5,6,7 1 3(2*~5 -  1) 3(2fc- 4 +  1) 7.2fc“ 5 -  1

Table 7.3: The even weights of the KM(10, &, 8 — k) codes

k ao CLl a>2 as

0,1,2 1 0 0 2k -  1

2,3,4 1 0 3(2fc~2 -  1) 2k-2 _j_ 2

4 ,5 ,6 1 CO To
1 1 1) 3(2fc~3 +  1) 7.2fc“ 4 -  1

7 2 6(2fc“ 5 - 1) 6(2fc“ 4 +  1) 2(7.2*—5 -  1)

Table 7.4: Table of the vectors a(SQ^k)

k A \ A 2 A 3 A 4 ^ 5 A q A.7

1 0 0 0 0 0 2 k ~ l 2&-i

2 0 0 0 0 0 2 k -  1 2 k~i

3 0 0 0 3(2fc“ 3 -  1) 3 2fc~3 2 k ~ 3 +  2 2 k ~ 3

4 0 0 0 3(2k ~ 3 -  1) 3.2k ~ 3

CM+CO10
;CO 2 k ~ 3

5 0 0 3.2* - 5 3(2fc“ 3 -  1) 3.2k- A 2fc“ 3 +  2 7.2k - 5

6 0 3 (2A-5 _
1) 3.2k ~ 5 3(2fc“ 4 +  1) 3.2k ~ 4 7  2 / c - 5  _  1 7.2fc“ 5

7 1 3 ( 2 f c - 5  _
1) 3(2k ~ 5 -  1) 3(2fc~ 4 +  1) 3 ( 2 f c - 4  _  ^ 7.2k ~ 5 -  1 7.2fc_5 -  1

Table 7.5: The weight distribution of the KM(10, &,8 — k)  codes
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7.3.3 T he KM (12, k, 9 -  k) Codes

Further to Section 6.6.2 we present here some more ideas for using the a  to obtain the 

weight enumerators. This technique is the same as the one used in Hoggar (1997).

As we see from Section 6.6.1, the ce’s used (see (6.73)) contain only even powers of x 

and so the weight enumerators of the KM(12, k, 9 — k) contain only even powers of x. We 

can thus write (6.83), using (6.84), as

Aq A-2 A4 Ag Ag =  2k- 8 a(Sky  + a (Sk- 2y B .

T h eo re m  7.14 (H oggar (1997)) For the KM(12,k,S — k) codes, (0 < k <  7),

A q  A 2  A 4  A g  A% -  a(SG- kr  +  a(S8- ky

(7.18)

(7.19)

P ro o f. Apply the results of Lemma 7.11 to (7.18). □

We need to obtain the general results of a(Sk)a and a(Sk)5 so we use Table 7.2 and the 

definitions of a and 5 to obtain Tables 7.6 and 7.7. Note that an equivalent to Table 7.7 

appears in Hoggar (1997).

k (a(Skr )Q 1 (a{Skr h (a(sky h (a(Sky )  4

- 1 0 2 2.3(21-fc -  1) 2  3 ( 2 2 - / =  +  -q 7.21-fc +  2

0,1,2 0 1 3(22_fc -  1) 3(23_/c +  1) 7>22-k _  x

2,3,4 0 1 0 3(24-fc -  l) 2A~k +  2

4,5,6 0 1 0 0 2e~k _  x

Table 7.6: The elements of a(Sk)a

We can now get a complete table of the weight enumerators of the KM(12, fc, 9 — k) 

codes, as found in Table 7.8.

7 .3 .4  T h e  K M (14 , k, 10 -  k) C o d es

In this section we give a thorough explanation of the techniques developed in Hoggar (1997), 

but we keep our mind on our families of KM codes in the sense of increasing s as in Section
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k («(^)o ( * ( S k ) S) i M S k Y h ( a ( S k ) %

0 ,1 ,2 1 CO to 1
0 1 S' 1 3 (22-fc +  2 ) 22~k _ 4 1 -  7.22~ k

2 ,3 ,4 1 -1 3(24“ /c -  1) 5 -  25_fc - 2  -  24-fc

4 ,5 ,6 1 -1 0 2e-fc _ 1 1 -  26-fc

Table 7.7: The elements of a(Sk)6

k A q A 2 A t -^6 A q

0,1,2 1 0 0 0 2k -  1

2,3,4 1 0 0 2k -  4 3

4,5,6 1 0 g ( 2 fc- 4  _  ^ 2fc-2 +  8 3(2fc—3 -  1)

7 1 3.2fe- 6 -  2 3.5.2fc- 6 25.2fc~6 +  2 3.7.2*“ 6 -  1

Table 7.8: The weight distribution of the KM(12, k,9 — k) codes

4.9 (see specifically Examples 4.14 and 4.15 for this idea). Now we are concerned with s — 3 

which results in the multiplications

m  12 =  Zk-syd-3

m  13 =  (zk- 3 + zk- i) {y d-3 + Vd-i) ' (7-20)

m 9 =  Zk-iVd-i 

mio = zk_2yd~ 2 

m i l  =  {zk- 2 +  Zk- i ){yd-2  +  Vd~1)

This is slightly different from what is found in Hoggar (1997), but as we shall see (obviously, 

as the weight enumerator is unchanged by column manipulation, see Section 5.3.3) the 

weight enumerator is the same, although the method of getting to it has to be amended. 

So we have the general shunted families as represented by

• 
0 0 0 0

• 
0

1

0 0 0 1 1 =  [co • .  ■ C1 3 ]

0 1 1 0 0

1 0 1 0 1 .

(7.21)

From (7.21) we see that we have the relation eg +  C10 +  cn  =  0, which we include as 

the generator, E,\, as in the previous case for s — 2. We also have another similar relation
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as eg +  C12 +  C13 =  0, and tlie usual ones by equating the coefficients each side of (7.21), 

i.e. zk-1  — eg, z k — 2  =  cio and zk~ 3 =  C12. These last four relations can be converted to the 

generators

e 1 =  eg +  e i2 +  e i3

C'k-i — Ck-i  +  eg 

Clfc-2 =  C *-2  +  e io  

Cjfc—3 “  C&—3 +  e 12

For k — 2 the generator C'k-s is just e i2, but in the cases k — 7 and k = 8 we must use 

Theorem 6.4. We therefore get for (1 < k < 6)

Dual KM(14, k, 10 -  k) code -  | J  (u + E). (7.22)
weSpan

For k — 7, just the same as in Section 6.6 we get that z$ = z^q which from the matrix 

(7.21) will give the relation £5 =  +  eg +  eio, giving the dual code as

Dual KM(14,7,3) code -  [ j  (u + E). (7.23)
weSpan {egC's.Cil

The k =  8 case is similar to the k — 7 case so from Theorem 6.4 we get £ 5  — 2:567, which 

from the matrix (7.21) can form the generator £5 — £ 5 +  eg +  eio +  £12- The dual code can 

therefore be defined as

Dual KM(14,8,2) code =  | J  (u + E). (7.24)
iteSpan {egcil

Similarly for completeness we give the dual code of the KM(14, 9,1) as

Dual KM(14,9,1) code — (u + E). (7.25)
ueSpan {e/}

We now attem pt to give the most general form of the weight enumerator construction, 

but noting the difference between the work of Hoggar (1997) and the work here being that 

we are using a slightly different form of the wraparound part of the matrix. As we shall see 

from Theorem 7.16 we restrict ourselves to the range (3 < k < 6) for the even weights but 

are able to obtain a result for the odd weights for the range 2 < k < 6 . In fact the range
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can be made bigger but the extremes are obtained directly. The cases k ~  1 , 2 , 758,9  can 

be worked out individually (of course the cases k — 1,2, 9 are easy and the remaining are 

explained fully above).

Now adding e' and Ck-z îas a more complicated affect on B(x)  and therefore A(a;) so 

we partition the dual code into four sets VC(i, with c, d E IF2, where

V cd=  U  K L i  +  K U  +  c C U  +  rfe' +  'S'fc)- (7-26)
a,6eF2

Now any element of Vcd can be written v  =  aCfc-i +  bC'k- 2  +  cC'k- 3 +  ^e> +  u  f°r u  e 

The vectors of S ^ - 3  have fourth triple 000, but the extra digits coming from the dashed 

convert the fourth triple to [a +  d, 6, 0] so we see that +  bCk- 2  +  cCk- 3  +  u ) 18

incremented by one when U4 7  ̂000 , i.e. when

abd ^  000 or 101. (7.27)

Further, if r  is the number of ones among the last two digits of u, i.e. c +  d and d, then 

B,(v +  E) — x rpt(vy We can now derive Table 7.9, as follows.

First of all the case cd =  00 is directly from (7.18). For the case cd — 01, by (7.26) 

we have that the fourth triple of a vector VCd contributes 1 to t ( v ) ,v  E Vcci, except when 

ab — 10. Hence

(aO W Ji =  ^ ( 10) + t i_1(00 , 01 , l l )

=  t i - 1  ( 0 0 , 0 1 , 1 0 , 1 1 ) +  u r n  -  U - 1  ( 1 0 )

=

=  +  .

For the case cd =  10, by (7.26) we have that the fourth triple of a vector Vcd contributes 1 

to t(u ),u  E Vcdj except when ab — 00. Hence

(a(Fcd))i -  (Q01) +  t*_i (011 , 101 , 111)

=  t i - i ( Q Q L Q l l , 1 0 l , H D  +  t i ( Q 0 1 )  -  < i - i ( Q 0 1 )  ( 7 -2 9 )
=  a((sk-3\sk-2r + m s)i .
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For the case cd — 11, by (7.26) we have that the fourth triple of a vector Vcd contributes 1 

to t ( v ) ,v  G Vcdt except when ab =  10. Hence

(o(Kd))i =  t i (1 0 1 )+ ti- i(0 0 1 ,P l l ,l l l)

-  ii_i(001, o n , 101, 111) + U (101) -  t i - i(ioi) (7-3°)

-  a ( ( ^ _ 3 \ ^ _ 2r  +  1015), ■

For the case k = 7 we have Vcci — (J (bC'k~2 +  cC/c-3 +  ^e0 and we 1°°^ each case
be F2

separately. For example cd — 10 gives Vcd ~  {Ci, Ci +  Cs} an^ so a (K:d) =  00011.

For the case k — 8 the set VCLi — ( c ^ ' ^  + de1), and again we look at each case separately. 

For example cd = 01 gives Vcd — { e ' } ,  and so a(Vcd) — 01000.

cd a(Vcd) a{Vcd),k  =  7 a{Vcd)>k = 8 r 210 fc(A(a;), part of)

00 a(Sk„2y  + a (S k)s 10001 10000 0 a .( l  +  x 2 +  2 x )ol

01 a(Sk- 2y  + a (m )5 01001 01000 2 a .( l  +  x 2 — 2 x )a

10 a(Sk^ s \ S k~2y  + a ( m ) 6 00011 00001 1 a .( l  — x2)ol

11 a(S ks \ S k- 2y  + a ( m Y 00002 00001 1 a .( l  — x2)ol

Table 7.9: Contribution to A(jc) for all the values of cd

T h eo re m  7.15 The odd weight distribution of the J f M ( 1 4 ,10 — k) codes are

a(S6- ky - a ( S 7- kr ,  l < k < 7
A i A s  As A 7 Aq j — (7.31)

0 2 18 54 54 ], k =  8

P roo f, The k — 1 case is obvious. For 2 < k < 6 in the same way as Hoggar (1997), we 

see from Table 7.9 that the only contribution to odd powers in A(a;) is

2x(a{Sk- 2y  +  a ^ ) 5).** -  2x(a{Sk- 2)a +  o( 10)5) .a . (7.32)

Converting this to matrix form we get

[Aa+i] =  2fc- 102 (a (S ,„ 2)-  + a(Sk)! -  a{Sk- 2)° - a ( W ) l ).B(4)
(7.33)

=  2k~9(2a(Sk)s — a(Sk- i ) 6) .B(4:) .
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Now using Lemma 7.11 we get

[Am+i] =  2h~!>(2.2,<-ka(Se-kr  +2l~'‘a(S^hr)
(7.34)

=  a ( S ^ kf  -  a (S7- kr  .

The cases k — 7 and k = 8 are obtained by direct calculation, the case k = 7 can be included 

by noting that it is equal to a ( S - i ) a — a(>S'o)fr for our definition of S_i. □

Aq A2 A4 Ag As Ajo =  <

T h eo re m  7.16 The even weight distribution of the 704(14, k, 10 — k ) codes are (where 

Tk = 2k- 7(a(01k_1).B(3)))

' [  1 0 0 0 0 0 ] ,  k = 1

[ 1 0 0 1 0 0 ] ,  k = 2

(7<ya(58_fc) +  ^2a(S'9_ fc)
(7.35)

+ 2 " 1Cj(Ta(5 '7_fc) +  JTfe), 3 < A; <  6

[ 1 0 15 21 20 7 ], & =  7

[ 1 3 28 40 43 13 ] , A: =  8.

P ro o f. The cases k = 1 and k = 2 are easy to work out individually. The case 3 < k < 6

is obtained by the results of Table 7.9 as each of the values of cd contribute to the even 

weights, as in Hoggar (1997), and using the results in Example 7.10. The reason that 

this way does not provide results for the k =  2 case is due to the fact that the range in 

Lemma 7.11 would be violated. Also k — 7 is not included here because of the fact that 

a(Sk-o)(r +  a ( 10)g ^  [ 0 1 0 0 1 ], or alternatively noting that we have not defined (7.32)

for k >  6. The cases k — 7 and k — 8 are obtained by direct calculation using the results of

Table 7.9. □

We can now form the table of the weight distribution of the KM(14, k, 10 — k) codes 

which is given in Table 7.10.

7 .3 .5  F u tu re W ork

The methods introduced in this chapter are theoretically easily extended to any value of 

s as we have an infinite scheme for the wraparound as introduced in Section 4.9. There
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k -̂0 A\ A 2 ^ 3 A a A5 ^6 a 7 -^8 ^-9 ^10

1 1 1

2 1 1 2

3 1 3 2 1 1

4 1 3 6 3 2 1

5 1 3 9 6 5 7 1

6 1 4 6 16 12 7 14 4

7 1 1 15 9 21 27 20 27 7

8 1 3 2 28 18 40 54 43 54 13

Table 7.10: The Weight Distribution of the KM (14, k , 10 — k ) codes

was not enough time, however, for the work to be completed. The groundwork has been 

thoroughly set and future work will be completed in due course.
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C hapter 8

Future W ork

As explained briefly in the two previous chapters there is still much that can be done on the 

work of KM codes. We believe that they still hold an important part in the mathematical 

world and the more known about all sides of them the better.

Indeed classifying them will enable them to be used in more specific situations. As the 

development of GH-ARQ and related schemes increases, so codes with similar parameters 

to those of KM are needed and this may hold the future of them. The linear algebra used 

in the previous two chapters will hopefully give insight into other areas of mathematics and 

it is hoped that other areas can be directly related to this area to further the study.

The results of the previous two chapters highlight the relation between the shunted 

codes and this may be used for many purposes when the code characteristics need to be 

altered.

Of course the work done in chapter 4 is still of the upmost importance not only to KM 

codes, but also to complexity theory, and it is hoped that the new diagrammatic method 

will help others to find useful and important algorithms which can, of course, then be used 

to construct better KM codes. Also, other new areas of complexity theory can be directly 

used to further the study of KM codes and it is hoped that the two areas can move ahead 

together.
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A ppend ix  1

Below we give a set of standard algorithms for multiplication of the polynomials Z (u ) =  

zq +  z \u  +  z2u2 +  z$v? and K(u) =  yo +  yiu, modulo a polynomial P(u), before and after 

multiplication (for use in the CRT formation of KM codes among other uses).

Modulo, P (u ) Multiplications Algorithm modulo P (u)

u m =  z0yo m

u  1 m  =  {zq +  z\ +  ^2 +  *3X2/0 +  Vi) m

u2

m 0 -  zoyo

m i -  ziyi

m 2 =  (*o +  *i)(2/o +  2/i)

mo +  (mo +  m i  +  m2)u

u2 +  1

mo = ( zq  + z2)yo 

m i -  {zi +  zz)y 1 

m 2 =  (z0 +  zi +  ^2 +  *3) (yo +  yi)

(mo -t- m 2) +  (mo +  m 2)u

u2 +  u
mo = zqijo

m i = (.z i  +  £ 2 +  *3)2/1

m 2 =  {zo +  zi +  +  * 3 )  (yo +  2/ i )

(mo +  m 2) +  (mo +  m 2)u

u2 +  u +  1

mo =  { z q  +  z2 +  zs)yo

m i =  (zi +  z 2 ) iji

m 2 =  ( z q  +  *1 +  *3X2/0 +  2/1)

(mo +  m 2) +  (mo +  m i)u

Algorithms, I
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Modulo, P{u) Multiplications Algorithm modulo -P(w)

u3

m 0 = zQyo

mi = Ziyi

m2 = (20 + £i)(2/o +yi) 

-  (z0 + z2)yo

mo + (mo + mi + m 2)u+ 

(mo + mi + m3)n2

ii3 “f* 1

m0 = (20 + £3)2/0
mi =  2iyi

m2 = (20 Hr zi + 23) (yo + yi)

™3 = (£1 + £2)2/1 

m4 = (20 +  £2 + 3̂)2/0

mo + (mo + m4 + 7712)72+ 

(mo + mi + m4)iz2

V? +  u

m 0 =  202/0

™i = (£1 + £3)2/1

m 2 =  (20 + 21 + 23) (2/0 + 2/1)

?n3 =  (21 + 22 +  23)2/1

m 4 =  (£0 +  £2)2/0

mo + (mo + m2 + m3)u+ 

(mo + mi + m4)ii2

Algorithms, II
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Modulo, P(u) Multiplications Algorithm modulo P('ii)

11? +  u +  1

mo =  { z q  + z3)y0 

mi -  (zi +  z3)yi 

m 2 =  (20 +  21X2/0 +  2/i) 

m 3 =  (zi +  z2 +  z3)yi 

m4 =  (z0 +  £2 +  23)2/0

mo +  (mo +  m 2 +  m3 )ii+  

(mo +  m3 +  m4 )u2

u3 +  u2

m0 =  zoyo

mi =  ziyi

m 2 = (20 +  21) (2/0+ 2/i) 

m3 =  (zi +  z2 +  z3)yi 

m± =  (20 +  Z2 +  23)2/0

mo +  (mo + m i +  m 2)u-\- 

(mo +  m 3 +  m4 )ti2

li3 +  u2 +  1

m 0 =  (z0 +23)2/0

m i  =  Z12/1

m 2 =  (zo +  2 1 +  z 3 )(2/o + 2/i) 

m 3  =  +  z 2 +  23)2/1 

m 4 =  (zq  +  22)2/0

(mo +  mi +  m3) +  

(mo +  mi +  m2 )u+  

(mo +  m3 +  ?n4 )u2

Algorithms, III
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Modulo, P(u) Multiplications Algorithm modulo P{u)

u3 +  u2 +  u

^ 0  =  zoyo

m i = (zi +  z3)yi

m 2 = {zq +  zi +  z3) {yo +  yi)

m 3 =  (zi +  z2)yi

ijia =  (z0 +  z2 4- z3)yo

mo +  (mo +  m 2 +  m 3)u+ 

(mo +  m 3 +  m4)«2

u3, +  u 2 + u +  1

m Q =  (z0 +  z3)yo 

=  (^i +  ^ )y i  

m 2  =  (z0 +  zi +  23) (yo +  yi) 

m 3 = (zi +  Z2)yi

=  (20 +  ^2 +  Zz)yo

(mo +  m i +  m 3)+  

(mo +  m 2 +  m 3)ii+ 

(mo +  m 3 +  m4)u2

Algorithms, IV

Wraparound, s Multiplications Algorithm modulo us

1 II to m

2

mo =  z3yi

m i -  z2yo

m 2 =  (z2 +  z3)(y0 +  yi),

mo +  (m0 +  m i +  m 2)u

3

mo -  ^3yi 

m i  =  z2ijo

m 2 =  (2 2 + z3)(yo +  yi) 

w 3 =  (zi +  z3)yi 

m4 -  (afi +  22)yo>

mo +  (mo +  m i +  m 2)u+ 

(mo +  m i +  m 3)u2

Algorithms, V
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A ppendix  2

In this appendix we give tables of all polynomials of degree less than or equal to five over 

F2 , together with their factorisations. The complete factorisation is in bold, the others are 

coprime factorisations, i.e. in the form P \ ( u ) . . .  Pt (u) such that (Pi(u) ,Pj(u))  — 1 ^  j .

Polynomial Factorization Polynomial Factorization

u u u3 u 3

u +  1 U p  1 u3 +  1 (u +  l) (w 2 +  u + 1)

u2 u 2 u3 +  u u(u  + l ) 2

u 2 +  1 (u  +  l ) 2 u(u2 +  1 )

u2 P u u(u  +  1 ) u3 + U p  1 li3  +  u +  1

u2 T u T 1 u2 T  u T  1 u3 P u2 u 2(u + 1)

u3 P u 2 p  1 U3 p  U2 p  1

U3 p u 2 p u u( u2 p  u + 1)

U 3 p  u2 + U  p  1 ( U p  l ) 3

Degree 1, 2 and 3 Factorisations
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Polynomial

u4 +  1
4  i u ~f- u

u4 +  u +  1 

u 4 +  u 2

u4 +  u2 +  1 

u4 +  u2 +  u 

u 4 +  u 2 +  u  +  1 

u4 +  'a3 

n4 +  u3 +  1 

u 4 +  tt3 +  u  

u 4 +  u 3 +  u  +  1

u 4 +  U3 +  u 2 

u 4 +  u 3 +  n 2  +  1 

u 4 +  u 3 +  it2 +  u

u 4 +  u 3 +  u 2 +  u  +  1

Factorization

(w  +  l ) 4

it (it +  l)(w 2 +  U +  1)

(u2 +  u) (u2 +  u +  1) 

u(u3 +  1)

(u +  1) (tA3 +  n2 -f u) 

u 4 + n + 1 
u2{u +  l ) 2

u2(u2 +  1)

( i t 2 +  U  -p  l ) 2

u(uz -f- u + 1)
(U l) (w 3 +  u 2 +  1) 

u 3(u  +  1)

It4 +  It3 +  1 

li(1l3 4* 'U'2 + 1)
( u  +  l ) 2 ( i t 2 +  u  +  1 )

(u2 +  l)(w2 +  u +  1) 

W2(u2 + U +  1)
( u  4 -  l ) ( i t 3 -J- i t  -f* X) 

u{u +  l ) 3

u(u3 +  U2 +  u +  1) 

u 4 +  it3 +  tt2 +  tt +  1

Degree 4 Factorisations
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Polynomial Factorization
5 5U u

U3 p  1 (u  p  l ) ( l l 4  +  u 3  p  u 2 +  w P  1 )

u3 P u u ( u  +  l ) 4

li(u4 +  1 )

u3 +  u +  1 (n,2 -p- u  p  l) (w 3 P  w2 +  1

u3 P u2 u 2(u  +  1  ) ( u 2 +  u  P  1 )

u2(u3 P 1 )

(u3 P  u)(u2 P 7X p  1 )

(u -p l)(w4 P  u3 P  u2)

u3 P u2 P  1 -p li2 -p 1

u3 P u2 P  u n (u 4  p  u p  1 )

u3 P  u2 P  u P 1 (u  P  l ) 2 (u 3 p  u  p  1 )

(u2 P l)(u 3 P u P 1 )

u3 P  u3 n 3(it +  l ) 2

u3 (u2 P  1 )

u5 P u3 +  1 u 5 +  u 3 +  1

u3 P u3 P  u u (u 2 +  u  -p l ) 2

u(u4 P u2 P 1 )

u3 P  u3 P u P  1 (n, +  l ) ( n 4  p  it3 P  1 )

u3 -j-u3 + u2 u 2(u 3 p  u  P  1 )

u3 P u3 -f u2 P  1 (u  p  l ) 3 (it2 P  u  +  1 )

(u3 + u 2 +  u +  1 ) (u2 P  u  p  1 )

u3 u3 + u2 + u u ( u  p  l)(w 3 P  u 2 +  1 )

u{u4 P  u2 P u p  1 )

(u p  l)(u 4 +  u3 P u)

(u2 P  u ) (u3 +  u2 P 1 )

u 3 P u3 +  u 2 P u  P 1 U3 p  u 3 p  u 2 P  u +  1

Degree 5 Factorisations Part 1
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Polynomial Factorization

u5 +  u4 ii4(u  4- 1)

u5 +  u4 +  1 (w3 +  l ) ( u 2 4 -^  +  1)

U5 +  u4 +  If u ( u 4 4“ w3 +  1)

u5 +  u4 +  ri +  1 (u  +  l ) 5

If5 +  w4 +  U2 u 2(u 3 4- u 2 4- 1)

u5 4- n4 4- u2 +  1 (w 4- l ) ( n4 4-i»4- 1)

■a5 +  if4 4- n2 4- u u ( u  4- l ) 2(ii2 + w 4 - l )

u(u2 4- l)(w2 4- u 4- 1) 

■u(ri4 4-u3 4-w 4-l)

(u2 4- l)(u 3 4- u2 4- u)

(u3 4- u)(u2 4- n 4-1)

u5 +  ri4 +  u2 +  u +  1 if5 4- u 4 4* 'u2 4- w +  1

u5 +  u4 4- uz u s (u 2 4- u  4- 1)

if5 4- u4 +  M3 +  1 (u  +  l ) 2(tt3 4- u 2 4- 1)

(u2 4- l)(n 3 4- u2 4- 1)

■a5 4- if4 4- if3 +  n u ( u  4- l ) ( 'u'3 4- u  4- 1)

u(u4 4- u3 4- u2 +  1)

(u 4- l)(n-4 4- u2 + u)

(u2 4- u) (n3 4- u  4- 1)

u5 4- n4 +  rf3 4- u +  1 u 5 u 4 u 3 u  1

n5 +  u4 4- u3 4- u2 u 2{u +  l ) 3

u2(u3 4- u2 4- u 4- 1)

ii5 4- n4 4- n3 4- n2 +  1 n 5 +  tt4 4~ w3 4~ "li2 +  1

u5 +  u4 +  if3 4~ w2 4- u w (u4 4- 'u-3 4 “ t f 2 4~ u  +  1 )

u5 4- tt4 4- u3 4- u2 +  u 4-1 ( u  4- 1 ) ( ^ 2 +  u 4 -  l ) 2

(u 4 -1)(^4 4- u2 4-1)

Degree 5 Factorisations Part 2
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