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Chapter 1

Introduction

1.1 Introduction

This thesis explores the use of spectral methods in the stability analysis of a number of
problems arising in Applied Mathematics and Physics. On some occasions new results
will be obtained; on other occasions existing results will be confirmed or extended by a
more accurate technique. The application of spectral methods to multi-layvered regions is

novel.

The stability analysis of a linear system of partial differential equations is connected in
a natural way with the computation of the eigenvalues of a boundary value problem. In
this work, time is removed from the evolution equations of the original problem in such a
way that instability ensues whenever the resulting linearized boundary value problem has
eigenvalues with positive real part. Two distinct modes of instability are possible depend-
ing on whether an eigenvalue is real (stationary instability) or complex (overstability): in
either case, the magnitude of the related eigenfunction grows exponentially in time. As
a rough rule of thumb, stationary instability tends to occur in systems in which a single
driving mechanism, say thermally induced buoyancy, overpowers a single damping mech-
anism such as viscosity. When additional mechanisms are present, say the influence of
magnetic fields, overstability is olten a possibility. In this case, instability ensues through
“hunting”, that is, oscillations of increasing magnitude. In practice, the mathematical
problem reduces to one of finding the critical eigenvalue or eigenvalue with largest real

part. If stationary instability is the preferred mechanism then the critical eigenvalue is
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zero, otherwise it is purely complex and, for example., will be one of a complex conjugate

pair if the eigenvalue problem happens to be real.

There are essentially two distinct strategies for determining eigenvalues depending on
whether or not the location of the competitive (most unstable) eigenvalue is known for
a particular set of system parameters. If a good estimate of a particular eigenvalue is
available then methods such as fnverse Iteration or Compound Matrices can often be used
effectively to confirm the existence of this eigenvalue and further improve its value. The
Inverse Iteration method relies upon the power method for eigenvalue calculation. Its
principal drawback lies in the treatment of complex boundary conditions and the need to
compute matrix inner products in higher precision. The Compound Matrices technique
is a clever adaptation of the shooting method for linear eigenvalue problems. Instead of
computing the target function for a shooting method by the evaluation of a determinant,
the target is computed as a linear combination of the solutions of a system ol ordinary
differential equations. This avoids the inescapable numerical inaccuracies which are in-
herent in the evaluation of determinants. Compound Matrices are particularly accurate

but usually at the expense of solving a large system of linear differential equations.

Often it is possible to establish the “principle”™ of exchange of stabilities, that is, the
eigenvalues of the system are either always real or, if complex eigenvalues are possible,
then these can never be destabilising (for example, always have negative real parts if the
eigenfunction dependence on time is ¢'). Of course, this is a matter for mathematical
proof and not a principle of nature as the title might suggest. When exchange of stabil-
ities is operative then Inverse Iteration and Compound Matrices have a role to play in
eigenvalue determination. In the work explored here, no such principle exists generally
and so methods which rely on an initial guess for the competitive eigenvalue are at best
dangerous. Also, they will often produce wrong estimates of critical eigenvalues since
they are insensitive to the discontinuous dependence of critical eigenvalues on parametric
variables. Spectral methods, because they estimate the spectrum of the linear operator.
are extremely flexible to the rapid changes which occur for small changes in the system
parameters. They are responsive to the “jostling for leading position” typically displayed

by eigenvalues as system parameters such as wavenumbers change even by small amounts.

The use of spectral series in the analysis of eigenvalue problems can probably be attributed
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to Lanczos [26] but it was Orszag’s [37] computational treatment of the Orr-Sommerfeld
(OS) equation using Chebyshev polynomials that established the prominence and via-
bility of this method. Orszag’s original calculations were done on a CDC Cyber with a
rounding error of 10/11 decimal places using a fourth order spectral (tau) representation
of the OS equation with 25 polynomials. Under these circumstances, his calculations were
at the very limits of feasibility since the matrix entries in the 4th order spectral repre-
sentation grow like M7 where M is the number of polynomials in use. When M > 30,
rounding errors dominate if not before. Orszag circumvented this difficulty by recognising
two important properties of the OS equation: firstly, its eigenfunctions are either odd or
even functions (and so do not require a fully Chebyshev expansion) and secondly, its coef-
ficlents are polynomials (in fact, at worst quadratic) and so enjoy an exact representation
in the Chebyshev basis. Although polynomial coefficients appear often in applications,

spectral methods work effectively for non-polynomial coefficients.

Implementations of spectral methods are commonly classified as Galerkin, Collocation
or Tau depending on the nature of the eigenfunction and the way in which the original
cigenvalue problem is approximated within a function space. In a Galerkin [10] method.
the eigenfunction is expressed as a truncated sum of hasis functions which individually
satisfy the boundary conditions. The coefficients of the eigenfunction are chosen so that
the residual (the remainder or measure of the extent to which the spectral solution fails
to satisfy the eigenvalue problem) is orthogonal to each basis function with respect to a
suitable norm. The first attempt to use spectral Galerkin methods in the numerical so-
lution of partial differential equations (meteorological modelling) has been attributed to
Silberman [41]. Orszag [37], [38] and Eliasen, Machenhauer & Rasmussen [7] have shown
that spectral Galerkin methods (based on transforms) are practical for high resolution
calculations for differential systems involving quadratic nonlinearities but are impractical

for more complicated nonlinearities.

The Tau approach is a variant of the Galerkin method in which the basis functions do not
individually satisfy the boundary conditions. These enter the problem as a restriction
on the spectral coefficients of the eigenvector. Iixperience reveals that Tau methods are

normally superior to Galerkin methods and will be the preferred method in this thesis.

Finally, Collocation methods differ from both Galerkin and Tau methods in the respect



that the entries of eigenvectors now represent values of the independent variables at
predetermined points (usually the zeros of some basis function) rather than spectral co-
efficients; otherwise the method is ostensibly the same. The Collocation approach looks
attractive at first sight because it deals directly with values instead of coeflicients but it

is conjectured that this advantage may be illusory for two reasons.

(a) For a given mathematical representation of the eigenvalue problem, the Collocation
matrices contain entries which are larger than their corresponding Galerkin or Tau

counterparts. Hence they are more susceptible to instabilities induced by rounding

error.

(b) A diverging series (perhaps corresponding to a solution which is blowing up) could
be represented by its spectral coeflicients whereas a Collocation representation is

doomed.

The application of spectral methods to a variety of subject areas is described by Haltiner
and Williams [16]. Mercier [30], Gottlieb and Hussaini [13], Deville [6], Jarraud and Baede
[21]. Hussaini, Salas and Zang [19], Zang and Hussaini [46], Gottlieb [14], Hussaini and
Zang [20] and Canuto. Hussaini, Quarteoni and Zang [3]. For finite intervals, Cheby-
shev and Legendre polyvnomials have a similar quality of spectral performance although
Chebyshev polynomials are much easier to use in practice, not to mention the obvious
connection between Chebyshev spectral series and the Fast Fourier Transform (FFT).
Similarly, infinite and semi-infinite regions can be treated using Hermite and Laguerre
polynomials respectively but it is usually preferable to map such regions into [—1,1] us-

ing, for example, y = tanh(ax) or y = —1+42e%* and then employ Chebyshev expansions.

In practice, spectral methods convert the boundary value problem into the generalised
eigenvalue problem AY = ¢BY where 4 and B are square matrices and Y is an eigen-
vector to be assimilated with the coefficients of spectral series in the Galerkin and Tau
approaches and function values in the Collocation approach. In particular, B is typically
singular. In this work, the generalised eigenvalue problem is treated using NAG routines
F02GJX and F02BJX for complex and real matrices respectively. The mathematical con-
struction of the generalised eigenvalue problem from the boundary value problem and the

treatment of boundary conditions is described in Chapter 2 of this thesis.

As has already been mentioned, Orszag treated the OS5 equation as a single 4th order
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eigenvalue problem. Of course, the mathematical problem could equivalently be repre-
sented as a pair of second order equations or a quartet of first order equations. Mathe-
matically these are all equivalent but numerically the approaches are subtley different in
that lowering the order of the component equations endows more derivatives with spectral
expansions, effectively treating them as independent variables. In the first order system,
each derivative enjoys its own expansion. The potential benefits of this approach are.
hopefully, increased accuracy and ease of coding but these must be counterbalanced by
the significant increase in the size of the matrices 4 and 5. This issue is addressed in
Chapter 3 in which the OS equation is investigated using a pair of second order equa-
tions (the D? approach) and a quartet of first order equations (the D approach). Briefly.
computations suggest that the D method is more accurate than the D? method but not
overpoweringly so. When meniory is scarce such as in eigenvalue calculations in 2D prob-
lems, it is clear that the ? method is the way forward.

The Orr-Sommerfeld eigenvalue problem, previously solved in Chapter 3 by Chebyshev

Tau methods. is now solved in Chapter 4 using Legendre spectral methods.

In Chapter 5 of this thesis, the Chebyshev Tau method is applied to the stability of
Benard-Marangoni convection in a horizontal layer of viscous, electrically conducting
fluid with an imposed axial magnetic field of constant magnitude. Wilson [45] develops
a comprehensive analysis of stationary stability for this problem in a variety of circum-
stances including situations in which the free surface is flat or wrinkled. His results are
checked and, where necessary, extended to include overstable regimes of parameter space.
Roughly speaking, overstability is preferred increasingly as the ratio of the magnetic to

viscous Prandtl numbers exceeds unity.

Chapter 6 of this thesis extends the spectral methodology of chapter 2 into multi-layered

regions.

Chapter 7 of this thesis deals with the investigation of linear stability analysis for a layer
of porous medium permeated and superposed by a layer of incompressible viscous fiuid.
Chen & Chen [5] have addressed this problem when heating is applied at the bottom
boundary. Their investigation assumed stationary instability [rom the outset and used a
shooting technique based on 4th order Runge-INutta approximations for integration of all

differential equations. To check Chen & Chen’s results, Chebyshev spectral methods are
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applied to this two-layer problem. Their results for the behaviour of the Rayleigh number
appear qualitatively accurate for small wavenumbers only. As the wavenumber increases.
the discrepancy between their results and these generated by spectral methods grows.
The trouble is that the already poor characteristics of a determinant based method are
further eroded by the presence of the second layer and the need to reorganise boundary

conditions for crossing the inner boundary.

Chapter 8 of this thesis explores the Chen & Chen [5] problem when salting effects are
included in addition to heating. They considered the solution in which heating and salting
are applied at the top boundary (in connection with the solidification of a liquid melt).
Again, stationary instability is assumed from the outset. It is expected that overstability
may be the preferred mechanism in certain regions of parameter space but computation
reveals that the eigenvalues are always real in the applications of Chen & Chen. This
contrasts sharply with the situation in which heating and salting are applied at the lower
boundary; here stationary and overstable instability are both possible! By taking suitable
inner products of the governing differential equations, it can be discerned that analytical
explanations for these observations are not possible. Again the presence of a second layer
visibly accelerates the deterioration in the numerical accuracy achievable by an unsophis-

ticated shooting method.

In Chapter 9 of the thesis, spectral methods are used to investigate an eigenvalue prob-
lem arising in MHD and originally treated by Lamb [25] using Inverse Iteration. In this
model, the Earth is described as a solid cylinder (inner core) of finite electrical conductiv-
ity suwrrounded by a cylindrical annulus (outer core) of incompressible viscous fluid with
finite conductivity, both electrically and thermally, and this in turn is suwrrounded by a
non-conducting region of infinite extent (mantle). The finite conductivity of the solid
inner core and the non-conducting nature of the mantle essentially guarantees an active
interaction with the fluid outer core leading to a genuine three-layer eigenvalue problem:
the inner core and mantle cannot be replaced by simple boundary conditions. Moreover.
it is a three-layer problem with a subtle twist arising from the fact that Laplace’s equation
has divergent solutions in the inner core and mantle. Lamb deals with these difficulties
analytically and, in so doing, reduces the full problem to an eigenvalue problem in the

fluid outer core. In the absence of analytical solutions in the inner core and mantle,




Lamb’s methodology would likely fail. Methods such as Inverse [teration and Compound
Matrices experience severe difficulties whenever governing equations have potentially sin-
gular solutions simply because they proceed by constructing eigenfunctions numerically
whereas a spectral method constructs the coefficients of a spectral expansion and is more
able to suppress singular behaviour in favour of regularity. This example from MHD

provides a good illustration of this point.
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Chapter 2

Figenvalue Determination using

Spectral Methods

2.1 Introduction to Orthogonal Polynomials

Orthogonal polynomials play an important role in many areas of mathematics. The

following sections review properties that are relevant to eigenvalue analysis.

2.1.1 Some General Aspects of Orthogonal Polynomials

Let f and g be two functions defined over {a.b] (—co < @ < b < co) then the inner
product of f and g over the interval [«.b] with respect to the weight function w(2) (> 0)

is denoted by the symbolism < f.g > and defined by (see [43])

b

< f,g >:/ w(a) f(a)g(a)da (2.1.1)

a

whenever this integral exists.

If < f,g >= 0 lor non-trivial f, ¢ then the functions f and g are said to be mutually
orthogonal. In this work. the class of functions for consideration is restricted to the
space of real polynomials. Let mo = 1. the canonical polynomial of degree one. Given a
real interval [a,b] and a suitable weight function w(z), a family of mutually orthogonal
real polynomials mg(a),....mu(x)... can be constructed by a Gram-Schmidt procedure

in which m,(2) has leading term &™. In particular, each family is uniquely determined by
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this condition, the choice of interval and the weight function. Hence

b 0 forn#m
< Mgy Ty > = / w(a)my ()T {z) de =
a

tn for n=m.

There is a close connection between the interval [a, 0], the associated weight function w(a)
and an associated family of second order ordinary differential equations which possess the
set of orthogonal polynomials as a family of solutions. However, in this work, the family

of m’s is regarded as the solution of the second order difference equation
Tnt1(2) = (¥ = Sng )Ta(@) = ¥op Trt(@), (m20) w_i(x)=0,me(x) =1. (2.1.3)

where d,,1 and 2 +1 are defined by

. 0 forn =20
L XMy, T, > .
Opg1 = ST T o >0, 7-71+1 = [y (2.1.4)
Hr forn>1.
Hn-1

.. - 9 . N
These definitions of d,,4+, and 4, ; essentially ensure that the #'s form a mutually orthog-

onal set of polynomials.

Spectral analysis with polynomials depends critically on the fact that the space of poly-
nomials is closed under differentiation and multiplication; that is, the derivative of a

polynomial is a polynomial and the product of two polynomials is a polynomial. Hence

(1) the derivative of m(2) can be represented by a linear combination of the polynomials

Tola). ... Tro1().

(i1) the product of =, (x) and m(r) can be expressed as a linear combination of the

polynomials wo(a). ..., Tupr(2).

In fact, the special nature of the 7's allow a stronger claim for the second property.
Suppose that 7, and m, are two members of the family defined by the recurence relation
(2.1.3) then m,(a)mi(x) can be expressed as a linear combination of mp, g () .. .., ().

That is, the terms mg(a). .. m,_p—1)() are absent unexpectedly from the product.

This result is proved by induction. If either of n or & is zero then the result is trivial since
one of the polynomials is unity. Also if n = k then the product m, 7 is just a polynomial

of degree 2n and the result is again unremarkable. Without any loss of generality, assume
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now that n > & > 0. From (2.1.3), m(¢) = @ — d§; and the definition of the polynomial

family can be recast in the form
(@) = (m{e) + 81 — Spar )ma(a) — ’)’3+1TI'71_1{;1‘) (2.1.5)
and this in turn can be rewritten as
(@) (@) = g1 (2) + (g1 — §1)70n(@) + 12y Tama ()

Hence the result is true when n > & = L.

Now assume that the result is true for all n > & > |. In view of the alternative definition

(2.1.5) for the «'s relating w1 (), mp(x) and w1 (2),

To(@)mpgr () = (Wl(‘1:)+51_5R'+1)7rn(\r)7rk(m)”‘713+17T"-’—1("1’)7Tn(~t)
n+k . n+h—1
= (m(r)+d — dps1) Z CL,-N,-(;I?)—7,§+1 Z brm ()
r=n-—k r=n—k+1
n+k n+k
= m(r) Z () + Z ema(a)
r=n—k r=n—k
n-k n+4-k
= Z apm(@)m(a) + Z epme()
r=n-k r=n—A
n4-k41 nt-k
= Z dpm () + Z erte( )
ren—k—1 r=n—k
n+k+1
= Z e 7y ().
r=n—k—1

Hence the claim is justified. To sum up, it is possible to determine coefficients Dy, and

Fnme Tor n > m so that

| n-—1
%ﬂ‘n(;l‘) = Y Dam(a). (n>1)
“ r=0 (2.1.6)
ﬂ-n(l“)ﬂ‘m(m) - Z -";717711‘71-71—)—7)1—1‘(‘1‘) ) {?I > Tn) .
=0

2.1.2 Function Approximation
Let f(x) be a continuous function satisflying the property

b
< f.f>»= / w(z) fAa)de < oo

a
then f(x) has a spectral representation with respect to the polynomial family mo(),.. ..

Suppose that the representation is

—~
o
—
-1

J@) =3 fim(a)
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then it is clear that the coefficients fi can be evaluated by first multiplying the spectral

series (2.1.7) with w(a)my(z) and then integrating the result over the interval [, b]. Thus

b b )
/ w(a)f(a)mp(a)de = / (Z frw(@)m(a)rp(x) d:c)
e \,=p

a

[l

= > 5 /17 w(a)m, (@) m(x) de
r=0

Joa

= [rpr

leading to the final conclusion that the coefficients f; are eventually determined by the

evaluation of the integral

b
fe = L w(x) f(z)me(e) da . (2.1.
e d a

o
—
jold]

These coefficients must now be calculated for a general family ol polynomials 7,(x) and
any function [ whose value can be determined at any point &. The answer to this question

lies in an understanding of the analysis and methods of Gaussian quadrature.

2.1.3 Gaussian Quadrature

Suppose mo(x), ... .mu(x).... is a family of orthogonal polynomials in the sense of (2.1.2)
where m;(2) has degree k. then m(2) has & distinct zeros in [a.b]. Since mg(a) =1 then
the claim is true for &k = 0. Now let & > | and observe that

b b
/ w(x)mo(a)me(2) da :/ w(a)mp(z)de =0

J o a

so that mp(2) certainly changes sign at least once in [a,b], that is. mi(x) has at least one

zero in [a,b]. Suppose that 7y ...z, {(m < k) are the m zeros of m(2) in [a,b] occuring
to an odd power. Hence m(x) changes sign at zy...z, in [@.0]. Consider the polynomial
r=m
Play=(z1—a)z—2). . (zm—2a)= H (z, — 7).
r=1

Since w(2) and P(x) change sign at the same places then mp(x)P(x) has fixed sign in

[a,b] and so

/bu:(;r)Trk(;z')P(.r) dx

a
is single signed. However P(x) can be represented by the expansion

re=m

P(x) = Z o, m(a) (m < k)
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so that

b r=m r=m
/w(:c) w(2) (h—z /w v) (@), dl_Za,XO—O

a

This contradicts the single signed nature of the previous integral. Hence m(2) must have

k odd zeros in [a,d], that is, m;(2) has k distinct zeros in [a, b].

Let 2g...2, be the (n + 1) zeros of m,+1(2) in (a,b) then these zeros, supplemented by
the points _; = a and @, = b, form a dissection of [a,b] with respect to which the

Gaussian quadrature

b n
/ w(a)f(x)de = a flay) (2.1.9)
” r=0

has maximum precision (2n41). Here the ¢,'s are determined by the weighted integration

of the rth Lagrange interpolating polynomial over [a.b].

2.1.4 The Zeros of m,(z)

The proof that m,(2) has n distinct zeros in [a, b unfortunately offers no clues as to how
these zeros might be determined. The answer to this question involves an investigation

into the eigenvalues of the symmetric tridiagonal matrix 75,41 given by

S v 0 0 00 0 0 0
Y2 82 v 0 00 -~ 0 O 0
Ty = 0 7 & w 0 0 -~ 0 0 0
0 0 0 0 00 -+ " dn  Jntt
L0 0 0 0 00 -+ 0 Fupr Ot |

Define vnq1(A) = det (Thyr — AL). Then ypi1(A) is the characteristic polynomial of Ty,
and therefore has (n+ 1) real zeros which can be determined to a high degree ol accuracy
using the QR algorithm; an iterative scheme for upper triangularising general upper

Hessenberg matrices of which a tridiagonal matrix is a simple example. Indeed \py1(2)




is just the value of the determinant

51 — T Y2 0 0 0 0 e 0 0 0
Yo Oy — Y3 0 00 --- 0 0 0
0 3 (53 — I Y4 0 O e ( 0 0
0 0 0 0 00 - v, dy—u Y1
0 0 0 0 00 - 0 Tn+1 (Sn—i-l — T

When this determinant is evaluated about the last row, it is obvious that

Xnt1(2) = (Gpg1 — @) xn(2) — ’YZH,\"n—l(%‘J}

and this is algebraically equivalent to the conclusion m, 1 (x) = (—1)"* yp41(2). Hence
Tnt1(z) and vpqi{z) have the same zeros, namely, the eigenvalues of T, ;. Moreover
suppose that vje; is the unit eigenvector corresponding to eigenvalue 2; then the Gaussian

quadrature weight a; is given by

b
a; = ('U])Q”O = Uf/ w( )(h (21“))

a

Details of this proof are available in Bulirsch and Stoer [43].

2.1.5 Application to Chebyshev Polynomials

Chebyshev polynomials are commonly defined over [—1, 1] by the relation
Tw(z) = cos(nf), z=cosl (2.1.11)

from which it is immediately clear that T),(z) has n zeros in (—1, 1) located at

1+ 2k)7
:k:cos((—g—-i), k=0,...,n—1.
n

This is the first useful property of Chebyshev polynomials. Moreover it can be shown

that the appropriate form of (2.1.9) is

: _’L_(__de_Zf (2.1.12)
VT 2.1.12
The spectral coefficients of f are now determined from (2.1.8) by

-1

- Lot Je)m(a)de o
fk_ﬂk/- Il —m%;}f ) T(z,)
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After some algebra, it can be verified that

171—-1

n—l 3 2r)r
A=t fe) s fe= T3 fe) cos (M) . (2.1.13)
n= n=;

2n

The sequence of spectral coefficients determined by (2.1.13} ensures that all polynomials
up to order (n — 1) are exactly represented, that is, it is an expansion based on interpo-

lation.

However, there is a more elegant association of a function f with a Chebyshev expansion

but it is not interpolating. The method is based on Gauss-Chebyshev-Lobatto quadra-

tures nodes with
v = acos’(km/2n) -+ bsin®(kw /2n), k=0...n (2.1.14)

the optimal weighted quadrature when the endpoinis of the interval are nodes of the
dissection. Let f(z), 2 € [, b], be a continuous function then
1 , .
;z:=a+5(:+1)(b-a), v € [ab], ze€[-1,1] (2.1.15)

maps ¢ € [a,b] into = € [—1,1]. Assume that f(2) = F(z) is approximated by an

expansion in Chebyshev polynomials up to order N, that is

N
f@)=F(z) =) [iT.(2), (2.1.16)
r=0

then it can be shown that [, = f(ax) 0 < & < N, the value of f at the Chebyshev
nodes (2.1.14) and fo,..., fi, the coefficients of the Chebyshev spectral series (2.1.16)

are connected by (the detail in Appendix A)

N

. T 1 )

fe = ch; C—,F) cos(kym[N), k=0,....N,
N

Fi = Y frcos(kjm/N), J=0,...,N,
k=0

where
2 k=0or N,
cr =

1 0<r< N

2.2 Common Families of Polynomials

There are four families of orthogonal polynomials that are particularly familiar in applied

mathematics. These are the Chebyshev polynomials 7,,(2), the Legendre polynomials
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P.(z), the Hermite polynomials H,(z) and the Laguerre polynomials L,(z), (see Jean
[22]). Hildebrand [17] provides a comprehensive description of many of their properties.
Hermite and Laguerre polynomials fit the defining property (2.1.3) and are suitable for
infinite and semi-infinite regions respectively. It is possible to use them in eigenvalue
expansions but they are difficult to handle and it is almost invariably preferable to map
infinite or semi-infinite regions into [—1, 1] and use Chebyshev or Legendre polynomials.

The relevant properties of these polynomials are now reviewed.

2.2.1 Chebyshev Polynomials

The Chebyshev Polynomial 7, (x)

Range [a, D] [—1.1]
Weight function w(z) = (1 —2?)~/2

7 forn=010

Hn+1 T for n > 1
E or n -~

571-{-1 D
0 forn=20

2

7n+1

1 forn >1
Recursion relation  Th4i(2) = 22T, (2) — Thei ()

The differentiation of Chebyshev spectral series relies on the trigonometric identities

sin(2k0)

Csinf

sin(2k + 1)0
sin ¢

k
=142 cos(2r0).

r=1

k
:zz s(2r — 1)0

In combination with the definition (2.1.11) of T},(2), these identities lead immediately to

the results

{To(= b
¢ Zﬁ;( ) _ 4}32 Tora(2),
2 k (2.2.17)
dT%;.}(J = 22k +1) Z Ty (2 (2k 4+ 1)To(=) .
dz =1
Suppose that f(z) is a differentiable function in the interval [a, 8] then
g AP X dT Nizodr R 13
df = =c) fu :52 Z o= ( + Z Jakrt QHI( )) (2.2.18)

k=1
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where ¢ = 2/(b — a) and the integer part only of N/2 is considered. Results (2.2.17) are

now substituted into expression (2.2.18) to obtain

l' N/2 (1\’—1)/2 k
= c(ZMm ZTQ, =)+ D0 (k4 1) fag{Tolz zz (2.2.19)
k=1 k=1

The order of summation on each double sum in the expression (2.2.19) is reversed to get

df N/2NV/2 ‘ (N-1)/2 A
E = CZZ 4k forTo 1 (2) + ¢ Z (2k + 1) far To( =)
r=1k=r (N—1)/2(N—1)/2 k=0 (2220)
te Y Y. Ak +2) faaTa(2).
r=1 k=r

Let D be the (N 4+ 1) x (N + 1) upper triangular matrix whose non-zero entries are

Doaryr = (2k4+1),

k=0. (2.2.21)
Diyyaryr = 2(r+2k+1),
then it follows directily from (2.2.20) that
([f N N
=203 D) T(2). (2.2.22)
de =5

Thus spectral differentiation of the function f is effected by multiplying the (N+1) dimen-
sional column vector (fo, fi,..., fn)T of Chebyshev coefficients of f by the differentiation

matrix ¢). Appendix 1 provides a FORTRANT77 subroutines.

2.2.2 Legendre Polynomials

The Legendre Polynomial P,(z)

Range [a, ] [—1,1]
Weight function )
9
Hott o+ 1
5n+l 0
0 forn =20
'Y;Z;+1 n
‘ forn>1

n 4+ 1
Recursion relation (n+ 1)Poyi(z) = (2n + 1)aPy(z) —nPy_i(2)
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The derivative of P,(a) is related to Fy(x) ... P,—1{z) by

dPyry2 ul
T = 2(47‘ —|- 3)P2,-+1(;l‘) y
r=0 (2.2.23)
dP. 2k+1 k y !
Ay 2(47’ + 1) Py ()
) r=0
and the product P,(z)FPn(2) has Legendre polynomial form
oA A A 2n - 2m —dr + 1
Po(x)Pn(z) = ~ ndm—2r ) 5 > m, 2.2.24
(@) Pn(2) rz:% Angm—r  2n42m —2r 4+ lP +m-ar () m=m ( )
1 2k : : .
where Ay = . The expressions (2.2.23) must be recast in terms of the matrix D
= k

introduced in (2.1.6). It is obvious that the non-zero entries of D for Legendre polynomials

are

Di,*zj+i+1 = 23 —I— 1 5 ?.J 2 0 . (2225)

In fact, Legendre polynomials have similar qualities as Chebyshev polynomials except that
the formula for their product is clearly more complex than the comparable Chebyshev
formula. The similarity is more obvious when the recurrence relation is expressed in the

form

1
=2 — rl(z)— 11—
Pryi(x) ( - l) v Py () (l

1
n 41

For any sizeable n, this is effectively the same recurrence relation as applies to Chebyshev

) Py () .

polynomials. It is only for small values of n that Chebyshev and Legendre polynomials
differ markedly. In particular, there is usually nothing to be gained by using Legendre

polynomials over a finite interval if Chebyshev polynomials are equally appropriate.

2.3 Stability Analysis of One Layer

Let £ be a layer containing a continuum which interact thermally, mechanically and mag-
netically with the world outside via its boundaries. Suppose that the equations describing
the physical problem are non-dimensionalised so that =~ = 1 is its upper boundary of the
layer and z = —1 is its lower boundary. The standard linear stability problem for this
configuration can be systematically reduced to the eigenvalue problem

dY
dz

=AY +oBY , (2.3.26)
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where Y is an n vector with components y1,...,y,, 4 and B are complex n x n matrices
and o is the eigenvalue to be determined. The equation (2.3.26) is to be supplemented
by n boundary conditions. These describe the interaction of £ with its environment and
specify the behaviour of thermal, mechanical and magnetic effects etc, on the boundary.
They are linear in nature, involve only the components of ¥ and can be expressed in

matrix form
Uy =0, I<k<m<n (z=1)

LIy =0, I<k<n—m (z=-1)
where U/, and L; are families of n-vectors with constant entries.

Some Remarks

(a) Boundary conditions may contain the eigenvalue o. Indeed this happens in the

Calculus of Variations when transversality conditions are in operation.

(b) From a purely mathematical point of view, the boundary conditions can be dis-
tributed arbitrarily between the upper and lower boundaries of the layer. However,
in practice, boundary conditions relate to the physical properties of macroscopic
quantities such as stress, velocity, temperature etc. and these conditions appear in
pairs — one for the upper boundary and one for the lower. Hence n, the order of

the systems describing layer £, is almost invariably even and m = n/2.

2.3.1 The Eigenvalue Problem

Let complex n x n matrices &4 and B and n x 1 vector Y be defined by

(1
[ Qe ... Gin by ... by
Y . . . -
Y = , A= , B = , (2.3.28)
pl v Qpa bnl e bnn
L Yn |

where the matrices A and B and the vector Y are represented by the structure of the
eigenvalue problem (2.3.26) as

dY
dz

=AY + oBY z€e[-1,1]. (2.3.29)
Similarly, the boundary conditions (2.3.27), can be recast in the simpler form

CIY =0 1<k<n (2.3.30)

21




where the interpretation of C is
U,::F 1 <k<m,
Ly m<k<n.

Further progress is achieved by approximating each component of ¥~ with an expansion
in terms of some family of orthogonal polynomials. Since the interval is [—1, 1] then the
previous theory suggests that Legendre or Chebyshev polynomials will be most suitable.
As has been previously mentioned, the mathematical quality of the representation is
effectively equivalent for both sets of polynomials. However, the especially simple form
for the product 7, (2)T,,.(2) favours Chebyshev polynomials, particularly if the entries of

A and B are non-constant. Henceforth Chebyshev polynomials will be employed.

2.3.2 Representation of the Eigenvalue Problem

Suppose that each component of Y is approximated by a series of (M + 1) Chebyshev

polynomials so that

A
plz) =Y anTi(z), forl<r<N. (2.3.31)
k=0

Of course, (2.3.31) is not an exact solution of (2.3.29) and actually satisfies the modified

differential equation

1y , ,
(d~ = A(2)Y + 0 B(2)Y + Ry(2)

where Rp(z) is the residual, in this case, an n dimensional vector representing the re-
mainder term. Indeed, (2.3.31} is a solution of (2.3.29) in the sense that the residual is

orthogonal to Ty,...,Ta—1, that is,

U Ra(z)1(2) dz
-1 VI—z2

Notionally By — 0 as M — oo. This criterion effectively means that the coefficients ol

=0, 0<k<M.

the first A/ Chebyshev polynomials in the representation of Rjr must be zero. It now

remains to construct Ryr. This process involves three steps.

step 1 Compute the Chebyshev coeflicients of the derivative term dY/dz [rom the Cheby-

shev coefficients of Y.

step 2 Compute the Chebyshev coefficients of the terms AY and BY from the coeflicients

of Y.




step 3 Convert the boundary conditions into relationships between the Chebyshev coef-

ficients of Y.

Each of these procedures is now discussed in detail.

2.3.3 Treatment of Derivative
Consider first dy,/dz. From (2.3.31)

dy, M. dTi(2)
PP Ve

M

M
= Zak,.ZDjkf.,-(z) (2332)
k=0

M J\Z’:O
= Z (ZDjkakr) T7(3) .
7=0 \k=0

Thus the coefficients of the Chebyshev expansion of dy, /dz are computed from the coef-

ficients of the Chebyshev expansion of y,. by premultiplying the vector

& = [0'07'1 ey CY;'\{:‘]T (2333)

by the (M 4 1) x (M + 1) matrix D. Now redefine Y to be the vector of length N(M +1)
formed from [y1,..., Y ..., yn] by expanding y, to the vector «,, that is, ¥ has block
matrix form

YT =[ay,...,an]. (2.3.34)

The Chebyshev coeflicients of dY'/dz are now obtained from Y by matrix multiplication.

In block matrix notation

D 0O 0 0 01 e |

0D 0 0 0 || o
0 0 D 0 0 :
a _ & (2.3.35)
d= 0O 0 0 D 01| cu

(000 0 0 - D||an]

2.3.4 Treatment of Matrix Product

The contribution made to the derivative dy,./dz by the matrix product AY has form

Zﬁil Ani(2)yi(2), that is, it is a sum of terms of the form f(z)g(z) where f(z) = A.(2)
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and g(z) = yi(2). Suppose that

o] M
2) =2 fLT(=),  g(z) = gTi(2)
1=0

=0

then the product h(z) = [f(z)g(z) is

oo M
hz) = DY figiTi(z)T5(z)
=0
1 ccj [;l.[
= _ZZ)LL.% t+7 +j—it JI( ))
fi}“;:“ o M (2.3.36)
= —Z > fi-igiTi(z) + = Z > Je-jgiTi(=)
e T
+5 ZZE 195 Tr(= )+ ZZJLHJQ;YA
20 5= 2o =

From the final expression for h(z) in equations (2.3.36), the first (M 4 1) Chebyshev
coeflicients of i can be determined. Unless [ is constant, Chebyshev coeflicients of order
higher than (A{ + 1) also appear in the expression. However, these are of no consequence

since they contribute only to the part of [); which vanishes under the inner product with

Tolz).... Tar—1(=). 1t follows almost immediately from (2.3.36) that
M
fogo + 5ijgj . k=0
hy = o e (2.3.37)

_Z/k i9i + Z;‘, kG + = ijgj. k>1

As in the derivation of the Chebyshev coefficients of the derivative terms, it is self evident

that result (2.3.37) can be re-expressed in the form of the matrix multiplication

] 2fo h fa I3 Far 1 90

25 2fo + fo fi+ 13 fa+ [ coo far—r s a1

1 2/ hi+fs 2fo+ f4 h+1s coo far—2 F farge go

20 2, Fa+ fa h+fs 2fo+ fs o Ja—a A+ fass g3
2fa0 e+ Parer facet farse faest faes 0 2ot S | | g |

Thus each term A,;(z)yi(z) in the computation of A} can be expanded into a matrix
product of F}; and a; where [/ is the (M + 1) x (M + 1) matrix associated with A,;(z)

as illustrated in the previous expression and «; has its usual meaning from (2.3.33). In




particular, if A,.; 1s constant then, trivially, Iy, = A, [y (since fr = 0, k > 0) where Iy

is the (M -+ 1) x (M + 1) identity matrix. Hence AY" has matrix form

Fll Fiy Fs Fuy - Fin (8.5]
Fy Iy Iy Fyy oo Foy (8 4]
Fsy  Fsy Fsz Fzy -0 Iy Q3
: (2.3.38)
Fyo Fy Fya Fyy - F4N Oy
| Fyi Fyn2 I'ns Fysa - Fan | | an |

Clearly an identical analysis applies to the term BY'. Of course, in practical applications
of these ideas, many of the F' matrices are either zero or multiples of the identity and the

detail of building them is in Appendix B .

2.3.5 Boundary Conditions

Recall that Chebyshev polynomials can be defined by the property 7),(cos@) = cos(nd)
so that

T, (1) =1, To(—1) = (=1)" .

Thus the eigenfunction expansion (2.3.31) for yi leads to the obvious conclusions

A A
ve(l) = D auTi(1) = ai
=0 =, (2.3.39)

u(—=1) = Zoasze(—l) = gﬂ’ik(—l)i
In terms of the constant vectors p and q of length L given by
p=(1.1..... L., D), q=(1,~1,1,=1,... (=) ... (-=1)M),
the boundary conditions (2.3.39) become
ye(l) = pear . yr(—1) =q.ap . (2.3.40)

Fach boundary condition (2.3.30) is converted into a linear relationship among the entries
ai; of Y by expanding each component part y,, (1 < & < n) into a multiple of the vector p

if the boundary condition is applied at z = 1 or a multiple of q il it is applied at z = —1.
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2.4 The Linear Eigenvalue Problem

The final outcome of this analysis is that the derivative dY/dz and the matrix products
AY and BY in (2.3.26) can all be processed so that equation (2.3.26) reduces to a
generalized eigenvalue problem of the type £Y = o F'Y where £ and F are complex square
N{M + 1) x N{(M + 1) matrices. The N boundary condition are now used to replace
the Nth, 2Nth, 3Nth ..., N(M + 1)th rows of EY = oFY and the final eigenvalue
problem is produced. At this stage, a numerical eigenvalue routine is called and the
complex eigenvalues computed along with the corresponding eigenvectors, if required. In
all subsequent work, NAG routines FO2BJTF and FO2GJF are called for real £ and /" and
complex £ and F respectively. This technique is exemplified for the convection problem

arising when a viscous fluid overburdens a porous layer.
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Chapter 3

Introductory Applications Using
Spectral Methods

3.1 Introduction

This section introduces the Chebyshev Tau method via the eigenvalue problems associ-
ated with the shear flow of a viscous fluid (Orr-Sommerfeld problem) and the convection
of a layer of electrically conducting fluid in the presence of an axial magnetic field (Mag-
netic Benard problem). In both of these problems, the nature of the spectrum depends
critically on the choice of parameters. In the former, all eigenvalues are essentially com-
plex but different eigenvalues are critical for different values of the Reynolds number.
In the latter, the spectrum contains real and complex conjugate pairs of eigenvalues so
that in certain parameter regions, real eigenvalues are critical whereas in others, it is the
complex eigenvalues that dominate. This chapter applies Chebyshev spectral methods
to these problems, initially by way of illustration but more significantly because tracking
techniques such as Inverse Iteration and Compound Matrices are unable to handle the
subtle and rapid changes undergone by the spectrum in response to “small” changes in

problem parameters.

Finally, an opportunity is taken to compare the relative accuracy of two popular imple-
mentations of the Chebyshev-Tau method. One treats the eigenvalue problem as a system
of first order differential equations whereas the other expresses the eigenvalue problem in
terms of systems of second order differential equations. The former strategy needs larger

spectral matrices than the latter but this apparent disadvantage is counterbalanced by
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technically simpler boundary conditions and the need for less polynomials.

3.2 Orr-Sommerfeld Problem

The Orr-Sommerfeld equation [24] arises in the stability analysis of the laminar flow of a
viscous fluid down a cylindrical pipe under a pressure gradient (Poiseuille flow) or between
two parallel rigid boundaries, one of which is induced to move at constant speed (Couette

flow). The equation has non-dimensional form
(D? — a*)?w = iaR[(u— o)(D* —a*) — D*aw,  x€(-1,1), (3.2.1)

where D¢ = do/dx, R is the Reynolds No., a is a wavenumber, ¢ is the eigenvalue and
@(2) is the laminar solution. In Poiseuille flow, ii(z) = 1 —2? and in Couette flow, @ = 2.

In both cases, equation (3.2.1) must be supplemented by the boundary conditions
w(l)=w(-1)=0, Dw(l) = Dw(-1)=0. (3.2.2)

The critical Reynold number R is determined by the criterion Re(o) = 0, that is, the
real part of o is zero. For Poiseuille flow, it can be shown that the critical Reynolds No. is
R, = 5751.9 occurring at wavenumber aqq = 1.0215 while in the case of Couette flow,
the critical Reynolds number is R = 45310.9 occurring at wavenumber aeyy = 1.0207.
However, the traditional eigenvalue problem in this context occurs when the wavenumber

a is fixed at unity and R is allowed to vary.

3.2.1 System Formulation

In terms of the variables

n=w, 79 = D*w | (3.2.3)

the Orr-Sommerfeld equation (3.2.1) may be represented by the two differential equations

<z = Dzzl )
(3.2.4)
(D? — 2a*)zq + a*z; = iaR(@ — o)z — a®z) —iaRD*u =,
with boundary conditions z; = Dz = 0 on @ = £1. Equations (3.2.4) may be re-
expressed in the matrix format
Z
$2 _yz4ovz (3.2.5)
da?
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where U and V arve the 2 x 2 matrices

0 1 i 0 0
U= . V= . (3.2.6)
—iaR(D*i 4 a*u) — a* iaRu + 2a* @R —iaR
and Z = (z),29)7. Equations (3.2.4) may be reduced further to a system of four first

order differential equations by introducing variables yy, y2, y3 and y4 by the definitions
Y1 = 21 Yo = Dzy Y3 = D%z, Ya = D3z .

Thereafter it is verified easily that equations (3.2.4), when expressed in terms of y; ...y,
become the first order system
Dyr =y, Dys=ys,  Dys=uys,
(3.2.7)
Dyy = 2ays — a'y, +iaR(it — o)(ys — a®y1) —iaRD*ay; ,
with the boundary conditions y; = ¥, = 0 on @ = 41 . As before, equations (3.2.7) can

be reformulated in the matrix format

dY
— =AY + ¢ BY (3.2.
dx

o
o

where A and B are the 4 x 4 matrices

0 I 0 0| 0 0 0 0]
0 0 1 0 0 0 0 0
4= . B=
0 0 0 1 0 0 0 0
| —itaR(u+ D*u) —a' 0 daR@+2¢* 0 | a®R 0 —iaR O |

and Y = (y1,Y2,¥3,94). . Following the methods described in chapter 2, eigenvalue prob-
lems (3.2.5) and (3.2.8) can be converted into the generalised form EV = o F'V where £

and £ are block matrices of suitable dimension.

3.2.2 Second Order System

Here z; and z; are represented by series involving Chebyshev polynomials Ty(x) to
Tar—1(2). Equations (3.2.4) assume the generalised eigenvalue form £V = ¢ F'V in which
E and [ have 2 x 2 block matrix form
D? -1
laR(P + a?Q)+ a'l D? —iaRQ — 2a*]

E =

0 0
1Rl —iaRI

F =
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In (3.2.9), the forms of P and @ depend on the problem under consideration and are

specified by

Poiseuille Flow Couette Ilow
Pl']' = 251:_7' Pi_.]' =0
@ity = —1/4 Qiimgy = —1/4 3.2.10
Qigivy = 1/2 Qi) =1/2 (3.2.10)
Qii=1/2
, Q21 =1
Qa2 =1/4 Qs1=-1/2
Rest zero
Rest zero

whenever the appropriate matrix entries exist. The formulation of the eigenvalue problem
is now completed by replacing the (M —1)th, Mth, (2M —1)th and 2M th rows of I and F’
with the boundary information. It does not matter how the four boundary conditions are
ordered but numerical performance is usually enhanced if the boundary data is inserted
so that the largest entries occupy the top right of £ and F. Let p = prer, ¢ = qrer,

7 = e, and 8 = spey be M dimensional vectors whose & th entries are respectively

pe=1, q=(=F., m=k, s =k(-1F k=0...M—1. (3.2.11)

In terms of these vectors, the boundary condition rows and their location are, in block

matrix notation.

Condition Row B r
5=0 on a=-1| M—1 | (q,0) | (0,0)
=0 on z=1 M (p,0) { (0,0) (3.2.12)
=0 on a=—1{2M—1 | (r,0) | {(0,0)
D=0 on =1 2M (s,0) | (0,0)

3.2.3 First Order System

Here y1, ya, ys and yy are represented by series involving Chebyshev polynomials Ty(z) to

Tar—1(z). Equations (3.2.8) are converted into the generalised eigenvalue form EV = o FV
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in which F and F have 4 x 4 block matrix form

D 1 0 0 |
0 D -1 0
E =
0 0 D —I
| iaR(P +a*Q) +a' 0 —iaRQ —2¢*1 D |

0 0 0 0
0 0 0 0
0 0 0 0
I ia>R 0 —iaRI 0 |

The matrices P and @ appearing in (3.2.13) are specified in (3.2.10) whenever the appro-
priate matrix entries exist. The formulation of the eigenvalue problem is now completed
by replacing the Mth, 2Mth, 3Mth and 4Mth rows of £ and I’ with the boundary in-
formation. In terms of the M dimensional vectors described in (3.2.11), the boundary

condition rows and their location are, in block matrix notation,

Condition Row E r

y1 =0 on = -1 M q,0,0,0
p,0,0,0
0,q,0,0

0,p,0,0

0,0,0,0
yy=0 on a=1 2M 0,0,0,0
Yy=0 on xz=-1 3M 0,0,0,0

0,0,0,0

— e e
—_— N e e

y3=0 on =1 dM

~~~ N~

3.2.4 Results

Both techniques extracted capably the competitive eigenvalues in the spectrum of the
Orr-Sommerfeld equation over a range of problem parameters. For example, for the
matrix representation of the Poiseuille low problem in terms of a first order system?,
50 polynomials resolved the leading eigenvalues of the spectrum when R = 10,000 and
a = 1, in agreement with Lindsay [28]. The corresponding eigenvectors can be used to
determine the related eigenfunctions although, as expected, eigenfunction determination

requires more polynomials, relatively speaking.

The comparative performance of first order and second order differential equation rep-

L Appendix 2 gives the appropriate Fortran77 program. Digenvalues were extracted using routine

F02GJF, NAG’s implementation of the QZ algorithm due to Moler and Stewart [31].
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resentations of eigenvalue problems is currently of great interest. Higher order represen-
tations are of limited interest due to the growth of numerical errors arising from powers
of D, the differentiation matrix, even although Orszag's [38] original work on the Orr-
Sommerfeld equation treated it as a single fourth order equation. The leading eigenvalue
for Poiseuille and Couette flow was calculated for various orders of polynomial approxi-
mation using both the D and D2 representations. The results are recorded in table 3.1
and displayed in figure 3.1. Since the eigenvalue is naturally a complex number, accuracy
was measured as the modulus of the difference between a\/, the eigenvalue estimate using

M polynomials and cr”, an estimate based on a very large number of polynomials.

Poiseuille Flow Couette Flow

log M log M

Figure 3.1: Graph of - loglo |tV - <tiX) versus log M.

Some remarks are appropriate.

(a) The behaviour of the D2 curves suggests that, from a practical point of view, there
is an optimal number of polynomials to use in an eigenfunction expansion. Thus
there is a compromise between the inaccuracy due to a truncated mathematical
description of the eigenfunctions and the accumulation ol rounding error due to

finite precision arithmetic.

(b) For expansions using less than this optimal number ol polynomials, both the D
and D2 methods return similar levels of resolution although the D matrices are four

times the size of D2 matrices.
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(c¢) The resolution of the D method is significantly better than D? in this instance. This
is more a feature of the Orr-Sommerfeld problem. For less punishing applications

(e.g. the magnetic Benard problem), the difference in performance is less marked.

Poiseuille Flow Couette Flow
Value of Accuracy Accuracy Accuracy Accuracy
M D method D? method D method D? method
12 5.489x 1071 5.489x107! | 9.605x107! 5957107
16 2.432x107Y  2.432x107' | 8.530x107'  6.278x 107!
20 4.113x1071  4.113x107! | 4.243x107!  6.701x 107!
24 5.858x 1070 3.897x107% | 7.032x1071  6.947x107!
28 4.134x107%  6.229%x107% | 7.173x107t ~ 7.115x107*
32 4.237x107%  9.444%107% | 7.301x107'  7.243%x 107!
36 9.761x107%  1.365x107% | 5.464x10~*  5.120x107*
40 1.298%x107%  2.420%x107% | 4.683x10~*  6.951x10"*
44 1.521x10797  2.382x107°7 | 8.253x10™° 4.910x107%
48 1.361x107%  3.385x107% | 1.222x107%  [.592x107°
52 1.328x 1079  1.056x107% | 1.529x10=¢  1.740x10°¢
56 3.479% 107 5.409x10710 | 1.525x1077  1.622x107F
60 1.239x1071  7.451x10~" 1.701x 1078 2.275%x 1078
70 3.322x1071  1.059x107% | 9.263x107'  8.812x 107!}
80 4.084x 1071 3.682x 1071 | 1.894x107!?  1.671x107'2
90 6.204x107%  1.683x101° | 1.859x 1071  2.533x10~"
100 2.103x 10718 7.327x 107 [ 9.020x1071¢  1.565x 10~
150 5.068x1071%  1.056x1071 | 3.360x 107" 2.530x 10~
200 7.813x1071%  3.757x107% | 6.753x107'¢  3.208x10°'?
300 3.480x 10718 1.198x107% | 5.226x107%°  2.744x 107"
400 4.679%1071%  2.764x107% | 1.226x107'%  8.165x 107!

Table 3.1: Decimal accuracy in leading eigenvalue versus number of polynomials deployed.




3.2.5 Eigenvalue Distribution

The previous observations concentrated on the resolution of the competitive eigenvalue in
the Orr-Sommerfeld equation. It’s also interesting to probe the structure of its spectrum
using the D and D? strategies. The distribution of the first 30 or so eigenvalues of the OS
equation were calculated using the D and D? methods with 200 polynomials and displayed
for various values of R, the Reynolds number. [igure 3.2 deals with Poiseuille flow for
some low Reynolds numbers (< 10000) whereas figure 3.4 deals with selected Reynolds

numbers up to 50000.

The distribution of eigenvalues for plane Couette flow, using both the D and D? methods,

is displayed in figure 3.3 for selected Reynolds numbers up to 13000.

3.3 Modifying Boundary Conditions

The formulation of eigenvalue problems into pairs of second order differential equations
followed by a spectral analysis based on the D? method is often at ease with the natural
specification of boundary conditions in the sense that these are frequently paired. For
example, in the Orr-Sommerfeld problem, the boundary conditions w(1l) = w(—1) = 0
and Dw(l) = Dw(—1) = 0 translate into z; = 0 on @ = =1 and Dz, = 0 on v = %I
respectively. An obvious disadvantage of this approach is that the second pair of boundary
conditions also relate to z;. Thus, although the reformulation of the original differential
equations gives z; and z, equal status, the boundary conditions inherently prefer z; to
9.

More generally, the governing differential equations of an eigenvalue problem can always
be rewritten as a system in which each variable is independent and enjoys its own spectral
expansion. However, this impartiality may be undermined by boundary conditions in the
sense that particular variables dominate. For example, z; is preferred to z; in the Orr-
Sommerfeld problem. Tdeally, the boundary conditions Dz; = 0 should be transferred
onto the variable z; without reference to z;. More generally, in block format, the boundary
conditions should assume an upper triangular structure whose main diagonal is non-zero.
The following analysis describes a mechanism with the potential to achieve this aim, and

exemplifies it for the Orr-Sommerfeld equation.
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Poiseuille spectrum using D method Poiseuille spectrum using D2 method

when a = 1 and /? = 10000 when a = 1and R = 10000
Poiseuille spectrum using 1) method Poiseuille spectrum using D2 method
when o =1 and R = 7500 when ¢ = land R = 7500
Poiseuille spectrum using D method Poiseuille spectrum using D2 method
when a = 1 and R = 5000 when a = 1and R = 5000

Figure 3.2: Eigenvalue distribution for D and D2 methods
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Figure 3.4: Eigenvalue distribution for D and D2 methods



Results from the modified boundary value problem are then compared against those

derived using the formulation described in the previous section.

3.4 The Procedure

Let ¢ = D?w where w = 0 on @ = #1. The idea is to construct a representation of w in
terms of ¢, the arbitrary constants arising in this computation being used to satisfy two

boundary conditions, in this case w =0 on @ = £1. Clearly
Dw=A -{-/ o) du
-1
which on further integration yields

w= Az +1) -I—/ (f d(u) a’u) dt = Fl(L-E—l)—I—/ x—t)p(t)dt . (3.4.15)

By construction, the formula for w in (3.4.15) automatically satisfies w(—1) = 0 and can

be made to satisly w(1) = 0 by choosing

A= —%/_11(1 — 1)) dt . (3.4.16)
Hence
Duw(—1) = —éf_ll(l 0 dt,  Duw(l) = %/_1 (1 + 8)(t) dt . (3.4.17)

For later convenience let the sequence fi, fo, ... be defined by
1 ™
fn = / Ton—a(t)dt = / sin @ cos(2n — 2)0 d0 , n>1 (3.4.18)
-1 0

and let ¢(t) have spectral representation

= i GnTna(t) . (3.4.19)

In view of the sequential odd and even nature of Chebyshev polynomials, it follows that

[wnd = 6 [ nTawa

n=1
l oo

= —Zcb/ (Tul(t) + Taca (1))
103

= 33 ¢2n/_1(T2n(t) + Ton-a(t)) dt

n=1
1 o0

= —Z¢2n fn-i-l + fn) .
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In conclusion,

1 o0
/;1 Z qb?n lfn ) /ll f@(t) dt == Z (,b2n(fn.|_1 ‘{— fn) . (3420)

n=1 k n=1

By elementary calculus, it is verify easily that f, = —2/[(2n — 1)(2n — 3)] and so it now

follows from (3.4.20) that

N 2Pan—1 L % Aan
/—1 P(b)dt = ngl (2n —1)(2n —3)° ./4 bplt) dt = ngl (2n —3)(2n +1) (34.21)

In this particular example, Dw = 0 on @ = %1 and so in view of (3.4.17), ¢ is required

f_ll $(1) dt = /jl t(t) dt =

and these in turn lead to the boundary conditions

to satisfy the conditions

= ¢2n- = (;b2n
= =0. 3.4.22
; 2n —1)(2n - 3) ”Z; 2n —=3)(2n + 1) ( )

These are implemented in the same fashion as in the previous section.

3.5 Results

These ideas successfully extract the eigenvalues of the Orr-Sommerfeld equation over a
range of problem parameters. The results presented in table 3.2 compare the accuracy of
this new technique with that of the conventional D? method.

In conclusion, this procedure compares favourably with the conventional D* approach,

being rarely inferior and often almost an order of magnitude better.

3.6 Benard Convection of a Conducting Fluid

Suppose that an incompressible, thermally and electrically conducting Navier-Stokes fluid
occupies the horizontal layer 0 < z < 1 and is subject to constant gravitational accelera-
tion in the negative = direction and imposed magnetic field in the positive = direction. It is
possible to find an equilibrium configuration for this layer in which the fluid is stationary,
the magnetic field is constant at its imposed value and heat is conducted across the layer

so that the thermal boundary conditions are satisfied. After a non-dimensionalisation
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Accuracy in Poiseuille Flow

Accuracy in Couette Flow

M

Value of

Conventional

D? method

Modified

D? method

Conventional

D? method

Modified

D? method

12
16
20
24
28
32
36

200
300
400

5.489x 107!
2.432x 107}
4.113x107?
3.897x 1079
6.229x 1091
9.444x 10~
1.365x107%
2.420x 107
2.382x 1077
3.385x 10798
1.056x 10~
5.409x 10710
T.451 %1011
1.059% 10~10
3.682x 104
1.683x1071°
7.327x10~1
1.056x 10710
3757 1079
1.198x10708
2.764 %1098

5.489x 10!

2.432x1071

4.113%x 107!

3.897x107%
6.229% 1079
9.444 %1079
1.365x 1079
2.420% 107
2.382x 10707
3.385x107%
1.037x 1079
5.080x 1071
6.678x 10711
2.496x 10~
2.702x 107!
3.789x 1011
3.745x 10~
1.403x 10710
1.839x 10710
1.471x10799
1.950% 10~

5.957x 1071
6.278x 107!
6.701 %1071
6.947x 1071
7.115%107?
7.243%107!
5.120% 1071
6.951 %10~
4.910x107°
1.592%10~°

1.7403 1078

2.533x 1071
1.565x1071
253010712
3.208x 10712
2.744x 10713

8.165x 1071

5.957x1071
6.278x 1071
6.701x107"
6.947x 107"
7.115%x 1074
7.243x1071
5.120%107¢
6.951x107¢
4,910%x10™°
1.592x107°
1.740%107¢
1.622x1077
2.275% 1078
8.823x 107!
1.589%x 10712
1.385x 10712
1.613x10~1
2.783x 10713
1.380%x 10712
1.508x 10~
1.587 %1071

Table 3.2: Decimal accuracy in leading eigenvalue versus number of polynomials.

and normal modes procedure, it can be shown that the linear stability analysis of this

state is controlled by the eigenvalues, o, of the system of differential equations

(D? = a®)*w — QD*w — VRa*0 = a((D2 —a®)w —/Q
(D? —a®)b+ /QDw = oPyb,

VRw + (D? —a®)§ = oP.b,
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where w is the axial component of velocity, ¢ is the wavenumber, R is the Rayleigh
number, § is the temperature, b is the axial component of magnetic induction, () is
the Chandrasekhar number, P, and P,, are the viscous and magnetic Prandtl numbers

respectively and D is the differential operator d/dz. Chandrasekhar [4] provides further

details of this procedure.

3.6.1 First Order Formulation

Let variables vy, ..., ys be defined by

Yy = w, ye = Duw, ys = D*w, ye = D*w,
(3.6.24)
Ys = 0 3 Yo = Do ) Yr = b ) Ys = Db 3

then it is verified easily that equations (3.6.23) can be rewritten as the 8th order system

D‘y1=y23 Dy2:y3, Dy3=y4’

Dyy = —a'y + (2a + Q)ys -+ VRays + ol(ys — a’y1) — V@ Pnys! , (3.6.25)
3.6.25
Dys = ys Dys = —VRy1 + (a®> + o P)ys ,

2
Dyz = ys , Dys = —/Qya + (e* + 0 Pu)yr -
Since all the coefficients in these equations are constant, no auxiliary matrices are re-

quired. It follows almost immediately that o satisfies the generalised eigenvalue problem

EV = ¢FV where E and F are respectively the 8 x 8 block matrices

D -1 0 0 0 0 0 0

0 D -1 0 0 0 0 0

0 0 D ~1 0 6 0 0

. @l 0 —(Q+2* D —VRa*I 0 0 0 (3.6.26)

0 0 0 0 D [ 0 0

VRI 0 0 0 -« D 0 0

00 0 0 0 0o D —I

L0 Ve 0 0 0 0 —a*[ D |
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0 000 0 0 0 0 |
0 000 0 0 O 0
0 000 0 0 0 0
e | =T 010 0 0 0 QR e
0 000 0 0 0 0
0 000 PI O 0 0
0 000 0 0 0 0
0 000 0 0P O

It only remains to replace the Mih, 2Mth, ... , SMth rows of E and F' with the appro-

priate boundary information. For illustrative purposes, suppose that the layer of fluid

is contained within two rigid boundaries that are electrically and thermally perfectly

conducting. The appropriate boundary conditions are then

w=Dw=0=5b=0 onz=0and z =1, (3.6.28)

that is,

y1=0, =0, ys=0., y;=0 onz=0and z=1.

In terms of the A dimensional vectors p and g defined in {3.2.11), the boundary conditions

and their location are, in block matrix notation,

Condition Row E F
y1=0 on x=-1 M (g,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)
y1=0 on a=1 2M (p,0,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)
Yy =0 on a=—1 3M (0,q,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)
yo=0 on a=1 AM  |(0,p,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)
ys=0 on o= -1 5M (0,0,0,0,q,0,0,0) (0,0,0,0,0,0,0,0)
ys =0 on a =1 6M (0.0,0,0,p,0,0,0) (0,0,0,0,0,0,0,0)
yr =0 on x=—1 TM (0,0,0,0,0,0,q,0) (0,0,0,0,0,0,0,0)
yr=0 on x=1 SM  |(0.0,0,0,0,0,p,0) (0,0,0,0,0,0,0,0)

3.6.2 Second Order Formulation

Let 21, 29, z3 and z4 be defined in terms of w, 6 and b by

33297

™
e

(3.6.29)




then in terms of these variables, the eigenvalue problem (3.6.23) becomes

DQZ] = Z3,
D?zy = (2¢*+ Q)zy — a'z + VRa%zs + oz — a’zy — QP Dzy)
(3.6.30)
D2y = —VRz; +da%z3+ 0Pz,
D*zy = —/QDz + a*zq+ 0Puzy,
with boundary conditions
21=0, Dz=0, z2:3=0, z4=0, onz=0and z=1. (3.6.31)

By a routine calculation, it follows from (3.6.30) that o satisfies the generalised eigenvalue

problem BV = ¢ F'V where F and F' are respectively the 4 x 4 block matrices

D? —I 0 0
P all  D?*—(Q+2a¥)] —VRa*l 0 |
VRI 0 D? — a?] 0
Ve 0 0 '?2 -l (3.6.32)
0 0 0 0
s —a?l I 0 —=/QP;'D
0 0 PI 0
0 0 0 P.I |

It only remains to replace the (M — 1)th, Mth, ... , (4M — 1)th and 4 M th rows of £ and
I" with the appropriate boundary information. In terms of the A/ dimensional vectors p,

q, r and s defined in (3.2.11), the boundary conditions and their location are, in block

matrix notation,

Condition Row E F
z4=0 on v=-1| M—-1 |(q,0,0,0) (0,0,0,0)
z1=0 on x=1 M (p.0,0,0) (0,0,0,0)

Dz =0 on 2=-1|2M —1 | (r,0,0,0) (0,0,0,0)
Dz;=0 on z=1 2M (s,0,0,0) (0,0,0,0)
z3=0 on x=-—1|3M—1 1(0,0,q,0) (0,0,0,0)
z3=0 on a=1 3IM (0,0,p,0) (0,0,0,0)
24=0 on z=-1|4M -1 |(0,0,0,q) (0,0,0,0)
z4=0 on z=1 AM (0,0,0,p) (0,0,0,0)
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Rayleigh No. Largest BEigenvalue o
R? Real Imaginary
3731 —1.4802 +0.3716
—5.5340 0.0000
3732 —1.4769 +0.2507
—5.5349 0.0000
3733 —1.3448 0.0000
—1.6023 0.0000
| —5.5349 0.0000
L —36.3329 +£21.2906
. 3734 —1.1604 0.0000
—-1.7801 0.0000
—5.5349 0.0000
—36.3306 | £21.2412

Table 3.3: Benard spectrum around R = 3732.

Appendix 3 gives a Fortran77 program based on routine FO2BJF to solve these two

eigenvalue problems.

3.7 Results

For given values of the nondimensional parameters and a fixed wavenumber @, R is ad-
justed so that all eigenvalues have negative real part except the leading eigenvalue which
has zero real part. This procedure defines 2 = R(a). The critical Rayleigh number R
and critical wavenumber aq, are determined so that R(a) > Reie = R(aeit), that is, £(a)
has a minimum value Req at @ = aeqe. The key step in this procedure is the identification \
of the leading eigenvalue for all values of R. Table 3.3 displays the top of the spectrum
as R varies between 3731 and 3734. The dynamic nature of these excerpts gives a clear
indication as to the nature of eigenvalue problems and provides an unambiguous warn-
ing that non-spectral methods should be used with extreme caution unless supported by

corroborative mathematics such as a “principle of exchange of stabilities”.
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Benard Convection for a = 5.5576, R = 15500 and ¢ = 1000
Regular form of Regular form of Modified form of
boundary conditions boundary conditions boundary conditions
Value of Accuracy for D Accuracy for D? Accuracy for D?

M lo — o] lo — o, o — o]

10 1.837x107™ 3.251 %107 3.251 %1079t
15 2.123x10793 2.176x107%3 2.176x107%3
20 8.735x107% 2.802x107% 2.802x107%
25 1.854x107%8 1.923 %1078 l.QQlXiO“OS
30 1.058x 1010 1.121 %1070 1.268x 10710
35 8.804 101! 2.840% 10710 2.090x 10~
40 1.239x10-10 2.501 %1010 4.769x1071°
50 1.925x 10710 1.043 %1079 4.869% 10~10
60 1.181x 10710 1.808x 107 1.485x1079°
70 1.064x 10710 1.620x107% 2.031x107%
80 1.729x 1010 3.272x 10799 1.980x 1079
90 1.214x1071° 8.093x 107 7.450x107%9
120 1.781x 10710 4.821x107%° 1.966x107%°
150 6.205% 10719 1.370x 1078 8.489%x 1079
190 6.495x 10710 6.938% 10798 2.570% 10708

Table 3.4: Comparison of D and D? methods in Benard convection
3.8 Modified Boundary Conditions

As with the Orr-Sommerfeld equation, the accuracy of the eigenvalue determination was
estimated for the D method, the D? method and the D? method with modified boundary
conditions. The results are displayed in table 3.4. The D method was superior to the D2
methods at each level of polynomial approximation although the difference was not so
marked as with the OS equation. Within the D* formulation of the problem, the format
of the boundary conditions seemed to malke little difference although the modified version

1s marginally superior.
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Chapter 4

Eigenvalue Calculations using

Legendre Polynomials

4.1 Introduction

This chapter is intended to provide some results comparing the performance of Legendre
and Chebyshev polynomial series in eigenvalue calculations in addition to illustrating
the details of implementation for a Legendre spectral series. It is convenient to repeat
the treatment of the eigenvalue problem for the Orr-Sommerfeld equation in the case
of Poiseuille and Couette flow and compare results with those established previously in

chapter 3 using the Chebyshev Tau method.

4.2 Changes for Legendre Polynomials

The Legendre treatment of the Orr-Sommerfeld problem differs overtly from the Cheby-
shev calculation in the respect that the matrix ¢ (describing @) and the differentiation
matrix D need to be replaced by their Legendre equivalent form. Note that P is un-
changed since it represents Dt - a constant in the OS equation. In fact, minor alter-
ations are also required in the D? implementation since the derivative of Legendre and
Chebyshev polynomials at @ = +1 are slightly different. No adjustment to the boundary
rows is required in the D method since T,,(1) = Py(1) = 1, T,(—1) = P.(—1) = (—1)™.

Recall from (2.2.25) that

Di}”_g]‘_}_l = 21. ’{" l ) Z,J Z 0 .
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Now suppose that
=" fiPlx) (4.2.1)
k=0

ther, in view of the product property for Legendre polynomials,
af(x) = > freP(2)
k:()

k41 k
= foPi(2) ‘f‘Z/k()kJrlPHl( )‘i‘mpk:—i(l'))

[we]

= foPi(a +Z% fk 1 Pe() +Z

<k E+1
- Z‘)L Fr—1Pi( +22k+3f:b+1 Pp(z) .

553 kaPk(:B)

A similar calculation, when applied to z(z f(a})), yields

Wflz) = f:

- L

[ee] ,,

h 1 P +Z%

. k41 k Ji_
/k 1(%—{—1 Prgi(2) + 7lu+lPA 1 ))Jr—g.z

L — fL+x%Pk(1)

e
—_
[\3

+§’AAT3 s (’j}»ilip‘“( e+ 71;-]1113‘“"1(:"))
N é(zk f(g);z? 7y e il +i oF _(:Vl—;-(igh_i_g)fpk(l')‘k :gil:
2 .
"2k ll;(ik Fy e g(ﬁﬁﬁ : éiﬁéﬁfé)
= L Ai(zk- ot
+Z(7A = lkzm Fle Z Si + é)%i?)fkﬂpﬁ(ﬁ)
} § 94‘»-:3‘) f’i)— it wo(2?-2—1;)?;;:3)f‘“’P*"(‘”)
OV

Jrra Pr(2)

Frer2 Pr(2)

In conclusion,

e & R(k—1) ‘
(1—2bf(a) = —‘;(%_3)(2k_1)fk_2Pk(a,.)
o ok24+k—1) .,
20k — 1)(2k + 3y /)
© (k+1)(k+2) ‘

w E
vf(e) = Z% fr1 Pl kaigfkﬂpk(i’)
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Since @i(a) = 1 —2* in Poiseuille low and @(z) = 2 in Couette ow then equations (4.2.2)
form the basis for the determination of ¢ in Poiseuille and Couette flow respectively. For

each flow, the non-zero entries of () are

Poiseuille Flow

0 o k(k-=1) 0 (B Dk +2)
2T Tk )2k — 1) MM T Dk 3)(2k +5) 123)
0up = 2B b= (4.2
SR k- D2k +3)
Couette Flow
k k1
. L = - I —_— Z .'2'/
Quim1 = 50— Qe = 5005 (4.2.4)

4.3 Boundary Conditions

Since Th(1) = P,(1) = | and T,,(—=1) = P.(—1) = (—=1)" then boundary conditions
involving function values are treated identically for Chebyshev and Legendre matrices.

In terms of the vectors p and g defined in (3.2.11),
M M

yr(l) = Z o Pi(l) = ap y(—1) = Z o Pr(—1) = aeq . (4.3.5)
k=0 k=0
Hence boundary conditions for Chebyshev and Legendre spectral series based on the D
method are always identical.

However, the D? technique requires derivatives of the spectral polynomials at » = £1.

For Legendre polynomials, it is easily established that

1P (1 k-1 AP k—1
o) oy g ook, Pl NS ook 1)L (436)
CZ;IZ r=0 (ll,‘ r=0

Moreover Pyr(x) is an even function of x so that Py () is an odd function whereas
Py_i(2) is an odd function of « so that Pj,_,{x) is an even function. Hence it follows

from (4.3.6) that
dPy(l) _k(E+1) dP(—1)  k(k+1)

k o -
e 3 i 5 (=) (4.3.7)

4.4 Results

Legendre polynomial series were employed to compute the competitive eigenvalue of the
Orr-Sommerfeld equation for Poiseuille and Couette flow using the D and D? methodolo-

gies. Computations were done with wavenumber a = 1 and Reynolds number R = 10000
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for Poiseuille flow and R = 13000 for Couette flow. Comparative results are presented in

tables 4.1 and 4.2.

—
Spectral Accuracy of Poiseuille Flow

Value of D Method D? Method
M Chebyshev Legendre Chebyshev Legendre
20 4.113%x107Y  4.085x10"" | 4.113x107Y  4.085x 107!
32 4.237%x107%  3.381x107% | 9.444x107° 6.059%x107°
50 1.328%107°  2.996x107° | 1.056x10™° 5.685x107?
100 2.103%x107%  7.822x 1073 | 7.327x 10711 5.658x 107!
200 7.813x 10713 4.362x1071% | 3.757x107% 4.279x1071°
400 4.679x10713  2.563x10712 | 2.764%107%  8.977x107°

Table 4.1: Decimal accuracy versus number of polynomials used.

Spectral Accuracy of Couette Flow
Value of D Method D? Method
M Chebyshev Legendre Chebyshev Legendre
20 4.113%1071  8.279%107! [ 6.701x107!  6.647x107!
32 4.237x107%  7.339x107" | 7.243x107t  7.324x107!
50 1.328%107%  2.139%x10% | 1.740x107¢  3.401x107°
100 2.103x10713  1.295%107 " | 1.565x 1071  5.979x1071°
200 7.813%x 1071 1.898% 107! | 3.208x107*% 3.326x10~'*
400 4.679x1071  1.295%x107'% | 8.165x10 2,189 107

Table 4.2: Decimal accuracy versus number of polynomials used.

It is clear from these calculations that both families of polynomials perform equivalently.

Indeed, the results on Couette low suggest that Legendre polynomials may have a slight

edge over Chebyshev polynomials for this particular problem. We believe that this is

probably an anomaly generated by the way in which the errors were estimated.

As

has already been stated, analysis suggests that both sets of polynomials are effectively

equivalent.
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Chapter 5

Benard-Marangoni Convection in a
Layer of Conducting Fluid with
Imposed Magnetic Field

5.1 Introduction

Let x; be a set of Cartesian coordinates with associated base unit vectors e; where it
will be understood in all subsequent analysis that roman indices take values 1, 2 and 3
whereas greek indices take values 1 and 2 only. Suppose that an incompressible, thermally
and electrically conducting Navier-Stokes fluid occupies the horizontal layer 0 < z3 < d
and is subject to constant gravitational acceleration —ge3 and imposed magnetic field
Hes. The fluid motion is constrained by a rigid lower boundary maintained at constant
temperature 71, and an upper free boundary whose temperature Ty is maintained by the
radiative transfer of heat into an impinging passive inviscid fluid at constant temperature
T.. and constant pressure P.. This configuration possesses a steady state solution in
which the fluid is stationary, the magnetic field remains at its imposed value but heat
is conducted across the layer at a constant rate determined by the thermal boundary
conditions. This work aims to explore the stability of this “conduction solution” and is
novel in the respect that it presents a comprehensive treatment of the linearised problem.
that is, one which can distinguish between stationary and overstable modes. Previous
analysis of this problem either considered restricted situations in which the eigenvalues of

the linear problem could be determined explicitly, or alternatively, investigated circum-




stances in which zero was an eigenvalue of the linearized problem. This latter possibility

is only sensible provided a “principle of exchange of stabilities” can be established.

Chandrasekhar’s [4] work on the convection of conducting fluids established that oversta-
bility can be the preferred mechanism in particular parameter regions. For example, in
the magnetic Benard problem for a layer of fluid in the absence of surface tension eflects,
overstability can be the preferred mechanism when the magnetic Prandtl number exceeds
the viscoits Prandtl number. Hence it seems plausible that overstable convection features

strongly here.

5.2 Basic Equations

Let Vi, H;, B;, Ji and E; be respectively the components of the fluid velocity, magnetic
field, magnetic induction, current density and electric field with respect to the base vectors
ey, € and e;. In Cartesian tensor notation, the equations expressing conservation of

momentum in the fluid layer have component form

% FViV = —%P,,; oV, i—f;g(l — (T — To))dia + pl—O(J x B); (5.2.1)
where T is the INelvin temperature of the fluid, p is the fluid density at temperature 7',
po is the fluid density at a reference Kelvin temperature 7j (taken to be Tty in this work),
P is the hydrostatic pressure and v (constant and independent of temperature) is the

kinematic viscosity of the fluid. In keeping with the classical Boussinesq! approximation,

it will henceforth be assumed that
p(T) = po(l —a(T —Tp)) = po(l — (T — Ty)) (5.2.2)

in which « is the coeflicient of volume expansion of the fAuid and is assumed to be constant.
Furthermore, incompressibility of the fluid and the non-existence of magnetic monopoles

require that V and B are both solenoidal vectors. Hence
divV=V,;=0, divB=5;;=0. (5.2.3)

Suppose also that the magnetization in the fluid is directly proportional to the applied

field and that the fluid behaves like an Ohmic conductor so that the magnetic field

1The Boussinesq approximation asserts that variations in density due to temperature manifest them-
selves only through buoyancy. The classical view supposes that density is a linear function of temperature

although it is well known that this is not a good approximation for water [30].
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H, magnetic induction B, current density J and electric field E are connected by the

constitutive relations
B=uH, J=¢(E+V xB), (5.2.4)

and the Maxwell equations

B
curl B = — 6(—

5 J= Z;;curlH , (5.2.5)
where p (constant) is the magnetic permeability, & is the electrical conductivity and the
displacement current has been neglected in the second of these Maxwell equations as is
customary in situations when free charge is instantaneously dispersed. On taking the curl
of equation (5.2.4); and replacing the electric field by the Maxwell relation (5.2.5);, the
magnetic field H is now readily seen to satisfy the partial differential equation

neurlcwrl H = —%I; + cwrl(V x H) (5.2.6)

where n = (4mpa)~! is the electrical resistivity. In addition, the constant nature of u
makes the magnetic field H a solenoidal vector. Equation (5.2.6) is now reworked using
standard vector identities to yield in sequence

%—}} = curl(V x H)—newlcurl H
= V(divH) — H(divV) + (H.grad)V — (V.grad)H — n curl e} H
= (H.grad)V — (V.grad)H — 5 curl curl H
= (H.grad)V — (V.grad)H — pgrad(divH) + A H
= (H.grad)V — (Vgrad) H+n7AH
with component form

ot

Equation (5.2.7) describes the temporal evolution of the magnetic field. Moreover, the
2.4)

+ Villi; = H;Vi; +nHi; - (5.2.7)

relations (5.2.4) and (5.2.5) can be used to recast the Lorentz force J x B into

— _,E‘__ . :i T — orp 2 )
JxB= 4m(cmlH) x H 4W(H.(g1 2d H) — grad (H7/2))

(m)

leading to the notion that the Lorentz force is derived from a magnetic stress tensor o;; .

In view of the fact that

m I’ 1 :
(I xB); =0 = o (HiH; = S HPOy) (5.

{74
o
[o2e]
~—
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the momentum equation (5.2.1) can now be manipulated into the format

IV, 1
%7 FVie = =Tt Vg = g(1 = T = To))dis + By (5.2.9)

where IT = P-4 uH? /8 is pressure. Assuming that energy losses due to viscous dissipation

can be neglected, conservation of energy contributes the field equation

or
o VT = sT; (5.2.10)

where r (constant) is the thermal diffusivity of the fluid. To summarise, the convection

problem is described by the differential equations

aV; 1
fii= =T+ Vi — g(1 = (T — To))is + —— I H; ;|
ot Po 47 py
aT .
_d_t_i_" T —h,TJJ, (5211)
OH;
g = H;Vij +nHi; .

ot
where V and H are solenoidal vector fields. Equations (5.2.11) need boundary conditions

on 23 = 0 and a3 = d.

5.3 Boundary Conditions

Suppose from the outset that the region exterior to the fluid layer is filled with non-
conducting material so that no currents can flow there. At the boundaries between
conducting and non-conducting materials, the component of the current density normal
to the interface is zero. At any interface, normal components of magnetic induction are
always continuous and so the natural way to guarantee the current condition is to extend
continuity to all components of the magnetic induction. Within an insulating material,
the first Maxwell equation in (5.2.5) indicates that H is irrotational so that H is the
gradient of ¢(t, ;) where ¢ is a solution of the Laplace equation since divH = 0. That
is,

H£:H5i3+(:b‘i. (obU:O

Since @3 = 0 is a rigid boundary at fixed temperature 71, then the appropriate boundary

conditions there are

Vi=0, T="1T,, B; = pH;  continuous (5.3.12)




with irrotational magnetic field in 23 < 0. The treatment of the upper boundary z3 = d
is more involved since it can move. Suppose that it has equation 23 = d + F(¢,2,) at
time ¢ with unit normal n = n;e; directed from the viscous fluid into the passive inviscid

fluid. The boundary conditions come from four sources.

Heat Transfer The heat flux passing {rom the viscous to inviscid fluid is —kn;T; and
this is equal to h(T' —T), the heat loss due to radiation (Newtonian cooling). Here
k (constant) is the thermal conductivity of the fluid and A (constant) is the heat

transfer coeflicient. Hence the thermal boundary condition is
A.'T’.i'lli + /?,(T — Tm) =0. (5313)

Material Surface Fluid particles on the surface x5 = d + F'(¢,2,) remain there and so

drs OF OF da,

o o Yo a

and this leads to the condition

or .. _OF

—_— V. = -, 5.3.14
P ot (5.3-14)

Magnetic Condition Since the region z3 > d is electrically insulating then B; = ufl;
is continuous across x3 == d and the magnetic field in z3 > d is irrotational, that is,

derived from a potential function.

Stress Conditions Stress conditions at the interface between the fluid layer and the
passive inviscid gas are based on the assumption that the discontinuity experienced
by the stress vector in crossing the interface is balanced by the divergence of the
surface stress tensor, assumed here to be due entirely to a temperature dependent
surface tension in the absence of interfacial mechanical shear stress. Specifically the
surface stress fensor is

598 = o(T)a™" (5.3.15)

where ¢ is the surface metric tensor and o is surface tension. Although simplistic,
this view of an interface is ubiquitous in the literature. Of course, in reality the
interfacial region has a finite dimension (of the order of microns) and is perhaps
more accurately modelled by mixture theory in the respect that molecules of each

bulk fluid can coexist at each interfacial point. Clearly this is an area for future




research.

The stress vector for the passive gas impinging on the top boundary is t = — P n;e;

and, in view of observation (5.2.8), the stress vector for the fluid is
. . oy Lo
b= ni | =Pdij + por(Vij + Vi) + —(HHi — SH 6ij) | e .
[ F
The divergence of the surface stress tensor is

(S“ﬂmi,ﬁ) e = (oa“ﬁx.i,ﬁ) e, = (a,aa“ﬁwi,ﬁ + abgni) e;
ey

y<x

where b2 is the mean curvature of the interface. Thus the stress boundary condition
has component form
ofd . ba — P J 2
oo Prig+obin, = —FPoni+(P+ S—TH Yn;
7

, . (5.3.16)
—pov(Vij + Viglnj — —(Hinj) i,
K

which can be decomposed further into the tangential and normal components

O—(T)bg = _Pco + (P -+ é—fTHz) - ZPOVI";,;;"'H,"N.J‘ - ﬁ(H]TLJ)Z s

o= —po/(Vi;+ Viinjeia — f—L(Hjnj)(}]ifCi,a) .
4

5.4 The Base Solution

It is easily verified that equations (5.2.11) have a steady state conduction solution in
which the viscous fluid is stationary, the top surface is flat, the magnetic field is constant
at the imposed value and the fluid interior is permeated by temperature and pressure
fields which are functions of @3 only. The actual solution satisfying all the boundary
conditions on 23 = 0 and 25 =d is
Vi=0, H; = Héis (e, t) =0, Tg(x3) = Tt + Bea
u d (5.4.18)
=P+ toH? 4 pog/ [l — (Tt + Bz — Tu)] d=
3 3
where 3 denotes the temperature gradient and is determined from the thermal boundary
condition at x5 = d, the thermal condition at 23 = 0 being satisfied trivially. In terms of

the Nusselt number

N, = %Jil , (Nusselt number) (5.4.19)




in which & and h are respectively the thermal conductivity of the fluid and the heat
transfer coefficient of the radiant boundary, it follows directly from the equilibrium tem-
perature profile in (5.4.18) and the Robin condition (5.3.13) that Ty satisfies

TL + IVu Too Aru
o= 1L+ N, ﬁd—1+Nu

(Too — T) . (5.4.20)

5.5 The Perturbed Equations

Let h = h;e;, 8 and p be perturbations of the magnetic field, temperature and pressure

respectively about their equilibrium values Hes, Tr(23) and lg(23) so that
Vi=uv;, H;, = H(S,;;;—E-/Zi N TZTE(.’l?g)-I—Q, H:HE—f—p. (5521)

It can be established easily from (5.2.11) that h;, @ and p satisfy the field equations

Ov; 1 wo
— v, = ——n; 08, Hh; hih; ),
51 + Vv Poz;;+ wi g + galds + 4‘1‘90( via + hjihi ;)
—a—%— —[— }3‘03 —i— 1{,‘9_]‘ = H,Q,_,‘j s (5522)
Oh;
F} + vih; = hjvi; + Hvis + kg,

where v and h are solenoidal vector fields. The boundary conditions on the lower bound-

ary 3 = 0 become
=0, v; =0, pth;  continuous (5.5.23)

and the conditions on the upper boundary v3 = d + F(t,2,) corresponding to (5.3.13)

and (5.3.14) are modified respectively to

F
(ng — 1Ty — T1) + dnib; + N8 + N (Ty — TL)—[ =0,
aF OF . (5.5.24)
Ug — aT,a'Ua = E .
The surface stress conditions (5.3.16) and (5.3.17) require significantly more effort. The

modified form of the normal component of (5.3.16) is

O'(TU + (TU — T]_,)Fd_l -+ 9)()3 = p- % [(lljﬂ,j)z + 2H713hjnj] — pogF

+£H2(1 — n3) — 2povo; jnin (5.5.
7

(11
o
(a3
~

Pogcx 2
+ % (Ty —Tu)F*,
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whereas the tangential surface stress condition (5.3.17) yields

do

ﬁ [(TU - TL)d‘lF,a "l‘ 9“} = gpoy(-ui,j + vj,‘i)nja:é‘q

) (5.5.26)
—f«—(H*ng + hini)(hitia) -

0
In (5.5.26) it is assumed that the derivative of the surface tension with respect to tem-

perature is evaluated at T = Ty + (Ty — T.)d"' F + 6.

5.6 The Non-dimensional Equations

Equations (5.5.22) and boundary conditions (5.5.24), (5.5.25) and (5.5.26) are now non-
dimensionalised in the customary manner. Spatial coordinates z; are scaled with respect
to d, time ¢t with respect to d*/k so that the non-dimensional form of the upper surface
becomes x5 = 1 + f(¢,2,). Similarly perturbed velocity components are scaled with
respect to x£/d, magnetic field components with respect to Hr /1, pressures with respect to
povr/d? and temperatures with respect to |7, — Tu|. The corresponding non-dimensional

form of (5.5.22) is

dv;
P (l + “’j’U*J') = —pi +vijj + RO0is + Q(his + Py hihi )

ot
a0
S il = a0 (5.6.27)
Oh;
P,;l (_a—jf + ’Lljh.,',j — /Z.j‘U.i,j) =v;3+ h.g,jj s

where the Viscous Prandtl No. P, the Magnetic Prandtl No. P,,, the Chandrasekhar
No. ) and the Rayleigh No. R are defined by

g 2.2 3 .
p=2 Pm:E, _ pHd R:agd |71, FUI_

[ K dmpovny KV

(5.6.28)

Furthermore, v = sign(7Ty, — Ty) indicates the boundary at which heat is supplied. When
v = 41, the fuid layer is heated on its lower boundary whereas when y = —1, the upper
boundary is heated. Equations (5.6.27) are to be supplemented with rescaled boundary
conditions on the upper and lower boundaries. The non-dimensional boundary conditions
on 23 = 0 are derived from (5.5.23) and are

v; =0, =0, lim h; = KO im 91

23—07t Moxz—0~ a’LE

(5.6.29)
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in which ¢y, is the non-dimensional magnetic potential function? in the region z3 < 0.
The rescaled equation of the upper boundary is @3 = L 4+ f(t,2,). Here the heat transfer

condition, free surface condition and continuity of magnetic induction require that

(1 —ng) +nib; + No(0 —vf) =0,

af  _df .
v3 — 5;3;0& =30 (5.6.30)
lim h; = Ho im Qibg ,
wg—1— Lo zg—+17t 8’1,1

where ¢y is the non-dimensional magnetic potential function in the region 23 > 1 + f.
Again, the surface stress conditions require more effort. The rescaled form of (5.5.26)

arising from the normal component of the surface stress is

o(Tu + (0 — v )T — Tul)

o o(Tu) by = p— QP (hyny)? + 2nshyng] — B.COTHf
+me(l - ‘n.%) - 2’05’]‘77,1'??,‘?' — :Yr)ﬁfz N
(5.6.31)
in which C,, the Crispation No., and B,, the Bond No., are defined by
,009652 PolK < o
= X . = _ 5.6.32
o(To) 1o (T0) (5.6.:32)

The rescaled version of the tangential surface stress condition (5.5.26) is
o (Tu + T — Tu)(0 —vf) .
; —(vfa—0a) = (vij+vi)n0;2ia
o'(Tv) ( )= Lo (5.6.33)
+Q/L.5;L‘g’a(n;3 -+ P;lhjnj)

M

where M is the Marangoni No. defined by

—T; /
= L= Tolo'(To). (5.6.34)

PoVE

5.7 The Linearised Problem

Until now the analysis has been exact. Henceforth suppose that perturbations in v, h, 0
and p are so small that their products can be ignored whenever they occur — this is the

linear approximation. In this scenario, the approximated form for equations {5.6.27) is

é)vi

P,.‘l-a—t = —pi+ovi;+ R0+ Qhis .,
Py, .
= = +0i, (5.7.35)
h;

Pﬁ%i- vig + hijj .

2Both ¢y, and ¢y have been rescaled with Hdw/n.
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The boundary conditions on the lower boundary 23 = 0 are unchanged from those de-
scribed in (5.6.29). On the upper boundary a3 = 1 + f(t, ), the outward unit normal

has components

—fa _ —/2 1 .
N = ——— Ng = —F——————— 13 = —m—————— (5.7

- = ! 2= - =, N3 = - v
VI+ i+ 15 I+ A+ V14 f2+ f%

so that the linearised upper boundary conditions described in (5.6.30), (5.6.31) and

(5.6.33) are

.36)

o4
— + Ny(0 — =0,
O + Nu( 1f)
i
T .
i ki = %QL“L a(i[: ’ (5.7.37)
Crlos = p — 2Qhs — B,C7Hf — 2,&_3 ,
(31‘3

My — 00) = o+ 202 4 Qb
0173

5.8 Magnetic Boundary Conditions

Recall that the magnetic field in an insulating material is irrotational and is derived {from
a potential function ¢(t,z;) which is the solution of Laplace’s equation.

Let ¢ = (1, m;;)ei“"”ﬁ‘m) then

0% . o
T—%~a2'¢’:0, a=p'+q*, _—%——}Oaks[mgléoo.
oz} Ous

Trivially ¢y and ¢y, have functional form

b1 = CL(t)eC"‘”3 gt (Pritaes) ’ by = C‘U(t)e_"““ gtportawa) (5.

<t
jes)
o)
<o
~—

When 25 < 0 then h = Cy,(¢)(ip,1¢,a) and continuity of the magnetic induction across

w3 = 0 requires that

1 1 l
!?,3,3 = —-b3!3 = -———.ba)a — EG’?CL({) —
H H I It

a
—bs = ahs

with a similar argument on w3 = 1 + f. Hence the magnetic boundary conditions are

o/

g—l:i"*&hlg:ﬂ, IL‘gZO.

L3 (5.8.39)
Ohs

— +ahy =0, g = 1.
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In fact, the description of the convection problem is best expressed in terms of the be-
haviour of the third components of the velocity and magnetic field. It is convenient to
write w = vs, b = hz and represent partial differentiation of an arbitrary function 3 with
respect to a3 by Db, the 3-D Laplacian of 1 by A and the 2-D Laplacian of 1/ by QAgip.
On taking the double curl of the first of equations (5.7.35) and then using the second of

these equations to replace the Laplacian of Aj, it follows that

g—t(PflAw —QP'Dh) = A — QD*w+ RAL0
P,;l% = Ah+ Dw, (5.8.40)
o)
% = ~yw+ Af.

In this new notation, the boundary conditions on a3 = 0 finally become
w=0, Dw=0, 0=0, Dh—ah=0, (5.8.41)

and on x5 = 1 the boundary conditions are

DO+ Nu(0 —~f) =0,

af
W~ ===
t
Dh+ah =0, (5.8.42)

Nof+ B, —Co(p—2Dw —2Qh) =0,
MO —vf) o+ (Dvg +wao+ Qha) =0

in which the linearised form of the Gauss-Weingarten relations have been used to re-
place b2 by Ay f. The treatment of the boundary conditions on ws = 1 is completed by

computing the surface divergence of the last condition in (5.8.42). The resulf is

Aow + M~OH — )= D*w—QDh=0. (5.8.43)

5.9 Normal Modes Analysis
When solutions to equations (5.7.35) are sought in the form

oL, i) = ¢(ar3)e"‘e'i(?"”1+"““2) ¢ ={w,h,p 0},

f(t,me) = foeteilportewe) fo constant ,

(5.9.44)
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it is relatively straightforward to establish that o is an eigenvalue of the system

oPTHYD? — a*)w — cQP;'Dh = (D? — a*)*w — QD*w — Ra®0 ,
ocP~'h = (D2 — a,z)h 4+ Dw, (5945)

m

ol = ~yw+(D*—a*)d.

The boundary conditions on z3 =0 are
w=0, Dw =10, =0, Dh —ah=10. (5.9.46)

As a preamble to the formulation of the final boundary conditions on 3 = 1, it follows

from (5.2.9) that

Nop = —A(Dw) — QD*h + R."I—a(?t—(Dw)

so that the pressure everywhere is given by the equation

1
p= F(Dg'w —a*Dw + QD*h — o P Dw) . (5.9.47)

Hence the boundary conditions on x3 = 1 are

DO+ No(0 = vfo) =0,
w = 0ofo,
Dh+ah=0,
a2(B, — a®) fo + C(QDw — D*w + 3a*Dw + Qa*h) = oC.(QPLh — P Dw)

(D? + a¥)w + M(0 —vfo)a* + QDh =0 .

(5.9.48)
Let variables yi,...,ys be defined by
Yy = w, ys = Duw, ys = D*w, ye = D%w,
(5.9.49)
ys = 0, ys = DO, yr = h, ys = Dh,




then it is straightforward to verify that equations (5.8.40) can be rewritten as the 8th

order system

Dy, Y2
Dy Ya
Dy Y4
Dy —atyy + (2¢* + Q)ys + Rad’ys
+o[Pr ys — a’yi) — QP ys] (5.9.50)
Dys Ys
Dys = —y1+(a®+0)ys
Dyz Us
Dys —ya + (a®> + o P yr .
The boundary conditions on 23 = 0 are now
yy =0, ye =0, ys =0, ys —ayr = 0. (5.9.51)
The boundary conditions on a3 = 1 are more involved and comprise 4 conditions to

complete this eigenvalue problem plus a further condition to establish the height of the

free surface. It is convenient to use the relation

(D? 4+ a*)w + M, (0 — f)a* =0

to eliminate occurrences of f everywhere in the equations (5.8.42). This is always possible

provided M, > 0. If M, = 0 then the condition D§ + N,(§ — f} = 0 plays a similar role

cte. In terms of yy, ..., ys, the appropriate conditions are

olys + a*yy) + oa® Mays — a* Moy,

Nu(ys + a*y) — a*Myys =

(B, — a%) [ys + a’y; + a®Mays] + M.Co(Quya — ys + 3a’y)

‘l‘gl\{[acr'(nylyZ - QPT;L{J?') =

Ys + ayr =
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5.9.1 Benard-Marangoni Convection

The equations (5.8.40) can be reformulated in the form of

% = AY + ocBY
where A and B are the real 8 x 8 matrices
] 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
. —a' 0 (2a*+Q) 0 Ree® 0
0 0 0 0 0 1
-1 0 0 0 a* 0
0 0 0 0 0 0
0 -1 0 0 0 0
and -~ ‘
0 0 0 000 O
0 0 0 000 O
0 0o 0 000 O
p_ | B0 BT 000 0
0 0 0 000 O
0 0O 0 010 0
0 0o 0 000 O
0 o 0 000 P!

oo O O o O

0

Since equations (5.8.40) have constant coeflicients then they can be converted into the

spectral representation EV = oFV as indicated previously where E and F' have block

matrix form

| D -1 0 0 0 0

0 D -1 0 0 0

0 0 D -1 0 0

P el 0 —(Q@+2a¥)] D —Red®l 0
0 0 0 0 D -1

! 0 0 0 —a®l D

0 0 0 0 0 0

] 0 I 0 0 0 0
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and

0 0 0 000 0 0|
0 0 0 000 0 0
0 0 0 000 O 0
o —a?P7 0 P70 00 0 QP (5.9.56)

0 0 0 000 O 0
0 0 0 010 0 0
6 0 0 000 0 0

0 0 0 000 PP 0

It only remains to replace the Mth, 2AMth, ... , 8Mth rows of E and ' with the boundary
information. From a mathematical standpoint, it does not matter how the eight boundary
conditions are ordered but numerical performance is usually enhanced if the boundary
data is inserted so that it favours the Upper Hessenberg format which is genecrated by

Householder operations on E. We deal with each boundary condition in turn:

Mth row This comes from the boundary condition (5.9.51);. The rows of £ and F are

replaced respectively by the block forms
(q,0,0.0,0,0,0,0),  (0,0,0,0,0,0,0,0).

2Mth row This comes from the boundary condition (5.9.52);. The rows of E and F are

replaced respectively by the block forms

(N, a*p,0, N,p,0,0, ~M,a’p,0,0) , (0,0,0,0,0,0,0,0) .

3Mth row This comes from the boundary condition (5.9.52),. The rows of £ and [ are

replaced respectively by the block forms
(M,a*p,0,0,0,0,0,0,0), (a*p,0,p,0, M,a’p,0,0,0) .

4Mth row This comes from the boundary condition (5.9.52)3. The rows of E and F' are

replaced respectively by the block forms

(((B,a* — a*) + 3a*M,C,)p, QM,C,p, (B, — a®)p,

—M,Cy, (B, — a*)M,a*p,0,0,0) ,

(0) *Cz‘Af[a.R-_-lpv01070101QC1‘1\JQP_lp7 0) .

m
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5Mth row This comes from the boundary condition (5.9.51),. The rows of £ and F are

replaced respectively by the block forms
(0,q,0,0,0,0,0,0),  (0,0,0,0,0,0,0,0) .

6Mth row This comes from the boundary condition (5.9.51),. The rows of £ and [ are

replaced respectively by the block forms
(0,0,0,0,q,0,0,0),  (0,0,0,0,0,0,0,0).

TMth row This comes from the boundary condition (5.9.51)4. The rows of £ and F are

replaced respectively by the block forms
(070?030703 07 "(LCL Q) ) (0)070)(],010,0)0) .

8Mth row This comes from the boundary condition (5.9.52),. The rows of £ and F' are

replaced respectively by the block forms

(0,0,0,0,0,0,ap,p),  (0,0,0,0,0,0,0,0).

Appendix 4 shows the appropriate Fortran77 programs using NAG routine FO2BJF to

solve this problem using both first and second order systems.

5.10 Results

In his work on the influence of a uniform magnetic field on the onset of instability con-
ducting fluid, Wilson [45] obtained a series of results using constant viscous and Magnetic

Prandt! numbers P, =1 and F,, = 1 respectively.

The aim of this chapter is firstly, to investigate the effect of a vertical magnetic field on
a layer of conducting fluid with P, = P, = 1; secondly, to compare the results obtained
with those reported by Wilson, and finally to study the variations on the stability mode

using various values of the Magnetic Prandtl number.

5.10.1 Non-Deformable Free Surface C, =0

Results and figures that are found when C, =0, F, = P, = 1 and for different values of
parameters R,, @, M, and B, for purely buoyancy-driven and purely thermocapillary-

driven convection in the case N, = 0 and N, — oo respectively are identcal to those
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reported by Wilson. Because of similarity, they are not mentioned in this subsection with
some exceptions due to their relative results. By reducing the value of P,, from unity the

‘results are found to be different from those reported by Wilson.

The curve representing the marginal stability in a plane U = U(R,, @), with the param-
eters P, P, @, M,, B, and N,, separates the plane into two parts. The part which
is above the curve represents overstable modes whereas that below the curve represents
stable modes. It should be noted that the simplest result is obtained with the parameters
Po=1,F,=1,Q=0, M, =0 and B, =0, but for the number N, there are two cases,
N,=0or N, — co.

The critical value of the Rayleigh number is the minimum of the corresponding marginal

stability curve and is denoted by
R. = R P, Py, My, Bo,N,)
and a corresponding critical wavenumber is denoted by
= a( Py, Py M,, Bo, N,).

For example, the critical value of Rayleigh numbers are respectively R. = 669.00040
and R, — 1100.6520 at the corresponding wavenumbers a. = 2.08560 and a, = 2.6820
when NV, = 0 and N,, — co. The instability case generates real eigenvalues as long as
P,.3is > P, as shown in second column of tables 5.1 and 5.2, while if P,d < P,, then the
overstability case starts to generate the complex eigenvalues as shown in third and fourth
columns of tables 5.1 and 5.2 when P,, = 0.5 and 5.1 and 5.2 when P,, = 0.1 for N, =0
and N, — oo respectively. Briefly, the overstability case starts to appear in the third
and fourth columns of the table 5.1 at () = 1438.450, R, = 12494.474 and a. = 5.156 and
at Q = 29.769, K. = 1248.138 and . = 2.567 when P,, = 0.5 and P,, = 0.1 respectively

for N, = 0, and it is shown that in the third and fourth columns of the table 5.2 at
Q = 867, R, — 13413.185 and «, = 4.671 and ¢ = 18.330, R, — 1471.840 and
e = 2.732 when P,, = 0.5 and P,, = 0.1 respectively for N, — oco.

[t can be concluded that the complex eigenvalues begin to appear early as the value of
P, decreases. This is evident from figure 5.1 in which the curve begin to diverge from its

path when the value of P, is reduced.

3The Magnetic Prandtl numl:er in this prol lem is the reverse of the same numler in Benard Magnetic

prollem.
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Real and Imaginary Eigenfunction

pm =0
pm = 0.5
Pm — 0.3

Q

1.0 2.0 3.0 4.0
Figure 5.1: LogioRa versus LogioQ with Nu= BQ= 0 for a range of Pm = 0.1,0.2,..., 1.

Also, the marginal stability curve in a plane U = U(Ma, «), with the parameters Pr, Pm,
0, Ma, B0 and Nu, divides the plane into two parts. The unstable modes are represented
above the curve, whereas the stable modes are represented below it. The critical value
of the Marangoni number in this problem is the minimum of the corresponding marginal

stability curve which is denoted bv

Mc= Mc(Pr, Pm,Ra,Cr, Bo, Nu)
and a corresponding critical wavenumber is denoted by

«we = «c(PriPm<Ra,Cr. Bo.ivu).

The result, which is very simple, occurs when the parameters take their values as Pr = 1,

Pm=1, Q =0, Ra-- 0 and B0O= 0, but for the number Nu there are two cases, Nu = 0
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Critical Rayleigh No. R, and Wavenumber a.
for various P. and P, but C, =0, N, =0
P.=10, P,=10 | P.,=10 P,=05| B =10 P, =0.1

Q R. ae R, e R. a.
0.000 | 668.998 2.086 | 669.00 2.086 669.00 2.086
1.000 | 690.373 2.109 690.37 2.109 690.37 2.109
1.624 | 703.602 2.123 | 703.60 2.123 703.60 2.123
2.637 | 724.922 2.146 | 724.92 2.146 724.92 2.146
4.281 | 759.143 2.180 759.14 2.180 759.14 2.180
6.952 | 813.768 2.233 813.77 2.233 813.77 2.233

11.288 | 900.328 2.310 | 900.33 2.310 | 900.33 2.310
18.330 | 1036.32 2.420 | 1036.3 2.420 1036.3 2.420
29.764 | 1248.14 2.567 | 1248.1 2.567 1248.1% 2.567

48.329 | 1575.59 2.758 1575.6 2.758 1438.7* 2.402
78.476 | 2079.38 2.993 2079.4 2.993 1560.8~ 2.531
127.43 | 2853.12 3.276 2853.1 3.275 1733.0" 2.697
206.91 | 4042.82 3.602 4042.8 3.602 1973.1* 2.901
335.98 | 5877.87 3.977 5438.0 3.982 2303.3* 3.141
545.56 | 8720.24 4.398 7016.5 4.340 2754.8" 3.416
885.87 | 13144.5 4.866 9260.4 4.729 3371.0" 3.723

8.5 | 20062.7 5.383 12494~ 5.156 4215.2* 4.061
7| 30930.5 5.948 17216.* 5.628 5380.9~ 4.433
3792.7 | 48074.6 6.552 24188." 6.150 7007.1* 4.839
6158.5 | 75223.0 7.229 34589.” 6.727 9302.0* 5.285
10000. | 118360. 7.949 50249.~ 7.360 12580.” 5.773

Table 5.1: Critical Rayleigh and Wave numbers for various P, P, when C, = N, = 0.

or N, —+ 0o, for example, the critical Marangoni numbers as recovered by Pearson [39],
are M, = 79.60669 at a. = 1.99291 when Nu = 0 and % — 32.073 at a, = 3.0141
as Nu —> oo as shown in a second column of a table 5.3. In this case, the value of P,
should be sufficiently smaller than the value of P, so that the overstablitiy case begins to

generate the complex eigenvalues. For example, when P,, = 0.1, the complex eigenvalues
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Critical Rayleigh No. R, and Wavenumber a.
for various P, and P, but C, =0, N, =0
P =10, P,=10 | P=10 P,=05| B.=10 P, =01
Q R, a; R, e R, .

0.000 | 1100.65 2.682 1100.65 2.682 1100.65 2.682

1.000 | 1127.50 2.710 1127.49 2.710 1127.50 2.710

1.624 | 1144.06 2.727 1144.06 2.727 1144.06 2.727

2.637 | 1170.68 2.753 1170.68 2.753 1170.68 2.753

4.281 | 1213.22 2.793 1213.22 2.793 1213.22 2.793

6.952 | 1280.66 2.855 1280.66 2.855 1280.66 2.855
11.288 | 1386.51 2.944 1386.51 2.944 1386.51 2.944
18.330 | 1550.70 3.069 1550.70 3.069 1471.84* 2.732
29.764 | 1802.36 3.236 1802.36 3.236 1516.39" 2.774
48.329 | 2184.26 3.447 2184.26 3.447 2184.26* 3.447
78.476 | 2760.23 3.705 2760.23 3.705 2760.23* 3.705
127.43 | 3628.19 4.006 3628.19 4.006 3544.79* 3.246
206.91 | 4835.73 4.350 4835.73 4.350 4234.13* 3.490
335.98 } 6919.70 4.735 6919.70 4.735 5242.26* 3.788

545.56 | 9947.77 5.160 9947.77 5.160 6712.45" 4.138
885.87 | 14602.0 5.626 13413.2~ 4.671 8858.81* 4.539

14338.5 | 21805.8 6.134 18827.2% 5.175 12005.6" 4.988

2335.7 | 33027.9 6.636 25884.9* 5.665 16748.0" 5.487

3792.7 | 50612.5 7.285 37010.5* 6.238 23547.1" 6.035

6158.5 | 78310.2 7.933 53756.3* 6.865 33879.4* 6.634
7

10000. | 122136. 8.636 79152.4* D48 49473.2* 7.288
Table 5.2: Critical Rayleigh and Wave numbers [or various P, P, when C. = 0 and
N, — co.

appear at @ = 48.329, M, = 170.240 and a, = 2.458 as shown in a third column of table
5.3 while the eigenvalues are real when P, = 0.5 for N, = 0, and they are real for any

value of £, when N, — oo as shown in a table 5.4.

The conditions of the onset of steady convection in the case P, = 1 for M." and a.
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Critical Marangoni No. E. and Wavenumber a.
for various £, and P, but C. =0, N, =0
P=10, P,=10 | B,=10 PB,=0.1

Q M, e M, @,
0.000 | 79.607 1.993 79.607 1.993
1.000 | 82.172 2.015 82,172 2.015
1.624 | 83.759 2.028 83.759 2.028
2.637 | 86.315 2.049 86.315 2.049
4.281 | 90.412 2.081 90.412 2.081
6.952 | 96.940 2.130 96.940 2.130

11.288 | 107.25 2.202 107.25 2.202
18.330 | 123.38 2.303 123.38 2.303
29.764 | 148.33 2.440 148.33 2.440
48.329 | 186.54 2.616 170.24 2.458
78.476 | 224.68 2.834 198.28* 2.612
127.43 | 332.94 3.095 239.87* 2.811
206.91 | 467.12 3.400 301.91* 3.055
335.98 | 672.08 3.753 395.05* 3.344
545.56 | 986.91 4.157 535.97* 3.679
885.87 | 1473.5 4.619 750.92* 4.061
1438.5 | 2230.1 5.147 1080.5* 4.489
2335.7 | 3412.4 5.748 1595.1* 4.971
3792.7 | 5269.2 6.432 2398.1* 5.580
6158.5 | 8196.8 7.210 3698.6* 5.831
10000. | 12831. 8.091 5100.6* 6.127

Table 5.3: Critical Marangoni and Wave numbers for various P, P, when C, = N, = 0.

when Nu = 0 together with M./, and a, as Nu — oo plotted as function of * where
M~ is the value M, divided by the value of M. when R, = 0 and R* is the value of R,
divided by R. at M, = 0. The resulting figures for P, < 1 represent several relations.
A relation between M_.* and R*, as well as the corresponding a, and E* and the relation

between M,*/N, and R*, as well as the corresponding a. and R,” when @ =1, @ = 102,
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Critical Marangoni No. R, and Wavenumber a,
B for various P, and F,, but C, =0, N, =0
P, =10, P,=10
Q M. Gic Q M, e
0.000 | 32.073  3.014 | 127.43 | 79.553  5.5782.086
1.000 | 32.726  3.055 | 206.91 | 98.410  6.5172.109
1.624 | 33.127  3.080 | 335.98 | 123.37  7.7692.123
2.637 | 33.766  3.120 | 545.56 | 156.05  9.4692.146
4.281 | 34,776 3.182 | 885.87 | 198.35  11.802.180
6.952 | 36.353  3.278 | 1438.5 | 252.64  14.752.233
11.288 | 38.768  3.422 | 2335.7 | 322.02  18.432.310
18.330 | 42.381  3.631 | 3792.7 } 410.60  23.042.420
29.764 | 47.648  3.925 | 6158.5 | 523.73  28.802.567
48.329 | 55.121  4.328 | 10000. | 668.22  36.002.402
78.476 | 65.476  4.867

Table 5.4: Critical Marangoni and Wave numbers for various P,, P, when C, = 0 and

N, — o0.

Q = 10® and @ = 10", the graphs in both cases N, = 0 and N, — co are different
from those obtained by Wilson for £, = 1. This is mainly due to the overstability case,
which generates complex eigenvalues. In the case N, = OQwhenP,, = 0.5 and 0.1 in figures
5.2 @ and 5.3 a, the convexity of the curves representing the relation of M and R is
more pronounced than that obtained by Wilson for P, = 1 when @ = 10", while in
figures 5.2 b and 5.3 b concavity of Wilson’s curves representing the relation between a,.
and R* is more pronounced than those obtained by this thesis when @ = 10%. In case
N, — oo when P, = 0.5 and 0.1 the figures 5.4 @ and 5.5 a representing the relation
M?>/N, versus R*, are different from that obtained by Wilson’s. The figures 5.4 b and
5.5 b which illustrates the relation between a. and I2* show a value of a. around 25 and

19 for P,, = 0.5 and P,, = 0.1 respectively while it showed around 40 in wilson’s result

when @ = 10

There are many relations of Chandrasekhar [4] number @ with Rayleigh number R,
R, — m2Q) | @
Q203 e oie

with

and wavenumber a. These relations take the forms as R,/Q,
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Real and Imaginary Real and Imaginary

Eigenfunction g» Eigenfunction

0.9-
0=10
6-
0.6- 0=10 4
M 0 = 102

0-1 0= 102

0.3-
g =

0.3 0.6 019 Rr.
a: LogiOMc* versus Log WR* b: LogioUc versus LogioR*

Figure 5.2: Mc*and ac are plotted as a function of Ra*for Q = 1, 0 = 102, Q = 103 and

QO = 104 when Nu = 0 and Pm =0.5

Real and Imaginary Real and Imaginary
Eigenfunction 9 Eigenfunction
0.9-
<-0 = 104
0.6- -0 .. 10 =
M: 0 = 102 . Q=103
0 =i = 0= 102
0.3- =
0 =1
S W— S— i B
0.3 0.6 0.9 px
a: LogioA/c* versus Login/?’ b: Logio«c versus LogiQR’

Figure 5.3: l * and u¢ are plotted as a function of R4~ for { = 1,0 = 102,( = D4 and

QO = 104 when Nu = 0 and Pm = 0.1.

Q. Graphs of these three relations for Pm — 1, Nt = 1, 102and 104 are the same as
those of Wilson’s, but for Pm = 0.5 the lower part of curvesare lower than those of
Wilson’s as illustrated in figures 5.6 ¢ and 5.6 6 and for Pm — 0.1 they are more lower
as illustrated in figures 5.8 a 5.8 b The lower part of the curves in figures 5.7 and 5.9
disappeared because the critical Rayleigh number in the overstablity case is less than
the critical Raleigh number in the instability case beyond the values Q — 127.428 for
Pm =05 and | = 48.329 for Pm = 0.1, therefore the value

Rc - *20
0213
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. . Real and Imaginary
1.2a Eigenfunction Eigenfunction

S*
0= 10
0.9- 0= io4-> 20"
\\t- 0 =103
0.6-
ac
Q ZDZA \ 10"
=1~ \\
0.3- 0 =10
<0=10
b e b — ¢
0.3 0.6 0.9 s 0:3 0.6 0.9 1.2 R*
Logio(M*/Nu) as Nu—¥oo0 b: Logio«c as Nu —m00
versus Logio ft* versus Log 10-ft*

Figure 5.4: M*/Nu and ac are plotted as a function of ft* for Q = 1, Q = 102, Q = 10

and Q = 10lwhen Nu — >00 and Pm = 0.5 and 5* = limjvu-Kx> M */Nu.

}9 Real and Imaginary Real and Imaginary
Eigenfunction Eigenfunction
0 = 104 Q= 104
-0 =10
0= 102 10
0-1

0= 10

Il=1
Foeee- h
0.3 0.6 0.9 1.2
. [
a: Logio( A/*/Nu) as —>00 b; Logio«c as Nu — 00
versus Log 10ft* versus Log 10ft*

Figure 5.5: M */Nu and ac are plotted as a function of ft* for @ = 1, O = 102. Q = 10

and Q = 104 when Nu —>00 and Pm = 0.1 and S* = lim,vu->.co M*/Nu.

is less than zero for the overstability case while it is greater than zero for the instability
case.
Also, there are many relations between Marangoni number Ma and the Chandrasekhar

[4] number Q and there are relations between the wave number @ and Chandrasekhar

number Q These relations take the forms as Ma/Q, (Ma—qQ )/03/4 and a/Ql/4 with Q

respectively. Graphs of these three relations for Pm= 1and Nu= 0, 1,5 and 10 are the

same as those of Wilson’s, while the lower part of the curves Pm 0.5 are lower than

those of Wilson’s and for Pm = 0.1 are more lower as shown in figures 5.10 u, 5.10 6, 5.11,
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| a d 3 .
y ReaEir‘éLanllllﬁ% il(l)lgry 0.6x Real and Imaginary

94 Eigenfunction

04— N, =1

B )| 5o 3 1 6 0
a: Logio(R:/Q)) versus Logio@) b: Logio(a./Q%) versus Logo@.
Figure 5.6: R./Q and a./Q'® are plotted as function of @ for N, = 1, 10? and 10* when
P, = 0.5.

sReal and Imaginary
Eigenfunction

94
“ — N, =1
(Reer?@) +—— N, = 10?
CQ2/3 Nl N, = 10¢

3 1 §Q
Logio((R. — 72Q)/ Q) versus Logy0Q.
Figure 5.7: (R, — 72Q)/Q* is plotted as function of Q for N, = 1, 10? and 10" when

P = 0.5.

5.12 a, 5.12 b and 5.13.

5.10.2 Deformable Free Surface

In the case of a deformable free surface with C, # 0, the marginal stability curves are
slightly different from those of Wilson for any value of P, less than unity, even when
P, = | for most cases. Consider C, = 0, 0.005, 0.01, 0.011 and 0.012 when P, = 1,
P,=1Q =0, B_1and N, =0, as well as the convexity of curves of critical Marangoni
number M, and a corresponding wavenumber a that are plotted as having Rayleigh

number R, in figures 5.14 @ and 5.14 b. These have the reverse convexity of those of
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Real and Imaginary

Eigenfunction 0.6x Real and Imaginary
Eigenfunction
0.4-N
0.2.
a: Logio(”c/Q) versus Logi0Q b: LogiO(«c/Q 1/6) versus LogioQ.

Figure 5.8: Rc¢/Q and [ac/Q x*h) are plotted as function of Q for Nu = 1, 102 and 101
when Pm = 0.1.

Logio{{Rc- #20)/Q 2/3) versus LogioQ.

Figure 5.9: (Rc—"20)IQ2*1is plotted as function of O for Nu = 1, 102 and 104 when
Pm = 0.1.

Wilson except for Cr = 0. Moreover, the curves for Cr = 0.011 and Cr = 0.012 change
their direction at Mc = 20 (see figures 5.14 a and 5.14 6). However, when Pm = 0.1.
figures 5.15 a and 5.15 b are the same as figures 5.14 a and 5.14 5, except that the curve
for Cr = 0.011 does not change its direction. The effect of the Magnetic Prandtl number
Pm is not remarkable in these cases because the value of O is not large enough to cause
the overstabilitv case.

Figures 5.16 a, 5.16 6, 5.17 a and 5.17 b show the values of the critical Marangoni number
Mc and the corresponding wavenumber ac and are plotted as functions of QO when Ra =
300, BO= 1 and Nu = 0 for the values Cr - 0. 10, 10“°, 10-4, 10-3 and 10“2 when

Pm = 1and Pm = 0.1. For each of the figures 5.16 a and 5.17 o, there is a certain point

75



Real and Imaginary 0.6j Real and Imaginary

Eigenfunction Eigenfunction
N. =10
Nu =
-N, =1

a: Logio(A/c/Q) versus LogioQ b: Logi0(ac/Q 1/4) versus LogioQ

Figure 5.10: Mc/Q and ac/Q /4 are plotted as function of Q for Nu = 0, 1, 5 and 10 when
B0 =0and Pm = 0.5.

Real and Imaginary
Eigenfunction

4 0 0O
Logio((Mc- Q)/Q3/4) versus Logl0Q

Figure 5.11: Mc/Q 3™ plotted as function of O for Nu= 0, 1,5 and 10

when Bn = 0 and Pm = 0.5. .

at which the curve changes direction right and then upward. These curves are different
from Wilson’s whereas in figures 5.16 b and 5.17 b they are the same.

The critical Marangoni number Mc and the wavenumber ac are plotted as functions of
Cr when Ra = 300, BO= 1and Nu= 0 for the values Q = 1, 102, and 104 when Pr= 1
and Pm = 1. The results in figures 5.18 a and 5.18 b are the same as those of Wilson,
while the results are different from those of Wilson for Pm = 0.1, as Cr increases. I he
value of Mc increases when Q = 104 only; otherwise it decreases when Q = 1and 10 .
Moreover, the parts of curves parallel to the CV-axes in 5.19 a and 5.19 b are in the

opposite direction to those in figures 5.18 a and 5.18 b when Pm = 1
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Real and Imaginary 0.6% Real and Imaginary

Eigenfunction
4— Ivu — 10
Nu =5
Nu=1
Nu=0
4 6 0O 2 4 o 0

a: Logio(Mc/Q) versus LogioQ b: Logi0(ac/Q 1/4) versus Logl0Q

Figure 5.12: Mc/Q and ac/Q "4 are plotted as function of Q for Nu = 0, 1,5 and 10 when
B0O= 0and Pm=0.1.

Real and Imaginary
Eigenfunction

Alc-1b6"

4 6 0
Logio((Me- Q)/Q3/4) versus LoglOQ

Figure 5.13: Mc/Q3//4 plotted as function of Q for Nu= 0.1, 5and 10

when BO= 0 and Pm = 0.1. .

Figurs 5.20 a, 5.20 6, 5.21 a and 5.21 bshow that the critical valuesofRc and correspond-
ing wavenumber ac are plotted as functions of Q when M = 25, BO= 1 and Nu = 0 at
the values Cr = 1, 10_1, 10-2 and 10«3 and for Pr= 1and Pm = 1. As Q increases, the
values of Rc and ac remain constant up to certain points depending on the value of Cr
then they start to increase as shown in figures 5.20 a and 5.20 b and they are different
from Wilson’s, i.e. the curve for ¢r = 1 is lower than the curve for Cr = 10-3 which is
the opposite to those of Wilson's. Now for Pm = 0.1, curves of figures 5.21 a and 5.21 b
are totally different from those in 5.20 a and 5.20 b

Figures 5.22 a, 5.22 6, 5.23 a and 5.23 6 display critical the Rayleigh number Rc and a

corresponding wavenumber ac which are plotted as functions of Cr when M = 25, B0 - 1



Real Eigenfunction Real Eigenfunction

= 0.011
= 0.005
Cr=0.012 \ Cr=001
v.Cr=0.012 -A ~Cr = 0.011
= 0.005
Cr= 0.01
250 400
a: Mc versus Ra b: ac versus Ra.

Figure 5.14: Mc and ac are plotted as function of R({ for Cr = 0. 0.005, 0.1, 0.011 and
0.012 when Q = 0, BO= 1, Nu= 0 and Pm = 1.

Real Eigenfunction Real Eigenfunction

Cr = 0.012

0 Cr = 0011 = 0.005
Cr=0.01 ->

200 R 400 600

a: A/cversus Ra b: ac versus Ra.

Figure 5.15: Mc and ac are plotted as function of Rd for Cr = 0, 0.005, 0.1, 0.011 and

0.012 when Q: 0, BO=1, Nu=0 and Pm = 0.1.

and Nu= 0 with the values Q = 1, 102, 104 and Q = 10b for Pr = 1 and Pn — 0.1 and
Pm — 1 These figures are totally different from those of Wilson. At certain points in
these figures, the values of Rcand acdecrease while, in Wilson’s figures they increase as

the value Of ¢r increases.
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,Real Eigenfunction

f- Cr= 10~6 Real Eigenfunction
<- Cr - 10~5 2" Cr=20
<-cr= I(T4 _
4 f- Cr = 10~3 Cr = 10-6
Cr =10-5n
2 Cr=10"4
Cr = 10«3
-3
a: LogioA/c vers‘gs LogioQ b: Logio«c versus LogioQ.

Figure 5.16: Mc and ac are plotted as function of Q for Cr = 0, 10 & 10 > 10 4.

and 10“2 when H, = 300, BO= 1, Nu= 0 and Pm= 1.

"Imaginary Eigenfunction

Real Eigenfunction

a: LoglOMc versus LogioQ b: LogiO«c versus LogiOQ

Figure 5.17: Mc and ac are plotted as function of Q for Cr = 0, 10 b, 10“°, HP4,

and 10~2 when Ra = 300, Ba— 1, Nu= 0 and Pm = 0.1.



Real Eigenfunction

A Real Eigenfunction
Cr = 104
4
Me Cr = 102
-9
6 -4 —9
Cr
a: LogioMc versus LogiOCV b: Logio«c versus LogiOCr

Figure 5.18: Mc and ac are plotted as function of Cr for Q = 1, 102 and 104 when
Rn =300, BO=1, Nu= 0and Pm= 1.

Real and Complex Real and Imaginary
Eigenfunction Eigenfunction
Complex Q = 104 - 0.9
Imag. Q = 104
Complex Q = 10 ’ 0.6
Imag. @ = 10 cte
- 4 03
Real O = 1 Real (= 1
-4 -2 -3 —9 -1 a
a: Logl0A/c versus LogiOCr b: Logio«c versus LogiOCr

Figure 5.19: Mc and ac are plotted as function of Cr for O = 1, 10" and 104 when

Ra =300, BO=1, Nu= 0and Pm = 0.1.

80



Real Eigenfunction Real Eigenfunction

A r s -3

a: LogXoR cversus Log]0Q b: Logi0ac versus LogioQ

Figure 5.20: Rc and ac are plotted as function of Q for Cr = 102, 10“ 10-4, and 0
when Ma —25, BO= 1, Nu= 0 and Pm = 1.

Real Eigenfunction Real Eigenfunction
Cr=10"2
Cr=10"1
Cr=10"1
<S— m
-3
a: LogioRc versus LogioQ b: Logio Rc versus Logl0Q

Figure 5.21: Rc and ac are plotted as function of Q for Cr = 10-2, 10-3, 10-4, and 0
when Ma= 25, BO= 1, Nu= 0 and Pm = 0.1.
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6- 0 = 104
0.6
ac
0.3
0 -4 -2 Cr
a: LogioRc versus LogiOCr b: Log/ORc versus Logl0Q

Figure 5.22: Rc and ac are plotted as function of Q for Cr = 10 2, 10 3, 10 4, and 0O

when Ma = 25, BO— 1. Nu= 0 and Pm = 1.

Reaii Bu@ Imaginary Real and Imaginary . 1)
Eigenfunction Eigenfunction
Imag. O = 104
“ 6 m 0.8
Imag. O = 104 ac
Rc

Imag. O — 102 Imag. Q = 102 /

£.3 Real Q9 =71y’ / m 04
Real O ~ -
Real 0 =0
—i t >
-4 9 Cr -4 9 Cr
a: LogioRc versus LoglOCr b: LoglORc versus LogioQ

Figure 5.23: Rc and ac are plotted as function of Cr for Q = 1, 10", 104 when Ma = 25,

BO0=1, Nu= 0 and Pm = 0.1.
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Chapter 6

Eigenvalue Determination using

Spectral Methods for Multi-Layers

6.1 Introduction

This chapter extends spectral methods for single layers into those for multiple layers. The
analysis deals with two layers only but it is clear that the methodology expands to many

layers. A three layer problem in Magnetohydrodynamics is illustrated later.

6.2 Stability Analysis of Two Layers

Let £, and £, be two layers, the first one stacked on the second, so that the bottom of
L1 and the top of £y form a common interface, say £. Fach layer contains a different
continuum but they interact thermally, mechanically and magnetically with each other
across £ and with the world outside across their outer boundaries. The equations de-
scribing the physical problem are now non-dimensionalised so that the upper and lower
layers are mapped into —1 < z; < 1 and —1 < z < 1 respectively. Thus z; = 1 is the
upper boundary of the top layer, z, = —1 is the lower boundary of the bottom layer and
z; = —1, zg = 1 both denote the interface between the two layers. The standard linear
stability problem for this configuration can be systematically reduced to the eigenvalue
problem

B~ Ly + SBY, f

—3
d.?,’i (631

dY, 1 ,
A L v LBy, (6.2.1)
ng [63) [a5))
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where (1 and B, are time scales, o; and «g are length scales for the £y and L, layers
respectively, Y7 1s an m vector with components ¥y, ..., Yu,,, Y2 i1s an n vector with com-
ponents y;,,...,un,, Ay and B are complex m x m matrices, A and By are complexn xn
matrices and o is the eigenvalue to be determined. In effect, the governing equations in
layers £; and L, have order m and n respectively and equations (6.2.1) are the repre-
sentation of these equations as a first order system. To complete the eigenvalue problem,
equations (6.2.1) must be supplemented by m — s boundary conditions on z; = [, n —r
boundary conditions on z; = —1 and r + s boundary conditions on z; = —1, z9 = 1.
In practice, these boundary conditions relate to the physical properties of macroscopic
quantities such as stress, velocity, temperature etc. These conditions appear in pairs;
one for the upper boundary and one for the lower boundary. The order of the systems
describing layers £; and L3 is almost invariably even with s = m/2, r = n/2. Notice also
that the boundary conditions can contain the eigenvalue o, for example. This happens
in the Calculus of Variations when transversality conditions are operative. Boundary
conditions are normally based on thermal, mechanical, magnetic and other properties of

each boundary and have the general form:

Upper boundary (z; = 1) These conditions describe the interaction of £, with the
exterior region z; > 1 and are linear, involving only combinations of the components

of ¥1. In matrix notation, they can be expressed as:
U, =0, 1<k<m-—s (6.2.2)
where U}, are a family of m-vectors with constant entries.

Interface boundary (z; = —1, z5 = 1) These conditions describe the interaction
between £, and £, and are also linear in nature but now connect the components

of ¥7 and Y5. In maftrix notation, they can be expressed as:
PIvi+Qfy, =0, 1<k<r+s (6.2.3)

where P are a family of m-vectors, @} are a family of n-vectors, both with constant

entries.

Lower boundary (z; = —1) These conditions describe the interaction of £, with the

exterior region zy < —1 and are linear in nature, involving only combinations of the
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components of Y5. In matrix notation, they can be expressed as:
Livy=0, 1<k<n—r (6.2.4)

where Ly are a [amily of n-vectors with constant entries.

6.2.1 The Extended Eigenvalue Problem

It is self evident that the structure of the eigenvalue problem (6.2.1) is qualitatively the
same for each layer and so it is sensible to incorporate them both into a single problem.

Let complex N x N matrices A and B and N x 1 vector Y be defined by

1 |
Y, — A, 0 — B 0
Y = , A= a1 1 1y B = ot 1 )
Y5 0 —A 0 —B
: a9} 2 Qg ’ (5.2.5)
. 40
S =
0 G
where N = n + m and [ is an identity matrix.
LdY ) .
s%— =AY +oBY,  zel[-L,1]. (6.2.6)

Similarly, the boundary conditions (6.2.2), (6.2.4) and {6.2.3) can be recast in the simpler

form
CIY =0 1<k<N (6.2.7)
where the interpretation of C} is
(UL, 0] 1<k<m-—s,
Cr= [PJ-T,Q}"] j=k—-m+s, m—-s+1<k<m+r,
[O,L}P] j=k-m—-r, m4+r+1<kE<N.

The treatment of the boundary value problem now proceeds similarly to that in the single

layer situation for N independent variables with the appropriate interpretation of .




Chapter 7

Convection in a Horizontal Porous

Layer Superposed by a Fluid Layer

7.1 Introduction

Let £; and £y be two horizontal layers such that the bottom of the layer £; touches
the top of the layer £5. A right handed system of Cartesian coordinates (z; 2 = 1,2,3)
is chosen so that the interface is the plane z3 = 0, the top boundary of £y is 23 = d;
and the lower boundary of £, is @3 = —d,.. Suppose that the upper layer £; is filled
with an incompressible viscous fluid whereas the lower layer £, is occupied by a porous
medium permeated by the fluid. Gravity acts in the negative z3 direction and the porous
medium is heated at its lower boundary. Convection takes place in which temperature
driven buoyancy effects are damped by viscous effects. A stationary fluid with a thermal
gradient in the z3 direction (the so-called “conduction solution”) is one possible solution
to this problem and so it is natural to investigate its stability. This question has recently

been addressed by Chen [5] who derived the appropriate equations.

Briefly, the fluid flow in the porous layer, with thickness dp,, is governed by Darcy’s law,
whereas the fluid flow in the upper layer L£q,with thickness dy, is governed by the Navier-
Stokes equations. Convection is driven by the temperature dependence of the fluid density.
Typically, the Oberbeck-Boussinesq approximation is made in which concepts like local
thermal equilibrium, heating from viscous dissipation, radiative effects etc. are ignored
as are variations in fluid density except where they occur in the momentum equation.

Let 7' denote the Kelvin temperature of the fluid and Ty be a constant reference Kelvin
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temperature. Then for the purpose of this work, the fluid density p is related to T' by
p;=po[l —aT —To)], (7.1.1)

where po is the density of the fluid at 7j and o (supposed constant) is the coefficient of
volume expansion of the fluid. In many situations (7.1.1) is inadequate. For example, the

description of water! around 4°I. However, the objective here is to emulate the work of

Chen [5].

7.2 The Governing Equations of Natural Convection

The field equations for this problem are written separately for the porous medium and

overlying fluid layer. The governing equations for porous medium are represented by

Vm
Ega _VRn - &Vm + /Ofg )
(_b at R (T 9 9)
y ,Tm R
(Pc)ma + (PCp)fVm-VTm = kmvafm

ot
where T}, is the Kelvin temperature of the porous medium, V,, is the solenoidal seepage
velocity, P, is the hydrostatic pressure, u is the dynamic viscosity of the fluid, i is
the permeability of the porous substrate, ¢ is its porosity, k., is the overall thermal
conductivity of the porous medium, (pc,); is the heat capacity per unit volume of the
fluid at constant pressure and (pc)m is the overall heat capacity per unit volume of the

porous medium at constant pressure. In fact,

(pc)m = GB(,DCp)f + (L - (/s)(pcp)m

where (pc,)m is the heat capacity per unit volume of the porous substrate. The governing

equations for the fluid layer are

ov
po( L+ VIVV)) = VP VIV 4o o)
(2.
aT
(Pcp)f(a_tf+vf‘VTf) = kfVT;

where T/ is the Kelvin temperature of the fluid layer, V; is solenoidal fluid velocity, P

is the hydrostatic pressure and ky is the thermal conductivity of the fluid.

lGeorge et. al. [11] descril:es convection in lakes in which the hottom can le represented 1'y a porous

layer which is under-pinned ty an impermeakle permafrost houndary.
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7.3 Boundary Conditions

The convection problem is completed by the specification of boundary conditions at the
upper surface of the viscous fluid layer, at the interface between the fluid and porous
medium layers and at the lower boundary of the porous medium layer. Many combinations
of boundary conditions are possible but for comparison with Chen [5], x5 = d; is assumed
to be rigid and held at constant temperature T, whereas x5 = —d,, is assumed to be
impenetrable and at constant temperature 7;. In terms of w; and w,,, the axial velocity
components of the fluid in £, and Lq respectively, these requirements lead to the three

conditions:

N d
T =Tu, wildy=0, 2 _g (7.3.4)
a.’l)g
on the top boundary £; and the two conditions
Tm(_dm) = T[ b wm(_dm) = O ’ (735)

on the lower boundary of Ly. Strictly speaking, the rigid boundary condition on 23 = d;
is v; = 0; the format (7.3.4) specifically uses the fact that vy is solenoidal (incompress-
iblity constraint). The fluid/porous-medium interface boundary conditions are based on
the assumption that temperature, heat flux, normal fluid velocity and normal stress are

continuous so that

aTa(0)  OTH(0)

En(o) = Tf(O) ? km 83;3 - ! C).’L‘:g ’ -
o0 (7.3.6)
wm(o) — ?.Uf(O) ) —Pf(O) + 2}[ 'Lg-i( ) — ——Pm(o)
T3

respectively. This leaves one final condition to be specified on the interface. Several
possible forms? have been proposed for the missing condition but the most popular of

these is undoubtedly due to Beavers and Joseph [2] who suggest that

a'lt,f . apj a'Uf _ apJ

(9{133 = —\/T;(Uf — um), 5;‘; = \/K(Uf — 'U'rn) ,

(7.3.7)

where u g, vy are the limiting tangential components of the fluid velocity as the interface is

approached from the fluid layer £, whereas y,, v, are the same limiting components of

*Jones [23] proposes continuity of shear stress at the interface . In truth, the nature of this toundary

condition has little impact on results under most circumstances.
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tangential fluid velocity as the interface is approached from the porous layer Lo, Clearly,
discontinuities in shear velocity across the interface are inherent in this specification of the
last boundary condition. Equations (7.2.2), (7.2.3) together with boundary conditions
(7.3.4), (7.3.5), (7.3.6) and (7.3.7) possess a static (equilibrinm) solution in which the
fluid is stationary everywhere and heat is conducted across the layers in accordance with

the thermal boundary conditions. Specifically,

and the static temperature and hydrostatic pressure fields satisfy the equations

*VPm'FPfg:O, _VPj‘f‘Pfg:O, vam:vaZO, (

=J
Cin
o
~

together with the exterior boundary conditions
Tf(df) = T!L ) Tlm(_dm) = Tl’ 3 (7.39)

and the interfacial conditions

- . 9Tw(0) ., 9T4(0)
Tm(0) = T4(0) , Fin das = ks duy

Ps(0) = Pn(0) . (7.3.10)

In conclusion, it follows almost immediately that the equilibrium temperature fields in

the fluid and porous medium are respectively

'Tf = TO—“(TD_T”)% DS(l?g;Sdf N

o (7.3.11)
T = %—(TI—TO)Z‘B —dpy <23 <0,

[£2%%

where Tg is the temperature on £ and is determined by the continuity of heat flux across

13:0

7.4 Perturbed Equations

Suppose that the static equilibrium solution is now perturbed so that the velocity, pressure

and temperature fields in the fluid and porous layers are respectively

v, Py, To—(To—Tu)%Jrof, (7.4.12)
and
Omy  Putpm, To—(Ti— To)gi YO (7.4.13)
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Taking account of the properties of the equilibrium solution, it follows from the general

field equations (7.2.3) and (7.2.2) that vy, p; and 8 satisfy

( 5 +wvy. va) = —Vps -+ uVi0; — poal;g
7.4.14
(pep)s [a;t +v7. (VO - (ﬂd;ff_l@ﬂ = k; V20, .
where vy is solenoidal whereas v,,, pr, and 0, satisfy
P Obm _ ~Vpm — Evm — poatng |
¢ ot & . (7.4.15)
(pc)m%71 + (pcp)fvm.(VOm — (ﬂ—;m@eg> =k, V0,

with v,, solenoidal. The modified boundary conditions on the upper boundary of the

fluid layer (z3 = df), the fluid/porous interface (23 = 0) and the lower boundary of the

porous layer (z3 = —d,,) are respectively
; Ow(d
fr(ds) =0, we(ds) =0, ——5—53—” =0,

dgf( ) 849"1(0)

= § =k

gf(O) m(o) ’ f 6’13 'lbm 013 3
dw (0
o0 + 2 = (0), ws(0) = 0], (7.4.16)
a’LLf(O) _ _C_\B_J ) . avf(O) . apJ '
8.’1)3 = A,(uf(o) “m(o)) ) 81‘3 - \/?( f(0> Um(o)) )
Om(_dm) =0 s 'wm(_'dm) =0.

7.5 Non-dimensionalisation

The non-dimensionalisation of (7.4.14), (7.4.15) and the boundary conditions (7.4.16) is
technical but routine. Nield [32] presents a detailed description of the procedure. Most
importantly, each layer has a different length and time scale. Using the scaling suggested
by Chen & Chen [5], non dimensional spatial coordinates &, time i, perturbed velocity

¥y, pressure py and temperature 0 ¢ in the upper (fluid) layer are introduced by the

definitions
. d?c ~ ,\f R
:z::clfmf, tf:j\—tf, vy = d—vf,
Y ; 4 (7.5.17)
Py = (F ﬁf > gf = ITU —’Ilulof .
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Here Ay is the thermal diffusivity of the fluid phase and is defined by A; = k;/(pc,) ;.
With this change of variables, the equations {7.4.14) describing the motion of the fluid

layer now assume the non-dimensional form

Ov . . . . A
a_—gf—kvf.vaf = Pl‘f [—prf+V§vf+Raf9feg]
f

A (7.5.18)
+6,.(Vs0; —sign(To — Tu)es) = V3,

a9,
ai;

where Pr; and Ra; denote respectively the Prandtl number and Rayleigh number of the

fluid layer and are defined by

I Ra, — gozd?[Tg — T |

Pry= ,
sy Y

(7.5.19)

A similar procedure is applied to the porous medium in which non- dimensional spatial
coordinates &,,, time t,,, perturbed velocity ©,,, pressure p, and temperature 8, are

introduced by the definitions

(ZZ ~ A7]l A
T = dmmm . tm = itm 3 Um = ] Um
\ Am (7.5.20)
HAm . A
P = I Pm Hm = ITI - TO!am .

Here A, is the thermal diffusivity of the porous medium and is defined by A, = kn/(pcp)s-
With this change of variables, the equations (7.4.15) governing the motion of the fluid in

the porous layer now become
Da 09,
R qb afm
86, . . , -
Gm'é'tA_' + Um-(vmem - Slgﬁ(Tl - TD)EB> = vmem [

m

= P];m [_vmﬁm — f)m + Ramémeg] N

(7.5.21)
where G, = (pe)m/(pe,) s and Pry,, Da and Ra,, denote respectively the Prandtl number,

Darcy number and Rayleigh number of the porous layer and are defined by

L D = 1Y Ra — gpoadldy, | Ty — 1|

P m — 3
! PoAm dz, [Am

(7.5.22)

The scalings (7.5.17) and (7.5.20) are now used to non-dimensionalise the boundary con-

ditions (7.4.16). The procedure is straightforward and yields

T . _ albf(l) _
0¢(1) =0, wy(l) =0, “es =0,
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. , 30,(0)  80,(0
ef(O) — -sT@m(O) , f( ) i ( )

(91‘3 613 ’
A . IoLn . . ) _
erdDa(py — 257 = pu s eriny(0) = al0). (7.5.28)
€ 9% OBl {ertiy — tim) il LS (e70 B )
_— = = — Um ) T = = ETVf — VUm) »
T6l‘3 dv/Da i Tal's dv/Da i
ém('—l) =0 ’ tam(_l) =0.

where the parameters e, d and k ave defined by

- % 7 k'm
Cdy ky

7.6 Linearisation of Problem

Until this point, no approximations have been made in the derivation of the perturbation
equations. All subsequent analyses in this chapter are based on the linearised version of
equations (7.5.18) and (7.5.21), obtained from them by ignoring all “product terms”. For

the fluid layer, wy and 6 satisly

d

w-;-t-J—f- = Pl‘f [—prf —|— V?Uf —|— Rafé’fe3}
30 Or (7.6.24)
L Hw; = Vil

bt

and for the porous layer, w,, and 8, satisfy

Da dv
L = = Pl‘m [_vmﬁm — U, + Ra’mgm 83] >
s Om (7.6.25)
Gm"gt—sf — Hw, = V20, .

where H = sign(1p — T%) = sign(7; — Tp) and the “hat” superscript has been dropped
although all variables are non-dimensional. Since the boundary conditions (7.5.23) are

already linear, no further action is required here except to remove superscripts.

By taking the double curl of the momentum equation in each layer, the hydrostatic
pressures are suppressed. The specification of the final problem is completed by taking
the third component of the reworked momentum equation in each layer together with the

appropriate energy equation. In the fluid layer

|
—‘EV%U; = V'w; + RajAyly

%Ié‘ at (7.6.26)
—Ta?f‘ - wa = VQGf 3
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and in the porous layer

1 Dad
Pr '1‘5_ 27-U'rra, = _vz'wm + Ra’mAEHm P
m & OF (7.6.27)
G'm"—ﬂl - H'lu'm_ = v20ﬂ1 .
ot

The Beaver-Joseph and normal stress interfacial boundary conditions must be reworked
to eliminate pressure and horizontal components of velocity. Hydrostatic pressure terms
are removed by computing the two-dimensional Laplacian of the boundary condition and
by using the divergence of the respective momentum equation to eliminate the Laplacian
of pressure. Similarily, both Beaver-Joseph conditions can be combined together by con-
structing the two-dimensional divergence of the tangential components of fluid velocity.

The upshot of these considerations is that these boundary conditions are transformed to

y d o L dwp A -
d CTDa89,'3 (V wy _Prf TS + ZAgwf> = (Prmqﬁﬁt +1 aa (7.6.28)
~ 0 dvDa dwy Ow,,
e - Uy — = H. .2
(rpdams (lLf p 5.’1‘3) Froak (7.6.29)

7.7 Linearisation of Equations

The linearisation of the equations (7.6.27) and (7.6.26) and the related boundary condi-

tions is the resultant vector obtained by applying combining the relationships:

Wi (£, %)
O (8, %)
wy(t,x)

gf(tvx)

‘lUm(.’L'g) exp [’l'(pmt + me) + Umﬂ 3
9171(*733) exp [i(me + qmy) + Umt] R
wy(xs)exp [i(pre + qry) + oyt

Of(xa)expli(psr + qry) + oyt .

The governing equation of two layers can be represented as a system of equations, called

the basic equations. Expressions (7.7.30) are substituted into equations (7.6.27) and

(7.6.26) to obtain

o1

Br, (D} —dhwy = (D} —a)*ws — Ragaldy ,
oifp = 'Luf+(D?—a§)0f, .
(.1,
_%aig;n (D% — a2 )w, = (D% — a?)wn + Rama? Oy , (
GmOmbm = W + (D% —a? )0 ,
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where a}, = p2, + ¢2,, a} = p? + ¢} are non-dimensionalised wave numbers in the porous
medium and fluid respectively. For a given set of physical parameters and given a,,, Ra.,
is determined by the condition that the real part of ¢y and o, are zero. However, in this
particular problem it is a non-trivial fact that o, and o, are always real; in {act, there
is a principle of exchange of stabilities®. Hence for a given a,,, Ra,, is computed when
of = om = 0. The eigenvalue problem for o, and o; is completed by the specification
of boundary conditions at z3 = 1, 23 = 0 and @3 = —1. Pressures are computed from
the two-dimensional divergence of the momentum equations whereas non-axial velocity
components are eliminated by judicious use of the incompressibility constraints. Using
these ideas, it can be verified from (7.5.23), (7.6.28) and (7.6.29) that the final boundary
conditions are:-

Upper boundary 23 =1

’LUfZO, Df’t!)f:O, ()f:(), (

~1
~1
W
Q]

Middle boundary a3 =0

of = 6Tgm 5 Dfef - Dm‘gm s Wy = €Wy ,

. ivDa _.
erd (waf _ S aDj:wf) = D, wnm , (7.7.33)
aBJ
BerDa | D3ws — 362D w0 — —L-Dpwy | = — Da om +1| Dpw
T Tt f LA fWf Pl'f [y (b Pl‘m mWm
Lower boundary z3 = —1
Wy = 0 ) Hm =0. ('{_734)
l ‘m ) g
D?‘nw (¢ (_l <3< O) 3 arf = dam .
dxa
" P (7.7.35)
dp _
Df'(j’ = :Z’L_;’ (O<$3<l)5 oy = Eam~

3As a working rule, stationary convection is usually the only destal:ilising mechanism when two effects
are competing (viscosity and thermal here) lut once another stal.ilising effect such as a magnetic field

comes into play, overstability now t-ecomes possitle, that is, stationary eigenvalues are fully complex.
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7.8 First Order Formulation

Let variables yi,...,y10 be defined by
o= wy, y2 = Dyjwy, ys = Diwy,

yi = Diw;, ys = 0, ye = Dby, (7.8.36)

Y7 = W Ys = Dm'wm Yg = 9711. 9 Y0 = Dm9m .

The basic equations (7.7.31) can now be represented by the system of 10 first order

differential equations

Diyi = v,

Dsys = ys,

Dsys = —ya,

Dpys = 2ajys — ajys + Ragadys + g—f(ya —ajm)

Dyys = ys» ~
Diys = atys —yi+0yys 830
Donyr = ys .

Dpys = “7271" T Ram“;znyS) - D(;%(Dmys — Y7},

m
Dnys = vio,
Doyio = alyo—yr + Gmomys ,
where
(22
o= ?am. (7.8.38)

In terms of yi,...,y10, the boundary conditions (7.7.32), (7.7.33) and (7.7.34) are re-

expressed in the format

Upper boundary vz = —1
y1=0, 32 = 0, ys =0, (7.8.39)
Interface boundary z3 =0
y1 —eryr =0, Yo — Y10 =10,
ys—eryu =0,  ys=der(ya — Ays) (7.8.40)
ETCPDEL(LUA& —3atys) tys = er 3 dzgapirfyz - %%ﬂ:ys )
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Lower boundary z3 = —1

yr =10, ye = 0. (7.8.41)
where A = cz\/]i/ag_z.
Choose one of o, and oy, say for example o,,, and replace the value of oy from the

relation (7.8.38) and nominate the chosen one to be o. The eigenvalue problem for

equations (7.7.31) can be reformulated in the form
AY = oBY,

where A and B are real 10 x 10 matrices. These matrices are expressed by

O 1 00 0 000 0 0]
0o 0 1 0 0 0 0 0 0 0
O 0 0 L 0 0 0 0 0 0
—a} 0 2¢% 0 afRay 0 0 O 0 0
O 0 0 0 0 1 0 0 0 0
s , (7.8.42)
-1 0 0 0 a& 0 0 0 0 0
O 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 a4 0 —a:Ray 0
0O 0 0 0 0 0 0 0 0 |
O 0 0 0 0 0 -10 & 0
0 0 0 000 0 0 0 0
0 0 0 00 0 0 0 0 0
0 0 0 000 0 0 0 0
22‘2 )
e K 00 0 0 0 0
kPr; EPry
5o 0 0 0 000 0 0 0 0 (7.5.43)
0 0 01 0 0 0 0 0
0O 0 0 000 0 0 0 0
Da Da
000 : _ —_— D, 0 0
0 0 0 (;bP I'm m QbP T'm
0 0 0 000 0 0 0 0
. 0 0 0 000 0 0 G 0 |
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Each variable of y1, ..., yi0 are assigned Chebyshev spectral expansion of order N and

the coeflicients of the expansion of these variables are replaced into a column vector ¥

of dimension 14(N + 1). The eigenvalue problem then assumes the format LY = o F'Y,

where matrices IF and F' have block form

D I 0 0 0 0 0 0 0 0 |
0 D —~I 0 0 0 0 0 0 0
0 0 Dy I 0 0 0 0 0 0
a*/l 0 —‘2(1‘71-_[ D —(L?R'df] 0 0 0 0 0
0 0 0 0 D -/ 0 0 0 0
E= . (7.8.44)
I 0 0 0 —a4 D 0 0 0 0
0 0 0 0 0 0 D, ! 0 0
0 0 0 0 0 0 —a2l D Rapall 0
0 0 0 0 0 0 0 0 D -1
0 0 0 0 0 0 I 0 —dil D
0 0 0 0 00 0 0 0 0
0 0 0 0 00 0 0 0 0
0 0 0 0 00 0 0 0 0
2(22 (22
_Y% 70 . 000 0 0 0 0
kPl‘f APlf
P 0 0 0 0 00 0 0 0 0 ’ (7.8.45)
0 0 0 0 I 0 0 0 0 0
0 0 0 0 00 0 0 0 0
Da Da
0 0 0 06 0 ir o — D 0 0
! $Pr, ‘" T ¢Pr,,
0 0 0 0 0 0 0 0 0 0
0 0 0 0 00 0 0 Gl 0
with D = D; = D, since the two layers have width one. Finally, it remains to

incorporate the boundary conditions (7.8.39) into matrices £ and F. Table (7.8.46)

shows the forms of the boundary conditions (7.7.32), (7.7.33) and (7.7.34) expressed in
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terms of the variables yy,...,yi0 in (7.8.39), (7.8.40) and (7.8.41) and the equivalent
spectral representations in terms of rows of E and F' respectively.
These conditions replace the (N + 1)th,2(N + 1)th,...,10(N + 1)th rows of E and F' to

produce the final forms for these matrices prior to the eigenvalue calculation.

Manifestation in Matrix
E I
vy =10
[p,0,0,0,0,0,0,0,0,0] 0,0,0,0,0,0,0,0,0,0]
Y2 =0
[0,p,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0]
ys =0
[0,0,0,0,p,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0]
Yr = €Ty
le7q.0,0.0,0,0,p,0,0,0] [0,0,0,0,0,0,0,0,0,0]
Ys = €TYo
[0,0,0,0,q9,0,0,0,crp, 0] [0,0,0,0,0,0,0,0,0,0]
Yo = Y10
(0,0,0,0,0,q,0,0,0,p] [0,0,0,0,0,0,0,0,0,0]
—ya + 3atys — —--ai"-"ys = ~£LJ b7 Ys
erd3Da k Pry epd3p Pro
[0,3&}(:1,0,—(1,0,0,0,—6527 0,0] [0’_55: PU q,0,0,0,0,0, &3;@5 P‘;p,o,o]
€TCZ(_'!/2 (i;/i Ys) = Ys
[0, derq, —der gq,o,o,o,oﬂ ~p,0,0] [0,0,0,0,0,0,0,0,0,0]
yr =0
[0,0,0,0,0,0,q,0,0,0] 0,0,0,0,0,0,0,0,0,0]
yo = 0
[0,0,0,0,0,0,0,0,q,0] [0,0,0,0,0,0,0,0,0,0]

The matrices F' and E are loaded with a Fortran77 program using the routine FO2BJI
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of the NAG libraries in appendix 5 to find the results of this problem for the first order

system.

7.9 Results and Remarks

Chen [5] computes the stability curves for thermally-driven convection of a fluid layer with
superposed porous layer heated from below for isothermal rigid boundaries, with thermal
conductivity ratio k= 1.43, Darcy number § = 4 x 107%, Beavers-Joseph constant agy =
0.1 and for a variety of reciprocal depth ratios ranging from 0.33 to 0.1. The results of this
thhesis are illustrated in table 7.1 and figure 7.1. They are qualitatively similar to those
of Chen, but quantitatively dissimilar. For example, Chen quotes 40 (approximately)
as the maximum peak of the stability curve d-! = 0.12, whereas the calculations here
suggest something nearer 27. The differences are too large to be dismissed. Of course.
one obvious explanation for this discrepancy is that the spectral method has failed. To
check this possibility, the analysis was extended to the case of a porous medium layer
sandwiched symmetrically between two layers of viscous fluid, a problem already treated
by Pillatsis et al [40]. A significant number of Pillastsis results were tested here without
deviation. Such high quality results are very much to their credit but they also validate
the methodology. The three layer problem has not been presented here because it is

essentially similar to the two layer problem but more technical.

A closer examination of Chen’s method reveals that a 4th order Runge-Kutta integrator
is used as the core of a shooting method geared to the calculation of a 7 x 7 determinant.
Of course, this technique is intrinsically unsound, both numerically and logistically. The
evaluation of high order determinants, and 7 is high, is prone to serious rounding errors not
to mention the numerical errors involved in estimating the entries of the determinant. If a
determinating method is to be used at all then ideally it should be implemented using the
compound matrix methodology. A possible (unsophisticated) application of compound
matrices determines 20 variables in the fluid region, 6 in the porous medium region and
computes target functions using Laplace’s expausion of a determinant. The conclusion is
clear. This implementation of spectral method offers a straightforward and powerful way

to determine critical eigenvalues irrespective of their type.
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Wave No. «a Critical Rayleigh No. R,

~ A ~ PN

d=0.1]d=012{d=013|d=0.14 |d=02|d =0.33

1.0 31.23 28.67 27.46 26.27 18.05 2.689
2.0 19.20 17.77 17.02 16.20 8.878 0.863
3.0 21.14 19.48 18.42 17.11 5.929 0.486
4.0 26.51 23.68 21.39 18.34 4.176 0.343
5.0 33.62 27.21 22.00 16.79 3.162 0.274
6.0 41.03 26.99 19.71 14.21 2.551 0.239
7.0 45.79 24.28 17.00 12.04 2.163 0.221
8.0 45.58 21.40 14.77 10.40 1.908 0.215
9.0 42.60 18.98 13.04 9.182 1.736 0.216
10. 39.12 17.05 11.73 8.273 1.622 0.224
11. 35.90 15.53 10.70 7.587 1.551 0.238
12. 33.12 14.32 9.902 7.068 1.506 0.257
13 30.78 13.37 9.302 1.774 1.488 0.282
14 28.83 12.62 8.831 6.379 1.491 0.314
15 27.21 12.03 8.472 6.164 1.511 0.351
16 25.87 11.57 8.203 6.780 1.360 0.396
17. 24.77 11.21 8.010 5.916 1.601 0.440
18 23.86 10.95 7.380 5.867 1.668 0.508
19. 23.12 10.76 7.806 6.454 1.835 0.977
20 22.53 10.64 7.800 5.890 2.018 0.656
21 19.80 10.58 7.802 5.954 1.959 0.746
22 21.78 10.53 7.864 6.051 2.087 0.847
23. 21.46 10.62 7.963 6.179 2.231 0.960
24 21.30 9.560 8.100 6.350 2.393 1.088
25. 21.22 10.52 8.271 6.524 2.572 1.230

Table 7.1: Rayleigh number R, for a given wavenumber a.
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7.10 Second Order Formulation
Let z1, 29, 23 24 and z5 be defined in terms of wy, 04, w, and 8, by
) =wp, = D?wf , z3=10;

, Ry =Wn, z5=10p,. (7.10.46)

Then in terms of these variables, the eigenvalue problem (7.10.46) becomes

D}Zl = Z32,
D%z, = 2a%zy —atz; + Raja?z —}——Uf (22 — a®z)
fr2 = Atpep Jel A fll el Pl‘f <2 f1l

Dfezy, = a}z;g —z 40423, (7.10.47)
Da o

D%z, = a’zy—Rapal iz~ ———(D% — a’)zy
¢ Prp

D?zs = a’zy— zy+ 0 Gmzs

with boundary conditions Upper boundary a3 = |

21 :O, DfZl :0, 23:0, (71048)




Middle boundary 3 =0

Z3 = €TZ&5 , szs = Dpzs 24 = €72,
; dv/De
ETd (DfZl — 122) s DmZ4 . (71049)
QBJ
ETCZ3DEL DZQ——BGQDZ———U—f—D7 = — —D—a~am—|-1 D,,=
f =1 Pl‘f f=1 ¢ Pr,, med
Lower boundary a3 = —1
z4 =0, zg5 =0 . (7.10.50)
4> 42

Recall that D = Dy = D, and o5 = fam = f()‘, as mentioned before. It follows
routinely from {7.10.47) that o satisfies the generalised eigenvalue problem EV = oV,

where E and F' are respectively the 5 x 5 block matrices

D?*I —1I 0 0 0
ajl  D?* —2a%] —Raga}l 0 0
E=| 1 0 D* — a1 0 0 (7.10.51)
0 0 0 D?* — a2l Ranall
0 0 0 I D? —a?1
and )
0 0 0 0 0 ]
d? 4
—a}l ——1 0 0 0
k lCPl‘f
F = 0 0 J 0 0 . (7.10.52)
Da 1
0 0 —— D?* —a?)I
0~ (D= 0
0 0 0 0 Gml{

The formulation of the eigenvalue problem is now completed by replacing the (M —
1)th, Mth, (2M — 1)th and 2Mth rows of E and F' with terms obtained using boundary
information. From a mathematical standpoint, it does not matter how the two boundary
conditions are ordered but numerical performance is usually enhanced if boundary data
is inserted so that the largest entries occupy the top right of £ and I, In terms of the

M dimensional vectors

P:(PlaP%--pr)s q:(Q1,C]2=---,QM)7
(7.10.53)

v= (71,72, TM) s = (51,82, -, 8M)
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where pp = 1, g = (=1)%, rp = (k — 1)? and s, = (k — 1)(=1)* for 1<k<M,

The boundary conditions and their locations are sequentially replaced for the M dimen-
sional vectors p, g, r and s defined in (7.10.53). It then remains only to replace the
(M — 1)th, Mih, ... , (5M — 1)th and 5Mth rows of £ and F' with the appropriate

boundary information.

Row E F

M -1 (0,0,0,q,0) (0,0,0,0,0)

M (p,0,0,0,0) (0,0,0,0,0)
=0 on z3=—1

oM —1 (0,0,0,0,r) (0,0,0,0,0)
Dz =0 on a3=1

M (0,s,0,0,0) (0,0,0,0,0)

z3=0 on a3=1

3M —1 (0,0,q,0,0) (0,0,0,0,0)

zy—erzy =0 on w3=10

3IM (—€rq,0,0,p,0) (0,0,0,0,0)

3—erzs =0 on a23=0

AM —1 (0,0,q,0,—erp) (0,0,0,0,0)
Dyzg— Dpzs =0 on a3 =0
4M (0,0,5,0, —r) (0,0,0,0,0)
eT(ZSDa(Dz-Z —3atDzy — %ﬁ%Dzl) =—Dzy — ]?pa P(lj‘m Dzy on a3=0
5M — 1 (——3@?5,5, 0, er,O) (gg-»ﬁ?;s, 0,0, %f&;r, 0)

ETCZ(szl - A:‘Z) — Dﬂzzcl on Iz = 0
dvDa 1

q,O,"“—“T\I',O) (010103010)
QaBJ erd

SM (s,

The matrices /' and £ are loaded with the Fortran77 program using routine FO2BJF of

the NAG libraries, shown in Appendix 5 to find the results of this problem for the second
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Value of Accuracy for | Accuracy for | Accuracy for | Accuracy for
wavenumber d=0.1 d=0.12 d=0.13 d=0.14

a |Ram, — Ramz| | |[Ram — Rama| | [Ram — Rama| | |Ran — Rams|
1 1.400x 10~ 2.250x 10710 2.400x 101 1.150x107°
2 6.001x107'* | 5.230x10~"" | 1.700x10~* | 3.700x 10~
3 1.060x 1071 | 1.120x1071% | 1.070x107!° | 1.470x107*°
4 1.580x1071% | 2.880x 107! | 6.070x107'° | 1.309x107°
5 5.470% 10710 1.481 %1019 2.496x 10710 3.168x107°

Table 7.2: Comparison of D and D? methods in Chen problem

order system.

7.10.1 Results and Remarks

The first order system (tenth order system problem) computes the marginal stability
curves for a thermally-driven convection of a fluid layer with superposed porous layer
heated from below for isothermal rigid boundaries, with reciprocal thermal conductivity
ratio k~! = 0.7, Darcy number § = 4 x 107%, Beavers-Joseph constant ag; = 0.1 and for
a variety of reciprocal depth ratios ranging from 0.1 to 0.33. The results in this section
are illustrated in figure (7.1). They are qualitatively and quantitatively similar to those
of first order system solutions, illustrated in this chapter. The difference between the
Rayleigh numbers of a porous medium Ra,, for the first order system D and the Rayleigh
numbers of a porous medium Ra,,; for the second order system D? is comparatively very
small. Table (7.2) shows some examples of the accuracy of the second order system D?

compared to that of the first order system D.

7.11 Conclusion

The present results are different from those of Chen regarding the locations of the curves
of the Rayleigh numbers R, , which are plotted as functions of wavenumbers a,,. The
spectral methods have a strong ability to solve the multi-layered problem using both first
order systems and second order systems. The results of this problem, using both first

and second order systems, are identical.
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Chapter 8

Finger Convection in a Horizontal

Porous Layer Superposed by a Fluid
Layer

8.1 Introduction

This chapter describes the onset of finger convection in a horizontal layer of porous
medium of thickness d,,. This medium is covered and permeated by a horizontal layer of
incompressible viscous fluid of thickness d; in which a solute is dissolved. A right handed
system of Cartesian coordinates z; 7 = 1...3 are chosen such that gravity acts in the
negative 3 direction and the origin of coordinates is arranged so that the fluid and porous
media occupy respectively the layers 0 < 23 < df and —d,,, < 23 < 0. Convection takes
place in which temperature driven buoyancy effects and solute effects are damped by
viscous elfects. This problem has an equilibrium solution in which the fluid is stationary
but there are thermal and salinity gradients in the 23 direction in order to satisfy the
field equations and boundary conditions. The stability of this equilibrium solution is ol
practical and theoretical importance. For example, Hills et al [18] and Maples & Poirier
[29] model the directional solidification of molten alloys as a layer of porous material of
variable permeability is separated from its melt by a mushy zone of dendrites. Glicksman
et al [12] describe the interaction between the solidifying alloy and its melt by a doubly

diffusive model.




8.2 The Governing Equations

Let £y and £y be two horizontal layers such that the bottom of £, interfaces with the
top of L3. A right handed system of Cartesian coordinates z;, (z = 1,2,3) is chosen such
that gravity acts in the negative x3 direction and the interface is the plane x5 = 0. With
respect to these coordinates, the top boundary of £ is @3 = d; and the lower boundary
of £5 1s 23 = —d,,,. Suppose that the upper layer £; is filled with an incompressible
viscous fluid containing a dissolved solute (or salt) whereas the lower layer £ is occupied
by a porous medium permeated by the fluid. Heat is now applied to this configuration so
that convection takes place in which temperature driven buoyancy and salting effects are
damped by viscosity. One obvious solution to this problem occurs when the fluid is at rest
and both layers are spanned by temperature and salinity gradients in the @3 direction.
This is the so-called “conduction solution™ whose stability has been investigated recently
by Chen [5].

Briefly, the fluid flow in the porous layer, thickness d,,, is governed by Darcy’s law
whereas the fluid flow in the upper layer £, thickness d;, is governed by the Navier-Stokes
equations. Convection is driven by the dependence of the fluid density on temperature
and salinity. Typically, the Oberbeck-Boussinesq approximation is made where concepts
like local thermal equilibrium, heating from viscous dissipation, radiative effects etc. are
ignored as are variations in fluid density except where they occur in the momentum

equation. The fluid density py is related to the Kelvin temperature T and salinity 5 by
ps = poll — (T — Tp) + (S — So)] (8.2.1)

where po 1s the density at temperature Ty and salinity Sg, and «, £ (both assumed
constant) are respectively the thermal and salting coefficients of volume expansion for
the fluid. It is well known that these can be strongly temperature dependent so that

(8.2.1) may be inappropriate! for large temperature and salinity variations.

Following the approach of Nield [33] and Chen & Chen [5], the momentum, energy and

salting equations for the flow of an incompressible viscous fluid through a porous medium

!George et. al. [11] represent pf 1y a polynomial of order three in their description of convection in

lakes in which the I ottom can te represented Ly a porous layer which is under-pinned by an impermeal-le

permafrost boundary.




are

Po avm — .
b Ot - VP, I,Vm-l-pfg
Ty,
(pC) at ‘i‘(PCp)fVm vle = kmngm (822)
pm Fvm VS, = D,V25
¢ dt T Vim. m m m

where the solenoidal vector v,, denotes Auid seepage velocity, P, denotes pressure, p de-
notes the dynamic viscosity (assumed constant) of the fluid, A" and ¢ denote respectively
the permeability and porosity of the porous substrate. p; denotes the fluid density and is
given by the formula (8.2.1), k,,, and D,, are respectively the overall thermal conductivity
and mass diffusivity of the porous layer, (pc,)s is the heat capacity per unit volume of
the fluid at constant pressure and {pc),, is the overall heat capacity per unit volume of

the porous medium at constant pressure. In fact,

(pc)m = Gb(f)cp)f + (1 - C.b)(PCp)m

where (pc,)m is the heat capacity per unit volume of the porous substrate.

The top layer £, is filled with incompressible Navier-Stokes fluid in which the conservation

of momentum, energy and salting are expressed through the equations

vy

polg + Vi Vvy) = VP +uVivi+pg

aT 2 Q¢
(pen) (- z +viVTy) = bV (3.2.3)

where the solenoidal vector v; denotes fluid velocity and k; and Dy are respectively the
thermal conductivity and mass diffusivity of the fluid. The Boussinesq approximation has
been used in equations (8.2.2) and (8.2.3) and the convected terms in the fluid acceleration
have been ignored and Darcy’s law has been employed as is customary in the modelling

ol porous media.

The convection problem is completed by the specification of boundary conditions on the
upper surface of the viscous fluid layer, at the interface between the fluid and porous layers
and at the lower boundary of the porous layer. Many combinations of boundary conditions

are possible but for comparison with Chen [5], isothermal rigid exterior boundaries are
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considered giving three conditions on each exterior boundary. Thus

Tf = Tu ) Sf - Su. i Vi = 0 ) T3 = df )
(8.2.4)
T = Tl ) Sm = SE y Vm.€3 = 0 P T3 = _'dm .

where T, and T are respectively the temperatures at the upper and lower exterior bound-
aries. At the fluid/porous-medium interface, temperature, heat flux, salinity, salt flux,
normal fluid velocity and normal stress are assumed to be continuous. This leaves one
final condition to be specified on the interface. Jones [23] advocates continuity of shear
stress although this is perhaps an incongruous condition bearing in mind that in the
formulation of the momentum equation for a porous medium, Darcy’s law, replaces con-
ventional viscous stress. The most commonly used boundary condition is due to Beavers

and Joseph [2] who suggest that

8‘Uf QaBJ vi aBJ o
Doy = K(uf — Um) Des '_"T(Uj — Vm) (8.2.5)

where uy, v are the limiting tangential components of the fluid velocity as the interface
is approached from the fluid layer £, whereas uy,, v, are the same limiting components
of tangential fluid velocity as the interface is approached from the porous layer Ly. Self-
evidently, the Beavers-Joseph? this condition permits discontinuities in shear velocity
across the interface. It is verified easily that the field equations (8.2.2) and (8.2.3) and

all boundary conditions (8.2.4) are satisfied by the conduction solution
vi=0, Tile=To+(T.=To)7>, Sile=So+(Su—50),

dy dy < :

(8.2.6)

Z: - LT
Vi =0, Tm.|E=To+<To—ﬂ);l—3, bm|E=So+(so—sz)d—‘°’,

where the interfacial temperature Ty and salt concentration Sy are determined by the

continuity of heat flux and salt flux respectively and take the values

kmdng + .l-?fmeu o Dmde] -+ Dfdeu,
l\,mdf+kfdm ' To Dmdf'*}‘Dfdm

This solution is accompanied by a hydrostatic pressure which is a function of x5 only.

TO -

(8.2.7)

8.3 Perturbed Equations

Following the policy of Neild [34] and Chen [5], displacement and time are rescaled re-

spectively by d,, and d2,/)\,, in the porous medium and by d; and d%/X; in the fluid

20Often the numerical results are insensitive to the choice of Beaver-Joseph condition or continuity of

shear stress calculated in the porous medium in the conventional way.
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where
;= - k'f — km
(pcu)s ’ (pey)s

When non-dimensional velocity uy, temperature 8y, salinity s; and hydrostatic pressure

(8.3.8)

py are introduced into the fluid equations (8.2.3) by the definitions

v |To — Tl
V=g, Tr=Tilp+——0s
f f o
1S, = Solv po? (8:3.9)
Sp=28 s P;=P —py .
5 =55l + D, r = Prle + 2P
The resulting non-dimensionalised fluid equations are
——l——gg—f-—I—u Vu; = —Vps+ V2u; + Rasres — RalVs e
Pl‘falff fr f f f fYfe3 f °fC3
00 . 9 o
Tt + Prpus Vo, = sign(To — Ty )wy + V0;, (8.3.10)
/
J—(in + Prsu,.Vs ) = V?%s; + sign(Sy — S, )w
Le; atf fuy-vef f ENloo — w2y Wy

Similarly, when non-dimensional velocity u,,, temperature ¢,,, salinity s,, and hydrostatic

pressure p,, are introduced into the porous medium equations (8.2.2) by the definitions

v To— Tilv
Vi = 5 Wy, Tm = Tm'E + |_“—“gm )
dm. ’)\771 2
- - |So — Si|v par’? (8.3.11)
bm - bmiE + ——38m, Pm = P’mlE + 5 Pm >
Dm ]&
the porous medium equations assume the non-dimensional form
Da 1 du,,
Pr (;_D ot = —V]Jm — Uy + RaﬂmemeS - R'EL?(:)SmeB )
m m
90, L a1
Gm o + Prpun,. .V, = V20, +sign(T; — To)w, , (8.3.12)
&
887?’!, 2 . o a
Qb + um-vsm = Le,V<s, + LGmSlgH(bt - bO)'wm .
6t'ﬂl
where Da (Darcy number) and G, are non-dimensional numbers defined by
1 ¢
Da G, = Llm (8.3.13)

B df?n ’ (pco) s
In (8.3.10) and (8.3.12), u,, and uy are solenoidal vectors and the nondimensional Prandtl

numbers Pr,, and Pr;, Lewis numbers Le,, and Les, Rayleigh numbers Ra,,, Ray, Ral®

k)
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and Raff) are defined by

v v D, Dy
P‘m:ia Pry=—, Lm:_a =5 >
T . rf Iy e . Ley ¥
ga|To — Ti|dm K gel|T, — Told3 7
Ra,, = s af = —m———— 3314
a o Ra oy (8.3.14)
Ra,(s) _ gﬁ|50 — Sf|dm[\’ er‘(s) _ G,ﬁISu —_ S()ld?
m VDm b f I/Df .

8.4 Linearised Problem

The linearearised approximation of equations (8.3.10) and (8.3.12) (currently exact) is
constructed by ignoring all terms involving products of the unknown functions. Self-

evidently, the linearised equations in the fluid layer are given by

1 Ou s
P_Lfc’?Tj = —fo‘i‘vlef+R.a.f8f83—R,&E;)Sfeg ,
a6
'an = V*; + Hrwy , (8.4.15)
f
1 s :
Ley F)z‘.j = Visp+ Hswy,
and in the porous medium are given by
Da 1 du,
P 2 E altl = —vpm — Uy, + Ra'mgmeB - Rati,i)SmeB 3
1‘77’1 m
09,,, 5 I,
GmaT = V Gm + HT'lUm 3 (6416)
m
ds
E% azm = Vs + Hswn ,

where Hr = sign(T; — Ty) = sign(To — T%) and Hs = sign(S; — So) = sign(So — Su).
From condition (8.2.4), the unknowns 0., 0f, sm, 5, w, and vy satisfy the boundary

conditions

Qf:()’ 8f=0, uf=0, ;733:1,

O, =0, sm =0, Wy =0, z3=—1.
The formulation of the interfacial boundary conditions is technical but straightforward.
Continuity of temperature, salinity, normal velocity, normal heat flux and normal salt

flux yield sequentially

')'Tgf = ¢yl ) YSSf = E5Sm wy = d'wm s

o0, o0, o5, s, (8.4.18)

; €T = €8s
a$3 a(L'3 ’ 63,'3 8(133 ’




where d = d #/dm. Continuity of normal stress and the Beavers-Joseph slip condition (see
(8.2.5) ) are respectively
50wy . d? 0 d?

Py — 28?,3 = —D—c{pm - Azpf — Z%Agwf = mﬂgpm . (8419)

The substitution can be made from (8.2.2) and (8.2.3) into (8.4.19) to yield

9 (g L 9 0y 0 i ou, & 9,0
- 9t , 2 A = 7. - m . .‘
amra(v s Pr; o0ty (83;3) 5.7:3( 2uy) Da x5  #Pr,, Otm (31.3“ ) (8.4.20)
and ) )
duy  dap;g R dvs  dapy A |
= —d m/ 5 = - —d m) - 8.4.21
D m(tu‘ U, ) D25 \/D_a—(vf dvp,) ( )

The derivative of th? first equation with respect to @; and the second equation with
respect to @, in (8.4.21) can then be added together to obtain
dagy Ow; o awm] _ 0*wy
vDa dz3 dzs dz?
where the parameters €7, €5, v and s are defined by
Af Dy T, -Ty Sy — 5o

cT = s = yr = B = o o -
)\m ' Dm ' TO - ﬂ bD — Oy

8.4.1 The Linearised Equations
A normal modes solution is sought for equations (8.4.16) and (8.4.15) in which all variables
g q
, in the porous medium and ¥ in the fluid have respective representations
! f I P
"¢1f = ‘([_sf(xg')e”ftfei(Pfl'l'i"If‘l??) , ’I,Z’m — .d)m(‘Ts)ea‘mtme'i(Pmivl‘l‘QmI‘?) .
When the fluid and porous momentum equations are treated twice by the curl operator

to remove the pressure terms, it follows easily that the fluid layer equations can be recast

in the form

Ti i n2 2 s
P—I;(Df_af)wf = (DJ?,—a?)zwf_aiRafﬁf—l—a?Ra&)sf .
oy — Hrwy = (D? — (L?r)@f \ 0 <a3l <1 (8.4.24)
9y — 2 2
Lefs_f——HSwf = (Df——af)sf,
the porous medium equations then become
Da o .
(Pr f T 1) (DZ, — alywm = —ajRapbn + CL;R&&:)SW» )
m
GmOmbm — Hrw, = (D2, — a2)b. , -1<23<0, (8.4.25)
Tmb 2

- — 2
T Sm T ‘H-S'u)m - (Dm G.m)Sm .
Lem
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From these equations,

du N
Dpp = d_¢ (0 <ws <), ag = dam,
T
. N (8.4.26)
dip d
Dmlp = (—1 < 3z < 0) y Ty = ——0Om ,
dxs er
wy=Dsws=0f=s5;=0 on z3=1, (8.4.27)
R 3
wy = dwy, , yrbs =€7 0, Y5S5f = €85m ,
-ngf =€Er Dmgm ) Dfo = ESDmsm I
g o da, x3 = 0. (8.4.28)
D?'(L’f - 3(?}Dfll)f + mDmlum - P—Lffo‘lUf - ng—l_;szUm »
ad 5
——[Dsws — d* D] = Diw
\/E{ fwr n m] Y
W = = 8 =0 on az=—1l. (8.4.29)

- 8.5 Method of Solution

Let the variables yy,...,y14 be defined by

Yy = wy, vy = Djywy, ys = D'}wf .
Ya = D?rwf ) ys = Uf, ve = Dby,
yr = Sy, ys = Dysy, Yo = Wm » {8.5.30)
Yyio = Dnwn, yiu = b, viz = Dnbn,
Y13 = Sm Y14 = Dmsm

Then it is straightforward to verify that equations (3.4.24) and (8.4.25) can be rewritten

as the 14th order system:




Diyr —y2 =0

Dsys—ys =0

Dsys —ys =10

Dyys + a'yy — 2ays — Ragadys + Rally, = Pﬁrf—f(ya —aiy),
Dysys —ys =0

Diys — 11 — G?’L’s = O0fYs

Diy; —ys =10

Dyys — 1 — atyr = %17

DmyQ —yi0=0

Da o,

6 Pr,,

Dmylo - afnyg + afnRamyn - G%R&,(,i)yw = — (Dmylo - Q?HZIS) >
Dmyll — Y12 = 0 )

; 2. —
Diyia — yo — atyin = Gmomlii »

Dpyis—y1a =0,

T
Lem

. ; 2 _
Dmym — Y9 — 4 Y1z — Y13 .

S

2
To solve this problem, o = oy is chosen then from the relation (8.4.26)y ¢ = —op,.
T

Each variable of yi,...,y14 1s assigned a Chebyshev spectral expansion of order N and
the coefficients of the expansion of these variables are replaced into a column vector ¥’

of dimension 14(N -+ 1). The eigenvalue problem then assumes the format EY = ocF'Y,

where matrices /£ and F' have respectively block form




(8.5.32)
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where Dy and D, have the same values since each layer has a width from 0 to 1.
Finally, it only remains to incorporate the boundary conditions (8.4.27), (8.4.28) and
(8.4.29) into matrices £ and /. These boundary conditions in (8.4.27), (8.4.28) and
(8.4.29) can be expressed in terms of the variables yy,...,y14 and the equivalent spectral

representation in terms of rows of E and F' are respectively:

y1=0,12=0, ys =0, yr =10, yo =10, yu =20,

~1

lean yl—dygz(}s ’YTyS—ETyll:O)

3.5.34
vsy7 — esyiz =0, Yo — cry12 = 0, ys — esyra =0, ( )

d! 2 o dio (ZQBJ ( 2 )
Y10 = ——=—Y2 — ——VYig, Y3 = Y2 — d“y10) -
DaJlo ¢r Dr; Y2 4Pr,, Y10 Ya /Da Y2 Yio

Y4 — 3atys +

Each boundary condition (8.5.34) is incorporated sequentially into the (N + 1)th,2(N +
Lyth, .. 14(N + 1)th rows of the matrices E and F. This completes the specification of
the eigenvalue problem EY = o /'Y, The details of each row (in matix format) are given
in table 8.1. The calculations were done using the Fortran program listed in appendix 6.
In fact,the eigenvalues all appear to be real so that o = 0 is the critical eigenvalue. In

this case, the eigenvalue problem can be recast in the format
E*Y = Ral F*Y

where £ = F* — Ral®) * and E* and F* are respectively represented in block form




(8.5.35)
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000000 O 00000 0 0
000000 O 00000 0 O
000000 0O 00000 0 O
ooooooﬁfooooooo
czDa
000000 0O 00000 0 0
000000C O 00000 0 O
= loo0oo000 0 00000 0 0 (8.5.36)
0000006 O 00000 0 O
000000 O 00000 0 0
000000 0O 00000 a4 0
000000 O 00000 0 0
000000 0O 00000 0 O
000000 0O 00000 0 O
(000000 0 00000 0 O]

8.6 Results

Chen [5] computes the critical salt Rayleigh numbers of a porous medium for a thermally-
driven convection and a salinated convection of a fluid layer with superposed porous layer
heated from above for isothermal rigid boundaries. Therefore it is necessary to stabilise
the initial temperature distribution. The value of the initial Rayleigh number of a porous
medium is 50 and the other values and numbers which are respectively required to solve

this problem are Beavers-Joseph constants apy = 0.1, vVDa = 0.003, ez = 0.7, ¢s = 3.75,

Df Dm Pl‘f
Le; = — Le,, = Prie = —,
/ )\f ' " /\m ’ fs Lef
o P i
ms Lem » T er ) 5 €5 )

and these are determined by Chen [5]. The values of the depth ratios d vary between
10~* —1.5. The eigenvalues o are real for all values of d. To determine whether or not the
eigenvalues are real, it is known that the critical eigenvalues occur when o = 0 and so ¥’
satisfies the condition EY = 0. However, E = E* — Ral) F* and so the possible values of

Ral*) are now eigenvalues of the modified and generalised eigenvalue problem. In this case,

[
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the results show that the eigenvalues are real. Now returning back to the original problem,
the values of the critical salt Rayleigh number Raj®' and the corresponding wavenumbers
am for a porous layer considered here are different from those of Chen [5] for the values
of depth ratios d = 0.1,.... 1.5 as illustrated in a table 8.2. The values of salt Rayleigh
number R(iFis are plotted as a function of the corresponding wavenumber am to produce
the marginal stability curves for a range of depth ratios d as illustrated in figure 8.1. It
is observed that the curves for d = 10-4, 10-3 and 10-1 are indistinguishable along with
the curves for d = 0.5, 1 and 1.5. This is also true in Chen's result with respect to the
two curves for d = 10-4 and 10-2. In addition, the curves for d = 0.5, 1 and = 1.5 are
lower than those of Chen. For the possible bimodal nature of marginal stability curves,
the calculations have been extended to include am = 20 for d = 0.2 and 0.1. As shown
in figure 8.2, the curves are qualitatively and quantitatively different from those of Chen.
For example, Chen quotes 102 (approximately) as the minimum value of the stability
curve for d =1.0 whereas the result here is nearer 84. The differences are too large to
be ignored. Of course, one obvious explanation for this discrepancy is that the spectral
method has failed. To check this possibility, the spectral method is applied to the case

of the two-layered problem (porous layer superposed by fluid layer) which is treated in

chapter 7.
Rayleigh No. versus wave No.
d = 0.000
1- 0.001
100
d=05/*

Figure 8.1: Rams versus am for d = 0.0001, 0.001, 0.1, 0.5, 1 and 1.5.

8.7 Conclusions

For the stabilised value of Rayleigh number Ram = 50 of a porous layer combined with

other values, it is found that the critical salt Rayleigh numbers Rams, here compared
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Rayleigh No. versus wave No.
S

40071

Rms
2007

Figure 8.2: Ra,s versus a,, for d=0.1and 0.2.

with those of Chen, are almost identical for some d = values of depth ratios and lower
than those of Chen for other d ratios as shown in the table (8.2). We believe that these
differences are due in large measure to the inadequacy of Chen’s scheme, as a numerical

methodolgy particularly when an interior boundary has to be negotiated.
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Manifestation in Matrix

E F
y1 =0
[p,0,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]
y2 =0
[0,p,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]
ys =0
[0,0,0,0,p,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]
yr =0
[0,0,0,0,0,0,p,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Yo = CZ?JQ
[q,0,0,0,0,0,0,0, —cfp,0,0,0,0,0} (0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Yrys = €Y1
[0,0,0,0,vrq,0,0,00,0.¢7p, 0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0.0]
Yo = €TY12
(0,0,0,0,0,9,0,0,00.0,¢rp, 0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]

VsYr = €5Yi3

[0,0,0,0,0,0,vsq,0,0,0,0,0,esp, 0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Ys = €514

[0,0,0,0,0,0,0,q,0,0,0,0,0, esp] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]
—ys + 3a%y, — (fz‘iﬁ/Da)yw = —(JQ/GT)(UA/PI‘f)Uz + (0624/¢P1‘m)y10A
[0,3a2q, 0. —q,o,o,o,o,o,—l;l—;p,o,o,o,o] [0,—gir‘lf,o,o,0,0,0)0,0,;‘[—:,0,0,0,0]
ys = (apsd/VDa)(y: — d*y10)

[0,\/—%_&,ﬁ,o,o,o,o,o,o,%,o,o.o.o] 0,0,0,0,0,0,0,0,0,0,0,0,0,0]
yg =0

0,0,0,0,0,0,0,0,q,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0, 0]
yir =10

[0,0,0,0,0,0,0,0,0,0,q,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]
yi3 =10

[0,0,0,0,0,0,0,0,0,0,0,0,q,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Table 8.1: The form of the boundary rows
121




d Ra(*) am | Ral?(Chen) | am(Chen)
0.01 | 88.8734 | 3.110 38.91 3.1
0.042 | 83.6874 | 2.700 33.43 2.7
0.044 | 83.7098 | 2.695 83.42 2.7
0.05 | 83.8767 | 2.690 83.48 2.7
0.1 86.2986 | 2.876 85.59 2.8
0.2 35.6721 | 2.951 97.23 3.6
0.4 84.7741 | 2.844 103.37 4.3
0.5 84.6067 | 2.822 103.96 4.3
1.0 84.3762 | 2.775

1.5 84.3607 | 2.769

2.0 84.3606 | 2.769

5.0 84.6129 | 2.743

Table 8.2: For d, critical value of Ral® and a..




Chapter 9

Magnetic Instability with a Finitely
Conducting Inner Rigid Core

9.1 Introduction

The model of this chapter is an interior of the Earth divided into three layers; the first
layver is the cylindrical rigid core of the Earth, the second layer is a cylindrical annulus
of electrically conducting fluid rotating around its axis with angular velocity 29 = {2pe.,
and the third layer is a rigid outer region which can be called a mantle which is either a
perfect electrical conductor or insulator. This chapter reviews Lamb’s [25] investigation

of the case that the mantle is a perfect insulator.

The magnetic field and velocity of the fluid core of the Earth in its basic state can be

represented in cylindrical polar coordinates (r, 6, =) by
By = B(»)ey, Ug = U(r)es.

The ratio of the magnetic diffusivity in the inner core, denoted n;, to that in the fluid,
denoted 1y, is given by 17 = 1;/no and is an important parameters of the problem. For the
inner core, perfect conduction corresponds to n = 0 and perfect insulation corresponds

as 7 = co. Significant results are established when #; is finite, that is, » is finite.




9.2 The Governing Equations of Layers

The Earth is often modelled as an active spherical core enclosed by a solid annular region
or mantle whose electrical properties resemble those of either a perfect insulator or per-
fect conductor. The core region is subdivided into an electrically conducting solid inner
core swrrounded by a spherical shell of electrically conducting incompressible viscous fluid
rotating rapidly at constant angular velocity 2 = £y about a north-south axis with an
inner radius r; and an outer radius 7y respectively. As a precursor to the full problem,
the most recent research models the Earth by three interacting cylindrical regions and it
is this approach that will be emulated here. Lamb [25] discussed the effect of a finitely
conducting inner core on magnetically driven instability in the absence of thermal buoy-
ancy effects. The radius of the inner region varies between 0 and r; and the outer region
consists of everything beyond r = rg. The fluid flow is related to the velocity mode U and
it 1s permeated by a toroidal magnetic field B. Here the aim is to reproduce a selection

of these results. Lamb quotes the governing differential equations in the form

Inner Core

oB
T 7AB V.B =0, re(0,m), (9.2.1)
Fluid Region
ou 1 1
— +UVU+204xU = ——VP+ —(VxB)xB+rvAU,
ot _ po 1tp0
%? = Vx(UxB)+mAB, 1€ (7o), (9.2.2)

VB = VU=0,
where P is the hydrostatic pressure, 1/ is the kinematic viscosity of the fluid, g is the
magnetic permeability of the fluid, 1y , n; are the magnetic diffusivity of the fluid and
inner core respectively and pg is the fluid density. In cylindrical polar coordinates (r, 0, =)
with unit base vectors e,, e; and e,, the underlying terrestrial magnetic field and flow
velocity are azimuthal with form Be = B(r)eg, Uy = U(r)eg respectively and = Qpe..
If u and b are respectively the perturbations in the fluid velocity and magnetic induction
about the basic state by
B =By +b, U=1Ugy+u.

where

b = (b, bg,0,), u = (u,v,w)
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then the non-dimensional field equations will be in the form as quoted by Lamb.

Inner Core

%? =nA"TAb . V.b=0, r & (0,r;), (9.2.3)
Fluid Region
ou
J\E,,E%ﬂez xu = —Vp+(VxBg)xb+(Vxb)xByg+ EAu,
%% = Vx(uxBy)+ATTAb, re(rm), (9.2.4)

Vb = V=0,

where p is the hydrostatic pressure and
E = 1//2907‘02, E, = N0/2Q070° A= BA{2/277QQO,LLPO

denote the viscous Ekman number, the magnetic Ekman number and the Elasser number

respectively. It is common practice to write
B(r) = Burl'(r), (9.2.5)

where By is the maximum value of B(r) and F(r) is a function to be specified later.
The curl of each term of the momentum equation (9.2.4) is taken after replacing Aw by
(—curl curl w), and then (curl b) and (curl «) are replaced by J and & rvespectively. The
field equations now become.

Inner Core

%? =nA"Ab . V.b=0, re (0.r), (9.2.6)

[Fluid region

' B
J\En% + cwl (e, x u) = curl [(B’ + ?)e: X b] + curl (J x Bp)
—FEcurl curl &,
5 (9.2.7)
5 = curl (w0 x Bg) — A7 tcurl curl b, r € (ri,710) ,

Vb = Vau=0.
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The calculations on (9.2.6) and (9.2.7) are involved. The final system of equations is

constructed from the components.

B(r) du dw du

curl (ux Bo) = ==5e, = (Blr)g_ +Blr)g+ Blrju)e
B(1 )@w
* R T
curl (e; x uw) = gl: ,
B(r) B(r)y db )
1 r)+——)e: = —(B(r 9.2.8
i (510 + B, ] = (104 22 02
B(r)y:
+(B’(7‘) + (7)) be., ,
. _ (B9 J- 8J,
curl (J x By) = ( R —B(r) o — B(r )67
. BU)A.
_B (7 )Jl") r 89 ) .
Define
N AR . L)
T = Jr? +I or —E_" ﬁJ’ 0z2"
; 209, or %dQ:
(curl curl @), = —T(o.) — e
‘ 2 aQr O¢ 5 0
(curl curl @) = —T(0s) — Ty + = (9.2.9)

(curl curl @), = —T(0:),

where g represents the vector variables b, u and & by

(r) 06, 0:) = ((Br-Dg. Do), (w, v, w), (6, €6, E2)).

A substitution is made using (9.2.9) in (9.2.6) and using (9.2.8) and (9.2.9) in (9.2.7) to
obtain the necessary r and = components of magnetic equations in the inner rigid core
and the outer fluid layer and r and 6 components of the momentum equations of the

outer fluid layer respectively as:

Inner Core

(9.2.10)




Fluid Layer

36, du _
d v
Mgy~ 8 =
o, _

at

o, _

ot

Now the equations (9.2.10) and (9.2.1

b=

BN Br)dd,
m(B (r) + r )33 r 00
206, &  20¢
+E(T (&) _*+*+4a:>
B ab aJ. aJ, ]
—(B) + 2N Do _ gy (L) O ey,
ro 7o ) o ag or (9.2.11)
. =96 S
HE(T () + 555 —20)
B(r) du 20b. b, 20b,
r aa+ A (j(b”"a? it ras)
B(?)ﬁw 1
59+ J(b:) -
1) have normal mode solutions
u = (u,v,w)eteimitna) |
(9.2.12)

(b,,bg,b ) at L(me—n )

in which o term represents the eigenvalues to be determined and m and n are wavenum-

bers.

The non-constant nature of the basic magnetic field By ensures that all calculations will

be algebraically complex but after a laborious calculation it can be shown that b,, b., u

and u, satisfy the field equations

Inner Core

r, z-component of magnetic induction equations

12 Db, + 3rDicb,. — (r*G — 1)b, + 2inrb, ,

)

13)

P2D2b. + rDicb, — r2Gb. |




Fluid Region
r, z-component of momentum and magnetic induction equations

AL U mn U m

Eﬂ [in( Dyer + ;—) - Gw] = 15 [— FD,b, + F'b, — ?—] - fFOb~
. 4 1 2 1
+in[D3 u+ —D2*u— G Dyu + = Docu + gu — lu -~ —u
T T r r
. G 2n?
— [ GD:w—G*w+ —D,w+ —Docw] ,
r r
AF, . ) :
o—2[Doew —inu] = —in[D%u+ EDgcu — Gu+ ~1-u]
E - 2
1 1 2G
+[D3w + -—D2 w — mDocw —-GD Cw]
(9.2.14)
+221(FDOJ) + F'b, — —b — inFb,)
2n
mF?F[D b+ inb. + b | — b (u+ 1 Doett + inrw) ,
3 2
oAb, = ANmFu+ D%b, + —D,.b, — Gb, + 2in —b.
7 r
b,
+5
oAb, = AimFw+ Db, + - Doub Gb. .
Mantle
2 L _
Do+ ;Dmd’ —GyYp=0, (9.2.15)
where ' = F(r) is defined in (9.2.5), G = G(r) = 1 +n? Dy = B is the partial
derivative in inner core region, D, = 5 1s the partial derivative in outer core region
T‘OC

(fluid layer) and D,, =

is the partial derivative in mantle region.

d
a r m

9.3 Boundary Conditions

The no slip boundary conditions are applied at the inner core bounding surface » = r; or

at the core-mantle bounding surface » = ry. The no slip condition
u =0, r=7T0
can be written in terms of its components

=10, v =70, w=10 r=T;Tp . (9.3.16)
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since

Va=0= D,.u-+ L—l—ﬂv-{—mw—()

then
v=0 — D,u=0 Po=1r T (9.3.17)

On the other hand, magnetic conditions require the magnetic induction must be contin-
uous everywhere. On the axis of rotation this implies
D; b, =0,=0 when m=1
at r=0. (9.3.18)
by =10,=0 when m > 1
If the mantle is a perfectly conducting region then the tangential electric field at the
core-mantle boundary surface is zero and this in turn infers that b, = 0 and D;.b. = 0.
In effect, this is a two- layered problem since the mantle region is disjoint from the inner
and outer core (fluid layer). The conclusion of this work is that the mantle is taken to be
a perfect insulator so that no currents cross the boundary but the region is permeated
by a magnetic field which is derived from a potential function ® = ¢(r)ete!mé+ns) Tt is

trivial that ¢(r) satisfies the differential equation
o1 , .
D%l@“"_Dm(P_GQb:D on r=rurg (9319)
-

where

dé m ot ilmb+nz)
—_—— ?'H
o o ing)e

The current normal to the core-mantle boundary is zero in this case leading to the bound-

b= -V =—(

ary condition

inD,eby + ﬂb +Gb, =0, r=rp. (9.3.20)

The continuity of magnetic field induction is enforced elsewhere. The spectral approach to
this boundary value problem is distinctively different from that of Lamb [25]. For example.
Lamb’s technique enforces boundary conditions at » = 0 and » = rg by determining
suitable analytic solutions (Bessel functions with complex arguments in this instance)
and then matching these solutions to the fluid boundary conditions at » = r; and r = rq.
Such a technique is messy and limiting. On the other hand, spectral methods succeed
effortlessly without the need for an analytical solution. The explanation lies in the fact
that methods based on computation of the solution interval inevitably experience severe

difficulties when the underlying equations possess bounded and unbounded solutions in
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the interval. However, the spectral methods operate in frequency and not physical space

and now it is easy to suppress the unbounded solution. Hence the continuous magnetic

field conditions on the boundaries » = »r; and r = ry are

b, = —2D,v, b, = —iny r=ry,
b, = b,, b, =b, r=T7y, (9.3.21)
bg = 1)9 — D,‘Cb,- = Docb,- r=7r.

The last continuous magnetic field condition on the boundary between the inner core and

the outer core can be derived from
Vxb=0
by taking its 6-component. Hence the boundary condition is

1 .
—(inb, — D;.b.) — -l—(z'nb,. — Dyeb,) =0 (9.3.22)
n i

where n; and n = | are magnetic diffusivity for inner core and outer core respectively and
b, represents in the first bracket, the inner core and in the second bracket, fluid layer.

The last boundary condition of this problem is on the infinite boundary of the mantle

and is represented by

=0 (9.3.23)

9.4 The Method of Solution

Let variables yi,...,y16 be defined by

vyi = b y2 = Dby, y3 = b, Yo = Db, .

Ys = u, Yo = Doeu, ye = Dlu,

ys = w, Yo = Dyw yio = Dlw, (9.4.24)
yiu = by, Y12 = Docb, | yiz = be, yia = Doeb, .

Yis = 'EL” e = Dm'lvb-

The spectral method needs to transfer a system of basic equations (9.2.13), (9.2.14) and

(9.2.15) into a system of a linear ordinary differential equations of first order which can
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be described in terms of the variables yy,...,yis by

Inner Core

Dicyy = w2,
A
1 Dicys = —3rys + (r*G = 1)yy — Zinys + 7 Lyl )
g (9.4.25)
Dicya = Y4,
Lo
r?Dieys = —?‘y4+7‘2Gy3+r207—y3,
7
Outer Core (Fluid Layer)
Dacyﬁ = Ys,
Docyﬁ = Y7
4 1 G 2r7 1 im
Dor = ——yr+(G— Zyge— (2 =2 _ LBy,
ocl -y + ( 7,Q)yG (7. R ?E)Js
1 (iG’ N Qin) 12 mG
—— gy —(—+ —MNn
n Yo nr T ve En
im m AE, o 1 1G
[ R 7 7 (1 —1 —UYs) ,
[E Yiz + — 13 vl + 17 (ve + ]1J5+ n Ys)
DocyS = Y9,
Docyg = Yo,
1 1 2G Jin nr .
Docyro = Yo +(G —I— = Yo — —Us + nyr mE)JG , (9.4.26)
; 2 26
n n iy 1T
—(inG — — 4+ —=)ys — (—— — —Fyy,
(in r2 + 771E)y5 (mE + r s £ Ya
(im o mm I Zin?‘) 4 nl’
—(—=F = —— — —)3 —1Y19 ,
E Er mFE Y13 mEle
2n F' mn cAE .
+( “——_F) yu + n(yg—my5) .
mE r
Docyu = Y12,
i 3 ] 2n
Doctia = —tmAFys — Yz + (G — )Ju — ¥t Aoy,
Docy13 = Y4
1
Doeyyra = —imAFys — —y14 + Gyiz + Aoy,
”
Mantle
Dpyis = Yis s
(9.4.27)
(1 =)' Dmyis = —(1 —1r)yie + [4n* + m*(1 — 7)?yis -
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The equations (9.4.25), (9.4.26) and (9.4.27), can be reformulated in the form of
dy

dxs

=AY +ovBY

where A and B are the complex 16 x 16 matrices. Also the spectral methods needs to
express the boundary conditions (9.3.16), (9.3.17), {9.3.18), (9.3.20), (9.3.21), (9.3.22)

and (9.3.23) in terms of the variables yy,...ys. These are

Yya=ys =10 when m =1
on r=0,
1 =ys =0 when m > 1
y1—yn =20
Yz — y13 =0
on r=r1r;, (9.4.28)
y2 — Y12 =0
n(inyy — ya) = inyn — yu )
Ys =Yg =Yg = 0 on r=r;and r =1,
1 U,
Y12 + L + ;Gym =0
Y1+ 2y1e = 0 on r=1,
Y13 + inyys = 0
s =0 on P =T

Each variable of y, ..., y16 is assigned a Chebyshev spectral expansion of order NV and the
coefficients of expansion of these variables are replaced in a column vector Y of dimension
16(N ++1). The eigenvalue problem then assumes the format EY = o FY, where matrices
E and F have row and element representations. Since the Chebyshev polynomial is used.
it is necessary to transfer the boundaries of the lavers:

For the inner core an interval [0,7;] to an interval [—1,1] by a relation
2s
r=-—14+ 27 for s € (0.r;)

U

For the outer core an interval [r;, 7] to an interval [—1,1] by a relation

for se& (r;,1)
For the mantle an interval [rg,o0] to an interval [—1,1] by a relation
r=1-2/s for s€(l,00)

. The complex matrix £ and F are expressed respectively in the forms
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Now to avoid the non-singular terms of the equations in both inner core and Mantle
layers, they are multiplied by r? and (1 — r)* respectively, and then the matrices [ and

I become respectively
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The complex matrices Ep and Fyy are now used in a QZ algorithem (F02GJE of a
NAG routine) to compute their eigenvalues. Some coeflicients of the system of ordinary
differential equations (9.4.25), (9.4.26) and (9.4.27) are functions which should be treated
by a Chebyshev polynomial expansion and these [unctions are:
For Rigid Inner Core

[ralr) =12, fa(r)=r

For Outer Core (Fluid Layer)

A =1 R =4 B)=a A =3
fo=B(r),  folr) = 5?—) Fo(r) = B?(:j) o = B?(;) folr) = B'(r)/1

where B(r) = r['(r) and ['(r) is the basic field generated by one of the two forms

F(ry= »r® for m=1,

) 1 (41 =P (P =)
F) 1+a( (L =iy

(9.4.33)

+ o') for m>1.

where m is azimuthal wavenumber. Here o and g are arbitrary parameters whose values
are chosen to mimic the behavior of the terrestrial magnetic field. The first field is
(9.4.33); is monotone increasing for a > 0 whereas the second field attains a maximum
value in (r;,1). The latter is a more realistic form for the magnetic field strength since
this expression vanishes at 7 = 1 and » = r; when o = 0. Both are normalised so that the
maximum value of F(r) in (»;, 1) is unity, hence the reason for the multiplier (1 + o).

Here o = 3 = 1. For rigid mantle
fmti = (l - ]1)4~ fmS = (l - 7‘)31 fm?. = (l - 70)2 .

A matrix for each of the above functions can be calculated element-wise by using a

Chebyshev series of the form
fla) = Z arli(@) .
k=0

Fach of the boundary conditions (9.4.28) is incorporated into the complex matrices fps

and Fy;. The last rows (N 4+ 1)th,2(N + 1)th, ... 16(N + 1)th of the matrices Ey; and

Fyr contain the boundary conditions (9.4.28) as




Manifestation in Matrix

En Fir

yr =0 when m>1 r=0,
[p,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Yo =0 when m=1 r=0,
[0,p,0,0,0,0,0,0,0,0,0,0,0,0,0, 0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

ys =10 r =0,
[0,0,p,0,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0.0,0,0,0,0,0.0,0.0]
Y1~y =0 "= T,

[4,0,0,0,0,0,0,0,0,0,~p,0,0,0,0,0] (0,0,0,0,0,0.0,0,0,0,0,0.0,0,0.0]

y2 —y12 =0 rT=T
[0,q,0,0,0,0,0,0,0,0,0,—p,0,0.0,0] [0,0,0,0.0.0,0,0,0,0.0,0,0,0,0.0]
Ys—yi3 =0 T =Ty,

[0.0.9,0.0,0,0,0,0,0,0.0,—p,0,0,0] [0.0,0,0,0.0,0,0,0,0,0.0,0.0,0.0]

nlinyr = ya) = iy — yua "=

— —1
1q,0.,0, —1q,0,0,0,0,0.0,p.0,0,—p,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
?q 112 'I??p

ys =0 r=1r,1l,
[0,0,0,0,p,0,0,0,0,0,0,0,0,0,0,0] (0,0,0,0.0,0,0,0,0,0,0,0,0,0.,0,0]
ye =0 ro=ay
0,0,0,0,0,p,0,0,0,0.0,0,0,0,0,0] [0,0,0,0,0,0.0,0,0,0,0,0,0,0,0, 0]
ys =0 =yl
[0,0,0,0,0,0,0.p,0,0.0,0.0,0,,0.0] [0.0,0.0,0,0.0.0,0,0,0,0,0,0.0,0]
yi2 + vy + (/n)(m?* + 0t )yis = 0 r=1,

b
[0,0.0,0.0,0,0,0.0.0.q,q, —q,0.0.0] [0,0,0.0,0,0,0,0,0,0.0.0.0,0.0.0]
12

yir F2y12 =10 =1,
[0,0,0,0,0,0,0.,0,0,0,q,‘Zq,0,0,0,0] [0,0,0,0,0\0,0,0,0,0,O,O,O,OQO,O]
yiz + iny;s =0 r=1,

[0,0,0,0,0,0,0,0,0,0.0,0,q,0,inp, 0] [0,0,0,0,0.0.0,0,0.0,0,0,0,0,0,0]

Y15 =0 r =00,

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,q,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0] .
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where & = m? + n?. Now the system EpY = oFyY is prepared to calculate eigenvalue

when o = 0 as illustrated in Appendix 7.

9.5 Results

The results can be represented as eigenvalues (values of o) of together with plofs of the
real and imaginary parts of the corresponding eigenfunctions. Lamb investigates field
gradient (ideal) instability, resistive instability and exceptional instability for m = 1 and
m > 1 and the appropriate expression for F(r) in (9.4.33). A selection of Lamb’s results
are reproduced here. Good agreement is found for some cases and in others it would

appear that Lamb’s analysis has missed the critical eigenvalue.

Numerical Procedure

For each set of numbers A, n., 7 and with the other parameters of this problem. the
complex eigenvalues in this chapter are listed in a way such that the critical complex
eigenvalue is the top value in the list and the other eigenvalues are listed in order. If
there are two eigenvalues in table (9.2) for the same numbers A., n. and 5; , then the
first one is the first critical complex eigenvalue and the second one is the second complex
eigenvalue in the list. The eigenfunctions of velocity components u, and . and magnetic
flux components b, and b, can be calculated directly but the second component of both
velocity ug and magnetic flux by can be calculated in terms of the other components wu,.
-, b, and b, respectively using V.u = 0 and V.b = 0. These eigenfunctions have
been normalised as max|b;| = | and they are plotted as a real part and as an imaginary

part.

Comparing the results of C.J. Lamb’s thesis with the results of this thesis for the complex
cigenvalues and the corresponding eigenfunctions by, b., u, and u., when the correspond-
ing real eigenvalues are zero, some results are the same while the others are different.
The results, both here and in Lamb’s thesis, are evaluated for a chosen value of A and a
chosen value of n with £ = F, = 10° and for different value of n; by using Chebyshev

spectral methods and LR algorithm respectively.

The results for field (9.4.33); with a wavenumber m = 1 and o = | are expressed in table
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(9.1). The eigenfunctions b, and b, are plotted respectively in figures (9.1): a and b for
A = 192.42, wavenumber n, = 2.370 and the corresponding eigenvalue w, = —0.5053.,
and they are plotted respectively in figures (9.2): a and b for A = 210.43, n, = 4.508 and
the corresponding eigenvalue w, = —0.9799. Table (9.1) shows the differences between
the eigenvalues here and the eigenvalues in Lamb’s [25]) thesis. Figures (9.1): a and b
and (9.2): a and b for b, and b, show the differences between the eigenfunctions b, and

b. here and those in Lamb’s thesis.

Ag e W, n; | Lamb’s result | Discerption
192.42 | 2.370 | -0.5053 | 10° -0.5052 the same
210.43 | 4.508 | -0.9799 | 10° -0.9800 the same

Table 9.1: This table shows the value of A., n., w. and n; for first field (9.4.33),.

A Real and Imaginary 4+ Real and Imaginary
14 Eigenfunction b, 1! Eigenfunction b,
/ma\g. imag.
0; 05 1708
real
real
a: Eigenfunction b, b: Eigenfunction b

Iigure 9.1: Critical eigenfunctions b, and b, when A = 192.42, n. = 2.370 and »; = 10°.

The results in field (9.4.33)2 with wavenumber m =2, e = 0 and # = 1 are expressed
in table 9.2 which shows identical and different eigenvalues here and in Lamb’s thesis.
The first critical eigenvalues (the first values in both lists) are identical, the second critical
eigenvalues (the first values in the list) are different while the third values (the second
values in the list) are the same. The fourth critical eigenvalues (the first values in the list)
is different, the fifth critical eigenvalues (the first values in the list) are different, while the
sixth critical eigenvalues (the second values in the list) are the same. The eigenfunctions
b., b;, u, and u, are plotted respectively in figures 9.3 a and 9.3 b and 9.4 a and 9.4 b

when A = 508, the wavenumber n, = 9.61, 1; = 10° and the corresponding first critical
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4 Real and Imaginary » Real and Imaginary

Eigenfunction b, 1 Eigenfunction b,

l»«

imag,. J\imag. w

. L 1 r
0.4 0.8 °
real
real
—14
a: Eigenfunction b, b: Eigenfunction b, .

Figure 9.2: Critical eigenfunctions b, and b, when A = 210.43, n. = 4.508 and n; = 10°.

complex eigenvalue w, = —0.934 in the table 9.2 are the same as those of Lamb. The
eigenfunctions b,, b., u, and u, are plotted respectively in figures 9.5 a and 9.5 b and 9.6
a and 9.6 b for A = 623, n. = 8.25, i, = 1.The corresponding second critical complex
eigenvalues w, = 0.6024 in the table (9.2) are different from those of Lamb, while the
eigenfunctions are plotted respectively in figures 9.7 a and 9.7 b and 9.8 a and 9.8 b.
The corresponding third complex eigenvalues (the second complex eigenvalues in the list)
w. = —0.5677 are the same as those of Lamb. The eigenfunctions b,, b., u, and u, are
plotted respectively in figures 9.9 a and 9.9 b and 9.10 a and 9.10 b when A = 1213,
ne = 15.1, n; = 1072, The corresponding fourth critical complex eigenvalues w, = —0.971
in the table (9.2) are different from those of Lamb. The eigenfunctions b,, b, u, and wu.
are plotted respectivelyin figures (9.11): a and b and 9.12 a and 9.12 b when A = 106.
ne = 4.3, m; = 107° and the corresponding fifth critical complex eigenvalues w, = 0.377 in
the table 9.2 are different from those of Lamb, while the eigenfunctions which are plotted
in figures (9.13): a and b and 9.14 a and 9.14 b and the corresponding sixth complex
eigenvalues (the second complex eigenvalue in the list) w, = —0.001314 are the same as

those of Lamb.

Conclusion

The results obtained in this thesis indicate that the Chebyshev Tau method has the ability
to handle eigenvalue problems easily and accurately. This method simplifies single and
multi-layered problems, even with the boundary conditions that usually require much

effort to be put into a useful form. The constant and variable coefficients of the basic
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Ae Ne W, 7; | Lamb’s result | Discerption
508 | 9.61 | -0.9342 | 10° -0.934 identical
623 | 8.25 | 0.6024 1 different
623 | 8.25 | -0.5677 L -0.568 the same
1213 | 15.1 | -0.971 | 1073 -0.969 different
106 | 43 | 0377 |107° different
106 | 4.3 | -0.01314 | 1073 -0.0131 different

Table 9.2: This table shows the value of A, n., w. and n; for the second field (9.4.33),.

o4 Real and Imaginary
Eigenfunction b,

imag.

a: Bigenfunction b,

4 Real and Imaginary
Eigenfunction b,

imag. ‘

N

b: Eigenfunction b, .

Figure 9.3: Critical eigenfunctions b, and b, when A, = 508, n. = 9.61, n; = 10® and

we = —0.934.

4 Real and Imaginary
Eigenfunction u,

Q]
+

imag.

real -

04 0.3

a: Eigenfunction u,

Figure 9.4: Critical eigenfunctions w, and w. A, = 508, n. = 9.61, ; = 10° and w.

—0.934.

Real and Imaginary
3t Eigenfunction u,
07\ ~86 09,
T V,—-v: Lkl ool
. imag.
34
real
—64+
—04 :

b: Eigenfunction u. .




A Real and Imaginary 4 Real and Imaginary
1 Eigenfunction b, Eigenfunction b;
1-.
real
real
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/ Figure 9.5: Critical eigenfunction b, and b, when A, = 623,n, = 8.25, n; = 1 and
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Figure 9.6: Critical eigenfunctions u, and u, when A. = 623, n. = 8.25, n;, = | and
w, = 0.6024.

equations in this problem do not cause any difficulty., as can be determined by this study.
In addition, if there are some coefficients causing singularity in the equations, then it is
required to multiply the equations by these coefficients so that they can be calculated
directly using Chebyshev expansion. Moreover, the eigenvalue problems can be solved
by using a second order system (D?) as well as a first order system (D). In fact, the
second order system gives a good opportunity to solve higher order differential equation
problems by modifying some boundary conditions if necessary. Now Legendre spectral
method has the same ability as the Chebyshev Tau method to treat eigenvalue problems.

but the product variables using Legendre expansion is a difficult matter.
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Figure 9.7: Eigenfunctions br and bz when Ac= 623, nc= 8.25, /, = 1and wc - —0.567:
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uv = -0971.
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Appendix A

Suppose that f(a) @ € [a,b] is a continuous function then
1
r=a+5(z+ 1)(b—a), v €lab] ze[-1,1], (9.5.34)

maps [a,b] into [—1,1]. Let F(z) = f(x) then by the orthogonal property of Chebyshev
polynomials, the spectral series for £ is

1ot F( VT (z)d=
od -1 V1—22

with the assumption such a series exists. Of course, in a practical application, the series

flz) = F(z2) = i LT(=), = (9.5.35)
r=0

(9.5.35) for f is truncated to polynomials of degree N and the coefficients fo...., In
are evaluated from (9.5.35) by Gaussian quadrature methods. Here I employ a (auss-

Chebyshev-Lobatto quadrature based on the nodes
ay = acos?(km/2n) + bsin®(kn/2n)
o = —cos?(kn/2n) +sin®(kn/2n) = — cos(kn/n)

From the first and second relations (9.5.33) at the nodes (9.5.36) vield

N
fle;) = D ET(=),
r=0
= ?z?(:)’ry(“‘})wc—: i 22 (9.5.37]
X0 PR (z)d
B Eg)c,./_l 1 — =2
= I

after apply multiplying and adding processes to the function (9.5.37) yield
N l N 1

= qu —Ty(z Zf, (25) (9.5.38)

=0 Ci

N cr

substitute from (9.5.37) into (9.5.38) to obtain

T 1 Sl .
——>_ = IiTu(z) = =) —Tilz) (=) .
Newizg ¢ Neg iz = c; (9.5.39)
= ) Te(z5)
CL? 0 A J
now substitute from the relation (9.5.35), into (9.5.39) to get
AN Lot F(2)T(2)d=
—FyT, - ————=f. 9.5.40
New & Z . k(=) = P B [ (9.5.40)
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Hence Fi, = f(ax) 0 <k < N, the value of f at the nodes (9.5.36) and fo,..

coefficients of the Chebyshev spectral series (9.5.40) are conected by

r M1

T L s | N L ..N

Tk ch;)cj Leos(kjm/N), k=0,...,N,
N

F; = Y fucos(kjm/N) , j=0,...,N,
k=0

where

{2 k=0or N,
[

1 0<r< N

., fw, the



Appendix B

The sub-matrices F}; are symmetric once the first row and column are disregarded. Here

is a flow diagram for coding F}; asswming that the starting matrix is an array of zeros.

o Disregard the first row and column of F,;. Therealter symmetry prevails and so fill

in the (¢, 7)th entry for 7 > 7 and use symmetry to also fill (7,7)th entry.
o Add diagonal entries to F..

e Add extra entries to first row.




Appendix 1

This appendix contains the sample of using matrix in Chebyshev spectral method and

subroutines of all programs that were used to get the results of the problems.

200
100

400

300

200
100

400

300

.. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF FIRST DERIVATIVE FOR
. CHEBYSHEV SPECTRAL METHODS OVER AN INTERVAL [-1,1] FOR M POLYNOMIAL ..

SUBROUTINE DERIV1_C(M,D)
DOUBLE PRECISION D(M,*)
DO 100 I=1,M
DO 200 J=1,M
D(I,J) = 0.DO
CONTINUE
CONTINUE
DO 300 I=1,M-1
DO 400 J=I+1,M,2
D(I,J) = DBLE(2%*J-2)
CONTINUE
D(1,I) = 0.5D0*D(1,I)
CONTINUE
D(1,M) = 0.5D0*D(1,M)
RETURN
END

. THIS SUBROUTINE USING TQ GIVE THE VALUE OF SECOND DERIVATIVE DF
. CHEBYSHEV SPECTRAL METHODS FOR AN INTERVAL [-1,1] FOR M POLYNOMIAL .

SUBROUTINE DERIV2_C(M,DD)
DOUBLE PRECISION DD(M,*)
DO 100 I=1,M
DO 200 J=1,M
DD(I,J) = 0.DO
CONTINUE
CONTINUE
DO 300 I=1,M
DO 400 J=I+2,M,2
DD(I,J) = DBLE((J-1)*(J+I-2)*(J-I))
CONTINUE
DD(1,I) = 0.5D0*DD(1,I)
CONTINUE
DD(1,M) = 0.5D0*DD(1,M)
RETURN
END

.. THIS SUBROQUTINE IS USED TO GIVE THE VALUE OF FIRST DERIVATIVE FOR
.. LEGENDRE SPECTRAL METHODS OVER AN INTERVAL [-1,1] FOR M POLYNOMIAL ..

SUBROUTINE DERIV1_L(M,D)
DOUBLE PRECISION D(0:M-1,0:M-1)
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200
100

400
300

200
100

400
300

700

600
500

200
100

DO 100 T=0,M-1
DO 200 J=0,M-1
D(I,J) = 0.DO
CONTINUE
CONTINUE
DO 300 I=0,M-1
DO 400 J=I+1,M-1,2
D(I,J) = DBLE(2*I+1)
CONTINUE
CONTINUE
RETURN
END

. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF FIRST DERIVATIVE FOR
. LEGENDRE SPECTRAL METHODS OVER AN INTERVAL [-1,1] FOR M POLYNOMIAL ..

SUBROUTINE DERIV2_L(M,D)
DOUBLE PRECISION D(0:M-1,0:M-1)
DO 100 I=0,M-1
DO 200 J=0,M-1
D(I,J) = 0.DO
CONTINUE
CONTINUE
DO 300 I=0,M-1
DO 400 J=I+1,M-1,2
D(I,J) = DBLE(2%I+1)
CONTINUE
CONTINUE
DO 500 I=1,M-1
DO 600 J=1,M
TEMP = 0.DO
DO 700 K=1,M
TEMP = TEMP+D(I,K)*D(K,J)
CONTINUE
DD(I,J) = TEMP
CONTINUE
CONTINUE
RETURN
END

. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF FIRST DERIVATIVE FOR
. ALL PROBLEMS OVER AN INTERVAL {0,1] FOR M POLYNOMIAL ..

SUBROUTINE DERIV_1(M,D)
DOUBLE PRECISION D(M,*)
DO 100 I=1,M
DO 200 J=1,M
D(I,J) = 0.DO
CONTINUE
CONTINUE




DO 300 I=1,M-1
DO 400 J=I+1,M,?2
D(I,J) = DBLE(4%J+4)
400 CONTINUE
D(1,I) = 0.5D0*D(1,I)
300 CONTINUE
D(1,M) = 0.5D0*D(1,M)

RETURN

END
C .. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF SECOND DERIVATIVE OF
C .. ALL PROBLEMS OVER AN INTERVAL [0,1] FOR M POLYNOMIAL ..

SUBROUTINE DERIV2_C(M,D)
DOUBLE PRECISION D(M,*), DD(M,*)
DO 100 I=1,M
DO 200 J=1,M
D(I,J) = 0.DO
DD(I,J) = 0.DO
200 CONTINUE
100  CONTINUE
DO 300 I=1,M-1
DO 400 J=I+1,M,2
D(I,J) = DBLE(4%J-4)
400 CONTINUE
D(1,I) = 0.5D0*D(1,I)
300 CONTINUE
D(1,M) = 0.5D0*D(1,M)
DO 500 I=1,M-1
DO 600 J=1,M

TEMP = 0.D0
DO 700 K=1,M
TEMP = TEMP+D(I,K)*D(K,J)

700 CONTINUE

DD(I,J) = TEMP
600 CONTINUE
500 CONTINUE

RETURN

END

. MINIMISATIDN SUBROUTINE USING FOR FINDING CRITICAL WAVENUMBER ..
. XLEFT AND XRIGHT ARE END VALUES OF AN INTERVAL IN WHICH THE VALUE
. OF WAVENUMBER EXISTS ..
. XSTAT IS THE WAVENUMBER ..
. TOL DETERMINES THE ACCURACY OF SEEKING VALUE ..
. VALUE IS THE SEEKING VALUE ..
. G IS THE FUNCTION ..
MINMUM(XLEFT,XRIGHT ,XSTAT,TOL,VALUE,G)

Qa0
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IMPLICIT DOUBLE PRECISION(A-H,0-2Z)
GRATIO = 0.618033988749890D0
COEFF1 = -2.07808692123500D0

D = ABS(COEFF1*L0G(TOL/(ABS(XRIGHT - XLEFT))))
N = INT(D)

A = XLEFT

B = XRIGHT

XLOWER = A + (B - A)*GRATIO*%2

XUPPER = A + (B - A)*GRATIO
VLOWER = G(XLOWER)
VUPPER = G(XUPPER)
DO 5 J=1,N
IF (VLOWER.GE.VUPPER) THEN
, A = XLOWER
XLOWER = XUPPER
VLOWER = VUPPER
XUPPER = A + (B - A)*GRATIOQ
VUPPER = G(XUPPER)
ELSE
B = XUPPER
XUPPER = XLOWER
VUPPER = VLOWER
XLOWER = A + (B - A)*GRATIO*%2
VLOWER = G(XLOWER)
ENDIF

DIFF = ABS(VUPPER - VLOWER)
IF (DIFF.LE.TOL) GOTO 102
5 CONTINUE
102  XSTAT = 0.5D0*(XUPPER + XLOWER)
VALUE = G(XSTAT)
RETURN
END




Appendix 2

This appendix contains two FORTRANTT programs fo perform a stability analysis for the
Orr-Sommerfeld eigenvalue problem using the Chebyshev spectral tau method. The first
program treats the OS equation as a system of 4 first order differential equations whereas
the second and the program treats the OS equation as a pair of second order equations
for the conventional and modified boundary value technique. Poiseuille and Couette flow

are implemented by calling the appropriate subroutine for the auxiliary matrices Pand@.

Fourth order system

PROGRAM ORRSOM
stk s o ok ok oke ok ok sk ok ko ok ok e okak sk ko skakaok ok stk sk otk sk stk stk skokok ko skokokskokok ok skok o s ko okskok skokok ok

USES D APPROACH ON THE ORR-SOMMERFELD EQUATION IN THE FORM
DY_1-Y_2=0, DY_2-Y_3=0, DY_3-Y_4=0,

DY_4-2a"2Y_3+a"4Y_1-iaRQ(Y_3-a"2Y_1)-2iaRY_1
= -iaR LAMBDA(Y_3-a"2Y_1)

WITH BOUNDARY CONDITIONS Y_1=0, Y_2=0 ON x=-1, 1

* OF ¥ XK K K X K W K
A R

sfe st ke st o sk o o e st e st sl ke st o ok stk st sk sk sk s sk skt sk ok o st sk sk sk sk skt stk sk sk s ok sk sk s ok s sl s s sk ok stk ke stk ok ks o ok
IMPLICIT DOUBLE PRECISION(A-H,0-Z)

C .. DECLARATIONS FOR QZ ALGORITHM .
LOGICAL MATV
PARAMETER( M=50, Ni=M, N2=2%M, N3=3%M, N4=4*M, MATV=.FALSE. )
DIMENSION AR(N4,N4), AI(N4,N4), BR{N4,N4), BI(N4,N4), ALFR(N4),
* ALFI(N4), BETA(N4), ITER(N4)

C .. GENERAL DECLARATIONS ..
CHARACTER*3 CODE
PARAMETER( ZER0=0.DO, ONE=1.D0, WAVE_NO=0NE, REYNOLDS_NO=1.0D4 )
DIMENSION D(M,M), P(M,M), Q(M,M)

C .. ZERO ALL MATRICES ..
DO 100 I=1,N4
DO 200 J=1,N4

AR(I,J) = ZERO
AT(I,J) = ZERO
BR(I,J) = ZERO
BI(I,J) = ZERO




200 CONTINUE
100  CONTINUE
C .. CHEBYSHEV TAU METHOS CALLS ..
C .. CALL FIRST DERIVATIVE MATRIX ..
CALL DERIVi_C(M,D)

C .. CALL MATRIX CORRESPONDING TO FLOW (POISEUILLE or COUETTE)
CALL POISEUILLE_C(M,P,Q)

CALL COUETTE_C(M,P,Q)

. LEGENDRE SPECTRAL METHOS CALLS ..
. CALL FIRST DERIVATIVE MATRIX ..
CALL DERIV1_L(M,D)
C .. CALL MATRIX CORRESPONDING TO FLOW (POISEUILLE or COUETTE)
CALL POISEUILLE_L(M,P,Q)
C CALL COUETTE_L(M,P,Q)

Q00

C .. BUILD MATRIX A(N4,N4) AND B(N4,N4) IN EQUATICNS IN SEQUENCE..
C .. EQUATIONS 1 - 3 ..
DO 1000 I=1,M-1
DO 1100 K=0,2
KK = K*M
DD 1200 J=1,M
AR(KK+I,KK+J) = D(I,J)

1200 CONTINUE
AR(KK+I ,KK+M+I) = -QONE
1100 CONTINUE

AR(M+I,I) = -WAVE_NO#*%2
1000 CONTINUE
c
C .. EQUATION 4 .
DO 2000 I=1,M-1
NV = N3+I
DO 2100 J=1,M
AR(NV,N3+J) = D(I,J)
AI(NV,J) = P(I,J)*REYNOLDS_NO*WAVE_NO
AT (NV,N2+J) = -Q(I,J])*REYNOLDS_NO*WAVE_NO
2100 CONTINUE
AR(NV,N2+I)
BI(NV,N2+I)
2000 CONTINUE
C
C .. BDUNDARY CONDITIONS ..
FAC = ONE
DO 3000 I=1,M
AR(N1,I) = ONE
AR(N2,I) = FAC
AR(N3,N1+I) = ONE
AR(N4,N1+I) = FAC

-WAVE_NO**2
-REYNOLDS_NO*WAVE_NO

it




FAC = -FAC
3000 CONTINUE

C
C .. THE EIGENVALUE SOLVER ..
EPS = -ONE
IFAIL = 0
CALL FO2GJF(N4,AR,N4,AI,N4,BR,N4,BI,N4,EPS,ALFR,ALFI,BETA,MATV,
* VR,N4,VI,N4,ITER,IFAIL)

C .. CALL THE FOLLOWING STEPS (10)

C .. THE STEPS BELOW DETERMINE EIGENVALUES
NL =0

’ DO 4000 K=1,N4

IF ( BETA(X).NE.ZERO ) THEN

NL = NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)
ITER(NL) = K
ENDIF
4000 CONTINUE

C .. REORDER IMAGINARY PART OF EIGENVALUES. THE REQUIRED EIGENVALUE ..
C .. IS THE FIRST LARGEST IMAGINARY PART..
DO 4100 I=1,NL-1
RMAX = ALFI(I)
INOW = I
DO 4200 J=I+1,NL
IF (RMAX.LT.ALFI(J)) THEN
RMAX = ALFI(J)
INGW = J
ENDIF
4200 CONTINUE
TEMP = ALFR(INOW)
ALFR(INOW) = ALFR(I)
ALFR(I) = TEMP
TEMP = ALFI(INOW)
ALFI(INOW) = ALFI(I)
ALFI(I) = TEMP
ITEMP = ITER(INOW)
ITER(INOW) = ITER(I)
ITER(I) = ITEMP
4100 CONTINUE
c ..
C .. OPEN FILE TO STORE EIGENVALUES ..
NL. = M/100
CODE(1:1) = CHAR(48+NL)
NL = M-100*NL




CODE(2:2) = CHAR(48+NL/10)

CODE(3:3) = CHAR(48+NL-10%(NL/10))

OPEN(10,FILE=’0RR4DATA.’//CODE)

DO 4300 I=1,5

WRITE(10,’ (2F20.15)’) ALFR(I),ALFI(I)

4300 CONTINUE

CLOSE(10)

END
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Second order system

PROGRAM ORRSOM
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Uses D”2 approach on the ORR-SOMMERFELD equation in the form

Y_2=D"2 Y_1,
(D"2-2a"2)Y_2+a"4Y_1=iaR(1-X"2-LAMBDA)(Y_2-a"2 Y_1)+2iaRY_1

with boundary conditioms Y_1=0, DY_1=0 on x=-1,1
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200
100

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

. DECLARATIONS FOR QZ ALGORITHM ..

LOGICAL MATV

PARAMETER( M=40, Ni=M, N2=2%M, MATV=.FALSE. )

DIMENSION AR(N2,N2), AI(N2,N2), BR(N2,N2), BI(N2,N2), ALFR(N2),
* ALFI(N2), BETA(N2), ITER(N2)

. GENERAL DECLARATIONS ..

CHARACTER*3 CODE
PARAMETER( ZER0=0.D0, ONE=1.D0O, WAVE_NO=1.DO, REYNOLDS_NO=1.D4)
DIMENSION DD(M,M), Q(M,M), P(M,M), BCS(M)

. ZERO ALL MATRICES ..

DO 100 I=1,N2
DO 200 J=1,N2
AR(I,J) = ZERO

AI(I,J) = ZERO
BR(I,J) = ZERO
BI(I,J) = ZERO
CONTINUE
CONTINUE

. CHEBYSHEV TAU METHOS CALLS ..
. CALL SECOND DERIVATIVE MATRIX ..

CALL DERIV2_C(M,DD)

. CALL MATRIX CORRESPONDING TO FLOW (POISEUILLE or COUETTE)

CALL POISEUILLE_C(M,P,Q)
CALL COUETTE_C(M,P,Q)

. LEGENDRE SPECTRAL METHOS CALLS ..
. CALL SECOND DERIVATIVE MATRIX ..
CALL DERIV2_L(M,D)




C .. CALL MATRIX CORRESPONDING TO FLOW (POISEUILLE or COUETTE)
CALL POISEUILLE_L(M,P,Q)
C CALL COUETTE_L(M,P,Q)

C .. SET OF CONSTANT PARAMETERS .

TMP1 = REYNOLDS_NO*WAVE_NO
TMP2 = WAVE_NO**2
TMP3 = REYNOLDS_NO*WAVE_NQO**3
TMP4 = WAVE_NO**4
C .. BUILD MATRIX A(N2,N2) AND B(N2,N2) IN EQUATIONS IN SEQUENCE..
C .. EQUATION 1
DO 1000 I=1,M-2
v DO 1100 J=1,M
AR(I,J) = DD(I,J)
1100 CONTINUE
AR(I,Ni+I) = -ONE
1000 CONTINUE
C .. EQUATION 2 ..
DO 2000 I=1,M-2
NV = Ni+I
DO 2100 J=1,M
AR(NV,N1+J) = DD(I,J)
AT(NV,N1+J) = -TMP1%Q(I,J)
AT(NV,J) = TMP3*Q(I,J)+TMP1*P(I,J)
2100 CONTINUE
AR(NV,I) = TMP4
AR(NV,NV) = AR(NV,NV)-2.DO*TMP2
BI(NV,I) = TMP3
BI(NV,NV) = -TMP1
2000 CONTINUE
c
C .. ONE OF THE TWD BOUNDARY CONDITIONS WILL BE IN CHARGE ..
C
¢ (1).. CONVENTIONAL BOUNDARY CONDITIONS ..
FAC = ONE

DO 3000 I=1,M
AR(N1-1,I) = ONE
AR(N1,I) = FAC
II = I-1
AR(N2-1,I) = DBLE(IT*TI)
AR(N2,I) = FAC*#DBLE(II*II)
FAC = -FAC

3000 CONTINUE

C (2).. MODIFIED BOUNDARY CONDITIONS ..
DO 2500 I=1,M
IF ( MOD(I,2).EQ.1 ) THEN




BCS (1)
ELSE
BCS(I)
ENDIF
2500 CONTINUE

]

ONE/DBLE(I*(I-2))

ONE/DBLE((I+1)*(I-3))

il

C .. BOUNDARY CONDITIONS ..
FAC = ONE
DO 3000 I=1,M
AR(N1-1,I) = ONE
AR(N1,I) = FAC
FAC = -FAC
3000 CONTINUE
B0 3100 I=1,M-2
IF ( MOD(I,2).EQ.1 ) THEN
AR{N2-1,N1+I) = BCS(I)
ELSE
AR(N2,N1i+I) = BCS(I)
ENDIF
3100 CONTINUE

C .. THE EIGENVALUE SOLVER ..

EPS = -0ONE

IFAIL = 0

CALL FO2GJF(N2,AR,N2,AI,N2,BR,N2,BI,N2,EPS,ALFR,ALFI ,BETA,MATV,
* VR,N2,VI ,N2,ITER,IFAIL)

C .. THE STEPS IN (10) ARE NECESSARY TO DETERMINE THE EIGENVALUES IN
C .. THIS PROGRAM FOR K=1,N2 INSTEAD OF K=1,N4 ..
END

Poiseuille and Couette Flow Subroutines

.. CHEBYSHEV TAU METHOD SUBRCUTINES
. THIS SUBROUTINE GIVES PARAMETERS AND MATRICES RELATED TO
. POISEUILLE FLOW FOR ..
. M IS A POLYNOMIAL, P AND Q ARE MATRICES ..
SUBROUTINE POISEUILLE_C(M,P,Q)
DOUBLE PRECISION Q(M,*), P(M,*)
DO 100 I=1,M
DO 200 J=1,M
Q(I,J) = 0.DO
P(I,J) = 0.DO
200 CONTINUE
Q(I,I) = 0.5D0
P(I,I) -2.D0
IF ( I.LE.M-2 ) Q(I,I+2) = -0.25D0

QO Q0

]
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IF ( I.GE.3 ) Q(I,I-2) = -0.25D0
100  CONTINUE
Q(3,1) = Q(3,1)-0.25D0
Q(2,2) = Q(2,2)-0.25D0
RETURN
END

]

C .. THIS SUBROUTINE GIVES PARAMETERS AND MATRICES RELATED TG
C .. COUETTE FLOW .
C .. M IS A POLYNOMIAL, P AND Q ARE MATRICES ..
SUBROUTINE COUETTE_C(M,P,Q)
DOUBLE PRECISION Q(M,*), P(M,x*)
DO 100 I=1,M
DO 200 J=1,M
Q(I,J) = 0.DO
P(I,J) = 0.DO
200 CONTINUE
IF ( I.LE.M-1 ) Q(I,I+1) = 0.5D0
IF ( I.GE.3 ) Q(I,I-1) = 0.5D0
100  CONTINUE
Q(2,1) = 1.0D0
RETURN
END

. LEGENDRE SPECTRAL METHOD SUBROUTINES ..
.. THIS SUBROUTINE GIVES PARAMETERS AND MATRICES RELATED TO
. PDISEUILLE FLOW FOR .
. M IS A POLYNOMIAL, P AND Q ARE MATRICES ..
SUBROUTINE POISEUILLE_L(M,P,Q)
DOUBLE PRECISION Q(0:M-1,0:M-1), P(0:M-1i,0:M-1)
DO 100 I=0,M-1
DO 200 J=0,M-1
Q(1,J) = 0.DO
P(I,J) = 0.DO
200 CONTINUE
100 CONTINUE
DD 300 K=0,M-1
Q(K,K) = 2.DO*DBLE(K*K+K-1) /DBLE (4%K*K+4*K-3)
P(K,K) -2.D0
300 CONTINUE
DO 400 K=2,M-1
Q(K,K-2) = ~-DBLE(K*K-K)/DBLE (4*K*K-8+K+3)
400 CONTINUE
DO 500 K=0,M-3
Q(K,K+2) = -DBLE(K*K+3*K+2)/DBLE (4*K*K+16*K+15)
500 CONTINUE
RETURN

Q00
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END

C .. THIS SUBROUTINE GIVES PARAMETERS AND MATRICES RELATED TO
C .. COUETTE FLOW ..
C .. M IS A POLYNOMIAL, P AND Q ARE MATRICES ..
SUBROUTINE COUETTE_L(M,P,Q)
DOUBLE PRECISION Q(0:M-1,0:M-1), P(0:M~1,0:M-1)
DO 100 I=0,M-1
DO 200 J=0,M-1
Q(I,J) = 0.DO
P(I,J) = 0.DO
200 CONTINUE
’ Q(I,I) = 0.DO
100  CONTINUE
DO 300 K=1,M-1
Q(K,K-1) = DBLE(K)/DBLE(2*K-1)
300 CONTINUE
DO 400 K=0,M-2
Q(K,K+1) = DBLE(K+1)/DBLE(2*K+3)
400  CONTINUE
RETURN
END




Appendix 3

This appendix contains two FORTRANTY7 programs to perform a stability analysis for
the Benard-convection eigenvalue problem using the Chebyshev spectral tau method.
The first program treats the differential equation as a system of 8 first order differential
equations whereas the second program treats the differential equation as a system of 4
second order differential equations for both the conventional and modified boundary value

technique.

Eighth order system

PROGRAM CONVEC
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PROGRAM COMPUTES EIGENVALUES FOR BENARD CONVECTION IN A LAYER
OF CONDUCTING NAVIER-STOKES FLUID SUBJECT TO A CONSTANT AXIAL
MAGNETIC FIELD.

EIGENFUNCTION ARE REPRESENTED BY CHEBYSHEV SPECTRAL SERIES AND
NAG ROUTINE FO2BJF IS USED TO TREAT THE GENERALISED BOUNDARY
VALUE PROBLEM.
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IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( M=20, Ni=M, N2=2%M, N3=3%M, N4=4%M, Nb6=5%M, N6=6*M,

* N7=7%M, N8=8xM )
DIMENSION A(N8,N8), B(N8,N8), ALFR(N8), ALFI(N8), BETA(NS),
* ITER(NS), D(M,M)

CHARACTER*3 CODE

CHARACTER*1 TYPE

LOGICAL MATV

PARAMETER( MATV=.FALSE., TOL=1.D-9, VMU=1.D0, PM=3.D0, PR=1.DO,
* BVAL=1.55D4, AVAL=5.5576D0, Q=1.D3 )

RVAL = SQRT(BVAL)

c .. ZERO ALL ENTRIES OF A(N8,N8) AND B(N8,N8)
DO 100 I=1,N8
pO 100 J=1,N8
ACJ,I) = 0.D0
B(J,I) 0.DO
100  CONTINUE

C .. VARIABLES OF THE EQUATIONS .
C Y(1) ... W, Y(2) ... DW, Y(3) ... D"2W, Y(4) ... D°3U
c Y(5) ... \THETA, Y(6) ... D\THETA, Y(7) ... b, Y(8) ... Db
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C .. FILL A(N8,N8) WITH THE DIFFERENTIATION MATRIX
C .. CALL FIRST DERIVATIVE MATRIX ..
CALL DERIV_1(M,D)

C .. FILL A(N8,N8) WITH THE DIFFERENTIATION MATRIX IN ORDER
DO 1000 I=1,M
C .. EQUATION 1 ..
DD 1100 J=1,M
ACI,J) = D(I,J)
1100 CONTINUE
A(I,N1+I) = -1.DO
C .. EQUATION 2 ..
NV = Ni+I
DO 1200 J=1,M
A(NV,N1+J)
1200 CONTINUE
A(NV,N2+I) = -1.D0O
¢ .. EQUATION 3 ..
NV = N2+I
DO 1300 J=1,M
A(NV,N2+J)
1300 CONTINUE
A(NV,N3+I) = -1.DO
C .. EQUATION 4 ..

D(IL,J)

D(I,J)

NV = N3+I
DO 1400 J=1,M
A(NV,N3+J) = D(I,J)
1400 CONTINUE
ANV, I) = AVAL*%*4
A(NV,N2+I) = -Q-2.DO*AVAL#*%2
A(NV,N4+T) = ~RVAL*AVAL#*%2
B(NV,I) = -AVAL*%2
B(NV,N2+I) = 1.DO
B(NV,N7+I) = -SQRT(Q)+*PM
G .. EQUATION 5 ..
NV = N4+I
DO 1500 J=1,M
A(NV,N4+J) = D(I,J)
1500 CONTINUE

A(NV,N5+I) = -1.D0O
C .. EQUATION 6 ..

NV = Nb+I

DO 1600 J=1,M

ANV, N5+])

1600 CONTINUE

ANV, N4+I)

ANV, T)

B(NV,N4+I)

D(I,J)

~AVAL**2
RVAL
PR
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C .. EQUATION 7 ..
NV = N6+I
DO 1900 J=1,M
AUV,N6+T) = D(I,T)
1900 CONTINUE
A(NV,N7+I) = -1.D0
C .. EQUATION 8 .
NV = N7+1
DO 2000 J=1,M
A(NV,N7+]) = D(I,J)

2000 CONTINUE
A(NV,N1+I) = SQRT(Q)
A(NV,N6+I) = ~AVAL*%2
B(NV,N6+I) = PM

1000 CONTINUE
DO 3000 I=1,N8
DO 3100 K=1,12
A(K*M,I) = 0.DO
B(K*M,I) = 0.DO

3100 CONTINUE
3000 CONTINUE
C
C .. BOUNDARY CONDITIONS - SET PARAMETER CONSTANTS FIRST
FAC = 1.D0
DO 3200 I = 1,M
ACNL,T) = 1.D0
AQN2,T) = FAC
A(N3,N1+I) = 1.DO
A(N4,N1+I) = FAC
A(N5,N4+I) = 1.DO
A(NG6,N4+I) = FAC
A(N7,N6+I) = 1.DO
A(N8,N6+I) = FAC
FAC = -FAC

3200 CONTINUE

C .. THE NAG ROUTINE FO2BJF IS CALLED AS THE EIGENVALUE SOLVER ..
EPS = -1.D0
IFAIL=0
CALL FO2BJF(N8,A,N8,B,N8,EPS,ALFR,ALFI,BETA,MATV,Z,N8,ITER,IFAIL)

C .. CALL THE FOLLOWING STEPS (20)
C .. DETERMINE REAL PARTS AND IMAGINARY PARTS OF EIGENVALUES ..
NL =0

DO 9000 K=1,N8
IF (ABS(BETA(K)).GT.TOL) THEN

NL=NL+1
ALFR(NL) = ALFR(K)/BETA(K)
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ALFI(NL) = ALFI(K)/BETA(K)
ITER(NL) = K
ENDIF
9000 CONTINUE

c ..

C .. REORDER REAL PART OF EIGENVALUES. THE REQUIRED EIGENVALUE ..

C .. IS THE FIRST LARGEST REAL PART..
DO 9100 I=1i,NL-%
RMAX = ALFR(I)
INOW = I
DO 9200 J=I+1,NL
IF (RMAX.LT.ALFR(J)) THEN
RMAX = ALFR(J)
INOW = J
ENDIF
9200 CONTINUE
TEMP = ALFR(INOW)
ALFR(INOW) = ALFR(I)
ALFR(I) = TEMP
TEMP = ALFI(INOW)
ALFI(INOW) = ALFI(I)
ALFI(I) = TEMP
NTEMP = ITER(INOW)
ITER(INOW) = ITER(I)
ITER(I) = NTEMP
9100 CONTINUE
END
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Fourth order system

PROGRAM BENARD
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PROGRAM COMPUTES EIGENVALUES FOR BENARD CONVECTION IN A LAYER
OF CONDUCTING NAVIER-STOKES FLUID SUBJECT TO A CONSTANT AXIAL
MAGNETIC FIELD.

EIGENFUNCTION ARE REPRESENTED BY CHEBYSHEV SPECTRAL SERIES AND
NAG ROUTINE FO2BJF IS USED TO TREAT THE GENERALISED BOUNDARY
VALUE PROBLEM.
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IMPLICIT DOUBLE PRECISION(A-H,0-Z)
CHARACTER#*3 CODE
PARAMETER( M=20, Ni=M, N2=2%M, N3=3*M, N4=4xM )
DIMENSION A(N4,N4), B(N4,N4), ALFR(N4), ALFI(N4), BETA(N4),
* ITER(N4), D(M,M), DD(M,M), BCS(M)
CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., TOL=1.D-9, VMU=1.D0, PM=3.D0, PR=1.DO,
* BVAL=1.55D4, AVAL=5.5576D0, Q=1.D3 )
RVAL = SQRT(BVAL)
¢ .. ZERO ALL ENTRIES OF A(N4,N4) AND B(N4,N4)
DO 100 I=1,N4
DD 100 J=1,N4
ACJ,I) = 0.DO
B(J,I) = 0.DO
100  CONTINUE

C .. VARIABLES OF THE EQUATIONS ..
C .. Y(1) ... W, Y(2) ... D"2W, Y(3) ... \THETA, Y{4) ... b
C
C .. FILL A(N4,N4) WITH THE FIRST DIFFERENTIATION MATRIX
C .. CALL FIRST DERIVATIVE MATRIX ..
CALL DERIV_1(M,D)
¢ .. FILL A(N4,N4) WITH THE SECOND DIFFERENTIATION MATRIX

C .. CALL SECOND DERIVATIVE MATRIX ..
CALL DERIV_2(M,D)

C .. FILL A(N4,N4) WITH THE DIFFERENTIATION MATRIX IN ORDER
DO 1000 I=1,M
C .. EQUATION 1
DO 1100 J=1,M
A(I,J) = DD(I,])
1100 CONTINUE
A(I,N1+I) = -1.DO

173




C .. EQUATION 2 ..

NV = Ni+I
DO 1200 J=1,M
A(NV,N1+J) = DD(I,J)
B(NV,N3+J) = -SQRT(Q)*PM*D(I,J)
1200 CONTINUE
A(WV,I) = AVAL**4
A(NV,NV) = A(NV,NV)-Q-2.DO%*AVAL*%2
A(NV,N2+T) = ~RVAL*AVAL**2
B(NV,I) = -AVAL*%2
B(NV,NV) = 1.DO
¢ .. EQUATION 3 ..
NV = N2+I

DO 1300 J=1,M
A(NV,N2+J) = DD(I,J)
1300 CONTINUE
A(NV,I) = RVAL
A(NV,N2+I) = -AVAL**2
B(NV,N2+I) = PR
C .. EQUATION 4 ..
NV = N3+I
DO 1400 J=1,M
A(NV,N3+J) = DD(I,J)
A(NV,J) = SQRT(Q)*D(I,J)
1400 CONTINUE
A(NV,N3+I) = -AVAL*x2
B(NV,N3+I) = PM
1000 CONTINUE

C .. THIS ROUTINE IS FOR MODIFIED BOUNDARY CONDITIONS ..

DO 2000 I=1,M
IF ( MOD(I,2).EQ.1 ) THEN
BCS(I) = DNE/DBLE(I*(I-2))
ELSE
BCS(I) = ONE/DBLE( (I+1)*(I-3))
ENDIF
2000 CONTINUE
DO 3000 I=1i,N4
DO 3100 K=1,4

AC(K*M,I) = 0.DO

A(K*M-1,I) = 0.DO

B(K*M,I) = 0.DO

B(K#*M-1,I) = 0.D0
3100 CONTINUE

3000 CONTINUE

C .. ONE OF THE TWO BOUNDARY CONDITIONS WILL BE USED ..




C (1).. BOUNDARY CONDITIONS AND THE CONVENTIONAL BOUNDARY CONDITIONS ..

FAC = 1.D0
DO 3200 J = 1,M
A(N1-1,J) = 1.DO
AN, T) = FAC
C .. DW=0 ON UPPER BOUNDARY ..
TEMP1 = 0.DO
DO 3300 I=1,M
TEMP1 = TEMP1+D(I,J)
3300 CONTINUE
A(N2-1,J) = TEMP1
C .. DW=0 ON LOWER BOUNDARY ..
TEMP2 = 0.DO
FAC1 1.DO
DO 3400 I=1,M
TEMP2 = TEMP2+FAC1%*D(I,J)
FAC1 = -FAC1
3400 CONTINUE
A(N2,J) = TEMP2

A(N3-1,N2+J) = 1.D0O
A(N3,N2+J) = FAC
A(N4-1,N3+J) = 1.DO
A(N4 ,N3+J) = FAC
FAC = -FAC

3200 CONTINUE

C

FAC = 1.D0
DO 3200 T = 1,M
A(N1-1,I) = 1.DO

A(N1,I) = FAC
A(N3-1,N2+I) = 1.D0
A(N3,N2+I) = FAC
A(N4-1,N3+I) = 1.D0
A(N4 ,N3+T) = FAC
FAC = -FAC

3200 CONTINUE
DO 3300 I = 1,M-2
IF ( MOD(I,2).EQ.1 ) THEN
A(N2-1,N1+I) = BCS(I)
ELSE
A(N2,N1+I) = BCS(I)
ENDIF
3300 CONTINUE

C .. THE NAG ROUTINE FO2BJF IS CALLED AS THE EIGENVALUE SOLVER ..
EPS = -1.D0
IFATL=0

C (2).. THE BOUNDARY CONDITIONS AND THE MODIFIED BOUNDARY CONDITIONS ..




CALL FO2BJF(N4,A,N4,B,N4,EPS,ALFR,ALFI,BETA,MATV,Z,N4, ITER, IFATL)
¢ .. THE STEPS IN (20) ARE NECESSARY TO DETERMINE THE EIGENVALUES IN

C .. THIS PROGRAM FOR K=1,N4 INSTEAD OF K=1,N8 ..
END
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Appendix 4

PROGRAM CONVEC

c .. PARAMETERS FOR THE EIGENVALUE PROBLEM
IMPLICIT DOUBLE PRECISION(A-H,D0-Z)
PARAMETER( TOL=5.D-9,PR=1.D0, PM=1.D0, NCRVL=20 )
PARAMETER( RMAX=10.D0O)
DIMENSION CR(0:NQVL)
C OR DIMENSION Q(0:NQVL)
CHARACTER*1 TYPE
CHARACTER#*3 CODE
COMMON / INFO1 / CRV, PMVAL, PRVAL, RM
c COMMON / INFO1 / QV, PMVAL, PRVAL, RM
COMMON / INF02 / TYPE
EXTERNAL EIGVAL
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PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/MARANGONI
CONVECTION IN A CONDUCTING MAGNETIC MEDIUM SUBJECT TO A
CONSTANT VERTICAL MAGNETIC FIELD.

A NAG ROUTINE FO2BJF IS USED TO INTEGRATE THE SYSTEM OF FIRST
ORDER ORDINARY DIFFERENTIAL EQUATIONS USING CHEBYSHEV SPECTRAL
THE EIGENVALUE PROBLEM IS EIGHTH ORDER WITH FOUR BOUNDARY
CONDITIONS ON EACH BOUNDARY., THERE ARE SEVERAL CASES ACCORDING
TO THE BOUNDARY CONDITIONS.

* ¥ K X K * X K K #
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C FACTOR = 2.DO*ATAN(1.D0)/DBLE(NCRVL)
FACTOR = 2.DO*ATAN(1.DO)/DBLE(NQVL)
PMVAL = PM
PRVAL = PR
DO 100 I=0,NCRVL
C CR(I) = RMAX*(SIN(FACTOR*DBLE(I)))**2

Q(I) = RMAX*(SIN(FACTOR*DBLE(I)))*%2
100  CONTINUE
WRITE(6,*) ’ENTER VALUE FOR RVAL’

c OPEN(16,FILE=FILE_IN,STATUS=’0LD’,ERR=888)
C OPEN(i3,FILE=FILE_QUT,STATUS=’UNKNOWN')
READ(5,*) RVAL
RM = RVAL

WRITE(6,%) ’ENTER VALUE FOR AVAL’
READ(5,%*) AVAL
C CLOSE(16)
OPEN(1,FILE=FNAME,STATUS='UNKNOWN’)
DO 200 I=0,NCRVL
C CRV = CR(I)
Qv = Q(I)




QO aa

111

c ..

C

. THIS SUBROUTINE IS USED TO MINIMISE THE REQUIRED WAVENUMBER ..

. ALEFT AND ARIGHT ARE THE END OF AN INTERVAL, ASTAT IS THE REQUIRED
. NUMBER, TOL IS FOR ACCURACY OF THE RESULT, R_VAL IS RAYLEIGH NUMBER
. AND EIGVAL IS A FUNCTION ..

ALEFT = AVAL*0.8DO

ARIGHT = AVAL=%1.25D0

CALL MINMUM(ALEFT,ARIGHT,ASTAT,TOL,R_VAL,EIGVAL)
END

.. THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE ..
.. GIVEN WAVENUMBER ..

FUNCTION EIGVAL(AVAL)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DIMENSION X(2), F(2)

COMMON / INFO1 / CR, PM, PR, RM
COMMON / INFOi / Q, PM, PR, RM

X(1) = RM#*0.8DO

X(2) = RM*1.25D0
F(1) = SIGMA(X(1),AVAL)
F(2) = SIGMA(X(2),AVAL)

IF (ABS(F(1)-F(2)).LE.5.D-9) THEN
EIGVAL = X(2)
RM = EIGVAL
WRITE(*,*) EIGVAL, AVAL
RETURN

ENDIF

G = X(L)-F(L)*X(2)~-X(1))/(F(2)-F(1))

X(1) = X(2)

F(1) = F(2)

X(2) = ¢

GOTO 111

END

THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM ..
FUNCTION SIGMA(RVAL,AVAL)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( M=20, Ni=M, N2=2%M, N3=3*M, N4=4xM, N5=65xM, N6=6%M,
* N7=7+M, N8=8*M )
DIMENSION A(N8,N8), B(N8,N8), D(M,M), ALFR(N8), ALFI(NS8),
* BETA(N8), ITER(N8)
CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., RVAL=300.D0O, RNU=0.D0, BO=1.DO,
* CR=0.D0, ZER0=0.D0, ONE=1.D0, TOL=1.D-9 )
COMMON / INFO1 / CR, PM, PR, RM
COMMON / INFO1 / Q, PM, PR, RM
COMMON / INF02 / TYPE
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[

300

1400

c ..

. VARTIABLES OF THE EQUATIONS ..

Y(1) ... W, Y(2) ... DW, Y(3) ... D"2W, vY(4) ... D"3W,

Y(5) ... \THETA, Y(6) ... D\THETA, Y(7)

.. ZERO ALL ENTRIES OF A(N8,N8), B(N8,N8)

DO 300 I=1,N8
DO 300 J=1,N8

A(J,I) = 0.DO
B(J,I) = 0.DO
CONTINUE

CALL DERIV_1(M,D)

DO 1000 I=1,M

. EQUATION 1 ..

DO 1100 J=1,M
ACI,I) = D(I,D)

CONTINUE

A(I,N1+I) = -1.D0O

. EQUATION 2 ..

NV = N1+I

DO 1200 J=1,M
A(NV,N1+J)

CONTINUE

A(NV,N2+I) = -1.D0

D(L,J)

. EQUATION 3 ..

NV = N2+I
DO 1300 J=1,M
A(NV,N2+J)
CONTINUE
A(NV,N3+I) = -1.D0

D(I,J)

. EQUATION 4 ..

NV = N3+I
DO 1400 J=1,M
A(NV,N3+])
CONTINUE
A(NV,I)
A(NV,N2+1)

D(I,J)

AVAL**4
~Q-2.DO*AVAL**2

)

A(NV,N4+I) = -RVAL*AVAL**2
B(NV,I)
B(NV,N2+I)
B(NV,N7+I)
EQUATION 5 ..
NV = N4+I

~AVAL*%2/PR
1.DO/PR
-Q/PM

]
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. h, Y(8) ... Dh

.. BUILD THE CHEBYSHEV DERIVATIVE MATRIX D(N,N)
. CALL FIRST DERIVATIVE MATRIX ..

. FILL A(N8,N8) WITH THE DIFFERENTIATION MATRIX IN ORDER




DD 1500 J=1,M
A(NV,N4+])
1500 CONTINUE
A(NV,N5+I) = -1.D0
C .. EQUATION 6 ..
NV = N5+I
DO 1600 J=1,M
A(NV,N5+J)
1600 CONTINUE
A(NV,I)
ANV ,N4+1)
B(NV,N4+I)
C .. EQUATION 7 ..
NV = N6+I
DO 1700 J=1,M
A(NV,N6+J)
1700 CONTINUE
A(NV,N7+I) = -1.D0
C .. EQUATION 8 ..

D(I,J)

D(I,J)

1§

1.D0
—AVAL**2
1.D0

D(I,J)

NV = N7+I
DO 1800 J=1,M
A(NV,N7+J) = D(I,J)
1800 CONTINUE
A(NV,N1+I) = 1.DO
A(NV,N6+I) = ~AVAL**2
B(NV,N6+I) = 1.D0O/PM
1000 CONTINUE
C
C .. ZERO ALL ENTRIES OF 8 Mth ROWS..
DO 2000 I=1,N8
DO 2100 K=1,8
A(RK*M,I) = 0.DO
B(K*M,I) = 0.D0O
2100 CONTINUE
2000 CONTINUE
C

C .. BOUNDARY CONDITIONS - SET PARAMETER CONSTANTS FIRST
Cl = AVAL**2

C2 = RMVL

C3 = RMVL*AVAL#**2

FAC = 1.D0O

DO 2200 I=1,M
A(N1,I) = -C3
B(N1,I) = Ci
B(N1,N2+I) = 1.D0
B(N1,N4+I) = C3
AQN2,D) = FAC
A(N3,I) = (BO-C1)*Ct




A(N3,N1+I) = Q*C2%CR+3,D0*C3%CR
A(N3,N2+I) = BO-C1
A(NS,N3+I) = -C2%CR
A(N3,N4+I) = (BD-C1)*C3
B(N3,N1+I) = -C2xCR/PR
B(N3,N6+I) = C2%xCR*Q/PM
A(N4 ,N1+I) = FAC
A(N5,I) = RNU*C1
A(N5,N2+I) = RNU
A(N5,NG5+I) = -C3
A(NG6,N4+I) = FAC

A(N7 ,N6+I) = AVAL
A(N7,N7+I) = 1.D0
A(N8,N6+I) = -AVAL*FAC
A(N8,N7+I) = FAC

FAC = -FAC

2200 CONTINUE

@]

60

65

. THE NAG ROUTINE FO02BJF IS USED AS THE EIGENVALUE SOLVER ..

EPS = -1.D0
IFAIL=0
CALL FO2BJF(N8,A,N8,B,N8,EPS,ALFR,ALFI,BETA,MATV,Z,N8,ITER,IFAIL)

. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY ..
. PARTS ARE ALFI(M)

NL = 0
DD 60 I=1,N8
IF (ABS(BETA(I)).GT.TOL) THEN

NL=NL+1
ALFR(NL) = ALFR(I)/BETA(I)
ALFI(NL) = ALFI(I)/BETA(I)
ENDIF
CONTINUE

. DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES ..

ALARGE = ALFI(1)

AREAL = ALFR(1)

DO 65 I=2,NL
IF (AREAL.GT.ALFR(I)) GOTO 65
ALARGE = ALFI(I)
AREAL = ALFR(I)

CONTINUE

SIGMA = AREAL

RETURN

END




Appendix 5

This appendix contains two FORTRANT7 programs to perform a stability analysis for the
Porous medium superposed fluid layer eigenvalue problem using the Chebyshev spectral
tau method. The first program treats the governing equations as a system of 10 first
order differential equations whereas the second program treats the governing equations

as five second order differential equations.

Tenth order system

PROGRAM BENARD

IMPLICIT DOUBLE PRECISION(A~H,0-Z)
PARAMETER( TOL=5.D-9, MVAL=25 )
DIMENSION AVAL(0:MVAL), RVAL(O:MVAL)

COMMON / INFO1 / RM
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PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/RAYLEIGH
CONVECTION IN A POROUS MEDIUM SUPERPOSED BY CLEAR FLUID HEATED
FROM BELOW.

NAG ROUTINE FO2BJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS USING THE CHEBYSHEV TAU METH-
0D. THE EIGENVALUE PROBLEM IS 10TH ORDER WITH FIVE BOUNDARY
CONDITIONS ON EACH BOUNDARY.

EE I A .
L R S R S
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WRITE(6,*) 'ENTER VALUE FOR RM’
READ(5,*) RM

C .. DETERMINE WAVENUMBERS ..
DD 100 I=0,MVAL
ANOW = DBLE(I)
AVAL(I) = ANOW
RVAL(I) = EIGVAL(ANOW)

RM = RVAL(I)
AM = AVAL(I)
100  CONTINUE
END

C .. THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE ..
C .. GIVEN WAVENUMBER .

FUNCTION EIGVAL(AM)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

PARAMETER( EPS=5.D-8 )
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DIMENSION X(2), F(2)
COMMON / INFO1 / RM

X(1) = RM*0,9D0

X(2) = RM*1.1DO

F(1) = SIGMA(X(1),AM)
111 F(2) = SIGMA(X(2),AM)

IF (ABS(F(1)-F(2)).LE.EPS) THEN
EIGVAL = X(2)

RETURN

ENDIF

XNOW = X(1)-F(1)*(X(2)-X(1))/(F(2)-F(1))
X(1) = X(2)

F(1) = F(2)

X(2) = XNOW

GOTO 111

RETURN

END

C .. THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM ..
FUNCTION SIGMA(RM,AM)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( N=12, N2=2+%N, N3=3*N, N4=4xN, N5=5+N, N6=6%*N,
* N7=7+N, N8=8xN, N9=9*N, NX=10*N )
PARAMETER( PR=1.D0O, GM=1.D0O, PHI=1.D0, DA=4.D-6, ALFA_BJ=0.1D0)
DIMENSION A(NX,NX), B(NX,NX), D(N,N), ALFR(NX), ALFI(NX),
* BETA(NX), ITER(NX)
CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., ZER0Q=0.DO, ONE=1.DO, TOL=5.D-9)
HAT_D = ONE/0.12DO0
HAT_K = ONE/0.7DO

.. FINDS REAL EIGENVALUES FOR BENARD CONVECTION IN TWO LAYERS
PROBLEM WITH BOUNDARIES USING CHEBYSHEV SPECTRAL METHODS ..
DO 100 I=1,NX
DO 100 J=1,NX
A(J,I) = ZERO

PM = PR/HAT_K
DELTA = HAT_D*SQRT(DA)/ALFA_BJ
AF = AM/HAT_D
EPS_T = HAT_D/HAT_K
RF = RM*HAT_K**2/(DA*HAT _D**4)
C .. VARIABLES OF THE EQUATIONS FOR FLUID ..
C..Y() ... W, ¥(2) ... DW, Y(3) ...D"2W, Y(4) ... D°3W,
C .. Y(5) ... \THETA, Y(6) ... D\THETA
C .. VARIABLES OF THE EQUATIONS FOR POROUS MEDIUM ..
C .. Y(T) ... W, Y(8) ... DW, Y(9) ... \THETA, Y(10) ... D\THETA,
C
C
C
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B(J,I) = ZERO
100  CONTINUE

C .. BUILD THE CHEBYSHEV DERIVATIVE MATRIX D(N,N)
C .. CALL FIRST DERIVATIVE MATRIX ..
CALL DERIV_1(M,D)

C .. BUILD MATRIX A(NX,NX) AND B(NX,NX) IN EQUATIONS IN SEQUENCE..
DO 1000 I=1,N-1
C .. EQUATION 1 (In fluid region)
DO 1100 J=1,N
ACT,J) = D(I,D)
1100 CONTINUE
A(I,N1+I) = -0ONE
C .. EQUATION 2 (In fluid region)
DO 1200 J=1,N
A(N1+I,Ni+J) = D(I,J)
1200 CONTINUE
A(N1+I,N2+I) = -0ONE
C .. EQUATION 3 (In fluid region)
DO 1300 J=1,N
A(N2+I,N2+J) = D(T,J)
1300 CONTINUE
A(N2+I,N3+I) = -0ONE
C .. EQUATION 4 (In fluid region)
DO 1400 J=1,N
A{N3+I,N3+J) = D(I,J)
1400 CONTINUE
A(N3+I,I) = AFx*x4
A(N3+I,N2+I) = -2 .DO*AF*%2
A(N3+I,N4+1) ~RE*xAF**2
' B(N3+1,N2+I) = HAT_D#*2/(PR*HAT_K)
B(N3+I,I) —AF*%2%HAT_D#%%2/ (PR*HAT_K)
C .. EQUATION 5 (In fluid region)
DO 1500 J=1,N
A(N4+I,N4+J) = D(I,T)
1500 CONTINUE
A(N4+I,NB+I) = -0ONE
C .. EQUATION 6 (In fluid region)
DO 1600 J=1,N
A(N5+I,N5+J) = D(I,J)

1l

]

1600 CONTINUE
A(NB+I,I) = 0ONE
A(NG+I,N4+I) = —AF*x2

B(N5+I,N4+I) HAT_D*%2/HAT_K

1]

C .. EQUATION 7 (In porous medium)
DO 1900 J=1,N
A(N6+I,N6+J) = D(I,J)




1200 CONTINUE
A(NG+I,N7+I) = -ONE

C .. EQUATION 8 (In porous medium)
DO 2000 J=1,N

AN7+I,N7+J) = D(I,D)
B(N7+I,N7+J) = -DA*D(I,J)/(PHI*PM)
2000 CONTINUE
A(NT+I ,N6+1) = -AM**2
A(N7+I,N8+I) = RM=AM**2
B(N7+I,N6+I) = DA*AM**2/(PHI*PM)

C .. EQUATION 9 (In porous medium)
DO 2100 J=1,N
A(N8+I,N8+J) = D(I,])

2100 CONTINUE
A(N8+I,N9+I) = -0ONE
4 C .. EQUATION 10 {(In porous medium)

DO 2200 J=1,N
A(N9+I,N9+J) = D(I,J)
2200 CONTINUE

A(N9+I,N6+I) = ONE
A(NY+I,N8+I) = —AM**2
B(N9+I,N8+I) = GM

1000 CONTINUE

C .. INTRDDUCE BOUNDARY CONDITIONS ..
FAC = ONE
FACTOR = DA*EPS_T=*HAT_D**3
DO 900 J=1,N

C .. 1st ROW ..

AN, T) = ONE
C .. 2nd ROW ..
) A(N2,J4N) = ONE
C .. 3rd ROW ..
A(N3, J+N4) = ONE
C .. 4th ROW ..
A(N4, D) = FAC*EPS_T
A(N4,J+N6) = -0ONE
C .. 5th ROW ..
A(N5,J+N4) = FAC
A(N5,J+N8) = -EPS_T
C .. 6th ROW ..
A(N6,J+NB) = FAC
A(N6,J+N9) = -ONE
C .. 7th ROW ..
A(N7,J+N) = -3.DO*FAC*FACTOR*AF**2
A(N7,J+N3) = FAC*FACTOR
A(NT,J+N7) = ONE
B(N7,J+N) = FAC*FACTOR*HAT_D#**2/(PR*xHAT_K)




B(N7,J+N7) = -DA/(PHI*PM)
C .. 8th ROW ..
A(N8,J+N) = FAC*HAT_D*EPS_T
A(N8,J+N2) = -FAC*DELTA*HAT_D*EPS_T
A(N8,J+N7) = -DNE
C .. 9th ROW ..
A(N9, J+N6) = FAC
¢ .. 10th ROW ..
A(NX,J+N8) = FAC
FAC = -FAC
900  CONTINUE
DO 100 I=1,N5
DG 100 J=1,N5
A(J,I) = ZERO
B(J,I) = ZERO
{ 100  CONTINUE

C .. THE NAG ROUTINE FO2BJF IS USED AS THE EIGENVALUE SOLVER ..
EPS = -0ONE
IFAIL = 0
CALL FO2BJF(NX,A,NX,B,NX,EPS,ALFR,ALFI,BETA,MATV,Z,NX,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY .
C .. PARTS ARE ALFI(M)
NL = 0
DO 9000 K=1,NX
IF (ABS(BETA(K)).GT.TOL) THEN

NL = NL+1

ALFR(NL) = ALFR(K)/BETA(K)

ALFI(NL) = ALFI(K)/BETA(K)
ENDIF

9000 CONTINUE

C .. DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES ..
ALARGE = ALFI(1)
AREAL = ALFR(1)
DO 65 I=2,NL
TF (AREAL.GT.ALFR(I)) GOTO 65

ALARGE = ALFI(I)
AREAL = ALFR(I)
65 CONTINUE
SIGMA = AREAL
RETURN

END




Fifth order system

PROGRAM BENARD
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( TOL=5.D-9, MVAL=25 )
DIMENSION AVAL(O:MVAL), RVAL(O:MVAL)
COMMON / INFO1 / RM
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PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/RAYLEIGH
CONVECTION IN A POROUS MEDIUM SUPERPOSED BY CLEAR FLUID HEATED
FROM BELOW.

NAG ROUTINE FO2BJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS USING THE CHEBYSHEV TAU METH-
0D. THE EIGENVALUE PROBLEM IS 5TH ORDER WITH FIVE BOUNDARY
CONDITIONS ON EACH BOUNDARY.
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WRITE(6,*) ’'ENTER VALUE FOR RM’
READ(5,*) RM

C .. DETERMINE WAVENUMBERS ..
DO 100 I=0,MVAL
ANOW = DBLE(I)
AVAL(I) = ANOW
RVAL(I) = EIGVAL(ANOW)
OPEN(1,FILE="BE_SEC2.DAT’ ,STATUS=’UNKNOWN’)

AM = AVAL(I)
RM = RVAL(I)
100  CONTINUE
END

C .. THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE ..
C .. GIVEN WAVENUMBER ..

FUNCTION EIGVAL(AM)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

PARAMETER( EPS=5.D-8 )

DIMENSION X(2), F(2)

COMMON / INFO1 / BRM

X(1) = RM*0.9D0

X(2) = RM*1.1DO

F(1) = SIGMA(X(1),AM)
111 F(2) = SIGMA(X(2),AM)

IF (ABS(F(1)-F(2)).LE.EPS) THEN
EIGVAL = X(2)
RETURN
ENDIF
XNOW = X(1)-F(1)*(X(2)-X(1))/(F(2)-F(1))
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X(1) = X(2)
F(1) = F(2)
X(2) = XNOQW
GOTO 111
RETURN

END

G .. THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM ..
FUNCTION SIGMA(RM,AM)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( N=25, Ni=N, N2=2%N, N3=3*N, N4=4*N, N5=5*N)
PARAMETER( PR=1.D0, PHI=1.D0O, DA=4.D-6, ALFA_BJ=0.1DO,

* GM=1.D0)
DIMENSION A(N5,N5), B(N5,N5), D(N,N), DD(N,N), ALFR(N5), ALFI(N5),
* BETA (N5), ITER(NS)

CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., ZER0=0.D0O, ONE=1.D0, T0L=5.D-9)

HAT_D = ONE/0.1DO

HAT_K = DNE/O0.7DO

PM = (ONE/HAT_K) *PR

DELTA = HAT_D*SQRT(DA)/ALFA_BJ
AF = AM/HAT_D

EPS_T = HAT_D/HAT_K

RF = RM*HAT_K**2/ (DA*HAT_D**4)

(@}

. FINDS REAL EIGENVALUES FOR BENARD CONVECTION FOR FREE
C BOUNDARIES USING CHEBYSHEV SPECTRAL METHODS ..
DO 100 I=1,N5
DO 100 J=1,Nb
A(J,I) = ZERO
B(J,I) = ZERO
100  CONTINUE

C .. VARIABLES OF THE EQUATIONS ..
C .. Y@ ...oWw_f, Y(2) ... \xi, Y(3) ... \THETA_f, Y(4) ... W_m,
C Y(5) ... \THETA_m

C .. BUILD THE CHEBYSHEV FIRST DERIVATIVE MATRIX D(N,N)
C .. CALL FIRST DERIVATIVE MATRIX ..
CALL DERIV_1(M,D)

C .. BUILD THE CHEBYSHEV SECOND DERIVATIVE MATRIX DD(N,N)
C .. CALL SECOND DERIVATIVE MATRIX ..
CALL DERIV_2(M,D)

C .. BUILD MATRIX A(N5,N5) AND B(N5,N5) IN EQUATIONS IN SEQUENCE..
DO 1000 I=1,N-1




C .. EQUATION 1 (In fluid region)
DO 1100 J=1,N
A(I,J) = DD(I,J)
1100 CONTINUE
A(I,N1+J) = -ONE
C .. EQUATION 2 (In fluid region)
NI = Ni+I
DO 1200 J=1,N
A(NI,N1+J) = DD(I,J)
1200 CONTINUE
A(NI,N1+I) = AF*¥4
A(NI,N1+I) = -2.DO*AF**2
A(NI,N2+I) = -RF*AF*%2
B(NI,I) —-HAD_D#*2*%AF+*2/ (PR*HAT K)
B(NI,N1+I) = HAD_D#*x2/(PR*HAT_K)
C .. EQUATION 3 (In fluid region)
NI = N2+I
DO 1300 J=1,N
A(NI,N2+J) = DD(I,J)

i
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1300 CONTINUE
A(NI,I) = ONE
A(NI,N2+I) = —AF**2
B(NI,N2+I) = HAT_D**2/HAT_K
C .. EQUATION 4 (In porous medium)
NI = N3+I
DO 1400 J=1,N
A(NI,N3+J) = DD(I,J)
B(NI,N3+J) = -DA*DD(I,J)/(PHI*PM)
1400 CONTINUE
A(NI,N3+I) = —AM**2
A(NI,N4+I) = RM*AM**2
B(NI,N4+I) = DA*AM**2/ (PHI*PM)
C .. EQUATION 5 (In porous medium)
NI = N4+I

DO 1500 J=1,N
A(NI,N4+J) = DD(I,J)

1500 CONTINUE
A(NI,N3+I) = ONE
A(NI ,N4+I) = -AM**2
B(NI,N4+I) = GM

1000 CONTINUE
DO 2000 K=1,5
DO 2100 I=1,Nb5

ACK*N, 1D = 0.D0
A(K#N-1,I) = 0.DO
B(K*N,I) = 0.D0
B(K*N-1,I) = 0.DO

2100 CONTINUE




2000 CONTINUE

c ..

[

INTRODUCE BOUNDARY CONDITIONS ..
FAC = ONE
FACTOR = DA*EPS_T*HAT_D#*%*3
DO 2200 J=1,N
1st ROW ..
A(N1-1,7) = ONE

. 2nd ROW ..

A(N1,J+N2) = QONE

. 3rd ROW ..

A(N2-1,T)
A(N2-1, J+N3)

FAC*EPS_T
-0ONE

. 4th ROW ..

A(N2, J+N2)
A(N2,J+N4)

FAC
-EPS_T

.. D VARIABLE BOUNDARY CONDITIONS ..

i

TEMP1 0.DO

TEMP2 = 0.DO

FAC1 ONE

DO 2300 I=1,N
TEMP1 = TEMP1+D(I,J)
TEMP2 = TEMP2+FAC1#D(I,J)
FAC1 = -FAC1

CONTINUE

. 5th ROW ..
. DW=0 ON LOWER BOUNDARY .

A(N3-1,J) = TEMP1

. 6th ROW
. D\THETA_F-D\THETA_M=0 ON INTERFACE BGUNDARY ..

A(N3,J+N2) = TEMP2
A(N3,J+N4) = -TEMP1

. 7th ROW ..
. NORMAL STRESS BOUNDARY CONDITIONS..

A(N4-1,J) = -3.DO*TEMP2*FACTOR*AF*%2
A(N4-1,J+N1) = TEMP2*FACTOR

A(N4-1,J+N3) = TEMP1

B(N4-1,J) = TEMP2*FACTOR*HAT_D**2/(PR*HAT_K)
B(N4-1,J+N3) = ~TEMP1*DA/(PHI*PM)

. 8th ROW ..
. BEAVERS AND JOSEPH BOUNDARY CONDITIONS ..

A(N4,J) = TEMP1*HAT_D*EPS_T

A(N4,J+N1) = -FAC*DELTA*HAT_D*EPS_T
A(N4,J+N3) = -TEMPL
. 9th ROW .

A(N5-1,J+N3) = FAC
10th ROW ..
A(N5,J+N4) = FAC




FAC = -FAC
2200  CONTINUE

C .. THE NAG ROUTINE FO2BJF IS USED AS THE EIGENVALUE SOLVER ..
EPS = -0ONE
IFAIL = O
CALL FO2BJF(N5,A,N5,B,N5,EPS,ALFR,ALFI,BETA,MATV,Z,N5,ITER, IFAIL)

G .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY ..
C .. PARTS ARE ALFI(M)
NL = 0
DO 9000 K=1,N5
IF (ABS(BETA(K)).GT.TOL) THEN

NL = NL+1

ALFR(NL) = ALFR(K)/BETA(K)

ALFI(NL) = ALFI(K)/BETA(K)
ENDIF

9000 CONTINUE

C .. DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES ..
ALARGE = ALFI(1)
AREAL ALFR(1)
DO 65 I=2,NL
IF (AREAL.GT.ALFR(I)) GOTO 65
ALARGE = ALFI(I)
AREAL = ALFR(I)
65 CONTINUE
SIGMA = AREAL
RETURN
END




Appendix 6

This appendix contains two FORTRANTY7 programs to perform a stability analysis for the
Porous medium superposed fluid layer eigenvalue problem using the Chebyshev spectral
tau method. The first program treats the problem as the real eigenvalues exit (o =)
whereas the second program treats the problem considering (o = 0) and the eigenvalue

is Rap,;.

The system with the eigenvalue ¢

PROGRAM BENARD
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( TOL=5.D-9 )
COMMON / INFO1 / RMS
EXTERNAL EIGVAL
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PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/RAYLEIGH
CONVECTION IN A POROUS MEDIUM SUPERPOSED BY CLEAR FLUID
HEATED AND SALTED FROM ABOVE.

NAG ROUTINE FO2BJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER
ORDINARY DIFFERENTIAL EQUATIONS USING THE CHEBYSHEV TAU MET-
HOD. THE EIGENVALUE PROBLEM IS 14TH ORDER WITH SEVEN BOUNDARY
CONDITIONS ON EACH BOUNDARY.
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WRITE(6,*) ’ENTER VALUE FOR RMSV’
READ(5,%*) RMSV
RMS = RMSV

c .. THERE IS TWO KINDS OF RESULTS ..

C (1) .. TO CALCULATE CRITICAL RAYLEIGH NUMBER RMS AND A CORRESPONDING ..
C .. WAVENUMBER A_M ..

WRITE(6,*) ’ENTER VALUE FOR AMVL’

READ(5,%*) AMVL

AM = AMVL

. THIS SUBROUTINE IS USED TO MINIMISE THE REQUIRED WAVENUMBER ..
. ALEFT AND ARIGHT ARE THE END OF AN INTERVAL, ASTAT IS THE REQUIRED
. NUMBER, TOL IS FOR ACCURACY QF THE RESULT, RMSV IS RAYLEIGH NUMBER
. AND EIGVAL IS A FUNCTION ..

ALEFT = AM*0.8DO

ARIGHT = AM=#1.25D0

CALL MINMUM(ALEFT,ARIGHT,ASTAT,TOL,RMSV,EIGVAL)

O QO




WRITE(6,111) ASTAT, RMSV, ALEFT, ARIGHT

111 FORMAT (5X,”’ MINIMUM RAYLEIGH NUMBER IS’ ,F10.4/
* 5X, ’MINIMUM ACHIEVED AT WAVENUMBER’,F10.4/
5X,’ INITIAL RAYLEIGH NUMBER RMSV’,F10.4/
5X,’ SEARCH INTERVAL (’,F6.4,’,’,F6.4,°)'//)
C WRITE(1,’ (6X,A11,F8.4,4X,A11,F25.10)’) ’ VENUMBER ’,AVAL,
C * 'EIGENVALUE ’ ,RMSV
C CLOSE(1)
END

C (2) .. TO CALCULATE CRITICAL RAYLEIGH NUMBER RMS FOR A GIVEN ..
C .. WAVENUMBER AM ..
DO 100 I=0,MVAL
ANOW = DBLE(I)
AVAL(I) = ANOW
RVAL(I) = EIGVAL (ANGW)
100  CONTINUE
END

C .. GIVEN WAVENUMBER .
FUNCTION EIGVAL(AM)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( EPS=5.D-9 )
DIMENSION X(2), F(2)
COMMON / INFO1 / RMS
X(1) = RMS*0.8D0
X(2) = RMS*1.2D0
F(1) = SIGMA(X(1),AM)
111 F(2) = SIGMA(X(2),AM)
IF (ABS(F(1)-F(2)).LE.EPS) THEN
EIGVAL = X(2)
RMS = EIGVAL
WRITE(6,*) EIGVAL, AM

.~ RETURN

ENDIF

XNOW = X(1)-F(1)*(X(2)-X(1))/(F(2)-F(1))
X(1) = X(2)

F(1) = F(2)

X(2) = XNOW

GOTO 111

END

C .. THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM ..
FUNCTION SIGMA(RMS,AM)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( N=20, N1=N, N2=2#N, N3=3%N, N4=4xN, Nb=bxN, NG=6x*N,
* N7=7*N, N8=8xN, N9=9*N, NA=10*N, NB=11*N, NC=12#N,
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C .. THIS FUNCTION IS USED TC ITERATE THE RAYLEIGH NUMBER FOR THE THE ..




* ND=13*N, NE=14N )
PARAMETER( PR=1.D0, ALPHA_H=0.1D0, DELTA=0.003D0, PHI=1.D0,

* VLEF=1.D0, EPS_T=0.7D0, EPS_S=3.75D0, GM=0.1D0 )
DIMENSION A(NE,NE), B(NE,NE), D(N,N), ALFR(NE), ALFI(NE),
* BETA(NE), ITER(NE)

CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., ZER0=0.DO, ONE=1.D0, TOL=5.p-12 )

HAT_D = 0.01D0
RM = 50.D0
AF = AM*HAT_D

GAMMA_T = HAT_D/EPS_T
GAMMA_S = HAT_D/EPS_S

RF = RM*HAT_D*+*4/ ( (DELTA*EPS_T)*%2)
RFS = RMS*HAT_D*x4/((DELTA*EPS_S)**2)
PM = EPS_T+*PR
VLEM = (EPS_T/EPS_S)*VLEF
PRS = PR/VLef
PMS = PM/Vlen
C .. VARIABLES OF THE EQUATIONS FOR FLUID ..
C .. Y(1) ... W, Y(2) ... DW, Y(3) ... D 2W, Y(4) ... D"3W,
¢ .. Y(5) ... \THETA, Y(6) ... D\THETA, Y(7) ... \ZETA, Y(8) ... D\ZETA
C .. VARIABLES OF THE EQUATIONS FOR POROUS MEDIUM ..
C .. Y(9) ... W, Y(10) ... DW, Y(11) .... \THETA, Y(12) ... D\THETA,
C .. Y(13) ... \ZETA, Y(14) ... D\ZETA
C .. FINDS REAL EIGENVALUES FOR BENARD CONVECTION FOR FREE

C BOUNDARIES USING CHEBYSHEV SPECTRAL METHODS ..
DO 100 I=1,NE
DO 150 J=1,NE

A(J,I) = ZERO
B(J,I) = ZERO
150 CONTINUE

100 CONTINUE

Q

.. BUILD THE CHERYSHEV DERIVATIVE MATRIX D(W,N)
C .. CALL FIRST DERIVATIVE MATRIX ..
CALL DERIV_1(M,D)

C .. BUILD MATRIX A(NE,NE) AND B(NE,NE) IN EQUATIONS IN SEQUENCE ..
DO 1000 I=1,N-1

C .. EQUATION 1 (In fluid region)

DO 1100 J=1,N

A(I,3) = D(1,d)

1100 CONTINUE

A(I,N1+I) = -0ONE
C .. EQUATION 2 (In fluid region)
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DO 1200 J=1,N
A(N1+I,N1+J) = D(I,J)
1200 CONTINUE
A(N1+I,N2+1) = -0ONE
C .. EQUATION 3 (In fluid region)
DO 1300 J=1,N
A(N2+I,N2+]) = D(I,J)
1300 CONTINUE
A(N2+I,N3+I) = -0NE
C .. EQUATION 4 (In fluid region)
D0 1400 J=1,N
A(N3+I,N3+J) = D(I,J)
1400 CONTINUE
A(N3+I,I) = AFx**4
A(N3+I,N2+I) = -2.DO*AF*%2
A(N3+I,N4+I) = -RF*AF**2
A(N3+I,N6+I) RES#AF**2
B(N3+I1,I) ~AF**2+%HAT_D**2/ (PR*EPS_T)
B(N3+I,N2+I) = HAT_D#*2/(PR*EPS_T)
C .. EQUATION 5 (In fluid region)
DO 1500 Jj=1i,N
A(N4+T,N4+J) = D(I,J)
1500 CONTINUE
A(N4+I,N5+I) = -ONE
C .. EQUATION 6 (In fluid region)
DO 1600 J=1,N
A(NS+I,N5+J) = D(I,J])

1600 CONTINUE
A(NS+I,I) = ~0NE
A{NB+I ,NA+I) = -AF**2

B(N5+1,N4+I) = HAT_D**2/(EPS_T)
C .. EQUATION 7 (In fluid region)
DO 1700 J=1,N
A(N6+I,N6+J) = D(I,J)
1700 CONTINUE
A(N6+I,N7+I) = -ONE
C .. EQUATION 8 (In fluid region)
DO 1800 J=1,N
AQW7+I,N7+J) = D(I,J)

1800 CONTINUE
AQN7+I,I) = -0ONE
AQVU7+I,N6+I) = —AF**2

I

B(N7+I,N6+I) HAT_D#*2/ (VLEF*EPS_T)

C .. EQUATION 9 (In porous medium)
DO 1900 J=1i,N
A(N8+I,N8+J) = D(I,J)
1900 CONTINUE
A(N8+I,N9+I) = -ONE




C .. EQUATION 10 (In porous medium)
DD 2000 J=1,N

A(N9+I,N9+J)

B(N9+I,N9+J)

D(I,J])
- (DELTA**2/ (PHI*PM) )*D(I,J)

2000 CONTINUE
A(N9+I,N8+I) = —AM*x2
A(N9+I,NA+I) = RMkAM**2
A(N9+I,NC+I) = -RMS*AM**2

B(N9+I,N8+I) = (DELTA*AM)#**2/(PHI*PM)
C .. EQUATION 11 (In porous medium)
DO 2100 J=1,N
A(NA+I,NA+J) = D(I,J)
2100 CONTINUE
A(NA+I,NB+I) = -ONE
C .. EQUATION 12 (In porous medium)
DO 2200 J=1,N
A(NB+I,NB+J) = D(I,J)
2200 CONTINUE

A(NB+I,N8+I) = -0NE
A(NB+I,NA+I) = -AM**2
B(NB+I,NA+I) = GM

C .. EQUATION 13 (In porous medium) ..
p0 2300 J=1,N
A(NC+I,NC+]) = D(I,J)
2300 CONTINUE
A(NC+I,ND+I) = -0ONE
C .. EQUATION 14 (In porous medium)
DO 2400 J=1,N
A(ND+I,ND+J) = D(I,J)
2400 CONTINUE

A(ND+I,N8+I) = -DNE
A(ND+I,NC+I) = —-AM**2
B(ND+I,NC+I) = PHI/VLEM

1000 CONTINUE

C .. INTRODUCE BOUNDARY CONDITIONS ..
FAC = ONE
DO 3000 J=1,N

C .. 1st ROW ..

A(N1,T) = ONE
C .. 2nd ROW ..
A(N2,T) = FAC
A(N2,N8+J) = -HAT_D
¢ .. 3rd ROW ..
A(N3,N1+J) = ONE
C .. 4rd ROW ..
A(N4,N1+J) = FAC*ALPHA_H*HAT_D

A(N4 ,N2+J)

-FAC*DELTA




A(N4,N9+J) -HAT _D*x3*ALPHA_H

C .. 5th ROW ..
A(NS,N1+J) = 3.DO*FAC*AF**2
A(NG,N3+J) = -FAC
A(NS,N9+J) = -HAT_D#**4/DELTA**2
B(N5,N1+J) = -FAC*HAT_D+**2/(PR*EPS_T)
B(N5,N9+J) = HAT_D*x4/(PM*PHI)

C .. 6th ROW ..
A(N6,N4+J) = ONE
C .. 7th ROW ..

A(N7 ,N4+J) = FAC*GAMMA_T
A(N7,NA+J) = -EPS_T

C .. 8th ROW ..
A(N8,N5+J) = FAC
A(N8,NB+J) = -EPS_T

C .. 9th ROW ..
A(N9,N6+J) = ONE

C .. 10th ROW ..
A(NA,N6+J) = FAC*GAMMA_S
A(NA,NC+J) = -EPS_S

C .. 11th ROW ..
A(NB,N7+J) = FAC
A(NB,ND+J) = -EPS_S

C .. 12th ROW ..
A(NC,N8+J) = FAC
C .. 13th ROW ..

A(ND,NA+J) = FAC

C .. 14th ROW ..
A(NE,NC+J) = FAC
FAC = -FAC

3000 CONTINUE

C .. THE NAG ROUTINE FO2BJF IS USED AS THE EIGENVALUE SOLVER ..
EPS = -0NE
IFAIL = O
CALL FO2BJF(NE,A,NE,B,NE,EPS,ALFR,ALFI,BETA,MATV,Z,NE,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY ..
C .. PARTS ARE ALFI(M)
NL = 0
DO 9000 K=1,NE
IF (ABS(BETA(K)).GT.TOL) THEN

NL = NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)

ENDIF

9000 CONTINUE
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C .. DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES ..

ALARGE = ALFI(1)

AREAL = ALFR(1)

DO 65 I=2,NL
IF (AREAL.GT.ALFR(I)) GOTO 65
ALARGE = ALFI(I)
AREAL = ALFR(I)

65 CONTINUE

SIGMA = AREAL

RETURN

END




The system with the eigenvalue Ra,,; when ¢ =0

PROGRAM BENARD
IMPLICIT DOUBLE PRECISION(A~H,0-Z)
PARAMETER( TOL=5.D-9 )
COMMON / INFO1 / RMS
EXTERNAL EIGVAL
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PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/RAYLEIGH
CONVECTION IN A POROUS MEDIUM SUPERPOSED BY CLEAR FLUID
HEATED AND SALTED FROM ABOVE.

NAG ROUTINE FO2BJF IS USED TCO TREAT THE SYSTEM OF FIRST ORDER
CRDINARY DIFFERENTIAL EQUATIONS USING THE CHEBYSHEV TAU METH-
OD. THE EIGENVALUE PROBLEM IS 14TH ORDER WITH SEVEN BOUNDARY
CONDITIONS ON EACH BOUNDARY.
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WRITE(6,*) 'ENTER VALUE FOR RMSV’
READ(5,*) RMS

RMS = EIGVAL(3.11D0)

END

¢ .. THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE ..
C .. GIVEN WAVENUMBER ..

FUNCTION EIGVAL (AM)

IMPLICIT DOUBLE PRECISICON(A-H,0-Z)

PARAMETER( EPS=5.D-9 )

DIMENSION X(2), F(2)

COMMON / INFO1 / RMS

X(1) = RMS*0.9D0

X(2) = RMS#1.1DO0

F(1) = SIGMA(X(1),AM)
111 F(2) = SIGMA(X(2),AM)

IF (ABS(F(1)-F(2)).LE.EPS) THEN
EIGVAL = X(2)
RMS = EIGVAL
WRITE(6,*) EIGVAL, AM

RETURN

ENDIF

XNOW = X(1)-F(1)*(X(2)-X(1))/(F(2)-F(1))
X(1) = X(2)

F(1) = F(2)

X(2) = XNOW

GOTO 111

END
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C .. THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM ..
FUNCTION SIGMA(RMS,AM)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( N=20, N1=N, N2=2*N, N3=3*N, N4=4xN, N6=b5xN, N6=6xN,
* N7=7*N, N8=8%N, N9=9*N, NA=10x*N, NB=11*N, NC=12x%N,
ND=13#*N, NE=14%N )
PARAMETER( PR=1.D0, ALPHA_H=0.1D0, DELTA=0.003D0, PHI=1.DO,

* VLEF=1.D0, EPS_T=0.7D0, EPS_S=3.75D0, GM=0.1DO )
DIMENSION A(NE,NE), B(NE,NE), D(N,N), ALFR(NE), ALFI(NE),
* BETA(NE), ITER(NE)

CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., ZER0=0.DO, ONE=1.DO, TOL=5.D-12 )

HAT_D = 0.01D0
RM = 50.D0
AF = AM*HAT_D

GAMMA_T = HAT_D/EPS_T
GAMMA_S = HAT_D/EPS_S

RF = RM*HAT_D#**4/ ((DELTA*EPS_T) **2)

RFS = RMS*HAT_D#**4/((DELTA*EPS_S)*%2)

PM = EPS_T*PR

VLEM = (EPS_T/EPS_S)*VLEF

PRS = PR/VLef

PMS = PM/VLien
C
C .. FINDS REAL EIGENVALUES FOR BENARD CONVECTION FOR FREE
C BOUNDARIES USING CHEBYSHEV SPECTRAL METHGDS ..

DO 100 I=1,NE
DO 150 J=1,NE
A(J,I) = ZERO
B(J,I) = ZERO
150 CONTINUE
100  CONTINUE

C
C .. BUILD THE CHEBYSHEV DERIVATIVE MATRIX D(N,N)
C .. CALL FIRST DERIVATIVE MATRIX ..

CALL DERIV_1(M,D)

Q

. BUILD MATRIX A(NE,NE) AND B(NE,NE) IN EQUATIONS IN SEQUENCE..
DO 1000 I=1,N-1

C .. EQUATION 1 (In fluid region)
DO 1100 J=1,N
A(I,J) = D(I,J)
1100 CONTINUE
A(I,N1+I) = -0ONE
C .. EQUATION 2 (In fluid region)
DO 1200 J=1,N




1200

1300

1400

1500

1600

1800

1900

2000

AN1+I,N1+J) = D(I,J)
CONTINUE
A(N1+I,N2+1) = ~0ONE

.. EQUATION 3 (In fluid region)

DO 1300 J=1,N
ACN2+I,N2+J) = D(I,J)

CONTINUE

A(N2+I,N3+I) = -0ONE

. EQUATION 4 (In fluid region)

DO 1400 J=1,N
A(N3+I,N3+J) = D(I,J)

CONTINUE

A(N3+I,I) = AF**4
A(N3+I,N2+I) = -2 .DO*AF*%*2
A(N3+I,N4+I) = -RF*AF*%*2
A(N3+I,NG+I) = RFES®AF**2

.. EQUATION 5 (In fluid region)

DO 1500 J=1,N
A(N4+I,N4+J) = D(I,J)

CONTINUE

A(N4+T,N5+I) = -0NE

. EQUATION 6 (In fluid region)

b0 1600 J=1,N
A(NB+I,N5+J) = D(I,J)

CONTINUE
A(NG+I,I) = —-0NE
A(NS+I ,N4+I) = -AF**2

. EQUATION 7 (In fluid region)

DO 1700 J=1,N
A(NB+I,N6+3) = D(I,])

CONTINUE

A(NG+I,N7+I) = -ONE

. EQUATION 8 (In fluid region)

DO 1800 J=1,N
A(N7+I,N7+J) = D(I,J)

CONTINUE
A(NT+I,I) = —-0NE
A(N7+I,N6+I) = —AF**2

. EQUATION ¢ (In porous medium)

DO 1900 J=1,N
A(N8+I,N8+J) = D(I,J)

CONTINUE

A(NB+I,N9+I) = -ONE

. EQUATION 10 (In porous medium)

DO 2000 J=1,N
A(NO+I,N9+J) = D(I,J)

CONTINUE

A(NO+I,N8+I) = -AM**2




A(N9+I ,NA+I) = RM*AM*%2
B(N9+I,NC+I) —AM**2
C .. EQUATION 11 (In porous medium)
DO 2100 J=1,N
A(NA+I,NA+J) = D(I,J)
2100 CONTINUE
A(NA+I,NB+I) = -ONE
C .. EQUATION 12 (In porous medium)
DO 2200 J=1,N
A(NB+I,NB+J) = D(I,J)

]

2200 CONTINUE
A(NB+I,N8+I) = -0ONE
A(NB+I,NA+I) = —-AM**2

C .. EQUATION 13 (In porous medium)
i DO 2300 J=1,N
ACNC+I,NC+J) = D(I,J)
2300 CONTINUE
A(NC+I,ND+I) = -0ONE
C .. EQUATION 14 (In porous medium)
DO 2400 J=1,N
A(ND+I,ND+J) = D(I,J)
2400 CONTINUE

A(ND+I,N8+I) = -ONE
A(ND+I ,NC+I) = -AM**2
1000 CONTINUE
C
C .. INTRODUCE BOUNDARY CONDITIONS .
FAC = ONE
DO 3000 J=1,N
C .. 1st ROW ..
ANL, D) = ONE
‘ C .. 2nd ROW ..
AQU2,T) = FAC
A(N2,N8+J) = -HAT_D
C .. 3rd ROW ..

A(N3,N1+J) = ONE
C .. 4rd ROW .
A(N4 ,Ni+J) = FAC*ALPHA_H*HAT_D
A(N4,N2+J) = -FAC*DELTA
A(N4,N9+J) = ~HAT_D**3*ALPHA_H
C .. 5th ROW ..
A(NS,N1+J) = 3.DO*FACkAF**2
A(N5,N3+J) = -FAC
A(N5,N9+J) = -HAT_D#*+%4/DELTA**2
C .. 6th ROW ..
A(N6,N4+J) = ONE
C .. 7th ROW ..
A(NT ,N4+J) = FAC*GAMMA_T




A(N7,NA+J) = -EPS_T
C .. 8th ROW ..

A(N8,N5+J) = FAC

A(N8,NB+J) = -EPS_T
C .. 9th ROW ..

A(N9,N6+J) = DNE
C .. 10th ROW ..

A(NA,N6+J) = FAC*GAMMA_S
A(NA,NC+J) = -EPS_S

C .. 11th ROW ..
A(NB,N7+J) = FAC
A(NB,ND+J) = -EPS_S

C .. 12th ROW ..
A(NC,N8+J) = FAC
C .. 13th ROW ..
A(ND,NA+J) = FAC
¢ .. 14th ROW .
A(NE,NC+J) = FAC
FAC = -FAC
3000 CONTINUE
C .. THE NAG ROUTINE F02BJF IS USED AS THE EIGENVALUE SOLVER ..
EPS = -ONE
IFAIL = 0
CALL FO2BJF(NE,A,NE,B,NE,EPS,ALFR,ALFI,BETA,MATV,Z,NE,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY ..
C .. PARTS ARE ALFI(M)
NL =0
DG 9000 K=1,NE
IF (ABS(BETA(X)).GT.TOL) THEN

NL = NL+1
ALFR(NL) = ALFR(X)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)
ENDIF

9000 CONTINUE
C .. DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES ..
ALARGE = ALFI(1)
AREAL ALFR(1)
DO 65 I=2,NL
IF (AREAL.GT.ALFR(I)) GOTO 65
ALARGE = ALFI(I)
AREAL = ALFR(I)
65 CONTINUE
WRITE (*,222) AREAL,ALARGE
222  FORMAT(5X,'CURRENT EIGENVALUE IS (',F20.7’,'F20.7,7)°/)
IF (ABS(ALARGE).GE.TOL) THEN
TYPE = ’C’
ELSE

I
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TYPE = 'R’
ENDIF
SIGMA = AREAL
RETURN
END




Appendix 7

PROGRAM CONVEC
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
IMPLICIT INTEGER*4(I-N)
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FLINTILY CONDUCTING INNER CORE SURROUNDED BY A CYLINDRICAL
LAYER OF CONDUCTING FLUID WHICH IS BOUNDED BY THE MANTLE.

ORDINARY DIFFERENTIAL EQUATIONS USING CHEBYSHEV POLYNOMIALS.
THE EIGENVALUE PROBLEM IS 16 ORDER WITH EIGHT BOUNDARY
CONDITIONS ON EACH BOUNDARY

o R S I R S

PROGRAM COMPUTES EIGENVALUES FOR MAGNETIC INSTABILITY WITH A

NAG ROUTINE FO2GJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER

* Ok F K K K K K ¥
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PARAMETER( M=32, N1=M, N2=2#M, N3=3*M, N4=4%M, N5=5%M, N6=6%M,
N7=7*M, N8=8%M, N9=9+M, NA=10M, NB=11xM, NC=12%M,

* ¥

ND=13%M, NE=14*M, NF=15xM, NG=16*M, NPTS=50 )

DIMENSION AR(NG,NG), AI(NG,NG), BR(NG,NG), BI(NG,NG), DF(M,M),

* DC(M,M), DO(M,M), ALFR(NG), ALFI(NG), BETA(NG), W(2«M),
* ITER(NG), VR(NG,NG), VI(NG,NG), XP(0:2%NPTS),
* YREAL (0:2*NPTS), YIMAG(O:2+NPTS), XR(2), YR(2),
* WG (10xNPTS+5), MAG(2)
c .. DECLARATION OF MATRICES USED IN FLUID REGION ..
DIMENSION B(M,M), Bi{M,M), B2(M,M), B3(M,M), BP1(M,M), RP1(M,M),
* R1(M,M), R2(M,M), R3(M,M), RA(M,M)
c
C .. DECLARATION OF MATRICES USED IN INNER CORE ..
DIMENSION RC1(M,M), RC2(M,M)
c
c .. DECLARATION OF MATRICES USED IN OQOUTER CORE ..
DIMENSION RO2(M,M), RO3(M,M), RO4(M,M)
LOGICAL MATV, MORE, SPLINE, VIEW, BOX
CHARACTER*60 TITLE
PARAMETER( ZER0=0.D0, ONE=1.D0, TOL=1.D-12 )
PARAMETER( TITLE='Graph of Eigenfunctions’ )
c
C .. PARAMETERS OF THE PROBLEM ..
PARAMETER( SIB=0.35D0, VLAM=508.D0, DNV=9.61D0, DMV=2.DC,
* E=1.D-5, E_ETA=1.D-5, ETA=1.D3 )
C
C .. DECLARATION OF COEFFICIENT FUNCTIONS IN FLUID REGION ..
EXTERNAL FB, FB1, FB2, FB3, FBPi, FRP1, FR1, FR2, FR3, FR4
C
c .. DECLARATION OF COEFFICIENT FUNCTIONS IN INNER CORE ..

EXTERNAL FRC1, FRC2

o
o
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C .. DECLARATION OF COEFFICIENT FUNCTIONS IN QUTER CORE ..
EXTERNAL FRO2, FRO3, FRO4

. VARIABLES OF THE EQUATIONS FOR FLUID LAYER ..

Y1) = u,.. Y(2) =Du,.. Y(3) =D"2u,.. Y(4) = w,.. Y(B) = Dw,

.. Y(8) =D 2w,.. Y(7) =b_r,.. Y(8) =Db_r,.. Y(9) = b_z, ..

. Y(10=A) = D$b_=$, ..

. VARIABLES OF THE EQUATIONS FOR INNER CORE ..

. Y(11=B) = b_r,.. Y(C=12) = Db_r,.. Y(D=13) = b_z,.. Y(E=14) = Db_z,
. VARIABLES OF THE EQUATIONS FOR MANTLE ..

. Y(D=15) = \phi,.. Y(E=16) = D\phi ..

OO aaan

. ZERO ALL ENTRIES OF AR(NG,NG), AI(NG,NG), BR(NG,NG) AND BI(NG,NG)
DO 100 I=1,NG
DO 200 J=1,NG

AR(J,I)
AT(J,I
BR(J,I)
BI(J,I)

200 CONTINUE

100  CONTINUE

1§

ZERO
ZERO
ZERO
ZERO

. GET DIFFERENTIATION MATRICES IN [SIB,1l, [0,SIB] AND [1i,\INFTY]
. DF DIFFERENTIATION MATRIX IN FLUID LAYER ..
. DC DIFFERENTIATION MATRIX IN INNER CORE
. DC DIFFERENTIATION MATRIX IN QUTER CORE
DO 300 I=1,M
DO 400 J=1,M
DF(I,J)
DC(I,J)
DO(I,J)
400 CONTINUE
300 CDNTINUE
DO 500 I=1,M-1
DO 600 J=I+1,M,2
DF(I,J) = DBLE(4%J-4)/(0ONE-SIB)
DC(I,J) = DBLE(4%J-4)/SIB
DO(I,J) = DBLE(2%J-2)
600 CONTINUE
500 CONTINUE
DO 700 I=1,M

Q QQa O

ZERD
ZERD
ZERO

il

DF(1,I) = 0.5DO*DF(1,I)
DC(1,I) = 0.5D0*DC(1,I)
DO(1,I) = 0.5D0*D0O(L,I)
700  CONTINUE
¢
C .. GET ALL THE COEFFICIENT MATRICES .

CALL MATRIX(M,B,FB,W)




CALL MATRIX(M,B1,FB1,W)
CALL MATRIX(M,B2,FB2,W)
CALL MATRIX(M,B3,FB3,W)
CALL MATRIX(M,BPi,FBP1,W)
CALL MATRIX(M,RP1,FRP1,W)
CALL MATRIX(M,R1,FR1,W)
CALL MATRIX(M,R2,FR2,W)
CALL MATRIX(M,R3,FR3,W)
CALL MATRIX(M,R4,FR4,W)
CALL MATRIX(M,RC1,FRCi,W)
CALL MATRIX(M,RC2,FRC2,W)
CALL MATRIX(M,R02,FRD2,W)
CALL MATRIX(M,R0O3,FRD3,W)
CALL MATRIX(M,R04,FR04,W)

C
C .. DEFINE CONSTANT MULTIPLYING FACTORS ..
Cl = DMV#*%2
C2 = DNV*%2
C3 = DMV*DNV/E
C4 = DMV/E
C5 = DNV/(E*DMV)
C6 = VLAM*E_ETA/E
C7 = DNV#**2/(ExDMV)
C8 = DMV#**2/DNV
C9 = VLAM/ETA
C
C .. FILL THE MATRICES AR, AI, BR AND BI IN EQUATIONS IN SEQUENCE ..
C .. EQUATION 1

DD 1000 I=1,M-1
DO 1100 J=1,M
AR(I,J) = DF(I,J)
1100 CONTINUE
AR(I,N1i+I)
1000 CONTINUE
C .. EQUATION 2 ..
DO 1500 I=1,M-1
NV = N1+I
DO 1600 J=1,M
AR(NV,N1+I) = DF(I,J)
1600 CONTINUE
AR(NV,N2+I) = -ONE
1500 CONTINUE

-0NE

C .. EQUATION 3 ..
DO 2000 I=1,M-1
NV = N2+I
DO 2100 J=1,M
AR(NV,J) = 2.D0*(C2+R1(T,J)+C1*R3(I,J))
ATV, J) = C7*RP1(I,J)
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AR(NV,N1+J) = -(ONE+C1)*R2(I,J)

AR(NV,N2+J) = DF(I,J)+R1(I,J)

AI(NV,N3+J) = (C1-0ONE)*DNV*R2(I,J)

AR(NV,N4+J) = C5%RP1(I,J)

AI(NV,N4+J) = -3.DO*DNV*R1(I,J)

AR(NV,N6+J) = (C3-2.D0*C5E)*B1(I,J)

AR(NV,N7+J) = -2.D0*C5%B(I,J)

AT(NV,N8+J) = C4xBP1(I,J)-2.DO*C7*B(I,J)-C4*B2(I,J)
AT(NV,N9+J) = C4xB1(I,J)

2100 CONTINUE
AR(NV,N1+I)
BR(NV,N1+I) = C6
AR(NV,N3+I) = C5
AT(NV,N3+I) = AI(NV,N3+I)+DNV*:x*3
BI(NV,N3+I) = -DNV*C6
AI(NV,N5+I) = -DNV

2000 CONTINUE

C .. EQUATION 4 ..

DO 2500 I=1,M-1
NV = N3+I
DO 2600 J=1,M
AR(NV,N3+J) = DF(I,J)

2600 CONTINUE
AR(NV,N4+I) = -0ONE

2500 CONTINUE

C .. EQUATION 5 .

DO 3000 I=1,M-t
NV = N4+I
DO 3100 J=1,M
AR(NV,N4+J) = DF(I,J)

3100 CONTINUE
ARQUV,N5+I) = -ONE

3000 CONTINUE

C .. EQUATION 6

DO 3500 I=1,M-1

NV = N&6+I

DO 3600 J=1,M
AT(NV,J) ~C8x (C1*%R4(T,J)+2.D0*C2*%R2(I, 1))
BI(NV,J) = C8%C6*R2(I,J)
AT(NV,N1+J) = 3.DO*DNV*R1(I,J)+C8+R3(I,J)
ATI(NV,N2+J) = C8%R2(I,J)
AR(NV,N3+J) = (C1-ONE)*R3(I,J)-C2%R1(I,J)
AI(NV,N3+J) = C4*Ri(I,J)
BR(NV,N3+J) = C6%R1(I,J)
AR(NV,N4+J) = (ONE~C1)*R2(I,J)
AR(NV,N5+J) = DF(I,J)+4.D0*R1(I,J)
AT(NV,N6+J) = -C4*BP1(I,])
AI(NV,N7+J) = C4*B1(I,J)

AR(NV,N1+I)-C2

o
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3600

3500

4100

4000

4600

4500

5100

5000

5600

5500

AR(NV,N8+J) = -C8+C4*B3(I,J)-C3%B1(I,J)

CONTINUE
ATI(NV,I) = AT(NV,I)-DNVx*3
BI(NV,I) = BI(NV,I)+DNV*C6

AT (NV,N2+I)

AR(NV,N4+I)

BR(NV,N4+I)
CONTINUE

AT (NV,N2+I)+DNV
AR(NV,N4+I)-C2
c6

Il

. EQUATION 7

DO 4000 I=1,M-1
NV = N6+I
DO 4100 J=1,M
AR(NV,N6+J) = DF(I,I)

CONTINUE
AR(NV,N7+I) = -ONE
CONTINUE
. EQUATION 8
DO 4500 I=1,M-1
NV = N7+I
DO 4600 J=1,M
AT (NV,N3+J) = DMV+VLAM*B1(I,J)
AR(NV,N6+J) = (ONE-C1)*R2(I,J)
AR(NV,N7+J) = DF(I,J)+3.DO*R1(I,J)
AI(NV,N8+J) = 2.DO*DNV*R1(I,J)
CONTINUE
AR(NV,N6+I) = AR(NV,N6+I)-C2
BR(NV,N6+I) = VLAM
CONTINUE
. EQUATION 9

DO 5000 I=1,M-1
NV = N8+I
DO 5100 J=1,M
AR(NV,N8+J) = DF(I,J)
CONTINUE
AR(NV,N9+I) = -ONE
CONTINUE

. EQUATION 10

DO 5500 I=1,M-1
NV = N9+I
DO 5600 J=1,M
AT(NV,J) = DMV*VLAM*B1(I,J)
AR(NV ,N8+J) = -C1*R2(I,J)
AR(NV,N9+J) = DF(I,J)+R1(I,J)
CONTINUE
AR(NV,N8+I)
BR(NV,N8+I)
CONTINUE

I

AR(NV,N8+I)-C2
VLAM
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C .. TREAT THE INNER CORE ..
C .. EQUATION 11
DO 6000 I=1,M-1
NV = NA+I
DO 6100 J=1,M
AR(NV,NA+J) = DC(I,])
6100 CONTINUE
AR(NV,NB+I) = -ONE
6000 CONTINUE
C .. EQUATION 12 ..
DO 6500 I=1,M-1
NV = NB+I
DO 6600 J=1,M
TEMP = 3.DO*RC1(I,J)
DO 6700 K=1,M
TEMP = TEMP+RC2(I,K)*DC(K,J)
6700 CONTINUE
AR(NV,NA+J) = -C2%RC2(I,J)
BR(NV,NA+J) = C9*RC2(I,J)
AR(NV,NB+J) = TEMP
AI(NV,NC+J) = 2.DO*DNV*RC1(I,J)
6600 CONTINUE
AR(NV,NA+I) = AR(NV,NA+I)+(ONE-C1)
6500 CONTINUE
C .. EQUATION 13 ..
DO 7000 I=1,M-1
NV = NC+I
DO 7100 J=1,M
AR(NV,NC+J) = DC(I,J)
7100 CONTINUE
AR(NV,ND+I) = -0ONE
7000 CONTINUE
C .. EQUATION 14 ..
DO 7500 I=1,M-1
NV = ND+I
DO 7600 J=1,M
TEMP = RC1(I,J)
DO 7700 K=1,M
TEMP = TEMP+RC2(I,K)*DC(K,J)

1

]

7700 CONTINUE
AR(NV,NC+J) = -C2%RC2(I,J)
BR(NV,NC+J) = C9*RC2(I,J)
AR(NV,ND+J) = TEMP

7600 CONTINUE

AR(NV,NC+I) = AR(NV,NC+I)-C1
7500 CONTINUE

C .. TREATMENT OF THE OUTER CORE ..




C .. EQUATION 15 ..
DO 8000 I=1,M-1
NV = NE+I
DO 8100 J=1,M
AR(NV,NE+J) = DO(I,J)
8100 CONTINUE
AR(NV ,NF+I) = -ONE
8000 CONTINUE
C .. EQUATION 16 ..
DO 8500 I=1,M-1
NV = NF+I
DO 8600 J=1,M
TEMP = -R03(I,J)
DO 8700 K=1,M
TEMP = TEMP+R04(I,K)*DO(K,J)
8700 CONTINUE
AR(NV,NE+J)
AR (NV,NF+J)
8600 CONTINUE
AR(NV,NE+I) = AR(NV,NE+I)-4.DO*C2
8500 CONTINUE

]

~C1*R02(I,J)
TEMP

C
C .. BOUNDARY CONDITIONS - SET PARAMETER CONSTANTS FIRST
FAC = ONE
DO 8800 J=1,M
C .. W=0 ON R=SIB ..
AR(N1,J) = FAC
C .. W=0 ON R=0ONE ..
AR(N2,J) = ONE
C .. U=0 ON R=SIB .
AR(N3,N3+J) = FAC
C .. U=0 ON R=ONE ..
AR{(N4,N3+J) = ONE
C .. V=0 DN R=SIB - I.E. D(U)=0 ..
AR(N5,N4+J) = FAC
C .. V=0 ON R=0NE - I.E. D(U)=0 ..
AR(N6 ,N4+J) = ONE
C .. D(B_r)+B_r+i(M**2+N**2)/N B_z=0 ON R=0NE ..
AR(N7 ,N6+J) = ONE
AR(N7,N7+J) = ONE
AT(N7,N8+J) = C8+DNV

¢ .. B_R=GAMMA*B_Z ON R=0NE ..
AR(N8,N6+J) ONE
AR (N8 ,NF+J) 2.DO*FAC

¢ .. B_r CTS ON R=SIB ..
AR(N9,N6+J) = FAC
AR(N9,NA+J) = -ONE

¢ .. B.z CTS ON R=SIB ..

[}
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AR(NA,N8+J) = FAC
AR(NA,NC+J) = -ONE

[

. B_theta CTS ON R=SIB - DB_r IS CONTINUOUS .

i

FAC
-ONE

AR(NB,N7+J)
AR(NB,NB+J)

. ETA*(i*N*B_r-DB_z) CTS ON R=SIB ..

AT (NC,N6+J) = FAC*DNV/ETA
AR(NC,N9+J) = -FAC/ETA
AI(NC,NA+J) = -DNV
AR(NC,ND+J) = ONE

. B_r=0 AT R=0 ..
AR(ND,NA+J) = FAC

. B_z=0 AT R=0 .
AR(NE,NC+J) = FAC

. B_Z+iN*V=0 ON R=1 ..

AR(NF ,N8+J) = ONE
AI(NF,NE+J) = DNV*FAC

. V=0 ON R=INFINITY ..

AR(NG,NE+J) = ONE
FAC = -FAC

8800 CONTINUE

C

c ..

THE NAG ROUTINE FO02GJF IS USED AS THE EIGENVALUE SOLVER ..

EPS = -DONE

MATV = .TRUE.

IFAIL = ©

CALL FO2GJF(NG,AR,NG,AI,NG,BR,NG,BI,NG,EPS,ALFR,ALFI,BETA,MATV,
* VR,NG,VI,NG,ITER,IFATL)

. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY ..
. PARTS ARE ALFI(M)

NL =0
DO 9000 K=1,NG
IF (ABS(BETA(K)).GT.TOL) THEN

NL=NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)
ITER(NL) = K

ENDIF

9000 CONTINUE

c ..
c ..

REORDER REAL PARTS OF EIGENVALUES. THE REQUIRED EIGENVALUE ..
IS THE FIRST LARGEST REAL PART..
DO 9100 I=1,NL-1
RMAX = ALFR(I)
INOW = I
DO 9200 J=I+1,NL

o
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IF (RMAX.LT.ALFR(J)) THEN
RMAX = ALFR(J)
INOW = J
ENDIF
9200 CONTINUE
TEMP = ALFR(INOW)
ALFR(INOW) = ALFR(I)
ALFR(I) = TEMP
TEMP = ALFI(INQOW)
ALFI(INQOW) = ALFI(I)
ALFI(I) = TEMP
NTEMP = ITER(INOW)
ITER(INOW) = ITER(I)
ITER(I) = NTEMP
9100 CONTINUE
c9150 CONTINUE

C .. GET COEFFICIENTS OF EIGENVECTORS BR AND BZ FOR INNER CORE ..

C .. AND U, W, BR, AND BZ FOR FLUID REGION ..
D_THETA = 4.DO*ATAN(ONE) /DBLE(NPTS)
INOW = ITER(1)
BMAX = ZERD
DO 9300 I=0,NPTS
THETA = D_THETA*DBLE(NPTS-I)
TEMP = (CO0S(0.5DO*THETA) ) **2
XP(I) = SIB*TEMP

XP(I+NPTS) = SIB+(ONE-SIB)+*TEMP
SUMR_IN_BR = VR(NA+1i,INOW)
SUMI_IN_BR = VI(NA+1,INOW)
SUMR_OUT_BR = VR(N6+1,INOW)
SUMI_OUT_BR = VI(N6+1,INOW)
SUMR_QOUT_U = VR(N3+1,INOW)

SUMI_OUT_U = VI(N3+1,INOW)
SUMR_IN_BZ = VR(NC+1,INOW)

SUMI_IN_BZ = VI(NC+1,INCW)
SUMR_QUT_BZ = VR(N8+1,INOW)
SUMI_OUT_BZ = VI(N8+1,INOW)

SUMR_QUT_W = VR(1,INOW)

SUMI_OUT_W = VI(1,INOW)

DO 9400 K=2,M
FAC = COS(THETA*DBLE(K-1))
SUMR_IN_BR = SUMR_IN_BR+VR(NA+K, INOW)*FAC
SUMI_TN_BR = SUMI_IN_BR+VI(NA+K, INOW)*FAC
SUMR_OUT_BR = SUMR_OUT_BR+VR(N6+K, INOW)*FAC
SUMI_OUT_BR = SUMI_OUT_BR+VI(N6+K, INOW)*FAC
SUMR_OUT_U = SUMR_QUT_BR+VR(N3+K, INOW)*FAC

SUMI_OUT_U = SUMI_OUT_BR+VI(N3+K,INOW)*FAC
SUMR_IN_BZ = SUMR_IN_BZ+VR(NC+K,INOW)*FAC
SUMI_IN_BZ = SUMI_IN_BZ+VI(NC+K, INQW)*FAC

213




SUMR_DUT_BZ = SUMR_OUT_BZ+VR(N8+K,INOW)*FAC
SUMI_OUT_BZ = SUMI_QUT_BZ+VI(N8+K,INOW)*FAC
SUMR_QOUT_W = SUMR_OUT_BZ+VR (K, INOW)*FAC
SUMI_OUT_W= SUMI_OUT_BZ+VI(K,INOW)*FAC

9400 CONTINUE

G

c YREAL(I) = SUMR_IN_BR

c YIMAG(I) = SUMI_IN_BR

C YREAL (I+NPTS) = SUMR_QUT_BR
c YIMAG(I+NPTS) = SUMI_OUT_BR

YREAL (I+NPTS) = SUMR_OUT_U
YIMAG(I+NPTS) = SUMI_OUT_U
YREAL(I) = SUMR_IN_BZ
YIMAG(I) = SUMI_IN_BZ
YREAL (I+NPTS) = SUMR_OUT_BZ
YIMAG(I+NPTS) = SUMI_OUT_BZ
YREAL{I+NPTS) = SUMR_OQUT_W
YIMAG(I+NPTS) = SUMI_OQUT_W
TEMP = SQRT(SUMR_IN_BZ**2+SUMI_IN_BZ*%2)
IF (BMAX.LT.TEMP) THEN
BMAX = TEMP
BZ_R = SUMR_IN_BZ
BZ_I = SUMI_IN_BZ
ENDIF
TEMP = SQRT(SUMR_QUT_BZ**2+SUMI_0OUT _BZ*%2)
IF (BMAX.LT.TEMP) THEN
BMAX = TEMP
BZ_R = SUMR_OUT_BZ
BZ_I = SUMI_OUT_BZ
ENDIF
9300 CONTINUE
C
¢ .. NORMALISE FIELDS TO UNITY ..
IF (BZ_R.LT.ZERO) BMAX = -BMAX
IF ((BZ_R.EQ.ZERO).AND.(BZ_I.LT.ZERO)) BMAX = -BMAX
DO 9500 I=0,2*NPTS

o0 o0 000

il

il

YREAL(I) = YREAL(I)/BMAX
YIMAG(I) = YIMAG(I)/BMAX
9500 CONTINUE
END

. THE ARE TWO FIELDS FOR THIS PROBLEM TO SOLVE ..
FIRST FIELD WHEN F(R)=R~{ALPHA}

(4(1-R"BETA) (R"BETA-{S"BETA}_IB)
SECOND FIELD WHEN F(R)mwrmmmmmmmmm oo mmm oo mmm o +ALPHA
(1+ALPHA) (1-{S"BETA}_IB) "2
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C (1) .. THE FUNCTIONS FOR FIRST FIELD ..
FUNCTION FB(X)
" IMPLICIT DOUBLE PRECISION(A-H,0-Z)
| REAL ALFA
PARAMETER( ALFA=1.0, SIB=0.35D0, ONE=1.D0 )
R = SIB+0.5D0* (ONE-SIB)* (ONE+X)
FB = R¥x(ALFA+1.0)
RETURN
END

FUNCTION FB1(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

REAL ALFA

PARAMETER( ALFA=1.0, SIB=0.35D0, ONE=1.DO )
' R = SIB+0.5D0* (ONE-SIB)*(ONE+X)

FB1 = R**ALFA

RETURN

END

FUNCTION FB2(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

REAL ALFA

PARAMETER( ALFA=1.0, SIB=0.35D0, ONE=1.D0 )
) R = SIB+0.5D0*(ONE-SIB)* (ONE+X)

FB2 = R**(ALFA-1.0)

RETURN

} END

FUNCTION FB3(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

REAL ALFA

PARAMETER( ALFA=1.0, SIB=0.35D0, ONE=1.DO )
R = SIB+0.5D0* (ONE-SIB)* (ONE+X)

FB3 = R**(ALFA-2.0)

RETURN

END

FUNCTION FBP1(X)

IMPLICIT DOUBLE PRECISION(A-H,0-7Z)

REAL BETA, ALFA

PARAMETER( ALFA=1.0, BETA=1.0, SIB=0.35D0, ONE=1.DO )
R = SIB+0.5D0* (ONE-SIB)* (ONE+X)

FBP1 = DBLE(ALFA+1.0)*R**(ALFA-1.0)

RETURN

3 END

{ FUNCTION FR1(X)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
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PARAMETER( ONE=1.D0,SIB=0.35D0 )
FR1 = SIB+0.5D0*(0ONE-SIB)* (ONE+X)
FR1 = ONE/FR1

RETURN

END

FUNCTION FR2(X)

IMPLICIT DOUBLE PRECISICN(A-H,0-Z)
PARAMETER( ONE=1.D0,SIB=0.35D0 )
FR2 = SIB+0.5D0* (0ONE-SIB)*(ONE+X)
FR2 = ONE/FR2%*2

RETURN

END

FUNCTION FR3(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.D0, SIB=0.35D0 )
FR3 = SIB+0.5D0*(ONE-SIB)*{0ONE+X)
FR3 = ONE/FR3%*3

RETURN

END

FUNCTION FR4(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.D0, SIB=0.35D0 )

FR4 = SIB+0.5D0*(0ONE-SIB)*(ONE+X)

FR4 = ONE/FR4*%4

RETURN

END

FUNCTION FRP1(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.DO, SIB=0.35D0 )
FRP1 = SIB+0.5D0% (ONE~-SIB)* (ONE+X)
RETURN

END

FUNCTION FRC1(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( SIB=0.35D0, HALF=0.5D0, ONE=1.DO )
FRC1 = HALF*SIB* (ONE+X)

RETURN

END

FUNCTION FRC2(X)

IMPLICIT DOUBLE PRECISION(A~H,0-Z)
PARAMETER( SIB=0.35D0, HALF=0.5D0, ONE=1.DO )
FRC2 = (HALF*SIBx*(ONE+X))**2




RETURN
END

FUNCTION FRO2(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.D0 )

FRO2 = (ONE-X)**2

RETURN

END

FUNCTION FRO3(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.DO )

FRO3 = (ONE-X)**3

RETURN

END

FUNCTIDN FRG4(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.D0O )

FRO4 = (ONE-X)**4

RETURN

END

¢ (2) .. THE FUNCTIONS FOR SECOND FIELD ..
FUNCTION FB(X)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
REAL BETA, ALFA
PARAMETER( ALFA=0.0, BETA=1.0, SIB=0.35D0, ONE=1.DO )
R = SIB+0.5D0*(0ONE-SIB)* (ONE+X)
TEMP = SIB**BETA
FB = R**BETA
FB = (4.D0*(ONE-FB)x*(FB-TEMP)/(ONE-TEMP) **2)+ALFA
FB = R*FB/(ONE+ALFA)
RETURN
END

FUNCTION FB1(X)

IMPLICIT DOUBLE PRECISIDN(A-H,D-Z)

REAL BETA, ALFA

PARAMETER( ALFA=0.0, BETA=1.0, SIB=0.35DC, ONE=1.DO )
R = SIB+0.5D0*{(0NE-SIB)*(ONE+X)

TEMP = SIB#**BETA

FB = R**BETA

FB = (4.D0*(ONE-FB):*(FB-TEMP)/ (ONE-TEMP)**2)+ALFA
FB1 = FB/(ONE+ALFA)

RETURN

END
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FUNCTION FB2(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

REAL BETA, ALFA

PARAMETER( ALFA=0.0, BETA=1.0, SIB=0.35D0, ONE=1.DO )
R = SIB+0.5D0%(ONE-SIB)*(ONE+X)

TEMP = SIB#*BETA

FB = R**BETA

FB = (4.D0*(ONE~FB)*(FB-TEMP)/(ONE-TEMP)**2)+ALFA
FB2 = FB/((ONE+ALFA)*R)

RETURN

END

FUNCTION FB3(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

REAL BETA, ALFA

PARAMETER( ALFA=0.0, BETA=1.0, SIB=0.35D0, ONE=1.DO )
R = SIB+0.5D0* (ONE-SIB)* (ONE+X)

TEMP = SIB*x*BETA

FB = R*xBETA

FB = (4.D0*(0ONE-FB)x*(FB-TEMP)/ (ONE-TEMP) **2) +ALFA
FB3 = FB/((ONE+ALFA)*R*%2)

RETURN

END

FUNCTION FBP1(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

REAL BETA, ALFA

PARAMETER( ALFA=0.0, BETA=1.0, SIB=0.35D0, ONE=1.DO )

R = SIB+0.5D0*(ONE-SIB)* (ONE+X)

TEMP = SIB**BETA

FBi = R#*BETA

FB2 = R#*#*2.DO*BETA

FB = 4.D0*(((BETA+ONE)*FB1i-(2.D0*BETA+ONE)*FB2+(BETA+ONE) *FB1+TEMP
-TEMP)/ (ONE-TEMP ) *%x2)+ALFA

FBP1 = FB/((ONE+ALFA)*R)

RETURN

END

FUNCTION FR1(X)

IMPLICIT DOUBLE PRECISION(A-H,D-Z)
PARAMETER( ONE=1.D0,SIB=0.35D0 )
FR1 = SIB+0.5D0*(ONE-SIB)*(ONE+X)
FR1 = ONE/FR1

RETURN

END

FUNCTION FR2(X)




IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.D0,SIB=0.35D0 )
FR2 = SIB+0.5D0*(ONE-SIB)*(ONE+X)
FR2 = ONE/FR2¥x2

RETURN

END

FUNCTION FR3(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.D0, SIB=0.35D0 )

FR3 = SIB+0.5D0% (ONE-SIB)*(ONE+X)

FR3 = ONE/FR3#**3

RETURN

END

FUNCTION FR4(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( DONE=1.D0O, SIB=0.35D0 )

FR4 = SIB+0.5D0%(ONE-SIB)x*(ONE+X)

FR4 = ONE/FR4x*4

RETURN

END

FUNCTION FRP1(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.D0, SIB=0.35D0 )
FRP1 = SIB+0.5D0* (0ONE-SIB)* (ONE+X)
RETURN

END

FUNCTION FRC1(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( SIB=0.35D0, HALF=0.5D0, ONE=1.DO )
FRC1 = HALF*3SIB*(ONE+X)

RETURN

END

FUNCTION FRC2(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( SIB=0.35D0, HALF=0.5D0, ONE=1.DO )
FRC2 = (HALF*SIB*{(ONE+X))**2

RETURN

END

FUNCTION FRO2(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=1.D0 )

FRO2 = (ONE-X)**2




L RETURN
END

FUNCTION FRO3(X)

IMPLICIT DOUBLE PRECISION(A-H,Q0-Z)
PARAMETER( ONE=1.DO )

FRO3 = (ONE-X)*%*3

RETURN

END

FUNCTION FRO4(X)

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
‘ PARAMETER( ONE=1.DO )

E FRO4 = (ONE-X)**4
’ RETURN

; END
)

C .. THIS SUBROUTINE COMPUTES THE CHEBYSHEV SPECTRAL MATRIX ..

(]

C .. FUNCTION AND W THE FUNCTION ..
SUBROUTINE MATRIX(N,T,FCN,W)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)

C .. PROGRAM COMPUTES THE CHEBYSHEV SPECTRAL MATRIX OF A ..
C .. SPECIFIED FUNCTION FCN(X)
DIMENSION T(N,*), W(x)

C .. GENERATE CHEBYSHEV NODES ..
DX = 2.DO*ATAN(1.D0)/DBLE(2*N-1)
DO 100 J=1,2%N-1
SUM = 0.D0
DO 200 I=1,2%N-1
X = COS(DX*DBLE(2+I-1))
SUM = SUM+FCN(X)*COS(DX*DBLE((J-1)*(2%I-1)))
200 CONTINUE
W(J) = 2.D0*SUM/DBLE(2xN-1)
100  CONTINUE
W(1) = 0.5D0*W(1)

C .. BUILD CHEBYSHEV MATRIX ..
T(1,1) = W(L)
DO 300 I=2,N
T(1,I) = 0.5D0*W{I)
T(I,1) = W(I)
T(I,I) = W(1)+0.5D0*W(2*xI-1)
DO 400 J=I+1,N
T(I,J) = 0.5D0*x(W(I-I+1)+W(J+I-1))
T(J,I) = T(I,d)

1

1

. N IS NUMBER OF POLYNOMIAL, T IS THE MATRIX, FCN IS THE GIVEN ..



400 CONTINUE
300 CONTINUE
RETURN
END
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