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Chapter 1

Introduction

1.1 In tro d u c tio n

This thesis explores the use of spectral m ethods in the stability analysis of a num ber of 

problems arising in Applied M athem atics and Physics. On some occasions new results 

will be obtained; on other occasions existing results will be confirmed or extended by a 

more accurate technique. The application of spectral m ethods to multi-layered regions is 

novel.

The stability  analysis of a linear system of partial differential equations is connected in 

a natural way with the com putation of the eigenvalues of a boundary value problem. In 

this work, tim e is removed from the evolution equations of the original problem in such a 

way th a t instability ensues whenever the resulting linearized boundary value problem has 

eigenvalues w ith positive real part. Two distinct modes of instability are possible depend­

ing on w hether an eigenvalue is real (stationary instability) or complex (overstabilitv); in 

either case, the m agnitude of the related eigenfunction grows exponentially in time. As 

a rough rule of thum b, stationary instability tends to occur in system s in which a single 

driving m echanism , say therm ally induced buoyancy, overpowers a single dam ping mech­

anism such as viscosity. W hen additional mechanisms are present, say the influence ol 

m agnetic fields, overstabilitv is often a possibility. In this case, instability  ensues through 

“hunting” , th a t is, oscillations of increasing m agnitude. In practice, the m athem atical 

problem  reduces to one of finding the critical eigenvalue or eigenvalue with largest real 

part. If stationary  instability  is the preferred mechanism then the critical eigenvalue is
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zero, otherwise it is purely complex and, for example, will be one of a complex conjugate 

pair if the eigenvalue problem  happens to be real.

There are essentially two distinct strategies for determ ining eigenvalues depending on 

w hether or not the location of the com petitive (most unstable) eigenvalue is known for 

a particu lar set of system  param eters. If a. good estim ate of a particu lar eigenvalue is 

available then m ethods such as Inverse Iteration or Compound Matrices  can often be used 

effectively to confirm the existence of this eigenvalue and further improve its value. The 

Inverse Iteration  m ethod relies upon the power m ethod for eigenvalue calculation. Its 

principal drawback lies in the trea tm en t of complex boundary conditions and the need to 

com pute m atrix  inner products in higher precision. The Compound M atrices technique 

is a clever adap tation  of the shooting m ethod for linear eigenvalue problems. Instead of 

com puting the target function for a shooting m ethod by the evaluation of a determ inant, 

the target is com puted as a linear com bination of the solutions of a system  of ordinary 

differential equations. This avoids the inescapable numerical inaccuracies which are in­

herent in the evaluation of determ inants. Compound Matrices are particularly  accurate 

bu t usually at the expense of solving a large system of linear differential equations.

Often it is possible to establish the “principle” of exchange of stabilities, th a t is, the 

eigenvalues of the system  are either always real or, if complex eigenvalues are possible, 

then these can never be destabilising (for example, always have negative real parts if the 

eigenfunction dependence on tim e is eat). Of course, this is a m a tte r for m athem atical 

proof and not a principle of nature as the title  might suggest. W hen exchange of stabil­

ities is operative then Inverse Iteration and Compound M atrices have a role to  play in 

eigenvalue determ ination. In the work explored here, no such principle exists generally 

and so m ethods which rely on an initial guess for the com petitive eigenvalue are at best 

dangerous. Also, they will often produce wrong estim ates of critical eigenvalues since 

they are insensitive to the discontinuous dependence of critical eigenvalues on param etric 

variables. Spectral m ethods, because they estim ate the spectrum  of the linear operator, 

are extrem ely flexible to the rapid changes which occur for small changes in the system 

param eters. They are responsive to the “jostling for leading position” typically displayed 

by eigenvalues as system  param eters such as wavenumbers change even by small am ounts.

The use of spectral series in the analysis of eigenvalue problems can probably be a ttribu ted



to Lanczos [26] but it was Orszag’s [37] com putational trea tm en t of the Orr-Sommerfelcl 

(OS) equation using Chebyshev polynomials th a t established the prom inence and via­

bility of this m ethod. O rszag’s original calculations were done on a CDC Cyber w ith a 

rounding error of 10/11 decimal places using a fourth order spectral (tau) representation 

of the OS equation with 25 polynomials. Under these circum stances, his calculations were 

at the very lim its of feasibility since the m atrix  entries in the 4th order spectral repre­

sentation grow like M ‘ where M  is the num ber of polynomials in use. W hen M  >  30, 

rounding errors dom inate if not before. Orszag circumvented this difficulty by recognising 

two im portan t properties of the OS equation: firstly, its eigenfunctions are either odd or 

even functions (and so do not require a fully Chebyshev expansion) and secondly, its coef­

ficients are polynom ials (in fact, at worst quadratic) and so enjoy an exact representation 

in the Chebyshev basis. Although polynomial coefficients appear often in applications, 

spectral m ethods work effectively for non-polynomial coefficients.

Im plem entations of spectral m ethods are commonly classified as Galerkin, Collocation 

or Tau depending on the nature of the eigenfunction and the way in which the original 

eigenvalue problem  is approxim ated within a function space. In a Galerkin [10] m ethod, 

the eigenfunction is expressed as a truncated sum of basis functions which individually 

satisfy the boundary conditions. The coefficients of the eigenfunction are chosen so th a t 

the residual (the rem ainder or measure of the extent to which the spectral solution fails 

to  satisfy the eigenvalue, problem) is orthogonal to each basis function w ith respect to a 

suitable norm. The first a ttem p t to use spectral Galerkin methods in the numerical so­

lution of partial differential equations (meteorological modelling) has been a ttribu ted  to 

Silberm an [41]. Orszag [37], [38] and Eliasen, M achenhauer k. Rasmussen [7] have shown 

tha t spectral Galerkin m ethods (based on transforms) are practical for high resolution 

calculations for differential systems involving quadratic nonlinearities bu t are im practical 

for more com plicated nonlinearities.

The Tau approach is a variant of the Galerkin m ethod in which the basis functions do not 

individually satisfy the boundary conditions. These enter the problem  as a restriction 

on the spectral coefficients of the eigenvector. Experience reveals th a t Tau m ethods are 

norm ally superior to Galerkin m ethods and will be the preferred m ethod in this thesis.

Finally, Collocation m ethods differ from both  Galerkin and Tau m ethods in the respect
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th a t the entries of eigenvectors now represent values of the independent variables at 

predeterm ined points (usually the zeros of some basis function) ra ther than  spectral co­

efficients; otherwise the m ethod is ostensibly the same. The Collocation approach looks 

a ttractive  at first sight because it deals directly with values instead of coefficients but it 

is conjectured th a t this advantage may be illusory for two reasons.

(a) For a given m athem atical representation of the eigenvalue problem , the Collocation 

m atrices contain entries which are larger than their corresponding Galerkin or Tau 

counterparts. Hence they are more susceptible to instabilities induced by rounding 

error.

(b) A diverging series (perhaps corresponding to a solution which is blowing up) could 

be represented by its spectral coefficients whereas a Collocation representation is 

doomed.

The application of spectral m ethods to a variety of subject areas is described by H altiner 

and W illiams [16], Mercier [30], Gottlieb and Hussaini [13], Deville [6], Jarraud  and Baede

[21], Hussaini, Salas and Za.ng [19], Zang and Hussaini [46], G ottlieb [14], Hussaini and 

Zang [20] and Canuto, Hussaini, Quarteoni and Za.ng [3]. For finite intervals, Cheby­

shev and Legendre polynomials have a similar quality of spectral perform ance although 

Chebyshev polynomials are much easier to use in practice, not to m ention the obvious 

connection between Chebyshev spectral series and the Fast Fourier Transform (FFT ). 

Similarly, infinite and semi-infinite regions can be treated  using H erm ite and Laguerre 

polynomials respectively but it is usually preferable to map such regions into [—1,1] us­

ing, for exam ple, y =  tanh(cv,r) or y =  — 1 Jr2eax and then employ Chebyshev expansions.

In practice, spectral m ethods convert the boundary value problem into the generalised 

eigenvalue problem  .4 V — a B Y  where .4 and B  are square m atrices and V is an eigen­

vector to be assim ilated with the coefficients of spectral series in the Galerkin and Tau 

approaches and function values in the Collocation approach. In particu lar, B  is typically 

singular. In this work, the generalised eigenvalue problem is trea ted  using NAG routines 

F02GJX and F02BJX  for complex and real m atrices respectively. The m athem atical con­

struction of the generalised eigenvalue problem from the boundary value problem  and the 

trea tm en t of boundary conditions is described in Chapter 2 of this thesis.

As has already been m entioned, Orszag treated  the OS equation as a single 4 th  order
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eigenvalue problem. Of course, the m athem atical problem could equivalently be repre­

sented as a pair of second order equations or a quartet of first order equations. M athe­

m atically these are all equivalent but numerically the approaches are subtlev different in 

th a t lowering the order of the component equations endows more derivatives with spectral 

expansions, effectively treating them  as independent variables. In the first order system, 

each derivative enjoys its own expansion. The potential benefits of this approach are, 

hopefully, increased accuracy and ease of coding but these m ust be counterbalanced by 

the significant increase in the size of the m atrices / l  and B.  This issue is addressed in 

C hapter 3 in which the OS equation is investigated using a pair of second order equa­

tions (the D 2 approach) and a quartet of first order equations (the D approach). Briefly, 

com putations suggest th a t the D m ethod is more accurate than the D 2 m ethod but not 

overpoweringly so. W hen memory is scarce such as in eigenvalue calculations in 2D prob­

lems, it is clear th a t the D 2 m ethod is the way forward.

The Orr-Sommerfeld eigenvalue problem, previously solved in C hapter 3 by Chebyshev 

Tau m ethods, is now solved in C hapter 4 using Legendre spectral m ethods.

In C hapter 5 of this thesis, the Chebyshev Tau m ethod is applied to the stability  of 

Benard-M arangoni convection in a horizontal layer of viscous, electrically conducting 

fluid with an imposed axial m agnetic field of constant m agnitude. W ilson [45] develops 

a comprehensive analysis of stationary stability for this problem in a variety of circum ­

stances including situations in which the free surface is flat or wrinkled. His results are 

checked and, where necessary, extended to include overstable regimes of param eter space. 

Roughly speaking, overstabilitv is preferred increasingly as the ratio  of the m agnetic to 

viscous P rand tl num bers exceeds unity.

Chapter 6 of this thesis extends the spectral methodology of chapter 2 into m ulti-layered 

regions.

C hapter 7 ol this thesis deals with the investigation of linear stability  analysis for a layer 

of porous m edium  perm eated and superposed by a layer of incompressible viscous fluid. 

Chen Sz Chen [5] have addressed this problem when heating is applied at the bottom  

boundary. Their investigation assumed stationary instability from the outset and used a 

shooting technique based on 4th order R unge-K utta approxim ations for integration of all 

differential equations. To check Chen & Chen's results, Chebyshev spectral m ethods are
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applied to this two-layer problem. Their results for the behaviour of the Rayleigh num ber 

appear qualitatively accurate for small wavenumbers only. As the wavenumber increases, 

the discrepancy between their results and these generated by spectral m ethods grows. 

The trouble is th a t the already poor characteristics of a determ inant based m ethod are 

further eroded by the presence of the second layer and the need to reorganise boundary 

conditions for crossing the inner boundary.

C hapter S of this thesis explores the Chen & Chen [5] problem when salting effects are 

included in addition to heating. They considered the solution in which heating and salting 

are applied at the top boundary (in connection with the solidification of a liquid m elt). 

Again, stationary  instability  is assumed from the outset. It is expected th a t overstabilitv 

may be the preferred mechanism in certain regions of param eter space bu t com putation 

reveals th a t the eigenvalues are always real in the applications of Chen & Chen. This 

contrasts sharply with the  situation in which heating and salting are applied at the lower 

boundary; here stationary  and overstable instability are both possible! By taking suitable 

inner products of the governing differential equations, it can be discerned th a t analytical 

explanations for these observations are not possible. Again the presence of a second layer 

visibly accelerates the deterioration in the numerical accuracy achievable by an unsophis­

ticated  shooting m ethod.

In C hapter 9 of the thesis, spectral m ethods are used to investigate an eigenvalue prob­

lem arising in MHD and originally trea ted  by Lamb [25] using Inverse Iteration. In this 

model, the E arth  is described as a solid cylinder (inner core) of finite electrical conductiv­

ity surrounded by a. cylindrical annulus (outer core) of incompressible viscous fluid with 

finite conductivity, both  electrically and therm ally, and this in tu rn  is surrounded by a 

non-conducting region of infinite extent (m antle). The finite conductivity of the solid 

inner core and the non-conducting nature of the m antle essentially guarantees an active 

interaction with the fluid outer core leading to a genuine three-layer eigenvalue problem: 

the inner core and m antle cannot be replaced by simple boundary conditions. Moreover, 

it is a three-layer problem  with a subtle twist arising from the fact th a t Laplace’s equation 

has divergent solutions in the inner core and m antle. Lamb deals w ith these difficulties 

analytically and, in so doing, reduces the full problem to an eigenvalue problem  in the 

fluid outer core. In the absence of analytical solutions in the inner core and m antle,
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Lam b’s methodology would likely fail. Methods such as Inverse Iteration and Compound 

M atrices experience severe difficulties whenever governing equations have potentially sin­

gular solutions simply because they proceed by constructing eigenfunctions numerically 

whereas a spectral m ethod constructs the coefficients of a spectral expansion and is more 

able to suppress singular behaviour in favour of regularity. This exam ple from MHD 

provides a good illustration of this point.

10



Chapter 2

Eigenvalue Determination using 

Spectral Methods

2.1 In tro d u c tio n  to  O rth o g o n a l P o lynom ials

Orthogonal polynom ials play an im portant role in m any areas of m athem atics. The 

following sections review properties th a t are relevant to eigenvalue analysis.

2.1.1 Som e G eneral A sp ects o f Oi’thogon al P olynom ials

Let /  and g be two functions defined over [a, b] (—oo <  a < b <  oo) then the inner

whenever this integral exists.

If < / ,  g >  =  0 for non-trivial / ,  g then the functions /  and g are said to be m utually 

orthogonal. In this work, the class of functions for consideration is restricted to the 

space of real polynomials. Let tt0 =  1, the canonical polynomial of degree one. Given a 

real interval [a, 6] and a suitable weight function u;(.r), a family of m utually  orthogonal 

real polynom ials 7r0( r ) , . . . ,  irn{ x ) . . .  can be constructed by a G ram -Schm idt procedure 

in which nn(x)  has leading term  x n. In particular, each family is uniquely determ ined by

product of /  and g over the interval [a, 6] with respect to the weight function w (x ) (>  0) 

is denoted bv the symbolism < f \ g  > and defined by (see [43])

6
(2 . 1. 1)
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this condition, the  choice of interval and the weight function. Hence

r1' 0 for n  ^  m
< ^ 7l ,7rm > =  / w{x)irn{x)TTm(x) clx =  < (2.1.2)

a I f,Ln for n  =  ???,.

There  is a close connection between the interval [a, 6], the  associated weight function w (.t ) 

and an associated family of second order ordinary  differential equations which possess the 

set of orthogonal polynomials as a family of solutions. However, in this work, the  family 

of 7r’s is regarded as the  solution of the  second order difference equa tion

7rn+1(.r) =  (.t -  Sn+1)7in(x) -  7^+17rn_ 1(.i’) , (n  >  0) 7r_i(;r) =  0 ,7To(.t) =  1. (2.1.3)

where and 7 ^+1 are defined by

T7T 7T ^ ^ ^
<Wl =  ' for ?l >  0 , 7n+l =  |  /*„ r .  . ( 2 ' L 4 )

f ln   tor n  >  1 .

These definitions of hn+i and 7 ^+1 essentially ensure tha t  the  tt's form a m utua lly  orthog­

onal set of polynomials.

Spectral analysis with  polynomials depends critically on the fact th a t  the  space of poly­

nomials is closed under differentiation and m ultiplication; th a t  is, the  derivative of a 

polynomial is a polynomial and  the p roduct of two polynomials is a polynomial. Hence

(i) the  derivative of 7iy.(-r) can be represented by a linear com bination of the  polynomials 

7To(a0 TTfc-lU'K

(ii) the product of 7Tn{x) and 7Ty.(.r) can be expressed as a linear com bination of the 

polynomials 7T0( .r ) , . . ., 7Tn+k{x).

In fact, the  special na tu re  of the  tt's allow a stronger claim for the  second property. 

Suppose th a t  irn and  tt/. are two m em bers of the  family defined by the  recurence relation 

(2.1.3) then  7rn(.r)7iy.(,r) can be expressed as a linear com bination of Tpn- k \ { x )  *•■■■> 7‘n-K-(-r )- 

T h a t  is, th e  term s ttq{x ) . ..  11(.r) are absent unexpectedly  from the  p roduct.

This result is proved by induction. If e ither of n  or k  is zero then  the  result is triv ia l since 

one of the  polynomials is unity. Also if n  =  k  then  the product 7rn7iy: is ju s t  a  polynomial 

of degree 2n  and  the  result is again unrem arkable. W ithou t  any loss of generality, assum e



now th a t n > k  > 0. From (2.1.3), Tip ( r ) =  x — 6X and the definition of the polynomial 

family can be recast in the form

7Tn+1(a’) =  (7ri(ic) +  Si -  Sn+l)nn(x) -  7^+17r„_i(;r) (2.1.5)

and this in tu rn  can be rew ritten as

7Ti(a')7rn(a:) =  7rn+1(.r) +  (hn+1 -  T )7rn(;?:) +  7^+17rn_ 1(ai) .

Hence the result is true when n > k — 1.

Now assume th a t the result is true for all n > k  > 1. In view of the alternative definition 

(2.1.5) for the tt’s relating 7iy,+1(a;), 7r/,(;r) and tt/ . - ! ^ ) ,

n n { x ) n k + 1 { x )  =  ( t t 1 ( ^ )  +  h i  -  Sk+i)irn(x)ivk(x) -  ' y l + 1 TTk - i ( x ) T r n ( x )

n + k  n + k  — 1

=  ^  -  5k+1) Y ,  ^ A x ) - l i + i  J 2  brnr{x)
?“ ?? — k r —n — k-\-l

n -f- A’

=  ^ 1 (^') fl-rTTrU') +  cr ^ A X)
r —n —k r —n —k

n + k  n + k

= «,-7Tr(;r )7T!(.r) +  £  Cr7T,.(.r)
r = n  — k r —n —k

n + k +1 n + k

=  Y 2 dr7rr{x ) +  CrKr{t)
r=7i —A;—l r — ii — k

n-]- k. -j-1

=  J 2  e r 7Tr { x ) .
r —n —k —1

Hence the claim is justified. To sum up, it is possible to determ ine coefficients Dnm and

f i n m k  n  >  m  s o  t h a t

"T~Tr7l(;r) =  Y ^ D rnnr[ x) ,  [n >  1)
“*T ,-=o

2 m
[x)lTm {x)  =  3nmr Kn+m-r {x ) , [u > m )  .

r = 0

( 2 . 1 .6 )

2,1 .2  Function  A pproxim ation

Let f ( x )  be a continuous function satisfying the property

< / ,  f  > — f  w ( x ) f 2{x)clx < oo
J a

then f ( x )  has a spectral representation with respect to the polynom ial family 7t0(.t), . . .. 

Suppose th a t the representation is
CO

f i v ) =  (2 .1 .7 ;
r = 0

13



then  it is clear th a t  the  coefficients f k can be evaluated by first m ultip ly ing  the  spectral 

series (2.1.7) w ith  w (x )7T^(x ) and then  in tegrating the result over th e  interval [a, 6], Thus

/ w (x ) / ( x )7rfc(x ) dx = \ J 2  /»■w (x x ) dx
J a j  a \ r_ 0

co b
J 2  f r  f  W (X )7Tr (X )7Tk {x)  d x
r —0 J  a

=  IklJ-k

leading to the  final conclusion th a t  the  coefficients f k are eventually  de te rm ined  bv the 

evaluation of the  integral

fk =  —  /  10(X) f  {x)uk{X) dx . (2.1.8)
PA: 7 o

These coefficients m ust now be calculated for a general family of polynomials 7rn(.r) and 

any function /  whose value can be determ ined at any point .r. The answer to this question 

lies in an understanding of the analysis and methods of Gaussian quadrature.

2.1 .3  G aussian  Q uadrature

Suppose tvq[ x )  7Tn(a ') .. . .  is a family of orthogonal polynomials in the sense of (2.1.2)

where 7T/,.(;r) has degree A;, then 7Tk(x) has k distinct zeros in [a, b\. Since 7r0(;r) =  1 then 

the claim is true for k, = 0. Now let k >  1 and observe tha t

6 rb

W { X  ) 7T0 ( a-) TTfc ( X) dx —  /  W  ( X  ) tta- ( X ) dx =  0 
a J a

so th a t Tik(x)  certainly changes sign at least once in [a, 6], tha t is, rrk(x)  has at least one 

zero in [a, 6]. Suppose th a t . . . zm (m < k) are the rn zeros of TCk(x)  in [a, b] occuring 

to an odd power. Hence 7rjt(.r) changes sign at z\ .. , z m in [a, b]. Consider the polynomial

r —m

P ( x )  =  -  ,r)(.~2 -  .r ). . .  -  .r) =  IJ  W  -  * )  ■
r= 1

Since Trjt(a') and P[x)  change sign at the same places then 7rk(x )P(x)  has fixed sign in 

[a, 6] and so

■w{x)7Tk{x)P{x) dx
a

is single signed. However P{x)  can be represented by the expansion

r = ? n

P ( x )  =  GrKr{x) (m <  k)
r = 0

14



This contradicts the single signed nature of the previous integral. Hence rrf,(x ) m ust have 

k odd zeros in [a ,6], th a t is, has k distinct zeros in [«,6].

Let xq .. . ,rn be the  (n +  1) zeros of 7rn+1(.r) in (a, b) then these zeros, supplem ented by 

the points <t_i =  a and ;rn+1 =  6, form a dissection of [a, b} w ith respect to which the 

Gaussian quadrature

f  w{x) f {x )  dx =  arf ( x r) (2.1.9)
J  a r = 0

has m axim um  precision (2n +  l). Here the ar's are determ ined by the weighted integration 

of the r th  Lagrange interpolating polynomial over [a. 6].

2.1 .4  T he Zeros o f

The proof th a t 7rn(x) has n distinct zeros in [a, 6] unfortunately offers no clues as to how 

these zeros might be determ ined. The answer to this question involves an investigation 

into the eigenvalues of the sym m etric tridiagonal m atrix  Tn+1 given by

<h 7 2 0 0 0 0  • • • 0 0 0

7 2 ( L 7 3 0 0 0  • • ■ 0 0 0

0 9 3 d s 7 4 0 0  ■■ ■ 0 0 0

0 0 0 0 0 0  ■■ 7  n b n 7 ? h

0 0 0 0 0 0  • ■■ 0 l ' n + l G i- f

Define \ n+i(A) =  clet (Tn+i — XI).  Then \ n+i(A) is the characteristic polynom ial of Tn+i 

and therefore has (n- \ -1) real zeros which can be determ ined to a high degree of accuracy 

using the Q R  algorithm ; an iterative scheme for upper triangularising general upper 

Hessenherg m atrices of which a tridiagonal m atrix  is a simple exam ple. Indeed \ n+i(.r)



is ju st the value of the determ inant

5i -  x 72 0 0 0 0 • • 0 0 0

72 S2 -  X 73 0 0 0 • ■ 0 0 0

0 73 S 3 — X 74 0 0 • ■ 0 0 0

0 0 0 0 0 0 • 7  n Sn -  X 7 n + l

0 0 0 0 0 0 • ■ 0 7 n + l 4n_j_i x

W hen this determ inant is evaluated about the last row, it is obvious th a t

\ ' n + l ( ^ )  ~  ( ^ n + 1  “  x ) X n ( ^ )  ~  7 n + l X 7 - l  i '1' )

and this is algebraically equivalent to the conclusion 7rll+1(a’) =  ( —l ) n+1y n+i(:r). Hence 

^n+i(^) and \ n-|-i(rr) have the same zeros, namely, the eigenvalues of Tn+i. Moreover 

suppose th a t vjej  is the unit eigenvector corresponding to eigenvalue Xj then the Gaussian 

quadrature weight cij is given by

aj — {vi)2fi0 -  v'l / w( x) dx  . (2.1.10)
J a

Details of this proof are available in Bulirsch and Stoer [43].

2.1 .5  A pplication  to  C hebyshev P olynom ials

Chebyshev polynomials are commonly delined over [—1,1] by the relation

Tn(z) =  cos(?}0), ~ — cos# (2.1.11)

from which it is im m ediately clear th a t Tn(z) has n zeros in ( —1,1) located at

(1 +  2/c)tt\
:k =  cos

2/7,
k — 0 , . . . ,  n — 1 .

This is the first useful property of Chebyshev polynomials. Moreover it can be shown 

th a t the appropriate form of (2.1.9) is

1 f { x ) d x  T T ^
I  ~ 7 T = f  =  T 2 ^  • / ( ■ * » • )  •J - W l - x 2 n ^ 0

The spectral coefficients of /  are now determ ined from (2.1.8) by

1 f {x)i rk{x)dx  tt n~l

( 2 . 1.12

fk  = f.Lk J —1 \ f  1 ~x̂  r—q

16



After some algebra, it can be verified th a t

' •  -  I 5 2 * ? 2 1 )  • 121111

The sequence of spectral coefficients determ ined by (2.1.13) ensures th a t all polynomials 

up to order (n — 1) are exactly represented, th a t is, it is an expansion based on interpo­

lation.

However, there is a more elegant association of a function f  w ith a Chebyshev expansion 

bu t it is not interpolating. The m ethod is based on Gauss-Chebyshev-Lobatto quadra­

tures nodes with

•2'k =  ci cos2(/c7r/2?z) -f- 6sin2(/c7r/2??), k = 0 . . . n  (2.1.14)

the optim al weighted quadrature when the endpoints of the interval are nodes of the 

dissection. Let / ( . t ) ,  x 6 [a ,6], be a continuous function then

x = a +  i ( ~  -f l )(b  -  a), . r e  [a, 6], ~ e [ —1,1] (2.1.15)

maps x G [a ,6] into ~ 6 [—1,1]. Assume th a t f ( x )  — F(z)  is approxim ated by an 

expansion in Chebyshev polynomials up to order AC tha t is

f ( x )  = F(z )  = j r f rTr(z),  (2.1.16)
,■=0

then it can be shown th a t Fk — f {xk)  0 < k < AC the value of /  at the Chebyshev

nodes (2.1.14) and the coefficients of the Chebyshev spectral series (2.1.16)

are connected by (the detail in Appendix A)

__ N  .7T v—, 1h  =  k  =  0 , . . . , N ,
N c kj=!,ci '

Fj =  cos(kj i r /N)  , j  =  0 , . . . ,  Ar ,
k=0

where
2 k  =  0 or AC

ck = S
1 0 < r  <  N.

2.2 C om m on Fam ilies of P o lynom ials

T here  are four families of orthogonal polynomials th a t  are part icu la rly  fam iliar in applied 

m athem atics .  These  are the  Chebyshev polynomials T n {x) ,  the  Legendre polynomials

17



Pn(x)-> the H erm ite polynomials I i n{x) and the Laguerre polynomials L n(x),  (see Jean

[22]), H ildebrand [17] provides a comprehensive description of many of their properties. 

H erm ite and Laguerre polynomials fit the defining property (2.1.3) and are suitable for 

infinite and semi-infinite regions respectively. It is possible to use them  in eigenvalue 

expansions bu t they are difficult to handle and it is almost invariably preferable to map 

infinite or semi-infinite regions into [—1,1] and use Chebyshev or Legendre polynomials. 

The relevant properties of these polynomials are now reviewed.

2.2.1 C hebyshev P olynom ials

The Chebyshev Polynomial Tn(x)

Range [a, b] [ - l . i ]

Weight function w{x)  =  (1 — ;r2)-1/ 2

7r for n =  0
t~ln+1

— for n > 1
t 2

7̂4+1 0

( 0 for n = 0
l l+\

( 1 for??. >  1

Recursion relation Tn+i{x) = 2xTn(x) -  Tn_i(.r)

The differentiation of Cheb3'shev spectral series relies on the trigonom etric identities 

sin(2A:0) sin(2/c +  1)0
  — =  2 > cos(2?’ — 1)0,    =  1 +  2 > cos(2?w).

sin 0 sin 0

In com bination with the definition (2.1.11) of T n ( z ) ,  these identities lead im m ediately to 

the results

=  4 k j ^ T ^ z ) ,
''=1 k (2.2.17)

rfr2y i( j )  =  2 ( 2 i ; + l ) ^ r 2l. ( a  +  (2fc +  l)T 0(; ) .
dz  ,.= 1

Suppose th a t f ( x )  is a differentiable function in the interval [a, 6] then

df d F  dTk{z) m  dT2k(z ) , ('vg ,)/2 dT2k+l(z)

^ =ĉ =ch h~ =c{L hk̂ ~  £ > ( 2 -2 - i& )

IS



where c — 2 /(6  — a) and the integer part only of N / 2 is considered. Results (2.2.17) are 

now substitu ted  into expression (2.2.18) to obtain

N / 2  k  ( N  — l ) / 2  k

■ = rA
dxd'f: =  c ( E +  E  (2fc +  i ) / 2t+ i ( r 0(-)  +  2 ^ r 2l.(r)). (2.2.19)

A =1 r = 1 k - 1 k - 1

The order of sum m ation on each double sum in the expression (2.2.19) is reversed to get 

d f  N / 2N / 2  ( N ~ l } / 2

j :  =  c E E 4fc/ 2 m , - ,( - - ) +  c e  (2fc +  i)./2m n )
r = l k = r  k = 0 C9 9 901

+ c  E  E  (4k +  2 ) f 2t+1T2,.(z)-
r = l  k —i'

Let D be the ( N  +  1) x [N  +  1) upper triangular m atrix  whose non-zero entries are

D q.2fc+L =  (2/c +  1) ,
k > 0 .  (2 .2 .2 1 )

Dr.r+2k+i — 2(r +  2k -f- 1) ,

then it follows directilv from (2.2.20) tha t

N  Ni f  _

r - 0  k = 0
J -  =  E ( E  c Drkfk)Tr[s).  (2.2.22:

Thus spectral differentiation of the function /  is effected by m ultiplying the  (iV+1) dim en­

sional column vector ( / 0, / 1, .. ., Jn )t of Chebyshev coefficients of /  by the  differentiation 

m atrix  cD.  Appendix 1 provides a FORTRAN77 subroutines.

2.2 .2  Legendre Polynom ials

The Legendre Polynomial Pn{x)

Range [a, 6] [—1,1]

Weight function w(x)  — 1

2

f‘"+1 a T + T

7̂1+1 0

7n+i \ n
0 for n =  0 

for n >  1
n +  1

Recursion relation {n +  l)P n+i(;r) — (2n T  1 )xPn(x) — n P n- i {x )
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The derivative of P n {x)  is related to P o { x ) .. . Pn_i(,t) by

=  £ ( 4 r  +  3 ) / W a : )  ,
Cl-'T r=;0

=  £ (4r +  ! ) ? * ( * )
r = 0

;2.2.23)

and the product Pn (x ) Prn (x ) has Legendre polynomial form

/ >. ( ») *>, ( «) =E Ar ^ ~ ' • » * " * ■  <2-2-24>

where A k = ^
1 2k(  9*. \

. The expressions (2.2.23) must be recast in term s of the m atrix  D
\ k /

introduced in (2.1.6). It is obvious th a t the non-zero entries of D for Legendre polynomials

are

Pi,2j+i+i = 2i +  1 , L j P  0 . (2.2.25)

In fact, Legendre polynomials have similar qualities as Chebyshev polynomials except th a t 

the form ula for their product is clearly more complex than the com parable Chebyshev 

formula. The sim ilarity is more obvious when the recurrence relation is expressed in the 

form

Pn+ l(.r) =  (2  -  — )  xP„{x) -  (1  -  ^ - j - y )  P „_ ,(a ) .

For any sizeable n, this is effectively the same recurrence relation as applies to Chebyshev 

polynomials. It is only for small values of n th a t Chebyshev and Legendre polynomials 

differ markedly. In particular, there is usually nothing to be gained by using Legendre 

polynomials over a finite interval if Chebyshev polynomials are equally appropriate.

2.3 S ta b ility  A nalysis of O ne Layer

Let C be a layer containing a continuum  which interact therm ally, mechanically and mag­

netically w ith the world outside via its boundaries. Suppose th a t the equations describing 

the physical problem  are non-dimensionalised so tha t c =  1 is its upper boundary of the 

layer and ~ =  —1 is its lower boundary. The standard linear stability  problem for this 

configuration can be system atically reduced to the eigenvalue problem



where Y  is an n vector w ith components y i , . . . ,  yn, A  and B  are complex n x n m atrices 

and cr is the eigenvalue to be determ ined. The equation (2.3.26) is to be supplem ented 

by n boundary conditions. These describe the interaction of C w ith its environm ent and 

specify the  behaviour of therm al, mechanical and magnetic effects etc, on the  boundary. 

They are linear in nature, involve only the components of Y  and can be expressed in 

m atrix  form
1 <  k <  m  < n (z =  1)U f V  =  0 ,

L l Y  =  0 , 1 <  k <  n —m
(2.3.27

where Uk and Lk are families of ?i-vectors w ith constant entries.

Some Rem arks

(a) Boundary conditions may contain the eigenvalue cr. Indeed this happens in the 

Calculus of Variations when transversality conditions are in operation.

(b) From a purely m athem atical point of view, the boundaiy conditions can be dis­

tribu ted  arb itrarily  between the upper and lower boundaries of the layer. However, 

in practice, boundary conditions relate to the physical properties of macroscopic 

quantities such as stress, velocity, tem perature etc. and these conditions appear in 

pairs —■ one for the upper boundary and one for the lower. Hence n, the order of 

the systems describing layer £ , is almost invariably even and m  = n/2.

2.3.1 T he E igenvalue Problem

Let complex n x n m atrices A  and B  and n x 1 vector Y  be defined by

(2.3.28)

where the m atrices A  and B  and the vector V are represented by the s tructu re of the 

eigenvalue problem  (2.3.26) as

d Y

y i r 1 - -i
a n  . CL [ n b n  . b 1 n

■" =
V2

B  =

f tn l • • a.nn bn \ • bnn

.  lJ n _

_ -

ch
=  A Y  A-(rBY  , ^ 6  [-1 ,1 ] • (2.3.29)

Similarly, the boundary conditions (2.3.27), can be recast in the sim pler form

C j y  =  0  1 < k < n (2.3.30)
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where the in terpreta tion  of Ck is
/

UT i <  I:: < m  .
Q r  =

L i  m  < k <  ??, .

Further progress is achieved by approxim ating each component of Y w ith an expansion 

in term s of some family of orthogonal polynomials. Since the interval is [—1,1] then the 

previous theory suggests th a t Legendre or Chebyshev polynomials will be m ost suitable. 

As has been previously m entioned, the m athem atical quality of the representation is 

effectively equivalent for both sets of polynomials. However, the especially simple form 

for the product Tn(x)Tm{x) favours Chebyshev polynomials, particularly  if the entries of 

A  and B  are non-constant. Henceforth Chebyshev polynomials will be employed.

2.3 .2  R ep resen tation  o f th e Eigenvalue P roblem

Suppose th a t each component of V" is approxim ated by a series of ( M  +  1) Chebyshev 

polynomials so tha t

yA = ) =  Y , a h.Tk( z ) ,  foi l < r < N .  (2.3.31)
A'=0

Of course, (2.3.31) is not an exact solution of (2.3.29) and actually satisfies the  modified 

differential equation

~  = A ( z ) Y  + a B ( z ) Y  + R M {z)
ciz

where R m {z ) is the residual; in this case, an n  dimensional vector representing the re­

m ainder term . Indeed, (2.3.31) is a solution of (2.3.29) in the sense th a t the residual is 

orthogonal to T o , , Tm - it th a t is,

f 1 =  0, 0 < k  <  M .
J -1

Notionally R m  —> 0 as M  —> oo. This criterion effectively means th a t the coefficients of 

the first M  Chebyshev polynomials in the representation of R m  m ust be zero. It now 

rem ains to construct R m - This process involves three steps.

step  1 Com pute the Chebyshev coefficients of the derivative term  d Y f  dz from the Cheby­

shev coefficients of Y.

s tep  2 C om pute the Chebyshev coefficients of the term s AY" and B Y  from the  coefficients 

of Y.
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s tep  3 Convert the boundary conditions into relationships between the Chebyshev coef­

ficients of y .

Each of these procedures is now discussed in detail.

2.3 .3  T reatm ent o f D erivative

Consider first dyr/clz. From (2.3.31)

dyr _  "  dTk{z)
d~ Z~,ahr

k —0
M  M

=  Y , a h. J 2 D ]kTAz)
k= 0 j = 0
M  /  M  \

= E
j = 0 \ k = 0  /

(2.3.32)

Thus the coefficients of the Chebyshev expansion of dyr/dz  are com puted from the coef­

ficients of the Chebyshev expansion of yr by premultiplying the vector

a , .  =  [ci'0,-1 ■ • ■, CVjV/r ] ' 2.3.33)

by the ( M  +  1) x [M  +  1) m atrix  D. Now redefine E  to be the vector of length N ( M  +  1) 

formed from [f/i,. . . ,  yr, . . .  ,^v] by expanding yr to the vector ap , th a t is, Y  has block 

m atrix  form

V = [ a ,  a N] ,  (2.3.34)

The Chebyshev coefficients of d Y j d z  are now obtained from V by m atrix  m ultiplication. 

In block m atrix  notation

' D 0 0 0 ■ 0 a  l
0 D 0 0 ■ 0 oc2

d Y 0 0 D 0 • • 0 «3
dz 0 0 0 D • • 0 ap

0 0 0 0 ■ ■ D OLn

(2.3.35)

2 .3 .4  T reatm ent o f M atrix  P roduct

The contribution m ade to the derivative dyr/ dz  by the m atrix  product AY  has form 

YliLi A ri ( z)yi (z), th a t is, it is a sum of term s of the form f { z )g{z )  where f { z )  =  A ri{z)

23



and g(z)  =  y f z ) .  Suppose tha t

M
f ( z )  =  ' £ m { z ) ,  <?(•=) =  £ s 6 ? i ( , ~ )

i=0 ,7=0

then the product h(z)  = f { z )g (z )  is

co M
M * )  =  E E f ^ T i ( z ) T 3 ( z )

i—0 j —0 
i co M

co  M (2.3.36)‘J i= 0 j ~ 0
I M k |

=  +  ^ £  ' E h - j g i n ( z )
^ k=0 j=0 “ fc=M j=0

I A / A / I co jV/

+ ^ £  Lf;-tSiT>(z) + E h +193Tk(z).
^ k - 0 j - k  “ k - l.y=0

From the final expression for h(z)  in equations (2.3.36), the first ( M  +  1) Chebyshev 

coefficients of h can be determ ined. Unless /  is constant, Chebyshev coefficients of order 

higher than  ( M  -\- 1) also appear in the expression. However, these are of no consequence 

since they contribute only to the part of R m  which vanishes under the inner product with 

T0{ z ) , . . .  Tm - i {z ). It follows almost im m ediately from (2.3.36) tha t

lik =  <
/a<7o +  ' k = 0

‘3 = 1
|  K 1VI  ̂ Hu
^ E - ^ - U b  +  +  ^ E h+j9 j  > li > I
“ j= 0  ~ j = k  .7 =  0

(2.3.37

As in the derivation of the Chebvshev coefficients of the derivative term s, it is self evident

t h a t r e s u l t  ( 2 . 3 . 3 7 )  c a n  b e ■ e - e x p r e s s e d  i n t h e  f o r m  o f  t h e  m a t r i x  m u l t i p l i c a t i o n

’ 2  / o f i j'2 ,/ 3 I 'm <7o

2 / i 2  Jo +  J2 f i  +  js ./ 2 +  f i ■ ' f i l l - I  +  f  M +1 F i

1 2 / 2 f i  +  /s 2 / 0  +  f i j  1 +  ./ 5 • ‘ J m - 2 +  f  M + 2 </2

2
2 / 3 j '2 +  J' i / 1  +  / s 2 / o  +  fe ' ' j M - 3 +  / m + 3 #3

_ 2  J m f  jv z - i  +  I m + i J m - 2  +  J m +2 J m - 3  +  ,/ M +3 * 2/ o  T f*2M _ <7A/

Thus each term  /L i(z )y i(':) in the com putation of A F  can be expanded into a m atrix  

product of Fri and ck; where Fri is the (M  +  1) x (M  +  1) m atrix  associated with A ri{z) 

as illustrated  in the previous expression and a* has its usual m eaning from (2.3.33). In
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particular, if Art- is constant then, trivially, Fri — A ^ I m  (since f k =  0 , k >  0 ) where I m  

is the (M  +  1) x (M  T  1) identity m atrix. Hence A Y  has m atrix  form

‘  F u f 1 2 F 1 3 F m  • • F i n C t i

F - 2 1 F 2 2 F 2 3 F 2 4 • F 2 n C t 2

F 3 i F 3 2 F 3 3 F 3 4 • F 3 n a  3

F 4 1 F 4 2 F 4 3 F 4 4  ■ ■ F 4 n 0 4

F n i F n 2 F j V 3 F n 4  ■ ■ F n n  _ .  a N

Clearly an identical analysis applies to the term  B Y . Of course, in practical applications 

of these ideas, m any of the F  m atrices are either zero or multiples of the identity  and the 

detail of building them  is in Appendix B .

2.3 .5  B oundary C onditions

Recall th a t Chebyshev polynomials can be defined by the property 1 'n(cos 0 ) =  cos[n9) 

so th a t

T„(1) =  1 ,  Tn( - l )  = ( - 1 ) "  .

Thus the eigenfunction expansion (2.3.31) for yk leads to the obvious conclusions

M  m

!/A-(l) =
a? i=°M (2-3-39)

i=0

In term s of the constant vectors p and q of length L given by

p =  (1 .1 .........1   1) , q = ( l . - l , l , - l , . . . ( - l ) r . . . ( - l ) M) .

the boundary conditions (2.3.39) become

yk{ 1) =  p . a k , yk( - 1) =  q . a k . (2.3.40)

Each boundary condition (2.3.30) is converted into a linear relationship among the entries 

aij of Y  by expanding each component part yk (1 <  k <  n) into a m ultiple of the vector p 

if the boundary condition is applied at 2 =  1 or a multiple of q if it is applied at £ =  — 1 .
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2.4 T h e  L inear E igenvalue P ro b le m

The final outcom e of this analysis is th a t the derivative d Y /d z  and the m atrix  products 

A Y  and BY'  in (2.3.26) can all be processed so th a t equation (2.3.26) reduces to a 

generalized eigenvalue problem  of the type E Y  =  a F Y  where E  and F  are complex square 

N ( M  -fi 1) x N ( M  fi 1) m atrices. The N  boundary condition are now used to replace 

the N th , 2N th , 3iVth . . .  , N ( M  +  l ) th  rows of EYr = crFY and the final eigenvalue 

problem is produced. At this stage, a numerical eigenvalue routine is called and the 

complex eigenvalues com puted along with the corresponding eigenvectors, if required. In 

all subsequent work, NAG routines F 0 2 B JF  and F02GJF are called for real E  and F  and 

complex E  and F  respectively. This technique is exemplified for the convection problem 

arising when a viscous fluid overburdens a porous layer.
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Chapter 3

Introductory Applications Using 

Spectral Methods

3.1 In tro d u c t io n

This section introduces the Chebyshev Tau m ethod via the eigenvalue problems associ­

ated with the shear flow of a viscous fluid (Orr-Sommerfeld problem ) and the convection 

of a layer of electrically conducting fluid in the presence of an axial m agnetic field (Mag­

netic Benard problem ). In both of these problems, the nature of the spectrum  depends 

critically on the choice of param eters. In the former, all eigenvalues are essentially com­

plex but different eigenvalues are critical for different values of the Reynolds num ber. 

In the la tter, the spectrum  contains real and complex conjugate pairs of eigenvalues so 

th a t in certain param eter regions, real eigenvalues are critical whereas in others, it is the 

complex eigenvalues tha t dominate. This chapter applies Chebyshev spectral m ethods 

to these problem s, Initially by way of illustration but more significantly because tracking 

techniques such as Inverse Iteration and Compound M atrices are unable to handle the 

subtle and rapid changes undergone by the spectrum  in response to ‘‘sm all” changes in 

problem param eters.

Finally, an opportunity  is taken to compare the relative accuracy of two popular im ple­

m entations of the Chebyshev-Tau m ethod. One treats the eigenvalue problem  as a system 

of first order differential equations whereas the other expresses the eigenvalue problem  in 

term s of systems of second order differential equations. The former strategy needs larger 

spectral m atrices than  the la tte r bu t this apparent disadvantage is counterbalanced by
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technically sim pler boundary conditions and the need for less polynomials.

3.2 O rr-S o m m erfe ld  P ro b le m

The Orr-Som merfeld equation [24] arises in the stability analysis of the lam inar flow of a 

viscous fluid down a cylindrical pipe under a pressure gradient (Poiseuille flow) or between 

two parallel rigid boundaries, one of which is induced to move at constant speed (Couette 

flow). The equation has non-dimensional form

(D 2 — a2)2w = iaR[[u  — cr)(D2 — a2) — D2u]w , x £ ( —1,1) , (3.2.1)

where Dcp =  clcjj/dx, R  is the Reynolds No., a is a. wavenumber, a  is the eigenvalue and 

u(x)  is the lam inar solution. In Poiseuille flow, u (x ) =  1 — x 2 and in C ouette flow, u = x. 

In both  cases, equation (3 .2 .1) must be supplem ented by the boundary conditions

■w(1) =  w ( - l )  =  0 , Diw(l) =  D w ( - 1) =  0 . (3.2.2;

The critical Reynold num ber Rcr\t is determ ined by the criterion R.e(cr) =  0, tha t is, the 

real part of a  is zero. For Poiseuille flow, it can be shown tha t the critical Reynolds No. is 

jRcrit ~  5751.9 occurring a t wavenumber acrit — 1.0215 while in the case of Couette flow, 

the critical Reynolds num ber is R cv\t = 45310.9 occurring at wavenumber acrjt =  1.0207. 

However, the trad itional eigenvalue problem in this context occurs when the wavenumber 

a is fixed at unity  and R  is allowed to vary.

3.2.1 S ystem  Form ulation

In term s of the variables

ci =  w , c2 =  D2w , (3.2.3)

the Orr-Sommerfeld equation (3 .2 .1) may be represented by the two differential equations

c2 =  D 2z y ,
(3.2.4)

(D2 — 2ct2)z2 +  a4zi =  iaR(u  — cr)(c2 — u2^i) — i a R D 2u ,

w ith boundary conditions Z\ — Dzi  = 0 on x =  ±1. Equations (3.2.4) may be re­

expressed in the m atrix  form at

d2 7
—  -  U Z + trVZ  (3.2.5)
d x 2
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where U and V  are the 2 x 2  m atrices

0 1 0 0
u  = V' =

— ia R ( D 2u +  a2u) — a4 iaRu  -T 2a2 1

Tr
v

CO

1

and Z  — (zy ,z2)T . Equations (3.2.4) may be reduced further to a system  of four first 

order differential equations by introducing variables rq, y2l IJ3 and y4 by the definitions

Vi — z i ■> II2 = Dzi  , y3 =  D 2zy , y4 =  D 3zy .

Thereafter it is verified easily th a t equations (3.2.4), when expressed in term s of yy . . .  y4, 

become the first order system

Dyi = y2 , D y2 = y3 , D i/3 =  y4 ,
(3.2.7)

D y4 = 2a2 y3 -  a4yx +  iaR(u  -  a)(y3 -  a2yi) — iaRD'2u y l , 

w ith the boundary conditions yy = y2 =  0 on x =  ± 1  . As before, equations (3.2.7) can 

be reform ulated in the m atrix  form at

clY
—  =  A Y  A (rBY  (3.2.8)
ax

where A  and B  are the 4 x 4  matrices

u 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
B =

0 0 0 1 0 0 0 0

— iaR(u  T  D 2u) — a4 0 iaRu  +  2a2 0 ia3R 0 —ia R 0

and Y  ~  (2/1, J/2, 2/3-> J/u)7̂* Following the m ethods described in chapter 2, eigenvalue prob­

lems (3.2.5) and (3.2.8) can be converted into the generalised form E V  =  crFV where E  

and F  are block m atrices of suitable dimension.

3.2 .2  Second Order System

Here zy and z 2 are represented by series involving Chebyshev polynomials Tq( x)  to 

Tjw-i(.r). Equations (3.2.4) assume the generalised eigenvalue form E V  — crFV  in which 

E  and F  have 2 x 2 block m atrix  form

D2 - /

ia.R{P + a2Q) + a4I  D 2 - i a R Q - 2 a 2I

0 0 

ia3R I  —ia R I

E  =

F  =

(3.2.9)
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In (3.2.9), the forms of P  and Q depend on the problem under consideration and are 

specified by

Poiseuille Flow Couette Flow

P i j  =  2  S t j  P i:} =  0

Qt,(*+2) =  —1/4 2) =  - 1 / 4  (3.2.10)
CC(i+i) ~  V 2 V p i-i)  - 1 / 2

Q^,l =  1/2 
C?2,l — 1

Q'2,2 = 1 / 4  Q3J =  —1 /2
Rest zero

Rest zero

whenever the appropriate m atrix  entries exist. The formulation of the eigenvalue problem 

is now com pleted by replacing the ( M  — M t h , (2M  — 1) th and 2M th  rows of E  and F 

with the boundary inform ation. It does not m atte r how the four boundary conditions are 

ordered but num erical performance is usually enhanced if the boundary da ta  is inserted 

so th a t the largest entries occupy the top right of E  and F . Let p  = q  =  qkGk,

r  — r^ek and s = Sj:ei: be M  dimensional vectors whose k th entries are respectively

Pk = 1 ,  qi. =  (-1)*  . rk = k \  sk = k2( - l ) k k = 0 . . .  M — I . (3.2.11)

In term s of these vectors, the boundary condition rows and their location are, in block 

m atrix  notation.

Condition Row E F

ci =  0 on x =  — 1 

= 0 on x =  1 

Dzi  =  0 on x = — 1 

Dz\  =  0 011 x — 1

M  -  1 

M  

2 M  -  1 

2 M

(q.°)
(p,0)

(r.O)

(s,0)

(0,0)

(0,0)

(0,0)

(0,0)

(3.2.12)

3.2.3 F irst Order S ystem

Here yi, y2, y3 and 1/4 are represented by series involving Chebyshev polynomials T0(x) to 

TM- i {x ). Equations (3 .2 .8 ) are converted into the generalised eigenvalue form E V  = crFV
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in which E  and F  have 4 x 4  block m atrix  form

E  =

D - / 0 0

0 D - / 0

0 0 D - I

a2Q) +  a4 0 —iaRQ — 2a2/ D

F  =

(3.2.13)

ia3R  0 —ia R I  0

The m atrices P  and Q appearing in (3.2,13) are specified in (3.2.10) whenever the appro­

priate m atrix  entries exist. The formulation of the eigenvalue problem is now completed 

by replacing the Mth, 2Mth,  3M th  and AMth  rows of E  and F  w ith the  boundary in­

form ation. In term s of the M  dimensional vectors described in (3.2.11), the  boundary 

condition rows and their location are, in block m atrix  notation,

Condition Row E F

y i =  0 on x =  —1 M (q ,0 ,0 ,0 ) (0 ,0 ,0 ,0 )

yi — 0 on x = 1 2 M (p, 0 ,0 ,0) (0 ,0 ,0 ,0 )

i/2 =  0 on x =  — 1 3 M (0, q, 0,0) (0 ,0 ,0 ,0 )

t/2 — 0 on .t =  1 AM (0, p, 0,0) (0 ,0 ,0 ,0 )

(3.2.14)

3 .2 .4  R esu lts

Both techniques extracted  capably the com petitive eigenvalues in the spectrum  of the 

Orr-Som merfeld equation over a range of problem param eters. For exam ple, for the 

m atrix  representation of the Poiseuille flow problem in term s of a first order system 1, 

50 polynomials resolved the leading eigenvalues of the spectrum  when R  =  10,000 and 

a — 1, in agreement with Linclsav [28]. The corresponding eigenvectors can be used to 

determ ine the related eigenfunctions although, as expected, eigenfunction determ ination 

requires more polynomials, relatively speaking.

The com parative perform ance of first order and second order differential equation rep-

1 A p p en d ix  2 gives the appropriate Fortran77 program . E igenvalues were extracted  using routine  

F 02G JF , N A G ’s im p lem en ta tion  o f  the QZ algorithm  due to  M oler and S tew art [31].
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resentations of eigenvalue problems is currently of great interest. Higher order represen­

tations are of lim ited interest due to the growth of numerical errors arising from powers 

of D, the differentiation m atrix , even although Orszag's [38] original work on the Orr- 

Sommerfeld equation treated  it as a single fourth order equation. The leading eigenvalue 

for Poiseuille and C ouette flow was calculated for various orders of polynomial approxi­

m ation using both the D and D2 representations. The results are recorded in table 3.1 

and displayed in figure 3.1. Since the eigenvalue is naturally a complex num ber, accuracy 

was measured as the modulus of the difference between a \ /, the eigenvalue estim ate using 

M  polynomials and cr^, an estim ate based on a very large num ber of polynomials.

P oiseu ille  Flow C o u e tte  Flow

lo g  M

2 -

log M

Figure 3.1: G raph of -  log10 |<r.\/ -  <tiX)| versus log M.

Some rem arks are appropriate.

(a) The behaviour of the D2 curves suggests th a t, from a practical point of view, there 

is an optim al num ber of polynomials to use in an eigenfunction expansion. Thus 

there is a compromise between the inaccuracy due to a truncated  m athem atical 

description of the eigenfunctions and the accum ulation ol rounding error due to 

finite precision arithm etic.

(b) For expansions using less than this optim al number ol polynom ials, both the D 

and D2 m ethods retu rn  similar levels of resolution although the D m atrices are four 

tim es the size of D2 matrices.
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(c) The resolution of the D m ethod is significantly better than  D2 in this instance. This 

is more a feature of the Orr-Sommerfeld problem. For less punishing applications 

(e.g. the m agnetic Benard problem ), the difference in perform ance is less marked.

Poiseuille Flow Couette Flow

Value of Accuracy Accuracy Accuracy Accuracy

M D  m ethod D 2 m ethod D m ethod D 2 m ethod

12 5.489 x lO ” 1 5.489X10” 1 9 .605xl0_1 5.957 x 10” 1

16 2 .432x l0_1 2.432 xlO ” 1 8.530xI0_1 6.278x 10” 1

20 4 .113x l0_1 4 .113x l0_1 4.243 x lO -1 6.701X10” 1

24 5.858 x lO ”04 3.897xlO”03 7.032x 10” 1 6.947 x 10” 1

28 4.134 x 10”°4 6.229 x lO ”04 7.173X10"1 ' 7.115X10” 1

32 4.237 xlO ”05 9.444 x lO “05 7.301 x 10” 1 7.243x 10” 1

36 9.761 x 10”°6 1.365xlO”05 5.464 x 10” 1 5.120X10” 1

40 1.298 xlO ”06 2.420 x ! 0 ”os 4.683x 10”4 6.951 x 10”4

44 1.521 x lO ”07 2.382 x lO ”07 8.253x 10“ 5 4.910 x lO ” 5

48 1.361 x lO ”08 3.385 x lO ”08 1.222 x lO ” 5 1.592x 10” 5

52 1.328xlO”09 1 .056xl0“°9 1.529xl0”6 1.740 x 10”6

56 3.479 x 10” 11 5.409x 10” 1D 1.525xl0”7 1 .622xl0” 7

60 1.239 x 10” 11 7.451 x lO ” 11 1.701 x 10”s 2.275 x lO ”8

70 3.322 x 10” 13 1.059xl0” iO 9.263x 10” 11 8.812x 10” n

80 4.084x 10” 13 3 .682x l0” u 1.894x10” 12 1.671 x lO ” 12

90 6.204x 10” 13 1.683xlO” 10 1.859xl0” 14 2.533 x lO ” 14

100 2 .103x l0” 13 7 .327xl0-11 9.020x 10” 16 1 .565x l0” 14

150 5 .068x l0” 13 1 .056xl0” 10 3.360x 10” 15 2.530 x lO -13

200 7.813x 10” 13 3.757 xlO ”09 6.753xl0” 16 3.208x'10“ 12

300 3.480 x lO ” 13 1 .198xl0"os 5.226 x lO ” 15 2 .744x l0” 13

400 4 .679x l0” 13 2 .764x l0 -°s 1 .226x l0"15 8.165x 10” 11

Table 3.1: Decimal accuracy in leading eigenvalue versus num ber of polynomials deployed.
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3.2 .5  E igenvalue D istribution

The previous observations concentrated on the resolution of the com petitive eigenvalue in 

the Orr-Sommerfeld equation. I t ’s also interesting to probe the s tructu re of its spectrum  

using the D and D2 strategies. The distribution of the first 30 or so eigenvalues of the OS 

equation were calculated using the D and D2 m ethods with 200 polynomials and displayed 

for various values of R , the Reynolds number. Figure 3.2 deals with Poiseuille flow for 

some low Reynolds num bers (<  10000) whereas figure 3.4 deals w ith selected Reynolds 

numbers up to 50000.

The distribution of eigenvalues for plane Couette flow, using both the D  and D 2 m ethods, 

is displayed in figure 3.3 for selected Reynolds numbers up to 13000.

3.3 M odify ing  B o u n d a ry  C onditions

The form ulation of eigenvalue problems into pairs of second order differential equations 

followed by a spectral analysis based oil the D 2 method is often at ease w ith the natural 

specification of boundary conditions in the sense tha t these are frequently paired. For 

example, in the Orr-Sommerfeld problem, the boundary conditions w(  1) =  t/;( — 1 ) ~  0 

and Diu( 1) =  Div( — 1) — 0 translate into zi =  0 on x =  ±1 and Dz\ — 0 on x — ±1 

respectively. An obvious disadvantage of this approach is th a t the second pair of boundary 

conditions also relate to Z[. Thus, although the reformulation of the original differential 

equations gives and ~2 equal status, the boundary conditions inherently prefer Z\ to 

'-■'2 •

More generally, the governing differential equations of an eigenvalue problem  can always 

be rew ritten  as a system  in which each variable is independent and enjoys its own spectral 

expansion. However, this im partiality  may be underm ined by boundary conditions in the 

sense th a t particular variables dominate. For example, zi is preferred to z 2 in the Orr- 

Sommerfeld problem. Ideally, the boundary conditions Dzi  =  0 should be transferred 

onto the variable z2 w ithout reference to Z\. More generally, in block form at, the boundary 

conditions should assume an upper triangular structure whose m ain diagonal is non-zero. 

The following analysis describes a mechanism with the potential to achieve this aim, and 

exemplifies it for the Orr-Sommerfeld equation.
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Poiseuille spectrum  using D method 
when a =  1 and /? =  10000

Poiseuille spectrum  using D2 m ethod 
when a =  1 and R  =  10000

Poiseuille spectrum  using 1) m ethod 
when o =  l and R = 7500

Poiseuille spectrum  using D 2 m ethod 
when a =  1 and R  =  7500

Poiseuille spectrum  using D method 
when a = 1 and R = 5000

Poiseuille spectrum  using D2 m ethod 
when a =  1 and R = 5000

Figure 3.2: Eigenvalue distribution for D and D2 m ethods
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C ouette spectrum  using D m ethod Couette spectrum  using D2 m ethod
when a =  l and R  =  3000 when a =  l and R  =  3000

Figure 3.3: Eigenvalue distribution for D and D2 m ethods
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Poiseuille spectrum  using D method 

when a = 1 and R  =  10000

C,

4)2 0.20.0 0.4 101.0 -0.8 0.6

Poiseuille spectrum  using D m ethod 
when a =  1 and R =  30000

C,

0.24)2 0.4 0.8 1.0■1.0 -0.8 -0.4 0.0

-1.0 -0.8 4).6 4)4 4)2 0.0 0.2 0.4 0.6 0 8 1.0

cr

Poiseuille spectrum  using D2 m ethod 
when u = l  and R  =  10000

Ci

0.0 0.2 10-0 4 0.4 0.6•1.0 -0.8

Poiseuille spectrum  using I) 2 m ethod 
when a =  1 and R =  30000

C,i

0.4 0.6 0.8 1.0■10 0.0

Poiseuille spectrum  using D m ethod 
when a =  1 and R = 50000

Poiseuille spectrum  using D2 m ethod 
when u = l  and R =  50000

Figure 3.4: Eigenvalue distribution for D and D2 m ethods
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Results from the modified boundary value problem are then com pared against those 

derived using the form ulation described in the previous section.

3.4 T h e  P ro c e d u re

Let cb ~  D 2w  where w  =  0 on x =  ± 1 . The idea is to construct a representation of w in 

term s of </>, the arb itrary  constants arising in this com putation being used to satisfy two 

boundary conditions, in this case to = 0 on x =  ±1. Clearly

/ x
4>(u) du

which on further integration yields

w — /l(a’ +  1)-|- J  (^J <b(u) du'j di =  .4(.r +  1) +  j  (x — t)<f)(i) dt . (3.4.15)

By construction, the formula for w in (3.4.15) autom atically satisfies w( — 1) =  0 and can

be m ade to satisfy iu( 1) =  0 by choosing

A = —— J  (1 — t)<j>(t) dt . (3.4.16)

Hence

D w { - L )  =  - l y 1 (1 -  , D i u ( l )  =  l y 1 (1 +  t,)<f>(t)dt . (3 .4 .17)

For later convenience let the sequence / i ,  / 2, . . .  be defined by

fn  ~  J  T2n - 2 {i) dt ~  J  sin 9 cos(2n — 2)6 d6 , n >  1 (3.4.18)

and let (p(t) have spectral representation

<f>(t) = f_> „ T n_ ! ( 0 .  (3.4.19)
n= 1

In view of the sequential odd and even nature of Chebyshev polynomials, it follows th a t

r i _c+ pi
/  /+ (/) di =  T ^ T n - M d t

J - 1 n=1 J- 1
1 co ri

= {Tn{t) + Tn- 2(t))d t
“ n=l
I 00 pi

~  2 ^  ^ 2n J  dn2n~2{t)) dt?l—1
1 00
7) ^  4)2ni,.fn-l-l  + In) ■9
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In conclusion,

.1 co h  co

J  4>(t) Clt =  ^  <f>2n-lfn , J t<j>(t) d t = Y  <fon(fn+1 +  fn)  • (3.4.20)
_   ̂ 71=1 “   ̂ 71=1

By elem entary calculus, it is verify easily th a t f n =  —2/[(2n — 1)(2??. — 3)] and so it now 

follows from (3.4.20) th a t

/ > j i (s .4 .2 .)

In this particular exam ple, Dw — 0 on x = ±1 and so in view of (3.4.17), 4> is required 

to satisfy the conditions

J  4>{t)dt = J  dt = 0

and these in tu rn  lead to the boundary conditions

v  _____ =  T  ________=  0 (3 4 22)
T i  (2n “  C(2n -  3) “  (2n  -  3)(2n +  1)

These are im plem ented in the same fashion as in the previous section.

3.5 R esu lts

These ideas successfully ex tract the eigenvalues of the Orr-Sommerfeld equation over a 

range of problem param eters. The results presented in table 3.2 compare the accuracy of 

this new technique with th a t of the conventional D 2 method.

In conclusion, this procedure compares favourably with the conventional D2 approach, 

being rarely inferior and often almost an order of m agnitude better.

3.6 B e n a rd  C onvec tion  of a C o n d u c tin g  F lu id

Suppose th a t an incompressible, therm ally and electrically conducting Navier-Stokes fluid 

occupies the horizontal layer 0 <  c <  1 and is subject to constant gravitational accelera­

tion in the negative £ direction and imposed m agnetic held in the positive £ direction. It is 

possible to find an equilibrium  configuration for this layer in which the  fluid is stationary, 

the m agnetic field is constant at its imposed value and heat is conducted across the layer 

so th a t the therm al boundary conditions are satisfied. After a non-dim ensionalisation
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Accuracy in Poiseuille Flow Accuracy in C ouette Flow

Value of Conventional Modified Conventional Modified

M D 2 m ethod D 2 m ethod D 2 m ethod D 2 m ethod

12 5.489 x lO "1 5.489 x lO " 1 5 .957xl0_1 5.957 x 10_1

16 2.432 x lO " 1 2.432x 10"1 6.278X10-1 6.27SX10"1

20 4.113x 10_1 4 .113x l0_1 6.701 x lO -1 6.701 x 10"1

24 3.897 x IO-03 3.897 x 10"03 6.947 x 10"1 6.947 x 10"1

28 6.229 x lO "04 6.229 x lO "04 7.115X10-1 7.115x 10"1

32 9.444 x lO “05 9 .444x l0 -°5 7.243x 10_1 7 .2 4 3 x l0 _1

36 1.365 x lO "05 1.365 xlO -05 5.120X10-1 5.120X10"1

40 2.420 x lO “06 2.420 x lO "06 6.951 x l 0 “4 6.951 x 10"1

44 2.382 x lO -07 2 .382x i0 -°7 4.910x 10"5 4.910x 10"5

48 3.385 x lO -08 3.385 xlO ”08 1.592 x lO "5 1.592x 10"5

52 1.056 x lO "09 1.037 x lO-09 1.740 x 10-° 1 .740x l0“6

56 5.409 x lO"10 S.OSOxlO"10 1.622 x 10"7 1 .622x l0” 7

60 7.451 x 10-11 6.678x10-“ 2.275x10-® 2.275 x 10"s

70 1.059xlO"10 2.496x10-“ 8.812x10"“ 8 .823x10"“

80 3.6S2x 10"11 to o to x o I 1.671 x 10"12 1 .5 8 9 x l0 "12

90 1.683xlO“ 10 3.789x10"“ 2.533 x lO " 14 1.385 x 10“ 13

100 7 .327x l0~ “ 3.745x10“ “ 1 .565x l0"14 1.613x 10"14

150 1 .0 5 6 x l0 "10 1.403 x lO -10 2.530x 10-13 2.783x 10"13

200 3.757 x lO -09 1.839xlO -10 3.208 x 10"12 1 .3 8 0 x l0 "12

300 1.198x10"°® 1.471 x lO -09 2.744 x 10-13 1.508x10” “

400 2.764 x lO "08 1.950 x lO "09 8.165x10"“ 1.587x10-“

Table 3.2: Decimal accuracy in leading eigenvalue versus num ber of polynomials.

and norm al modes procedure, it can be shown th a t the linear stability  analysis of this

state  is controlled by the eigenvalues, a , of the system of differential equations

(D 2 — ci2)2w — Q D 2w — s/Rci20 =  cr((D2 — a2)iu — \ / Q P ~ l Db^j ,

[D2 — a2)b -f \ /Q D w  =  aPmb , (3.6.23)

\/~Rw +  (D2 — a2)0 =  crPr0 ,
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where w  is the axial component of velocity, a is the wavenumber, R  is the  Rayleigh

num ber, 9 is the tem perature, b is the axial component of m agnetic induction, Q is

the Chandrasekhar num ber, Pr and Pm are the viscous and m agnetic P ran d tl num bers 

respectively and D is the differential operator cl/dz. Chandrasekhar [4] provides further 

details of this procedure.

3.6.1 F irst Order Form ulation

Let variables t/i, . . . ,  yg be defined by

V\ =  w ,  y2 =  Dw  , y3 = D2w , y4 =  D 3iu ,
(3.6.24)

Vs =  9 , yG = D9 , y7 = b , ys =  Db ,

then it is verified easily th a t equations (3.6.23) can be rew ritten as the 8th order system

Dyi  =  y2 , D y2 =  y3 , Dys =  2M ,

Dy^ — —a lyi +  (2a2 +  (2)y3 +  ' /R&2y$ +  °'[(,f/3 ~  a2yi) ~  x/Q F17i;i/s] i
(3.6.25)

^ 2/5 =  y e , I>y6 =  - \ f R y i  +  (a2 +  a-Pr) y s ,

D y7 =  y8 , D y8 -  ~ V Q y 2 +  (a2 +  crFm)y? ■

Since all the coefficients in these equations are constant, no auxiliary m atrices are re­

quired. It follows almost im m ediately tha t a  satisfies the generalised eigenvalue problem  

E V  =  crFV where E  and F  are respectively the 8 x 8  block matrices

D - I 0 0 0 0 0 0

0 D - / 0 0 0 0 0

0 0 D — I 0 0 0 0

aAI 0 -~{Q +  2a2) / D - x / f f a 2/ 0 0 0

0 0 0 0 D - I 0 0

x/f?/ 0 0 0 —a21 D 0 0

0 0 0 0 0 0 D - I

0 VQ 0 0 0 0 —a21 D
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F

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0

( 3 .6.27
- a 2l  0 / 0 0 0  

0 0 0 0 0 0

0  0  0 0 PrI  0

0 0 0 0 0 0

0 0 0 0 0 0 PmI

I t  o n l y  r e m a i n s  t o  r e p l a c e  t h e  M t h , 2 M th , ... , S M th  r o w s  o f  E  a n d  F  w i t h  t h e  a p p r o ­

p r i a t e  b o u n d a r y  i n f o r m a t i o n .  F o r  i l l u s t r a t i v e  p u r p o s e s ,  s u p p o s e  t h a t  t h e  l a y e r  o f  f l u i d  

i s  c o n t a i n e d  w i t h i n  t w o  r i g i d  b o u n d a r i e s  t h a t  a r e  e l e c t r i c a l l y  a n d  t h e r m a l l y  p e r f e c t l y  

c o n d u c t i n g .  T h e  a p p r o p r i a t e  b o u n d a r y  c o n d i t i o n s  a r e  t h e n

— \ZQPmI  

0 

0 

0 

0

to — Dio = 6 =  0 o n  s  =  0  a n d  z = 1 , ( 3 .6 .28)

t h a t  i s .

1 / 1 = 0 ,  3/2 =  0 ,  ?/5 =  0 ,  1/7 =  0 on 0 a n d  z = I .

I n  t e r m s  o f  t h e  M  d i m e n s i o n a l  v e c t o r s  p  a n d  q  d e f i n e d  i n  ( 3 .2. 11) ,  t h e  b o u n d a r y  c o n d i t i o n s  

a n d  t h e i r  l o c a t i o n  a r e ,  i n  b l o c k  m a t r i x  n o t a t i o n ,

C o n d i t i o n R o w E  F

0 0 II M (q, 0,0,  0,0,  0 ,0 ,0)  (0,0,  0,0,  0,0,  0,0)

i/i =  0  o n  x  =  1 2  M (p, 0 , 0 , 0 , 0 ,  0 ,0 ,0)  (0 ,0 ,0 ,0 ,  0 , 0 , 0 , 0 )

3/2 =  0  011 x  =  — 1 3 M (0,q,  0,0,  0,0,  0,0)  (0,0,  0,0,  0,0,  0,0)

i /2 =  0  o n  r  =  1 AM (0,p,  0 , 0 , 0 , 0 , 0 , 0 )  (0 ,0 ,0 ,0 ,  0,0,  0,0)

t/5 =  0 o n  x  =  — 1 5 M (0 ,0 ,0 ,0 ,q ,  0,0 ,0)  (0,0,  0 , 0 , 0 , 0 ,  0,0)

1/5 =  0  011 x  =  1 6M (0, 0,0,  0, p, 0 ,0 ,0)  (0, 0, 0, 0 ,0 ,0 ,  0,0)

y 7 — 0  Oil x  =  — 1 7 M (0, 0, 0, 0, 0, 0, q, 0) (0,0,  0,0,  0,0,  0,0)

y  7 =  0  o n  x  =  1 8  M ( 0 , 0 , 0 , 0 , 0 , 0 , p , 0 )  (0,0,  0,0,  0,0,  0,0)

3.6 .2  Second Order Form ulation

L e t  s i ,  Z2, 23 a n d  z A b e  d e f i n e d  i n  t e r m s  o f  i c ,  6 a n d  6 b y

zi  — w  , =  D 2w  , £3 — 0 , zA =  6 , ( 3 .6 .29)
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2 -  a V , -  \ZCjP~ 1 D z 4)

then in term s of these variables, the eigenvalue problem (3.6.23) becomes 

D 2z x = ~2 ,

D 2z2 = (2a2 +  Q ) z 2 ~  a4zi +  \ f R a 2z?> +  a(

0 2 z .3 — — y /R Zl -j. a2z3 +  crPrz3 ,

D 2z,[ =  — \ fQDzy  +  a 2^4 +  crPmz^ ■>

with boundary conditions

= 0 , Dzi  = 0 , z3 — 0 , z

(3.6.30)

0 on 0 and z =  1 . (3.6.31)

By a routine calculation, it follows from (3.6.30) th a t a  satisfies the generalised eigenvalue 

problem E V  =  crFV where E  and F  are respectively the 4 x 4  block matrices

D 2 - I  0 0

a41 D 2 — (Q +  2a2) I  —\/~Ra2I  0
E

y / R I

s /QD

D 2 — a21 0

0 D2 — a21

F  =

i 3.6.32)
0 0 0 0

-a21 I  0 - ^ Q P p l D

0 0 PrI  0

0 0 0 PmI

It only remains to replace the (M  — 1 )t.h, M t h , ... , (4A7/  — 1 )th and 4M th  rows of E  and 

F  with the appropriate boundary information. In term s of the M  dimensional vectors p , 

q , r  and s  defined in (3.2.11), the boundary conditions and their location are, in block 

m atrix  notation,

Condition Row E F

^  =  0 on x =  —1 M  -  1 ( q ,0 ,0 ,0 ) ( 0 ,0 ,0 ,0 )

Zi = 0 on x — 1 M ( p ,0 ,0 ,0 ) ( 0 ,0 ,0 ,0 )

oIIo on ;r =  — 1 2M  -  1 ( r , 0 ,0 ,0 ) (0 ,0 ,0 ,0 )

Dzy =  0 on x — 1 2 M ( s ,0 ,0 ,0 ) ( 0 ,0 ,0 ,0 )

- 3 = 0 on ;r — — 1 3 M  -  1 ( 0 ,0 ,q ,0 ) (0 ,0 ,0 ,0 )

•X3 =  0 on x =  1 3M ( 0 ,0 ,p ,0 ) (0 ,0 ,0 ,0 )

"4 =  0 on x — — 1 AM -  1 (0 ,0 , 0 ,q ) ( 0 ,0 ,0 ,0 )

.~4=0 on x — 1 AM ( 0 ,0 ,0 ,p ) (0 ,0 ,0 ,0 )
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Rayleigh No. 

R 2

Largest Eigenvalue a  

Real Imaginary

3731 -1.4802

-5.5340

±0.3716

0.0000

3732 -1.4769

-5.5349

±0.2507

0.0000

3733 -1.3448

-1.6023

-5.5349

-36.3329

0.0000

0.0000

0.0000

±21.2906

3734 -1.1604

-1.7801

-5.5349

-36.3306

0.0000

0.0000

0.0000

±21.2412

Table 3.3: Benard spectrum  around R  — 3732.

Appendix 3 gives a Fortran?? program based on routine F02BJF to solve these two 

eigenvalue problems.

3.7 R esu lts

For given values of the nondimensiona.1 param eters and a fixed wavenumber a, R  is ad­

justed  so th a t all eigenvalues have negative real part except the leading eigenvalue which 

has zero real part. This procedure defines R  =  R{ci). The critical Rayleigh num ber Acrjt. 

and critical wavenumber acl-it, are determ ined so th a t R (a ) >  R cl[t =  A(«cL-itb tha t is, R(a)  

has a m inim um  value R cv\t at a = acv;t . The key step in this procedure is the  identification 

of the leading eigenvalue for all values of R. Table 3.3 displays the top of the spectrum  

as R  varies between 3731 and 3734. The dynam ic nature of these excerpts gives a clear 

indication as to the nature of eigenvalue problems and provides an unambiguous warn­

ing th a t non-spectral m ethods should be used with extrem e caution unless supported by 

corroborative m athem atics such as a “principle of exchange of stabilities11.
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B enard Convection for a =  5.5576, R  = 15500 and Q = 1000

Regular form of 

boundary conditions

Regular form of 

boundary conditions

Modified form of 

boundary conditions

Value of Accuracy for D Accuracy for D2 Accuracy for D 2

M k  -  o’d | a — <rc\ W — T-l

10 1.837 x 10-01 3.251 x 10-01 3.251 x lO ”01

15 2.123 x lO "03 2.176xlO~03 2.176 x lO ”03

20 8 .7 3 5 x l0 -°6 2.802 xlO-05 2.802x lO-05

25 1.854xlO”08 1.923x 10-08 1.921 x lO ”08

30 1 .058x l0” 10 1.121 x 10-10 1.268x lO” 10

35 8 .804x l0~ 11 2 .8 4 0 x l0 "10 2.090x 10” iO

40 1.239xlO” 10 2.501 x lO "10 4,769 x lO ” 10

50 1.925 x 10“ 10 1.043 xlO”09 4.869xlO-10

60 l . I S lx lO ” 10 1.808 x lO ”09 1.485 x lO -09

70 1.064 x 10-10 1.620 xlO-09 2.031 x lO “09

80 1.729 x 10” 10 3 .272xl0-°9 1 .980x l0 -°9

90 1.214x 10” 10 8 .093x l0“°9 7.450 x lO-09

120 1.781xlO-10 4.821 x lO ”09 1.966 x lO "09

150 6.205x 10-10 1.370 xlO”08 8.489 x lO ”09

190 6 .495x l0_1° 6 .938xl0_os 2.570 x l 0 - ° s

Table 3.4: Comparison of D and D2 methods in Benard convection

3.8 M odified  B o u n d a ry  C onditions

As with the Orr-Som merfeld equation, the accuracy of the eigenvalue determ ination was 

estim ated for the D m ethod, the D2 m ethod and the D2 m ethod with modified boundary 

conditions. The results are displayed in table 3.4. The D m ethod was superior to the D2 

methods at each level of polynomial approxim ation although the difference was not so 

m arked as w ith the  OS equation. W ithin the D2 formulation of the problem , the form at 

of the boundary conditions seemed to make little  difference although the modified version 

is m arginally superior.
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Chapter 4

Eigenvalue Calculations using 

Legendre Polynomials

4.1 In tro d u c t io n

This chapter is intended to provide some results comparing the perform ance of Legendre 

and Chebyshev polynomial series in eigenvalue calculations in addition to illustrating 

the details of im plem entation for a Legendre spectral series. It is convenient to repeat 

the trea tm en t of the eigenvalue problem for the Orr-Sommerfeld equation in the case 

of Poiseuille and C ouette flow and compare results with those established previously in 

chapter 3 using the Chebyshev Tau m ethod.

4.2 C hanges for L egendre  Polynom ials

The Legendre trea tm en t of the Orr-Sommerfeld problem differs overtly from the Cheby­

shev calculation in the respect th a t the m atrix  Q (describing u) and the differentiation 

m atrix  D  need to be replaced by their Legendre equivalent form. Note th a t P  is un­

changed since it represents D2u - a constant in the OS equation. In fact, m inor a lter­

ations are also required in the D 2 im plem entation since the derivative of Legendre and 

Chebyshev polynomials at x — ±1 are slightly different. No adjustm ent to the boundary 

rows is required in the D  m ethod since Tn(l)  =  Pn( 1) =  0  Tn{~  1) =  Pn{ — 1) =  ( — I ) 71- 

Recall from (2.2.25) th a t

Di,i+2j+i — 2z T 1 , i, j  >  0 .
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Now suppose th a t
C O

/ (*) =  E  h P h M  (4-2-1)
k=0

then, in view of the product property for Legendre polynomials,
C O

x f ( x )  -  Y^fk- xPk( x)  
k= 0

= f o P M  + t h  ( i r r ^ w  + ^TT p- iW)
00 L 00 U J_ I

= f o P M  +  E ^ ^ - i U U )  + E
k=2 x fc=0 ‘

A similar calculation, when applied to x { x f ( x ) ) ,  yields

C O L 00 k  4- 1
x 2f ( x )  =  y / / !_ia:P&(a:) +  5 Z 2/.. +  ^fk+\xPk(x)

A : = l  A r = 0

^ ^ "h  ̂ n / \ ^ n / 'A i
=  ( ,2 fc + r  ( +  t  *

=  +  £ w f i & ) +  3 *

+EwTwB)fM ]

(fc +  l)(fc +  2) ,

In conclusion,

o , ^ ( A ‘ 1 )  r n  / \
(I -  X ) f (x)  =  —E ^ 2fc _  3)(2fc — \) ~2

2(/c2 ~\r k — 1) /’ n / i
+£ (2 * -l)(2 fc  + 3)A fc(l)

■yA (fc +  l ) ( f c  +  2 )  ,  p  . ^ ,

£ ( 2 f c  +  3)(2fc +  5 ) ^ +2 k{' ]
'00 /, 00 1. _L 1

* / ( * )  =  g s b / ^ ^ )  +  £ 2 *  +  3 ^ ^ W
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Since u(x)  =  1 — x 2 in Poiseuille flow and u(.t) =  x in Couette flow then equations (4.2.2) 

form the basis for the determ ination of Q in Poiseuille and Couette flow respectively. For 

each flow, the non-zero entries of Q are

P o iseu ille  F low
k(k  — 1) _  (A; +  l ) ( k  +  2)

W k , k ~ 2  =   ^ y F T t ----7 7  ’ V A :,fc+2 —(2k -  3)(2k -  1) ’ (2k +  3)(2k +  5)
2(A;2 +  k - l )

(4.2.3)

Qk,k = W(2 fc -l)(2 fc  +  3) ’

C o u e tte  F low

« * ■ * - ' - 5 ^ 1 '  |4 " >

4.3 B o u n d a ry  C ond itions

Since Tn(l)  =  ^L (l) =  1 and Fn( - 1 )  =  Pn( —1) =  ( ~ i ) n then boundary conditions

involving function values are treated identically for Chebyshev and Legendre m atrices.

In term s of the vectors p  and q defined in (3.2.11),
M M

y > W  =  J 2  < X r h P k ( l )  =  Ctr-P , V r ( ~  1) =  X !  < * r k P k ( - l )  =  «r-<? • (4.3.5)
k —0 k - 0

Hence boundary conditions for Chebyshev and Legendre spectral series based on the D 

m ethod are always identical.

However, the D 2 technique requires derivatives of the spectral polynomials at ~ =  ±1. 

For Legendre polynomials, it is easily established that

l M L  =  ^ 4 r  +  3 =  i ; ( 2 f c + l ) ,  =  ^ 4r +  i _ k{2k -  1) . (4.3.6)
dx dx ^

Moreover P^kix) is an even function of x so tha t P!lk (x ) is an odd function whereas 

P'ik-i(H) is an odd function of x so th a t P^k-i i1') ls an even function. Hence it follows 

from (4.3.6) tha t

dPk( 1) k(k  + 1) <LPk( - 1) _  k ( k +  l)
dx 2 dx

( - 1  r  ■ (4.3.7)

4.4 R esu lts

Legendre polynom ial series were employed to com pute the com petitive eigenvalue ol the 

Orr-Sommerfeld equation for Poiseuille and Couette flow using the D and D 2 m ethodolo­

gies. C om putations were done with wavenumber a — I and Reynolds num ber R  =  10000
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for Poiseuille flow and R  — 13000 for Couette flow. Com parative results are presented in 

tables 4.1 and 4.2.

Spectral Accuracy of Poiseuille Flow

Value of D M ethod D 2 M ethod

M Chebyshev Legendre Chebyshev Legendre

20 4.113X10"1 4 .085xl0_1 4.113X10-1 4.085X10-1

32 4 .237x l0“ 5 3.381xl0~5 9.444xl0~5 6 .05 9 x l0 ” 5

50 1.328 x 10-9 2.996 x lO -9 1 .056x l0 -9 5.685 x lO "9

100 2 .1 0 3 x l0 -13 7 .822xl0-13 7.327xl0~n 5 .6 5 8 x l0 _u

200 7.813x 10-13 4.362x 10-12 3.757 x 10~9 4.279 x lO -10

400 4 .679xl0~13 2.563 xlO-12 2 .7 6 4 x l0 -8 8 .977xI0-9

Table 4.1; Decimal accuracy versus number of polynomials used.

Spectral Accuracy of Couette Flow

Value of D M ethod D 2 M ethod

M Chebyshev Legendre Chebyshev Legendre

20 4.113 x 10" 1 8.279 xlO -1 6.701 x lO ' 1 6.647 x 10-1

32 4.237 x lO -5 7 .339x l0_l 7 .243x l0_1 7 .3 2 4 x l0 _1

50 1.328X10"9 2.139X10"6 1.740x 10-6 3.401 x lO - 6

100 2.103 x 10-13 1.295 x 10- 15 1.565x 10-14 5.979x 10“ 15

200 7.813x 10-13 1.898 x 10-15 3.208x 10“ 12 3.326 x 10~ 14

400 4 .6 7 9 x l0 -13 1.295x 10-15 8 .1 6 5 x l0 -u 2.189 xlO " 14

Table 4.2: Decimal accuracy versus number of polynomials used.

It is clear from these calculations th a t both families of polynomials perform  equivalently. 

Indeed, the  results on C ouette flow suggest th a t Legendre polynomials may have a slight 

edge over Chebyshev polynomials for this particular problem. We believe th a t this is 

probably an anom aly generated by the way in which the errors were estim ated. As 

has already been stated , analysis suggests th a t both sets of polynomials are effectively 

equivalent.
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Chapter 5

Benard-Marangoni Convection in a 

Layer of Conducting Fluid with 

Imposed Magnetic Field

5.1 In tro d u c t io n

Let Xi be a set of Cartesian coordinates with associated base unit vectors e t- where it 

will be understood in all subsequent analysis th a t roman indices take values 1, 2 and 3 

whereas greek indices take values 1 and 2 only. Suppose th a t an incompressible, therm ally 

and electrically conducting Navier-Stokes fluid occupies the horizontal layer 0 <  ;r3 <  d 

and is subject to constant gravitational acceleration —ge3 and imposed m agnetic held 

H e 3. The fluid motion is constrained by a rigid lower boundary m aintained at constant 

tem perature XL and an upper free boundary whose tem perature T\j is m aintained by the 

radiative transfer of heat into an impinging passive inviscid fluid at constant tem perature 

Tfo and constant pressure XT,. This configuration possesses a steady sta te  solution in 

which the fluid is stationary, the m agnetic field remains at its imposed value bu t heat 

is conducted across the layer at a constant ra te  determ ined by the therm al boundary 

conditions. This work aims to explore the stability of this “conduction solution” and is 

novel in the respect th a t it presents a comprehensive trea tm ent of the linearised problem, 

th a t is, one which can distinguish between stationary and overstable modes. Previous 

analysis of this problem  either considered restricted situations in which the eigenvalues of 

the linear problem  could be determ ined explicitly, or alternatively, investigated circum ­
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stances in which zero was an eigenvalue of the linearized problem. This la tte r possibility 

is only sensible provided a “principle of exchange of stabilities” can be established.

Chandrasekha.r’s [4] work on the convection of conducting fluids established th a t oversta­

bility can be the preferred mechanism in particular param eter regions. For exam ple, in 

the m agnetic Benard problem for a layer of fluid in the absence of surface tension effects, 

overstability can be the preferred mechanism when the m agnetic P rand tl num ber exceeds 

the viscous P rand tl number. Hence it seems plausible th a t overstable convection features 

strongly here.

5,2 Basic E q u a tio n s

Let Vi, iT , Ji and E; be respectively the components of the fluid velocity, m agnetic

field, m agnetic induction, current density and electric field with respect to the base vectors 

e i, 62 and e3. In Cartesian tensor notation, the equations expressing conservation of 

m om entum  in the fluid layer have component form

+  VjVij =  - - P ;  +  vVij3 -  -%(1 -  a ( T  -  To))<5.3 +  ~ ( J  x B),- (5.2.1)
O t  p o  p o  p o

where T is the Kelvin tem perature of the fluid, p  is the fluid density at tem peratu re T, 

p o  is the fluid density at a reference Kelvin tem perature To (taken to be Tu in this work), 

P  is the hydrostatic pressure and v  (constant and independent of tem perature) is the 

kinem atic viscosity of the fluid. In keeping with the classical Boussinesq1 approxim ation, 

it will henceforth be assumed tha t

p ( T )  =  p o ( l ~  a ( T  -  To)) =  p o ( l  -  a ( T  -  Tu)) (5.2.2)

in which a- is the coefficient of volume expansion of the fluid and is assumed to be constant. 

Furtherm ore, incompressibility of the fluid and the non-existence of m agnetic monopoles 

require th a t V  and B are both solenoidal vectors. Hence

div V  -  Vi,i = 0 , div B =  B iti =  0 . (5.2.3)

Suppose also th a t the m agnetization in the fluid is directly proportional to the applied 

field and th a t the fluid behaves like an Ohmic conductor so th a t the m agnetic field

1T he B oussinesq  ap p roxim ation  asserts th at variations in density  due to tem perature m an ifest th em ­

selves on ly  through buoyancy. T h e classical view  supposes that density  is a linear function  o f tem perature  

althou gh  it is w ell know n th at th is is not a. good  approxim ation  for water [30].
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H, m agnetic induction B, current density J and electric field E  are connected by the 

constitutive relations

B  =  yuH , J  =  <r(E +  V  x B ) , (5.2.4)

and the  Maxwell equations

curl E =  - 2 5  J =  — curl H  , (5.2.5)
dt  4?r '

where p  (constant) is the m agnetic permeability, a is the electrical conductivity and the

displacement current has been neglected in the second of these Maxwell equations as is 

custom ary in situations when free charge is instantaneously dispersed. On taking the  curl 

of equation (5.2.4)2 and replacing the electric field by the Maxwell relation (5.2.5)i, the

m agnetic field H  is now readily seen to satisfy the partial differential equation

<9H
1] curl curl H  =  +  cu rl(V  x H ) (5.2.6)

where 1] — (d/T/ia)-1 is the electrical resistivit\r. I11 addition, the constant nature of p 

makes the m agnetic held H  a solenoida.l vector. Equation (5.2.6) is now reworked using 

standard vector identities to yield in sequence

2 5  =  curl (V  x H ) -  »/ curl curl H

=  V  (div H ) -  H  (div V ) +  (H.grad)V -  (V.grad)H -  jj curl curl H

=  (H.grad)V  -  (V.grad)H -  ?j curl curl H

— (H .grad )V  — (V .grad)H  — 77 grad(div H ) +  r/ A  H

=  (H .g rad )V  -  (V .grad)H  +  r;A H

with com ponent form
f) f f
tlj +  VjHij  =  ff jVu +  ■ (5.2.7)

Equation (5.2.7) describes the tem poral evolution of the m agnetic held. Moreover, the 

relations (5.2.4) and (5.2.5) can be used to recast the Lorentz force J  X B  into

J  x B — ~ ( c u r lH )  x H  =  -p -(H .(g radH ) — grad {H 2/2))
4tt 4tt

leading to the notion th a t the Lorentz force is derived from a m agnetic stress tensor <7 -^ .

I11 view of the fact th a t

(J x B )i =  ajrj =  . (5.2.8)
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the m om entum  equation (5.2.1) can now be m anipulated into the form at

+  V j V i j  =  n,i +  u V i d j  -  ff( l  -  a ( T  -  T 0 ) ) S a  +  , (5.2.9)
OZ ' po 4-77/90

where II =  P - f / i / / 2/ 877 is pressure. Assuming th a t energy losses due to viscous dissipation 

can be neglected, conservation of energy contributes the field equation

d T
w  + VjTj  =  kTJ} (5.2.10)

where k (constant) is the therm al diffusivity of the fluid. To sum m arise, the convection 

problem is described by the  differential equations

+  V j V i , j  =  - - n , i  +  u V i j j  -  g ( l  -  a ( T  -  T 0 ) ) 5 i 3  +  ,
a t  ' po 4tt/9o

^  + V j T j  = K T J i , (5.2.11)

r) H
- g f  +  V j H i j  =  H j V ^  +  V H i J j .

where V  and H  are solenoidal vector fields. Equations (5.2.11) need boundary conditions 

on x 3 =  0 and x 3 — d.

5.3 B o u n d a ry  C ond itions

Suppose from the outset th a t the region exterior to the fluid layer is filled w ith non­

conducting m aterial so th a t no currents can flow there. At the boundaries between 

conducting and non-conducting m aterials, the component of the current density norm al 

to the interface is zero. At any interface, normal components of m agnetic induction are 

always continuous and so the natural way to guarantee the current condition is to extend 

continuity to all com ponents of the magnetic induction. W ithin an insulating m aterial, 

the first Maxwell equation in (5.2,5) indicates tha t H  is irrotational so th a t H  is the 

gradient of 0(i,aq) where o  is a solution of the Laplace equation since div H  =  0. T hat 

is,

H i  =  H S l3 +  4>j  , Q j j  =  0  .

Since x 3 — 0 is a. rigid boundary at fixed tem perature Tf then the appropriate boundary 

conditions there are

= 0 , T  = T l , Bi ~  p,Hi continuous (5.3,12)
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with irrotational m agnetic field in x 3 <  0. The trea tm ent of the upper boundary x 3 =  d 

is more involved since it can move. Suppose tha t it has equation x 3 = d +  F ( t , x a) at 

tim e I w ith unit norm al 11 =  ?-qet directed from the viscous fluid into the  passive inviscid 

fluid. The boundary conditions come from four sources.

H e a t  Transfer The heat flux passing from the viscous to inviscid fluid is —kriiTj and 

this is equal to h( T  — Too), the heat loss due to radiation (Newtonian cooling). Here 

k (constant) is the therm al conductivity of the fluid and h (constant) is the heat 

transfer coefficient. Hence the therm al boundary condition is

k T n n  +  h{T  -  Too) =  0 . (5.3.13)

M ater ia l Surface Fluid particles on the surface x 3 =  d +  F ( t , x a) rem ain there and so

clx3 _ d £  d F  dxa
di di d x a di

and this leads to the condition

d F  d F
V3 -  -y— V; =  . (5.3.14)

ox a at

M a g n et ic  C on d it ion  Since the region x 3 >  d is electrically insulating then B{ =  (.lH;. 

is continuous across x 3 = d and the magnetic field in x 3 > d is irro tational, th a t is, 

derived from a potential function.

Stress C ond it ion s  Stress conditions at the interface between the fluid layer and the 

passive inviscid gas are based on the assumption th a t the discontinuity experienced 

by the stress vector in crossing the interface is balanced by the divergence of the 

surface stress tensor, assumed here to be due entirely to a tem peratu re dependent 

surface tension in the absence of interfacial mechanical shear stress. Specifically the 

surface stress tensor is

S afi = a { T ) a ap (5.3.15)

where aa/3 is the surface m etric tensor and a  is surface tension. A lthough simplistic, 

this view of an interface is ubiquitous in the literature. Of course, in reality the 

interfacial region has a finite dimension (of the order of microns) and is perhaps 

more accurately modelled by m ixture theory in the respect th a t molecules of each 

bulk fluid can coexist a t each interfacial point. Clearly this is an area for future
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research.

The stress vector for the passive gas impinging on the top boundary is t  =  — 

and, in view of observation (5.2.8), the stress vector for the fluid is

where 6" is the m ean curvature of the interface. Thus the stress boundary condition 

has com ponent form

It is easily verified th a t equations (5 .2 .11) have a steady state  conduction solution in 

which the viscous fluid is stationary, the top surface is flat, the m agnetic field is constant 

at the imposed value and the fluid interior is perm eated by tem peratu re  and pressure 

fields which are functions of ,t3 only. The actual solution satisfying all the boundary 

conditions on x 3 — 0 and x 3 — d is

where (3 denotes the tem peratu re gradient and is determ ined from the therm al boundary 

condition at x 3 — d, the therm al condition at x 3 — 0 being satisfied trivially. I11 term s of 

the Nusselt num ber

The divergence of the surface stress tensor is

(5.3.16)

which can be decomposed further into the tangential and norm al com ponents

(5.3.17)

5.4 The Base Solution

V- =  0 ,  Hi = HSa  , F (x a ,t)  = 0 , Tb{ .v3) = Th + ,

11e =  Poo +  P H 2 +pog f d[l -  a (T h + (3z -  Tv )}dz
o7T J  x'3

(5.4.18)

(Nusselt number) (5.4.19)
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in which k  and h are respectively the therm al conductivity of the fluid and the heat 

transfer coefficient of the radiant boundary, it follows directly from the equilibrium  tem ­

perature profile in (5.4.18) and the Robin condition (5.3.13) th a t Tu satisfies

TV +  j\T T  J\J
Tu -  " 00 , (3d = ~—-“ -(T R  -  Tl ) . (5.4.20)

I +  N v 1 H 1 4 - AT ; ;

5.5 T h e  P e r tu rb e d  E q u a tio n s

Let h  =  /q-e;, 9 and p be perturbations of the m agnetic field, tem peratu re and pressure 

respectively about their equilibrium  values H e 3, T e ( x 3) and IIe{%3 ) so th a t

Id =  Vi , H i  =  H 8 i3 4- In  , T  =  T e ( x 3 ) 4- 9 ,  n  =  n E 4- p  • (5.5.21)

It can be established easily from (5.2.11) th a t ffi, 9 and p satisfy the field equations

d yi 1 u . rr} . . ,
—— 4- VjVitj —  pA 4- Wi<jj 4- gcx(Jol3 4-   (Hlii i3 4- hjh^j)  ,
ot ' ' po "  4-TTpo ' '

99
tt ;  4- (3v3 4- Vj6 tj — k 6  jj , (5.5.22)
ot

9  h-i
-q~ + Vjhij -  hjVij + Hvit3 + ghijj ,

where v  and h are solenoidal vector fields. The boundary conditions on the lower bound­

ary £ 3  = 0 become

(9 =  0 ,  =  0 , phi continuous (5.5.23)

and the conditions on the upper boundary x 3 =  d 4- F ( t , x a) corresponding to (5.3.13)

and (5.3.14) are modified respectively to

(n3 -  l)(7u -  Tl ) +  d n .tf ,+  N J  + Nu(Txj -  7 l T  =  0 ,
9 F  d F  c (5.5.24)

0 3 "  = ■

The surface stress conditions (5.3,16) and (5.3.17) require significantly more effort. The 

modified form of the norm al component of (5.3.16) is

<t(Tu +  (T u  -  T ^ F d - 1 +  6)b°a =  p  -  [ ( / j ^  +  2 t f  n 3/w ] -  p0gF

+ p H 2(I -  nl )  -  ipovvi  jHiUj (5.5.25)
4?r

+ ̂ ( T v - T h) F 2 ,
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whereas the tangential surface stress condition (5.3.17) yields 

da
|(Tu -  Th)d 1FiCt +  0 j  =  ~pov{vitj +  v iti )n jx iya

dT  1 J ' (5.5.26)
— -~-(Hns  +  hjrij)(hiXitQ) .

47T

In (5.5.26) it is assumed th a t the derivative of the surface tension w ith respect to tem ­

perature is evaluated at T  =  T\j 4- (Tu — Tu)d~l F  +  0.

5.6 T h e  N o n -d im ensiona l E q u a tio n s

Equations (5.5.22) and boundary conditions (5.5.24), (5.5.25) and (5.5.26) are now non- 

dimensionalised in the custom ary manner. Spatial coordinates aq are scaled with respect 

to c/, tim e t w ith respect to d2 /  k  so th a t the non-dimensional form of the upper surface 

becomes =  1 +  f { t , x a). Similarly perturbed velocity com ponents are scaled with 

respect to n/d ,  m agnetic field components with respect to Hk/i],  pressures w ith respect to 

pQVKjd2 and tem peratures w ith respect to |T l — Tu|. The corresponding non-dimensional 

form of (5.5.22) is

P ~ l f — - +  j =  —p,i +  v i,jj +  R0Si3 +  Q { d i,3 +  Prn 1 /f? h'lj ) 1 

89
—  +  Vj$j =  j v 3 +  6 j j  , (5.6.27)

P m +  V j h i j  -  h j V i ^  =  Vi , 3  +  h U j  ,

where the Viscous P rand tl No. Pri the Magnetic P randtl No. Pm, the C handrasekhar 

No. Q  and the Rayleigh No. R  are defined by

P,. =  -  , P,n =  — , Q =  T I T  , R = a 9S \Th ~  Ty  \ . (5.6.28)
H H AftpQUp nu

Furtherm ore, 7  =  sign(TL — Tu) indicates the boundary at which heat is supplied. W hen 

7  =  + 1 , the fluid layer is heated 011 its lower boundary whereas when 7  =  —1 , the upper 

boundary is heated. Equations (5.6.27) are to be supplem ented w ith rescaled boundary 

conditions on the upper and lower boundaries. The non-dimensional boundary conditions 

on X3 — 0 are derived from (5.5.23) and are

Vi =  0 , 0 =  0 ,  lim hi = —  lim . (5.6.29)
a.-3 — jj, .'('3 —>u o x i
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in which fa, is the non-dimensional m agnetic potential function2 in the region x 3 <  0 . 

The rescaled equation of the upper boundary is x 3 ~  1 +  / ( t ,  £«)• Here the heat transfer 

condition, free surface condition and continuity of magnetic induction require th a t

7(1 -  713) +  m 0,i T N u(0 ~  7 / )  =  0 ,

" 3 “  l t Uo =  T t  ’ (5-6'30)
Pa d^u

lim hi — — lim ——  ,
3-" 3— f-L ^3— C/*Ci

where faj is the non-dimensional m agnetic potential function in the  region x 3 >  1 +  j  .

Again, the surface stress conditions require more effort. The rescaled form of (5.5.26)

arising from the norm al component of the surface stress is

t cr(Tu +  (0 — 7/ ) | T l  — T u |) /Q. /o ro - in  2̂ , o / 1 n n - i  rCr l ~    t . ...........  ~baQ =  p - Q { P ml {h3n3y +  2n3h3n3\ - B 0Cr J
° V u )

7  R
+QPm{ 1 -  n |)  -  2V i jn iU j -----— f  ,

(5.6.31)

in which Cr , the Crispation No., and B 0, the Bond No., are defined by

=  Pvg£_ =  , Py/K (5.6.32)
<r(Tu) ■ da(Tv )

The rescaled version of the tangential surface stress condition (5.5.26) is 

n r < ? X T \ j  - f  | T l  — T u |)(0  — 7 / )  t _  r  a  ,  _
M  , (rp  \  ( 7 1,ct  0 , q )  — i v h j  p  v j , i ) n j X i,<x

<?■ (Tu) (5.6.33)
~\~QhiXi^a (l7,3 "h P m h j?2 j)

where M  is the M arangoni No. defined by

M  =  d\Th -  Tv\ a  (7u)  ̂ (5.6.34)
p 0 U K

5.7 T h e  L inearised  P ro b le m

Until now the analysis has been exact. Henceforth suppose th a t perturbations in v , h , 9 

and p are so small th a t their products can be ignored whenever they occur — this is the 

linear approxim ation. In this scenario, the approxim ated form for equations (5.6.27) is
r\

P,~  ̂~wr — ~P,i +  v Pi> +  R9Si3 +  Qhi,3 ■> at

§  = W  + e j j ,  (5 --35)

1 =  t ’i,3 +  •

2B o th  <f)\j and d u  have te e n  rescaled w ith  H cIk/?].
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The boundary conditions on the lower boundary x 3 = 0 are unchanged from those de­

scribed in (5.6.29). On the upper boundary x 3 =  1 +  /(* ,;r„ ), the outward unit norm al 

has components

. / , 1 1 ,2 I  / «■ >— q n \■iii =  . , n 2 =  ■ ■ ■■ ■ =  , n 3 =  r=  (o./.oo)
1 +  fl  +  f% a/1 +  /,! +  B  x /l  +  / , i  + 7 1

so th a t the linearised upper boundary conditions described in (5.6.30), (5.6.31) and 

(5,6.33) are
89

+  N u{6 -  7 / )  -  0 ,
d x 3 

d f
V 3 = m '

lim In = lim ^  ( (5.7.37)
X3  —>■ 1 LL —> 1 ( 7  ,T {

C p ' b l  =  P -  2 Qh3 -  B0C p l f  -  ,

v (7 .//*' -  C:v) — l’3.L, 5- ir h Qha .
OX3

5.8 M ag n e tic  B o u n d ary  C ond itions

Recall th a t the m agnetic field in an insulating m aterial is irrotational and is derived from 

a potential function which is the solution of Laplace’s equation.

Let 4> =  'ilAtxx:i)ei{j>Xl+qX2] then

d 2ip 9 2 dtf* n I I-7—r — ct *0 =  0 , t r  =  p q , ■ - - 0 as |^ 3 | —> oo .
OX2 ^T3

Trivially d>u and dj., have functional form

f a  =  CL(t)e“ V (pxi+,l2> , f a  = Cu ( t)e -“xV (pxi+',X2> . (5.8.3S)

W hen x 3 < 0 then  h =  C],(t)(ip. iq, a) and continuity of the m agnetic induction across

ir3 — 0 requires tha t

ll3,3 =  —03,3 =  — bata ~  — 0,2Ch{l) =  ~ h  =  0-^3
M A£ h h

with a similar argum ent on ,r3 =  1 +  / .  Hence the m agnetic boundary conditions are



In fact, the description of the convection problem is best expressed in term s of the be­

haviour of the th ird  components of the velocity and magnetic held. It is convenient to

write iv — n3, h =  h3 and represent partial differentiation of an arb itrary  function D with 

respect to x 3 by D 4\  the 3-D Laplacian of tb by AD and the 2-D Laplacian of p  by A 2p.  

On taking the double curl of the first of equations (5.7.35) and then  using the second of 

these equations to replace the Laplacian of h3, it follows th a t

A c _1 Aid - Q P p D h )  = A 2w -  Q D hv  + R A 2d ,
(,J  b

P - 1—  =  A h  + D iv ,  (5.8.40)

06
d i  =  r “  +  A('-

In this new notation, the boundary conditions on ;r3 =  0 finally become

■w =  0 , Dw  =  0 , 0 =  0 ,  Dh — ah =  0 , (5.8.41)

and on x 3 =  1 the  boundary conditions are

DO +  N u(6 -  7 / )  =  0 ,

Of ni v  — =  0 ,
dt

Dh  +  ah =  0 , (5.8.42)

A 2/  +  f  B 0 -  Cr(p -  2Dxv -  2Qh)  =  0 ,

M (0 — 7  /  )(Q. +  (D va 4- t o 4 - Qha ) =  0

in which the  linearised form of the Gauss-W eingarten relations have been used to re­

place 6" by A 2/ .  The trea tm en t of the boundary conditions on x 3 =  1 is com pleted by 

com puting the surface divergence of the last condition in (5.8.42). The result is

A 2u> 4- M A-2(0 -  / )  -  D2w -  QDh  =  0 . (5.8.43)

5.9 N o rm al M odes A nalysis

W hen solutions to equations (5,7.35) are sought in the form

<j>(t,Xi) =  (f>{x3)evtei^ +^  4>= { w j i p p j }  ,
(5.9.44)

f ( t , x a) =  j0eatei^ Xl+(i:i'2'> /o constant ,
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it is relatively straightforw ard to  establish th a t a is an eigenvalue of the  system

a P p \ D 2 - a 2 ) w - a Q P - l Dh  =  (D 2 -  a2)2w -  Q D 2w -  R a 29 ,

c r P ^ h  — (D 2 — a2)h +  Dw  , (5.9.45)

<76 =  7 w -f (D 2 — a2)9 .

The boundary conditions 011 x 3 =  0 are

w  =  0 , Div =  0 , 0 =  0 ,  Dh — ah =  0 . (5.9.46)

As a pream ble to the form ulation of the final boundary conditions on x 3 =  1, it follows

from (5.2.9) th a t

A 2p =  -  A [Dw) -  Q D 2h + P - ' ^ ( D w )

so th a t the pressure everywhere is given by the equation

p =  p D \ v  -  a2Dw  +  Q D 2h -  c rP pD w )  . (5.9.47
a1

Hence the boundary conditions on x 3 =  1 are

DO +  l \ t(9 -  7 / 0 ) =  0 ,

w =  0-/0 ,

Dh  +  ah =  0 ,

a2(B„ -  a2)/o +  C A Q D w  -  D 3 w  +  3a2Dio +  Q a 2 h )  -  v C J Q P p ' h .  -  P p ' D w )  , 

(D 2 +  a2) 10 +  M ( 9  -  7 / 0 W  +  Q D h  =  0 .
(5.9.48)

Let variables y u  . . .  , ys be defined by



then it is straightforw ard to verify th a t equations (5.8.40) can be rew ritten  as the 8th

order system

Dyi  =  y-i

Dy2 ~  S/s

Dys = V4

Dy<i =  — ct4yi +  (2a2 +  Q)y3 +  PaXi2yb

+<r[P-l (y3 ~  a2yi) ~  Q P ^V s]  (5.9.50)

D y 5 =  S/s

Dye =  ~ y i  +  (« 2 +  cr)ye

D y7 =  S/s

D y8 =  -S /2 +  {a2 +  v P ~ l )y7 ■

The boundary conditions on =  0 are now

S/i =  0 , S/2 =  0 , s/s =  0 , S/s -  cuy7 = 0 . (5.9.51)

The boundary conditions on x 3 — 1 are more involved and comprise 4 conditions to 

complete this eigenvalue problem plus a further condition to establish the height of the 

free surface. It is convenient to  use the relation

(D2 + a2)w + M a{0 -  f ) a 2 = 0

to elim inate occurrences of /  everywhere in the equations (5.8.42). This is always possible 

provided M a >  0. If Mt, =  0 then the condition DO +  N u(0 — f )  =  0 plays a similar role 

etc. In term s of y i , . . .  , t/s, the appropriate conditions are

N u (s/3 +  «2Vi ) -  a2 M a i/6 =  0 ,

o-f)t/3 +  a2yi) +  aa2M ay$ -  a2M ayi — 0 ,

( B 0 -  CL2) [s/3 +  (Py\ +  a2M ays] +  M aCr(Qy2 -  s/4 +  3a 2y2) (5.9.52)

+ffM aCr( P - 1y2 - g P - 1y7) =  0 , 

ys +  ayT =  0 .
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5.9.1 B enard-M arangoni C onvection

The equations (5.8.40) can be reform ulated in the form of

clY
dx-

=  A Y  +  cr B Y

where A and B are the real 8 x 8 m atrices

A  =

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

—a4 0 (2a 2 +  Q) 0 R aa2 0 0 0

0 0 0 0 0 1 0 0

-L 0 0 0 a2 0 0 0

0 0 0 0 0 0 0 1

0 - 1 0 0 0 0 a 2 0

and

B  =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

a2 Pt7 l 0 p - 1r 0 0 0 0 - Q P F 1

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 p - 1
m 0

(5.9.53)

(5.9.54)

Since equations (5.8.40) have constant coefficients then they can be converted into the 

spectral representation E V  =  crFV as indicated previously where E  and F  have block 

m atrix  form

E  =

D 0 0 0 0 0 0

0 D - / 0 0 0 0 0

0 0 D - I 0 0 0 0

a41 0 - ( Q  +  2a 2) / D - R a C l 2 l 0 0 0

0 0 0 0 D - I 0 0

I 0 0 0 —a21 D 0 0

0 0 0 0 0 0 D - I

0 I 0 0 0 0 - a 2/ D

(5.9.55)
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and

F  =

0 

0 

0

,2 D —1

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0

- a 2P r ' I  0 P ~ l I  0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 /  0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 p - 1!

0

0

0

-QPm1!

0

0

0

0

(5.9.56)

It only rem ains to replace the M th ,  2Mlh ,  ... , 8 M th  rows of E  and F  w ith the boundary 

information. From a m athem atical standpoint, it does not m atter how the  eight boundary 

conditions are ordered but numerical performance is usually enhanced if the boundary 

data  is inserted so th a t it favours the Upper Hessenberg form at which is generated by 

Householder operations on E.  We deal with each boundary condition in turn:

M l/i row  This comes from the boundary condition (5.9.51)i. The rows of E  and F  are 

replaced respectively by the block forms

(q, 0 ,0 ,0 ,  0 ,0 ,  0 ,0 )  , ( 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 )  .

2 M th  row  This comes from the boundary condition (5.9.52)!. The rows of E  and F  are 

replaced respectively by the block forms

(/Yf,n2p , 0 , AUp, 0 , 0 , —Ma.a2p, 0 , 0 ) , (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) .

3 M th  row  This comes from the boundary condition (5.9.52)2. The rows of E  and F  are 

replaced respectively by the block forms

(M a«2p, 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , (a2p, 0 , p, 0 , iV/na 2p, 0 , 0 , 0 ) .

4 Mh?, row  This comes from the boundary condition (5.9.52)3- The rows of E  and F  are 

replaced respectively by the block forms

( ( ( £ U 2 -  a4) +  Za2M aC r )p ,Q M aCrp A B 0 -  a2)p , 

- M aCr, ( B 0 ~ a 2)M aa2p , 0 ,0 ,0 )  ,

(0, - C rM aPr- l P, 0 ,0 ,0 ,0 ,  QCrM ap - l p,  0) .
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5 M th  row  Th is comes from the boundary condition (5.9.51)2- The rows of E  and F  are 

replaced respectively by the block forms

(0 ,q , 0 ,0 ,  0 ,0 ,  0 ,0 )  , ( 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 )  .

6 M :ih row  This comes from the boundary condition (5.9.51)2. The rows of E  and F  are 

replaced respectively by the block forms

( 0 , 0 , 0 , 0 , q , 0 ,0 ,0 )  , ( 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 )  .

7M th  ro w  This comes from the boundary condition (5.9.51)4. The rows of E  and F  are 

replaced respectively by the block forms

(0, 0 ,0 ,  0, 0 ,0 ,  - a q ,  q) , ( 0 ,0 ,0 ,0 ,  0 ,0 ,  0, 0) .

8 M i/i row  This conies from the boundary condition (5.9.52)4. The rows of E  and F  are 

replaced respectively by the block forms

(0 ,0 ,0 ,0 ,0 ,0 ,« p ,p )  , (0 ,0 ,0 ,0 ,  0,0,  0,0) .

Appendix 4 shows the appropriate Fortran?? programs using NAG routine F02BJF to 

solve this problem  using both first and second order systems.

5.10 R esu lts

In his work on the influence of a uniform magnetic field on the onset of instability con­

ducting fluid, Wilson [45] obtained a series of results using constant viscous and M agnetic 

P rand tl num bers Pr =  1 and Prn =  1 respectively.

The aim of this chapter is firstly, to investigate the effect of a vertical m agnetic field on 

a layer of conducting fluid with Pr — Pm =  1; secondly, to compare the results obtained 

with those reported by Wilson, and finally to study the variations on the stability mode 

using various values of the Magnetic P randtl number.

5.10.1 N oii-D eform able Free Surface Cr = 0

Results and figures th a t are found when Cr =  0, Pr — Pm — 1 and for different values of 

param eters f?a, Q, M a and B 0 for purely buoyancy-driven and purely therm ocapillary- 

driven convection in the  case N u — 0 and Nu — > oo respectively are identcal to those
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reported by Wilson. Because of similarity, they are not m entioned in this subsection with 

some exceptions due to  their relative results. By reducing the value of Pm from unity the 

results are found to be different from those reported by Wilson.

The curve representing the m arginal stability in a plane U — U (R a, a ), w ith the param ­

eters Pr , Pm, Q, iV/a, B 0 and N u, separates the plane into two parts. The part which 

is above the curve represents overstable modes whereas tha t below the curve represents 

stable modes. It should be noted th a t the simplest result is obtained w ith the param eters 

Pr = 1 , Pm =  I, Q = 0, M a = 0 and B 0 = 0 , but for the num ber AT there are two cases, 

N u - - 0 or AT — > co.

The critical value of the Rayleigh num ber is the m inim um  of the corresponding m arginal 

stability  curve and is denoted by

R c = Rc{Pr , Pm, M a, B o , N u) 

and a corresponding critical wavenumber is denoted by

ac = ac(Pr , Pm, M a. Do. AT).

For exam ple, the critical value of Rayleigh numbers are respectively R c ~  669.00040 

and R c ■— > 1100.6520 at the corresponding wavenumbers cic — 2.08560 and cic = 2.6820 

when AT =  0 and N u — > oo. The instability case generates real eigenvalues as long as 

Pm3is > Pr as shown in second column of tables 5.1 and 5.2, while if Pmcl < Pr , then the 

overstability case starts  to generate the complex eigenvalues as shown in th ird  and fourth 

columns of tables 5.1 and 5.2 when Pm - ■ 0.5 and 5.1 and 5.2 when Pm — 0.1 for AT -= 0 

and AT — > oo respectively. Briefly, the overstability case starts  to appear in the th ird  

and fourth columns of the table 5.1 at Q =  1438.450, Rc = 12494.474 and a,c =  5.156 and 

at Q — 29.769, R c — 1248.138 and ac =  2.567 when Pm =  0.5 and Pm =  0.1 respectively 

for AT =  0, and it is shown th a t in the th ird  and fourth columns of the table 5.2 at 

Q =  885.867, Rc — » 13413.185 and ac = 4.671 and Q = 18.330, R c — > 1471.840 and 

ac =  2.732 when Pm — 0.5 and Pm =  0.1 respectively for AT — > oo.

It can be concluded th a t the complex eigenvalues begin to appear early as the value of 

Pm decreases. This is evident from figure 5.1 in which the curve begin to diverge from its 

path  when the value of Pm is reduced.

3The Magnetic Prandtl numler in this prol lem is the reverse of the same numler in Benard Magnetic 

prollem.
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Q
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Figure 5.1: LogioRa versus LogioQ with N u =  BQ =  0 for a range of Pm = 0 .1 ,0 .2 , . . . ,  1.

Also, the marginal stability  curve in a plane U =  U( M a, «), with the param eters Pr, Pm, 

Q , Ma, B 0 and Nu, divides the plane into two parts. The unstable modes are represented 

above the curve, whereas the stable modes are represented below it. The critical value 

of the M arangoni num ber in this problem is the minimum of the  corresponding m arginal 

stability curve which is denoted bv

M c =  M c( Pr, Pm , R a, C r, Bo, N u)

and a. corresponding critical wavenumber is denoted by

«c =  «c( Pr i Pm < R a , C r , B o , iVu ).

The result, which is very simple, occurs when the param eters take their values as Pr = 1, 

Pm = 1, Q = 0, R a -- 0 and B 0 =  0, but for the number N u there are two cases, N u = 0
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Critical Rayleigh No. R c and W avenumber ac 

for various Pr and Pm bu t Cr =  0, N u =  0

Pr =  1.0 , Pm =  1.0 Pr = 1.0 Pm =  0.5 Pr =  1.0 Pm = 0.1

Q R c ac Rc CLc R c ac

0.000 668.998 2.086 669.00 2.086 669.00 2.086

1.000 690.373 2.109 690.37 2.109 690.37 2.109

1.624 703.602 2.123 703.60 2.123 703.60 2.123

2.637 724.922 2.146 724.92 2.146 724.92 2.146

4.281 759.143 2.180 759.14 2.180 759.14 2.180

6.952 813.768 2.233 813.77 2.233 813.77 2.233

11.288 900.328 2.310 900.33 2.310 900.33 2.310

18.330 1036.32 2.420 1036.3 2.420 1036.3 2.420

29.764 1248.14 2.567 1248.1 2.567 1248.1* 2.567

48.329 1575.59 2.758 1575.6 2.758 1438.7* 2.402

78.476 2079.38 2.993 2079.4 2.993 1560.8* 2.531

127.43 2853.12 3.276 2853.1 3.275 1733.0* 2.697

206.91 4042.82 3.602 4042.8 3.602 1973.1* 2.901

335.98 5877.87 3.977 5438.0 3.982 2303.3* 3.141

545.56 8720.24 4.398 7016.5 4,340 2754.8* 3.416

885.87 13144.5 4.866 9260.4 4.729 3371.0* 3.723

1438.5 20062.7 5.383 12494.*' 5.156 4215.2* 4.061

2335.7 30930.5 5.948 17216.* 5.628 5380.9* 4.433

3792.7 48074.6 6.552 24188.* 6.150 7007.1* 4.839

6158.5 75223.0 7.229 34589.* 6.727 9302.0* 5.285

10000 . 118360. 7.949 50249.* 7.360 12580.* 5.773

Table 5.1: Critical Rayleigh and Wave numbers for various Pr, Pm when Cr =  N u =  0.

or N u — > oo, for exam ple, the critical Marangoni numbers as recovered by Pearson [39],
M,

are M c =  79.60669 a t ac =  1.99291 when N u  =  0 and — -  — > 32.073 at cic =  3.0141
iv u

as N u  ——V oo as shown in a second column of a table 5.3. In this case, the value of Pm 

should be sufficiently smaller than the value of Pr so th a t the overstablitiy case begins to 

generate the complex eigenvalues. For example, when Pm =  0.1, the complex eigenvalues



Critical Rayleigh No. R c and W avenumber ac 

for various Pr and Pm but Cr = 0 . N u =  0

Pr =  L 0 , Pm =  1.0 Pr = 1.0 Pm =  0.5 Pr = LO Pm = 0.1

Q Rc ac R c ac Rc Clc

0.000 1100.65 2.682 1100.65 2.682 1100.65 2.682

1.000 1127.50 2.710 1127.49 2.710 1127.50 2.710

1.624 1144.06 2.727 1144.06 2.727 1144.06 2.727

2.637 1170.68 2.753 1170.68 2.753 1170.68 2.753

4.281 1213.22 2.793 1213.22 2.793 1213.22 2.793

6.952 1280.66 2.855 1280.66 2.855 1280.66 2.855

11.288 1386.51 2.944 1386.51 2.944 1386.51 2.944

18.330 1550.70 3.069 1550.70 3.069 1471.84* 2.732

29.764 1802.36 3.236 1802.36 3.236 1516.39* 2.774

48.329 2184.26 3.447 2184.26 3.447 2184.26* 3.447

78.476 2760.23 3.705 2760.23 3.705 2760.23* 3.705

127.43 3628.19 4.006 3628.19 4.006 3544.79* 3.246

206.91 4835.73 4.350 4835.73 4.350 4234.13* 3.490

335.9S 6919.70 4.735 6919.70 4.735 5242.26* 3.788

545.56 9947.77 5.160 9947.77 5.160 6712.45* 4.138

885.87 14602.0 5.626 13413.2* 4.671 8858.81* 4.539

1438.5 21805.8 6.134 18827.2* 5.175 12005.6* 4.988

2335.7 33027.9 6.686 25884.9* 5.665 16748.0* 5.487

3792.7 50612.5 7.285 37010.5* 6.238 23547.1* 6.035

6158.5 78310.2 7.933 53756.3* 6.865 33879.4* 6.634

10000 . 122136. 8.636 79152.4* 7.548 49473.2* 7.288

Table 5 .2 : Critical Rayleigh and Wave numbers for various Pr, Pm when Cr =  0 and 

N u — y oo.

appear at Q = 48.329, M c =  170.240 and ac =  2.458 as shown in a th ird  column of table 

5.3 while the eigenvalues are real when Pm =  0.5 for N a — 0, and they are real for any 

value of Pm when N u — > oo as shown in a table 5.4.

T he conditions of the onset of steady convection in the case Pm =  1 for M c* and ac
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Critical Marangoni No. R c and W avenumber ac 

for various Pr and Pm but Cr 0 , N u — 0

Q

oZ -111 Pm = 1.0

«c

Pr = 1.0

M c .p 
ii o

0.000 79.607 1.993 79.607 1.993

1.000 82.172 2.015 82.172 2.015

1.624 83.759 2.028 83.759 2.028

2.637 86.315 2.049 86.315 2.049

4.281 90.412 2.081 90.412 2.081

6.952 96.940 2.130 96.940 2.130

11.288 107.25 2.202 107.25 2.202

18.330 123.38 2.303 123.38 2.303

29.764 148.33 2.440 148.33 2.440

48.329 186.54 2.616 170.24* 2.458

78.476 224.68 2.834 198.28* 2.612

127,43 332.94 3.095 239.87* 2.811

206.91 467.12 3.400 301.91* 3.055

335.98 672.08 3.753 395.05* 3.344

545.56 986.91 4.157 535.97* 3.679

885.87 1473.5 4.619 750.92* 4.061

1438.5 2230.1 5.147 1080.5* 4.489

2335.7 3412.4 5.748 1595.1* 4.971

3792.7 5269.2 6.432 2398.1* 5.580

6158.5 8196.8 7.210 3698.6* 5.831

10000 . 12831. 8.091 5100.6* 6.127

Table 5.3: Critical M arangoni and Wfive numbers for various Pr , Pm when Cr =  N u = 0.

when N u  — 0 together with M c*/N u ancl ac as N u  — >■ oo plotted as function of R* where 

M* is the value M a divided by the value of M c when R a — 0 and R* is the value of R a 

divided by R c a t M a =  0 . The resulting figures for Pm < 1 represent several relations. 

A relation between M c* and i?*, as well as the corresponding ac and R* and the relation 

between M a*/N u and R *, as well as the corresponding ac and R a* when Q — 1, Q — 102,

70



Critical Marangoni No. R c and Wavenumber ac 

for various Pr and Pm but Cr = 0 , N u =  0

Pr =  1.0 , Pm - 1.0

Q M c etc Q Mc ac

0.000 32.073 3.014 127.43 79.553 5.5782.086

1.000 32.726 3.055 206.91 98.410 6.5172.109

1.624 33.127 3.080 335.98 123.37 7.7692.123

2.637 33.766 3.120 545.56 156.05 9.4692.146

4.281 34.776 3.182 885.87 198.35 11.802.180

6.952 36.353 3.278 1438.5 252.64 14.752.233

11.288 38.768 3.422 2335.7 322.02 18.432.310

18.330 42.381 3.631 3792.7 410.60 23.042.420

29.764 47.648 3.925 6158.5 523.73 28.802.567

48.329 55.121 4,328 10000 . 668.22 36.002.402

78.476 65.476 4.867

Table 5.4: Critical Marangoni and Wave numbers for various Pr , Prn when Cr = 0 ancl 

iV(t — y oo.

Q =  103 and Q = 104, the graphs in both cases N u =  0 and N u — > oo are different 

from those obtained by Wilson for Pm = 1. This is mainly due to the overstability case, 

which generates complex eigenvalues. In the case N u — 0whenPm =  0.5 and 0.1 in figures 

5.2 a and 5.3 a, the convexity of the curves representing the relation of M*  and R * is 

more pronounced than th a t obtained by Wilson for Pm =  1 when Q =  101, while in 

figures 5.2 b and 5.3 b concavity of W ilson’s curves representing the relation between ac 

and R* is more pronounced than those obtained by this thesis when Q — 104. In case 

N u — oo when Pm — 0.5 and 0.1 the figures 5.4 a and 5.5 a representing the relation 

M * / N u versus R*, are different from th a t obtained by W ilson’s. T he figures 5.4 b and 

5.5 b which illustrates the relation between ac and R* show a value of ac around 25 and 

19 for Pm =  0.5 and Pm =  0.1 respectively while it showed around 40 in wilson’s result 

when Q — 104.

There are many relations of Chandrasekhar [4] num ber Q w ith Rayleigh num ber R a
R a — 7t2Q cl

and wavenumber a. These relations take the forms as R a IQ> Q 2 / 3  allCl Q l/6 Wlth
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Figure 5.2: M c* and ac are plotted as a function of R a* for Q = 1, Q = 102, Q = 103 and 

Q = 104 when N u = 0 and Pm = 0 .5
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Figure 5 .3 : M *  and a c  are plotted as a function of R a ~ for Q  =  1, Q  =  102, Q  =  104 and

Q =  104 when N u = 0 and Pm =  0.1.

Q .  Graphs of these three relations for Pm — 1, N u  =  1, 102 and 104 are the same as

those of W ilson’s, but for P m  =  0.5 the lower part of curves are lower than those of

W ilson’s as illustrated in figures 5.6 a  and 5.6 6 and for Pm — 0.1 they are more lower 

as illustrated in figures 5.8 a 5.8 b. The lower part of the curves in figures 5.7 and 5.9 

disappeared because the critical Rayleigh number in the overstablity case is less than  

the critical Raleigh num ber in the instability case beyond the values Q — 127.428 for 

P m  = 0.5 and Q  = 48.329 for P m  = 0.1, therefore the value

Rc -  * 2Q
Q 2 1 3
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=  10:

i s  l e s s  t h a n  z e r o  f o r  t h e  o v e r s t a b i l i t y  c a s e  w h i l e  i t  is  g r e a t e r  t h a n  z e r o  f o r  t h e  i n s t a b i l i t y  

c a s e .

A l s o ,  t h e r e  a r e  m a n y  r e l a t i o n s  b e t w e e n  M a r a n g o n i  n u m b e r  M a a n d  t h e  C h a n d r a s e k h a r  

[4 ] n u m b e r  Q  a n d  t h e r e  a r e  r e l a t i o n s  b e t w e e n  t h e  w a v e  n u m b e r  a a n d  C h a n d r a s e k h a r  

n u m b e r  Q.  T h e s e  r e l a t i o n s  t a k e  t h e  f o r m s  a s  M a/ Q ,  ( M a — Q ) / 0 3/4 a n d  a / Q l / 4 w i t h  Q 

r e s p e c t i v e l y .  G r a p h s  o f  t h e s e  t h r e e  r e l a t i o n s  f o r  Pm =  1 a n d  N u =  0 ,  1 , 5  a n d  1 0  a r e  t h e  

s a m e  a s  t h o s e  o f  W i l s o n ’s ,  w h i l e  t h e  l o w e r  p a r t  o f  t h e  c u r v e s  Pm =  0 . 5  a r e  l o w e r  t h a n  

t h o s e  o f  W i l s o n ’s a n d  f o r  Pm =  0 . 1  a r e  m o r e  l o w e r  a s  s h o w n  i n  f i g u r e s  5 . 1 0  u ,  5 . 1 0  6 , 5 . 1 1 ,
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Pm = 0.5.
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Figure 5.7: ( R c — 7t2Q ) / Q 2N is plotted as function of Q for N u = 1, 102 and 104 when 

Pm = 0.5.

5.12 a, 5.12 b and 5.13.

5.10 .2  D eform able Free Surface

In the case of a deformable free surface with Cr /  0 , the m arginal stability  curves are 

slightly different from those of Wilson for any value ol Pm less than  unity, even when 

Pm =  1 for most cases. Consider Cv =  0, 0.005, 0.01, 0.011 and 0.012 when Pr — 1, 

Pm =  1, <3 =  0, B= 1 and N u =  0, as well as the convexity of curves of critical M arangoni 

num ber M c and a corresponding wavenumber a th a t are p lotted as having Rayleigh 

num ber R a in figures 5.14 a and 5.14 6 . These have the reverse convexity of those of
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Figure 5.8: R c/Q  and [ac/ Q x̂ h) are plotted as function of Q for N u =  1, 102 and 1 0 1 

when Pm =  0.1.

\  K  = 10

Logio{{Rc -  7r2Q ) / Q 2/3) versus LogioQ.

Figure 5.9: (R c — '\ 2Q ) I Q 2̂ 1 is plotted as function of Q for N u =  1, 102 and 104 when 

Pm = 0 .1.

Wilson except for Cr =  0 . Moreover, the curves for Cr = 0.011 and Cr =  0.012  change 

their direction at M c = 20 (see figures 5.14 a and 5.14 6). However, when Pm =  0.1. 

figures 5.15 a and 5.15 b are the same as figures 5.14 a and 5.14 5, except th a t the curve 

for Cr =  0.011 does not change its direction. The effect of the M agnetic P rand tl number 

Pm is not rem arkable in these cases because the value of Q is not large enough to cause 

the overstabilitv case.

Figures 5.16 a, 5.16 6, 5.17 a and 5.17 b show the values of the critical Marangoni num ber 

M c and the corresponding wavenumber ac and are plotted as functions of Q when R a =  

300, B 0 =  1 and N u =  0 for the values Cr -  0. 10-<), 10“°, 10-4 , 10-3  and 10“ 2 when 

Pm =  1 and Pm =  0.1. For each of the figures 5.16 a and 5.17 o, there is a certain  point
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Figure 5.11: M c/ Q 3^4 p lotted as function of Q for N u =  0 , 1 ,5  and 10 

when Bn = 0 and Pm = 0.5. .

at which the curve changes direction right and then upward. These curves are different 

from W ilson’s whereas in figures 5.16 b and 5.17 b they are the same.

The critical Marangoni num ber Mc and the wavenumber ac are plotted as functions of 

Cr when R a = 300, B 0 =  1 and N u =  0 for the values Q = 1, 102, and 104 when Pr =  1 

and Pm = 1. The results in figures 5.18 a and 5.18 b are the same as those of W ilson, 

while the results are different from those of Wilson for Pm = 0.1, as C r increases. I he 

value of M c increases when Q = 104 only; otherwise it decreases when Q = 1 and 10 . 

Moreover, the parts of curves parallel to the CV-axes in 5.19 a and 5.19 b. are in the 

opposite direction to those in figures 5.18 a and 5.18 b when Pm = 1
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R eal and Im aginary 0.6$ R eal and Im aginary
E igenfu n ction

4— 1v u — 10

Nu = 5

Nu = 1

N u = 0

4 6 Q 2 4 o q

a: Logio(Mc/Q ) versus LogioQ b: Logi0(ac/Q 1/4) versus Log10Q

Figure 5.12: M c/ Q  and ac/ Q 1̂ 4 are plotted as function of Q for N u =  0 , 1 ,5  and 10 when 

B0 =  0 and Pm = 0 .1 .
R eal and Im aginary  

E igenfunction

A/c-lb6"

4 6 Q

L o g io ( (M e -  Q ) /Q 3/4) versus Log10Q

Figure 5.13: M c/ Q 3//4 plotted as function of Q for N u =  0. 1, 5 and 10

when B 0 =  0 and Pm = 0 . 1 . .

Figurs 5 . 2 0  a, 5 . 2 0  6, 5 . 2 1  a and 5 . 2 1  b show tha t the critical values of R c and correspond­

ing wavenumber ac are plotted as functions of Q when M  =  2 5 ,  B 0 =  1 and N u =  0 at 

the values Cr = 1 ,  1 0 _ 1 , 1 0 -2  and 1 0 “ 3 and for Pr =  1 and Pm =  1 . As Q increases, the 

values of R c and ac rem ain constant up to certain points depending on the value of Cr 

then they sta rt to  increase as shown in figures 5 . 2 0  a and 5 . 2 0  b and they are different 

from W ilson’s, i.e. the curve for C r  = 1 is lower than the curve for Cr = 1 0 -3  which is 

the opposite to those of W ilson's. Now for Pm = 0 . 1 ,  curves of figures 5 . 2 1  a and 5 . 2 1  b 

are to tally  different from those in 5 . 2 0  a and 5 . 2 0  b.

Figures 5.22 a, 5.22 6 , 5.23 a and 5.23 6 display critical the Rayleigh num ber Rc and a 

corresponding wavenumber ac which are plotted as functions of Cr when M  = 25, B 0 - 1



R eal E igen fu n ction

=  0.011

Cr =  0.012

=  0.005
Cr =  0.01

a: M c versus R a

R eal E igen fu n ction

25o 400

b: ac versus R a.

= 0.005 
\  Cr = 0.0  I

v .Cr =  0.012 -A ^ C r  =  0.011

Figure 5.14: M c and ac are plotted as function of R(l for Cr =  0 . 0.005, 0 .1, 0.011 and 

0.012  when Q =  0, B 0 =  1, Nu = 0 and Pm = 1.

Real E igenfunction

b: ac versus R a.

Real E igen fu n ction

C r =  0.012

Cr =  0.011
Cr =  0.01 ->

=  0.00520

200 R  400 600

a: A/c versus Ra

F i g u r e  5.15: M c a n d  ac a r e  p l o t t e d  a s  f u n c t i o n  of R(l f o r  Cr =  0 , 0.005, 0 . 1 ,  0.011 a n d  

0.012 w h e n  Q =  0, B0 = 1 , N u =  0  a n d  Pm = 0 .1.

a n d  N u =  0 w i t h  t h e  v a l u e s  Q =  1, 102 , 1 0 4 a n d  Q = 10b for Pr =  1 a n d  P,n — 0.1 a n d  

Pm —  1.  T h e s e  f i g u r e s  a r e  t o t a l l y  d i f f e r e n t  f r o m  t h o s e  of W i l s o n .  A t  c e r t a i n  p o i n t s  i n  

t h e s e  f i g u r e s ,  t h e  v a l u e s  of R c a n d  ac d e c r e a s e  w h i l e ,  i n  W i l s o n ’s  f i g u r e s  t h e y  i n c r e a s e  a s  

t h e  v a l u e  of cr i n c r e a s e s .
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,R ea l E igen fu n ction

Real E igenfunction
2"  C r  =  0

f -  Cr =  10~6

<- Cr -  10~5 
<- c r =  1(T4 
f -  Cr = 10~3 C r = 10-6  

Cr = 10-5  n
4"

Cr  =  10" 4 

Cr = 10“ 3

2 -

- 3

Qa: LogioA/c versus LogioQ b: Logio«c versus LogioQ.

Figure 5.16: M c and ac are plotted as function of Q for Cr = 0, 10 (>, 10 :>, 10 4. 

and 10“ 2 when H„ =  300, B 0 = 1, N u =  0 and Pm =  1.

^Im aginary E igenfunction

R eal E igenfunction

a: Log10Mc versus LogioQ b: Logi0«c versus Logi0Q

Figure 5.17: M c and ac are plotted as function of Q for C r  =  0, 10_b, 10“°, H P 4, 

and 10~2 when R a = 300, B a — 1, N u =  0 and Pm =  0.1.



R eal E igenfun ction

Cr = 104

R eal E igen fu n ction A

4

Me
- 9

6 - 4 — 9
Cr

Cr = 102

a: LogioM c versus Logi0CV b: Logio«c versus Logi0Cr

Figure 5.18: M c and ac are plotted as function of Cr for Q = 1, 102 and 104 when 

Rn = 300, B 0 = 1, N u = 0 and Pm =  1.

R eal and C o m p lex  
E igenfun ction

Complex Q =  104

C om plex Q =  10

Real Q =  1

R eal and Im aginary  
Eigenfunction

Imag. Q =  104

Im ag. Q  =  10'

R eal

- 4  - 2

a: Log10A/c versus Logi0Cr

- 3

Q =  1

— 9

■■ 0.9

0.6 
etc 

4 0.3

- 1 a
b: Logio«c versus Logi0Cr

Figure 5.19: M c and ac are plotted as function of Cr for Q =  1, 10" and 104 when 

Ra = 300, B 0 =  1, N u = 0 and Pm = 0.1.
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R eal E igen fu n ction

^— r $

R eal E igen fu n ction

Cr = 10

Cr = 1

- 3

b: Logi0a c versus LogioQa: LogxqR c versus Log]0Q

Figure 5.20: R c and ac are plotted as function of Q for Cr = 10—2, 10“ 10-4 , and 0

when M a — 25, B 0 = 1, N u = 0 and Pm =  1.

R eal E igenfunction

Cr = 10 "2 
Cr = 1 0 " 1

- 3

a: LogioR c versus Logio Q

Real E igenfunction

1 - 3

Cr  =  10" 1

</— »■

b: Logio Rc versus Log10Q

Figure 5.21: R c and ac are plotted as function of Q for Cr = 10-2 , 10-3 , 10-4 , and 0 

when M a =  25, B 0 = 1, N u =  0 and Pm =  0.1.
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Q
a: Logio Rc versus Logi0Cr

R eal E igen fu n ction

Q = 104

- 4  - 2  Cr

b: Logl0Rc versus Log10Q

Real E igenfunct ionA

6 -

0.6
ac

0.3

Figure 5.22: R c and ac are plotted as function of Q for Cr = 10 2, 10 3, 10 4, and 0 

when M a = 25, B 0 — 1. N u = 0 and Pm = 1.

Real and Imagiii B.11Q im ag inary  
Eigenfunct ion

Imag. Q =  104

Imag. Q — 102 

Real Q ~

■■ 6

R c

£ _ 3
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a: LogioRc versus Log10C r

Real and Imaginary  
E i g e n fu n c t io n

; 1.2

Imag. Q = 104
■ 0.8

ac

Imag. Q = 102 /

Real Q = 7 \ y ' _ _  / ■ 0.4

Real Q = 0

— i —t-------------- ------>
- 4 —  9 Cr

b: Log10R c versus LogioQ

Figure 5.23: Rc and ac are plotted as function of Cr  for Q = 1, 10", 104 when M a 

B 0 = 1, N u =  0 and Pm = 0.1.

=  25,
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Chapter 6

Eigenvalue Determination using 

Spectral Methods for Multi-Layers

6.1 In tro d u c tio n

This chapter extends spectral methods for single layers into those for m ultiple layers. The 

analysis deals w ith two layers only but it is clear tha t the methodology expands to many 

layers. A three layer problem in M agnetohydrodynamics is illustrated  later.

6.2 S tab ility  A nalysis of Two Layers

Let Ci and C2 be two layers, the first one stacked 011 the second, so th a t the bottom  of 

C\ and the top of £2  form a common interface, say C. Each layer contains a different 

continuum  but they in teract therm ally, mechanically and m agnetically with each other 

across C and with the world outside across their outer boundaries. The equations de­

scribing the physical problem  are now non-dimensionalised so th a t the  upper and lower 

layers are m apped into — 1 <  z\ < 1 and — l < z 2 < l  respectively. Thus z x =  I is the 

upper boundary of the top layer, z2 =  — 1 is the lower boundary of the bottom  layer and 

zi — — 1, z 2 =  1 both denote the interface between the two layers. The standard  linear 

stability  problem  for this configuration can be system atically reduced to the eigenvalue 

problem

1 t A,' , 17 r> ^  o 1 1 V  , a  D  W  i r  Q 1 \(3\—— — — Ail 1 H B 1 Vi , _---- A2} 2-H----- BA i (6.2.1)
azi Q'i dz2 a 2 ci’2
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where (3\ and fi2 are tim e scales, aq and Q'2 are length scales for the C\ and C2 layers 

respectively, Y\ is an in vector with components yUx, , . . ,  yUm, Y2 is an n  vector w ith com­

ponents yin} A i  and B\  are complex m  x m  m atrices, /12 and B 2 are complex n x n

m atrices and a  is the eigenvalue to be determ ined. In effect, the governing equations in 

layers C\ and C2 have order m  and n respectively and equations (6.2.1) are the repre­

sentation of these equations as a first order system. To complete the  eigenvalue problem, 

equations (6.2.1) m ust be supplem ented by m — 5 boundary conditions on z 1 = 1, n — r 

boundary conditions on z2 =  — 1 and r +  s boundary conditions on zi = — 1, z2 =  1. 

In practice, these boundary conditions relate to the physical properties of macroscopic 

quantities such as stress, velocity, tem perature etc. These conditions appear in pairs; 

one for the upper boundary and one for the lower boundary. The order of the systems 

describing layers Ci and C2 is almost invariably even with s =  ???./2, r — n/2.  Notice also 

th a t the boundary conditions can contain the eigenvalue cr, for example. This happens 

in the Calculus of Variations when transversality conditions are operative. Boundary 

conditions are normally based on therm al, mechanical, m agnetic and other properties of 

each boundary and have the general form:

U p p e r  b o u n d a ry  ( ^  =  1) These conditions describe the interaction of C\ with the 

exterior region zi >  1 and are linear, involving only com binations of the com ponents 

of l i .  In m atrix  notation, they can be expressed as:

y  Vi =  0 , 1 < k < m - s  (6.2.2)

where Uk are a family of ???-vectors with constant entries.

Interface  b o u nd a ry  (.sq =  —1, z2 =  1) These conditions describe the interaction 

between C\ and C 2 and are also linear in nature but now connect the components 

of l'i and 1 2• b i m atrix  notation, they can be expressed as:

P i U  +  Q P '2 =  0 , 1 <  fc < r +  s (6.2.3)

where Pk are a family of ???.-vectors, Qi,: are a family of ??.-vectors, bo th  w ith constant 

entries.

Lower b o u n d a r y  (z2 =  —1) These conditions describe the interaction of C2 w ith the 

exterior region z2 < —1 and are linear in nature, involving only com binations of the
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com ponents of Y2. In m atrix  notation, they can be expressed as:

LZY -2 =  0 , 1 < k < n -  r (6.2.4)

where L{z are a family of n-vectors with constant entries.

6.2.1 T he E xten d ed  Eigenvalue P roblem

It is self evident th a t the structure of the eigenvalue problem (6/2.1) is qualitatively the 

same for each layer and so it is sensible to incorporate them  both into a single problem. 

Let complex N  x N  m atrices A  and B  and N  x 1 vector Y  be defined by

y
r 1 1 r 1 1

Y1

0

— B i  0
A  = Ql 1 

0 — a 2
, B  = OCl

1 „
0 B<2y 2

J Cl'2 L Cl'2 J

S' —k j  —

Pi I  0

0

(6 .2 .5 :

where N  =  n +  m  and I  is an identity m atrix.

clY
S-

d:
A Y  +  a B Y ■1, 1] (6 .2 .6 )

Similarly, the boundary conditions (6.2.2), (6.2.4) and (6.2.3) can be recast in the simpler 

form

C l Y  =  0 1 < k < N  (6.2.7)

where the in terpretation  of Ck is

[P j ,  0] 1 <  /c <  m — 3 ,

Ck — < [P j ,  Qj] j  = k — m  +  s , m  — s  +  1 <  fc <  m  +  r  ,

[0, Lj] j  = k — m  — r , m  +  r +  1 <  k < N  .

The trea tm en t of the boundary value problem now proceeds similarly to  th a t in the single 

layer situation for N  independent variables with the appropriate in terpreta tion  of Y .
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Chapter 7 

Convection in a Horizontal Porous 

Layer Superposed by a Fluid Layer

7.1 In tro d u c tio n

Let C\ and C2 be two horizontal layers such tha t the bottom  of the layer C\ touches 

the top of the layer C2. A right handed system of Cartesian coordinates (x.; i =  1 ,2 ,3) 

is chosen so th a t the  interface is the plane x% = 0, the top boundary of C\ is x$ =  dj 

and the lower boundary of C2 is x 3 =  —dm. Suppose th a t the upper layer C\ is filled 

with an incompressible viscous fluid whereas the lower layer C2 is occupied by a porous 

m edium  perm eated by the fluid. Gravity acts in the negative direction and the porous 

m edium  is heated at its lower boundary. Convection takes place in which tem perature 

driven buoyancy effects are dam ped by viscous effects. A stationary fluid with a therm al 

gradient in the X3 direction (the so-called “conduction solution” ) is one possible solution 

to this problem  and so it is natural to investigate its stability. This question has recently 

been addressed by Chen [5] who derived the appropriate equations.

Briefly, the fluid flow in the porous layer, with thickness dm, is governed by D arcy’s law, 

whereas the fluid flow in the upper layer £ 2,with thickness d /, is governed by the Navier- 

Stokes equations. Convection is driven by the tem perature dependence of the fluid density. 

Typically, the Oberbeck-Boussinesq approxim ation is made in which concepts like local 

therm al equilibrium , heating from viscous dissipation, radiative effects etc. are ignored 

as are variations in fluid density except where they occur in the m om entum  equation. 

Let T  denote the Kelvin tem perature of the fluid and T0 be a constant reference Kelvin
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tem perature. Then for the purpose of this work, the fluid density pj is related to T  by

PI =  pQ[l -  a ( T  — T0)] , (7.1.1)

where p0 is the density of the fluid at To and a  (supposed constant) is the coefficient of 

volume expansion of the fluid. In many situations (7.1.1) is inadequate. For example, the 

description of w ater1 around 4°K. However, the objective here is to em ulate the work of 

Chen [5].

7.2 T h e  G overn ing  E q u a tio n s  of N a tu ra l C onvection

The field equations for this problem are w ritten separately for the  porous medium and 

overlying fluid layer. The governing equations for porous m edium are represented by

Po d~Vm j.t
~ T ~ ^r  ^  - v p m -  — v m + pf g ,
4> d t  K  ( 7  9  9 )

d T  ' '
{pc)m- ^ -  T  (pcp) /V m.VTm =  kmV 2Tm

where Tm is the Kelvin tem perature of the porous medium, V m is the solenoidal seepage 

velocity, Pm is the hydrostatic pressure, p  is the dynamic viscosity of the fluid, K  is 

the perm eability of the porous substrate, cf> is its porosity, km is the overall therm al 

conductivity of the porous m edium, (pcp)j  is the heat capacity per unit volume of the 

fluid at constant pressure and [pc)m is the overall heat capacity per unit volume of the 

porous m edium  at constant pressure. In fact,

( p c ) m =  t y p c p ) /  +  (1 -  4>){pcv )m

where (pcp)m is the heat capacity per unit volume of the porous substrate. The governing 

equations for the fluid layer are

< ° ° f i r  +  v ' - v v 7) =  - v P /  +  MV2v ,  +  P ;g
*  (7.2.3)

( p ^ j ^  + V j . V T j )  = kf V %

where Tj  is the Kelvin tem perature of the fluid layer, V / is solenoidal fluid velocity, Pj 

is the hydrostatic pressure and kf  is the therm al conductivity of the fluid.

1 G eorge et. al. [11] descrif.es convection  in lakes in w hich the k o tto m  can l.e represented f y  a porous

layer w hich is under-pinned t y  an im perm eakle perm afrost koundary.
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7.3 Boundary C onditions

The convection problem  is completed by the specification of boundary conditions at the 

upper surface of the viscous fluid layer, at the interface between the fluid and porous 

medium  layers and at the lower boundary of the porous medium  layer. M any combinations 

of boundary conditions are possible but for comparison with Chen [5], x 3 =  clj is assumed 

to be rigid and held at constant tem perature Ti(, whereas x 3 =  — dm is assumed to be 

im penetrable and at constant tem perature T). In term s of ioj and it>m, the axial velocity 

com ponents of the fluid in £ i  and £2  respectively, these requirem ents lead to the three 

conditions:

T>(df) =  r „ ,  Wj ( dj )  =  0 ,  9Wg j . ~ -  =  0 , (7.3.4)

on the top boundary C\ and the two conditions

Tm(-c lm) =  Ti , wm{ - d m) =  0 , (7.3.5)

011 the lower boundary of £ 2- S trictly speaking, the rigid boundary condition 011 x 3 =  cl/ 

is V/  =  0; the form at (7.3.4) specifically uses the fact tha t v j  is solenoidal (incompress- 

iblity constraint). The fluid/porous-m edium  interface boundary conditions are based on 

the assum ption th a t tem perature, heat flux, normal fluid velocity and norm al stress are 

continuous so th a t

T.„(0) =  7 /(0 ) , =  k t ° m ,
. 5X3 d x > (7.3.6)

tBm(O) =  to /(0 ) , - P / ( 0 )  +  2AÎ h i  =  -P ,„ (0 )

respectively. This leaves one final condition to be specified on the interface. Several 

possible form s2 have been proposed for the missing condition bu t the m ost popular of 

these is undoubtedly due to Beavers and Joseph [2] who suggest th a t

dUf O-BJ , x dVf OCBJ f v
o — u m)i r) — /-yrluf  Vm) t (/.3.7)
d x 3 s / h  d x 3 v/A

where u / ,  v j  are the lim iting tangential components of the fluid velocity as the interface is 

approached from the fluid layer £ i} whereas u rn, vm are the same lim iting com ponents of

3 Jones [23] proposes con tinu ity  o f shear stress at the interface . In truth , the nature o f th is boundary  

con d ition  has little  im pact 011 results under m ost circum stances.



tangential fluid velocity as the interface is approached from the porous layer C3. Clearly, 

discontinuities in shear velocity across the interface are inherent in this specification of the 

last boundary condition. Equations (7.2.2), (7.2.3) together w ith boundary conditions

(7.3.4), (7.3.5), (7.3.6) and (7.3.7) possess a static (equilibrium) solution in which the 

fluid is stationary everywhere and heat is conducted across the layers in accordance with 

the therm al boundary conditions. Specifically,

V /  =  0 ,  V m =  0  ,

and the static  tem peratu re  and hydrostatic pressure fields satisfy the equations

—V P m +  p /g  =  0 , —V P / 4- p /g  =  0 , V 2Tm =  Y 2T/ =  0 , (7.3.8)

together w ith the exterior boundary conditions

Tf (df ) = T u , Tm( - d m) -  I) , (7.3.9)

and the interfacial conditions

Tm(0) =  7>(0) , =  P,(0)  =  P,n(0) ■ (7.3.10)
OX3 OX3

In conclusion, it follows almost im m ediately tha t the equilibrium tem peratu re fields in

the fluid and porous m edium  are respectively

T ,  =  T o  -  (T o  -  T . , ) y  0  <  i-o  <  dj  ,

(7.3.11)
T m =  T 0 -  ( T ,  -  T o ) / 2 - - d m < x 3 <  0 ,

where To is the tem perature on C and is determ ined by the continuity of heat flux across

x3 =  0 .

7.4 Perturbed Equations

Suppose th a t the s ta tic  equilibrium solution is now perturbed so th a t the velocity, pressure 

and tem peratu re fields in the fluid and porous layers are respectively



Taking account of the properties of the equilibrium  solution, it follows from the general 

field equations (7.2.3) and (7.2.2) th a t Vf, pf  and Of satisfy

P a { ^ -  +  V j . V v } ) =  -S7pj  +  -  p0aBj g

(pcP)j
9&J , ( T o - T . )_  + V l . ( y e ! - ^ — e 3

(7.4.14)
k , V H ,

(7.4.15;

>/
where v j  is solenoidal whereas v m, pm and 0m satisfy

po d v m p
~± Ci j. — V m pQCxOm Q ,
<f> a t  k

\ fryQ (Ti — Tq)^ \  _ l ^ 2 a
\PC)m T  [pCpJfVm • ((V Um ^ — m m '

w ith v m solenoidal. The modified boundary conditions on the upper boundary of the 

fluid layer (.t3 =  d /) , the fluid/porous interface (;r3 =  0) and the lower boundary of the 

porous layer (a;3 =  — d m ) are respectively

e , (d j )  =  0 ,  w,{d t ) =  0 ,  ^ 0 1  =  0 ,

«/(o)  =  m o ) ,  =d x 3 d x 3

■P/(0 ) +  =  - p m (0 ) , i uf (0 ) =  w m (0 ) , (7 .4 .16)

duf(0)  a Bj , d v j ( 0) a Bj . f
dx  ~  \ / K  wm(0)) 5 i;m(0)) 5

0m ( clm) — 0 , ( dm) — 0 .

7.5 N o n -d im en sio n a lisa tio n

The non-dim ensionalisation of (7.4.14), (7.4.15) and the boundary conditions (7.4.16) is 

technical bu t routine. Nield [32] presents a detailed description of the procedure. Most 

im portantly, each layer has a different length and tim e scale. Using the  scaling suggested 

by Chen & Chen [5], non dimensional spatial coordinates ap, tim e f / ,  pertu rbed  velocity 

b / ,  pressure pj  and tem peratu re Of in the upper (fluid) layer are introduced by the 

definitions
A/^' “ J J fr    7



Here A/ is the therm al diffusivity of the fluid phase and is defined by Xj — k j / ( p c p)f. 

W ith this change of variables, the equations (7.4.14) describing the  m otion of the fluid 

layer now assume the non-dimensional form

dv

d j y
d i f

t  +  v f . V {i>j =  P t j  [ -VjPf  + V j v f +  Ra/0/ea]
1 (7.5.18)

dt

+ -  sign(T0 -  T„)e3) = V p /

where Piy and R a/  denote respectively the P rand tl number and Rayleigh num ber of the 

fluid layer and are defined by

k  O gad)\T0 - T u\
P r /  =  - i — , Ra-/ = --------  r-------• ((.5.19)

p0Xj pXf

A similar procedure is applied to the porous medium in which non- dimensional spatial 

coordinates £cm, tim e lrn.: perturbed velocity v m, pressure pm and tem peratu re 0m are 

introduced by the definitions

r l2 \  ; , *______________ S'm A
X  — Clm X m , t m — ~ t

Am (7.5.20)

P,n =  ^ P ™  =  \T ‘ -  r o | < L  •A

Here Am is the therm al diffusivity of the porous medium and is defined by Am =  km 

W ith this change of variables, the equations (7.4.15) governing the motion of the fluid in 

the porous layer now become

Da ()v.m
<f> dt,

fh?n  ̂ V rnPrn "f~ Ham$J7].63j ,

Gm^ r  + -  s' s* (T> ~  T»)e 9  =  V W ,

(7.5.21)

where Gm =  (pc)m/(p c?J)j and P rm, Da and R am denote respectively the P rand tl num ber, 

Darcy num ber and Rayleigh num ber of the porous layer and are defined by

p> P -p, A gpoocli. dm\T{ — To| /7 00^
P 1'tn ~  — r— , Da — —- , R am =   ------------   . (7.5.22)

Po\n U>7n

The scalings (7.5.17) and (7.5.20) are now used to non-dimensionalise the boundary con­

ditions (7.4.16). The procedure is straightforward and yields

0/(1) =  0 , t5/( l)  =  0 , ^ 4 2  =  o ,
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6f(0) — er^m(O) ,
dx3 dx3

o dwj_ 
d x 3

£TdDa>(pj ~  2 ^ )  =  pm , tj'iu/(0) =  iwm(0) , (7.5.23)

d u j  Q'bj , , , . dvj  a Bj , , a \
eTd x 3 ~  d V D ^ {CTUJ t T 9 x 3 ~

^ m (- l)  =  0 , Wm(- 1 )  =  0 .

where the param eters e/’, d and k are defined by

d j  dm * km
eT = j  , d = —  , k =  — .

k dj k f

7.6 L in ea risa tio n  of P ro b lem

Until this point, no approxim ations have been m ade in the derivation of the  perturbation  

equations. All subsequent analyses in this chapter are based on the linearised version of 

equations (7.5.18) and (7.5.21), obtained from them  by ignoring all “product term s’1. For 

the fluid layer, wj  and 6j  satisfy

d v f
d/  =  ?vJ [ - V Jp{ + V } v ,  + '[U/ 0Je 3\

f r
d t ;  ■ A =  v p ,

(7.6.24)

and for the porous layer, wm and 6ra satisfy

] XT ’ "  ^mPm T  Ra?7id?7j63! ,
m  * d t”  1 J (7.6.25)

=  V p ) m .
o t m

where H  — sign(To — Tu) — sign (I) — To) and the “h a t” superscript has been dropped 

although all variables are non-dimensional. Since the boundary conditions (7.5.23) are 

already linear, no further action is required here except to remove superscripts.

By taking the double curl of the m om entum  equation in each layer, the hydrostatic 

pressures are suppressed. The specification of the final problem is com pleted by taking 

the th ird  com ponent of the reworked m om entum  equation in each layer together w ith the 

appropriate energy equation. In the fluid layer

^  V 2wj  =  V 4iuj +  Ra./A2d/
' J J J (7.6.26)
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and in the porous layer

1 Da d
v  wm = —y 2ium +  Ram a 2#-pi i ^  rn ' iii i ?

P r“  $  dt  (7.6.27)
= V 20m .

The Beaver-Joseph and norm al stress interfacial boundary conditions m ust be reworked 

to elim inate pressure and horizontal components of velocity. H ydrostatic pressure term s 

are removed by com puting the two-dimensional Laplacian of the boundary condition and 

by using the divergence of the respective m om entum  equation to elim inate the Laplacian 

of pressure. Similarily, both Beaver-Joseph conditions can be combined together by con­

structing the two-dimensional divergence of the tangential components of fluid velocity. 

The upshot of these considerations is th a t these boundary conditions are transform ed to

# * ' D* a s  ( v ’ " '  -  w r w + -  -  ( k s s + ’ )  ■ ( m 2 S )

* d (  d V ^ d w j \  dwm 
t r d —— 10/------------T—L =  —  . (f.6.29)

Ox3 \  cvBj d x 3 J OX-3

7.7 L in ea risa tio n  of E q ua tions

The linearisation of the equations (7.6.27) and (7.6.26) and the related boundary condi­

tions is the resultant vector obtained by applying combining the relationships:

wm( l ,x )  =  wm(x3) exp [z(pmx +  qmy) +  amt] ,

6m(t, x) =  dm(x3)exp  [z(pma: +  qmy) +  crmt\ ,
(7.7.30)

wj( t ,  x) =  w j{x 3) exp [i(pf x +  qjy)  +  a ft] ,

0 / ( f , x )  =  Of (x3)exp[i(pfX +  qjy) +  (Tft] .

The governing equation of two layers can be represented as a system of equations, called 

the basic equations. Expressions (7.7.30) are substitu ted into equations (7.6.27) and 

(7.6.26) to obtain

-  a2f )wf  =  (D2 -  a2)2wf -  R a f a)Bf  , 

cr/0/ — to j  +  (D2f -  a))6 f  ,
(7.7.31)

a a"‘ iD m ~  am)‘W’n =  {D2m ~  CL2n)lQm +  R a ^ lfy fy  ,
<f> Pl'i

— W-m T  (D m ">
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where — p2m -j- q2n, aj  =  pj  +  qj are non-dimensionalised wave num bers in the porous 

m edium  and fluid respectively. For a given set of physical param eters and given am, R a?n 

is determ ined by the condition th a t the real part of <7/ and a m are zero. However, in this 

particular problem  it is a lion-trivial fact th a t aj  and am are always real; in fact, there 

is a principle of exchange of stabilities3. Hence for a. given am, R am is com puted when 

cr/ — am = 0. The eigenvalue problem for crm and <7/ is completed by the specification 

of boundary conditions at x 3 =  1, x 3 =  0 and x 3 =  — 1. Pressures are com puted from 

the two-dimensional divergence of the m om entum  equations whereas non-axial velocity 

com ponents are elim inated by judicious use of the incompressibility constraints. Using 

these ideas, it can be verified from (7.5.23), (7.6/28) and (7.6.29) th a t the final boundary 

conditions are:- 

Upper boundary x 3 = 1

wj  =  0 , Djiuj  =  0 , 0j =  0 , (7.7.32)

Middle boundary x 3 — 0

Of — £ T ^ m  i -U f0 f  — D m 0m , LCm  — t T W f  ,

(7.7.33)

Lower boundary x 3 =  — 1

(7.7.34)

D miJ)

D f ‘4'

Q, f  —  c lc im  ,

d2
(7.7.35)

3A s a w orking rule, sta tion ary  convection  is usually  the only d estab ilising  m echan ism  w hen tw o effects 

are com p etin g  (v iscosity  and therm al here) l ut once another stab ilisin g  effect such as a m agn etic  field  

com es in to  play, overstab ility  now becom es possib le, th at is, sta tion ary  eigenvalues are fu lly  com plex.



7.8 F irs t  O rd e r F o rm u la tio n

Let variables 3/1, . . . ,  3/10 be defined by

l/i =  w j  , 1/2 =  D j W f  , 3/3 -  Dj i Of  ,

1/4 =  D ) w s , 3/5 =  , 3/6 =  D /0 / , (7.8.36)

1/7 — 1 1/S “  Dmwm 1/9 0m , i/10 Dm0m .

The basic equations (7.7.31) can now be represented by the system  of 10 first order 

differential equations

Dfiji =  i/2 ,

D / 3/2 =  i/s ,

D / f / 3  =  — i/4 ,

D /3/4 =  2aj3/3 -  a}t/i +  R a/a}y5 +  p^—(2/3 -  «/2/i) ,

D/2/s =  1/6 ,

D /I/o  =  a J t /5 -  l/i +  cr/1/5 ,

D mi/7 =  3/8 ,

•? 9 D a (7m . .
Dmy8 =  <1/7 -  Ram< i/g  -  — -  i/7) ,

0  1 1771

Drn VQ — i/10 7

D mi/io — < 3/9 3/7 T Gm<Tm3/9 7

(7.8.37)

where

(7.8.33)
k

In term s of 3/1, . . .  , 3/10 , the boundary conditions (7.7.32), (7.7.33) and (7.7.34) are re­

expressed in the form at 

Upper boundary = —I

1/1 =  0 ,  1/2 =  0 , 1/5 =  0 ,  (7.8.39)

Interface boundary £3 =  0

l/i -  £ t ! /t  =  0 , 1/6 -  l/io =  0 ,

1/s -  eri/ii =  0 , i/s =  deT(y2 -  Ai/s) , (7.8.40)

9 -~c/2Da cr Da cr
trcl Da('t/4 — 3a/i/2) +  1/s =  £r« * p - ^ 2 7“ p  . "1/s 1A) r i ’/ <p r r m
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Lower boundary ;r3 =  — 1

1/7 =  0 ,  t/9 =  0 . (7.8.41)

where A =  r /x /D a /ag j.

Choose one of am and cry, say for example am, and replace the value of cry from the 

relation (7.8.38) and nom inate the chosen one to be cr. The eigenvalue problem for 

equations (7.7.31) can be reform ulated in the form

A Y  =  a  BY,

where A and B are real 10 x 10 m atrices. These matrices are expressed by

A =

B

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

- a } 0 2 a) 0 ajR ay 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

- 1 0 0 0 2
y 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 CL2III 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 - 1 0 0

0 0 0 0 0  0 0 0 0

0 0 0 0 0  0 0 0 0

0 0 0 0 0  0 0 0 0

a2 cl2 

fcPry
0

cl2 

k ?  ry
0 0  0 0 0 0

0 0 0 0 0  0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0  0 0 0 0

0 0 0 0 0  0
Da 9

Da D 0n
L~D , m IT )  m  01 I’m

0 0 0 0 0  0 0 0 0

0 0 0 0 0  0 0 0 Gm
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Each variable of y i , are assigned Chebyshev spectral expansion of order N  and

the coefficients of the expansion of these variables are replaced into a column vector Y  

of dimension 14(iV +  1). The eigenvalue problem then assumes the form at B Y  = a F Y \  

where m atrices E  and F  have block form

E

D - I 0 0 0 0 0 0 0 0

0 D - I 0 0 0 0 0 0 0

0 0 Df - I 0 0 0 0 0 0

cYjI 0 - 2  a ) I D —a^R a/7 0 0 0 0 0

0 0 0 0 D - / 0 0 0 0

I 0 0 0 - a j l D 0 0 0 0

0 0 0 0 0 0 Fm - I 0 0

0 0 0 0 0 0 - a2 I D R amamI 0

0 0 0 0 0 0 0 0 D _ /

0 0 0 0 0 0 I 0 ~ al J D

, (7.8.44)

F

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

a2J 2 
J  I
k?Tf

0 /  I  
fcPiv

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
13 a on 1 Da

D 0 01-n . m 0Pr,u
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 GmI 0

(7.8.45)

w ith D = D j  = D m since the two layers have width one. Finally, it remains to 

incorporate the  boundary conditions (7.8.39) into matrices E  and F.  Table (7.8.46) 

shows the  forms of the boundary conditions (7.7.32), (7.7.33) and (7.7.34) expressed in
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term s of the variables y i , . . . ,y io  hi (7.8.39), (7.8.40) and (7.8.41) and the equivalent 

spectral representations in term s of rows of E  and F  respectively.

These conditions replace the {N  +  1 )th, 2(TV +  1 ) / / i , . . . ,  10(/Y +  1)1 h rows of E  and F  to 

produce the final forms for these matrices prior to the eigenvalue calculation.

M anifestation in M atrix

E F

[p, 0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,0 ]

yi =  0

[0,0, 0 ,0 ,  0 ,0 ,  0 ,0 ,  0,0]

[0, p, 0 , 0 , 0 , 0 , 0 , 0 ,  0,0]

1 / 2 = 0

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

[ 0 , 0 , 0 , 0 , p ,  0 , 0 , 0 , 0 , 0 ]

1 / 5 = 0

[ 0 , 0 , 0 , 0 , 0 , 0 ,  0 , 0 ,0 , 0 ]

[e^q, 0, 0, 0, 0, 0, p, 0, 0, 0]

1/7 =  eTyi

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

[ 0 ,0 , 0 ,0 , q ,  0 , 0 , 0 ,  eTp,0]

1/5 =  C T l/9

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

[0, 0, 0, 0, 0, q, 0, 0, 0, p]

1/6 =  l / io

[0,0, 0 , 0 , 0 , 0 ,  0 ,0 ,0 , 0 ]

1 cl2 a  l a
—y4 +  3 as y2  =  — TA- ^

erd3Dci k P i /  e^ cF ^ lim
j2 q.

[0,3a2,q, 0, - q ,  0, 0, 0, 0,0]  [0, 0 , 0 , 0 , 0 , 0 ,  . /  p, 0, 0)
J P aeTc/3___________  k 1 17_______ d6cT<p r r m______

d\/D a
 y  3) =  i/s

®BJ

[0, c k T  q, - r i2£T— q, 0 , 0 , 0 , 0 ,  - p ,  0,0]  [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
&BJ ____________

[ 0 , 0 , 0 , 0 , 0 , 0 , q ,  0 ,0 ,0 ]

1/7 =  0

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

[0,0, 0, 0 , 0 , 0 , 0 ,  0, q, 0]

1/9 =  0

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

The m atrices F  and E  are loaded with a Fortran77 program using the routine F02B JF
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of the NAG libraries in appendix 5 to find the results of this problem  for the first order 

system.

7.9 R esu lts  an d  R em ark s

Chen [5] com putes the stability  curves for therm ally-driven convection of a fluid layer with 

superposed porous layer heated from below for isotherm al rigid boundaries, w ith therm al 

conductivity ratio k = 1.43, Darcy num ber S = 4 x 10—6, Beavers-Joseph constant a s j  =  

0.1 and for a variety of reciprocal depth ratios ranging from 0.33 to 0.1. The results of this 

thhesis are illustrated in table 7.1 and figure 7.1. They are qualitatively similar to  those 

of Chen, bu t quantitatively  dissimilar. For example, Chen quotes 40 (approxim ately) 

as the m axim um  peak of the stability curve cl~l — 0.12, whereas the calculations here 

suggest something nearer 27. The differences are too large to be dismissed. Of course, 

one obvious explanation for this discrepancy is tha t the spectral m ethod has failed. To 

check this possibility, the analysis was extended to the case of a porous medium  layer 

sandwiched sym m etrically between two layers of viscous fluid, a problem already treated  

by Pillatsis et al [40]. A significant number of Pillastsis results were tested here w ithout 

deviation. Such high quality results are very much to their credit bu t they also validate 

the methodology. The three layer problem has not been presented here because it is 

essentially similar to the two layer problem but more technical.

A closer exam ination of C hen’s m ethod reveals th a t a 4th order R unge-K utta integrator 

is used as the core of a shooting m ethod geared to the calculation of a 7 x 7 determ inant. 

Of course, this technique is intrinsically unsound, both numerically and logisticallv. The 

evaluation of high order determ inants, and 7 is high, is prone to serious rounding errors not 

to m ention the numerical errors involved in estim ating the entries of the determ inant. If a 

determ inating m ethod is to be used at all then ideally it should be im plem ented using the 

com pound m atrix  methodology. A possible (unsophisticated) application of com pound 

m atrices determ ines 20 variables in the fluid region, 6 in the porous m edium  region and 

com putes target functions using Laplace’s expansion of a determ inant. The conclusion is 

clear. This im plem entation of spectral m ethod offers a straightforward and powerful way 

to determ ine critical eigenvalues irrespective of their type.



Wave No. a Critical Rayleigh No. R c

d =  0.1 d = 0.12 cl =  0.13

i—i
oII c / -  0.2 d = 0.33

1.0 31.23 28.67 27.46 26.27 18.05 2.689

2.0 19.20 17.77 17.02 16.20 8.878 0.863

3.0 21.14 19.48 18.42 17.11 5.929 0.486

4.0 26.51 23.68 21.39 18.34 4.176 0.343

5.0 33.62 27.21 22.00 16.79 3.162 0.274

6.0 41.03 26.99 19.71 14.21 2.551 0.239

7.0 45.79 24.28 17.00 12.04 2.163 0.221

8.0 45.58 21.40 14.77 10.40 1.908 0.215

9.0 42.60 18.98 13.04 9.182 1.736 0.216

10. 39.12 17.05 11.73 8.273 1.622 0.224

11. 35.90 15.53 10.70 7.587 1.551 0.238

12. 33.12 14.32 9.902 7.068 1.506 0.257

13. 30.78 13.37 9.302 7.774 1.488 0.282

14. 28.83 12.62 8.831 6.379 1.491 0.314

15. 27.21 12.03 8.472 6.164 1.511 0.351

16. 25.87 11.57 8.203 6.780 1.360 0.396

17. 24.77 11.21 8.010 5.916 1.601 0.440

18. 23.86 10.95 7.880 5.867 1.668 0.508

19. 23.12 10.76 7.806 6.454 1.835 0.577

20. 22.53 10.64 7.800 5.890 2.018 0.656

21. 19.80 10.58 7.802 5.954 1.959 0.746

22. 21.78 10.58 7.864 6.051 2.087 0.847

23. 21.46 10.62 7.963 6.179 2.231 0.960

24. 21.30 9.560 8.100 6.350 2.393 1.088

25. 21.22 10.52 8.271 6.524 2.572 1.230

Table 7.1: Rayleigh num ber R c for a given wavenumber a.
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R eal E igen fu n ction
A

40"

R M
<2 =  0 . 1

2 0 -

10 20

Figure 7.1: R am versus am

7.10 Second O rd e r F o rm u la tion

Let ~i, 22, 23 and 25 be defined in term s of iu/, 9j, wm and 9m by 

zi = w j  , Z2 ~  D'jWj , z3 = 9j , Z4 -  wm , 25 =  9m .

Then in term s of these variables, the eigenvalue problem (7.10.46) becomes 

D p i  =  Z2,

D ) z 2  

D j z 3

D l z .

2 a 2jZ 2 — t i j^ i +  Ray <2̂ 23 -f p^~(~2 ~  a y~i) •> 

«y23 — ^1 +  cry23 ,

2 T> 2 ^ a' <Tm / n2 2< nz4 - R a mcC 25
<}) P rT■(^m -  0 * 4  ,

..,*5 — a " 25 — 24 +  ,

with boundary conditions U pper boundary £3 =  1

i = 0 , DfZi  =  0 , 23 =  0 ,
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Middle boundary x3 — 0

23 — t ? z5 7 D j z 3 =  D 4.4 C'j'  ̂1 ,

7 f  dy/D a
t r d  \ V f Z i ------------ 22 D 4

«BJ
(7.10.49)

£r<PD a ( D f z2 -  3a p , * ,  -  ^ D J ^ )  = ~  ( y | f ~  +  1 1 >

Lower boundary £3 =  — 1

-4 —- 0 , =  0 (7.10.50)

d2 d2
Recall th a t D  =  D j — D m and cry =  — crm =  — cr, as m entioned before. It follows

k k
routinely from (7.10.47) th a t cr satisfies the generalised eigenvalue problem  E V  — a F V , 

where E  and F  are respectively the 5 x 5 block matrices

E  =

D 2I - I

a i r  D 2 -  2adl

0

— R a y C i y /

D 2 -  a ) l  

0 

0

and

F  =

- ^ a ) I  
k 1

0

0

0

0

d2
0

I  0
/cPry 

0 /

0 —

Da 1 
cb Pr,

0 0

0 0

0 0

D 2 - a 2mI  Ra ma2nI  

I  D 2 — a21

0 0

0 0

0 0

■(D2 - a 2J I  0

(7.10.51)

(7.10.51

0 0 0 G m l

The form ulation of the eigenvalue problem is now completed by replacing the (M  — 

1)/;/?,, Mth,  (2 M  — 1) Ih and 2M th  rows of E  and F  with term s obtained using boundary 

inform ation. From a m athem atical standpoint, it does not m atter how the two boundary 

conditions are ordered but numerical performance is usually enhanced if boundary data  

is inserted so th a t the largest entries occupy the top right of E  and F.  In term s of the 

M  dim ensional vectors

P =  (P i,P2, • • • ,Pm)  > q  =  (<Zi, <?2, • • •, m )  1

r  =  (r 1, r 2, .. . , rM) , s =  ( s i , s2, . . . ,  sm) ,
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where pk =  1, qk =  ( — 1 )A\  =  (k — I )2 and s k =  (/c — 1)2( —1)* for 1 <  /c <  M ,

The boundary conditions and their locations are sequentially replaced for the M  dim en­

sional vectors p , q, r  and s defined in (7.10.53). It then remains only to replace the 

(M  — 1)7/i, Mth> ... , (5M  — 1)th and 5M th  rows of E  and F  w ith the appropriate 

boundary inform ation.

Row E F

M  -  1

z4 = 0 on n'3 =  — 1 

(0 , 0 , 0 , q, 0 ) (0 , 0 , 0 , 0 , 0 )

M

Zi — 0 on ,r3 — 1 

( p , 0 , 0 , 0 , 0 ) (0 , 0 , 0 , 0 , 0 )

2 M  -  1

Z5 =  0 on n'3 =  — 1 

(0 , 0 , 0 , 0 , r) (0 , 0 , 0 , 0 , 0 )

2 M

Dz\  =  0 on x 3 =  1 

(0 ,s ,  0 , 0 , 0 ) (0 , 0 , 0 , 0 , 0 )

CO i

^3 =  0 on .t3 =  1 

(0 , 0 , q, 0 , 0 ) (0 , 0 , 0 , 0 , 0 )

3 M

z4 — e jz  i = 0  on =  0 

( - e Tq , 0 , 0 , p , 0 ) (0 , 0 , 0 , 0 , 0 )

AM  -  1

~3 — £ t~5 =  o on .t3 =  0 

(0 , 0 , q , 0 , - e Tp) (0 , 0 , 0 , 0 , 0 )

AM

D f z3 - D mz5 = 0 on £3 =  0 

(0 , 0 , s , 0 , —r) (0 , 0 , 0 , 0 , 0 )

5 M  -  1

cP C D (T 
eTd3~D&(Dz2 AcifDzi f D zx) -  D z4 D z 4 on a;3 =  0

k 1 iy (p r r m

( 3cAs, s, 0 , , r, 0 ) ( ' s, 0 , 0 , „ r , 0 )
1 J eTd3Da V & Piy M 3D a P r m

5 M

eTd{Df Zi -  A z2) =  Dmz4 on x 3 = 0

d y Da 1 ,
(s, q , 0 , ,r, 0 ) (0 , 0 , 0 , 0 , 0 )

®b j  era

The m atrices F  and E  are loaded with the Fortran?? program using routine F 02B JF  of 

the NAG libraries, shown in Appendix 5 to find the results of this problem for the second
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Value of Accuracy for Accuracy for Accuracy for Accuracy for

wavenumber

oII J  =  0.12 d =  0.13 d =  0.14

a | R am Rfi?7i21 | R&m k.a^2 | |k a m Ram2 ( | Ra.m Ram21

1 1.400xl0~u 2,250 xlO-10 2 .400x l0"u l . i s o x  io -9
2 e . o o i x i o - 12 5.230xl0_n 1.700xl0~u 3.700x 10“ u

3 1.060x 10-10 1.120xl0_1° 1.070xl0“ 10 1.470x 10_1°

4 1.580x 10-10 2.880xi0 -1° 6 .070xl0“ 10 1 .309xl0 -9

5 5.470x 10“ 1D 1.481 x 10“ 1Q 2.496xlO-10 3 .168x l0”9

Table 7.2: Comparison of D and D2 m ethods in Chen problem

order system.

7.10.1 R esu lts and R em arks

The first order system  (tenth  order system problem) computes the m arginal stability  

curves for a therm ally-driven convection of a fluid layer with superposed porous layer 

heated from below for isotherm al rigid boundaries, with reciprocal therm al conductivity 

ratio A:-1 =  0.7, Darcv num ber 5 =  4 x 10-6 , Beavers-Joseph constant cvjgj =  0.1 and for 

a variety of reciprocal depth ratios ranging from 0.1 to 0.33. The results in this section 

are illustrated in figure (7.1). They are qualitatively and quantitatively similar to those 

of first order system  solutions, illustrated in this chapter. The difference between the 

Rayleigh num bers of a porous medium  Ram for the first order system D and the Rayleigh 

numbers of a porous m edium  Ram2 for the second order system D 2 is com paratively very 

small. Table (7.2) shows some examples of the accuracy of the second order system D2 

com pared to th a t of the first order system D.

7.11 C onclusion

The present results are different from those of Chen regarding the locations of the curves 

of the Rayleigh num bers R ami which are plotted as functions of wavenumbers am. The 

spectral m ethods have a strong ability to solve the multi-layered problem  using both first 

order systems and second order systems. The results of this problem , using both first 

and second order system s, are identical.
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Chapter 8

Finger Convection in a Horizontal 

Porous Layer Superposed by a Fluid 

Layer

8.1 In tro d u c tio n

This chapter describes the onset of finger convection in a horizontal layer of porous 

m edium  of thickness clm. This m edium  is covered and perm eated by a horizontal layer of 

incompressible viscous fluid of thickness dj  in which a solute is dissolved. A right handed 

system  of Cartesian coordinates ;r,- i =  1 . . .  3 are chosen such th a t gravity acts in the 

negative x^ direction and the origin of coordinates is arranged so th a t the fluid and porous 

m edia occupy respectively the layers 0 <  xs < dj and —dm < X3 <  0 . Convection takes 

place in which tem peratu re  driven buoyancy effects and solute effects are dam ped by 

viscous effects. This problem has an equilibrium  solution in which the fluid is stationary  

but there are therm al and salinity gradients in the £3 direction in order to satisfy the 

field equations and boundary conditions. The stability of this equilibrium  solution is of 

practical and theoretical im portance. For example, Hills et al [IS] and Maples & Poirier 

[29] model the directional solidification of m olten alloys as a layer of porous m aterial of 

variable perm eability is separated from its melt by a mushy zone of dendrites. Glicksman 

et al [12] describe the interaction between the solidifying alloy and its m elt by a doubly 

diffusive model.

105



8.2 T h e  G overn ing  E q u a tio n s

Let C\ and £2  be two horizontal layers such tha t the bottom  of C\ interfaces with the 

top of £ 2. A right handed system  of Cartesian coordinates ay, (i =  1 ,2 ,3) is chosen such 

th a t gravity acts in the negative a 3 direction and the interface is the plane £3 =  0. W ith 

respect to  these coordinates, the top boundary of £1 is £3 — dj and the  lower boundary 

of £ 2 is £3 =  —dm. Suppose th a t the upper layer C\ is filled with an incompressible 

viscous fluid containing a dissolved solute (or salt) whereas the lower layer £ 2 is occupied 

by a porous m edium  perm eated by the fluid. Heat is now applied to this configuration so 

th a t convection takes place in which tem perature driven buoyancy and salting effects are 

dam ped by viscosity. One obvious solution to this problem occurs when the fluid is at rest 

and both  layers are spanned by tem perature and salinity gradients in the  X3 direction. 

This is the so-called “conduction solution” whose stability has been investigated recentI3' 

by Chen [5].

Briefly, the fluid flow in the porous layer, thickness dm, is governed by D arcy’s law 

whereas the fluid flow in the upper layer £ 1, thickness c/y, is governed by the Navier-Stokes 

equations. Convection is driven by the dependence of the fluid density 011 tem perature 

and salinity. Typically, the Oberbeck-Boussinesq approxim ation is m ade where concepts 

like local therm al equilibrium , heating from viscous dissipation, radiative effects etc. are 

ignored as are variations in fluid density except where they occur in the m om entum  

equation. The fluid density pj  is related to the Kelvin tem perature T  and salinity S  by

pf = po[l -  a{T  -  To) + 0{S  -  So)] (3.2.1)

where p0 is the density at tem perature To and salinity £0, and cv, /3 (both assumed 

constant) are respectively the therm al and salting coefficients of volume expansion for 

the fluid. It is well known th a t these can be strongly tem peratu re dependent so th a t 

(8 .2 .1) may be inappropriate1 for large tem perature and salinity variations.

Following the approach of Nield [33] and Chen & Chen [5], the m om entum , energy and 

salting equations for the flow of an incompressible viscous fluid through a porous m edium

G e o r g e  et. al. [11] represent pj  1 y a p o lyn om ia l o f order three in their descrip tion  o f convection  in 

lakes in w hich the lo t t o m  can he represented hy a porous layer w hich is under-pinned l:y an im perm eaH e  

perm afrost boundary.
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are
p o d v m p.
j ^ r  =  - VPm -  K V m + P I S

d T
(pc)m - ^  + (pcp); v m.V T m = kmV 2Tm (8.2.2)

4 ^  + v m. V S m =  DmV 25,: at

where the solenoidal vector v TO denotes fluid seepage velocity, Pm denotes pressure, p, de­

notes the dynam ic viscosity (assumed constant) of the fluid, K  and 4> denote respectively 

the perm eability and porosity of the porous substrate, p j  denotes the fluid density and is 

given by the form ula (8.2.1), km and Dm are respectively the overall therm al conductivity 

and mass diffusivity of the porous layer, (pcv ) j  is the heat capacity per unit volume of 

the fluid at constant pressure and (p c ) m is the overall heat capacity per unit volume of 

the porous m edium  at constant pressure. In fact,

{ p c ) m  — 4>{pCp')  f  T  ( f  0 )  ( / ^ p ) ? n ,

where (pcp)m is the heat capacity per unit volume of the porous substrate.

The top layer C\ is filled with incompressible Navier-Stokes fluid in which the conservation 

of mom entum , energy and salting are expressed through the equations

d v  t
=  ~ ~ +  h ^ 2v/  +  P/S  

(Pcv ) A ~ ^ ~  +  v /.V T /) =  k j V ' T j  (8.2.3)

■■ v / - V ' /  =  D j V 2S j

where the solenoidal vector vy denotes fluid velocity and kf  and Dy are respectively the 

therm al conductivity and mass diffusivity of the fluid. The Boussinesq approxim ation has 

been used in equations (8.2.2) and (8.2.3) and the convected term s in the fluid acceleration 

have been ignored and D arcy’s law has been employed as is custom ary in the modelling 

of porous media.

The convection problem  is completed by the specification of boundary conditions on the 

upper surface of the viscous fluid layer, at the interface between the fluid and porous layers 

and at the lower boundary of the porous layer. Many combinations of boundary conditions 

are possible but for comparison with Chen [5], isothermal rigid exterior boundaries are

107



considered giving three conditions 011 each exterior boundary. Thus

Tj  =  Tu , S f  -  5 U, vy =  0 ,  x 3 = df ,
(8.2.4)

Tm — Ti , S m  — k>i , v m.e3 0 , .t3 dm .

where Tu and T) are respectively the tem peratures at the upper and lower exterior bound­

aries. At the fluid/porous-m edium  interface, tem perature, heat flux, salinity, salt flux, 

norm al fluid velocity and norm al stress are assumed to be continuous. This leaves one 

final condition to be specified on the interface. Jones [23] advocates continuity of shear 

stress although this is perhaps an incongruous condition bearing in mind th a t in the 

form ulation of the m om entum  equation for a porous m edium, D arcy’s law, replaces con­

ventional viscous stress. The most commonly used boundary condition is due to  Beavers 

and Joseph [2] who suggest tha t

d l t f  O B J /  x d v j  O B J .  . / o  o  r \

d x 3 ~  J k {u '  ~ Um) ' d x 3 ~  < /K (vi ~ Vm) ' ( '

where uy, v j  are the lim iting tangential components of the fluid velocity as the interface

is approached from the fluid layer C \  whereas um, v m  are the same lim iting com ponents

of tangential fluid velocity as the interface is approached from the porous layer C 2 . Self-

evidently, the Beavers-Joseph2 this condition perm its discontinuities in shear velocity

across the interface. It is verified easily th a t the field equations (8.2.2) and (8.2.3) and

all boundary conditions (8.2.4) are satisfied by the conduction solution

a’3  ri i n  , /  n r> \V/ = o, r / |E = T0 +  (Tt t - r 0) - p ,  S y |s =  So +  ( s u So.I } ^  J  I I l f  U  • \  li< U  1 J  ?

d! d'  (8 .2 .6 )
v,„ =  0 , T„,|e =  T0 +  (T0 ~  T ( ) T  , S m \ E  =  S 0  +  (So -  5 , )^  .

thn
where the interfacial tem perature To and salt concentration So are determ ined by the 

continuity of heat flux and salt flux respectively and take the values

kmdfTi +  k fd mT u__________ Dmdyh/ 4- Dydm5 u ^
0 =  kmdj  +  kt dm ' - Dmdf  +  Dfd,n ' 1

This solution is accompanied by a hydrostatic pressure which is a function of x 3 only.

8.3 P e r tu rb e d  E q u a tio n s

Following the policy of Neild [34] and Chen [5], displacement and tim e are rescaled re­

spectively by dm and d2m!Xm in the porous medium and by dy and d2/X j  in the fluid

3O ften  the num erical results are in sensitive to  the choice o f B eaver-Joseph con d ition  or con tin u ity  of 

shear stress ca lcu la ted  in the porous m edium  in the conventional way.
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where

A/  =  A -  , Am =  ■ (8.3.8)
(PCp)j {PCp)f

W hen non-dim ensional velocity U / ,  tem perature Of, salinity s j  and hydrostatic pressure 

p/  are introduced into the fluid equations (8.2.3) by the definitions

" rp rp | , \T0 - T u\»a
v /  =  —  Uf , Tj = T j \e + ------^ ,

C c l ,  \Su ~  SoW r> n I . ^°/y2=  5 / Is H —  Sf Pj  =  Pf \E +  —j2~Pj ■

The resulting non-dimensionalised fluid equations are

^  + u / . V u /  =  —V p / +  V 2u / +  R a /^ /e 3 — R a ^ s / e 3 ,

(8.3.9)

Piy d t f

d t f  
1 f d s f

1 + P i7 u / .Vfi/  =  sign(To — T u)wf + V 2#/ , (8.3.10)

Le, Vft +  Pl' / u / ' V s / j  =  V A  +  *ign(So -  5 „ > y .

Similarly, when non-dimensional velocity u m, tem perature 0m, salinity s m and hydrostatic 

pressure pm are introduced into the porous m edium equations (8 .2 .2 ) by the definitions

/y „  nr . t  \ i \ T o - T i W a
V771 — l l m  , — J - m \ E  T  . 5

“m /'m
I C C I 2 (8.3.11)

e _  C I , Po _  ^  n _  n I , P°1' .
Z? "T" ^  i * rn —  * m \ E  ~T . . .  P m  iDm A

the porous medium  equations assume the non-dimensional form 

Da 1 <9u,
Pl'm $ d t rn

W

BB
+  Pi'mUm.Vdm =  v 2dm +  sign(T) -  T0)wm , (8.3.12

Bsm
+  u m.V sm =  LemV 2sm +  Lemsign(ty -  S 0)wm ,

o t m

here Da (Darcy num ber) and Gm are non-dimensional num bers defined by

Da =  A  , Gm = A t y  . (8.3.13)
“m [PCp)f

In (8.3.10) and (8 .3 .12), u m and u j  are solenoidal vectors and the nondim ensional P rand tl 

num bers P rm and P 17, Lewis numbers Lem and Le/, Rayleigh num bers Ram, R a/ ,  R a ^
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a.ncl P a ^  are defined by

D TD ^ T r P /Pi'm =  —  , P 17 =  —  , Lem =  —  , Le/ = —  ,
A m  A /  A ?n A /

Rara =  gg | r 0 - T , \ d mK  = g ^ - m
is \m v \ f

T) (s )  ~  ,b ) | d m A  -p (s )  d P l ^ u  "  ■bo | d jPa, — — —  ----------  tlcij — -------- — .
v  Dm J is D j

8.4 L in earised  P ro b le m

The linearearised approxim ation of equations (8.3.10) and (8.3.12) (currently exact) is 

constructed by ignoring all term s involving products of the unknown functions. Self- 

evidently, the linearised equations in the fluid layer are given by

P 17 dt Pj T  ^  ~b P a /$ /e 3 — P ^ / ■>

BO
1 V 2&f +  HTWf ,  (8.4.15)

d t f  
1 d s f

—  V 2s / +  Hs'Wf ,

Le/ d t f

and in the porous m edium  are given by 

Da 1 <9u
Plm $  dt,

=  V 2Sm +  HTw m , (8.4.16)
(Jhm

4> d s m 2
— v S m  T  Ms'UJm 7

Lem d tm

where H t — sign(T) -  T0) = sign(T0 -  Tu) and Hs  =  sign(51 — S 0) =  sign(50 — S u).

From condition (8.2.4), the. unknowns 0m, Of, sm, S f ,  wm and v /  satisfy the boundary 

conditions
Of  =  0 , Sf  =  0 , u/  =  0 , ;r3 =  1 ,

(8.4.17)

0 , n —  0 , S m  —  0 , 0 ,  .T3 1 .

The form ulation of the interfacial boundary conditions is technical bu t straightforward. 

Continuity of tem perature, salinity, normal velocity, normal heat flux and norm al salt 

flux yield sequentially



where d =  d j / d m. Continuity of norm al stress and the Beavers-Joseph slip condition (see

(8.2.5) ) are respectively

dw d? d d?
Pj -  =  TrPm = >  &2pf -  2— A 2Wf =  — A 2Pm • (8.4.19)

o x 3 Da o x 3 Ua

The substitu tion  can be m ade from (8.2.2) and (8.2.3) into (8.4.19) to yield

d 2 1 d f d n j \  . ~ d  , dA d u m d4 d , d \
—— (V u / )  -  —  —  + 2 —  A 2u / )  =  -  — y:-------— — 8. 4. 20)
d x 3 P r / d t /   ̂d x 3 ' d x 3 Da d x 3 <f>Pvm d t m Ko x 3 '

and
d u j  d a Bj , j  , dvf  dabj , - , /o h o-n— —(^ / duinj , — —\vf dum) . (8,4.wl)
d x 3 \/D a  d x 3 CDa

The derivative of the first equation with respect to xq and the second equation with

respect to xq in (8.4.21) can then be added together to obtain

d a B ] d w j  j 2dwm d2wj

{b A 2 2 )

where the param eters t j .  e5, and 75 are defined by

A/ D/ T u - T q S u — S q ,c , 0.r ,
£T =  7— , Q? =  , 7 r  =  77----- 77 ’ 75 =  m  F" ■ (8.-1.23)

A j n i-J m 1Q 1 j j_ 0 /

8.4.1 T he Linearised E quations

A norm al modes solution is sought for equations (8.4.16) and (8.4.15) in which all variables 

■iprn in the porous m edium  and T/  in the fluid have respective representations

i>s = t\f)j{xz)eajt fei P̂fX1+qfX2'l , Vv =  il>m(x3)e<r”'t"'e*1,mXl+qmX*) .

W hen the fluid and porous m om entum  equations are treated  twice by the curl operator 

to remove the pressure term s, it follows easily th a t the fluid layer equations can be recast 

in the form

— a2j ) w /  = ( D 2j  — a2j ) 2w j  — n^R a/#/ +  a ^ R a ^ s /  ,
Pl7

ctjBj -  H r w j  =  (D ) -  a2f )0f  , 0 <  x 3l <  1 (8.4.24)

S f - H s w j  =  (D ) ~ a ) ) s j ,
Le/

the porous m edium  equations then become

(? 7  + 1) +  a^R aW Sm ,

G ma mem - H r w m =  ( £ > * , - c £ )0 m , - 1  <  x 3 <  0 , (8.4.25)

^ ■ s m - H s w m  =  ( D l - a l ) s m .
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From these equations,

dll'!
dx  3
dtp
dx  3

(0 < x 3 <  1) ,

( - 1  <  S3 < 0) ,

cl j  — d c im  , 

d2
ex j  — rrm ,

(8.4.26)

t  Oj = D j W j  = &! = s s =  0 011 Xz =  1 , (8.4.27;

■Wf =  dw m , 7 T ef  = e r  0m ,

D j 9 j  —£ t  DmOm ? D f Sf

dA
D'/Wf -  Za2f D f Wf  +  —  D

'JS^f — i

£-S dd-ni^m •>

& f ^  ddcrr„ _
—  Df Wf  -  — — D m Wm ,

> ®3 =  0. (8.4.28)

-/
ad

7 3 1
[Df ioj  -  d2Dmwm] =  D 2f Wf

<j>PvT

LOm —  d m —  .S'm  — 0 on X :> — — 1 (8.4.29)

8.5 M e th o d  of So lu tion

Let the variables y i , . .  . ,  i / m  be defined by

y i = Wf  , 1/2 =  DfWj  , 1/3 =

2/4 = D ) w j  . 1/5 = 1/6 =

1/7 = s !  . 2/8 =  > 1/9 = ^  m i

i/io = d̂ niCOjn , yn — dm i V l 2 d) J71 0  m

1/13 = j 1/14 = f) s

Then it is straightforw ard to verify th a t equations (8.4.24) and (8.4.25) can be rew ritten 

as the 14th order system:
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Dfiy i -  y2 =  0

^ / ‘t/2 “ 1/3 =  0

-  y<i = 0

D / j /4 +  ahyi -  2a2jiy3 -  R a f a2f y5 +  R a . ^ 2/7 =  -  «/S/i)

^ / y s  -  ye =  0

^ / y 6 -  y i -  a} j /5 =  cr/z/5 

^ / y ?  -  ys =  0

^/ys -  yi -  «/yr = ~ y ?

A ,y 9 -  2/10 =  0

(8 .5 .31)

Anyio “  a2ny9 +  a^nRamyn  -  a^R aj^c/is =  - ^ ^ - ( ^ y i o  ~  a ^ y 9) ,

A n y n  -  2/12 =  0 ,

&  m l! 12 y 9 « m y u  ddm (Jm y \ \  1

D myi3 — 2/14 =  0 ,

n  2 &E m y  14 -  y 9 -  a ^ y i 3  =    t / i3  •Ij0m

d2
To solve this problem , cr =  cr/ is chosen then from the relation (8.4/26)4 a = — crm.

Ct
Each variable of 2/ 1, . . . , 2/14 is assigned a Chebyshev spectral expansion of order N  and 

the coefficients of the expansion of these variables are replaced into a column vector V 

of dimension 14(iY +  1). The eigenvalue problem then assumes the form at E Y  ~  crFY,  

where m atrices E  and F  have respectively block form
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where D f  and Drn have the same values since each layer has a w idth from 0 to 1. 

Finally, it only rem ains to  incorporate the boundary conditions (8.4.27), (8.4.28) and

(8.4.29) into m atrices E  and F. These boundary conditions in (8.4.27), (8.4.28) and

(8.4.29) can be expressed in term s of the variables i / i , . . .  , 1/14 and the equivalent spectral 

representation in term s of rows of E  and F  are respectively:

V l =  0 , lj2 =  0 , l/5 =  0 , 1/7 =  0 , 1/9 =  0 ,  i / i i = 0 ,

2/13 =  0 , l/l — clyg = 0 , 7T1/5 -  £ti/h  =  0 ,

7 5 2 /7  “  £51713 =  0 , 1/6 — CT2/12 =  0 , 1/8 -  €52 /14  =  0 ,

2 , d4 d2 a d4a daBj , -2 x
1 /4 -  3 a jy 2 +  TT-i/io =  —  fr~ ;i /2  -  -7 5 — Vio , 73 =  - 7 =  (2/2 ~  d yio) •

Da eT Pi7 <pri'm v D a

(8.5.34)

Each boundaiy condition (8.5.34) is incorporated sequentially into the ( N  +  1 )th, 2 (N  +  

l ) th ,  ...14(/Y +  1 )th rows of the m atrices E  and F.  This completes the specification of 

the eigenvalue problem  E Y  — <rFY. The details of each row (in m atix  form at) are given 

in table 8.1. The calculations were done using the Fortran program  listed in appendix 6 . 

In fact,the eigenvalues all appear to be real so tha t cr =  0 is the critical eigenvalue. In 

this case, the eigenvalue problem can be recast in the format

E~Y  =  Ra {̂ F * Y

where E = E* — Ra $  F* and E* and F* are respectively represented in block form
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F  =

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 '2 R
af  2 nJ e;$Da

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 Ra 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

(8.5.36)

.6 R esu lts

Chen [5] com putes the critical salt Rayleigh numbers of a porous m edium  for a therm ally- 

driven convection and a salinated convection of a fluid layer with superposed porous layer 

heated from above for isotherm al rigid boundaries. Therefore it is necessary to stabilise 

the initial tem perature distribution. The value of the initial Rayleigh num ber of a porous 

medium  is 50 and the other values and numbers which are respectively required to solve 

this problem are Beavers-Joseph constants qbj =  0.1, \/D a  =  0.003, t r  ~  0.7, e$ =  3.75,

Lee = Ra
A,

Lem Ra Pr
Pr

I s

Pr —1 Lms —
Pr, d

Lej

cl
I T  = 7 s =Lem cs

and these are determ ined by Chen [5]. The values of the depth ratios cl vary between 

10~4 — 1.5. The eigenvalues a  are real for all values of cl. To determ ine w hether or not the 

eigenvalues are real, it is known th a t the critical eigenvalues occur when cr =  0 and so 1 

satisfies the condition E Y  = 0. However, E  = E* ~  Ra $  F* and so the  possible values of 

Ra|*> are now eigenvalues of the modified and generalised eigenvalue problem . In this case,
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the results show th a t the eigenvalues are real. Now returning back to the original problem, 

the values of the critical salt Rayleigh num ber Raj^' and the corresponding wavenumbers 

am for a porous layer considered here are different from those of Chen [5] for the values 

of depth ratios d =  0 .1 , . . . .  1.5 as illustrated in a table 8.2. The values of salt Rayleigh 

num ber R(iTns are plotted as a function of the corresponding wavenumber arn to produce 

the m arginal stability  curves for a range of depth ratios d as illustrated in figure 8.1. It 

is observed th a t the curves for d =  10-4 , 10-3 and 10-1 are indistinguishable along with 

the curves for d = 0.5, 1 and 1.5. This is also true in Chen's result with respect to the 

two curves for d =  10-4 and 10-2 . In addition, the curves for d = 0.5, 1 and =  1.5 are 

lower than  those of Chen. For the possible bim odal nature of marginal stability  curves, 

the calculations have been extended to include arn =  20 for d =  0.2 and 0.1. As shown 

in figure 8.2, the curves are qualitatively and quantitatively different from those of Chen. 

For exam ple, Chen quotes 102 (approxim ately) as the m inimum value of the stability  

curve for d = 1 .0  whereas the result here is nearer 84. The differences are too large to 

be ignored. Of course, one obvious explanation for this discrepancy is th a t the spectral 

m ethod has failed. To check this possibility, the spectral m ethod is applied to the case 

of the two-layered problem (porous layer superposed by fluid layer) which is trea ted  in 

chapter 7.
R ayle igh  N o .  versus wave No.

d =  0.000 
1 =  0.001

1 0 0 - -

d =  0.5 /*

Figure 8.1: R ams versus am for d = 0.0001, 0.001, 0.1, 0.5, 1 and 1.5.

8.7 Conclusions

For the stabilised value of Rayleigh num ber Ram =  50 of a porous layer combined with 

other values, it is found th a t the critical salt Rayleigh num bers Rams, here com pared
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R a y le ig h  N o , v e rsu s  w ave N o. 

400"

R.7 7 1 5

200

d =  0.1

I t  a ?0

Figure 8.2: Rams versus am for d =  0.1 and 0.2.

w ith those of Chen, are almost identical for some d = values of depth ratios and lower 

than those of Chen for other d ratios as shown in the table (8.2). We believe th a t these 

differences are due in large m easure to the inadequacy of Chen’s scheme, as a numerical 

m ethodolgy particularly  when an interior boundary has to be negotiated.
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M anifestation in M atrix

E F

l/i =  0

[p ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] [0 ,0 ,0 ,0 ,  0 ,0 ,  0 , 0 , 0 , 0 , 0 , 0 ,  0,0]

1/2 =  0

[0,p,  0 ,0 ,  0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  0 , 0 , 0 , 0 , 0 , 0 ]

2/5 =  0

[ 0 , 0 , 0 , 0 , p ,  0 , 0 , 0 , 0 ,  0 , 0 , 0 , 0 , 0 ] [0, 0 ,0 ,0 ,  0, 0, 0, 0 ,0 , 0, 0 , 0 ,0 , 0]

o11
[ 0 , 0 , 0 , 0 , 0 , 0 , p , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] [0 ,0 ,0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0,0]

1/1 =  dyQ

[q, 0, 0, 0, 0, 0, 0, 0, —dp, 0, 0, 0, 0, 0] [0 ,0 ,0 ,0 ,  0 , 0 , 0 , 0 , 0 , 0 ,  0 ,0 ,0 ,0 ]

7ti/5 =  t r y  n

[0, 0, 0, 0 , 7 Tq, 0, 0, 00, 0, t Tp, 0, 0, 0] [0 ,0 ,0 ,0 ,  0 , 0 , 0 , 0 , 0 , 0 ,  0 ,0 ,  0,0]

2/6 =  erl/12

[0 ,0 ,0 ,0 ,0 ,  q, 0, 0 , 0 0 , 0, eTp, 0,0] [0,0 ,0 , 0 ,0 , 0, 0 ,0 , 0, 0, 0, 0, 0, 0]

751/7 =  £51/13

[0, 0, 0, 0, 0, 0 , 7 sq ,  0, 0, 0, 0, 0, e5p, 0] [ 0 , 0 , 0 , 0 , 0 , 0 ,  0 ,0 ,  0 , 0 , 0 , 0 ,  0,0]

1/8 =  £52/14

[0,0 ,0 , 0 , 0, 0 , 0, q, 0 , 0 ,0 ,0 ,0 ,  esp] [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  0 ,0 ,  0 ,0 ,  0,0]

- i / 4  +  3a}i/2 -  (d4/Da)t/io =  - ( d 2/eT)(a /Fvf )y2 +  (<rd4/</>Prm)i/10

[0 , 3«2,q , 0. - q ,  0 ,0 ,0 ,0 ,0 ,  —E p ,  o, 0 , 0 , 0 ] [0 , -  — 0 ,0 , 0 , 0 ,0 ,0 ,0 ,  0 , 0 , 0 , 0 ]
J Da e r r i ' f  <prrm

1/3 =  ( a B j d / \ / D a ) ( 2 / 2 -  d2yio)

[o, - 5 L ,  o, o, o, o, o, o, 7 L ,  0 , 0 . 0 . 0 ]
v Da q r i« v Da

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

1/9 =  0

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q ,  0 ,0 ,  0 ,0 ,0 ] [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

l/ii =  0

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q ,  0 ,0 ,0 ] [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

2/13 =  0

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q ,  0] [ 0 , 0 , 0 , 0 , 0 , 0 ,  0 , 0 , 0 , 0 , 0 , 0 ,  0,0]

Table 8.1: The form of the boundary rows 
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d (■Ini R a^ (C h en ) am(Chen)

0.01 88.8734 3.110 88.91 3.1

0.042 83.6874 2.700 83.43 2.7

0.044 83.7098 2.695 83.42 2.7

0.05 83.8767 2.690 83.48 2.7

0.1 86.2986 2.876 85.59 2.8

0.2 85.6721 2.951 97.23 3.6

0.4 84.7741 2.844 103.37 4,3

0.5 84.6067 2.822 103.96 4.3

1.0 84.3762 2.775

1.5 84.3607 2.769

2.0 84.3606 2.769

5.0 84.6129 2.743

Table 8.2: For d, critical value of Ra[,^ and ac.
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Chapter 9

Magnetic Instability with a Finitely 

Conducting Inner Rigid Core

9.1 In tro d u c t io n

The model of this chapter is an interior of the Earth divided into three layers; the first 

layer is the c}dindrical rigid core of the E arth , the second layer is a cylindrical annulus 

of electrically conducting fluid rotating around its axis with angular velocity £20 =  

and the th ird  layer is a rigid outer region which can be called a m antle which is either a 

perfect electrical conductor or insulator. This chapter reviews Lam b’s [25] investigation 

of the case th a t the m antle is a perfect insulator.

The m agnetic field and velocity of the fluid core of the E arth  in its basic sta te  can be 

represented in cylindrical polar coordinates (r, by

Bo ~ B{r)eo■> Uq = U(r)e0.

The ratio of the m agnetic diffusivity in the inner core, denoted 77.;, to th a t in the fluid, 

denoted 770, is given by 77 =  and is an im portant param eters of the  problem . For the

inner core, perfect conduction corresponds to 77 =  0 and perfect insulation corresponds 

as 77 =  0 0 . Significant results are established when 77; is finite, th a t is, 77 is finite.
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9.2 T h e  G overn ing  E qu a tio ns  of Layers

The E arth  is often modelled as an active spherical core enclosed by a solid annular region 

or m antle whose electrical properties resemble those of either a perfect insulator or per­

fect conductor. The core region is subdivided into an electrically conducting solid inner 

core surrounded by a spherical shell of electrically conducting incompressible viscous fluid 

ro tating rapidly at constant angular velocity 12 =  about a north-south axis with an 

inner radius and an outer radius ?’o respectively. As a precursor to the full problem, 

the most recent research models the E arth  by three interacting cylindrical regions and it 

is this approach th a t will be em ulated here. Lamb [25] discussed the effect of a finitely 

conducting inner core on magnetically driven instability in the absence of therm al buoy­

ancy effects. The radius of the inner region varies between 0 and ip and the outer region 

consists of everything beyond r — ip. The fluid flow is related to the velocity mode U  and 

it is perm eated by a toroidal m agnetic field B . Here the aim is to reproduce a selection 

of these results. Lamb quotes the governing differential equations in the form

Inner Core
f)Y\

=  7);AB, V .B  =  0 ,  / T ( 0 , r i ) ,  (9.2.1)
dt

Fluid Region

T - + U .vu  +  2n0 X U =  — V P  +  —  (V X B) X  B  +  I/AU ,
ot p0 ppo

d B
dt

v .b  =  y . u  =  o

V x (U  x B) +  ?/oAB , >■ € ( r h  r0), (9-2-2

where P  is the lpydrostatic pressure, u is the kinematic viscosity of the fluid, p  is the 

m agnetic perm eability of the fluid, 770 , rp are the m agnetic diffusivity of the fluid and 

inner core respectively and po is the fluid density. In cylindrical polar coordinates (r, 9, c) 

with un it base vectors e r, e# and e, ,  the underlying terrestrial m agnetic field and flow 

velocity are azim uthal w ith form B 0 =  R (r)e^, U 0 =  U{r)ee respectively and 12 =  Ooe~. 

If u and b are respectively the perturbations in the fluid velocity and m agnetic induction 

about the basic sta te  by

B - B o  +  b, U  =  U 0 +  u.

where

b = {br,be,bz), u  — { u ,v ,w )
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then the non-dim ensional field equations will be in the form as quoted by Lamb. 

Inner Core

db
„ . tjA-'A b .  V.b =  0 ,  r €  (0,r<) , (9.2.3)
at

Fluid Region

d u  
A E V—  +  e ,  x u  =  —Vp +  (V x B 0) x b +  (V x b) x B 0 +  E A u  ,

^  =  V x ( » x B o )  +  A - ‘ 4 l ,  r e ( r , , r o ) ,  ( 9 - 2 -4 )
at

V .6 =  V .tt  =  0  ,

where p is the hydrostatic pressure and

E  =  v / 2 f t 0 r Q2 , E 7] =  7?0 / 2 1 7 0 t 'o 2 , A  =  B M 2 / ^ l o ^ o P P o

denote the viscous Ekm an num ber, the m agnetic Ekma.11 num ber and the Elasser num ber 

respectively. It is common practice to write

B(r )  = B MrF(r)  , (9.2.5)

where is the m axim um  value of B { r )  and F(r)  is a function to be specified later. 

The curl of each term  of the m om entum  equation (9.2.4) is taken after replacing A u  by 

(—curl curl w), and then (curl 6 ) and (curl n,) are replaced bv J  and £ respectively. The 

field equations now become.

Inner Core
r\7

^  A b  . V .6  =  0 , V e  (0 . n )  , (9.2.6)
at

Fluid region

t  r ,  Rx i
+  curl (J  x B 0)

dt
AE v—  +  curl ( e s x it) =  curl B' + — )e.  x b

r

— F curl curl £ i
(9.2.7

db  _
-r-  =  curl (u  x S 0) — A 1curl curl 6 , ?’ 6 (r t-, J’o) ,
dt

V.6 =  V.tt =  0 .
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The calculations on (9.2.6) and (9.2.7) axe involved. The final system  of equations is 

constructed from the components.

curl (u  x B 0) =  ~  +  +  B f{ r ) u j e g

B(r)  dw  
r  0 6

curl (e~ x u) = ,
oz

c u r l  [ ( S ' ( r )  +  x  b ]  =  -  ( f l ' ( r )  +  2 2 1 )  (9-2.8)

+  (B '(r)  +  ^ d ) ' 6 , e ,  ,

c u r l  ( J x  B „ )  =

*‘’ ) a J

Define

. 5 2hi 1 dil' 1 5 2(/' 5 VTfdd =  — - -- -|-----— -j---------—-n-----
5 r 2 r 5 r  r 2 502 5 c2

. . . .  .  2 3pr 2
(curl curl g )r =

(curl curl g)0 -  ~ J { qb) ~  +  ~i  ’ (9.2.9)

(curl curl q )z — —J { Q z ) ,

where q represents the vector variables 6, u  and £ by

( Q v > Q 8 , Q z ) =  ( ( 6 r , 6 fl, 6 3 ) , ( i t , v , i « ) , ( ^ . , ^ , ^ ) ) .

A substitu tion is m ade using (9.2.9) in (9.2.6) and using (9.2.8) and (9.2.9) in (9.2.7) to 

obtain the necessary r and c components of m agnetic equations in the inner rigid core 

and the outer fluid layer and r and 0 components of the mom entum  equations of the 

outer fluid layer respectively as:

Inner Core

db~* V-l-T,, \
~m =  ,?A
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Fluid. Layer

A S . f - 1  -  - ( B ’{r ) + m f ± - B U ( £  +  £ ) - B > (r )Jr

dK B(r)_du , J ( b )  -idw  y  2 aft,
dt r d O  yJ [  l } ±  r dr r 2 r dz

B l \ ~ l J { b z) .

(9.2.11

dbz B(r )  dw  _j
dt r dO

Now the equations (9.2.10) and (9.2.11) have normal mode solutions

u  =  ('U, v, •?.y)ecriedm6,+ns) ^

6 =  (6r , 60, 6,)e°'ie^m6,+,1“  ̂ .

(9.2.12)

in which a  term  represents the eigenvalues to be determ ined and rn and n are wavenum- 

bers.

The non-constant nature of the basic magnetic, held B0 ensures th a t all calculations will 

be algebraically complex but after a laborious calculation it can be shown th a t 6~, ur 

and u z satisfy the held equations 

Inner Core

r, ^-component of m agnetic induction equations

S T  / \

— r \  = i * Dj.br +  3r D icb,. -  (r2G  -  l)fcr +  2inrb.  ,

A   ̂ <9-2 -13>
— r 2b- =  r 2D 2.b, +  r D icb - - r 2G b . ,  

V
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(9.2.14)

Fluid Region

^-component of m om entum  and m agnetic induction equations

a ^ r [ i n ( D 0Cu +  - )  -  G»«] =  " ^ [  -  F D 0Cbr +  F'br -  - ]  -  ^ F G 6 =
b  r b  r b

r „ 4 0 _ 1 G 2 n 2 1 ,
+m[D*cu +  - D 2cu -  G D ocu +  - ~ D 0Cu +  — u  u  -u\

r r 2 r r r3

-  [ G D 20Cw - G 2w + ^ D ocw +  ^ - D ocw] ,

a Ĵ 3 l [ D 0Cw — inu\ =  —in[Dlcu - \ - - D ocu — Gu + \ u ]  
b  v ?

1 1 2G
+  [^oc'w +  - D 2ocw  ^ G ocw -  G D ocw +  —  io]r  r

+ ™ ( F A , A  +  -  - 6 S -  in F b r)
b  v

2 n  1 'n
— — =rF[Docbr +  inbz +  - 6 r ] H - { u  +  r D 0Cu +  m?no) ,

m b  r m b
3 ^  7 77

crA6r — A im  Fit, +  F 2 6r H— Docbr — Gbr -\------- £>;r  r

7’ 2 ’

crA6k =  A i m F w  +  D 20Cbz H— Docbz — G F  .

M antle

D l j ,  + t Dmf  -  G4’ =  0 , (9.2.15)

777 ^ 5
where F  =  F{r)  is defined in (9.2.5), G =  G(?') -- mp +  ??2, D-lc =  ——  is the partial

7 Cy 7 ? c
a

derivative in inner core region, D oc — ——  is the partial derivative in outer core region
oroc

(fluid layer) and D m =  w—  is the partial derivative in m antle region.
Oi m

9.3 B o u n d a ry  C ond itions

The no slip boundary conditions are applied at the inner core bounding surface r = r; or 

at the core-m antle bounding surface r =  r 0. The no slip condition

U  — 0, 7’ =  7'<-,7'0

can be w ritten  in term s of its components

u =  0, v — 0, io =  0 r =  r£,7-Q. (9.3.16)
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since
U l ITl

V . u  — 0 =4> D ocu H 1 v -f into =  0
?’ r

then

v — 0 — D 0Cu =  0 r =  ?’; , r 0 . (9.3.17)

On the other hand, m agnetic conditions require the m agnetic induction m ust be contin­

uous everywhere. On the axis of rotation this implies

Dicbr =  bz =  0 when m  =  1
I at /■ =  0 . (9.3.18)

br — bz =  0 when 777. > 1 I

If the m antle is a perfectly conducting region then the tangential electric held at the 

core-m antle boundary surface is zero and this in turn infers that br =  0 and Dicbz =  0. 

In effect, this is a two- layered problem since the m antle region is disjoint from the inner 

and outer core (fluid layer). The conclusion of this work is th a t the m antle is taken to be 

a perfect insulator so th a t no currents cross the boundary but the region is perm eated 

by a m agnetic held which is derived from a potential function (3? =  6{r)e l7tell'm(i+n::}. It is 

trivial th a t <b(r) satishes the differential equation

D 2ncp +  - D m(p — Gd> =  0 on r =  7-0 (9.3.19)

where

b = - V $  =  - ( ^ ,  —  cp,in4)eatei{m0+ns). 
dr r

The current norm al to the core-m antle boundary is zero in this case leading to the bound­

ary condition
7 77

in.D0Cbr +  — 6, +  Gbz =  0, r = r 0 . (9.3.20)
v

The continuity of m agnetic held induction is enforced elsewhere. The spectral approach to 

this boundary value problem  is distinctively different from th a t of Lamb [25]. For example. 

Lam b’s technique enforces boundary conditions at r =  0 and v =  r 0 by determ ining 

suitable analytic solutions (Bessel functions with complex argum ents in this instance) 

and then m atching these solutions to  the fluid boundary conditions at r — i'i and r = rQ. 

Such a technique is messy and limiting. On the other hand, spectral m ethods succeed 

effortlessly w ithout the need for an analytical solution. The explanation lies in the fact 

th a t m ethods based on com putation of the solution interval inevitably experience severe 

difficulties when the underlying equations possess bounded and unbounded solutions in
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the interval. However, the spectral methods operate in frequency and not physical space 

and now it is easy to  suppress the unbounded solution. Hence the continuous m agnetic 

field conditions on the boundaries r =  ?%■ and r — ?’0 are

br =  —2Dm4'-> bz =  — m'0 r = r0 ,

br — br, bz = bz r = n ,  (9.3.21)

bd bff y Dicbr Docbr ? — ? / .

The last continuous m agnetic field condition 011 the boundary between the inner core and 

the outer core can be derived from

V x b = 0

by taking its 0-component. Hence the boundary condition is

1 1
-{inby — D-tcbJ) — ~ ( i n b r — Docb„) — 0 (9.3.22)

where ?/,- and ?/ =  1 are m agnetic diffusivity for inner core and outer core respectively and

br represents in the first bracket, the inner core and in the second bracket, fluid layer.

The last boundary condition of this problem is on the infinite boundary of the m antle 

and is represented by

-► 0 (9.3.23)

9.4 T h e  M e th o d  of Solu tion

L et v ariab les 2/11 •'. . ,  2/ie b e  defined  by

Vi = br , 2/2 == D icbr , 2/3 -  bz , 2/4 =  D icbz

2/5 = u , 2/6 == Doc u , 2/7 -  D2ocu ,

2/8 = IV , 2/9 == D ocw '2/io = D l w ,

2/ii = br , 2 /12  == D ocbr , 2/13 =  bz , 2 /14  — D ocbz

2/15 = 2/16 =“ Dm 0  ■

(9.4.24)

The spectral m ethod needs to transfer a. system of basic equations (9.2.13), (9.2.14) and 

(9.2.15) into a system  of a linear ordinary differential equations of first order which can

130



b e  d esc rib ed  in  te rm s  o f th e  variab les 7/1 , . . . ,  t/16 by 

In n e r C ore

A c S / i  =  S/2 ,

r 2D icy2 = - 3 ry2 +  (r2G -  l )yi  -  '2iny3 +  r 2— j/i ,
V

D icij3 = y4 ,

r 2D icy4 -  - r y 4 -\-r2Giy3 -\-r2— iy3 ,
V

O u te r  C ore (F lu id  Layer)

D 0cV5 S/6 j

D q c V s  =  s / 7

^  4  1 G  2722 1 2772 .
D o c V i  =  — S/7 +  ( G - —  ) y 6 — ( ---------------------------   - ) i j 5  ,

t v r r r r t
iG iG 2in iG 2 ?nG n

 y io  — ( -------- 1 )s/9 4 S/s +  ^  S/i3 ,
72 727’ 7’ 72 F72
•2772 2772 . , A F „< 7  1 i G

— [ - t t S /12  +  —j r F  7 /iij--4---------— (s/6 4- - 3/5 4---------S/s) >
Ej lit L/ r  72

A c S / S  =  S/9 ,

D ocyQ =  s/io  ,

„  1 I . 2 G  3'272 727’
D ocy i 0 — ------ S/10 4- (C t-4-----— ) t / g ----------- 7/8 4- 2727/7 4" (  ——  — =̂t)3/6 i

7' r-4 /’ 7' 772 F

272 72 in2r 2  G .  2222

- ( ,n G  “  ^  + rnE ~  + ~ 7 )Vs ~ F m  ’
2772 , 2772 F  2z722 2?2F

272 F  77272 2 7  A  F ,,  .

m F  ”  ~~ " f ” ~~E ~^J9 ~  tmJ^  ’

F o c S /11 =  S/12 1

3  i  2272
A c S / l 2  -  -2 7 7 2 A F 7 / 5  y i2 +  ( G  ) t /U  7/13 +  AcTT/n ,

r r r

F 0cS /i3  =  S/i4

F o e S /14 =  ~ 2772 A  F t/8 -  “ S/14 +  & S/13 +  A<77/i 3 ,
r

M an tle

F m 7/15 —  S/16 ,

( 1  -  ?’ ) 4 F m 7 / l6  =  - ( 1  -  7’ ) 3 S/16 4 -  [4?22 +  ?722 ( 1  -  7’) 2 ] s / l 5  •

(9.4.25)

(9.4.26)

(9.4.27)
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The equations (9.4.25), (9.4.26) and (9.4.27), can be reform ulated in the  form of

dY
dx:

=  A Y  +  a B Y

where A and B are the complex 16 x 16 m atrices. Also the spectral m ethods needs to 

express the boundary conditions (9.3.16), (9.3.17), (9.3.18), (9.3.20), (9.3.21), (9.3.22) 

and (9.3.23) in term s of the variables t/i , . . .  t/iq. These are

2/2 — 2/3 =  0 when m — 1

y l =  y :i ~  0 when m > 1
on

1/1 -  't/ll =  o

2/3 — 2/13 =  0

112 — y 12 =  0 

y{ inyx -  y4) =  i n y n  -  y M

2/s =  2/e =  ys =  0 

1
Vi2 H— y li H— Cry 13 — 0 

r  n

Vn +  2i/i6 =  0 

yi3 +  inym =  0 

2/is =  0

on r =  r (9.4.28)

on r = r t and r ™ 1 ,

on r - 1 ,

on r =  r

Each variable of i q , ..., y i6 is assigned a Chebyshev spectral expansion of order N  and the 

coefficients of expansion of these variables are replaced in a column vector Y  of dimension 

16( N  +  1). The eigenvalue problem then assumes the form at EY'  =  crFY\  where matrices 

E  and F  have row and elem ent representations. Since the Chebyshev polynom ial is used, 

it is necessary to transfer the boundaries of the layers:

For the inner core an interval [0,7y] to an interval [—1,1] by a relation

for s E (0.7’;)
2 s

■1 + 2 —
ri

For the outer core an interval an interval [—1,1] by a relation

1 — s
r = 1

l -  n
for s e  (■/',, 1)

For the m antle an interval [?o,oo] to an interval [—1,1] by a relation

r = 1 — 2 /s  for s 6 ( l,o o )

. The complex m atrix  E  and F  are expressed respectively in the forms

132





II



Now to  avo id  th e  n o n -s in g u la r te rm s  of th e  eq u a tio n s  in  b o th  in n e r  core an d  M an tle  

layers, th e y  a re  m u ltip lie d  by  r 2 an d  (1 — ?’)4 resp ectiv e ly , an d  th e n  th e  m a tr ic e s  E  an d  

F  b eco m e re sp ec tiv e ly
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The complex m atrices E m  and Fm  are now used in a Q Z  algorithem  (F02G JF of a 

NAG routine) to com pute their eigenvalues. Some coefficients of the system  of ordinary 

differential equations (9.4.25), (9.4.26) and (9.4.27) are functions which should be treated  

by a Chebyshev polynom ial expansion and these functions are:

For Rigid Inner Core

f +2(r) =  r 2, / +1(r) =  r

For O uter Core (Fluid Layer)

h  =  B ( r \  f e(r) =  ^ 4 ,  M r )  =  ^ 4  fa =  ^ 4  /o M  =  B' ( r ) / r

w here B(r )  =  rF{r)  a n d  F(r)  is th e  basic  field g en e ra ted  by one o f th e  tw o form s

F(r)  — r Q for m  =  1 ,
j ( m i - rP)(rP - r9) \  (9.4.33)

F ( r ) =  — —  M ^ ^  +  a  for in > 1 .
i +  « l  ( i — >'f) )

w here  m  is a z im u th a l w av en u m b er. H ere a  an d  j3 are a rb itra ry  p a ra m e te rs  w hose values 

a re  chosen  to  m im ic  th e  b eh av io r of th e  te r re s tr ia l  m ag n e tic  field. T h e  first field is 

(9.4,33)i is m o n o to n e  in c reasin g  for a > 0 w hereas th e  second  field  a t ta in s  a  m a x im u m  

value in  (?’*, 1). T h e  la t te r  is a  m o re  rea lis tic  fo rm  for th e  m a g n e tic  h e ld  s tre n g th  since 

th is  ex p ressio n  van ishes a t  r =  1 an d  r =  r., w hen a  =  0. B o th  are  n o rm a lised  so th a t  th e  

m a x im u m  v alue  o f F(r)  in (?’;, 1) is uni by, h ence th e  reason  for th e  m u ltip lie r  (1 -f a ) -1 . 

H ere a  =  fi =  1. F or rig id  m an tle

/,„.! =  ( i  -  e 4, ./„,3 =  ( i - > - ) 3. ,/;„2 =  a - e 2 •

A m a tr ix  for each  o f th e  above fu n c tio n s  can  be ca lc u la ted  e lem en t-w ise  by using  a 

C h eb y sh ev  series o f th e  fo rm
C O

/(.r) =  V  akT M )  .
k=0

E ach  o f th e  b o u n d a ry  co n d itio n s  (9.4.28) is in co rp o ra ted  in to  th e  co m p lex  m a tr ic e s  Em  

an d  Fm- T h e  la s t row s (N  -j- l ) t h , 2 ( N  +  1)1 h , ..., 16(/V +  1 )th o f th e  m a tr ic e s  E M an d  

Fm co n ta in  th e  b o u n d a ry  co n d itio n s  (9.4.28) as
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M anifestation in M atrix

E m Em

y i = 0  when m  > 1  r =  0,

[p, 0 ,0 ,  0 ,0 ,  0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  0 ,0 ,  0 ,0 ,  0,0]

to II o pp CD pi m  =  1 r = 0,

[0,p,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0,0] [0,0, 0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0,0]

2/3 =  0 r =  0,

[0,0, p, 0 ,0 ,  0 ,0 ,  0 , 0 , 0 , 0 ,  0 , 0 ,0 , 0 ,0 ] [0,0, 0 ,0 ,  0 ,0 ,  0 , 0 , 0 , 0 , 0 , 0 , 0 . 0 , 0 , 0 ]

yi -  yn  =  0 r = n ,

[q, 0, 0, 0, 0 , 0 , 0 ,  0 , 0 , 0 ,  - p ,  0 ,0 ,  0 ,0 ,  0] [0, 0 , 0 , 0 , 0 ,  0 ,0 ,  0, 0, 0, 0, 0, 0, 0 ,0 ,  0]

y 2 — 2/12 =  0 7- =
[0,q, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , —p , 0 , 0 , 0 , 0 ] [0,0, 0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0.0]

i/3 — s/13 =  0 7’ =  n ,

[0,0, q, 0, 0, 0, 0, 0, 0 , 0 ,0 ,  0, —p, 0 ,0 ,0 ] [0,0, 0 , 0 , 0 , 0 , 0 , 0 ,  0 ,0 ,  0 ,0 ,  0 ,0 ,  0,0]

-  y4) = m y n  -  t/14 r =  ?*;,

Mq, 0, 0, - r ^q ,  0, 0, 0, 0 , 0 ,0 ,  p, 0, 0, — p, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
in in

i/5 — 0 r =  n , 1 ,

[ 0 , 0 , 0 , 0 , p ,  0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,  0 ,0 ,0 ] [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

2/6 =  0 ?' =  7’i ,  1,

[ 0 , 0 , 0 , 0 , 0 , p , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

2/8 =  0 r =  r M 1,

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , p , 0 , 0 . 0 , 0 , 0 , 0 ,  ,0.0] [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

i/12 +  i/ll +  (i/rc)(m 2 +  n 2)yi3 =  0 r = 1,

[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q, q, — q, 0 , 0 , 0 ] [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
n

i/ll +  %12 =  0 r  =  1,

[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q, 2q, 0 , 0 , 0 , 0 ] [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

2/13 +  mi/is =  0 r =  1,

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, q, 0, m p ,  0] [0,0, 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 0 ,0 , 0,0]

2/15 =  0 ?’ =  oo,

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q ,  0] [0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,  0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ]  .



where k = m 2 +  n 2. Now the system E m Y  =  ctFm Y  is prepared to calculate eigenvalue 

when a = 0 as illustrated  in Appendix 7.

9.5 R esults

The results can be represented as eigenvalues (values of a) of together w ith plots of the 

real and im aginary parts of the corresponding eigenfunctions. Lamb investigates field 

gradient (ideal) instability, resistive instability and exceptional instability  for m  =  1 and 

m  >  1 and the appropriate expression for F (r)  in (9.4.33). A selection of Lam b’s results 

are reproduced here. Good agreement is found for some cases and in others it would 

appear th a t Lam b’s analysis has missed the critical eigenvalue.

N u m erica l P ro ced u re

For each set of num bers A, nc, ?y and with the other param eters of this problem , the 

complex eigenvalues in this chapter are listed in a way such th a t the critical complex 

eigenvalue is the top value in the list and the other eigenvalues are listed in order. If 

there are two eigenvalues in table (9.2) for the same numbers Ac, n c and r/t , then the 

first one is the first critical complex eigenvalue and the second one is the second complex 

eigenvalue in the list. The eigenfunctions of velocity components ur and u z and m agnetic 

flux com ponents br and bz can be calculated directly but the second com ponent of both 

velocity ilq and m agnetic flux bo can be calculated in term s of the other com ponents u,., 

n r , br and bz respectively using V .u =  0 and  V .b =  0. These eigenfunctions have 

been norm alised as m ax\bz\ =  1 and they are plotted as a real part and as an im aginary 

part.

Comparing the results of C.J. Lam b’s thesis with the results of this thesis for the complex 

eigenvalues and the corresponding eigenfunctions 6r , ur and when the correspond­

ing real eigenvalues are zero, some results are the same while the others are different. 

The results, both  here and in Lam b’s thesis, are evaluated for a chosen value of A and a 

chosen value of n w ith E — E n — 105 and for different value of by using Chebyshev 

spectral m ethods and L R  algorithm  respectively.

The results for field (9.4.33)i with a wavenumber m  — 1 and a ~  I are expressed in table
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(9.1). The eigenfunctions br and bz are plotted respectively in figures (9.1): a and b for 

A — 192.42, wavenumber n c =  2.370 and the corresponding eigenvalue coc — —0.5053., 

and they are p lotted respectively in figures (9.2): a and b for A =  210.43, n c =  4.508 and 

the corresponding eigenvalue uoc — —0.9799. Table (9.1) shows the  differences between 

the eigenvalues here and the eigenvalues in Lam b’s [25]) thesis. Figures (9.1): a and b 

and (9 .2 ): a and b for br and b3 show the differences between the eigenfunctions br and 

bz here and those in Lam b’s thesis.

Ac n c iuc Vi Lam b’s result Discerption

192.42 2.370 -0.5053 103 -0.5052 the same

210.43 4.508 -0.9799 103 -0.9800 the same

Table 9.1: This table shows the value of Ac, ??,c, wc and 77* for first field (9.4.33)i.

R e a l a n d  Im a g in a ry  
E ig e n fu n c tio n  bz

im ag .

0.8
re a l

R e a l a n d  Im a g in a ry  
E ig e n fu n c tio n  br

im ag .

re a l

a: Eigenfunction br b: Eigenfunction bz

Figure 9.1: Critical eigenfunctions br and bz when A =  192.42, n c = 2.370 and 7 7* =  103.

The results in held (9 .4 .33)2 w ith wavenumber m — 2, a  =  0 and (3 = 1 are expressed 

in table 9.2 which shows identical and different eigenvalues here and in Lam b’s thesis. 

The first critical eigenvalues (the first values in both lists) are identical, the second critical 

eigenvalues (the first values in the list) are different while the th ird  values (the second 

values in the list) are the same. The fourth critical eigenvalues (the first values in the list) 

is different, the fifth critical eigenvalues (the first values in the list) are different, while the 

sixth critical eigenvalues (the second values in the list) are the same. The eigenfunctions 

6,., bz, u r and u z are p lotted respectively in figures 9.3 a and 9.3 b and 9.4 a and 9.4 b 

when A =  508, the wavenumber n c =  9.61, i]i =  103 and the corresponding first critical



R eal and Im agin ary
E ig en fu n ctio n  br

im ag.

0.4
real

R eal and Im agin ary
E igen fu n ction  bz

im ag

real
1-L

a: Eigenfunction br b: Eigenfunction bz .

Figure 9 .2 : Critical eigenfunctions br and bz when A =  210.43, n c =  4.508 and =  103.

complex eigenvalue toc =  —0.934 in the table 9.2 are the same as those of Lamb. The 

eigenfunctions 6,., 6~, u r and n z are p lotted respectively in figures 9.5 a and 9.5 b and 9.6 

a and 9.6 b for A =  623, n c =  8.25, ?y(- =  l.T he  corresponding second critical complex 

eigenvalues ljc =  0.6024 in the table (9.2) are different from those of Lamb, while the 

eigenfunctions are p lotted  respectively in figures 9.7 a and 9.7 b and 9.8 a and 9.8 b. 

The corresponding th ird  complex eigenvalues (the second complex eigenvalues in the list) 

u)c —  —0.5677 are the same as those of Lamb. The eigenfunctions 6r , bz, u r and u z are 

p lotted respectively in figures 9.9 a and 9.9 b and 9.10 a and 9.10 b when A =  1213, 

n c =  15.1, i]i =  10“3. The corresponding fourth critical complex eigenvalues loc — —0.971 

in the table (9.2) are different from those of Lamb. The eigenfunctions 6?., 6,, u r and uz 

are p lotted  respectivelyin figures (9.11): a and b and 9.12 a and 9.12 b when A =  106, 

n c =  4.3, i]i - - 10-3  and the corresponding fifth critical complex eigenvalues toc =  0.377 in 

the table 9.2 are different from those of Lamb, while the eigenfunctions which are plotted 

in figures (9,13): a and b and 9.14 a and 9.14 b and the corresponding sixth complex 

eigenvalues (the second complex eigenvalue in the list) loc =  —0.001314 are the same as 

those of Lamb.

Conclusion

The results obtained in this thesis indicate th a t the Chebyshev Tau m ethod has the ability 

to handle eigenvalue problems easily and accurately. This m ethod simplifies single and 

m ulti-layered problem s, even with the boundary conditions th a t usually require much 

effort to be pu t into a useful form. The constant and variable coefficients of the basic



Ac n c wc Vi Lam b’s result Discerption

508 9.61 -0.9342 103 -0.934 identical

623 8.25 0.6024 1 different

623 8.25 -0.5677 1 -0.568 the same

1213 15.1 -0.971 1 0 "3 -0.969 different

106 4.3 0.377 10“ 3 different

106 4.3 -0.01314 10“ 3 -0.0131 different

Table 9.2: This table shows the value of Ac, n c, wc and rji for the second field (9 .4 .3 3 )2.

2 A R ea l and Im agin ary  
E ig en fu n ctio n  br

im ag.

0.4 0.8

R eal and Im agin ary  
E igen fu n ction  bz

:eal

im ag.

a: Eigenfunction br b: Eigenfunction bz .

Figure 9.3: Critical eigenfunctions br and bz when Ac =  508, n c — 9.61, i]i 

u)c = —0.934.

R eal and Im agin ary  
E igen fu n ction  u z

103 and

R eal and Im agin ary  
E igen fu n ction  u r

im ag.

real

0.4

- 3

- 6 -

-9--

0 ^

\  im ag. 

real

a: Eigenfunction ur b: Eigenfunction u z .

Figure 9.4: Critical eigenfunctions iir and u~ Ac =  508, n c = 9.61, ?/t- — 103 and ujc =  

-0 .934 .
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a R ea l and Im agin ary
E ig en fu n ctio n  br

a  R eal and Im agin ary
E igen fu n ction  bz

1-

im ag

real

im ag

_1_L

a: Eigenfunction br b: Eigenfunction bz .

Figure 9.5: Critical eigenfunction br and bz when Ac =  623,n c = 8.25, ??,; =  1 and

Figure 9.6: Critical eigenfunctions u r and uz when Ac =  623, n c — 8.25, r/; = 1 and 

ujc =  0.6024.

equations in this problem do not cause any difficulty, as can be determ ined by this study. 

In addition, if there are some coefficients causing singularity in the equations, then it is 

required to m ultiply the equations by these coefficients so th a t they can be calculated 

directly using Chebyshev expansion. Moreover, the eigenvalue problems can be solved 

by using a second order system  (D 2) as well as a first order system  (D ). In fact, the 

second order system  gives a good opportunity  to solve higher order differential equation 

problems by modifying some boundary conditions if necessary. Now Legendre spectral 

m ethod has the same ability as the Chebyshev Tau m ethod to trea t eigenvalue problems, 

bu t the product variables using Legendre expansion is a difficult m atter.

loc =  0.6024. R eal and Im agin ary  
E igen fu n ction  u z

9a R ea l and Im agin ary
E ig en fu n ctio n  u r 10"

a: Eigenfunction ur b: Eigenfunction u z .
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R eal and Im agin ary
E igen fu n ctio n  br

R eal and Im aginary
E igenfu n ction  bz

real

0.8

im ag.

a: Eigenfunction b, b: Eigenfunction bz

Figure 9.7: Eigenfunctions br and bz when Ac =  623, n c =  8.25, //, =  1 and ujc - —0.5671

R eal and Im aginary  
E igen fu n ctio n  ur

im ag.

— real

— 3”

- 6 -

R eal and Im agin ary  
E igenfu n ction  uz

—  ■
\  im ag.

real

a: Eigenfunction ur b: Eigenfunction u z .

Figure 9.8: Eigenfunctions ur and uz when Ac =  623, nc = 8.25, //, =  1 and u;c =  —0.5677

R eal and Im aginary  
E igenfu n ction  b~

R eal and Im aginary  
E igen fu n ctio n  br

im ag.

real

0.6 0.9
im ag.

-t— >

a: Eigenfunction br b: Eigenfunction bz

Figure 9.9: Critical eigenfunctions br and bz when Ac =  1213, n c = 15.1. 77, 

u.v =  -0 .971 .

=  10"3 and
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R eal and Im aginary
E igen fu n ction  ur

im ag.

0.3 0.9

real
- 1- -

a: Eigenfunction ur

Figure 9.10: Critical eigenfunctions nr 

ujc = -0 .971 .

R eal and Im aginary  
E igen fu n ction  br

real

0.4
im ag.

a: Eigenfunction br

Figure 9.11: Critical eigenfunctions br < 

u>c = 0.377.

R eal and Im aginary
E igen fu n ction  uz

real

im ag

b: Eigenfunction u z. 

uz when Ac =  1213, n c = 15.1, rji =

R eal and Im agin ary  
E igen fu n ction  bz

real

0.8

im ag.

b: Eigenfunction bz .

bz when Ac — 106, n c — 4.30. //, =

10 3 and

10~3 and
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R ea l and Im agin ary
E ig en fu n ctio n  ur

im ag.

real'
- 1"

a: Eigenfunction u r

2q R eal and Im agin ary
E igen fu n ction  u.

10

■101

rea

1 - ■■‘fo .—iii-.fr
0.2 0.4 0.6 .

i m a g . / 1
real

b: Eigenfunction u s.

Figure 9 .12 : Critical eigenfunctions u r and u z when Ac =  106, n c = 4.30, ?/.t- 

=  0.377.

-  io-

1 - -

R eal and Im agin ary  
E ig en fu n ctio n  br

real

a: Eigenfunction br

- I 1

R eal and Im agin ary  
E igen fu n ction  bz

im ag.

b: Eigenfunction b~.

Figure 9.13: Eigenfunctions br and bz when Ac =  106, n c = 4.30, 77; =  10 3 and 

—0.001314.

and

Wc =
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b: Eigenfunction uz .

Figure 9.14: Eigenfunctions ur and u z when Ac =  106, n c = 4.30, //, =  10 

-0.001314.
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Appendix A

Suppose th a t f { x )  x E [a, 5] is a. continuous function then

x — a +  ~("r +  1)(6 -  a), ;r<s[a,6] 5: 6 [ - 1 ,1 ] ,  (9.5.34)

maps [ci,b\ into [—1,1]. Let F(z)  =  f ( x )  then by the orthogonal property  of Chebyshev 

polynomials, the spectral series for F  is

f ( x )  = F( z )  =  '£f , .T, . ( z ) ,  /.- =  - /  ( 9 . 5 . 3 5 )
^  cr J -I V Y - z 1

with the assum ption such a series exists. Of course, in a practical application, the series 

(9.5.35) for /  is truncated  to polynomials of degree N  and the coefficients 

are evaluated from (9.5.35) by Gaussian quadrature m ethods. Here I employ a Gauss- 

Chebyshev-Lobatto quadrature based 011 the nodes

Xk =  a cos2(k7r/2n)-Y-bsm2(kTC j'2n)
> k = 0 , . . . ,  n (9.5.36)

Zk = — cos2(A?7r/2/i) +  sin2(/c7r/2?7.) =  — cos(A,'7r/??) I 

From the first and second relations (9.5.35) at the nodes (9.5.36) yield

/(■C) =  T , f r T r
r = 0

N"  1 a  F( z ) Tr(z)dz

h  c J - *  ( 9 . 5 . 3 '

" 1 p F W T rW T ^ d z
r = 0 c,.j  ~ 1 y r

a f t e r  a p p l y  m u l t i p l y i n g  a n d  a d d i n g  p r o c e s s e s  t o  t h e  f u n c t i o n  ( 9 . 5 . 3 7 )  y i e l d

j =0 CJ r - 0N c k f ^ C j  ' ' N c k

s u b s t i t u t e  f r o m  ( 9 . 5 . 3 7 )  i n t o  ( 9 . 5 . 3 8 )  t o  o b t a i n

-

n o w  s u b s t i t u t e  f r o m  t h e  r e l a t i o n  ( 9 . 5 . 3 5 ) 2  i n t o  ( 9 . 5 . 3 9 )  t o  g e t

( 9 . 5 . 3 9 )



Hence Fk = f ( x k )  0 <  k <  iY, the value of /  at the nodes (9.5.36) and / a , .. 

coefficients of the Chebyshev spectral series (9.5.40) are collected by

where

N i 7T .  1
A  =  ~ Fi cos(fci?r/jV) , k = 0 , . . . ,  N  ,

N  3

Fj = 'E , f k cos(k jw /N ) , j  = 0 .........N ,
k -0

2 k = 0 or Ah
Ck —

1 0 <  ?• < N.

•, ./'/V, the

(9.5.41)
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Appendix B

The sub-m atrices Fri are sym m etric once the first row and column are disregarded. Here 

is a flow diagram  for coding Fr{ assuming th a t the starting m atrix  is an array of zeros.

0 Disregard the first row and column of Fri. Thereafter sym m etry prevails and so fill 

in the  (i,j/)th  entry for j  > i and use sym m etry to also fill (j, z)th entry.

® Add diagonal entries to Fr{.

• Add ex tra  entries to first row.
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Appendix 1

This appendix contains the sample of using m atrix  in Chebyshev spectral m ethod and 

subroutines of all program s th a t were used to get the results of the problems.

C .. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF FIRST DERIVATIVE FOR 
C .. CHEBYSHEV SPECTRAL METHODS OVER AN INTERVAL [-1,1] FOR M POLYNOMIAL 

SUBROUTINE DERIV1_C(M,D)
DOUBLE PRECISION D(M,*)
DO 100 1 = 1,M 

DO 200 J=1,M 
D(I,J) = 0.DO 

200 CONTINUE
100 CONTINUE

DO 300 1=1,M-l
DO 400 J=I+1,M, 2

D(I, J) = DBLE(2*J-2)
400 CONTINUE

D(l, I) = 0.5D0*D(1,1)
300 CONTINUE

D(1,M) = 0.5D0*D(l,M)
RETURN
END

C . . THIS SUBROUTINE USING TO GIVE THE VALUE OF SECOND DERIVATIVE OF 
C .. CHEBYSHEV SPECTRAL METHODS FOR AN INTERVAL [-1,1] FOR M POLYNOMIAL . 

SUBROUTINE DERIV2.C(M,DD)
DOUBLE PRECISION DD(M,*)
DO 100 1=1,M 

DO 200 J=1,M
DD(I,J) = 0.DO 

200 CONTINUE
100 CONTINUE

DO 300 1=1,M
DO 400 J=I+2,M,2

DD (I, J) = DBLE((J-1)*(J+I-2)*(J-I))
400 CONTINUE

DD(l,I) = 0.5D0*DD(1,I)
300 CONTINUE

DD(1,M) = 0,5D0*DD(1,M)
RETURN
END

C .. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF FIRST DERIVATIVE FOR 
C .. LEGENDRE SPECTRAL METHODS OVER AN INTERVAL [-1,1] FOR M POLYNOMIAL 

SUBROUTINE DERIV1_L(M,D)
DOUBLE PRECISION D(0:M-1,0:M-1)
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DO 100 1=0,M-1 
DO 200 J=0,M-1 

D(I,J) = 0.DO 
200 CONTINUE
100 CONTINUE

DO 300 1=0,M-l
DO 400 J=I+1,M-1,2

D(I,J) = DBLE(2*I+1) 
400 CONTINUE
300 CONTINUE 

RETURN 
END

C .. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF FIRST DERIVATIVE FOR 
C .. LEGENDRE SPECTRAL METHODS OVER AN INTERVAL [-1,1] FOR M POLYNOMIAL 

SUBROUTINE DERIV2_L(M,D)
DOUBLE PRECISION D(0:M-l,0:M-l)
DO 100 1=0,M-l 

DO 200 J=0,M-1 
D(I,J) = 0.DO 

200 CONTINUE
100 CONTINUE

DO 300 1=0,M-l
DO 400 J=I+i,M-l,2

D(I,J) = DBLE(2*1+1)
400 CONTINUE
300 CONTINUE

DO 500 1=1,M - l  

DO 600 J=1,M 
TEMP = O.DO 
DO 700 K=1,M

TEMP = TEMP+D(I,K)*D(K,J)
700 CONTINUE

DD(I,J) = TEMP 
600 CONTINUE
500 CONTINUE 

RETURN 
END

C .. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF FIRST DERIVATIVE FOR 
C .. ALL PROBLEMS OVER AN INTERVAL [0,1] FOR M POLYNOMIAL ..

SUBROUTINE DERIV_l(M,D)
DOUBLE PRECISION D(M,*)
DO 100 1=1,M 

DO 200 J=1,M 
D(I,J) = O.DO 

200 CONTINUE
100 CONTINUE
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DQ 300 1=1,M-l
DO 400 J=I+1,M,2

D(I, J) = DBLE(4*J+4)
400 CONTINUE

D(1,1) = 0.5D0*D(1,1)
300 CONTINUE

D(l,M) = 0.5D0*D(l,M)
RETURN
END

C .. THIS SUBROUTINE IS USED TO GIVE THE VALUE OF SECOND DERIVATIVE OF 
C .. ALL PROBLEMS OVER AN INTERVAL [0,1] FOR M POLYNOMIAL ..

SUBROUTINE DERIV2_C(M,D)
DOUBLE PRECISION D(M,*), DD(M,*)
DO 100 1=1,M 

DO 200 J=1,M 
D(I,J) = O.DO 
DD(I,J) = O.DO 

200 CONTINUE
100 CONTINUE

DO 300 1=1,M-l
DO 400 J=I+1,M,2

D(I,J) = DBLE(4*J~4)
400 CONTINUE

D(l, I) = 0.5D0*D(1,1)
300 CONTINUE

D(1,M) = 0.5D0*D(l,M)
DO 500 1=1,M-l 

DO 600 J=1,M 
TEMP = O.DO 
DO 700 K=1,M

TEMP = TEMP+D(I,K)*D(K,J)
700 CONTINUE

DD(I,J) = TEMP 
600 CONTINUE
500 CONTINUE 

RETURN 
END

C .. MINIMISATION SUBROUTINE USING FOR FINDING CRITICAL WAVENUMBER ..
C .. XLEFT AND XRIGHT ARE END VALUES OF AN INTERVAL IN WHICH THE VALUE
C .. OF WAVENUMBER EXISTS ..
C . . XSTAT IS THE WAVENUMBER . .
C .. TOL DETERMINES THE ACCURACY OF SEEKING VALUE ..
C .. VALUE IS THE SEEKING VALUE ..
C . . G IS THE FUNCTION ..

MINMUM(XLEFT,XRIGHT,XSTAT,TOL,VALUE,G)
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IMPLICIT DOUBLE PRECISION(A-H,O-Z)
GRATIO = 0.618033988749890D0 
COEFF1 = -2.07808692123500D0 
D = ABS(COEFFl*LOG(TOL/(ABS(XRIGHT - XLEFT)))) 
N = INT(D)
A = XLEFT 
B = XRIGHT
XLOWER = A + (B - A)*GRATI0**2 
XUPPER = A + (B - A)*GRATID 
VLOWER = G(XLOWER)
VUPPER = G(XUPPER)
DO 5 J=1 ,N

IF (VLOWER.GE.VUPPER) THEN 
A = XLOWER 
XLOWER = XUPPER 
VLOWER = VUPPER 
XUPPER = A + (B - A)*GRATIO 
VUPPER = G(XUPPER)

ELSE
B = XUPPER
XUPPER = XLOWER
VUPPER = VLOWER
XLOWER = A + (B - A)*GRATI0**2
VLOWER = G(XLOWER)

END IF
DIFF = ABS(VUPPER - VLOWER)
IF (DIFF.LE.TOL) GOTO 102 

5 CONTINUE
102 XSTAT = 0.5D0*(XUPPER + XLOWER)

VALUE = G(XSTAT)
RETURN
END
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Appendix 2

This appendix contains two FO RTRA N ?” programs to perform a stability  analysis for the 

Orr-Sommerfeld eigenvalue problem using the Chebyshev spectral tau  m ethod. The first 

program  trea ts the OS equation as a system of 4 first order differential equations whereas 

the second and the program  treats the OS equation as a pair of second order equations 

for the conventional and modified boundary value technique. Poiseuille and C ouette flow 

are im plem ented by calling the appropriate subroutine for the auxiliary m atrices PcmclQ.

F o u r th  o rd e r  sy s tem
PROGRAM ORRSOM

* *
* USES D APPROACH ON THE ORR-SOMMERFELD EQUATION IN THE FORM *
* *
* DY_1-Y_2=0, DY„2-Y„3=0, DY_3-Y_4=0, *
* *
* DY_4-2a-2Y_3+a-4Y_l-iaRq(Y_3-a-2Y_l)-2iaRY_l *
* = -iaR LAMBDA(Y_3-a~2Y„l) *
* *
* WITH BOUNDARY CONDITIONS Y_1=0, Y_2=0 ON x=-l, 1 *
*  *

IMPLICIT DOUBLE PRECISIONCA-H,0-Z)
C
C .. DECLARATIONS FOR QZ ALGORITHM ..

LOGICAL MATV
PARAMETER( M=50, N1=M, N2=2*M, N3=3*M, N4=4*M, MATV=.FALSE. ) 
DIMENSION AR(N4,N4), AI(N4,N4), BR(N4,N4), BI(N4,N4), ALFR(N4),
* ALFI(N4), BETA(N4), ITER(N4)

C
C .. GENERAL DECLARATIONS ..

CHARACTER*3 CODE
PARAMETER( ZER0=0.D0} 0NE=1.D0, WAVE_N0=0NE, REYN0LDS_N0=1.0D4 ) 
DIMENSION D(M,M), P(M,M), Q(M,M)

C
C .. ZERO ALL MATRICES ..

DO 100 1=1,N4 
DO 200 J=1,N4

AR(I,J) = ZERO 
AI(I,J) = ZERO 
BR(I,J) = ZERO 
BI(I,J) = ZERO
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200 CONTINUE
100 CONTINUE
C .. CHEBYSHEV TAU METROS CALLS ..
C . . CALL FIRST DERIVATIVE MATRIX ..

CALL DERIV1_C(M,D)
C . . CALL MATRIX CORRESPONDING TO FLOW (POISEUILLE or COUETTE) .

CALL POISEUILLE_C(M,P,Q)
C CALL CGUETTE_C(M,P,Q)
C
C .. LEGENDRE SPECTRAL METHOS CALLS ..
C . . CALL FIRST DERIVATIVE MATRIX ..

CALL DERIV1_L(M,D)
C . . CALL MATRIX CORRESPONDING TO FLOW (POISEUILLE or COUETTE) .

CALL POISEUILLE_L(M,P}Q)
C CALL COUETTE_L(M,P,q)

C .. BUILD MATRIX A(N4,N4) AND B(N4,N4) IN EQUATIONS IN SEQUENCE 
C . . EQUATIONS 1 - 3 . .

DO 1000 1=1,M-l 
DO 1100 K=0,2 

KK - K*M 
DO 1200 J=1 }M

AR(KK+I,KK+J) = D(I,J)
1200 CONTINUE

AR(KK+I,KK+M+I) = -ONE 
1100 CONTINUE

AR(M+I,I) = -WAVE_N0**2 
1000 CONTINUE 
C
C .. EQUATION 4 ..

DO 2000 1=1,M-l 
NV = N3+I 
DO 2100 J=1,M

AR(NV,N3+J) = D(I,J)
AI(NV3J) = P(I,J)*REYNOLDS_NO*WAVE_NO 
AI(NV,N2+J) = -Q(I,J)*REYNOLDS_NO*WAVE_NO 

2100 CONTINUE
AR(NV,N2+I) = -WAVE_N0**2 
BI(NV,N2+I) = -REYNOLDS_NO*WAVE„NO 

2000 CONTINUE 
C
C .. BOUNDARY CONDITIONS ..

FAC = ONE 
DO 3000 I=1,M

AR(N1,I) = ONE 
AR(N2,I) = FAC 
AR(N3,Nl+I) = ONE 
AR(N4jNl+I) = FAC
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FAC = -FAC
3000 CONTINUE
C
C . . THE EIGENVALUE SOLVER . .

EPS = -ONE
IFAIL = 0
CALL F02GJF(N4,AR,N4,AI,N4,BR,N4,BI,N4,EPS,ALFR,ALFI,BETA,MATV,
* VR,N4,VI,N4,ITER,IFAIL)

C .. CALL THE FOLLOWING STEPS (10)

C .. THE STEPS BELOW DETERMINE EIGENVALUES
NL = 0
DO 4000 K=1,N4

IF ( BETA(K).NE.ZERO ) THEN 
NL - NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)
ITER(NL) = K 

END IF
4000 CONTINUE
C . .
C . . REORDER IMAGINARY PART OF EIGENVALUES. THE REQUIRED EIGENVALUE ..
C .. IS THE FIRST LARGEST IMAGINARY PART..

DG 4100 1=1,NL-1 
RMAX = ALFI(I)
INOW = I
DO 4200 J=I+1,NL

IF (RMAX.LT.ALFI(J)) THEN 
RMAX = ALFI(J)
INOW = J 

END IF
4200 CONTINUE

TEMP = ALFR(INOW)
ALFR(INOW) = ALFR(I)
ALFR(I) = TEMP 
TEMP = ALFI(INOW)
ALFI(INOW) = ALFI(I)
ALFI(I) = TEMP 
ITEMP = ITER(INOW)
ITER(INOW) = ITER(I)
ITER(I) = ITEMP

4100 CONTINUE
C . .
C .. OPEN FILE TO STORE EIGENVALUES ..

NL = M/100
C0DE(1:1) = CHAR(48+NL)
NL = M-100*NL
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C0DE(2:2) = CHAR(48+NL/10)
C0DE(3:3) = CHAR(48+NL-10*(NL/10))
OPEN(10}FILE=}0RR4DATA.}I/CODE)
DO 4300 1=1,5

WRITE(10,J(2F20.15)0 ALFR(I),ALFI(I) 
4300 CONTINUE 

CLOSE(IO)
END
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Second o rd e r  system

PROGRAM ORRSOM

* *
* Uses D"2 approach on the ORR-SOMMERFELD equation in the form *
# *
* Y_2=D~2 Y_1, *
* (D''2-2a''2)Y_2+a''4Y_l=iaR(i-X''2-LAMBDA) (Y_2-a"2 Y_l)+2iaRY_l *
* *
* with boundary conditions Y„1=0J DY„1=0 on x=-l}l *
*  *

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
C
C .. DECLARATIONS FOR QZ ALGORITHM ..

LOGICAL MATV
PARAMETER( M=40, N1=M, N2=2*M, MATV=.FALSE. )
DIMENSION AR(N2,N2), AI(N2,N2), BR(N2,N2), BI(N2,N2), ALFR(N2), 
* ALFI(N2), BETA(N2), ITER(N2)

C
C .. GENERAL DECLARATIONS ..

CHARACTERS CODE
PARAMETER( ZER0=0.D03 0NE=1.D0, WAVE_N0=1.DO, REYN0LDS_N0=1. D4) 
DIMENSION DD(M,M), Q(M,M), P(M,M), BCS(M)

C
C .. ZERO ALL MATRICES ..

DO 100 1=1,N2 
DO 200 J=1,N2

AR(I,J) = ZERO 
AI(I,J) = ZERO 
BR(I,J) = ZERO 
BI(I,J) = ZERO 

200 CONTINUE
100 CONTINUE

C
C . . CHEBYSHEV TAU METHOS CALLS ..
C .. CALL SECOND DERIVATIVE MATRIX .,

CALL DERIV2_C(M,DD)
C .. CALL MATRIX CORRESPONDING TO FLOW (POISEUILLE or COUETTE) ..

CALL POISEUILLE_C(M,P,Q)
C CALL COUETTE„C(M3P,Q)

C .. LEGENDRE SPECTRAL METHOS CALLS ..
C . . CALL SECOND DERIVATIVE MATRIX ..

CALL DERIV2„L(M,D)
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C .. CALL MATRIX CORRESPONDING TO FLOW (POISEUILLE or COUETTE) .
CALL POISEUILLE_L(M,P,Q)

C CALL COUETTE_L(M,P,Q)

C .. SET OF CONSTANT PARAMETERS ..
TMP1 = REYNOLDS_NO*WAVE_NO 
TMP2 = WAVE_N0**2 
TMP3 = REYNOLDS_NO*WAVE_NO**3 
TMP4 = WAVE_NO**4

C .. BUILD MATRIX A(N2,N2) AND B(N2,N2) IN EQUATIONS IN SEQUENCE 
C . . EQUATION 1 . .

DO 1000 1=1,M-2 
DO 1100 J=1, M

AR(I,J) = 00(1,1)
1100 CONTINUE

AR(I,N1+I) = -ONE 
1000 CONTINUE 
C .. EQUATION 2 ..

DO 2000 1=1,M-2 
NV = Nl+I 
DO 2100 J=1,M

AR(NV,N1+J) = DD(I,J)
AI(NV,Nl+J) = -TMP1*Q(I,J)
AI(NV,J) = TMP3*Q(I,J)+TMP1*P(I,J)

2100 CONTINUE
AR(NV,I) = TMP4 
AR(NV,NV) = AR(NV,NV)-2.D0*TMP2 
BI(NV,I) = TMP3 
BI(NV,NV) = -TMP1 

2000 CONTINUE 
C
C .. ONE OF THE TWO BOUNDARY CONDITIONS WILL BE IN CHARGE . *
C
C (1).. CONVENTIONAL BOUNDARY CONDITIONS ..

FAC = ONE 
DO 3000 1=1,M

AR(N1-1,I) = ONE 
AR(N1,I) = FAC 
II = 1-1
AR(N2-1,I) = DBLE(II*II)
AR(N2,I) = FAC*DBLE(II*II)
FAC = -FAC 

3000 CONTINUE

C (2).. MODIFIED BOUNDARY CONDITIONS . .
DO 2500 1=1,M

IF ( MOD(I,2).EQ.1 ) THEN
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BCS(I) = 0NE/DBLE(I*(I-2))
ELSE

BCS(I) = ONE/DBLE((1+1)*(1-3))
END IF 

2500 CONTINUE

C .. BOUNDARY CONDITIONS . .
FAC = ONE 
DO 3000 1=1,M

AR(N1~1,I) = ONE 
AR(N1,I) = FAC 
FAC = -FAC 

3000 CONTINUE
DO 3100 1=1,M-2

IF ( MOD(I,2).EQ.l ) THEN
AR(N2-1,N1+I) = BCS(I)

ELSE
AR(N2,N1+I) = BCS(I)

END IF 
3100 CONTINUE

C .. THE EIGENVALUE SOLVER . .
EPS = -ONE 
IFAIL = 0
CALL F02GJF(N2,AR,N2,AI,N2,BR,N2,BI,N2,EPS,ALFR,ALFI,BETA,MATV, 
* VR,N2,VI,N2,ITER,IFAIL)

C . .
C .. THE STEPS IN (10) ARE NECESSARY TO DETERMINE THE EIGENVALUES IN 
C .. THIS PROGRAM FOR K=1,N2 INSTEAD OF K=1,N4 ..

END

Poiseuille  an d  C o u e tte  Flow S ubrou tines
C . .  CHEBYSHEV TAU METHOD SUBROUTINES . .
C . .  THIS SUBROUTINE GIVES PARAMETERS AND MATRICES RELATED TO 
C . .  POISEUILLE FLOW FOR . .
C . .  M IS A POLYNOMIAL, P AND Q ARE MATRICES . .

SUBROUTINE POISEUILLE_C(M,P,q)
DOUBLE PRECISION Q(M,*) , P(M,*)
DO 100 1=1 ,M 

DO 200 J=1,M 
Q ( I , J)  = O.DO 
P ( I , J )  = O.DO 

200 CONTINUE
Q ( I , I )  = 0.5D0 
P ( I , I )  = - 2 . DO
IF ( I .LE.M-2 ) q ( I , I + 2 )  = -0.25D0
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IF ( I.GE.3 ) Q(I,1-2) = -0.25D0 
100 CONTINUE

q(3,l) = Q(3,1)-0.25D0 
Q(2,2) = q(2,2)-0.25D0 
RETURN 
END

C .. THIS SUBROUTINE GIVES PARAMETERS AND MATRICES RELATED TO 
C .. COUETTE FLOW ..
C .. M IS A POLYNOMIAL, P AND Q ARE MATRICES ..

SUBROUTINE COUETTE_C(M,P,Q)
DOUBLE PRECISION q(M,*), P(M,*)
D O  100 1=1,M 

D O  200 J=1,M
0(1,0) = O.DO 
P(I,J) = O.DO 

200 CONTINUE
IF ( I.LE.M-1 ) Q(I,I+1) = 0.5D0 
IF ( I.GE.3 ) q(I,I-l) = 0.5D0 

100 CONTINUE
q(2,l) = l.ODO
RETURN
E N D

C .. LEGENDRE SPECTRAL METHOD SUBROUTINES ..
C . . THIS SUBROUTINE GIVES PARAMETERS AND MATRICES RELATED TO
C .. POISEUILLE FLOW FOR .,
C .. M IS A POLYNOMIAL, P AND Q ARE MATRICES ..

SUBROUTINE POISEUILLE_L(M,P,Q)
DOUBLE PRECISION Q(0:M-l,0:M-l), P(0:M-l,0:M-1)
DO 100 1=0,M-l 

DO 200 J=0,M-1 
Q(I, J) = O.DO 
P(I,J) = O.DO 

200 CONTINUE
100 CONTINUE

DO 300 K=0,M-1
Q(K,K) = 2.D0*DBLE(K*K+K-1)/DBLE(4*K*K+4*K-3)
P(K,K) = -2.DO 

300 CONTINUE
DO 400 K=2,M-1

q(K,K-2) = -DBLE(K*K-K)/DBLE(4*K*K-8*K+3)
400 CONTINUE

DO 500 K=0,M-3
q(K,K+2) = -DBLE(K*K+3*K+2)/DBLE(4*K*K+16*K+15)

500 CONTINUE 
RETURN
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END

C . .
C . .
C . .

200

100

300

400

THIS SUBROUTINE GIVES PARAMETERS AND MATRICES RELATED TO 
COUETTE FLOW ..
M IS A POLYNOMIAL, P AND Q ARE MATRICES ..
SUBROUTINE COUETTE_L(M,P,Q)
DOUBLE PRECISION Q(0:M-l,0:M-l), P(0:M-l,0:M-1)
DO 100 1=0,M-l 

DO 200 J=0,M-1 
Q(I,J) = O.DO 
P(I,J) = O.DO 

CONTINUE 
Q (I, I) = O.DO 

CONTINUE 
DO 300 K=1,M-1

Q(K,K-1) = DBLE(K)/DBLE(2*K-1)
CONTINUE 
DO 400 K=0,M-2

Q(K,K+1) = DBLE(K+l)/DBLE(2*K+3)
CONTINUE
RETURN
END
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Appendix 3

This appendix contains two FORTRAN77 programs to perform a stability  analysis for 

the Benard-convection eigenvalue problem using the Chebyshev spectral tau  m ethod. 

The first program  trea ts the differential equation as a system of 8 first order differential 

equations whereas the second program treats the differential equation as a system of 4 

second order differential equations for both the conventional and modified boundary value 

technique.

E ig h th  o rd e r  sy s tem
PROGRAM CONVEC

*  *

* PROGRAM COMPUTES EIGENVALUES FOR BENARD CONVECTION IN A LAYER *
* OF CONDUCTING NAVIER-STOKES FLUID SUBJECT TO A CONSTANT AXIAL *
* MAGNETIC FIELD. *
* EIGENFUNCTION ARE REPRESENTED BY CHEBYSHEV SPECTRAL SERIES AND *
* NAG ROUTINE F02BJF IS USED TO TREAT THE GENERALISED BOUNDARY *
* VALUE PROBLEM. *
*  *

IMPLICIT DOUBLE PRECISION(A-H30-Z)
PARAMETER( M=203 N1=MJ N2=2*M3 N3=3*M, N4=4*M, N5=5*M3 N6=6*M,
* N7=7*M, N8=8*M )
DIMENSION A(N8,N8), B(N8,N8), ALFR(N8), ALFI(N8), BETA(N8) ,
* ITER(N8), D(M,M)
CHARACTER*3 CODE 
CHARACTER*1 TYPE 
LOGICAL MATV
PARAMETER( MATV=.FALSE., T0L=l.D-9, VMU=1.D03 PM=3.D0} PR=1.D03
* BVAL=1.55D4, AVAL=5.5576D0, Q=1.D3 )
RVAL = SQRT(BVAL)

c .. ZERO ALL ENTRIES OF A(N83N8) AND B(N83N8)
DO 100 1=1,N8 
DO 100 J=13N8 

A(J,I) = O.DO
B(J,I) = O.DO

100 CONTINUE

C .. VARIABLES OF THE EQUATIONS ..
C Y(l) ... W 3 Y(2) ... DW, Y(3) ... D~2W3 Y(4) ... D~3W
C Y(5) ... \THETA, Y(6) ... D\THETA3 Y(7) ... b3 Y(8) ... Db
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C .. FILL A(N8,N8) WITH THE DIFFERENTIATION MATRIX 
G .. GALL FIRST DERIVATIVE MATRIX ..

CALL DERIV_l(M,D)

C .. FILL A(N8,N8) WITH THE DIFFERENTIATION MATRIX IN ORDER 
DO 1000 1=1,M 

C .. EQUATION 1 ..
DO 1100 J=1,M

A(I,J) = D(I,J)
1100 CONTINUE

A(I,N1+I) = -1 .DO 
C .. EQUATION 2 ..

NV = Nl+I 
DO 1200 J=1,M

A(NV,N1+J) = D(I,J)
1200 CONTINUE

A(NV,N2+I) = -1. DO 
C .. EQUATION 3 ..

NV = N2+I 
DO 1300 J=1,M

A(NVaN2+J) = D(I,J)
1300 CONTINUE

A(NV,N3+I) = -1.DO 
C .. EQUATION 4 ..

NV = N3+I 
DO 1400 J=1jM

A(NV5N3+J) = D(I,J)
1400 CONTINUE

A(NV,I) = AVAL**4 
A(NV,N2+I) = -Q-2.D0*AVAL**2 
A(NV,N4+I) = -RVAL*AVAL**2 
B(NV,I) = -AVAL**2 
B(NV,N2+I) = 1.DO 
B(NV,N7+I) = -SQRT(Q)*PM 

C .. EQUATION 5 ..
NV = N4+I 
DO 1500 J=1,M

A(NV,N4+J) = D(I,J)
1500 CONTINUE

A(NV,N5+I) = -l.DO 
C .. EQUATION 6 ..

NV = N5+I 
DO 1600 J=1,M

A(NV,N5+J) = D(I,J)
1600 CONTINUE

A(NV,N4+I) = ~AVAL**2 
A(NV,I) = RVAL 
B(NV,N4+I) = PR

170



c . .

1900 

C . .

2000

1000

3100
3000
C
C . .

3200 

C . .

C . . 
C . .

EQUATION 7 .,
NV = N6+I 
DO 1900 J=1,M

A(NV,N6+J) = D(I,J)
CONTINUE
A(NV,N7+I) = -1.DO 

EQUATION 8 ..
NV = N7+I 
DO 2000 J=1,M

A(NV,N7+J) = D(I,J)
CONTINUE
A(NV,N1+I) = SQRT(Q)
A(NV,N6+I) = ~AVAL**2 
B(NV 3 N6+I) = PM 

CONTINUE 
DO 3000 1=1,N8 

DO 3100 K=1,12 
A(K*M,I) = 0.DO 
B(K*M3I) = 0.DO 

CONTINUE 
CONTINUE

BOUNDARY CONDITIONS - SET PARAMETER CONSTANTS FIRST 
FAC = l.DO 
DO 3200 I = 1,M

A(N1,I) = l.DO 
A(N2,I) = FAC 
A(N3,N1+I) = l.DO 
A(N4,N1+I) = FAC 
A(N5,N4+I) = l.DO 
A(N6,N4+I) = FAC 
A(N7 3N6+I) = l.DO 
A(N8,N6+I) = FAC 
FAC = -FAC 

CONTINUE

THE NAG ROUTINE F02BJF IS CALLED AS THE EIGENVALUE SOLVER ..
EPS = -l.DO 
IFAIL=0
CALL F02BJF(N8,A,N8,B,N8,EPS,ALFR,ALFI,BETA,MATV,Z,N8,ITER,IFAIL) 

CALL THE FOLLOWING STEPS (20)
DETERMINE REAL PARTS AND IMAGINARY PARTS OF EIGENVALUES ..
NL = 0
DO 9000 K=1,N8

IF (ABS(BETA(K)).GT.TOL) THEN 
NL=NL+1
ALFR(NL) = ALFR(K)/BETA(K)



ALFI(NL) = ALFI(K)/BETA(K)
ITER(NL) = K 

END IF 
9000 CONTINUE 
C . .
C .. REORDER REAL PART OF EIGENVALUES. THE REQUIRED EIGENVALUE 
C .. IS THE FIRST LARGEST REAL PART..

DO 9100 1=1,NL-1 
RMAX = ALFR(I)
INOW = I
DO 9200 J=I+1,NL

IF (RMAX.LT.ALFR(J)) THEN 
RMAX = ALFR(J)
INOW = J 

END IF
9200 CONTINUE

TEMP = ALFR(INOW)
ALFR(INOW) = ALFR(I)
ALFR(I) = TEMP 
TEMP = ALFI(INOW)
ALFI(INOW) = ALFI(I)
ALFI(I) = TEMP 
NTEMP = ITER(INOW)
ITER(INOW) = ITER(I)
ITER(I) = NTEMP 

9100 CONTINUE 
END
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F o u r th  o rd e r  sy s tem

PROGRAM BENARD

*  *

* PROGRAM COMPUTES EIGENVALUES FOR BENARD CONVECTION IN A LAYER *
* OF CONDUCTING NAVIER-STOKES FLUID SUBJECT TO A CONSTANT AXIAL *
* MAGNETIC FIELD. *
* EIGENFUNCTION ARE REPRESENTED BY CHEBYSHEV SPECTRAL SERIES AND *
* NAG ROUTINE F02BJF IS USED TO TREAT THE GENERALISED BOUNDARY *
* VALUE PROBLEM. *
*  *

* * : + : *  s i c * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * *

IMPLICIT DOUBLE PRECISION(A-H,Q-Z)
CHARACTERS CODE
PARAMETER( M=20, Ni=M, N2=2*M3 N3=3*M3 N4=4*M )
DIMENSION A(N4,N4), B(N4,N4), ALFR(N4), ALFI(N4)3 BETA(N4),
* ITER(N4), D(M,M), DD(M,M), BCS(M)
CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., T0L=l.D-9, VMU=1.D03 PM=3.D03 PR=l.DO,
* BVAL=1.55D4, AVAL=5.5576D0, Q=1.D3 )
RVAL = SQRT(BVAL)

c .. ZERO ALL ENTRIES OF A(N43N4) AND B(N43N4)
DO 100 1=13N4 
DO 100 J=1,N4 

A(J,I) = 0.DO 
B(J3I) = 0.DO 

100 CONTINUE
C .. VARIABLES OF THE EQUATIONS ..
C .. Y(l) ... W 3 Y(2) ... D"2W 3 Y(3) ... \THETA, Y(4) ... b 
C
C .. FILL A(N43N4) WITH THE FIRST DIFFERENTIATION MATRIX
C .. CALL FIRST DERIVATIVE MATRIX ..

CALL DERIV_1(M3D)

C .. FILL A(N4,N4) WITH THE SECOND DIFFERENTIATION MATRIX
C .. CALL SECOND DERIVATIVE MATRIX ..

CALL DERIV_2(M,D)
C . .
C .. FILL A(N4,N4) WITH THE DIFFERENTIATION MATRIX IN ORDER 

DO 1000 I=13M 
C .. EQUATION 1 ..

DO 1100 J=13M
A(I,J) = DD(I,J)

1100 CONTINUE
A(I,N1+I) = “l.DO
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C .. EQUATION 2 ..
NV = Nl+I 
DO 1200 J=1,M

A(NV,N1+J) = DD(I,J)
B(NV,N3+J) = -SQRT(Q)*PM*D(l ,J)

1200 CONTINUE
A(NV,I) = AVAL**4
A(NV,NV) = A(NV,NV)-Q-2. D0*AVAL**2
A(NV,N2+I) = -RVAL*AVAL**2 
B(NV,I) = -AVAL**2 
B(NV,NV) = l.DO 

C .. EQUATION 3 ..
NV = N2+I 
DO 1300 J=1,M

A(NV,N2+J) = DD(I,J)
1300 CONTINUE

A(NV,I) = RVAL 
A(NV}N2+I) = -AVAL**2 
B(NV3N2+I) = PR 

C .. EQUATION 4 ..
NV = N3+I 
DO 1400 J=1,M

A(NV,N3+J) = DD(I}J)
A(NV,J) = SQRT(Q)*D(I,J)

1400 CONTINUE
A(NV 3N3+I) = -AVAL**2
B(NVjN3+I) = PM 

1000 CONTINUE

C .. THIS ROUTINE IS FOR MODIFIED BOUNDARY CONDITIONS 
DO 2000 1=1,M

IF ( MOD(I,2).EQ.l ) THEN 
BCS(I) = ONE/DBLE(I*(1-2))

ELSE
BCS(I) = ONE/DBLE((1+1)*(1-3))

END IF 
2000 CONTINUE

DO 3000 1=1,N4 
DO 3100 K=1,4

A(K*M,I) = 0.DO 
A(K*M-1,I) = 0.DO 
B(K*M,I) = 0.DO
B(K*M-1,I) = 0.DO 

3100 CONTINUE 
3000 CONTINUE

C .. ONE OF THE TWO BOUNDARY CONDITIONS WILL BE USED 
C



C (l). . BOUNDARY CONDITIONS AND THE CONVENTIONAL BOUNDARY CONDITIONS 
FAC = l.DO 
DO 3200 J = 1 ,M

A(N1-1,J) = l.DO 
A(N1,J) = FAC

C .. DW=0 ON UPPER BOUNDARY ..
TEMPI = O.DO 
DO 3300 1 = 1,M

TEMPI = TEMP1+D(I,J)
3300 CONTINUE

A(N2-1,J) = TEMPI 
C .. DW=0 ON LOWER BOUNDARY ..

TEMP2 = O.DO 
FAC1 = l.DO 
DO 3400 1=1,M

TEMP2 = TEMP2+FAC1*D(I,J)
FAC1 = -FAC1 

3400 CONTINUE
A(N2,J) = TEMP2 
A(N3-1,N2+J) = l.DO 
A(N3,N2+J) = FAC
A(N4-1,N3+J) = l.DO 
A(N4,N3+J) = FAC
FAC = -FAC 

3200 CONTINUE 
C
C (2).. THE BOUNDARY CONDITIONS AND THE MODIFIED BOUNDARY CONDITIONS 

FAC = l.DO 
DO 3200 I = 1,M

A(N1-1,I) = l.DO 
A(N1,I) = FAC
A(N3-1,N2+I) = l.DO 
A(N3}N2+I) = FAC
A(N4-1,N3+I) = l.DO 
A(N4,N3+I) = FAC
FAC = -FAC 

3200 CONTINUE
DO 3300 I = l,M-2

IF ( MOD(I,2).EQ.l ) THEN 
A(N2-1,N1+I) = BCS(I)

ELSE
A(N2,N1+I) = BCS(I)

END IF 
3300 CONTINUE

C .. THE NAG ROUTINE F02BJF IS CALLED AS THE EIGENVALUE SOLVER .. 
EPS = -l.DO 
IFAIL=0
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CALL F02B JF (N4, A, N4,B ,N4, EPS, ALFR, ALFI,BETA, MATV 3 Z,N4, ITER, IFAIL)

THE STEPS IN (20) ARE NECESSARY TO DETERMINE THE EIGENVALUES IN 
THIS PROGRAM FOR K=13N4 INSTEAD OF K=1,N8 ..
END
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Appendix 4
PROGRAM CONVEC

c
c .. PARAMETERS FOR THE EIGENVALUE PROBLEM 

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER( T0L=5.D-9,PR=1.DO, PM=1.D0, NCRVL=20 )
PARAMETERC RMAX=10.D0)
DIMENSION CR(0:NQVL)

C OR DIMENSION Q(0:NQVL)
CHARACTER*1 TYPE 
CHARACTER*3 CODE
COMMON / INFOl / CRV, PMVAL, PRVAL, RM 

c COMMON / INFOl / QV, PMVAL, PRVAL, RM
COMMON / INF02 / TYPE 
EXTERNAL EIGVAL

5|i^:4:^c4:************^:4::%=t:=(:Hc* * * * * * * * :)£:,li::Kilc* * :t :* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* *
* PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/MARANGONI *
* CONVECTION IN A CONDUCTING MAGNETIC MEDIUM SUBJECT TO A *
* CONSTANT VERTICAL MAGNETIC FIELD. *
* A NAG ROUTINE F02BJF IS USED TO INTEGRATE THE SYSTEM OF FIRST *
* ORDER ORDINARY DIFFERENTIAL EQUATIONS USING CHEBYSHEV SPECTRAL *
* THE EIGENVALUE PROBLEM IS EIGHTH ORDER WITH FOUR BOUNDARY *
* CONDITIONS ON EACH BOUNDARY. THERE ARE SEVERAL CASES ACCORDING *
* TO THE BOUNDARY CONDITIONS. *
* *
^^>}c^c4:^:^S5(i:^:4 : ^:=}:% % ^:% % ^:^:^:^:^:^c^c^cj)<4:* * * * :t::f:5l1:!ic:+::+: % :ic* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C FACTOR = 2.D0*ATAN(1.D0)/DBLE(NCRVL)
FACTOR = 2.DO*ATAN(l.DO)/DBLE(NQVL)
PMVAL = PM 
PRVAL = PR 
DO 100 1=0,NCRVL 

C CR(I) = RMAX*(SIN(FACTOR*DBLE(I)) ) **2
Q(I) = RMAX*(SIN(FACTOR*DBLE(I)))**2 

100 CONTINUE
WRITE(6,*) 1 ENTER VALUE FOR RVAL'

C OPEN(16,FILE=FILE_IN,STATUS=}OLDJ,ERR=888)
C OPEN(13,FILE=FILE_OUT,STATUS=1 UNKNOWN5 )

READ(5,*) RVAL 
RM = RVAL
WRITE(6,*) J ENTER VALUE FOR AVAL}
READ(5,*) AVAL 

C CL0SE(16)
DPEN(1,FILE=FNAME,STATUS=J UNKNOWN’)
DO 200 1=0,NCRVL 

C CRV = CR(I)
QV = Q(I)



c . .
c , .
c . .
c . .

c . .
c . .

c

111

G . .

THIS SUBROUTINE IS USED TO MINIMISE THE REQUIRED WAVENUMBER ..
ALEFT AND ARIGHT ARE THE END OF AN INTERVAL, ASTAT IS THE REQUIRED 
NUMBER, TOL IS FOR ACCURACY OF THE RESULT, R_VAL IS RAYLEIGH NUMBER 
AND EIGVAL IS A FUNCTION ..

ALEFT = AVAL*0.8D0 
ARIGHT = AVAL*1.25D0
CALL MINMUM(ALEFT,ARIGHT,ASTAT,TOL,R_VAL,EIGVAL)

END

THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE ., 
GIVEN WAVENUMBER ..
FUNCTION EIGVAL(AVAL)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION X(2), F(2)
COMMON / INFOl / CR, PM, PR, RM 
COMMON / INFOl / Q, PM, PR, RM 

X(l) = RM*0.8D0 
X(2) = RM+1.25D0 
F(l) = SIGMA(X(1),AVAL)
F(2) = SIGMA(X(2),AVAL)
IF (ABS(F(1)-F(2)).LE.5.D-9) THEN 

EIGVAL = X(2)
RM = EIGVAL
WRITE(*,*) EIGVAL, AVAL 
RETURN 

END IF
G = X(1)-F(1)*(X(2)-X(1))/(F(2)-F(1))
X(l) = X(2)
F(l) = F(2)
X(2) = G 
GOTO 111 
END

THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM .. 
FUNCTION SIGMA(RVAL,AVAL)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER( M=20, N1=M, N2=2*M, N3=3*M, N4=4*M, N5=5*M, N6=6*M,
* N7=7*M, N8=8*M )
DIMENSION A(N8,N8), B(N8,N8), D(M,M), ALFR(N8), ALFI(N8),
* BETA(N8), ITER(N8)
CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., RVAL=300.D0, RNU=O.DO, BO=l.DO,
* CR=0.DO, ZER0=0.DO, ONE=l.DO, T0L-1.D-9 )
COMMON / INFOl / CR, PM, PR, RM
COMMON / INFOl / Q, PM, PR, RM 
COMMON / INF02 / TYPE
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C .. VARIABLES OF THE EQUATIONS ..
C .. Y(l) . . . W, Y(2) ... DWj Y(3) ... D~2W, 7(4) ... D"3W,
C .. Y(5) ... \THETA, Y(6) ... D\THETA, Y(T) ... h, Y(8) ... Dh

C .. ZERO ALL ENTRIES OF A(N8,N8), B(N8,N8) ..
DO 300 1=1,N8 
DO 300 J=1,N8

A(J,I) = O.DO 
B(J,I) = O.DO 

300 CONTINUE

C . . BUILD THE CHEBYSHEV DERIVATIVE MATRIX D(N,N)
C .. CALL FIRST DERIVATIVE MATRIX ..

CALL DERIV_1(M,D)

C .. FILL A(N8,N8) WITH THE DIFFERENTIATION MATRIX IN ORDER 
DO 1000 1=1,M 

C .. EQUATION 1 ..
DO 1100 J=1,M

A (I, J) - D (I, J)
1100 CONTINUE

A(I,N1+I) = -l.DO 
C .. EQUATION 2 ..

NV = Nl+I 
DO 1200 J=1,M

A(NV,N1+J) = D(I,J)
1200 CONTINUE

A(NV,N2+I) = -l.DO 
C .. EQUATION 3 ..

NV = N2+I 
DO 1300 J=i,M

A(NV,N2+J) = D(I,J)
1300 CONTINUE

A(NV,N3+I) = -l.DO 
C .. EQUATION 4 ..

NV = N3+I 
DO 1400 J=1,M

A(NV 3N3+J) = D(I,J)
1400 CONTINUE

A(NV,I) = AVAL**4 
A(NV,N2+I) = -Q-2,D0*AVAL**2 
A(NVJN4+I) = -RVAL*AVAL**2 
B(NV,I) = -AVAL**2/PR 
B(NV,N2+I) = 1.DO/PR 
B(NV,N7+I) = -Q/PM 

C .. EQUATION 5 ..
NV = N4+I
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1500 

G . .

1600

C . .

1700 

C . .

1800

1000
C
C

2100
2000
C
C . .

DO 1500 J=1,M
A(NV,N4+J) = D(I,J)

CONTINUE
A(NV,N5+I) = -l.DO 

EQUATION 6 . .
NV = N5+I 
DO 1600 J=1,M

A(NV,N5+J) = D(I,J)
CONTINUE
A(NV,I) = l.DO 
A(NVjN4+I) = -AVAL**2 
B(NV,N4+I) = l.DO 

EQUATION 7 ..
NV = N6+I 
DO 1700 J=1,M

A(NV,N6+J) = D(I,J)
CONTINUE
A(NV,N7+I) = -l.DO 

EQUATION 8 . .
NV = N7+I 
DO 1800 J=1,M

A(NV,N7+J) = D(l,J)
CONTINUE
A(NV3N1+I) = l.DO 
A(NVfN6+I) = -AVAL**2 
B(NV,N6+I) = 1.DO/PM 

CONTINUE

.. ZERO ALL ENTRIES OF 8 Mth ROWS..
DO 2000 1=13N8 

DO 2100 K=1}8
A(K*M3I) = O.DO 
B(K*M3I) = O.DO 

CONTINUE 
CONTINUE

BOUNDARY CONDITIONS - SET PARAMETER CONSTANTS FIRST 
Cl = AVAL**2 
C2 = RMVL 
C3 = RMVL*AVAL**2 
FAC = l.DO 
DO 2200 1=1,M

A(N1,I) = -C3 
B(N1,I) = Cl
B(N1,N2+I) = l.DO 
B(N1,N4+I) = C3 
A(N2,I) = FAC
A(N3,I) = (B0-C1)*C1
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A(N3,N1+I) = Q*C2*CR+3.D0*C3*CR
A(N3,N2+I) = B0-C1
A(N3,N3+I) = -C2*CR
A(N3,N4+I) = (BO-C1)*C3
B(N3,N1+I) = -C2*CR/PR
B(N3,N6+I) = C2*CR*Q/PM
A(N4,N1+I) = FAG
A(N5,I) = RNU*C1
A(N5,N2+I) = RNU
A(N5,N5+I) = -C3
A(N6,M+I) = FAC
A(N7,N6+l) = AVAL
A(N7,N7+I) = l.DO
A(N8,N6+I) = -AVAL*FAC
A(W8,N7+I) = FAG
FAC = -FAC

2200 CONTINUE

C .. THE NAG ROUTINE F02BJF IS USED AS THE EIGENVALUE SOLVER ..
EPS = -l.DO 
IFAIL=0
CALL F02BJF(N8,A,N8,B,N8,EPS,ALFR,ALFI,BETA,M T V ,Z,N8,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY ..
C .. PARTS ARE ALFI(M)

NL = 0
DO 60 1=1,N8

IF (ABS(BETA(I)).GT.TOL) THEN 
NL=NL+1
ALFR(NL) = ALFR(I)/BETA(I)
ALFI(NL) = ALFI(I)/BETA(I)

END IF
60 CONTINUE

C .. DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES .. 
ALARGE = ALFI(l)
AREAL = ALFR(l)
DO 65 1=2,NL

IF (AREAL.GT.ALFR(I)) GOTO 65 
ALARGE = ALFI(I)
AREAL = ALFR(I)

65 CONTINUE
SIGMA = AREAL
RETURN
END
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Appendix 5

This appendix contains two FORTRAN77 programs to perform a stability  analysis for the 

Porous m edium  superposed fluid layer eigenvalue problem using the Chebyshev spectral 

tau  m ethod. The first program  treats the governing equations as a system  of 10 first 

order differential equations whereas the second program treats the governing equations 

as five second order differential equations.

T en th  o rd e r  sy s tem

PROGRAM BENARD
IMPLICIT DOUBLE PRECISI0N(A-H}0~Z)
PARAMETER( T0L=5.D-9, MVAL=25 )
DIMENSION AVAL(0:MVAL), RVAL(0:MVAL)
COMMON / INFOl / RM

* *
* PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/RAYLEIGH *
* CONVECTION IN A POROUS MEDIUM SUPERPOSED BY CLEAR FLUID HEATED *
* FROM BELOW. *
* NAG ROUTINE F02BJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER *
* ORDINARY DIFFERENTIAL EQUATIONS USING THE CHEBYSHEV TAU METH­ *
* OD. THE EIGENVALUE PROBLEM IS 10TH ORDER WITH FIVE BOUNDARY *
* CONDITIONS ON EACH BOUNDARY. *

A --r *

WRITE(6,*) JENTER VALUE FOR RMJ
READ(5,*) RM

C . . DETERMINE WAVENUMBERS ..
DO 100 I=0,MVAL

ANOW = DBLE(I)
AVAL(I) = ANOW
RVAL(I) = EIGVAL(ANOW)
RM = RVAL(I)
AM = AVAL(I)

100 CONTINUE
END

C ,. THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE .. 
C .. GIVEN WAVENUMBER ..

FUNCTION EIGVAL(AM)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER( EPS=5.D-8 )
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DIMENSION X(2), F(2)
COMMON / INFOl / RM 
X(l) = RM*0.9D0 
X(2) = RM*1.1D0 
F(l) = SIGMA(X(1),AM)

111 F(2) = SIGMA(X(2), AM)
IF (ABS(F(1)-F(2)).LE.EPS) THEN 

EIGVAL = X(2)
RETURN 

END IF
XNOW = X(l)-F(l)*(X(2)-X(l))/(F(2)-F(D)
X(l) = X(2)
F(l) a F(2)
X(2) = XNOW 
GOTO 111 
RETURN 
END

C . . THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM .. 
FUNCTION SIGMA(RM,AM)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER( N=12, N2=2*N, N3=3*N, N4=4*N, N5=5*N, N6=6*N,
* N7=7*N, N8=8*N, N9=9*N, NX=10*N )
PARAMETER( PR=l,DO, GM=l.DO, PHI=1.D0, DA=4.D-6, ALFA_BJ=0.1DO) 
DIMENSION A(NX,NX), B(NX,NX), D(N,N), ALFR(NX), ALFI(NX) ,
* BETA(NX), ITER(NX)
CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., ZERO=O.DO, ONE=l.DO, T0L=5.D-9)
HAT„D = ONE/O.12D0
HAT_K = 0NE/0.7D0
PM = PR/HAT.K
DELTA = HAT_D*SQRT(DA)/ALFA_BJ
AF = AM/HAT.D
EPS_T = HAT_D/HAT_K
RF = RM*HAT_K**2/(DA*HAT„D**4)

C .. VARIABLES OF THE EQUATIONS FOR FLUID ..
C .. Y(l) ... W, Y(2) ... DW, Y(3) ... D~2W, Y(4) ... D~3W,
C .. Y(5) ... \THETA, Y(6) ... D\THETA 
C .. VARIABLES OF THE EQUATIONS FOR POROUS MEDIUM ..
C .. Y(7) ... W, Y(8) ... DW, Y(9) ... \THETA, Y(10) ... D\THETA,
C
C .. FINDS REAL EIGENVALUES FOR BENARD CONVECTION IN TWO LAYERS 
C PROBLEM WITH BOUNDARIES USING CHEBYSHEV SPECTRAL METHODS ..

DO 100 1=1,NX 
DO 100 J=1,NX 

A(J,I) = ZERO

183



B(J,I) = ZERO 
100 CONTINUE

C .. BUILD THE CHEBYSHEV DERIVATIVE MATRIX D(N,N)
C .. CALL FIRST DERIVATIVE MATRIX ..

CALL DERIV_1(M,D)

C .. BUILD MATRIX A(NX,NX) AND B(NX,NX) IN EQUATIONS IN SEQUENCE..
DO 1000 1=1,N-l 

C .. EQUATION 1 (In fluid region) ..
DO 1100 J=1,N

A(I,J) = D(I,J)
1100 CONTINUE

A(I,N1+I) = -ONE 
C .. EQUATION 2 (In fluid region) ..

DO 1200 J=1,N
A(N1+I,N1+J) = D(I,J)

1200 CONTINUE
A(N1+I,N2+I) = -ONE 

C .. EQUATION 3 (In fluid region) ..
DO 1300 J=1,N

A(N2+I,N2+J) = D(I,J)
1300 CONTINUE

A(N2+I,N3+I) = -ONE 
C .. EQUATION 4 (In fluid region) ..

DO 1400 J=1,N
A(N3+I,N3+J) = D (I,J)

1400 CONTINUE
A(N3+I,I) = AF**4 
A(N3+I,N2+I) = -2.D0*AF**2 
A(N3+I,N4+I) = -RF*AF**2 
B(N3+I,N2+I) = HAT_D**2/(PR*HAT_K)
B(N3+I,I) = -AF**2*HATJ)**2/(PR*HAT_K)

C .. EQUATION 5 (In fluid region) ..
DO 1500 J=1,N

A(N4+I,N4+J) = D(I,J)
1500 CONTINUE

A(N4+I,N5+I) = -ONE 
C .. EQUATION 6 (In fluid region) ..

DO 1600 J=1,N
A(N5+I,N5+J) = D(I,J)

1600 CONTINUE
A(N5+I,I) = ONE 
A(N5+I,N4+I) = -AF**2 
B(N5+I,N4+I) = HAT_D**2/HAT_K 

C .. EQUATION T (In porous medium) ..
DO 1900 J=1 ,N

A(N6+I,N6+J) = D(I,J)
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1900 CONTINUE
A(N6+I,N7+I) = -ONE 

C .. EQUATION 8 (In porous medium) . .
DO 2000 J=1,N

A(N7+I,N7+J) = D(I,J)
B(N7+I,N7+J) = -DA*D(I,J)/(PHI*PM)

2000 CONTINUE
A(N7+I,N6+I) = -AM**2 
A(N7+I,N8+I) = RM*AM**2 
B(N7+I,N6+I) = DA*AM**2/(PHI*PM)

C .. EQUATION 9 (In porous medium) ..
DO 2100 J=1,N

A(N8+I,N8+J) = D(Ij J)
2100 CONTINUE

A(N8+I,N9+I) = -ONE 
C .. EQUATION 10 (In porous medium) ..

DO 2200 J=1 ,N
A(N9+I,N9+J) = D(I,J)

2200 CONTINUE
A(N9+I,N6+I) = ONE 
A(N9+I,N8+I) = -AM**2 
B(N9+I,N8+I) = GM 

1000 CONTINUE

C .. INTRODUCE BOUNDARY CONDITIONS ..
FAC = ONE
FACTOR = DA*EPS„T*HAT_D**3
DO 900 J=1,N 

C .. 1st ROW ..
A(Nj J) = ONE 

C .. 2nd ROW ..
A(N2 j J+N) = ONE 

C .. 3rd ROW ..
A(N3,J+N4) = ONE 

C .. 4th ROW ..
A(N4,J) = FAC*EPS_T 
A(N4,J+N6) = -ONE 

C . . 5th ROW ..
A(N5}J+N4) = FAC 
A(N5,J+N8) = -EPS_T 

C .. 6th ROW ..
A(N6,J+N5) = FAC 
A(N6,J+N9) = -ONE 

C . . 7th ROW . .
A(N7,J+N) = -3.D0*FAC*FACT0R*AF**2 
A(N7,J+N3) = FAC*FACT0R 
A(N7,J+N7) = ONE
B(N7,J+N) = FAC*FACT0R*HAT_D**2/(PR*HAT_K)
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B(N7,J+N7) = -DA/(PHI*PM)
C .. 8th ROW ..

A(N8,J+N) = FAC*HAT_D*EPS_T 
A(N8,J+N2) = -FAC*DELTA*HAT„D*EPS_T 
A(N8,J+N7) = -ONE 

C .. 9th ROW ..
A(N9,J+N6) = FAC 

C .. 10th ROW ..
A(NX,J+N8) = FAC 
FAC = -FAC 

900 CONTINUE
DO 100 1=1,N5 
DO 100 J=1,N5 

A(J,I) = ZERO 
B(J3I) = ZERO 

100 CONTINUE

C .. THE NAG ROUTINE F02BJF IS USED AS THE EIGENVALUE SOLVER ..
EPS = -ONE 
IFAIL = 0
CALL F02BJF(NX,A,NX,B,NX,EPS,ALFR,ALFI,BETA,MATV5 Z,NX,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY .. 
C .. PARTS ARE ALFI(M)

NL = 0
DO 9000 K=1,NX

IF (ABS(BETA(K)).GT.TOL) THEN 
NL = NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)

END IF 
9000 CONTINUE

C .. DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES .. 
ALARGE = ALFI (1)
AREAL = ALFR(l)
DO 65 1=2,NL

IF (AREAL.GT.ALFR(I)) GOTO 65 
ALARGE = ALFI(I)
AREAL = ALFR(I)

65 CONTINUE
SIGMA = AREAL
RETURN
END
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F if th  o rd e r  sy s tem

PROGRAM BENARD
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
PARAMETER( T0L=5.D-9, MVAL=25 ) 
DIMENSION AVAL(0:MVAL), RVAL(0:MVAL) 
COMMON / INFOl / RM

* *
* PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/RAYLEIGH *
* CONVECTION IN A POROUS MEDIUM SUPERPOSED BY CLEAR FLUID HEATED *
* FROM BELOW. *
* NAG ROUTINE F02BJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER *
* ORDINARY DIFFERENTIAL EQUATIONS USING THE CHEBYSHEV TAU METH- *
* OD. THE EIGENVALUE PROBLEM IS 5TH ORDER WITH FIVE BOUNDARY *
* CONDITIONS ON EACH BOUNDARY. *
* *

WRITE(6,*) J ENTER VALUE FOR RM;
READ(5,*) RM

C .. DETERMINE WAVENUMBERS ..
DO 100 1=0,MVAL 

ANOW = DBLE(I)
AVAL(I) = ANOW
RVAL(I) = EIGVAL(ANOW)
OPEN(1,FILE=J BE„SEC2.DAT',STATUS=’UNKNOWN;)
AM = AVAL(I)
RM = RVAL(I)

100 CONTINUE 
END

C .. THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE .. 
C .. GIVEN WAVENUMBER ..

FUNCTION EIGVAL(AM)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER( EPS=5.D-8 )
DIMENSION X(2), F(2)
COMMON / INFOl / RM 
X(l) = RM*0.9D0 
X(2) = RM*1.1D0 
F(l) = SIGMA(X(l),AM)

111 F(2) = SIGMA(X(2),AM)
IF (ABS(F(l)-F(2)).LE.EPS) THEN 

EIGVAL = X(2)
RETURN 

END IF
XNOW = X(i)-F(l)*(X(2)-X(l))/(F(2)-F(l))



X(l) = X(2)
F(l) = F(2)
X(2) = XNOW 
GOTO 111 
RETURN 
END

C .. THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM 
FUNCTION SIGMA(RM,AM)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( N=25, N1=N, N2=2*N, N3=3*N, N4=4*N, N5=5*N)
PARAMETER( PR-1.DO, PHI=l.DO, DA=4.D~6, ALFA_BJ=0.1DO,
* GM=1.DO)
DIMENSION A(N5,N5), B(N5,N5), D(N,N), DD(N,N), ALFR(N5) , ALFI(N5),
* BETA(N5), ITER(N5)
CHARACTER*1 TYPE
LOGICAL MATV
PARAMETER( MATV=.FALSE., ZERO=O.DO, ONE=l.DO, T0L=5.D-9)
HAT„D = ONE/O.1DO
HAT_K = ONE/O.7D0
PM = (ONE/HAT_K)*PR
DELTA = HAT_D*SQRT(DA)/ALFA_BJ
AF = AM/HAT_D
EPS_T - HAT_D/HAT_K
RF = RM*HAT_K**2/(DA*HAT_D**4)

C .. FINDS REAL EIGENVALUES FOR BENARD CONVECTION FOR FREE 
C BOUNDARIES USING CHEBYSHEV SPECTRAL METHODS ..

DO 100 1=1,N5 
DO 100 J=1,N5 

A(J , I) = ZERO 
B( J , I) = ZERO 

100 CONTINUE

C .. VARIABLES OF THE EQUATIONS ..
C .. Y(1) ... W_f, Y(2) ... \xi, Y(3) ... \THETA_f, Y(4) ... W_m,
C Y(5) ... \THETA_m

C .. BUILD THE CHEBYSHEV FIRST DERIVATIVE MATRIX D(N,N)
C .. CALL FIRST DERIVATIVE MATRIX ..

CALL DERIV_1(M,D)

C .. BUILD THE CHEBYSHEV SECOND DERIVATIVE MATRIX DD(N,N)
C .. CALL SECOND DERIVATIVE MATRIX ..

CALL DERIV_2(M,D)

C .. BUILD MATRIX A(N5,N5) AND B(N5,N5) IN EQUATIONS IN SEQUENCE..
DO 1000 1=1,N-l
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C ,. EQUATION 1 (In fluid region) ..
DO 1100 J=1 ,N

A(I,J) = DD(I,J)
1100 CONTINUE

A(I,Nl+J) = -ONE 
C .. EQUATION 2 (In fluid region) ..

NI = Nl+I 
DO 1200 J=1,N

A(NI,N1+J) = DD(I,J)
1200 CONTINUE

A(NI,N1+I) = AF**4
A(NI,N1+I) = -2.D0*AF**2
A(NIJN2+I) = -RF*AF**2
B(NI,I) = -HAD_D**2*AF**2/(PR*HAT„K)
B(NI,N1+I) = HAD_D**2/(PR*HAT_K)

C .. EQUATION 3 (In fluid region) ..
NI = N2+I 
DO 1300 J=1,N

A(NI,N2+J) - DD(I,J)
1300 CONTINUE

A(NI,I) = ONE 
A(NI,N2+I) = -AF**2 
B(NI,N2+I) = HAT_D**2/HAT_K 

C .. EQUATION 4 (In porous medium) ..
NI = N3+I 
DO 1400 J=1,N

A(NI,N3+J) = DD(I,J)
B(NI,N3+J) = -DA*DD(I,J)/(PHI*PM) 

1400 CONTINUE
A(NI,N3+I) = -AM**2 
A(NI,N4+I) = RM*AM**2 
B(NI,N4+I) = DA*AM**2/(PHI*PM)

C .. EQUATION 5 (In porous medium) ..
NI = N4+I 
DO 1500 J=1,N

A(NI,N4+J) = DD(I,J)
1500 CONTINUE

A(NI,N3+I) = ONE 
A(NI,N4+I) = -AM**2 
B(NI,N4+I) = GM 

1000 CONTINUE
DO 2000 K=1,5

DO 2100 1=1,N5
A(K*N,I) = O.DO 
A(K*N-1,I) = O.DO 
B(K*N,I) = O.DO 
B(K*N-1,I) = O.DO 

2100 CONTINUE
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2000 CONTINUE

C .. INTRODUCE BOUNDARY CONDITIONS . . 
FAC = ONE
FACTOR = DA*EPS_T*HAT_D**3
DO 2200 J=1,N

c .. 1st ROW . .
A(N1-1,J) = ONE

c . . 2nd ROW . .
A(NI,J+N2) = ONE

c .. 3rd ROW . .
A(N2-1,J) = FAC*EPS„T
A(N2-1,J+N3) = -ONE

c .. 4th ROW . .
A(N2,J+N2) = FAC
A(N2,J+N4) = -EPS_T

c .. D VARIABLE BOUNDARY CONDITIONS
TEMPI = O.DO
TEMP2 = O.DO
FAC1 = ONE
DO 2300 i=i,:N

TEMPI = TEMP1+D(I,J)
TEMP2 = TEMP2+FAC1*D(I,J) 
FAC1 - -FAC1

2300 CONTINUE 
C .. 5th ROW ..
C .. DW=0 ON LOWER BOUNDARY ..

A(N3-1,J) = TEMPI
c .. 6th ROW
C .. D\THETA_F-D\THETA_M=0 ON INTERFACE BOUNDARY . . 

A(N3,J+N2) = TEMP2 
A(N3,J+N4) = -TEMPI 

C .. 7th ROW ..
C .. NORMAL STRESS BOUNDARY CONDITIONS..

A(N4-1,J) = -3.D0*TEMP2*FACT0R*AF**2 
A(N4-1,J+Nl) = TEMP2*FACT0R 
A(N4-1,J+N3) = TEMPI
B(N4-1,J) = TEMP2*FACT0R*HAT_D**2/(PR*HAT_K) 
B(N4-1,J+N3) = -TEMP1*DA/(PHI*PM)

C .. 8th ROW ..
C .. BEAVERS AND JOSEPH BOUNDARY CONDITIONS ..

A(N4,J) = TEMP1*HAT_D*EPS_T
A(N4,J+Nl) = -FAC*DELTA*HAT_D*EPS_T 
A(N4,J+N3) = -TEMPI 

C .. 9th ROW ..
A(N5-1,J+N3) = FAC 

C .. 10th ROW ..
A(N5,J+N4) = FAC
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FAC = -FAC 
2200 CONTINUE

C .. THE NAG ROUTINE F02BJF IS USED AS THE EIGENVALUE SOLVER ..
EPS = -ONE 
IFAIL = 0
CALL F02BJF(N5,A,N5,B,N5,EPS,ALFR,ALFI,BETA,MATV,Z,N5,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY .. 
C .. PARTS ARE ALFI(M)

NL = 0
DO 9000 K=1,N5

IF (ABS(BETA(K)).GT.TOL) THEN 
NL = NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) - ALFI(K)/BETA(K)

END IF 
9000 CONTINUE

C . . DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES . . 
ALARGE = ALFI(1)
AREAL = ALFR(l)
DO 65 1=2,NL

IF (AREAL.GT.ALFR(I)) GOTO 65 
ALARGE = ALFI(I)
AREAL = ALFR(I)

65 CONTINUE
SIGMA = AREAL
RETURN
END
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Appendix 6

This appendix contains two FORTRAN77 programs to perform a stab ility  analysis for the 

Porous m edium  superposed fluid layer eigenvalue problem using the Chebyshev spectral 

tau  m ethod. The first program  treats the problem as the real eigenvalues exit (a =$>) 

whereas the second program  treats the problem considering (a — 0) and the eigenvalue 

is Ruj}j,s .

T h e  sy s te m  w ith  th e  eigenvalue a

PROGRAM BENARD
IMPLICIT DOUBLE PRECISI0N(A-H,0-Z)
PARAMETER( T0L=5.D-9 )
COMMON / INFOl / RMS 
EXTERNAL EIGVAL

*  *

* PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/RAYLEIGH *
* CONVECTION IN A POROUS MEDIUM SUPERPOSED BY CLEAR FLUID *
* HEATED AND SALTED FROM ABOVE. *
* NAG ROUTINE F02BJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER *
* ORDINARY DIFFERENTIAL EQUATIONS USING THE CHEBYSHEV TAU MET- *
* HOD. THE EIGENVALUE PROBLEM IS 14TH ORDER WITH SEVEN BOUNDARY *
* CONDITIONS ON EACH BOUNDARY. *
* *

WRITE(6 s*) JENTER VALUE FOR RMSVJ 
READ(5,*) RMSV 
RMS = RMSV

C .. THERE IS TWO KINDS OF RESULTS ..

C (1) .. TO CALCULATE CRITICAL RAYLEIGH NUMBER RMS AND A CORRESPONDING ..
C .. WAVENUMBER A_M ..

WRITE(6,*) JENTER VALUE FOR AMVL’
READ(5,*) AMVL 
AM = AMVL

C . . THIS SUBROUTINE IS USED TO MINIMISE THE REQUIRED WAVENUMBER ..
C .. ALEFT AND ARIGHT ARE THE END OF AN INTERVAL, ASTAT IS THE REQUIRED 
C . . NUMBER, TOL IS FOR ACCURACY OF THE RESULT, RMSV IS RAYLEIGH NUMBER 
C .. AND EIGVAL IS A FUNCTION ..

ALEFT - AM*0.8D0 
ARIGHT = AM*1.25D0
CALL MINMUM(ALEFT,ARIGHT,ASTAT,TOL,RMSV,EIGVAL)
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WRITE(6,lil) ASTAT, RMSV, ALEFT, ARIGHT 
111 F0RMAT(5X, } MINIMUM RAYLEIGH NUMBER IS \ F10.4/

* 5X,’MINIMUM ACHIEVED AT WAVENUMBER;,F10.4/
* 5X,; INITIAL RAYLEIGH NUMBER RMSV\F10.4/
* 5X,J SEARCH INTERVAL (J,F6.4,\ >,F6.4,>)'//)

C WRITE(1,J(5X,All,F8.4,4X,A11,F25.10);) ; VENUMBER \ AVAL,
C * J EIGENVALUE \RMSV
C CLOSE(l)

END

C (2) .. TO CALCULATE CRITICAL RAYLEIGH NUMBER RMS FOR A GIVEN ..
C .. WAVENUMBER AM ..

DO 100 1=0,MVAL 
ANOW = DBLE(I)
AVAL(I) = ANOW
RVAL(I) = EIGVAL(ANOW)

100 CONTINUE 
END

C .. THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE
C .. GIVEN WAVENUMBER ..

FUNCTION EIGVAL(AM)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER( EPS=5.D-9 )
DIMENSION X(2), F(2)
COMMON / INFOl / RMS 
X(l) = RMS*0.8D0 
X(2) = RMS*1.2D0 
F(l) = SIGMA(X(1),AM)

111 F(2) = SIGMA(X(2),AM)
IF (ABS(F(l)“F(2)).LE.EPS) THEN 

EIGVAL = X(2)
RMS = EIGVAL 
WRITE(6,*) EIGVAL, AM 

. RETURN 
END IF
XNOW = X(1)-F(1)*(X(2)-X(1))/(F(2)-F(1))
X(l) = X(2)
F(1) = F (2)
X(2) = XNOW 
GOTO 111 
END

C .. THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM .. 
FUNCTION SIGMA(RMS,AM)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER( N=20, N1=N, N2=2*N, N3=3*N, N4=4*N, N5=5*N, N6=6*N,
* N7=7*N, N8=8*N, N9=9*N, NA=10*N, NB=11*N, NC=12*N,
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* ND=13*N, NE=14*N )
PARAMETERC PR=I.DO, ALPHA_H=0.1D0, DELTA=0,003D0, PHI=l.DO,
* VLEF=l.DO, EPS_T=0,7D0, EPS_S=3.75D0, GM=0.1DO )
DIMENSION A(NE,NE), B(NE,NE), D(N,N), ALFR(NE), ALFI(NE),
* BETA(NE), ITER(NE)
CHARACTER*1 TYPE 
LOGICAL MATV
PARAMETERC MATV=.FALSE., ZERO=O.DO, ONE=1.D0, T0L=5.D-12 )
HAT_D = O.OIDO 
RM = 50.DO
AF = AM*HAT_D
GAMMA_T = HAT„D/EPS_T 
GAMMA„S = HAT_D/EPS_S
RF = RM*HAT_D**4/((DELTA*EPS„T)**2)
RFS = RMS*HAT_D**4/((DELTA*EPS_S)**2)
PM = EPS_T*PR
VLEM = (EPS_T/EPS„S)*VLEF 
PRS = PR/VLef 
PMS = PM/VLem

C .. VARIABLES OF THE EQUATIONS FOR FLUID ..
C .. Y(l) ... W, Y(2) ... DW, Y(3) ... D~2W, Y(4) ... D~3W,
c .. Y(5) ... \THETA, Y(6) ... D\THETA, Y(7) ... \ZETA, Y(8) ... D\ZETA
C .. VARIABLES OF THE EQUATIONS FOR POROUS MEDIUM ..
C .. Y(9) ... W, Y(10) ... DW, Y(ll) ___ \THETA, Y(12) ... D\THETA,
C .. Y(13) ... \ZETA, Y(14) ... D\ZETA

C .. FINDS REAL EIGENVALUES FOR BENARD CONVECTION FOR FREE
C BOUNDARIES USING CHEBYSHEV SPECTRAL METHODS ..

DO 100 1=1,NE 
DO 150 J=1,NE 

A(J , I) = ZERO 
B(J,I) = ZERO 

150 CONTINUE
100 CONTINUE

C . . BUILD THE CHEBYSHEV DERIVATIVE MATRIX D(N,N)
C .. CALL FIRST DERIVATIVE MATRIX ..

CALL DERIV_1(M,D)

C .. BUILD MATRIX A(NE,NE) AND B(NE,NE) IN EQUATIONS IN SEQUENCE ..
DO 1000 1=1,N-l 

C .. EQUATION 1 (In fluid region) ..
DD 1100 J=1,N

A (I, J) = D(l,J)
1100 CONTINUE

A(I,N1+I) = -ONE 
C .. EQUATION 2 (In fluid region) ..
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DO 1200 J=1,N
A(N1+I,N1+J) = D(I,J)

1200 CONTINUE
A(N1+I,N2+I) = -ONE 

C .. EQUATION 3 (In fluid region) ..
DO 1300 J=1,N

A(N2+I,N2+J) = D(I,J)
1300 CONTINUE

A(N2+I,N3+I) = -ONE 
C .. EQUATION 4 (In fluid region) ..

DO 1400 J=1,N
A(N3+I,N3+J) = D(I,J)

1400 CONTINUE
A(N3+I,I) = AF**4
A(N3+I,N2+I) = -2.D0*AF**2
A(N3+I,N4+I) = -RF*AF**2
A(N3+I,N6+I) = RFS*AF**2
B(N3+I,I) = -AF**2*HAT_D**2/(PR*EPS_T)
B(N3+I,N2+I) = HAT_D**2/(PR*EPS_T)

C .. EQUATION 5 (In fluid region) ..
DO 1500 J-i,N

A(N4+I,N4+J) = D(I,J)
1500 CONTINUE

A(N4+I,N5+I) = -ONE 
C .. EQUATION 6 (In fluid region) ..

DO 1600 J=1 ,N
A(N5+I,N5+J) = D(I,J)

1600 CONTINUE
A(N5+I,I) = -ONE 
A(N5+I,N4+I) = -AF**2 
B(N5+I,N4+I) = HAT_D**2/(EPS_T)

C .. EQUATION 7 (In fluid region) ..
DO 1700 J=1jN

A(N6+I,N6+J) = D(I,J)
1700 CONTINUE

A(N6+I,N7+I) = -ONE 
C ., EQUATION 8 (In fluid region) ..

DO 1800 J=1,N
A(N7+I,N7+J) = D(I,J)

1800 CONTINUE
A(N7+I,I) = -ONE
A(N7+I}N6+I) = -AF**2
B(N7+I,N6+I) = HAT„D**2/(VLEF*EPS_T)

C .. EQUATION 9 (In porous medium) ..
DO 1900 J=1,N

A(N8+I,N8+J) = D(I,J)
1900 CONTINUE

A(N8+I,N9+I) = “ONE
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C .. EQUATION 10 (In porous medium) ..
DO 2000 J=1,N

A(N9+I,N9+J) = D(I,J)
B(N9+I,N9+J) = -(DELTA**2/(PHI*PM))*D(I}J) 

2000 CONTINUE
A(N9+I,N8+I) = -AM**2 
A(N9+I,NA+I) = RM*AM**2 
A(N9+I,NC+I) = -RMS*AM**2 
B(N9+I,N8+I) = (DELTA*AM)**2/(PHI*PM)

C ,. EQUATION 11 (In porous medium) ..
DO 2100 J=1,N

A(NA+I,NA+J) = D(I,J)
2100 CONTINUE

A(NA+I,NB+I) = -ONE 
C .. EQUATION 12 (In porous medium) ..

DO 2200 J=1,N
A(NB+I,NB+J) = D (I,J)

2200 CONTINUE
A(NB+I,N8+I) = -ONE 
A(NB+I,NA+I) = -AM**2 
B(NB+I,NA+I) = GM 

C .. EQUATION 13 (In porous medium) ,.
DO 2300 J=1,N

A(NC+I,NC+J) = D(I,J)
2300 CONTINUE

A(NC+I}ND+I) = -ONE 
C .. EQUATION 14 (In porous medium) ..

DO 2400 J=1,N
A(ND+I,ND+J) = D(I,J)

2400 CONTINUE
A(ND+I,N8+I) = -ONE 
A(ND+I3NC+I) = -AM**2 
B(ND+I3NC+I) = PHI/VLEM 

1000 CONTINUE

C .. INTRODUCE BOUNDARY CONDITIONS ..
FAC = ONE
DO 3000 J=1,N
1st ROW . .

A(N1,J) = ONE
2nd ROW ..

A(N2,J) = FAC
A(N2,N8+J) = -HAT„D

3rd ROW ..
A(N3,N1+J) = ONE

4rd ROW ..
A(N4jNl+J) = FAC*ALPHA_H*HAT_D
A(N43N2+J) = -FAC*DELTA
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A(N4,N9+J) -HAT„D**3*ALPHA_H
c . . 5th ROW ..

A(N5,N1+J) - 3.D0*FAC*AF**2
A(N5,N3+J) -FAC
A(N5,N9+J) = -HAT_D**4/DELTA**2
B(N5,N1+J) = -FAC*HAT_D**2/(PR*EPS_T)
B(N5,N9+J) HAT_D**4/(PM*PHI)

c . . 6th ROW ..
A(N6>N4+J) = ONE

c . . 7th ROW ..
A(N7,N4+J) =s FAC*GAMMA_T
A(N7,NA+J) = -EPS_T

c . . 8th ROW ..
A(N8,N5+J) = FAC
A(N8,NB+J) = -EPS_T

c . . 9th ROW ..
A(N9,N6+J) = ONE

c . . 10th ROW ..
A(NA,N6+J) = FAC*GAMMA_S
A(NA,NC+J) = -EPS_S

c . . 11th ROW ..
A(NB,N7+J) = FAC
A(NB}ND+J) = -EPS_S

c . . 12th ROW ..
A(NC,N8+J) = FAC

c . . 13th ROW ..
A(ND,NA+J) = FAC

c . . 14th ROW ..
A(NE,NC+J) = FAC
FAC = -FAC

3000 CONTINUE

C .. THE NAG ROUTINE F02BJF IS USED AS THE EIGENVALUE SOLVER ..
EPS = -ONE 
IFAIL = 0
CALL F02BJF(NE,A,NE,B,NE,EPS,ALFR,ALFI,BETA,MATV,Z,NE,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY .. 
C .. PARTS ARE ALFI(M)

NL = 0
DO 9000 K=1,NE

IF (ABS(BETA(K)).GT.TOL) THEN 
NL = NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)

END IF 
9000 CONTINUE



DETERMINE THE REQUIRED LARGEST REAL PART DF ALL EIGENVALUES 
ALARGE = ALFI(1)
AREAL = ALFR(l)
DO 65 1=2,NL

IF (AREAL.GT.ALFR(I)) GOTO 65 
ALARGE = ALFI(I)
AREAL = ALFR(I)

CONTINUE 
SIGMA = AREAL 
RETURN 
END
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T h e  sy s tem  w ith  th e  eigenvalue Ram5 w hen  a  —  0

PROGRAM BENARD
IMPLICIT DOUBLE PRECISION(A~H,0-Z)
PARAMETER( T0L=5.D-9 )
COMMON / INF01 / RMS 
EXTERNAL EIGVAL

* %
* PROGRAM COMPUTES EIGENVALUES FOR BENARD AND BENARD/RAYLEIGH *
* CONVECTION IN A POROUS MEDIUM SUPERPOSED BY CLEAR FLUID *
* HEATED AND SALTED FROM ABOVE. *
* NAG ROUTINE F02BJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER *
* ORDINARY DIFFERENTIAL EQUATIONS USING THE CHEBYSHEV TAU METH- *
* OD. THE EIGENVALUE PROBLEM IS 14TH ORDER WITH SEVEN BOUNDARY *
* CONDITIONS ON EACH BOUNDARY. *
* *

WRITE(6,*) JENTER VALUE FOR RMSV’
READ(5,*) RMS
RMS = EIGVAL(3.11DO)
END

C .. THIS FUNCTION IS USED TO ITERATE THE RAYLEIGH NUMBER FOR THE THE ..
C .. GIVEN WAVENUMBER ..

FUNCTION EIGVAL(AM)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER( EPS=5.D-9 )
DIMENSION X(2), F(2)
COMMON / INFOl / RMS 
X(l) = RMS*0.9D0 
X(2) = RMS*1.1DO 
F(1) = SIGMA(X(1),AM)

111 F(2) = SIGMA(X(2),AM)
IF (ABS(F(l)-F(2)).LE.EPS) THEN 

EIGVAL - X(2)
RMS = EIGVAL 
WRITE(6}*) EIGVAL} AM 
RETURN 

END IF
XNOW = X(1)-F(1)*(X(2)-X(1))/(F(2)-F(1))
X(l) = X(2)
F(1) « F(2)
X(2) = XNOW 
GOTO 111 
END
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c
c . . 
c

150
100
C
C . . 
C . .

c
c . .

G . .

1100  

C . .

THIS FUNCTION IS USED TO TRANSFER THE PARAMETERS RMS AND AM .. 
FUNCTION SIGMA(RMS,AM)
IMPLICIT DOUBLE PRECISION(A-H,Q-Z)
PARAMETERC N=20, N1=N, N2=2*N, N3=3*N, N4=4*N, N5=5*N, N6=6*N,
* N7=7*N, N8=8*N, N9=9*N, NA=10*N, NB=11*N, NC=12*N,
* ND=13*N, NE=14*N )
PARAMETERC PR=1.D0, ALPHA_H=0.1D0, DELTA=0.003D0, PHI=1.D0,
* VLEF=1.DO, EPS_T=0.7D0, EPS_S=3.75D0, GM=0.1D0 ) 
DIMENSION A(NE,NE), B(NE,NE), D(N,N), ALFR(NE), ALFI(NE),
* BETA(NE), ITER(NE)
CHARACTER*1 TYPE
LOGICAL MATV
PARAMETERC MATV=.FALSE., ZER0=0.D0, 0NE=1.D0, T0L=5.D-12 )
HAT_D = 0.01D0
RM = 50.DO
AF = AM*HAT_D
GAMMA.T = HAT_D/EPS_T
GAMMA_S = HAT_D/EPS_S
RF = RM*HAT_D**4/((DELTA*EPS_T)**2)
RFS = RMS*HAT_D**4/((DELTA*EPS_S)**2)
PM = EPS_T*PR
VLEM = (EPS„T/EPS_S)*VLEF
PRS = PR/VLef 
PMS = PM/VLem

FINDS REAL EIGENVALUES FOR BENARD CONVECTION FOR FREE 
BOUNDARIES USING CHEBYSHEV SPECTRAL METHODS ..

DO 100 1=1,NE 
DO 150 J=1,NE

A( J , I) = ZERO 
B ( J , I) = ZERO 

CONTINUE 
CONTINUE

BUILD THE CHEBYSHEV DERIVATIVE MATRIX D(N,N)
CALL FIRST DERIVATIVE MATRIX ..
CALL DERIV_1(M,D)

BUILD MATRIX A(NE,NE) AND B(NE,NE) IN EQUATIONS IN SEQUENCE.. 
DO 1000 1=1,N-l

EQUATION 1 (In fluid region) ..
DO 1100 J=1,N

A(I, J) = D(I,J)
CONTINUE 
A(I,N1+I) = -ONE 

EQUATION 2 (In fluid region) ..
DO 1200 J=1,N
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1200 

C . .

1300 

C . .

1400

C . .

1500 

C . .

1600

C . .

1700 

C . .

1800

C . .

1900 

C . .

2000

A(N1+I,N1+J) = D(I,J) 
CONTINUE
A(N1+I,N2+I) = -ONE 

EQUATION 3 (In fluid region) . 
DO 1300 J=1,N

A(N2+I,N2+J) = D(I,J) 
CONTINUE
A(N2+I,N3+I) = -ONE 

EQUATION 4 (In fluid region) . 
DO 1400 J=1,N

A(N3+I,N3+J) = D(I,J) 
CONTINUE
A(N3+I,I) = AF**4 
A(N3+I,N2+I) = -2.D0*AF**2 
A(N3+I,N4+I) = -RF*AF**2 
A(N3+I,N6+I) = RFS*AF**2 

EQUATION 5 (In fluid region) . 
DO 1500 J=1,N

A(N4+I,N4+J) = D(I,J) 
CONTINUE
A(N4+I,N5+I) = -ONE 

EQUATION 6 (In fluid region) . 
DO 1600 J=1,N

A(N5+I,N5+J) = D(I,J) 
CONTINUE
A(N5+I,I) = -ONE
A(N5+I,N4+I) = -AF**2 

EQUATION 7 (In fluid region) . 
DO 1700 J=1,N

A(N6+I,N6+J) = D(I,J) 
CONTINUE
A(N6+I,N7+I) = -ONE 

EQUATION 8 (In fluid region) . 
DO 1800 J=1,N

A(N7+I,N7+J) = D(I,J) 
CONTINUE
A(N7+I,I) = -ONE 
A(N7+I,N6+I) = -AF**2 

EQUATION 9 (In porous medium) 
DO 1900 J=1,N

A(N8+I,N8+J) = D (I,J) 
CONTINUE
A(N8+I,N9+I) = -ONE 

EQUATION 10 (In porous medium) 
DO 2000 J=1,N

A(N9+I,N9+J) = D(I,J) 
CONTINUE
A(N9+I,N8+I) = -AM**2



c . .

2100 

C . .

2200

C . .

2300 

C , .

2400

1000
C

G . .

C . . 

C . .

C . . 

G . .

C . .

C . . 

C . .

A(N9+I,NA+I) = RM*AM**2 
B(N9+I,NC+I) = -AM**2 

EQUATION 11 (In porous medium) ..
DO 2100 J=1,N

A(NA+I,NA+J) = D(I,J) 
CONTINUE
A(NA+I,NB+I) = -ONE 

EQUATION 12 (In porous medium) ..
DO 2200 J=1,N

A(NB+I,NB+J) = D(I,J) 
CONTINUE
A(NB+I,N8+I) = -ONE 
A(NB+I,NA+I) = -AM**2 

EQUATION 13 (In porous medium) ..
DO 2300 J=13N

A(NC+I,NC+J) = D(I,J) 
GONTINUE
A(NC+I,ND+I) = -ONE 

EQUATION 14 (In porous medium) ..
DO 2400 J=1,N

A(ND+I,ND+J) = D(I,J) 
CONTINUE
A(ND+I,N8+I) = -ONE 
A(ND+I,NC+I) = -AM**2 

CONTINUE

INTRODUCE BOUNDARY CONDITIONS . .
FAC = ONE 
DO 3000 J=1,N 
1st ROW ..

A(N1,J) = ONE 
2nd ROW ..

A(N2,J) = FAC 
A(N2,N8+J) = -HAT_D 

3rd ROW ..
A(N3,N1+J) = ONE 

4rd ROW ..
A(N4.N1+J) = FAC*ALPHA_H*HAT_D 
A(N4,N2+J) = -FAC*DELTA 
A(N43N9+J) = -HAT_D**3*ALPHA_H 

5th ROW ..
A(N5,N1+J) = 3.D0*FAC*AF**2 
A(N5,N3+J) = -FAC 
A(N5 3N9+J) = -HAT_D**4/DELTA**2 

6th ROW ..
A(N6,N4+J) = ONE 

7th ROW ..
A(N7,N4+J) = FAC*GAMMA_T
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A(N7,NA+J) = -EPS_T
C .. 8th ROW ..

A(N8,N5+J) = FAC
A(N8,NB+J) = -EPS_T

c . . 9th ROW ..
A(N9,N6+J) = ONE

C .. 10th ROW ..
A(NA,N6+J) = FAC*GAMMA_S
A(NA,NC+J) = -EPS_S

C .. 11th ROW ..
A(NB,N7+J) = FAC
A(NB,ND+J) = -EPS_S

C .. 12th ROW ..
A(NC,N8+J) = FAC

C .. 13th ROW ..
A(ND,NA+J) = FAC

c . . 14th ROW ..
A(NE,NC+J) = FAC
FAC = -FAC

3000 CONTINUE
C .. THE NAG ROUTINE F02BJF IS USED AS THE EIGENVALUE SOLVER .,

EPS = -ONE 
IFAIL = 0
CALL F02BJF(NE,A,NE,B,NE,EPS,ALFR,ALFI,BETA,M T V ,Z,NE,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY ..
C .. PARTS ARE ALFI(M)

NL = 0
DO 9000 K=1,NE

IF (ABS(BETA(K)).GT.TOL) THEN 
NL = NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)

END IF 
9000 CONTINUE
C . . DETERMINE THE REQUIRED LARGEST REAL PART OF ALL EIGENVALUES . . 

ALARGE = ALFI(1)
AREAL - ALFR(l)
DO 65 1=2jNL

IF (AREAL.GT.ALFR(I)) GOTO 65 
ALARGE = ALFI(I)
AREAL = ALFR(I)

65 CONTINUE
WRITE(*,222) AREAL,ALARGE 

222 FORMAT(5X,JCURRENT EIGENVALUE IS (',F20.7',JF20.7,’)J/)
IF (ABS(ALARGE).GE.TOL) THEN 

TYPE = JCJ 
ELSE



TYPE = >R> 
END IF
SIGMA = AREAL
RETURN
END
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Appendix 7
PROGRAM CONVEC
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
IMPLICIT INTEGER*4(I-N)

*  *

* PROGRAM COMPUTES EIGENVALUES FOR MAGNETIC INSTABILITY WITH A *
* FLINTILY CONDUCTING INNER CORE SURROUNDED BY A CYLINDRICAL *
* LAYER OF CONDUCTING FLUID WHICH IS BOUNDED BY THE MANTLE. *
* NAG ROUTINE F02GJF IS USED TO TREAT THE SYSTEM OF FIRST ORDER *
* ORDINARY DIFFERENTIAL EQUATIONS USING CHEBYSHEV POLYNOMIALS. *
* THE EIGENVALUE PROBLEM IS 16 ORDER WITH EIGHT BOUNDARY *
* CONDITIONS ON EACH BOUNDARY *
*  ^

PARAMETERC M=32, N1=M, N2=2*M, N3=3*M, N4=4*M, N5=5*M, N6=6*M,
* N7=7*M, N8=8*M, N9=9*M, NA=10*M, NB=11*M, NC=12*M,
* ND=13*M, NE=14*M, NF=15*M, NG=16*M, NPTS=50 )
DIMENSION AR(NG,NG), AI(NG,NG), BR(NG,NG), BI(NG,NG), DF(M,M),
* DC(M,M), DOCM,M), ALFR(NG), ALFI(NG), BETA(NG), W(2*M),
* ITER(NG), VR(NG,NG), Vl(NG5NG)3 XP(0:2*NPTS),
* YREAL(0:2*NPTS), YIMAG(0:2*NPTS), XR(2), YR(2),
* WG(10*NPTS+5), MAG(2)

C .. DECLARATION OF MATRICES USED IN FLUID REGION ..
DIMENSION B(M,M), Bl(M,M), B2(MJM)) B3(M3M), BP1(M3M)3 RP1(M,M)3
* R1(M3M)3 R2(M3M)3 R3(M,M)3 R4(M,M)

C
C .. DECLARATION OF MATRICES USED IN INNER CORE ..

DIMENSION RC1(M3M)3 RC2(M3M)
C
C .. DECLARATION OF MATRICES USED IN OUTER CORE ..

DIMENSION R02(M3M)3 R03(M3M)3 R04(M3M)

LOGICAL MATV, MORE3 SPLINE, VIEW, BOX 
CHARACTER*60 TITLE
PARAMETERC ZER0=0.D0, 0NE=1.D0, T0L=1.D-12 )
PARAMETERC TITLED Graph of Eigenfunctions' )

C
C .. PARAMETERS OF THE PROBLEM ..

PARAMETERC SIB=0.35D0, VLAM=508.D0, DNV=9.61D0, DMV=2,DO,
* E=1.D-5, E_ETA=l.D-5, ETA=1.D3 )

C
C .. DECLARATION OF COEFFICIENT FUNCTIONS IN FLUID REGION ..

EXTERNAL FB, FBI, FB2, FB3, FBP1, FRP1, FR1, FR2, FR3, FR4
C
C .. DECLARATION OF COEFFICIENT FUNCTIONS IN INNER CORE ..

EXTERNAL FRC1, FRC2
C
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c

c
c
c
c
c
c
c
c
c
c
c

200
100
c
c . .
c . .
c . .
c . .

400
300

600
500

700
C
C

.. DECLARATION OF COEFFICIENT FUNCTIONS IN OUTER CORE ..
EXTERNAL FR02, FR03, FRQ4

VARIABLES OF THE EQUATIONS FOR FLUID LAYER ..
Y(l) = u,.. Y (2) = Du,.. Y (3) = D~2u, . . Y(4) = w, . . Y(5) = Dw,
Y(6) = D~2w,. . Y(7) = b_r,.. Y(8) = Db_r,.. Y(9) = b_z, . .
Y(10=A) = D$b_z$ , . .
VARIABLES OF THE EQUATIONS FOR INNER CORE ..
Y(11=B) = b_r,.. Y(C=12) = Db_r,.. Y(D=13) = b_z,.. Y(E=14) = Db„z,
VARIABLES OF THE EQUATIONS FOR MANTLE ..
Y(D=15) = \phi,. . Y(E=16) = D\phi ..

.. ZERO ALL ENTRIES OF AR(NG,NG), AI(NG,NG), BR(NG,NG) AND BI(NG,NG) 
DO 100 1=1,NG 

DO 200 J=1,NG
AR(J,I) = ZERO 
AI(J,I) = ZERO 
BR(J,I) = ZERO 
BI(J , I) = ZERO 

CONTINUE 
CONTINUE

GET DIFFERENTIATION MATRICES IN [SIB,1], [0,SIB] AND [1,\INFTY] ..
DF DIFFERENTIATION MATRIX IN FLUID LAYER ..
DC DIFFERENTIATION MATRIX IN INNER CORE ..
DC DIFFERENTIATION MATRIX IN OUTER CORE .,
DO 300 1=1,M 

DO 400 J=1,M
DF(I,J) = ZERO 
DC(I,J) = ZERO 
DO(I,J) = ZERO 

CONTINUE 
CONTINUE 
DO 500 1=1,M-1

DO 600 J=I+1,M,2
DF(I,J) = DBLE(4*J-4)/(ONE-SIB)
DC(I,J) = DBLE(4*J-4)/SIB 
DO(I,J) = DBLE(2*J-2)

CONTINUE 
CONTINUE 
DO 700 1=1,M

DF(l,I) = 0.5D0*DF(1,I)
DC(1,I) = 0.5D0*DC(1,I)
00(1,1) = 0.5D0*D0(1,I)

CONTINUE

.. GET ALL THE COEFFICIENT MATRICES ..
CALL MATRIX(M,B,FB,W)



CALL MATRIX(M3 Bl}FB1,W)
CALL MATRIX(M3B23FB2,W)
CALL MATRIX(M3B33FB33W)
CALL MATRIX(M,BP1,FBP1,W)
CALL MATRIX(M3RP13FRP13W)
CALL MATRIX(M,R13FR13W)
CALL MATRIX(M3R23FR23W)
CALL MATRIX(M3R3,FR3,W)
CALL MATRIX(M3R43FR43W)
CALL MATRIX(M3RC13FRC13W)
CALL MATRIX(M,RC2,FRC23W)
CALL MATRIX(M3R023FRD23W)
CALL MATRIX(M,R033FRD33W)
CALL MATRIX(M3RD43FR043W)

C
C .. DEFINE CONSTANT MULTIPLYING FACTORS ..

Cl = DMV**2 
C2 = DNV**2 
C3 = DMV*DNV/E 
C4 = DMV/E 
C5 = DNV/(E*DMV)
C6 = VLAM*E_ETA/E 
C7 = DNV**2/(E*DMV)
C8 = DMV**2/DNV 
C9 = VLAM/ETA

C
C .. FILL THE MATRICES AR3 AI, BR AND BI IN EQUATIONS IN SEQUENCE 
C .. EQUATION 1 ..

DO 1000 1=1,M-l 
DO 1100 J=1,M

AR(I,J) = DF(I,J)
1100 CONTINUE

AR(I,N1+I) = -ONE 
1000 CONTINUE 
C .. EQUATION 2 ..

DO 1500 1=1jM-1 
NV = Nl+I 
DO 1600 J=13M

AR(NV,N1+J) = DF(I,J)
1600 CONTINUE

AR(NV,N2+I) = -ONE 
1500 CONTINUE 
C .. EQUATION 3 ..

DO 2000 1=1,M-l 
NV = N2+I 
DO 2100 J=1,M

AR(NV3J) = 2.DO*(C2*R1(I,J)+C1*R3(I,J) )
AI(NV3J) = C7*RP1(I,J)
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AR(NV,Ni+J) = -(0NE+C1)*R2(I,J)
AR(NV,N2+J) = DF(I,J)+R1(I,J)
AI(NV,N3+J) = (Cl-ONE)*DNV*R2(I,J)
AR(NV,N4+J) = C5*RP1(I,J)
AI(NV,N4+J) = -3.DO*DNV*Rl(I,J)
AR(NV,N6+J) = (C3-2.D0*C5)*B1(I,J)
AR(NV,N7+J) = -2.D0*C5*B(I,J)
AI(NV,N8+J) = C4*BP1(I, J)-2 .D0*C7*B(l, J)-C4*B2(I,J) 
AI(NV,N9+J) = C4*B1(I,J)

2100 CONTINUE
AR(NV,N1+I) = AR(NV,N1+I)-C2 
BR(NV,Nl+I) = C6 
AR(NV,N3+I) = C5 
AI(NV,N3+I) = AI(NV,N3+I)+DNV**3 
BI(NV,N3+I) = -DNV*C6 
AI(NV,N5+I) - -DNV 

2000 CONTINUE 
C .. EQUATION 4 ..

DO 2500 1=1,M-l 
NV = N3+I 
DO 2600 J=1,M

AR(NV,N3+J) = DF(I,J)
2600 CONTINUE

AR(NVjN4+l) = -ONE 
2500 CONTINUE 
C .. EQUATION 5 ..

DO 3000 1=1,M-l 
NV = N4+I 
DO 3100 J=1

AR(NV,N4+J) = DF(I,J)
3100 CONTINUE

AR(NV,N5+I) = “ONE 
3000 CONTINUE 
C .. EQUATION 6 ..

DO 3500 1=1,M-l 
NV = N5+I 
DO 3600 J=1,M

AI(NV,J) = -C8*(C1*R4(I,J)+2.D0*C2*R2(I,J))
BI(NV,J) = C8*C6*R2(I,J)
AI(NV,N1+J) = 3.D0*DNV*R1(I,J)+C8*R3(I,J)
AI(NV,N2+J) = C8*R2(I,J)
AR(NV,N3+J) = (C1-QNE)*R3(I,J)-C2*R1(I,J)
AI(NV,N3+J) = C4*R1(I,J)
BR(NV,N3+J) = C6*R1(I,J)
AR(NV,N4+J) - (0NE-C1)*R2(I,J)
AR(NV,N5+J) = DF(I,J)+4.D0*R1(I,J)
AI(NV jN6+J) = -C4*BP1(I,J)
AI(NV,N7+J) = C4*B1(I,J)
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AR(NV,N8+J) = -C8*C4*B3(I,J)~C3*B1(13 J) 
3600 CONTINUE

AI(NV,I) = AI(NV jI)“DNV**3 
BI(NV,I) = BI(NV,I)+DNV*C6 
AI(NV,N2+I) = AI(NV3N2+I)+DNV 
AR(NV,N4+I) = AR(NV3N4+I)-C2 
BR(NV,N4+I) = C6 

3500 CONTINUE 
C .. EQUATION 7 ..

DO 4000 1=1,M-1 
NV = N6+I 
DO 4100 J=1,M

AR(NV,N6+J) = DF(I,J)
4100 CONTINUE

AR(NV}N7+I) = -ONE 
4000 CONTINUE 
C .. EQUATION 8 ..

DO 4500 1=1,M-1 
NV = N7+I 
DO 4600 J=1,M

AI(NV}N3+J) = DMV*VLAM*B1(I,J)
AR(NVjN6+J) = (0NE-C1)*R2(I,J) 
AR(NV,N7+J) = DF(I,J)+3.D0*R1(13 J)
AI(NV3N8+J) = 2.D0*DNV*R1(I,J)

4600 CONTINUE
AR(NV,N6+I) = AR(NV,N6+I)-C2 
BR(NV,N6+I) = VLAM 

4500 CONTINUE 
C .. EQUATION 9 ..

DO 5000 1=1,M-l 
NV = N8+I 
DO 5100 J=13M

AR(NV 3 N8+J) = DF(I3J)
5100 CONTINUE

AR(NV,N9+I) = -ONE 
5000 CONTINUE 
C .. EQUATION 10 ..

DO 5500 1=1,M-l 
NV = N9+I 
DO 5600 J=1,M

AI(NV3J) = DMV*VLAM*B1(I,J)
AR(NV,N8+J) = -C1*R2(I,J)
AR(NV 3N9+J) = DF(I,J)+R1(I,J)

5600 CONTINUE
AR(NV3N8+I) = AR(NV,N8+I)-C2 
BR(NV3N8+I) = VLAM 

5500 CONTINUE 
C
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c
c

6100

6000 
C .

6700

6600

6500 
C .

7100

7000 
C .

7700

7600

7500
C
C .

TREAT THE IWNER CORE 
EQUATION 11 . .
DO 6000 1=1,M-l 

NV = NA+I 
DO 6100 J=1 ,M

AR(NV,NA+J) = DC (I,J)
CONTINUE
AR(NV,NB+I) = -ONE 

CONTINUE 
EQUATION 12 ..
DO 6500 1=1,M-l 

NV = NB+I 
DO 6600 J=1 ,M

TEMP = 3.D0*RC1(I,J)
DO 6700 K=1,M

TEMP = TEMP+RC2(I,K)*DC(K,J) 
CONTINUE
AR(NV,NA+J) = -C2+RC2(I,J) 
BR(NV,NA+J) = C9*RC2(I,J)
AR(NV,NB+J) = TEMP 
AI(NV,NC+J) = 2.D0*DNV*RC1(I,J) 

CONTINUE
AR(NV,NA+I) = AR(NV,NA+I)+(ONE-C1) 

CONTINUE 
EQUATION 13 ..
DO 7000 1=1,M-l 

NV = NC+I 
DO 7100 J=1j M

AR(NV,NC+J) = DC(I,J)
CONTINUE
AR(NV,ND+I) = -ONE 

CONTINUE 
EQUATION 14 . .
DO 7500 1=1,M-l 

NV = ND+I 
DO 7600 J=1,M

TEMP = RC1(I,J)
DO 7700 K=1,M

TEMP = TEMP+RC2(I,K)*DC(K,J) 
CONTINUE
AR(NV,NC+J) = -C2*RC2(I,J) 
BR(NV,NC+J) = C9*RC2(I,J)
AR(NV,ND+J) = TEMP 

CONTINUE
AR(NV,NC+I) = AR(NV,NC+I)-Cl 

CONTINUE

TREATMENT OF THE OUTER CORE ..

210



C .. EQUATION 15 ..
DO 8000 1=1,M-l 

NV = NE+I 
DO 8100 J=1,M

AR(NV,NE+J) = DO (I,J)
8100 CONTINUE

AR(NV,NF+I) = -ONE 
8000 CONTINUE 
C .. EQUATION 16 ..

DO 8500 1=1,M-l 
NV = NF+I 
DO 8600 J=1,M

TEMP = -R03(I,J)
DO 8700 K=1,M

TEMP = TEMP+R04(I,K)*D0(K,J)
8700 CONTINUE

AR(NV,NE+J) = -C1*R02(I,J)
AR(NV,NF+J) = TEMP 

8600 CONTINUE
AR(NV,NE+I) = AR(NV,NE+I)-4.D0*C2 

8500 CONTINUE 
C
C .. BOUNDARY CONDITIONS - SET PARAMETER CONSTANTS FIRST 

FAC = ONE 
DO 8800 J=1,M 

C .. W=0 ON R=SIB ..
AR(N1,J) = FAC 

C . . W=0 ON R=ONE ..
AR(N2,J) = ONE 

C .. U=0 ON R=SIB ..
AR(N3,N3+J) = FAC 

C .. U=0 ON R=ONE ..
AR(N4,N3+J) = ONE 

C .. V=0 ON R=SIB - I.E. D(U)=0 ..
AR(N5,N4+J) = FAC 

C .. V=0 ON R=ONE - I.E. D(U)=0 ..
AR(N6,N4+J) = ONE 

C .. D(B_r)+B„r+i(M**2+N**2)/N B_z=0 ON R=ONE ..
AR(N7,N6+J) = ONE 
AR(N7,N7+J) = ONE 
AI(N7,N8+J) = C8+DNV 

C .. B_R=GAMMA*B_Z ON R=ONE ..
AR(N8,N6+J) = ONE 
AR(N8,NF+J) = 2.DO*FAC 

C .. B_r CTS ON R=SIB ..
AR(N9,N6+J) = FAC 
AR(N9,NA+J) = -ONE 

C . . B_z CTS ON R=SIB ..
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AR(NA,N8+J) = FAC 
AR(NA,NC+J) = -ONE 

C .. B.theta CTS ON R=SIB - DB_r IS CONTINUOUS ..
AR(NB,N7+J) = FAC 
AR(NB,NB+J) = -ONE 

C .. ETA*(i*N*B_r-DB_z) CTS ON R=SIB . .
AI(NC,N6+J) = FAC*DNV/ETA 
AR(NC >N9+J) = -FAC/ETA 
AI (NC jNA+J) = -DNV 
AR(NC,ND+J) = ONE 

C . . B_r=0 AT R=0 ..
AR(ND,NA+J) = FAC 

C . . B_z=0 AT R=0 ..
AR(NE}NC+J) = FAC 

C .. B_Z+iN*V=0 ON R=1 ..
AR(NF,N8+J) = ONE 
AI(NF,NE+J) = DNV*FAC 

C .. V=0 ON R=INFINITY . .
AR(NG,NE+J) = ONE 
FAC = -FAC 

8800 CONTINUE 
C
C .. THE NAG ROUTINE F02GJF IS USED AS THE EIGENVALUE SOLVER ..

EPS = -ONE 
MTV = .TRUE.
IFAIL = 0
CALL F02GJF(NG,AR,NG,AI,NG,BR,NG,BI,NG,EPS,ALFR,ALFI,BETA,M T V ,
* VRjNGjVI,NG,ITER,IFAIL)

C .. THE REAL PARTS OF THE EIGENVALUES ARE ALFR(M) AND THE IMAGINARY .. 
C .. PARTS ARE ALFI(M)

NL = 0
DO 9000 K=1,NG

IF (ABS(BETA(K)).GT.TOL) THEN 
NL=NL+1
ALFR(NL) = ALFR(K)/BETA(K)
ALFI(NL) = ALFI(K)/BETA(K)
ITER(NL) = K 

END IF 
9000 CONTINUE

C . .
C .. REORDER REAL PARTS OF EIGENVALUES. THE REQUIRED EIGENVALUE ..
C .. IS THE FIRST LARGEST REAL PART..

DO 9100 1=1,NL-1 
RMAX = ALFR(I)
INOW = I
DO 9200 J=I+1,NL
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IF (RMAX.LT.ALFR(J)) THEN 
RMAX = ALFR(J)
INOW = J 

END IF
9200 CONTINUE

TEMP = ALFR(INOW)
ALFR(INOW) = ALFR(I)
ALFR(I) = TEMP 
TEMP = ALFI(INOW)
ALFI(INOW) - ALFI(I)
ALFI(I) = TEMP 
NTEMP = ITER(INOW)
ITER(INOW) = ITER(I)
ITER(I) = NTEMP 

9100 CONTINUE 
c9150 CONTINUE
C . . GET COEFFICIENTS OF EIGENVECTORS BR AND BZ FOR INNER CORE 
C .. AND U, W3 BR, AND BZ FOR FLUID REGION ..

D.THETA = 4.DO*ATAN(ONE)/DBLE(NPTS)
INOW = ITER(l)
BMAX = ZERO 
DO 9300 1=0,NPTS

THETA = D_THETA*DBLE(NPTS-I)
TEMP = (COS(0.5D0*THETA))**2 
XP(I) = SIB*TEMP 
XP(I+NPTS) = SIB+(ONE-SIB)*TEMP 
SUMR_IN_BR = VR(NA+13IN0W)
SUMI_IN_BR = VI(NA+1,INOW)
SUMR_OUT_BR = VR(N6+13INOW)
SUMI_OUT_BR = VI(N6+13INOW)
SUMR_OUT_U = VR(N3+13INOW)
SUMI_OUT_U = VI(N3+13INOW)
SUMR_IN_BZ = VR(NC+1,INOW)
SUMI„IN„BZ = VI(NC+1,INOW)
SUMR_OUT_BZ = VR(N8+13INOW)
SUMI„OUT_BZ = VI(N8+13INOW)
SUMR_OUT_W = VR(1,INOW)
SUMI_OUT_W = VI(1,INOW)
DO 9400 K=2,M

FAC = C0S(THETA*DBLE(K-1))
SUMR_IN_BR = SUMR„IN„BR+VR(NA+K,INOW)*FAC 
SUMI_IN_BR = SUMI_IN_BR+VI(NA+K,INOW)*FAC 
SUMR_OUT_BR = SUMR„0UT_BR+VR(N6+K3IN0W)*FAC 
SUMI„0UT„BR = SUMI_0UT_BR+VI(N6+K3IN0W)*FAC 
SUMR_OUT_U = SUMR_0UT_BR+VR(N3+K,INOW)*FAC 
SUMI„OUT„U = SUMI_QUT_BR+VI(N3+K3IN0W)*FAC 
SUMR_IN_BZ = SUMR_IN_BZ+VR(NC+K,INOW)*FAC 
SUMI_IN_BZ = SUMI_IN_BZ+VI(NC+K3IN0W)*FAC
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SUMR_OUT_BZ = SUMR_0UT_BZ+VR(N8+K,IN0W)*FAC 
SUMI_QUT_BZ = SUMI_QUT_BZ+VI(N8+KsIN0W)*FAC 
SUMR_DUT_W = SUMR_OUT_BZ+VR(K,INOW)*FAC 
SUMI_OUT_W= SUMI_OUT_BZ+VI(K,INOW)*FAC 

9400 CONTINUE 
C
c YREAL(I) = SUMR_IN_BR
c YIMAG(I) = SUMI_IN_BR
c YREAL(I+NPTS) = SUMR_OUT_BR
c YIMAG(I+NPTS) = SUMI„OUT„BR

YREAL(I+NPTS) = SUMR_DUT_U 
YIMAG(I+NPTS) = SUMI_OUT_U 

c YREAL(I) = SUMR_IN_BZ
c YIMAG(I) = SUMI_IN_BZ
c YREAL(I+NPTS) = SUMR_OUT_BZ
c YIMAG(I+NPTS) - SUMI_OUT_BZ
c YREAL(I+NPTS) = SUMR_OUT_W
c YIMAG(I+NPTS) = SUMI_OUT_W

TEMP = SQRT(SUMR_IN_BZ**2+SUMI_IN_BZ**2)
IF (BMAX.LT.TEMP) THEN 

BMAX = TEMP 
BZ_R = SUMR„IN_BZ 
BZ_I = SUMI_IN_BZ 

END IF
TEMP = SQRT(SUMR_0UT_BZ**2+SUMI_0UT_BZ**2)
IF (BMAX.LT.TEMP) THEN 

BMAX = TEMP 
BZ_R = SUMR_OUT_BZ 
BZ_I = SUMI_OUT_BZ 

END IF 
9300 CONTINUE 
C
C .. NORMALISE FIELDS TO UNITY ..

IF (BZ_R.LT.ZERO) BMAX = -BMAX
IF ((BZ_R.EQ.ZERO).AND.(BZ_I.LT.ZERO)) BMAX = -BMAX 
DO 9500 1=0,2*NPTS

YREAL(I) = YREAL(I)/BMAX 
YIMAG(I) = YIMAG(I)/BMAX 

9500 CONTINUE 
END

C
C .. THE ARE TWO FIELDS FOR THIS PROBLEM TO SOLVE ..
C FIRST FIELD WHEN F(R)=R~{ALPHA}
C
C (4(1-R~BETA) (R''BETA-{S''BETA}_IB)
C SECOND FIELD WHEN F(R)=-------------------------------
C (1+ALPHA) (1-{S''BETA}_IB) "2
C

+ALPHA
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C (1) . . THE FUNCTIONS FOR FIRST FIELD ..
FUNCTION FB(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL ALFA
PARAMETERC ALFA=1.0, SIB=0.35D0, ONE=l.DO )
R = SIB+O.5D0*(ONE-SIB)*(DNE+X)
FB = R**(ALFA+1.0)
RETURN
END

FUNCTION FBI(X)
IMPLICIT DOUBLE PRECISI0N(A-H,0-Z)
REAL ALFA
PARAMETERC ALFA=1.0, 318=0.3500, ONE=i.DO )
R = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FBI = R**ALFA
RETURN
END

FUNCTION FB2CX)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL ALFA
PARAMETERC ALFA=1.0, SIB=0.35D0, 0NE=1.D0 )
R = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FB2 = R**(ALFA-1.0)
RETURN
END

FUNCTION FB3(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL ALFA
PARAMETERC ALFA=1.0, SIB=0.35D0, 0NE=1.D0 )
R = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FB3 = R**(ALFA-2.0)
RETURN
END

FUNCTION FBP1(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL BETA, ALFA
PARAMETERC ALFA=1.0, BETA=1.0, SIB=0.35D0, 0NE=1.D0 ) 
R = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FBP1 = DBLE(ALFA+1.0)*R*+(ALFA-1.0)
RETURN
END

FUNCTION FR1(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
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PARAMETERC QNE=1.DO,SIB=0.35D0 )
FR1 = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FR1 = ONE/FR1
RETURN
END

FUNCTION FR2(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE=l.DO,SIB=0.35D0 )
FR2 = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FR2 = 0NE/FR2**2
RETURN
END

FUNCTION FR3(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE-l.DO, SIB=0.35D0 )
FR3 = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FR3 = 0NE/FR3**3
RETURN
END

FUNCTION FR4(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE-l.DO, SIB=0.35D0 )
FR4 = SIB+O.5D0*(QNE-SIB)*(0NE+X)
FR4 = ONE/FR4**4
RETURN
END

FUNCTION FRP1(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE-l.DO, SIB=0.35D0 )
FRPi = SIB+O.5D0*(ONE-SIB)*(ONE+X)
RETURN
END

FUNCTION FRCl(X)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETERC SIB=0.35D0, HALF-O.5D0, ONE-l.DO ) 
FRC1 = HALF+SIB*(ONE+X)
RETURN
END

FUNCTION FRC2(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC SIB-0.35D0, HALF-O.5D0, ONE-l.DO ) 
FRC2 = (HALF*SIB*(0NE+X))**2
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RETURN
END

FUNCTION FR02(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE-l.DO )
FR02 = (ONE-X)**2
RETURN
END

FUNCTION FR03(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE=l.DO )
FR03 = (ONE-X)**3
RETURN
END

FUNCTION FR04(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE=l.DO )
FR04 = (ONE-X)**4
RETURN
END

C
C (2) .. THE FUNCTIONS FOR SECOND FIELD ..

FUNCTION FB(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL BETA, ALFA
PARAMETERC ALFA=0.0, BETA=1,0, SIB=0.35D0, ONE=l.DO ) 
R « SIB+O.5D0*(ONE-SIB)*(ONE+X)
TEMP = SIB**BETA 
FB = R**BETA
FB = (4.DO*(ONE-FB)*(FB-TEMP)/(ONE-TEMP)**2)+ALFA 
FB = R*FB/(ONE+ALFA)
RETURN
END

FUNCTION FBI(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL BETA, ALFA
PARAMETERC ALFA=0.0, BETA=1.0, SIB=0.35D0, ONE=l.DO ) 
R = SIB+O.5DQ*(0NE-SIB)*(ONE+X)
TEMP = SIB**BETA 
FB = R**BETA
FB = (4.DO*(ONE-FB)*(FB-TEMP)/(ONE-TEMP)**2)+ALFA 
FBI = FB/(ONE+ALFA)
RETURN
END
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FUNCTION FB2(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL BETA, ALFA
PARAMETERC ALFA=0.0, BETA=1.0, SIB=0.35D0, ONE=l.DO )
R = SIB+O.5D0*(ONE-SIB)*(ONE+X)
TEMP = SIB**BETA 
FB = R**BETA
FB = (4,DO*(ONE-FB)*(FB-TEMP)/(QNE-TEMP)**2)+ALFA 
FB2 = FB/((ONE+ALFA)*R)
RETURN
END

FUNCTION FB3(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
REAL BETA, ALFA
PARAMETERC ALFA=0.0, BETA=1.0, SIB=0.35D0, ONE=l.DO )
R = SIB+O.5D0*(ONE-SIB)*(ONE+X)
TEMP = SIB**BETA 
FB = R**BETA
FB = (4.DO*(ONE-FB)*(FB-TEMP)/(ONE-TEMP)**2)+ALFA 
FB3 = FB/((ONE+ALFA)*R**2)
RETURN
END

FUNCTION FBP1(X)
IMPLICIT DOUBLE PRECISION(A-H,Q-Z)
REAL BETA, ALFA
PARAMETERC ALFA=0.0, BETA=1,0, SIB=0.35D0, ONE=l.DO )
R = SIB+O.5D0*(ONE-SIB)*(ONE+X)
TEMP = SIB**BETA 
FBI = R**BETA 
FB2 = R**2.D0*BETA
FB - 4.DO*(((BETA+ONE)*FB1~(2,DO*BETA+ONE)*FB2+(BETA+ONE)*FB1*TEMP 
* -TEMP)/(ONE-TEMP)**2)+ALFA 
FBP1 = FB/((ONE+ALFA)*R)
RETURN
END

FUNCTION FR1(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE=l.DO,SIB=0.35D0 )
FR1 = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FR1 = ONE/FR1
RETURN
END

FUNCTION FR2(X)
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IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE=l.DO,SIB=0.35D0 )
FR2 = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FR2 = 0NE/FR2**2
RETURN
END

FUNCTION FR3(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE=l.DO, SIB=0.35D0 )
FR3 = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FR3 = 0NE/FR3**3
RETURN
END

FUNCTION FR4(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE=l.DO, SIB=0.35D0 )
FR4 = SIB+O.5D0*(ONE-SIB)*(ONE+X)
FR4 = ONE/FR4**4
RETURN
END

FUNCTION FRPl(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC ONE=l.DO, SIB=0.35D0 )
FRP1 - SIB+O.5D0*(ONE-SIB)*(ONE+X)
RETURN
END

FUNCTION FRC1(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC SIB=0.35D0, HALF=0.5D0, ONE=l.DO ) 
FRC1 = HALF+SIB*(ONE+X)
RETURN
END

FUNCTION FRC2(X)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETERC SIB=0.35D0, HALF=0.5D0, ONE=l.DO )
FRC2 = (HALF*SIB*(ONE+X))**2
RETURN
END

FUNCTION FR02(X)
IMPLICIT DOUBLE PRECISION(A-H,Q-Z)
PARAMETERC ONE=l.DO )
FRO2 = (ONE-X)**2
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RETURN
END

FUNCTION FR03(X)
IMPLICIT DOUBLE PRECISION(A-H.O-Z)
PARAMETER( ONE=l.DO )
FR03 = (0NE-X)**3
RETURN
END

FUNCTION FR04(X)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER( ONE=l.DO )
FR04 = (ONE-X)**4
RETURN
END

C .. THIS SUBROUTINE COMPUTES THE CHEBYSHEV SPECTRAL MATRIX ..
C .. N IS NUMBER OF POLYNOMIAL, T IS THE MATRIX, FCN IS THE GIVEN 
C .. FUNCTION AND W THE FUNCTION ..

SUBROUTINE MATRIX(N,T,FCN,W)
IMPLICIT DOUBLE PRECISI0N(A-H3O-Z)

C
C .. PROGRAM COMPUTES THE CHEBYSHEV SPECTRAL MATRIX OF A ..
C .. SPECIFIED FUNCTION FCN(X) ..

DIMENSION T(N,*), W(*)
C
C .. GENERATE CHEBYSHEV NODES ..

DX = 2,DO*ATAN(l,D0)/DBLE(2*N-l)
DO IOO J=1,2*N-1 

SUM = O.DO 
DO 200 1=1,2*N~1

X = C0S(DX*DBLE(2*I-1))
SUM = SUM+FCN(X)*COS(DX*DBLE((J-l)*(2*1-1) ) )

200 CONTINUE
W(J) = 2.D0*SUM/DBLE(2*N-1)

100 CONTINUE
W(l) = 0.5D0*W(1)

C
C .. BUILD CHEBYSHEV MATRIX ..

T(1,1) = W(l)
DO 300 1=2,N

T(1,I) = 0.5D0*W(I)
T ( I , 1 )  = W( I )
T(I,I) = W(1)+0.5D0*W(2*I-1)
DO 400 J=I+1,N

T(I,J) = 0.5D0*(W(J-I+1)+W(J+I-1))
T(J , I) = T(I,J)

220



400
300

CONTINUE
CONTINUE
RETURN
END

G L A S G O W
u n i v e r s i t y

.L IB R A R Y
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