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Summary

Chapter 1 defines basic ideas such as definition of monoids, homomorphisms of
monoids, congruences, factor monoids, free monoids, monoid presentations (rewrit-
ing systems), homomorphisms of monoids defined by presentations into known
monoids, equivalent rewriting system, Tietze transformation and noetherian induc-
tion.

In chapter 2 we give definitions of some properties of rewriting systems, eg
noetherian, confluency, locally confluency and completeness. We also mention some
well known reduction orderings. Some important theorems and lemmas are proved,
which will later be used in the thesis. We define what is meant by a monoid to be
left (right) F Peo.

In chapter 3 we constuct free groups, free product of two monoids, monoids
with amalgamated submonoids, HNN-extension in monoids and finally monoids with
commutative submonoids using the concept of monoid presentations (rewriting sys-
tem). The irreducibles of each presentation is discussed. And in each presentation,
we emphasize that the irreducibles are unique, using theorems and lemmas proved
in chapter 2.

The word problem for monoids and groups is discussed in chapter 4. Examples of
groups and monoids with solvable (unsolvable) word problem are given. We discuss
residual properties of a monoid (group) and prove that residually finite monoids

have solvable word problem.
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Statement

In preparing this thesis, | have tried to emphasize the concept of
rewriting systems (monoid presentations). | have used the concept of
rewriting systems to solve some probiems, solutions of which have been
extensively discussed (in groups). In this thesis, mostly we will be
working with monoids. Among the more significant problems are the
following:

(1) Normal for theorems for free groups, free product of two monoids,
free products of two monoids with amalgamated submonoids,
HNN-extension in monoids, and monoids with commutative submonoids.

(2) Word problem for groups and monoids.

Chapter 1 covers basic material, mainly on monoids. This material can
be found in [21], [29], [30], [50].

In Chapter 2 we consider some important theorems and

lemmas concerning rewiting systems. These had earlier been
discussed, for example in [4], [13], [30], [48], [61]. | have given my
own proofs of the main results (Theorems 2.2.1, 2.3.1).

The aim of Chapter 3 (which is the main chapter of the thesis) is to
give a unified approach to various normal form theorems for various
group (and monoid) constructions by viewing the constructions as
complete rewriting systems. Many of these normal form theorems can be
found in standard texts on group theory, such as [14], {26}, [44],

[59]. The inspiration to consider complete rewriting systems came from
one of the proofs of the normal form theorem for free groups in [14],
and work of Dekov in [16, 17]. The proofs given here are my own work
(the proof in Section 3.6 was obtained jointly with my supervisor).

The results of Section 3.2 and Section 3.3, for groups can be found,
for example in [14], [44], [59]. The results of Deko V. Dekov [16] are
modified to prove the result of Section 3.5. The results of Section

3.6 can be found (alternatively) in Deko V. Dekov [17]. The result of
Section 3.7 appears to be new and is my own work.

Chapter 4 covers topics such as the word problem for monoids and
groups, residual properties of monoids {groups). This material can be
found, for example, in [1], [2], [3], [11].



Chapter 1

Preliminaries

1.1 Monoids

A monoid is a set M together with a binary operation called multiplication
(denoted by -) such that multiplication is associative, i.e (a-b)-c=a- (b-c) for all
a,b,c € M. And M contains an identity element e such that ¢ -e =¢-a = a for all
a € M. (Normally we omit the dot and just write ab instead of a - b.) We remark

that the identity of M is unique and we usually denote it by 1.

Examples 1.1.1 The set of positive integers under multiplication s a

monoid with tdentity 1.

Example 1.1.2 The set of non-negatives inlegers is a monoid under addition

with identity 0. We denote this monoid by ZT.

Example 1.1.3 Let R be a ring with 1. Then M,(R) the set of n X n




matrices over R is a monoid under multiplication. The identity is the n x n

matriz I,.

Example 1.1.4 The set PX(x) of partial transformation on the set x s

a monoid under partial composition. 1'he identity is the function

71X — X

z+> (T € x).

Example 1.1.5 The set %(x) of full transformation of x is a monoid.

A subset S of a monoid M is called a submonoid if it is closed under multi-

plication and contains the identity of M.

Example 1.1.6 Let x = {1,2}. Then

1s a monoid. And

T(X) = { ’ ’ ’ }

is a submonoid of PE(x).

Lemma 1.1.1 The intersection of submonoids () 5;) is a submonoid.
1€l



Proof Since S; for any ¢ € [ is a submonid, then 1 € S; for any ¢+ € 1. So
1e NS, Forany z,y € () S; then z,y € S; for all i € . So zy € S; for all 7 € [.
el i€l

Hence zy € N S;. Thus N S5; is a submonoid.g

iel el
Let A be a non-empty subsct of a monoid S. Consider X = {T : T is a sub-
monoid of S, A C T}. Of course X is not empty since S € X, so we can form the
intersection [} . This intersection contains A as a subset, and is a submonoid of

TeX

S by Lemma 1.1.1. Hence [} is one of the elements of X, and is the smallest
Tex
submonoid of S containing A. We denote the smallest submonoid by < A > called

the submonoid generated by A.

We say that A generates S if < A >=85.

Example 1.1.7 The monoid Z* as in Ezample 1.1.2 is generated by {1}.

Theorem 1.1.2 < A > consists of lg, together with all elements of S

which can be expressed as a product of the form
aA1ag Uy (m 2 1,(11,0.2,0,3,"' y Aoy c A)

Proof Let B be the set containing lg, and all elements of S which can be written
as a product of elements of A. We will show that B =< A > . Since A C< A >
and since < A > is a submonoid, we must have that any product of elements of A

isin< A>. Also lg €< A > . Thus B C< A > . Now let W, W' € B. If one of




W. W' = 1z, then clearly WW’ ¢ B. Otherwise we have
7 ?
— I IR | ! ! / 14
W = aaqas -+ ap, W' = dlabal- - (a1, a0, -+ ,ar,0a],ah, - ,al € Ajrys 2 1).

Then WW' = ajaqas - - - a,ajabal -+ - a, € B. Also by assumption 1g € B. Thus B is
a submonoid containing A. But < A > is the smallest monoid containing A, thus

we must have < A >C B. Hence < A >= B.g

1.2 Homomorhisms of monoids

A homomorphism from a monoid S to a monoid 7' is a function

¢: 5 —T

such that

#(1s) = 17 and ¢(ss’) = ¢(s)P(s) for all s,s" € S.

Example 1.2.1 Let R be a ring with 1. Let R* denote It under multiplication.

Then R* ts a monoid.

¢: M.(R) — R*

m +— det(m) (m € M,(R)),

1s @ monoid homomorphism.

Lemma 1.2.1 /f
¢p: S —T

is a monoid homomorphism then



Im¢ = {¢(s) : s € S}

is a submonoid of T.

Proof Let ¢, € I'ng, thus there exist s,s" € S such that

¢(s) =t and ¢(s") =1t
Hence
' = ¢(s)gp(s") = ¢(ss') (since ¢ is a homomorphism).

Thus tt' € Ime. Also ¢(1s) = 17, thus Iy € Im¢. Hence Ime is a submonoid of T'.n

An isomorphism is a homomorphism that is also bijective.

If¢p: S — T and ¢ : T — T' are homomorphisms, then so is the composition
b o .

A homomorphism ¢ : § — 5 is called an endomorphism of S. The set of all
endomorphisms of S denoted by End(S) with multiplication defined as composition

is a monoid.

Theorem 1.2.2 (Cayley's Theorem) Every finite monoid is isormorphic

to a submonoid of a full transformation monoid B, for some n € Zt.

Proof Let M be a monoid with n clements {z;, 2, z,}, and let x; = lp. Then

for eachm e M

T1m, Tom, -+ - zom € M, (since M is closed under multiplication).

)




Define the mapping

0: M — T(M)
T Ty - Ty
m >
Z1m  Tam - TN
Suppose
6(m1) = 0(my) (for some my,my € M).
Then
L1 L2 Tn 1 Ly v Tn
1My TNy -+ TpMy T1Mgo ToMg - - Tyt

Thus zym1 = z1m2. Since 1 = 1y, then my; = my. Hence 8 is injective. For any

my,mq € M, we have

Ty Tg Tp
B(mimsy) = —
T1MiMmg TeMymg -+ TpMyine
ml "E‘Z PEY a’:n wl mz ) "En
= 0(m1)0(mn3).
1My TNy TpThhy T1Mg ToMg -+ ITpMy

Clearly 6(1am) = lx(n). Hence 6 is an injective homomorphism, so M is isomorphic

to Imé a submonoid of T(M).g

Example 1.2.2 Let M be the monoid defined by the multiplication table

below.




® 1 z Yy
1 1 z Y
z z z z
x T ) Z
y Y ) Y

Then

6: M — I(M)

is the mapping

11—

Z

T




relation, py on S by xzpyy if ¢(z) = P(y). Then clearly pg is an .equivalence
relation. Now suppose zpgy and let s € S. Thus ¢(z) = ¢(y). We are lo show

that zspgys, thus to show that ¢(zs) = ¢(ys). Bul

p(zs) = ¢(z)8(s)

= ¢(ys).

Simalarly scpysy. Hence py is a congruence.
We call py the congruence determined by ¢. (We remark that py is also called the

kernel of ¢, though we will not use this terminology.)
Congruences plays the role for monoids as normal subgroups do for groups.
We remark that congruences are relations on the monoid S whereas normal

subgroups are subobjects.

Let p be a congruence on the monoid S. For s € § let [s] = {z € § : zps},

thus the congruence class of s.

Lemma 1.3.1 [ f sps; and $'ps}, then ss'psys].
P 1 PS15;

Proof We have sps; and since p is a congruence, then ss'ps;s’. Similarly,

since s'ps}, then s;s'psys|. Hence by transitivity ss’ps;si.o

We define multiplication of congruence classes [s], [s'] as [ollows:




1z 2y
y =

y z 2y

Lemma 1.2.3 Let M be a monoid generated by a set A. Then if we have two

homomorphisms
a,B8: M — K (where K is any monoid)

such that ala = B|a, then a = (.

Proof Let m € M. If m = 1y then o(lpy) = B(lm). If m 5# 1p then by

Theorem 1.1.2, m can be written as a product of elements of A. So suppose
M = A1a9a304 * "+ A1y (Q1,a9, 0, € A;n > 1).

Thus

a(m) = afa)a(az)a(as)e(as) - alan—1)e(a,) (since o is a homomorphism)

= B(a1)B(asz)B(as)(aq) - B(an-1)B(an) (since als = Bla)

= f(m) (since B is a homomorphism).

Hence o = .o

1.3 Congruences and factor monoids

Let S be a monoid. A congruence on S is an equivalence relation p with the

property that whenever zpy and s € S, then zspys and szpsy.

Example 1.3.1 Let ¢ : S — T be a monoid homomorphism. Define a

8



[s]ls'] = [s8] (s,6" € 5),

which is well defined by Lemma 1.3.1.

Let S|, be the set of congruence classes defined above.

Lemma 1.3.2 The congruence classes S|,, under the multiplication defined

above form a monoid. The identity is [1].

Proof The set S|, is closed under the defined multiplication.  Now let

[s1], [s2], [s3] € S|, then

([s1]s2])ss] = [s182]sa]
= [(s152)s3]
= [s1(s283)]
= [s1][s053]

= [su]([s2][sa])-

Now let [s] € S],, then

[1Hs] = [1s]
= [s].

Similarly [s][1] = [s]. Hence S|, is a monoid.g

We call S|, the factor monoid or quotient monoud.

10




Theorem 1.3.3 (First Isomorphism Theorem) Lel
p: 5 —T

be a monoid homomorphism. Let py be the congruence on S determined by &,

then S|,, and Im¢ are isomorphic.

Proof Define

bu 2 S|p, — T by

[s] = ¢(s) (s € 5).

This is well defined since if we choose another representative s’ of the congruence

class [s], then spys’ so ¢(s) = ¢(s').

Now observe that ¢, is a homomorphism since for any [s1], [s2] € S|,,, then

bu([s1llsa]) = bu([s152])
z = B(s152)
= $(s1)9(s2)
= dulls1))pu([s2]).

Also

¢([1s]) = &(1s)

= lp.

Thus ¢, is a homomorphism. Moreover, ¢, is injective. Since if

11




bu([s1]) = ¢«([s2]), then ¢(s1) = B(s2).
Thus by definition of pg, spes’. Hence [s] = [s]. Of course Im¢, = I'm¢. Hence
byt Sy — I

is an isomorphism.q

1.4 Free monoids

Let x be a non-empty set, then a word on x is just a finite sequence of elements
of x. In particular, we have the empty word containing no letters denoted by ¢. We
remark that this notation is not universal, other notations are 1,{. If W/, W" are

words, then the word
W =Ww'w"

is the word obtained by concatenation (W' followed by W"). We call W' and W"
left and right factors of W respectively. This multiplication is easily shown to be

associative. Also for any word W, then
eW =W = We,

so the empty word ¢ is an identity. Thus the set of words with the above defined
multiplication (concatenation) is a monoid, called the free monoid on x, and is
denoted by x*. We denote the length of any word W by L(W). For any non-empty

word

W = 212983+ Ty (21,2, , T € X,n 2> 1)

12




then ;1 and z,, are called the initial and terminal letters of W respectively. A word
Q is called a subword of W if there exist a left factor W’ of W and a right factor

W" of W such that
W = W'QW".

A word W is unborded if none of its right factors is a left factor of W, except W

itself and the empty word.

Theorem 1.4.1 (Universal property of free monoids) Any function
Yix — M,

where M is a monoid, has a unigue extension to a monoid homomorphism
Wy 1 X¥ —> M,

Proof Let M be a monoid, and suppose we are given a function

Yix — M

z—my (2 €X,m; € M).
Then we can extend v to a function ), as follows. Define
Yo X — M
Pul€) = 1ng
and if W = 229+ Tp12, (21,22, - , 2, € X,n 2> 1) is a non-empty word then
V(W) = My, My, My, + - My, My, (product in M).

Then clearly . is a homomorphism, and it agrees with ¢ on x. Now suppose ¢ is
another extension of ¥ (¢ is a homomorphism). Then

13




qb‘x = T//‘*lx = w

Since x generates x* it follows from Lemma 1.2.3 that ¢ = ¥..po

1.5 Monoid presentations (rewriting systems)

A monoid presentation or rewriting system
P = [x;r]

is a pair, where x is a set (the generating symbols or alphabets) and r consists
of ordered pairs of words on x (defining relations or rewriting rules). A typical
element of r will have the form (Ryi, R—1) where Ry, R_; are words on x. We
denote this by R : R4y = R_; or simply by Ry1 = R_;. We say that P is finite if
x and r are both finite (see also [63]).

We define an elementary transformation as follows: if a word contains a sub-
word R, (¢ = £1), for some R € r, then replace that occurrence of R, by I_..

If a word W' is obtained from a word W by replacing Ry; with R_;, then we
denote the process by W —sp W' or simply W — W', and we say that W' is obtained
from W by applying a single positive transformation. If W' is obtained from W by
finitely applying positive transformations, then we denote the process by W —5 W’
or simply W —* W', Similarly we have negative transformations.

If W is obtained from W’ by applying a finite number of elementary transfor-
mations, we write W <% W or simply W «* W (Note that <»* is an equivalence
relation). And we say W, W’ are equivalent. We denote the equivalece class

containing the word W by [W]p or simply [W].

14



Example 1.5.1 Let P = [a,b;ab = b?,ba = d?], and let W, W' be the words

aba, ba? respectively. Then

aba — bba — ba®.

So W —* W',

Example 1.5.2 The words

W = b%a and W' = o®

are equivalent since

bba - aba — a®.

So W <> W'

Lemma 1.5.1 <* 15 a congruence.

Proof Let W, W'Y € x* and suppose that W «* W'. We want to show
that WY «&* W'Y and YW &> YW
Special case: Suppose W’ is obtained from W by just applying a single elementary

transformation, say

W=URyV and W =UR_.V (UV € x*).

Then

WY =UR. VY and W'Y =UR_. VY.

15




Hence W'Y is obtained from WY by applying a single elementary transformation.

Thus
W'Y «* WY.

Similarly YW' <* YW.

General case: Suppose there exists a chain
W= WO';WlaWZ"'Wn =W’

such that each W;,, is obtained from W; (i = 0,1,2,--- ,n—1) by applying a single

elementary transformation. Then by the special case each
WY & Wi Y.
Hence by transitivity,
WY «*W'Y.

Similarly YW «* YW’. Hence the equivalence relation ¢»* is a congruence.n

By Lemma 1.3.2, x*/<+* is a monoid. We denote the factor monoid x*/¢*

by M(P). We call M(P) the monoid defined by P.

1.6 Homomorphisms of monoids defined by pre-

sentations into known monoids

Let

16




P = [x;1]

be a monoid presentation, and let A" be any arbitrary monoid. Suppose we have a

function

Pix — K

(z) = ky (z € %,k € K).

By Lemma 1.2.3, there can be at most one homomorphism

(*) vp: M(P) — K
Tz =[z]p — ke (2 € x).

We give the necessary and sufficient conditions for such a homomorphism to exist.
By Theorem 1.4.1 there is a unique monoid homomorphism

x* — K

extending . We will denote here this homomorphism by the same letter 1 (rather

than using ).

Lemma 1.6.1 The following are equivalent;
(i) For all W,W' e x* if W &* W' then (W) = p(W');

(i3) $(Ry1) = $(R_y) for all R € r.

Proof (i) = (4). Since Ry; «* R_y for all R € r, if (i) holds then we
must have Y(R41) = P (R-1).

(11) = (i). Let W &> W',

17




Special case: Say W = UR;.V and W/ = UR_.V, where R € r and ¢ = £1, i.e
W is obtained from W’ by applying a single elementary transformation. Then
P(W) = P(URV)
= Pp(U)p(Bee)p(V)
= P(U)p(R-)p(V)
= YUR.V)
= y(W).
General case: Suppose we have the sequence
W =Wy, Wy, Wy - W, = W'
where W; is obtained from Wiy, (1 = 0,1,2,--- ,n— 1) by applying a single elemen-
tary transformation. Then it follows from the special case that each
p(Wi) = p(Wipa).
Hence by transitivity we will obtain that
b(W) = (W').0

Theorem 1.6.2 The homomorphism p as in (%) exists if and only if

P(Ry1) =(R_y) for all Rer.

Proof Suppose ¢(R.1) = (R_y) for all R € r. Then by Lemma 1.6.1 the
mapping
vp: M(P) — K
W] = (W) (W € x¥)

18




is well defined. We show that v¥p is a homomorphism. Let [W], [W'] € M(P] then

Bo(WIW) = $((WW')
= Y(WW)
= PW)b(W)
= Pp((WDer((W)).

We remark that o»(WW') = (W) (W') holds, since % is a homomorphism. Also

D(lpery)) = (e

= lg.

Hence ¥p is a homomorphism.

Conversely, suppose there is a homomorphism

¥o i M(P) — K

(W] = (W) (W € x*).

We show that (Ryi) = ¢ (R_1) for any R € r. Since [Ry4] = [R_4] and p is well

defined, then
Yp([Bii]) = ¥p([R-1)).
But
Yp([R11]) = $(B41) (by definition of ¢p).
Similarly,

@[)P([R—l]) = l/’(R—l)-

19




Hence ¥(£41) = ¥(B-1).0

Example 1.6.1 Let

P = [a,b,; ab = ba

Define

b iab— Mg(Z_)

ar—— 0 2 2

b— 10 1 0

0 0 1

i -

Then it 1s easily checked that ¥(ab) = (ba). Hence we have an induced

homomorphism

pp + M(P) — Ms(2)

[W] = p(W).
Example 1.6.2 Let P' = [a,b; ab® = ba]. Define ¢ as in Ezample 1.6.1. Then
p(ab?) # (ba).
So there is no homomorphism
bp: M[P] — My(Z)

with Ppi([a]) = ¥(a), Yp([6]) = $(b).

20



1.7 Equivalent rewriting system, Tietze transfor-

mation

Two rewriting systems
Py = [xx], P = [y; 8]

are said to be equivalent if x =y and % , <+p, are the same congruence, in other

words if
M(Py) = M(Py).

Lemma 1.7.1 Two rewriting systems Py = [x;r|, Pa = [y;8] are equivalent ¢ f
and only i f

(1) x=y;

(i1) for each R € r, [Ryilp, = [R_1]p,;

(i13) for each S € s, [Stilp, = [S-1]p,.

Proof Suppose P; and P, are equivalent. Then (z) holds. For B € r we
certainly have Ry, ¢35 R_1, so since «»p and ¢}, are the same congruence,

Riy 5, R_y. Hence (ii) holds, and the fact that (iiz) holds is proved similarly.

Conversely, suppose W <5 W' (W, W € x*). We want to show that W 3, W'
Special case Suppose W’ is obtained from W by an elementary transformation in
P,. Then W = URV, W = UR_.V for some R: R. = R_. € r, U,V € x*. Then

from (ii), [VV]'p2 = [W]pg.

21




General case Suppose we have a chain
W = Wy, Wy, W, =W/,

where each of the W;, Wiy, (: = 0,1,--- ,n — 1) is obtained from the other by an

elementary transformation in P;. Then by special case,
[Wilp, = [Witi]p,-
Hence by transitivity,
Wip, = [W'lp,.

Similarly we can show (using (i71)) that if W <5, W’ then W <5 W'.g

Example 1.7.1 Let

Py = [a,b;a® = a?,b? = a?b]

Py = [a, b;a® = a?, 6% = a®b).
Then Py and Py are equivalent since
b% —p, a®b —p, a®b.
Thus
[b?]p, = [a®b]p,.
Also we observe that
b —p, a®b +p, a®b.

Thus
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[6%]p, = [a®b]p,.
A monoid M can have many presentations. Given a presentation
P =[x;r]

of a monoid M, we consider the following transformations :

(Ty) If P,@ are words on x such that [Plp = [Q]p (le. P * @), then add

P = @ to the defining relations.

(Ty) If U is a word on x, then add y to the generating symbols, and add

y = U to the defining relations (here y is a letter not in x).

We also have the inverse transformations T,”' and 757 !. The transformations
Ty, Ty, Ty, Tyt ave called Tietze trans formations. Each single transformation is

called an elementary Tietze transformation.

Lemma 1.7.2 If the presentation P' is obtained from the presentation P

by a Tietze transformation, then M(P) is isomorphic to M (P’).

Proof Let P = ([x;r|. Suppose P’ is obtained from P by an elementary

transformation 7}, so

Define
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b1 x — M(P')

z > [z]p (2 € ).
Then for any R € r
H(Ry1) = [Rys)pr = [Roalpr = $(R-1),
so by Theorem 1.6.2, there exists a homomorphism

¢p : M(P) — M(P)

[2]p = [z]p.
Similarly define

b x — M(P)

X [:E]p
Then for each R€r
P(Ri1) = [Ryalp = [Ba]p = ¥(R-1).

Also

so by Theorem 1.6.2 there exists a homomorphism

1,[);01 : A/I(,PI) — M(fp)

[CII]'pl — [:ZJ]',D
We observe that for all z € x,
pprdp(lalp) = p([zlp) = [2]p = idup)([2]p)-
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Thus by the Lemma 1.2.3 ¢p:¢p = idpy(p). Also
pibpi([z]pr) = dp([z]p) = idn(py([2]p)-

Thus by the Lemma 1.2.3 ¢ptpp: = idps(pry. Hence M(P’) is isomorphic to M(P).

Suppose P’ is obtained from P by elementary transformation 13, so
P =[x, yry = U]
Define

¢ x — M(P)

T —r [.ZL‘]*p/.
Then for any R € r

$(By1) = [Bilpr = [Roa]p = $(£-1),

50 by Theorem 1.6.2 there exists a homomorphism
¢p  M(P) — M(P')
[al> - [ep.
Similarly define

Y {x,y} — M(P)
z > [z]p (z € X)

y = [Ulp.

Then for any R € r

Y(B11) = [Ryalp = [Roalp = ¥(R-1).
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Also

P(y) = [Ulp = H(U).

Hence by Theorem 1.6.2 there exists a homomorphism

'Q/)'pl : M(’P’) — M(P)
[zl = [a]p (z € %)

[ylp: = [U]p.

We observe that

rppi((alp) = dp(lalp) = [elp (z € x)

brvr(lylr) = dp([Ulp) = [UTpr = ]

Hence by the Lemma 1.2.3 it implies that ¢ptpp: = tdprpry. Also for any x € x

vpidp([z]p) = vr([zlp) = [zl

Hence by the Lemma 1.2.3 it implies that ¢p/¢p = idpa(p). Thus M(P) is isomorphic

to M(P').q

Remark The tsomorphism ¢p 15 called a standard isomorphism.

Theorem 1.7.3 (T'ietze theorem) Let P, P’ be two finite monoid presentations
such that n: M(P) — M(P') is an isomorphism. Then there is a finite monoid

presentation R and two sequences of finite monoid presentations

Po=P —P1—Py—--- —>P,=R
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S e

Po=P — Pl —Py— - — P, =R,

where each step Pi — Pipi, P —+ Piy, (0<i<u—-1,0<7<v—1),1s an

elementary Tietze transformation T or Ty, such that

n=(m_r 11)" (=1 Mmm0),
where n; and 77;- are the standard isomorhisms

ni: M(P;) — M(Piy1)

and
ny s M(P;) — M(P,,)
respectively.
Proof Let
P = [x;r]
P’ = ly;s).

If n: M(P) — M(P’) is an isomorphism, then there exists
nt=7:M(P) — M(P)
such that

1 = tdarpy,

Ny = idnpyy.
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Suppose

n([z]p) = [Uslpr (2 € x),

([ylp) = Vil (v € ¥)

(U is a word on y, V, is a word on x).
We can successively add each letter y € y to the generators and the corresponding

relation y = V,, to the defining relations, and obtain
Qi =[x yiry=V(y ey
Thus Q; is obtained from P by |y| elementary Tietze transformations T5. We let

o M(P) = M(Py) — M(Q1)

[W}P = [W]Q1

be the composition of the corresponding standard isomorphisms.

For any S € s

’Y([SH]P') = 7([5—1]73')-
Since no is an isomorphism then
10y ([S+1]pr) = mov([S-1]z).
Thus we obtain
[Stile = [9-1le:-

Hence for any S € s then Sy, <% S_;. Thus for each S € s we can add Sy = 5

to the defining relations, and obtain
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Q=[x yir,8,y =V (y €y)l.
Thus Q4 is obtained from @, by |s| elementary Tietze transformations 7). We let

mM(Q) — M(Q2)

[Wie, = [Wie,

be the composition of the corresponding standard isomorphisms.

Then

([zlp) = ¥([Ualp)) = [2]p (= € x).
We observe that

[z]p = Vu.lp = Vi lp[Vielp - - Vil (W1eotn = Us, y1s 92, - yn €y, € X)
Thus
mnon([zlp) = [z]e, = mnon([Vu.lr) = [Vinle, = Vi le.[Vinle. - - [Vinl s
But in M[Q)]
VileaViele, -+ Vinle, = [yile.lve]o, - - [ynl .-

This implies that

[2]o, = [l lyale, - - [Ynles = [Uslg,-

Hence z ¢35, U, (¢ € x). Thus we can successively add the relations z = U, (z € %)

to Qq, and obtain
R=0Qs=[xy;r,8y=V(y €y)z=Uy(z € x)].
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Thus R = Q3 is obtained from Q, by |x| elementary Tietze transformations 7. We

let

ne: M(Q2) — M(Q3)

[W]Qz = [W] Qs

be the composition of the corresponding standard isomorphisms.

By symmetry we can also obtain a sequence

! I ! [
7)7 1 27Q3“‘,R’

and the compositions of the corresponding standard isomorphisms

! ! !
?707 7717 T}Z'

T3 Ty 1y
; — ;
ly| — times |s| — times |x| — times
T?. T1 TI
! oz
|x| — times |r| — times ly| — times

Indeed
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mmno([zlp) = [z]r = [Udr (= € %),
and
mnmen([z]e) = [Usdr (z € x).

Hence by Lemma 1.2.3, n4ninon = namno. Thus (mhning) tnamne = n.o

Corollary 1.7.4 Two finite presentation define isomorphic monoids 1if
and only if one can be obtained from the other by a finite sequence of

elementary Tietze trans formations.

Proof This is a consequence of Lemma 1.7.2 and Theorem 1.7.3.4

1.8 Noetherian induction

A relation > on a set A is an ordering if it is both irreflexive and transitive. An

ordering is noetherian if for any a € A there is no infinite chain
a=0ag > ay > Uy > dz* - .

Let A be a set and > be a noetherian ordering. For each a € A assume we have a

proposition P(a).

Theorem 1.7.1 (Principal of noetherian induction) Suppose we can show
that the following holds :

(+) If a € A and P(b) is true for all a > b then P(a) is true.

Then we deduce that P(a) is true for all a € A.
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Proof Suppose P(a) is not true for all @ € A. Choose a; such that P(a;) is
false. From (+) it cannot be the case that P(b) is true for all ¢; > b. So choose
ay > ag, such that P(aq) is false. So by (+4) it cannot be the case that P(b) is true
for all az > b. Choose ay > ag such that P(a3) is false. We continue, contradicting

the fact that > is noetherian. Hence P(a) must be true for all @ € A.g
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Chapter 2

Complete rewriting systems

2.1 Definitions

Let

be a rewriting system on x. Then

(1) P is said to be noetherian if there exists no infinite sequence

Wy — Wy — Wy — Wy — - (W, €x*,0=0,1,2,---

(12) P is con fluent if whenever we have

W ——*Y and W —* Z (W)Y, Z € x¥),

there exists a word W' on ¥, such that

Y —* W' and 7 —* W',

(7i1) P is locally con fluent if whenever we have
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W —Y and W — Z (W,Y, Z € x*),

then there exists a word W' on x, such that

Y —*W'and Z —* W'.

(iv) P is a complete rewriting system if P is both noetherian and confluent.

A word W on x is said to be irreducible if no positive transformations can

be applied to it.

Example 2.1.1 Let

P = [a,b;a*ba = ¢, a*b = ba].

Then the word bab is irreducible, whereas the word ba*ba is not irreducible,

since we can replace a*b by ba.

Lemma 2.1.1 If P is noetherian then each equivalence class contains an

irreducible.

Proof Let W be a word. If W is irreducible then there is nothing to prove.
Otherwise we apply an elementary positive transformation to W to obtain a word

Wy
W—)Wl.

If W, is irreducible then W, is an irreducible of the equivalence class [W]. Otherwise
we apply an elementary positive transformation to W, to obtain a word W,
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W——)VV1—>W2.

If Wy is irreducible then Wy is an irreducible of the equivalence class [W]. Otherwise
we apply an elementary positive transformation to W, to obtain a word Ws. We
continue with this process. Since P is noetherian, we must eventually reach an

irreducible word W,
W — W] - WQI/VTL

Hence W, is an irreducible of the equivalence class [W].g

Let > be an ordering on x*. Then the ordering is said to be:
(1) monotonic, if whenever we have words U, V, W, W’ on x such that W > W',
then UWYV > UW'V;

(17) well- founded, if there exists no infinite sequence such that
Wo>Wy>Wy>Ws > (W, €x*,i=0,1,2,---);

(131) reduction, if it is both monotonic and well-founded ;

(1v) compatible with r if B, > R_ for each defining relator.

(v) total if whenever we have two words W, W' on x exactly one of W > W/,
W'> W, W = W' hold.

(vi) partial if there exist words W, W’ that can not be compared.

We give some well-known examples of reduction orderings:
(a) Length-reducing ordering (LO) : For any two words W, W', then W > W il

and only if L(W) > L(W').
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(b) Weight-reducing ordering (WO) : Let ¢ : x — 7%, such that ¥(z) > 0
for all z € x. By Theorem 1.4.1, ¢ can be extended to a unique homomorphism,

x* —» Z% which by abuse of notation we also denote by . For any word W, W’

then W > W' il and only if (W) > (W").

Remark : note that LO is a special case of WO when all letters have weight one.

(c) Weight-plus-lezicographic ordering from the left (W LO — L) : For any word
W, W' then W > W' il and only if either (W) > ¥(W') or (W) = (W’) and
W >ree-1 W', where >p1..—1 is the lexicographic ordering from the left on x*
induced by a well-founded total ordering on x, called a precedence on x.

Suppose x = y U z, where y, z are disjoint sets. Suppose we have precedences >y,

>, on y, z respectively. Then we define a precedence on x by

x1 B> z9 if and only if

either 1,2, €y and a1 Dy g;
or 1,29 € z and T >y, T;

or T €Y,y € 2.

We say y has precedence over z and denote it by y > z.

Theorem 2.1.2 A rewriting system

P = [x;1]
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on X 18 noethertan i f there exists a reduction ordering on x*, which is compalible

with r.

Proof First we would show that for any words W, W’ on x if W — W/,
then W > W' But if W — W’ holds, it implies that we can have W = UR4V
and W' = UR_,V, for some defining relator R : RKy; = R.;. Then since > is

compatible with r, Ry, > R_; holds. And since > is a reduction ordering, then >

is monotonic. Thus UR{1V > UR_;V. Hence W > W', as required.

Now suppose P is not noetherian. Thus there exists at least one word W

on x such that we have an infinite chain of positive transformations

[/V—>W1——)W2—>W3-".

By the above

W>W >W,>Ws>---,

thus contradicting the assumption that > is well-founded. Thus we conclude that

P is noetherian.g

The converse of this theorm is also true (see D.S. Lankford [33] for more de-

tails).

Example 2.1.2 The rewriting system P as in Fzxample 2.1.1 is noetherian,

since LO is compatible with r.
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Suppose there are distinct relators R, S such that
R+1 = UV, S+1 = VW

where V is non-empty. Then the word UV W is called an overlap ambiguity of P .
If
Ry =V, S =UVW (V non-empty)

then UVW is called an inclusion ambiguity. The pair of words (R_;W,US5_) or

UR_,W, S_,), respectively, is called a critical pair corresponding to the ambiguity.
g guity

R_y
S
/m W X U / R+\ W

N,

\/ ,/""‘.;;
//
e
S, —

St

Overlap ambiguily Inclusion ambiguity

A critical pair (P,Q) is said to be resolved if there is a word Z on x such

that P —* Z and Q —* Z, unresolved otherwise.

38




Example 2.1.3 Let P = [a,b,c,d,e, f,g;ab’ef = ca,efg’c = d°]. The overlap

ambiguity is ab®efg*c and the corresponding critical pair is (cag®c, ab®d®).

Example 2.1.4 Let P' = [a,b,¢,d, ¢, f,g;ag9 = b, b*dagce = [¢?]. The inclusion

ambiguity is b2dagce and the corresponding critical pair is (b*dagcee, b*dcbee).

2.2 Fundamental theorem on rewriting systems

The following basic result is due to M. H. A. Newman [48].

Theorem 2.2.1 Let
P = [x;r]

be a noetherian rewriting system. Then the following conditions are equivalent :

(1) P is locally con fluent,
(i1) P is con fluent;

(130) If (P,Q) is a critical pair and
P—*V,Q-—"U,

where U and V are irreducibles then U =V

(1v) All critical pairs of r are resolvable.

Proof (1) = (it). For W € x*, let P(W) be the following statement.

P(W) : If whenever W is such that
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W ==Y and W —=* Z
then there exist a word S & x™ such that
Y +*Sand Z —=* 5.

We show that if P is locally confluent then P(W) holds for all W. We will show it

by noetherian induction. Let < be a relation defined on x* by:
U <V if U is obtained from V by at least one positive transformation (U, V € x*).

Clearly the defined relation is irreflexive for if we had a chain
U=Uy— U — Uy — - — Uy =U
with n > 0, then we can repeat this chain arbitrarily often
U=U,—U —-—U,=U—-Uy—U — - — U, =U—=>U-,

thus contradicting the fact that P is noetherian. Again < is transitive since if we

have chains

W=W—— W, — Wy — . — W, =V

with m,n > 0 then we have the chain
W=W,—W,— —W,=V=—V— - —V,=U,

so W < U. The relation is noetherian, since P is noetherian.

Suppose

W —=*Y and W =+~ Z
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We show that there exists S € x*, such that ¥ —* S and Z —* 5.
Case 1: If W = Y then welet S = Z. Hence P(W) is satisfied. Similarly if W = 72
then we let S = Y. Thus in both cases P(W) is satisfied.

Case 2: Suppose W # Y, W #£ Z. Thus there exist words Y], Z, such that
Y Y, W27 =>* 7.

Since P is locally confluent then there exists a word W’ such that

N

N*

Since Y; < W, P(Y}) holds by the induction assumption. Thus there exists a word

Y’ such that
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Similarly, since Z; < W, P(Z;) holds by induction assumption, so there exists a

word Z’ such that
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/N

M/

By the same argument since W' < W, P(W') is satisfied, so there exists a word

S € X*, such that
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Thus we have shown that if
W —*Y and W —* Z,
then there exists a word S € X*, such that

Y —»+* S and 7 =* S.

Hence P(W) is satisfied.

Thus by the principle of Noetherian induction P(W) holds, for any word W

on x. Hence P is confluent.

(11) = (u1i). Suppose (P, Q) is a critical pair. But (P, Q) being a critical pair
implies that there exists a word W € x*, such that
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W — P and W — Q.

Suppose

P —=*V and @ —=* U, where U, V are irreducibles.

Then we have

W—P—=*VadW - —*U.

Thus we have

W —*Vand W —* U.

Now since P is confluent, then there exists a word S5 € x*, such that

V —=*Sand U = S.

But U and V are irreducibles. Thus § = U = V. Hence V = U as required.

(111) = (4v). Suppose {P,Q) is a critical pair. We show that there exists a

word W', such that

P —*W' and Q —* W'

But since P is noetherian, by Lemma 2.1.1, there exist irreducibles Z and Z’, such

that

P —*7Z and Q —* 7.

Hence by (i1i), Z = Z’, so we can take W’ to be Z. Thus the critical pair is resolved.

(iv) = (i). Let
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W =Y and W — Z (W,Y,Z € x*).
We must prove that there exists V € x* such that
Y =*Vand Z =" V.
There are relators K, S and words Y, Ya, Z;, Z3 such that

W=YiRuYs, Y =Y R.\Y;

W = ZIS+1Z3, Z = Z15'_1Z3.

There are two situations: the occurrence Ry, Sy, are disjoint or they are not.
We treat first the situation where they are not disjoint.

Case (i): Suppose there exist an overtap ambiguity between the occurrence of R4y

and S+1.

Y Ry Ys

Then
R_f_l.: Uv and S+1 =VT

with V non-empty. We then have Z, = Y U, Y5 = T'Z3 such that we have the overlap

ambiguity UVT, and the critical pair (R_yT,US_;). So we have

W = )qR+1TZ3 — YlR_1T23 =Y and W = )”1US+IZ§} —r YiUSL]Zg =Z.
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But by (1v) we know there exists a word V € x*, such that

R.T—=*Vand US_y =»* V.

Hence there exists a word Y,V Z4 € x*, such that

Y »*Y,VZiand Z =" YoV Z4.

Thus local confluence is satisfied.

Case (ii): Suppose there exists an inclusion ambiguity.

Yy Ry Y3

W == Z1 S-I-l Z3

Then

R+1 =UVT and S.|_1 =V

with V non-empty. We then have Z;, = YiU, Z3 = TY; such that we have the

inclusion ambiguity UVT, and the critical pair (R_1,US_1T). So we have

W = YlUS+1TY;3 — YiUS_lTlf =Zand W = YlUS_HTYE} - Y]R.JYV = Z.

But by (iv) we know there exists a word V € x*, such that

Ry —»*V and US_lT —" V.,
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Hence there exists a word Y;VY; € x*, such that

Y 2" YiVY;and Z =" V1V Y5,

Thus local confluece is satisfied.

Now suppose that the occurrences of Ry, Sy are disjoint.

Y, Ry Y3

Then

Zi =Y1R1 K and Yz = K51 7Z; (K is the partition between Y3 and Z3).

So

W = }/1R+1I(S+123 —r }/1R_1[{5'+123 =Y — )GR_II{S_IZ;J,

W = )/1R+11{S+1Z3 —> leR.l.ll(S_lZ;g =7 — KR_lﬁrS_lzg.

Hence local confluence is satisfied.[d

Example 2.2.1 The rewriting system P = [z,0;26 = #,0% = 0] it is noetherian,
since s length-reducing. The critical pairs are (02, z0) (6%, 0%). Bul 0 — 0 and

x — 0. Thus the critical pairs are resolved, so by Theorem 2.2.1 (), P is
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con fluent.

Example 2.2.2 The rewriting system P' = [¢,0;20 = 0,0% = z] is noctherian,
since it 1s length-reducing. We have the critical pair (6%, 2?), and 0* —* z. Since

2%, x are distinct irreducibles, by Theorem 2.2.1 (132), P’ 15 not confluent.

2.3 A further characterization of complete rewrit-
ing system

Theorem 2.3.1 Suppose P is noetherian. Then the following are equivalent :
(1) P is complete;

(1) each equivalence class contains a unique irreducible.

We refer the reader to M. H. A. Newman [48], who originally proved the
theorem.

Proof We first note that by Lemma 2.1.1 each equivalence class contains at least
one irreducible.

(1) = (i1). Suppose W, W' are irreducibles belonging to [W]. We will show that W

and W’ are the same. Since W <* W’ there exists a sequence
W = WD,Wl,Wz v I/Vn = W’

such that W;,; comes from Wy (: = 0,1,2,--+ ,n—1) by an elementary transforma-
tion. If n = 0 there is nothing to prove. Otherwise, since W and W' are irreducibles,

then our sequence must be of the form
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W «— I/Vl a* W — W,

Thus there must exist at least one & such that Wy_; comes from Wy by a single
positive transformation and Wiy comes from Wy (k = 1,2,--- ,n — 1) by a single

positive transformation.

Hence there exist
D<hki<hi<hks<hki< - <kn<n
such that
W %= Wy, —=* Wi, = Wy, =% Wy, -+ S Wy, =" W'
Since we have the subsequence
W *— Wy, —=* Wy,

and P is confluent, there must exists a word Z such that

W —* Z and W), —* Z.
But W is irreducible, thus W = Z. Hence

W e Wy, % Wy, —=* Wy, " - =W, W'

holds. By the same argument we can find a word Z’ such that

W —* Z" and Wy, —* Z".

Since W is irreducible, then W = Z’. We continue eliminating the k;'s until we are
left with
W e W, —* W
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Since P is confluent there exists a word Z” such that
W —* Z" and W' —> Z7.

But W, W' were chosen to be irreducibles, thus W = Z" = W',

(72) = (i). Let W be a word such that

W

N
/\*
" Z
Y

Since P is noetherian, by Lemma 2.1.1, there exist irreducibles Y’ and Z’, such that

Y »* Y and Z —* Z'. Hence we have

W\*

7!
*

Yl

But Y’ and Z' are equivalent, and they are irreducibles in P. Hence by (i), Y' = Z'.

Thus P is confluent.n

2.4 Resolutions

Let M be a monoid. Let Z denote the ring of (ordinary) integers and let Z M denote
the monoid ring of M with coeflicients in Z. We view Z as a left ZM-module on
which each element of M acts as the identity: if A € Z and m € M, then mA = .

Similarly we can view Z as a right Z M-module on which each element of M acts as
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the identity.

A (right) left resolution of Z is a sequence
8 da a do
o — BBy — - — By = B — By —Z—0

of (right) left ZM-modules B; and (right) left ZM-module homomorphisms 9; (as
indicated) such that imdiy = kerd; (1 = 0,1,2,---), and we say the sequence is
exact. The resolution is said to be of finite length if there exists k such that B; =0
for all ¢ > k. The resolution is called a free resolution if all the B; are free modules.
Such a free resolution always exists.

The monoid M is said to have the (right) left F P, property (n < oo) if there is a
free resolution as above with B; finitely generated for i < n.

D. Cohen in [15] has shown that the properties of left F' P, and right /'F., are not

related, by exhibiting a monoid M with presentation
P = [z5(i € N)jzi2; = ziz44(1, 5 € Ny i < 7))

which is right # P., but not left F'P;. There will then also be a monoid which is left
FP., but not right FP;, namely the opposite monotd of M, which has the same

underlying set as M but with the multiplication * defined by u*v = vu (u,v € M).

Theorem 2.4.1 If a monoid M has a finite complete rewriling system,

then M is both left and right F P,,.

C.C Squier [61] has shown that if a monoid M has a finite complete rewrit-

ing system, then M is FP,. Later it was shown by Kenneth S. Brown [13], Y.
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Kobayashi [30] that if M has a finite complete rewriting system then M is both left

and right F'P.,. Then it was realised that in fact D.J Anick [4] had shown it earlier.
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Chapter 3

Monoid and group constructions

viewed as rewriting systems

3.1 Introduction

Free groups, free products of groups, free products of groups with amalgamated
subgroups and H N N-extensions of groups are basic construction in combinatorial
group theory and have been studied extensively. See the standard text books D.
Cohen [14], A.G. Kurosh [32], Lyndon and Schupp [35], W. Magnus, A Karrass,
and D. Solitar [44], J.J. Rotman [59]. Lor each of these construction there is a
normal form for every element of the group. A lesser known construction is the
free product with commutative subgroups (see [27], [28], [44]). In this chapter, we
will study these costructions using monoids, and obtain the normal forms for each
construction by viewing the construction as a rewriting system. D. Cohen [14], has
shown that normal forms of free groups are unique using similar concept as the one

from rewriting systems. Deko V. Dekov in [16] has discussed the normal forms of a
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special case of free products with amalgamation of monoids, and has shown that the
normal forms are unique, using rewriting systems. Again in [17] Deko V. Dekov has
discussed normal forms of I N N-extensions of monoids, using rewriting systems.
We will show that normal forms of HN N-extensions of monoids are unique, using
different method from the one used in [17]. We will need to discuss transversals of
submonoids. A new normal form theorem for monoids with commutative submonids

is proved.

3.2 Free groups

Let x be a set, x ! be a set (disjoint from x) in 1 : 1 correspondence z «» ™! with

x. Consider the rewriting system
F(x) =F =[x, x5 = ¢ (z € x,e = £1)].

Lemma 3.2.1 M(F) s a group.

Proof We show that for any [W] € M(F) there exists [W'] € M(F) such

that
WW'] = [WIW] = 1m = [e].
If W = ¢, then there is nothing to prove. Otherwise let
W =zcl'z?? -z (e, =xlL,z; €x,n>i>1)
be a word on x U x~'. Then
W' =g g, 7 gy

n—1
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is also a word in x Ux"!. And

4 —_ g —_ —_
Ww' = afa?---ara; e,y el
€] .52 ~—€n—1_,~€n-—1 .. e €2 T8
Ty Ty Ty T Ty "y
___) ......

€1 W82 . TE€2 €1
S S AR S P

Thus [W][W'] = [¢]. Similarly [W'][W] = [¢]. Thus every element of M(§) has an
inverse in M (). Hence M (F) is a group, since M (§) is a monoid and every element

of M(§F) has an inverse in M (§F).q

We call M(F) the free group on x, denoted by F(x).

Theorem 3.2.2 §F is a complete rewriting system.

Proof We observe that L{(zz™¢) = 2 > L(¢) = 0. Thus z°z7° >0 €. Since

LO is a reduction ordering, by Theorem 2.1.2, the rewriting system § is noetherian.

There are no inclusion ambiguities. The overlap ambiguities are of the form

€ p—E&

z°z7 %z (z € x, € = +1) [corresponding to the defining relations R : 2®27° = ¢,

S a2 = ¢]. Then
rfr—fa® — af
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and

rfx_fxf — 2t
Thus the critical pairs arising from overlap ambiguities are resolved. Hence by

Theorem 2.2.1, § is confluent. The rewriting system § is complete since it is both

noetherian and confluent.g

Since § is complete, by Lemma 2.1.1, each equivalence class contains at least
one irreducible. The irreducibles of § are words W such that W does not contain
a pair z°27° (z € x, ¢ = +1). The words on x U x~! which are irreducible with

respect to § are called freely reduced words.

Corollary 3.2.3 (Normal form theorem for free groups) FEach element

of F(x) 1s represented by a unique freely reduced word.

Proof Since § is complete, then by Theorem 2.3.1, every equivalence class

in § (element of F'(x)) is represented by a unique irreducible.

3.3 Free product of two monoids

Let A and B be monoids (AN B = ). Consider the rewriting system
SP(A,B) =8P =[A,B;la=¢lp=¢cad =a-d (a,a’ € A), bb' =b- ¥V
(0,0 € B)].
Here a - a’ denotes the product of ¢ and @’ in A (similarly for B). We call M(FP)
the free product of A and B, denoted by A+ B. The monoids A and B are called
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the free factors of A« B.

Lemma 3.3.1 If A, B are groups so is A x B.

Proof We show that for any [W] € A * B there exists W' € A x B such

that
WIW'] = [W[W] = Llaus = [¢].
If W = ¢, then there is nothing to prove. Otherwise let
W =zzq- 2y, (T1,T2,  ,2, € AUB,n > 1).
But each z; has an inverse z; ! in the group A or B to which it belongs. Let
1

‘1,1 I P
I/I/ ---£Cn $n_1"'$2 :Cl

38




Then

I =3 < - - "
WW' = a2 -2p1Zp2, T, Ty 2,

where 1 denotes the identity of the
— T1Xg xn_llﬂv,‘:l e 332713:1_1

group A or B to which 2, belongs.

— 1T
- 1
— €

Thus [W]{W'] = [e]. Similarly [W'][W] = [e]. Hence A * B is a group since A* B is

a monoid and every element [W] € A* B has an inverse in A * B.g

Let Py = [Ajaa=a-d (a,a’ € A), 14 = ¢]. Consider the function

i A— A

arra(a€A).

By Theorem 1.6.2 we get an induced homomorphism

pp, : M(Py) — A

[a’]'PA = a (CL € A)7
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since ¥(aa’) = P(a-d’) (a,a’ € A) and ¥(e) = P(14).

Lemma 3.3.2 Py 1s a complete rewriting system, and pp, ts an isomorphism.

Proof Clearly 1p, is surjective. We observe that L(aa’) = 2 > L(a-a') =1
and L(l4) = 1 > L(e) = 0. Thus ad’ >0 a-da’ and 1a >0 €. Since LO is
a reduction ordering, P4 is noetherian by Theorem 2.1.2. Hence by Lemma
2.1.1, each equivalence class contains an irreducible. The irreducibles of P4 are «

(a € A—{14}) and €. Suppose there exist irreducibles a, a’ such that

[a] = [d'].

Then
Y (lal) = vp, ([]).
Hence
a=ada.
Also

bp,(le]) = ¥(le]) = 14.

Thus ¢p, is injective. Hence v¥p, is an isomorphism since it is a bijective homo-
morphism. Moreover each equivalence class contains a unique irreducible so P4 is

complete by Theorem 2.3.1.5

We remark that we can similarly define Pp and show that it is a complete
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rewriting system.
Theorem 3.3.3 FP is a complete rewriting system.

Proof We observe that
FP =P4UPs.

But P4 and Pp do not intersect, and are both complete. Hence FP is a complete

rewriting system.g

A non-empty word
T TaLaTy T 1Ty (N2> 1 20,20, 2, € AU B)

on AU B is sald to be irreducible if no z; is 14 nor lg, and there exists no
subsequence z;z;q1 (2 = 1,2, ,n — 1), such that z; and z;4, are from the same
free factor. The irreducible words with respect to P are usually just called reduced

words.

Corollary 3.3.4 (Normal form theorem for free products) Every element of

M (FP) is represented by a unique reduced word.

Proof This is a consequence of Theorem 3.3.2 and Theorem 2.3.1.4
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3.4 Traunsversals

A right transversal of a monoid A with respect to a submonoid H C A is a subset
T of A, such that 14 € T and for every a € A, then a can be uniquely expressed as
a product f, - a* (for some h, € H,a* € T'). Similarly we have left transversals.

We remark that such a set T, may not exist, but if A, H are groups, then T always

exist.

Example 3.4.1 Let A be the symmetric group on {1,2,3}, and let H be
the subgroup of A generated by (12). One righl transversal of A with respect to
H is {1,(13),(23)}, which is also a left transversal. Another is {1,(13),(132)},

but this 1s not a left transversal.

Example 3.4.2 Let A, Ay be monoids, and let A = A; x Ay be the direct
product of A; and As.
Ay = {(a1,1) : a1 € A} is a (left or right) transversal of A with respect to

Ag = {(1,(1.2) L) € AQ}

Example 3.4.3 Let P be as in Ezample 2.2.1. Elements of M(P) are
[29], [z"] (i = 0,1,2,--+). Let H = {2} : 1 =10,1,2,--- }. Then T = {[e], (8]} is a
left transversal of M(P) with respect to H. But there is no right transversal

of M(P) with respect to H.

Suppose there exists a right transversal T' for H in A. Let T = T — 14,A =
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A—(TUH),
Note that T', A and H form a partition for A.

As in the previous section, we let Pa = [A;aa’ = a-d’ (a,d’ € A),14 = €.

Let P34 = [A, H,T;r4] where r, is the following set of defining relations

(a) W' =h-I (R} € H)
(b) lg=¢
() a=h,a* (a € A)
(d) tt' = heo(t- ) (L, € T)
(€) tu=he(t-u) (teT,ue H).
We observe that the defining relations r4 of P} are consequences of the defining
relations of P4. This is clear for (a), (b) (¢). For (d), (e) we have
s bt = by (£ ) hep(t- )%
tu = LU= Ry - (0 w)* = By (- u).
Consider the mapping
0:A— M(Pa)
a lalp, (a € A).
Since each defining relation of P% is a consequence of the defining relations of Pa,
by Theorem 1.6.2, we get an induced homomorphism
Ops : M(PR) — M(Pa)
[a]px + [a]p, (a € A).
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Clearly 0p+ is surjective.

Theorem 3.4.1 P} is complete and Op+ is an 1somorphism.

Proof We first show that P} is noetherian. Define the weight function
A(h) =1 (h € H),
pt)=2(eT),
B(a) =4 (a € A).

Define a precedence on A by assigning precedences on T', H, A, and using the prece-
dence T > H > A. Let >wro_r, denote the corresponding weight-plus-lexicographic

ordering from the left on A*.

Then

BhI) =2 > B(h- 1) =1 = hi Swros h- k' (h k' € H);
B(la)=1>p6(c)=0=14 >wro-rL ¢
B(a) =4 > B(hea*) =3 = a >wro-1 hea* (a € A);
Bty =4 >3 > Blhew(t- 1) = 1t Swro-r hew(t - 1) (4,1 € T);

Btu) =3 > Bheu(t - u)*) and since ¢ &> by = tu >wro-r heo(t - w)*

(teT,u€ H).

Thus for any R : Ryy = R_; € ry then R4y >wro-r R_i. Since >wro_L is a

reduction ordering which is compatible with r, by Theorem 2.1.2, P% is noetherian.

64




The irreducibles in P35 are (¢) t (1 € T), (i) h (b € H), (i1i) ¢, and (iv) Al
(he H,teT).

Let ® = +p,0ps where

bp, : M(Ps) — A

la]lp, > a {a € A)

is as in Section 3.2.

We will show that if U, V are distinct irreducibles in P} then ®([U]) # ®([V]). We
will show for the case when both U and V are of type (iv), since for other cases it

is similar or clear. Suppose we have irreducibles At and h't' such that

[ht) = [R't) (h € H,t € T).

Then
v, 0ps ([ht]ps) = ¥p,([At]p,) = h - £,
¥p, O ([W]ps) = v, ((WV]p,) = A - 1.
Since the products & -t and A’ - t' are unique, then h = h’ and t = {’. Hence

ht = h't'. Thus the irreducibles are unique. This implies that P} is complete by

Theorem 2.3.1. Also @ is injective, so 0’p:{ is injective. Hence (:Jp:l is an isomorphism.q

Lemma 3.4.2 P4 and P} are equivalent.

Proof Since fps+ is an isomorphism, then each defining relation of 7 is a

consequence of the defining relation of Pj. Hence by Lemma 1.7.1, P4 and P} are

65




equivalent.q

Now suppose we have a left transversal S of a monoid B with respect to a
submonoid KX C B. Let *Pg = [E,K, 5’;*1'3] where "rp is the following set of

defining relations

£)

(@) kk'=k K (kK € K)

(b) lp=¢
(¢) b="0b%k (be B)
(d) ss'=(s-8)key (5,8 €5)

(€) us = (s u)ksu (s € S,u€ K).

We remark that we get similar results, as we did for right transversals.

3.5 Monoids with amalgamated submonoids

Let A,B (AN B = ) be monoids with submonoids H, K respectively, such that

there exists an isomorphism
: H — K.
Consider the presentation

A=AA, B, 0) =[A B;ad =a-d (a,d € A), bt/ =b- (b} € B), 14 = ¢,

lg =¢, h=0(h) (h e H)].
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Then M(A) is called the free product of A, B amalgamating H, K, denoted by

Axg B.

Lemma 3.5.1 I f A, B are groups then sois Axy B.

Proof We will show that for any [W] € M(A), there exists [W'] € M(A)

such that [W][W'] = [¢]. Il W = ¢, then there is nothing to prove. Otherwise let
W=z -2, (n2>1,21,29, - ,2, € AU B).
Then the word

P B S B |
Wi =ata 2 - a5 ]

is also in AU B (since A, B are groups), where 27! is the inverse of z; in the group
A or B to which it belongs. Thus [W'] € M(.A), and by an argument similar to that

in Lemma 3.3.1,
WIIW'] =[] = W][W].q

Let r4 be as defined in the previous section, and let rp be defined similarly (where

S is the right transversal of the submonoid K C B).

Theorem 3.5.2 Let A* = [A,H,T,B,K,S;ra,vg,h = 0(h) (h € H)]. Then

A* is equivalent to A, and A* is a complele rewriting system.

Proof A, A* are equivalent since

A=P4UPgU{h =0(h);h € H} and
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A*=PiUPrU{h=0h);he H}

But Pa, P4 are equivalent. Also Pg, Pg are equivalent. Hence by Memma 1.7.1,

the rewriting systems A, A* are equivalent.

Define the weight fuction
w(h)=(k)=1(he H, ke K),
pt) =op(s) =2 (@ eT,s€),
Y(a)=1(b) =4 (a € A, be B).

Define a precedence on AU B by assigning precedences on T, H, A, S, K, B,
and using the precedence T' > H > S K > A> B Let >wro_r denote the
corresponding weight-plus-lexicographic ordering from the left on A*. We observe
that for any R : Ry, = R_,, an element of the set of defining relations of A*, we
have Ryy >wro-r R-1. Since WLO-L is a reduction ordering, then by Theorem

2.1.2, the rewiting system A* is noetherian.

Since P4 and Pj are complete, then by Lemma 2.2.1, the critical pairs aris-
ing from r4 and rp are respectively resolved. We observe that there are no critical
pairs arising between r4 and rp. Similarly there are no critical pairs arising {rom
rg and {h = O(h);h € H}. Thus we have critical pairs arising from the defining
relators of 7% only, critical pairs arising from the defining relators of Pg only, and

the critical pairs arising from

hh! = h-h' and h =0(h) (h,h' € H)
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b= hyy(t-w) and w = 0(u) (t € T, u € H)
la=cand 14 = 0(14).
But
hh! — h-h' and bk’ — O(h)h' = mh' — 07 (m)h' = hh! — h - I/

Thus the critical pairs arising between the defining relators hh' = h-h' and h = 8(h)

are resolved.

Also

tu — Ry (t-u)* and tu — t0(u) — t0710(u) — heu(t - u)*

Thus the critical pairs arisising from the defining relators tu = A (¢ - w)” and

u = 8(u) are resolved. Finally

lg—ecand 1y — 0(14) = 070(14) = ¢

Thus the critical pairs arising from the defining relators 14 = ¢ and 14 = 0(14) are
resolved. All the critical pairs of A* are resolved since critical pairs arising from r»
only and critical pairs arising from rp only are resolved. Thus by Theorem 2.2.1
A* is confluent. The rewriting system A" is complete since it is both noetherian

and confluent.q

A normal form is a word in AU B of the form

where k € K,n > 0,ay,as, -+ ,a, € SUT, and adjacent a’s lie in distinct monoids.
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Corollary 3.5.3 (Normal form theorem for free products with amalgamated
submonoids) Every equivalence class in M(A) is represented by a unique normal

form.

Proof Since the A* irreducible sequences are exactly the normal forms, and
since A* is complete, then by Theorem 2.3.4, there is exactly one reduced sequence
representing each element of M(A*). But M(A*) = M(A), hence every equivalence

class in M(A) contains a unique reduced sequence.p

We also refer the reader to Dekov V. Dekov [16] who proved a special case
of Corollary 3.5.3. He has proved the case when the subgroups H and K are the

same.

3.6 HNN-extensions

Let A be a monoid, and H, K be submonoids of A. Suppose there exists an isomor-

phism

0. H— K.

Consider the rewriting system

H = [:L',:E_I,A;I'H],

where ry is the following set of defining relations
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() ad=a-d (adc A
(i) 22 = ¢ (e = £1);

(iii) @~'h=0(h)a™" (h € H);
() 2k =07 (k)z (k € K);

(’U) IAIE.

Then M(H) is called the HN N-extension of A with associated submonoids H, K,

denoted by A *pg—x .

Suppose there exist right transerversals 7' and S for H in A and K in A re-
spectively. Let H* = [A, z, 27!, rys] where ry« is ry together with the following set

of defining relations;

e la=0(h)z"%; h € H— {14}, t €T —{la},anda=h-t

za=0""k)zs; ke K —{la},s€S—{la},anda=k- s

Lemma 3.6.1 H* and H define the same monoid.

Proof The defining relations of #H are already in ry«, the defining relations

of H*. Now we will only show that z='a ¢33, 8(h)z 't and za <3, 67" (k)xs. But

&5 e lht

% 0(h)z e

71




Also

Thus by Lemma 1.7.1, H and H* are equivalent. Hence M{H) = M(H*).o

Lemma 3.6.2 H* 15 noctherian.

Proof Let
Pi=[4jad =a-d (a,d € A), 14 = €.
For U,V words on A, write U >y V if

either : U —p, V
or: U=hV (for some h € H)

or: U =aW (for some ¢ not in HUT and V = a*W),
where, as usual,
a@=hy-a* h, € Ha cT.
Let > g denote the transitive closure of > . Clearly there is no infinite chain
Uy Uy Usp -,
5o =g is noetherian. Hence = is irreflexive for if we had a chain

U=y Uz =g Us =g - =g Uy = Uy
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with n > 0, then we can repeat this chain arbitrarily often
UrgUsrp g Un= U =g Uy g o g U = Uy g U oo

thus contradicting the fact that =y is noetherian. Hence =g is an ordering.

Similarly, we have the ordering > .

Now consider the rewriting system H*. If W is a word on A U {z,z7'} then
we let W° be the word on {z,z7 !} obtained by deleting all letters from A. We

write U > V if
either : V° is obtained from U° by deleting a subword a2z ° (¢ = £1)
or: U°=V°nd

U= Un_(_l.’L‘E"‘ s U3$E2U25E51 U1

V = Voa - Vaa2 Vyarst V)
where there exists 1 <7 <n -+ 1 such that
Uy =Vi,Up = Vo, Ui = Vi
and

either 1 <n+1and U; <g V; (lf g = ——1) or U; < Vi (lf & = —l—l)

or i=n+1,U; #V,and U; =5, Vi

The ordering > is monotonic. Clearly there can be no infinite descending

chain
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Wo> Wy > Wy >---

Hence > is a reduction ordering on #H*. It can be easily shown that > is com-

patible with the defining relations of 7*. Thus by Theorem 2.1.2, H* is noetherian.g

Since H* is noetherian, by Lemma 2.1.1, each equivalence class contains at
least one irreducible. An irreducible in H* is either the empty word ¢ or a word z™

m € Z — {0} or is a word
agz® ayz®?ay - 2 a, (n > 0)

where

(1) K1, kq, - - ky are non-zero integers.
(i) ao € A— {14}

(444) Tf k; < 0, then a; € T (i = 1,2,---n).

(iv) If k; > 0, then a; € S (1 = 1,2, - n).

Theorem 3.6.3 Each equivalence class in M(H) has a unique irreducible.

Proof It can be shown that the critical pairs of H* are resolved. This is
long but straightforward and we omit the details. Then by Lemma 3.6.2 and
Theorem 2.3.1, each equivalence class in M(H*) contains a unique irreducible.
Since M(H) = M(H*), then every equivalence class in M(H) has a unique

irreducible.
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3.7 Monoids with commutative submonoids

Let A and B be monoids with submonoids H and [{ respectively. Define
K=[ABjad' =a-d (a,a’ € A),bb' =b-b (bl € B), kh = hk (h € H, k € K)].

Then M(K) is called the free product of A and B with commutative submonoids

H and K.

Suppose there exist a right transversal T' and a left transversal S for H in A

and K in B repectively. Let

as in Section 3.4.

Theorem 3.7.1 KX* = [A H,T,B,M,K;ry,"rg,14a = ¢l = ¢,kh = hk

(h € H,k € K)] ts equivalent to I, and K* is complete.

Proof K, K* are equivalent since
K=PsUPgU{lsa=¢lg=ckh=nhk;h € Hkec K} and
K*=PyU*PgU{la=¢lg=¢ckh=hk;he H ke K}
But P4, P; are equivalent. Also Pg, *Pp are equivalent. Hence by Lemma 1.7.1,

the rewriting systems K, * are equivalent.

Define the weight fuction
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Y(h) = (k) =1 (h e H, ke K),
Y(t) =p(k) =2 (teT,se9),
P(a) =¢(b) =4 (a € A, b€ B).

Define a precedence on A U B by assigning precedences on 1, H, A, S, K, B,
and using the precedence K > H > Tr>S > A B Let >wro_r denote the
corresponding weight-plus-lexicographic ordering from the left on A*. We observe
that for any defining relation R : Ry, = R_; of K*, Ry1 >wro-r f2—1. Since W LO-
L is a reduction ordering, by Theorem 2.1.2, K* is noetherian.

Now we observe that the introduction of the defining relation kh = hk (h € H,k €
K) yields new overlap ambiguities of the following forms

() khihy corresponding to the relations K : hihy = hy - ha, S 2 kg = Rk (hi,hy €
H, ke K);

(11) kykgh corresponding to the relations R : kyh = hky, S @ kiky = ks - ky (h €

H,ki,ky € K). But

M}_l.hZ — lllnk__f‘ll_g_ — ]?,1/7,2]{? — (hl . /Zz)k

and
khihy = k(hy - hy) — (b1 - ha)k.
Similarly
kikoh — kihky — hkiks — h(ky - k2)
and

k‘lkgh - (k‘l . kg)h —r h(k'l . k’g)
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Hence the critical pairs arising from the above overlap ambiguities are resolved.
Thus all critical pairs of X* are resolved (see Section 3.4). Hence by Theorem 2.3.1,
K* is confluent. The rewriting system K* is complete since it is both noetherian

and confluent.g

An irreducible in K is a word on HU K UT U S of the form
T1Te -y, (n > 0),

such that

() none of the als (1 =1,2,--- ,n) is 14 nor lg;

(4¢) whenever we have z; € K, then 34, € T (i = 1,2, n — 1);

(i17) whenever we have 2; € H, then z;_, € S (1 = 2,3, --n);

(iv) whenever we have z; € T', then @;4, can not belong to H (i =1,2,--- ,n — 1);
(v) whenever we have z; € S, then z;_; can not belong to K (1 =1,2,--- ,n —1);
(vi) there does not exist any subsequence z;z;; (i = 1,2, - n — 1) such that both

z; and ;41 belong to the same submonoid or to the same transversal.

Corollary 3.7.2 Fvery equivalence class in M(K*) contains a unique irreducible.

Proof This is a consequence of Theorem 3.5.1.q
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Chapter 4

Word problem for monoids and

groups

4.1 Word problem for monoids

Through out this chapter all monoid presentations will be assumed to be finite. Let
P = [x; 7]

be a monoid presentation. We say that the word problem for P is decidable or
solvable if there exists an algorithm which determines, for all W, W' € x*, whether

or not
Wlp = [W]p.

Theorem 4.1.1 I f two presentations P, P’ define the same monoid, and 1 f one

has a solvable word problem., Lhen so does the other.

Proof Since P and P’ define the same monoid, by Corollary 1.7.4 P’ can be
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obtained from P by a finite application of elementary Tietze transformations.

Special case 1 Let P = [x;r] and P’ = [x;r,U=V] where U <5 V (U,V € x).
By Lemma 1.7.1, P and P’ are equivalent. Thus «% and %, are the same
congruence. Hence if one of the presentations P, P’ has the solvable word problem,

then so does the other.

Special case 2 Let P = [x;r] and P’ = [x,y;r,y = Z|, where Z is any
word on x. Suppose P’ has a solvable word problem. Since P’ has a solvable word
problem, it implies that for any two words W, W' on x, there is an algorithm to
decide whether or not [W]p: = [W']p,. By Lemma 1.7.2, the monoids defined by
P and P’ are isomorphic. Hence the word problem for P’ is solved in this way, if

[W]p: = [W]ps, then [W]p = [W']p. Otherwise [W]p # [W']p.

Now suppose P has a solvable word problem. If W, W' are words on x only,

then we can use the same algorithm used on P to decide whether or not

(W = [W')p.

If W, W' are words on x U y, then we convert W, W’ to words on x only,
by replacing y with Z. Then use the same algorithm used on P. Hence P’ has a

solvable word problem.

General case Suppose there is a sequence P = Py, Py, Pay - Pn = P’ (n > 0),

where Py is obtained from P; (i = 0,1,2,---,n — 1) by an elementary Tietze
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transformation. If P; has a solvable word problem by special cases P;1; has a
solvable word problem. Hence if P has a solvable word problem, then by transitivity

P’ has a solvable word problem.n

The above theorem shows that the concept of having solvable word problem
depends only on the monoid and not on a (finite) presentation of it. We may
therefore talk about a monoid with solvable word problem. A monoid M is said to
have a decidable or a solvable word problem if M has a presentation with decidable

word problem.

4.2 Word problem for groups

A group presentation

P=<xr >

is a pair, where x is a set, and r is a set of words in x U x™! (where x™!

is a set
disjoint from x in 1 : 1 correspondence z «» x~!). We say P is finite if both x and r
are finite. The elements of x are called (group) generators, and those of r de fining
relators. Note that we will use angular brackets < --- > for group presentations,
and square brakets |- -] for monoid presentations.
We define elementary transformatiéns as follows:

(z) If W is a word on x Ux™!, such that W contains a subword R € r, then delete
that occurrence of R.

(i1) If W contains a subword 2°27° (z € x, ¢ = £1) then delete that occurrence of

€ ¢

T T
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We remark that we also allow the inverses of the above elementary transformations.
We say a word W' is equivalent to a word W, if W' can be obtained from W by
applying a finite number of elementary transformations (¢), (¢2), and their inverses,
and we denote it by W ~p W'. It can be easily shown that the relation ~p is an

equivalence relation.

For every group presentation
P=<xr>
there is an associated monoid presentation

P=[xxhzz¢=c(zex,e==+l), R=c(Rer)].

Lemma 4.2.1 W ~p W' if and only of W <5 W',

Proof We observe that W' is obtained from W by an elementary transfor-
mations (¢) or (¢1), if and only if W —5 W’. Suppose W ~p W'. Then there exists

a finite sequence
W = I/VO'; le W?J W-?n e 7I/V'n.—1) Wn = W, (n 2 0)

such that one of W;, Wiy, (¢ =0,1,2,--- ,n — 1) is obtained from the other by an

elementary transformations (z) or (¢2). Then by the above observation,
W; (—>’;5 VVz’-l—l (7.:0,1,2, ,n— l)
Hence by transitivity

Woess, W
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Conversely, suppose W ¢+ W'. Then there exists a finite sequence
W = I/Vo, W[,Wg, Wg,' s ,va_l, VVm — I/V, (77’L 2 0)

such that W; —» Wiy or Wiy — Wi (1 =0,1,2,--- ,m — 1). Then by the above

observation,
Wi ~op Wigg (i =0,1,2,--+ ,m —1).
Hence by transitivity
W ~p W'

We define G(P) to be M(P).

Lemma 4.2.2 G(P) is a group.

Proof By Theorem 2.2.2, M(P) is a monoid. Hence G(P) is a monoid. We

will show that for any [W] € G(P) then there exists [W'] € G(P) such that
W1W'] = [W'][W] = [¢].
If W = ¢, then there is nothing to prove. Otherwise let
W =a22923 a0 (n > 1,21,32, - , 2, € xUx7T)
be a word on x Ux~!. Then
W'=aile;ly o 25tey el

is also a word on x Ux~!. And, by the argument similar to that in Lemma 3.1.1,

WIW'] = WNW] =[] = L
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Thus G(P) is a group, since it is a monoid and every element in G(7) has an

inverse.n

We say P has a solvable word problem if and only if P does. Thus by The-
orem 4.1.1, we observe that if P;, P, are two group presentations which define

isomorphic groups, and if one has a solvable word problem then so does the other.

Lemma 4.2.3 P has solvable word problem 1f and only i1f there 1s an

1

algorithm to decide for any word W on x Ux™" whether or not W ~p c.

Proof Suppose P has solvable word problem. Thus in particular there is an

1

algorithm to decide for any word W on xUx™" whether or not W ~p ¢. Conversely,

suppose there is an algorithm to decide for any word W on x U x~! whether or
not W ~p €. Let U,V be any abitrary words on x Ux~!. We let W = UV ™!, then
apply the avalaible algorithm on W. If W ~p ¢, then U ~p V. Otherwise U is not

equivalent to V. Thus P has solvable word problem.g

4.3 Some solvability and unsolvability results

Theorem 4.3.1 [ f
P = [x;r)

15 a complete rewriting system, then P has a solvable word problem.

Proof Let W,W’ be words on x. Since P is complete, by Theoreom 2.3.1,
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each equivalence class contains a unique irreducible. We apply a finite number of
positive elementary transformations on W to obtain the unique irreducible I'rr(W)
of the equivalence class containing W. Similarly we apply a finite number of positive
elementary transformations on W’ to obtain the unique irreducible Irr(W') of the

equivalence class containing W’. Then the word problem is solved in this way, if

Irr(W) = Irr(W’), then [W]p = [W]p. Otherwise (W]p # [W']p.o

The question of whether a monoid with soluble word problem must have a
finite complete rewriting system, had been answered by C. Squier [61]. He provided
an example of a monoid (even a group) that is not F'Ps, but has a solvable word
problem. Hence by Theorem 2.4.1, the example answers (in the negative) the

question.

Generally speaking, the word problem for finitely presented monoids is unde-
cidable, (see [41],[42],[53]). In {39] Matjasevitch even gives a presentation with two

generators and three relations whose word problem is undecidable.

There are groups with unsolvable word problem (see [11], [12], [49]). The
example in [12] is particularly noteworthy since it is the free product with amalga-

mations of groups with solvable wordAproblems. (See also W. Magnus, A Karrass

and D. Solitar [44], J. J. Rotman [59].)

The word problem for monoids which have a monoid presentation with a

single relation is suspected to be decidable, though it is still open. The word
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problem for groups which have a group presentation with a single relator was shown
to be decidable in [37]. Using this result, Adjan [1] proved the decidability of the
word problem for the so-called special monoid presentations, that is presentations

of the form
P =[x;R=¢.

He also proved the decidability of the problem for presentations of the form
P=[x;R=175]

where R and S have different initial letters and different terminal letters. In [64] it

is shown that the word problem is decidable for presentations of the form

P = [a,b;b™a™ = aUal, U € {a,b}*, m,n > 0.

In [2] first, then in [3], it was shown that the word problem for any presentation can

be reduced to the word problem for a presentation

P =(x;R=105]

where I and S have different initial letters. In [3] it is also shown that for any

presentation of the form
P=[xR=>75]

where S is an unbordered word which is a factor of R, the word problem is decidable.

Although one-relator groups have a solvable word problem and are of type
FP,, |36}, it is still an open question whether they have complete rewriting systems.

Some examples of one -relator groups with complete rewriting systems are known.
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Below we will give some examples of one-relator groups with complete rewriting
systems (for more examples we refer the reader to Philippe Le Chenadec [52], or

Deko V. Dekov [18]).

Example 4.3.1 (T'he surface groups) The group with the presentation

- . 11 —1
P =< A1, A9,y 5 Aom; A1 "+ Aopdy Qg - - Uopy >

is shown to have a finite complete rewriting system in [52]. The finile complete
rewriting system for the group G(Pp,) is

s -1 -1 1,
P = [alaaz';"' yGam, Oy "y Qg 1a2mar]

where r is the following set of defining relations

-1 -1 _ -1 —1 .
a?k“'GZmal ...an_l —a2k—l.'.al Aom * ** A2k,

-1 -1 -1 -1 .
Gop -+ - a’la2m - a’?k-l—l food a2k+1 e G’Zma’l P G‘Zka

-1 —1 -1 -1,
an..‘a’l a’27n"'a'2k+l:a2k+l"'a2ma1 ...a'Zk’

~1 -1 _ —1 -1
a2k . .a,z'nla’l . .azk_£ = d9k—1"" 'alazm .. .azk,

(k =1,2,---,m). See [52] for more details.

Example 4.3.2 (The Greendlinger group) In 1984, F. Otio [51], gave a

[inite complete rewrtting system for the group with presentation
P =< a,b,c;abc= cba > .

The finite complete rewriting system for G(P) is

A

P =la,byc,a”, b7 e afa™ = €, 0°07° =€,cfc™° = ¢ (e = £1),
ac™' = b7t tab, a0 = ¢ o ta e, abe = cba,a”'ch = bea™!].
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In 1986, Ph. Le Chenadec gave another finile complete rewriting system for

the Greendlinger group G(P) (see [18], [51], [52] for more details).

Example 4.3.3 The group with the presentation
P =< a,b; aba = bab >

has a finite complete rewriling system. The finile complete rewriting system
for G(P) s

P =la,byc,a” b7 e o = ¢ ta? b7 = ¢, e = ¢ (e = +1),

a® = c,b?* = c,ac = ca,ac™! = ¢ la,be = cb,bc™! = c71b)].

(For more details see [56].)

Example 4.3.4 In 1997 Dekov [18], using the method of Pedersen and
Yonder [56] gave a finite complete rewriting system for the group with
presentation

P =<a,ba*=5b" >,
where m,n > 1. The finite complete rewriting system for G(P) is
P =la,be,a”t b7 e et = ¢ (e==1),a ' =c a0 =T 0" =

¢, b™ =c,ac = ca,ac™! = c7la,be = cb,be™! = 7B

(For more details see [18].)

Theorem 4.3.2 Iinitely generated linear groups have solvable word problem.
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For finitely generated groups which are linear over a field, this result is proved in

Rabin [57] but also follows from an older result of Malcev [40].

The following classes of groups also have solvable word problem (we will re-
fer the reader to [10] for more examples).

(i) Automatic group. For the definition and examples of automatic group, we refer
the reader to [20];

(72) Finitely presented residually finite groups. This will be shown in Section 4.5.

4.4 Residual finiteness

Let X be a property of monoids. A monoid M is residually-X if given any two
distinct elements rmy, mq of M, there exists a homomorphism ¢, ., (depending on

my and mgy) of M onto a monoid K with property X such that

P(ma) # P(ma).

Thus we say a monoid M is residually- finite if given two distinct elements my, mqy €
M there exists a finite monoid K and a homomorphism t,,, ., (depending on

and mz) of M onto K such that

1/)7711 yme (Tn’l) 7é ¢m1,m2 (7712) :

A monoid M is said to be n-residually-X (n € Z%) if given any finite sub-
set S of M with |S| < n, then there exists a homomorphism (depending
on the subset S) of M onto a monoid K (with property X), such that % is in-
jective on S. We say M is fully residually-X if M is n-residually-X for any n € Z*.
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Remark: I f M is fully residually-X then M is residually-X.

Lemma 4.4.1 Suppose X and Y are the collection of monotds with properties
X and 2) respectively. Suppose each monoid of X is residually-2). Then if a

monoid M s residually-X, then M is residually-%).

Proof Suppose a monoid M is residually-X, then it implies that for every
two distinct elements my,my € M, we can find a homomorphism %,,, .., of M onto

a monoid K in X such that

i/)mx y1 (ml) 71‘_ 7»[’7711.1112 (7712)'

Since K is residually-2) there exists a homomorphism @y, ... (m1) ., m,(me) O K

onto a monoid T of Y, such that

¢"§bml R (ml ),’lfhnl,mg (mz) (¢M} T2 (ml)) 7é ¢'1//m1 R (nll)ywml g ('m'?) (?/Jml yM2 (m2))'

Thus the composition ¢ is a homomorphism of M onto 7" such that

P (ma) # dp(ms).

Hence M is residually-).q

Lemma 4.4.2 Suppose every submonoid of an X-monoid is an X-monoid.

Then every submonoid of a residually X-monoid s a residually X-monoid.

Proof Let M be a residually X-monoid and S be a submonoid of M. We
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choose two distinct elements s,s” of S. Since M is residually-X there exists a

homomorphism t; » (depending on s,s') of M into an X-monoid M’ such that

ws,S’(S) ?£¢s,5‘(5’)-

The map % ¢|s, restriction on S is a homomorphism of S onto Im(,s|s), a sub-

monoid of M’ such that

'(ps,s’ IS(S) 7’5103,3' IS(S,)‘

Hence S is residually-X since the monoid Im(1);s|s) is an X—monoid.q

Lemma 4.4.3 M is residually-X 1 f and only there 1s an embedding

Y M— T1Y;
jeJd

of M into a cartesian product of monoids Y; (7 € J) with property X such that

P 18 surjective for all 1,7 € J (here
m: [1Y, — Y
jeJ

is the projection onto Y;.)

Proof Suppose M is residually-%X. List all pairs of elements of M. Since M
is residually-%, then for each pair p = {m,my}, (m, m2 distinct elements of M)

we have an epimorphism
¢p: M —> X, (X, is an X-monoid)
such that

bp(m) 7 p(ma).
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Let

X=T11X,

p

be the cartesian product of the X,'s. The mapping

¢p: M — X

¢(m) = (-, dp(m),- - -) (m € M).

is a homomorphism since the ¢ s are homomorphisms, and clearly 7,¢ is surjective
for all p. Also ¢ is injective since for any distinct elements m, m, of M, we consider

the pair ¢ = {mi, m2}. Then

d(my) = (-, dg(mr),--+) and p(ma) = (- -, Pg(na), - - ).

Then ¢(m,) and ¢(my) differ in the ¢** coordinate since

bq(m1) # Bg(m2),

SO

B(m1) # d(ma).

Conversely, suppose we have an injective homomorphism

M T1Y;=Y

jeJ
such that
mp: M — Y

is surjective for all 1 € J. Let my, ms be distinct elements of M. Since v is injective,

(my) # p(me).
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Thus there must exist a j such that the j** coordinate of ¢(m,) is different from

the 7 coordinate of ¢ (m3). Thus

mjb(ma) # mi(ma),
so m;9 is a homomorphism from M onto Y}, such that
mith(ma) # b (ma).

Hence M is residually-X.g

Lemma 4.4.4 A monoid is residually [inite of and only if ol is fully

residually finite.

Proof If M is fully residually finite, then M is residually finite. Conversely

assume M is residually finite. Let
S = {my,ma, - ,mu}
be a subset of the monoid M. Since M is residually finite, for every distinct elements
miym; (1 <1< g <n)ofS there exists a homomorphism
Pt S —r Xy
where X;; is a finite monoid, such that
pii(ma) # i (m;).

Let X be the direct product ]  X;;. Then X is finite. The mapping

1<i<j<n
b M — X
ph(m) = (P12(m), ¥130m), Yoo n(m)) (m &€ M)
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. . . 7 . .
is a homomorphism, since the 1; ;'s are homomorphisms. For any distinct m;, m; €

S (1 <i<j<n)then

¥ij(mi) # i (m;).

Hence 1(m;) # 1(m;). Thus % is injective on S. Hence M is fully residually finite.q

Lemma 4.4.5 Every free monoid x* is residually finite.

Proof Let x* be a free monoid on x. Let W, W' be distinct words on x.

Case 1 Suppose W' is the initial subword of W. So W = W'aV (¢ € x,

V € x*). Let n = L(W'). Let (y) be the full transformation monoid on the set
Y = {071a2737"' ,TL,*}.
By Theorem 1.4.1, the mapping

”(/)W’mn X —— ‘:C(y)

012 -« n—1n =
T =7, (¢ € X)

induces a homomorphism ) (w,w. from x* into X(y). For any word U = 2122+ T

(m > 1,z; € x,1 =1,2,--- ,m) on x then 7y is the composition 74,7, - -+ 7z,,. We

m

observe that
O0Tw = NT,Ty = *Ty = *

OTW/ = N.
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Hence Qp(W’WI)*(I/V) ‘7‘£ ’l/)(w’w1}*(I/V,).

Case 2 Suppose W' is not the initial subword of W. So W =

W' = UbV', where a, b are distinct elements of x, and U, V, V' are words on x. Let

n = L(U). Let €(y) be the full transformation monoid on the set
y = {07172)' o 7n1*7+}‘
By Theorem 1.4.1, the mapping

K/JW,WI X ‘K(Y)

012 - n—-1mn * 4
a =T,
123 .- n * %
012 -+ n=-1mn * +
T =7 (z # a € x),
I 23 - n + % +

induces a homomorphism %(w,w). from x* into T(y). And
Orw = nrTvy = *7Ty = %
Orwr = nmpryr = +7v0 = +.

Hence Yw,wn(W) # Lowwn(W'). Thus x* is residually finite.q

Lemma 4.4.6 A group G is residually-X if and only if for any element g # lg

of G, there exists a homomorphism ¢, of G onto an X-group such that 4(g) # 1.

Proof Suppose & is residually-X. In particular, for any ¢ # 1lg there exists

a homomorphism g ;. = 1, of G onto a X-group H such that
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Yo1c(9) #F Yoislle) = lu.

Now suppose that for any g # lg there exists a homomorphism %, of G onto an
X-group, such that 14.1,(g) # 1.(1a). Let g1, g2 be any abitrary distinct elements
of G. Welet g = g1g5 *. By the assumption there exists ¢, = ¥_ -1 a homomorphism

9195

of G onto an X-group such that

bo(g192") # Yo(L)-

Thus

he(91) # ¥g(92)

Hence 1, is a homomorphism of & onto an X-group such that

We(g1) # y(ga)-

Thus ( is residually-X.g

Theorem 4.4.6 is normally used as a definition for residual finiteness in groups (see
[26], [35] and [44]). For the residual properties of groups we refer the reader to G.
Baumslag [7], [6] and [8], D. L. Johnson [26], K. W. Gruenberg [22], Lyndon and P.

E. Schupp [35], W. Magnus, A Karrass and D. Solitar [44].

Example 4.4.1 Free groups are residually finite (see [34]).

Example 4.4.2 Iinitely generated abelian groups are residually finite (see [6]).
Example 4.4.3 Every polycyclic group is residually finite (see [44]).

Example 4.4.4 The automorphism group of a finitely generated residually
finite group is again residually finite (see [7]).
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Example 4.4.5 A direct product of a family of residually finile groups, is
residually finite (see [59], [44]).

Example 4.4.6 Baumnslag [9] has shown thal «f A and B are nilpotent and
Jinitely generated groups, then the free product of A and B amalgamaling a
cyclic subgroup H 1s residually finite.

Example 4.4.7 A finite extension of a residually finite group is residually
finite (see [6]).

Example 4.4.8 A cyclic extension of a [initely generated residually finite

group is residually finite (see [6]).

4.5 Residual finiteness and the word problem

Theorem 4.5.1 A [initely presented residually finite monoid has a solvable

word problem.

We remark that the proof of these theorem can also be found in [10] and
[35]

Proof Let
P = [x;1]

be a finite presentation for a residually finite monoid M(P). To decide whether
any arbitrary words W, W' defines the same element or not, in M (P), we effectively
enumerate two lists:

List 1 This list consist of all homomorphisms of M(P) into finite monoids. Since
by Theorem 1.2.2, every finite monoid is isomorphic to a submonoid of a full trans-
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formation monoid %, for some n € Z*, it is enough to find all homomorphisms from

M(P) into %, for each n. For any function

n:x— T, (n€Zt)

one can effectively check whether # induces a homomorphism np of M(P) into
%n, by checking if for any Riy = R_; € r, n(Ry1) = n(R_y). Il it holds, then
by Theorem 1.6.2, n induces a homomorphism np of M(P) into T, otherwise 7
does not induce a homomorphism of M(P) into ¥,,. Thus for each n € Z* we can
enumerate all mappings n which induce homomorphisms of M (P) into %,. We let

K, (n € Z*) be the set of all such mappings.

List 2 For any word W of length n (n € Z%), apply < n eclementary trans-

formations on the word W, to obtain a chain

W = W07W1,W29"' 7Wm (m < 7'!.),

where Wi is obtained from W; (¢ =0,1,2,--- ,m — 1) by an elementary transfor-

mation. Thus for each word W of length n (n € Z*) we can enumerate all chains

W = VV(),I’V;, ‘/‘/27 e :M/m (m < 'Il),

where Wiy is obtained from W; (i = 0,1,2,--- ;m — 1) by an elementary trans-
formation. For all words W of length n € Z™T, we let S, be the set of all the
constructed chains. We observe that if two words W, W' are chosen, such that
[W]p = [W']p, then there must exist S, (n € Z*) with a chain such that both W

and W’ are in that chain.
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Then the word problem is solved in the following way:

Take two distinct words W, W'. We compute n(W),n(W’) for every n € A,. If
there exist n € Ky such that n(W) #£ n(W'), then [W]p # [W/]p, else we go to S5
and check if there is a chain in 5 such that both W and W' are in that chain. If
there is such a chain, then [W]p = [W']p, otherwise we go to K and check if there
is an 1 from K, such that n(W) # n(W’). If there is such an 7, then [W]p # [W']p,
otherwise we go to Sy and check if there is a chain from 53 with both W and
W' in that chain. If there is such a chain, then [W]p = [W']p, else we go to K.
We continue the process in that manner. And in this way we can solve the word
problem. Since if [W]p # [W/]p, then there must be a K; (z € Z™) with n, such
that (W) # n(W’), since M(P) is residually finite. And if [W]p = [W']p, then
there must exist an S, (n € Z™*) with a chain such that both W and W’ are in that

chain. Thus in that manner, the word problem can be solved.q
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