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ABSTRACT

M ethods for Signal F iltering and Modelling and Their Parallel D istribu ted  

C om puting Im plem entation. (August 1994)

Xiaokun Zhu, University of Glasgow 

Supervisor: Professor D M T itte ring ton

In this thesis the problem  of filtering and modelling one-dim ensional discrete 

signals and im plem entation of corresponding parallel d istribu ted  algorithm s will be 

addressed.

In C hapter 2, the  research areas of parallel d istributed  com puting environm ents, 

rank-based nonlinear filter and fractal functions are reviewed.

In C hapter 3, an In teractive Parallel D istributed C om puting Environm ent (IPD C E) 

is im plem ented based on Parallel V irtual M achine (PVM ) and an in teractive appli

cation developm ent tool, the Tel language. The approach we use is to  provide a Tel 

version interface for all procedures of the PVM  interface library  so th a t users can 

utilize any PVM  procedure to do their parallel com puting interactively.

In C hapter 4, an interactive parallel stack-filtering system  is im plem ented, based 

on th e  IPD C E . T he user can play w ith this filtering system  in bo th  trad itional com

m and m ode and m odern Graphics User Interface (GUI) mode. In order to reduce the 

tim e required to  com pute a standard  stack filter, a new m inim um  threshold decom

position scheme is introduced and other techniques such as m inim izing the  num ber 

of logical operations and utilizing the CPU bit-fields parallel p roperty  are also sug

gested. In this filtering system  the user can select sequential or parallel stack-filtering 

algorithm s. The parallel d istributed stack-filtering algorithm  is im plem ented w ith 

equal task  partition ing  and PVM . Two num erical sim ulations show th a t the  in terac

tive parallel stack-filtering system  is efficient for both the sequential and the  parallel



Ill

filtering algorithm s.

In C hapter 5, an extended Itera ted  Function System (IFS) in terpolation  m ethod 

is in troduced for m odelling a given discrete signal. In order to  get the  solution of 

the  inverse IFS problem  in reasonable tim e, a suboptim al search algorithm , which 

estim ates first the  local self-affine region and then the m ap param eters is suggested, 

and th e  neighbourhood inform ation of a self-affine region is used for enhancing the 

robustness of this suboptim al algorithm . The parallel d istribu ted  version of the  in

verse IFS algorithm  is im plem ented with equal task partition ing  and using a R em ote 

P rocedure Call application program m ing interface library. T he num erical sim ulation 

results show th a t the IFS approach achieves a higher signal to  noise ratio  than  does an 

existing approach based on autoregressive modelling for self-affine and approxim ately 

self-affine one-dim ensional signals and, when the num ber of com puters is sm all, the 

speed-up ra tio  is alm ost linear.

In C hapter 6, inverse IFS interpolation is introduced to  m odel self-affine and 

approxim ately  self-affine one-dimensional signals corrupted by Gaussian noise. Lo

cal cross-validation is applied for compromising between the  degree of sm oothness 

and fidelity to the  data. The parallel d istributed version of the  inverse algorithm  is 

im plem ented in Parallel V irtual Machine (PVM ) with sta tic  optim al task partitio n 

ing. A sim ple com puting model is applied which partitions tasks based on only each 

com puter’s capability. Several num erical sim ulation results show th a t the  new IFS 

inverse algorithm  achieves a higher signal to noise ratio  than  does existing autoregres

sive m odelling for noisy self-affine or approxim ately self-affine signals. -There is little  

m achine idle tim e relative to  com puting tim e in the optim al task  partitio n  mode.

In C hapter 7, local IFS interpolation, which realises the IFS lim it for self-affine 

data , is applied to  m odel non self-affine signals. It is difficult, however, to  explore 

the  whole param eter space to  achieve globally optim al param eter estim ation. A two- 

stage search scheme is suggested to estim ate the self-affine region and the associated 

region param eters so th a t a suboptim al solution can be obtained in reasonable tim e.
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In the first stage, we calculate the self-affine region under th e  condition th a t the 

associated region length is twice th a t of the  self-affine region. T hen  the  second stage 

calculates the associated region for each self-affine region using a full search space. In 

order to  com bat the  perform ance degradation caused by the the  difference of m achines 

capabilities and unpredictable external loads, a dynam ic load-balance technique based 

on a d a ta  parallelism  scheme is applied in the parallel d istribu ted  version of the  inverse 

local IFS algorithm . Some numerical simulations show th a t our inverse local IFS 

algorithm  works efficiently for several types of one-dimensional signal, and the  parallel 

version w ith dynam ic load balance can autom atically ensure th a t each m achine is busy 

w ith com puting and w ith low idle time.
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C H A P T E R  1 

I N T R O D U C T I O N

1.1. M o t iv a t io n

In application of da ta  analysis, filtering and modelling are basic and im portan t pro

cedures. As we know, d a ta  from the real world include noise which consists of system  
error and m easurem ent error. The aims of da ta  analysis are to  understand  the cur
ren t d a ta  received and to  use this inform ation to predict the  action of fu tu re data. 

Figure 1 illustrates the procedure of da ta  analysis. In the first stage, noisy input 

d a ta  is passed into a filtering block and the noise is sm oothed. T hen, in the  second 

stage, the  filtered da ta  is passed into a modelling block and th e  m odel param eters 
are estim ated . We can use these model param eters to predict new data.

In linear filter design, there is simplicity and unifying linear system s theory makes 

their design and im plem entation easy. For Gaussian noise the  linear filter is optim al, 

bu t linear techniques fail if the noise is non-Gaussian, exam ples of th is are im pulsive 
noise, signal dependent noise and nonlinear da ta  degradation. Special linear filters, 

which were originally used in image filtering applications, cannot cope w ith nonlin
earities of im age form ation model and cannot take into account the  nonlinearities of 

hum an vision. As we know hum an vision is very sensitive to high-frequency inform a
tion and im age edges and image details such as corners and lines, which carry very 

im portan t inform ation for visual perception, have high-frequency content. Most of 

the  classical linear filters have low-pass characteristics and they tend  to blur edges 
and to destroy lines, edges and other fine image details. These reasons have led 
researchers, to the use of nonlinear filtering techniques.

Nonlinear filtering techniques emerged at very early stage. However, the  bulk 

of rela ted  research has been presented in the past decade. This research area has 

had a dynam ic developm ent. This is indicated by the am ount of research presently 

published and the  popularity  and widespread use of nonlinear digital processing in a

Signal+Noise
Model 

— ►ParametersModellingFiltering

Fig. 1. D ata analysis
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variety of applications. There are several classes of nonlinear digital signal and im age 
processing techniques [158]:

1. order s ta tis tic  filters and stack filters;

2. hom om orphic filters;

3. polynom ial filters;

4. m athem atical morphology;

5. neural networks;

6. nonlinear im age restoration.

Each class of nonlinear processing technique possesses its own m athem atical tools 
th a t can provide reasonably good analysis of its perform ance, b u t there is not a uni

fying theory th a t can encompass all existing nonlinear filters. Recently, m athem atical 
morphology and order s ta tis tic  filters have been efficiently in tegrated  into one class 
based on threshold decom position, although they come from  com pletely different ori
gins. We shall investigate stack filter design in this thesis. T he basic tools of the 

stack filter are threshold decomposition and stacking, which reduce the  problem  of 

filtering P -value d a ta  to  th a t of filtering binary da ta  and the b inary  filtering problem  
is fairly well understood.

T here are two trad itional m ethods for modelling discrete signals. One uses poly

nom ial fits and represents the discrete signal by the values of a polynom ial evaluated 
a t the  sam ple point. The model param eters are the order of the  polynom ial, which is 
usually determ ined a priori, and the coefficients of the polynom ial, which are usually 

estim ated  in term s of least-squares fit to the given signal values. The o ther involves 

fitting  an autoregressive moving-average (ARMA) model [41], in which the  m odel 
param eters are the  coefficients of a filter for which the input is w hite noise and the 

ou tp u t is the  given signal. However, some signals are self-similar (self-affine) in natu re  

and the  basic property  of fractal models is th a t of self-sim ilarity (self-affine) or scale 

invariance. T he best way to model such signals is to use a fractal model: m any n a t

ural shapes such as coastlines, m ountains and clouds are easily described by fractal 
models.

T he term inology fractal was first used by the French m athem atic ian  Benoit M an
delbrot to describe shapes with fractional dimensions (Latin fractus m eaning irregu
lar) [127]. M andelbro t’s fractal geom etry provides both  a description and a m athe

m atical m odel for m any of the seemingly complex forms and p a tte rn s  in natu re  and 

the  sciences. Fractals have blossomed enormously in the  past few years and have 
helped reconnect pure m athem atics research with both  na tu ra l sciences and com

puting  science. Classical geom etry provides a first approxim ation to  the  structu re
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of physical objects; it is the language which we use to  com m unicate the designs of 

technological products and very approxim ate forms of natu ra l creations. F ractal ge
om etry  is an extension of classical geometry. It can be used to  m ake precise models 

of physical structu res from ferns to galaxies. Fractal geom etry is a new language. 
Once you can speak it, you can describe the shape of a cloud as precisely as an ar
chitect can describe a house [23]. There are also two fractal approaches to  modelling 
one-dim ensional signals. The first is to use fractional Brownian m otion (FBM ) [127]. 

However, fractional Brownian motion is defined in a one-dim ensional fram ework and 

it is very difficult to generalize it to high dimensions. The second way is to use the 

ite ra ted  function system s (IFS) developed by Barnsley and his collaborators. IFS th e 

ory has m any advantages over FBM: IFS modelling has higher flexibility than  FBM  
modelling; generalization from one dimension to higher dim ensions is very natu ra l 

and easy. We shall apply IFS theory to model one-dimensional signals in this thesis.

From the  tim e when the first generation of com puters in th e  1950s used elec
tronic valves as their switch com ponents, the com puter has been the  m ost basic and 

powerful tools in d a ta  analysis. High-performance com puters are increasingly in de

m and in the  areas of structu ra l analysis, weather forecasting, petro leum  exploration, 

fusion energy research, medical diagnosis, aerodynamics sim ulation, rem ote sensing, 
m ultim edia d a ta  processing and communication, m ilitary defence, genetic engineer
ing and socioeconomics. W ithout superpower com puters, m any of these challenges 
to  advanced hum an civilization cannot be m ade w ithin a reasonable tim e period. 

T he designers always strive to increase the speed of operations. T here is a num ber 
of possible ways to achieve this. An obvious approach is to im prove the technology 
im plem ented in the  realization of the com puter com ponents. The current technol

ogy has gone a long way in this direction from the vacuum  tube , discrete diodes 

and transistors, small- and medium-scale integrated (SSI/M SL) devices, to large- 

and very-large-scale in tegrated  (LSI/VLSI) system, and , the developm ent will con
tinue. T here is of course a natu ral lim itation in technology developm ent; no signal 

can propagate faster than  the speed of light. A nother approach is to  refine the  logic 

design of com puter subsystem s to achieve higher speed, for instance, to use Carry 
Look Ahead (CLA) in addition, or the Booth Algorithm for multiplication[92]. Im 

proving algorithm s to solve various classes of problems will also lead to higher speed 
of operations.

T here is, however, yet another way of increasing the speed of com putation: by 
perform ing as m any operations as possible simultaneously, concurrently, in parallel, 

instead of sequentially. In the trad itional Von Neum ann arch itectu re digital com

pu te r [4, 48, 92, 97, 115, 165, 176] operations are perform ed on a sequential basis.
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T he CPU  fetches an instruction  from the memory, decodes it in to  its registers, fetches 

operands (if any), executes the operation, and the result is sent from  its register to 
be stored in its memory, in th a t order. None of these operations is s ta rted  until the 

preceding one is com pleted. A new instruction is fetched only after the  execution of 
previous one is accomplished. There is no time-overlap in th e  execution of any of 
elem entary operations in the instruction cycle. Each CPU contains ju s t one A rith 

m etic Logic U nit (ALU), which would perform all of the d a ta  processing tasks of the 

system .

T he earliest reference to  parallelism  in com puter design is thought to  be in 
G eneral L F M enabrea’s publication in the Bibliotheque Universelle de Geneve, 

O ctober 1842, en titled  ‘Sketch of the A nalytical Engine Invented by Charles B ab

bage’ [111, 139]. In listing the utilities of the analytical engine, he writes:

Secondly, the economy of time: to convince ourselves of this, we need only 

recollect th a t the m ultiplication of two numbers, consisting each of twenty 
figures, requires at the very utm ost three minutes. Likewise, when a long 

series of identical com putations is to be performed, such as those required 

for the  form ation of numerical tables, the machine can be brought into 

play so as to give several results at the same tim e, which will greatly  
abridge the  whole am ount of the processes.

It does not appear th a t this ability to perform parallel operation was included in 

the  filial design of B abbage’s calculating engine; however, it is clear th a t the  idea of 
using parallelism  to improve the performance of a m achine had occurred to  Babbage 
over 100 years before technology had advanced to the s ta te  th a t m ade its im plem en
ta tion  possible.

Recently, the  m ajor development affecting scientific problem -solving is th a t of 
parallel d istribu ted  com puting. Many scientists are discovering th a t the ir com pu

ta tional requirem ents are best served not by a single, m onolithic m achine bu t by a 

variety of d istribu ted  com puting resources, linked by high-speed networks. We shall 

im plem ent our parallel algorithm s on this type of parallel com puting environm ent.

1.2. O u tlin e  o f  th e  th es is

In this thesis, we shall address the three research areas of rank-based nonlinear filters, 

ite ra ted  function system  based one-dimensional signal models and parallel d istributed  

algorithm  im plem entation and application.
In C hapter 2, we introduce the advantage of parallel d istribu ted  com puting rela

tive to trad itional parallel com puting and compare several popular parallel d istribu ted
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com puting environm ents and their point-to-point com m unication speed. For nonlin

ear filters, we shall review the basic m edian-based , and rank-based filters and their 
extension, namely, stack filters. For fractal models, we shall review the  m ethod of 

constructing a fractal and the approach of fitting a given signal w ith a fractal model. 
We also in troduce the  im age compression technique using fractal transform .

In C hapter 3, we introduce the popular parallel d istribu ted  com puting environ
m ent, Parallel V irtual M achine and the interactive application developing tool, Tel 
language. We design and im plem ent an interactive parallel d is tribu ted  com puting 
environm ent (IPD C E) based on PVM  and Tel language.

In C hapter 4, we present a new m inim um  threshold decom position scheme for 

im plem entation of a stack filter. In order to reduce the perform ance tim e of s tandard  
stack filtering we try  to minimize the  num ber of logical operations and utilize the  
CPU bit-fields parallel property. We im plem ent an interactive stack filtering system  

based on IPD C E, in which we can use trad itional com m and line m ode and m odern 
graphics user interface to set filter param eters and select sequential or parallel filtering 
algorithm s.

In C hapter 5, we present an extended Iterated  Function System  (IFS) in terpo
lation m ethod for modelling a given discrete signal. We suggest a suboptim al search 

algorithm  w ith robust technique for estim ating the m ap param eters so th a t we can 
get a solution in reasonable tim e. We also im plem ent a parallel d istribu ted  version 
of this inverse algorithm  using equal task partitioning and a R em ote Procedure Call 

application program m ing interface library.

In C hapter 6, we use the robust IFS inverse algorithm  w ith a local cross-validation 
technique to m odel the self-affine and approxim ately self-affine noisy signal corrupted 
by G aussian noise. We also im plem ent the parallel d istribu ted  version of this inverse 

algorithm  in Parallel V irtual M achine (PVM ) with static  op tim al task partitioning.

In C hapter 7, we apply local IFS, which realises the  lim it for self-affine data , to 
m odel general signals. We suggest a two-stage search scheme to estim ate  the self-affine 
region and associated region param eters so th a t we can get a suboptim al solution in 
reasonable tim e. In order to solve the problem of perform ance degradation caused by 
the  difference of machines capabilities and external loads, we im plem ent a dynam ic 
load balance technique based on a da ta  parallelism scheme.

In C hapter 8, we present the m ain results and conclusions of this thesis and make 

suggestions for some further research.
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C H A P T E R  2 

B A C K G R O U N D  A N D  R E L A T E D  W O R K  

2.1. In tr o d u ct io n

The past several years have witnessed an ever-increasing acceptance and adoption 

of parallel d istribu ted  com puting. In this chapter we review th e  progress of this 
research area and com pare the key factor, com m unication speeds, of some popular 

parallel d is tribu ted  com puting environm ent. Stack filters are a new general class of 
nonlinear filters, which includes m any particular nonlinear filters such as m edian-type, 
order s tatistics-type and morphological filters. We introduce stack filters’ two basic 
properties, threshold decom position and the stacking property  and we m ention ways 

of extending standard  stack filters. D ata modelling is the other im portan t research 

area which this thesis will involve. We present some background knowledge of a new 
approach, th a t of fractal-based Itera ted  Function Systems.

2.2. P ara lle l  P r o c e ss in g  and Parallel D is tr ib u ted  C o m p u t in g

2.2.1. Parallel Processing 

F irst, we give the definition of parallel processing.

D efin it io n  2.1 Parallel computing [97] is an efficient fo rm  o f  information process

ing which emphasizes the exploitation of concurrent events in the computing process. 
Concurrency implies parallelism, simultaneity, and pipelining. Parallel events may  
occur in multiple resources during the same time interval; simultaneous events may  
occur at the same time instant; and pipelined events may occur in overlapped time 

spans. These concurrent events are attainable in a computer system at various pro
cessing levels.

In theory, the  speedup th a t can be achieved by a parallel com puter w ith n iden

tical processors working concurrently on a single problem  is a t m ost n  tim es faster 
than  a single processor. In practice, the speedup is much less, since some processors 

are idle at a given tim e because of conflicts over m em ory access or com m unication 

paths, inefficient algorithm s for exploiting the natural concurrency in th e  com put

ing problem , or m any other reasons. The lower-bound log2 n  is known as M insky’s 
conjecture. A m ore optim istic speedup estim ate is upper bounded by ^  as derived 
below [97].



7

Consider a com puting problem , which can be executed by a  uniprocessor in unit 

tim e, T\ =  1. Let f i  be the probability of assigning the same problem  to the  «th 

processor working equally w ith an average load d{ = 1/i per processor. Furtherm ore, 
assum e equal probability  of each operating mode using processor i, th a t is f i  = 1 /n ,  
for n-operating modes: i — 1,2, • • •, n. The average tim e required to  solve the  problem  
on an ?z-processor system  is given below, where the sum m ation represents n  operating 

modes.

Tn = jZfi-di = ^ J -  (2 .1)
i —1 n

The average speedup S  is obtained as the ratio  of T\ =  1 to Tn\ th a t is,
rn

S  =  ^  =  -  J U  <  J L  (2.2)
Tn n { 1

Hockney and Jesshope [92] suggested a structure taxonom y involving sequential 
com puters, parallel com puters and m ulticom puter systems. A taxonom y for MIMD 

com puters [92, 178] is given in the Figure 2 taken from [92].

2.2.2. D istributed Parallel Com puting

Two developm ents [56] prom ise to revolutionize scientific problem  solving. The first 

is the  developm ent of massively parallel com puters. Massively parallel system s of
fer the  enorm ous com putational power needed for solving grand challenge problem s. 
U nfortunately, software development has not kept pace w ith hardw are advances. In 

order to  exploit fully the power of these massively parallel system s, new program 

m ing paradigm s, languages, scheduling and partitioning techniques, and algorithm s 
are needed.

T he second m ajor development affecting scientific problem  solving is th a t of p ar

allel d istribu ted  com puting. Many scientists are discovering th a t the ir com putational 
requirem ents are best served not by a single, m onolithic m achine but by a variety of 

d istribu ted  com puting resources, linked by high-speed networks.
Parallel D istribu ted  Com puting, also called heterogeneous concurrent com put

ing [68, 174], is gaining increasing acceptance as an a lternative or com plem entary 
paradigm  to  m ultiprocessor-based parallel processing as well as to  conventional super
com puting. W hile algorithm ic and program m ing aspects of heterogeneous concurrent 

com puting are sim ilar to their parallel processing counterparts, system  issues, p a rti

tioning and perform ance aspects are significantly different.

D e f in it io n  2 .2  The term parallel distributed computing, also called heterogeneous 
concurrent computing, refers to the simultaneous execution o f  the components o f  a



M IM D

Distributed memoiy 
multiprocessors > '  
(scalable) —*

M u ltip ro c e s so rs  
Single Addi'ess Space 
Shared Memoiy 
Computation

Central memory 
multiprocessors 
(not scalable)

Multicomputers ' 
Multiple Address Space 
M essage-Passing 
Computation

Distributed
multicomputers
(scalable)

Central multicomputers

Dynamic binding of 
addresses to processors 
KSR

Static binding, ring multi 
IEEE SCI standard proposal

Static binding, caching 
Alliant, DASH

Static program binding 
BBN, Cedar, CM*

Cross-point or multi-stage 
Cray, Fujitsu, Hitachi, IBM, 
NEC, Tera

Simple, ring multi...bus 
multi replacement

Bus multis
DEC, Encore, NCR,, ... 
Sequent, SGI, Sun

Mesh connected 
Intel

Butterfly/Fat Tree 
CM5

Hypercubes
NCUBE

Fast LANs for high 
availability and high 
capacity clusters 
DEC, Tandem

LAN’s for distributed 
processing 
workstations, PCs

Fig, 2. Taxonomy of MIMD C om puters[92].
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Fig. 3. Heterogeneous, Network, and Cluster Concurrent Computing[174]

single application on multiple processing elements which are loosely coupled, physically 
and logically independent, and heterogeneous.

These characteristics distinguish heterogeneous concurrent com puting from  tra 
ditional parallel processing, norm ally performed on homogeneous, tigh tly  coupled 

platform s which possess some degree of physical independence bu t which are logically 
coherent.

It is w orthwhile to note [174] th a t parallel d istributed com puting is a superset 
of sim ilar m ethodologies referred to as network com puting and cluster com puting. 
W hile the  nom enclature is as yet informal, network com puting m ay be considered 

equivalent to heterogeneous com puting, bu t w ith rather less em phasis on application 

heterogeneity, m apping, and task partitioning aspects. C luster com puting is even 
m ore restrictive, in th a t it generally refers to usually identical w orkstation clusters 

th a t are used as a substitu te  for hardware multiprocessors. Figure 3 depicts the 

relationship between various concurrent com puting paradigm s.

2.2.3. Evaluation of Network and O ther Hardw are Sources

D uring the last decade there has been an exponential growth in networked com put
ing resources. This fact is reflected by the growth in registered system s connected to 

the In ternet. The m ost recent status report from the Network Inform ation Systems 

Center [121] sum m arizes this growth (see Figure 4). Over 725,000 hosts have been 

connected via approxim ately 17,000 domains in ju st ten years! T he rapid  growth of 
networked com puters has been accompanied by an astonishing increase of com puta

tional power by these network attached com puters. M icroprocessors have doubled in
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perform ance approxim ately every eighteen m onths during the  last decade and they 

continue to  increase in perform ance at a much greater ra te  than  supercom puters (see 
Figure 5) [30]. Cheong [45] sum m arized the five key technology areas which drive 
high perform ance scientific com puting: microprocessors, networks, backplane buses, 

sem iconductor m ain memory, and m agnetic fixed disk. Cheong provided the  following 

appraisal of each technology.

•  Since 1985 the  perform ance of CMOS-based m icroprocessors has quadrupled 
every three years, or at the rate  of 60% every year. Clock speeds alone have 

evolved from  200 kHz in 1971 to 50 MHz in 1991.

• Local area networks have improved by a factor of 10 every decade. In 1980 
E thernet operated  at 10 M -bits/sec. In 1990 FDDI operated  a t 100 M -bits/sec. 
Early prototypes indicate th a t G -bits/sec networks will be com m ercially avail

able by 2000.

• C om puter backplane buses have improved by a factor of 10 every decade. Dig

ita l’s Unibus operated at 2 M -bits/sec in 1970. M otorola’s VM E bus operated 

a t 20 M -bits/sec in 1980. In 1990 several buses operated  a t 200 M -bits/sec.

• Sem iconductor mem ory chips have quadrupled in capacity every three years 

(annual ra te  of 60%) since 1972. The chronology on the  num ber of bits per 
chip follows. IK  (1972), 4K (1975), 16K (1978), 64K (1981), 256K (1984), 1M 
(1987), 4M (1990).

• M agnetic disk storage has evolved from a density of IK  bits per square inch 

(1957) to 1G bits per square inch in 1990 (annual ra te  of 26% per year, or 
doubling every three years).

This com bined perform ance growth indicates th a t significant com putational capabil
ity  is available and interconnected.

Some of th e  infrastructure requirem ents of heterogeneous concurrent com puting 

are listed below [85, 112, 144, 178].

•  High bandw idth  networks to support com m unications requirem ents (e.g. 100- 
800 M -bits/sec per host).

•  Low latency com m unication mechanisms (e.g. 100-500 microsecond between 
hosts).

• Good scaling characteristics (e.g. 10-1000 hosts).

•  Support for high-bandw idth m ulti-cast com munications.
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Fig. 4. In ternet Host Growth in Last Decade[121].

• C apability  to recover autom atically from network and node failures (e.g. fault 
to le ran t).

• S tandard  low-level prim itives for com munications, synchronization, and schedul
ing across architectures.

• H eterogeneous rem ote procedure calls th a t hide architecture, protocol and sys
tem  differences.

•  R eal-tim e perform ance monitors.

•  Reliable production batch job scheduler.

• D istribu ted  application development tools.

• Support for trad itional high level languages for heterogeneous com puting.

•  A pplications which are capable of exploiting w orkstation clusters.

•  New system  adm inistration tools to address system  m anagem ent issues for dis

trib u ted  com puting resources.

• Developm ent of standards which protect software investm ents.

2.2.4. The Advantages and Lim itations of Parallel D istribu ted  C om puting

Parallel d istribu ted  com puting offers several advantages: [56] By using existing hard 

ware the cost of this com puting can be very low. Perform ance can be optim ized
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by assigning each individual task to the most appropriate architecture. Parallel dis

trib u ted  com puting also offers the  potential for partitioning a com puting task  along 
lines of service functions. Typically, parallel d istributed com puting environm ents 
possess a variety of capabilities; the ability to execute subtasks of a  com putation on 

the  processor m ost suited to a particular function both  enhances perform ance and 
utilization. A nother advantage in network-based concurrent com puting is the  ready 
availability of developm ent and debugging tools, and the  po ten tia l fault tolerance of 
the  network and the  processing elements. Typically, system s th a t operate on loosely 

coupled networks perm it the direct use of editors, compilers, and debuggers th a t are 

available on individual machines. These individual m achines are quite stable, and 
substan tial expertise in their use is readily available. These factors transla te  into 
reduced developm ent and debugging tim e and effort for the user, and reduced con
ten tion  for resources and possibly more effective im plem entations of the  application. 
Yet another a ttrac tiv e  feature of loosely coupled com puting environm ents is the  po
ten tia l for user-level or program-level fault tolerance th a t can be im plem ented w ith 
little  effort e ither in the  application or in the underlying operating system . Most 

m ultiprocessors do not support such a facility; hardware or software failures in one 

of the processing elem ents often lead to a com plete crash.
One of the obvious lim itations of clusters [178] is created by th e  relatively 

slow network interconnection hardware. The interface em ployed will depend on the 
bandw idth  requirem ents, latency requirem ents, distance lim itations and budget con
strain ts. E thernet is the most commonly im plem ented network and transm its in

form ation at 10 M -bits/sec. Many dedicated clusters are interconnected by more 
expensive technologies to overcome the lim itations induced by the speed of E ther

net. The m ost com mon alternatives to E thernet are F iber D istribu ted  D ata  Interface 
(FDDI) and IB M ’s Serial Optical Channel Converter (SOCC).

2.2.5. Several Popular Parallel D istributed Com puting Environm ents

Linda [77, 78] is a concurrent program m ing model th a t was developed by Yale Uni

versity. T he prim ary concept in Linda is th a t of a “tuple-space” , an abstraction  via 

which cooperating processes com municate. The central them e of L inda has been pro
posed as an alternative paradigm  to the two traditional m ethods of parallel processing, 

viz. those based on shared memory and on message passing. The tuple-space con
cept is essentially an abstraction of distributed shared memory, w ith one im portan t 
difference (tuple-spaces are associative), and several m inor distinctions (destructive 

and non-destructive reads, and different coherency sem antics are possible). A ppli

cations use the  Linda model by em bedding explicitly, w ithin cooperating sequential
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program s, constructs th a t m anipulate (insert/re trieve tuples) the tup le  space. From 

the  application point of view Linda is a set of program m ing language extensions for 
facilitating  parallel program m ing. There have been serveral com m ercial im plem en

ta tions of Linda. C-Linda from Scientific Com puting Associates Incorporated is one 

of m ost popular Linda systems. POSYBL is a public dom ain version of Linda de

veloped at the  University of Crete. POSYBL is one of the first public dom ain Linda 
program m ing environm ents. It is also one of the best since it is the  only public do
m ain Linda system  th a t supports a d istributed tuple space ra th e r th an  a centralized 
tuple server. A m ajor difference between POSYBL and the  com m ercially supported  
versions of L inda is the  fact th a t POSYBL is im plem ented stric tly  in term s of a li

brary  and  therefore cannot utilize the optim izations possible w ith the  com piler-based 

Linda system . However, the performance of POSYBL, is still high enough to  make 
the  system  quite useful.

P4 is a library of macros and subroutines developed at Argonne N ational Labo
rato ry  for program m ing a variety of parallel machines. The P4 system  [40, 43, 124] 
supported both  the  shared memory model (based on m onitors) and the  distributed- 
m em ory m odel (using message-passing). For the shared-m em ory m odel of parallel 

com putation, P4 provides a set of prim itives from which m onitors can be constructed, 

as well as a set of useful monitors. For the distributed-m em ory m odel, P4 provides 
typed  send and receive operations, and creation of processes according to a tex t file 

describing group and process structure. P4 is intended to be portable, simple to 

install and use, and efficient.

TCG M SG [89] (Theoretical Chem istry Group Message passing system ) is a sim 
ple message passing system  th a t has risen to a position of prom inence among com
pu ta tional chem ists. It is very efficient with com m unication taking place over direct, 

point-to-point T C P /IP  sockets.

PVM  (Parallel V irtual M achine) [56, 74, 75, 76, 84, 132, 173, 174, 175] was de
veloped a t Oak Ridge N ational Laboratory and Em ory U niversity and is a software 

package which allows the utilization of a heterogeneous network of parallel and serial 

com puters as a single com putational resource. Facilities for spawning, com m unica
tion, and synchronization are supported. PVM  has been widely accepted by hardw are 

vendors(Cray, Convex, SGI, HP, etc.) and therefore has spawned several related  de
velopm ent efforts. Table I summarizes some of the projects related  to PVM .

M PI [67] stands for Message Passing Interface. The goal of M PI, sim ply stated , 
is to develop a widely used standard  for writing message-passing program s. As such 

the  interface should establish a practical, portable, efficient, and flexible standard  for 

message passing. The m ain advantages of establishing a message-passing standard
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Product Function
DoPVM Distributed object PVM
FT-PVM Fault Tolerant PVM
PV M ++ Message passing object oriented PVM
HeNCE Graphical front-end to PVM
Xab Run time monitoring and debug of PVM program

Table I. PVM  related systems

are portab ility  and ease-of-use. In a d istributed m em ory com m unication environm ent 

in which the higher level routines and /o r abstractions are build upon lower level 

message passing routines the  benefits of standardization are particu larly  apparent. 
Furtherm ore, the  definition of a message passing standard  provides vendors w ith a 

clearly defined base set of routines th a t they can im plem ent efficiently, or in some 
cases provide hardw are support for, thereby enhancing scalability.

2.2.6. Com parison of Several Parallel D istributed C om puting Environm ents

Douglas and others [57, 185], present experim ents com paring the com m unication 

tim es for a num ber of different network program m ing environm ents on two isolated 
SUN SPA R C -station 1 workstations.

W ith  TCG M SG , point to  point TC P sockets are established between every pair of 
nodes. This is done when the program  is in itia ted  and these sockets are not reclaim ed 
in the  course of the calculation. We call this approach the s ta tic  T C P  socket system . 
The s ta tic  T C P  socket systems m ethod can run into trouble scaling up to large 

num bers of nodes since the num ber of open file descriptors per node grows as the 

twice the  num ber of nodes. PVM  and P4 both  use dynam ic T C P  sockets and PVM  

also provides daem on com m unication. This means they establish a socket between 
two com m unicating nodes at run tim e when they first com m unicate w ith each other. 
This m ethod has the advantage th a t it will scale be tte r on a large set of nodes as long 
as none of th e  processors runs out of file descriptors ( as in the  s ta tic  T C P  socket 
case). One disadvantage of dynam ic TC P relative to s ta tic  T C P  is th a t the  first 
com m unication is significantly slower than  subsequent com m unications.

Table II shows clear and consistent perform ance differences for message ranging 
in size from 100 bytes to one megabyte. TCGM SG was significantly faster for all 

message sizes. P4 and PVM  and C-Linda (in th a t order) represent a  m iddle range in 

perform ance. Finally, POSYBL was the slowest system and even failed for the  largest 

message size. It is clear th a t the m anagem ent of message buffers a t either end of the 

com m unication plays a m ajor role in the overall com m unication perform ance. This 

follows from the  fact th a t systems using identical network protocols (TCG M SG , P4,
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Bytes in Message passing Virtual shared memory
message TCGMSG P4 PVM1 PVM'2 C-Linda POSYBL
100 0.0556 0.0408 0.0350 0.0142 0.0254 0.0126
400 0.1632 0.1538 0.1194 0.0494 0.0880 0.0454
1000 0.3390 0.3174 0.2174 0.1082 0.1834 0.1030
4000 0.6350 0.5194 0.4520 0.1856 0.3792 0.2622
10000 0.8548 0.6098 0.4706 0.2794 0.3732 0.3110
40000 1.0012 0.6482 0.5432 0.3246 0.4736 0.2930
100000 0.9920 0.6492 0.5614 0.3418 0.5140 0.1586
400000 1.0074 0.6594 0.5784 0.3578 0.5364 0.0944
1000000 1.0112 0.6600 0.5748 0.3538 0.5388 —

Table II. Average d a ta  transfer rates for the two node studies[31]. All rates are in 

m egabytes per second. 1 use direct TC P com m unication and 2 use dae
m on-based com munication.

and PVM ) displayed very different results.

It is im portan t to  note th a t two node, point-to-point com m unication tests are 

a very sim ple way to com pare program m ing environm ents. More com plicated com
m unication pa tte rn s found in actual applications are essential to  m ake a fair and 

com plete com parison.

Simple com m unication tests indicated th a t the increase in efficiency was of the  or
der of a factor of 30% for daemon com m unication and only about 60% for direct T C P 
com m unication under optim al conditions for the PVM  environm ent. Some of this 
degradation was caused by another facet of the PVM  message passing m echanism  -  

th a t of requiring separate buffer initialization, and packing calls before a message m ay 

be sent. This la tte r  characteristic is necessitated by the desire to  support heterogene
ity, bo th  in term s of message contents and because sending and receiving processors 

m ight utilize different d a ta  representations. However, in practice, m ost messages are 

of homogeneous content, i.e. m ost messages carry a single d a ta  type, th a t too from  a 
single d a ta  area or array. Further, architecture trends follow standard  d a ta  represen

ta tio n  form ats -  m ost m odern com puters utilize identical representations, and those 
th a t do not, usually differ in either word lengths or byte ordering only.

Based on th e  reasoning above, W hite et al [185] devised an alternative  message 

passing m echanism  for the  PVM  system. This enhancem ent is based on a m ulti-party  
protocol arch itectu re where one-to-one, one-to-many, and m any-to-m any com m uni
cation are im plem ented robustly on pairwise connections. From the  program m ing in
terface point of view, the  new message passing scheme, accessible via the  pvm JhendQ  

and pvm_frecv() calls, perm it the direct transfer of user program  d a ta  w ithout requir

ing buffer initialization and packing. However, da ta  conversion can still be included
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Platform Throughput (Kb/sec)
Msg. size 1 byte 100 bytes lOkB 1MB
Daemon 0.06 12.88 263.41 358.48

Fsend 0.49 81.79 358.48 1003.87
TTCP 0.65 130.45 965.04 1125.24

Table III. Point-to-point com m unication bandw idth  in PVM[108]

if com m unicating between different architectures, thus retain ing d a ta  heterogeneity 
but not heterogeneity of message content.

T he pvm_fsend() and pvm_frecv() library was im plem ented and tested  on a va

riety  of environm ents and networks. Table III indicates the perform ance of this com
m unication scheme for simple point-to-point da ta  transfer, for a variety of message 

sizes, for the  SPA RC-station 1 +  E thernet cluster. Also shown, for reference, are the 
corresponding values for daem on-based PVM  com m unication, and for a stand-alone 

benchm arking program , viz. TTCP.

From  the  tab le it can be observed th a t the enhanced com m unication scheme de
livers th roughpu t several tim es as much as the daemon based com m unication. How

ever, it also indicates th a t, except for large messages, even the  enhanced com m uni
cation m echanism  delivers only a fraction of the throughput actually  a tta inab le  by 
software as indicated  by the  reference T T C P num bers which, incidentally, are of the 
order of 70-95% of the theoretical m axim a.

2.3 . O rder S ta t is t ic  F ilters  and Stack F ilters

2.3.1. M edian-type Filters

Since their introduction in the early 1970’s [177], the standard  m edian (SM) filter has 

had w idespread application in both  signal and image processing as an alterative to 
linear filters. T he theory of SM is th a t of order statistics [53, 157]. O rder statistics 
have played an im portan t role in statistical da ta  analysis and especially in the  robust 

analysis of d a ta  contam inated with outlying observations, called outliers [53, 86]. One 
of the  m ost im portan t applications of order statistics is in the  robust estim ation  of 
param eters [86, 114]. The m edian is a prom inent exam ple of a robust estim ator.

Let Ah, X 2, • • •, X n be random  variables. If they are arranged in ascending order 
of m agnitude, X(i) <  A(2) < * • • < :  X (ny  Ap) is called the fth-order sta tis tic .T he  

m axim um  and the m inim um  of i =  1, • • • , n are denoted by X (ny  X ^ y  A very
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im portan t order s ta tis tic  is the median , m e d (X {), given by

X p+\ if n — 2p +  1
m ed(X i)  = (2.3)

(X p +  X p+i) /2  otherwise.

T he one-dim ensional m edian filter of size n, where n = 2p +  1, is defined by

t/j m e d (X i- p, • , X i , , X{^,p^̂  i £ Z  (2.4)

where Z  denotes the set of integers.

The two-dim ensional m edian filter of size n x m, where n = 2p -f 1, m  = 2s +  1, 

{X i j} ,  i , j  £ Z 2, is defined by = m ed (X i+P}j +s] (p , s ) £ A), ( i , j )  £ Z 2 where the 
set A C Z 2 is the  filter window.

M edian filters can be described in term s of statistical analysis and determ inistic  

analysis. Based on statistical analysis [53, 86], m edian filters perform  well for long
tailed noise d istributions (e.g. Laplacian noise), whereas their perform ance is poor 
for short-tailed noise distributions (e.g. uniform noise). This fact suggests th a t the 

m edian filter is efficient at removing impulsive noise. The good perform ance of the 

m edian filter for long-tailed distributions is explained by the fact th a t it minimizes the 

L 1 norm  [86, 157]: 53? -1 ~  Tn\ m i n , where Tn is the estim ator based on random
variables X \ ,  ■ • • , X n. From the equation 2.3.1, the median is the m axim um  likelihood 

estim ate (M LE) of location for the Laplacian distribution: f ( x )  =  In general

the m edian filter perform ance is com pared to the perform ance of the  moving average 
or mean filter: yi =  L Y^jt^-p ■ which is essentially a ’’m oving” arithm etic  mean. 
The arithm etic  m ean is the MLE of location for the Gaussian d istribu tion  and it 
m inim izes the  L 2 norm.

The m edian is a B-robust operator since its influence function is bounded pro

vided /  is bounded away from zero at the median [86]: IF ( x \m e d ,  F )  = 2f(F-^(i/2))s^9n (x ' 
jF-1 ( 2 ))■ Therefore, a single outlier (e.g. impulse) can have no effect on its per

form ance, even if its m agnitude is very large or very small. However, the  influ
ence function of the  arithm etic  m ean for the Gaussian d istribu tion  is given by [86]: 
I F ( x \  x, F )  = x  and it is unbounded. Therefore, the moving average filter is very 
susceptible to  impulses.

Edge inform ation is very im portan t for hum an perception. Edges, by definition, 
contain high frequencies. A lthough both  median and m ean filters are low-pass filters, 

the  m edian filter tends to preserve edge sharpness [14, 38, 193], owing to its robustness 

properties, while the  m ean filter smooths them . The m edian filter not only smooths 
noise in homogeneous image regions, bu t it also tends to produce regions of constant
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or nearly constant intensity [37]. Usually, they are either linear patches or blotches. 

These effects are undesirable because they are perceived as lines or contours which 
do not exist in the original image.

In the  determ inistic analysis of m edian filters, the basic problem  is th a t of finding 

signals, called roots or fixed points, which are invariant under m edian filtering [8, 70, 
179]. T here are several problems related to the m edian filters’ roots:

• determ ination  of the shape of a signal which is a root of a one- or two-dim ensional 

m edian filter.

• construction and counting of the num ber of a m edian’s roots.

• the  ra te  of convergence of a non-root signal to a root after successive passes 
through the m edian.

These th ree problem s form the subject of the determ inistic analysis of m edian fil
ters [6, 13, 61, 58, 71, 184]

T here are several modifications and extensions of the  s tandard  m edian. 
Separable Median Filter: [147, 148] This aims at reduction of the  com putational 

com plexity for m edian filter com putation. A separable two-dim ensional m edian of 

size n  results from two successive applications of a one-dim ensional m edian filter of 

length n  along rows and then along columns of an image (or vice versa):

l/ij ^ ed (2 jj_ p , , Z{j, ,

z ij med{x i—p j , , (2.5)

T he m ain advantage is its low com putational complexity in com parison w ith th a t 

of the  non-separable m edian filter, since it sorts n num bers two tim es, whereas the 
non-separable n x n m edian sorts n 2 numbers.

Recursive Median Filter: This is defined as

l/i , yi—i ,  x ^  , 3/’̂ _|_p), (2 .6)

Its ou tp u t tends to  be much m ore correlated than  th a t of the s tandard  m edian filter. 

Recursive m edian filters have higher im m unity to im pulsive noise th an  have non
recursive m edian filters [7, 36]

Weighted Median Filters (W M F):  This is defined as [105]

Pi m e d (w -v o x^—p̂  , Wp o x ^ p )  (2.7)

where w o x  denotes duplication of x w times: w o x  — x, • • •, x (w t im e s )  It is closely 

related to  the  F IR  filter of the form pi = f e pWja'H'J . Brownrigg [42], Y li-H arja [192],
l^j  = - p W3
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and Ko [110] analyze the  perform ance of the weighted m edian filter. They have shown 

th a t the W M F can outperform  the standard  m edian filter [110]. T here is a connection 

between stack filters and weighted m edian filters [192] which can be used to  derive 
the  sta tistica l and determ inistic properties of W MF.

Max-Median filters and Multistage Median Filters: These aim  a t preserving the 
s tru c tu ra l and spatial neighborhood inform ation which could be destroyed by the 

ordering process. The m ax-m edian filter is defined by [11]:

Vij ~  m a x ( z 1, z2i z3, z4), (2.8)

where

Z\ m ed(xitj - p, , îj-> ?

Z2 ?72ed(.7/t'_pij, ‘

%3 ’ ’ ’ 5 )

z 4 med^Xi—p j—pj ,

Its perform ance can be improved considerably if the m edian operator is used to  replace 

the  m ax operator in equation 2.8. The resulting filter belongs to the  m ultistage 
m edian filters:

Hij = m ed(m ed(z\ ,  z2) Xij)}m ed(z3, z4, *«)• (2-9)

M ultistage m edian filters can preserve details in horizontal, diagonal, and vertical 
directions since they use sub-filters th a t have regions of support along these direc
tions. [10]

Median Hybrid Filters: This aims also at preserving the  spatial inform ation of 
an im age by using linear filter substructure. It is a com bination of linear filters and 
m edian filters and has the  following definition :

y{ = m ed ($ i(x i) ,  ■ • •, (2.10)

where the  filters $ j ( x { ) , j  = 1 are linear FIR  or H R filters. Heinonen [90],

A stola [13] analyse the perform ance of m edian hybrid filters. An extended family of 
F IR  hybrid m edian filters w ith good transient response are presented in [186].

2.3.2. Order S tatistic  Filters

T he class of order s ta tis tic  filters includes a large num ber of nonlinear filters. The 
L  filter (also called the  order sta tistic  filter) is an im portan t generalization of the
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m edian which can be defined as:
n

(2 .11)
j =i

where j  — 1, • • •, n are the order statistics of £;_p, • • •, Xi+P. The moving average,

and the  larger d a ta  based on the coefficient a, 0 <  a: <  0.5. If a  =  0, no d a ta  are 
rejected, which is equivalent to  the moving average filter. If a  is close to  0.5, all da ta  
bu t the  m edian are rejected.

L filters are based on the theory of robust L estim ators [86, 39]. The filter 

coefficients, a j, j  — 1 , can be chosen to satisfy an optim ality  criterion th a t
is re la ted  to the  probability distribution of the input noise. S truc tu ra l constraints 
can be incorporated in the  optim ization function in order to design filters th a t are 
sensitive to local signal structu re  [141]. The determ inistic properties of the  L  filters 

and relation to linear filters are discussed in [120]. The ability of the  L  filter to  have 
optim al coefficients for a variety of input distributions makes it suitable for a large 

num ber of application. A nother advantage of the L  filter over the m edian filter is 

th a t it has no streaking effect. However, the L filter involves greater com putational 

com plexity than  the  m edian filter.

T he R  filter is another nonlinear filter which is based on R  estim ators [86, 73].

m edian, r th  ranked-order, and a-trim m ed  m ean are special cases if the  coefficients 

a,j, j  =  1, • • •, n are defined appropriately.

R anked-order filters [91] are very similar to m edian filters which are straightfor
ward applications of order statistics in filtering. An rth ranked-order filter can be 
defined as:

yi = rth  order s ta tis t ic  o/{.x\_p, • • •, aq, • • •, Xi+V] (2.12)

W eight order s ta tis tic  filter [192] is a general weight m edian filter which can be 
defined as

yi = r th  order s ta tis t ic  o f { w - v o a^_p, • • •, wv o Xi+P] (2.13)

where w o x  denotes duplication of x w times: w o x x, • • - , x (w t im es)

The a-T rim m ed  Mean Filter [32] is good compromise between the  moving average 
filter, which is good at suppressing additive white Gaussian noise, and the  m edian 
filter, which is good at suppressing impulses and preserving edges. It satisfies:

(2.14)

w here |_cmj is the  integer part of an.  The a-trim m ed m ean filter rejects the  sm aller
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The m ost im portan t R  filter is the Wilcoxon filter [51, 72]:

y i = m ed{  , 1 < j  <  k < n}. (2.15)

W ilcoxon filters have been proved to be effective in suppressing additive G aussian 
noise, bu t they do not preserve edges well. If the sum  in the  equation (2.15) is 
restric ted  to a m axim um  distance j  — k <  D, the modified Wilcoxon filter can be 
expressed as [72] yi = m e d {  ̂ I < j  <  k < n , k  — j  < D }.  This modified 

W ilcoxon filter has b e tte r edge preservation properties than  the  standard  W ilcoxon 
filter. However, a disadvantage of the Wilcoxon filter is its com putational complexity. 

It requires n (n  -fi l ) / 2  additions and the ordering of n +  n(n  +  l ) / 2  item s . A fast 

algorithm  for the  W ilcoxon filter is suggested in [113].

2.3.3. Stack Filters and Threshold D ecomposition

Stack filters form an extension of the class of order statistics filters. This includes, 

bu t is not lim ited  to, m edian-type filters, weight order s ta tis tic  filters [192], and all 

com positions of morphological filters composed of opening and closing operations[88, 
131].

Stack filters [183] originate from two fundam ental properties of the m edian filter, 

the  weak superposition property known as threshold decomposition[Q2, 63] and the 

ordering property[142] called the stacking property in [183].
Let Xi be an M -valued signal: X{ <G {0,1, ■ • • , M  — 1}, for which there are the 

M  — 1 thresholds: {1,2, ■ • • ,M  — 1}. The signal can be decom posed into M  — 1 

binary valued signals / =  1, 2, • ■ • , M  — 1, using the functions Tfixi):

f l  if Xi > I
x\  =  Ti(xi)  =  I (2.16)

I 0 otherwise.

These M  — 1 b inary valued signals can be filtered independently.
A Boolean function /( • )  operating on a binary vector of length n  is said to  possess 

the  stacking property if the binary output signal y\ a t tim e i consists of a colum n of 
l ’s having a colum n of 0’s on top. The filters satisfying the  stacking property  are 

called stack filters which can be defined as:

M - l  M - 1 M —1 M —1

VI =  5 / ( 5 0  = E # !  =  S j(  £  D(a?0) =  £  5 ,(T ,(£ 0 ) =  £  / ( 5 l )  (2.17)
/ = 1  i =  l  1 = 1  1 = 1

where vectors x { = [®*_p, x i+p], and x\ — [aq_p, • • •, x x \
T he Boolean function /( • )  determ ines the properties of the stack filter. G ilbert [81]

' i + P  J
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showed th a t a necessary and sufficient condition for a Boolean function to satisfy the 

stack property  is th a t it contains 110 complements, Xi, of the  inpu t variables X{. The 
stackable functions are also called positive Boolean functions .

A lthough positive Boolean functions provide a large class of filtering operations,

we are in terested  in exam ining an even larger class of filters. This larger class is
obtained by allowing the  output of a Boolean function to be random ized [49].

Let the  2b possible binary sequences of length b be ordered in some fashion as 

iq , aq, • • •, x 2b. A window w idth b randomizing Boolean function B(-)  is defined by 

the  vector Pq w ith  2b elem ents, in which the ith  elem ent is

Pq (11 if j) — P r(P  produces output 1 | Xi is in the  window (2.18)

corresponding to B ),

where i — 1, 2, • • • , 26. Also define Pi3(0\x) =  1 — P ^ ( l |^ ) ,

A random izing Boolean function B(-) is said to possess the  probabilistic stacking 

property  if and only if

E  (B ( x )) >  E  (B(y)) ivhenever x > y , (2.19)

where E(-)  is the  expectation operator as defined on the appropria te  probability  space.
T he addition of random ization allows the Boolean function’s expected o u tpu t for 

a given binary inpu t sequence to be any real num ber in [0, 1]. This allows average 

ou tp u t of the  filter to be the  same as the determ inistic ou tpu t of m any well-known 
filters. For exam ple, linear filters w ith nonnegative weights on the  bits in the  window 

can be realized as random izing Boolean functions satisfying the  probabilistic stacking 
property  [49].

T here is another way to  extend stack filters which leads to  so-called generalized 

stack (GS) filters [116], which allows different logical operators on different levels of 
the threshold decom position architecture.

Let x m be a (21 +  1) x n  binary array at threshold level in. The ordered set 

of M  — 1 Boolean functions {jf1 (•), • • • , / M_1(-)} is called a stacking set of Boolean 
functions if

f m+1(x m+1) < f m(xm), m  — 1,2, • • • , Af — 2. (2.20)

A window w idth N,  M - value generalized stack filter Egs(') is a stacking set of M  — 1 
Boolean functions. The operation of this filter 011 the input x  is defined as follows:

M —1
F ..W  = £  r ( * m). (2-21)

m=1



24

G reat advances have been m ade recently in the design of optim al and adaptive 

stack filters and generalized stack filters [49, 50, 69, 116, 117, 118, 119, 194]. Both 
an estim ation approach and a s tructu ra l approach have been developed [50]. The 
estim ation approach employs the m inim um  absolute error (M AE) criterion because 

of its robustness [49]. O ptim al stack filters and generalized stack filters based on the 
M AE criterion can be found via linear program m ing (LP) [49, 116, 194]. T he com

pu ta tional com plexities of the algorithm s are very high since the  num ber of variables 
and constrain ts in the  LP procedure grows exponentially w ith the  window w idth of 

the  filters. An im proved m ethod is to use the adaptive stack filter [117]. This ap
proach alleviates the  modelling of the signal and noise by taking a p art of the  input 
signal to  tra in  the  stack filter. The advantage of this algorithm  is th a t only simple 

a rithm etic  operations are required. The disadvantage of the algorithm  is th a t the 
num ber of variables still grows exponentially with the increase of the window w idth. 

T he o ther disadvantage is th a t the convergence speed of the algorithm  of the adaptive 
stack filters is very slow.

A new design m ethod is suggested in [119] based on threshold decom position 
and Bayesian decision theory. The m axim um  num ber of unknown variables is 2N for 
an TV-length stack filter [117]. If there are some constraints on the  positive Boolean 

functions, any positive Boolean function can be equivalent to a corresponding th resh 

old logic function [192] in which the num ber of variables is TV +  1. More im portantly , 
any linear adaptive algorithm  can be applied to the new optim ization  problem . Most 

of them  have a rem arkable higher convergence rate  than  th a t of L in’s algorithm  [119]. 

It is w orth noting th a t the  new adaptive algorithm  does not generally give optim al 
stack filters under the M AE criterion.

Neural filters [118] have been suggested as a way of solving the  problem  of optim al 

generalized stack filter design. The neural network representation enables the  stack 

filter to  be im plem ented using sorting operations in the real dom ain. This reduces 
the am ount of com putation since the complexity of im plem enting stack filters in 

the binary dom ain increases exponentially with the word length. Two classes of 

neural filters have been defined [118], hard neural filters and soft-neural filters. The 
hard  neural filters are defined by a set of neural networks in which the activation 
functions are unit step functions. If they satisfy the stacking property, the  hard  neural 
filters reduce to GS filters. Soft neural filters are defined by neural networks whose 

activation functions are sigm oidal.The universal approxim ation property  of neural 
networks [94] suggests th a t soft neural filters can approxim ate all filters defined by 
linear and nonlinear continuous functions such as linear F IR  filters and m icro-statistic 
filters [9]. Moreover, soft neural filters can also approxim ate the  hard  ones. Two
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adaptive neural filtering algorithm s, the adaptive least m ean absolute error (LMA) 

algorithm  and the adaptive least m ean square error (LMS) algorithm , are used for 
finding optim al neural filters under the MAE and MSE criteria , respectively [118].
H ard neural filters and soft neural filters can be trained using these two algorithm s.

2 .4 . F ra c ta ls ,  I t e r a t e d  F u n c tio n  S y s te m s  a n d  In v e rs e  F r a c ta l  T ra n s fo rm a 

t io n s

T here are three popular ways to construct a fractal scene. The first is to use L-systems 
[161] to  models fractal botanical models. The second is to  use fractional Brownian 

m otion (fBm). The th ird  is to use the Itera ted  Function System  (IFS) developed by 
Barnsley and his collaborators [21, 23]. L-systems and fractional Brownian m otion 

are lim ited  models. L-systems are only suitable for botanical graphics; fBm is defined 

in a one-dim ensional framework and it is very difficult to generalize it to higher di

mensions. F ractal techniques based on iterated  function system s are the  m ost flexible 

generalization from one dimension to higher dimensions is very n a tu ra l and easy, and 

highly complex spatial inform ation can be derived from tem poral iteration  th a t is 
governed by only a small set of param eters.

2.4.1. Itera ted  Function Systems

In B arnsley’s IFS theory, a determ inistic and random  itera ted  function and system  
can be defined as the following :

D e f in it io n  2 .3  The Hausdorff distance between sets K  and L, K , L  £ X ,  can be 
defined as

{ h ( K , L )  ~  m ax{m ax{<i(a;,/f) : x  £ L},  ma,x{d(y, L)  : y £ AT}), (2.22)

where d ( x , K )  is the distance from x to K ,  d{x, K )  = m in{d(a‘, y)  : y £ K }, and 

d( y i L)  is the distance from  y to L, d( y , L)  =  m in{d(y , x)  : x  £ L ] .

D e f in it io n  2 .4  A deterministic iterated function system (IFS) is an N-tuple (w \,W 2 ,' • • ,w n )  
of maps from  a compact metric space ( X , h )  into itself, where h is Hausdorff distance.

A map w  : X  —» X  is called a contraction iff there exists a constant c £ R  with
0 <  c <  1 and h( w( x ) , w( y ) )  <  ch(x, y) ,  Vx , y  £ X .  The smallest c with this property 

is called the Lipschitz constant o f w and is denoted by Lip(iu). A deterministic IF S  
consists o f  contractions uq, uq, • * ■ , w^f.

H utchinson [96] proved, th a t if W ( K )  = ( j£ i  Wi(K)  , W  is a contraction w ith 
respect to h,  w ith  Lip(FF) <  max(Lip(u;1), • • •, Lip(uqv)), and has a unique fixed point
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A  in X .  The fixed point A  of W  is called the attractor of the IFSfrui, w 2, • ■ *, w n ).

D e f in it io n  2 .5  A random iterated function system IFS(to1,w 2, ■ • • , i vn ,
P h P 2 5 • ■ * , Pn)  consists of Lipschitz map functions wi in compact metric space (X , h) 

with probability p i , i = 1,2, • • •, ./V and Y^iLi Pi — 1- Choose xq € X  and then choose, 
recursively and independently,

X n  €  ^ 2 ( ^ 7 1 —1 ) i  1 ^ N ^ n — l )  } )  —  f  j 2 ,

where the probability o f the event x n — Wi(xn~ 1) is pi.

Thus it defines a discrete-tim e Markov process {Z n , n =  1,2, •

P { Z n £  B \Z n—\ X n — i, ,  X q  —  & o )  —  P') 1

where
N

P( x ,  B)  = J 2 p^ A B )
t = 1

is the  probability  of transfer from x  G X  to the Borel set B  in X ,  where 8X is the  Dirac 

m easure concentrated  at x. Barnsley [23] proved th a t if p E P ( X ), the  set of Borel 

probability  m easures 011 X, is a stationary initial d istribution and m aps (w i ,w 2-,' * •) 
are Lipschitz, the  process { Z nj  converges in distribution to p.

For the fractal interpolation problem, let

(2.23)

,} [21,23].

(2.24)

(2.25)

Yt = f ( Ah), i =  1 ,2 ,- ..,7V, (2.26)

where n o  are data , {X{}  are interpolating points w ith X i  < X 2 <  • • • <  X n  and /  is 

an unknown function which displays some sort of self-similarity under m agnification. 

Define a graph G = {(^Fz-, FT), z =  1,- • Barnsley [18, 19] suggested finding an
IFS whose a ttrac to r  approxim ates this graph G and which would give an estim ate, 
/ ,  for f . The basic structu re  is th a t the maps W( are affine transform ations w ith the 
special s truc tu re

-  \  ( . n \  f \ (

\ y J

0

Cj dj j
+

\ v  )

\
e,-

(2.27)

Berger [34] uses random  IFS and affine transform ations to show how refinem ent 

m ethods for sm ooth curve generation can be carried out efficiently. T he applications 

include Beziear curves, splines, wavelets and various interpolants. Barnsley et al [26] 

have shown th a t it is possible to design the interpolation such th a t /  is in C l[Xi,X ;v], 

i.e., /  has Ith. continuous derivative on [Xi,X/v], where / is any 11011-negative in te

ger. Since any lower-dimensional function /  can be regarded as a projection of a
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high-dim ensional function, the graph G also can be considered as a projection of 

another graph in higher dimensions. Barnsley et al [22] have considered finding an 
IFS whose a ttrac to r  approxim ates this high-dimensional graph, and from  this they  
obta in  an in terpo lan t for / ,  by projection of this high-dim ensional a ttrac to r, which 

will not lim it /  to  be self-similar. They called it hidden variable fractal interpolation. 
G eronim o et al [79] extended IFS interpolation to two-dim ensional fractal surfaces. 

Their algorithm  allows the construction of these surfaces over polygonal regions w ith 
arb itra ry  in terpolation points.

The recurrent ite ra ted  function system (RIFS) [24, 4-4], also called local itera ted  
function system  (LIFS), generalizes iterated  function systems. T he flexibility of RIFS 
perm its the  construction of more general sets and m easures which do not have to 
exhibit the  s tric t self-sim ilarity of the IFS case. RIFS can be defined as follows :

D e f in it io n  2 .6  Let ( X j , d j )  be compact metric spaces, j  £ {1, 2, • • • , N } ,a n d  let 

(H j , h j ) denote the associated metric spaces o f nonempty compact subsets which use 
the Hausdorff metrics. Let there be defined maps W{j : Hj —> Hi, V(i, j )  £ I , where I  

is some set o f  pairs o f  indices with the property that I( i )  =  { j \ ( i , j )  £ 1}  7̂  0 } and 
hi (wi j (A) , Wi j (B))  <  S{jhj(A,  B) ,  fo r  some Sij, V(«, j ) £ I  and  VA, B  £ ILj. Then  

when s < 1 there is a unique element A  = (A i, • • ■, Aw) £ H  such that

Ai = | J  Wij(Aj),  for i — 1,2, • • •, N,  (2.28)

i.e., W ( A )  — A , where IL consists o f a stack o f planes AA,A"2, • • •, AOv with a point 
in H  being the N-tuple o f one image in each plane and

W ( A \ ,  ■ • •, Ajv) =  ( U U w N j ( A i )  ] • (2-29)
Vied i) j e i ( N )  J

B arnsley’s Collage theorem  [25, 19] tells us th a t, in order to  control the  closeness
between the  a ttrac to r A and the da ta  set K  under the Hausdorff distance, it is
sufficient to control the  closeness between K  and W { K )  which is obtained by one- 

step iteration  ahead of K  by W  under the Hausdorff distance. Here is th e  Collage 
theorem  for IFS.

T h e o re m  2.1  Suppose IFS{wi,W 2 , • • • , «dv) has an attractor A  on a compact metric  
space ( X , h ) .  Let K  C X  and W  : K  —» K ,  where W ( K )  =  w f f K )  U • • • U w n ( K )
and L i p s ( W)  -  5 . I f  h (W (I< ), L) < e then

h { A , K ) < j f - .  (2.30)
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For a RIFS, there exists a corresponding collage theorem  [24]. <kien et al [154] 

present a new collage theorem  holding for a certain class of affine m appings called 
Affine Block wise Averaging maps, which operate on the space of discrete signals and 

are suitable for the  orthogonalized version of Jacqu in’s algorithm  [103], introduced 

in 4?ien and Lepsoy [155]. The theorem  provides a b e tte r bound on the  distance 
between the  original image and the  a ttrac to r, by considering in th e  estim ate  norm s 

of collage errors at successively coarser resolutions. B aharav et al [16] proposed a 
fast decoding algorithm  based on a hierarchical in terpreta tion  of the  IFS-code which 
can reduce the  com putation tim e by more than  an order of m agnitude.

2.4.2. F itting  D ata with Fractional Brownian M otion

An im portan t class of fractal signals is 1 / f  processes [109], which exhibit rich be

haviour well suited to  modelling a wide range of one-dim ensional n a tu ra l phenom ena. 
1 / f  processes are a class of random  processes of which average spectral density is 
p roportional to the  inverse of frequency 1 / /  and can be characterized by an inherent 
scale invariance and persistent long-term correlation structu re . In contrast to  the 
w ell-studied family of ARIMA process, 1 / f  processes have received relatively little  
a tten tion  in the  transitional signal processing literature. This has been due, at least 

in p art , to  the  m athem atical in tractab ility  of fractal processes. However, 1 / f  frac
ta l signal representations in term s of orthonorm al wavelet bases have been suggested 

recently [65, 163, 191] th a t considerably simplify the analysis of these processes.

A popular exam ple of the 1 / f  processes is th a t of fractional Brownian m otion 

(fBm) [128], which is a generalization of norm al Brownian m otion. The fBm B u ( t )  

is a zero m ean non-stationary  Gaussian random  process w ith the  covariance function

s) = £ ( | +  M 2"  -  |t -  a n  +  o(|<|), (2.31)

where the  param eters a 2 and 0 < H  <  1 characterize the process. The param eter H
controls the  “roughness” of the fBm such th a t an individual realization of the process
has a fractal dim ension [127] D ~  2 — H. The H  param eter also controls the  shape 

of the  average spectral density defined as

S ( f )  =  ^  (2-32)

where r*, =  2H  +  1. As a result, the fBm serves as a good m odel for 1 / f  processes 
where 1 <  r& < 3.

W ornell [191, 190, 189] suggests a new algorithm  which uses the  discrete wavelet 

transform  [164, 126, 52] to  derive an approxim ate m axim um  likelihood estim ator
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when a 1 / f  process is em bedded in white Gaussian noise. W ornell’s algorithm  needs 

th e  wavelet coefficients of a Karhunen-Loeve-like expansion for 1 / f  noise [188] to  be 
uncorrelated  over scale and tim e. Kaplan et al [109] improve W ornell’s algorithm  by 

using H aar based wavelets [126]. The coefficients of the  new algorithm  are weakly 
correlated and  have a variance th a t is exponentially related  to  scale. Theoretical 
analysis and num erical sim ulation of K aplan’s algorithm  indicate th a t it improves 

th e  accuracy of estim ating H  for m oderate da ta  length of the fBm; for longer lengths, 

bo th  algorithm s can find a very good estim ate; for short d a ta  length of the fBm  w ith 
additive noise, bo th  algorithm s are unreliable. The problem  of how to im prove a 
wavelet based fractal estim ator for short data  length is still open.

2.4.3. Inverse Problem s of the Itera ted  Function Systems

As usual, inverse problem s are hard, and potentially ill-posed. In a typical inverse 

problem  in fractal construction, a single phenom enon is given, and m ust be reproduced 

in term s of some of its characteristics, or in the whole, by a fractal approxim ation. 
T here are two forms [180] of inverse IFS problem; Measure: given a ta rge t (norm alized 

Borel) m easure v, find an IFS whose invariant m easure ft approxim ates v as closely 
as possible (in term s of the H utchinson m etric); Geometric: given a ta rge t set S \  find 

an IFS whose a ttrac to r A  approxim ates S  as closely as possible in geom etry (in term s 
of the  Hausdorff m etric).

T he inverse problem  for m easure can be defined as follows [21, 25] :

D ef in it io n  2 .7  Given a probability measure A on K, where K  is a compact metric  

space, find  an IF S  and associated probabilities p fo r  which the p-balanced measure pt 
is close to A (in the weak * topology).

Consider an IFS {K ,  : i = 1,2, - -*,  where K  C C  and wfiz) — S{Z +

i = 1,2, -*' , . /V,  w ith S{,bi €  C , 0 <  |s t-| <  1. T hen the  m om ents M n =  

f k z ndpt[z) n — 0 ,1 , * • • can be calculated. This follows from the  s ta tionarity  condi
tion ^ (B ) =  f k P ( x y ’B)dpt(x), where B  is Borel subset of K .  T he recursive form ula 
is

(  N \ 1 N n—1 ̂  ^
M n =  ( 1 — ^ 2  pis/  j ^

\  i = 1 /  1 = 1  .7 = 0

n
4 ^ ~ 3F M r  (2.33)

T he M n values can be com puted starting  from Mo =  1. In particu lar, we have 
available the  reverse procedure, th a t of m atching  a finite num ber of m om ents, M n = 

gn, where gn =  f  z ndX(z),  n  =  1,2 to get the  IFS param eters [25, 2, 129,

130, 87]. However, because of the problems associated w ith the  nonlinearity  of the 

equations, the  scheme is found to be extrem ely unstable [181, 180], and hence useless
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from  a practical viewpoint. Moreover, the complexity of this approach increases 
enorm ously in the  two-dimensional case. Vrscay [181, 180] suggested a new m ethod 
for m inim izing a “Euclidean distances” between m om ents M n and gn. For a fixed 

num ber, N ,  of IFS m aps, and M , the num ber of m om ents Mi  to  be “m atched” , the 

objective function to be minimized was the sum of the squared Euclidean distance in 
“m om ent space” ,

M

K ( * )  =  (2-34)
i=l

Vrscay suggests using a Genetic A lgorithm [93, 82] to  m inim ize the  above function.
For an inverse IFS problem of the geom etric type, W ithers [187] suggested 

applying N ew ton’s m ethod on the param eter space of the IFS to solve the problem  

of fitting  a given linear function in the L q norm with a function generated by an IFS. 
W alach [182] utilized a fixed-length yardstick to traverse the  en tire d a ta  to construct 
a piecewise linear for approxim ating a curve in order to com press an image. The 
com pression ra te  is near 16:1.

M odern fractal im age compression led to the creation of the  concepts and m athe

m atical results of itera ted  function systems. Barnsley and Sloan advertised in popular 
science m agazines the incredible power of IFS for compressing colour images at com

pression rates of over 10000 : 1 [28]. In 1989 Jacquin proposed a fully au tom ated  

algorithm  (called as block-based image coding) for fractal im age com pression [100 ] 
which was based on local affine transform ations, and was also called R ecurrent IFS. 

He suggested an approach for partitioning a monochrome im age into non-overlapping 
square pixel blocks, called range blocks (i?*), and larger square pixel blocks, called 
domain blocks (D i), sorted into a set of categories such as shade blocks, edge blocks 

and m idrange blocks, following classification [162]. For each range block, a dom ain 

block of the sam e category is searched such tha t its grey level under a local stric tly  
contractive affine m apping (r,-) minimizes its distance to the  original block in the 

root-m ean-square sense. Each affine m apping is is composed of a  geometric p a rt (Si) 

which shrinks the  dom ain block down to the size of a range block by pixel averaging, 

and a m assif  p a rt (Si) th a t transform s the obtained block by shuffling (</{), scaling 

(cko), w ith quantized param eters and addition of a constant grey-tone block (A g). 
The general form is [104] :

T  o S ( im-'d ) =  cx0J ( S ( f i ^ D)) +  A g  (2.35)

This scheme is in m any aspects related to vector quantization (VQ) [80], w ith which 

it shares the  idea of using a codebook providing a  library for the  selection of the 

dom ain blocks. However, the  codebook in fractal compression is only a “v irtu a l” one
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since the  dom ain blocks are not stored but are taken from the  im age itself, thereby 

exploiting the  redundancy of the inform ation present in the image.

Jacqu in ’s papers provide a good starting  point for fu rther research and ex ten

sions in m any possible directions. Mazel et al [134] use IFS and local IFS to represent 

discrete-tim e sequences. Beaum ont [31] extends it to process sequences of video im 
ages, and Cochran et al [46] extend it to volum etric data, where the  basic elem ents 
of the  partition  are three-dim ensional blocks. The results of fractal volume com pres
sions com pare well against similar techniques based on vector quantization. Jacobs 

et al [99] conducted a thorough study to determ ine the optim al num ber of bits for 
the  uniform  quantization of a  and A g.

$ ien  et al [155, 156] express the item  A g in a three-dim ensional subspace A g = 

XwUi a kAk, where the  otk are real coefficients and {Al 5/ i 2, / I 3} are the  fixed basis 
vectors. $e in  et al first G ram -Schm idt orthogonalize the  hxed-basis vectors, in effect 

decoupling the  optim ization of the scalar otQ and the constant A g. Saupe [166, 167] 
suggest another m ethod, th a t of multi-dimensional nearest neighbour search, which 

runs in logarithm ic tim e, to replace the common sequential search for a best m atch 

of im age portion, which runs in linear time. Monro et al [137, 138] propose to ex

press A g w ith high order item s as A g = Yll=i ak%k *F Y%=1 ^kVk +  T he param eters 
are optim ally  determ ined by applying a least square criterion. T he authors report a 
significant increase in image quality by including these higher order item s and, in par
ticu lar, w ith the consequence th a t no searching procedure for dom ain blocks, which is 
the  m ain factor leading to long encoding tim es with block-based fractal im age coding, 
is needed. B arthel et al [29] propose an extension to linear scale transform ation  which 
applies a high order transform ation in the frequency domain. B it-ra te  reductions are 

higher th an  those achieved by “spatial-dom ain” fractal coding schemes. Fisher and 

Jacobs [60, 99] use a quad-tree, rectangular and triangular au tom atic  partition  of 
the  range blocks in order to  improve image fidelity. A nother triangu lar partition  

scheme [54, 55] is provided by the triangular in a Delaunay tessellation [160], which 

perm its an adaptive partition  of the image support. Davoine etal [54, 55] show 
an im provem ent in the visual quality of reconstructed images, com puting tim es and 
com pression ratios.
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CHAPTER 3

D E S I G N  O F I N T E R A C T I V E  P A R A L L E L  D I S T R I B U T E D  
C O M P U T I N G  E N V I R O N M E N T  

3 .1 . In tr o d u c t io n

A Parallel V irtual M achine (P V M ) system is a software in frastructu re th a t perm its 

connection of heterogeneous Unix com puters to be used as a unified general and 

flexible, message-passing, concurrent parallel com putational resource. In this chapter, 

we describe the  construction of PVM version 3, the principle of program  design under 
PV M , the  approach of dynam ic m onitoring and ways to debug PVM  program s. Later 
in C hapter 4, we shall build parallel distributed algorithm s w ith PVM  system.

In teractive applications need a powerful general-purpose com m and language. We 

in troduce such a powerful and em beddable com mand language, Tel. Tk then extends 
the  core Tel facilities w ith additional commands for building user interfaces so th a t 

you can construct Motif-like interfaces by writing Tel scripts instead  of C code based 

on Tk. It raises the level of X-Windows program m ing and results in application 

developm ent th a t is 5-10 tim es faster.
T he com bination of interactive and parallel processing will lead a new and useful 

application area, especially for visual science data, image analysis/processing and m ul

tim edia applications. We im plem ent this composition based on a parallel d istribu ted  

environm ent, PVM , and the  interactive development tool, Tel. T he approach we use 
is to  provide a Tel version interface for all procedures in the  PV M  C library  so th a t 

users can call any PVM  procedure to do their parallel com puting interactively. In 

order to solve the problem  of there being no binary-type d a ta  in Tel, we use T e l’s 
general-purpose hash tab le to  define a kind of object, GBOX, in which to hold any 
b inary  data. Several Tel procedures are im plem ented to  do tasks related  to  GBOX.

3.2 . T h e  M e th o d  o f  P rogram  D es ig n  U n d er  A  P ara lle l  V ir tu a l  M ach ine

3.2.1. C onstruction of A Parallel V irtual M achine

U nder PVM  [74, 75, 76, 173, 175], a user-defined collection of serial, m ulti-processor, 

and vector super com puters appears as one large distributed-m em ory com puter, 
known as a v irtual m achine as shown in Figure 6 . PVM  is a public dom ain, full 
source code availability software system , of which the current version is 3. W ith  

source code, users can easily port PVM to any other new com puter p latform  and
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im prove the  speed of message-pass with new network protocol.

D e f in it io n  3,1 P V M  computing environment is composed o f user programs U , sys
tem daemon T>, and interface library X .

D e f in it io n  3 .2  U is a standard single instruction single data-flow program, which 

consists o f user data structure, C or Fortran control-jiow statements, and explicit 
call-X statements.

Figure 7 illustrates the P V M  com puting environm ent.

The PVM  system  software is composed of two parts. As explained in [75], the 
first p a rt is a daem on T>, called pvmd3, th a t resides on all the  com puters m aking 

up the  v irtual machine. Pvm d3 is designed so any user w ith a valid login can in

stall th is daem on on a machine. W hen a user wants to  run a PVM  application, he 

executes pvm d3 on one of the com puters which in tu rn  s tarts  up pvmd3 on each of 
the com puters m aking up the user-defined virtual machine. T he PVM  application 

can then  be sta rted  from  a Unix prom pt on any of these com puters. M ultiple users 
can configure overlapping virtual machines, and each user can execute several PVM  
applications simultaneously.

The second p art of the system is a library of PVM  interface X  routines, libpvm 3.a 
for C language or libfpvm 3.a for Fortran 77. This library contains user-callable rou
tines for message-passing, spawning processes, coordinating tasks, and modifying the 

v irtual m achine. A pplication program s m ust be linked with th is library in order to  
use PVM .
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D e f in it io n  3 .3  X  consists of a C library and a Fortran library. Multi-data flow will 
appear when X  is called since send-and-receive message are asynchronous.

D e fin it io n  3 .4  Under a P V M , an application A  is made up o f  a set o f instances.

An instance of an application subtask or component (realized as a process) [169], 
is the  un it of com putational abstraction in the PVM  system . Each process is an 
executing instance of an application component, where a component is a domain- 
specific m odule am enable to single program m ulti-data flow (S P M D ) execution. All 

processes th a t enrol in PVM are represented by an integer task identifier (tid). The 

tid is the  prim ary and m ost efficient m ethod of identifying processes in PVM . Since 

tids m ust be unique across the entire virtual machine, they are supplied by the local 
pvm d  and are not user-chosen. PVM contains several routines th a t re tu rn  tid values 

so th a t the  user application can identify other processes in the  system . An illustrative 

exam ple of this com puting model is shown in Figure 8 .

D e f in it io n  3 ,5  In a message-pass model, processes are created by the programmer  

explicitly; they communicate explicitly and may send data repeatedly to other pro
cesses.

Instances com m unicate via the use of message-pass models; each message may 
contain d a ta  of several types. These message segments are built by provided library 

routines in a m achine independent m anner. Message exchange is asynchronous, in
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th a t a sending process may continue execution prior to physical message reception by 

the destination  process. The PVM  model guarantees th a t message order is preserved. 
If task  1 sends message A to task 2 , and then sends message B to task 2, message A 

will arrive a t task 2 before message B. The model assumes th a t any instance can send 

a message to  any other PVM  task, and th a t there is no lim it to  the  size or num ber of 
such messages. W hile all hosts have physical memory lim itations the  com m unication 

m odel does not restric t itself to a particular m achine’s lim itation  and assumes th a t 

sufficient m em ory is available.

3.2.2. PVM  User Interface Library 

T he following are a sum m ary of the functions provided by PVM  version 3 [74, 84].

• PVM  supplies process control routines tha t enable a user process to become a 

PV M  task, to  becom e a norm al process again, to spawn a new process, and to 

te rm inate  other processes.

• PVM  supplies dynam ic configuration routines to add or delete hosts from the 
v irtual m achine, to s ta rt the system daemon, and to halt whole v irtual machine.

• PVM  supplies inform ation request routines to find out inform ation about the 
v irtual m achine configuration and active PVM tasks.

•  PVM  provides two m ethods of signalling other PVM  tasks. One m ethod sends a 

Unix signal to another task. The second m ethod notifies a set of tasks about an 
event by sending them  a message with a user-specified tag  th a t the  application 

can check for.

• If a host fails, PVM  will autom atically detect it and delete the  host from the 

v irtual machine. The status of hosts can be requested by the  application. It 
is still the  responsibility of the application developer to  m ake his application 

to leran t of host failure. PVM makes no a ttem p t to  autom atically  recover tasks 
th a t are killed because of a host failure.

• PVM  provides routines for packing and sending messages and unpacking m es
sages between tasks.

• The PVM  com m unication model provides asynchronous blocking send, asyn
chronous blocking receive, and non-blocking receive functions. In addition to 
these point-to-point com m unication functions the model supports broadcast to 

a set of tasks and to a user-defined group of tasks. W ildcard can be specified 

in the receive for the source and label allowing either or bo th  of these contexts
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to be ignored, A routine can be called to retu rn  inform ation about received 

messages.

• T he user can define m ulti buffers in PVM  version 3. Message buffers are al
located dynam ically so th a t the m axim um  size messages th a t can be sent or 

received is lim ited only by the am ount of available m em ory on a given host.

•  D ynam ic process groups are im plem ented on top of PVM . In this im plem enta

tion, a process can belong to m ultiple groups th a t can change dynam ically at 
any tim e during a com putation. Routines are provided for tasks to  join and 

leave a nam ed group. Tasks can also request inform ation about other group 
m em bers.

3.2.3. Developing a Good PVM A pplication

A pplication program s view PVM  as a general and flexible parallel com puting re

source th a t supports a message-passing model of com putation. This resource m ay be 
accessed a t th ree different levels [56] :

1. T he transparen t mode, in which tasks are autom atically  executed on the  m ost 

appropria te  host (general the least loaded com puter).

2. T he architecture-dependent mode in which the user m ay indicate specific archi
tectu res on which particu lar tasks are to be executed.

3. The low-level m ode in which a particular host may be specified.

Such layering perm its flexibility while retaining the ability to exploit particu lar strengths 

of individual m achines on the network.

A pplication program s under PVM  may possess arb itrary  control and dependency 
structures. In addition, any process may com m unicate an d /o r synchronize w ith any 
other. This allows for the m ost general form of m ulti-instruction  m u lti-da ta  flow 

(M IM D ) parallel com putation, bu t in practice-m ode concurrent applications are 
m ore structu red . Two typical structures are the Single P rogram  M ulti-D ata  (SPM D) 
m odel, in which all processes are identical, and the m aster/slave  m odel, also known 

as server/clien ts, in which a set of com putational slave processes perform s work for 
one or more m aster processes.

T here are no lim itations to the program m ing paradigm  a PVM  user may choose. 
Any specific control and dependent structure may be im plem ented under the  PVM  

system  by appropria te use of PVM  constructs. On the o ther hand  there are cer
ta in  considerations [175] of which the application developer should be aware when 

program m ing any message passing system.
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T he first consideration is task granularity. This is typically m easured as a ratio  of 

the  num ber of bytes received by a process to the num ber of floating point operations 

a process perform s. The tradeoff is the larger the granularity  the higher the  speedup 

bu t often there is a reduction in the available parallelism  as well.

The second consideration is the num ber of messages sent. T he num ber of bytes 

received m ay be sent in m any small messages or in a few large messages. Using a few 

large messages can reduce the  to tal message start-up  tim e. T here are cases where 
sm all messages can be overlapped with other com putations so th a t the ir overhead is 
masked.

D e f in it io n  3 .6  Functional parallelism: There are different algorithmic subcompo
nents o f  the computation in each processor.

D e f in it io n  3 .7  Data parallelism: the data are partitioned and distributed to all the 

processors; algorithmic subcomponents of the computation which are often similar are 
performed fo r  each part of data and information is passed between processes until the 
problem is solved.

A th ird  consideration is whether the application is b e tte r  suitable to  functional 
parallelism  or d a ta  parallelism . For example, a vector supercom puter m ay solve a 

p art of a problem  suitable for vectorization, a m ultiprocessor m ay solve another p art 
of the  problem  th a t is suited to parallelization, and a graphics w orkstation m ay be 

used to visualize the generated da ta  in real time. Each m achine perform s different 

functions (possibly on the same data). Of course in PVM  both  m odels can be mixed 
in a hybrid th a t exploits the strengths of each machine.

T here are additional considerations about networking for the  application devel
oper if he wishes to  run his parallel application over a network of m achines. His 

parallel program  will be sharing the network with other users. This m ultiuser, m u lti
tasking environm ent affects both the com munication and com putational perform ance 
of his program  in complex ways.

F irst, there is different com putational power on each m achine in the  configura

tion. Second, there are the effects of long message latency across the  network. Third , 
the  com putational perform ance and effective network bandw idth  are dynam ically 
changing as o ther users share these resources. Many of these network considerations 

are taken care of by incorporation of some form of load balancing into a parallel 
application.

D e f in it io n  3 .8  A n application A is a f-tuple { P , G f f \ e } ,  where P  is a set o f  n 

processors; G — (T, A) is an undirected graph; T is a set o f I processes; A is a set o f
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undirected edges corresponding to communication between processes; /  : T x P  To 

is a function such that f{~j,p) returns the cost required to compute task 7  € T cm 

processor p  £  P;  e : A  x A —> To is a function returning the cost associated with 
communication between processes i f  they are mapped to dijferent processors. The load 

balancing is to minimize the global cost [149] o f Y l f i l i P )  +  53 e(7 >^)-

In a m ultiuser network environm ent load balancing is the single m ost im portan t 

perform ance enhancer. There are many load balancing schemes for parallel program s. 

We will describe the  two m ost common schemes used in network com puting [74].

The sim plest m ethod is static load balancing. In this m ethod the  problem  is 

divided up, and tasks are assigned to processors only once. The d a ta  partition ing  

m ay occur off-line before the job is started , or the partitioning m ay occur as an early 
step in an application. The size of the tasks or the num ber of tasks assigned to a 
given m achine can be varied to  account for the different com putational powers of the 

m achines. Since all the  tasks can be active from the beginning, they can com m unicate 
and coordinate w ith one another. On a lightly loaded network, s ta tic  load balancing 

can be quite effective.

W hen the com putational loads are varying, a dynamic load balance scheme is 

required. The m ost popular m ethod is called the Pool of Tasks paradigm . It is 

typically im plem ented in a m aster/slave program  where the m aster program  creates 
and holds the pool and farms out tasks to slave programs as they fall idle. The pool 
is usually im plem ented as a queue and if the tasks vary in size then  the  larger tasks 

are placed near the  head of the queue. W ith this m ethod all the slave processes are 
kept busy as long as there are tasks left in the pool.

3.2.4. M onitoring and debugging a PVM  A pplication

In general, debugging parallel programs is much more difficult th an  debugging serial 
program s. Not only are there more processes running sim ultaneously, bu t their in ter

action can also cause errors. W hile PVM provides a solid program m ing base, it does 
not provide the user with m any tools for analyzing or debugging PVM  program s. Xab 

(X-window Analysis and deBugging) [33] is a tool for the visual (X-based) analysis 
and debugging of PVM  programs. Xab gives the user direct feedback as to w hat PVM  
functions his program  is performing. In its simplest form, this feedback is displayed 
in a X-window. Xab uses PVM to m onitor PVM  programs. This makes Xab very 

portab le  bu t it leads to interesting issues of how to make Xab com patible w ith the 

program s it m onitors.

Xab consists of three m ain com ponents, a user library, a m onitoring program  and 
an X window front end. The user library provides instrum ented  versions of the  PVM
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abmon3

Node 2 
pvm_recv(...)

'  Node 1 
pvm_send(...)

xab_send(...)
xab__sendevent 
pvm_send (...)

Fig. 9. Node 1 task is calling pvm_send to send a message to node 2 task. Node l ’s 

pvm_send actually translates into an xab„send. The xab„send sends an event 

message to abm on3 and then performs the actual pvm_send on behalf of the 
program .

calls. T he m onitoring program  runs as a PVM process and gathers m onitor events in 
the form  of PVM  messages. The Xab front end displays inform ation graphically about 

PV M  processes and messages. The approach of real tim e m onitoring is particularly  

apropos in a heterogeneous m ultiprogram m ing environm ent. M onitoring can help 
give the user insight into how a program  is behaving in such an environm ent.

T he Xab routines perform the norm al PVM functions for the user bu t they also 

send PVM  messages to a special m onitoring process, called abmon , illustrated  in 
F igure 9. T he abm on process receives event messages from the instruction  of PVM  
calls, and form ats them  into hum an readable form. The fo rm atted  event messages 

can either be w ritten  to  a file or sent to the Xab display front end program .

3.3 . U se  o f  T e l  to  D ev e lo p  In teractive  A pp lica t ion

A general-purpose program m able com mand language amplifies the power of software 

by allowing users to write programs in the com mand language in order to extend the 
softw are’s built-in facilities. Among the best-known exam ples of powerful com m and 
languages are those of the  unix shell [108] and Emacs  editor [171].

Nowadays it is possible and easy to develop interactive applications on a personal 

w orkstation. U nfortunately, few of today’s interactive applications have the  power 
of the  shell com m and languages. W here good com mand languages exist, they tend  

to be tied to specific programs. Each new interactive application requires a new 

com m and language to be developed. In most cases application program m ers do not
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have tim e or inclination to im plem ent a general-purpose facility, so the  resulting 

com m and languages tend to  have insufficient power and clumsy syntax [150],

Tel stands for “Tool Com m and Language” [150, 151, 152] which is general- 

purpose, em beddable, and powerful. It consists of a simple Tel shell application called 
tclsh  and a library  package th a t programs can use as the basis for their com m and 
languages.

Tel im plem ents an in terpreter for a simple program m ing language th a t provides 
variables, procedures, control constructs like z/and  fo r , a rithm etic  expressions, lists, 

strings and o ther features. Tel also allows applications to extend the  generic com m and 

set w ith application-specific commands. An application need only im plem ent a few 

basic Tel com m ands related to the application; when these are com bined with the 

Tel library  a fully-program m able com mand language results.

3.3.1. Tel language Syntax

D e fin it io n  3 .9  The Syn tax  o f  Tel language is defined by Backus et al Form  (B N F ) [15]  
as the fo llow ing :

<Tcl-script>
<C-separator>
< T cl- comman d >
< Separator >
< Field >

<R-syntactic-construct>
<W ord>
< Command >

= <Tcl-command> <C-separator> <Tcl-command> •••
= I hiewfine-key’
= <Field> <Separator> < Field> <Separator> • • •
— ‘space’ | ‘tab ’
— <Word> | <L-syntactic-construct> <W ord> (

<Word> <R-syntactic-construct>
<L-syntactic-construct> ::= ‘[’ j

=  T  I '} ’
= <Command> | <Argument> j <Comment>
= <Built-in-command> | < Application-specific-command> 
| ‘proc’

< Argument> ASCII-string | ‘$’ ASCII-string |
ASCII-string ‘\special-cliaracter’ ASCII-string

< Comment> ::= ‘# ’ ASCII-string

The angular brackets (<>) delimit meta-linguistic terms and the vertical bars (\) sep

arate alternatives (read as ‘o r ’). The double-colon equals (::=) is to be read as ‘may  
be’.

T el’s basic syntax is similar to th a t of the unix shell: a com m and consist of one 
or m ore fields separated  by spaces or tabs. Unlike the unix shell, each Tel com m and 

returns a string result, or the em pty string if a retu rn  value isn’t appropriate. T here 

are four additional syntactic constructs in Tel, which give the language a Lisp-like [1] 
flavor.

T he following exam ples sum m arize a few of the key features of Tel:
E x a m p le  X
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set a 934 
put a; set a b

Simple Tel commands consist o f to ords separated by white space. The first word is a 
command name (here is ‘s e t ’ and the additional words are arguments fo r  the command  
(here is ‘93f ’). ‘set a 93f ’ means that variable ’a ’ is set to a new value 93f- ‘put 
a ’ means that character ‘a ’ is displayed on the screen. Commands are separated by 

semi-colons or newlines. □

E x a m p le  2

set msg "Hello, world" 
set x {a b {xl x2}}

Double-quotes or nested curly braces may be used to delimit complex arguments in Tel 
commands. Each o f  the above commands has three fields in all. I f  an argument is 
enclosed in braces then the contents of the braces are passed to the command without 
any further  interpretation (newline and semi-colons are not command separators and 

the substitutions described in Examples 3-5 are not performed). I f  an argument is en
closed in quotes, then the substitutions in Examples 3-5 are performed on its contents. 
□

E x a m p le  3

print $rasg
if $i < 2 {set j 27}

Dollar signs invoke variable substitution in Tel commands: the dollar sign and vari
able name will be replaced with the value of the variable in the argument passed to the 
command. □

E x a m p le  4

print [list q r $x]
set msg [format "x is °/0s" $x]

Tel commands may contain other commands enclosed in brackets. When this occurs, 
the nested command is executed and its result is substituted into the argument o f  the 

enclosing command, replacing the bracketed command. □
E x a m p le  5

set msg "{ and [ are special" 
print Hellol\n

Backslashes prevent special interpretation of characters like braces and brackets in Tel 
commands. Backslashes can also be used to insert control characters into commands, 
as in the second command above. □

Tel evaluates a com m and in two steps [152] : parsing and execution, as shown 

in Figure 10. In the  parsing step the Tel in terpreter divides the  com m and up into
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> Words

Tel Parse

Result

Command String

Command Procedure

Fig. 10. Tel Com m and Execute Flow

words and perform s substitutions. Parsing is done in exactly the  sam e way for every 
com m and. During the  parsing step the Tel in terpreter does not apply any m eaning 

to  the  values of the  words. Tel ju st performs a set of simple string operations such as 

replacing the  characters ”$a” with the string stored in variable a; Tel does not know 
or care w hether a or the  resulting word is a num ber or anything else.

In the  executing step m eaning is applied to the words of the  com m and. Tel trea ts 
the  first words as a com m and nam e, checking to see if the com m and is defined and 

locating a com m and procedure to carry out its function. If the  com m and is defined 
then  the  Tel in terp re ter invokes its com mand procedure, passing all of the  words of 
th e  com m and to the com m and procedure.

3.3.2. Tel D ata Type

There is only one type of da ta  in Tel [152]: strings. All com m ands, argum ents to 

com m ands, results returned  by commands, and variable values are ASCII strings. 

T he use of strings throughout Tel makes it easy to pass inform ation back and forth  

between Tel library procedures and C code in the enclosing application.
A lthough everything in Tel is a string, many com m ands expect the ir string ar

gum ents to  have particu lar form ats. There are three particu larly  com m on form ats 

for strings [150]: list, expressions and commands.

1. A list is ju st a string containing one or more fields separated  by w hite space, 
sim ilar to a com m and. For example, the string 

dog c a t  { h o rse  cow mule} b e a r  

is a list w ith three elements.
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Parser

Build-In
Commands

Init

Command

i n □ □
Application-Specific 

Commands

Tel Application

Fig. 11. Tel Em beddable S tructure

2. The second common form for a string is a numeric expression. Tel expressions 

have the same operators and precedence as expressions in C.

3. The th ird  common form for a string is as com m ands (or sequences of com
m ands). A rgum ents of this form are used in Tel com m ands th a t im plem ent 
control structures. For example, consider the following com m and:

E x a m p le  6

if { $a < $b } { 
set tmp $a 
set a $b 
set b $tmp

>

The i f  com m and receives two argum ents here, each of which is delim ited by 
curly braces. I f  is a built-in com mand tha t evaluates its first argum ent as an 
expression; if the result is non-zero, i f  executes its second argum ent as a Tel 
com m and.

3.3.3. Em bedding An Application into Tel

Tel is an em bedded language [150]. It is a library th a t is designed to be linked 
together w ith C applications as shown in Figure 11. The main loop of the application 
generates Tel com m ands. This could happen in any of serveral ways, depending on
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the application. One way is to read commands from standard  input; this results 
in a shell-like program . A nother way, used by Tk, is to associate Tel com m ands 
w ith  X events such as bu tton  presses or keystrokes; when an X event occurs, the 

corresponding com m ands are executed. W hen the application has generated a Tel 
com m and it passes it to a Tel library procedure for evalution. The Tel in terpreter 

parses the  com m and, performs the substitutions described in Exam ples 2-5, uses the 

first word of the  com m and to locate a com m and procedure for the  com m and, and 

then  calls the  com m and procedure to actually execute the com m and. T he com m and 
procedure carries out its function and returns a string result, which the Tel in terp re ter 
re tu rns back to th e  calling code in the application.

T he Tel library includes several built-in commands th a t im plem ent the generic 

facilities [152] such as variables and looping. Additional com m and procedures m ay be 
provided by each application. The application registers its own specific com m ands by 
passing the ir nam es and com m and procedures to Tel. This inform ation is used la ter 

by the  Tel in terpreter when it evaluates com mand strings. Application-specific and 

built-in  com m ands have exactly the same structure; they are indistinguishable except 
th a t built-in  com m ands are registered autom atically and users m ay expect them  to 

be present in all applications. New com mands may be created  and deleted a t any 

tim e while an application executes.

T he m ost im portan t aspects of Tel are the simplicity of th e  language and the  
sim plicity of its interface to C programs. The language sim plicity makes Tel easy to 

learn; the  interface sim plicity makes it easy to use Tel in applications, easy to w rite 

new Tel com m ands, and easy to use Tel to compose prim itives w ritten  in C.

3.3.4. Tk — Extending Tel into X l l  W indow System

Tk is a new toolkit for the X l l  window system [168]. Like other X l l  toolkits such 

as X t [12], Tk consists of a set of C library procedures in tended to  simplify the  task 
of constructing windowing applications. The Tk library procedures, like those of 

o ther toolkits, serve two general purposes [151]; framework and convenience. F irst, 

they provide a framework th a t allows applications to be built out of m any small 

interface elem ents called widgets (e.g. buttons, scrollbars, menus, etc.). The to o lk it’s 

fram ework makes it possible to design widgets independently, compose them  into 
in teresting applications, and re-use them  in m any different situations w ithout re

design. The second purpose of the toolkit is to provide ready-m ade solutions for 
the  m ost com m on needs of windowing applications. For exam ple, Tk includes a set 

of com m only used widgets plus procedures to make it easy to build new widgets. 

Using Tk, it is possible to build many interesting windowing applications by plugging
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together existing widgets. Many other applications can be built by constructing one 
or two new widget types and combining them  with T k ’s existing widgets.

A lthough T k ’s overall purpose is similar to th a t of other toolkits, its im plem en

ta tio n  has the  unusual property  th a t it is based around the Tel com m and language. 

The Tel interfaces allow the look and feel of an application to be queried and modified 
at any point in the application’s execution. They also allow new interface elem ents, 

or even new applications, to be created dynam ically ju s t by w riting Tel script. C 
code is needed only for creating new widget types or d a ta  structures.

Each w idget/w indow  has a tex tual nam e [151] th a t is used to  refer to  it in Tel 
com m ands. W indow names are similar to the hierarchical pa th  nam es used to nam e 

files in Unix, except th a t is used as the separator character instead of “/ ” . The 

nam e refers to the topm ost window in the hierarchy, which is called the m ain 
window.

Tk applications are controlled by two kinds of Tel scripts [152]: an initialization 
script and event handlers. The initialization script is executed when the application 
s ta rts  up. I t creates the  application’s user interface, loads the  app lication’s da ta  
structu res, and perform s any other initialization needed by the  application. Once 
in itia lization is com plete, the application enters an X event loop to wait for user 

interactions. W henever an interesting X event occurs, such as the user invoking a 

m enu entry  or moving the mouse, a Tel script is invoked to  process th a t event. These 
scripts are called event handlers; they can invoke application specific Tel com m ands, 
modify th e  user interface, or do m any other things.

Wish  is the  sim plest possible Tk application. The only Tel com m ands it contains 

are the  Tel built-ins and the additional commands provided by Tk. T he following is 

the  famous ’’Hello, world” exam ple.4 
E x a m p le  7

button .b -text "Hello, world!" -command "destroy ." 
pack .b

Type the  above com m ands to wish and the produced application is shown in Figure 12.
T k provides four m ain groups of Tel commands; they create  widgets, arrange 

widgets on the  screen, com m unicate w ith existing widgets, and interconnect widgets 
w ithin and between applications. W henever a new widget is created Tk also creates 
a new Tel com m and whose nam e is the same as the w idget’s nam e. This com m and is 
called a widget com m and, and the set of all widget com m ands (one for each widget 

in the  application) constitu tes the th ird  m ajor group of T k ’s com m ands.

The m ost im portan t feature [151] of Tk is th a t it allows different applications 

to work together in powerful ways. Tk provides a rem ote-procedure-call-like facility
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Hello, worid!
nvor̂ j

a im

Fig. 12. Tk Im plem entation of the Exam ple “Hello, W orld”

called send  th a t allows any Tk-based application to invoke Tel com m ands in any 

o ther Tk-based application. Send takes two arguments: the nam e of an applica

tion and a Tel com m and. This facility encourages the developm ent of lots of small 
specialized tools th a t can be program m ed with send to work together in interesting 
ways. The tools could be developed and m aintained independently, and yet be used 

in m any different ways. It could result in much richer and m ore powerful interactive 

environm ents than  we have today.

3 .4 . D es ig n  In te ra c tiv e  P arallel D istr ib u ted  C o m p u tin g  E n v iro n m en t

In PVM  version 3, there are the C language and Fortran 77 interface libraries. In 
order to  give PVM  the facility of interactive application, we do not want to invent 
a new wheel, we ju st use the powerful tool language Tel and bind Tel w ith PVM 
C language interface library, called as Interactive Parallel D istributed Com puting 
Environm ent (IPD C E).

There are two ways of im plem entation. One is only to use basic Tel and the 

o ther is to use T c l+ T k  as shown in Figure 13. The advantage of the first is th a t we 
do not need to  use an X environm ent which is very large in size and slow in some old 

machines. We can do interactive parallel com puting character-based applications. 
The advantage of the second is we can use Graphics User Interface (GUI) under 

X window, which is the de facto standard of GUI. W ith Tk you can develop GUI 

beautifully  for your interactive parallel com puting application.

In binding Tel with the PVM C language interface library, the  first consideration 
is the nam es of library procedures. We use the same approach to change the character 

to  T  in the  nam e of its corresponding PVM C library procedure, as in the exam ple
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[interpreter JInterpreter
. PVM 3 
Commands

Tk
Commands

PVM 3 
Commands

Tel
Build-in
Commands

Tel
Build-in
Commands

TCL + PVM TK + PVM

Fig. 13. Bind Tel or Tk with PVM  

PVM  C procedure nam e Tel PVM  procedure nam e

pvm_mytid

pvm_send

pvm lm ytid

pvm lsend

The second consideration involves the argum ents of library procedures. As in the 
C language, we use the  value-pass m ethod in IPDCE. As we know, we can sim ulate 

th e  reference-pass m ethod by a pointer in C language, bu t we do not use the approach 
in IPD C E. Instead of a pointer, we use the LIST structure as argum ent to pass input 

values into a procedure and return  a new LIST structure from the procedure to re tu rn  
result values.

E x a m p le  8

int info pvm_config( int *nhost, int *narch, struct hostinfo
**hostp ); in PVM C library

RETLIST pvmlconfig; in IPDCE library

where R E T L I S T  = info nhost narch hostlist; info, nhost, narch are integer; hostlist 
is host-name list. □

In the C version of the procedure, the argum ents nhost and narch are pointers 

and hostp is the  po in te r’s pointer. They are used to pass result value.

Each Tel com m and is represented by a com m and procedure w ritten  in C. The 
interface to  a com m and procedure is defined by the TcLCmdProc  procedure pro to
type:

typedef int Tcl_CmdProc(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[] );

Each com m and procedure takes four argum ents. The first, clientData , is useful 

when the  com m and is associated with object-oriented style program m ing. The sec

ond, interp , is the in terpreter in which the com mand was invoked. T he th ird  and
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fourth  argum ents have the same m eaning as the argc and argv argum ents in a C m ain 

program : argc specifies the  to tal num ber of words in the Tel com m and and argv is 

an array  of pointers to the  values of the words. A com m and procedure retu rns two 

values. One is an integer completion code (e.g. TC L-O K  or T C L -E R R O R )  and the 

o ther is a result string or error message in in terp— > result.
The following is the com m and procedure for a new com m and called P V M -m ytid  

which enrols your process in PVM.
E x a m p le  9

int PVM.mytidCclientData, interp, argc, argv)
ClientData clientData; Tcl_Interp *interp; int argc; char *argv[];

register int tid; 
if( argc != 1 )
{ interp->result = "wrong # args"; return TCL_ERR0R; } 
if( (tid-((PVM_XAB3) ? xab_mytid() : pvm_mytid()) ) < 0 )
{ sprintf (interp-->result, "°/0d" ,tid); return TCL_ERR0R; } 
else
{ sprintf (interp->result, n,/0d" ,tid) ; return TCL_0K; }

>

In order for a com m and procedure to  be invoked by Tel, we m ust register the 

new com m and by calling TcLCreateCommand. For exam ple
E x a m p le  10

Tcl_CreateCommand(interp, "pvmlmytid", PVM_mytid,(ClientData *)NULL,
(Tcl_CmdDeleteProc *)NULL );

The first argum ent to TcLCreateCommand  identifies the in terp re te r in which the 
com m and will be used. The second argum ent specifies the nam e for the  com m and and 

the  th ird  argum ent specifies its com m and procedure. The fourth  and fifth argum ents 
are rela ted  to  ClientData, which is not used in IPD CE design. TcLCreateCommand  

will create a new com m and for interp nam ed pvmlmytid. W henever pvm lm ytid  is 

invoked in interp , Tel will call P V M -m ytid  to carry out its function. After the  above 

call to TcLcreateCommand , pvm lm ytid  can be used in TCL script ju s t like any other 
com m and.

Following the  approach described above, we can design the  whole PVM  3 Tel 
interface from its C library. Here are all the Tel com m and nam es:

Process Control: pvm lm ytid, pvm lexit, pvm lspawn, pvm lkill.

Information:  pvm lparen t, pvm lpstat, pvm lpvm lm stat, pvm lconfig, pvm ltasks,
pvm lgetopt, pvm ltid tohost.

D ynamic Configuration: pvm laddhosts, pvm ldelhosts, pvm lhalt, pvm lstart_pvm d.
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Signalling: pvm lsendsig, pvmlnotify.

Error Messages: pvm lperror, pvm lserror.

Message Buffers: pvm lm kbuf, pvm linitsend, pvmlfreebuf, pvm lgetrbuf, pvm lgets- 
buf, pvm lsetsbuf, pvm lsetrbuf.

Packing Data: pvm lpkbyte, pvm lpkcplx, pvm lpkdcplx, pvm lpkdouble, pvm lpk-
float, pvm lpkin t, pvm lpklong, pvm lshort, pvm lpkstr

Sending and Receiving Data: pvm lsend, pvm lm cast, pvm lnrecv, pvm lrecv, pvm lprobe, 

pvm lbufinfo, pvmlrecvf, pvm ladvise, pvm lfvend, pvm lvrecv, pvm lvbufinfo.

Unpacking Data: pvm lupkbyte, pvm lupkcplx, pvm lupkdcplx , pvm lupkdouble,

pvm lupkfloat, pvm lupkin t, pvm lupklong, pvm lupkshort, pvm lupkstr.

Dynam ic Group: pvm ljoingroup, pvmllvgroup, pvm lgettid , pvm lgetinst, pvm lget- 
gsize, pvm lbarier, pvm lbcast.

We also provide the support of Xab version 3 in IPD C E. Besides the  original 
function of Xab 3, users can dynam ically set on or off the Xab. There are two new 

Tel com m ands ’’xab lon” for starting  the Xab and ’’xabloff” for ending the Xab.

One problem  in IPD C E is th a t you cannot use binary type d a ta  d irectly  since 
only string type d a ta  is officially supported in Tel. A ctually in all packing-data and 

unpacking-data com m ands the input from Tel script are string type; for exam ple, 
”-13.5el0” is a string expression of a floating point num ber. If the  size of da ta  

which requires transfer to  another machine is small, we can use the  string type to 
com m unicate w ith the other machine. But if the size of d a ta  is large, we cannot use 

the  string type since there are very high overheads com pared w ith string expressions 

and original binary expressions. For example, ”-13.5el0” needs 9 bytes as a string 
which also includes a end m ark ’\ 0 ’ of C string style, but the  original expression only 
uses 4 bytes if it is floating-point type or 8 bytes if it is double-precision type.

A lthough Tel does not allow a user to define any new d a ta  type, it provides an 
object-oriented style data-save structure, the hash table. A hash tab le  is a collection 
of entries, where each entry  consists of a key and a value. No two entries have the 

same key. Given a key, a hash table can very quickly locate its en try  and hence the  

associated value. Tel exports its general-purpose hash tab le  facilities through a set 
of G library procedures so th a t applications can use them . In T e l’s hash table, the 

values for hash tab le entries are item s of type C lientD ata, which are large enough to  

hold either an integer or a pointer.

In order to  solve the  problem  of no binary type in IPD C E, we define a new C 
struc tu re  as
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typedef struct GBox_ { unsigned long int total„size, cur_size,
view_pos, width; 

char *b_array; } GBOX;

where b-array is a  binary character array, totaLsize is the to ta l size of the  b-array, 
c u rs ize  is th e  current size of b-array, view-pos is the current position of view point 
and width is the  w idth of two-dimensional da ta  array. Several Tel com m ands are 
im plem ented for processing a GBOX da ta  structure, gblcreate produces a new GBOX 
object, gbldestroy destroys a GBOX object, gblstate states the  s ta tu s of a GBOX 

object, gblpush pushes a set of string type da ta  into a GBOX object, gblpop pops a 

set of string type d a ta  from a GBOX object, gblview displays value of a p art of a 
G OBX  object, gblseek seeks a new view position in a GBOX object, gblfread creates 
a new GBOX and reads d a ta  from a file into the GBOX, gblfwrite w rites d a ta  of a 

GBOX into a file and destroys the GBOX object.

The first thing to do is define a new hash table. For exam ple,
E x a m p le  11

Tcl_HashTable GBoxTable;

Tcl_InitHashTable(&GBoxTable, TCL_STRING_KEYS);

The second stage is to create an entry with a given key, and TcLSetHash Value 
sets the  value associated with the entry. For example,

E x a m p le  12

int GBox_create(clientData, interp, argc, argv)

do { sprintf(interp->result, "gbox%d", id); id++;
entryP = Tcl_CreateHashEntry(&GBoxTable, interp->result,

&new);
} while( !new);
if( (gbp = (GBOX *)malloc(sizeof(GBOX))) == NULL )
{ interp->result = "wrong # no mem space"; return TCL_ERR0R; }
Tcl_SetHashValue(entryP, gbp);

return TCL_QK;
>

The th ird  stage is to  find an entry with the procedure TcLFindHashEntry. 

TcLFindHashEntry  is typically used to find an object given its nam e. For exam 
ple,

E x a m p le  13

int GBox_destroy(clientData, interp, argc, argv)



52

for( i=l; Kargc; i++ )
{ entryP = Tcl_FindHashEntry(&GBoxTable, argvfi]); 

if( entryP == NULL ) continue;
gbp = (GBOX *)Tcl_GetHashValue(entryP); 
Tcl_DeleteHashEntry(entryP);
free(gbp->array); free(gbp);

}
return TCL OK;

>

T he last stage is to delete an entry with the procedure TcLDeleteHashEntry , as 

shown in the  above example.
GBOX can be read /w ritten  from /to  file with gblfread/gblwrite com m ands. The 

form at of the  file is ppm  [159] for two-dimensional da ta  and modified ppm  1 for 
one-dim ensional data.

1See A ppendix A
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CHAPTER 4

T H E  ST A C K  F IL T E R S, M IN IM U M  T H R E S H O L D  D E C O M P O S IT IO N  
A N D  IN T E R A C T IV E  ST A C K  F IL T E R IN G  S Y S T E M

4.1 . In tr o d u ctio n

In this chapter we present a new procedure which uses m inim um  threshold decom po
sition and the  positive Boolean functioii-to realize stack filtering. In order to reduce 

the  tim e com plexity of stack filters, we try  to minimize the num ber of logical op
erations and use the  CPU bit-fields parallel m ethod to do stack filtering. A full 

parallel algorithm  based on the  new procedure and the da ta  parallel scheme has been 
im plem ented. Under the  Interactive Parallel D istributed C om puting Environm ent 

(IPD C E ) we develop a powerful, Interactive Stack F iltering System , which provides 

beautifu l G raphics User Interface (GUI), one- and two-dim ensional stack filtering 
procedures and convenient selection of series and parallel algorithm s. We apply two 
num eric exam ples to  the stack filter and the results show th a t the in teractive parallel 
stack filtering system  is efficient for both sequential and parallel filtering algorithm .

4 .2 . S tack  F ilters  B a sed  on T h resh o ld  D e c o m p o sit io n

Consider a signal X  — (A i, • • •, A;v), where each A* E {0,1, • • •, 2M _ 1}. The th resh
old decom position property  of X  can be defined [62, 63] by

*!• =  r ^ )  =  .* (4.1)
1 if  Ah >  /

0 otherwise 

for I = 1,2, -■■ ,2 m_1. (4.2)

Given two binary signals, u and u, a property called the stacking property  holds 
between u and v if and only if >  Vk for all h. Suppose u and v are filtered w ith a 
binary filter, of window w idth 6, defined by a Boolean function /  : {0, l} b —> {0,1}. 

T he binary  filter /  is said to  possess the stacking property if and only if

f{u )  >  f ( v ) .  (4.3)

In o ther words, if the  binary output signals are piled on top of one another according 

to  their threshold level, the result is a column of 0’s piled on top of a colum n of l ’s.
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Xl x 2 x 3 x 1X 2 +  X\ X3 +  X2X3 m ed (a ‘i ,  x 2, x 3)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

Table IV. D etailed explanation of the MSP form of the P B F  for the  th ird-order binary 

m edian filter

It has been shown[81] th a t a necessary and sufficient condition for a Boolean 
function to  satisfy the  stacking property is th a t the function be a Positive Boolean 

Function P B F , i.e., no com plement of any of the input variables m ust appear in the 
m inim um -sum -of products (MSP) form of the function. For exam ple, the  th ird-order 
binary m edian is

f ( x u x 2, x 3) = x i x 2 +  rr'1^3 +  x 2x 3, (4.4)

where m ultip lication  denotes logical A N D  and addition denotes logical O R . The

details of this are listed in Table IV. The function (4.4) is a PB F , bu t the following
exam ple is not,

f 1 (x 1 , x 2 , x 3) = x i x 2 + x 3 x i ,  (4.5)

since x i x 2 includes the com plem ent, ah of variable aq.

D e fin it io n  4.1  A stack filter f s (•) of window width b =  2 p + l is based on a b-variable 

positive Boolean function P B F  /( • )  : { 0 ,l} fa —» {0,1} operating on the binary signals. 
The output o f  the stack filter is obtained by adding all the binary outputs:

/  M  \  M

f s ( X i )  =  s ,  = E S /  ( t , ( ^ o )
\/=l J /=i

M  M

=  E  /  O x  V )  =  £ / ( * ' )  (4 .6 )
/ = i  i

=  m ax{/ | f (x[ )  = 1,1 e  {1,2, • • • ,2 M_1}}, (4.7)

whtvt  , A i5 • 5 ]■.

The above equations reveal th a t the stack filtering algorithm  is composed of 
th ree steps. The first is th a t of threshold decomposition, the  second involves Boolean 
function logic operations, and the th ird  involves accum ulation of all th e  b inary  results 

generated w ithin the  second step; equivalently, this is a search for the highest level at
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which the  Boolean logical ou tpu t, generated within the second step, is 1 . The general 

stack filter algorithm  can be expressed as follows:
A lg o r i th m  4.1  : Original stack filter algorithm

1. For each signal apply threshold decomposition equation (4.2) to  get the 

binary signal x\.

2. For each binary signal, apply the PB F  f s (X { )  to get the binary ou tpu t value r\.

3. For all b inary outputs for position i, accum ulate them  to  get the  stack filter 

ou tp u t f S{Xi).

The com putational com plexity of this algorithm  is very high since the num ber 
(2m — 1) of threshold decompositions grows exponentially w ith th e  num ber bits (M )  

associated w ith th e  signal value. Lin et al [119] use weighted order s ta tis tic  filters 

based on threshold logic instead of stack filters since there is equivalence between 

linear separable Boolean functions and threshold logic. K ar [107] suggested an al
gorithm  which transform s a given sequence to equivalent-rank-preserving sequences 
through b it m anipulation. This reduces the problem of finding a rank-order selection 

for a  &-bit-long num ber to finding out k rank-order selections for ‘l ’-bit-long num bers.

4 .3 . M in im u m  T h resh o ld  D eco m p o sit io n  o f  S ignal

In order to  speed up the stack filtering algorithm , the first th ing  we should do is to 
reduce the  num ber of threshold decomposition levels, since the  com parison operation 

th a t underlies threshold decom position is ra ther slow, relative to logic and arithm etic  

operations. From  the  theory of d a ta  retrieval, the m inim um  operation tim e for picking 

out a particu lar one of a set of N  values, is log2 N .  The search scheme is known as 
b inary  search in which at each step a m idpoint value is exam ined to find out in which 
direction to  continue.

Based on the stacking property of the output of stack filters, we can define the  
search procedure as follows :

D e f in it io n  4 .2  For an M -bits  input signal, search each binary output value r3 from  
the set oj , r M~22M ~ 2 , • • • , 7"12 ,?’0} using a binary searching scheme, where

r3 , j  =  0 , 1 , ■ • • , M  — 1 , are binary and r3 — 0 means that the next threshold level will 
decrease and r 3 — 1 means that the next threshold level will increase. The output o f  
the stack filter is Y ,]j=o1 r3 2 3.

In com pany w ith the above output searching, we can define a new M inim um  
Threshold Decomposition (M T D ) which also uses a binary search m ethod to  deter

m ine a new threshold decom position value.
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D e f in it io n  4 .3  For an M -bits  input signal, there are M  level threshold decomposi
tions. They are

qpM-l  „  2m ~1
M — 1

T 3 = Y .  r ‘2‘ + 2J> i  =  M  — 2, ■ • • ,0. (4.8)
1-3+1

In order to  present the  new m ethod of m inim um  threshold decom position, let us 

describe a sim ple exam ple of a m edian filter. Consider a 3 th ird-order m edian filter, 

where each da tum  belongs to the set {0 ,1 ,2 ,3 } , and M  = 2. Suppose th a t the da ta  
in the window are 1 , (2 ), 0 and th a t the current filtering position is at 2 , as indicated 
by the  parentheses. Initially, the threshold decomposition level is 2M~l ~  2, the m id

range of [0,4). Applying threshold decomposition using logical A N D  w ith the  datum  

w ritten  as ( 10)2 in binary form, we get binary data  0, (1), 0. T he result of m edian 
filtering at th is level is r 1 — 0 , which means the next direction of search is to the 

lower half of the  range. The new threshold is set to r 121 +  2° =  1. A pplying threshold 

decom position using logical A N D  with datum  (01)2 we get the  binary inpu t d a ta  1,
(0), 0. The central b inary value is not obtained correctly d irectly  from the  logical

AND operation since the  original datum , 2 , is greater than  threshold 1 for ever. The 

correct b inary  d a ta  are 1 , (1), 0. We therefore need a logical variable to record each 

s ta te  th a t will subsequently always be greater than  the threshold. Sim ilarly we need a 
variable to  record each sta te  th a t will subsequently always be less than  the  threshold. 
For this level the  m edian filter’s result is L Finally, the m axim um  threshold level is 1 

and its b inary  m edian filter result is 1 . Thus, the output of the m edian filter in this 
position is 1 .

In each M TD level, define two new logic variable ‘I t’ and ‘g t’ to record the  M TD 
sta te  of the  curren t datum ; It =  1 & gt = 0 means the datum  is less th an  the threshold 

for ever, gt = 1 Sz It = 0  means the datum  is greater than  the  threshold  for ever, and 

It = 0 &; gt — 0 means th a t the current threshold decomposing value only relates to 
the  current datum .

D e f in it io n  4 .4  For each M T D  level j ,  j  = M  — 1 , M  — 2, • • •, 0, the variables It3 

and gt3 are

lt M - l  = gj.M-1  =  ()

Ttj  =  g tj+1 I ( F +1 k  ( f3 I xj))

g t3 =  lt1+1 k  (gt3+l I ( f3 k  x j)) ,  j  =  M  -  2 , • ■ • ,0 , (4.9)

where we use notation o f C language, “\ ” means logical O R , means logical A N D .
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D e f in it io n  4 .5  The M T D  is

xj = lt3+1 k  (bj 1 gt3+1), (4.10)

where the input signal X{ is • ■ • b°, and b3, j  = M  — 1 , • • • , 1 ,0  are binary.

The new algorithm  based on MTD can be expressed as follows :

A lg o r i th m  4 .2  : Stack filter algorithm  based on m inim um  threshold decom po

sition.

1 . For each signal apply MTD equation (4.10) to get xj.

2. For each x 3, apply the PB F  f s ( X i )  to get binary ou tpu t value r\.

3. C alculate the  new states of variables It3 - 1  and gt3 - 1  using equation (4.9) for the 
next threshold decom position level.

4. After finishing M -level M TD, calculate the ou tpu t of the stack filter at position 

i by E j i h 1 r3-

T h e o re m  4 .1  Given inputs {A^}, i — 0 ,1 ,***,N  and a positive Boolean function  

f s ( ’), the above algorithm produces the same result as the original stack filter.

P r o o f  : Since the difference between algorithm  4.1 and algorithm  4.2 is the 

threshold decom position procedure, we need only to  prove th a t the  new M TD proce

dure works.
Let X i = bM~l bM ~ 2 • • • 616°, and let l tk, g tk be variables to express the s ta te  of 

threshold decom position of current datum  X i.  Suppose in threshold decom position 

level M  — 1, M  — 2, • • • , j - f l ,  variable l tk = g tk =  0, k = M  — 1, • ■ • +  1. Now in
new level j ,  the  variables will change their states.

Case 1 : Variable It3 — 1 . Since in level j - f l  the variables g t3+1 =  0 and It3* 1 ~  0,
equation (4.9) can be simplified as

U3 = r3 & x 3. (4-11)

Because It3 =  1, we have r3 = 1 and xj = 0 .  x 3 = 0 m eans th a t the threshold 
decom position value is zero. We can express it in the original form  (4.2)

X i  =  bM- x2M~l +  6m " 22m “ 2 +  • • • +  b° < T 3. (4.12)

According to  definition 4.3, r3 = 1 means th a t the next threshold value T 3~l increases.

Since T 3~l =  T 3+1 +  2 3 +  2J_1, we have

X i  =  bM~l bM ~ 2 • • • Vb3- 1 • • • b° < T 3 < T 3~l . (4.13)
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T he current datum  X i  will be less than  threshold value T k, k = j  — 1 , j  — 2, • • • , 1, 0 
for ever. This proves th a t the MTD scheme works in this case.

Case 2: Variable gP = 1. Since in level j  +  1 the variables g P +1 — 0 and 

IP+1 — 0, equation (4.9) can be simplified as

gP — r 7 & x{. (4.14)

Because gP  =  1, we have r 7 =  0 and xj — 1. xj =  1 m eans th a t the  threshold 
decom position value is one. We can express it in the original form  (4.2)

= 6m - 12m “ 1 +  6m~22m - 2 +  • • • +  b° > TP  (4.15)

According to definition 4.3, F  — 0 means th a t the next threshold value T J~ 1 decreases.

Since T -7-1 =  T J+1 +  27“ l we have

X i = bM- xbM ~ 2 • • • " - b °  > T 3 > T j ~ \  (4.16)

The current da tum  X i  will be more than  threshold value T fc, k =  j  — 1 , j  — 2 , • ■ ■ , 1 , 0

for ever. This proves th a t the MTD scheme works in this case too. □

4 .4 . T h e  P o s it iv e  B o o le a n  F u n c tio n  a n d  its  M in im u m  L o g ica l O p e ra t io n s  

F o rm u la

We know th a t a positive Boolean function (PB F) has a unique m inim um  sum-of- 
products (M SP) form [140], bu t the num ber of logical operations associated w ith this 
form  increases very quickly. For example, the PB F for the th ird-order m edian filter 
is

/med(® \ %X2 ,X3) =  X1X2 +  X\X3 +  X2X3, (4-17)

which represents only 3 * 1 + 2  =  5 logical operations. For the  fifth-order m edian 
filter, the  P B F  is

f m e d { x  1, «2j £3 ,  £ 4 , £ 5) =  X i X 2X3 +  X1X2X4 +  X \ X 2X$ +  X \ X 3XA +  X i X 3X$ +  X 1X4X5 +

X2X3 X4 +  X2X3 X5 +  X2X4X5 +  X3X4 X5 (4.18)

and the  num ber of logical operations increases to 10*2 +  9 =  29. In general, we sta te
the  following theorem .

T h e o re m  4 .2  For the (2 N  +  1 )th  order binary median filter, the M SP  fo rm  o f its 

P B F  is composed o f items and the number o f logical operations involved is

f f  * (nN+1) + (%N+1) -  1 .
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P ro o f :  We know th a t there are two states, 1 and 0, for each binary datum . 

From  the  definition of the m edian, the condition for the m edian of a set of 2 N  +  1 
d a ta  to  be 1 is equivalent to  the condition th a t there are at least N  +  1 l ’s in the  set 

of data. T he identities of a set of TV -f 1 da ta  can be w ritten  in th e  Boolean logical 

way as x Pix P2 ■ • -£ PJV+1, and these aggregate to form a Sum of P roducts (SP). The 

to ta l num ber of “products” in such an SP is clearly ”  (a ^ +1) • We notice th a t
if any one of the  com ponents of the SP is 1, the m edian is 1 , so th e  Boolean function 
of the  2TV +  1 dot binary m edian filter can be expressed, using logical O R , as an SP.

Each term  in the SP involves N  logical A N D  operations, and there are 

such term s, linked by logical O R  operations. The to ta l num ber of logical operations 

w ithin the  Boolean function is therefore N  * +  (wV+1) — f
□
In order to  reduce the num ber of logical operations, we can rew rite th e  MSP 

in another way which identifies the m inim um  num ber of logical operations. F irst, 
let us consider some simple examples. For the third-order m edian filter, the  P B F  of 
E quation (4.17) can be rew ritten  as

fmed{x 1,^2? ^ 3) =  X\{x2 ~t~ #3) +  X2 X3 . (4.19)

Obviously, the  num ber of logical operations is 4. For a fifth-order m edian filter, the
P B F  of E quation (4.18) can be rew ritten as

fmed,{Xi, X2 , X 3 , £ 4 , £ 5 )  =  X'i(x2 (x3 - f  £ 4  +  £ 5 )  +  £ 3 ( 0 : 4  +  £ 5 )  T

£4£ 5) +  £ 2(£3(0:4 +  £ 5 )  T  x 4 x 5) +  X 3 X 4 X 5 (4.20)

We conjecture th a t, in order to achieve the m inim um  num ber of logical opera
tions, we m ust adopt the following scheme of evaluation:

S  —  £ 4£5

m  = £4 +  £5

M q = £ 31TL -j- S

M i = £2 (£3 +  <3) +  mo

fmed(x 1,£ 2,£ 3,£’4 ,£ 5) =  XxM i  +  X2 M 0 +  £ 3m. (4.21)

From  this scheme, the  num ber of the Boolean logical operations is seen to be 12 
com pared w ith 29 using the basic MSP expression.

For the  general (2N  + l ) th  order m edian filter, we can sim ilarly rew rite th e  PB F, 
as in the  following theorem .
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T h e o re m  4 .3  The P B F  of a (2N  +  l ) th  order binary median filter can be expressed
as

fmed(x 1: x 2-> ' ' ' i ̂ iV+l) — x l{ x 2(' ' * ( £jV-l[ x n (x N+1 +  XN+2 4“ ' 1 1 4“ x 2N+l)T

x N+l{x N+2 +  XN+ 3 +  ' * ' +  X2N+1~̂ ~

x 2N x 2 N + \ \ J'r 

x N  +  l { x N + 2  4" X N + 3  +  1 ' 1 +  x 2N + l ) ~ \ ~

X n + 2 ( x N + 3  +  x N + 4  +  ’ +  X 2 N + 1 4 ”

^ ’2J V ® 2i V + l ]  +

x 2N - lx 2Nx 2N+l)~\-

Xn +2x N+3 ' ’ ' ̂ '2JV+l)4“

^2( x 3{'  ' * ( x n [  x N + l ( x N+ 2  4" ^iV+3 4“ ' ’ * 4" x 2N+l)~\~ 

x N + 2 { x N + 3  4-  X N +4 4"  ’ * * 4“  X 2 N+ 1 ~ \ ~

x 2Nx 2N+l]F

x 2 N - l x 2Nx 2N+l)F

x N+2x N+3 • * • X2N+1) +

x n { x N+l( * • • ( x 2N—2 ( X2N — f i x 2N 4" a^J V + l ^

X2NX2N+1) 4~ 

x 2 N - l x 2Nx 2N+l)JT 

■■•) +

x N+2x N+3 ' 1 ‘ x 2Nx 2N-\-l̂ )~\~ 

x N+lx N+2 ' ' 1 x 2N+l-
(4.22)



61

P ro o f :  W ith in  form ula (4.22), none of item s is repeated so th a t, if we prove th a t 
the num ber of item s in the form ula is equal to as required by Theorem  4.2,
we can conclude th a t we have proved this theorem. We use the m ethod of induction.

Step 1. In the  inner-m ost layer of parentheses of the first row of the  formula, 

%n+2 +  %n+ 3 +  • • * +  %2N+i involves TV +  1 items. In the next layer, the  num ber of 
item s is

(TV -}- 1) +  TV -j- • • • +  2 +  1 =  d~ ^)(T^ d" 2)* (4.23)

In the  th ird  layer, the num ber of item s is

( l ( j v  +  1 ) ( N  +  2 )) +  (1(JV)(JV +  1)) +  . . .  +  3 +  1 

=  [3 7 2 (iV + V W  + 2^ N  +  3) “  +  XK N  +  2 )1

+ [ ^ ( W ) ( «  +  1 ){N  +  2) -  - L ( J V  -  1) ( N) ( N  +  1)]

~l  ̂ ^ 3 ^ 2 ^  * 3 * 4) “  2 ^ 3 ^  * 2 * 3 )1 +  * 2 * 3) _  °1

=  ^ 4 _ ( iV  +  l)(iV +  2)(iV +  3). (4.24)

Step 2. Suppose th a t, in the p th  layer of parentheses, the  num ber of item s is

r * ( r - i ) 1* . . . * 3 * 2 (iV +  ^  +  2) '' '  ( ^  +  rf- (4 -25)

Step 3. In the  next layer of parentheses, the num ber of item s is

['p* ( p - l ) 1* . - . * 3 * 2 (JV +  1)(iV +  2 ) ' ' ' (7V +  ?)1 +

lF l H 1- 2 ) > - » 2 ( f ' + i P  +  2 ) " ' (^ f ~ 1)] +  " '  +  1

=  t ^ y i ) T ( ;V +  1) " - ( JV +  p )(iV +  P +  1 ) - ( ^ w ( a , ) - - - ( ^  +  p - i ) ( ^  +  p)] +

• ■ • ( N +  p -  1) (N +  p) -  _  1 ) . . .  { N +  p _  2)(7V +  p — 1)]

+  . . .  +  l

=  t p + 1 r * p * (P - 1) * ■“  * 3 * 2 { n + 1 ) { N + 2 ) " ■ ( i V + p ) { N + p + ( 4 -26)

This com pletes the  induction proof. Thus the to tal num ber of item s in the  form ula
(4.22), corresponding to p — N  +  1, is

( j V - H ) * ( j V ) *  — * 3 * 2 (iV +  W  +  2) ■ ■ • ^ 2 N  +
(2TV +  1)!

( N) ) ( N +  1)!
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27V +  1
\

(4.27)

□
Form ula (4.22) defines the scheme which we believe achieves the  m inim um  num 

ber of logical operations through the following parallel algorithm .

A lg o r i th m  4 .3  : Evaluating the PB F w ith the  m inim um  num ber of 
operations.

I n p u t :  the  inpu t binary da ta  set (ci, c2, • • •, c2;v+i)- 
O u tp u t :  the  ou tpu t binary result r.

1. Ad = c2/v k  C2JV+1, S  = C2N I C-2N+1*

itera tion , indicated  by variable i, one item  can be calculated. T he required num ber 
of logical operations is derived in the following theorem.

T h e o r e m  4 .4  The number of logical operations required to implement a (2N  -f- 1 )th  

order binary median filter based on formula (4-22) is 27V(7V +  1).

2. -  ( c 2 N - l  & S )  | A d .

3. F O R ( z  — 2, * • •, TV ) BEGIN

4. A d  ~  A d  k  C2 N—i-\-l-

5. Ti -  ( c 2N - i  & Ti_!) | TV/. END.

6. F O R (  i =  1, • • •, TV -  1 ) BEGIN

7. S  =  S  | c 2N - i -

8. T \  =  ( c 2N ~ i ~ \  &  S )  | Ti.

9. F O R ( j  =  2 , - - - , 7 V)

0. Tj  = (c2N- i - j  k  Tj -x)  | Tj.  END

In steps 1 to  5, the algorithm  calculates the last two term s of Form ula (4.22) 

and from  step 6 to the  end, the algorithm  calculates the other TV — 1 term s. In each

P ro o f :  In steps 1 to 7 in the algorithm , the num ber of logical operations is

1 +  1 +  2 +  (TV — 1) * (1 +  2) =  37V -f 1 . (4.28)
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In steps 8 to 14, the  num ber of logical operations is

( N  -  1) * (1 +  2 -|- (N  — 1) * 2 ) =  (N  -  1){2N  +  1). (4.29)

Thus the  to ta l num ber is

3A  +  1 +  (TV — 1)(2N  +  1) =  2N 2 +  2TV -  2 N ( N  +  1). (4.30)

We can pursue the  aim  of minimising the num ber of operations for a m edian
Boolean function in the  context of any other PBF. For exam ple, consider the  PB F
for cascading weighted m edian filters,

—5? ) ^ i )  X i —5*̂ 1— —2 4" T 2- —̂4 4 "  X{ ~*33yj_2 4“ —2X {—\

— X i ^ X i ^ X i ^  4- X i - 3 X i - i ( x i - 5 +  X i - 4)  +  X i - 2 ( x i - 3 4" a:*—l)  (4.31)

4 .5 . B i t - P a r a l le l  S t r u c tu r e  a n d  a  D a ta -P a ra l le l is m  S ta c k  F i l t e r in g  A lg o 

r i t h m

B it-held parallel arithm etic  is the m ost basic parallel processing m echanism  and can 
be im plem ented in a com puter with the facility of sta tic  random -access memories 

from  which all the bits of a word can be read conveniently in parallel, can execute 

a rithm etic  instructions on all bits, and then can w rite all bits back to  memories.
T he bit-held w idth of the  processor of a modern com puter is not less than  16 

and is often 32. In serial mode with a bit held of w idth 32, a b inary  da tum  occupies 

only 1 b it and the  other 31 bits are wasted. We need therefore to develop a m ethod 

of utilizing this s truc tu re  effectively. The natural parallel approach is for each b it in 
the bit-held to  hold a binary datum  and then each logical or arithm etic  operation is 

applied to all binary d a ta  in the bit-held in parallel. However, all of the  original binary 

da ta  are in serial m ode so th a t we need to  assemble them  in the  parallel s tructu re
and then , after accomplishing the filtering operation, we also need to  disassemble or 
restore the  parallel d a ta  into the  original serial structure.

T he easiest assembly procedure is to hll each bit held d irectly  w ith 32 item s of 

b inary  data. It takes 8*94  =  752 tim e units to accomplish this assembly task, which 
can be expressed as

(do& M A SK j) | (d i& M A S K j <  1) | | ( ^ M A S K ,  <  31)

j  =  1,2, • • • , 8 , (4.32)

where d*, i = 0 ,1 , - • • ,31 are the original data, d ;& M A S K j gives a b inary datum  
and, in C language notation, the logical operation “<C n ” m eans logical left shift by
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n bits and n ” means logical right shift by n bits. Each d{ belongs to  the  set 

(0 ,1 , • •• , 255) .
U tilizing the  equivalence of one 32-bit integer w ith a  four character array, we can 

divide the  assembly procedure into two steps which together involve fewer operations 

than  directly  assembly. In stage one, we assemble 4 da ta  in byte bound and repeat 
th is 8 tim es. In stage two we combine the 8 bytes into one bit-held. The whole 

procedure can be expressed as follows.

A lg o r i th m  4 .4  : The two-stage assembly of da ta

I n p u t :  The original serial data  set (c/i, c/2, • • ■,c/32).
O u tp u t :  T he original parallel da ta  set (c1, c2, • • •, c8).

1. FO R (Z =  0; i <  7; i +  + ) BEGIN

2. F O R ( j  =  0; j  <  3; j  +  + )

3. u>i[j] =  di.t+j. END

4. c1 =  (u;o&(80808080)2 > 7 (u)!&(80808080)2) >  6 | ■ K & (80808080)2).

5. c2 =  (™o&(40404040)2 > 6 ■••|(™s&(40404040)2)) <  1.

6 . c3 =  (wo& (2 0 2 0 2 0 2 0 )2 >  5 • • • |(u >s &(20202020)2)) < 2.

7. c4 =  (u;o&(10101010)2 > 4 •••|(uj8&(10101010)2)) < 3 .

8 . c5 =  (ico&(08080808)2 > 3 • • • |(iu8&(08080808)2)) < 4 .

9. c6 =  (ioo&(04040404)2 > 2 ■■•|(tDs&(80808080)2)) < 5 .

1 0 . c7 =  (u;o& (0 2 0 2 0 2 0 2 )2 >  1 tO!&(0 2 0 2 0 2 0 2 )2 (tu8& (0 2 0 2 0 2 0 2 )2)) < 6 .

1 1 . c8 =  tuo&(0 1 0 1 0 1 0 1 )2) | (uq&(01010101)2) <  1 | • • • | (u»8&(01010101)2)) <  7

1 2 . End algorithm .

In the  algorithm , 32 original data  are assembled into 8 parallel data . The su

perscrip ts of the  set c1 correspond to the levels of m inim um  threshold decom position. 
The following theorem  gives the tim e requirem ents of this procedure.

T h e o re m  4 .5  The two-stage assembly procedure requires 208 time units.

P ro o f :  From  steps 1 to 5 of the algorithm , it obviously takes 32 tim e units to  

com plete the  first stage task and from steps 6 to 13, it takes 8 * 22 =  176 tim e units 
to finish th e  operation, giving a to tal tim e of

32 +  176 =  208 units. (4.33)
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n

Using a similar procedure, we present the following algorithm for the disassembly 
procedure.

A lg o r i th m  4 .5  : The two-stage disassembly of data

I n p u t :  The parallel filtered data set (r°, r 1, • • •, r 7) and M A SK ,-, i =

0, 1, ■• • , 7 : (80808080)2,(40404040)2, (20202020)2, (10101010)2, (08080808)2, 
(04040404)2, (02020202)2, (01010I01)2 

O u tp u t :  The output dataset (oi, o2, • ■ ■, 032).

1. F O R ( i = 0; i < 7; i + +  ) BEGIN

2 . W{ =  0 .

3. F O R ( j  =  0; j  < 7; j  +  +  )

4. Wi = Wi\ ((rj & M ASK,-) >  j ) .  END.

5. F O R (i =  0; i < 7; i +  + ) BEGIN

6 . F O R (j  = 0 ;  j  < 3; j  +  + )

7. 04*f+j =  Wi\j]. END.

8. End algorithm

T he tim e requirem ent of the disassembly procedure is presented in the following 
theorem .

T h e o re m  4 .6  The disassembly procedure requires 232 time units.

P ro o f :  From steps 1 to  6 of the algorithm , it takes 8 * ( l  +  8 *  3) =  200 tim e 

units to  com plete the  first stage and from steps 6 to  11, it takes 32 tim e units for the 
second stage, giving a to ta l of

200 +  32 =  232 units. (4.34)

□
T he assembly procedure is used to convert data  from serial to  parallel form, which 

is necessary for obtaining the  m edian filter by m inim um  threshold decom position, and 

the  disassembly procedure is used to convert the da ta  resulting from  the  m edian filter 

into general serial data. The above procedures for both assembly and disassembly 
are tim e consuming.

T he bits-held parallel algorithm  for the stack filter by m inim um  threshold de
com position can be expressed as follows.
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A lg o r i th m  4 .6  : One-dimensional stack filter algorithm  w ith the m ini
m um  threshold decomposition

I n p u t :  Length of the original da ta  is L, each datum  belongs to (0 ,1 , • • • , M —
1 ), and the window w idth of the m edian filter is 2 N  +  1 .

1. Inpu t original serial data  and divide them  into 32 parts.

2. A pply the  first stage of assembly to all 32 parts of data.

3. Initialise variables W  and g V .

4. R E PEA T point filtering F ro m  1 To L D o steps 5 to  11

5. R E P E A T  each level of the m inim um  threshold decom position

F ro m  log2 M  To 1 D o steps 6 - 1 1

6 . Apply L O A D 2 to the next datum  point, giving cl2N+1.

7. Use equation (4.10) to accomplish the m inim um  threshold
decom position of c\, c2, * • • , c2iV+1.

8 . Use the m inim um  logic operations form ula which is sim ilar to

th a t for evaluating the PB F in Algorithm  4.3 for m edian filters.

c2 i ' ' '  j c2iv+i)) an-d get the result r \

9. U pdate c*2, • ■ ■ , c\ N + 1  to c\+1, c*2+1, • ■ •, c ^ 1.

10. C arry out S A V E i for filtering output r %.

11. Apply equation (4.9) to update variables Iti and

gti for all da ta  in the window.

12 . Carry out stage two of disassembly, defined by steps 7 to 12 of algorithm  3.

13. End algorithm .

In the  above algorithm , L O A D 2 means applying steps 6 to  14 of algorithm  1 to  ac

complish stage two of assembly and SA V E i means applying steps 1 to 6 of algorithm  
2 to accom plish stage one of disassembly.

In the  two-dim ensional case, there are many possible shapes for the filter window 

(square, cross, diam ond, etc) as shown in Figure 14. A lthough the  scheme for stack 

filtering in two-dim ensions is different from th a t in one-dim ension, the  evaluation of 
the  P B F  of the m edian filter in algorithm  1 still obtains. The tw o-dim ensional stack 

filters has very sim ilar structu re  to th a t of its one-dim ensional algorithm . W hether 

the  logical variables belong to one-dimension or two-dimensions, the ir action in the  al
gorithm  is the  same, involving only the logical T R U E / l  or F A L S E /0 . For exam ple,
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Fig. 14. The Shape of Windows of Two-dimensional Stack F ilters 

for the 3 x 3 square-window median filter, the PBF can be expressed as

( \
. T i l ,  ^ 1 2 }  X 13 ,

f n \ed x 2\, x 22i x 23, 

x 3\1 x 321 x 33,

—  f m e d ( x l l ,  x 12 ,  x 1 3 , x 2 1 - , x 2 2 ,  x 2 3 ,  x 3 1 , x 3 2 i  x 3 3 ) -  (4.35)

For a nin th-order one-dimensional median filter, the PB F  can be expressed as 

fmed{x \ •> x 2 i ' ’ ' ^ ’9 )- Both PBFs have the same form if we replace aq by aqi, X2 by 
aq2, x 3 by aq3, x 4 by x 2i, x 5 by x22, x6 by x 23, x 7 by x31, x8 by x32, x 9 by x 33.

The real parallel algorithm  of stack filters can be expressed in a PVM  environ
m ent. We use the da ta  parallelism  scheme and m aster/slave models, described in 
Section 3-1. We simply partition  the original one-dimensional input d a ta  into K  
parts, such as

K
{X,}, (i =  0 , 1 , - - - — 1) =  \ J P „  (4.36)

t - 1

where Pt = {Aj/c+t,} +  B , u =  0,1, • • •, — 1 . For two-dimensional data , we partition
it into K  x K  parts, such as

{Ah,}, (z',i =  0 , 1 , - - - ,7V -  1) =  ( J  Ptq,
t,qe[0,I<)

(4.37)

where P tq =  {X tK+ u, qK +v }  +  Ti, u ,v  =  0, 1, • • • , j r  — 1 . In both one- and two- 
dim ensional cases, there is some da ta  , B , in border regions where a processor m ust 

share the points which have been assigned to a neighboring processor, as shown in 
Figure 15.

The w idth of the shared da ta  can be controlled by the new filtering param eter 

M a x W id th  in the following algorithm .
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Fig. 15. D ata partitions of One- and Two-dimensional Parallel Stack Filters

A lg o r i th m  4 .7  : Parallel stack filter algorithm  with the d a ta  parallelism  
scheme. A lgorithm  for the m aster processor :

I n p u t :  Original d a ta  length X, Num ber of subtasks 7i, the  filtering pa

ram eters (window w idth 2N  +  1 , PB F  /$(•)> M a x W id t h ).

1. P artitio n  d a ta  according to equation (4.36) or (4.37).

2 . Send each subtask to corresponding slaves.

3. Send stack filter param eters (2N  +  1 , /s ( - ) , M a x W id t h ) to its slaves.

4. Receive the com putation results from each slave.

5. Com bine all parts as the stack filter’s output.

6 . End of the m aster algorithm .

A lgorithm  for the slave processors : I n p u t :  sub-data set length the 

filtering param eters (2N  +  1 , /$ (•), M a x W id th ) .

1. Receive one sub-data set.

2. Receive stack filter param eters.

3. A pply algorithm  4.6 to do stack filtering.

4. Send the  p art result back to its m aster.

5. End of the  slave algorithm .

i
i
i
i

—  —  i-----------
i
i
i



Fig. 16. Interactive Parallel D istributed Stack F iltering System

4.6 . I m p le m e n ta t io n  o f  In teractive  Stack F ilter ing  S y s te m

In this section we use IPD C E (Interactive Parallel D istributed C om puting Environ

m ent) to design a Interactive Stack Filtering System (ISFS). IPD C E , as shown in 16, 

provides both parallel com puting, interactive processing and G raphic User Interface 
developm ent facilities.

O ur aims are to provide the following capabilities in the ISFS:

•  set any in p u t/o u tp u t file names.

•  modify any stack filter param eters (M a x W id th , window w idth 2N  -f 1, PB F).

•  perm it the use of serial or parallel algorithms.

• modify any parallel processing param eters.

• visualise the original and filtered data.
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Fig. 17. The S tructure of Interactive Stack F iltering System

• provide bo th  GUI and com m and line mode.

The s truc tu re  of the  ISFS is illustrated in Figure 17. T he ISFS consists of 

D isp lay/C om m and window, a menu File, a menu Filter, a m enu Config, a m enu Run  

and a m enu Show. There are two kinds of mode, com m and line and m enu, to  process 

a user request. The default mode of ISFS is menu. In order to switch to com m and 
line m ode, the  user clicks on the menu item  File/Command. T he com m and sfexit 
transfers ISFS back to  m enu mode.

In com m and line mode, the user can use any T c l/T k  com m ands and any IPD C E 

com m ands. For exam ple, the com mands for starting  and ending XAB, xablon  and 
xabloff, are only used in com m and line mode.

In m enu File there are four menu item s, Load, Save, Command, Quit. Load will 

display a dialog window to ask the user to input a new original d a ta  file nam e as 

shown in Figure 18. The param eters of Size and Dimension will be obtained from  

the inpu t file. Save will display a dialog to ask the user give a ou tp u t file nam e. 
Com mand  switches to  com m and mode. Quit will quit the ISFS.

Menu Filter is a dialog window as shown in Figure 19. T he user can set the stack 
filte r’s param eters in it. These param eters include window w idth, m axim um  w idth, 
filtering com m ands (PB F) and two additional param eters for the  two-dim ensional 
filter.

Menu Config is also a dialog window as shown in Figure 20. The user can choose 

to  use the  serial or the  parallel algorithm , can partition  his task into K subtasks w ith
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Fig. 18. Dialog Window of Select an Input File Name
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Fig. 19. Dialog Window of Select F ilte r’s Param eters

the d a ta  parallelism  scheme, and can dynam ically add and delete host of PVM .
In m enu Run  there are two menu item s, Start, End. The m enu act as M aster 

window in Figure 17. Item  Start will begin the parallel algorithm  4.7 and item  End  

will end the algorithm , of which the function is to destroy all slave processes built 

from the m aster process in PVM. Item Start can be called m any tim es, and each tim e 
the user can redefine new filtering param eters from the menu Filter

In m enu Show  there are three menu items, Show parameters , Show input data 
and Show output data. Item  Show parameters displays current filtering param eters 
and parallel relative configuration in the D isplay/C om m and window. Item  Show  

input data displays the original input in a special window. For one-dim ensional data , 

H ow lett’s graph widget [95] is applied as shown in Figure 21. For two-dim ensional 
data , the M ackerras’s photo widget [125] is applied as shown in Figure 22.

4.7 . N u m e r ic a l  E x a m p les

In th is section, we give two numerical simulations to illustrate the perform ance of P ar
allel D istribu ted  Stack F ilter Systems (PDSFS). In the first exam ple, we use PDSFS 
to process one-dim ensional da ta  which are corrupted by additive Gaussian w hite noise 

and im pulsive noise. In order to quantitatively com pare the perform ance abilities of
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Fig. 21. One-dimensional D ata Display Window
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Original and G aussian+tm pulsive N o ise  M ale S p e e c h  D ata
300

original m ale d ata  
n o ise+ d a ta

250

200

150

100

0 50 100 250150 200 300

Fig. 23. M ale speech signal corrupted by Gaussian noise w ith p — 0 and a =  10 and 

im pulsive noise w ith occurrence probability p = 0.1

several filters used here, we define the Normalized Mean Square E rror (NMSF)  be
tween the original, noisy input and the filtered ou tpu t d a ta  as the  following:

N M S E  -  — F 7F F  (4-38)

D e f in it io n  4 .6
s E o W )  -  s ( o r
e £ o[* (0  -  SW P

where S( i ) ,  X ( i ) , Y ( i )  are the original signal, the input signal and the filtered output 
signal respectively.

E x a m p le  4.X The original input signal is a piece of m ale speech as shown in 
Figure 23, of dim ension 256 and with m agnitude belonging to [0, 255]. We suppose 

the  original signal is corrupted by Gaussian white noise w ith zero m ean and standard  
deviation a  =  10.0 and by im pulsive noise with the probability p = 0.1 of an im pulse 
occurring at any given point, where the impulse m agnitude can be 0 or 255 w ith the 
equal probability.

We use two types of filters to sm ooth this signal. One is the  standard  m edian 

(SM) filter and the  positive Boolean function (PBF)  of the  b inary  fifth-order SM is
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Fifth Order Standard Median Filtering
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Fig. 24. F ifth-order SM filter for male speech signal corrupted by Gaussian and im 
pulsive noise

given by

fmed(x l,a?2,®3,a?4j*5) =  ^l(^2(^3 +  F  ®s) F  ^ 3(^4 F  # 5) F

’̂4^ 5) F  "F £5) F  ^ 4^ 5) F  X3X4X5 . (4.39)

T he o ther is a weighted order s ta tistic  filter. We only use the  special version cor
responding to the  central weighted m edian (CW M) filter. T he P B F  of the  binary 
weight 2 fifth-order CW M  is given by

f c w m { x  1 , x 2, » 3, x 4l x 6) =  x 3( x1 +  x 2 +  x 4 F  * 5) F  x - ix^x^  F  X 5 ) +  x 4x 5( x 1 P x 2). (4.40)

Figures 24 and 25 show the results of filtering the noisy signal in Figure 23 w ith 

the  fifth-order SM filter and the weight 2 fifth-order CWM filter respectively. Table 
V sum m arizes the  NMSE of the SM and CWM filters. Com parison of these NM SE 

indicates th a t the  CW M filter performs slightly be tte r than  the  SM filter.
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Fig. 25. W eight 2 fifth-order CWM filter for male speech signal corrupted by Gaussian 
and im pulsive noise

Table V. Normalised Mean Square Error for male speech d a ta  corrupted by Gaussian

and im pulsive noise with SM and CWM filters
NMSE

central weight median 0.26 
standard median 0.3
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Table VI. N orm alized M ean Square Error for lena test image corrupted  by G aussian
and im pulsive noise w ith two-dimensional SM and CW M  filters

NMSE
central weight median 0.22 

standard median 0.34

In the  second exam ple, we use PDSFS to sm ooth tw o-dim ensional images which 

are also corrupted  by additive Gaussian white noise and im pulsive noise. T he version 

of tw o-dim ensional N ormalized Mean Square Error ( NMSE)  can be defined as

D e fin it io n  4 .7
E £ o E f =„ [ r ( i , n - 5 ( i , n ]2 f l l l 1

where S ( i , j ) , X ( i , j ) , Y ( i , j )  are the original image, the noise corrupted input image 
and the filtered output image respectively.

In addition, we shall present the image showing the differences between the  original 

and th e  filtered images. These images provide inform ation about bo th  th e  detail- 

preservation and noise-suppression characteristics of filters. In the  difference image, 
a zero difference is shown as a black pixel and a difference of 255 is shown as a w hite 
pixel.

E x a m p le  4 .2  The original input image is the standard  te st im age, “lena” , which 

consists of 256 x 256 pixels w ith eight bits of resolution. The original noise-free image 

is shown in Figure 22. The noise corrupted image was generated  by adding zero 
m ean G aussian noise of standard  deviation 20 and im pulsive noise w ith occurrence 

probability  0.2. We evaluated two types of filters, two-dim ensional SM and CW M, 

under PDSFS. The PB F  of the 3 x 3 square-window SM have been given in equation 
(4.35) and the  P B F  of 3 x 3 square-window weight 3 CWM is given by

/=

< \
#11) £12? £l3?

£21, £22, £23,

£3 1 , £ 3 2 5 £’3 3 ,
f m e d 5  ( £  1 1 ,  £ ' 1 2 ?  £ l 3 ?  £ 2 1 ?  £ 2 3 ?  £ 3 1 ?  £ ' 3 2 ?  £ 3 3 )  +

/ m e d 3 ( £ ’2 2 ?  £  1 1  j £ l 2 ?  £  1 3 ?  £ 2 1 ?  £ 2 3 ?  £ 3 1 ?  £ 3 2 ?  £ 3 s ) ( d . 4 2 )

where fmedsi' ) is the fifth-order binary SM filter and f med3 (') is the  th ird-order binary 
SM filter.

Table VI sum m arizes the the NMSE of the two-dim ensional SM and CW M  filters. 
Figure 28 and Figure 27 show the results of filtering the  noisy im age in Figure 26 

w ith two-dim ensional window 3 x 3 SM filter and weight 3 window 3 x 3  CWM
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Fig. 26. 256x256 lena test image corrupted by Gaussian noise w ith // =  0 and cr = 20 

and im pulsive noise with occurrence probability p =  0.2
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Fig. 27. Two-dim ensional weight 3 window 3 x 3  CWM filter for lena image corrupted 
by Gaussian and impulsive noise



8 2

Fig. 28. Two-dim ensional window 3 x 3  SM filter for lena image corrupted by Gaussian 
and im pulsive noise



(a) (b) (c)
Fig. 29. Difference images, (a) Fig 26 - original, noise free image, (b) Fig 27 - original, 

noise free image, (c) Fig 28 - original, noise free image

Table VII. Execution Tim es (milli-seconds) and Com m unication T im es (milli-seconds)
of two-dim ensional SM and CWM filters for lena image

Computers SM filter CWM filter
Exec. Time Comm. Time Exec. Time Comm. Time

1 3500 0 3900 0
2 2310 476 2460 453
3 1820 699 1950 687
4 1610 917 1715 905

filter respectively. Figure 29 shows the difference between the original and the  noisy 

and filtered images. It is seen from the above difference images th a t the SM filter 

caused m ore blur than  the CWN filter. Table VI tells us th a t the  noise-suppression 
characteristic  of the SM filter looks poorer than the one of the CW M  filter.

We d istribu ted  the filter algorithm s among several com puters under PDSFS in 

order to com pute the results for Exam ple 4.2. Table VII sum m arizes the  filter exe
cuting tim e and com m unication time. Figure 30 shows the to tal tim e of the parallel 
d istribu ted  filtering algorithm s. The com puters of the parallel algorithm s used are 
SUN Sparc ELC, IPC , Sparc 10, and SUN 470. Based on Figure 30 and Table VII we 

find th a t the parallel speed-up is good when the num ber of com puters is small, for 
exam ple, two or three. It is worthy of note th a t the main p art of PDSFS was w ritten 

using the  T C L /T K  language. The T C L /T K  language is an in terp re ta tive  language, 

which m eans th a t some execution degradation will appear com pared with a com piler 

such as C language.
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CHAPTER 5

A N  I T E R A T E D  F U N C T I O N  S Y S T E M  M O D E L  O F  

O N E -D I M E N S I O N A L  D IS C R E T E  S IG N A L

5.1. In tr o d u c t io n

In this C hapter we present an extended Itera ted  Function System  (IFS) in terpolation  
m ethod  for m odelling for a given discrete signal. In order to  reduce the  com puting 
com plexity we introduce a suboptim al search algorithm  w ith a robust technique for 

estim ating  the IFS affine m ap param eters. Simulation results show th a t the  IFS 

approach achieves a  higher signal to noise ratio than  does an existing approach based 

on autoregressive modelling. We also exploit the power of a com puter network in 

im plem enting a  full parallel d istributed  algorithm  for the suboptim al search using 
an R em ote Procedure Call (RPC) scheme. The sim ulation results show th a t the 
speed-up ra te  is alm ost proportional to the num ber of com puters.

5.2 . T h e  C o n s tru c t io n  o f  an IFS M o d el for a G iv en  S ignal

5.2.1. Background of IFS Theory

In a determ inistic  fractal model w ith IFS, a one-dim ensional signal , also known 

as a tim e series, { (a^ j/i) : i — 0,1, ■ • •, N] X{ <  a?i+i, \x{ — Xj\ < N , V i , j , y i  6 
R 1} is divided into M  parts by contractive maps. Each p art is self-affine to the 
whole signal, known as the  self-affine region. The end-points of each com ponent will 

be denoted by (uj,U j), j  — 0,1 , and, in particu lar, (u0, u0) =  ( x 0 , y Q) and

(u m >v m ) ~  In order to  simplify notation, we define a vector P  = {i j  : j  =
0 ,1 ,2 , so th a t, for each i j , (a jq -,^ ) is an end-point. Throughout we shall
restric t our a tten tion  to  affine transform ations[20, 22, 26], and we therefore define 
the  contraction m ap Wj by

I  \X a,- 0

Co (L

\

/ /
+ (5.1)

where a, j > 0, which means th a t, for the region «j], Wj m aps (a;0, V o )  to

Vij-1) an<I (x n , Vn ) to  {x iji Vi,]- The affine m aps described above are of
ten  known as IFS interpolation[26], and the end-points are known as interpolation 

points. In Equation (5.1) the param eter dj is known as the contraction factor for
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W ,

w c

w

0 2

Fig. 31. Affine transform ations w i , W2 , u>3 , uq applied to the  un it square.

m ap j ,  and it m ust satisfy \dj\ < 1. W ith  IFS interpolation th e  self-affine region is 
described as

: j  =  0 , 1 , . . . ,  M} .  (5.2)

It is obvious th a t the  m aps are ju st touching, which means th a t overlap occurs only 
a t in terpolation  points.

In this thesis we extend the idea and define w hat we shall call extended IFS 

in terpolation. We construct a new self-affine region, based on each in terpolation point 

and its consecutive point (a^.+i, yij+i) to construct the  new set of self-affine 
regions for all j , except th a t the cases j  =  1 and j  = M  are trea ted  differently.

R  =  {K?-1 +  =  2,3, • • • ,M  -  1 and

{ [0 ,zi]}, +  1 , N ] } .  (6-3)

For m ap param eter Uj, we also extend its range to — 1 <  ct j  <  1 so th a t w j  maps

Oo,2/o) to  (xi3_1+1, yij_1+1) and (xN l yN ) to yi}), or (as0,S/o) to  ( x^ ,  y{j) and
( x n , V n )  to  1, 1), depending on the sign of c i j .  Obviously, extended IFS
interpolation  involves a to tally  disconnected map.

We use exam ples to  show the geom etric properties of the  m ap param eters in 
F igure 31. Suppose we have a unit square, the bottom  left-hand corner of which is



87

located a t (0 ,0 ), and we use the following affine transform ations to  m ap the  square:

w i

w 2

w 3

{ \

y y

W 4

b 0
\

1 2 /

h  A2 u

1 1

b 0

3 1V 2 2 )

\ y  )  

\
X

\ v /

1 
2

b 0

V 2 /

/ \X

\ V

\ y

X

\ y

y

+

+

+

+

+

V 1 /
/  3 \

2

V 1 /  
, \

u /
3 N
2

1 I

In the  case of m aps w 2 and uq we see how the param eters dj control the  vertical 
contraction. M aps W3 and w\ illustrate how the param eters cj control the  ro tation , 

and m aps w 4 and illustrate  how the param eters ej control the  translation . Maps 
w 5 and rui illu stra te  how the sign of aj controls the m irror transform . Thus, extended 

IFS in terpolation  should provide a flexible fitting procedure.

The following Collage Theorem  [20] gives a bound on the fidelity of a given signal 

w ith the  IFS a ttrac to r.

T h e o r e m  5.1 Let (X,  h ) be a complete metric space, let L  be a given function (sig
nal) and let e > 0 be given. Choose an IFS {X ; uq, w2, • • • , w m } with contraction 
factor X — max{Aj; j  — 1, 2, • • • , M ]  so that

M

h(L,  ( J  Wj(L)) < e, 
j = 1

(5.4)

where h is the Hausdorff metric. Then

h { L , A ) <
1 -  e ’

(5.5)

where A  is the attractor o f the IFS.

The Hausdorff m etric is defined as follows,
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D efin it io n  5,1

h ( A , B ) =  max{max{min{d(.T, y); y £ B }  : x  £ A},

max{min{d(?/, x)] x £ A} : y £ P } } , (5-6)

where A , B  are sets o f  points and d (•,•) is the distance between points.

Note th a t the Collage Theorem  does not provide a procedure for constructing a
m ap. It only provides us with a way of assessing the goodness-of-fit of an IFS w ithout

com puting its a ttrac to r. From definition 5.1 we see th a t the Hausdorff m etric  involves 

heavy calcu la tion[170], In practice we can use an approxim ation m ethod in place of 

precise com putation to save the calculation time. The approxim ation m ethod is to 

calculate the  Hausdorff m etric for each local neighbourhood, not for the  whole space, 
and this was done in all the following num erical work.

D ef in it io n  5 .2  The local neighbourhood c of X{ can be expressed as — c,Xi  -f- c) 

where c <C N  is called the local neighbourhood width and Xi — c, x ; -f c £ [0, N].

D efin it io n  5 .3  The approximate Hausdorff metric o f a one-dimensional discrete sig
nal is defined by

ha( A , B )  — max{max{min{<i(a^, xf)\  Xj £ (xi — c,Xi  +  c)} : Xi £ A},

max{min{d(.Tj, Xi £ (xj  — c,Xj  +  c)} : xj  £ B }}, (5-7)

where A, B  are subsets o f R 1.

5.2.2. Estim ation of affine transform ation param eters

We essentially have an inverse problem: given a signal L, find an IFS for which L  is 

the approxim ation of the IFS attrac to r. The main problem  is to  estim ate  the  self- 
affine region, which is also determ ined by the index vector P  of the  in terpolation 

points. Once we have estim ated P , we can com pute the  param eters of the affine 
transform ation , aj, Cj, dj, e^, / j ,  as follows.

Suppose we have a m ap Wj so th a t Wj : [0, N] =>■ ij]y and i j ^ i , i j  £ P .
Then we have

x i j  ~  x i j - \  - 1-1 
d j  == —-------- -------

Xn  — Xq

=   1 2------XJV — Xq
(5.8)
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Since the  m ap is a contraction in the x-axis direction, we should allow for the 
approxim ate calculation in which discrete da ta  on a larger interval along the  x-axis 

is m apped into a sm aller interval. In practice, the m ethod is to  average y-values of 

points which are m apped into each destination point.

Define the  set A p by

and let

Vp

A P = {j  : p = in t(ajXj  +  Sj)}.

_____________ E j e a ?3 x j______________
num ber of points included in set A p

E jeAp Vj
num ber of points included in set A p 

The least-squares estim ates of Cj ,dj , and f j  are the  m inim izers of

E j  — 'y ~) ( c j X p T  d j y p T  f j  j/p) j  — 1, 2, • • •, M .  

i hi

T he s ta tionarity  equations are

E x P X) 'EpVp X) ■J'p cj E x pyp

E x pyp E y ;  E yP dj = E V pVp

E x P E yP E l J ’ .
E 2/p

(5.9)

(5.10)

(5.11)

(5.12)

and we can solve (5.12) easily.
In o ther cases to be considered, where we have Wj such th a t Wj : (xq, yo) =*'

(a)q, yjj) and ( xN , y N ) => (£q_1+1, + i), we need only interchange and
in E quation (5.8). The Equations (5.12) are unchanged.

5.2.3. Suboptim al A lgorithm  for the Inverse Extended IFS In terpolation  Problem

In order to  choose interpolation points optimally, we have to m inim ize the objective 
function

M
min h(L,  iUj(T)), (5.13)

i—1

where L  is th e  given one-dimensional discrete signal, and Wj is determ ined by the  index 
vector P  of in terpolation  points and by equation (5.12). This is a global optim ization 

problem . As a result of the required scale of com putation, there is no acceptable 
algorithm  for obtaining the globally optim al solution. However, there is a m ethod, 

based on local search, which achieves an acceptable solution, as justified em pirically
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in the following sim ulation section. The m ethod is based on th e  following rem ark.

F irst we note th a t M  is known im plicitly once P  is determ ined. Secondly, 

each ij of P  is an integer th a t satisfies 0 <  ij <  IV, and i\ < i<i <  * * • <  

iM-iy  so th a t we can first search for then «2, and so on.

We m odify the  global objective function (5.13) to  the  local objective function

m in h(L(Rj ) )Wj (L) )  or min h(L( i j - i ,  ij], Wj(L)) ,

j  = 1 ,2 , • • •, M , sequen tia lly , (5-14)

where L( Rj )  and L( i j - i , i j ]  are the da ta  which belong to the  self-affine region R j y 
each Wj m aps L  into region R j , and the self-afhne region Rj  is defined by equation 
(5.3). The corresponding inverse algorithm  can be described as follows.

A lg o r i th m  5 .1 . Inverse Extended IFS Interpolation A lgorithm .

IN P U T: ( xQi jfo),' '  •, (x n > Vn ) and W.
O U TPU T:  the num ber M  and the IFS maps Wjy j  = 1,2, • • • , M .

1. Initialize in terpolation point indices i0 = 0, iw  =  N  for aj >  0 and «o =  N ,
iM — 0 for aj <  0. For the index ii of the other in terpolation  point of self-affine 
region R i , set the  lim its [s,e] of the  search space, where th e  integer s and e 

satisfy x s = xo +  W  and x e =  xjy — W .

2. E stim ate  th e  interpolation point index i j , j  =  1,2, • • • , M  — 1, and construct
the  self-affine region R j  using equation (5.3) for bo th  aj > 0 and aj < 0.

2.1 For each elem ent c in [s, e] construct the tem porary  in terpolation  region 

{(^i 1+i, 2/i j+ i), (&'c, Vc)}'  Apply equations (5.8) and (5.12) to  estim ate 
th e  param eters of the  m ap Wj , com pute the approxim ate Hausdorff m etric, 

and store the  Hausdorff error in BUFFERjc].

2.2  Choose, as the candidate interpolation index, ij in [5 , e] such th a t 
BU FFER[ij] is minimum.

2.3 Choose the m inim um  from the aj > 0 case and the  a ?- <  0 case and 

determ ine the sign of aj.

3. If i j - 1 7  ̂ 0, construct the self-affine region Rj  =  (^ - iC m ] an d estim ate the 
param eters of the  m ap Wj.

4. If i j - 1 7  ̂ 0 and if h(L( i j - i ,  z’m], wj(L)) < h (L (^ _ i, zy], Wj(L)) ,  discard the  can

d idate  in terpolation  point index ij. Exit from the algorithm .
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5. A ccept the candidate interpolation point index ij and identify the  new in terpo

lation point (xi j iyi j) .  Construct the self-affine region

R j  2/ij-l+l)’ ’ 2/ * jr ) } *
6. U pdate the  search lim it s — ij -j- W  +  1.

7. If e <  s, exit from the algorithm .

8. R etu rn  to step 2.

In the  algorithm  described above, B U FFE R  is a one-dim ensional array, and W  

is a inpu t constant, known as the m inim um  self-affine region w idth, which is not 

required when m odelling a continuous signal. However, when we try  to  build a  model 

for a d iscrete signal, W  is required since a region containing only two points is self- 
affine to  any signal and the h t is perfect. W  has some influence on the  value taken 

by M.  T he larger W  we use, the smaller is the resulting M.  The choice of a specific 

value is, in practice, not a sensitive one. In the following sim ulation section, we chose 
W  = 9. T here are two ways of exiting from the algorithm . One is at step 7 and 
occurs if no fu rther self-affine region wider than W  exists. The o ther is a t step 4 and 

occurs if inclusion of another interpolation point will increase th e  error of fitting the 
given signal.

A lgorithm  5.1 emphasizes the fidelity of fitting the given signal. In order to 
em phasize d a ta  compression, we can revise step (2.2) so as to satisfy some prescribed 

tolerance in the choice of the value from B U FFE R  th a t allows a larger region w idth.

5.2.4. Enhancem ent of the Robustness of the Inverse A lgorithm

A lgorithm  5.1 is natu ra lly  sensitive to the given signal, as seen la ter in the  exam ples in 

Section 5.4. In the  estim ation of each self-affine region, the point th a t m inim izes H aus

dorff error m ay be not a valid interpolation point. Suppose, for exam ple, th a t ( i j - i ,  *y], 
w ith i j - i ,  ij G -P, is a valid self-affine region. It is possible th a t there exists a point 

where ip E P  and i j ^i  < ip < i j , such th a t h { L( i j - i , 2P], W{(L)) < h(L( i j - i , i j ] , Wj (L) ) .  
This m ay occur, in particular, if the given signal is approxim ately self-affine or non 

self-affine. One way to avoid this is to use instead th e “next b es t” as a m inimizing 
point i s. A t the  next step, and after com puting the self-affine region based on point 
i j , choose the  point i s also as one of the interpolation points, com pute a new self-affine 

region based on th e  point i s and locate the new m inim um  error point ij+i. If

i ? U"]i ^i(T)) T W{±i(T)) >

/i(J5(ij_i, zs] 5 î(-F)) + U+i] i (T)), (5.15)
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then  discard the  in terpolation point indices i j , i j+1, replacing them  by i Si ij+i- The 
robustness of the m ethod follows from the fact th a t, if ij is not a  valid in terpolation 

index bu t i s is, the  self-affine region (ij, ij+i] based on the point index ij produces 

larger Hausdorff error, and the self-affine region , iy-f-i] based on the  index i s will 
keep the  Hausdorff error at a low level since it is a valid self-affine region. Thus 
inequality (5.15) is true if the Hausdorff error of region large enough.

T he robust algorithm  can be described as follows.
A lg o r i th m  5.2 . Robust Inverse Extended IFS Interpolation A lgorithm  

IN P U T:  (®o}y0).-**,(®Ar,yN) and W.
O U TPU T:  the  num ber M  and the IFS maps Wj, j  = 1, 2, • • • , M .

1. Step 1 is the  sam e as for A lgorithm 5.1.

2. Step 2 is the  sam e as for A lgorithm  5.1.

2.1 Step (2.1) is the same as for (2.1), (2.2), and(2.3) of A lgorithm  5.1.

2.2 Choose, as the possible alternative index, i s from (ij, e] such th a t

BU FFER[zs] is minimum.

2.3 If i j -1  ^  0 and i fl_i -f W  < e then

2.3.1. Set new lim its of the search space (itf_ i,e] for bo th  the  cases aj >  0 

and aj <  0.
2.3.2. For each element c in (C -i,e ]  construct the tem porary  region

),(*£> Uc)}- Apply equations (5.8) and (5.12) to  esti
m ate  the param eters of m ap Wj, com pute the approxim ate Hausdorff 
m etric, and store the Hausdorff error in BUFFER[c].

2.3.3. Choose, as the candidate interpolation index, ij in (zs-i?e] such th a t 
BUFFER[£j] is minimum.

2.3.4. Choose the m inim um  from the aj > 0 case and the  dj < 0 case and 
determ ine the sign of dj.

2.3.5. Choose, as the  possible alternative index, is in (ij ,e] such th a t 
BU FFER[«J is minimum.

2.3.6. If h ( L ( i j - 2 , i j - i ] , w3- i ( L) )  +  h( L( i j - 1 , i j ) , wj (L))  >
h( L ( i j - 2 , i s - i \ , Wj - i (L) )  +  h(is- 1 , i j ]yWj(L)),  then  set i j - X — i s - 1 

and ij — is.

3. Steps 3-8 are the  same as for A lgorithm 5.1.

A lgorithm  5.2 is sim ilar in structu re to the search algorithm  in [134]. However, 
in algorithm  5.2 we use extended IFS interpolation to get a  b e tte r  fit and we store 
the possible alternative  indices to enhance the robustness of the  algorithm .
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5.3. D is tr ib u te d  P aralle l C o m p u tin g  for th e  IFS M o d e l  o f  a G iv en  S ignal

5.3.1. D istributed  Parallel Com puting Based on R em ote P rocedure Call (R PC )

The essence of d istribu ted  parallel com puting (DPC) is th a t m any autonom ous gen
eral com puters, connected by a com munications m edium  of which the  m ost popular 
is Ethernet, cooperate in dealing with a single com puting task. Each com puter has 

its own independent memory, processor and ability to com m unicate.

T he basic m ethod of D PC is the client-server model. A single server works for 
clients who have special com putational dem ands. After com pleting one clien t’s task , 
the  server waits for the next.

One way to  convert a sequential algorithm  into a D PC algorithm  is as follows.

•  Select a  basic subtask as the server task in order th a t the  num ber of servers can 

be determ ined and assign to each server one client.

• Use one com puter as a control unit to manage com m unication am ong clients 

and servers and to  synthesize the data  resulting from the  different servers.

This m ulti-clients-m ulti-servers model is shown in Figure 32.

R em ote Procedure Call (RPC) is a high-level message-passing paradigm  which 

allows network applications to be developed by way of specialized kinds of procedure 
calls designed to  hide the details of the underlying networking mechanism s. The 
net effect of program m ing with RPC is th a t programs are designed to run  w ithin a 
clien t/server network model. W ith  RPC, the client makes a procedural call which 

sends requests to the  server as necessary and it then awaits the  resu lt from the  server. 
W hen these requests arrive, the server calls a dispatch routine, perform s w hatever 

service is requested, sends back the reply, and the procedural call retu rns to the  client 
as shown in Figure 33.

R PC  uses X D R (eX ternal D ata Representation) routines to  convert procedure 

argum ents and results into network form at and vice-visa. Each R PC  procedure is 
uniquely defined by a program  num ber, version num ber, and procedure num ber. The 
program  num ber and version num ber specify a group of related  rem ote procedures, 
each of which has a different procedure number.

T he details of program m ing in applications of RPC can be tedious. One of the 
m ore difficult areas is w riting XDR routines. Fortunately, the com piler rpcgen exists 
to  help program m ers w rite RPC applications simply and directly. It accepts a rem ote 

program  interface definition w ritten in a language, called R PC  language[136], which 

is sim ilar to  C; see subsection 5.3.2. However, it only supports a one-client-one-server 

m odel, and we have to use a tex t editor to modify it for our m ulti-clients-m ulti-servers
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Fig. 34. Control u n it’s parent- and child-process

model. T he ou tp u t of rp c g e n  includes client routines, a server skeleton, X D R filter 
routines for bo th  procedure param eters and results, and a header file th a t contains 
com m on definitions.

In norm al R P C , clients send a call and wait for the  server to reply to  the 
effect th a t the  call has succeeded. This implies th a t clients do not com pute while 
servers are processing a call, which also means th a t clients cannot work in parallel 
in one com puter simultaneously. We should utilize the UNIX concurrent process 
ability. F irst, we can build multi-child processes. Each child-processor runs a R PC  
client associated w ith the special server, and the parent processor processes the  d a ta  

synthesis and interprocessor com m unication as shown in Figure 34

T he system  call “forkQ ” in UNIX can build a child process, which returns zero 

in the child process and returns non-zero, which is the child process identifier, in the 
parent. The sim plest bu t slowest m ethod of interprocess com m unication is through 

file. A lternatively  one m ight use pipe and named pipe> which em ploy the  basic stream  
m odel used for file in p u t/o u tp u t. A more advanced m ethod is Message. A message 
queue identifier msqid is a unique positive integer created by the  “m sgget()” system  
call. Each msqid  has a message queue and da ta  structu re  associated w ith it. The 

system  call “m sgctlQ ” can destroy a message msqid. The system  call “m sgsnd()” can 
send a message to other processes and the system call “m sgrcvQ ” can receive special 
kinds of message.
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5.3.2. Im plem entm ent of the D istributed Parallel A lgorithm

In order to utilize the powerful ability of m ulti-com puter processors, a server task 
should be a massive floating-point calculation task and not ju s t logical decision

m aking or I /O  processing. In A lgorithm  5.2, the massive calculation comes from 

step 2.1 and step 2.4.2, which use equations (5.8) and (5.12) to  com pute the  param 

eters of the  affine m ap. Since com m unication among com puters is a slower operation 

th an  th a t of calculation, we use larger task granularity, see subsection 3.1.3, to reduce 

the  quan tity  of com m unication operations in order to construct a good d istribu ted  
parallel algorithm .

We select the procedure of estim ation of the affine m ap param eters in some in
terval as th e  server task according to the num ber of com puters connected by E thernet 
and each server processes the same length of search space. Suppose we have three 

com puters. We choose one as the control unit and the other two as servers. In order 
to  keep the  control un it busy in com puting, we have to  allocate some com puting task 

to  it. For exam ple we m ay assign the search region [s, kc • e] to the  control unit. One 

server deals w ith the search region [kc ■ e +  1, A:c,.e+e+1]; and o ther server deals w ith 

the  search region [^•?+e+3 ; e]. The constant kc controls the  d istribu tion  of the  tasks 

betw een the  control un it and the servers.
W hen each dem and is sent, the only inform ation needed by the  servers is the 

la test in terpolation  index i j~\.  Given the constant W  we can easily construct the 
search region as [ij-i  +  W  +  1, N  — W].  The results from the  server include the 
m inim um  Hausdorff error and its associated index and the next to  m inim um  Hausdorff 

error and its associated index. The parallel protocol w ritten  in the  rp c g e n  language 
is as follows:

/* priei.x: Parallel Robust Inverse Extended IFS
Interpolation Protocol */

/* define a variable named "poserr" */ 
typedef struct int„float poserr;
/* data structure of */
struct int_float { int posO; int posl; int mirror;
float errO; float errl; }; /* computing result */

program PRIEIPROG {
version PRIEIVERS {

/* The following is a RPC procedure, named SEIFSP, 
argument type is integer,
and return value is a struct named "poserr" */ 
poserr SEIFSP(int) = 1 ;  /* procedure number */

} = 1; /* version number */
}■ - 0x20000999; /* program number */
The suboptim al search algorithm  from the server’s point of view is as follows.
A lg o r i th m  5.3 . Server’s Contribution to the Robust Inverse E xtended IFS

Interpolation  A lgorithm
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INPUT:  (®o, yo)-, ■ ■', (®jv, £/aO> the num ber of servers, S V n, the  constant,
W ,  and the  constant, kc. The la test interpolation index, i j -  
O UTPUT:  the  position of the m inim um  and the next to m inim um  Haus

dorff error and their indices.

1. Initialize R PC  server program.

2. R epeat until the  condition of new RPC dem and coming is TRU E. T hen call the 

service procedure SEIFSP.

2.1 In SEIFSP, set up the search region of the servers: s = i j -1  +  W  +  
Z, { N - i 3- x - 2 W )  .  , ( J Y - 2 W )
Kc (SVn+kc) ^  e ^  (SVn+kc) ‘

2.2 For each integer c in [s, e] construct the tem porary  self-affine region

.1+1? J/*j_i+i)) (^c? Vc)}- Apply equations (5.8) and (5.12) to  estim ate 
the  param eters of the m ap Wj, com pute the approxim ate Hausdorff m etric, 

and store the Hausdorff error in BUFFER[c] for bo th  aj > 0 and aj  <  0.

2.3 Choose the  ij from [s, e] for which BUFFERfij] is m inim um  as the  candi

date  in terpolation index.

2.4- Choose the m inim um  from the aj > 0 case and the  aj <  0 case and 

determ ine the  sign of ay Store the m inim um  error and the  index to  re tu rn  
s t r u c t  “poserr” .

2.5 Choose the  i s from (zy, e] for which B U F FE R [iJ is the  m inim um  value 

as the next-to-m inim um  error index. Store the error and index to re tu rn  

s t r u c t  “poserr”.

3. Answer the R PC  and return  the com puting result s t r u c t  “poserr” .

4. R etu rn  to step 2.

The subojDtimal search algorithm  for the clients consists of parent and child 

algorithm s. The parent algorithm  is described as follows.
A lg o r i th m  5 .4 . C lient’s Contribution to Robust Inverse E xtended IFS In ter

polation P aren t Algorithm .

INPUT:  {x§, yo)j • • •, (x n i Un ), the num ber of servers, SVnj the  constant,
W j  the  constant, kc, the servers name.

OUT PUT:  the  num ber M and the IFS maps wj,  j  = 1,2, • ■ • , M .

1. Initialize the m e ssa g e  structu re and build the child process. Initialize the 
in terpolation  point indices i0 = 0 and ij\/j — N  . For the other in terpolation 

point index U of the self-affine region i?i, set the lim it of the  search region [a, e], 

where integer s and e satisfy x s — a:o +  W  and x e = x n  — W .
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2. B roadcast the  index =  1,2, • • ■, M  — 1, to all child processes.

3. As in step 2.1 - step 2.3 of algorithm  2, to  com pute the m inim um  index ij and 

the  next to  m inim um  index i s in the search space [s, kc • e].

4. Receive the  results from other child processes.

4.1 Set the  message size, state, and message identifier.

4.2 Apply system  call “m sgrcv()” to receive messages.

4.3 If no message is received after five a ttem pts, suspend the  parent process.

5. Com pare all results and choose the m inim um  and the  next-to-m inim um  Haus

dorff errors and the interpolation point indices i j , i s-

6. If i j~i  0 and zs_! +  W  < e then :

6.1 Set new lim its for the search region (zs_i,e].

6.2 Step (6.2) is the  same as Step 2.

6.3 As in step 2.3.2 - step 2.3.4 of algorithm  2, com pute th e  m inim um  and 

the  next to m inim um  interpolation point indices zy, i s in the  search space 

[s, kc • e].

6.4 Step (6.4) is the same as Step 4.

6.5 Com pare all results and choose the m inim um  and the  next-to-m inim um  
Hausdorff error and interpolation point index ij>is.

6.6 Choose the  m inim um  from the aj >  0 case and the  aj  <  0 case and 

determ ine the sign of aj.

6.7 If h(L( i j ^ 2 , i j~i] i Wj-.1 {L)) +  h(L( i j - 1 , i j ) , w j (L)) >
h(^L{ij—2 , i s—i ] , Wj—i (X)) -f-/i((*5—1, ij], tOj(Z/)), then  set i j—i is—i
and ij = i s.

7. Step 7-11 are the same as Steps 3-8 in A lgorithm 5.1.

All child-process algorithm s are the same. We describe one as follows. 

A lg o r i th m  5 .5 . C lient’s Contribution to  the Robust Inverse E xtended IFS 

Interpolation  Child A lgorithm

I NPUT:  Server nam e and the la test interpolation point index i j - 1.
OUTPUT:  The m inim um  and the next to m inim um  point indices and 

the ir Hausdorff errors.

1. Initialize the client side of the RPC.
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2. R epeat indefinitely the following.

2.1 Set the  message size, state, and message identifier.

2.2 R epeatedly apply the system call “m sgrcvQ” until i j -1  is received.

2.3 Execute the  R PC procedure to  the corresponding server and await its
return .

2.4 Set the  message size, state, and message identifier.

2.5 Apply system  call “m sgsndQ” to send the R PC result.

2.6 Awaken the parent process to  receive the result.

5 .4 . N u m e r ic a l S im u la tio n  o f I tera ted  F unction  S y s te m  M o d el

We use four num erical exam ples to test algorithm  5.1 and algorithm  5.2 w ith W  = 9. 
For stric tly  self-affine d a ta  generated by a self-affine IFS m ap, the  standard  algorithm  
(algorithm  5.1) and the  robust algorithm  (algorithm  5.2) produced the  same result, 

m atching the  original data. For approxim ately self-affine data , however, they  gave 

different results. The “approxim ate” da ta  are produced by subsam pling stric tly  self- 

affine data. For exam ple, we sample every other point in a 512-point stric tly  self-affine 
d a ta  set to produce an approxim ately self-affine da ta  set of length 256.

Exam ple 5.1 is based on approxim ately self-affine d a ta  produced by large con

trac tion  factors dj and sparse interpolation points w ith sam ple ra te  50%. We find a 
solution by try ing M  — 2 ,3 ,4 , The best result is obtained w ith M  — 5 w ith the 

robust algorithm  (algorithm  5.2) and M  = 12 with the standard  algorithm  (algorithm  

5.1) as shown in Figure 35 (top picture) and Table V III (top). N ote th a t the  layout 

of Table V III is such th a t, to save space, each row includes two self-affine regions. 

The in terpolation  po in ts’ indices are listed in the first column of Table V III. If the 
first index is greater than  the second one, it means th a t the param eter aj of the  affine 
m ap Wj is negative. In Table V III the last column is the signal-to-noise ratio  (S N R ), 
defined by

ni4TT.  ̂ , ( (Original D ata - Produced D a ta )2\S N R  -  - 1 0  x log ±-----2  L_ _
\  (Original D ata) /

In the  results for the  robust algorithm , the interpolation po in ts’ indices are the  same 
as in the  original, and the affine m ap param eters dj are alm ost th e  same. The S N R , 
indicating fidelity of fit to the data, are about 15db, which is acceptable. In the 

results from  the  standard  algorithm , the num ber of interpolation points is m ore than  

the num ber from the  original, which does not represent good d a ta  compression. The 

m ap param eters dj are not the  same as w ith the original, and the  fidelity of fit to  the
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Fig. 35. Inverse IFS Interpolation with M  = 5 (top) and M  = 14 (bo ttom ) with Large 
clj A pproxim ately Self-affine D ata (50% sample).
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Table V III. Original and Calculated IFS Interpolation Point Indices, M ap param e

ters, Hausdorff Error, Signal-to-noise Ratio of Large dj for A pproxim ately
Self-affine D ata
Index Map Param. I-I SNR Index Map Parame. H SNR

Orig.
22,0, .15 .92 5.8 67,23 -.17 -.89 224.0

68,113 .24 .9 5.3 114,209 .35 -.93 246.9
210,255 -.29 .98 148.5

Robust
22,0 .18 .71 29.3 57.6 15.5 67,23 -.13 -.95 226.9 46.6 12.6

68,113 .2 .87 12.6 56.9 17.7 114,209 .36 -.94 245.8 68.3 15.9
210,255 -.58 .95 150.7 47.3 19.3

Stand.

9,0 .52 -.7 233.1 59.8 15.4 19,10 .66 -.26 103.9 27.1 13.8
29,20 .4 .74 -124.0 46.6 5.2 30,40 .75 -.93 108.1 54.6 6.1
50,41 -.06 .71 -58.4 28.5 5.2 61,51 -.29 -.77 267.9 56.9 14.6
62,81 -.57 .97 27.3 67.0 8.7 104,82 .22 -.39 219.0 72.7 15.9

115,209 .22 -.7 228.8 73.8 11.6 210,255 -.58 .95 150.7 52.8 16.0

Orig.

0,11 .16 .89 8.0 29,12 .06 .84 97.7
54,30 -.46 .92 150.0 55,75 .28 -.95 216.2
76,92 .37 -.83 231.6 117,93 -.44 .92 155.8

118,133 .3 -.85 219.1 134,157 -.21 .91 123.6
158,178 -.48 .87 118.5 193,179 -.26 .94 34.4
194,211 -.28 .89 21.0 235,212 .53 -.91 125.4
236,246 .03 .9 81.3 255,247 -.46 .81 141.9

Robust
and

Stand.

0,11 .19 .52 64.7 48.0 14.8 29,12 -.07 .76 121.0 5.5 16.2
54,30 -.52 .78 191.4 46.0 21.6 55,75 .5 -.8 172.2 45.9 13.0
76,92 .57 -.63 167.7 6.6 13.6 117,93 -.51 .78 197.4 45.9 21.7

118,133 .45 -.72 178.2 71.9 13.7 134,157 -.42 .73 192.4 51.4 18.5
158,178 -.68 .74 157.5 48.5 14.6 193,179 -.4 .97 29.5 59.6 16.9
194,211 -.52 .68 91.8 6.6 13.5 235,212 .56 -.82 100.8 56.7 13.2
236,246 -.24 .56 194.4 72.3 17.2 255,247 -.51 .08 262.3 6.5 14.9
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Table IX. Original and Calculated IFS Interpolation Points Indices, Map param e
ters, Hausdorff Error, Signal-to-noise Ratio of Small dj for A pproxim ately
S elf- affine D at a

Index Map Param. H SNR Index Map Param. H SNR

Orig.
22,0 .32 .08 67.2 67,23 -.34 -.04 161.9

68,113 .41 .05 67.4 114,209 .19 -.16 190.7
210,255 -.38 .04 217.1

Robust
and

Stand.

22,0 .33 .05 69.9 1.3 42.7 67,22 -.33 -.05 161.7 1.0 44.8
68,113 .41 .06 67.2 .9 45.7 114,209 .19 -.14 188.9 1.3 48.7

210,255 -.37 .04 215.9 1.3 47.9

Orig.

0,11 .32 .09 66.4 29,12 .21 .07 153.9
54,30 -.29 .12 208.2 55,75 .1 -.05 151.7
76,92 .21 -.03 173.2 117,93 -.27 .05 219.4

118,133 .14 -.05 160.7 134,157 -.05 .11 182.0
158,178 -.32 .07 176.9 193,179 -.08 .04 100.1
194,211 -.12 .09 79.4 235,212 .36 -.11 67.0
236,246 .19 .1 139.7 247,255 -.33 .13 191.5

Robust
and

Stand.

0,11 .31 .07 67.9 2.2 39.7 29,12 .2 .07 155.8 4.4 4.5
54,30 -.29 .11 209.0 1.8 45.0 55,75 .1 -.04 149.8 1.7 44.4
76,92 .2 -.02 172.5 1.1 47.8 117,93 -.27 .05 219.3 1.1 47.5

118,133 .14 -.04 158.8 1.3 45.3 134,157 -.06 .09 186.3 3.0 43.3
158,178 -.32 .06 177.7 1.9 41.8 193,179 -.07 .04 100.6 1.0 42.0
194,211 -.13 .07 82.9 3.0 35.0 212,235 .36 -.1 65.5 2.1 39.1
236,246 .16 .7 150.2 3.6 39.4 247,255 -.32 .05 199.9 3.9 36.3

d a ta  is not good in the (20,29) and (40,51) regions, in which the  S N R  is only about 
5db.

Exam ple 5.2 involves approxim ately self-affine da ta  produced by large contrac

tion factors dj and dense interpolation points, with sample ra te  50%. We try  to  search 
for a solution using M  = 2 ,3 ,4 , - • *. The best result is obtained w ith M  =  14 for 
both  the standard  and robust algorithm s in Figure 35 (bottom  picture) and Table 
V III (bo ttom ). In the results the num ber of interpolation points is the  sam e as for 
the  original, and the  m ap param eters dj are nearly equal to those in the  original. The 

m easures of fidelity of fit to  the da ta  are close to 13db, which is acceptable.

Exam ple 5.3 involves approxim ately self-affine da ta  produced by sm all contrac

tion factors dj and sparse interpolation points with sample ra te  50%. We try  to  search 
for a solution using M  =  2 ,3 ,4 , The best result is obtained w ith M  =  5 for both  

the standard  and robust algorithm s; see Figure 36 (top p icture) and Table IX (top). 
In the results the  num ber of interpolation points is the same as in the  original and the 
param eters of the  m ap dj are close to those in the original. The m easures of fidelity 
of fit to  the  data , are about 45db, which is very good.

Exam ple 5.4 involves approxim ately self-affine d a ta  produced by sm all contrac-
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E xtended IFS Interpolation ( M = 5 )
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Fig. 36. Inverse IFS Interpolation of M  =  5 (top) and M  = 14 (bo ttom ) with small 

dj A pproxim ately Self-affine D ata (sampled at 50%).
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Sound  of Male Speaking
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Fig. 37. E stim ated  IFS fitted curves for male speaking data.

tion factors dj and dense interpolation points w ith sample ra te  50%. We search for a 
solution using M  = 2, 3 ,4 , • • •. The best result occurs w ith M  =  14 for bo th  the  s tan 

dard  and robust algorithm s; see Figure 36 (bottom  picture) and Table IX (bottom ). 

The num ber of in terpolation points is the same as for the original and the  param eters 

of the m ap dj are nearly equal to those of the original. The m easures of fidelity of fit 
to the  d a ta  are about 35db, which is very good. Since the param eters of the  IFS maps 

are alm ost the  same as the original one in Exam ple 5.3 and 5.4, the  curves produced 

by the  standard  and robust algorithm  are almost coincident w ith the  original d a ta  in 
Figure 36.

In com paring these results, note th a t the larger the vertical contraction factors 
dj are, the  larger are the resulting Hausdorff errors and the  sm aller are th e  S N R . 

The closer to  self-affinity the given signal is, the less are the Hausdorff errors of the 
extended IFS in terpolation model. The larger the distance between two consecutive 

in terpolation  points, the more likely it is th a t the standard  algorithm  does not con

verge. W hen the  standard  suboptim al search algorithm  does not converge, th e  robust 
suboptim al search algorithm  can converge to the best solution.

We now consider d a ta  from male speech in Exam ple 5.5 and apply the  standard
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Table X. C alculated IFS Interpolation Points Indices, Map param eters, Hausdorff Er-

Index Map Param. II SNR Index Map Param. H SNR
s 16,0 -.69 .38 203.1 52.1 16.4 17,35 .01 -.02 249.2 1.9 47.4
t 36,48 -.69 .43 196.1 43.5 16.3 49,60 -.05 .01 113.8 1.7 39.8
a 76,61 -.67 .35 189.2 48.2 16.0 89,77 .004 .01 223.2 1.9 47.8
n 101,90 .12 .4 141.5 64.2 19.2 102,118 -.67 .38 146.5 73.6 8.6
d 135,119 -.44 -.25 268.8 47.5 15.6 136,155 .71 -.07 71.4 75.4 13.4
a 167,156 .15 .03 47.2 14,1 2.1 184,168 -.44 -.33 29.8 75.5 13.9
r 185,197 .63 -.46 170.0 42.9 16.5 209,198 .08 .0007 79.6 2.0 18.9
d 221,210 .06 .03 205.2 27.1 24.7 222, 234 .19 -.68 268.4 45.3 14.6

255,235 -.33 .45 90.3 142.5 7.14
16,0 -.69 .38 203.1 52.1 16.4 17,38 .02 -.01 245.4 4.8 42.6

R 70,39 .13 -.1 126.9 111.44 1.5 71,81 -.09 -.02 246.1 4.5 39.5
o 82,94 .01 .01 222.2 2.3 45.0 95,120 -.87 -.14 278.3 81.4 1.6
b 136,121 -.04 .18 157.7 68.1 15.2 137,155 .71 -.25 103.2 82.5 14.1
u 170,156 .07 .005 62.1 23.8 15.6 184,171 .02 .04 198.1 45.1 2.6
s 185,197 .63 -.46 170.0 42.7 16.5 209,198 .07 .0007 79.6 2.0 18.9
t 221,210 .06 .03 205.2 27.1 24.7 222, 234 .19 -.68 268.4 42.3 14.6

255,235 -.33 .45 90.3 142.5 7.14

and robust algorithm s to estim ate the param eters of the m ap. T he results are shown 

in Figure 37 and Table X. We search for the solution using M  — 2 ,3 ,4 , - * *. The 
best result comes from  M  = 17 for the standard  algorithm  and M  = 15 for the  robust 

algorithm . The fit obtained from the robust algorithm  is b e tte r  th an  th a t from  the 

standard  algorithm  since there are indices [102,118] from the  standard  algorithm  
between which the S N R  is less than lOdb.

In order to  create a comparison with other techniques, we used autoregression 
(A R ) models [41] to  fit the above examples. An AR process w ith  non-zero m ean [i

Table XI. AutoRegression Model Param eters Estim ation w ith Yule-W alker Equations
for the  Five Exam ples

Example AR
order

Mean Variance
<72

AR coefficients 
(cq, n2r' 1 ' 5

1 14 153.37 2975.37 0.55 0.05 0.15 0.06 -0.06 -0.08 0.17 0.04 
-0.0033 -0.098 0.049 -0.066 -0.16 0.26

2 16 185.87 7039.92 0.15 0.12 -0.032 0.02 -0.08 0.048 0.042 0.19 
-0.038 -0.13 -0.11 0.24 -0.059 -0.017 -0.12

3 1 156.59 34.56 0.99
4 1 157.21 206.38 0.95
5 1 166.66 1332.32 0.85
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Table XII. Signal-to-Noise Ratios from the Various M ethods
Example Standard S N R Robust S N R AR S N R

1 13.11 17.25 10.53
2 15.73 15.73 8.88
3 47.97 47.97 29.34
4 31.28 31.28 22.02
5 14.25 14.27 13.95

can be expressed in te rm  of the recursive equation[98]:

Xt = CliXt-i -j- "}"•’ • +  &px t-p T  Q) (5.16)

where et is a w hite noise process w ith zero m ean and finite variance <r2 and th e  order 

of th e  A R process is p. Table XI shows the  results where A R models are fitted  to  the 
exam ples, using the S Plus com m and, ar.yw, based on the Yule-W alker algorithm .

The S N R  achieved by applying the inverse extended IFS in terpolation  standard  
and robust algorithm s, and the AR model to the exam ples are listed in Table XII. 

The IFS algorithm s achieve uniform ly higher SNR than  the A R m odel in exam ples 
1, 2, 3, and 4. In the  case of the audio signal there is little  difference.

By applying the  parallel d istributed algorithm  to the  sam e num erical exam ples 

we obtained  the  same m ap param eters, but the running tim e obviously decreased. 

The num erical values are listed in Table X III where the first colum n is the  num ber of 
com puters. T he com puters of the parallel algorithm s used are SUN Sparc ELC, IPC , 
Sparc 2, and SUN 470. There are m any factors to influence the  running tim e, such 
as the  num ber of processors in each com puter, the CPU speed of each com puter, etc. 

The results listed in Table X III and Figure 38 are averages taken from  several tests.
The tim e com plexity of A lgorithm  5.1 relative to N , the size of the d a ta  set, is 

not linear. We see th a t the speed-up ratio  based on using two com puters, relative to 

the  case of a single com puter, is approxim ately three. The tim e spent on com m uni
cation increases quickly especially if the num ber of com puters exceeds 3, so th a t the 

im provem ent in the tim e spent on calculating the self-affine region cannot cover the 

increase in com m unication tim e. The best distributed parallel com puting proposal 
for these exam ples is to  use two or three com puters.

The algorithm s have been applied to various examples of approxim ately self-affine 
signals selected on the basis of their self-affine param eters, i.e., the  num ber of maps 
and the vertical contraction factors. The sim ulation results show th a t the robust 
algorithm  is strong enough to converge to the true result when th e  s tandard  m ethod 

does not. Real da ta  on m ale speech have also been used to te st the  algorithm s, and 

the results show th a t the robust algorithm  achieved be tte r fidelity to d a ta  than  did



R
un

ni
ng

 
Ti

m
e 

R
un

ni
ng

 
T

im
e

107

T h e T im e of IFS Param eters Estimating With Large Vertical Contractivity Factor
14
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8

6

,-+—

4

2
1 2 3 54 6 7

Num ber of C om puters
T h e Tim e of IFS P aram eters Estimating With Small Vertical Contractivity Factor

14
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8

6

4

2

0
2 3 5 6 74

N um ber of C om puters

Fig. 38. R unning T im e for E stim ating IFS Param eters for A pproxim ately Self-affine 

D ata  (50% sample) w ith Large dj (top diagram ) and w ith  Small dj (bo ttom  
diagram ).
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Table X III. Running Tim e (Seconds) for E stim ating  IFS P aram eters
No. Example 1 

M  =  14, di large
Example 2 

M  = 5, cl{ large
Example 3 

M  = 14, d{ small
example 4 

M  — 5, d{ small
Compu. Comm. Compu. Comm. Compn. Comm. Compu. Comm.

1 12.8 0 6.85 0 13.25 0 6.08 0
2 4.0 0.03 2.23 0.08 4.17 0.03 2.13 0.03
3 2.35 1.38 1.23 0.82 2.28 1.28 1.13 0.72
4 1.77 2.67 0.97 2.55 1.53 2.38 0.83 1.23
5 1.4 3.77 0.78 1.87 1.27 2.95 0.6 1.85
6 1.15 4.48 0.63 1.98 1.15 4.22 0.57 2.08
7 1.08 5.28 0.6 2.65 1.05 5.13 0.55 2.53

the s tandard  algorithm .

In an em pirical com parison, vve have shown th a t the inverse extended IFS in ter

polation m ethods can achieve noticeably higher S N R  them the  popular AR model 
m ethod in the case of approxim ately self-affine signals.
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CHAPTER 6

IT E R A T E D  F U N C T IO N  S Y S T E M  (IF S ) S M O O T H IN G  O F  
O N E -D IM E N S IO N A L  D IS C R E T E  S IG N A L S  B A S E D  O N  L O C A L  

C R O SS-V A L ID A T IO N  

6 .1 . In tr o d u ctio n

In this chapter, self-affine and approxim ately self-affine d a ta  corrupted  by G aussian 

noise are m odelled w ith a robust IFS inverse algorithm  and a local cross-validation 
technique. The local cross-validation is applied to com prom ise betw een sm oothness 
and fidelity to  the  data. The parallel d istributed version of the  algorithm  is im 
plem ented in Parallel V irtual Machine (PVM ) with optim al task  partition . Since 

the quan tity  of com m unication is small in this parallel algorithm  a simplifying task 
p artition  m odel can be applied which is only concerned w ith each com puter’s speed. 
Several num erical sim ulation results show th a t the new IFS inverse algorithm  achieves 

a higher signal to noise ratio  than  does autoregressive modelling. T here is little  m a

chine idle tim e relative to to ta l com puting tim e in optim al task partition ing  mode.

6 .2 . A n  In verse  IFS A lg o r ith m  B ased  on L ocal C ro ss-V a lid a tio n

In C hapter 5 we explored the m ethod for constructing an IFS m odel for a  noise-free 
one-dim ensional signal which is self-affine or approxim ately self-affine. If the input 
signal is corrupted by noise, the model we used in C hapter 5 will fail to  achieve a good 

fit to  the  original signal. In order to solve this problem , some sm oothing technique 
m ust be applied.

Recall the definition of IFS interpolation, th a t A  is the graph of a continuous

function /  : [m0, —■► R  which interpolates the data  {(*1, 2/1) , ....... , (*/v» J//v)}. T hat
is,

A  =  {(&’> f ( x )) : x C [*o, ®n]}, (6.1)

such th a t

f ( x i3) = f ( x h)  =  Vi,, f o r  j  = 1,2, (6.2)

Generally, however, we have the fractal interpolation m odel if the  original signal is 
corrupted by noise:

f  (* i ) f  (* j ) T- , f  01 z — 1 ,2 , . . . . ,  n , (6.3)
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where c; are independent identically d istributed  errors.

In Section 5.2, we explained th a t Barnsley’s linear fractal in terpolating  function 

/  is a real-valued function of unknown param eter vectors R , defined in E quation (5.3), 
param eter vectors D  which are the set of affine transform  param eters {cij, Cj,dj , e?-, f j  } 
defined in Equations (5.8) and (5.12), and the integer param eter M .  Since dj is the 
m ost im portan t param eter among all the param eters of an affine transform , we shall 

only deal w ith the  dj in the following discussion. Therefore, f ( x ) =  /(-/?, M , x)
is the  o u tpu t from  the  a ttrac to r of the IFS {77, w0,  , w m - i } based on the  d a ta

{(a:i, 2/1), • • •, ( x tv, Vn )}- The problem  therefore becomes th a t of how to estim ate the 
param eter vectors R , D  and the  integer param eter M.  One possible approach is to 

m inim ize the  residual sum  of squares (RSS)

R S S ( R , D , M )  = £ ( ! / ; -  (6.4)

In C hapter 5 we tried  to minimise a similar Hausdorff d istance instead of the  L 2 

distance. However, R S S ( R , D, M ) is a decreasing function of M , and M  controls the 
degree of sm oothness. The fewer affine transform s there are in an IFS, the  higher 
is the  degree of sm oothness bu t the less is the fidelity to the  data . T he m ore affine 

transform s there are in an IFS, the lower is the smoothness bu t the  b e tte r  is the  fidelity 

to the  data. Thus, m inim ization of R S S ( R ,  D }m)  will lead to  over-fitting and is not 

the  best approach. The problem  is analogous to th a t of the identification of an au to

regression AR(p)  model, for which Akaike’s AIC criterion [3], cross-validation [172] 

and o ther m ethods have been used as a means of penalizing the  com plexity of the 
fitted  model.

The idea of leave  — one — out  cross-validation is applied here. For 1 <  i <  n,  we 
define th e  leave-one-out  d a ta  set by

^ \ i  ~  { ( ’̂l i V i )  i ' ' ‘ ) (^t — 1 •> Vi — 1); (^ t+11 2/i+l) > i (-̂  N  i V Af)} • (^‘ )̂

Based on S \ i 7 we com pute param eter vectors R , D  and the integer param eter M , 

and obtain  an ou tpu t, J\i say, from the a ttrac to r of the IFS {7?2, Wo, ...., w m - i }  for 
i =  1,2,***, TV. The cross-validation function is defined by

n

CV( R,  D,  M)  =  f \ i ( R , D , M , Xi) ) \  (6.6)
i=l

For the  d a ta  sets in Figure 39, M  =  2, R  = {0, Zi}, and D  =  {do,di}. Thus, if M 
is specified, C V ( i \ , d o , d \ )  is a real-valued function of three variables on R  X D.  In 
Figures 40 and 41, we give plots of projections in the in terpolation points subspace
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R  and the  contraction factor subspace D.

We know th a t in general C V ( R ) D , M ) is a very high dim ensional function and is 
not stric tly  convex, as shown by Figure 40. Any global search m ethod in high dim en

sions is com putationally  highly demanding. However, the function C V ( R ,  D,  M )  has 
a special s truc tu re  such th a t we can use a low-dimensional search algorithm  to find a 
suboptim al solution. F irst, we note th a t M  is known im plicitly once R  is determ ined. 

Secondly, R  is an integer-valued vector such th a t each ij in R  satisfies 1 <  ij <  N ,  and 

there is an ordering am ong the elements of R , i.e. A <  <  • • * <  %m ~\> Since each Wj

contracts the d a ta  points (# 1, j/i), • • *, (#;v, 2/jv) into the region between the  left-end 
in terpolation  point (xg., j/g.) and the right-end interpolation point (£g+1, ViJ+1), f \ i  is 
a function of the  contraction factor dj only, i.e., — f \ i ( d j , x )  on [aq.,xij+1] .

Thus the cross-validation function C V { R , D , M )  can be expressed as a sum  of local 
cross-validation functions:

M—1 b'+i-1 M—1
C V ( R ,  D,  M )  = J 2  E  W  -  = E  C V A w + u d i ) ,  (6.7)

3= 0  i:=ij J = 0

where io = 1 and im =  N.  Thus the m inim um  of CV(R>D>M)  is achieved if and 
only if each of CVj ( i j , i j+i ,dj )  achieves its m inim um  and given correct choices for ij 
and ij+1.

In order to  enhance the  robustness of the local cross-validation algorithm , we 
use a technique sim ilar to th a t in Section 5.2 as shown in Figure 42, where P j - i , P j ,  
Pj3 ,Pj+1 , Pj> are interpolation points. For each new in terpolation  region Rj+i ,  we 
calculate the new best interpolation point and use the  next best point Pjs of the 
last in terpolation  region R j s to  calculate the new next best region Rj> • If

C % + C % +1 > C %  +  CWS+1, (6.8)

then discard the interpolation point indices i j , i j+1, replacing them  by A ?^ +x-
We propose the following algorithm  in which we m inim ize the CVj ( i j , i j+i ,d j )  

consecutively.

A lg o r i th m  6.1  Robust Inverse IFS Interpolation A lgorithm  Based on Cross- 
V alidation

INPUT:  (.ti, xi) ,  • • •, (a'jv, Un ) and W,  which controls the  m inim al dis
tance betw een two consecutive interpolation points along th e  x direction 
in the  algorithm .

OUT PUT:  P ,  M  and D.

1. j= 0 .
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IFS Parameters ( M=2, D=(-0.82,0.79), p1=100 )
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i

IFS Parameters ( M=2, D=(-0.23,0.31) , p1=100 )
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Fig. 39. Self-affine d a ta  generated by determ inistic IFS. For the top picture, the con

trac tion  factors are d0 = —0.82 and d\ = 0.79. For the bottom  picture, the 

contraction factors are d0 = —0.23 and d\ =  0.31.
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Cross Validation Function ( M=2, D = (-0.82,0.79))
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Cross Validation Function ( M=2, D = (-0.23,0.31))
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Fig. 40. P ro jection  of the  CV{i \ ,  do, cl\) function on the in terpolation  point subspace 

R  for fixed contraction factors D.  In the top picture D  — ( — 0.82,0.79) and 
in the  bottom  picture D  =  ( — 0.23,0.31).
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Cross-Validation Function (M=2, p1=100)

Cross-Validation Value

Cross-Validation Function (M=2, p1=100)

'CV'

Cross-Validation Value

600
500
400
300
200
100

0.67
0.37

0.07-0.89 -0.59 -0.23-0.29
0 . 0 1 -0. 53d2 -0.83

ig. 41. P rojection of the CV ( i \ ,  fii, d?) function on the contraction factor subspace D 
for fixed R  = {0,100} in both pictures. For fixed R = {0,100}, the m inim um  

of C V  appears at (—0.82,0.79) in the top picture and a t ( — 0.23,0.31) in the 

bo ttom  picture.
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s+1i s + 1

Fig. 42. Robustness modification of local cross-validation algorithm

2- j=j + l.
2.1 Set a search interval [s, e] for ij, where integers s and e satisfy x s = Xi-\-W,  

%e — — W.

2.2 For each elem ent c in [5 , ej, let (xc, yc) be the  right-end in terpolation  point 
of the  m ap Wj. The left-end interpolation point is (xij_1+i , y i j_1+i)  which 
has already been determ ined. M inimizing CVj ( i j , c , d j )  gives an estim ate, 
dj,  say, of dj. Store CVj( i j , c , d j )  in a one-dim ensional array B U F F E R [ c \ .

2.3 Choose, as a candidate of the index for the j t h  in terpolation  point from  the 

[s, e], the  integer ij such th a t B U F F E R [ i j ]  is m inim al among the values in 

B U F F E R [ c ] for which c 6 [s,e). Then determ ine the  next best i s, which 
cross-validation value is next minimum.

3. If i j - i  7  ̂ 0 and C -i +  W  < e then

3.1 Set new lim its of the search interval (C~i? e],

3.2 In a sim ilar way to (2.2) and (2.3), calculate indices i's, i's and corresponding 

cross-validation values CV{S_n  CV^.

3.3 If CVij_ 1 T  CVij > CVi s_ 1 +  CVi>s then set ij„ 1 =  is„ 1 and ij =  i s.

4. If CVj(i j ,  e, dj) < CVj { i j - \ , i j , d j )  then discard the candidate index ij and exit 
from the  algorithm .

5. A ccept ij as the j th  interpolation index. U pdate the search lim it to  s =  ij +  VF.

6 . If e <  s then exit from the algorithm.

7. Goto step 2.

8 . Finally, when the  algorithm  stops, let M  =  j  +  1 .
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There are two kinds of exit condition in the algorithm . One is at step 6 and 

occurs if no fu rther in terpolation  point exists. The other is at step 4 and occurs if a 

fu rther in terpolation  point will increase the  error of fitting th e  given function.

6 .3 . P a ra lle l D is tr ib u te d  A lg o r ith m  B a sed  on S ta tic  T ask  P a r tit io n

In C hapter 5 we used Rem ote Procedure Call (RPC) library to  im plem ent our parallel 

d istribu ted  algorithm s. RPC is a fundam ental approach to  interprocess com m unica

tion based on th e  simple concept known as the  procedure call. However, R PC  does 
not provide m achine configuration and process m anagem ent functions which are nec

essary for an in tegrated  Parallel D istributed Com puting (PD C) environm ent. In 

chapter 5 we used some Unix system  calls to im plem ent these functions, bu t this im 
plem entation  has not been optim ized and it only applies to  a special p latform , SUN. 

For exam ple, in Figure 34, we need to create m ulti-child processes. The overhead is 
high to  m ain tain  these processes.

Parallel V irtual M achine (PVM ) is an integrated PDC environm ent, alm ost th a t 

of Unix m achine and a dedicated M ulti-processor m achine can use it. I t means th a t 

the  algorithm  you design for a special platform  such as a SUN can also be used on 

any o ther p latform  which supports PVM .

The prim ary  objective in PDC is th a t of faster execution by using m ultiple 

processing elem ents th a t work cooperatively on a single problem . There are several 
factors, ranging from inherent non-parallelism  in the algorithm  to  th e  overheads of 

com m unication and synchronization among the m ultiple processors, which influence 

the  efficiency in speeding up com putations. In network-based environm ents, there  are 

also ex ternal influences, since bo th  the  network and the  processors m ay be in use by 
other applications in general.

In our situation , the  quan tity  of com m unication is sm all, as we shall indicate in 
the  following. Therefore, we can ignore the  difference in com m unication overheads 

am ong the  m achines used for parallel com puting and we only consider the  com puting 

speed of these machines.

As in A lgorithm  5.2, th e  intensive com putation requirem ent for A lgorithm  6.1 

comes from step (2.2) and step (3.2). We can partition  the  com putation  requirem ent 

of steps (2.2) and (3.2) into K  sub-tasks if there  are K  com puters which are available 
for us to  use. T he scale scalei  of each sub-task is determ ined by th e  com puting speed 
of the  corresponding com puter. We can get these speed param eters by running a 

benchm ark program . In order to  drive these sub-tasks, we need only the  left in te r

polation point of the  current in terpolation region and the  search interval [s;,e;], if 
we have preloaded the  param eter N  and whole set of d a ta  into each sub-task. The
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param eters of S{ and e; can be determ ined by the speed param eters sca/et-, using

Si — e;„ i +  1 (6.9)

ei = Si -f (e — s)scalei,  i = 1,2, • • ■, K ) (6.10)

where Co =  0 and [s, e] is the current search interval of the  sequential algorithm  6.1.

The parallel algorithm  based on PVM  and static  task partition ing  can be ex

pressed as follows:

A lg o r i th m  6 .2  M aster P art of Robust Inverse IFS In terpolation Parallel Algo

rith m  Based on Cross-Validation, PVM  and S tatic Task Partition ing .

INPUT:  (aq, aq), • • •, ( x j v ,  yjv) and W ,  which controls th e  m inim al dis
tance between two consecutive interpolation points along the  X  direction 
in th e  algorithm .
OUT PUT:  P,  M  and D.

1. Register this process to PVM , pvrrumyt idQ ; Create K  PVM  slave tasks, p v m s p a w n { ) 

Initialize the  da ta  structure , j  =  0;

2. j = j  +  1.

2.1 Set a search interval [s, e] for Zj, where integers s and e satisfy x s — aq +  VF, 

x e — xjy — W.

2.2 A pply Equation (6.10) to calculate each search interval [sqe;]; Pack this 

data , pvmjpkint ( ) \  Send them  to each slave task, p v m s e n d Q ;

2.3 Collect from  each, in return , the best and next best index in terpola

tion point, pv?ri-recv(); Unpack them , pvrruupkintQ and p v m . u p k f l o a t (); 
Choose the best one as a candidate for the index for the  j th  in terpolation 
point. T hen determ ine the next best one, i s.

3. If ij-.i 7  ̂ 0 and zs~i P W  < e then

3.1 Set new lim its of the search interval (zs_ i,e].

3.2 On sim ilar lines to steps (2.2) and (2.3), calculate indices z', i's and the

corresponding cross-validation values CVis_ 15 CVv .

3.3 If CVi j_i +  CVij >  CViB_ 1 +  CVi>s then set i j - 1 — i s- 1 and ij — i s.

4. If CVj ( i j , e , d j )  < CVj ( i j - \ , i j , d j )  then discard the candidate index ij and exit

from  the  algorithm .

5. A ccept ij as the j t h  interpolation index. U pdate the search lim it to  s =  ij +  W.
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6. If e <  s then  exit from the  algorithm .

7. Goto step 2.

8. Finally, when the  algorithm  stops, set M  = j  + 1 ; kill all slave tasks, pvrri-ki l lQ; 
qu it from  PVM , pvm^exit{)]

A lg o r i th m  6 .3  Slave P art of Robust Inverse IFS In terpolation  Parallel Algo
rith m  Based on Cross-Validation, PVM  and S tatic Task Partition ing .

INPUT:  ( xu  s i ) ,  • • ■, (xN , y N)
OUT PUT:  th e  best and next best indices and cross-validation value of 
in terpolation  points.

L Register th is process to PVM , p v m j m y t i d Q ; Initialize d a ta  structure;

2. W ait for receipt of the new index i j -1  +  1 of the left in terpolation  point and the 

search interval [sqe;], pvm-recv ();

3. U npack th is new data, p v m j u p i n t Q ;

4. For each elem ent c in [s^e;], let ( xc)yc) be the  right-end in terpolation  point 
of the  m ap Wj. The left-end interpolation point is (£q_1+i , ), which has 

already been determ ined. Minimizing CVj ( i j , c , d j )  gives an estim ate, dj say, of 

dj. Store CVj(i j ,  c, dj) in a one-dimensional array B U F F E R[ c ] ,

5. Choose, as a candidate for the index for the j th  in terpolation  point from  the 
[st-,ei], the integer ij such tha t B UFF E R [ i j ]  is m inim al am ong the values in 

B U F F E R [ c ]  for which c £ [s,-, e j .  Then determ ine the next best i Si which gives 
the  next sm allest m inim um  of the cross-validation function.

6. Pack the  best and next best indices and cross-validation values of the  in te r

polation points, p v m j p k i n t Q , pvmjpk f loa tQ\  Send them  to the  m aster task, 
p v m s e n d ( ) \

7. Goto step 2.

8. Finally, when the  slave is killed by the m aster, quit from PV M , pvm.ex i t ( ) .

6 .4 . N u m e r ic a l  S im u la tio n

In this section there are two features of interest. F irst, we wish to  te st the  efficiency of 
th e  inverse algorithm  for the  problem  of identifying an IFS in term s of accurate esti

m ates of the  system ’s param eters P , D , and M.  Secondly, since th e  IFS is concerned 

w ith the  fractal in terpolation problem , we want to see how the  inverse algorithm  

com prom ises between the two contradictory aims of the  degree of sm oothness and
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Table XIV. Original and calculated m ap param eters, local CV values, and Hausdorff 

distances for the strictly  self-affine da ta  w ith sam ple size 256
Original Calculation CV

Value
H.

DistanceP D P D
0,39 0.87 0,39 0.87 0.19 0.62
40,73 -0.83 40,73 -0.83 0.25 0.6
74,115 -0.92 74,115 -0.92 0.27 0.57
116,177 0.85 116,177 0.85 0.3 0.7
178,255 0.91 178,255 0.91 0.26 0.73

0,39 0.16 0,39 0.16 0.19 0.59
40,73 -0.09 40,73 -0.09 0.26 0.48
74,115 -0.24 74,115 -0.24 0.27 0.5
116,177 0.13 116,177 0.13 0.27 0.6
178,255 0.22 178,255 0.22 0.23 0.55

fidelity to the  d a ta  and also to com pare with the fit of auto-regression models for 

sm ooth d a ta  to see the  capacity for noise suppression.
In Exam ple 6.1 and 6.2, for stric tly  self-affine data, we chose two d a ta  sets for 

which the  m ap param eter D s are different but the P s are the same. One corresponds 

to  large contraction factors whose absolute values are near to 1, whereas the  other 
has sm all contraction factors whose absolute values are near to zero. To be specific 

M  =  5, A  =  (0 .8 7 ,-0 .8 3 ,-0 .9 2 ,0 .8 5 ,0 .9 1 ), D 2 = (0 .1 6 ,-0 .0 9 ,-0 .2 4 ,0 .1 3 ,0 .2 2 ) 

and P  — (0 ,39 ,73 ,115 ,177,255). The results obtained from  the  inverse algorithm  

are reported  in Table XIV. A lgorithm 6.1 was used to search for solutions w ith 

M  =  2, 3 ,4 , 5, 6 • • •. The best solutions for both examples are found a t M  — 5 and 
the  estim ated  param eters P  and D  coincide with the original P  and D.  In Figure 
43 we plot the  fractal interpolation on the basis of the estim ated  param eters of the 
IFS. The fidelity to the  given stric tly  self-affine da ta  is of course very good. The 
sm all local cross-validation values and Hausdorff distances in Table XIV are caused 
by com putational error in the  inverse algorithm  since we use integer operations to 

replace floating point operations in order to reduce the com puting tim e.

N ext, in Exam ples 6.3 and 6.4 we again used the same stric tly  self-affine d a ta  as 

in Exam ples 6.1 and 6.2 used, respectively. The noise corrupted signal was generated 

by adding zero m ean G aussian noise of standard  deviation a  =  10.0. T he results are 
reported  in Table XV and Figure 44. The optim al choice for the  num ber of affine 
m aps was the correct one of M  — 7 for Exam ple 6.3 and M  — 3 for Exam ple 6.4. The 

estim ated  P  do not coincide with the originals and the estim ated  contraction factors 

in D  also differed in both  Exam ples 6.3 and 6.4. The new noise-corrupted input da ta  
are not self-affine, because of the Gaussian noise. However we can find from Figure
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IFS Interpolation ( M=5 )
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Fig. 43. Fractal interpolation (M  =  5) for strictly self-affine data  w ith large D  (top 
picture) and small D  (bottom  picture).
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IFS Interpolation ( M=5, Large D, G au ssian  N o ise  m ea n = 0 , s t .v a r = 1 0 .0 )
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IFS Interpolation ( M=5, Small D, G au ssian  N o ise  m ea n = 0 , s t .v a r = 1 0 .0 )
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Fig. 44. F ractal in terpolation for strictly  self-affine da ta  w ith a large D  (top picture) 

and a sm all D  (bo ttom  picture) and additional Gaussian noise w ith zero m ean 
and s tandard  deviation a ~  10.0.
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Table XV. Original and calculated m ap param eters, local CV values, and Hausdorff 
distances for the strictly  self-affine da ta  w ith G aussian noise, m ean= 0,

(j =  10.0  ,_______,__________
Original Calculation CV

Value
H.

DistanceP D P D
0,39 0.87 0,38 0.67 14.08 31.62

40,73 -0.83 39,74 -0.55 19.99 30.13
74,115 -0.92 75,116 -0.64 22.52 40.55
116,177 0.85 117,126 0.99 16.08 39.09
178,255 0.91 127, 151 -0.26 21.62 55.47

152,174 -0.38 23.39 58.21
175, 255 0.4 25.56 67.4

0,39 0.16 0,23 -0.003 10.47 33.28
40,73 -0.09 24,155 0.46 20.84 39.35
74,115 -0.24 156, 245 0.006 18.7 46.33
116,177 0.13
178,255 0.22

44 th a t our algorithm  gives a b e tte r compromise than  the auto-regression m odel does 

betw een sm oothness and fidelity to the data.
Finally in Exam ples 6.5 and 6.6 we applied our algorithm  to  process fractional 

Brownian m otion d a ta  which are also corrupted by G aussian noise w ith zero m ean 

and s tandard  deviation 10.0. A fractional Brownian m otion, is a single-valued

function of one variable, ^(usually time) and H  > 0. Its increm ents Vh ^ )  ~  Vh ^ i ) 
have a Gaussian distribution. Vj-i(t) exhibits a statistical scaling p roperty  in th a t, if 

the  tim e scale t is changed by a factor r , then the increm ents change by a

factor r H . We generated the fractional Brownian m otion d a ta  by the  spatial m ethod 

w ith displaced in terpolated  points [153].
Noise-free fractional Brownian motion also provides approxim ately self-affine 

data . We chose two da ta  sets of FBM on which to test the inverse algorithm . They 

had different param eters, (H  = 0.8, r =  0.2) and ( H = 0.5, r  =  0.4). The sim ulation 
results are reported  in Table XVI and Figure 45. The optim al choice for the num ber 
of affine m aps was M  — 7 for Exam ple 6.5 and M  = 12 for Exam ple 6.6. We find 
from Figure 45 th a t our algorithm  gives a be tte r compromise th an  the  auto-regression 
m odel does between the degree of smoothness and fidelity to the  data.

All auto-regression models used in this section are described in Equation (5.16). 

Table X V II shows the results where AR models are fitted  to  exam ples 6.3, 6.4, 6.5 

and 6.6, using the  S Plus com m and ar.yw, based on the Yule-W alker algorithm .
By applying the  parallel d istributed algorithm  6.2 to all exam ples we obtained the 

same m ap param eters, bu t the running tim e obviously decreased. The com puters used
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Fractal Brownian Motion ( H =0.8, S ca le= 0 .2 , G au ssian  N o ise  m ea n = 0 , sd = 1 0 .0  )
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Fractal Brownian Motion ( H=0.5, S ca le= 0 .4 , G au ssian  N o ise  m ea n = 0 , sd = 1 0 .0  )
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Fig. 45. Fractional Brownian Motions and Their IFS Interpolation Expressions. 
H =0.8, Scale=0.2 (top diagram ) and H=0.5, Scale=0.4 (bottom  diagram )



124

Table XVI. C alculated m ap param eters M yD , P ,  local C V  values, and Hausdorff dis
tances H  for fractional Brownian m otion corrupted by G aussian noise with

d standard  devia non 10.1)
Calculation CV H.
P D Value Distance

0,21 0.08 9.04 28.82
22, 79 -0.09 15.89 37.06

80, 104 0.54 13.37 39.0
105, 202 0.41 17.55 40.21
203, 212 -0.14 10.68 13.79
213, 225 -0.23 8.05 8.31
225,255 0.002 10.83 40,3

0,22 -0.16 10.01 40.14
23, 53 0.14 21.31 34.28
54, 70 0.17 21.12 43.46
71, 81 -0.09 19.44 40.88
82, 93 0.35 16.53 20.14
94, 122 -0.31 18.51 36.73
123,151 -0.26 13.7 19.97
152,161 -0.24 17.71 20.01
162, 177 0.23 11.78 31.46
178, 188 -0.2 17.25 31.46
189, 234 -0.4 18.97 37.99
235, 255 -0.17 10.98 33.53

Table XVII. Auto-Regression Model Param eters Estim ation w ith  Yule-W alker Equa- 

tions for Exam ples
Ex. AR

order
Mean

A*
Var.
a 2

AR coefficients 
(ai, a2, •••, ap)

AR
SNR

IFS
SNR

6.3 4 -2.89 1192.01 0.45 0.002, 0.14, 0.15 1.0 4.64
6.4 9 -2.89 610.48 0.19 0.18 0.17 0.29 

-0.006 -0.16 0.06 -0.0002 0.16
0.63 7.13

6.5 3 -0.43 765.16 0.53 0.24 0.23 12.86 19.64
6.6 2 0.69 1112.41 0.68 0.28 10.51 16.45
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IFS PD Algorithm of CV Approach with Static Load B a lan ce
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Fig. 46. Total tim e for Exam ple 6.3 using PVM

in the  parallel algorithm s are SUN Sparc ELC, IPC, Sparc 10 and SUN 470. Figure 4-6 

shows the  to ta l tim e (com puting +  com m unicating 4- idle) for Exam ple 6.1. T here are 
four curves in the Figure. Two of them  use a Daemon-based com m unication scheme 
and others use a TC P-based com m unication scheme. In the PVM  environm ent, the 
T C P-based  m ode provides a more efficient com m unication p a th  th an  the  Daemon 
m ode so th a t we can obtain  im provem ent in to tal tim e. Com paring Figure 38 and 

Figure 46 we can conclude th a t PVM is be tte r than  R PC  for parallel d istributed  
com puting applications, since both algorithm s have sim ilar s tru c tu re  bu t the  R PC  
approach fails to improve when the num ber of com puters reaches four, while the  PVM  

approach continues im proving until the num ber of com puters reaches seven.

Task partition ing  is a very im portan t issue in parallel d istribu ted  com puting. We 
shows th is by providing results for optim al task partitioning and equal task p a rtitio n 
ing in Table X V III. We note one second to five seconds im provem ent in to ta l tim e in 
Table XVIII.

More detailed comparison is shown in Figure 47 and Table XIX. The height 
of each box in Figure 47 indicates the scale of each sub-task. In the  case of equal 
task partition ing , the  fastest com puter incurs high idle tim e while aw aiting the new
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Table XVIIL Total tim es (milli-seconds) for Exam ple 6.3 using PVM  D aem on and 
_______ T C P com m unication with equal and optim al task partition ing

No Equal (Daemon) Optimal (Daemon) Equal (TCP) Optimal (TCP)
1 11200 11200 11200 11200
2 9364 4015 8848 3699
3 7119 3710 7063 3584
4 6154 3541 5945 3477
5 5594 3470" 5386 3402
6 4626 3243 4372 3197
7 4441 3187 4317 3023

Table XIX. Task Partition ing  and Load Balance for Exam ple 6.3 with PVM  T C P
Com m unication VIode and Seven Com puters

Computer
Name

Scale of 
Sub-task

Computing
Time

Comm.
Time

Idle
Time

1 0.15 1140 30 2720
2 0.14 3652 16 174
3 0.14 734 18 3148
4 0.14 2719 17 1162
5 0.14 3153 13 675
6 0.14 2620 18 1178
7 0.14 2113 21 1703
1 0.1P2 1780 20 850
2 0.091 2062 15 311
3 0.505 1818 21 884
4 0.075 1562 16 878
5 0.065 2077 16 403
6 0.072 2076 12 466
7 0.08 2119 16 462
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message. This is the  case, for exam ple, w ith No. 3 com puter in Table XIX, and 

it wastes com puting resource. However, in optim al task partition ing , all com puters 

have low idle tim e and keep busy in com puting, as we expect.
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Fig. 47. Task P artition ing  and Load Balance for Exam ple 6.3 w ith PVM  T C P  Com 

m unication Mode and Seven Com puters, Equal P artition ing  (top diagram ) 

and O ptim al Partitioning (bottom  diagram)



129

CHAPTER 7

U S I N G  I N V E R S E  L O C A L  IT E R A T E D  F U N C T I O N  S Y S T E M S  (IFS)  
T O  M O D E L  O N E  D IM E N S IO N A L  D I S C R E T E  S IG N A L S  

7.1 . In tr o d u c t io n

Local IFS realise the IFS lim it if da ta  are self-affine and are suitable for modelling 

non self-affine signals. However it is difficult to explore the whole param eter space 

to  achieve globally optim al param eter estim ation. We present a two-stage search 

scheme to estim ate the  param eters of local IFS in this chapter so th a t we can get 

a suboptim al solution in a reasonable tim e. In network-based parallel com puting, 
m ost perform ance degradation involve load im balance caused by the  difference of 
m achines capability and external load. We apply a dynam ic load balance technique 

to  overcome th e  problem . Some numerical sim ulation indicates th a t our inverse local 

IFS algorithm  works well for serval types one-dimensional signal and the  parallel 

version, w ith dynam ic load balance, can autom atically have each m achine busy w ith 

com puting and w ith low idle time.

7.2 . Inverse  L ocal IFS  T h eo ry  and A lg o r ith m

As we have shown in the last two chapters, IFS interpolation is a viable m ethod for 

m odelling a given one-dimensional signal if it is a self-affine or approxim ately self- 
affine discrete sequence. Most signals, however, are not approxim ately  self-affine. A 

sinusoid, for exam ple, is neither self-affine nor approxim ately self-affine. A local IFS 

approach m ay be appropriate for modelling general signals.
A general LIFS can be defined as follows:

D e f in it io n  7.1 Let (X ,d )  be a compact metric space. Let W{ : R{ —» X  be a local 
contraction mapping on (A , d), with contraciibility factor S{, fo r  i = 1,2, * • • , M , 
where M  is a finite positive integer. Then {ic* : Hi —> X  : i — 1,2, • • • , M } is called 

a local iterated function system. The number s — max{s; : i = 1,2, • * • , M }  is called 
the contraciibility factor of the LIFS.

A one-dim ensional LIFS interpolation can be defined as :

D ef in it io n  7.2 A one-dimensional signal, { ( x i , y i )  : i =  0,1, • • • , N \  <  a^+i, \ x i ~

is divided into M  regions Rj  by contractive maps Wj.
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R 0 — {[0,«i]},

R m  — + C N ] } ,  (7-1)

where { (a^-^+ i, j/* . j+ i) ,  (#q-, Vij)} are terminal points, also known as interpolation 
points. Each region is self-affine for an associated region, R j ,

R j  =  { [ i j h i j r \ } J  ~  2,3, • • ■, A/ —  1,

R o  {[-Ob—Cb1]})

R m  — {ijv/bi-Mr]}? (7-2)

where {(^i 2/i7)? (^i v 5 2/ijr )} are terminal points of  the associated region Rj .  The
affine map 10j is the same as in Equation (5.1).

Among the affine m ap param eters, dj m ust satisfy \dj\ <  1 so th a t it guarantees 

th a t Wj is a contraction m ap. The param eter aj can be located in ( — 1,1). If >  0 it 

m eans th a t, for the region ( i j - i ,  ij), and associated region [ijh i jT], Wj m aps (x i j ^y i^ )  

to  (aj,-i_1+1, 3/*j_i+i) and (»* , yijr) to (x i}, ?/q). If aj <  0, it m eans th a t, for the  region 
( i j - 1 , ij], and associated region [ijh i jT], Wj maps ( x i ^ y ^ )  to  ( x {j, y ^ )  and (xijr ,

yijr ) (a'b - l+ 1’ Vij-l+ l) '
Com paring this w ith the definition of an IFS in C hapter 5, we can find th a t

the  difference between an IFS and a local IFS is the associated region Rj .  We have
only one associated region [0, TV] in IFS, but, we have M  associated regions in local 

IFS. We can get new affine m ap param eters estim ation form ulae by m odifying the 

corresponding equations.
For m ap param eters a3, e ?, we have

Xij Xij-l + lClj -...........  ...
X 2 . X i .V  h i

X j  X j ■ —  X j  . , Xj .  .. j-1^   Ajl V-1! 1 (7 .3 )
x ijT ~  x ij 1

if wj  m aps [ijh =>■ ( i j - i ,  ij). The m ap param eters Cj, d3 , j )  can be obtained from 

E quation (5.12). In other cases wj m aps [ijr, ij(\ => ( i j - 1, ij], and we need only 
interchange ij and i j - 1 in Equation (7.3).

T he inverse local IFS can be defined as the following optim al problem :

M

min h ( L , ^ 2 w j ( L j ) ,  (7.4)
j - i

where L  is the input signal and L - is the input signal of the  associated region Rj .
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The corresponding sub-optim al problem is given:

M

J2mmh(Lj , Wj (Lj ) ) ,  (7-5)
j = 1

where Lj  is the  inpu t signal of the self-affine region Rj  and the  unknow n param eters 
are the  right in terpolation point index ij of self-affine region R j ,  associated region Rj  

indices [iji,ijr] and the  m ap Wj param eters (a j , C j , d j , e j f j ). We need to search for 
all of these unknown param eters w ithin this search space. Even for this sub-optim al 

problem , the  search space is still too large to explore, where ij £ [0,7V], i j { £ [0,7V] 

and ijr £ [0,7V], lim ited by the condition Xj — x± > xi- — Xjj_3. We need fu rther to 
simplify the  sub-optim al problem  in order th a t we can solve it in a reasonable tim e. 

We suggest a two-stage search scheme :

F i r s t  we suppose th a t the associated region length is twice the length of the  self-affine 

region, th a t is,

^ijr Xijl — 2 X ( 7 *0)

We search for estim ation of the param eters ij, i :ji ,i jr in this sub-space.

S e c o n d  We receive all self-affine regions Rj ,  j  =  1, • • • , M .  Then, for each self-affine 

Rj ,  we search the corresponding associated region in the full search space, th a t 
is,

x ijr x i3l x ij ~  ij ^ijr i C [0?TV]. (7.7)

We also use inform ation about the neighbouring self-affine region to enhance the 

robustness of the  inverse local IFS algorithm , as we have done in C hapter 5. A ctually 
for each self-affine region we need to calculate the next best candidate  in terpolation 

point index is to accom pany w ith ij. Then when we search for the  next self-affine 

region, we have to  calculate two possible self-affine regions, one, iA,+1, based on ij
and other, Ri> , based on i s. If

tS -b  1

H(Ri , )  +  H { R il+1) >  (7.8)

then  we discard the  interpolation point indices i j , i j+ 1 , replacing them  by i s, i fs+a.
The inverse local IFS algorithm  consists of three algorithm s. T he first is the core 

of sub-space search (7.6).

A lg o r i th m  7 .1 . Inverse Local IFS Interpolation A lgorithm  (E stim ation  of Map 

Param eters and Hausdorff Distance for One Self-affine Region ).

INPU T:  (xo,yo), '  "  , { x n , v n ), self-affine region indices ( i j - i ,  ij) and as
sociated region w idth Awicl.
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O U TPU T :  the  best and next best associated regions (i j i , i j r ), ( is/>isr) an-d 
Hausdorff distances H ( R i j ), H(R{S) and tUj param eters.

1. Initialize H {R i3l) and H (R { si)

2. For each i jr £ [A w i d , N] do steps 3 - 5 .

3. Get iji =  i j r — Awid', calculate the m ap Wj param eters (a,j, Cj, dj, ej, f j ) for self- 

affine region ( i j - i , i j )  w ith associated region ( i j i , i jr ) and the  Hausdorff distance 

IT {ijr).

4. If H(i jr ) < H {R i jl), then record the ijr as the  new best one and update  
H { R ijl) —

5. O therw ise, if H(ijr) <  H (R i^ ) ,  then record the ijr as the new next best one and 
update  H ( R i sl) = H(ijr).

6. Finally, o u tp u t the  best and next best associated regions, defined by ( i j i , i jr ), 

(ishisr) and Hausdorff distances H(R{j ), H(R{S) and ivj param eters.

For stage one of the  search, we describe the algorithm  as follows:

A lg o r i th m  7 .2 . Inverse local IFS Interpolation A lgorithm  (Stage One Search 
for Self-affine Regions).

INPUT:  (ct’o, yo), ■ ■ •, (x N, yN) and W .
OUTPU T:  the num ber M  and Self-affine Regions Rj ,  j  = 1, 2, • • • , M .

1. Initialize in terpolation point indices io — 0, ijw — N  and j  = 0.

2. j  = j  +  1.

2.1 Set a search interval [s, e] for ij,  where integers s and e satisfy x s — 

Xij-! +  W ,  x e — x n  — W.

2.2 For each elem ent c in (s, e], do steps 2.3 -  2.6

2.3 Let (x c, yc) be the right-end interpolation point of the  m ap Wj, The left-end 

in terpolation  point is (a; _1+i, yij^+i) ,  which has already been determ ined.

2.4 Apply A lgorithm  7.1 to get the best and next best candidate associated 

regions, defined by (i j i , i jT), (ishisr)? and the  Hausdorff distances H {R i3), 

H { R i .)■

2.5 If H(iji) < H (Ri j ) ,  then record ij as the new best one and update  H ( R i 3) =  

Hto,) .
2.6 Otherwise, if H(isl) < H ( R i s), then record is as the new best one and 

updating  H { R is) = H (i sl),
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3. If z‘j_ i ^  0 and zs„i +  W  < e then

3.1 Set new lim its of the search interval (zs~ i,e].

3.2 As in step (2.2), calculate the  best and next best indices i's, z's+1 and the 
Hausdorff distances J - ^ R i ^ ) ,  H(Ri>s).

3.3 If +  H ( R ij) > H ( R i a_1) +  H(Ri>s) then  set Zj_! =  z5_x and ij — i s.

4. A ccept ij as the  j -th in terpolation index. U pdate the  search lim it to  s =  ij +  W .

5. If e <  s then exit from the algorithm .

6. Goto step 2.

7. Finally, ou tpu t M  = j  +  1 and all self-affine regions R j ,  j  =  1, ■ • • , M .

For stage two of the search, the algorithm  is as follows:

A lg o r i th m  7.3. Inverse local IFS Interpolation A lgorithm  (Stage Two Search 
for A ssociated Region).

INPU T:  {xo,yo),'  * * , { x n ,Un ) and M  and all self-affine regions Rj ,  j  —
1

O U TPU T:  A ssociated Region Rj ,  j  = 1,2, • • •, M .

1. For each self-affine region Rj ,  j  — 1,2, • • •, M ,  do step 2 - 6 .

2. Set up a search interval [s , e] as (zj_1} Zj],

3. For each new A w id  £ [1.5 x (X{j — N],  do steps 4 - 6 .

4. A pply A lgorithm  7.1 to get the best and next best candidate associated regions, 

{iji,ijr)> (ishisr)y an(l ^ ie Hausdorff distances H ( R i j ) and H ( R i s).

5. If H[iji) <  H ( R i j ), then recording the ij as new best one and updating  H (R i j )  =

6. Finally, ou tp u t the associated region (i j i , i \r ) which corresponds to  H ( R i j ).

7.3 . P ara lle l  D is tr ib u te d  Inverse Local IFS A lg o r i th m  B a sed  on P V M  
and D y n a m ic  Load B a lan ce

In C hapter 6 we explored the parallel distributed algorithm  w ith sta tic  optim al task 
partition . This sta tic  load balance model supposes th a t the w ork-stations have no any 

ex ternal job appearing in the  task executing period. However, in a real environm ent, 
there  are ex ternal influences, since, in general, bo th  the  netw ork and the  processors 

m ay be in use by other applications. In a network-based com puting environm ent,
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Fig. 48. Schem atic for Dynamic Load Balance A pplication.

load im balance, caused by disparities in machine capabilities as well as by external 
loads, emerges as a prim ary cause of lowered overall perform ance. A good parallel 

d istribu ted  algorithm  should com bat this imbalance.
In order to m atch  the dynam ic varied com puting resource, we need to apply 

a dynam ic task load scheduler. The dynam ic load scheme is illu stra ted  in Figure 

48. The scheme requires th a t the whole task can be partitioned  into com pletely 

independent and the  same portions, a slave algorithm  is applied to  each, and partia l 

results are com bined using simple com bination schemes. The scheduler keeps each 
slave under observation. W hen it finds any slave idle, it tries to get a new sub-task 
from  the  task queue and loads the sub-task into the idle slave.

T he general dynam ic load balance algorithm  can be given as follows: 
A lg o r i th m  7.4 . General Dynam ic Load Balance Algorithm .

INPU T:  slave num ber K , sub-task generation algorithm  and d a ta  col
lected algorithm .
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O UTPU T:  results from da ta  collected algorithm.

1. For each slave p 6 [1, K],  do steps 2 - 3

2. Get a new sub-task by applying the sub-task generated algorithm .

3. Load th is sub-task to  slave p by pack sub-task, pvn i -pk in tQ , and sending it to
the  slave, pvm.send{).

4. Check, if slave p has finished its job, by pvmjrecvQ.  Then:

4.1 A pply the  d a ta  collection algorithm.

4.2 G et a new sub-task by applying the sub-task generated algorithm .

4.3 If the  sub-task generation algorithm  fails to generate a new sub-task, then 
goto step 5.

4.4 Load this sub-task into slave p by packing the sub-task, p v m -p k in t Q , and 
sending it to the slave, p v m s e n d Q .

5. W ait for the  other slaves to finish their jobs, by p v m recv().

6. A pply the d a ta  collection algorithm .

7. Finally, ou tpu t the results.

In the  above algorithm , we need two external algorithm s (one is for sub-task 

generated and o ther is for da ta  collection), since each application m ay have a different 

sub-task generation m ethod and a different data  collection scheme.
In our parallel local IFS algorithm , we have two choice for sub-task generated. 

One is for steps 4-7 of A lgorithm 7.1, when task g ranularity1 is small. The to ta l 

th roughpu t of com m unication for estim ating a candidate self-affine is 16 x (TV — 
Awid)  bytes. O ther sub-task is for the whole A lgorithm 7.1, when task granularity  
is m edium . The to ta l th roughput of com munication for estim ating  a candidate self- 
affine is 16 bytes. Because of the very low speed of com m unication relative to  the 

speed of the  w orkstations, we shall use the m edium  task granularity  m ethod. The 
corresponding sub-task generation for stage one and stage two are given as follows:

A lg o r i th m  7 .5 . Sub-task Generation for Stage One of the Search.

INPU T:  left interpolation point index right point search interval

[5 , e] and the  associated region width Awid.
OUTPU T:  one sub-task which includes the candidate self-affine region
defined by (zy_i, z’y) and the associated region w idth A w i d .

1See page 38 for more.
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1. Choose one right interpolation point index ij from the  search interval (<s,e].

2. If there  is no new ij, then ou tpu t th a t a new sub-task cannot be generated.

3. Finally, ou tp u t one sub-task which includes the candidate self-affine region index 

(z j_ i, i j ) and the  associated region w idth Awid.

A lg o r i th m  7 .6 . Sub-task Generation for Stage Two of the  Search.

IN PU T :  self-affine region indices ( i j - i ,  ij) and the associated region w idth 
search interval [Awid,  A],

O UTPUT:  one sub-task which includes the self-affine region indices ( i j - i ,  ij) 

and the  associated region w idth Awidj .

1. Choose one associated region width Awidj  from the search interval [Awid, N].

2. If there is no new Awidj ,  then output th a t a new sub-task cannot be generated.

3. Finally, ou tpu t one sub-task which includes self-affine region indices i j - i , i j  and 

the  associated region w idth Awidj .

B oth stages one and two of the search use the same d a ta  collection algorithm , 
which is given as follows:

A lg o r i th m  7 .7 . D ate Collection Algorithm.

IN PU T :  candidate right interpolation point index ic, Hausdorff distance 

H ( R C) the  and associated region (ici , i cr).
O UTPU T:  best and next best right interpolation point indices ij ,  i s, 
H ausdorff distances H (R j ) ,  H ( R S) and the associated regions ( i j i , i jr),

{.zijl 5 s j r ) .

1. Initialize 77(7?^) and H ( R i s)

2. Unpack d a ta  by pvm jupk in tQ  and pvm^upkfloatQ.

3. If H ( i c) < 77(7?^), then record ic as the new best right in terpolation  point index, 

record the  associated region {iji, ijr) =  (i ci>icr) and update  77(77^) — H(ic).

4. O therw ise, if 77(ZC) < H ( R i s), record ic as the new next best right in terpola

tion point index, record the associated region (isi , i sr) = ( ic/ , i cr) and update

77(77,) = H(ic) ‘

5. Finally, ou tpu t the best and next best right interpolation point indices ij, i s, the 

H ausdorff distances H (R j) ,  H ( R S) and the associated regions ( i j i , i jr), (i sh i s r)■
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T he parallel algorithm  based on PVM  and dynam ic load balance can be expressed 

as follows:
A lg o r i th m  7 .8 . Parallel Inverse Local IFS Interpolation A lgorithm  (Stage One 

Search for Self-affine Region), M aster Part.

IN PU T:  (xQ, i/o), • • • > Vn ) and W .
O UTPU T:  the  num ber M  and Self-affine Regions R.j, j  — 1,2, ••  •, M .

1. Initialize in terpolation point indices io =  0, Im  =  N  and j  — 0; register to  PVM  

by pvrrumyt idQ .

2. j  =  j  +  1.

2.1 Set up a search interval [s, e] for i j , where integers s and e satisfy x s —
i +  W ,  x e =  x N -  W.

2.2 Apply dynam ic load Algorithm  7.4- to calculate i j , i s and H (R j ) .

3. If i j - i  0 and A -i +  W  < e then

3.1 Set new lim its of the search interval (zs_ i, e].

3.2 A pply dynam ic load Algorithm  7.4 to calculate z's, z '+1 and H(R{>3).

3.3 If H ( R ij_1) + H (Ri j )  > I I ( R i s ^ )  + II(Ri 'J  then set i j_i =  is~ 1 and ij — i s.

4. Accept ij as the  j- th  interpolation index. U pdate the search lim it to  s = i j4~W.

5. If e <  s then  exit from the algorithm .

6. Goto step 2.

7. Finally, o u tpu t M  = j  +  1 and all self-affine regions R j ,  j  =  1, * * • , M .

A lg o r i th m  7 .9 . Parallel Inverse Local IFS Interpolation A lgorithm  (Stage Two 
Search for A ssociated Regions) M aster Part.

INPU T:  (#0 , Vo), • * •, (%n , Vn ) and M  = j  — 1 and all self-affine regions 

j  = 1, * • • 5 M.
OUTPU T:  Associated Regions Rj ,  j  =  1, 2,*-- ,  M .

1. For each self-affine region Rj,  j  =  1, 2, • • • , M , do steps 2 - 4 .

2. Set a search interval [s , e] as (zj_i,Zj].

3. A pply dynam ic load Algorithm  7.4 to calculate ij, i s , i7(7?tj ) and the associated 

regions ( ijh ijr ) and {iahi sr).

4. Finally, ou tpu t the associated regions (ijh ijr) which correspond to  the  H ( R iJ).
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A lg o r i th m  7 .10 . Parallel Inverse Local IFS In terpolation  A lgorithm , Slave 

P art,

IN PU T:  (£0 , 2/0)) * * • i (®jV)S/at)) self-affine region indices ij) and the
associated region w idth Awid.
O U TPU T:  the  best and next best associated region indices ( ijh i j r), ( is/ , i sr) 
and Hausdorff distances H (R i j ) and H ( R i a).

1. R egister this process to PVM , pvrrumytidQ;  Initialize H (R{jt) and H ( R i al);

2. W ait for receipt of the new index i j- 1 of the left in terpolation  point and their 

search interval [s,-,ei], by pvm_recv();

3. Unpack this new data , by p v m ju p in t ();

4. For each ijr £ [Awid, N ] do steps 2 - 9 .

5. Get iji =  i jr — Awid] Calculate the m ap Wj param eters (ctj, Cj, d3, e3, f j ) for 

self-affine region indices ( i j - i , i j )  w ith the associated regions and the 
Hausdorff distance H(ijr).

6. If H (ij r) <  H(Rij i) i  then record i jr as the new best one and update  H{Ri-l) =  
H(i_jr ).

7. O therw ise, if H(ijr) < H ( R j sl), record i jr as the new next best one and update  
H ( R l£l) -  H {iJV).

8. Finally, pack the  best and next best candidate associated region defined by 

{ijhijr)^ (isiiisr) ant  ̂ Hausdorff distances I I ( R i j ) and H (R{S) w ith p v m j p k i n t Q , 
pvm -pk f loa tQ ]  Send them  to the m aster task, p v m s e n d Q .

9. Go to  step 2.

7 .4 . N u m e r ic a l  S im u la tio n

In th is section, we first present a variety of non self-affine one-dim ensional signal types, 

m odelled w ith local IFS interpolation. Second, we want to see how the inpu t constant 

W ,  which controls the  m inim al distance between two consecutive in terpolation  points 
along the X direction in th e  inverse LIFS algorithm , can change th e  com pression ratio. 
T hird , we d istribu te  our com puting task in a network environm ent and test the  speed
up ratio.

In Exam ple 7.1, we sample the sinusoid function 128 sin(27ra:/255) in the  interval 
[0, 255] to  get the discrete signal of length 256. We apply inverse LIFS algorithm  with 

W  = 32 and find th a t the best result is obtained when M  = 7. The results are listed
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Table XX. Local IFS calculated self-affine region (S.R) indices, associated region (A.R) 

indices, m ap param eters and Hausdorff distances for a  Sinusoid Signal 

128 sin(27ra;/255)
S.R. Index A.R. Index Map Par am. H SNR

0,35 126, 179 1.06 -0.33 -131.55 0.02 40.6
36, 68 32, 80 0.34 0.44 48.51 0.03 45.83

69, 103 54, 105 -0.6 0.42 107.5 0.04 45.7
149, 104 92, 160 1.28 -0.26 -156.98 0.81 35.7
181, 150 22, 69 1.77 -0.4 -136.79 0.55 44.0
220, 182 156, 213 -0.27 0.45 -18.61 0.07 45.7
255, 221 78, 129 -2.67 -0.31 246.68 1.2 38.4

Table XXL Signal N oise/Ratio of Local IFS and IFS
Example 7.1 Example 7.2 Example 7.3
LIFS IFS LIFS IFS LIFS IFS

SNR 4-5.98 31.05 4.05 2.25 24.36 21.91
H 1.62 5.46 203.35 244.45 16.89 29.97

in Table XX. In order to com pare with the inverse IFS algorithm , we also illustrate  

the  bo th  results in Figure 49. The to tal signal/noise ratios from bo th  algorithm s are 

listed in TableXXI.

In Exam ple 7.2, we use a real-world male speech signal of length 256. We apply 

the  inverse LIFS algorithm  with W  — 9 and find th a t the best results is obtained 

when M  = 20. The results are listed in Table XXII. For com parison w ith the  inverse 
IFS algorithm , we illu stra te  both  results In Figure 50. The to ta l signal/noise ratios 
of bo th  algorithm  are listed in Table XXI.

In Exam ple 7.3, we use a fractional Brownian m otion signal of length 256 gen
erated  by the  m ethod used in Section 6.4 of length 256. We apply the  inverse LIFS 

algorithm  w ith W  = 9 and find th a t the best result is obtained when M  =  21. The 

results are listed in Table XXIII. For comparison with the inverse IFS algorithm , 

we illu stra te  the  both  results in Figure 51. The to ta l signal/noise ratios of bo th  
algorithm s are listed in Table XXI.

In these exam ples, we find th a t the local IFS approach fits the  d a ta  b e tte r  than  

the  IFS does. The SNR im provement is 14DB for sm ooth d a ta  and 2DB for rough 
data.

T he constant W  influences the compression ratio. We sim ply define the  com

pression ratio  as R  = since our original input signal uses single precision, which 

takes four bytes, we can use three bytes describe the self-affine and associated region 
and six bytes for the m ap param eters c^c/;,/*-. We choose W  — 32, W  =  48 and
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Local IFS Interpolation and S inusoid  S ignal
150

original 
local IFS algorithm  

IFS algorithm

100

5 0

0

-50

-100

-1 5 0
2 5 00 50 100 150 200

X

Fig. 49. Local IFS Modelling of the Sinusoid Signal 128 sin(2?ra;/255)
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Table XXII. Local IFS calculated self-affine region (S.R) indices, associated region 
(A .R) indices, m ap param eters and Hausdorff distances for a M ale Speech
Signal

S.R .Index A.R. Index Map Par am. H SNR
0,9 22, 42 0.81 -0.99 342.52 2.4 41.1

10, 27 56, 122 -0.13 -0.02 262.64 3.0 42.3
41, 28 21, 42 2.05 0.08 157.2 94.6 18.3
42, 56 38, 217 -0.1 0.02 125.85 1.8 43.0
71, 57 37, 65 -0.02 0.99 -0.57 3.6 35.9
72, 80 48, 64 -0.71 0.54 211.43 0.7 53.8
81, 91 180, 226 0.002 -0.02 227.13 0.9 48.4
103, 92 66, 83 0.63 0.94 -34.55 2.64 43.1

113, 104 48, 81 3.23 0.9 -205. 2.8 41.0
114, 132 57, 88 0.46 0.98 -73.94 26.0 26.4
142, 133 152, 166 16.33 0.36 -2513.3 41.8 12.4
154, 143 6, 25 -5.28 0.19 229.24 64.9 14.1
170, 155 40, 70 1.88 0.95 -142.64 24.6 19.9
179, 171 109, 122 2.26 0.3 -83.88 1.7 46.7
189, 180 202, 217 -1.86 0.91 414.0 4.3 37.5
206, 190 158, 182 2.33 0.85 -351.83 9.7 32.1
207, 222 4, 32 0.2 0.99 -35.88 37.2 23.1
223, 234 61, 86 -1.92 0,97 135.58 6.1 33.9
244, 235 157, 173 2.8 0.94 -473.42 3.4 35.7
255, 245 123, 138 -1.3 0.96 165.9 9.7 31.7
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Local IFS Interpolation and M ale S p e e c h  S ignal
3 0 0

original 
local IFS algorithm  

IFS algorithm
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2 5 00 50 100 150 200
X

Fig. 50. Local IFS Modelling of a Male Speech Signal
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Table X XIII. Local IFS calculated self-affine region (S.R) indices, associated region 

(A .R) indices, m ap param eters and Hausdorff distances for a Fractional
Brownian M otion Signal (H=0.5, Scale=0.4)

S.R. Index A.R. Index Map Par am. 11 SNR
14, 0 19, 48 5.68 -0.99 -116.08 13.6 15.1

15, 24 0, 114 0.12 0.06 -7.4 21.8 0.8
25, 40 121, 145 5.87 0.85 -813.55 6.2 21.2
52, 41 129,231 0.15 0.13 50.94 9.5 24.8
53, 62 37, 52 0.01 -0.89 112.75 5.5 25.1
72, 63 104,159 -0.28 -0.23 70.02 14.5 7.1
83, 73 152, 178 0.13 0.1 12.61 11.7 12.0
94, 84 133, 169 -1.31 -0.46 297.19 7.3 28.2

95, 104 92, 130 -0.79 0.23 120.39 4.77 27.19
105,114 102, 205 -0.44 -0.45 134.78 6.7 21.76
124,115 198, 217 4.84 0.97 -807.1 8.8 28.5
125, 140 21, 44 -5.42 0.53 251.46 6.9 29.1
141, 150 174, 192 1.5 0.77 -219.67 2.4 33.8
151, 160 57, 198 -0.69 -0.33 124.08 2.9 27.4
186, 161 121, 211 1.3 0.38 -200.8 9.1 13.6
187, 195 14, 56 -2.38 0.81 69.61 2.54 27.4
205, 196 143, 226 1.79 0.42 -352.01 17.9 9.9
206, 215 37, 69 -2.95 -0.24 44.13 10.9 22.23
216, 226 14, 126 -0.16 -0.07 -154.22 9.4 29.8
227, 241 12, 57 -2.26 0.25 -103.12 26.6 20.9
242, 255 110, 203 -0.38 -0.31 -170.01 16.4 31.7
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Local IFS Interpolation and Fractional Brownian Motion (H =0.5 , S c a le = 0 .4 )
200

original ------
local IFS algorithm  ------

IFS algorithm ........150
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X

Fig. 51. Local IFS Modelling a Fractional Brownian M otion (H =0.5, Scale=0.4)
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Local IFS Interpolation and Sinusoid  Signal with Different W
150

original 
LIFS W =32  
LIFS W =48  
LIFS W =64
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Fig. 52. Local IFS Model of a Sinusoid Signal 128 sin(27ra:/255) w ith the different W  

values

Table XXIV. Local IFS Model of a Sinusoid Signal 128sin(27ra;/255) w ith the different 

W  values ______________________________
w M H SNll R
32 7 1.62 45.98 0.0615
48 5 3.43 38.17 0.0439
64 3 29.22 22.5 0.0264

W  = 64 to test the influence. The results are shown in Figure 52 and Table XXIV. 

W ith  W  = 32 and W  =  48 we get a fit to the data, but w ith W  — 64 the  fit is not 

good, although, the  compression ratio is high.

To test our dynam ic load balance technique, we set up a PVM  configuration w ith 
th ree SUN clusters as shown in Figure 53. The first of these is the D epartm ent of 
S tatistics SUN cluster which includes nine SUN work-stations (Sparc 10, ELC, IPC  
and SUN 470). The second is the S tatistic Lab SUN cluster, which includes th ree 
SUN Sparc 10. The th ird  is the Com puting Service SUN cluster which includes two 

SUN Sparc 10. The first and second clusters are connected w ith E thernet and the 

th ird  is connected w ith FDDI. All machine use SUN OS 4.1.x.
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Statistics Dept. 
SUN Cluster

1. jupiter.stats
2. mars.stats
3. milkyway.stats
4 .  nebula.stats
5. neptune.stats
6. saturn.stats
7. tellus.stats
8. autota.stats
9. orion 
10.labservl 
11.Iabserv2 
12.Iabserv3
13.newton.cent
14 .rockall.cent

Fig. 53. W ork-station Configure for PVM

Figure 54 shows the to ta l tim e (com puting +  com m unication +  idle) for exam 

ple 7.2. T here are four curves in the Figure. Two of them  use a Daemon-based 
com m unication scheme and others use a TCP-based com m unication scheme. In the 

PV M  environm ent, the  TC P-based mode provides a m ore efficient com m unication 

p a th  th an  the  Daemon mode so th a t we can get some im provem ent in to ta l tim e. 
From  Table XXV we see th a t we get a good speed-up ratio  w ith the  dynam ic load 
balance technique even if the num ber of com puters is fourteen, com pared w ith sta tic  

load balance where the  num ber of com puters is seven.

More detail com parison is shown in Figure 55 and Table XXVI. T he height of 
each box in Figure 55 indicates the scale of each sub-task. In the  equal-task-load 

case, the  fastest com puters incur high idle tim e waiting for a new message; see, for 
exam ple, com puters 3, 8, 10, 11, 13, 14- com puters in Table XXVI. This wastes the 
com puting resource. In the  dynam ic load case, however, all com puters have low idle 

tim e and keep busy in com puting, as expected. We also find th a t Nos. 13 and 14 
incur large task load. Both com puters are fast Sparc 10s in cluster 3 which is not 

connected to  the  local network. The large task load indicates th a t the  network delay 

across the  cam pus is sm all and th a t the network is suitable for th is type of parallel 

d istribu ted  com puting application.
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LIFS PD Algorithm with Dynam ic Load B a lan ce
9 0 0
8 0 0
7 0 0

6 0 0

equal load with D aem on  -«—  
equal load with TC P -+—  

dynam ic load with D aem on  -b - -  
dynam ic load with TC P -*—

5 0 0

4 0 0

3 0 0

200

100

0 1 2 12 13 14 153 4 5 6 7 8 9 10 11
Number of C om puters

Fig. 54. Total tim e for exam ple 7.2 using PVM

Table XXV. Total tim es (seconds) for Exam ple 7.2 using PVM  daem on and T C P
com m unication with equal and dynam ic task load

No Equal (Daemon) Dynamic (Daemon) Equal (T C P) Dynamic (T C P)
1 744.02 744.02 744.02 744.02
2 434.89 430.22 244.91 226.17
3 286.73 271.13 155.44 136.72
4 265.96 259.76 142.25 120.77
5 219.0 218.01 126.21 113.81
6 184.33 183.14 123.95 102.77
7 163.07 160.24 109.98 92.98
8 149.21 148.91 107.56 89.24
9 151.11 149.9 89.29 78.21
10 139.82 138.83 70.64 67.41
11 126.95 120.48 62.46 56.44
12 118.94 117.83 60.27 48.99
13 110.44 104.36 61.37 47.8
14 106.81 105.1 58.88 47.19
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Equal Load LIFS Algorithm with Fourteen W orkstations in T C P  C om m unication

com m unication  tim e
com puting tim e -*—  

static equal load ........
100

6 0  -

0 1 2 3 4 5 6 7 8 9 12 13 14 1510 11
C om puter Identifier

D ynam ic Load LIFS Algorithm with Fourteen W orkstations in TC P C om m unication
45

com m unication  tim e -♦—  
com puting tim e  

dynam ic load b a la n ce  ....... .4 0

35

3 0

2 5

20

15

10

5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C om puter Identifier

Fig. 55. D ynam ic Load Balance for Exam ple 7.2 with PVM T C P  C om m unication 

Mode and Fourteen Com puters, Ecjual Load (top diagram ) and Dynam ic Load 
(bottom  diagram )
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Table XXVI. Task Partition ing  and Load Balance for Exam ple 7.2 w ith PVM  T C P 
Com m unication Mode and Fourteen Com puters

Computer
Name

Scale of 
Sub-task

Computing
Time

Comm.
Time

Idle
Time

1 0.0714 1140 30 2720
2 0.0714 65.64 0.38 137.78
3 0.0714 52.41 0.47 49.78
4 0.0714 22.51 0.87 80.99
5 0.0714 43.98 0.36 59.51
6 0.0714 52.23 0.45 50.02
7 0.0714 51.65 0.44 50.44
8 0.0714 51.44 0.4 50.62
9 0.0714 19.49 0.28 84.29
9 0.0714 87.68 0.48 14.95
10 0.0714 19.54 0.27 83.5
11 0.0714 18.68 0.26 84.21
12 0.0714 38.88 0.35 63.67
13 0.0714 20.16 0.31 82.32
14 0.0714 17.71 0.22 84.89
1 0.0284 36.99 0.22 9.67
2 0.0854 35.39 0.77 9.86
3 0.0555 35.4 0.34 9.63
4 0.056 36.41 0.23 9.84
5 0.0557 35.41 0.35 9.46
6 0.0558 34.53 0.34 10.23
7 0.0558 34.77 0.32 10.09
8 0.14 32.22 0.51 13.97
9 0.033 36.86 0.23 0

°
CO

10 0.11 30.72 0.41 14.61
11 0.11 29.89 0.41 15.16
12 0.037 35.52 0.51 9.55
13 0.1 28.95 0.35 16.15
14 0.081 30.59 0.28 14,72
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C H A P T E R  8 

C O N C L U S IO N  A N D  D IS C U S S I O N

8.1. M a in  R e su lts

This thesis concentrates m ainly on stack filtering, fractal m odelling of one-dim ensional 

discrete d a ta  and their im plem entation using parallel d istribu ted  algorithm .
The com bination of interactive and parallel processing will lead to a new and 

useful application area, especially for visual science data, im age analysis/processing 
and m ultim edia applications. We im plem ented this com bination based on a parallel 
d is tribu ted  com puting environm ent, PVM , and the in teractive application develop
m ent tool, Tel in C hapter 3. Tel is an em beddable in terpreter language and directly 

supports the  user’s extension. The approach we use is to provide a T el’s interface 

for all procedures of the PVM  interface library so th a t users can utilize any PVM  

procedure to do their parallel com puting interactively.

In C hapter 4, we im plem ent an interactive parallel stack filtering system  based on 

the  In teractive Parallel D istributed Com puting Environm ent. In order to reduce the 

perform ance tim e of the standard  stack filter, we suggest a new m inim um  threshold 
decom position scheme, we try  to minimize the num ber of logical operations and we 

utilize the  CPU bit-fields parallel m ethod to do stack filtering. We also use equal task 

partition ing  to  im plem ent a full parallel d istributed filtering algorithm  on PVM . We 

apply th e  parallel stack filter to  two num eric examples and the  results show th a t the 
in teractive parallel stack-filtering system  is efficient for both  sequential and parallel 
filtering algorithm .

In C hap ter 5, we present an extended Iterated  Function System  (IFS) in terpola
tion m ethod for m odelling a given discrete signal. This inverse IFS problem  is a global 
optim al problem  and there is no acceptable algorithm  for obtain ing the  solution in 
reasonable tim e. We suggest a suboptim al search algorithm  which first estim ates the 

local self-affine region and then the m ap param eters, and neighbouring inform ation 

for a self-affine region is used for enhancing the robustness of this suboptim al algo

rithm . We also im plem ent a parallel d istributed version of this algorithm  using equal 

task  partition ing  and a Rem ote Procedure Call library. The sim ulation results show 
th a t the IFS approach achieves a higher signed to noise ratio  than  does an existing 

approach based on autoregressive modelling for self-affine and approxim ately signals, 
and, when the num ber of com puters is small, the speed-up ra tio  is alm ost linear.

In C hapter 6, we use the robust IFS inverse algorithm  w ith a local cross-validation
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technique to  model self-affine and approxim ately self-affine signals corrupted  by G aus

sian noise. The local cross-validation is used to com prom ise between the  degree of 
sm oothness and fidelity to the data. We im plem ent the  parallel d istribu ted  version 
of the  algorithm  in Parallel V irtual Machine (PVM ) w ith optim al task  partitioning. 
We use a sim ple com puting model and partition  tasks based only on each com puter’s 

capability. Several num erical sim ulation results show th a t the new IFS inverse algo

rithm  achieves a higher signal to noise ratio than  does autoregressive m odelling for 
noisy self-affine or approxim ately self-affine signal. There is little  m achine idle tim e 
relative to  com puting tim e in the optim al task partitioning mode.

In C hapter 7, we apply local IFS to model non self-affine signals. The local IFS 

realises th e  IFS lim it for self-affine da ta  and is suitable for m odelling general signals. 

However it is difficult to explore the whole param eter space to  get globally optim al 
param eter estim ates. We suggest a two-stage search scheme to estim ate the  self- 

affine region and the  associated region param eters, so th a t we can get a suboptim al 

solution in a reasonable tim e. In the first stage, we suppose th a t the  associated 

region length is twice the length of the self-affine region and we can calculate all 
self-affine region param eters. Then in the second stage, for each self-affine region, we 
search for corresponding associated region param eters from the  full search space. In a 

netw ork-based parallel com puting environm ent, most perform ance degradation is load 

im balance caused by the different machines capabilities and the  external loads. We 
apply dynam ic load balance technique based 011 d a ta  parallelism  scheme to overcome 

the  problem . Some num erical sim ulation show th a t our inverse local IFS algorithm  

works efficiently for several types of one-dimensional signals, and the  parallel version 
w ith dynam ic load balance can autom atically have each m achine busy w ith com puting 
and w ith low idle tim es.

8.2 , D iscu ss io n  and S u ggestion

In chapter 4, we cannot use norm al RPC mode, in which a client sends a call and waits 

for the  server to  reply to  the effect th a t the call has succeeded. In order to get real 

parallel-task sending, we use several UNIX system  calls to im plem ent m ulti-process 

com m unication and m anagem ent, but this im plem entation has not been optim ized. 

PVM  is a parallel d istribu ted  com puting environm ent. It not only provides a point-to- 
point com m unication scheme, bu t also provide process m anagem ent and m any other 
facilities. It is b e tte r  to im plem ent a parallel d istribu ted  algorithm  on PV M  th an  on 
RPC .

In a network-based parallel com puting environm ent, we need some load balanc
ing technique to com bat im balance. We investigated static  and dynam ic load balance
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m ethods and found th a t dynam ic load balance based on an d a ta  parallelism  scheme 

is suitable for our algorithm  and achieves better results. However dynam ic load bal
ancing requires th a t each sub-task be the same. We need to arrange this, if possible, 

so th a t more com puting tasks can benefit from this load balance.

For parallel stack filtering, we can use the dynam ic load balancing technique to 

enhance the  parallel algorithm . Also, an adaptive stack-filtering algorithm  can be 
im plem ented on the interactive stack filtering system. For modelling general noisy 
signals, we can im plem ent local inverse IFS algorithm s w ith the  local cross-validation 
technique. A nother possible research topic for local IFS which we do not address in 
this thesis is th a t of fractal compression. For a compression problem , our aim  is to 
find the  m inim um  num ber of self-affine region subject to a given error lim it. The 

problem  of compression is still open.
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A PPEND IX  A 

FU N C TIO N  PRO TO C O LS OF IN TERA CTIV E PARALLEL D ISTR IB U TED  

CO M PU TING  ENIRONM ENT

A .I .  B in d in g  th e  P V M  U ser  Interface L ibrary w ith  T e l L an gu age

We define here all protocols of functions of Tcl-based PVM  user interface library. 

M ost of contents com e from reference manual pages of PVM  3.2.

N A M E : pvmladdhosts -  Adds one or more hosts to the virtual machine. 

S Y N O P S IS : pvmladdhosts hosts N.

P A R A M E T E R S : hosts -  LIST  returning the host names.
N -  the number of the hosts.

R E T U R N : L IST  of info, /msU-start-code,-. -Rosti^-start-code,
info -  integer status code, info < 0 indicates an error. 
/io<st;-start-code -  integer returning the start code of the host i.

N A M E : pvmladvise -  Advises PVM to use direct task-to-task routing (TCP) or 
not.

S Y N O P S IS : pvmladvise route.

P A R A M E T E R S : route -  integer advising PVM to set up direct task-to-task 
(TCP) links.
PvmDontRoute ( ! ) —*■ don’t allow direct links to this task.
PvmAllowDirect (2) —> allow but don’t request direct links.
PvmRouteDirect (3) —> request direct links.

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : pvmlbufinfo -  Returns information about the requested message buffer.

S Y N O P S IS : pvmlbufinfo build.

P A R A M E T E R S : bufid -  integer specifying a particular message buffer identi
fier.

R E T U R N : L IST  of info, bytes, msgtag, tid.
info -  integer status code, info < 0 indicates an error.
bytes -  integer returning the length in bytes of the entire message.
msgtag -  integer returning the actual message label.
tid -  integer returning the source of the message.
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N A M E : p v m l c o n j i g  -  Return information about the present virtual machine con
figuration.

S Y N O P S IS : p v m l c o n f i g

P A R A M E T E R S :

R E T U R N : L IS T  of info, nhost, narch, hostlist.
info -  integer status code, info < 0 indicates an error.
nhost -  integer returning the number of hosts (pvmds) in the virtual machine.
narch -  interger returning the number of different data formats being used.
hostlist -  L IS T  of hi_tid, hi_name, hLmtu, hLspeed.
hLtid -  pvmd’s task ID; hLname -  pvmd’s name;
hLmtu ~ pvmd’s architecture; hLspeed -  pvmd’s relative speed.

N A M E : p v m l d e l h o s t -  Deletes one or more hosts from the virtual machine.

S Y N O P S IS : p v m l d e l h o s t  hostnames N.

P A R A M E T E R S : hostnames -  L IS T  returning the host names,
N -  integer returning the number of hosts.

R E T U R N : L IS T  of info, /ros^-error-code, • • •, h o s t  n - q y t o i - c o d e .

If any value less than zero, the corresponding error appears.

N A M E : p v m l e x i t  -  Tells the local pvmd that this process is leaving PVM.

S Y N O P S IS : p v m l e x i t

P A R A M E T E R S :

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : p v m l f r e e b u f  ~ Disposes of a message buffer.

S Y N O P S IS : p v m l f r e e b u f  b u f i d

P A R A M E T E R S : bufid -  integer message buffer identifier. 

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : p v m l g e t o p t  -  Returns the value of various PVM library options. 

S Y N O P S IS : p v m l g e t o p t  what.

P A R A M E T E R S : what -  integer defining what option is being selected. See
also p v m l s e t o p t .

R E T U R N : val -  integer returning the value of the option.
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N A M E : pvm lgetrbuf -  Returns the message buffer identifier for the active receive
buffer.

S Y N O P S IS : pvmlgetrbuf 

P A R A M E T E R S :

R E T U R N : bufid -  integer returning message buffer identifier for the active re
ceive buffer.

N A M E : pvm lgetsbuf -  Returns the message buffer identifier for the active send
buffer.

S Y N O P S IS : pvmlgetsbuf 

P A R A M E T E R S :

R E T U R N : bufid -  integer returning message buffer identifier for the active send
buffer.

N A M E : pvm lhalt -  Shuts down the entire PVM system.

S Y N O P S IS : pvmlhalt

P A R A M E T E R S :

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : pvm linitsend -  Clear default send buffer and specfy message encoding.

S Y N O P S IS : pvm linitsend  encoding

P A R A M E T E R S : encoding -  integer specify the next message’s encoding 
scheme.
PvmDataDefault (0) XDR if heterogeneous;
PvmDataRaw (1) —> no encoding;
PvmDatalnPlace (2) data left in place.

R E T U R N : bufid -  integer returned containing the message buffer identifier and
bufid < 0 indicate an error.

N A M E : pvm lkill -  Terminates a specified PVM process.

S Y N O P S IS : pvm lkill tid

P A R A M E T E R S : tid -  integer task identifier of the PVM process to be killed
(not yourself).

R E T U R N : info -  integer status code, info < 0 indicates an error.
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N A M E : pvmlmcast -  Multicasts the data in the active message buffer to a set 
of tasks.

S Y N O P S IS : pvmlmcast ticls N msgtag

P A R A M E T E R S : tids -  integer LIST  containing the task IDs of the tasks to be 
sent to.
N -  integer specifying the number of tasks to be sent to. 
m sgtag- integer message tag (geqO) supplied by the user.

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : pvmlmstat -  Returns the status of a host in the virtual machine. 

S Y N O P S IS : pvmlmstat hostname

P A R A M E T E R S : hostname -  string specifying the host name.

R E T U R N : mstat -  integer returning machine status, PvmOk, PvmNoHost,
PvmffostFail.

N A M E : pvmlmytid -  Enrols this process into PVM on its first call and returns
the tid of the process on every call.

S Y N O P S IS : pvmlmytid
P A R A M E T E R S :

R E T U R N : tid -  integer returning task identifier of the calling PVM process.

N A M E : pvmlnotify -  Notify a set of tasks about some event.

S Y N O P S IS : pvmlnotify what msgtag ntask tids

P A R A M E T E R S : what -  integer identifier of what event should trigger the no
tification, PvmTaskExil, PvmHostDelete, PvmHostAdd. 
msgtag -  integer message tag to be used in notification, 
ntask -  integer specifying the length of the tids list, 
tids -  integer LIST  specifying the task IDs to be notified.

R E T U R N : info -  integer status code, info < 0 indicates an error.
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N A M E : pvmlnrecv -  Non-block receive.

S Y N O P S IS : pvmlnrecv  tid msgtag

P A R A M E T E R S : tid -  integer task identifier of sending process supplied by the 
user, a -1 matching any tid (wildcard).
msgtag -  integer message tag supplied by the user, -1 matching any message 
tag.

R E T U R N : bufid -  integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

N A M E : pvm lpk  -  Pack the active message buffer with a list of prescribed data.

S Y N O P S IS : pvmlpkbyte bytelist nitem stride; 
pvm lpkshort shortlist nitem stride; 
pvm lpkint intlist nitem stride; 
pvmlpkdouble doublelist nitem stride; 
pvmlpkfloat floatlist nitem stride; 
pvm lpkstr  strname.

P A R A M E T E R S : nitem -  the total number of items to be packed,
stride -  The stride to be used when packing the items,
bytelist -  bytes L IS T  to be packed, 
shortlist -  short integers L IS T  to be packed, 
intlist -  integers L IS T  to be packed, 
doublelist -  double precision real L IS T  to be packed, 
floatlist -  single precision real L IS T  to be packed, 
strname -  character string name to be packed.

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : pvmlparent -  Returns the tid of the process that spawned the calling
process.

S Y N O P S IS : pvmlparent

P A R A M E T E R S :

R E T U R N : tid -  integer returning the task identifier of the parent of the calling
process.

N A M E : pvmlperror -  Prints the error status of the last PVM call.

S Y N O P S IS : pvmlperror msg

P A R A M E T E R S : msg -  character string supplied by the user which will be 
prepended to the error message of the last PVM call.

R E T U R N : info -  integer status code, info < 0 indicates an error.
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N A M E : pvmlprobe -  Check if message has arrived.

S Y N O P S IS : pvmlprobe tid msgtag.

P A R A M E T E R S : tid -  integer task identifier of sending process supplied by the 
user.
msgtag -  integer message tag supplied by ther user.

R E T U R N : bufid -  integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

N A M E : pvmlpstcit -  Returns the status of the specified PVM process. 

S Y N O P S IS : pvmlpstat tid.

P A R A M E T E R S : tid -  integer task identifier of the PVM process in question.

R E T U R N : status -  integer returns the status of the PVM process identified by
tid, PvmOk, PvmNoTask , PvmBaclParam.

N A M E : pvmlrecv -  Blocks until a message with specified message tag has arrived 
from the specified source and places it in a new active receive buffer.

S Y N O P S IS : pvmlrecv tid msgtag

P A R A M E T E R S : tid -  integer task identifier of sending process supplied by the
user.
msgtag -  integer message tag supplied by the user.

R E T U R N : bufid -  integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

N A M E : pvmlsend -  Immediately sends the data in the active message buffer.

S Y N O P S IS : pvmlsend  tid msgtag

P A R A M E T E R S : tid -  integer task identifier of destination process, 
msgtag -  integer message tag supplied by the user.

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : pvmlsendsig -  Sends a signal to another PVM process.

S Y N O P S IS : pvmlsendsig tid signum.

P A R A M E T E R S : tid -  integer task identifier of PVM process to receive the 
signal.
signum -  integer signal number.

R E T U R N : info -  integer status code, info < 0 indicates an error.
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N A M E : pvmlserror -  Sets automatic error message printing on or off for subse
quent PVM calls by this process.

S Y N O P S IS : pvmlserror set.

P A R A M E T E R S : set -  integer defining whether detection is to be turned on (1)
or off (2).

R E T U R N : oldset -  integer defining the previous setting of pvmlserror.

N A M E : pvmlsetopt -  Sets various PVM library options.

S Y N O P S IS : pvmlsetopt what vat.

P A R A M E T E R S : what -  Integer defining what is being set. Options in
clude: Pvm Routefl), PvmDebugMask(2), PvmAutoErr(3), PvmOutput-
Tid(4), PvmTraceTid(6), PvmTraceCode(7), PvmFragSize(S). 
val -  integer specifying new setting of option.

R E T U R N : oldval -  integer returning the previous setting of the option.

N A M E : pvmlsetrbuf -  Switches the active receive buffer and saves the previous
buffer.

S Y N O P S IS : pvmlsetrbuf bufid.

P A R A M E T E R S : bufid -  integer specifying the message buffer identifier for the 
new active receive buffer.

R E T U R N : oldbuf -  integer returning the message buffer identifier for the pre
vious active receive buffer.

N A M E : pvm lsetsbuf- Switches the active send buffer.

S Y N O P S IS : pvmlsetsbuf bufid.

P A R A M E T E R S : bufid -  integer the message buffer identifier for the new active
send buffer.

R E T U R N : oldbuf -  integer returning the message buffer identifier for the pre
vious active send buffer.
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N A M E : pvm lspawn~ Starts new PVM process.

S Y N O P S IS : pvmlspawn task argv flag where ntask

P A R A M E T E R S : task -  character string containing the executable file name of
the PVM process to be started.
argv -  L IST  of arguments to the executable with the end of the L IST  by 
NULL (-1).
flag -  integer specifying spawn options, PvmTaskDefault(O), Pvm- 
TaskHost(l), PvmTaskArch(2), PvmTaskDebag(3), PvmTaskTrace(4). 
where -  character string specifying where to start the PVM process, which 
depending on the value of flag.
N -  integer specifying the number of copies of the executable to start up.

R E T U R N : L IST  of numt, host±-tid,- • -Jiostj^-tid.
numt -  integer returning the actual number of tasks started.
host{-tid -  integer returning the task identifier of new process. Value < 0
indicate an error.

N A M E : pvmlstart.pvmd -  Starts new PVM daemon.

S Y N O P S IS : pvmlstarLpvmd argv argv block

P A R A M E T E R S : argc -  number of arguments in argv.
argv -  L IST  of arguments to the executable with the end of the L IST  by 
NULL (-1).
block -  integer specifying whether to block until startup complete or return 
immediately.

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : pvmltasks -  Returns information about the tasks running on the virtual 
machine.

S Y N O P S IS : pvmltasks where

P A R A M E T E R S : where -  integer specifying what stasks to return information 
about. 0 for all the tasks on the virtual machine; pvmd tid for all tasks on a 
given host; tid for a specific task.

R E T U R N : L IST  of info, ntask, tasklist.
info -  integer status code, info < 0 indicates an error.
ntask -  integer returning the number of tasks being reported on.
tasklist -  L IST  of tLtid, tLptid, tLhost, ti_flag, tLa.out.
ti.tid -  its task ID; tLptid -  parent tid; ti_host -  pvmd task ID;
tLflag -  status flag (waiting for a message, waiting for the pvmd, running);
tLa.out -  the name of this task’s executable file.
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N A M E : pvm ltidtohost -  Returns the host of the psecihed PVM process. 

S Y N O P S IS : pvmltidtohost tid.

P A R A M E T E R S : tid -  integer task identifier of the PVM process in question.

R E T U R N : dtid -  integer returns the tid of the host’s pvmd or a negative value
if an error.

N A M E : pvm lupk -  Unpack the active message buffer into arrays of prescribed
data type.

S Y N O P S IS : pvmlupkbyte bytelist nitem stride; 
pvmlupkshort shortlist nitem stride; 
pvm lupkint intlist nitem stride; 
pvmlupkdouble doublelist nitem stride; 
pvmlupkfloat floatlist nitem stride; 
pvm lupkstr  strname.

P A R A M E T E R S : nitem -  the total number of items to be unpacked, 
stride -  The stride to be used when unpacking the items, 
bytelist -  bytes L IS T  unpacked, 
shortlist -  short integers L IS T  unpacked, 
intlist -  integers L IS T  unpacked, 
doublelist -  double precision real L IS T  unpacked, 
floatlist -  single precision real L IS T  unpacked, 
strname -  character string name unpacked.

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : xablon -  Start monitoring and debugging PVM with Xab.

S Y N O P S IS : xablon

P A R A M E T E R S :

R E T U R N :

N A M E : xa b lo jf-  End monitoring and debugging PVM with Xab.

S Y N O P S IS : xabloff

P A R A M E T E R S :

R E T U R N :
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N A M E : xablshowEvents -  Selects event types to be displayed.

S Y N O P S IS : xablshowEvents flags.

P A R A M E T E R S : flags -  integer specifying the events to be displayed in abmon.
XAB-NONE, XAIFSENDREC, XAB.PACK, XAB-INFO, 
XAB-CONTROL, XAB.D YNAM IC, XAB-GROUP, X A B  S IG N A L , 
XAB.BUFFER, XA B.E RRO R , XAB-ALL, XAB.CO M M O N.

R E T U R N :

N A M E : xablbufEvents -  Sets the event buffering of a user process.

S Y N O P S IS : xablbufEvents num.

P A R A M E T E R S : nnm -  integer specifying the buffer size. A user process will 
store num events before sending them to abmon

R E T U R N : .

A . 2. G enera l B in a ry  D a ta  (G B O X ) P ro cess in g  F u n ction s

N A M E : gblcreate -  Create a new GBOX data structure and a hash table item.

S Y N O P S IS : gblcreate

P A R A M E T E R S :

R E T U R N : gboxname -  returnning the new GBOX string name.

N A M E : gbldestroy -  Destroy a old GBOX data structure and a hash table item.

S Y N O P S IS : gbldestroy gbox\ gboxw
P A R A M E T E R S : gboxi -  GBOX string name to be destroyed.

R E T U R N :
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N A M E : gblpush -  Push new data into GBOX.

S Y N O P S IS : gblpush gboxname mode data packstate.

P A R A M E T E R S : gboxname -  GBOX string name.
mode -  integer specifying the data mode; 0 for character, 1 for short integer, 2 
for integer, 3 for long integer, 4 for single precision real, 5 for double precision 
real, 6 for unsigned cliararcter. 
data -  L IS T  of data with ASCII expression.
packstate -  integer specifying the packing state; 0 for raw data, 1 for others. 

R E T U R N : nitem -  integer returning the number of new data to be pushed.

N A M E : gblpop -  Pop data from GBOX.

S Y N O P S IS : gblpush gboxname mode nitems packstate.

P A R A M E T E R S : gboxname -  GBOX string name.
mode -  integer specifying the data mode; See also gblpush. 
nitem -  integer returning the number of new data to be poped, 
packstate -  see also gblpush.

R E T U R N : data -  L IS T  of data with ASCII expression.

N A M E : gblstate -  State the internal structure of GBOX.

S Y N O P S IS : gblclisplay gboxname.

P A R A M E T E R S : gboxname -  GBOX string name.

R E T U R N : result -  L IS T  of totaLsize, cur.size, view_pos.
totaLsize -  integer specifying the total size of the GBOX buffer;
cur„size -  integer specifying the current data size;
view_pos -  integer specifying the current position of view point.

N A M E : gb lv iew -  View the contents of GBOX.

S Y N O P S IS : gblview gboxname mode nitem packstate.

P A R A M E T E R S : gboxname -  GBOX string name.
mode -  integer specifying the data mode; See also gblpush. 
nitem ~ integer returning the number of data to be viewed, 
packstate -  see also gblpush.

R E T U R N : data -  L IS T  of data with ASCII expression.
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N A M E : gblseek- Move GBOX view_pos to new position.

S Y N O P S IS : gblseek gboxname unit pos mode.

P A R A M E T E R S : gboxname -  GBOX string name.
unit -  string name specifying the data unit of size; 
pos -  integer specifying the new position;
mode -  integer specifying the direction of moving; (0 from the starting, 1 
from the current, 2 from the ending position).

R E T U R N : info -  integer status code, info < 0 indicates an error.

N A M E : gblfread- Read data from a file.

S Y N O P S IS : gblfread filename

P A R A M E T E R S : filename -  character string file name.

R E T U R N : gboxfile -  returning L IST  of GBOX file structure, 
magic -  integer identifying the file type, see also [159]; 
width -  integer specifying the width of data file; 
height -  integer specifying the height of data hie;
m axval/type -  integer specify maximum value of two-dimensional data or 
one-dimensional data type (see also gblpush); 
gboxname -  GBOX string name.

N A M E : gblfwrite -  Write data into a file.

S Y N O P S IS : gblfwrite filename gboxfile

P A R A M E T E R S : filename -  character string file name.
gboxfile -  L IST  of GBOX file structure, see also gblfread.

R E T U R N :
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D efin it io n  A . l  modified P P M  [159] file structure fo r  one-d im ensiona l data:

•  magic: integer num ber for identifying the file type, P10 for ASCII, P l l  for 

b inary data.

•  white-space: (blanks, TABs, CRs, LFs).

•  width: fo rm atted  as ASCII characters in decimal.

•  w hitespace .

• height: fixed to 1 for the one-dimensional data, again in ASCII decimal.

•  w hitespace .

•  type : m axim um  color-component value, again in ASCII decimal.

•  w hitespace .

•  array: w id th  * h e ig h t  data  array.
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