METHODS FOR SIGNAL FILTERING AND
l MODELLING AND THEIR PARALLEL DISTRIBUTED
k COMPUTING IMPLEMENTATION

A Thesis
by
XTAOKUN ZHU

Submitted for the degree of

DOCTOR OF PHILOSOPHY

August 1994

University of Glasgow

Department of Statistics

©Xiaokun Zhu, 1994

ProQuest Number: 13834221

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13834221

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Mixis
[0 ¢
Co[?‘j Z
?;

LI8R R
LIRRARY

ii

ABSTRACT

Methods for Signal Filtering and Modelling and Their Parallel Distributed
Computing Implementation. (August 1994)
Xiaokun Zhu, University of Glasgow

Supervisor: Professor D M Titterington

In this thesis the problem of filtering and modelling one-dimensional discrete
signals and implementation of corresponding parallel distributed algorithms will be
addressed.

In Chapter 2, the research areas of parallel distributed computing environments,
rank-based nonlinear filter and fractal functions are reviewed.

In Chapter 3, an Interactive Parallel Distributed Computing Environment (IPDCE)
is implemented based on Parallel Virtual Machine (PVM) and an interactive appli-
cation development tool, the Tcl language. The approach we use is to provide a Tcl
version interface for all procedures of the PVM interface library so that users can
utilize any PVM procedure to do their parallel computing interactively.

In Chapter 4, an interactive parallel stack-filtering system is implemented, based
on the IPDCE. The user can play with this filtering system in both traditional com-
mand mode and modern Graphics User Interface (GUI) mode. In order to reduce the
time required to compute a standard stack filter, a new minimum threshold decom-
position scheme is introduced and other techniques such as minimizing the number
of logical operations and utilizing the CPU bit-fields parallel property are also sug-
gested. In this filtering system the user can select sequential or parallel stack-filtering
algorithms. The parallel distributed stack-filtering algorithm is implemented with
equal task partitioning and PVM. Two numerical simulations show that the interac-

tive parallel stack-filtering system is efficient for both the sequential and the parallel

il
filtering algorithms.

In Chapter 5, an extended Iterated Function System (1FS) interpolation method
is introduced for modelling a given discrete signal. In order to get the solution of
the inverse IFS problem in reasonable time, a suboptimal search algorithm, which
estimates first the local self-affine region and then the map parameters is suggested,
and the neighbourhood information of a self-affine region is used for enhancing the
robustness of this suboptimal algorithm. The parallel distributed version of the in-
verse IFS algorithm is implemented with equal task partitioning and using a Remote
Procedure Call application programming interface library. The numerical simulation
results show that the IFS approach achieves a higher signal to noise ratio than does an
existing approach based on autoregressive modelling for self-affine and approximately
self-affine one-dimensional signals and, when the number of computers is small, the
speed-up ratio is almost linear.

In Chapter 6, inverse IFS interpolation is introduced to model self-affine and
approximately self-affine one-dimensional signals corrupted by Gaussian noise. Lo-
cal cross-validation is applied for compromising between the degree of smoothness
and fidelity to the data. The parallel distributed version of the inverse algorithm is
implemented in Parallel Virtual Machine (PVM) with static optimal task partition-
ing. A simple computing model is applied which partitions tasks based on only each
computer’s capability. Several numerical simulation results show that the new IFS
inverse algorithm achieves a higher signal to noise ratio than does existing autoregres-
sive modelling for noisy self-affine or approximately self-affine signals. There is little
machine idle time relative to computing time in the optimal task partition mode.

In Chapter 7, local IFS interpolation, which realises the IFS limit for self-affine
data, is applied to model non self-affine signals. It is difficult, however, to explore
the whole parameter space to achieve globally optimal parameter estimation. A two-
stage search scheme is suggested to estimate the self-affine region and the associated

region parameters so that a suboptimal solution can be obtained in reasonable time.

v
In the first stage, we calculate the self-affine region under the condition that the
associated region length is twice that of the self-affine region. Then the second stage
calculates the associated region for each self-afline region using a full search space. In
order to combat the performance degradation caused by the the difference of machines
capabilities and unpredictable external loads, a dynamic load-balance technique based
on a data parallelism scheme is applied in the parallel distributed version of the inverse
local TFS algorithm. Some numerical simulations show that our inverse local IFS
algorithm works efficiently for several types of one-dimensional signal, and the parallel
version with dynamic load balance can automatically ensure that each machineis busy

with computing and with low idle time.

To My Parents

vi

ACKNOWLEDGMENTS

I am deeply indebted to my supervisor Professor D.M. Titterington for his

invaluable guidance, encouragement and help throughout this work.

I would like to specially thank Dr. B. Cheng and Dr W. Qian for their collabo-
ration, assistance and discussion.

[am grateful to Mr. D Mackay for his generous helping with computer equip-
ments.

The author also wishes to acknowledge financial support from Glasgow University
and also partly from the U.K. Government Awards.

Finally, I would like to express my sincerest thanks to my wife, my son, my
mother, my father, my mother-in-law and my father-in-law for their love, encourage-

ment and boundless patience over all these years,

vii

TABLE OF CONTENTS

CHAPTER Page
1 INTRODUCTION o o s 1
1.1. Motivation 1
1.2, Outline of the thesis 4
2 BACKGROUND AND RELATED WORK 6
2.1. Introduction. L 6
2.2. Parallel Processing and Parallel Distributed Computing 6
2.3. Order Statistic Filters and Stack Filters 17
2.4. TFractals, Iterated Function Systems and Inverse Frac-
tal Transformations. 25
3 DESIGN OF INTERACTIVE PARALLEL DISTRIBUTED
COMPUTING ENVIRONMENT 32
3.1. Imtroduction. 32
3.2, The Method of Program Design Under A Parallel
Virtual Machine 32
3.3. Use of Tcl to Develop Interactive Application 40
3.4. Design Interactive Parallel Distributed Computing
Environment 0 L. 47
4 THE STACK FILTERS, MINIMUM THRESHOLD DECOM-
POSITION AND INTERACTIVE STACK FILTERING SY5S-
TEM . . e 53
4.1, Introduction. 53
4.2. Stack Filters Based on Threshold Decomposition 53
4.3. Minimum Threshold Decomposition of Signal 55
4.4. The Positive Boolean Function and its Minimum Log-
ical Operations Formula. 58
4.5. Bit-Parallel Structure and a Data-Parallelism Stack
Filtering Algorithm 63
4.6. Implementation of Interactive Stack Filtering System . . 69
4.7. Numerical Examples 72
5 AN ITERATED FUNCTION SYSTEM MODEL OF ONE-
DIMENSIONAL DISCRETE SIGNAL 85
5.1, Introduction. Lo 85

5.2. The Construction of an IFS Model for a Given Signal . . 85

viii

5.3. Distributed Parallel Computing for the IFS Model of
a Given Signal Lo 93
5.4. Numerical Simulation of Iterated Function System Model 99

ITERATED FUNCTION SYSTEM (IFS) SMOOTHING OF
ONE-DIMENSIONAL DISCRETE SIGNALS BASED ON
LOCAL CROSS-VALIDATION 109

6.1. Introduction., 109
6.2. An Inverse 'S Algorithm Based on Local Cross-Validation109
6.3. Parallel Distributed Algorithm Based on Static Task

Partition 116
6.4. Numerical Simulation 118

USING INVERSE LOCAL ITERATED FUNCTION SYS-
TEMS (IFS) TO MODEL ONE DIMENSIONAL DISCRETE

SIGNALS . . . o e 129
7.1. Introduction. 129
7.2. Inverse Local IFS Theory and Algorithm 129
7.3. Parallel Distributed Inverse Local IFS Algorithm Based

on PVM and Dynamic Load Balance 133
7.4. Numerical Simulation 138

CONCLUSION AND DISCUSSION 150
8.1. Main Results, 150
8.2. Discussion and Suggestion 151

APPENDIX A o o e 153
A.l. Binding the PVM User Interface Library with Tcl Languagel53
A.2. General Binary Data (GBOX) Processing Functions . . . 162

REFERENCES 166

TABLE

I1

111

IV

VI

VII

VIII

IX

X1

XII

XIII

1X

LIST OF TABLES

Page
PVM related systems. 15
Average data transfer rates for the two node studies[31]. All rates
are in megabytes per second. 1 use direct TCP communication
and 2 use daemon-based communication.o L 16
Point-to-point communication bandwidth in PVM[108] 17
Detailed explanation of the MSP form of the PBF for the third-
order binary median filter L. 54
Normalised Mean Square Error for male speech data corrupted by
Gaussian and impulsive noise with SM and CWM filters 78

Normalized Mean Square Error for lena test image corrupted by
Gaussian and impulsive noise with two-dimensional SM and CWM filters 79

Execution Times (milli-seconds) and Communication Times (milli-
seconds) of two-dimensional SM and CWM filters for lena image . . . 83

Original and Calculated IFS Interpolation Point Indices, Map pa-
rameters, Hausdorff Error, Signal-to-noise Ratio of Large d; for
Approximately Self-affine Data 101

Original and Calculated IFS Interpolation Points Indices, Map
parameters, Hausdorff Error, Signal-to-noise Ratio of Small d; for
Approximately Self-affine Data 102

Calculated 1F'S Interpolation Points Indices, Map parameters, Haus-
dorfl Error, Signal-to-noise Ratio for Male Speech, Non Self-affine
Data o e 105

AutoRegression Model Parameters Estimation with Yule-Walker
Equations for the Five Examples 105

Signal-to-Noise Ratios from the Various Methods 106

Running Time (Seconds) for Estimating IFS Parameters 108

XIV

XV

XVI

XVII

XVIII

XIX

XX

XXI

XXII

XXIII

XXIV

XXV

XXVI

Original and calculated map parameters, local CV values, and
Hausdorff distances for the strictly self-affine data with sample size 256 119

Original and calculated map parameters, local CV values, and
HausdorfT distances for the strictly self-affine data with Gaussian
noise, mean=0,c =100 0oL 122

Calculated map parameters M, D, P, local C'V values, and Haus-
dorff distances H for fractional Brownian motion corrupted by
(Gaussian noise with zero mean and standard deviation 10.0 124

Auto-Regression Model Parameters Estimation with Yule-Walker
Equations for Examples L. 124

Total times (milli-seconds) for Example 6.3 using PVM Daemon
and TCP communication with equal and optimal task partitioning . 126

Task Partitioning and Load Balance for Example 6.3 with PVM
TCP Communication Mode and Seven Computers 126

Local IFS calculated self-affine region (S.R) indices, associated
region (A.R) indices, map parameters and Hausdorff distances for
a Sinusoid Signal 128sin(272/255) 139

Signal Noise/Ratio of Local IFS and IFS 139

Local IFS calculated self-affine region (S.R) indices, associated
region (A.R) indices, map parameters and Hausdorff distances for
a Male Speech Signal oL 141

Local IFS calculated self-affine region (S.R) indices, associated
region (A.R) indices, map parameters and Hausdorfl distances for
a I'ractional Brownian Motion Signal (H=0.5, Scale=0.4) 143

Local IFS Model of a Sinusoid Signal 128sin(272/255) with the
different Wovalues 145

Total times (seconds) for Example 7.2 using PVM daemon and
T'CP communication with equal and dynamic task load 147

Task Partitioning and Load Balance for Example 7.2 with PVM
TCP Communication Mode and Fourteen Computers 149

FIGURE

10

11

12

13

14

15

16

17

18

19

LIST OF FIGURLES

Dataanalysis
Taxonomy of MIMD Computers[92].
Heterogeneous, Network, and Cluster Concurrent Computing[174] . .
Internet Host Growth in Last Decade[121}.
Improvement of Microprocessors vs. Supercomputers[121]
PVM Architectural Overview[175]
PVM Computing Environment
PVM Concurrent Computational Model[169]

Node 1 task is calling pvm_send to send a message to node 2 task.
Node 1’s pvmsend actually translates into an xab_send. The
xab_send sends an event message to abmon3 and then performs
the actual pvm.send on behalf of the program.

Tcl Command Execute Flow
Tcl Embeddable Structure oL
Tk Implementation of the Example “Hello, World”
Bind Tel or Tk with PVM e e e e
The Shape of Windows of Two-dimensional Stack Filters
Data partitions of One- and Two-dimensional Parallel Stack Filters .
Interactive Parallel Distributed Stack Filtering System
The Structure of Interactive Stack Filtering System
Dialog Window of Select an Input File Name

Dialog Window of Select Filter’s Parameters

X1

Page

11
12
33
34

35

40
43
44
47
48
67

68

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

xii

Dialog Window of Select the Network and PVM Parameters 73
One-dimensional Data Display Window 74
Two-dimensional Data Display Window, 75

Male speech signal corrupted by Gaussian noise with ¢ = 0 and
o = 10 and impulsive noise with occurrence probability p=0.1 ... 76

Fifth-order SM filter for male speech signal corrupted by Gaussian
and impulsivenoise e 77

Weight 2 fifth-order CWM filter for male speech signal corrupted
by Gaussian and impulsivenoise 78

256x256 lena test image corrupted by Gaussian noise with g = 0
and o = 20 and impulsive noise with occurrence probability p = 0.2 . 80

Two-dimensional weight 3 window 3x3 CWM filter for lena image
corrupted by Gaussian and impulsivenoise 81

Two-dimensional window 3 x 3 SM filter for lena image corrupted
by Gaussian and impulsivenoise 82

Difference images, (a) Fig 26 - original, noise free image, (b) Fig
27 - original, noise free image, (c) Fig 28 - original, noise free image . 83

Running time of parallel distributed filtering algorithms for lena image 84

Affine transformations w, wy, ws, w4 applied to the unit square. . . . 86
Distributed Parallel Computing Model of multi-clients-multi-servers. 94
RPC programming model. L. 94
Control unit’s parent- and child-process 95

Inverse IF'S Interpolation with M = 5 (top) and M = 14 (bottom)
with Large d; Approximately Self-affine Data (50% sample). 100

Inverse IFS Interpolation of M = 5 (top) and M = 14 (bottom)
with small d; Approximately Self-affine Data (sampled at 50%). . . . 103

Estimated IFS fitted curves for male speaking data. 104

38

39

41

42

43

44

45

46

47

48

49

a0

51

Running Time for Estimating IFS Parameters for Approximately
Self-affine Data (50% sample) with Large d; (top diagram) and

with Small d; (bottom diagram).

Self-affine data generated by deterministic IFS. For the top pic-

ture, the contraction factors are dy = —0.82 and d; = 0.79. For
the bottom picture, the contraction factors are dg = —0.23 and
d1 = 031

Projection of the CV(41, do, dy) function on the interpolation point
subspace R for fixed contraction factors D. In the top picture

D = (—0.82,0.79) and in the bottom picture D = (—0.23,0.31). . . .

Projection of the CV (41, d;, d3) function on the contraction factor
subspace D for fixed R = {0,100} in both pictures. For fixed
R = {0,100}, the minimum of C'V appears at (—0.82,0.79) in the

top picture and at (—0.23,0.31) in the bottom picture.

Robustness modification of local cross-validation algorithm

Iractal interpolation (M = 5) for strictly self-affine data with

large D (top picture) and small D (bottom picture).

Fractal interpolation for strictly self-affine data with a large D
(top picture) and a small D (bottom picture) and additional Gaus-

sian noise with zero mean and standard deviation o = 10.0.

Fractional Brownian Motions and Their IFS Interpolation Expres-
sions. H=0.8, Scale=0.2 (top diagram) and H=0.5, Scale=0.4

(bottom diagram) L

Total time for Example 6.3 using PYM

Task Partitioning and Load Balance for Example 6.3 with PVM
TCP Communication Mode and Seven Computers, Equal Parti-

tioning (top diagram) and Optimal Partitioning (bottom diagram)
Schematic for Dynamic Load Balance Application.
Local TFS Modelling of the Sinusoid Signal 128sin(27rz/253)

Local IF'S Modelling of a Male Speech Signal

x1ii

107

112

113

114

115

120

121

123

125

Local IFS Modelling a Iractional Brownian Motion (H=0.5, Scale=0.4) 144

52

53

54

55

Local IFS Model of a Sinusoid Signal 128sin(27a/255) with the
different Wvalues 000000

Work-station Configure for PVM
Total time for example 7.2 using PVM

Dynamic Load Balance for Example 7.2 with PVM TCP Com-
munication Mode and Fourteen Computers, Equal Load (top di-
agram) and Dynamic Load (bottom diagram)

Xiv

CHAPTER 1

INTRODUCTION

1.1. Motivation

In application of data analysis, filtering and modelling are basic and important pro-
cedures. As we know, data from the real world include noise which consists of system
error and measurement error. The aims of data analysis are to understand the cur-
rent data received and to use this information to predict the action of future data.
Figure 1 illustrates the procedure of data analysis. In the first stage, noisy input
data is passed into a filtering block and the noise is smoothed. Then, in the second
stage, the filtered data is passed into a modelling block and the model parameters
are estimated. We can use these model parameters to predict new data.

In linear filter design, there is simplicity and unifying linear systems theory makes
their design and implementation easy. For Gaussian noise the linear filter is optimal,
but linear techniques fail if the noise is non-Gaussian, examples of this are impulsive
noise, signal dependent noise and nonlinear data degradation. Special linear filters,
which were originally used in image filtering applications, cannot cope with nonlin-
earities of image formation model and cannot take into account the nonlinearities of
human vision. As we know human vision is very sensitive to high-frequency informa-
tion and image edges and image details such as corners and lines, which carry very
important information for visual perception, have high-frequency content. Most of
the classical linear filters have low-pass characteristics and they tend to blur edges
and to destroy lines, edges and other fine image details. These reasons have led
researchers, to the use of nonlinear filtering techniques.

Nonlinear filtering techniques emerged at very early stage. However, the bulk
of related research has been presented in the past decade. This research area has
had a dynamic development. This is indicated by the amount of research presently

published and the popularity and widespread use of nonlinear digital processing in a

Signal+Noise
. . ‘ Model
— Filtering » Modelling ——
Parameters

I'ig. 1. Data analysis

variety of applications. There are several classes of nonlinear digital signal and image

processing techniques [158]:
1. order statistic filters and stack filters;
2. homomorphic filters;
3. polynomial filters;
4. mathematical morphology;
5. neural networks;

6. nonlinear image restoration.

Each class of nonlinear processing technique possesses its own mathematical tools
that can provide reasonably good analysis of its performance, but there is not a uni-
fying theory that can encompass all existing nonlinear filters. Recently, mathematical
morphology and order statistic filters have been efficiently integrated into one class
based on threshold decomposition, although they come from completely different ori-
gins. We shall investigate stack filter design in this thesis. The basic tools of the
stack filter are threshold decomposition and stacking, which reduce the problem of
filtering P-value data to that of filtering binary data and the binary filtering problem
is fairly well understood.

There are two traditional methods for modelling discrete signals. One uses poly-
nomial fits and represents the discrete signal by the values of a polynomial evaluated
at the sample point. The model parameters are the order of the polynomial, which is
usually determined a priori, and the coefficients of the polynomial, which are usually
estimated in terms of least-squares fit to the given signal values. The other involves
fitting an autoregressive moving-average (ARMA) model [41], in which the model
parameters are the coefficients of a filter for which the input is white noise and the
output is the given signal. However, some signals are self-similar (self-affine) in nature
and the basic property of fractal models is that of self-similarity (self-affine) or scale
invariance. The best way to model such signals is to use a fractal model: many nat-
ural shapes such as coastlines, mountains and clouds are easily described by fractal
models.

The terminology fractal was first used by the French mathematician Benoit Man-
delbrot to describe shapes with fractional dimensions {Latin fractus meaning irregu-
lar) [127]. Mandelbrot’s fractal geometry provides both a description and a mathe-
matical model for many of the seemingly complex forms and patterns in nature and
the sciences. Fractals have blossomed enormously in the past few years and have
helped reconnect pure mathematics research with both natural sciences and com-

puting science. Classical geometry provides a first approximation to the structure

of physical objects; it is the language which we use to communicate the designs of
technological products and very approximate forms of natural creations. Fractal ge-
ometry is an extension of classical geometry. It can be used to make precise models
of physical structures from ferns to galaxies. Fractal geometry is a new language.
Once you can speak it, you can describe the shape of a cloud as precisely as an ar-
chitect can describe a house [23]. There are also two fractal approaches to modelling
one-dimensional signals. The first is to use fractional Brownian motion (FBM) [127].
However, fractional Brownian motion is defined in a one-dimensional framework and
it is very difficult to generalize it to high dimensions. The second way is to use the
iterated function systems (IFS) developed by Barnsley and his collaborators. IFS the-
ory has many advantages over FBM: IFS modelling has higher flexibility than FBM
modelling; generalization from one dimension to higher dimensions is very natural
and easy. We shall apply IFS theory to model one-dimensional signals in this thesis.

From the time when the first generation of computers in the 1950s used elec-
tronic valves as their switch components, the computer has been the most basic and
powerful tools in data analysis. High-performance computers are increasingly in de-
mand in the areas of structural analysis, weather forecasting, petroleum exploration,
fusion energy research, medical diagnosis, aerodynamics simulation, remote sensing,
multimedia data processing and communication, military defence, genetic engineer-
ing and socioeconomics. Without superpower computers, many of these challenges
to advanced human civilization cannot be made within a reasonable time period.
The designers always strive to increase the speed of operations. There is a number
of possible ways to achieve this. An obvious approach is to improve the technology
implemented in the realization of the computer components. The current technol-
ogy has gone a long way in this direction {rom the vacuum tube, discrete diodes
and transistors, small- and medium-scale integrated (SSI/MSL) devices, to large-
and very-large-scale integrated (LSI/VLSI) system, and , the development will con-
tinue. There is of course a natural limitation in technology development; no signal
can propagate faster than the speed of light. Another approach is to refine the logic
design of computer subsystems to achieve higher speed, for instance, to use Carry
Look Ahead (CLA) in addition, or the Booth Algorithm for multiplication[92]. Im-
proving algorithms to solve various classes of problems will also lead to higher speed
of operations,

There is, however, yet another way of increasing the speed of computation: by
performing as many operations as possible simultaneously, concurrently, in parallel,
instead of sequentially. In the traditional Von Neumann architecture digital com-

puter [4, 48, 92, 97, 115, 165, 176] operations are performed on a sequential basis.

4

The CPU fetches an instruction from the memory, decodes it into its registers, fetches
operands (if any), executes the operation, and the result is sent from its register to
be stored in its memory, in that order. None of these operations is started until the
preceding one is completed. A new instruction is fetched only after the execution of
previous one is accomplished. There is no time-overlap in the execution of any of
elementary operations in the instruction cycle. Each CPU contains just one Arith-
metic Logic Unit (ALU), which would perform all of the data processing tasks of the
system.

The earliest reference to parallelism in computer design is thought to be in
General L F Menabrea’s publication in the Bibliothequé Universelle de Geneve,
October 1842, entitled ‘Sketch of the Analytical Engine Invented by Charles Bab-

bage’ [111, 139]. In listing the utilities of the analytical engine, he writes:

Secondly, the economy of time: to convince ourselves of this, we need only
recollect that the multiplication of two numbers, consisting each of twenty
figures, requires at the very utmost three minutes. Likewise, when a long
series of identical computations is to be performed, such as those required
for the formation of numerical tables, the machine can be brought into
play so as to give several results at the same time, which will greatly

abridge the whole amount of the processes.

It does not appear that this ability to perform parallel operation was included in
the final design of Babbage’s calculating engine; however, it is clear that the idea of
using parallelism to improve the performance of a machine had occurred to Babbage
over 100 years before technology had advanced to the state that made its implemen-
tation possible.

Recently, the major development affecting scientific problem-solving is that of
parallel distributed computing. Many scientists are discovering that their compu-
tational requirements are best served not by a single, monolithic machine but by a
variety of distributed computing resources, linked by high-speed networks. We shall

implement our parallel algorithms on this type of parallel computing environment.

1.2. Outline of the thesis

In this thesis, we shall address the three research areas of rank-based nonlinear filters,
iterated function system based one-dimensional signal models and parallel distributed
algorithm implementation and application.

In Chapter 2, we introduce the advantage of parallel distributed computing rela-

tive to traditional parallel computing and compare several popular parallel distributed

computing environments and their point-to-point communication speed. For nonlin-
ear filters, we shall review the basic median-based , and rank-based filters and their
extension, namely, stack filters. For fractal models, we shall review the method of
constructing a fractal and the approach of fitting a given signal with a fractal model.
We also introduce the image compression technique using fractal transform.

In Chapter 3, we introduce the popular parallel distributed computing environ-
ment, Parallel Virtual Machine and the interactive application developing tool, Tcl
language. We design and implement an interactive parallel distributed computing
environment (IPDCE) based on PVM and Tcl language.

In Chapter 4, we present a new minimum threshold decomposition scheme for
implementation of a stack filter. In order to reduce the performance time of standard
stack filtering we try to minimize the number of logical operations and utilize the
CPU bit-fields parallel property. We implement an interactive stack filtering system
based on IPDCE, in which we can use traditional command line mode and modern
graphics user interface to set filter parameters and select sequential or parallel filtering
algorithms.

In Chapter 5, we present an extended Iterated Function System (II'S) interpo-
lation method for modelling a given discrete signal. We suggest a suboptimal search
algorithm with robust technique for estimating the map parameters so that we can
get a solution in reasonable time. We also implement a parallel distributed version
of this inverse algorithm using equal task partitioning and a Remote Procedure Call
application programming interface library.

In Chapter 6, we use the robust IFS inverse algorithm with a local cross-validation
technique to model the self-affine and approximately self-affine noisy signal corrupted
by Gaussian noise. We also implement the parallel distributed version of this inverse
algorithm in Parallel Virtual Machine (PVM) with static optimal task partitioning.

In Chapter 7, we apply local IFFS, which realises the limit for self-affine data, to
model general signals. We suggest a two-stage search scheme to estimate the self-affine
region and associated region parameters so that we can get a suboptimal solution in
reasonable time. In order to solve the problem of performance degradation caused by
the difference of machines capabilities and external loads, we implement a dynamic
load balance technique based on a data parallelism scheme.

In Chapter 8, we present the main results and conclusions of this thesis and make

suggestions for some further research.

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1. Introduction

The past several years have witnessed an ever-increasing acceptance and adoption
of parallel distributed computing. In this chapter we review the progress of this
research area and compare the key factor, communication speeds, of some popular
parallel distributed computing environment. Stack filters are a new general class of
nonlinear filters, which includes many particular nonlinear filters such as median-type,
order statistics-type and morphological filters. We introduce stack filters’ two basic
properties, threshold decomposition and the stacking property and we mention ways
of extending standard stack filters. Data modelling is the other important research
area which this thesis will involve. We present some background knowledge of a new

approach, that of fractal-based Iterated Function Systems.

2.2. Parallel Processing and Parallel Distributed Computing

2.2.1. Parallel Processing
First, we give the definition of parallel processing.

Definition 2.1 Parallel computing [97] is an efficient form of information process-
ing which emphasizes the exploitation of concurrent events in the computing process.
Concurrency implies parallelism, simultaneity, and pipelining. Parallel events may
occur in multiple resources during the same time interval; simultaneous events may
occur at the same time instant; and pipelined events may occur in overlapped time
spans. These concurrent events are attainable in a computer system at various pro-

cessing levels.

In theory, the speedup that can be achieved by a parallel computer with n iden-
tical processors working concurrently on a single problem is at most n times faster
than a single processor. In practice, the speedup is much less, since some processors
are idle at a given time because of conflicts over memory access or communication
paths, inefficient algorithms for exploiting the natural concurrency in the comput-
ing problem, or many other reasons. The lower-bound log, n is known as Minsky’s

conjecture. A more optimistic speedup estimate is upper bounded by - as derived

below [97].

Consider a computing problem, which can be executed by a uniprocessor in unit
time, 73 = 1. Let f; be the probability of assigning the same problem to the 2th
processor working equally with an average load d; = 1/7 per processor. Furthermore,
assume equal probability of each operating mode using processor 7, that is f; = 1/n,
for n-operating modes: i = 1,2, -,n. The average time required to solve the problem

on an n-processor system is given below, where the summation represents n operating

modes. -
T,=Y fi-di =551 (2.1)
=1 n
The average speedup S is obtained as the ratio of Ty = 1 to T; that is,
/&l n 0
S=—= < 2.2
T, it T lon (2.2)

Hockney and Jesshope [92] suggested a structure taxonomy involving sequential
computers, parallel computers and multicomputer systems. A taxonomy for MIMD

computers [92, 178] is given in the Figure 2 taken from [92].

2.2.2. Distributed Parallel Computing

Two developments [56] promise to revolutionize scientific problem solving. The first
is the development of massively parallel computers. Massively parallel systems of-
fer the enormous computational power needed for solving grand challenge problems.
Unfortunately, software devélopment has not kept pace with hardware advances. In
order to exploit fully the power of these massively parallel systems, new program-
ming paradigms, languages, scheduling and partitioning techniques, and algorithms
are needed.

The second major development affecting scientific problem solving is that of par-
allel distributed computing. Many scientists are discovering that their computational
requirements are best served not by a single, monolithic machine but by a variety of
distributed computing resources, linked by high-speed networks.

Parallel Distributed Computing, also called heterogeneous concurrent comput-
ing [68, 174], is gaining increasing acceptance as an alternative or complementary
paradigm to multiprocessor-based parallel processing as well as to conventional super-
computing. While algorithmic and programming aspects of heterogeneous concurrent
computing are similar to their parallel processing counterparts, system issues, parti-

tioning and performance aspects are significantly different.

Definition 2.2 The term parallel distributed computing, also called heterogeneous

concurrent computing, refers to the simultaneous execution of the components of a

Dynamic binding of
addresses to processors
KSR

Distributed memo
s Static binding, ring multi

multiprocessors
(scalable) IEEE SCI standard proposal
. Static binding, caching
Multiprocessors Alliant, DASH
Single Address Space
Shared Memory Static program binding
*
Computation BBN, Cedar, CM

Cross—point or multi-stage
Cray, Fujitsu, Hitachi, IBM,
NEC, Tera

Simple, ring multi...bus
multi replacement
Central memory

MIMD multiprocessors Bus multis
(not scalable) DEC, Encore, NCR, ...

Sequent, SGI, Sun

Mesh connected

Intel
Butterfly/Fat Tree
Multicomputers CM5e1 Y
Multiple Address Space
Message—Passing Hypercubes
Computation NCUBE
Distributed Fast LANs for high
multicomputers availability and high

capacity clusters
(scalable) DEC, Tandem

LAN'’s for distributed

processing
workstations, PCs

Central multicomputers

Fig. 2. Taxonomy of MIMD Computers[92].

Heterogeneous Concurrent Computing:
SIMD/MIMD/Vector/etc

Emphasis on application heterogeneity,
mapping, scheduling

Batch systems:
utilization of clusters
as batch/queue based

concurrent computing syst

SPMD computation

Cluster Computin
Little heterogene
substitute for hardwsig

multiporcessor

m

Fig. 3. Heterogencous, Network, and Cluster Concurrent Computing[174]

single application on multiple processing elements which are loosely coupled, physically

and logically independent, and heterogeneous.

These characteristics distinguish heterogeneous concurrent computing from tra-
ditional parallel processing, normally performed on homogeneous, tightly coupled
platforms which possess some degree of physical independence but which are logically
coherent.

It is worthwhile to note [174] that parallel distributed computing is a superset
of similar methodologies referred to as network computing and cluster computing.
While the nomenclature is as yet informal, network computing may be considered
equivalent to heterogeneous computing, but with rather less emphasis on application
heterogeneity, mapping, and task partitioning aspects. Cluster computing is even
more restrictive, in that it generally refers to usually identical workstation clusters
that are used as a substitute for hardware multiprocessors. Figure 3 depicts the

relationship between various concurrent computing paradigms.

2.2.3. Evaluation of Network and Other Hardware Sources

During the last decade there has been an exponential growth in networked comput-
ing resources. This fact is reflected by the growth in registered systems connected to
the Internet. The most recent status report from the Network Information Systems
Center [121] summarizes this growth (see Figure 4). Over 725,000 hosts have been
connected via approximately 17,000 domains in just ten years! The rapid growth of
networked computers has been accompanied by an astonishing increase of computa-

tional power by these network attached computers. Microprocessors have doubled in

10

performance approximately every eighteen months during the last decade and they

continue to increase in performance at a much greater rate than supercomputers (see

Figure 5) [30]. Cheong [{45] summarized the five key technology areas which drive

high
semi

appr

This

performance scientific computing: microprocessors, networks, backplane buses,
conductor main memory, and magnetic fixed disk. Cheong provided the following

aisal of each technology.

Since 1985 the performance of CMOS-based microprocessors has quadrupled
every three years, or at the rate of 60% every year. Clock speeds alone have
evolved from 200 kHz in 1971 to 50 MHz in 1991.

Local area networks have improved by a factor of 10 every decade. In 1980
Ethernet operated at 10 M-bits/sec. In 1990 FDDI operated at 100 M-bits/sec.
Early prototypes indicate that G-bits/sec networks will be commercially avail-
able by 2000.

Computer backplane buses have improved by a factor of 10 every decade. Dig-
ital’s Unibus operated at 2 M-bits/sec in 1970. Motorola’s VME bus operated
at 20 M-bits/sec in 1980. In 1990 several buses operated at 200 M-bits/sec.

Semiconductor memory chips have quadrupled in capacity every three years

(annual rate of 60%) since 1972. The chronology on the number of bits per
chip follows. 1K (1972), 4K (1975), 16K (1978), 64K (1981), 256K (1984), 1M
(1987), 4M (1990).

Magnetic disk storage has evolved from a density of 1K bits per square inch
(1957) to 1G bits per square inch in 1990 (annual rate of 26% per year, or

doubling every three years).

combined performance growth indicates that significant computational capabil-

ity is available and interconnected.

Some of the infrastructure requirements of heterogeneous concurrent computing

are listed below [85, 112, 144, 178].

High bandwidth networks to support communications requirements (e.g. 100~
800 M-bits/sec per host).

Low latency communication mechanisms (e.g. 100-500 microsecond between

hosts).
Good scaling characteristics (e.g. 10-1000 hosts).

Support for high-bandwidth multi-cast communications.

11

x105 Internet Hosts

6,
5_
g
5 4
£
Z 3r
2_

1982 1984 1986 1988 1690 1992

Year

I'ig. 4. Internet Host Growth in Last Decade[121].

e Capability to recover automatically from network and node failures (e.g. fault

tolerant).

e Standard low-level primitives for communications, synchronization, and schedul-

ing across architectures.

e Heterogeneous remote procedure calls that hide architecture, protocol and sys-

tem differences.
e Real-time performance monitors.
e Reliable production batch job scheduler.
e Distributed application development tools.
e Support for traditional high level languages for heterogeneous computing.
e Applications which are capable of exploiting workstation clusters.

e New system administration tools to address system management issues for dis-

tributed computing resources.

e Development of standards which protect software investments.

2.2.4. The Advantages and Limitations of Parallel Distributed Computing

Parallel distributed computing offers several advantages: [56] By using existing hard-

ware the cost of this computing can be very low. Performance can be optimized

Rel. Peak MFLOPS vs. 1975

Price/performance vs. 1975

Fig. 5.

105 . |
104k g
: Microprocessors 5
109k |
1023 é
101k g
: Supercomputers :
100kelenzenmnmmrmen T --mmene \ |
75 20 - N j
Relative Performance
(a)
i ' ' . E
104E E
: Microprocessors E
103k |
E E
i]
102} E
101k g
: Supercomputers :
3 :
100belezzmnmmemm T - . |
75 20 - " |
Relative Performance

(b)

Improvement of Microprocessors vs. Supercomputers[121]

12

13

by assigning each individual task to the most appropriate architecture. Parallel dis-
tributed computing also offers the potential for partitioning a computing task along
lines of service functions. Typically, parallel distributed computing environments
possess a variety of capabilities; the ability to execute subtasks of a computation on
the processor most suited to a particular function both enhances performance and
utilization. Another advantage in network-based concurrent computing is the ready
availability of development and debugging tools, and the potential fault tolerance of
the network and the processing elements. Typically, systems that operate on loosely
coupled networks permit the direct use of editors, compilers, and debuggers that are
available on individual machines. These individual machines are quite stable, and
substantial expertise in their use is readily available. These factors translate into
reduced development and debugging time and effort for the user, and reduced con-
tention for resources and possibly more effective implementations of the application.
Yet another attractive feature of loosely coupled computing environments is the po-
tential for user-level or program-level fault tolerance that can be implemented with
little effort either in the application or in the underlying operating system. Most
multiprocessors do not support such a facility; hardware or software failures in one
of the processing elements often lead to a complete crash.

One of the obvious limitations of clusters [178] is created by the relatively
slow network interconnection hardware. The interface employed will depend on the
bandwidth requirements, latency requirements, distance limitations and budget con-
straints. KEthernet is the most commonly implemented network and transmits in-
formation at 10 M-bits/sec. Many dedicated clusters are interconnected by more
expensive technologies to overcome the limitations induced by the speed of Ether-
net. The most common alternatives to Ethernet are Fiber Distributed Data Interface

(FDDI) and IBM’s Serial Optical Channel Converter (SOCC).

2.2.5. Several Popular Parallel Distributed Computing Environments

Linda 77, 78] is a concurrent programming model that was developed by Yale Uni-
versity. The primary concept in Linda is that of a “tuple-space”, an abstraction via
which cooperating processes communicate. The central theme of Linda has been pro-
posed as an alternative paradigm to the two traditional methods of parallel processing,
viz. those based on shared memory and on message passing. The tuple-space con-
cept is essentially an abstraction of distributed shared memory, with one important
difference (tuple-spaces are associative), and several minor distinctions (destructive
and non-destructive reads, and different coherency semantics are possible). Appli-

cations use the Linda model by embedding explicitly, within cooperating sequential

14

programs, constructs that manipulate (insert/retrieve tuples) the tuple space. From
the application point of view Linda is a set of programming language extensions for
facilitating parallel programming. There have been serveral commercial implemen-
tations of Linda. C-Linda from Scientific Computing Associates Incorporated is one
of most popular Linda systems. POSYBL is a public domain version of Linda de-
veloped at the University of Crete. POSYBL is one of the first public domain Linda
programming environments. It is also one of the best since it is the only public do-
main Linda system that supports a distributed tuple space rather than a centralized
tuple server. A major difference between POSYBL and the commercially supported
versions of Linda is the fact that POSYBL is implemented strictly in terms of a li-
brary and therefore cannot utilize the optimizations possible with the compiler-based
Linda system. However, the performance of POSYBL, is still high enough to make
the system quite useful.

P4 is a library of macros and subroutines developed at Argonne National Labo-
ratory for programming a variety of parallel machines. The P4 system [40, 43, 124]
supported both the shared memory model (based on monitors) and the distributed-
memory model (using message-passing). For the shared-memory model of parallel
computation, P4 provides a set of primitives from which monitors can be constructed,
as well as a set of useful monitors. For the distributed-memory model, P4 provides
typed send and receive operations, and creation of processes according to a text file
describing group and process structure. P4 is intended to be portable, simple to
install and use, and efficient.

TCGMSG [89] (Theoretical Chemistry Group Message passing system) is a sim-
ple message passing system that has risen to a position of prominence among com-
putational chemists. It is very efficient with communication taking place over direct,
point-to-point TCP/IP sockets.

PVM (Parallel Virtual Machine) [56, 74, 75, 76, 84, 132, 173, 174, 175] was de-
veloped at Oak Ridge National Laboratory and Emory University and is a software
package which allows the utilization of a heterogeneous network of parallel and serial
computers as a single computational resource. Facilities for spawning, communica-
tion, and synchronization are supported. PVM has been widely accepted by hardware
vendors(Cray, Convex, SGI, HP, etc.) and therefore has spawned several related de-
velopment efforts. Table I summarizes some of the projects related to PVM.

MPI [67] stands for Message Passing Interface. The goal of MPI, simply stated,
is to develop a widely used standard for writing message-passing programs. As such
the interface should establish a practical, portable, efficient, and flexible standard for

message passing. The main advantages of establishing a message-passing standard

15

Product | Function

DoPVM | Distributed object PVM

FT-PVM | Fault Tolerant PVM

PVM++4 | Message passing object oriented PVM

HeNCE Graphical front-end to PVM

Xab Run time monitoring and debug of PVM program

Table I. PVM related systems

are portability and ease-of-use. In a distributed memory communication environment
in which the higher level routines and/or abstractions are build upon lower level
message passing routines the benefits of standardization are particularly apparent.
Furthermore, the definition of a message passing standard provides vendors with a
clearly defined base set of routines that they can implement efficiently, or in some

cases provide hardware support for, thereby enhancing scalability.

2.2.6. Comparison of Several Parallel Distributed Computing Environments

Douglas and others [57, 185], present experiments comparing the communication
times for a number of different network programming environments on two isolated
SUN SPARC-station 1 workstations.

With TCGMSG, point to point TCP sockets are established between every pair of
nodes. This is done when the program is initiated and these sockets are not reclaimed
in the course of the calculation. We call this approach the static TCP socket system.
The static TCP socket systems method can run into trouble scaling up to large
numbers of nodes since the number of open file descriptors per node grows as the
twice the number of nodes. PVM and P4 both use dynamic TCP sockets and PVM
also provides daemon communication. This means they establish a socket between
two communicating nodes at run time when they first communicate with each other.
This method has the advantage that it will scale better on a large set of nodes as long
as none of the processors runs out of file descriptors (as in the static TCP socket
case). One disadvantage of dynamic TCP relative to static TCP is that the first
communication is significantly slower than subsequent communications.

Table IT shows clear and consistent performance differences for message ranging
in size from 100 bytes to one megabyte. TCGMSG was significantly faster for all
message sizes. P4 and PVM and C-Linda (in that order) represent a middle range in
performance. Finally, POSYBL was the slowest system and even failed for the largest
message size. It is clear that the management of message buffers at either end of the
communication plays a major role in the overall communication performance. This

follows from the fact that systems using identical network protocols (TCGMSG, P4,

16

Bytes in | Message passing Virtual shared memory
message | TCGMSG | P4 PVM' | PVM* | C-Linda | POSYBL
100 0.0556 0.0408 | 0.0350 | 0.0142 | 0.0254 0.0126

400 0.1632 0.1538 | 0.1194 | 0.0494 | 0.0880 0.0454

1000 0.3390 0.3174 | 0.2174 | 0.1082 | 0.1834 0.1030
4000 0.6350 0.5194 | 0.4520 | 0.1856 | 0.3792 0.2622

10000 (0.8548 0.6098 | 0.4706 | 0.2794 | 0.3732 0.3110
40000 1.0012 0.6482 | 0.5432 | 0.3246 | 0.4736 0.2930
100000 | 0.9920 0.6492 | 0.65614 | 0.3418 | 0.5140 0.1586
400000 | 1.0074 0.6594 | 0.5784 | 0.3578 | 0.5364 0.0944
1000000 | 1.0112 0.6600 | 0.5748 | 0.3538 | 0.5388 —

Table II. Average data transfer rates for the two node studies[31]. All rates are in
megabytes per second. 1 use direct TCP communication and 2 use dae-

mon-based communication.

and PVM) displayed very different results.

It is important to note that two node, point-to-point communication tests are
a very simple way to compare programming environments. More complicated com-
munication patterns found in actual applications are essential to make a fair and
complete comparison.

Simple communication tests indicated that the increase in efficiency was of the or-
der of a factor of 30% for daemon communication and only about 60% for direct TCP
communication under optimal conditions for the PVM environment. Some of this
degradation was caused by another facet of the PVM message passing mechanism ~
that of requiring separate buffer initialization, and packing calls before a message may
be sent. This latter characteristic is necessitated by the desire to support heterogene-
ity, both in terms of message contents and because sending and receiving processors
might utilize different data representations. However, in practice, most messages are
of homogeneous content, i.e. most messages carry a single data type, that too from a
single data area or array. Further, architecture trends follow standard data represen-
tation formats — most modern computers utilize identical representations, and those
that do not, usually differ in either word lengths or byte ordering only.

Based on the reasoning above, White et al [185] devised an alternative message
passing mechanism for the PVM system. This enhancement is based on a multi-party
protocol architecture where one-to-one, one-to-many, and many-to-many communi-
cation are implemented robustly on pairwise connections. From the programming in-
terface point of view, the new message passing scheme, accessible via the pvm.fsend()
and pvm frecv() calls, permit the direct transfer of user program data without requir-

ing buffer initialization and packing. However, data conversion can still be included

17

Platform Throughput (Kb/sec)

Msg. size | 1 byte | 100 bytes | 10kB | 1MB
Daemon | 0.06 12.88 263.41 | 358.48
Fsend 0.49 81.79 358.48 | 1003.87
TTCP | 0.65 130.45 965.04 | 1125.24

Table III. Point-to-point communication bandwidth in PVM[108]

if communicating between different architectures, thus retaining data heterogeneity
but not heterogeneity of message content.

The pvm fsend() and pvm_frecv() library was implemented and tested on a va-
riety of environments and networks. Table III indicates the performance of this com-
munication scheme for simple point-to-point data transfer, for a variety of message
sizes, for the SPARC-station 1 + Ethernet cluster. Also shown, for reference, are the
corresponding values for daemon-based PVM communication, and for a stand-alone
benchmarking program, viz. TTCP.

From the table it can be observed that the enhanced communication scheme de-
livers throughput several times as much as the daemon based communication. How-
ever, it also indicates that, except for large messages, even the enhanced communi-
cation mechanism delivers only a fraction of the throughput actually attainable by
software as indicated by the reference TTCP numbers which, incidentally, are of the

order of 7T0-95% of the theoretical maxima.

2.3. Order Statistic Filters and Stack Filters

2.3.1. Median-type Filters

Since their introduction in the early 1970’s [177], the standard median (SM) filter has
had widespread application in both signal and image processing as an alterative to
linear filters. The theory of SM is that of order statistics [53, 157]. Order statistics
have played an important role in statistical data analysis and especially in the robust
analysis of data contaminated with outlying observations, called outliers [53, 86]. One
of the most important applications of order statistics is in the robust estimation of
parameters [86, 114]. The median is a prominent example of a robust estimator.

Let Xy, Xy,+--, X, berandom variables. If they are arranged in ascending order
of magnitude, X1y < X5 < -+ < X, X(y) is called the ith-order statistic.The

n))
maximum and the minimum of X;, 7 = 1,---,n are denoted by X¢nj, X1). A very

18

important order statistic is the median, med(X;), given by

Xpt+1 ifn=2p+1

med(X;) = (2.3)

(X, + Xp41)/2 otherwise.
The one-dimensional median filter of size n, where n = 2p + 1, is defined by
yi =med(Xi_p, -, Xiy , Xigyp), 1€ 2 (2.4)

where Z denotes the set of integers.

The two-dimensional median filter of size n X m, where n =2p+ 1, m=2s+1,
{X:;}, i,7 € Z2, is defined by y;; = med(Xiypj+s; (p,8) € A), (2,7) € Z? where the
set A C Z? is the filter window.

Median filters can be described in terms of statistical analysis and deterministic
analysis. Based on statistical analysis [53, 86], median filters perform well for long-
tailed noise distributions {e.g. Laplacian noise), whereas their performance is poor
for short-tailed noise distributions (e.g. uniform noise). This fact suggests that the
median filter is efficient at removing impulsive noise. The good performance of the
median filter for long-tailed distributions is explained by the fact that it minimizes the
L norm [86, 157): 3%, la; — T, — min, where T, is the estimator based on random
variables X, -+, X,. FFrom the equation 2.3.1, the median is the maximum likelihood
estimate (MLE) of location for the Laplacian distribution: f(z) = %e'““' In general

the median filter performance is compared to the performance of the moving average
+p

or mean filter: y; = %Z§=i_p x;. which is essentially a "moving” arithmetic mean.
The arithmetic mean is the MLE of location for the Gaussian distribution and it
minimizes the L? norm.

The median is a B-robust operator since its influence function is bounded pro-
vided f is bounded away from zero at the median [86]: I F(z;med, F') = W_ll—(ll,z—))sign(x—
F-1(1)). Therefore, a single outlier (e.g. impulse) can have no effect on its per-
formance, even if its magnitude is very large or very small. However, the influ-
ence function of the arithmetic mean for the Gaussian distribution is given by [86]:
IF(z;&,F') = z and it is unbounded. Therefore, the moving average filter is very
susceptible to impulses.

Edge information is very important for human perception. Edges, by definition,
contain high frequencies. Although both median and mean filters are low-pass filters,
the median filter tends to preserve edge sharpuess [14, 38, 193], owing to its robustness
properties, while the mean filter smooths them. The median filter not only smooths

noise in homogeneous image regions, but it also tends to produce regions of constant

19

or nearly constant intensity [37]. Usually, they are either linear patches or blotches.
These effects are undesirable because they are perceived as lines or contours which
do not exist in the original image.

In the deterministic analysis of median filters, the basic problem is that of finding
signals, called roots or fixed points, which are invariant under median filtering [8, 70,

179]. There are several problems related to the median filters’ roots:

e determination of the shape of a signal which is a root of a one- or two-dimensional

median filter.
e construction and counting of the number of a median’s roots.

e the rate of convergence of a non-root signal to a root after successive passes

through the median.

These three problems form the subject of the deterministic analysis of median fil-
ters [6, 13, 61, 58, 71, 184]
There are several modifications and extensions of the standard median.
Separable Median Filter: [147, 148] This aims at reduction of the computational
complexity for median filter computation. A separable two-dimensional median of
size n results from two successive applications of a one-dimensional median filter of

length n along rows and then along columns of an image {or vice versa):

Yii = med(Zijpy vy Zijs Zijap)

zij = med(Ti—p iy Tijy ooy Tigp,j) (2.5)

The main advantage is its low computational complexity in comparison with that
of the non-separable median filter, since it sorts n numbers two times, whereas the
non-separable n x n median sorts n? numbers.

Recursive Median Filter: This is defined as
Yi = med(yi-—m"' 7yi—17$i)"'smi+;7)' (26)

Its output tends to be much more correlated than that of the standard median filter.
Recursive median filters have higher immunity to impulsive noise than have non-
recursive median filters [7, 36]

Weighted Median Filters (WMF): This is defined as [105]
Yi = med(W_p O Timp,*++, Wy O Tiygyp) (2.7)

where w ¢z denotes duplication of & w times: woz = a,---,z (w times) It is closely
2 Wy . . .
related to the FIR filter of the form y; = ;zi_;zv__i__t’_ Brownrigg [42], Yli-Harja [192],
j=—p VI

20

and Ko [110] analyze the performance of the weighted median filter. They have shown
that the WMF can outperform the standard median filter [110]. There is a connection
between stack filters and weighted median filters [192] which can be used to derive
the statistical and deterministic properties of WMF,

Maz-Median filters and Multistage Median Filters: These aim at preserving the
structural and spatial neighborhood information which could be destroyed by the

ordering process. The max-median filter is defined by [11]:

y‘ij - ma’m(zly 22y %3, Z4)a (2.8)
where
z1 = med(Tiop,c Tijy Tiga)
z2 = med(TimpgyttyTijy, Tigp,j)
z3 = med(Tigpjpy s Tijy Ticvjto)
zg = med(Tipjiop, ,Tijyy Tidw,j4u)-

Its performance can be improved considerably if the median operator is used to replace
the max operator in equation 2.8. The resulting filter belongs to the multistage
median filters:

yij = med(med(zy, 29, 25), med(zs, 24, i), Tij)- (2.9)

Multistage median filters can preserve details in horizontal, diagonal, and vertical
directions since they use sub-filters that have regions of support along these direc-
tions. [10]

Median Hybrid Fiters: This aims also at preserving the spatial information of
an image by using linear filter substructure. It is a combination of linear filters and

median filters and has the following definition :
yi = med(Py(z;), -, Pumlws)), (2.10)

where the filters ®;(z;),j = 1,--+, M are linear FIR or IIR filters. Heinonen [90],
Astola [13] analyse the performance of median hybrid filters. An extended family of
FIR hybrid median filters with good transient response are presented in [186].

2.3.2. Order Statistic Filters

The class of order statistic filters includes a large number of nonlinear filters. The

L filter (also called the order statistic filter) is an important generalization of the

21

median which can be defined as:

n
i = Y aiT(), (2.11)
j=1
where z(;), 7 = 1,-++,n are the order statistics of 2;_p,- -+, 2;4,. The moving average,
median, rth ranked-order, and a-trimmed mean are special cases if the coeflicients
aj, 7 =1,---,n are defined appropriately.
Ranked-order filters [91] are very similar to median filters which are straightfor-
ward applications of order statistics in filtering. An rth ranked-order filter can be
defined as:

yi = rth order statistic of{z;_p, -+, Ti, -+, Titp} (2.12)

Weight order statistic filter [192] is a general weight median filter which can be
defined as

y; = rth order statistic of {w_, 0 @i_p, ", Wp O Titp} (2.13)

where w o = denotes duplication of z w times: woz =z, -,z (w times)
The a-Trimmed Mean Filter [32] is good compromise between the moving average
filter, which is good at suppressing additive white Gaussian noise, and the median

filter, which is good at suppressing impulses and preserving edges. It satisfies:

1 n—|an]|
;= — 3, 2.14
y n{l — 2a) 2 2 (2.14)

j=lan]+1
where |an| is the integer part of an. The a-trimmed mean filter rejects the smaller
and the larger data based on the coefficient «, 0 < a < 0.5. If @ = 0, no data are
rejected, which is equivalent to the moving average filter. If « is close to 0.5, all data
but the median are rejected.

L filters are based on the theory of robust L. estimators [86, 39]. The filter
coefficients, a;, 7 = 1,-++,n, can be chosen to satisfy an optimality criterion that
is related to the probability distribution of the input noise. Structural constraints
can be incorporated in the optimization function in order to design filters that are
sensitive to local signal structure [141]. The deterministic properties of the L filters
and relation to linear filters are discussed in [120]. The ability of the L filter to have
optimal coefficients for a variety of input distributions makes it suitable for a large
number of application. Another advantage of the L filter over the median filter is
that it has no streaking effect. However, the L filter involves greater computational
complexity than the median filter.

The R filter is another nonlinear filter which is based on R estimators [86, 73].

22

The most important R filter is the Wilcozon filter [51, 72]:

L) t+ T(k)

y; = med{ , 1 <j<k<n}. (2.15)

Wilcoxon filters have been proved to be effective in suppressing additive Gaussian
noise, but they do not preserve edges well. If the sum in the equation (2.15) is
restricted to a maximum distance j — k& < D, the modified Wilcoxzon filter can be
expressed as [72] y; = med{fmi,?;@, 1 <j <k <nk-~j < D} This modified
Wilcoxon filter has better edge preservation properties than the standard Wilcoxon
filter. However, a disadvantage of the Wilcoxon filter is its computational complexity.
It requires n(n + 1)/2 additions and the ordering of n + n(n + 1)/2 items . A fast
algorithm for the Wilcoxon filter is suggested in [113].

2.3.3. Stack Filters and Threshold Decomposition

Stack filters form an extension of the class of order statistics filters. This includes,
but is not limited to, median-type filters, weight order statistic filters [192], and all
compositions of morphological filters composed of opening and closing operations|88,
131].

Stack filters[183] originate from two fundamental properties of the median filter,
the weak superposition property known as threshold decomposition[62, 63] and the
ordering property[142] called the stacking property in [183].

Let @; be an M-valued signal: =; € {0,1,---,M — 1}, for which there are the
M — 1 thresholds: {1,2,---,M — 1}. The signal z; can be decomposed into M — 1
binary valued signals !, { = 1,2,---, M — 1, using the functions T(z;):

l 1 iz >1
z; = Ti(z;) = (2.16)
0 otherwise,

These M — 1 binary valued signals can be filtered independently.

A Boolean function f(-) operating on a binary vector of length n is said to possess
the stacking property if the binary output signal y! at time 7 consists of a column of
I’s having a column of 0’s on top. The filters satisfying the stacking property are
called stack filters which can be defined as:

M-1 M-1 M-1

M-1
yi = Sy(&:) = ; yi = S ; Ti(#;)) = 12—: Si(Ti(%)) = ; F(&) (2.17)

. o R . Aol ¥ !
where vectors &; = [@ip, -+, T, Tigp)y and T = [, o, 20, Ty,)

The Boolean function f(-) determines the properties of the stack filter. Gilbert [81]

23

showed that a necessary and sufficient condition for a Boolean function to satisfy the
stack property is that it contains no complements, Z;, of the input variables z;. The
stackable functions are also called positive Boolean functions.

Although positive Boolean functions provide a large class of filtering operations,
we are interested in examining an even larger class of filters. This larger class is
obtained by allowing the output of a Boolean function to be randomized [49)].

Let the 2° possible binary sequences of length b be ordered in some fashion as
Ty, &, ,Tee. A window width b randomizing Boolean function B(-) is defined by

the vector Pz with 2° elements, in which the :th element is

Ps(1|&;) = Pr(B produces output 1 | &; is in the window (2.18)

corresponding to B),

where 7 = 1,2,---,2° Also define P3(0|%) = 1 — Ps(1]%).
A randomizing Boolean function B(-) is said to possess the probabilistic stacking

property if and only if
E(B(Z)) > E(B(§)) whenever T > 7, (2.19)

where E(-) is the expectation operator as defined on the appropriate probability space.

The addition of randomization allows the Boolean function’s expected output for
a given binary input sequence to be any real number in [0, 1]. This allows average
output of the filter to be the same as the deterministic output of many well-known
filters. For example, linear filters with nonnegative weights on the bits in the window
can be realized as randomizing Boolean functions satisfying the probabilistic stacking
property [49].

There is another way to extend stack filters which leads to so-called generalized
stack (GS) filters [116], which allows different logical operators on different levels of
the threshold decomposition architecture.

Let x,, be a (2] 4+ 1) x n binary array at threshold level m. The ordered set
of M — 1 Boolean functions {f'(-), -+, fM¥~1(-)} is called a stacking set of Boolean
functions if

M) < ™M™, m=1,2,--, M — 2. (2.20)
A window width N, M-value generalized stack filter F,s(-) is a stacking set of M —1
Boolean functions. The operation of this filter on the input Z is defined as follows:

M-1

Ful@) = 3 (™). (2.21)

24

Great advances have been made recently in the design of optimal and adaptive
stack filters and generalized stack filters [49, 50, 69, 116, 117, 118, 119, 194]. Both
an estimation approach and a structural approach have been developed [50]. The
estimation approach employs the minimum absolute error (MAE) criterion because
of its robustness [49]. Optimal stack filters and generalized stack filters based on the
MAL criterion can be found via linear programming (LP) [49, 116, 194]. The com-
putational complexities of the algorithms are very high since the number of variables
and constraints in the LP procedure grows exponentially with the window width of
the filters. An improved method is to use the adaptive stack filler [117]. This ap-
proach alleviates the modelling of the signal and noise by taking a part of the input
signal to train the stack filter. The advantage of this algorithm is that only simple
arithmetic operations are required. The disadvantage of the algorithm is that the
number of variables still grows exponentially with the increase of the window width.
The other disadvantage is that the convergence speed of the algorithm of the adaptive
stack filters is very slow.

A new design method is suggested in [119] based on threshold decomposition
and Bayesian decision theory. The maximum number of unknown variables is 2%V for
an N-length stack filter [117]. If there are some constraints on the positive Boolean
functions, any positive Boolean function can be equivalent to a corresponding thresh-
old logic function [192] in which the number of variables is N + 1. More importantly,
any linear adaptive algorithm can be applied to the new optimization problem. Most
of them have a remarkable higher convergence rate than that of Lin’s algorithm [119].
It is worth noting that the new adaptive algorithm does not generally give optimal
stack filters under the MAE criterion.

Neural filters [118] have been suggested as a way of solving the problem of optimal
generalized stack filter design. The neural network representation enables the stack
filter to be implemented using sorting operations in the real domain. This reduces
the amount of computation since the complexity of implementing stack filters in
the binary domain increases exponentially with the word length. Two classes of
neural filters have been defined [118], hard neural filters and soft-neural filters. The
hard neural filters are defined by a set of neural networks in which the activation
functions are unit step functions. If they satisfy the stacking property, the hard neural
filters reduce to GS filters. Soft neural filters are defined by neural networks whose
activation functions are sigmoidal.The universal approximation property of neural
networks [94] suggests that soft neural filters can approximate all filters defined by
linear and nonlinear continuous functions such as linear FIR filters and micro-statistic

filters [9]. Moreover, soft neural filters can also approximate the hard ones. Two

25

adaptive neural filtering algorithms, the adaptive least mean absolute error (LMA)
algorithm and the adaptive least mean square error (LMS) algorithm, are used for
finding optimal neural filters under the MAE and MSE criteria, respectively [118].

Hard neural filters and soft neural filters can be trained using these two algorithms.

2.4. Fractals, Iterated Function Systems and Inverse Fractal Transforma-
tions

There are three popular ways to construct a fractal scene. The first is to use L-systems
[161] to models fractal botanical models. The second is to use fractional Brownian
motion (fBm). The third is to use the Iterated Function System (IFS) developed by
Barnsley and his collaborators [21, 23]. L-systems and fractional Brownian motion
are limited models. L-systems are only suitable for botanical graphics; fBm is defined
in a one-dimensional framework and it is very difficult to generalize it to higher di-
mensions. Fractal techniques based on iterated function systems are the most flexible
generalization from one dimension to higher dimensions is very natural and easy, and
highly complex spatial information can be derived from temporal iteration that is

governed by only a small set of parameters.

2.4.1. Tterated Function Systems

In Barnsley’s IFS theory, a deterministic and random iterated function and system

can be defined as the following :

Definition 2.3 The Hausdorff distance between sets K and L, K,L € X, can be
defined as

h(K, L} = max{max{d(z, K) : z € L},max{d(y,L) : y € K}), (2.22)

where d(z, K) is the distance from z to K, d(z,K) = min{d(z,y) : y € K}, and
d(y, L) is the distance from y to L, d(y, L) = min{d(y,z) : z € L}.

Definition 2.4 A deterministic iterated funclion system (IFS) is an N-tuple (w;, wa,: -

of maps from a compact metric space (X, h) into ttself, where h is Hausdorff distance.
A map w: X ~ X is called a contraction iff there exists a constant ¢ € R with
0 <c<1andh(w(z),w(y)) <ch(z,y), Vo,y € X. The smallest ¢ with this property
is called the Lipschitz constant of w and is denoted by Lip(w). A deterministic IFS

consists of contractions wy,wq, -+, Wy.

Hutchinson [96] proved, that if W(K) = UY, w;(K) , W is a contraction with
respect to A, with Lip(W) < max(Lip(w;),-- -, Lip(wn)), and has a unique fixed point

'awN)

™~

|
|

26

A in X. The fixed point A of W is called the attractor of the IFS(wy,ws, -, wn).

Definition 2.5 A random iterated function system IFS(wy,wq, -, wn,
P1,D2, ", PN) consists of Lipschitz map functions w; in compact metric space (X, h)
with probability p;, i =1,2,---, N and 3, p; = 1. Choose xo € X and then choose,

recursively and independently,
zn € {wi(za-1),w2(2n-1), -y wn(Tp-1)}, n=1,2,--- (2.23)
where the probability of the event z, = wi(2n_1) is p;.

Thus it defines a discrete-time Markov process {Z,, n = 1,2,---,} [21, 23].

P(Zn < B|Zn_1 = Tn—1s" "y Z() = .'1'10) = P(.’L‘n_l,B), (224:)
where
N
P(@,B) =" pibuia(B) (2.25)
i=1

is the probability of transfer from 2 € X to the Borel set 8 in X, where §, is the Dirac
measure concentrated at z. Barnsley [23] proved that if 4 € P(X), the set of Borel
probability measures on X, is a stationary initial distribution and maps (wq,wa,)
are Lipschitz, the process {Z,} converges in distribution to u.

For the fractal interpolation problem, let

where {Y;} are data, {X;} are interpolating points with X; < X, <+ < Xy and fis
an unknown function which displays some sort of self-similarity under magnification.
Define a graph G = {(X;,Yi),7 = 1,---, N}. Barnsley [18, 19] suggested finding an
IFS whose attractor approximates this graph G and which would give an estimate,
f, for f. The basic structure is that the maps w; are affine transformations with the

special structure

z a; 0 z e;

w; = -+ , (2.27)

y ¢ 4 v fi
Berger [34] uses random IF'S and affine transformations to show how refinement
methods for smooth curve generation can be carried out efficiently. The applications
include Béziear curves, splines, wavelets and various interpolants. Barnsley et al [26]
have shown that it is possible to design the interpolation such that fis in C'[X1, Xn],
i.e., f has [th continuous derivative on [X;, Xy], where [is any non-negative inte-

ger. Since any lower-dimensional function f can be regarded as a projection of a

27

high-dimensional function, the graph G also can be considered as a projection of
another graph in higher dimensions. Barnsley et al [22] have considered finding an
IFS whose attractor approximates this high-dimensional graph, and from this they
obtain an interpolant for f, by projection of this high-dimensional attractor, which
will not limit f to be self-similar. They called it hidden variable fractal interpolation.
Geronimo et al [79] extended IFS interpolation to two-dimensional fractal surfaces.
Their algorithm allows the construction of these surfaces over polygonal regions with
arbitrary interpolation points.

The recurrent iterated function system (RIFS) [24, 44], also called local iterated
function system (LIFS), generalizes iterated function systems. The flexibility of RIFS
permits the construction of more general sets and measures which do not have to

exhibit the strict self-similarity of the IFS case. RIFS can be defined as follows :

Definition 2.6 Let (X;,d;) be compact metric spaces, 7 € {1,2,---,N},and let
(Hj, hj) denote the associated metric spaces of nonempty compact subsets which use
the Hausdorff metrics. Let there be defined maps wyj : H; — H;, V(4,7) € I, where [
is some set of pairs of indices with the property that 1(7) = {j|(i,7) € I} # 0} and
hi(wi;(A), wi;(B)) < sijhj(A, B), for some s;;, ¥(i,j) € I and YA, B € H;. Then
when s < 1 there is a unique element A= (Ay, -, Ay) € H such that

Ai= |J wiy(4;), fori=1,2,--- N, (2.28)
JEI(1)
i.e., W(A) = A, where H consists of a stack of planes K1,K2,---, Ky with a point

in H being the N-tuple of one image in each plane and

W(Ay, -, An) = (U wig(4;),, U 'LUNJ(AJ')) . (2.29)
J€I(1) JEI(N)

Barnsley’s Collage theorem [25, 19] tells us that, in order to control the closeness
between the attractor A and the data set K under the Hausdorff distance, it is
sufficient to control the closeness between K and W(K) which is obtained by one-
step iteration ahead of K by W under the Hausdorff distance. Here is the Collage
theorem for IFS.

Theorem 2.1 Suppose IFS(wy,ws, -+, wy) has an attractor A on a compact metric
space (X, h). Let K C X and W : K — K, where W(K) = w(K)U - Uwn(K)
and Lips(W) =s. If W(W(K), L) < ¢ then

€

f— 6.

h(4,K) < 5 (2.30)

28

For a RIFS, there exists a corresponding collage theorem [24]. ®ien et al [154]
present a new collage theorem holding for a certain class of affine mappings called
Affine Blockwise Averaging maps, which operate on the space of discrete signals and
are suitable for the orthogonalized version of Jacquin’s algorithm [103], introduced
in ®ien and Lepsoy [155]. The theorem provides a better bound on the distance
between the original image and the attractor, by considering in the estimate norms
of collage errors at successively coarser resolutions. Baharav et al [16] proposed a
fast decoding algorithm based on a hierarchical interpretation of the IFS-code which

can reduce the computation time by more than an order of magnitude.

2.4.2. Fitting Data with Fractional Brownian Motion

An important class of fractal signals is 1/f processes [109], which exhibit rich be-
haviour well suited to modelling a wide range of one-dimensional natural phenomena.
1/f processes are a class of random processes of which average spectral density is
proportional to the inverse of frequency 1/f and can be characterized by an inherent
scale invariance and persistent long-term correlation structure. In contrast to the
well-studied family of ARIMA process, 1/f processes have received relatively little
attention in the transitional signal processing literature. This has been due, at least
in part , to the mathematical intractability of fractal processes. However, 1/f frac-
tal signal representations in terms of orthonormal wavelet bases have been suggested
recently [65, 163, 191] that considerably simplify the analysis of these processes.

A popular example of the 1/f processes is that of fractional Brownian motion
(fBm) [128], which is a generalization of normal Brownian motion. The fBm Bg(t)

is a zero mean non-stationary Gaussian random process with the covariance function

2

o
re(tys) = S (1" 4 s = [t — s[™) + o([t]), (2.31)

where the parameters 0% and 0 < H < 1 characterize the process. The parameter H
controls the “roughness” of the {Bm such that an individual realization of the process
has a fractal dimension [127] D = 2 — H. The H paramecter also controls the shape

of the average spectral density defined as
o«
e

where ry = 2H + 1. As a result, the fBm serves as a good model for 1/f processes
where 1 < r, < 3.

S(f) (2.32)

Wornell [191, 190, 189] suggests a new algorithm which uses the discrete wavelet

transform [164, 126, 52] to derive an approximate maximum likelihood estimator

29

when a 1/ f process is embedded in white Gaussian noise. Wornell’s algorithm needs
the wavelet coefficients of a Karhunen-Loéve-like expansion for 1/f noise [188] to be
uncorrelated over scale and time. Kaplan et al [109] improve Wornell’s algorithm by
using Haar based wavelets [126]. The coefficients of the new algorithm are weakly
correlated and have a variance that is exponentially related to scale. Theoretical
analysis and numerical simulation of Kaplan’s algorithm indicate that it improves
the accuracy of estimating H for moderate data length of the fBm; for longer lengths,
both algorithms can find a very good estimate; for short data length of the fBm with
additive noise, both algorithms are unreliable. The problem of how to improve a

wavelet based fractal estimator for short data length is still open.

2.4.3. Inverse Problems of the Iterated Function Systems

As usual, inverse problems are hard, and potentially ill-posed. In a typical inverse
problem in fractal construction, a single phenomenon is given, and must be reproduced
in terms of some of its characteristics, or in the whole, by a fractal approximation.
There are two forms [180] of inverse [FS problem; Measure: given a target (normalized
Borel) measure v, find an [FS whose invariant measure ;1 approximates v as closely
as possible (in terms of the Hutchinson metric); Geometric: given a target set S, find
an IFS whose attractor A approximates S as closely as possible in geometry (in terms
of the Hausdorff metric).

The inverse problem for measure can be defined as follows [21, 25] :

Definition 2.7 Given a probability measure A on K, where K is a compact metric
space, find an IFS and associated probabilities p for which the p-balanced measure p

is close to A (in the weak * topology).

Consider an IFS {K, w; : ¢ = 1,2,---,N} where X C C and wi(z) = s;z +
by, © = 1,2,---,N, with s;,0;, € C, 0 < |s;] < 1. Then the moments M, =
Ji 2*dp(z) n=0,1,-- can be calculated. This follows from the stationarity condi-
tion u(B) = J, P(z,B)du(z), where B is Borel subset of K. The recursive formula

18

Mn = (1 — Zpis?) Z Z S‘zb?_”?p,‘j\/fj. (233)
=1 i=1 j=0]
The M, values can be computed starting from My = 1. In particular, we have

available the reverse procedure, that of matching a finite number of moments, M,, =
9n, wWhere g, = [2"d\(z), n = 1,2,---, M, to get the [FS parameters [25, 2, 129,
130, 87]. However, because of the problems associated with the nonlinearity of the

equations, the scheme is found to be extremely unstable {181, 180], and hence useless

30

from a practical viewpoint. Moreover, the complexity of this approach increases
enormously in the two-dimensional case. Vrscay [181, 180] suggested a new method
for minimizing a “Euclidean distances” between moments M,, and g,. For a fixed
number, N, of IFS maps, and M, the number of moments M; to be “matched”, the
objective function to be minimized was the sum of the squared Euclidean distance in

“moment space”,

M
Dy (m) = 3 (g = Mi)*. (2.34)

Vrscay suggests using a Genetic Algorithm {93, 82] to minimize the above function.

For an inverse IFS problem of the geometric type, Withers [187] suggested
applying Newton’s method on the parameter space of the IFS to solve the problem
of fitting a given linear function in the L? norm with a function generated by an IFS.
Walach [182] utilized a fixed-length yardstick to traverse the entire data to construct
a plecewise linear for approximating a curve in order to compress an image. The
compression rate is near 16:1.

Modern fractal image compression led to the creation of the concepts and mathe-
matical results of iterated function systems. Barnsley and Sloan advertised in popular
science magazines the incredible power of IFS for compressing colour images at com-
pression rates of over 10000 : 1 [28]. In 1989 Jacquin proposed a fully automated
algorithm (called as block-based image coding) for fractal image compression [100]
which was based on local affine transformations, and was also called Recurrent IFS.
He suggested an approach for partitioning a monochrome image into non-overlapping
square pixel blocks, called range blocks (R;), and larger square pixel blocks, called
domain blocks (D;), sorted into a set of categories such as shade blocks, edge blocks
and midrange blocks, following classification [162]. For each range block, a domain
block of the same category is searched such that its grey level under a local strictly
contractive affine mapping (7;) minimizes its distance to the original block in the
root-mean-square sense. Each affine mapping is is composed of a geometric part (.S;)
which shrinks the domain block down to the size of a range block by pixel averaging,
and a massif part (S5;) that transforms the obtained block by shuffling (J;), scaling
(a0), with quantized parameters and addition of a constant grey-tone block (Ag).

The general form is [104] :
To 5(p=p) = aoJ(S(k—p)) + Ag (2.35)

This scheme is in many aspects related to vector quantization (VQ) [80], with which
it shares the idea of using a codebook providing a library for the selection of the

domain blocks. However, the codebook in fractal compression is only a “virtual” one

31

since the domain blocks are not stored but are taken from the image itself, thereby
exploiting the redundancy of the information present in the image.

Jacquin’s papers provide a good starting point for further research and exten-
sions in many possible directions. Mazel et al [134] use IFS and local IF'S to represent
discrete-time sequences. Beaumont [31] extends it to process sequences of video im-
ages, and Cochran et al [46] extend it to volumetric data, where the basic elements
of the partition are three-dimensional blocks. The results of fractal volume compres-
sions compare well against similar techniques based on vector quantization. Jacobs
et al [99] conducted a thorough study to determine the optimal number of bits for
the uniform quantization of « and Ag.

®ien et al {155, 156] express the item Ag in a three-dimensional subspace Ag =
3, oAy, where the oy are real coefficients and {Ay, A, A3} are the fixed basis
vectors. ®ein et al first Gram-Schmidt orthogonalize the fixed-basis vectors, in effect
decoupling the optimization of the scalar ap and the constant Ag. Saupe [166, 167]
suggest another method, that of multi-dimensional nearest neighbour search, which
runs in logarithmic time, to replace the common sequential search for a best match
of image portion, which runs in linear time. Monro et al [137, 138] propose to ex-
press Ag with high order items as Ag = Y23_, axz® 4+ 3_, bry”* +to. The parameters
are optimally determined by applying a least square criterion. The authors report a
significant increase in image quality by including these higher order items and, in par-
ticular, with the consequence that no searching procedure for domain blocks, which is
the main factor leading to long encoding times with block-based fractal image coding,
is needed. Barthel et al [29] propose an extension to linear scale transformation which
applies a high order transformation in the frequency domain. Bit-rate reductions are
higher than those achieved by “spatial-domain” fractal coding schemes. Fisher and
Jacobs [60, 99] use a quad-tree, rectangular and triangular automatic partition of
the range blocks in order to improve image fidelity. Another triangular partition
scheme [54, 55] is provided by the triangular in a Delaunay tessellation [160], which
permits an adaptive partition of the image support. Davoine etal [54, 55] show
an improvement in the visual quality of reconstructed images, computing times and

compression ratios.

32

CHAPTER 3

DESIGN OF INTERACTIVE PARALLEL DISTRIBUTED
COMPUTING ENVIRONMENT

3.1. Introduction

A Parallel Virtual Machine (PVM) system is a software infrastructure that permits
connection of heterogeneous Unix computers to be used as a unified general and
flexible, message-passing, concurrent parallel computational resource. In this chapter,
we describe the construction of PVM version 3, the principle of program design under
PVM, the approach of dynamic monitoring and ways to debug PVM programs. Later
in Chapter 4, we shall build parallel distributed algorithms with PVM system.

Interactive applications need a powerful general-purpose command language. We
introduce such a powerful and embeddable command language, Tcl. Tk then extends
the core Tcl facilities with additional commands for building user interfaces so that
you can construct Motif-like interfaces by writing T'cl scripts instead of C code based
on Tk. It raises the level of X-Windows programming and results in application
development that is 5-10 times faster.

The combination of interactive and parallel processing will lead a new and useful
application area, especially for visual science data, image analysis/processing and mul-
timedia applications. We implement this composition based on a parallel distributed
environment, PVM, and the interactive development tool, Tcl. The approach we use
is to provide a Tcl version interface for all procedures in the PVM C library so that
users can call any PVM procedure to do their parallel computing interactively. In
order to solve the problem of there being no binary-type data in Tcl, we use Tcl’s
general-purpose hash table to define a kind of object, GBOX, in which to hold any

binary data. Several Tcl procedures are implemented to do tasks related to GBOX.

3.2. The Method of Program Design Under A Parallel Virtual Machine

3.2.1. Construction of A Parallel Virtual Machine

Under PVM [74, 75, 76, 173, 175], a user-defined collection of serial, multi-processor,
and vector super computers appears as one large distributed-memory computer,
known as a virtual machine as shown in Figure 6. PVM is a public domain, full
source code availability software system, of which the current version is 3. With

source code, users can easily port PVM to any other new computer platform and

33

Cluster

[—P H—J l%] l:|:] 1}] [l:l El] Bridge/Router

\
~N Vector
sC

-

N
i
e
0
+
®
n]
[\

.m; ,,,,,,,,,, Cluster ks

PVM”;« f] ﬂ] lj
Unlform ﬂﬂ

View of Vlrtual Machine

Fig. 6. PVM Architectural Overview[175]

improve the speed of message-pass with new network protocol.

Definition 3.1 PVM computing environment is composed of user programs U, sys-

tem daemon D, and interface library .

Definition 3.2 U is a standard single instruction single data-flow program, which
consists of user data structure, C or Fortran control-flow statements, and explicit

call-T statements.

Figure 7 illustrates the PVM computing environment.

The PVM system software is composed of two parts. As explained in [75], the
first part is a daemon D, called pvmd3, that resides on all the computers making
up the virtual machine. Pvind3 is designed so any user with a valid login can in-
stall this daemon on a machine. When a user wants to run a PVM application, he
executes pvind3 on one of the computers which in turn starts up pvmd3 on each of
the computers making up the user-defined virtual machine. The PVM application
can then be started from a Unix prompt on any of these computers. Multiple users
can configure overlapping virtual machines, and each user can execute several PVM
applications simultaneously.

The second part of the system is a library of PVM interface 7 routines, libpvm3.a
for C language or libfpvm3.a for Fortran 77. This library contains user-callable rou-
tines for message-passing, spawning processes, coordinating tasks, and modifying the
virtual machine. Application programs must be linked with this library in order to

use PVM.,

34

Application Process

RS/6000 PVM System Daemon
/ High Speed Data Channels
\\\ e Control and Data Transfer
User-Daemon Interface
User P
rocess
3

Fig. 7. PVM Computing Environment

Definition 3.3 I consists of a C library and a Fortran library. Multi-data flow will

appear when T is called since send-and-receive message are asynchronous.
Definition 3.4 Under a PVM, an application A is made up of a set of instances.

An instance of an application subtask or component (realized as a process) [169],
is the unit of computational abstraction in the PVM system. Each process is an
executing instance of an application component, where a component is a domain-
specific module amenable to single program multi-data flow (SPMD) execution. All
processes that enrol in PVM are represented by an integer task identifier (¢id). The
tid is the primary and most efficient method of identifying processes in PVM. Since
tids must be unique across the entire virtual machine, they are supplied by the local
pvmd and are not user-chosen. PVM contains several routines that return tid values
so that the user application can identify other processesin the system. An illustrative

example of this computing model is shown in Figure 8.

Definition 3.5 In a message-pass model, processes are created by the programmer

explicitly; they communicate explicitly and may send data repeatedly to other pro-

cesses.

Instances communicate via the use of message-pass models; each message may
contain data of several types. These message segments are built by provided library

routines in a machine independent manner. Message exchange is asynchronous, in

35

Input and Partitioning
Component A

IInstance O|

|Instance 1|

|Inst. Ole{Inst. 2]
T =3

|Inst. 1|e{Inst. 3|

Component D Output and Display

Instance O]

I'ig. 8. PVM Concurrent Computational Model[169]

36

that a sending process may continue execution prior to physical message reception by
the destination process. The PVM model guarantees that message order is preserved.
If task 1 sends message A to task 2, and then sends message B to task 2, message A
will arrive at task 2 before message B. The model assumes that any instance can send
a message to any other PVM task, and that there is no limit to the size or number of
such messages. While all hosts have physical memory limitations the communication
model does not restrict itself to a particular machine’s limitation and assumes that

sufficient memory is available.

3.2.2. PVM User Interface Library

The following are a summary of the functions provided by PVM version 3 [74, 84].

e PVM supplies process control routines that enable a user process to become a
PVM task, to become a normal process again, to spawn a new process, and to

terminate other processes.

e PVM supplies dynamic configuration routines to add or delete hosts from the

virtual machine, to start the system daemon, and to halt whole virtual machine.

e PVM supplies information request routines to find out information about the

virtual machine configuration and active PVM tasks.

e PVM provides two methods of signalling other PVM tasks. One method sends a
Unix signal to another task. The second method notifies a set of tasks about an
event by sending them a message with a user-specified tag that the application

can check for.

o If a host fails, PVM will automatically detect it and delete the host from the
virtual machine. The status of hosts can be requested by the application. It
is still the responsibility of the application developer to make his application
tolerant of host failure. PVM makes no attempt to automatically recover tasks

that are killed because of a host failure.

e PVM provides routines for packing and sending messages and unpacking mes-

sages between tasks.

e The PVM communication model provides asynchronous blocking send, asyn-
chronous blocking receive, and non-blocking receive functions. In addition to
these point-to-point communication functions the model supports broadcast to
a set of tasks and to a user-defined group of tasks. Wildcard can be specified

in the receive for the source and label allowing either or both of these contexts

37

to be ignored. A routine can be called to return information about received

messages.

e The user can define multi buffers in PVM version 3. Message buffers are al-
located dynamically so that the maximum size messages that can be sent or

received is limited only by the amount of available memory on a given host.

e Dynamic process groups are implemented on top of PVM. In this implementa-
tion, a process can belong to multiple groups that can change dynamically at
any time during a computation. Routines are provided for tasks to join and
leave a named group. Tasks can also request information about other group

members.

3.2.3. Developing a Good PVM Application

Application programs view PVM as a general and flexible parallel computing re-
source that supports a message-passing model of computation. This resource may be

accessed at three different levels [56] :

1. The transparent mode, in which tasks are automatically executed on the most

appropriate host (general the least loaded computer).

2. The architecture-dependent mode in which the user may indicate specific archi-

tectures on which particular tasks are to be executed.

3. The low-level mode in which a particular host may be specified.

Such layering permits flexibility while retaining the ability to exploit particular strengths
of individual machines on the network.

Application programs under PVM may possess arbitrary control and dependency
structures. In addition, any process may communicate and/or synchronize with any
other. This allows for the most general form of multi-instruction multi-data flow
(MIMD) parallel computation, but in practice-mode concurrent applications are
more structured. Two typical structures are the Single Program Multi-Data (SPMD)
model, in which all processes are identical, and the master/slave model, also known
as server/clients, in which a set of computational slave processes performs work for
one or more master processes.

There are no limitations to the programming paradigm a PVM user may choose.
Any specific control and dependent structure may be implemented under the PVM
system by appropriate use of PVM constructs. On the other hand there are cer-
tain considerations [175] of which the application developer should be aware when

programming aity message passing system.

38

The first consideration is task granularity. This is typically measured as a ratio of
the number of bytes received by a process to the number of floating point operations
a process performs. The tradeoff is the larger the granularity the higher the speedup
but often there is a reduction in the available parallelism as well.

The second consideration is the number of messages sent. The number of bytes
received may be sent in many small messages or in a few large messages. Using a few
large messages can reduce the total message start-up time. There are cases where
small messages can be overlapped with other computations so that their overhead is

masked.

Definition 3.6 Functional parallelism: There are different algorithmic subcompo-

nents of the computation in each processor.

Definition 3.7 Data parallelism: the data arc partitioned and distributed to all the
processors; algorithmic subcomponents of the computation which are often similar are
performed for each part of data and information is passed between processes until the

problem is solved.

A third consideration is whether the application is better suitable to functional
parallelism or data parallelism. For example, a vector supercomputer may solve a
part of a problem suitable for vectorization, a multiprocessor may solve another part
of the problem that is suited to parallelization, and a graphics workstation may be
used to visualize the generated data in real time. Each machine performs different
functions (possibly on the same data). Of course in PVM both models can be mixed
in a hybrid that exploits the strengths of each machine.

There are additional considerations about networking for the application devel-
oper if he wishes to run his parallel application over a network of machines. His
parallel program will be sharing the network with other users. This multiuser, multi-
tasking environment affects both the communication and computational performance
of his program in complex ways.

First, there is different computational power on each machine in the configura-
tion. Second, there are the effects of long message latency across the network. Third,
the computational performance and effective network bandwidth are dynamically
changing as other users share these resources. Many of these network considerations
are taken care of by incorporation of some form of load balancing into a parallel

application.

Definition 3.8 An application A is a {-tuple {P,G, f,e}. where P is a set of n

processors; G = (I', A) is an undirected graph; T is a set of | processes; A is a set of

39

undirected edges corresponding to communication between processes; f : ' x P — Tj
is a function such that f(v,p) returns the cost required to compute task v € I' on
processor p € P; e : A x A — Ty is a function returning the cost associated with
communication between processes if they are mapped to different processors. The load
balancing is to minimize the global cost [1{9] of ¥ f(v,p) + % e(~,6).

In a multiuser network environment load balancing is the single most important
performance enhancer. There are many load balancing schemes for parallel programs.
We will describe the two most common schemes used in network computing [74].

The simplest method is static load balancing. In this method the problem is
divided up, and tasks are assigned to processors only once. The data partitioning
may occur off-line before the job is started, or the partitioning may occur as an early
step in an application. The size of the tasks or the number of tasks assigned to a
given machine can be varied to account for the different computational powers of the
machines. Since all the tasks can be active from the beginning, they can communicate
and coordinate with one another. On a lightly loaded network, static load balancing
can be quite effective.

‘When the computational loads are varying, a dynamic load balance scheme is
required. The most popular method is called the Pool of Tasks paradigm. It is
typically implemented in a master/slave program where the master program creates
and holds the pool and farms out tasks to slave programs as they fall idle. The pool
is usually implemented as a queue and if the tasks vary in size then the larger tasks
are placed near the head of the queue. With this method all the slave processes are

kept busy as long as there are tasks left in the pool.

3.2.4. Monitoring and debugging a PVM Application

In general, debugging parallel programs is much more difficult than debugging serial
programs. Not only are there more processes running simultaneously, but their inter-
action can also cause errors. While PVM provides a solid programming base, it does
not provide the user with many tools for analyzing or debugging PVM programs. Xab
(X-window Analysis and deBugging) [33] is a tool for the visual (X-based) analysis
and debugging of PVM programs. Xab gives the user direct feedback as to what PVM
functions his program is performing. In its simplest form, this feedback is displayed
in a X-window. Xab uses PVM to monitor PVM programs. This makes Xab very
portable but it leads to interesting issues of how to make Xab compatible with the
programs it monitors.

Xab consists of three main components, a user library, a monitoring program and

an X window front end. The user library provides instrumented versions of the PVM

40

Node 1

pvim_send(...)

xab send(...)

Node 2

xab sendevent
pvin recv(...)

pvm_send (...)

Iig. 9. Node 1 task is calling pvim_send to send a message to node 2 task. Node 1’s
pvmsend actually translates into an xab_send. The xab.send sends an event
message to abmon3 and then performs the actual pvm_send on behalf of the

program.

calls. The monitoring program runs as a PVM process and gathers monitor events in
the form of PVM messages. The Xab front end displays information graphically about
PVM processes and messages. The approach of real time monitoring is particularly
apropos in a heterogeneous multiprogramming environment. Monitoring can help
give the user insight into how a program is behaving in such an environment.

The Xab routines perform the normal PVM functions for the user but they also
send PVM messages to a special monitoring process, called abmon, illustrated in
Figure 9. The abmon process receives event messages from the instruction of PVM
calls, and formats them into human readable form. The formatted event messages

can either be written to a file or sent to the Xab display front end program.

3.3. Use of Tcl to Develop Interactive Application

A general-purpose programmable command language amplifies the power of software
by allowing users to write programs in the command language in order to extend the
software’s built-in facilities. Among the best-known examples of powerful command
languages are those of the unix shell [108] and Emacs editor [171].

Nowadays it is possible and easy to develop interactive applications on a personal
workstation. Unfortunately, few of today’s interactive applications have the power
of the shell command languages. Where good command languages exist, they tend
to be tied to specific programs. Each new interactive application requires a new

command language to be developed. In most cases application programmers do not

41

have time or inclination to implement a general-purpose facility, so the resulting
command languages tend to have insufficient power and clumsy syntax [150].

Tcl stands for “Tool Command Language” [150, 151, 152] which is general-
purpose, embeddable, and powerful. It consists of a simple Tcl shell application called
tclsh and a library package that programs can use as the basis for their command
languages.

Tecl implements an interpreter for a simple programming language that provides
variables, procedures, control constructs like if and for, arithmetic expressions, lists,
strings and other features. Tcl also allows applications to extend the generic command
set with application-specific commands. An application need only implement a few
basic Tcl commands related to the application; when these are combined with the

Tcl library a fully-programmable command language results.

3.3.1. Tecl language Syntax
Definition 3.9 The Syntaz of Tcl language is defined by Backus et al Form (BNF) [15]

as the following :
<Tcl-script> <Tecl-command> <C-separator> <Tcl-command> -
< C-separator> =47 | ‘newline-key’

<Tcl-command > <T'ield> <Separator> <Field> <Separator> ---

(1

I

<Separator> = ‘space’ | ‘tab’
<Field> n= <Word> | <L-syntactic-construct> <Word> |
<Word> <R-syntactic-construct>
<I-syntactic-construct> =" | {’
<R-syntactic-construct> = ‘] | ‘}’
<Word> = <Command> | <Argument> | <Comment>
<Command> i'= <Built-in-command> | <Application-specific-command>
| ‘proc’
<Argument> = ASCII-string | ‘§’> ASClII-string |
ASClI-string “\special-character’ ASCII-string
<Comment> n= ‘4" ASCII-string

The angular brackets (<>) delimil meta-linguistic terms and the vertical bars (|) sep-

arate alternatives (read as ‘or’). The double-colon equals (::=) is to be read as ‘may

be’.

Tecl’s basic syntax is similar to that of the unix shell: a command consist of one
or more fields separated by spaces or tabs. Unlike the unix shell, each Tcl command
returns a string result, or the empty string if a return value isn’t appropriate. There
are four additional syntactic constructs in Tcl, which give the language a Lisp-like [1]
flavor.

The following examples summarize a few of the key features of Tcl:

Example 1

42

set a 934
put a; set a b

Simple Tcl commands consist of words separated by white space. The first word is a
command name (here is ‘set’ and the additional words are arguments for the command
(here is ‘934°). ‘set a 934’ means thal variable ’a’ is set to a new value 934. ‘put
a’ means that character ‘a’ is displayed on the screen. Commands are separated by
semi-colons or newlines. O

Example 2

set msg "Hello, world"
set x {a b {x1 x2}}

Double-quotes or nested curly braces may be used to delimit complex arguments in Tcl
commands. Fach of the above commands has three fields in all. If an argument is
enclosed in braces then the contents of the braces are passed to the command without
any further interpretation (newline and semi-colons are not command separators and
the substitutions described in Ezamples 3-5 are not performed). If an argument is en-
closed in quotes, then the substitutions in Examples 3-5 are performed on its contents.
O
Example 3
print $msg
if $i < 2 {set j 27}
Dollar signs invoke variable substitution in T'cl commands: the dollar sign and vari-
able name will be replaced with the value of the variable in the argument passed to the
command. O
Example 4
print [list q r $x]
set msg [format "x is Js" $x]
Tel commands may contain other commands enclosed in brackets. When this occurs,
the nested command is executed and ils resull is substituted into the argument of the
enclosing command, replacing the bracketed command. O

Example 5

set msg "{ and [are special"
print Hellol\n

Backslashes prevent special interpretation of characters like braces and brackets in Tcl
commands. Backslashes can also be used to insert control characters into commands,
as in the second command above. O

Tcl evaluates a command in two steps [152] : parsing and execution, as shown

in Figure 10. In the parsing step the Tecl interpreter divides the command up into

43

I Command String |

ITcl Parse |

L
1

I

—
)

| Command Procedure

Words

| Result |

Fig. 10. Tcl Command Execute Flow

words and performs substitutions. Parsing is done in exactly the same way for every
command. During the parsing step the Tcl interpreter does not apply any meaning
to the values of the words. Tcl just performs a set of simple string operations such as
replacing the characters ”$a” with the string stored in variable a; T'cl does not know
or care whether g or the resulting word is a number or anything else.

In the executing step meaning is applied to the words of the command. Tcl treats
the first words as a command name, checking to see if the command is defined and
locating a command procedure to carry out its function. If the command is defined
then the Tcl interpreter invokes its command procedure, passing all of the words of

the command to the command procedure.

3.3.2. Tcl Data Type

There is only one type of data in Tcl [152]: strings. All commands, arguments to
commands, results returned by commands, and variable values are ASCII strings.
The use of strings throughout Tcl makes it easy to pass information back and forth
between Tcl library procedures and C code in the enclosing application.

Although everything in Tcl is a string, many commands expect their string ar-
guments to have particular formats. There are three particularly common formats

for strings [150]: list, expressions and commands.

1. A list is just a string containing one or more fields separated by white space,
similar to a command. For example, the string
dog cat {horse cow mule} bear

is a list with three elements.

44

Init
Command
Parser
in OO
Build-In Application-Specific
Commands Commands
Tel Application

Fig. 11. Tel Embeddable Structure

2. The second common form for a string is a numeric expression. Tel expressions

have the same operators and precedence as expressions in C.

3. The third common form for a string is as commands (or sequences of com-
mands). Arguments of this form are used in Tel commands that implement

control structures. For example, consider the following command:

Example 6

if { $a < $b } {
set tmp $a
set a $b
set b $tmp

The if command receives two arguments here, each of which is delimited by
curly braces. [fis a built-in command that evaluates its first argument as an
expression; if the result is non-zero, if executes its second argument as a Tel

command.

3.3.3. Embedding An Application into Tel

Tel is an embedded language [150]. It is a library that is designed to be linked
together with C applications as shown in Figure 11. The main loop of the application

generates Tel commands. This could happen in any of serveral ways, depending on

45

the application. One way is to read commands from standard input; this results
in a shell-like program. Another way, used by Tk, is to associate Tcl commands
with X events such as button presses or keystrokes; when an X event occurs, the
corresponding commands are executed. When the application has generated a Tcl
command it passes it to a Tcl library procedure for evalution. The Tcl interpreter
parses the command, performs the substitutions described in Examples 2-5, uses the
first word of the command to locate a command procedure for the command, and
then calls the command procedure to actually execute the command. The command
procedure carries out its function and returns a string result, which the Tcl interpreter
returns back to the calling code in the application.

The Tcl library includes several built-in commands that implement the generic
facilities [152] such as variables and looping. Additional command procedures may be
provided by each application. The application registers its own specific commands by
passing their names and command procedures to Tcl. This information is used later
by the Tcl interpreter when it evaluates command strings. Application-specific and
built-in commands have exactly the same structure; they are indistinguishable except
that built-in commands are registered automatically and users may expect them to
be present in all applications. New commands may be created and deleted at any
time while an application executes,

The most important aspects of Tcl are the simplicity of the language and the
simplicity of its interface to C programs. The language simplicity makes Tcl easy to
learn; the interface simplicity makes it easy to use Tcl in applications, easy to write

new Tcl commands, and easy to use Tecl to compose primitives written in C.

3.3.4. Tk — Extending Tecl into X11 Window System

Tk is a new toolkit for the X11 window system [168]. Like other X11 toolkits such
as Xt [12], Tk consists of a set of C library procedures intended to simplify the task
of constructing windowing applications. The Tk library procedures, like those of
other toolkits, serve two general purposes [151]: framework and convenience. First,
they provide a framework that allows applications to be built out of many small
interface elements called widgets (e.g. buttons, scrollbars, menus, etc.). The toolkit’s
framework makes it possible to design widgets independently, compose them into
interesting applications, and re-use them in many different situations without re-
design. The second purpose of the toolkit is to provide ready-made solutions for
the most common needs of windowing applications. For example, Tk includes a set
of commonly used widgets plus procedures to make it easy to build new widgets.

Using Tk, it is possible to build many interesting windowing applications by plugging

46

together existing widgets. Many other applications can be built by constructing one
or two new widget types and combining them with Tk’s existing widgets.

Although Tk’s overall purpose is similar to that of other toolkits, its implemen-
tation has the unusual property that it is based around the Tcl command language.
The Tcl interfaces allow the look and feel of an application to be queried and modified
at any point in the application’s execution. They also allow new interface elements,
or even new applications, to be created dynamically just by writing Tcl script. C
code is needed only for creating new widget types or data structures.

Each widget/window has a textual name [151] that is used to refer to it in Tcl
commands. Window names are similar to the hierarchical path names used to name
files in Unix, except that “.” is used as the separator character instead of “/”. The

“? refers to the topmost window in the hierarchy, which is called the main

name
window.

Tk applications are controlled by two kinds of Tcl scripts [152]: an initialization
script and event handlers. The initialization script is executed when the application
starts up. It creates the application’s user interface, loads the application’s data
structures, and performs any other initialization needed by the application. Once
initialization is complete, the application enters an X event loop to wait for user
interactions. Whenever an interesting X event occurs, such as the user invoking a
menu entry or moving the mouse, a Tcl script is invoked to process that event. These
scripts are called event handlers; they can invoke application specific Tcl commands,
modify the user interface, or do many other things.

Wish is the simplest possible Tk application. The only Tcl commands it contains
are the Tcl built-ins and the additional commands provided by Tk. The following is
the famous ”Hello, world” example.

Example 7

button .b -text "Hello, world!" -command "destroy ."
pack .b
Type the above commands to wish and the produced application is shown in Figure 12.

Tk provides four main groups of Tcl commands; they create widgets, arrange
widgets on the screen, communicate with existing widgets, and interconnect widgets
within and between applications. Whenever a new widget is created Tk also creates
a new Tcl command whose name is the same as the widget’s name. This command is
called a widget command, and the set of all widget commands (one for each widget
in the application) constitutes the third major group of Tk’s commands.

The most important feature [151] of Tk is that it allows different applications

to work together in powerful ways. Tk provides a remote-procedure-call-like facility

47

Hello, worid!
mary

aim
Fig. 12. Tk Implementation of the Example “Hello, World”

called send that allows any Tk-based application to invoke Tel commands in any
other Tk-based application. Send takes two arguments: the name of an applica-
tion and a Tel command. This facility encourages the development of lots of small
specialized tools that can be programmed with send to work together in interesting
ways. The tools could be developed and maintained independently, and yet be used
in many different ways. It could result in much richer and more powerful interactive

environments than we have today.

3.4. Design Interactive Parallel Distributed Computing Environment

In PVM version 3, there are the C language and Fortran 77 interface libraries. In
order to give PVM the facility of interactive application, we do not want to invent
a new wheel, we just use the powerful tool language Tel and bind Tel with PVM
C language interface library, called as Interactive Parallel Distributed Computing
Environment (IPDCE).

There are two ways of implementation. One is only to use basic Tel and the
other is to use Tcl+Tk as shown in Figure 13. The advantage of the first is that we
do not need to use an X environment which is very large in size and slow in some old
machines. We can do interactive parallel computing character-based applications.
The advantage of the second is we can use Graphics User Interface (GUI) under
X window, which is the de facto standard of GUI. With Tk you can develop GUI
beautifully for your interactive parallel computing application.

In binding Tel with the PVM C language interface library, the first consideration
is the names of library procedures. We use the same approach to change the character

to T in the name of its corresponding PVM C library procedure, as in the example

[Interpreter) E‘Lnterpreter)
J PVM 3

lCommands

Tcl

Tcl
PVM 3
Commands Build-in Tk

Commands Commands

Build-in
Commands

TCL + PVM TK + PVM

Fig. 13. Bind Tcl or Tk with PVM

PVM C procedure name Tcl PVM procedure name

pvm_mytid pvimImytid
pvm_send pvmIsend

The second consideration involves the arguments of library procedures. As in the
C language, we use the value-pass method in IPDCE. As we know, we can simulate
the reference-pass method by a pointer in C language, but we do not use the approach
in IPDCE. Instead of a pointer, we use the LIST structure as argument to pass input
values into a procedure and return a new LIST structure from the procedure to return

result values.

Example 8

int info pvm_config(int *nhost, int *narch, struct hostinfo
*xhostp); in PVM C library

RETLIST pvmIconfig; in IPDCE library

where RETLIST = info nhost narch hostlist; info, nhost, narch are integer; hostlist
is host-name list. O

In the C version of the procedure, the arguments nhost and narch are pointers
and hostp is the pointer’s pointer. They are used to pass result value.

Each Tcl command is represented by a command procedure written in C. The

interface to a command procedure is defined by the T'cl.CmdProc procedure proto-
type:
typedef int Tcl_CmdProc(ClientData clientData, Tcl_Interp *interp,

int argc, char *argv[]);

Fach command procedure takes four arguments. The first, clientData, is useful
when the command is associated with object-oriented style programming. The sec-

ond, interp, is the interpreter in which the command was invoked. The third and

49

fourth arguments have the same meaning as the argec and argv arguments in a C main
program: argc specifies the total number of words in the Tcl command and argv is
an array of pointers to the values of the words. A command procedure returns two
values. One is an integer completion code (e.g. TCL.OK or TCL_.ERROR) and the
other is a result string or error message in interp— > result.
The following is the command procedure for a new command called PVM_mytid
which enrols your process in PVM.,
Example 9
int PVM_mytid(clientData, interp, argc, argv)
ClientData clientData; Tcl_Interp *interp; int argc; char *argvl[];
{
register int tid;
if(arge = 1)
{ interp->result = "wrong # args"; return TCL_ERROR; 7}
if((tid=((PVM_XAB3) ? xab_mytid() : pvm_mytid())) < 0)

{ sprintf(interp->result,"%d",tid); return TCL_ERROR; }
else

{ sprintf(interp->result,"%d",tid); return TCL_OK; }

In order for a command procedure to be invoked by Tcl, we must register the
new command by calling Tel_ CreateCommand. For example
Example 10

Tcl_CreateCommand(interp, “pvmImytid", PVM_mytid, (ClientData *)NULL,
(Tcl_CmdDeleteProc *)NULL);

The first argument to Tel. CreateCommand identifies the interpreter in which the
command will be used. The second argument specifies the name for the command and
the third argument specifies its command procedure. The fourth and fifth arguments
are related to ClientData, which is not used in IPDCE design. Tcl_CreateCommand
will create a new command for interp named pvmImytid. Whenever pvmlImytid is
invoked in interp, Tcl will call PVM_mylid to carry out its function. After the above
call to Tcl_createCommand, pvmImytid can be used in TCL script just like any other
command.

Following the approach described above, we can design the whole PVM 3 Tcl

interface from its C library. Here are all the Tcl command names:

Process Control: pvmlmytid, pvmlexit, pvmiIspawn, pvmIkill.

Information: pvmlparent, pvmlIpstat, pvmIpvmImstat, pvmlconfig, pvmlItasks,

pvmligetopt, pvmItidtohost.

Dynamic Configuration: pvmladdhosts, pvmIdelhosts, pvmIhalt, pvmIstart_pvmd.

Signalling: pvmlsendsig, pvmlInotity.
Error Messages; pvmlperror, pvmlserror.

Message Buffers: pvmlmkbuf, pvmlinitsend, pvmlIfreebuf, pvmIgetrbuf, pvmIgets-

buf, pvmlsetsbuf, pvmlIsetrbuf.

Packing Data: pvmlpkbyte, pvmipkeplx, pvmlIpkdcplx, pvmIpkdouble, pvmlIpk-
float, pvmlIpkint, pvmIpklong, pvmlishort, pvmlIpkstr

Sending and Receiving Data: pvmlsend, pvmlmcast, pvmInrecv, pvmlrecv, pvmlprobe,

pvmlbufinfo, pvmlrecvf, pvmladvise, pvmlfvend, pvmlvrecv, pvmlIvbufinfo.

Unpacking Data: pvmlupkbyte, pvmlupkeplx, pvmlupkdceplx, pvmlupkdouble,

pvmlupkfloat, pvmlupkint, pvmIupklong, pvmIupkshort, pvmlupkstr.

Dynamic Group: pvmljoingroup, pvmllvgroup, pvmlgettid, pvmlIgetinst, pvmIget-

gsize, pvinlbarier, pvmlbcast.

We also provide the support of Xab version 3 in IPDCE. Besides the original
function of Xab 3, users can dynamically set on or off the Xah. There are two new
Tcl commands ”xablon” for starting the Xab and ”xabloff” for ending the Xab.

One problem in IPDCE is that you cannot use binary type data directly since
only string type data is officially supported in Tcl. Actually in all packing-data and
unpacking-data commands the input from Tcl script are string type; for example,
7-13.5e10” is a string expression of a floating point number. If the size of data
which requires transfer to another machine is small, we can use the string type to
communicate with the other machine. But if the size of data is large, we cannot use
the string type since there are very high overheads compared with string expressions
and original binary expressions. For example, ”-13.5e10” needs 9 bytes as a string
which also includes a end mark "\0’ of C string style, but the original expression only
uses 4 bytes if it i1s floating-point type or 8 bytes if it is double-precision type.

Although Tecl does not allow a user to define any new data type, it provides an
object-oriented style data-save structure, the hash table. A hash table is a collection
of entries, where each entry consists of a key and a value. No two entries have the
same key. Given a key, a hash table can very quickly locate its entry and hence the
associated value. Tcl exports its general-purpose hash table facilities through a set
of C library procedures so that applications can use them. In Tcl’s hash table, the
values for hash table entries are items of type ClientData, which are large enough to
hold either an integer or a pointer.

In order to solve the problem of no binary type in IPDCE, we define a new C

structure as

ol

typedef struct GBox. { unsigned long int total_size, cur_size,
view_pos, width;
char *b_array; } GBOX;

where b_array is a binary character array, total_size is the total size of the b_array,
cur_size is the current size of b_array, view_pos is the current position of view point
and width is the width of two-dimensional data array. Several Tcl commands are
implemented for processing a GBOX data structure. gblcreate produces a new GBOX
object, gbldestroy destroys a GBOX object, gblstate states the status of a GBOX
object, gblpush pushes a set of string type data into a GBOX object, gblpop pops a
set of string type data from a GBOX object, gblview displays value of a part of a
GOBX object, gblseek seeks a new view position in a GBOX object, gblfread creates
a new GBOX and reads data from a file into the GBOX, gblfwrite writes data of a
GBOX into a file and destroys the GBOX object.
The first thing to do is define a new hash table. For example,

Example 11
Tcl_HashTable GBoxTable;

Tcl_InitHashTable(&GBoxTable, TCL_STRING_KEYS);

The second stage is to create an entry with a given key, and 7'¢l_SetHash Value
sets the value associated with the entry. For example,

Example 12

int GBox_create(clientData, interp, argc, argv)

do { sprintf(interp->result, "gbox%d", id); id++;
entryP = Tcl_CreateHashEntry(&GBoxTable, interp->result,
&new) ;

} while('mew);

if((gbp = (GBOX *)malloc(sizeof (GBOX))) == NULL)

{ interp->result = "wrong # no mem space"; return TCL_ERROR; }
Tcl_SetHashValue(entryP, gbp);

return TCL_OK;

The third stage is to find an entry with the procedure T'cl FindHashEntry.
Tcl_FindHashEntry is typically used to find an object given its name. For exam-
ple,

Example 13

int GBox_destroy(clientData, interp, argc, argv)

52

for(i=1; i<argc; i++)

{ entryP = Tcl_FindHashEntry(&GBoxTable, argv[il);
if(entryP == NULL) continue;
gbp = (GBOX *)Tcl_GetHashValue(entryP);
Tcl_DeleteHashEntry(entryP) ;
free(gbp->array) ; free(gbp);

return TCL_OK;
}

The last stage is to delete an entry with the procedure T¢l_DeleteHashEntry, as
shown in the above example.

GBOX can be read/written from/to file with gblfread/gblwrite commands. The
format of the file is ppm [159] for two-dimensional data and modified ppm ! for

one-dimensional data.

1See Appendix A

93

CHAPTER 4

THE STACK FILTERS, MINIMUM THRESHOLD DECOMPOSITION
AND INTERACTIVE STACK FILTERING SYSTEM

4.1. Introduction

In this chapter we present a new procedure which uses minimum threshold decompo-
sition and the positive Boolean functiorn’to realize stack filtering. In order to reduce
the time complexity of stack filters, we try to minimize the number of logical op-
erations and use the CPU bit-fields parallel method to do stack filtering. A full
parallel algorithm based on the new procedure and the data parallel scheme has been
implemented. Under the Interactive Parallel Distributed Computing Environment
(IPDCE) we develop a powerful, Interactive Stack Filtering System, which provides
beautiful Graphics User Interface (GUI), one- and two-dimensional stack filtering
procedures and convenient selection of series and parallel algorithms. We apply two
numeric examples to the stack filter and the results show that the interactive parallel

stack filtering system is efficient for both sequential and parallel filtering algorithm.

4.2. Stack Filters Based on Threshold Decomposition

Consider a signal X = (X1,--+,Xn), where each X; € {0,1,--+,2~*}. The thresh-
old decomposition property of X can be defined [62, 63] by
1 i X;>1

ol = T(X) = (4.1)
0 otherwise

for1=1,2,...,2M1, (4.2)

Given two binary signals, @ and ¥, a property called the stacking property holds
between # and ¢ if and only if u; > v, for all k. Suppose @ and ¥ are filtered with a
binary filter, of window width b, defined by a Boolean function f : {0,1}* — {0,1}.
The binary filter f is said to possess the stacking property if and only if

f(@) = f(v). (4.3)

In other words, if the binary output signals are piled on top of one another according

to their threshold level, the result is a column of 0’s piled on top of a column of 1’s.

54

21 | x2 | 23 | @122 + 2123 + wox3 | med(wq, g, x3)
001} 0 0 0
0|01 0 0
6110 0 0
0|11 1 1
11010 0 0
1 0 1 1 1
11110 1 1
111711 1 1

Table IV. Detailed explanation of the MSP form of the PBF for the third-order binary

median filter

It has been shown[81] that a necessary and sufficient condition for a Boolean
function to satisfy the stacking property is that the function be a Positive Boolean
Function PBF, i.e., no complement of any of the input variables must appear in the
minimum-sum-of products (MSP) form of the lunction. For example, the third-order

binary median is

f(z1, 22, 23) = 2129 + 2123 + @23, (4.4)
where multiplication denotes logical AND and addition denotes logical OR. The
details of this are listed in Table IV. The function (4.4) is a PBF, but the following

example is not,

Ji(@1, 22, 23) = Ty2g + @3y, (4.5)
since T1xy includes the complement, Z; of variable z;.
Definition 4.1 A stack filter fs(-) of window width b = 2p+1 is based on a b-variable

positive Boolean function PBF f(-):{0,1}* — {0,1} operating on the binary signals.
The output of the stack filter is obtained by adding all the binary oulputs:

. Mo M .
fs(£) = 8 (;Tz(xi>)=§sf (%)

M

= ﬁf (T(Xy) = > (#) (4.6)
= r;lax{l | f(2h) =1_,l€ {1,2,..-,2M-1}}, (4.7)

where X; = {Xicpy - Xy, Xign |-
The above equations reveal that the stack filtering algorithm is composed of
three steps. The first is that of threshold decomposition, the second involves Boolean

function logic operations, and the third involves accumulation of all the binary results

generated within the second step; equivalently, this is a search for the highest level at

35

which the Boolean logical output, generated within the second step, is 1. The general
stack filter algorithm can be expressed as follows:
Algorithm 4.1 : Original stack filter algorithm

1. For each signal X;, apply threshold decomposition equation (4.2) to get the
binary signal z!.
2. For each binary signal, apply the PBF fs()fz) to get the binary output value r!.

3. For all binary outputs for position 7, accumulate them to get the stack filter
output fS(X:i)-

The computational complexity of this algorithm is very high since the number
(2M — 1) of threshold decompositions grows exponentially with the number bits (M)
associated with the signal value. Lin et al [119] use weighted order statistic filters
based on threshold logic instead of stack filters since there is equivalence between
linear separable Boolean functions and threshold logic. Kar [107] suggested an al-
gorithm which transforms a given sequence to equivalent-rank-preserving sequences
through bit manipulation. This reduces the problem of finding a rank-order selection

for a k-bit-long number to finding out k£ rank-order selections for ‘1’-bit-long numbers.

4.3. Minimum Threshold Decomposition of Signal

In order to speed up the stack filtering algorithm, the first thing we should do is to
reduce the number of threshold decomposition levels, since the comparison operation
that underlies threshold decomposition is rather slow, relative to logic and arithmetic
operations. From the theory of data retrieval, the minimum operation time for picking
out a particular one of a set of N values, is log, N. The search scheme is known as
binary search in which at each step a midpoint value is examined to find out in which
direction to continue.

Based on the stacking property of the output of stack filters, we can define the

search procedure as follows :

Definition 4.2 For an M -bits input signal, search each binary output valve r? from
the set of {rM-19M=1 pM=29M=2 " . 19 0} using a binary searching scheme, where
ri, 5 =0,1,---, M —1, are binary and r’ = 0 means that the next threshold level will
decrease and 7 = 1 means that the next threshold level will increase. The output of
the stack filter is Zﬁal 27,

In company with the above output searching, we can define a new Minimum
Threshold Decomposition (MTD) which also uses a binary search method to deter-

mine a new threshold decomposition value.

56

Definition 4.3 For an M-bits input signal, there are M level threshold decomposi-

tions. They are

TM~1 — 21\/[-«1
. M=-1 A
T8 o= M o2ty j=M-2,-,0 (4.8)
I=j+1

In order to present the new method of minimum threshold decomposition, let us
describe a simple example of a median filter. Consider a 3 third-order median filter,
where each datum belongs to the set {0,1,2,3}, and M = 2. Suppose that the data
in the window are 1, (2), 0 and that the current filtering position is at 2, as indicated
by the parentheses. Initially, the threshold decomposition level is 2¥~! = 2, the mid-
range of [0,4). Applying threshold decomposition using logical AND with the datum
written as (10)z in binary form, we get binary data 0, (1), 0. The result of median
filtering at this level is r! = 0, which means the next direction of search is to the
lower half of the range. The new threshold is set to 712! +2° = 1. Applying threshold
decomposition using logical AND with datum (01); we get the binary input data 1,
(0), 0. The central binary value is not obtained correctly directly from the logical
AND operation since the original datum, 2, is greater than threshold 1 for ever. The
correct binary data are 1, (1), 0. We therefore need a logical variable to record each
state that will subsequently always be greater than the threshold. Similarly we need a
variable to record each state that will subsequently always be less than the threshold.
For this level the median filter’s result is 1. Finally, the maximum threshold level is 1
and its binary median filter result is 1. Thus, the output of the median filter in this
position is 1.

In each MTD level, define two new logic variable ‘lt’ and ‘gt’ to record the MTD
state of the current datum; /¢t = 1 & gt = 0 means the datum is less than the threshold
for ever, gt =1 & It = 0 means the datum is greater than the threshold for ever, and
It =0 & gt = 0 means that the current threshold decomposing value only relates to

the current datum.

Definition 4.4 For each MTD level j, j = M —1,M —2,---,0, the variables It

and gt' are

=t = gtM1t =g
R G G E))
gt = T & (g | (F & 2l), =M —2,---,0, (4.9)

where we use notation of C language, “|” means logical OR, “64” means logical AND.

57
Definition 4.5 The MTD is

o =T & (b | gti), (4.10)

where the input signal X; is bM0M 2. 12 and b{,j =M-—1,---,1,0 are binary.

The new algorithm based on MTD can be expressed as follows :
Algorithm 4.2 : Stack filter algorithm based on minimum threshold decompo-

sition.

1. For each signal Xj;, apply MTD equation (4.10) to get i,
2. For each (L” apply the PBF fs(X) to get binary output value 7!

3. Calculate the new states of variables {#/~ and gt'~! using equation (4.9) for the
next threshold decomposition level.

4. After finishing M-level MTD, calculate the output of the stack filter at position
]\/f 1]

: by r
Theorem 4.1 Given inputs {X;}, ¢ = 0,1,--+, N and a posilive Boolean function

fs(+), the above algorithm produces the same result as the original stack filter.

Proof : Since the difference between algorithm 4.1 and algorithm 4.2 is the
threshold decomposition procedure, we need only to prove that the new MTD proce-
dure works.

Let X; = bM-1pM=2 ... p1p0 and let [t*, gt* be variables to express the state of
threshold decomposition of current datum X;. Suppose in threshold decomposition
level M —1,M —2,---,j + 1, variable l[t* = gt* =0, k=M —1,---,5 + 1. Now in
new level j, the variables will change their states.

Case 1: Variable [t = 1. Since in level j+1 the variables gt/ = 0 and {t/+! = 0,

equation (4.9) can be simplified as
W= & &l (4.11)

Because [t/ = 1, we have v/ = 1 and o] = 0. 2! = 0 means that the threshold

decomposition value is zero. We can express it in the original form (4.2)
X; = pM-ioM—1 4 pM=29M=2 L 30 < T, (4.12)

According to definition 4.3, 7/ = 1 means that the next threshold value 77! increases.
Since 791 = T+ 1 93 4. 27=1 we have

X; = pM=1pM =2 | pipi=1. . 10 i o -t (4.13)

58

The current datum X; will be less than threshold value 7%, k=35 —-1,7 —2,---,1,0
for ever. This proves that the MTD scheme works in this case.

Case 2: Variable gt/ = 1. Since in level j + 1 the variables ¢gt/*! = 0 and
Iti+1 = 0, equation (4.9) can be simplified as

gt! =7 & 2. (4.14)

Because gt/ = 1, we have r/ = 0 and mf = 1. 2! = 1 means that the threshold

decomposition value is one. We can express it in the original form (4.2)
X; = oMMt pM=29M =2 L0 s (4.15)

According to definition 4.3, 7/ = 0 means that the next threshold value 77! decreases.

Since 791 = 79+ 4 97-1 we have
X; = bM1pM=2 gt B0 s i s it (4.16)

The current datum X; will be more than threshold value 7%, k=j5—1,7—2,---,1,0

for ever. This proves that the MTD scheme works in this case too. O

4.4. The Positive Boolean Function and its Minimum Logical Operations

Formula

We know that a positive Boolean function (PBF) has a unique minimum sum-of-
products (MSP) form [140], but the number of logical operations associated with this
form increases very quickly. For example, the PBF for the third-order median filter
is

Fmea(Z1, T2, T3) = T122 + 2123 + T223, (4.17)

which represents only 3 * 1 4+ 2 = 5 logical operations. For the fifth-order median

filter, the PBF is

Fmed(T1, 22, T3, T4, T5) = T1X223 + T T2y + T122T5 + T1T3T4 + T1T3T5 + T1T4T5 +

ToB3Ty + ToT3Ts + ToTaTs + T3T4Ts (4.18)

and the number of logical operations increases to 102+ 9 = 29. In general, we state

the following theorem.

Theorem 4.2 For the (2N + 1)th order binary median filter, the MSP form of its

PBF is composed of (?VN"'I) items and the number of logical operations involved is
N () 4 (39) 1.

59

Proof: We know that there are two states, 1 and 0, for each binary datum.
From the definition of the median, the condition for the median of a set of 2V + 1
data to be 1 is equivalent to the condition that there are at least N + 1 1’s in the set
of data. The identities of a set of N + 1 data can be written in the Boolean logical
way as Tp,Tp, -+ Tpy,,, and these aggregate to form a Sum of Products (SP). The
total number of “products” in such an SP is clearly (%[1141-1) = (?VN "'1). We notice that
if any one of the components of the SP is 1, the median is 1, so the Boolean function
of the 2N + 1 dot binary median filter can be expressed, using logical OR, as an SP.

Each term in the SP involves /V logical AND operations, and there are (IQVN +1)
such terms, linked by logical OR operations. The total number of logical operations
within the Boolean function is therefore N (fVN“) + (?VN'H) -1

|

In order to reduce the number of logical operations, we can rewrite the MSP
in another way which identifies the minimum number of logical operations. First,
let us consider some simple examples. For the third-order median filter, the PBF of

Equation (4.17) can be rewritten as

Fmed(21, 22, 83) = z1(22 + 23) + zows. (4.19)

Obviously, the number of logical operations is 4. For a fifth-order median filter, the
PBF of Equation (4.18) can be rewritten as

Jmed(21, 22, T3, 84, %5) = @1(w2(2s + &4 + v5) + xa(@a + 5) +

eaxs) + vo(wa(ws + 5} + Ta2s) + zawaws (4.20)

We conjecture that, in order to achieve the minimum number of logical opera-

tions, we must adopt the following scheme of evaluation:

S = T4%5
m = T4+ s
My = zsm+s
My = zo(zs+s)+ mo
fmed(@1, To, T3, 24, @5) = 1My + T2 My + T3 (4.21)

From this scheme, the number of the Boolean logical operations is seen to be 12
compared with 29 using the basic MSP expression.
For the general (2V + 1)th order median filter, we can similarly rewrite the PBF,

as in the following theorem.

60

Theorem 4.3 The PBF of a (2N + 1)th order binary median filter can be expressed
as
Jmed(Z1, T2, s ant1) = T1(@2(- - (Tn-1] en(TNs1 + 2Np2 + o+ Tangr)F

eny1(ZNtz + Tyqgs + o A Zavpa

TaNTaN41)+
en[enpr(TNgz + Tngs o Zangr)

ent2(TNys F ENpa - ot

$2N$2N+1]+

TaN-1ZaNToN+1)+

$N+2$N+3"'$2N+1)+
za(w3(- (on] evp1(Enge + envgs + o0+ zavgr)+

TNy2(2Nys + TNga + 0+ Tovprt

$2N1‘2N+1]+

ToN-1ZaNT2N+1)+

EN4+2TN43** TaN1)+

en(el - (@anv—2(zav—1(zony + Tany1)+
TaNTaN+1)+
TIN-1T2NT2N+1)+
)
TN42TN+3 " TaNTIN41)+

ENFITN42 " T2N+1-
(4.22)

61

Proof: Within formula (4.22), none of items is repeated so that, if we prove that
the number of items in the formula is equal to (}?VN +1), as required by Theorem 4.2,
we can conclude that we have proved this theorem. We use the method of induction.

Step 1. In the inner-most layer of parentheses of the first row of the formula,
TNy2 + TNgs + oo+ 2aygr Involves N 4+ 1 items. In the next layer, the number of
items is

(N+1)+N+-+24+1= %(N +1){(N +2). (4.23)

In the third layer, the number of items is

(GO + DN +2) + (VN + 1)+ 4841
1
5
+

N+)V +2)(N +3) = s (N + (N +2)]

3ZMMN+MN+M—£3(—UMMN+M

b 2*3*4)_—l§u*2*3n Ty 13ﬂ*2*3)—0]

32(

5 (N DV +2)(V +3). (4.24)

Step 2. Suppose that, in the pth layer of parentheses, the number of items is

1
pr(p—1)% - %3 %2

(N+1)(N+2)--- (N +p). (4.25)
Step 3. In the next layer of parentheses, the number of items is

[
[

P*(P—1)*---*3*2(N+l)(N+2).”(N+p)]+

1
(- *(p—2)x *2

(N+1)(N+2)- - (N+p=1]+-+1

1 . 1)
= [m(N+1)"'(N+P)(1V+P+l)*W(N)'”(N“FP—U(N‘FP)H‘
1 1 .
[(1)1 (N)"'(N+P—1)(N+P)‘(p—ﬂ‘ﬁ(N—1)"‘(N+P—2)(N'|'p—1)]
bt

N+LD(N+2) - (N N 1). 4.26
This completes the induction proof. Thus the total number of items in the formula
(4.22), corresponding to p = N + 1, is

1
(N4 1)« (N)y*--%3*2
(2N + 1)!
(NN + 1!

(N+1)(N +2)-- (2N)©2N + 1)

62

- . (4.27)

Formula (4.22) defines the scheme which we believe achieves the minimum num-

ber of logical operations through the following parallel algorithm.

—

— e
ORI e

e A T el R

Algorithm 4.3 : Evaluating the PBF with the minimum number of
operations.
Input: the input binary data set (¢, 2,y cang1)-

Output: the output binary result .

M =cn & CoN41, 5 = CaN | CoN41-

Ty = (can-—1 & S) | M.
FOR(: =2,---,N) BEGIN
M =M & con—it1-
T; = (con—i & T;-1) | M. END.
FOR(i=1,---,N —1) BEGIN
S =S5 can-:.
Ty =(con-i-1 & 9) | T1.
FOR(j=2,---,N)

Tj = (CQN..-E'_J' & Tjﬁl) | T} END.

. T ZTN.

End algorithm.

In steps 1 to 5, the algorithm calculates the last two terms of Formula (4.22)

and from step 6 to the end, the algorithm calculates the other N — 1 terms. In each

iteration, indicated by variable i, one item can be calculated. The required number

of logical operations is derived in the following theorem.

Theorem 4.4 The number of logical operations required to implement a (2N + 1)th
order binary median filter based on formula ({.22) is 2N(N + 1).

Proof: In steps 1 to 7 in the algorithm, the number of logical operations is

I+1424+(N=-1)*(1+2)=3N+1. (4.28)

63
In steps 8 to 14, the number of logical operations is
(N=D*(1+24+(N-1)%2)=(N-=1)(2N +1). (4.29)
Thus the total number is
3N +1+ (N —1)(2N +1) = 2N? + 2N = 2N(N + 1). (4.30)

We can pursue the aim of minimising the number of operations for a median
Boolean function in the context of any other PBF. For example, consider the PBF

for cascading weighted median filters,

fwm(Tics, +,2) = @issTi—alioo + Tio5Ti_3Tioy + TiaTi-3Ti—1 + Ti-aTi—g + Ti—2Ti1

= Tio5Tiealio2 + Tima®ioy(Tics + Tia) + Tico(@imz +2im1) (4.31)

4.5. Bit-Parallel Structure and a Data-Parallelism Stack Filtering Algo-

rithm

Bit-field parallel arithmetic is the most basic parallel processing mechanism and can
be implemented in a computer with the facility of static random-access memories
from which all the bits of a word can be read conveniently in parallel, can execute
arithmetic instructions on all bits, and then can write all bits back to memories.

The bit-field width of the processor of a modern computer is not less than 16
and is often 32. In serial mode with a bit field of width 32, a binary datum occupies
only 1 bit and the other 31 bits are wasted. We need therefore to develop a method
of utilizing this structure effectively. The natural parallel approach is for each bit in
the bit-field to hold a binary datum and then each logical or arithmetic operation is
applied to all binary data in the bit-field in parallel. However, all of the original binary
data are in serial mode so that we need to assemble them in the parallel structure
and then, after accomplishing the filtering operation, we also need to disassemble or
restore the parallel data into the original serial structure.

The easiest assembly procedure is to fill each bit field directly with 32 items of
binary data. It takes 8 94 = 752 time units to accomplish this assembly task, which

can be expressed as

(do&MASK;) | (h&MASK; < 1) | -+ | (ds; &MASK; < 31)
J=12,--,8, (4.32)

where d;, 1 = 0,1,--+,31 are the original data, d;&MASK; gives a binary datum

and, in C language notation, the logical operation “< n” means logical left shift by

64

n bits and “>> n” means logical right shift by n bits. Each d; belongs to the set
(0,1,---,255).

Utilizing the equivalence of one 32-bit integer with a four character array, we can
divide the assembly procedure into two steps which together involve fewer operations
than directly assembly. In stage one, we assemble 4 data in byte bound and repeat
this 8 times. In stage two we combine the 8 bytes into one bit-field. The whole

procedure can be expressed as follows.

Algorithm 4.4 : The two-stage assembly of data
Input: The original serial data set (dy,ds," -, ds2).
Output: The original parallel data set (c',c?,---,c®).

1. FOR(i =0; i<7, i+4)BEGIN

2. FOR(j =0; j<3; j++)

3. wilj] = danips. END

4. ' = (wo&(80808080)2) > 7 |(w;1&(80808080)2) > 6 |- - - |ws&(80808080)z).
5. ¢ = (wo&(40404040)3) > 6 |- - - |(ws&(40404040)z)) < 1.

6. & = (wo&(20202020)3) 3 5 |- - - |(we&(20202020),)) < 2.

7. ¢ = (wo&(10101010);) > 4 |- - |(ws&(10101010),)) < 3.

8. ¢ = (wod(08080808);) 3> 3 |- - - |(ws&(08080808),)) < 4.

9. ¢ = (wode(04040404)) > 2 |- - - |(ws&(80808080)3)) < 5.

10. ¢ = (wp&(02020202)2) > 1 |w;&(02020202), |- - - | (ws&(02020202);)) < 6.
11. ¢ = wo&(01010101)s) | (103 &(01010101)5) < 1 |-+ | (ws&e(01010101)3)) < 7.
12. End algorithm.

In the algorithm, 32 original data are assembled into 8 parallel data. The su-
perscripts of the set ¢' correspond to the levels of minimum threshold decomposition.

The following theorem gives the time requirements of this procedure.
Theorem 4.5 The two-stage assembly procedure requires 208 time unaits.

Proof: From steps 1 to 5 of the algorithm, it obviously takes 32 time units to
complete the first stage task and from steps 6 to 13, it takes 8 * 22 = 176 time units

to finish the operation, giving a total time of

32 4176 = 208 units. (4.33)

65

Using a similar procedure, we present the following algorithm for the disassembly

procedure.

Algorithm 4.5 : The two-stage disassembly of data

Input: The parallel filtered data set (r°r!,.-.,r7) and MASK;, 1 =
0,1,-+,7: (80808080)s, (40404040), (20202020),, (10101010}, (08080808)s,
(04040404),, (02020202),, (01010101),

Output: The output data set (05,02, 032).

1. FOR(z=0; <7, 14+ +) BEGIN
2 w; = 0.

3 FOR(j=0; j<T7; j++)

4 w; =w; | ((r; & MASK;) > j). END.
5. FOR(: =0; ¢ <7, i+ +) BEGIN

6 FOR(j=0; j<3;, 7++)

7 Oawi+; = wi[7]. END.

8. End algorithm

The time requirement of the disassembly procedure is presented in the following

theorem.
Theorem 4.6 The disassembly procedure requires 232 time units.

Proof: From steps 1 to 6 of the algorithm, it takes 8 * (1 4+ 8 % 3) = 200 time
units to complete the first stage and from steps 6 to 11, it takes 32 time units for the

second stage, giving a total of

200 4+ 32 = 232 units. (4.34)

The assembly procedure is used to convert data from serial to parallel form, which
is necessary for obtaining the median filter by minimum threshold decomposition, and
the disassembly procedure is used to convert the data resulting from the median filter
into general serial data. The above procedures for both assembly and disassembly
are time consumning.

The bits-field parallel algorithm for the stack filter by minimum threshold de-

composition can be expressed as follows.

66

Algorithm 4.6 : One-dimensional stack filter algorithm with the mini-

mum threshold decomposition

Input: Length of the original data is L, each datum belongs to (0,1, -+, M —
1), and the window width of the median filter is 2N + 1.

1. Input original serial data and divide them into 32 parts.
2. Apply the first stage of assembly to all 32 parts of data.
3. Initialise variables [t/ and gt/.

4. REPEAT point filtering From 1 To L Do steps 5 to 11
5

REPEAT each level of the minimum threshold decomposition
From log, M To 1 Do steps 6 - 11

6. Apply LOAD; to the next datum point, giving cjy ;-

7. Use equation (4.10) to accomplish the minimum threshold
decomposition of ¢, ¢}, -+, chy .

8. Use the minimum logic operations formula which is similar to

that for evaluating the PBI in Algorithm 4.3 for median filters.

fs(ci,chy+, chyyy), and get the result .
9. Update céa Cé: e 7C;N+1 to C§+1, CgH; e :cz;]ir}'
10. Carry out SAVE; for filtering output r*.
11. Apply equation (4.9) to update variables [t; and

gt; for all data in the window.
12. Carry out stage two of disassembly, defined by steps 7 to 12 of algorithm 3.
13. End algorithm.

In the above algorithm, LOAD; means applying steps 6 to 14 of algorithm 1 to ac-
complish stage two of assembly and SAVE; means applying steps 1 to 6 of algorithm
2 to accomplish stage one of disassembly.

In the two-dimensional case, there are many possible shapes for the filter window
(square, cross, diamond, etc) as shown in Figure 14. Although the scheme for stack
filtering in two-dimensions is different from that in one-dimension, the evaluation of
the PBF of the median filter in algorithm 1 still obtains. The two-dimensional stack
filters has very similar structure to that of its one-dimensional algorithm. Whether
the logical variables belong to one-dimension or two-dimensions, their action in the al-

gorithm is the same, involving only the logical TRUE /1 or FALSE /0. For example,

67

e o o
e o o
e 0 ©o
o O O
o O o
e o ©o

0 0 0
° ° ®
0 0 0
square Cross Diamond

Fig. 14. The Shape of Windows of Two-dimensional Stack Filters

for the 3 x 3 square-window median filter, the PBF can be expressed as

(\

.Til, ~12% X 13,

fned x2\ x22 x23 — fmed(x 11, x 12, x 13,x 21-,x 22, x 23, x 31,x 32i x 33)- (4.35)
x31 x31 x33

For a ninth-order one-dimensional median filter, the PBF can be expressed as
fmed{x\#=x2i" "'~ %) Both PBFs have the same form if we replace aq by aqi, X2 by
aq2, x3 by aq3, x4 by x2i, x5 by x22, x6 by x23, x7 by x31, x8 by x32, x9 by x33.

The real parallel algorithm of stack filters can be expressed in a PVM environ-
ment. We use the data parallelism scheme and master/slave models, described in
Section 3-1. We simply partition the original one-dimensional input data into K

parts, such as

K
(X}, i=0,1,---—1)=1JP, (4.36)
t-1
where Pt = {Aj/ct+t,} + B, u = 0,1, **+, —1. For two-dimensional data, we partition
it into K x K parts, such as
{Ah}, (zi=0,1,---,7V- 1) = (] P, (4.37)
1,9¢[0,15)
where Pty = {XtK+u,qK+v} + Ti, u,v = 0,1, ¢+ jr —1. In both one- and two-

dimensional cases, there is some data , B, in border regions where a processor must
share the points which have been assigned to a neighboring processor, as shown in
Figure 15.

The width of the shared data can be controlled by the new filtering parameter

MaxWidth in the following algorithm.

/

One—-dimensional v

o oo~ W N

SRR Sl S

68

b - —-———

Two-dimensional

Fig. 15. Data partitions of One- and Two-dimensional Parallel Stack Filters

Algorithm 4.7 : Parallel stack filter algorithm with the data parallelism

scheme. Algorithm for the master processor :

Input: Original data length L, Number of subtasks K, the filtering pa-
rameters (window width 2NV + 1, PBF fs(-), MacWidth).

Partition data according to equation (4.36) or (4.37).

Send each subtask to corresponding slaves.

Send stack filter parameters (2N + 1, fs(-), MazWidth) to its slaves.
Receive the computation results from each slave.

Combine all parts as the stack filter’s output.

End of the master algorithm.

Algorithm for the slave processors : Input: sub-data set length 7‘%, the
filtering parameters (2V + 1, fs(-), MazWidth).

Receive one sub-data set.

Receive stack filter parameters.

Apply algorithm 4.6 to do stack filtering.

Send the part result back to its master.

End of the slave algorithm.

Fig. 16. Interactive Parallel Distributed Stack Filtering System

4.6. Implementation of Interactive Stack Filtering System

In this section we use IPDCE (Interactive Parallel Distributed Computing Environ-
ment) to design a Interactive Stack Filtering System (ISFS). IPDCE, as shown in 16,
provides both parallel computing, interactive processing and Graphic User Interface

development facilities.

Our aims are to provide the following capabilities in the ISFS:

* set any input/output file names.

* modify any stack filter parameters (M axWidth, window width 2N -f 1, PBF).
* permit the use of serial or parallel algorithms.

* modify any parallel processing parameters.

+ visualise the original and filtered data.

70

TCL
Interpreter
A
Tcl Comw \
4
display Master Command
Window Window window
TF

] \ A
Asynchronous message’ commhnition
' 1 \ ‘

s \

> ¥ ¥ 4
Others PVM
Processes

Fig. 17. The Structure of Interactive Stack Filtering System

e provide both GUI and command line mode.

The structure of the ISI'S is illustrated in Figure 17. The ISFS consists of
Display/Command window, a menu File, a menu Filter, a menu Config, a menu Run
and a menu Show. There are two kinds of mode, command line and menu, to process
a user request. The default mode of ISFS is menu. In order to switch to command
line mode, the user clicks on the menu item File/Command. The command sfexit
transfers ISFS back to menu mode.

In command line mode, the user can use any Tcl/Tk commands and any IPDCE
commands. For example, the commands for starting and ending XAB, zablon and
zabloff, are only used in command line mode.

In menu File there are four menu items, Load, Save, Command, Quit. Load will
display a dialog window to ask the user to input a new original data file name as
shown in Figure 18. The parameters of Size and Dimension will be obtained from
the input file. Save will display a dialog to ask the user give a output file name.
Command switches to command mode. Quit will quit the ISFS.

Menu Filter is a dialog window as shown in Figure 19. The user can set the stack
filter’s parameters in it. These parameters include window width, maximum width,
filtering commands (PBF) and two additional parameters for the two-dimensional
filter.

Menu Config is also a dialog window as shown in Figure 20. The user can choose

to use the serial or the parallel algorithm, can partition his task into K subtasks with

tlli

BV

Selection

it e

Fig. 18. Dialog Window of Select an Input File Name

y.v.w s WikWSSSBSSB

111ii

MR

™

MXXj&XXV

71

Maximum Size

Fillet Command

Fig. 19. Dialog Window of Select Filter’s Parameters

the data parallelism scheme, and can dynamically add and delete host of PVM.

In menu Run there are two menu items, Start, End. The menu act as Master
window in Figure 17. Item Start will begin the parallel algorithm 4.7 and item End
will end the algorithm, of which the function is to destroy all slave processes built
from the master process in PVM. Item Start can be called many times, and each time
the user can redefine new filtering parameters from the menu Filter

In menu Show there are three menu items, Show parameters, Show input data
and Show output data. Item Show parameters displays current filtering parameters
and parallel relative configuration in the Display/Command window. Item Show
input data displays the original input in a special window. For one-dimensional data,
Howlett’s graph widget [95] is applied as shown in Figure 21. For two-dimensional

data, the Mackerras’s photo widget [125] is applied as shown in Figure 22.

4.7. Numerical Examples

In this section, we give two numerical simulations to illustrate the performance of Par-
allel Distributed Stack Filter Systems (PDSFS). In the first example, we use PDSFS
to process one-dimensional data which are corrupted by additive Gaussian white noise

and impulsive noise. In order to quantitatively compare the performance abilities of

SubTask Number

Data Transfer

[]1

Fig. 20. Dialog Window of Select the Network and PVM Parameters

73

mmxm

Original Data

200

Fig. 21. One-dimensional Data Display Window

74

j N marnfimmMinmmMMfE¢ ATV R0 = MMmsmr:r J@%fngﬁrmmnztrr’tl.v_\ﬂgtmwwv

=

Fig. 22. Two-dimensional Data. Display Window

76

Original and Gaussian+tmpulsive Noise Male Speech Data

300 T T T 1 1
original male data —
noise+data ----
250 ™~ ;‘,l i } g | -
) R |
i . i
{ il :
200 |- ; \j ! J i 4
i 1 |
- ir,'i \/
= 150 |- i -
}ﬂ
100 itH t i k -1
i W
i : b
! R "
50 - E?E\i/l‘i .1 I! N
LAY i
~, 4
0 1 I 1 L 1
0 50 100 150 200 250 300

Xi

IFig. 23. Male speech signal corrupted by Gaussian noise with 4 = 0 and ¢ = 10 and

impulsive noise with occurrence probability p = 0.1

several filters used here, we define the Normalized Mean Square Error (NMSE) be-
tween the original, noisy input and the filtered output data as the following:

Definition 4.6 o) 5GP .
Z:EV;D{X (1) — S(5)]? (4.38)

where S(1), X(3),Y(¢) are the original signal, the input signal and the filtered output

NMSE =

signal respectively.

Example 4.1 The original input signal is a piece of male speech as shown in
Figure 23, of dimension 256 and with magnitude belonging to [0, 255]. We suppose
the original signal is corrupted by Gaussian white noise with zero mean and standard
deviation o = 10.0 and by impulsive noise with the probability p = 0.1 of an impulse
occurring at any given point, where the impulse magnitude can be 0 or 255 with the
equal probability.

We use two types of filters to smooth this signal. One is the standard median
(SM) filter and the positive Boolean function (PBF) of the binary fifth-order SM is

7

Fifth Order Standard Median Filtering

250 T T T T T I
Y | original male data —
W i standard median -----
1 ll!--{,l‘. ‘H." R I ; 1L
it Nl .' il
20T s A LR .
] / |
-\ ,i } : },;
F o
] i !
] |
150 |- | o | -
S: H
s ;
i 2 ! |
100 ¥ \Jy y i
H | iy M "
¥ ‘_," =_f 3/ -'lll V E J
=, J A
50 |- ! [\ ‘ k} -
) N/ | |
' “"l'l !
O L 1 L 1 L
0 50 100 150 200 250 300

Xi

I'ig. 24. Fifth-order SM filter for male speech signal corrupted by Gaussian and im-

pulsive noise

given by

Jmed(T1, T2, 23,24, x5) = w1(z2(z3 4+ 24 + @5) + w3(2a + 25) +

11:4.’1,‘5) -+ $2(3)3(CC4 -+ 1‘85) + 5124:65) + Talqls. (439)

The other is a weighted order statistic filter. We only use the special version cor-
responding to the central weighted median (CWM) filter. The PBF of the binary

weight 2 fifth-order CWM is given by
fcwm($17 T2,T3, T4, -’Es) = 333(371 +{82 +24+125) +331372(934 +$5) +z4@5(T1 +23). (4-40)

Figures 24 and 25 show the results of filtering the noisy signal in Figure 23 with
the fifth-order SM filter and the weight 2 fifth-order CWM filter respectively. Table
V summarizes the NMSE of the SM and CWM filters. Comparison of these NMSE
indicates that the CWM filter performs slightly better than the SM filter.

78

Weight 2 Fifth Order Centre Weight Median Filtering
300

original male data
centre weight median

200

100

50

0 50 100 150 200 250 300
Xi

Fig. 25. Weight 2 fifth-order CWM filter for male speech signal corrupted by Gaussian

and impulsive noise

Table V. Normalised Mean Square Error for male speech data corrupted by Gaussian

and impulsive noise with SM and CWM filters
NMSE

central weight median 0.26

standard median 0.3

79

Table VI. Normalized Mean Square Error for lena test image corrupted by Gaussian

and impulsive noise with two-dimensional SM and CWM filters

NMSE
central weight median 0.22
standard median 0.34

In the second example, we use PDSF'S to smooth two-dimensional images which
are also corrupted by additive Gaussian white noise and impulsive noise. The version

of two-dimensional Normalized Mean Square Error (NMSE) can be defined as

Definition 4.7 N N o o
2i=o Zj:O[Y(Z,J) - S(%J)]Z
o TLo[X (1, 5) = S (8, 5)17

where S(%,7),X(2,7),Y(¢,7) are the original tmage, the noise corrupted input image

NMSE =

(4.41)

and the filtered output image respectively.

In addition, we shall present the image showing the differences between the original
and the filtered images. These images provide information about both the detail-
preservation and noise-suppression characteristics of filters. In the difference image,
a zero difference is shown as a black pixel and a difference of 255 is shown as a white
pixel.

Example 4.2 The original input image is the standard test image, “lené”, which
consists of 256 x 256 pixels with eight bits of resolution. The original noise-free image
is shown in Figure 22. The noise corrupted image was generated by adding zero
mean Gaussian noise of standard deviation 20 and impulsive noise with occurrence
probability 0.2. We evaluated two types of filters, two-dimensional SM and CWM,
under PDSFS. The PBF of the 3 x 3 square-window SM have been given in equation
(4.35) and the PBF of 3 x 3 square-window weight 3 CWM is given by

T11, T12, T13,
fcwm T21, T2, To3, = fmed5($11,$12,$13,3‘2175623,-’1331;-’1332,3333)+

31, T32, 33,

Jmeda(Z22, T11, T12, T13, To1, T23, Ta1, T3z, Ta3)(4.42)

where freqs(-) is the fifth-order binary SM filter and feq3(+) is the third-order binary
SM filter.

Table VI summarizes the the NMSE of the two-dimensional SM and CWM filters.
Figure 28 and Figure 27 show the results of filtering the noisy image in Figure 26
with two-dimensional window 3 x 3 SM filter and weight 3 window 3 x 3 CWM

80

Fig. 26. 256x256 lena test image corrupted by Gaussian noise with / = 0 and o = 20

and impulsive noise with occurrence probability p = 0.2

81

Fig. 27. Two-dimensional weight 3 window 3x3 CWM filter for lena image corrupted

by Gaussian and impulsive noise

82

Fig. 28. Two-dimensional window 3x3 SM filter for lena image corrupted by Gaussian

and impulsive noise

(@) (o) (©

Fig. 29. Difference images, (a) Fig 26 - original, noise free image, (b) Fig 27 - original,

noise free image, (c) Fig 28 - original, noise free image

Table VII. Execution Times (milli-seconds) and Communication Times (milli-seconds)

of two-dimensional SM and CWM filters for lena image

Computers SM filter CWM filter
Exec. Time Comm. Time Exec. Time Comm. Time
1 3500 0 3900 0
2 2310 476 2460 453
3 1820 699 1950 687
4 1610 917 1715 905

filter respectively. Figure 29 shows the difference between the original and the noisy
and filtered images. It is seen from the above difference images that the SM filter
caused more blur than the CWN filter. Table VI tells us that the noise-suppression
characteristic of the SM filter looks poorer than the one of the CWM filter.

We distributed the filter algorithms among several computers under PDSFS in
order to compute the results for Example 4.2. Table VII summarizes the filter exe-
cuting time and communication time. Figure 30 shows the total time of the parallel
distributed filtering algorithms. The computers of the parallel algorithms used are
SUN Sparc ELC, IPC, Sparc 10, and SUN 470. Based on Figure 30 and Table VII we
find that the parallel speed-up is good when the number of computers is small, for
example, two or three. It is worthy of note that the main part of PDSFS was written
using the TCL/TK language. The TCL/TK language is an interpretative language,
which means that some execution degradation will appear compared with a compiler

such as C language.

Running Time of Parallel Distributed Filtering Algorithms

4000 T

3800

3600

3400

3200

Running Time (ms)

3000

2800

2600

standard median —
centre weight median -----

2400 .
2

Fig. 30. Running time of parallel distributed filtering algorithms for lena image

Number of Computers

84

85

CHAPTER 5

AN ITERATED FUNCTION SYSTEM MODEL OF
ONE-DIMENSIONAL DISCRETE SIGNAL

5.1. Introduction

In this Chapter we present an extended Iterated Function System (IF'S) interpolation
method for modelling for a given discrete signal. In order to reduce the computing
complexity we introduce a suboptimal search algorithm with a robust technique for
estimating the IFS affine map parameters. Simulation results show that the IFS
approach achieves a higher signal to noise ratio than does an existing approach based
on autoregressive modelling. We also exploit the power of a computer network in
implementing a full parallel distributed algorithm for the suboptimal search using
an Remote Procedure Call (RPC) scheme. The simulation results show that the

speed-up rate is almost proportional to the number of computers.

5.2. The Construction of an IFS Model for a Given Signal

5.2.1. Background of IFS Theory

In a deterministic fractal model with IFS, a one-dimensional signal , also known
as a time series, {(z;, %) : ¢ = 0,1, ,N; @ < %iy1, |@i — x| < N,Vi,j,y; €
R'} is divided into M parts by contractive maps. Each part is self-affine to the
whole signal, known as the self-affine region. The end-points of each component will
be denoted by (uj,v;), § = 0,1,---,M and, in particular, (uo,uo) = (%o,y0) and
(uar,var) = (zn,yn). In order to simplify notation, we define a vector P = {i;: j =
0,1,2,---, M} so that, for each 1;, (zi;,¥:;) is an end-point. Throughout we shall
restrict our attention to affine transformations{20, 22, 26], and we therefore define

the contraction map w; by

w; = -+ j=172)"'3M) (5'1)
Y cj d; y i

where a; > 0, which means that, for the region [i;-1, %;], w; maps (%o, yo) to
(zi;_15 ¥i;_,) and (wn, yn) to (@i, yi;]. The affine maps described above are of-
ten known as IFS interpolation[26], and the end-points are known as interpolation

points. In Equation (5.1) the parameter d; is known as the contraction factor for

86

A A
3@ i
Il
’I
i
W3’ '
2p ' !
{
® ’
1
1
|' /I
1. .-//)
/
/
W, IV/
v > v v L
0 1 2 0 1 2

Fig. 31. Affine transformations wy, ws, w3, wy applied to the unit square.

map j, and it must satisty |d;| < 1. With IFS interpolation the self-affine region is
described as
R:{[Zj*laz.?] _]=0,1,,M} (52)

It is obvious that the maps are just touching, which means that overlap occurs only
at interpolation points.

In this thesis we extend the idea and define what we shall call extended IFS
interpolation. We construct a new self-affine region, based on each interpolation point
(:r:,-j,yij) and its consecutive point (:v,-j+1,y,;j+1) to construct the new set of self-affine

regions for all j, except that the cases j =1 and j = M are treated differently.

R = {[tj-1+1,4]},7=2,3,---,M —1 and
{{0,41]}, {ltm—1 + 1, NI} (5.3)

For map parameter «;, we also extend its range to —1 < a; < 1 so that w; maps
(‘(’U07y0) to ('I’ij—l'l-l: yij_1+1) and (:L'NayN) to (:Z"ija y‘i,‘)a or ($07 yO) to (x’ija yij) and
(zn,yn) to (@i, 41, ¥i,_;+1), depending on the sign of a;. Obviously, extended IFS

interpolation involves a totally disconnected map.

We use examples to show the geometric properties of the map parameters in

Figure 31. Suppose we have a unit square, the bottom left-hand corner of which is

87

located at (0,0), and we use the following affine transformations to map the square:

10\ : 3
wy =] ! +]°
v) \ls)\v) \!
Wa = =+
v) \11)iv) 1
19 \ 3
w3 ? = 21 ’ + 2
y 303 y) \1
Wy = +
y l% y} \0
T ~1 9 3
ws _ 2 T + 2
y 1 3 y 1

In the case of maps w, and w; we see how the parameters d; control the vertical
contraction. Maps ws and w; illustrate how the parameters ¢; control the rotation,
and maps wy and w, illustrate how the parameters ¢; control the translation. Maps
ws and w, illustrate how the sign of a; controls the mirror transform. Thus, extended
IFS interpolation should provide a flexible fitting procedure.

The following Collage Theorem [20] gives a bound on the fidelity of a given signal
with the IFS attractor.

Theorem 5.1 Let (X, h) be a complete metric space, let L be a given function (sig-
nal) and let € > 0 be given. Choose an IFS {X; wy,wq, -, war} with contraction
factor X = max{A;; 7 =1,2,---, M} so that
M
WL, | wi(L)) < €, (5.4)
et

where h is the Hausdorff metric. Then

(L, A) < —

—1—€

(5.5)
where A is the attractor of the IFS.

The Hausdorff metric is defined as follows,

88
Definition 5.1

h(A,B) = max{max{min{d(z,y); y € B}: z € A},
max{min{d(y,z); = € A} : y € B}}, (5.6)

where A, B are sets of points and d(-,-) is the distance between points.

Note that the Collage Theorem does not provide a procedure for constructing a
map. It only provides us with a way of assessing the goodness-of-fit of an IFS without
computing its attractor. From definition 5.1 we see that the Hausdorff metric involves
heavy calculation[170]. In practice we can use an approximation method in place of
precise computation to save the calculation time. The approximation method is to
calculate the Hausdorff metric for each local neighbourhood, not for the whole space,

and this was done in all the following numerical work.

Definition 5.2 The local neighbourhood ¢ of x; can be expressed as (x; — ¢, z; + ¢)
where ¢ € N is called the local neighbourhood width and z; — ¢, x; + ¢ € [0, N].

Definition 5.3 The approzimate Hausdor[f metric of a one-dimensional discrete sig-

nal is defined by

ho(A, B) = max{max{min{d(z;,z;); 2; € (z; —c,z;i +¢c)}: z; € A},
max{min{d(z;, z;);z; € (v; —¢,x; +)} : x; € B}}, (5.7)

where A, B are subsets of R'.

5.2.2. Estimation of affine transformation parameters

We essentially have an inverse problem: given a signal L, find an IFS for which L is
the approximation of the IFS attractor. The main problem is to estimate the self-
affine region, which is also determined by the index vector P of the interpolation
points. Once we have estimated P, we can compute the parameters of the affine

transformation, a;, ¢;, d;, e;, f;, as follows.

Suppose we have a map w; so that w; : [0, N] = (¢;-1,1;], and i;.1,%; € P.
Then we have
Ti; — Tip_3+1

N — 2o
TNE; — ToTij_y+1

TN — To

89

Since the map is a contraction in the x-axis direction, we should allow for the
approximate calculation in which discrete data on a larger interval along the x-axis
is mapped into a smaller interval. In practice, the method is to average y-values of
points which are mapped into each destination point.

Define the set A, by

Ap={j: p=int(a;z; +¢;)}, (5.9)
and let
T = zjeA,, L;
? number of points included in set A,’
o 2icA, Ui (5.10)

number of points included in set A,

The least-squares estimates of ¢;,d;, and f; are the minimizers of

Ei= 3 (ci@+digp+fi—y) =12 M (5.11)

PE(Ej—1,ij]

The stationarity equations are

2 a_“?z? 2 Tplp 22 Tp Cj 2 ZpYp
LY LY L di | = | 2% | (5.12)
2% Y 21 Ji 2 Yp

and we can solve (5.12) easily.

In other cases to be considered, where we have w; such that w; : (@o,y0) =
(%4, ¥i;) and (N, yN) = (%441, Yi;_,+1), We need only interchange 2;; and x;;_, 41
in Equation (5.8). The Equations (5.12) are unchanged.

5.2.3. Suboptimal Algorithm for the Inverse Extended IFS Interpolation Problem

In order to choose interpolation points optimally, we have to minimize the objective
function
M
min h(L, > w;(L)), (5.13)
1=1
where L is the given one-dimensional discrete signal, and w; is determined by the index
vector P of interpolation points and by equation (5.12). This is a global optimization
problem. As a result of the required scale of computation, there is no acceptable
algorithm for obtaining the globally optimal solution. However, there is a method,

based on local search, which achieves an acceptable solution, as justified empirically

90

in the following simulation section. The method is based on the following remark.

First we note that M is known implicitly once P is determined. Secondly,
each 7; of P is an integer that satisfies 0 < ¢; < N, and ¢; <23 < -+ <

im—1, 80 that we can first search for iy, then 2, and so on.

We modify the global objective function (5.13) to the local objective function

min A(L(R;),w;(L)) or minh(L(i;-1,%;}, w;(L)),
1 =1,2,-++, M, sequentially, (5.14)

where L(R;) and L{%;_1,%;] are the data which belong to the self-affine region R;,
each w; maps L into region R;, and the self-affine region R; is defined by equation
(5.3). The corresponding inverse algorithm can be described as follows.

Algorithm 5.1. Inverse Extended IFS Interpolation Algorithm.

INPUT: (z0,%0), ", (2N, yn) and W.
QUTPUT: the number M and the IFS maps w;, y =1,2,---, M.

1. Initialize interpolation point indices ig = 0, ips = N for a; > 0 and 2o = N,
im = 0 for a; < 0. For the index #; of the other interpolation point of self-affine
region R, set the limits [s,e] of the search space, where the integer s and e
satisfy 2, = a9+ W and 2z, = ay — W.

2. Estimate the interpolation point index i;, j = 1,2,---, M — 1, and construct

the self-affine region R; using equation (5.3) for both a; > 0 and a; < 0.

2.1 For each element c in [s, €] construct the temporary interpolation region
{{zi, 141, ¥, 041)» (2e,)} Apply equations (5.8) and (5.12) to estimate
the parameters of the map w;, compute the approximate Hausdorff metric,
and store the Hausdorff error in BUFFER|¢].

2.2 Choose, as the candidate interpolation index, ¢; in [s, €] such that
BUFFER]Jz,] is minimum.
2.3 Choose the minimum from the a; > 0 case and the a; < 0 case and

determine the sign of ;.

3. If 4,1 # 0, construct the self-affine region B; = (i;-1,7pm] and estimate the
parameters of the map w;.
4. If 2,00 # 0 and if h(L(¢j-1,0p], @;(L)) < h(L(%-1,%;], w;(L)), discard the can-

didate interpolation point index ;. Exit from the algorithm.

91

5. Accept the candidate interpolation point index ¢; and identify the new interpo-
lation point {z;;,yi;). Construct the self-affine region
R; = {(xij_1+1,ya‘j_1+1)a (fcijayz‘,-)}-

6. Update the search limit s = 1; + W + 1.

7. If e < s, exit from the algorithm.

8. Return to step 2.

In the algorithm described above, BUFFER is a one-dimensional array, and W
is a input constant, known as the minimum self-affine region width, which is not
required when modelling a continuous signal. However, when we try to build a model
for a discrete signal, W is required since a region containing only two points is self-
affine to any signal and the fit is perfect. W has some influence on the value taken
by M. The larger W we use, the smaller is the resulting M. The choice of a specific
value is, in practice, not a sensitive one. In the following simulation section, we chose
W = 9. There are two ways of exiting from the algorithm. One is at step 7 and
occurs if no further self-affine region wider than W exists. The other is at step 4 and
occurs if inclusion of another interpolation point will increase the error of fitting the
given signal.

Algorithm 5.1 emphasizes the fidelity of fitting the given signal. In order to
emphasize data compression, we can revise step (2.2) so as to satisfy some prescribed

tolerance in the choice of the value from BUFFER that allows a larger region width.

5.2.4. Enhancement of the Robustness of the Inverse Algorithm

Algorithm 5.1 is naturally sensitive to the given signal, as seen later in the examples in
Section 5.4. In the estimation of each self-affine region, the point that minimizes Haus-
dorff error may be not a valid interpolation point. Suppose, for example, that (¢;-1,%;],
with ¢;_1,%; € P, is a valid self-affine region. It is possible that there exists a point ¢,,
where i, € P and 4,1 < 1, < %, such that h(L(4;-1,), 0 (L)) < h(L(3;-1,4;], w;(L)).
This may occur, in particular, if the given signal is approximately self-affine or non
self-affine. One way to avoid this is to use instead the“next best” as a minimizing
point 7,. At the next step, and after computing the self-affine region based on point
tj, choose the point ¢, also as one of the interpolation points, compute a new self-affine

region based on the point ¢; and locate the new minimum error point #;44. If

h(L(ij-1, 1], wi (L)) + R(L (25, 8541), wina (L)) >
h(L(iJ—la iS]a ﬁ"i(L)) + h(isazjﬁ-l]vwiﬂ([/))) (5-15)

92

then discard the interpolation point indices 7;,7,41, replacing them by 7,,%;41. The

robustness of the method follows from the fact that, if ; is not a valid interpolation

index but ¢, is, the self-affine region (2;,7;41] based on the point index i; produces

larger Hausdorfl error, and the self-affine region (4s,7;41] based on the index i, will

keep the Hausdorff error at a low level since it is a valid self-affine region. Thus

inequality (5.15) is true if the Hausdorff error of region (¢;,¢;41] is large enough.

The robust algorithm can be described as follows.
Algorithm 5.2. Robust Inverse Extended IFS Interpolation Algorithm

INPUT: (zo,%0), *, (en,yn) and W.
OUTPUT: the number M and the IFS maps w;, j =1,2,---, M.

1. Step 1 is the same as for Algorithm 5.1.

2. Step 2 is the same as for Algorithm 5.1.

2.1 Step (2.1) is the same as for (2.1), (2.2), and(2.3) of Algorithm 5.1.

2.2 Choose, as the possible alternative index, ¢, from (z;, e] such that
BUFFER[¢,} is minimum.

23 Ifi;_4 #0 and i,y + W < e then

2.3.1.

2.3.2.

2.3.3.

2.3.4.

2.3.5.

2.3.6.

Set new limits of the search space (i,.1,¢€] for both the cases a; > 0
and a; < 0.

For each element ¢ in (i;-1, €] construct the temporary region
{(@i,_ 141, Yio_1+1), (5, ¥z)}. Apply equations (5.8) and (5.12) to esti-
mate the parameters of map w;, compute the approximate Hausdorff
metric, and store the Hausdorff error in BUFFER][].

Choose, as the candidate interpolation index, 7; in (i5-1, ¢] such that
BUFFERJZ;] is minimum.

Choose the minimum from the @; > 0 case and the @; < 0 case and
determine the sign of a;.

Choose, as the possible alternative index, 4 in (i;, €] such that
BUFFER[Z,] is minimum.

If h(L(2j-2,8j-1], wj-1 (L)) + R(L(3-1,25), wi(L)) >

h(L(tj=2, t5-1], @j—1 (L)) + h(25-1,%;],0;{(L)), then set i,y = 1,4

and ¢; = ;.

3. Steps 3-8 are the same as for Algorithm 5.1.

Algorithm 5.2 is similar in structure to the search algorithm in [134]. However,

in algorithm 5.2 we use extended IFS interpolation to get a better fit and we store

the possible alternative indices to enhance the robustness of the algorithm.

93

5.3. Distributed Parallel Computing for the IFS Model of a Given Signal

5.3.1. Distributed Parallel Computing Based on Remote Procedure Call (RPC)

The essence of distributed parallel computing (DPC) is that many autonomous gen-
eral computers, connected by a communications medium of which the most popular
is Ethernet, cooperate in dealing with a single computing task. Each computer has
its own independent memory, processor and ability to communicate.

The basic method of DPC is the client-server model. A single server works for
clients who have special computational demands. After completing one client’s task,
the server waits for the next.

One way to convert a sequential algorithm into a DPC algorithm is as follows.

o Select a basic subtask as the server task in order that the number of servers can

be determined and assign to each server one client.

e Use one computer as a control unit to manage communication among clients

and servers and to synthesize the data resulting from the different servers.

This multi-clients-multi-servers model is shown in Figure 32.

Remote Procedure Call (RPC) is a high-level message-passing paradigm which
allows network applications to be developed by way of specialized kinds of procedure
calls designed to hide the details of the underlying networking mechanisms. The
net effect of programming with RPC is that programs are designed to run within a
client/server network model. With RPC, the client makes a procedural call which
sends requests to the server as necessary and it then awaits the result from the server.
When these requests arrive, the server calls a dispatch routine, performs whatever
service is requested, sends back the reply, and the procedural call returns to the client
as shown in Figure 33.

RPC uses XDR (eXternal Data Representation) routines to convert procedure
arguments and results into network format and vice-visa. Each RPC procedure is
uniquely defined by a program number, version number, and procedure number. The
program number and version number specify a group of related remote procedures,
each of which has a different procedure number.

The details of programming in applications of RPC can be tedious. One of the
more difficult areas is writing XDR routines. Fortunately, the compiler rpcgen exists
to help programmers write RPC applications simply and directly. It accepts a remote
program interface definition written in a language, called RPC language[136], which
is similar to C; see subsection 5.3.2. However, it only supports a one-client-one-server

model, and we have to use a text editor to modify it for our multi-clients-multi-servers

94

- - - - Ethernet

call

Receive Result

Y

Synthesize Data

v

Send Demand

Control unit

Call all servers

. Fig. 32. Distributed Parallel Computing Model of multi-clients-multi-servers.

1
: Ethernet |
client
program ! |
RPC Call .
| ' Machine
| ' invoke B
| ! service
| l service service
Machine | 25 T ' executes
A A AI'I;: I
I =T request Answer Return
! completed
|‘ return reply .
program ' |
continu \ |

Fig. 33. RPC programming model.

95

"""""""

. ~

"""""" Synthesize Data .
[Syn | Control unit

e [Receive/Send Data | ‘,

A . .

i interprocess
! communication y
{ i
| Child i
rocess 2

RPC

S, call repl IT:EICI: reply 1E:};:lcl:'/ reply !
~server 1 TPY oo ver 0 server N - ‘

ey
Y
-

- -
'''''

- -
- -
.........

.....................

Fig. 34. Control unit’s parent- and child-process

model. The output of rpegen includes client routines, a server skeleton, XDR filter
routines for both procedure parameters and results, and a header file that contains
common definitions.

In normal RPC, clients send a call and wait for the server to reply to the
effect that the call has succeeded. This implies that clients do not compute while
servers are processing a call, which also means that clients cannot work in parallel
in one computer simultaneously. We should utilize the UNIX concurrent process
ability. First, we can build multi-child processes. Each child-processor runs a RPC
client associated with the special server, and the parent processor processes the data
synthesis and interprocessor communication as shown in Figure 34

The system call “fork()” in UNIX can build a child process, which returns zero
in the child process and returns non-zero, which is the child process identifier, in the
parent. The simplest but slowest method of interprocess communication is through
file. Alternatively one might use pipe and named pipe, which employ the basic stream
model used for file input/output. A more advanced method is Message. A message
queue identifier msgid is a unique positive integer created by the “msgget()” system
call. Each msgid has a message queue and data structure associated with it. The
system call “msgctl()” can destroy a message msqid. The system call “msgsnd()” can

send a message to other processes and the system call “msgrev()” can receive special

kinds of message.

96

5.3.2. Implementment of the Distributed Parallel Algorithm

In order to utilize the powerful ability of multi-computer processors, a server task
should be a massive floating-point calculation task and not just logical decision-
making or I/O processing. In Algorithm 5.2, the massive calculation comes from
step 2.1 and step 2.4.2, which use equations (5.8) and (5.12) to compute the param-
eters of the affine map. Since communication among computers is a slower operation
than that of calculation, we use larger task granularity, see subsection 3.1.3, to reduce
the quantity of communication operations in order to construct a good distributed
parallel algorithm.

We select the procedure of estimation of the affine map parameters in some in-
terval as the server task according to the number of computers connected by Ethernet
and each server processes the same length of search space. Suppose we have three
computers. We choose one as the control unit and the other two as servers. In order
to keep the control unit busy in computing, we have to allocate some computing task
to it. For example we may assign the search region [s, k.- e] to the control unit. One
server deals with the search region [k.-e+ 1, ~"~9~‘312'—°3i1], and other server deals with
the search region [&ie—gis, e]. The constant k., controls the distribution of the tasks
between the control unit and the servers.

When each demand is sent, the only information needed by the servers is the
latest interpolation index ¢;_;. Given the constant W we can easily construct the
search region as [tj_y + W + 1, N — W]. The results from the server include the
minimum Hausdorff error and its associated index and the next to minimum Hausdor{f
error and its associated index. The parallel protocol written in the rpcgen language

1s as follows:

/* priei.x: Parallel Robust Inverse Extended IFS
Interpolation Protocol */
/* define a variable named "poserr" */
typedef struct int_float poserr;
/* data structure of */
struct int_float { int posO; int posl; int mirror;
float err0; float erril; }; /* computing result */
program PRIEIPROG {
version PRIEIVERS {
/* The following is a RPC procedure, named SEIFSP,
argument type is integer,
and return value is a struct named "poserr" */
poserr SEIFSP(int) = 1; /* procedure number */
}=1; /* version number */
} = 0x20000999; /* program number */

The suboptimal search algorithm from the server’s point of view is as follows.
Algorithm 5.3. Server’s Contribution to the Robust Inverse Extended IFS
Interpolation Algorithm

97

INPUT: (z0,%0), " *»(Zn,yn), the number of servers, SV, the constant,
W, and the constant, k.. The latest interpolation index, 2;.;.
QUTPUT: the position of the minimum and the next to minimum Haus-

dorff error and their indices.

1. Initialize RPC server program.

2. Repeat until the condition of new RPC demand coming is TRUE. Then call the
service procedure SEIFSP.

2.1 In SEIFSP, set up the search region of the servers: s = 1;, + W +

L (N—1;.1—2W) . N—-2W)
}”C—F\anl—kc)—_l_l’e"b—l-%mk—)‘

2.2 For each integer ¢ in [s, €] construct the temporary self-affine region
{(zi;_141,Yij_141)5 (Ze, ¥e)). Apply equations (5.8) and (5.12) to estimate
the parameters of the map w;, compute the approximate Hausdorff metric,
and store the Hausdorff error in BUFFER/¢] for both a; > 0 and a; < 0.

2.3 Choose the i; from [s, ¢] for which BUFFER[¢;] is minimum as the candi-
date interpolation index.

2.4 Choose the minimum from the a; > 0 case and the «; < 0 case and
determine the sign of ;. Store the minimum error and the index to return
struct “poserr”.

2.5 Choose the i, from (i;,¢€] for which BUFFER([i,] is the minimum value
as the next-to-minimum error index. Store the error and index to return

struct “poserr”.

3. Answer the RPC and return the computing result struct “poserr”.

4. Return to step 2.

The suboptimal search algorithm for the clients consists of parent and child
algorithms. The parent algorithm is described as follows.
Algorithm 5.4. Client’s Contribution to Robust Inverse Extended IFS Inter-

polation Parent Algorithm.

INPUT: (z0,¥0)," *,(@Nn,yn), the number of servers, SV, the constant,
W, the constant, k., the servers name.
QUTPUT: the number M and the IFS maps w;, j =1,2,---, M.

1. Initialize the message structure and build the child process. Initialize the
interpolation point indices 19 = 0 and ipy = N . For the other interpolation
point index %y of the self-afline region Ry, set the limit of the search region [s, €],

where integer s and e satisfy @; = 2o + W and z, = ay — W.

98

2. Broadcast the index ;_1,7 = 1,2,---, M — 1, to all child processes.

3. As in step 2.1 - step 2.3 of algorithm 2, to compute the minimum index z; and

the next to minimum index ¢, in the search space [s, k. - €].

4. Receive the results from other child processes.

4.1 Set the message size, state, and message identifier.
4.2 Apply system call “msgrev()” to receive messages.

4.3 If no message is received after five attempts, suspend the parent process.

5. Compare all results and choose the minimum and the next-to-minimum Haus-

dorff errors and the interpolation point indices %;, ¢,.

6. If 2,4 # 0 and 2,1 + W < e then:

6.1 Set new limits for the search region (i,-1,¢€].

6.2 Step (6.2) is the same as Step 2.

6.3 As in step 2.3.2 - step 2.3.4 of algorithm 2, compute the minimum and
the next to minimum interpolation point indices 7 i 25 in the search space
[s, ke -e].

6.4 Step (6.4) is the same as Step 4.

6.5 Compare all results and choose the minimum and the next-to-minimum
Hausdorff error and interpolation point index i;, .

6.6 Choose the minimum from the a; > 0 case and the a; < 0 case and

determine the sign of ;.
6.7 If A(L(éj-2515-1)s wja (L)) + h(L(2j-1,45), wi(L)) >
W(L(2;-2,%5-1), @j—1 (L)) +h((35-1,%;],%;(L)), then set 1;_4 = 1,4

and ; = 7,.
7. Step T-11 are the same as Steps 3-8 in Algorithm 5.1.

All child-process algorithms are the same. We describe one as follows.
Algorithm 5.5. Client’s Contribution to the Robust Inverse Extended IFS
Interpolation Child Algorithm

INPUT: Server name and the latest interpolation point index 7;.;.
OQUTPUT: The minimum and the next to minimum point indices and

their Hausdorff errors.

1. Initialize the client side of the RPC.

99

2. Repeat indefinitely the following.

2.1 Set the message size, state, and message identifier.
2.2 Repeatedly apply the system call “msgrev()” until 7,1 is received.

2.3 Execute the RPC procedure to the corresponding server and await its

return.
2.4 Set the message size, state, and message identifier.
2.5 Apply system call “msgsnd()” to send the RPC result.

2.6 Awaken the parent process to receive the result.

5.4, Numerical Simulation of Iterated Function System Model

We use four numerical examples to test algorithm 5.1 and algorithm 5.2 with W = 9.
For strictly self-affine data generated by a self-affine IF'S map, the standard algorithm
(algorithm 5.1) and the robust algorithm (algorithm 5.2) produced the same result,
matching the original data. For approximately self-affine data, however, they gave
different results. The “approximate” data are produced by subsampling strictly self-
affine data. For example, we sample every other point in a 512-point strictly self-affine
data set to produce an approximately self-affine data set of length 256.

Example 5.1 is based on approximately self-affine data produced by large con-
traction factors d; and sparse interpolation points with sample rate 50%. We find a
solution by trying M = 2,3,4,---. The best result is obtained with M = 5 with the
robust algorithm (algorithm 5.2) and M = 12 with the standard algorithm (algorithm
5.1) as shown in Figure 35 (top picture) and Table VIII (top). Note that the layout
of Table VIII is such that, to save space, each row includes two self-affine regions.
The interpolation points’ indices are listed in the first column of Table VIII. If the
first index is greater than the second one, it means that the parameter a; of the affine
map wj is negative. In Table VIII the last column is the signal-to-noise ratio (SNR.),

defined by

o o P 2
SNR = —10 x log <(011g1na,1 Data - Produced Data)) -

(Original Data)®

In the results for the robust algorithm, the interpolation points’ indices are the same
as in the original, and the affine map parameters d; are almost the same. The SNR,
indicating fidelity of fit to the data, are about 15db, which is acceptable. In the
results from the standard algorithm, the number of interpolation points is more than
the number from the original, which does not represent good data compression. The

map parameters d; are not the same as with the original, and the fidelity of fit to the

100

Extended IFS Interpolation (M =5)
400

original’ ——
standard’ —
350 i robpst’ ...

250

200

100

50 100 150 200 250
Xi
Extended IFS Interpolation (M= 14)

standard’
robust’
400 AR’

300
200

100

-100

-200
50 100 150 200 250

Fig. 35. Inverse IFS Interpolation with M = 5 (top) and M = 14 (bottom) with Large
cj Approximately Self-affine Data (50% sample).

101

Table VIII. Original and Calculated IFS Interpolation Point Indices, Map parame-
ters, Hausdorff Error, Signal-to-noise Ratio of Large d; for Approximately
Self-affine Data

| | Index [Map Param. [H | SNR || Index | Map Parame. | H | SNR ||
22,0, .15 .92 5.8 67,23 | -.17 -.89 224.0
Orig. 68,113 | .24 .9 5.3 114,209 | .35 -.93 246.9
210,255 | -.29 .98 148.5
22,0 18 .71 29.3 57.6 | 15.5 67,23 |[-.13-.95226.9| 46.6 | 12.6
Robust 68,113 | .2 .87 12.6 56.9 [17.7 1 114,209 | .36 -.94 245.8 | 68.3 | 15.9
210,255 | -.b8 .95 150.7 | 47.3 | 19.3
9,0 .52 -7 233.1 59.8 | 15.4 19,10 .66 -.26 103.9 | 27.1 | 13.8
29,20 474 -124.0 | 46.6 | 5.2 30,40 75 -.93108.1 | 54.6 | 6.1
Stand. 50,41 -.06 .71 -b8.4 | 28.5 | 5.2 61,51 -.29 - 77 267.9 | 56.9 | 14.6
62,81 -.57 97273 |67.01 8.7 104,82 | .22-.39219.0 | 72.7 | 15.9
115,209 | .22 -.7 228.8 | 73.8 | 11.6 || 210,255 | -.58 .95 150.7 | 52.8 | 16.0
0,11 .16 .89 8.0 99,12 | .06 .84 97.7
54,30 -.46 .92 150.0 55,75 .28 -.95 216.2
76,92 .37 -.83 231.6 117,93 | -.44 .92 155.8
Orig. 118,133 { .3 -.85 219.1 134,157 | -.21 .91 123.6
158,178 | -.48 .87 118.5 193,179 | -.26 .94 34.4
194,211 | -.28 .89 21.0 235,212 | .53 -.91 1254
236,246 | .03 .9 81.3 255,247 | -.46 .81 141.9
0,11 .19 .52 64.7 48.0 | 14.8 29,12 -.07 .76 121.0 | 5.5 16.2
54,30 -.52 .78 1914 | 46.0 | 21.6 556,75 5 -.8172.2 45.9 1 13.0
Robust 76,92 57 -.63 167.7 | 6.6 13.6 117,93 | -.51 .78 197.4 | 45.9 | 21.7
and 118,133 | 45-.72178.2 | 71.9 | 13.7 || 134,157 | -.42 .73 192.4 | 51.4 | 18.5
Stand. 158,178 { -.68 .74 157.5 | 48.5 | 14.6 193,179 | -.4 .97 29.5 59.6 | 16.9
194,211 | -.52 .68 91.8 6.6 13.5 235,212 | .56 -.82 100.8 | 56.7 | 13.2
236,246 | -.24 .56 194.4 | 72.3 | 17.2 || 255,247 | -.51 .08 262.3 | 6.5 14.9

102

Table IX. Original and Calculated IFS Interpolation Points Indices, Map parame-
ters, Hausdorff Error, Signal-to-noise Ratio of Small d; for Approximately

Self-affine Data

| ” Index | Map Param. | H I SNR || Index I Map Param. | H | SNR H
22,0 .32 .08 67.2 67,23 | -.34 -.04 161.9
Orig. 68,113 | 41 .05 67.4 114,209 | .19 -.16 190.7
210,255 | -.38 .04 217.1
Robust 22,0 .33 .05 69.9 1.3 | 42.7 67,22 | -.33-.05 161.7 | 1.0 | 44.8
and 68,113 | .41 .06 67.2 9 1457 || 114,209 | .19 -.14 188.9 | 1.3 | 48.7
Stand. || 210,255 | -.37 .04 215.9 | 1.3 | 47.9

0,11 | .32.09 66.4 29,12 | .21 .07 153.9

54,30 | -.29 .12 208.2 55,75 | .1-.05 151.7
76,92 | .21-.03 173.2 117,93 | -.27 .05 219.4
Orig. | 118,133| .14 -.05 160.7 134,157 | -.05 .11 182.0
158,178 | -.32 .07 176.9 193,179 | -.08 .04 100.1

194,211 | -.12 .09 79.4 235,212 | .36 -.11 67.0

236,246 | .19 .1 139.7 247,255 | -.33 .13 191.5

0,11 .31 .07 67.9 2.2 39.7 29,12 | .2.07 165.8 44| 4.5
54,30 | -.29 .11 209.0 | 1.8 | 45.0 55,75 | .1-.04 149.8 1.7 | 44.4
Robust 76,92 | .2-02172.5 | 1.1|47.8 117,93 | -.27 .05 219.3 | 1.1 | 47.5
and 118,133 | .14 -.04 1568.8 | 1.3 | 45.3 || 134,157 | -.06 .09 186.3 | 3.0 | 43.3
Stand. || 158,178 | -.32 .06 177.7 | 1.9 | 41.8 || 193,179 | -.07 .04 100.6 | 1.0 | 42.0
194,211 | -.13 .07 82.9 | 3.0 | 35.0 || 212,235 | .36 -.1 65.5 2.1 39.1
236,246 | .16 .7 150.2 3.6 | 39.4 || 247,255 | -.32 .05 199.9 | 3.9 | 36.3

data is not good in the (20,29) and (40,51) regions, in which the SNR is only about
5db.

EExample 5.2 involves approximately self-affine data produced by large contrac-
tion factors d; and dense interpolation points, with sample rate 50%. We try to search
for a solution using M = 2,3,4,---. The best result is obtained with M = 14 for
both the standard and robust algorithms in Figure 35 (bottom picture) and Table
VIII (bottom). In the results the number of interpolation points is the same as for
the original, and the map parameters d; are nearly equal to those in the original. The
measures of fidelity of fit to the data are close to 13db, which is acceptable.

Example 5.3 involves approximately self-affine data produced by small contrac-
tion factors d; and sparse interpolation points with sample rate 50%. We try to search
for a solution using M = 2,3,4,---. The best result is obtained with M = 5 for both
the standard and robust algorithms; see Figure 36 (top picture) and Table IX (top).
In the results the number of interpolation points is the same as in the original and the
parameters of the map d; are close to those in the original. The measures of fidelity
of fit to the data, are about 45db, which is very good.

Example 5.4 involves approximately self-affine data produced by small contrac-

103

Extended IFS Interpolation (M =5)
240

original’ ——
standard’ ——

220 robust’ ...
AR’ ——

200
180
160
140
120

100

0 50 100 150 200 250 300
Xi

Extended IFS Interpolation (M= 14)

’original’

standard’

220 robust’
AR’

200

160

120

100
80
60

40

0 50 100 150 200 250 300
Xi

Fig. 36. Inverse IFS Interpolation of M = 5 (top) and M = 14 (bottom) with small
dj Approximately Self-affine Data (sampled at 50%).

104

Sound of Male Speaking
300 T T T T T
‘original’ ——
i 4 'standard’ ----
\ i robust’ -+~
250 | W .
)
! [
200 - ' : R
| \
T
; I
s 150 -};l | ”
W k |
v |
100 |- A

50

Fig. 37. Estimated IFS fitted curves for male speaking data.

tion factors d; and dense interpolation points with sample rate 50%. We search for a
solution using M = 2,3,4,---. The best result occurs with M = 14 for both the stan-
dard and robust algorithms; see Figure 36 (bottom picture) and Table IX (bottom).
The number of interpolation points is the same as for the original and the parameters
of the map d; are nearly equal to those of the original. The measures of fidelity of fit
to the data are about 35db, which is very good. Since the parameters of the IFS maps
are almost the same as the original one in Example 5.3 and 5.4, the curves produced
by the standard and robust algorithm are almost coincident with the original data in
IFigure 36. _

In comparing these results, note that the larger the vertical contraction factors
d; are, the larger are the resulting Hausdorff errors and the smaller are the SNR.
The closer to self-affinity the given signal is, the less are the Hausdorff errors of the
extended IFS interpolation model. The larger the distance between two consecutive
interpolation points, the more likely it is that the standard algorithm does not con-
verge. When the standard suboptimal search algorithm does not converge, the robust
suboptimal search algorithm can converge to the best solution.

We now consider data from male speech in Example 5.5 and apply the standard

105

Table X. Calculated IFS Interpolation Points Indices, Map parameters, Hausdorfl Ez-

ror, Signal-to-noise Ratio for Male Speech, Non Self-affine Data

| || Index | Map Param. |[H | SNR | Index | Map Param. |H SNR
S 16,0 [-.69 .38 203.1 [52.1 16.4 17,35 [.01-.02249.2 [1.9 [47.4
t || 36,48 | -.69 .43 196.1 | 43.5 16.3 49,60 | -.05 .01 113.8 | 1.7 | 39.8
a | 76,61 |-.67.35189.2 | 48.2 16.0 89,77 | .004 .01 223.2 [1.9 |47.8
n || 101,90 | .12 .4 141.5 64.2 19.2 | 102,118 | -.67 .38 146.5 | 73.6 | 8.6
d || 135,119 | -.44 -.25 268.8 | 47.5 15.6 || 136,155 | .71-.07 71.4 | 75.4 | 13.4
a || 167,156 | .15 .03 47.2 14.1 2.1 184,168 | -.44 -.3329.8 | 75.5 | 13.9
r || 185,197 | .63 -.46 170.0 | 42.9 16.5 | 209,198 | .08 .0007 79.6 | 2.0 | 18.9
d || 221,210 | .06 .03 205.2 | 27.1 24.7 | 222,234 | .19 -.68 268.4 | 45.3 | 14.6
255,235 | -.33.45 90.3 | 142.5 | 7.14
16,0 | -.69 .38 203.1 | 52.1 16.4 17,38 [.02-.01245.4 [4.8 | 426
R| 70,39 |.13-1126.9 |111.44 1.5 71,81 |[-.00-.02246.1 | 4.5 | 39.5
o |l 8294 |.01.01222.2 |23 45.0 || 95,120 |-.87-.14278.3|81.4 | 1.6
b || 136,121 | -.04 .18 157.7 | 68.1 15.2 || 137,155 | .71 -25103.2 | 82.5 | 14.1
u || 170,156 | .07 .005 62.1 | 23.8 15.6 || 184,171 | .02 .04 198.1 | 45.1[2.6
s || 185,197 | .63 -.46 170.0 | 42.7 16.5 || 209,198 | .07 .0007 79.6 | 2.0 | 18.9
t {221,210 | .06 .03 205.2 | 27.1 24.7 11 222,234 | .10 -.68 268.4 | 42.3 | 14.6
255,235 | -.33 .45 90.3 | 1425 | 7.14

and robust algorithms to estimate the parameters of the map. The results are shown
in Figure 37 and Table X. We search for the solution using M = 2,3,4,---. The
best result comes from M = 17 for the standard algorithm and M = 15 for the robust

algorithm. The fit obtained from the robust algorithm is better than that from the

standard algorithm since there are indices [102,118] from the standard algorithm
between which the SNR is less than 10db.

In order to create a comparison with other techniques, we used autoregression

(AR) models [41] to fit the above examples. An AR process with non-zero mean p

Table XI. AutoRegression Model Parameters Estimation with Yule-Walker Equations

for the Five Examples

Example | AR | Mean | Variance AR coefficients
order i o? (a1,ag, ", ap)
1 14 153.37 | 2975.37 0.55 0.05 0.15 0.06 -0.06 -0.08 0.17 0.04
-0.0033 -0.098 0.049 -0.066 -0.16 0.26
2 16 185.87 | 7039.92 | 0.150.12 -0.032 0.02 -0.08 0.048 0.042 0.19
-0.038 -0.13 -0.11 0.24 -0.059 -0.017 -0.12
3 156.59 34.56 0.99
4 157.21 | 206.38 0.95
5 166.66 | 1332.32 0.85

106

Table XII. Signal-to-Noise Ratios from the Various Methods
| Example | Standard SNR [Robust SNR | AR SNR |

1 13.11 17.25 10.53
2 15.73 15.73 8.88
3 47.97 47.97 29.34
4 31.28 31.28 22.02
5 14.25 14.27 13.95

can be expressed in term of the recursive equation[98}:
Ty = @Ty-1 + aaTyz + -+ apTi_, + €, (5.16)

where ¢; is a white noise process with zero mean and finite variance o2 and the order
of the AR process is p. Table XI shows the results where AR models are fitted to the
examples, using the S Plus command, ar.yw, based on the Yule-Walker algorithm.

The SNR achieved by applying the inverse extended [FS interpolation standard
and robust algorithms, and the AR model to the examples are listed in Table XII.
The II'S algorithms achieve uniformly higher SNR than the AR model in examples
1, 2, 3, and 4. In the case of the audio signal there is little difference.

By applying the parallel distributed algorithm to the same numerical examples
we obtained the same map parameters, but the running time obviously decreased.
The numerical values are listed in Table XIII where the first column is the number of
computers. The computers of the parallel algorithms used are SUN Sparc ELC, IPC,
Sparc 2, and SUN 470. There are many factors to influence the running time, such
as the number of processors in each computer, the CPU speed of each computer, etc.
The results listed in Table XIII and Figure 38 are averages taken from several tests.

The time complexity of Algorithm 5.1 relative to NV, the size of the data set, is
not linear. We see that the speed-up ratio based on using two computers, relative to
the case of a single computer, is approximately three. The time spent on communi-
cation increases quickly especially if the number of computers exceeds 3, so that the
improvement in the time spent on calculating the self-affine region cannot cover the
increase in communication time. The best distributed parallel computing proposal
for these examples is to use two or three computers.

The algorithms have been applied to various examples of approximately self-affine
signals selected on the basis of their self-affine parameters, i.e., the number of maps
and the vertical contraction factors. The simulation results show that the robust
algorithm is strong enough to converge to the true result when the standard method
does not. Real data on male speech have also been used to test the algorithms, and

the results show that the robust algorithm achieved better fidelity to data than did

The Time of IFS Parameters Estimating With Large Vertical Contractivity Factor

107

I T T 1 T
"M=D' =
M=14" 4

1

4
Number of Computers
The Time of IFS Parameters Estimating With Small Vertical Contractivity Factor

6

14

Q

E
=

je))
=

C

c

2
loa

1
14

()

5
=

(=]
£

C

o

=
o

T I T T T
'M=5' —o—
M=14" -

4
Number of Computers

Fig. 38. Running Time for Estimating IFS Parameters for Approximately Self-affine
Data (50% sample) with Large d; (top diagram) and with Small d; (bottom

diagram).

108

Table XIII. Running Time (Seconds) for Estimating IF'S Parameters

No. Example 1 Example 2 Example 3 example 4
M = 14,d; large M =5,d; large M = 14, d; small M = 5,d; small
Compu. | Comm. | Compu. | Comm. | Compu. | Comm. | Compu. | Comm.
1 12.8 0 6.85 0 13.25 0 6.08 0
2 4.0 0.03 2.23 0.08 4.17 0.03 2.13 0.03
3 2.35 1.38 1.23 0.82 2.28 1.28 1.13 0.72
4 1.77 2.67 0.97 2.55 1.53 2.38 0.83 1.23
5 1.4 3.77 0.78 1.87 1.27 2.95 0.6 1.85
6 1.15 4.48 0.63 1.98 1.15 4.22 0.57 2.08
7 1.08 5.28 0.6 2.65 1.05 5.13 0.55 2.53

the standard algorithm.
In an empirical comparison, we have shown that the inverse extended IFS inter-

polation methods can achieve noticeably higher SNR. than the popular AR model

method in the case of approximately self-afline signals.

109

CHAPTER 6

ITERATED FUNCTION SYSTEM (IFS) SMOOTHING OF
ONE-DIMENSIONAL DISCRETE SIGNALS BASED ON LOCAL
CROSS-VALIDATION

6.1. Introduction

In this chapter, self-affine and approximately self-affine data corrupted by Gaussian
noise are modelled with a robust IFS inverse algorithm and a local cross-validation
technique. The local cross-validation is applied to compromise between smoothness
and fidelity to the data. The parallel distributed version of the algorithm is im-
plemented in Parallel Virtual Machine (PVM) with optimal task partition. Since
the quantity of communication is small in this parallel algorithm a simplifying task
partition model can be applied which is only concerned with each computer’s speed.
Several numerical simulation results show that the new IFS inverse algorithm achieves
a higher signal to noise ratio than does autoregressive modelling. There is little ma-

chine idle time relative to total computing time in optimal task partitioning mode.

6.2. An Inverse IFS Algorithm Based on Local Cross-Validation

In Chapter 5 we explored the method for constructing an IFS model for a noise-free
one-dimensional signal which is self-affine or approximately self-affine. If the input
signal is corrupted by noise, the model we used in Chapter 5 will fail to achieve a good
fit to the original signal. In order to solve this problem, some smoothing technique
must be applied.

Recall the definition of IFS interpolation, that A is the graph of a continuous
function f : [zo, #x] — R which interpolates the data {(z1,91), 0o J(@n,yn)}. That
is,

A = {(z, f(z)): x € [0, en]}, (6.1)

such that

~

flze)) = f(zi,) = wijy forj=1,2,...., M. (6.2)

Generally, however, we have the fractal interpolation model if the original signal is

corrupted by noise:

f(:L,) = fla:) + &, fori=1,2,....,n, (6.3)

110

where ¢; are independent identically distributed errors.

In Section 5.2, we explained that Barnsley’s linear fractal interpolating function
f is a real-valued function of unknown parameter vectors R, defined in Equation (5.3),
parameter vectors D which are the set of affine transform parameters {a;, ¢;, d;, e, fi}
defined in Equations (5.8) and (5.12), and the integer parameter M. Since d; is the
most important parameter among all the parameters of an affine transform, we shall
only deal with the d; in the following discussion. Therefore, f(x) = f(R,D,M,:c)
is the output from the attractor of the IFS {R, wq,.....,wpr—1} based on the data
{(z1,11), -, (zn,y~n)}. The problem therefore becomes that of how to estimate the
parameter vectors R, D and the integer parameter M. One possible approach is to

minimize the residual sum of squares (RSS)

RSS(R,D,M) = 3 (yi — f(R,D,M,z;))". (6.4)
i=1

In Chapter 5 we tried to minimise a similar Hausdorff distance instead of the L?
distance. However, RSS(R, D, M) is a decreasing function of M, and M controls the
degree of smoothness. The fewer affine transforms there are in an IFS, the higher
is the degree of smoothness but the less is the fidelity to the data. The more affine
transforms there are in an IF'S, the lower is the smoothness but the better is the fidelity
to the data. Thus, minimization of RSS(R, D, m) will lead to over-fitting and is not
the best approach. The problem is analogous to that of the identification of an auto-
regression AR(p) model, for which Akaike’s AIC criterion [3], cross-validation [172]
and other methods have been used as a means of penalizing the complexity of the

fitted model.
The idea of leave — one — out cross-validation is applied here. For 1 <1¢ < n, we

define the leave-one-out data set by

= {(x1,3), s (@icn ¥im)s (i1, Yiwa), o5 (B, yw) 3 (6.5)

Based on S\;, we compute parameter vectors R, D and the integer parameter M,
and obtain an output, f\i say, from the attractor of the IF'S {R?, wg,....,wp-1} for
t=1,2,---,N. The cross-validation function is defined by

n

CV(R,D,M) = 3 (v — Ai(R,D, M,)" (6.6)

i=1

For the data sets in Figure 39, M = 2, R = {0,141}, and D = {do,d1}. Thus, if M
is specified, CV(i1,do,d1) is a real-valued function of three variables on R x D. In

Figures 40 and 41, we give plots of projections in the interpolation points subspace

111

R and the contraction factor subspace D.

We know that in general CV (R, D, M) is a very high dimensional function and is
not strictly convex, as shown by IFigure 40. Any global search method in high dimen-
sions is computationally highly demanding. However, the function CV(R, D, M) has
a special structure such that we can use a low-dimensional search algorithm to find a
suboptimal solution. First, we note that M is known implicitly once R is determined.
Secondly, R is an integer-valued vector such that each ¢; in R satisfies 1 <¢; < N, and
there is an ordering among the elements of R, i.e. i3 <13 < -+ < 1p7-1. Since each w;
contracts the data points (zy,y1), -+, (zn,yn) into the region between the left-end
interpolation point (z;;,;,;) and the right-end interpolation point (z;,,,,¥i,,.), f\i is
a function of the contraction factor d; only, i.e., f\i(D, z) = _}E\i(dj, z)on [T, Ti,,] .
Thus the cross-validation function CV (R, D, M) can be expressed as a sum of local

cross-validation functions:

M-1 ij41-1 M1
CV(R, D, M) E S = Addy, X0) Z CVi(ij 6541, ds), (6.7)
1=1; =0

where 75 = 1 and ¢3¢ = N. Thus the minimum of CV(R, D, M) is achieved if and
only if each of C'V;(;,%;41,d;) achieves its minimum and given correct choices for i;
and 7;41.

In order to enhance the robustness of the local cross-validation algorithm, we
use a technique similar to that in Section 5.2 as shown in Figure 42, where P;_4, F;,
P;,, P, Py, are interpolation points. For each new interpolation region Rj;1, we
calculate the new best interpolation point Pjy; and use the next best point P;, of the

last interpolation region R;, to calculate the new next best region Ry I
CViy + CVyyyy > CVi + CVir (6.8)

then discard the interpolation point indices 7;, 741, replacing them by z,,7, ;.

We propose the following algorithm in which we minimize the CV(7;,7;41, d;)
consecutively.

Algorithm 6.1 Robust Inverse IFS Interpolation Algorithm Based on Cross-
Validation

INPUT: (x1,x1), -, (2n,yn) and W, which controls the minimal dis-
tance between two consecutive interpolation points along the x direction
in the algorithm.

OUTPUT: P, M and D.

1. j=0.

112

IFS Parameters (M=2, D=(-0.82,0.79), pl=100)
250

200

150

100

50

0 50 100 150 200 250

IFS Parameters (M=2, D=(-0.23,0.31) , pl=100)

160
140
120
100
80
60
40

20

0 50 100 150 200 250

Fig. 39. Self-affine data generated by deterministic IFS. For the top picture, the con-
traction factors are do = —0.82 and d\ = 0.79. For the bottom picture, the
contraction factors are do = —0.23 and d\ = 0.31.

113

Cross Validation Function (M=2, D=(-0.82,0.79))
1400 T T T T T

1200 + .

1000 .

1

800 F

1

600 F

Cross—-Validation Value

T
1

400

200 -

o
i
o

100 150 200 250

Cross Validation Function (M=2, D=(-0.23,0.31))
50 T T T T T

45

40

35 |

30

Cross-Validation Value
N
w
1
]

Q
ul
o

100 150 200 250

Ilig. 40. Projection of the CV/ (i1, dy,d;) function on the interpolation point subspace
R for fixed contraction factors D. In the top picture D = (—0.82,0.79) and
in the bottom picture D = (—0.23,0.31).

114

Cross-Validation Function (M=2, pl=100)

Cross-Validation Value

Cross-Validation Function (M=2, pl=100)

Cross-Validation Value

600
500
400
300
200
100

0.67
0.37

-0.89 0.07
-0.59 -0.23

0.01 -0. 53
d2 -0.83

ig. 41. Projection of the CV(il, fii, d?) function on the contraction factor subspace D
for fixed R = {0,100} in both pictures. For fixed R = {0,100}, the minimum
of CV appears at (—0.82,0.79) in the top picture and at (—0.23,0.31) in the

bottom picture.

115

Ry, /R\w\
Elaj/_?%l:ij Biw P
\/I | | ~
= Pig S 1g+1
s Ri’sﬂ

IFig. 42. Robustness modification of local cross-validation algorithm

9. j=j+1.

2.1 Set a search interval [s, €] for 7;, where integers s and e satisfy ¢, = z,+W,
T, =any — W.

2.2 For each element ¢ in [s, €], let (z,y.) be the right-end interpolation point
of the map w;. The left-end interpolation point is (@i;_, 41, %i;_,+1) Which
has already been determined. Minimizing CV;(¢;, ¢, d;) gives an estimate,
d;, say, of dj. Store CV;(i;,c,d;) in a one-dimensional array BUF FER|[d).

2.3 Choose, as a candidate of the index for the jth interpolation point from the
[s, €], the integer ¢; such that BUF I ER|[i;] is minimal among the values in
BUFFER|c] for which ¢ € [s,e]. Then determine the next best 75, which

cross-validation value is next minimum.
3. If 2,01 # 0 and 45—y + W < e then

3.1 Set new limits of the search interval (¢5.1, €].

3.2 In asimilar way to (2.2) and (2.3), calculate indices i’, ¢, and corresponding
cross-validation values C'V;,_,, C'Vj.

33 I CV,_, +CV;; > CVi,_, + CV; then set t;.1 = 1,1 and 7; = ;.

s—1
4. It CVi(ij,e,d;) < CV;(ij_1,1;,d;) then discard the candidate index 7; and exit
from the algorithm.

Accept 45 as the jth interpolation index. Update the search limit to s = ¢; + W.
If e < s then exit from the algorithm.

Goto step 2.

®» N o o

Finally, when the algorithm stops, let A/ = 5 + 1.

116

There are two kinds of exit condition in the algorithm. One is at step 6 and
occurs if no further interpolation point exists. The other is at step 4 and occurs if a

further interpolation point will increase the error of fitting the given function.

6.3. Parallel Distributed Algorithm Based on Static Task Partition

In Chapter 5 we used Remote Procedure Call (RPC) library to implement our parallel
distributed algorithms. RPC is a fundamental approach to interprocess communica-
tion based on the simple concept known as the procedure call. However, RPC does
not provide machine configuration and process management functions which are nec-
essary for an integrated Parallel Distributed Computing (PDC) environment. In
chapter 5 we used some Unix system calls to implement these functions, but this im-
plementation has not been optimized and it only applies to a special platform, SUN.
For example, in Figure 34, we need to create multi-child processes. The overhead is
high to maintain these processes.

Parallel Virtual Machine (PVM) is an integrated PDC environment, almost that
of Unix machine and a dedicated Multi-processor machine can use it. It means that
the algorithm you design for a special platform such as a SUN can also be used on
any other platform which supports PVM.,

The primary objective in PDC is that of faster execution by using multiple
processing elements that work cooperatively on a single problem. There are several
factors, ranging from inherent non-parallelism in the algorithm to the overheads of
communication and synchronization among the multiple processors, which influence
the efficiency in speeding up computations. In network-based environments, there are
also external influences, since both the network and the processors may be in use by
other applications in general.

In our situation, the quantity of communication is small, as we shall indicate in
the following. Therefore, we can ignore the difference in communication overheads
among the machines used for parallel computing and we only consider the computing
speed of these machines.

As in Algorithm 5.2, the intensive computation requirement for Algorithm 6.1
comes from step (2.2) and step (3.2). We can partition the computation requirement
of steps (2.2) and (3.2) into K sub-tasks if there are K computers which are available
for us to use. The scale scale; of each sub-task is determined by the computing speed
of the corresponding computer. We can get these speed parameters by running a
benchmark program. In order to drive these sub-tasks, we need only the left inter-
polation point of the current interpolation region and the search interval [s;, e;], if

we have preloaded the parameter N and whole set of data into each sub-task. The

117

parameters of s; and e; can be determined by the speed parameters scale;, using

8 = e._1+1 (6.9)
si + (e — 8)scale;, 1=1,2,--, K, (6.10)

€;

where eg = 0 and (s, €] is the current search interval of the sequential algorithm 6.1.
The parallel algorithm based on PVM and static task partitioning can be ex-
pressed as follows:
Algorithm 6.2 Master Part of Robust Inverse IFS Interpolation Parallel Algo-
rithm Based on Cross-Validation, PVM and Static Task Partitioning.

INPUT: (x1,%1), -, (zn,yn) and W, which controls the minimal dis-
tance between two consecutive interpolation points along the X direction

in the algorithm.

OUTPUT: P, M and D.

1. Register this process to PVM, pvm_mytid(); Create K PVM slave tasks, pvm_spawn();

Initialize the data structure, 7 = 0;
2.7=7+1L
2.1 Set a search interval [s, e] for i;, where integers s and e satisfy @, = 1+ W,
T =zny — W.
2.2 Apply Equation (6.10) to calculate each search interval [s;, e;]; Pack this
data, pvm_pkini(}; Send them to each slave task, ppm_send();

2.3 Collect from each, in return, the best and next best index interpola-
tion point, pvm_recv(); Unpack them, pvm_upkint() and pvm_upk float();
Choose the best one as a candidate for the index for the jth interpolation

point. Then determine the next best one, .
3. If ;4 # 0 and 4,y + W < e then

3.1 Set new limits of the search interval (i5-1, €].

3.2 On similar lines to steps (2.2) and (2.3), calculate indices 4/, 7, and the

corresponding cross-validation values CV;,_,, C'V;i.

33 HCV,,_, +CV,; >CV,

i1 tees + CVir then set 450 = i,y and i; = 4,.

4. I CVi(ijye,d;) < CV;(i;_1,%;,d;) then discard the candidate index i; and exit
from the algorithm.

5. Accept ¢; as the jth interpolation index. Update the search limit to s = ¢; + W.

118

6. If e < 3 then exit from the algorithm.
7. Goto step 2.

8. Finally, when the algorithm stops, set M = j+1; kill all slave tasks, pvm_kill();
quit from PVM, pvm_ezit();

Algorithm 6.3 Slave Part of Robust Inverse IFS Interpolation Parallel Algo-
rithm Based on Cross-Validation, PVM and Static Task Partitioning.

INPUT: (.’L‘l, 331)1 e 9(‘7"Na yN)
QUTPUT: the best and next best indices and cross-validation value of

interpolation points.

1. Register this process to PVM, pvm_mytid(); Initialize data structure;

2. Wait for receipt of the new index ¢;_1 + 1 of the left interpolation point and the

search interval [s;, e;], pvm_recv();
3. Unpack this new data, pvm_upint();

4. For each element c in [s;,e], let (2¢,y.) be the right-end interpolation point
of the map w;. The left-end interpolation point is (2i;_,4+1,¥i;_,41), which has
already been determined. Minimizing C'V;(¢;, ¢, d;) gives an estimate, czj say, of
dj. Store C'V;(i;,¢,d;) in a one-dimensional array BUF FER]c].

5. Choose, as a candidate for the index for the jth interpolation point from the
[8i,€;], the integer ¢; such that BUFFER[:;] is minimal among the values in
BUF FER[c] for which ¢ € [s;, ¢;]. Then determine the next best 7,, which gives

the next smallest minimum of the cross-validation function.

6. Pack the best and next best indices and cross-validation values of the inter-
polation points, pvm_pkint(), pvm_pk float(); Send them to the master task,
pvm_send();

7. Goto step 2.

8. Finally, when the slave is killed by the master, quit from PVM, pvm_exit().

6.4. Numerical Simulation

In this section there are two features of interest. First, we wish to test the efficiency of
the inverse algorithm for the problem of identifying an IFS in terms of accurate esti-
mates of the system’s parameters P, D), and M. Secondly, since the IFS is concerned
with the fractal interpolation problem, we want to see how the inverse algorithm

compromises between the two contradictory aims of the degree of smoothness and

119

Table XIV. Original and calculated map parameters, local CV values, and Hausdorff

distances for the strictly self-affine data with sample size 256

Original Calculation cvV H.

P | D P | D | Value | Distance
0,39 0.87 0,39 0.87 | 0.19 0.62
40,73 | -0.83 | 40,73 | -0.83 | 0.25 0.6

74,115 | -0.92 | 74,115 | -0.92 | 0.27 0.57
116,177 | 0.85 | 116,177 | 0.85 0.3 0.7
178,255 | 0.91 | 178,255 | 0.91 | 0.26 0.73

0,39 0.16 0,39 0.16 | 0.19 0.59
40,73 | -0.09 | 40,73 | -0.09 | 0.26 0.48
74,115 | -0.24 | 74,115 | -0.24 | 0.27 0.5

116,177 | 0.13 | 116,177 | 0.13 | 0.27 0.6
178,255 | 0.22 | 178,255 | 0.22 | 0.23 0.55

fidelity to the data and also to compare with the fit of auto-regression models for
smooth data to see the capacity {or noise suppression.

In Example 6.1 and 6.2, for strictly self-affine data, we chose two data sets for
which the map parameter Ds are different but the Ps are the same. One corresponds
to large contraction factors whose absolute values are near to 1, whereas the other
has small contraction factors whose absolute values are near to zero. To be specific
M =5, D; = (0.87,-0.83,-0.92,0.85,0.91), D, = (0.16,~0.09, —0.24,0.13, 0.22)
and P = (0,39,73,115,177,255). The results obtained from the inverse algorithm
are reported in Table XIV. Algorithm 6.1 was used to search for solutions with
M = 2,3,4,5,6---. The best solutions for both examples are found at M = 5 and
the estimated parameters P and D coincide with the original P and D. In Figure
43 we plot the fractal interpolation on the basis of the estimated parameters of the
IFS. The fidelity to the given strictly self-affine data is of course very good. The
small local cross-validation values and Hausdorff distances in Table XIV are caused
by computational error in the inverse algorithm since we use integer operations to
replace floating point operations in order to reduce the computing time.

Next, in Examples 6.3 and 6.4 we again used the same strictly self-affine data as
in Examples 6.1 and 6.2 used, respectively. The noise corrupted signal was generated
by adding zero mean Gaussian noise of standard deviation o = 10.0. The results are
reported in Table XV and Figure 44. The optimal choice for the number of affine
maps was the correct one of M = 7 for Example 6.3 and M = 3 for Example 6.4. The
estimated P do not coincide with the originals and the estimated contraction factors
in D also differed in both Examples 6.3 and 6.4. The new noise-corrupted input data

are not self-affine, because of the Gaussian noise. However we can find from Figure

120

IFS Interpolation (M=5)
300

'originall
calculation!

250

200

150

100

50

0 50 100 150 200 250

IFS Interpolation (M=5)
300

'originall
calculation!

250

200

150

100

50

0 50 100 150 200 250

Fig. 43. Fractal interpolation (M = 5) for strictly self-affine data with large D (top

picture) and small D (bottom picture).

121

10.0)

5, Large D, Gaussian Noise mean=0, st.var

IFS Interpolation (M

hm ===

original
+nolse ==---
|gotithm e

Az

=

S
S ww
o5
50

1] ! 1 L
o (=] o o (=4 o o (o] o
o L0 o w0 [Te} <o 0 (=]
N — - — - N

250

200

150

100

50

10.0)

5, Small D, Gaussian Noise mean=0, st.var

IFS Interpolation (M

original

original+noise -----
our algorithm -----
ar algorithm

100

80 |
60 |
40 |
20 b
0

250

200

150

100

50

I'ig. 44, Fractal interpolation for strictly self-affine data with a large D (top picture)

and a small D (bottom picture) and additional Gaussian noise with zero mean

and standard deviation ¢ = 10.0.

122

Table XV. Original and calculated map parameters, local CV values, and Hausdorff

distances for the strictly self-affine data with Gaussian noise, mean=0,
o =10.0

Original Calculation Ccv H.
P | D P | D Value | Distance

0,39 | 0.87 | 0,38 0.67 | 14.08 | 31.62
40,73 | -0.83 | 39,74 | -0.55 | 19.99 | 30.13
74,115 | -0.92 | 75,116 | -0.64 | 22.52 | 40.55

116,177 | 0.85 | 117,126 | 0.99 | 16.08 | 39.09

178,255 | 0.91 | 127, 151 | -0.26 | 21.62 | 55.47
152,174 | -0.38 | 23.39 | 58.21

175,255 | 0.4 | 25.56 | 67.4

0,39 | 0.16 | 0,23 |-0.003] 10.47 | 33.28
40,73 | -0.09 | 24,155 | 0.46 | 20.84 | 39.35
74,115 | -0.24 | 156, 245 | 0.006 | 18.7 | 46.33
116,177 | 0.13
178,255 | 0.22

44 that our algorithm gives a better compromise than the auto-regression model does
between smoothness and fidelity to the data.

Finally in Examples 6.5 and 6.6 we applied our algorithm to process fractional
Brownian motion data which are also corrupted by Gaussian noise with zero mean
and standard deviation 10.0. A fractional Brownian motion, Vi (1), is a single-valued
function of one variable, {(usually time) and # > 0. Its increments Vi (t2) — Vi (ty1)
have a Gaussian distribution. Viz(t) exhibits a statistical scaling property in that, if
the time scale t is changed by a factor r, then the increments AVy(t) change by a
factor r. We generated the fractional Brownian motion data by the spatial method
with displaced interpolated points [153].

Noise-free fractional Brownian motion also provides approximately self-affine
data. We chose two data sets of I'BM on which to test the inverse algorithm. They
had different parameters, (H = 0.8, » = 0.2) and (H = 0.5, r = 0.4). The simulation
results are reported in Table XVI and Figure 45. The optimal choice for the number
of affine maps was M = 7 for Example 6.5 and M = 12 {or Example 6.6. We find
from Figure 45 that our algorithm gives a better compromise than the auto-regression
model does between the degree of smoothness and fidelity to the data.

All auto-regression models used in this section are described in Equation (5.16).
Table XVII shows the results where AR models are fitted to examples 6.3, 6.4, 6.5
and 6.6, using the S Plus command ar.yw, based on the Yule-Walker algorithm.

By applying the parallel distributed algorithm 6.2 to all examples we obtained the

same map parameters, but the running time obviously decreased. The computers used

123

Fractal Brownian Motion (H=0.8, Scale=0.2, Gaussian Noise mean=0, sd=10.0)

250

original ——

original+noise —

200 our algorithm ..
ar algorithm
150
100
-50
-100
-150
-200
0 50 100 150 200 250
X
Fractal Brownian Motion (H=0.5, Scale=0.4, Gaussian Noise mean=0, sd=10.0)

300

original ——

original+noise ——

our algorithm

200 ar algorithm ——
100
-100
-200
-300
-400

50 100 150 200 250

Fig. 45. Fractional Brownian Motions and Their IFS Interpolation Expressions.

H=0.8, Scale=0.2 (top diagram) and H=0.5, Scale=0.4 (bottom diagram)

124

Table XVI. Calculated map parameters M, D, P, local C'V values, and Hausdorff dis-

tances H for fractional Brownian motion corrupted by Gaussian noise with

zero mean and standard deviation 10.0

Calculation CVv H.
P | D | Value | Distance

0,21 0.08 9.04 28.82
22,79 | -0.09 | 15.89 37.06
80,104 | 0.54 | 13.37 39.0
165,202 | 0.41 | 17.55 40.21
203, 212 | -0.14 | 10.68 13.79
213,225 | -0.23 | 8.05 8.31
225,255 | 0.002 | 10.83 40.3
0,22 -0.16 | 10.01 40.14
23, 53 0.14 | 21.31 34.28
54, 70 0.17 | 21.12 43.46
71,81 | -0.09 | 19.44 40.88
82, 93 0.35 | 16.53 20.14
94,122 | -0.31 | 18.51 36.73
123,151 | -0.26 | 13.7 19.97
152, 161 | -0.24 | 17.71 20.01
162, 177 | 0.23 | 11.78 31.46
178, 188 | -0.2 | 17.25 31.46
189,234 | -0.4 | 18.97 37.99
235, 255 | -0.17 | 10.98 33.53

Table XVII. Auto-Regression Model Parameters Estimation with Yule-Walker Equa-

tions for Examples

Ex. | AR | Mean Var. AR coefficients AR IFS

order I o? (a1,ag,: -, ap) SNR | SNR

6.3 4 -2.89 | 1192.01 0.45 0.002, 0.14, 0.15 1.0 4.64

6.4 9 -2.89 | 610.48 0.19 0.18 0.17 0.29 0.63 | 7.13
-0.006 -0.16 0.06 -0.0002 0.16

6.5 3 -0.43 | 765.16 0.53 0.24 0.23 12.86 | 19.64

6.6 2 0.69 | 1112.41 0.68 0.28 10.51 | 16.45

125

{\FS PD Algorithm of CV Approach with Static Load Balance

T | 1 I T] T
equal partitioning with Daemon -e—
11000 |- S d equal partitignin with TCP —+-= 7]
LR optimal partitioning with Daemon -&---
10000 - ‘a‘, N optimal partitioning with TCP ¢ 7]
9000 | | J
8000 [- % -
7000 | J
£
o 6000 I -
£
=
5000 .
4000 -
3000 . , . I I I "-~-................A......sy
0 1 2 5 6 7 8

4
Number of Computers
Fig. 46. Total time for Example 6.3 using PVM

in the parallel algorithms are SUN Sparc ELC, IPC, Sparc 10 and SUN 470. Figure 46
shows the total time (computing -+ communicating -} idle) for Example 6.1. There are
four curves in the Figure. Two of them use a Daemon-based communication scheme
and others use a TCP-based communication scheme. In the PVM environment, the
TCP-based mode provides a more efficient communication path than the Daemon
mode so that we can obtain improvement in total time. Comparing Figure 38 and
Figure 46 we can conclude that PVM is better than RPC for parallel distributed
computing applications, since both algorithms have similar structure but the RPC
approach fails to improve when the number of computers reaches four, while the PVM
approach continues improving until the number of computers reaches seven.

Task partitioning is a very important issue in parallel distributed computing. We
shows this by providing results for optimal task partitioning and equal task partition-
ing in Table XVIII. We note one second to five seconds improvement in total time in
Table XVIIL.

More detailed comparison is shown in Figure 47 and Table XIX. The height
of each box in Figure 47 indicates the scale of each sub-task. In the case of equal

task partitioning, the fastest computer incurs high idle time while awaiting the new

126

Table XVIII. Total times (milli-seconds) for Example 6.3 using PVM Daemon and

TCP communication with equal and optimal task partitioning

No | Equal (Daemon) | Optimal (Daemon) | Equal (TCP) | Optimal (TCP)
1 11200 11200 11200 11200
2 9364 4015 8848 3699
3 7119 3710 7063 3584
4 6154 3541 5945 3477
5 5594 3470 5386 3402
6 4626 3243 4372 3197
7 4441 3187 4317 3023

Table XIX. Task Partitioning and Load Balance for Example 6.3 with PVM TCP

Communication Mode and Seven Computers

Computer | Scale of | Computing | Comm. | Idle
Name Sub-task Time Time | Time
1 0.15 1140 30 2720

2 0.14 3652 16 174

3 0.14 734 18 3148

4 0.14 2719 17 1162

5 0.14 3153 13 675

6 0.14 2620 18 1178

7 0.14 2113 21 1703

1 0.112 1780 20 850

2 0.091 2062 15 311

3 0.505 1818 21 884

4 0.075 1562 16 878

5 0.065 2077 16 403

6 0.072 2076 12 466

7 0.08 2119 16 462

127

message. This is the case, for example, with No. 3 computer in Table XIX, and
it wastes computing resource. However, in optimal task partitioning, all computers

have low idle time and keep busy in computing, as we expect.

128

Equal Partitioning IFS CV Algorithm with Seven Workstations in TCP Communication

idle time —
computing time
3500 equal partitioning
3000
2500
2
g
2000
g
=
1500
1000
500
0 1 2 3 4 5 6 7 8
Computer Name
Static Optimal Partitioning IFS CV Algorithm with Seven Workstations in TCP Communication
idle time -¢—
computing time -+~-
static optimal partitioning
2000
1500
2
g
E
=
1000
500
0 1 2 3 4 5 6 7 8

Computer Name

Fig. 47. Task Partitioning and Load Balance for Example 6.3 with PVM TCP Com-
munication Mode and Seven Computers, Equal Partitioning (top diagram)

and Optimal Partitioning (bottom diagram)

129

CHAPTER 7

USING INVERSE LOCAL ITERATED FUNCTION SYSTEMS (IFS)
TO MODEL ONE DIMENSIONAL DISCRETE SIGNALS

7.1. Introduction

Local IFS realise the IFS limit if data are sell-affine and are suitable for modelling
non self-affine signals. However it is difficult to explore the whole parameter space
to achieve globally optimal parameter estimation. We present a two-stage search
scheme to estimate the parameters of local IFS in this chapter so that we can get
a suboptimal solution in a reasonable time. In network-based parallel computing,
most performance degradation involve load imbalance caused by the difference of
machines capability and external load. We apply a dynamic load balance technique
to overcome the problem. Some numerical simulation indicates that our inverse local
[FS algorithm works well for serval types one-dimensional signal and the parallel
version, with dynamic load balance, can automatically have each machine busy with

computing and with low idle time,

7.2. Inverse Local IFS Theory and Algorithm

As we have shown in the last two chapters, IS interpolation is a viable method for
modelling a given one-dimensional signal if it is a self-affine or approximately self-
affine discrete sequence. Most signals, however, are not approximately self-affine. A
sinusoid, for example, is neither self-affine nor approximately self-affine. A local IFS
approach may be appropriate for modelling general signals.

A general LIFS can be defined as follows:

Definition 7.1 Let (X,d) be a compact metric space. Let w; @ R; — X be a local
contraction mapping on (X,d), with contractibility factor s;, for i = 1,2,---, M,
where M is a finite positive integer. Then {w; : B; — X i =1,2,---, M} is called
a local iterated function system. The number s = max{s; : ¢ =1,2,---, M} is called
the contractibility factor of the LIFS.

A one-dimensional LIFS interpolation can be defined as :

Definition 7.2 A one-dimensional signal, {(z;,y:;): ¢=0,1,--, N; z; < @ig1, |Ti—

z;| < N,Vi,j,y; € R'} is divided into M regions R; by contractive maps w;.

Rj = {[ij——l+17‘ij]}:j:2,3,"',ﬂ/[—l,

130

Ry = {[Oail]}’
Ry = {[tn-1+1,N]}, (7.1)

where {(2i;_y41,Yi;_+1), (Tij» ¥i;)} are terminal points, also known as interpolation

points. Each region is self-affine for an associaled region, K,

Ej = {[ijhijr]})j:Q,B:"'?M—17
Eo = {[iola&br]}a
Ry = {Lwl,iMr]}a (7-2)

where {(miﬂ,yiﬂ),(mf ,yl-]r)} are terminal points of the associated region R;. The

=jr

affine map w;j is the same as in Equation (5.1).

Among the affine map parameters, d; must satisfy |d;| < 1 so that it guarantees
that w; is a contraction map. The parameter a; can be located in (—1,1). If a; > 0 it
means that, for the region (¢;-1, 7;], and associated region [i;, 2;,], w; maps (a:iﬂ, yiﬂ)
to (@i,_41, ¥i;_,+1) and (-7;1',»,7 Yi,) to (%4, yi;). If @; <0, it means that, for the region
(45-1,], and associated region [ij, 1;,], w; maps (z; ,¥i,) to (=i, y;;) and (zq, ,
Yi;,) b0 (Tijit1s Uiy 41)-

Comparing this with the definition of an IFS in Chapter 5, we can find that
the difference between an IFS and a local IFS is the associated region I£;. We have
only one associated region {0, N] in IFS, but, we have M associated regions in local
IFS. We can get new affine map parameters estimation formulae by modifying the
corresponding equations.

For map parameters a;, ¢;, we have
Ti; — Ti, 141

a; =
J ..
wijr &13'1
Ty Ti — T Tii 141
& 3J L™y —1
e = —= : , (7.3)
mlj,- - mij(

if w; maps [iy, 2;,] = (2j-1,7;]. The map parameters ¢;, d;, f; can be obtained from
Equation (5.12). In other cases w; maps [¢;,, iy] = (¢;-1, %;], and we need only
interchange ¢; and ¢;_; in Equation (7.3).

The inverse local IFS can be defined as the following optimal problem:

M
minh(L, > w;(L;), (7.4)

=3
=1

where L is the input signal and L; is the input signal of the associated region I;.

131

The corresponding sub-optimal problem is given:

M
> minh(L;, wi(L;)), (7.5)
J=1

where L; is the input signal of the self-affine region RE; and the unknown parameters
are the right interpolation point index 7; of self-affine region R;, associated region I;
indices [¢;,2;,] and the map w; parameters (a;,¢;,dj,e;f;). We need to search for
all of these unknown parameters within this search space. Even for this sub-optimal
problem, the search space is still too large to explore, where ¢; € [0, N], i;; € [0, V]
and z;, € [0, V], limited by the condition zi, — i, > Ty — Ty, We need further to
simplify the sub-optimal problem in order that we can solve it in a reasonable time.

We suggest a two-stage search scheme :

First we suppose that the associated region length is twice the length of the self-affine
region, that is,

T; - miﬂ =2 X (IIJ,'J- — wij—x)' (76)

2y

We search for estimation of the parameters 4;, 4;,2;, in this sub-space.

Second We receive all self-affine regions R;, j =1, -+, M. Then, for each self-affine
R;, we search the corresponding associated region in the full search space, that
is,

Ti, — i, > T~ Tipy, Tijy i, S [O,IV]. (77)

2r

We also use information about the neighbouring self-affine region to enhance the
robustness of the inverse local IFS algorithm, as we have done in Chapter 5. Actually
for each self-affine region we need to calculate the next best candidate interpolation
point index ¢, to accompany with ¢;. Then when we search for the next self-affine
region, we have to calculate two possible self-affine regions, one, R;;_,, based on ¢;

and other, Ri;-{-l’ based on i,. If
H(R;,)+ H(R;,,,) > H(R,)+ H(R;), (7.8)

then we discard the interpolation point indices 1;,%;41, replacing them by %, .
The inverse local IFS algorithm consists of three algorithms. The first is the core
of sub-space search (7.6).
Algorithm 7.1. Inverse Local IFS Interpolation Algorithm (Estimation of Map

Parameters and Hausdorff Distance for One Self-affine Region).

INPUT: (zo0,¥0)," "+, (TN, yn), self-affine region indices (%;_1, ¢;) and as-

sociated region width Awed.

132

OUTPUT: the best and next best associated regions (4;,2;,), (45, %s,) and
Hausdorff distances H(R;;), H(R;,) and w; parameters.

L. Initialize H(R;,) and H(R;,,)

2. For each ¢;, € [Awid, N] do steps 3 ~ 5.

3. Get g5 = i;, — Awid; calculate the map w; parameters (a;, cj, d;, ¢j, f;) for self-
affine region (4;_1,1;) with associated region (2;1,1;,) and the Hausdorff distance
Hijy).

4. If Hg;) < H(Riy,), then record the ¢j as the new best one and update
H(R;,) = Hj,).

5. Otherwise, if H(z;,) < H(R;,,), then record the i;, as the new next best one and
update H(R;,) = Hi;,).

6. Finally, output the best and next best associated regions, defined by (z;;,1;,),
(2415 25r) and Hausdorft distances H(R;;), H(R;,) and w; parameters.

For stage one of the search, we describe the algorithm as follows:
Algorithm 7.2. Inverse local IFS Interpolation Algorithm (Stage One Search
for Self-affine Regions).

INPUT: (z0,y0)," -, (zN,yn) and W.
OUTPUT: the number M and Self-affine Regions R;, j =1,2,.-+, M.

1. Initialize interpolation point indices 1 = 0, tpy = N and 5 = 0.
2. j=j41
2.1 Set a search interval [s, €| for ¢;, where integers s and e satisfy 2, =
i, + W, e =ay—W.
2.2 For each element ¢ in (s, ¢], do steps 2.3 — 2.6
2.3 Let (x¢,y.) be the right-end interpolation point of the map w;. The left-end
interpolation point is (@i;_,41,¥i;_,+1), which has already been determined.
2.4 Apply Algorithm 7.1 to get the best and next best candidate associated
regions, defined by (1;;,2;,), (25,25), and the Hausdorff distances H(R;;),
H(R;,).
2.5 If Hiiy) < H(R;i;), then record ; as the new best one and update H(R;;) =
Hiy).
2.6 Otherwise, if Hz,) < H(R;,), then record i, as the new best one and
updating H(R;,) = Hiy).

N e oo

133

Ifi;_1 # 0 and 2,1 + W < e then

3.1 Set new limits of the search interval (z5-1,€].

3.2 As in step (2.2), calculate the best and next best indices i}, i/, , and the
Hausdorff distances H(R;,_,), H(Ri,).

3.3 It H(R;,_,)+ H(R;;) > H(R;,_,)+ H(Ry,) then set i;_1 = 1, and 4; = i,.
Accept ¢; as the j-th interpolation index. Update the search limit to s = ¢; + W.
If e < s then exit from the algorithm.

Goto step 2.

Finally, output M = j + 1 and all self-affine regions R;, j =1, -, M.

For stage two of the search, the algorithm is as follows:

Algorithm 7.3. Inverse local IFS Interpolation Algorithm (Stage Two Search

for Associated Region).

s~

7.3.

INPUT: (zo,y0), *,(zn,yn) and M and all self-afline regions R;, j =
L-+o, M.

OUTPUT: Associated Region R;, y =1,2,--+, M.

For each self-affine region R;, j =1,2,---, M, do step 2 - 6.

Set up a search interval [s, e] as (¢;-1,1;].

For each new Awid € [1.5 x (2, — z;,_,), N], do steps 4 - 6.

Apply Algorithm 7.1 to get the best and next best candidate associated regions,
(20,85)s (451 %sr)> and the Hausdorff distances H(R;;) and H(R;,).

If Higy) < H(R;,), then recording the z; as new best one and updating H(R;;) =
Hiy).

Finally, output the associated region (1;,1;,) which corresponds to H(R;,).

Parallel Distributed Inverse Local TFS Algorithm Based on PVM

and Dynamic Load Balance

In Chapter 6 we explored the parallel distributed algorithm with static optimal task

partition. This static load balance model supposes that the work-stations have no any

external job appearing in the task executing period. However, in a real environment,

there are external influences, since, in general, both the network and the processors

may be in use by other applications. In a network-based computing environment,

134

e)
Scheduler

Master

T
T2

i

Task
Queue

N\ Y

Fig. 48. Schematic for Dynamic Load Balance Application.

load imbalance, caused by disparities in machine capabilities as well as by external
loads, emerges as a primary cause of lowered overall performance. A good parallel
distributed algorithm should combat this imbalance.

In order to match the dynamic varied computing resource, we need to apply
a dynamic task load scheduler. The dynamic load scheme is illustrated in Figure
48. The scheme requires that the whole task can be partitioned into completely
independent and the same portions, a slave algorithm is applied to each, and partial
results are combined using simple combination schemes. The scheduler keeps each
slave under observation. When it finds any slave idle, it tries to get a new sub-task
from the task queue and loads the sub-task into the idle slave.

The general dynamic load balance algorithm can be given as follows:

Algorithm 7.4. General Dynamic Load Balance Algorithm.

INPUT: slave number K, sub-task generation algorithm and data col-

lected algorithm.

135

QUTPUT: results from data collected algorithm.

1. For each slave p € [1, K], do steps 2 - 3
2. Get a new sub-task by applying the sub-task generated algorithm.

3. Load this sub-task to slave p by pack sub-task, pvm_pkint(), and sending it to

the slave, ppm_send().

4. Check, if slave p has finished its job, by pvm_recv(). Then:

4.1 Apply the data collection algorithm.
4.2 Get a new sub-task by applying the sub-task generated algorithm.

4.3 If the sub-task generation algorithm fails to generate a new sub-task, then

goto step 5.
4.4 Load this sub-task into slave p by packing the sub-task, pvm_pkint(), and

sending it to the slave, pvm_send().

5. Wait for the other slaves to finish their jobs, by pvm,ecuv().
6. Apply the data collection algorithm.

7. Finally, output the results.

In the above algorithm, we need two external algorithms (one is for sub-task
generated and other is for data collection), since each application may have a different
sub-task generation method and a different data collection scheme.

In our parallel local IFS algorithm, we have two choice for sub-task generated.
One is for steps 4-7 of Algorithm 7.1, when task granularity® is small. The total
throughput of communication for estimating a candidate self-affine is 16 x (N —
Awid) bytes. Other sub-task is for the whole Algorithm 7.1, when task granularity
is medium. The total throughput of communication for estimating a candidate self-
affine is 16 bytes. Because of the very low speed of communication relative to the
speed of the workstations, we shall use the medium task granularity method. The
corresponding sub-task generation for stage one and stage two are given as follows:

Algorithm 7.5. Sub-task Generation {or Stage One of the Search.

INPUT: left interpolation point index .y, right point search interval
(s, €] and the associated region width Awid.
OUTPUT: one sub-task which includes the candidate self-affine region

defined by (%;-1,%;) and the associated region width Awid.

1See page 38 for more.

136

1. Choose one right interpolation point index z; from the search interval (s, e].
2. If there is no new i;, then output that a new sub-task cannot be generated.

3. Finally, output one sub-task which includes the candidate self-afline region index

(2;-1,¢;) and the associated region width Awid.

Algorithm 7.6. Sub-task Generation for Stage Two of the Search.

INPUT: self-affine region indices (¢;-1,7;) and the associated region width
search interval [Awid, N].
OUTPUT: one sub-task which includes the self-affine region indices (z;_1,%;)

and the associated region width Awid;.

1. Choose one associated region width Awid; from the search interval [Awid, N].
2. If there is no new Awed;, then output that a new sub-task cannot be generated.

3. Tinally, output one sub-task which includes self-affine region indices z;_y,z; and

the associated region width Awed;.

Both stages one and two of the search use the same data collection algorithm,
which is given as follows:
Algorithm 7.7. Date Collection Algorithm.

INPUT: candidate right interpolation point index i., Hausdorf distance
H(R,) the and associated region (iy,2,,).

QUTPUT: best and next best right interpolation point indices ¢;, 7,
Hausdorff distances H(R;), H(R,) and the associated regions (i;,%;,),

]
(ﬁjhﬁjr)'
L. Initialize H(R;;) and H(R;,)
2. Unpack data by pvm_upkint() and pvm_upk float().

3. If H(i.) < H(R;;), then record i, as the new best right interpolation point index,
record the associated region (i;,%;,) = (4u,%.) and update H(R;,) = H,).

4. Otherwise, if H(i.) < H(R,,), record i. as the new next best right interpola-
tion point index, record the associated region (iy,%,.) = (fu,2,) and update
H(R:,) = H,).

5. Finally, output the best and next best right interpolation point indices z;, %5, the

Hausdorft distances H(R;), H(R,) and the associated regions (2;1,%;,), (Zs1) Lar)-

137

The parallel algorithm based on PVM and dynamic load balance can be expressed
as follows:

Algorithm 7.8. Parallel Inverse Local IFS Interpolation Algorithm (Stage One
Search for Self-affine Region), Master Part.

INPUT: (z0,%0)," ", (&n,yn) and W,
QUTPUT: the number M and Self-affine Regions R;, j =1,2,---, M.

1. Initialize interpolation point indices 2o = 0, ¢pr = N and j = 0; register to PVM

by pvm_mytid().
2. j=5+1L
2.1 Set up a search interval [s, e] for ¢;, where integers s and e satisfy z, =
Ti;_, + W, 2z, =2y — W.

2.2 Apply dynamic load Algorithm 7.4 to calculate ¢;, ¢, and H(R;).
3. If 1,01 #£ 0 and i5_; + W < e then

3.1 Set new limits of the search interval (i,_1,€].

3.2 Apply dynamic load Algorithm 7.4 to calculate 7}, ¢}, and H(R;).

3.3 WH(R;,_)+ H(R;) > H(R;,_,)+ H(Ryi) then set 4;_y =i,y and ¢; = 1.
Accept 7; as the j-th interpolation index. Update the search limit to s =¢;+W.
If e < s then exit from the algorithm.

Goto step 2.

N o

Finally, output M = j 4+ 1 and all self-affine regions R;, j =1,---, M.

Algorithm 7.9. Parallel Inverse Local IFS Interpolation Algorithm (Stage Two
Search for Associated Regions) Master Part.

INPUT: (20,%0), -, (zNn,yn) and M = j — 1 and all self-affine regions
R, j=1,---, M.
OUTPUT: Associated Regions 12, j = 1,2,+--, M.

1. For each self-affine region R,;, j = 1,2,---, M, do steps 2 - 4.

2. Set a search interval [s, e] as (¢;-1,¢;].

3. Apply dynamic load Algorithm 7.4 to calculate ¢;, ¢s, 4 (R;,) and the associated

1‘egi0ns (.@Jhﬁj?) and (isl’is?‘)’

4. Finally, output the associated regions (i;,1,,) which correspond to the H(R;,).

138

Algorithm 7.10. Parallel Inverse Local IFS Interpolation Algorithm, Slave
Part.

INPUT: (z0,¥0)," -, (zN,yn), self-affine region indices (i;-1, 7;) and the
associated region width Awid.

OUTPUT: the best and next best associated region indices (2;,%;,), (2515 L7)
and Hausdorff distances H(f;;) and H(R;,).

1. Register this process to PVM, pvm_mytid(); Initialize H(R;,) and H(R;,,);

2. Wait for receipt of the new index 7;_; of the left interpolation point and their

search interval [s;, ¢;], by pvm_recv();
3. Unpack this new data, by puvm_upint();
4. For each ;, € [Awid, N] do steps 2 - 9.

5. Get 25 = i;, — Awid; Calculate the map w; parameters (aj,c;,d;,e;, fj) for
self-affine region indices (¢;-1,¢;) with the associated regions (2;,z,,) and the
Hausdorff distance H(z;,.).

6. If He;,) < H(R;,), then record 4j, as the new best one and update H(R;,) =
H;,).

7. Otherwise, if Hz,.) < H(R;,), record i;, as the new next best one and update
H(R;,) = Hj,).

8. Finally, pack the best and next best candidate associated region defined by
(2j1>8jr)s (Zo15 1) and Hausdorff distances H(R;;) and H(R;,) with ppm_pkint(),
pvm_pk float(); Send them to the master task, pvm_send().

9. Go to step 2.

7.4, Numerical Simulation

In this section, we first present a variety of non self-affine one-dimensional signal types,
modelled with local IFS interpolation. Second, we want to see how the input constant
W, which controls the minimal distance between two consecutive interpolation points
along the X direction in the inverse LIFS algorithm, can change the compression ratio.
Third, we distribute our computing task in a network environment and test the speed-
up ratio.

In Example 7.1, we sample the sinusoid function 128sin(2xz/255) in the interval
[0,255] to get the discrete signal of length 256, We apply inverse LIFS algorithm with
W = 32 and find that the best result is obtained when M = 7. The results are listed

139

Table XX. Local IFS calculated self-affine region (S.R) indices, associated region (A.R)

indices, map parameters and Hausdorff distances for a Sinusoid Signal

128 sin(27z /255)
S.R. Index | A.R. Index Map Param. H SNR
0,35 126, 179 1.06 -0.33 -131.55 | 0.02 | 40.6
36, 68 32, 80 0.34 0.44 48.51 0.03 | 45.83
69, 103 54, 105 -0.6 0.42 107.5 0.04 | 45.7

149, 104 92, 160 1.28 -0.26 -156.98 | 0.81 | 35.7
181, 150 22, 69 1.77-0.4 -136.79 | 0.55 | 44.0
220, 182 156, 213 -0.27 0.45 -18.61 | 0.07 | 45.7
255, 221 78, 129 -2.67-0.31 246.68 | 1.2 | 38.4

Table XXI. Signal Noise/Ratio of Local IFS and IF'S
Example 7.1 Example 7.2 Example 7.3
LIFS | IFS LIFS IFS LIFS | IFS
SNR | 45.98 | 31.05 | 4.05 2.25 | 24.36 | 21.91

H 1.62 | 5.46 | 203.35 | 244.45 | 16.89 | 29.97

in Table XX. In order to compare with the inverse IFS algorithm, we also illustrate
the both results in Figure 49. The total signal/noise ratios from both algorithms are
listed in TableXXI.

In Example 7.2, we use a real-world male speech signal of length 256. We apply
the inverse LIFS algorithm with W = 9 and find that the best results is obtained
when M = 20. The results are listed in Table XXII. For comparison with the inverse
IFS algorithm, we illustrate both results in Figure 50. The total signal/noise ratios
of both algorithm are listed in Table XXI.

In Example 7.3, we use a fractional Brownian motion signal of length 256 gen-
erated by the method used in Section 6.4 of length 256. We apply the inverse LIFS
algorithm with W = 9 and find that the best result is obtained when M = 21. The
results are listed in Table XXIII. For comparison with the inverse IFS algorithm,
we illustrate the both results in [igure 51. The total signal/noise ratios of both
algorithms are listed in Table XXI.

In these examples, we find that the local IF'S approach fits the data better than
the IFS does. The SNR improvement is 14DB for smooth data and 2DB for rough
data.

The constant W influences the compression ratio. We simply define the com-
pression ratio as R = %% since our original input signal uses single precision, which
takes four bytes, we can use three bytes describe the self-affine and associated region

and six bytes for the map parameters ¢;, d;, f;. We choose W = 32, W = 48 and

00

Loca! IFS Interpolation and Sinusoid Signal

140

150

100

50

-50

-100

T
original
local IFS algorithm
IFS algorithm

-150

Fig

. 49. Local IFS Modelling of the Sinusoid Signal 128 sin(2xz/255)

200

141

Table XXII. Local IFS calculated self-affine region (S.R) indices, associated region

(A.R) indices, map parameters and Hausdorff distances for a Male Speech

Signal
S.R. Index | A.R. Index Map Param. H | SNR
0,9 22, 42 0.81-0.99 342.52 | 2.4 | 41.1
10, 27 56, 122 -0.13 -0.02 262.64 | 3.0 | 42.3
41, 28 21, 42 2.05 0.08 157.2 94.6 | 18.3
42, 56 38,217 | -0.10.02125.85 | 1.8 | 43.0
71, 57 37, 65 -0.02 0.99 -0.57 3.6 | 35.9
72, 80 48, 64 -0.71 0.54 211.43 | 0.7 | 53.8
81,91 180, 226 0.002 -0.02 227.13 | 0.9 | 484
103, 92 66, 83 0.63 0.94 -34.55 | 2.64 | 43.1
113, 104 48, 81 3.23 0.9 -205. 2.8 | 41.0
114, 132 57, 88 0.46 0.98-73.94 | 26.0 | 26.4
142, 133 152, 166 16.33 0.36 -2513.3 | 41.8 | 124
154, 143 6, 25 -5.28 0.19 229.24 | 64.9 | 14.1
170, 155 40, 70 1.88 0.95-142.64 | 24.6 | 19.9
179, 171 | 109, 122 2.26 0.3 -83.88 | 1.7 | 46.7
189, 180 202, 217 -1.86 0.91 414.0 4.3 | 375
206, 190 158, 182 2.33 0.85-351.83 | 9.7 | 32.1
207, 222 4,32 0.2 0.99 -35.88 37.2 | 23.1
223, 234 61, 86 -1.92 0.97 135,58 | 6.1 | 33.9
244, 235 157, 173 2.8 0.94 -473.42 3.4 | 35.7
| 255, 245 123, 138 -1.3 0.96 165.9 9.7 | 31.7

300

200

150

100

Local IFS Interpolation and Male Speech Signal

original
local IFS algorithm
IFS algorithm

50 100 150 200

Fig. 50. Local IFS Modelling of a Male Speech Signal

142

143

Table XXIII. Local IFS calculated self-affine region (S.R) indices, associated region
(A.R) indices, map parameters and Hausdorll distances for a Fractional
Brownian Motion Signal (H=0.5, Scale=0.4)

S.R. Index | A.R. Index Map Param. H SNR
14, 0 19, 48 5.68 -0.99 -116.08 | 13.6 | 15.1
15, 24 0,114 0.12 0.06 -7.4 21.81 0.8
25, 40 121, 145 5.87 0.85-813.55 | 6.2 | 21.2
52, 41 129, 231 0.15 0.13 50.94 9.5 | 24.8
53, 62 37, 52 0.01 -0.89 112.75 | 5.5 | 25.1
72, 63 104, 159 -0.28 -0.23 70.02 | 14.5| 7.1
83, 73 152, 178 0.13 0.1 12.61 11.7 | 12.0
94, 84 133, 169 -1.31-0.46 297.19 | 7.3 | 28.2

95, 104 92, 130 | -0.79 0.23 120.39 | 4.77 | 27.19
105,114 | 102,205 | -0.44 -0.45 134.78 | 6.7 | 21.76
124, 115 | 198,217 | 4.840.97-807.1 | 8.8 | 28.5
125, 140 21, 44 -5.42 0.53 251.46 | 6.9 | 29.1
141, 150 | 174, 192 | 1.50.77 -219.67 | 2.4 | 33.8
151, 160 57,198 | -0.69 -0.33 124.08 | 2.9 | 27.4
186, 161 | 121, 211 1.30.38-200.8 | 9.1 | 13.6

187, 195 14, 56 2.380.81 60.61 | 2.54 | 27.4
205,196 | 143,226 | 1.790.42-352.01 | 17.9| 9.9

206, 215 37, 69 2.95-0.24 44.13 | 10.9 | 22.23
216, 226 14,126 | -0.16 -0.07 -154.22 | 9.4 | 29.8
227, 241 12,57 | -2.26 0.25 -103.12 | 26.6 | 20.9

242, 255 110,203 | -0.38-0.31-170.01 | 16.4 | 31.7

144

Local IFS Interpolation and Fractional Brownian Motion (H=0.5, Scale=0.4)

200 T T T T T
original ~—
local IFS algorithm ===
150 |- ' IFS algorithm ------ T
100 |- \ .
50 P n LR ar ' Y, }
0 - ! ol M S Y ST SISO SRR PRSUSUPRURRURY -
o) ¥)
z -50 |- .
-100 -
-150 |- S 1
-200 | LA
-250 v
-300 I | 1 1 [
0 50 100 « 150 200 250

Fig. 51. Local IFS Modelling a Fractional Brownian Motion (H=0.5, Scale=0.4)

145

Local IFS Interpolation and Sinusoid Signal with Different W

150 T " T : .
- original —
LIFS W=32 ===
N LIFS W=48 -----
LIFS W=64 -
100 | -
7
50 -
."‘i
g 0 f"'
.'A\'
..‘.'\\l / o
50 k- \ 7 N
'z\ . (_.-'
'-.\.\ .‘,"._, ’ P
-100 |- '-.‘.\ ’ / .
-150 ! 1 1 1 L
0 50 100 X 150 200 250

Fig. 52. Local IFS Model of a Sinusoid Signal 128 sin(2xx/255) with the different W

values

Table XXIV. Local IFS Model of a Sinusoid Signal 128 sin (27 /255) with the different

W values
W | M H SNR R
32| 7 1.62 | 45.98 | 0.0615
48 | 5 | 3.43 | 38.17 | 0.0439
64| 3 | 29.22 | 22.5 | 0.0264

W = 64 to test the influence. The results are shown in Figure 52 and Table XXIV.
With W = 32 and W = 48 we get a fit to the data. but with W = 64 the fit is not
good, although, the compression ratio is high.

To test our dynamic load balance technique, we set up a PVM configuration with
three SUN clusters as shown in Iligure 53. The first of these is the Department of
Statistics SUN cluster which includes nine SUN work-stations (Sparc 10, ELC, IPC
and SUN 470). The second is the Statistic Lab SUN cluster, which includes three
SUN Sparc 10. The third is the Computing Service SUN cluster which includes two
SUN Sparc 10. The first and second clusters are connected with Ethernet and the
third is connected with FDDI. All machine use SUN OS 4.1.x.

146

1 2 3 4 5 |statistics Dept.
SUN Cluster

1. Jjupiter.stats
2. mars.stats

3. milkyway.stats
4. nebula.stats
5
6
7

y Y Y Y

6 7 8 9

. neptune.stats
. saturn.stats
. tellus.stats

Statistic Lab
SUN Cluster

Y Y Y 8. autota.stats
13 14 10 11 12 9. orion
7} [10.labservi
Y University 11.labserv?2
SUN Cluster 12.labserv3

13.newton.cent
14 .rockall.cent

Fig. 53. Work-station Configure for PVM

Figure 54 shows the total time (computing + communication + idle) for exam-
ple 7.2. There are four curves in the Figure. Two of them use a Daemon-based
communication scheme and others use a TCP-based communication scheme. In the
PVM environment, the TCP-based mode provides a more efficient communication
path than the Daemon mode so that we can get some improvement in total time.
From Table XXV we see that we get a good speed-up ratio with the dynamic load
balance technique even if the number of computers is fourteen, compared with static
load balance where the number of computers is seven.

More detail comparison is shown in Figure 55 and Table XXVI. The height of
each box in Figure 55 indicates the scale of each sub-task. In the equal-task-load
case, the fastest computers incur high idle time waiting for a new message; see, for
example, computers 3, 8, 10, 11, 13, 14 computers in Table XXVI. This wastes the
computing resource. In the dynamic load case, however, all computers have low idle
time and keep busy in computing, as expected. We also find that Nos. 13 and 14
incur large task load. Both computers are fast Sparc 10s in cluster 3 which is not
connected to the local network. The large task load indicates that the network delay
across the campus is small and that the network is suitable for this type of parallel

distributed computing application.

147

LIFS PD Algorithm with Dynamic Load Balance
900

800 equal load with Daemon -«—
700 equal load with TCP -+—
dynamic load with Daemon -B--

dynamic load with TCP -*—

200

Time (sec)

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number OfComputers

Fig. 54. Total time for example 7.2 using PVM

Table XXV. Total times (seconds) for Example 7.2 using PVM daemon and TCP

communication with equal and dynamic task load
No Equal (Daemon) Dynamic (Daemon) Equal (TCP) Dynamic (TCP)

1 744.02 744.02 744.02 744.02
2 434.89 430.22 24491 226.17
3 286.73 271.13 155.44 136.72
4 265.96 259.76 142.25 120.77
5 219.0 218.01 126.21 113.81
6 184.33 183.14 123.95 102.77
7 163.07 160.24 109.98 92.98
8 149.21 148.91 107.56 89.24
9 151.11 149.9 89.29 78.21

10 139.82 138.83 70.64 67.41

11 126.95 120.48 62.46 56.44
12 118.94 117.83 60.27 48.99
13 110.44 104.36 61.37 47.8

14 106.81 105.1 58.88 47.19

148

Equal Load LIFS Algorithm with Fourteen Workstations in TCP Communication

communication time
100 computing time -*—
static equal load ...

§ 60 -
g
=
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Computer Identifier
Dynamic Load LIFS Algorithm with Fourteen Workstations in TCP Communication
45
communication time -¢—
computing time
dynamic load balance
40
35
30
= 25
g
=
20
15
10
5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Computer Identifier

Fig. 55. Dynamic Load Balance for Example 7.2 with PVM TCP Communication
Mode and Fourteen Computers, Ecjual Load (top diagram) and Dynamic Load

(bottom diagram)

149

Table XXVI. Task Partitioning and Load Balance for Example 7.2 with PVM TCP

Communication Mode and Fourteen Computers

Computer | Scale of | Computing | Comm. | Idle
Name Sub-task Time Time | Time
1 0.0714 1140 30 2720
2 0.0714 65.64 0.38 137.78
3 0.0714 52.41 0.47 49.78
4 0.0714 22.51 0.87 80.99
5 0.0714 43.98 0.36 59.51
6 0.0714 52.23 0.45 50.02
7 0.0714 51.65 0.44 50.44
8 0.0714 51.44 0.4 50.62
9 0.0714 19.49 0.28 84.29
9 0.0714 87.68 0.48 14.95
10 0.0714 19.54 0.27 83.5
11 0.0714 18.68 0.26 84.21
12 0.0714 38.88 0.35 63.67
13 0.0714 20.16 0.31 82.32
14 0.0714 17.71 0.22 84.89
1 0.0284 36.99 0.22 9.67
) 0.0854 35.30 0.77 | 9.86
3 0.0555 35.4 0.34 9.63
4 0.056 36.41 0.23 9.84
5 0.0557 3541 0.35 9.46
6 0.0558 34.53 0.34 10.23
7 0.0558 34.77 0.32 10.09
8 0.14 32.22 0.51 13.97
9 0.033 36.86 0.23 8.8
10 0.11 30.72 0.41 14.61
11 0.11 29.89 0.41 15.16
12 0.037 35.52 0.51 9.55
13 0.1 28.95 0.35 16.15
14 0.081 30.59 0.28 14.72

150

CHAPTER 8

CONCLUSION AND DISCUSSION

8.1. Main Results

This thesis concentrates mainly on stack filtering, fractal modelling of one-dimensional
discrete data and their implementation using parallel distributed algorithm.

The combination of interactive and parallel processing will lead to a new and
useful application area, especially for visual science data, image analysis/processing
and multimedia applications. We implemented this combination based on a parallel
distributed computing environment, PVM, and the interactive application develop-
ment tool, Tcl in Chapter 3. Tcl is an embeddable interpreter language and directly
supports the user’s extension. The approach we use is to provide a Tcl’s interface
for all procedures of the PVM interface library so that users can utilize any PVM
procedure to do their parallel computing interactively.

In Chapter 4, we implement an interactive parallel stack filtering system based on
the Interactive Parallel Distributed Computing Environment. In order to reduce the
performance time of the standard stack filter, we suggest a new minimum threshold
decomposition scheme, we try to minimize the number of logical operations and we
utilize the CPU bit-fields parallel method to do stack filtering. We also use equal task
partitioning to implement a full parallel distributed filtering algorithm on PVM. We
apply the parallel stack filter to two numeric examples and the results show that the
interactive parallel stack-filtering system is eflicient for both sequential and parallel
filtering algorithm.

In Chapter 5, we present an extended Iterated Function System (IF'S) interpola-
tion method for modelling a given discrete signal. This inverse II'S problem is a global
optimal problem and there is no acceptable algorithm for obtaining the solution in
reasonable time. We suggest a suboptimal search algorithm which first estimates the
local self-affine region and then the map parameters, and neighbouring information
for a self-affine region is used for enhancing the robustness of this suboptimal algo-
rithm. We also implement a parallel distributed version of this algorithm using equal
task partitioning and a Remote Procedure Call library. The simulation results show
that the IFS approach achieves a higher signal to noise ratio than does an existing
approach based on autoregressive modelling for self-affine and approximately signals,
and, when the number of computers is small, the speed-up ratio is almost linear.

In Chapter 6, we use the robust IF'S inverse algorithm with a local cross-validation

151

technique to model self-affine and approximately self-affine signals corrupted by Gaus-
sian noise. The local cross-validation is used to compromise between the degree of
smoothness and fidelity to the data. We implement the parallel distributed version
of the algorithm in Parallel Virtual Machine (PVM) with optimal task partitioning.
We use a simple computing model and partition tasks based only on each computer’s
capability. Several numerical simulation results show that the new IFS inverse algo-
rithm achieves a higher signal to noise ratio than does autoregressive modelling for
noisy self-affine or approximately self-affine signal. There is little machine idle time
relative to computing time in the optimal task partitioning mode.

In Chapter 7, we apply local II'S to model non self-affine signals. The local IF'S
realises the IFS limit for self-affine data and is suitable for modelling general signals.
However it is difficult to explore the whole parameter space to get globally optimal
parameter estimates. We suggest a two-stage search scheme to estimate the self-
affine region and the associated region parameters, so that we can get a suboptimal
solution in a reasonable time. In the first stage, we suppose that the associated
region length is twice the length of the sell-afline region and we can calculate all
self-affine region parameters. Then in the second stage, for each self-affine region, we
search for corresponding associated region parameters from the full search space. In a
network-based parallel computing environment, most performance degradation is load
imbalance caused by the different machines capabilities and the external loads. We
apply dynamic load balance technique based on data paralielism scheme to overcome
the problem. Some numerical simulation show that our inverse local IFS algorithm
works efficiently for several types of one-dimensional signals, and the parallel version
with dynamic load balance can automatically have each machine busy with computing

and with low idle times.

8.2. Discussion and Suggestion

In chapter 4, we cannot use normal RPC mode, in which a client sends a call and waits
for the server to reply to the effect that the call has succeeded. In order to get real
parallel-task sending, we use several UNIX system calls to implement multi-process
communication and management, but this implementation has not been optimized.
PVM is a parallel distributed computing environment. It not only provides a point-to-
point communication scheme, but also provide process management and many other
facilities. It is better to implement a parallel distributed algorithm on PVM than on
RPC.

In a network-based parallel computing environment, we need some load balanc-

ing technique to combat imbalance. We investigated static and dynamic load balance

152

methods and found that dynamic load balance based on an data parallelism scheme
is suitable for our algorithm and achieves better results. However dynamic load bal-
ancing requires that each sub-task be the same. We need to arrange this, if possible,
so that more computing tasks can benefit from this load balance.

For parallel stack filtering, we can use the dynamic load balancing technique to
enhance the parallel algorithm. Also, an adaptive stack-filtering algorithm can be
implemented on the interactive stack filtering system. For modelling general noisy
signals, we can implement local inverse IFS algorithms with the local cross-validation
technique. Another possible research topic for local IFS which we do not address in
this thesis is that of fractal compression. For a compression problem, our aim is to
find the minimum number of self-affine region subject to a given error limit. The

problem of compression is still open.

153

APPENDIX A

FUNCTION PROTOCOLS OF INTERACTIVE PARALLEL DISTRIBUTED
COMPUTING ENIRONMENT

A.1. Binding the PVM User Interface Library with Tcl Language

, We define here all protocols of functions of Tcl-based PVM user interface library.

Most of contents come from reference manual pages of PVM 3.2.

NAME: pvmladdhosts — Adds one or more hosts to the virtual machine.
SYNOPSIS: pvmladdhosts hosts N.

PARAMETERS: hosts — LIST returning the host names.
N — the number of the hosts.

RETURN: LIST of info, host,-start-code,- - -,hosty-start-code.
info — integer status code. info < 0 indicates an error.
host;-start-code — integer returning the start code of the host 4.

NAME: pvmladvise — Advises PVM to use direct task-to-task routing (TCP) or

not.
PARAMETERS: route — integer advising PVM to set up direct task-to-task
(TCP) links.

PvmDontRoute (1) — don’t allow direct links to this task.
PvmAllowDirect (2) — allow but don’t request direct links.

| SYNOPSIS: pvmladvise route.

|

|

‘ PvmRouteDirect (3) — request direct links.

RETURN: info - integer status code. info < 0 indicates an error.

NAME: pvmlbufinfo— Returns information about the requested message buffer.
SYNOPSIS: puvmlibufinfo hufid.

PARAMETERS: bufid - integer specifying a particular message buffer identi-
fier.
RETURN: LIST of info, bytes, msgtag, tid.
info - integer status code. info < 0 indicates an error.
bytes — integer returning the length in bytes of the entire message.
msgtag — integer returning the actual message label.
tid — integer returning the source of the message.

154

NAME: pvmlconfig— Return information about the present virtual machine con-

figuration.
SYNOPSIS: pumliconfig
PARAMETERS:

RETURN: LIST of info, nhost, narch, hostlist.
info — integer status code. info < 0 indicates an error.

nhost — integer returning the number of hosts (pvinds) in the virtual machine.
narch — interger returning the number of different data formats being used.

hostlist ~ LIST of hi_tid, hi_name, hi_mtu, hi_speed.
hi-tid — pvmd’s task ID; hi.name — pvmd’s name;
hi_mtu — pvind’s architecture; hi_speed — pvind’s relative speed.

NAME: povmlidelhost — Deletes one or more hosts from the virtual machine.
SYNOPSIS: pvmldelhost hostnames N.

PARAMETERS: hostnames — LIST returning the host names,
N — integer returning the number of hosts.

RETURN: LIST of info, hosty-error-code, - -+, hosty-error-code.
If any value less than zero, the corresponding error appears.

NAME: pvmlezit — Tells the local pvind that this process is leaving PVM.
SYNOPSIS: pvmlezit
PARAMETERS:

RETURN: info - integer status code. info < 0 indicates an error.

NAME: pvmlfreebuf — Disposes of a message buffer.
SYNOPSIS: puvmlifreebuf bufid

PARAMETERS: bufid — integer message buffer identifier.
RETURN: info - integer status code. info < 0 indicates an error.

NAME: pvmlgetopt — Returns the value of various PVM library options.
SYNOPSIS: pvmligetopt what.

PARAMETERS: what - integer defining what option is being selected.
also pvmlisetopt.

RETURN: val - integer returning the value of the option.

See

185

NAME: pumlgetrbuf— Returns the message buffer identifier for the active receive

buffer.
SYNOPSIS: pumligetrbuf
PARAMETERS:

RETURN: bufid - integer returning message buffer identifier for the active re-
ceive buffer.

NAME: pomlgetsbuf — Returns the message buffer identifier for the active send

buffer.

SYNOPSIS: pvmlgetsbuf

PARAMETERS:

RETURN: bufid - integer returning message buffer identifier for the active send
buffer.

NAME: pvmlhalt — Shuts down the entire PVM system.
SYNOPSIS: puvmlhalt

PARAMETERS:

RETURN: info ~ integer status code. info < 0 indicates an error.

NAME: pvmlinitsend — Clear default send buffer and specfy message encoding.
SYNOPSIS: pumlinitsend encoding

PARAMETERS: encoding — integer specify the next message’s encoding
scheme.
PvmDataDefault (0) — XDR if heterogeneous;
PvmDateRaw (1} — no encoding;
PvmDatalnPlace (2) — data left in place.

RETURN: bufid - integer returned containing the message buffer identifier and
bufid < 0 indicate an error.

NAME: puvmlkill - Terminates a specified PVM process.
SYNOPSIS: pumlkill tid

PARAMETERS: tid - integer task identifier of the PVM process to be killed
(not yourself).

RETURN: info - integer status code. info < 0 indicates an error.

1

NAME: puvmImcast — Multicasts the data in the active message buffer to a set
of tasks.

SYNOPSIS: puvmlImcast tids N msgtag

PARAMETERS: tids —integer LIST containing the task IDs of the tasks to be
sent to.
N - integer specifying the number of tasks to be sent to.
msgtag— integer message tag (geq0) supplied by the user.

RETURN: info - integer status code. info < 0 indicates an error.

NAME: puvmimstat — Returns the status of a host in the virtual machine.
SYNOPSIS: puvmImstat hostname
PARAMETERS: hostname - string specifying the host name.

RETURN: mstat — integer returning machine status, PvmOk, PvmNoHost,
PvmHostFail.

NAME: pvmlImytid — Enrols this process into PVM on its first call and returns
the tid of the process on every call.

SYNOPSIS: puvmImytid
PARAMETERS:
RETURN: tid - integer returning task identifier of the calling PVM process.

NAME: pvminotify — Notify a set of tasks about some event.
SYNOPSIS: puminetify what msgtag ntask tids

PARAMETERS: what - integer identifier of what event should trigger the no-
tification, PvmTaskFxzil, PvmHostDelete, PvmHostAdd.
msgtag — integer message tag to be used in notification.
ntask — integer specifying the length of the tids list.
tids — integer LIST specifying the task IDs to be notified.

RETURN: info - integer status code. info < 0 indicates an error.

6

157

NAME: pvmlinrecv— Non-block receive.

SYNOPSIS: pumlInrecv tid msgtag

PARAMETERS: tid - integer task identifier of sending process supplied by the
user, a -1 matching any tid (wildcard).
msgtag — integer message tag supplied by the user, -1 matching any message
tag.

RETURN: bufid - integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

NAME: pvmlIpk - Pack the active message buffer with a list of prescribed data.

SYNOPSIS: pumlipkbyte bytelist nitem stride;
pvmlIpkshort shortlist nitem stride;
pumlIpkint intlist nitem stride;
pvmipkdouble doublelist nitem stride;
pumlipkfloat floatlist nitem stride;
pvmlIpkstr strname.

PARAMETERS: nitem - the total number of items to be packed.
stride ~ The stride to be used when packing the items.
bytelist — bytes LIST to be packed.
shortlist ~ short integers LIST to be packed.
intlist — integers LIST to be packed.
doublelist — double precision real LIST to be packed.
floatlist — single precision real LIST to be packed.
strname — character string name to be packed.

RETURN: info - integer status code. info < 0 indicates an error.

NAME: pvmlparent — Returns the tid of the process that spawned the calling
process.

SYNOPSIS: pvmliparent
PARAMETERS:

RETURN: tid - integer returning the task identifier of the parent of the calling
process.

NAME: pvmliperror — Prints the error status of the last PVM call.
SYNOPSIS: pumliperror msg

PARAMETERS: msg — character string supplied by the user which will be
prepended to the error message of the last PVM call.

RETURN: info - integer status code. info < 0 indicates an error.

T ——— m——_—— e e

158

NAME: pvmlprobe — Check if message has arrived.
SYNOPSIS: pvmliIprobe tid msgtag.

PARAMETERS: tid —integer task identifier of sending process supplied by the
user.
msgtag — integer message tag supplied by ther user.

RETURN: bufid - integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

NAME: pvmlipstat - Returns the status of the specified PVM process.
SYNOPSIS: pvmlipstat tid.
PARAMETERS: tid — integer task identifier of the PVM process in question.

RETURN: status — integer returns the status of the PVM process identified by
tid, PomOk, PvmNoTask , PvmBadParam.

NAME: pvmlrecv— Blocks until a message with specified message tag has arrived
from the specified source and places it in a new active receive buffer.

SYNOPSIS: puvmlrecv tid msgtag
PARAMETERS: tid —integer task identifier of sending process supplied by the

user.
msgtag — integer message tag supplied by the user.

RETURN: bufid - integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

NAME: pvmlsend - Immediately sends the data in the active message buffer.
SYNOPSIS: pumlisend tid msgtag

PARAMETERS: tid - integer task identifier of destination process.
msgtag — integer message tag supplied by the user.

RETURN: info — integer status code. info < 0 indicates an error.

NAME: pvmlsendsig — Sends a signal to another PVM process.
SYNOPSIS: puvmlsendsig tid signum.,

PARAMETERS: tid - integer task identifier of PVM process to receive the
signal,
signum - integer signal number.

RETURN: info - integer status code. info < 0 indicates an error.

159

NAME: puvmlserror —~ Sets automatic error message printing on or off for subse-
quent PVM calls by this process.

SYNOPSIS: pumlserror set.

PARAMETERS: set —integer defining whether detection is to be turned on (1)
or off (2).

RETURN: oldset — integer defining the previous setting of pvmIserror.

NAME: pvmlsetopt — Sets various PVM library options.
SYNOPSIS: pumlisetopt what vat.

PARAMETERS: what - Integer defining what is being set. Options in-
clude: PvmRoute(1l), PvmDebugMask(2), PvmAutoErr(3), PvmOutput-
Tid(4), PvmTraceTid(6), PvmTraceCode(7), PvmIragSize(8).
val — integer specifying new setting of option.

RETURN: oldval — integer returning the previous setting of the option.

NAME: pvmlsetrbuf - Switches the active receive bufler and saves the previous
buffer.

SYNOPSIS: pvmisetrbuf bufid.

PARAMETERS: bufid - integer specifying the message buffer identifier for the
new active receive buffer.

RETURN: oldbuf — integer returning the message buffer identifier for the pre-
vious active receive bufler.

NAME: pvmlsetsbuf — Switches the active send buffer.
SYNOPSIS: pumlsetsbuf bufid.

PARAMETERS: bufid —integer the message buffer identifier for the new active
send buffer.

RETURN: oldbuf - integer returning the message buffer identifier for the pre-
vious active send buffer.

160

NAME: pvmlspawn — Starts new PVM process.
SYNOPSIS: pumlispewn task argv flag where ntask

PARAMETERS: task — character string containing the executable file name of
the PVM process to be started.
argv — LIST of arguments to the executable with the end of the LIST by
NULL (-1).
flag — integer specilying spawn options, PomTaskDefault(0), Pvm-
TaskHost(1), PvmTaskArch(2), PvmTaskDebug(3), PvmTaskTrace(4).
where — character string specifying where to start the PVM process, which
depending on the value of flag.
N - integer specifying the number of copies of the executable to start up.
RETURN: LIST of numt, host-tid, - -,host y-tid.
numt — integer returning the actual number of tasks started.
host;-tid — integer returning the task identifier of new process. Value < 0
indicate an error.

NAME: pvmlstart_pvmd — Starts new PVM daemon.
SYNOPSIS: pvmlistari_pvmd argv argv block

PARAMETERS: argc — number of arguments in argv.
argv — LIST of arguments to the executable with the end of the LIST by
NULL (-1).
block — integer specifying whether to block until startup complete or return
immediately.

RETURN: info - integer status code. info < 0 indicates an error.

NAME: pvmltasks — Returns information about the tasks running on the virtual
machine.

SYNOPSIS: puvmltasks where

PARAMETERS: where — integer specifying what stasks to return information
about. 0 for all the tasks on the virtual machine; pvmd tid for all tasks on a
given host; tid for a specific task.

RETURN: LIST of info, ntask, tasklist.
info - integer status code. info < 0 indicates an error.
ntask — integer returning the number of tasks being reported on.
tasklist — LIST of ti_-tid, ti_ptid, ti_host, tiflag, ti_a.out.
ti_tid — its task ID; ti_ptid — parent tid; ti-host — pvmd task ID;
ti_flag — status flag (waiting for a message, waiting for the pvind, running);
ti_a.out — the name of this task’s executable file.

161

NAME: puvmltidiohost — Returns the host of the psecified PVM process.
SYNOPSIS: pumltidtohost tid.
PARAMETERS: tid — integer task identifier of the PVM process in question.

RETURN: dtid - integer returns the tid of the host’s pvmd or a negative value
if an error.

NAME: pvmlupk - Unpack the active message buffer into arrays of prescribed
data type.

SYNOPSIS: pvmlupkbyte bytelist nitem stride;
pumlupkshort shortlist nitem stride;
pomlupkint intlist nitem stride;
pvmlupkdouble doublelist nitem stride;
pvmlupkfloat floatlist nitem stride;
pvmlupkstr strname.

PARAMETERS: nitem - the total number of items to be unpacked.
stride — The stride to be used when unpacking the items.
bytelist — bytes LIST unpacked.
shortlist — short integers LIST unpacked.
intlist — integers LIST unpacked.
doublelist — double precision real LIST unpacked.
floatlist — single precision real LIST unpacked.
strname — character string name unpacked.

RETURN: info - integer status code. info < 0 indicates an error.

NAME: zablon - Start monitoring and debugging PVM with Xab.
SYNOPSIS: =zablon

PARAMETERS:

RETURN:

NAME: =zabloff - End monitoring and debugging PVM with Xab.
SYNOPSIS: zabloff

PARAMETERS:

RETURN:

162

NAME: zablshowEvents — Selects event types to be displayed.
SYNOPSIS: azablshowFEvenis flags.

PARAMETERS: flags — integer specifying the events to be displayed in abmon.
XAB_NONE, XAB.SENDREC, XAB_PACK, XAB_INFO,
XAB.CONTROL, XAB.DYNAMIC, XAB.GROUP, XAB.SIGNAL,
XAB_BUFFER, XAB_FRROR, XAB_ALL, XAB_.COMMON.

RETURN:

NAME: =zablbufEvents — Sets the event buffering of a user process.
SYNOPSIS: aablbufFEvents num.

PARAMETERS: num - integer specifying the buffer size. A user process will
store num events before sending them to abmon

RETURN:

A.2. General Binary Data (GBOX) Processing Functions

NAME: gblcreate — Create a new GBOX data structure and a hash table item.
SYNOPSIS: gblcreate

PARAMETERS:

RETURN: gboxname — returnning the new GBOX string name.

NAME: gbldestroy— Destroy a old GBOX data structure and a hash table item.
SYNOPSIS: gbldestroy gbox, -+ ghozy

PARAMETERS: gboz; — GBOX string name to be destroyed.

RETURN:

163

NAME: gblpush — Push new data into GBOX.
SYNOPSIS: ¢blpush ghoxname mode data packstate.

PARAMETERS: gboxname - GBOX string name.
mode — integer specifying the data mode; 0 for character, 1 for short integer, 2
for integer, 3 for long integer, 4 for single precision real, 5 for double precision
real, 6 for unsigned chararcter.
data — LIST of data with ASCII expression.
packstate — integer specifying the packing state; 0 for raw data, 1 for others.

RETURN: nitem — integer returning the number of new data to be pushed.

NAME: g¢blpop — Pop data from GBOX.
SYNOPSIS: gblpush ghoxname mode nitems packstate.

PARAMETERS: ghoxname — GBOX string name.
mode — integer specifying the data mode; See also gbipush.
nitem — integer returning the number of new data to be poped.
packstate — see also gblpush.

RETURN: data— LIST of data with ASCII expression.

NAME: gblstate — State the internal structure of GBOX.
SYNOPSIS: gbldisplay ghoxname.
PARAMETERS: gboxname - GBOX string name.

RETURN: result — LIST of total_size, cur_size, view_pos.
total_size — integer specilying the total size of the GBOX buffer;
cur.size — integer specifying the current data size;
view_pos — integer specilying the current position of view point.

NAME: gblview - View the contents of GBOX.
SYNOPSIS: gblview gboxname mode nitem packstate.

PARAMETERS: gboxname — GBOX string name.
mode — integer specifying the data mode; See also gbIpush.
nitem - integer returning the number of data to be viewed.
packstate — see also gblpush.

RETURN: data— LIST of data with ASCII expression.

164

NAME: gblseek— Move GBOX view_pos to new position.
SYNOPSIS: gblseek ghoxname unit pos mode,

PARAMETERS: gboxname ~ GBOX string name.
unit — string name specifying the data unit of size;
pos — integer specifying the new position;
mode — integer specifying the direction of moving; (0 from the starting, 1
from the current, 2 from the ending position).

RETURN: info - integer status code. info < 0 indicates an error.

NAME: gblfread — Read data from a file.
SYNOPSIS: gblfread filenane
PARAMETERS: filename - character string file name.

RETURN: gboxfile - returning LIST of GBOX file structure.
magic — integer identifying the file type, see also [159];
width — integer specifying the width of data file;
height — integer specifying the height of data file;
maxval/type — integer specify maximum value of two-dimensional data or
one-dimensional data type (see also gblpush);
gboxname — GBOX string name.

NAME: gblfwrite — Write data into a file.
SYNOPSIS: gblfwrite filename ghoxfile

PARAMETERS: filename - character string file name.
ghoxfile — LIST of GBOX file structure, see also gblfread.

RETURN:

165

Definition A.1 modified PPM [159] file structure for one-dimensional data:

e magic: integer number for identifying the file type, P10 for ASCII, P11 for
binary data.

o white-space: (blanks, TABs, CRs, LFs).

o width: formatted as ASCII characters in decimal.

o white-space.

o height: fixed to 1 for the one-dimensional data. again in ASCII decimal.

o while-space.

e lype : maximum color-component value, again in ASCII decimal.

o while-space.

e array: width « height data array.

166

REFERENCES

[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
grams. MI'T Press, 1985.

[2] S. Abenda. Inverse problem for one-dimensional fractal measures via iterated

function systems and the moment method. Inverse Problems, 6:885-896, 1990.

[3] H. Akaike. Statistical prediction identification. ann Inst. Statist. Math., 22:203~
217, 1970.

[4] George S. Almas and Allan Gottlieb. Highly Parallel Computing. The Ben-
jamin/Cummings Publishing Company, Inc., 1989.

[5] L. F. Anson. Fractal image compression. BYTE, pages 195-202, Oct 1993.

[6] G. Arce and N. C. Gallagher. State description for the root-signal set of median
filters. IEEE Trans. Acoust., Speech, Signal Process., 30:894-902, 1982.

[7] G. Arce and N. C. Gallagher. Stochastic analysis for the recursive median filter
process. [EEE Trans. Acoust., Speech, Signal Process., 34:669-679, 1988.

[8] G. R. Arce, N. C. Gallagher, and T. A. Nodes. Median Filters: Theory for
One- and Two-dimensional Filters., Advances in Computer Vision and Image
Processing. JAI Press, T.S.lHuang, ed. edition, 1986.

9] G.R. Arce. Microstatistics in signal decomposition and the optimal filtering

problem. IEEE Trans. Signal Process., 40:2669-2683, 1992.

[10] G.R. Arce and R.E. Foster. Detail preserving ranked-order based filters for
image processing. [EEE Trans. Acoust., Speech, Signal Process., 37:83-98, 1989.

[11] G.R. Arce and M.P. McLoughlin. Theoretical analysis of the max/median filter.
IEEE Trans. Acoust., Speech, Signal Process., 35:960-69, 1987.

[12] P. Asente, R. Swick, and J. McCormack. X window System Toolkit: The Com-
plete Programmer’s Guide and Specification. Digital Press, 1990.

{13] J. Astola, P. Heinonen, and Y. Neuvo. On root structure of median and median-
type filters. IEEE Trans. Acoust., Speech, Signal Process., 35:1199-1201, 1987.

(14] E. Ataman, V. K. Aatre, and K. M. Wong. Some statistical properties of median
filters. IEEE Trans. Acoust., Speech, Signal Process., 29:1073-1075, 1981.

[15]

[16]

[19]
[20]

[21]

[22]

[23]

[24]

(23]

[26]

[27]

167

J.W. Backus, J. Bauer, F.L. Green, C. Katz, J. McCarthy, P. Naur, A.J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A. van Wijngaarden,
and M. Woodger. Report on the algorithmic language algol60. Numer. Math.,
2:106-136, 1960.

Z. Baharav, D. Malah, and E.D. Karnin. Hierarchical interpretation of
fractal image coding and its applications to fast decoding. In Int. Conf.
on Digital Signal Processing, Cyprus, 1993. ftp site: ftp.informatik.uni-
freiburg.de:/papers/fractal/BaM*,

Z. Baharav, D. Malah, and E.D. Karnin. Hierarchical interpretation
of fractal image coding and its application to fast decoding. In Intl
Conf. on Digital Signal Processing, 1993. ftp site: ftp.informatik.uni-
freiburg.de:/papers/fractal/BaM*,

M.F. Barnsley. Iractal functions and interpolation. Constr. Approz., 2:303-
329, 1986.

M.F. Barnsley. Fractal Everywhere. Academic Press, New York, 1988.
M.F. Barnsley. Fractals Fverywhere. New York: Academic, 1988.

M.F. Barnsley and S.G. Dembko. Iterated function systems and the global con-
struction of fractals. Proc. . Soc. London A, 399:243-275, 1985.

M.F. Barnsley, J. Elton, and P. Massopust. Hidden variable fractal interpola-
tion functions. SIAM J. Math. Anal., 20:1221-1242, 1989.

M.F. Barnsley and J.H. Elton. A new class of Markov processes for image
encoding. Adv. appl. Prob., 20:14-33, 1988.

M.F. Barnsley, J.H. Elton, and D.P. Hardin. Recurrent iterated function sys-
tems. Constr. Approx., 5:3-31, 1989,

M.F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster. Solution of an inverse
problem for fractals and other sets. Proc. Natl. Acad. Sci. USA, 83:1975-1977,
1986.

M.F. Barnsley and A.N. Harrington. The calculus of fractal interpolation func-
tions. J. Approx. Theory, 57:14-34, 1989.

M.F. Barnsley and L.P. Hurd. Fractal Image Compression. AK Peters, Ltd.,
1993.

[28]

[29]

(31]

[32]

3]

[37]

[38]

[39]

168

M.F. Barnsley and A.D. Sloan. A better way to compress images. BYTE, pages
215-223, Jan. 1988.

K.U. Barthel and T. Voyé. Adaptive fractal image coding in the frequency
domain. In Proc. of Int. Workshop on Image Process., pages 20-22, Budapest,
Hungary, 1994. ftp site: ftp.informatik.uni-freiburg.de:/papers/fractal/BaV*.

BBN. Parallel computing, past, present and future. Technical report, BBN
Advanced Computers Inc., Cambridge, MA, November 1990.

J.M. Beaumont. Image data compression using fractal techniques. BT Technol
J., 9:93-109, 1991.

J.B. Bednar and T.L. Watt. Alpha-trimmed means and their relationship to
the median filters. IEEE Trans. Acoust., Speech, Signal Process., 32:145-153,
1987.

A.L. Beguelin. Xab: A tool for minitoring pvim programs. Techni-
cal report, School of Computer Science, Carnegie Mellon University, ftp
Site: dao.nectar.cs.cmu.edu (128.2.205.73) /afs/cs.cmu.edu/project/nectar-
adamb/ftp, 1992.

M.A. Berger. Random affine iterated function systems: Curve generation and
wavelets. SIAM Review, 30:713-747, 1981,

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Compu-
tation Numerical Methods. Prentice Hall, Inc., 1989.

W.W. Boles, M. Kanewski, and M. Simaan. Recursive two-dimensional median
filtering algorithms for fast image root extraction. IEEE Trans. Circuit Syst.,
35:1323-1326, 1988.

A. C. Bovik. Streaking in median filtered images. IEEE Trans. Acoust., Speech,
Signal Process., 35:493-503, 1987,

A. C. Bovik, T. S. Huang, and D. C. Munson. The effect of median filtering

on edge estimation and detection. IFEE Trans. Pattern Anal. Machine Intell.,
9:181-194, 1987.

A.C. Bovik and T.S. Huang. A generalization of median filtering using linear
combinations of order statistics. IEEE Trans. Acoust., Speech, Signal Process.,
31:1342-1349, 1983.

[40]

[41]

[42]

[43]

[44]

[45]

[47]

169

J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson,
and R. Stevens. Portable Programs for Parallel Processors. Holt, Rinehart, and
Winston, 1987.

P.J. Brockwell and R.A. David. Time series: Theory and Method. Springer-

Verlag, second edition edition, 1991.

D.R.K. Brownrigg. Weighted median filters. Commun. Ass. Comput. Mach.,
27:807-818, 1984.

Ralph Butler and Ewing Lusk. User’s guide to the p4 programming system.
Technical Report ANL-92/17, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, October 1992.

C. Cabrelli, U. Molter, and R. Vrscay. Recurrent [lerated Function Systems:
Invariant Measures, A Collage Theorem and Moment Relations, pages 71-80.
Fractals in the Fundamental and Applied Sciences. Elsevier Science Publishers

B.V. (North-Holland), peitgen, h.-o. and henriques, j.m. and penedo, 1.f. edition,
1991.

Fah-Chun Cheong. OASIS: An agent-oriented programming language for het-
erogenecous distributed environment. PhD thesis, The University of Michigan,

1992. School of Computer Science and Engineering.

W.0 Cochran, J.C. Hart, and P.J. Flynn. Fractal volume compression.
Technical report, Washington State University, School of EECS, ftp site:
ftp.informatik.uni-freiburg.de: /papers/fractal/Guide*, 1994.

W.0O. Cochran, J.C. Hart, and P.J. Fiynn. Fractal volume compression.
Technical report, Washington State University, School of EECS, fip site:
ftp.informatik.uni-freiburg.de: /papers/fractal/Guide*, 1994.

Bruno Codenotti and Mauro Leoncini. Iniroduction to Parallel Processing.

Addison-wesley Publishing Company, 1992.

E.J. Coyle and J.H. Lin. Stack filters and the mean absolute error criterion.
IEEE Trans. Acoust., Speech, Signal Process., 36:1244-1254, 1988.

E.J. Coyle, J.H. Lin, and M. Gabbouj. Optimal stack filtering and the esti-
mation and structural approaches to image processing. IEEE Trans. Acoust.,
Speech, Signal Process., 38:955-968, 1990.

ftp://ftp.informatik.uni-freiburg.de
ftp://ftp.informatik.uni-freiburg.de

[51]

[52]

53]

[54]

[53]

(56]

[57]

[59]

[60]

[61]

170

R.J. Crinon. The wilcoxon filter: A robust filtering scheme. In Proc. [EEE
Symp. Circuits and Systems, 1985.

I. Daubechies. The wavelets transform, time-frequency localization and signal
analysis. IFEFE Trans. Inform. Theory, 36:961-1005, 1990.

H.A. David. Order Statistics. New York: Wiley, 1981.

F. Davoine, E. Bertin, and J.M. Chassert. From rigidity to adaptive tessella-
tions for fractal image compression: comparative studies. In IFEE 8th Work-
shop on Image and Multi-dimensional Signal Process., Cannes, 1993. ftp site:

ftp.informatik.uni-freiburg.de:/papers/fractal /Dab*.

F. Davoine and J.M. Chassert. Adaptive delaunay triangulation for attractor
image coding. In 12th Int. Conf. on Pattern Recognition, Jerusalem, 1994. ftp

site: ftp.informatik.uni-freiburg.de:/papers/fractal/Dab*.

J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Integrated pvm
framework supports heterogeneous network computing. Technical report,
Oak ridge National Laboratory and University of Tennessee, ftp Site:

ttp.mathcs.emory.edu /pub/vss, January 1993.

C. C. Douglas, T. G. Mattson, and M. H. Schultz. Parallel programming sys-
tems for workstation clusters. Technical Report TR-975, Yale University De-
partment of Computer Science, ftp site: ftp.cs.yale.edu /pub/TR, 1993.

D. EBerly, H. Longbotham, and J. Aragon. Complete classification of roots to
one-dimensional median and rank-order filters. IEEE Trans. Signal Process.,
39:197-200, 1991.

Y. Fisher. A Discussion of Fractal Image Compression, pages 903-919. Chaos
and Fractals. Springer Verlag, peitgen, h.o. and jurgens, h. and saupe, d. eds.
edition, 1992.

Y. Fisher. Fractal Image Compression. ACM SIGGRAPH. Prusinkiewicz,
p. (ed) edition, 1992. Course Notes, ftp site: legendre.ucsd.edu:
/pub/Reasearch /Fisher.

J. P. Fitch, E. J. Coyle, and N. C. Gallagher. Root properties and convergence
rates for median filters. IEEE Trans. Acoust., Speech, Signal Process., 33:230—
240, 1985.

ftp://ftp.informatik.uni-freiburg.de
ftp://ftp.mathcs.emory.edu
ftp://ftp.cs.yale.edu

(62]

(63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

171

J.P. Fitch, E.J. Coyle, and N.C. Gallagher. Median filtering by threshold de-
composition. IEEE Trans. Acoust., Speech, Signal Process., 32:1183-1189, 1984.

J.P. Fitch, E.J. Coyle, and N.C. Gallagher. Threshold decomposition of mul-
tidimensional rank order operators. [EEFE Trans. Circuits Syst., 32:445-450,
1985.

P. Flandrin. On the spectrum of fractional brownian motions. [EEE Trans.
Information Theory, 35:197-199, 1989.

P. Flandrin. Wavelet analysis and synthesis of fractional brownian motion.

IEEE Trans. Information Theory, 38:910-917, 1992.

J. D. Foley and A. Van Dam. Fundamentals of Interactive Computer Graphics.
Addison-wesley Publishing Company, Inc., 1982.

Message Passing Interface Forum. Mpi: A message-passing interface standard,
April 1994. ftp site: netlib2.cs.utk.edu /mpi/draft-final.ps.

R. F. Freund and H. J. Siegel. Heterogeneous processing. Computer, 26(6):13-
17, June 1993.

M. Gabbouj and E.J. Coyle. Minimum mean absolute error stack filtering with
structural constraints and goals. IFEE Trans. Acoust., Speech, Signal Process.,

38:955-968, 1990.

N. C. Gallagher and G. L. Wise. A theoretical analysis of the properties of

the median filter. IEEE Trans. Acoust., Speech, Signal Process., 29:1135-1141,
1981.

Z.J Gan and M. Mao. Two convergence theorems on the deterministic proper-
ties of median filters. IEEE Trans. Signal Process., 39:1689-1691, 1991.

P.P. Gandhi and 5.A. Kassam. Performance of some rank filters for edge pre-
serving smoothing. In Proc. IEEE Symp. Circuits and Systems, pages 264-267,
1987.

P.P. Gandhi, I. song, and S.A. Kassam. Nonlinear smoothing filters based

on rank estimates of location. IEEE Trans. Acoust., Speech, Signal Process.,

37:1359-1379, 1989.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM 3 User’s Guide and Reference Manual, version 3.1 edition, 1993.

|

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[85]

[36]

(87]

172

G. Geist and V. Sunderam. Network-based concurrent computing on the pvm

system. Concurrency: Practice and Fuperience, 4(4):293-311, June 1992.

G. A. Geist and V. S Sunderamm. The evolution of the pvm concurrent comput-
ing system. In 38th Annual IEEE Computer Soc Int. Computer Conf. (COM-
PCON Spring 93), pages 549-557, 1993.

D. Gelernter. Generative communications in Linda. ACM Transactions on

Programming Languages and Systems, 7(1):80-112, January 1985.

David Gelernter. Multiple tuple spaces in Linda. In PARLFE 89, pages 20-27.
Springer-Verlag, June 1989. Volume 366 of Lecture Notes in Computer Sciences.

J.S. Geronimo and D. Hardin. Fractal interpolation surfaces and a related 2-d

multiresolution analysis. J. of Math. Analysis and App., 2:561-586, 1993.

A. Gersho and R.M. Gray. Vector Quantization and Signal Compression.
Kluwer Acad. Press, 1991.

E.N. Gilbert. Lattice-theoretic properties of frontal switching functions. J.
Math. Phys., 33:57-67, 1954,

D. Goldberg. Genetic algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

S. Graf. Barnsley’s scheme for the fractal encoding of images. J. of Complexity,
8:72-78, 1992.

B. K. Grant and A. Skjellum. The pvm systems:an in-depth analysis and doc-
umenting study. Technical report, Lawrence Livermore National Laboratory,
Numerical Mathematics Group, Livermore, CA 94550, September 1992.

Andrew 5. Grimshaw. Meta-systems: an approach combining parallel pro-
cessing and heterogeneous distributed computing systems. In Proceedings 1992
Workshop on Heterogeneous Parallel Processing, International Parallel Process-

ing Symposium, 1992.

F. Hampel, E. Roncheti, P. Rousseevw, and W. Stahel. Robust Statistics: an
approach Based on Influence Functions. New York: Wiley, 1986.

C.R. Handy and G. Mantica. Inverse problems in fractal construction: Moment
method solution. Physica D, 43:17-36, 1990.

173

[88] R.M. Haralick, S.R. Sternberg, and X. Zhuang. Image analysis using mathe-
matical morphology. IEEE Trans. Paltern Anal. Machine Intell., 9:532-550,
1987.

i89] R. J. Harrison. Portable tools and applications for parallel computers. Inter-
national Journal of Quantum Chemistry, 40:847-863, 1991.

[90] P. Heinonen and Y. Neuvo. Fir-median hybrid filters. IEEE Trans. Acoust.,
Speech, Signal Process., 35:332-838, 1987.

[91] G. Heygster. Rank filters in digital image processing. Computer Vision, Graph-
ics and Image Processing, 19:148-164, 1982.

[92] Roger W. Hockney and C. R. Jesshope. Parallel Computer 2: Architecture,
Programming and Algorithms. ZOP Publishing Ltd, second edition, 1988.

[93] J. Holland. Adaptation in Natural and Artificial Systems. Univ. Mich. Press,
1975.

[94] K.M. Hornik. Approximation capabilities of multilayer feedforward networks

are universal. Neural Network, pages 251-257, 1991.

[95] G. Howlett. BIt toolkit library based on tk toolkit, 1994. ftp site: har-
bor.ecn.purdue.edu /pub/tcl/extensions/BLT*.

[96] J. Hutchinson. Fractal and self-similarity. Indiana Univ. J., 30:713-747, 1981.

[97] Kai Hwang and Fayé A. Briggs. Computer Architecture and Parallel Processing.
McGraw-Hill Book Company, 1984.

[98] Statistical Sciences Inc. S-plus user’s manual, 1991. Manual.

[99] E.W. Jacobs, Y. Fisher, and R.D. Boss. Image compression: A stud of the
iterated transform method. Signal Process., 29:251-263, 1992.

[100] A.E. Jacquin. A Fractal Theory of Iterated Markov Operators with Applications
to Digital Image Coding. Phd thesis, Georgia Institute of Technology, 1989.

[101}] A.E. Jacquin. Fractal image coding based on a theory of iterated contractive
image transformations. In Proc. SPIE’s Visual Communications and Image
Processing, pages 227-239, 1990.

[102] A.E. Jacquin. A novel fractal block-coding technique for digital images. In
Proc. ICASSP, pages 2225-2228, 1990.

[103]

[104]

[105]

[106]

[107]

[108)

[109]

(110)

[111]

[112]

[113]

[114]

[115]

[116]

174

A.E. Jacquin. Image coding based on a fractal theory of iterated contractive

image transformations. IFEE Trans. on Image Processing, 1:18-30, 1992.

A.E. Jacquin. Fractal image coding: A review. Proc. of the I[EEE, 81:1451-
1465, 1993.

B. I. Justusson. Median Filter: Statistical Properties. Two-Dimensional Digital

Signal Processing II. Springer Verlag, T.S.Huang, ed. edition, 1981.

L.M. Kaplan and C.-C. J. Kuo. Fractal estimation from noisy data via discrete
fractional gaussian noise (DFGN) and the haar basis. [EEE Trans. Signal
Process., 41:3554-3563, 1993.

B. K. Kar. A new algorithm for order statistic and sorting. IEEE Trans. Signal
Process., 41:2688-2694, 1993.

B.W. Kernighan and D.M. Ritchie. The UNIX Programming Environment.
Prentice Hall, Inc., 1984.

M.S. Keshner. 1/{ noise. Proc. of the IEEE, 70:212-218, 1982.

5.J. Ko and Y.H. Lee. Center weighted median filters and their applications to
image enhancement. IEEE Trans. Circuits Syst., 38:984-993, 1991.

D. J. Kuck. A survey of parallel machine organization and programming. Com-
put. Surv., 9:29-59, 1977.

H. T. Kung, Robert Sansom, Steven Schlick, Peter Steenkiste, Matthieu
Arnould, Fracois J. Bitz, Fred Christianson, Eric C. Cooper, Onat Menzil-
cioglu, Denise Ombres, and Brian Zill. Network-based multicomputers: an

emerging parallel architecture. In Proceedings Supercomputing 91, pages 664—
673, November 1991,

J.H. LEE and J.S. Kao. A fast algorithm for two-dimensional wilcoxon filtering.
In Proc. IEEE Symp. Clircuits and Systems, pages 268-271, 1987.

E. L. Lehmann. Theory of Point Estimation. New York: Wiley, 1983.

F. Thomson Leighton. Introduction To Parallel Algorithms and Architectures:

ARRAY.TRESS.HYPERCUBES. Morgan Kaufmann Publishers, Inc., 1992.

J.H. Lin and E.J. Coyle. Minimum mean absolute error estimation over the
class of generalized stack filters. IEEE Trans. Acoust., Speech, Signal Process.,
38:663-678, 1990.

[117]

118]

[119]

120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

175

J.H. Lin, T.M. Sellke, and E.J. Coyle. Adaptive stack filtering under the mean
absolute error criterion. IEEE Trans. Acoust., Speech, Signal Process., 38:938-
954, 1990.

Y. Lin, J. Astola, and Y. Neuvo. A new class of nonlinear filters—neural filters.
IEEE Trans. Acoust., Speech, Signal Process., 38:663-678, 1990.

Y. Lin, J. Astola, and Y. Neuvo. Adaptive stack filtering with application to
image processing. [EEE Trans. Acoust., Speech, Signal Process., 41:162-184,
1993.

H.G. Longbotham and A.C. Bovik. Theory of order statistic filters and their
relationships to linear fir filters. [EEE Trans. Acoust., Speech, Signal Process.,
37:257-287, 1989.

M. Lottor. Internet growth (1981-1991). Request for Comment 1296, Network

Information Systems Center, SRI International, January 1992.

M.P. Loughlin and G.R. Arce. Deterministic properties of the recursive sepa-
rable median filter. IEEE Trans. Acoust., Speech, Signal Process., 35:98-106,
1987.

T. Lundahl, W.J. Ohley, S.M. Kay, and R. Siffert. Fractional brownian motion:
A maximum likelihood estimator and its application to image texture. IEEE
Trans. Medical Imaging, M1-5:152-161, 1986.

Rusty Lusk and Ralph Butler. Portable parallel programming with p4. In Pro-
ceedings of the Workshop on Cluster Computing, Tallahassee, FI,, December
1992. Supercomputing Computations Research Institute, Florida State Univer-
sity. Proceedings available via anonymous ftp from ftp.scri.fsu.edu in directory

pub/parallel-workshop.92.

P. Mackerras. photo: Tk widget for image display, 1994. Dept. of Computer
Science, The Australian National University, ftp site: harbor.ecn.purdue.edu

/pub/tcl/extensions/photo*.

S5.G. Mallat. A theory for multiresolution signal decomposition: The wavelets
representation. IEEE Trans. Pattern Anal. Machine Intell., 11:674-693, 1989.

B. Mandelbrot. The Fractal Geometry of Naure. Freeman, San Francisco,,
1982.

ftp://ftp.scri.fsu.edu

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135)]
[136]

[137]

[138]

[139]

[140]

[141]

176

B. Mandelbrot and J.W.V. Ness. Fractional brownian motions, fractional noises
and applications. SIAM Rev., 10:422-437, 1968.

G. Mantica. Chaotic optimization and the construction of fractals: Solution of

an inverse problem. Complex System, 3:37-62, 1989.

G. Mantica. Techniques for solving Inverse Fractal Problems, pages 255-268.
Fractals in the Fundamental and Applies Sciences. Elsevier Science Publisher
B.V. (North-Holland), peitgen, h.-o. and henriques, j.m. and penedo, 1.f. edition,
1991.

P. Maragos and R.W. Schafer. Morphological system for multidimensional sig-
nal processing. Proc IEEFE, 78:690-710, 1989.

A. Matrone, P. Schiano, and V. Puoti. Linda and pvim - a comparison between
2 environments for parallel programming. Parallel Computing, 19(8):949-957,
1993.

D. J. Mayhew. Principles and Guidelines in software User Interface Design.
Prentice Hall, Inc., 1992.

D.S. Mazel and M.H. Hayes. Using iterated function systems to model discrete
sequences. [LEL Trans. on Signal Processing, 40:1724-1734, 1992.

D. R. McNeil. Interactive Data Analysts. John Wiley & Sons, Inc., 1977.
SUN Microsystems. Network programming guide, 1990. Manual.

D.M. Monro and IF. Dudbridge. Fractal block coding of images. Flectron. Lett.,
28:1053-1055, 1992.

D.M. Monro and F. Dudbridge. Fractal block coding of images. Flectron. Letl.,
29:362-363, 1993.

P. Morrison and E. Morrison. Charles Babbage and his Calculating FEngines,
page 244. New York: Dover, 1961.

S. Muroga. threshold Logic and Its Applications. New York: wiley Interscience,

1971.

L. Naaman and A.C. Bovik. Least squares order statistic filters for signal
restoration. IEEE Trans. Circut Syst., 38:244-257, 1991.

[142)

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153)

[154]

177

Y. Nakagawa and A. Rosenfeld. A note on the use of local min and max
operations in digital picture processing. [EEE Trans. Syst., Man, Cybern.,
8:632-635, 1978.

J. Neejarvi and Y. Neuvo. sinusoidal and pulse responses of the fir-median
hybrid filters. IEEE Trans. Circuits Syst., 37:1552-1556, 1990.

Dan Nessett and Jim Rathkopf. Computing on heterogeneous supercomputer
clusters. In Proceedings of the Workshop on Cluster Compuling, Tallahassee,
FL, December 1992. Supercomputing Computations Research Institute, Florida

State University. Proceedings ftp site: ftp.scri.fsu.edu.

T.A. Node and N.C. Gallagher. Median filters: some modifications and their
properties. TEEFE Trans. Acoust., Speech, Signal Process., 30:739-746, 1983.

T.A. Node and N.C. Gallagher. Two-dimensional root structure and conver-
gence properties of the separable median filter. IEEE Trans. Acoust., Speech,
Signal Process., 31:1350-1365, 1983.

T.A. Nodes and N.C. Gallagher. Median some modifications and their proper-
ties. IEEE Trans. Acoust., Speech, Signal Process., 30:739-746, 1982.

T.A. Nodes and N.C. Gallagher. Median some modifications and their proper-
ties. IKEE Trans. Acoust., Speech, Signal Process., 31:1350-1365, 1983.

M.G. Norman and P. Thanisch. Models of machinese and computation for

mapping in multicomputers. ACM Computing Surveys, 25(3):263-302, 1993.

J. K. Ousterhout. Tcl: An embeddable command language. In Proc. USENIX
Winter Conference, pages 133-146, 1990.

J. K. Ousterhout. An X11 toolkit based on the Tcl language. In Proc. USENIX
Winter Conference, pages 109-115, 1991.

J. K Ousterhout. Tel and the Tk Toolkit. Addison-Wesley Publishing Company,
Inc., 1993.

H.O. Peitgen. The Science of Fractal Images. Springer-Verlag, New York, 1988.

G.E. ®ien, Z. Baharav, S Leps¢y, D. Malah, and E. Karnin. A new
improved collage theorem with applications to multiresolution fractal im-
age coding. In Proc. ICASSP, 1994. ftp site: ftp.informatik.uni-
freiburg.de:/papers/fractal /BaM*.

ftp://ftp.scri.fsu.edu

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

164]

[165]

[166]

[167)

[168]

178

G.E. ®ien, S Leps¢y, and T.A. Ramstad. A inner product space approach to
image coding by contractive transformations. In Proc. ICASSP, pages 2773—
2776, 1991.

G.E. ®ien, S Leps¢y, and T.A. Ramstad. Reducing the complexity of a fractal-
based image coder. In Proc. of Fur. signal Proc. Conf., pages 1353-1356, 1992.

I. Pitas and A. N. Venetsanopoulos. Nonlinear Digital Filters: Principles and
Applications. Boston, MA: Kluwer Academic, 1990.

Ioannis Pitas and A. N. Venetsanopoulos. Order statistics in digital image
processing. Proceedings of the IEEE, 80(12):1892-1921, 1992.

J. Poskanzer. Portable pixmap format. UNIX ‘man page’ manual, 1991.

J.P. Preparata and M.I.S. Shamos. Computational Geometry, an Introduction.

Springer-Verlag, 1988.

P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer-Verlag, New York, 1990.

B. Ramamurthi and A. Gersho. Classified vector quantization of images. IEEE
Trans. on Commun., 34:1105-1115, 1986.

J. Ramanathan and O. Zeirouni. On the wavelet transform of tractional brow-
nian motion. IFEE Trans. Information Theory, 37:1156-1158, 1991.

O. Rioul and M. Vetterli. Wavelets and signal processing. IEEE Signal Process.
Mayg., 8:14-38, 1991.

Yves Robert. The Impact of Vector and Parallel Architectures on the Gaussian
Elimination Algorithm. Manchester University Press, 1990.

D. Saupe. Breaking the time complexity of fractal image compression.
Technical report, Universittat Freiburg, Institute fiir Informatik, ftp site:

ftp.informatik.uni-freiburg.de: /papers/fractal/Saup™, 1994.

D. Saupe and R. Hamzaoui. A guided tour of the fractal image compression
literature. Technical report, Universitat Freiburg, Institute fir Informatik, ftp

site: ftp.informatik.uni-freiburg.de: /papers/fractal/Guide*, 1994.

R. Scheifler, J. Gettys, J. Flowers, R. Newman, and D. Rosenthal. X Window
System: The Complete Guide to Xlib, Xprotocol, ICCCM, XLFD. Digital Press,

second edition, 1990.

ftp://ftp.informatik.uni-freiburg.de

(169]

[170]

(171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

179

D. T. Schmidt and V. S. Sunderam. Empirical-analysis of overheads in cluster

environments. Concurrency-Practice and Experience, 6(1):1-32, 1994.

R. Shonkwiler. An image algorithm for computing the hausdorfl distance effi-

ciently in linear time. Information Processing Letters, 30:87-89, 1989.

R. Stallman. GNU Emacs Manual, fourth edition, version 7 edition, February
1986.

M. Stone. Cross-validatory choice and assessment of statistical predictions. J.
Roy. Statist. Soc B, 36:111-147, 1974.

V. S. Sunderam. Pvm: A framework for parallel distributed computing. Con-
currency: Practice and Ezperience, 2(4):315-339, December 1990.

V. S. Sunderam. Methodologies and systems for heterogeneous concurrent com-
puting. Technical report, Emory University, Department of Mathematics and

Computer Science, ftp Site: ftp.mathcs.emory.edu /pub/vss, 1993.

V. 5. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The pvm concur-
rent computing system: Evolution, experiences and trends. Technical report,
BEmory University, Department of Mathematics and Computer Science, ftp Site:

ftp.mathcs.emory.edu /pub/vss, 1993.
Daniel Tabak. Multiprocessors. Prentice-Hall Int., Inc., 1990.

J. W. Tukey. Nonlinear (non-superposable) methods for smoothing data. In

Cong. Rec. EASCON’74, 1974.

L. H. Turcotte. A survey of software environments for exploiting networked
computing resources. Technical report, Engineering Research Center for Com-
putational Field Simulation, P.O.Box 6176, Mississippi State, MS 39762, ftp

site: bulldog.wes.army.mil, 1993.

S. G. Tyan. Median Filtering: Deterministic Properties. Two-Dimensional

Digital Signal Processing 1l. Springer Verlag, T.S.Huang, ed. edition, 1981.

E.R. Vrscay. Moment and Collage Methods for the Inverse Problem of Fractal
Construction with Iterated Function Systems, pages 443-459. Fractals in the
Fundamental and Applies Sciences. Elsevier Science Publisher B.V. (North-

Holland), peitgen, h.-o. and henriques, j.m. and penedo, 1.f. edition, 1991.

ftp://ftp.mathcs.emory.edu
ftp://ftp.mathcs.emory.edu

[181]

[182]

[183]

[184]

[185]

[186]

187]

[188]

[189)]

[190]

[191]

[192]

180

E.R. Vrscay and C.J. Roehrig. Iterated function systems and the inverse prob-
lem of fractal construction using moments, pages 250-259. Computers and

Mathematics. springer Verlag, kaltofen, e. and watt, s.m. edition, 1989.

E. Walach and E. Karnin. A fractal based approach to image compression. In
Proc. ICASSP, pages 529-532, 1986.

P.D. Wendt, E.J. Coyle, and N.C. Gallagher. Stack filters. IEEE Trans.
Acoust., Speech, Signal Process., 34:898-911, 1986.

P.D. Wendt, E.J. Coyle, and N.C. Gallagher. Some convergence properties of
median filters. IEEE Trans. Circuits Syst., 34:276-286, 1987.

S. White, A. Alund, and V. S. Sunderam. Performance of the nas parallel
benchmarks on pvm based networks. Technical report, Emory University De-

partment of Mathematics and Computer Science, ftp site: ftp.mathcs.emory.edu
/pub/vss, 1993.

R. Wichman, J. Astola, P. Heinonnen, and Y. Neuvo. Fir-median hybrid filters
with excellent transient response in noisy conditions. IEFEE Trans. Acoust.,
Speech, Signal Process., 38:2108-2117, 1990.

Wim. D. Withers. Newton’s method for fractal approximation. Const. approz-
imation, 5:151-170, 1989.

G.W. Wornell. A karhunen-loéve-like expansion for 1/ f processes via wavelets.

IEEE Trans. Information Theory, 36:859-861, 1990.

G.W. Wornell. Wavelet-based representations for 1/f family of fractal processes.
Proc. of the IEEE, 81:1428-1450, 1993.

G.W. Wornell and A.V. Openheim. Estimation of fractal signals from noisy

measurements using wavelets. IEEE Trans. Signal Process., 40:611-623, 1992.

G.W. Wornell and A.V. Openheim. Wavelet-based representations for a class

of self-similar signals with application to fractal modulation. IEEE Trans. In-
Jformation Theory, 38:785-800, 1992,

O. Yli-Harja, J. Astola, and Y. Neuvo. Analysis of the properties of median
and weighted median filters using threshold logic and stack filter representation.
IEEE Trans. Signal Process., 39:395-410, 1991.

ftp://ftp.mathcs.emory.edu

181

[193] G. J. Yong and T. S. Huang. The effect of median filtering in edge location es-
timation. Computer Vision, Graphics and Image Processing, 15:224-245, 1981.

[194] B. Zeng, M. Gabbouj, and Y. Neuvo. A unified design method for rank order,
stack, and generalized stack filters based on classical bayes decision. [EEE
Trans. Circuits and Syst., 38:1003-1020, 1991.

'GLASGOW |
UNTVEREILY

