
M ETH O DS FOR SIGNAL FILTERING A N D
M ODELLING A N D TH EIR PARALLEL D IST R IB U T E D

C O M PU TIN G IM PLEM ENTATION

A Thesis

by

XIAOKUN ZHU

Subm itted for the degree of

D O C T O R OF PHILOSOPHY

August 1994

U niversity of Glasgow

D epartm ent of Statistics

© X iaokun Zhu, 1994

ProQuest Number: 13834221

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13834221

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

I

ITiSiGOW 1
1 W I V E R S I f I j
1 M BM lf

ABSTRACT

M ethods for Signal F iltering and Modelling and Their Parallel D istribu ted

C om puting Im plem entation. (August 1994)

Xiaokun Zhu, University of Glasgow

Supervisor: Professor D M T itte ring ton

In this thesis the problem of filtering and modelling one-dim ensional discrete

signals and im plem entation of corresponding parallel d istribu ted algorithm s will be

addressed.

In C hapter 2, the research areas of parallel d istributed com puting environm ents,

rank-based nonlinear filter and fractal functions are reviewed.

In C hapter 3, an In teractive Parallel D istributed C om puting Environm ent (IPD C E)

is im plem ented based on Parallel V irtual M achine (PVM) and an in teractive appli

cation developm ent tool, the Tel language. The approach we use is to provide a Tel

version interface for all procedures of the PVM interface library so th a t users can

utilize any PVM procedure to do their parallel com puting interactively.

In C hapter 4, an interactive parallel stack-filtering system is im plem ented, based

on th e IPD C E . T he user can play w ith this filtering system in bo th trad itional com

m and m ode and m odern Graphics User Interface (GUI) mode. In order to reduce the

tim e required to com pute a standard stack filter, a new m inim um threshold decom

position scheme is introduced and other techniques such as m inim izing the num ber

of logical operations and utilizing the CPU bit-fields parallel p roperty are also sug

gested. In this filtering system the user can select sequential or parallel stack-filtering

algorithm s. The parallel d istributed stack-filtering algorithm is im plem ented w ith

equal task partition ing and PVM . Two num erical sim ulations show th a t the in terac

tive parallel stack-filtering system is efficient for both the sequential and the parallel

Ill

filtering algorithm s.

In C hapter 5, an extended Itera ted Function System (IFS) in terpolation m ethod

is in troduced for m odelling a given discrete signal. In order to get the solution of

the inverse IFS problem in reasonable tim e, a suboptim al search algorithm , which

estim ates first the local self-affine region and then the m ap param eters is suggested,

and th e neighbourhood inform ation of a self-affine region is used for enhancing the

robustness of this suboptim al algorithm . The parallel d istribu ted version of the in

verse IFS algorithm is im plem ented with equal task partition ing and using a R em ote

P rocedure Call application program m ing interface library. T he num erical sim ulation

results show th a t the IFS approach achieves a higher signal to noise ratio than does an

existing approach based on autoregressive modelling for self-affine and approxim ately

self-affine one-dim ensional signals and, when the num ber of com puters is sm all, the

speed-up ra tio is alm ost linear.

In C hapter 6, inverse IFS interpolation is introduced to m odel self-affine and

approxim ately self-affine one-dimensional signals corrupted by Gaussian noise. Lo

cal cross-validation is applied for compromising between the degree of sm oothness

and fidelity to the data. The parallel d istributed version of the inverse algorithm is

im plem ented in Parallel V irtual Machine (PVM) with sta tic optim al task partitio n

ing. A sim ple com puting model is applied which partitions tasks based on only each

com puter’s capability. Several num erical sim ulation results show th a t the new IFS

inverse algorithm achieves a higher signal to noise ratio than does existing autoregres

sive m odelling for noisy self-affine or approxim ately self-affine signals. -There is little

m achine idle tim e relative to com puting tim e in the optim al task partitio n mode.

In C hapter 7, local IFS interpolation, which realises the IFS lim it for self-affine

data , is applied to m odel non self-affine signals. It is difficult, however, to explore

the whole param eter space to achieve globally optim al param eter estim ation. A two-

stage search scheme is suggested to estim ate the self-affine region and the associated

region param eters so th a t a suboptim al solution can be obtained in reasonable tim e.

iv

In the first stage, we calculate the self-affine region under th e condition th a t the

associated region length is twice th a t of the self-affine region. T hen the second stage

calculates the associated region for each self-affine region using a full search space. In

order to com bat the perform ance degradation caused by the the difference of m achines

capabilities and unpredictable external loads, a dynam ic load-balance technique based

on a d a ta parallelism scheme is applied in the parallel d istribu ted version of the inverse

local IFS algorithm . Some numerical simulations show th a t our inverse local IFS

algorithm works efficiently for several types of one-dimensional signal, and the parallel

version w ith dynam ic load balance can autom atically ensure th a t each m achine is busy

w ith com puting and w ith low idle time.

V

To M y Parents

VI

ACKNOW LEDGM ENTS

I am deeply indebted to my supervisor Professor D.M. T itte ring ton for his

invaluable guidance, encouragem ent and help throughout this work.

I would like to specially thank Dr. B. Cheng and Dr W . Q ian for their collabo

ration, assistance and discussion.

I am grateful to Mr. D Mackay for his generous helping w ith com puter equip

m ents.

The au thor also wishes to acknowledge financial support from Glasgow University

and also p artly from the U.K. Government Awards.

Finally, I would like to express my sincerest thanks to my wife, my son, my

m other, my father, my mother-in-law and my father-in-law for the ir love, encourage

m ent and boundless patience over all these years.

Vll

TABLE OF CONTENTS

C H A PT E R Page

1 IN T R O D U C T IO N ... 1

1.1. M otivation ... 1
1.2. O utline of the t h e s i s ... 4

2 BACKGROUND AND RELATED W O R K .. 6

2.1. In tro d u c tio n ... 6
2.2. Parallel Processing and Parallel D istributed C om puting 6
2.3. O rder S tatistic Filters and Stack F i l t e r s 17
2.4. Fractals, Itera ted Function Systems and Inverse Frac

ta l T ransfo rm ations... 25

3 DESIGN OF IN TERA CTIV E PARALLEL D ISTR IB U TED
CO M PU TIN G E N V IR O N M E N T ... 32

3.1. In tro d u c tio n ... 32
3.2. The M ethod of Program Design Under A Parallel

V irtual M a c h i n e .. 32
3.3. Use of Tel to Develop Interactive A p p l ic a t io n 40
3.4. Design Interactive Parallel D istributed Com puting

E n v i r o n m e n t ... 47

4 T H E STACK FILTERS, MINIMUM TH RESHOLD D ECO M
PO SITIO N AND IN TERA CTIV E STACK FILTER IN G SYS
TEM ... 53

4.1. In tro d u c tio n ... 53
4.2. Stack F ilters Based on Threshold Decom position 53
4.3. M inim um Threshold Decomposition of S i g n a l 55
4.4. The Positive Boolean Function and its M inim um Log

ical O perations F o r m u la .. 58
4.5. B it-Parallel S tructure and a D ata-Parallelism Stack

Filtering A lg o rith m ... 63
4.6. Im plem entation of Interactive Stack F iltering System . . 69
4.7. Numerical E x a m p le s .. 72

5 AN ITER ATED FUN CTION SYSTEM M ODEL O F O N E
DIM ENSIONAL D ISCRETE S I G N A L .. 85

5.1. In tro d u c tio n ... 85
5.2. The C onstruction of an IFS Model for a Given Signal . . 85

V ll l

5.3. D istributed Parallel Com puting for the IFS Model of
a Given S i g n a l .. 93

5.4. Num erical Simulation of Itera ted Function System Model 99

6 ITER A TED FU N CTIO N SYSTEM (IFS) SM OO TH ING OF
ONE-DIM ENSIONAL D ISCRETE SIGNALS BASED ON
LOCAL C R O S S-V A L ID A T IO N .. 109

6.1. In tro d u c tio n ... 109
6.2. An Inverse IFS Algorithm Based on Local Cross-Validation 109
6.3. Parallel D istributed Algorithm Based on S tatic Task

Partition .. 116
6.4. N umerical S im u la t io n .. 118

7 USING INVERSE LOCAL ITERATED FU N C TIO N SYS
TEM S (IFS) TO MODEL ONE DIM ENSIONAL D ISC R ETE
SIGNALS .. 129

7.1. In tro d u c tio n ... 129
7.2. Inverse Local IFS Theory and A lg o r ith m 129
7.3. Parallel D istributed Inverse Local IFS A lgorithm Based

on PVM and Dynamic Load B a la n c e 133
7.4. Num erical S im u la t io n .. 138

8 CONCLUSION AND D ISC U S S IO N ... 150

8.1. Main R e s u l t s ... 150
8.2. Discussion and S u g g e s tio n ... 151

A PPE N D IX A ... 153

A .I. Binding the PVM User Interface Library w ith Tel Languagel53
A .2. General Binary D ata (GBOX) Processing Functions . . . 162

R E F E R E N C E S .. 166

LIST OF TABLES

TA BLE Page

I PVM related sy s tem s ... 15

II Average d a ta transfer rates for the two node studies[3l]. All rates
are in m egabytes per second. 1 use direct T C P com m unication
and 2 use daem on-based com m unication.. 16

III Point-to-point com m unication bandw idth in P V M [1 0 8].......................... 17

IV D etailed explanation of the MSP form of the P B F for the third-
order b inary m edian f i l t e r ... 54

V Norm alised Mean Square Error for male speech d a ta corrupted by
G aussian and impulsive noise with SM and CW M f i l t e r s 78

VI N orm alized M ean Square Error for lena test im age corrupted by
G aussian and im pulsive noise w ith two-dimensional SM and CW M filters 79

V II Execution Times (milli-seconds) and Com m unication T im es (m illi
seconds) of two-dim ensional SM and CWM filters for lena im age . . . 83

V III O riginal and Calculated IFS Interpolation Point Indices, M ap pa
ram eters, Hausdorff Error, Signal-to-noise Ratio of Large dj for
A pproxim ately Self-affine D a t a ... 101

IX Original and Calculated IFS Interpolation Points Indices, Map
param eters, Hausdorff Error, Signal-to-noise Ratio of Small dj for
A pproxim ately Self-affine D a t a ... 102

X C alculated IFS Interpolation Points Indices, Map param eters, H aus
dorff Error, Signal-to-noise Ratio for Male Speech, Non Self-affine
D a t a ... 105

XI AutoRegression Model Param eters Estim ation w ith Yule-W alker
Equations for the Five E x a m p le s ... 105

X II Signal-to-Noise Ratios from the Various M e th o d s 106

X III R unning T im e (Seconds) for Estim ating IFS P a r a m e te r s 108

X

XIV Original and calculated map param eters, local CV values, and

XV O riginal and calculated m ap param eters, local CV values, and
Hausdorff distances for the strictly self-affine da ta w ith Gaussian
noise, m ean=0, a — 1 0 .0 .. 122

XVI C alculated m ap param eters M , D , P , local C V values, and H aus
dorff distances H for fractional Brownian m otion corrupted by
G aussian noise with zero m ean and standard deviation 1 0 . 0 124

X V II Auto-Regression Model Param eters Estim ation with Yule-Walker
Equations for E x a m p le s .. 124

X V III Total tim es (milli-seconds) for Exam ple 6.3 using PVM Daemon
and T C P com m unication with equal and optim al task partition ing . 126

XIX Task P artition ing and Load Balance for Exam ple 6.3 w ith PVM
T C P Com m unication Mode and Seven Com puters 126

XX Local IFS calculated self-affine region (S.R) indices, associated
region (A.R) indices, m ap param eters and Hausdorff distances for
a Sinusoid Signal 128 sin(27t.t / 2 5 5) .. 139

XXI Signal N oise/R atio of Local IFS and I F S .. 139

XXII Local IFS calculated self-affine region (S.R) indices, associated
region (A .R) indices, m ap param eters and Hausdorff distances for
a Male Speech Signal .. 141

X X III Local IFS calculated self-affine region (S.R) indices, associated
region (A.R) indices, m ap param eters and Hausdorff distances for
a Fractional Brownian M otion Signal (H =0.5, Scale=0.4) 143

XXIV Local IFS Model of a Sinusoid Signal 128 sin(27r.r/255) w ith the
different W v a l u e s ... 145

XXV Total tim es (seconds) for Exam ple 7.2 using PVM daem on and
T C P com m unication with equal and dynam ic task l o a d 147

XXVI Task Partition ing and Load Balance for Exam ple 7.2 w ith PVM
T C P Com m unication Mode and Fourteen C o m p u te rs 149

XI

LIST OF FIGURES

FIG U R E Page

1 D ata a n a ly s i s .. 1

2 Taxonom y of MIMD Com puters [92].. 8

3 H eterogeneous, Network, and Cluster Concurrent Computing[174] . . 9

4 In terne t Host Growth in Last Decade[12l]... 11

5 Im provem ent of Microprocessors vs. Supercomputers[121] 12

6 PV M A rchitectural Overview[175] ... 33

7 PV M Com puting E n v iro n m e n t ... 34

8 PV M C oncurrent C om putational M odel[169]... 35

9 Node 1 task is calling pvm_send to send a message to node 2 task.
Node l ’s pvm_send actually translates into an xab_send. The
xab_send sends an event message to abmon3 and then perform s
th e actual pvm_send on behalf of the program ... 40

10 Tel Com m and Execute F lo w .. 43

11 Tel Em beddable S tru c tu re .. 44

12 Tk Im plem entation of the Exam ple “Hello, W orld” 47

13 Bind Tel or Tk w ith P V M 48

14 T he Shape of Windows of Two-dimensional Stack F ilters 67

15 D ata partitions of One- and Two-dimensional Parallel Stack F ilters , 68

16 In teractive Parallel D istributed Stack Filtering S y s t e m 69

17 The S tructu re of Interactive Stack Filtering S y s te m 70

18 Dialog Window of Select an Input File N a m e .. 71

19 Dialog W indow of Select F ilte r’s P a ra m e te rs ... 72

Xll

20 Dialog W indow of Select the Network and PVM P a r a m e te r s 73

21 One-dim ensional D ata Display Window ... 74

22 Two-dim ensional D ata Display W i n d o w ... 75

23 M ale speech signal corrupted by Gaussian noise w ith p — 0 and
a = 10 and im pulsive noise with occurrence probability p — 0.1 . . . 76

24 F ifth-order SM filter for male speech signal corrupted by Gaussian
and im pulsive n o is e ... 77

25 W eight 2 fifth-order CWM filter for male speech signal corrupted
by Gaussian and impulsive n o i s e ... 78

26 256x256 lena test image corrupted by Gaussian noise w ith p — 0
and a = 20 and impulsive noise with occurrence probability p = 0.2 . 80

27 Two-dim ensional weight 3 window 3 x 3 CWM filter for lena im age
corrupted by Gaussian and impulsive n o ise .. 81

28 Two-dim ensional window 3 x 3 SM filter for lena im age corrupted
by Gaussian and impulsive n o i s e ... 82

29 Difference images, (a) Fig 26 - original, noise free im age, (b) Fig
27 - original, noise free image, (c) Fig 28 - original, noise free im age . 83

30 R unning tim e of parallel d istributed filtering algorithm s for lena im age 84

31 Affine transform ations w 1,iV2 ,w 3,w 4 applied to the un it square. . . . 86

32 D istributed Parallel Com puting Model of m ulti-clients-m ulti-servers. 94

33 R PC program m ing m odel.. 94

34 Control u n it’s parent- and child-process ... 95

35 Inverse IFS Interpolation with M = 5 (top) and M = 14 (bottom)
w ith Large dj A pproxim ately Self-affine D ata (50% sam ple)............ 100

36 Inverse IFS Interpolation of M = 5 (top) and M = 14 (bottom)
w ith small dj A pproxim ately Self-affine D ata (sam pled a t 50%). . . . 103

37 E stim ated IFS fitted curves for male speaking d a ta 104

xiii

38 Running T im e for Estim ating IFS Param eters for A pproxim ately
Self-affine D ata (50% sample) with Large dj (top diagram) and
w ith Small dj (bottom diagram).. 107

39 Self-affine d a ta generated by determ inistic IFS. For the top pic
tu re , the contraction factors are d0 = —0.82 and d1 = 0.79. For
the bo ttom picture, the contraction factors are do = —0.23 and
di = 0.31... 112

40 P rojection of the C V (i i ,d 0, ffi) function on the in terpolation point
subspace R for fixed contraction factors D. In th e top picture
D = (—0.82,0.79) and in the bottom picture D — (—0.23,0.31). . . . 113

41 P ro jection of the CV(i\> ffi, d2) function on the contraction factor
subspace D for fixed R = {0,100} in both pictures. For fixed
R = {0,100}, the m inim um of C V appears at (—0.82,0.79) in the
top picture and a t (—0.23,0.31) in the bottom p ic tu re 114

42 Robustness modification of local cross-validation a lg o r i th m 115

43 Fractal in terpolation (M = 5) for strictly self-affine d a ta with
large D (top picture) and small D (bottom p ic tu re).................................. 120

44 F ractal in terpolation for strictly self-affine d a ta w ith a large D
(top picture) and a small D (bottom picture) and additional G aus
sian noise w ith zero m ean and standard deviation a = 10.0.........................121

45 Fractional Brownian M otions and Their IFS Interpolation Expres
sions. H =0.8, Scale=0.2 (top diagram) and H =0.5, Scale=0.4
(bo ttom diagram) ... 123

46 Total tim e for Exam ple 6.3 using P V M .. 125

47 Task Partition ing and Load Balance for Exam ple 6.3 w ith PVM
T C P Com m unication Mode and Seven Com puters, Equal P a rti
tioning (top diagram) and O ptim al Partitioning (bo ttom diagram) . 128

48 Schem atic for Dynam ic Load Balance A pplication...................................... 134

49 Local IFS Modelling of the Sinusoid Signal 128 s in (2 7 rx /2 5 5) 140

50 Local IFS M odelling of a Male Speech Signal ... 142

51 Local IFS M odelling a Fractional Brownian M otion (H =0.5, Scale—0.4) 144

xiv

52 Local IFS Model of a Sinusoid Signal 128 sin(27rx f 255) w ith the
different W v a l u e s ... 145

53 W ork-station Configure lor P V M .. 146

54- Total tim e for exam ple 7.2 using P V M .. 147

55 D ynam ic Load Balance for Exam ple 7.2 w ith PVM T C P Com
m unication Mode and Fourteen Com puters, Equal Load (top di
agram) and Dynam ic Load (bottom d ia g r a m) ... 148

1

C H A P T E R 1

I N T R O D U C T I O N

1.1. M o t iv a t io n

In application of da ta analysis, filtering and modelling are basic and im portan t pro

cedures. As we know, d a ta from the real world include noise which consists of system
error and m easurem ent error. The aims of da ta analysis are to understand the cur
ren t d a ta received and to use this inform ation to predict the action of fu tu re data.

Figure 1 illustrates the procedure of da ta analysis. In the first stage, noisy input

d a ta is passed into a filtering block and the noise is sm oothed. T hen, in the second

stage, the filtered da ta is passed into a modelling block and th e m odel param eters
are estim ated . We can use these model param eters to predict new data.

In linear filter design, there is simplicity and unifying linear system s theory makes

their design and im plem entation easy. For Gaussian noise the linear filter is optim al,

bu t linear techniques fail if the noise is non-Gaussian, exam ples of th is are im pulsive
noise, signal dependent noise and nonlinear da ta degradation. Special linear filters,

which were originally used in image filtering applications, cannot cope w ith nonlin
earities of im age form ation model and cannot take into account the nonlinearities of

hum an vision. As we know hum an vision is very sensitive to high-frequency inform a
tion and im age edges and image details such as corners and lines, which carry very

im portan t inform ation for visual perception, have high-frequency content. Most of

the classical linear filters have low-pass characteristics and they tend to blur edges
and to destroy lines, edges and other fine image details. These reasons have led
researchers, to the use of nonlinear filtering techniques.

Nonlinear filtering techniques emerged at very early stage. However, the bulk

of rela ted research has been presented in the past decade. This research area has

had a dynam ic developm ent. This is indicated by the am ount of research presently

published and the popularity and widespread use of nonlinear digital processing in a

Signal+Noise
Model

— ►ParametersModellingFiltering

Fig. 1. D ata analysis

2

variety of applications. There are several classes of nonlinear digital signal and im age
processing techniques [158]:

1. order s ta tis tic filters and stack filters;

2. hom om orphic filters;

3. polynom ial filters;

4. m athem atical morphology;

5. neural networks;

6. nonlinear im age restoration.

Each class of nonlinear processing technique possesses its own m athem atical tools
th a t can provide reasonably good analysis of its perform ance, b u t there is not a uni

fying theory th a t can encompass all existing nonlinear filters. Recently, m athem atical
morphology and order s ta tis tic filters have been efficiently in tegrated into one class
based on threshold decom position, although they come from com pletely different ori
gins. We shall investigate stack filter design in this thesis. T he basic tools of the

stack filter are threshold decomposition and stacking, which reduce the problem of

filtering P -value d a ta to th a t of filtering binary da ta and the b inary filtering problem
is fairly well understood.

T here are two trad itional m ethods for modelling discrete signals. One uses poly

nom ial fits and represents the discrete signal by the values of a polynom ial evaluated
a t the sam ple point. The model param eters are the order of the polynom ial, which is
usually determ ined a priori, and the coefficients of the polynom ial, which are usually

estim ated in term s of least-squares fit to the given signal values. The o ther involves

fitting an autoregressive moving-average (ARMA) model [41], in which the m odel
param eters are the coefficients of a filter for which the input is w hite noise and the

ou tp u t is the given signal. However, some signals are self-similar (self-affine) in natu re

and the basic property of fractal models is th a t of self-sim ilarity (self-affine) or scale

invariance. T he best way to model such signals is to use a fractal model: m any n a t

ural shapes such as coastlines, m ountains and clouds are easily described by fractal
models.

T he term inology fractal was first used by the French m athem atic ian Benoit M an
delbrot to describe shapes with fractional dimensions (Latin fractus m eaning irregu
lar) [127]. M andelbro t’s fractal geom etry provides both a description and a m athe

m atical m odel for m any of the seemingly complex forms and p a tte rn s in natu re and

the sciences. Fractals have blossomed enormously in the past few years and have
helped reconnect pure m athem atics research with both na tu ra l sciences and com

puting science. Classical geom etry provides a first approxim ation to the structu re

3

of physical objects; it is the language which we use to com m unicate the designs of

technological products and very approxim ate forms of natu ra l creations. F ractal ge
om etry is an extension of classical geometry. It can be used to m ake precise models

of physical structu res from ferns to galaxies. Fractal geom etry is a new language.
Once you can speak it, you can describe the shape of a cloud as precisely as an ar
chitect can describe a house [23]. There are also two fractal approaches to modelling
one-dim ensional signals. The first is to use fractional Brownian m otion (FBM) [127].

However, fractional Brownian motion is defined in a one-dim ensional fram ework and

it is very difficult to generalize it to high dimensions. The second way is to use the

ite ra ted function system s (IFS) developed by Barnsley and his collaborators. IFS th e

ory has m any advantages over FBM: IFS modelling has higher flexibility than FBM
modelling; generalization from one dimension to higher dim ensions is very natu ra l

and easy. We shall apply IFS theory to model one-dimensional signals in this thesis.

From the tim e when the first generation of com puters in th e 1950s used elec
tronic valves as their switch com ponents, the com puter has been the m ost basic and

powerful tools in d a ta analysis. High-performance com puters are increasingly in de

m and in the areas of structu ra l analysis, weather forecasting, petro leum exploration,

fusion energy research, medical diagnosis, aerodynamics sim ulation, rem ote sensing,
m ultim edia d a ta processing and communication, m ilitary defence, genetic engineer
ing and socioeconomics. W ithout superpower com puters, m any of these challenges
to advanced hum an civilization cannot be m ade w ithin a reasonable tim e period.

T he designers always strive to increase the speed of operations. T here is a num ber
of possible ways to achieve this. An obvious approach is to im prove the technology
im plem ented in the realization of the com puter com ponents. The current technol

ogy has gone a long way in this direction from the vacuum tube , discrete diodes

and transistors, small- and medium-scale integrated (SSI/M SL) devices, to large-

and very-large-scale in tegrated (LSI/VLSI) system, and , the developm ent will con
tinue. T here is of course a natu ral lim itation in technology developm ent; no signal

can propagate faster than the speed of light. A nother approach is to refine the logic

design of com puter subsystem s to achieve higher speed, for instance, to use Carry
Look Ahead (CLA) in addition, or the Booth Algorithm for multiplication[92]. Im

proving algorithm s to solve various classes of problems will also lead to higher speed
of operations.

T here is, however, yet another way of increasing the speed of com putation: by
perform ing as m any operations as possible simultaneously, concurrently, in parallel,

instead of sequentially. In the trad itional Von Neum ann arch itectu re digital com

pu te r [4, 48, 92, 97, 115, 165, 176] operations are perform ed on a sequential basis.

4

T he CPU fetches an instruction from the memory, decodes it in to its registers, fetches

operands (if any), executes the operation, and the result is sent from its register to
be stored in its memory, in th a t order. None of these operations is s ta rted until the

preceding one is com pleted. A new instruction is fetched only after the execution of
previous one is accomplished. There is no time-overlap in th e execution of any of
elem entary operations in the instruction cycle. Each CPU contains ju s t one A rith

m etic Logic U nit (ALU), which would perform all of the d a ta processing tasks of the

system .

T he earliest reference to parallelism in com puter design is thought to be in
G eneral L F M enabrea’s publication in the Bibliotheque Universelle de Geneve,

O ctober 1842, en titled ‘Sketch of the A nalytical Engine Invented by Charles B ab

bage’ [111, 139]. In listing the utilities of the analytical engine, he writes:

Secondly, the economy of time: to convince ourselves of this, we need only

recollect th a t the m ultiplication of two numbers, consisting each of twenty
figures, requires at the very utm ost three minutes. Likewise, when a long

series of identical com putations is to be performed, such as those required

for the form ation of numerical tables, the machine can be brought into

play so as to give several results at the same tim e, which will greatly
abridge the whole am ount of the processes.

It does not appear th a t this ability to perform parallel operation was included in

the filial design of B abbage’s calculating engine; however, it is clear th a t the idea of
using parallelism to improve the performance of a m achine had occurred to Babbage
over 100 years before technology had advanced to the s ta te th a t m ade its im plem en
ta tion possible.

Recently, the m ajor development affecting scientific problem -solving is th a t of
parallel d istribu ted com puting. Many scientists are discovering th a t the ir com pu

ta tional requirem ents are best served not by a single, m onolithic m achine bu t by a

variety of d istribu ted com puting resources, linked by high-speed networks. We shall

im plem ent our parallel algorithm s on this type of parallel com puting environm ent.

1.2. O u tlin e o f th e th es is

In this thesis, we shall address the three research areas of rank-based nonlinear filters,

ite ra ted function system based one-dimensional signal models and parallel d istributed

algorithm im plem entation and application.
In C hapter 2, we introduce the advantage of parallel d istribu ted com puting rela

tive to trad itional parallel com puting and compare several popular parallel d istribu ted

5

com puting environm ents and their point-to-point com m unication speed. For nonlin

ear filters, we shall review the basic m edian-based , and rank-based filters and their
extension, namely, stack filters. For fractal models, we shall review the m ethod of

constructing a fractal and the approach of fitting a given signal w ith a fractal model.
We also in troduce the im age compression technique using fractal transform .

In C hapter 3, we introduce the popular parallel d istribu ted com puting environ
m ent, Parallel V irtual M achine and the interactive application developing tool, Tel
language. We design and im plem ent an interactive parallel d is tribu ted com puting
environm ent (IPD C E) based on PVM and Tel language.

In C hapter 4, we present a new m inim um threshold decom position scheme for

im plem entation of a stack filter. In order to reduce the perform ance tim e of s tandard
stack filtering we try to minimize the num ber of logical operations and utilize the
CPU bit-fields parallel property. We im plem ent an interactive stack filtering system

based on IPD C E, in which we can use trad itional com m and line m ode and m odern
graphics user interface to set filter param eters and select sequential or parallel filtering
algorithm s.

In C hapter 5, we present an extended Iterated Function System (IFS) in terpo
lation m ethod for modelling a given discrete signal. We suggest a suboptim al search

algorithm w ith robust technique for estim ating the m ap param eters so th a t we can
get a solution in reasonable tim e. We also im plem ent a parallel d istribu ted version
of this inverse algorithm using equal task partitioning and a R em ote Procedure Call

application program m ing interface library.

In C hapter 6, we use the robust IFS inverse algorithm w ith a local cross-validation
technique to m odel the self-affine and approxim ately self-affine noisy signal corrupted
by G aussian noise. We also im plem ent the parallel d istribu ted version of this inverse

algorithm in Parallel V irtual M achine (PVM) with static op tim al task partitioning.

In C hapter 7, we apply local IFS, which realises the lim it for self-affine data , to
m odel general signals. We suggest a two-stage search scheme to estim ate the self-affine
region and associated region param eters so th a t we can get a suboptim al solution in
reasonable tim e. In order to solve the problem of perform ance degradation caused by
the difference of machines capabilities and external loads, we im plem ent a dynam ic
load balance technique based on a da ta parallelism scheme.

In C hapter 8, we present the m ain results and conclusions of this thesis and make

suggestions for some further research.

6

C H A P T E R 2

B A C K G R O U N D A N D R E L A T E D W O R K

2.1. In tr o d u ct io n

The past several years have witnessed an ever-increasing acceptance and adoption

of parallel d istribu ted com puting. In this chapter we review th e progress of this
research area and com pare the key factor, com m unication speeds, of some popular

parallel d is tribu ted com puting environm ent. Stack filters are a new general class of
nonlinear filters, which includes m any particular nonlinear filters such as m edian-type,
order s tatistics-type and morphological filters. We introduce stack filters’ two basic
properties, threshold decom position and the stacking property and we m ention ways

of extending standard stack filters. D ata modelling is the other im portan t research

area which this thesis will involve. We present some background knowledge of a new
approach, th a t of fractal-based Itera ted Function Systems.

2.2. P ara lle l P r o c e ss in g and Parallel D is tr ib u ted C o m p u t in g

2.2.1. Parallel Processing

F irst, we give the definition of parallel processing.

D efin it io n 2.1 Parallel computing [97] is an efficient fo rm o f information process

ing which emphasizes the exploitation of concurrent events in the computing process.
Concurrency implies parallelism, simultaneity, and pipelining. Parallel events may
occur in multiple resources during the same time interval; simultaneous events may
occur at the same time instant; and pipelined events may occur in overlapped time

spans. These concurrent events are attainable in a computer system at various pro
cessing levels.

In theory, the speedup th a t can be achieved by a parallel com puter w ith n iden

tical processors working concurrently on a single problem is a t m ost n tim es faster
than a single processor. In practice, the speedup is much less, since some processors

are idle at a given tim e because of conflicts over m em ory access or com m unication

paths, inefficient algorithm s for exploiting the natural concurrency in th e com put

ing problem , or m any other reasons. The lower-bound log2 n is known as M insky’s
conjecture. A m ore optim istic speedup estim ate is upper bounded by ^ as derived
below [97].

7

Consider a com puting problem , which can be executed by a uniprocessor in unit

tim e, T\ = 1. Let f i be the probability of assigning the same problem to the «th

processor working equally w ith an average load d{ = 1/i per processor. Furtherm ore,
assum e equal probability of each operating mode using processor i, th a t is f i = 1 /n ,
for n-operating modes: i — 1,2, • • •, n. The average tim e required to solve the problem
on an ?z-processor system is given below, where the sum m ation represents n operating

modes.

Tn = jZfi-di = ^ J - (2 .1)
i —1 n

The average speedup S is obtained as the ratio of T\ = 1 to Tn\ th a t is,
rn

S = ^ = - J U < J L (2.2)
Tn n { 1

Hockney and Jesshope [92] suggested a structure taxonom y involving sequential
com puters, parallel com puters and m ulticom puter systems. A taxonom y for MIMD

com puters [92, 178] is given in the Figure 2 taken from [92].

2.2.2. D istributed Parallel Com puting

Two developm ents [56] prom ise to revolutionize scientific problem solving. The first

is the developm ent of massively parallel com puters. Massively parallel system s of
fer the enorm ous com putational power needed for solving grand challenge problem s.
U nfortunately, software development has not kept pace w ith hardw are advances. In

order to exploit fully the power of these massively parallel system s, new program

m ing paradigm s, languages, scheduling and partitioning techniques, and algorithm s
are needed.

T he second m ajor development affecting scientific problem solving is th a t of p ar

allel d istribu ted com puting. Many scientists are discovering th a t the ir com putational
requirem ents are best served not by a single, m onolithic m achine but by a variety of

d istribu ted com puting resources, linked by high-speed networks.
Parallel D istribu ted Com puting, also called heterogeneous concurrent com put

ing [68, 174], is gaining increasing acceptance as an a lternative or com plem entary
paradigm to m ultiprocessor-based parallel processing as well as to conventional super
com puting. W hile algorithm ic and program m ing aspects of heterogeneous concurrent

com puting are sim ilar to their parallel processing counterparts, system issues, p a rti

tioning and perform ance aspects are significantly different.

D e f in it io n 2 .2 The term parallel distributed computing, also called heterogeneous
concurrent computing, refers to the simultaneous execution o f the components o f a

M IM D

Distributed memoiy
multiprocessors > '
(scalable) —*

M u ltip ro c e s so rs
Single Addi'ess Space
Shared Memoiy
Computation

Central memory
multiprocessors
(not scalable)

Multicomputers '
Multiple Address Space
M essage-Passing
Computation

Distributed
multicomputers
(scalable)

Central multicomputers

Dynamic binding of
addresses to processors
KSR

Static binding, ring multi
IEEE SCI standard proposal

Static binding, caching
Alliant, DASH

Static program binding
BBN, Cedar, CM*

Cross-point or multi-stage
Cray, Fujitsu, Hitachi, IBM,
NEC, Tera

Simple, ring multi...bus
multi replacement

Bus multis
DEC, Encore, NCR,, ...
Sequent, SGI, Sun

Mesh connected
Intel

Butterfly/Fat Tree
CM5

Hypercubes
NCUBE

Fast LANs for high
availability and high
capacity clusters
DEC, Tandem

LAN’s for distributed
processing
workstations, PCs

Fig, 2. Taxonomy of MIMD C om puters[92].

9

Heterogeneous Concurrent Computing:
SIMD/MIMD/Vector/etc
Emphasis on application heterogeneity,
mapping, scheduling

Batch systems: x.
utilization of clusters
as batch/queue based \
I concurrent computing system

Np-twork-based concurrent:
'computing: machine heterogeneity/
SPMD computation^— ""

/Cluster Computing:
/ Little heterogener^
I substitute for hardi

v \multiporcessor

Fig. 3. Heterogeneous, Network, and Cluster Concurrent Computing[174]

single application on multiple processing elements which are loosely coupled, physically
and logically independent, and heterogeneous.

These characteristics distinguish heterogeneous concurrent com puting from tra
ditional parallel processing, norm ally performed on homogeneous, tigh tly coupled

platform s which possess some degree of physical independence bu t which are logically
coherent.

It is w orthwhile to note [174] th a t parallel d istributed com puting is a superset
of sim ilar m ethodologies referred to as network com puting and cluster com puting.
W hile the nom enclature is as yet informal, network com puting m ay be considered

equivalent to heterogeneous com puting, bu t w ith rather less em phasis on application

heterogeneity, m apping, and task partitioning aspects. C luster com puting is even
m ore restrictive, in th a t it generally refers to usually identical w orkstation clusters

th a t are used as a substitu te for hardware multiprocessors. Figure 3 depicts the

relationship between various concurrent com puting paradigm s.

2.2.3. Evaluation of Network and O ther Hardw are Sources

D uring the last decade there has been an exponential growth in networked com put
ing resources. This fact is reflected by the growth in registered system s connected to

the In ternet. The m ost recent status report from the Network Inform ation Systems

Center [121] sum m arizes this growth (see Figure 4). Over 725,000 hosts have been

connected via approxim ately 17,000 domains in ju st ten years! T he rapid growth of
networked com puters has been accompanied by an astonishing increase of com puta

tional power by these network attached com puters. M icroprocessors have doubled in

10

perform ance approxim ately every eighteen m onths during the last decade and they

continue to increase in perform ance at a much greater ra te than supercom puters (see
Figure 5) [30]. Cheong [45] sum m arized the five key technology areas which drive
high perform ance scientific com puting: microprocessors, networks, backplane buses,

sem iconductor m ain memory, and m agnetic fixed disk. Cheong provided the following

appraisal of each technology.

• Since 1985 the perform ance of CMOS-based m icroprocessors has quadrupled
every three years, or at the rate of 60% every year. Clock speeds alone have

evolved from 200 kHz in 1971 to 50 MHz in 1991.

• Local area networks have improved by a factor of 10 every decade. In 1980
E thernet operated at 10 M -bits/sec. In 1990 FDDI operated a t 100 M -bits/sec.
Early prototypes indicate th a t G -bits/sec networks will be com m ercially avail

able by 2000.

• C om puter backplane buses have improved by a factor of 10 every decade. Dig

ita l’s Unibus operated at 2 M -bits/sec in 1970. M otorola’s VM E bus operated

a t 20 M -bits/sec in 1980. In 1990 several buses operated a t 200 M -bits/sec.

• Sem iconductor mem ory chips have quadrupled in capacity every three years

(annual ra te of 60%) since 1972. The chronology on the num ber of bits per
chip follows. IK (1972), 4K (1975), 16K (1978), 64K (1981), 256K (1984), 1M
(1987), 4M (1990).

• M agnetic disk storage has evolved from a density of IK bits per square inch

(1957) to 1G bits per square inch in 1990 (annual ra te of 26% per year, or
doubling every three years).

This com bined perform ance growth indicates th a t significant com putational capabil
ity is available and interconnected.

Some of th e infrastructure requirem ents of heterogeneous concurrent com puting

are listed below [85, 112, 144, 178].

• High bandw idth networks to support com m unications requirem ents (e.g. 100-
800 M -bits/sec per host).

• Low latency com m unication mechanisms (e.g. 100-500 microsecond between
hosts).

• Good scaling characteristics (e.g. 10-1000 hosts).

• Support for high-bandw idth m ulti-cast com munications.

11

xlQ5 Internet Hosts

7

6

5

4

3

2

1

o.
19921982 1984 19881986 1990

Year

Fig. 4. In ternet Host Growth in Last Decade[121].

• C apability to recover autom atically from network and node failures (e.g. fault
to le ran t).

• S tandard low-level prim itives for com munications, synchronization, and schedul
ing across architectures.

• H eterogeneous rem ote procedure calls th a t hide architecture, protocol and sys
tem differences.

• R eal-tim e perform ance monitors.

• Reliable production batch job scheduler.

• D istribu ted application development tools.

• Support for trad itional high level languages for heterogeneous com puting.

• A pplications which are capable of exploiting w orkstation clusters.

• New system adm inistration tools to address system m anagem ent issues for dis

trib u ted com puting resources.

• Developm ent of standards which protect software investm ents.

2.2.4. The Advantages and Lim itations of Parallel D istribu ted C om puting

Parallel d istribu ted com puting offers several advantages: [56] By using existing hard

ware the cost of this com puting can be very low. Perform ance can be optim ized

Pr
ic

e/p
er

fo
rm

an
ce

vs

.
19

75

Re
l.

Pe
ak

M

FL
OP

S
vs

.
19

75 Microprocessors

Supercomputers

Relative Performance

(a)

Microprocessors

101
Supercomputers

80

Relative Performance

(b)

Fig. 5. Im provem ent of Microprocessors vs. Supercomputers[121]

13

by assigning each individual task to the most appropriate architecture. Parallel dis

trib u ted com puting also offers the potential for partitioning a com puting task along
lines of service functions. Typically, parallel d istributed com puting environm ents
possess a variety of capabilities; the ability to execute subtasks of a com putation on

the processor m ost suited to a particular function both enhances perform ance and
utilization. A nother advantage in network-based concurrent com puting is the ready
availability of developm ent and debugging tools, and the po ten tia l fault tolerance of
the network and the processing elements. Typically, system s th a t operate on loosely

coupled networks perm it the direct use of editors, compilers, and debuggers th a t are

available on individual machines. These individual m achines are quite stable, and
substan tial expertise in their use is readily available. These factors transla te into
reduced developm ent and debugging tim e and effort for the user, and reduced con
ten tion for resources and possibly more effective im plem entations of the application.
Yet another a ttrac tiv e feature of loosely coupled com puting environm ents is the po
ten tia l for user-level or program-level fault tolerance th a t can be im plem ented w ith
little effort e ither in the application or in the underlying operating system . Most

m ultiprocessors do not support such a facility; hardware or software failures in one

of the processing elem ents often lead to a com plete crash.
One of the obvious lim itations of clusters [178] is created by th e relatively

slow network interconnection hardware. The interface em ployed will depend on the
bandw idth requirem ents, latency requirem ents, distance lim itations and budget con
strain ts. E thernet is the most commonly im plem ented network and transm its in

form ation at 10 M -bits/sec. Many dedicated clusters are interconnected by more
expensive technologies to overcome the lim itations induced by the speed of E ther

net. The m ost com mon alternatives to E thernet are F iber D istribu ted D ata Interface
(FDDI) and IB M ’s Serial Optical Channel Converter (SOCC).

2.2.5. Several Popular Parallel D istributed Com puting Environm ents

Linda [77, 78] is a concurrent program m ing model th a t was developed by Yale Uni

versity. T he prim ary concept in Linda is th a t of a “tuple-space” , an abstraction via

which cooperating processes com municate. The central them e of L inda has been pro
posed as an alternative paradigm to the two traditional m ethods of parallel processing,

viz. those based on shared memory and on message passing. The tuple-space con
cept is essentially an abstraction of distributed shared memory, w ith one im portan t
difference (tuple-spaces are associative), and several m inor distinctions (destructive

and non-destructive reads, and different coherency sem antics are possible). A ppli

cations use the Linda model by em bedding explicitly, w ithin cooperating sequential

14

program s, constructs th a t m anipulate (insert/re trieve tuples) the tup le space. From

the application point of view Linda is a set of program m ing language extensions for
facilitating parallel program m ing. There have been serveral com m ercial im plem en

ta tions of Linda. C-Linda from Scientific Com puting Associates Incorporated is one

of m ost popular Linda systems. POSYBL is a public dom ain version of Linda de

veloped at the University of Crete. POSYBL is one of the first public dom ain Linda
program m ing environm ents. It is also one of the best since it is the only public do
m ain Linda system th a t supports a d istributed tuple space ra th e r th an a centralized
tuple server. A m ajor difference between POSYBL and the com m ercially supported
versions of L inda is the fact th a t POSYBL is im plem ented stric tly in term s of a li

brary and therefore cannot utilize the optim izations possible w ith the com piler-based

Linda system . However, the performance of POSYBL, is still high enough to make
the system quite useful.

P4 is a library of macros and subroutines developed at Argonne N ational Labo
rato ry for program m ing a variety of parallel machines. The P4 system [40, 43, 124]
supported both the shared memory model (based on m onitors) and the distributed-
m em ory m odel (using message-passing). For the shared-m em ory m odel of parallel

com putation, P4 provides a set of prim itives from which m onitors can be constructed,

as well as a set of useful monitors. For the distributed-m em ory m odel, P4 provides
typed send and receive operations, and creation of processes according to a tex t file

describing group and process structure. P4 is intended to be portable, simple to

install and use, and efficient.

TCG M SG [89] (Theoretical Chem istry Group Message passing system) is a sim
ple message passing system th a t has risen to a position of prom inence among com
pu ta tional chem ists. It is very efficient with com m unication taking place over direct,

point-to-point T C P /IP sockets.

PVM (Parallel V irtual M achine) [56, 74, 75, 76, 84, 132, 173, 174, 175] was de
veloped a t Oak Ridge N ational Laboratory and Em ory U niversity and is a software

package which allows the utilization of a heterogeneous network of parallel and serial

com puters as a single com putational resource. Facilities for spawning, com m unica
tion, and synchronization are supported. PVM has been widely accepted by hardw are

vendors(Cray, Convex, SGI, HP, etc.) and therefore has spawned several related de
velopm ent efforts. Table I summarizes some of the projects related to PVM .

M PI [67] stands for Message Passing Interface. The goal of M PI, sim ply stated ,
is to develop a widely used standard for writing message-passing program s. As such

the interface should establish a practical, portable, efficient, and flexible standard for

message passing. The m ain advantages of establishing a message-passing standard

15

Product Function
DoPVM Distributed object PVM
FT-PVM Fault Tolerant PVM
PV M ++ Message passing object oriented PVM
HeNCE Graphical front-end to PVM
Xab Run time monitoring and debug of PVM program

Table I. PVM related systems

are portab ility and ease-of-use. In a d istributed m em ory com m unication environm ent

in which the higher level routines and /o r abstractions are build upon lower level

message passing routines the benefits of standardization are particu larly apparent.
Furtherm ore, the definition of a message passing standard provides vendors w ith a

clearly defined base set of routines th a t they can im plem ent efficiently, or in some
cases provide hardw are support for, thereby enhancing scalability.

2.2.6. Com parison of Several Parallel D istributed C om puting Environm ents

Douglas and others [57, 185], present experim ents com paring the com m unication

tim es for a num ber of different network program m ing environm ents on two isolated
SUN SPA R C -station 1 workstations.

W ith TCG M SG , point to point TC P sockets are established between every pair of
nodes. This is done when the program is in itia ted and these sockets are not reclaim ed
in the course of the calculation. We call this approach the s ta tic T C P socket system .
The s ta tic T C P socket systems m ethod can run into trouble scaling up to large

num bers of nodes since the num ber of open file descriptors per node grows as the

twice the num ber of nodes. PVM and P4 both use dynam ic T C P sockets and PVM

also provides daem on com m unication. This means they establish a socket between
two com m unicating nodes at run tim e when they first com m unicate w ith each other.
This m ethod has the advantage th a t it will scale be tte r on a large set of nodes as long
as none of th e processors runs out of file descriptors (as in the s ta tic T C P socket
case). One disadvantage of dynam ic TC P relative to s ta tic T C P is th a t the first
com m unication is significantly slower than subsequent com m unications.

Table II shows clear and consistent perform ance differences for message ranging
in size from 100 bytes to one megabyte. TCGM SG was significantly faster for all

message sizes. P4 and PVM and C-Linda (in th a t order) represent a m iddle range in

perform ance. Finally, POSYBL was the slowest system and even failed for the largest

message size. It is clear th a t the m anagem ent of message buffers a t either end of the

com m unication plays a m ajor role in the overall com m unication perform ance. This

follows from the fact th a t systems using identical network protocols (TCG M SG , P4,

16

Bytes in Message passing Virtual shared memory
message TCGMSG P4 PVM1 PVM'2 C-Linda POSYBL
100 0.0556 0.0408 0.0350 0.0142 0.0254 0.0126
400 0.1632 0.1538 0.1194 0.0494 0.0880 0.0454
1000 0.3390 0.3174 0.2174 0.1082 0.1834 0.1030
4000 0.6350 0.5194 0.4520 0.1856 0.3792 0.2622
10000 0.8548 0.6098 0.4706 0.2794 0.3732 0.3110
40000 1.0012 0.6482 0.5432 0.3246 0.4736 0.2930
100000 0.9920 0.6492 0.5614 0.3418 0.5140 0.1586
400000 1.0074 0.6594 0.5784 0.3578 0.5364 0.0944
1000000 1.0112 0.6600 0.5748 0.3538 0.5388 —

Table II. Average d a ta transfer rates for the two node studies[31]. All rates are in

m egabytes per second. 1 use direct TC P com m unication and 2 use dae
m on-based com munication.

and PVM) displayed very different results.

It is im portan t to note th a t two node, point-to-point com m unication tests are

a very sim ple way to com pare program m ing environm ents. More com plicated com
m unication pa tte rn s found in actual applications are essential to m ake a fair and

com plete com parison.

Simple com m unication tests indicated th a t the increase in efficiency was of the or
der of a factor of 30% for daemon com m unication and only about 60% for direct T C P
com m unication under optim al conditions for the PVM environm ent. Some of this
degradation was caused by another facet of the PVM message passing m echanism -

th a t of requiring separate buffer initialization, and packing calls before a message m ay

be sent. This la tte r characteristic is necessitated by the desire to support heterogene
ity, bo th in term s of message contents and because sending and receiving processors

m ight utilize different d a ta representations. However, in practice, m ost messages are

of homogeneous content, i.e. m ost messages carry a single d a ta type, th a t too from a
single d a ta area or array. Further, architecture trends follow standard d a ta represen

ta tio n form ats - m ost m odern com puters utilize identical representations, and those
th a t do not, usually differ in either word lengths or byte ordering only.

Based on th e reasoning above, W hite et al [185] devised an alternative message

passing m echanism for the PVM system. This enhancem ent is based on a m ulti-party
protocol arch itectu re where one-to-one, one-to-many, and m any-to-m any com m uni
cation are im plem ented robustly on pairwise connections. From the program m ing in
terface point of view, the new message passing scheme, accessible via the pvm JhendQ

and pvm_frecv() calls, perm it the direct transfer of user program d a ta w ithout requir

ing buffer initialization and packing. However, da ta conversion can still be included

17

Platform Throughput (Kb/sec)
Msg. size 1 byte 100 bytes lOkB 1MB
Daemon 0.06 12.88 263.41 358.48

Fsend 0.49 81.79 358.48 1003.87
TTCP 0.65 130.45 965.04 1125.24

Table III. Point-to-point com m unication bandw idth in PVM[108]

if com m unicating between different architectures, thus retain ing d a ta heterogeneity
but not heterogeneity of message content.

T he pvm_fsend() and pvm_frecv() library was im plem ented and tested on a va

riety of environm ents and networks. Table III indicates the perform ance of this com
m unication scheme for simple point-to-point da ta transfer, for a variety of message

sizes, for the SPA RC-station 1 + E thernet cluster. Also shown, for reference, are the
corresponding values for daem on-based PVM com m unication, and for a stand-alone

benchm arking program , viz. TTCP.

From the tab le it can be observed th a t the enhanced com m unication scheme de
livers th roughpu t several tim es as much as the daemon based com m unication. How

ever, it also indicates th a t, except for large messages, even the enhanced com m uni
cation m echanism delivers only a fraction of the throughput actually a tta inab le by
software as indicated by the reference T T C P num bers which, incidentally, are of the
order of 70-95% of the theoretical m axim a.

2.3 . O rder S ta t is t ic F ilters and Stack F ilters

2.3.1. M edian-type Filters

Since their introduction in the early 1970’s [177], the standard m edian (SM) filter has

had w idespread application in both signal and image processing as an alterative to
linear filters. T he theory of SM is th a t of order statistics [53, 157]. O rder statistics
have played an im portan t role in statistical da ta analysis and especially in the robust

analysis of d a ta contam inated with outlying observations, called outliers [53, 86]. One
of the m ost im portan t applications of order statistics is in the robust estim ation of
param eters [86, 114]. The m edian is a prom inent exam ple of a robust estim ator.

Let Ah, X 2, • • •, X n be random variables. If they are arranged in ascending order
of m agnitude, X(i) < A(2) < * • • < : X (ny Ap) is called the fth-order sta tis tic .T he

m axim um and the m inim um of i = 1, • • • , n are denoted by X (ny X ^ y A very

18

im portan t order s ta tis tic is the median , m e d (X {), given by

X p+\ if n — 2p + 1
m ed(X i) = (2.3)

(X p + X p+i) /2 otherwise.

T he one-dim ensional m edian filter of size n, where n = 2p + 1, is defined by

t/j m e d (X i- p, • , X i , , X{^,p^̂ i £ Z (2.4)

where Z denotes the set of integers.

The two-dim ensional m edian filter of size n x m, where n = 2p -f 1, m = 2s + 1,

{X i j} , i , j £ Z 2, is defined by = m ed (X i+P}j +s] (p , s) £ A), (i , j) £ Z 2 where the
set A C Z 2 is the filter window.

M edian filters can be described in term s of statistical analysis and determ inistic

analysis. Based on statistical analysis [53, 86], m edian filters perform well for long
tailed noise d istributions (e.g. Laplacian noise), whereas their perform ance is poor
for short-tailed noise distributions (e.g. uniform noise). This fact suggests th a t the

m edian filter is efficient at removing impulsive noise. The good perform ance of the

m edian filter for long-tailed distributions is explained by the fact th a t it minimizes the

L 1 norm [86, 157]: 53? -1 ~ Tn\ m i n , where Tn is the estim ator based on random
variables X \ , ■ • • , X n. From the equation 2.3.1, the median is the m axim um likelihood

estim ate (M LE) of location for the Laplacian distribution: f (x) = In general

the m edian filter perform ance is com pared to the perform ance of the moving average
or mean filter: yi = L Y^jt^-p ■ which is essentially a ’’m oving” arithm etic mean.
The arithm etic m ean is the MLE of location for the Gaussian d istribu tion and it
m inim izes the L 2 norm.

The m edian is a B-robust operator since its influence function is bounded pro

vided / is bounded away from zero at the median [86]: IF (x \m e d , F) = 2f(F-^(i/2))s^9n (x '
jF-1 (2))■ Therefore, a single outlier (e.g. impulse) can have no effect on its per

form ance, even if its m agnitude is very large or very small. However, the influ
ence function of the arithm etic m ean for the Gaussian d istribu tion is given by [86]:
I F (x \ x, F) = x and it is unbounded. Therefore, the moving average filter is very
susceptible to impulses.

Edge inform ation is very im portan t for hum an perception. Edges, by definition,
contain high frequencies. A lthough both median and m ean filters are low-pass filters,

the m edian filter tends to preserve edge sharpness [14, 38, 193], owing to its robustness

properties, while the m ean filter smooths them . The m edian filter not only smooths
noise in homogeneous image regions, bu t it also tends to produce regions of constant

19

or nearly constant intensity [37]. Usually, they are either linear patches or blotches.

These effects are undesirable because they are perceived as lines or contours which
do not exist in the original image.

In the determ inistic analysis of m edian filters, the basic problem is th a t of finding

signals, called roots or fixed points, which are invariant under m edian filtering [8, 70,
179]. T here are several problems related to the m edian filters’ roots:

• determ ination of the shape of a signal which is a root of a one- or two-dim ensional

m edian filter.

• construction and counting of the num ber of a m edian’s roots.

• the ra te of convergence of a non-root signal to a root after successive passes
through the m edian.

These th ree problem s form the subject of the determ inistic analysis of m edian fil
ters [6, 13, 61, 58, 71, 184]

T here are several modifications and extensions of the s tandard m edian.
Separable Median Filter: [147, 148] This aims at reduction of the com putational

com plexity for m edian filter com putation. A separable two-dim ensional m edian of

size n results from two successive applications of a one-dim ensional m edian filter of

length n along rows and then along columns of an image (or vice versa):

l/ij ^ ed (2 jj_ p , , Z{j, ,

z ij med{x i—p j , , (2.5)

T he m ain advantage is its low com putational complexity in com parison w ith th a t

of the non-separable m edian filter, since it sorts n num bers two tim es, whereas the
non-separable n x n m edian sorts n 2 numbers.

Recursive Median Filter: This is defined as

l/i , yi—i , x ^ , 3/’̂ _|_p), (2 .6)

Its ou tp u t tends to be much m ore correlated than th a t of the s tandard m edian filter.

Recursive m edian filters have higher im m unity to im pulsive noise th an have non
recursive m edian filters [7, 36]

Weighted Median Filters (W M F): This is defined as [105]

Pi m e d (w -v o x^—p̂ , Wp o x ^ p) (2.7)

where w o x denotes duplication of x w times: w o x — x, • • •, x (w t im e s) It is closely

related to the F IR filter of the form pi = f e pWja'H'J . Brownrigg [42], Y li-H arja [192],
l^j = - p W3

20

and Ko [110] analyze the perform ance of the weighted m edian filter. They have shown

th a t the W M F can outperform the standard m edian filter [110]. T here is a connection

between stack filters and weighted m edian filters [192] which can be used to derive
the sta tistica l and determ inistic properties of W MF.

Max-Median filters and Multistage Median Filters: These aim a t preserving the
s tru c tu ra l and spatial neighborhood inform ation which could be destroyed by the

ordering process. The m ax-m edian filter is defined by [11]:

Vij ~ m a x (z 1, z2i z3, z4), (2.8)

where

Z\ m ed(xitj - p, , îj-> ?

Z2 ?72ed(.7/t'_pij, ‘

%3 ’ ’ ’ 5)

z 4 med^Xi—p j—pj ,

Its perform ance can be improved considerably if the m edian operator is used to replace

the m ax operator in equation 2.8. The resulting filter belongs to the m ultistage
m edian filters:

Hij = m ed(m ed(z\ , z2) Xij)}m ed(z3, z4, *«)• (2-9)

M ultistage m edian filters can preserve details in horizontal, diagonal, and vertical
directions since they use sub-filters th a t have regions of support along these direc
tions. [10]

Median Hybrid Filters: This aims also at preserving the spatial inform ation of
an im age by using linear filter substructure. It is a com bination of linear filters and
m edian filters and has the following definition :

y{ = m ed ($ i(x i) , ■ • •, (2.10)

where the filters $ j (x {) , j = 1 are linear FIR or H R filters. Heinonen [90],

A stola [13] analyse the perform ance of m edian hybrid filters. An extended family of
F IR hybrid m edian filters w ith good transient response are presented in [186].

2.3.2. Order S tatistic Filters

T he class of order s ta tis tic filters includes a large num ber of nonlinear filters. The
L filter (also called the order sta tistic filter) is an im portan t generalization of the

21

m edian which can be defined as:
n

(2 .11)
j =i

where j — 1, • • •, n are the order statistics of £;_p, • • •, Xi+P. The moving average,

and the larger d a ta based on the coefficient a, 0 < a: < 0.5. If a = 0, no d a ta are
rejected, which is equivalent to the moving average filter. If a is close to 0.5, all da ta
bu t the m edian are rejected.

L filters are based on the theory of robust L estim ators [86, 39]. The filter

coefficients, a j, j — 1 , can be chosen to satisfy an optim ality criterion th a t
is re la ted to the probability distribution of the input noise. S truc tu ra l constraints
can be incorporated in the optim ization function in order to design filters th a t are
sensitive to local signal structu re [141]. The determ inistic properties of the L filters

and relation to linear filters are discussed in [120]. The ability of the L filter to have
optim al coefficients for a variety of input distributions makes it suitable for a large

num ber of application. A nother advantage of the L filter over the m edian filter is

th a t it has no streaking effect. However, the L filter involves greater com putational

com plexity than the m edian filter.

T he R filter is another nonlinear filter which is based on R estim ators [86, 73].

m edian, r th ranked-order, and a-trim m ed m ean are special cases if the coefficients

a,j, j = 1, • • •, n are defined appropriately.

R anked-order filters [91] are very similar to m edian filters which are straightfor
ward applications of order statistics in filtering. An rth ranked-order filter can be
defined as:

yi = rth order s ta tis t ic o/{.x_p, • • •, aq, • • •, Xi+V] (2.12)

W eight order s ta tis tic filter [192] is a general weight m edian filter which can be
defined as

yi = r th order s ta tis t ic o f { w - v o a^_p, • • •, wv o Xi+P] (2.13)

where w o x denotes duplication of x w times: w o x x, • • - , x (w t im es)

The a-T rim m ed Mean Filter [32] is good compromise between the moving average
filter, which is good at suppressing additive white Gaussian noise, and the m edian
filter, which is good at suppressing impulses and preserving edges. It satisfies:

(2.14)

w here |_cmj is the integer part of an. The a-trim m ed m ean filter rejects the sm aller

22

The m ost im portan t R filter is the Wilcoxon filter [51, 72]:

y i = m ed{ , 1 < j < k < n}. (2.15)

W ilcoxon filters have been proved to be effective in suppressing additive G aussian
noise, bu t they do not preserve edges well. If the sum in the equation (2.15) is
restric ted to a m axim um distance j — k < D, the modified Wilcoxon filter can be
expressed as [72] yi = m e d { ̂ I < j < k < n , k — j < D }. This modified

W ilcoxon filter has b e tte r edge preservation properties than the standard W ilcoxon
filter. However, a disadvantage of the Wilcoxon filter is its com putational complexity.

It requires n (n -fi l) / 2 additions and the ordering of n + n(n + l) / 2 item s . A fast

algorithm for the W ilcoxon filter is suggested in [113].

2.3.3. Stack Filters and Threshold D ecomposition

Stack filters form an extension of the class of order statistics filters. This includes,

bu t is not lim ited to, m edian-type filters, weight order s ta tis tic filters [192], and all

com positions of morphological filters composed of opening and closing operations[88,
131].

Stack filters [183] originate from two fundam ental properties of the m edian filter,

the weak superposition property known as threshold decomposition[Q2, 63] and the

ordering property[142] called the stacking property in [183].
Let Xi be an M -valued signal: X{ <G {0,1, ■ • • , M — 1}, for which there are the

M — 1 thresholds: {1,2, ■ • • ,M — 1}. The signal can be decom posed into M — 1

binary valued signals / = 1, 2, • ■ • , M — 1, using the functions Tfixi):

f l if Xi > I
x\ = Ti(xi) = I (2.16)

I 0 otherwise.

These M — 1 b inary valued signals can be filtered independently.
A Boolean function /(•) operating on a binary vector of length n is said to possess

the stacking property if the binary output signal y\ a t tim e i consists of a colum n of
l ’s having a colum n of 0’s on top. The filters satisfying the stacking property are

called stack filters which can be defined as:

M - l M - 1 M —1 M —1

VI = 5 / (5 0 = E # ! = S j(£ D(a?0) = £ 5 ,(T ,(£ 0) = £ / (5 l) (2.17)
/ = 1 i = l 1 = 1 1 = 1

where vectors x { = [®*_p, x i+p], and x\ — [aq_p, • • •, x x \
T he Boolean function /(•) determ ines the properties of the stack filter. G ilbert [81]

' i + P J

23

showed th a t a necessary and sufficient condition for a Boolean function to satisfy the

stack property is th a t it contains 110 complements, Xi, of the inpu t variables X{. The
stackable functions are also called positive Boolean functions .

A lthough positive Boolean functions provide a large class of filtering operations,

we are in terested in exam ining an even larger class of filters. This larger class is
obtained by allowing the output of a Boolean function to be random ized [49].

Let the 2b possible binary sequences of length b be ordered in some fashion as

iq , aq, • • •, x 2b. A window w idth b randomizing Boolean function B(-) is defined by

the vector Pq w ith 2b elem ents, in which the ith elem ent is

Pq (11 if j) — P r(P produces output 1 | Xi is in the window (2.18)

corresponding to B),

where i — 1, 2, • • • , 26. Also define Pi3(0\x) = 1 — P ^ (l |^) ,

A random izing Boolean function B(-) is said to possess the probabilistic stacking

property if and only if

E (B (x)) > E (B(y)) ivhenever x > y , (2.19)

where E(-) is the expectation operator as defined on the appropria te probability space.
T he addition of random ization allows the Boolean function’s expected o u tpu t for

a given binary inpu t sequence to be any real num ber in [0, 1]. This allows average

ou tp u t of the filter to be the same as the determ inistic ou tpu t of m any well-known
filters. For exam ple, linear filters w ith nonnegative weights on the bits in the window

can be realized as random izing Boolean functions satisfying the probabilistic stacking
property [49].

T here is another way to extend stack filters which leads to so-called generalized

stack (GS) filters [116], which allows different logical operators on different levels of
the threshold decom position architecture.

Let x m be a (21 + 1) x n binary array at threshold level in. The ordered set

of M — 1 Boolean functions {jf1 (•), • • • , / M_1(-)} is called a stacking set of Boolean
functions if

f m+1(x m+1) < f m(xm), m — 1,2, • • • , Af — 2. (2.20)

A window w idth N, M - value generalized stack filter Egs(') is a stacking set of M — 1
Boolean functions. The operation of this filter 011 the input x is defined as follows:

M —1
F ..W = £ r (* m). (2-21)

m=1

24

G reat advances have been m ade recently in the design of optim al and adaptive

stack filters and generalized stack filters [49, 50, 69, 116, 117, 118, 119, 194]. Both
an estim ation approach and a s tructu ra l approach have been developed [50]. The
estim ation approach employs the m inim um absolute error (M AE) criterion because

of its robustness [49]. O ptim al stack filters and generalized stack filters based on the
M AE criterion can be found via linear program m ing (LP) [49, 116, 194]. T he com

pu ta tional com plexities of the algorithm s are very high since the num ber of variables
and constrain ts in the LP procedure grows exponentially w ith the window w idth of

the filters. An im proved m ethod is to use the adaptive stack filter [117]. This ap
proach alleviates the modelling of the signal and noise by taking a p art of the input
signal to tra in the stack filter. The advantage of this algorithm is th a t only simple

a rithm etic operations are required. The disadvantage of the algorithm is th a t the
num ber of variables still grows exponentially with the increase of the window w idth.

T he o ther disadvantage is th a t the convergence speed of the algorithm of the adaptive
stack filters is very slow.

A new design m ethod is suggested in [119] based on threshold decom position
and Bayesian decision theory. The m axim um num ber of unknown variables is 2N for
an TV-length stack filter [117]. If there are some constraints on the positive Boolean

functions, any positive Boolean function can be equivalent to a corresponding th resh

old logic function [192] in which the num ber of variables is TV + 1. More im portantly ,
any linear adaptive algorithm can be applied to the new optim ization problem . Most

of them have a rem arkable higher convergence rate than th a t of L in’s algorithm [119].

It is w orth noting th a t the new adaptive algorithm does not generally give optim al
stack filters under the M AE criterion.

Neural filters [118] have been suggested as a way of solving the problem of optim al

generalized stack filter design. The neural network representation enables the stack

filter to be im plem ented using sorting operations in the real dom ain. This reduces
the am ount of com putation since the complexity of im plem enting stack filters in

the binary dom ain increases exponentially with the word length. Two classes of

neural filters have been defined [118], hard neural filters and soft-neural filters. The
hard neural filters are defined by a set of neural networks in which the activation
functions are unit step functions. If they satisfy the stacking property, the hard neural
filters reduce to GS filters. Soft neural filters are defined by neural networks whose

activation functions are sigm oidal.The universal approxim ation property of neural
networks [94] suggests th a t soft neural filters can approxim ate all filters defined by
linear and nonlinear continuous functions such as linear F IR filters and m icro-statistic
filters [9]. Moreover, soft neural filters can also approxim ate the hard ones. Two

25

adaptive neural filtering algorithm s, the adaptive least m ean absolute error (LMA)

algorithm and the adaptive least m ean square error (LMS) algorithm , are used for
finding optim al neural filters under the MAE and MSE criteria , respectively [118].
H ard neural filters and soft neural filters can be trained using these two algorithm s.

2 .4 . F ra c ta ls , I t e r a t e d F u n c tio n S y s te m s a n d In v e rs e F r a c ta l T ra n s fo rm a

t io n s

T here are three popular ways to construct a fractal scene. The first is to use L-systems
[161] to models fractal botanical models. The second is to use fractional Brownian

m otion (fBm). The th ird is to use the Itera ted Function System (IFS) developed by
Barnsley and his collaborators [21, 23]. L-systems and fractional Brownian m otion

are lim ited models. L-systems are only suitable for botanical graphics; fBm is defined

in a one-dim ensional framework and it is very difficult to generalize it to higher di

mensions. F ractal techniques based on iterated function system s are the m ost flexible

generalization from one dimension to higher dimensions is very n a tu ra l and easy, and

highly complex spatial inform ation can be derived from tem poral iteration th a t is
governed by only a small set of param eters.

2.4.1. Itera ted Function Systems

In B arnsley’s IFS theory, a determ inistic and random itera ted function and system
can be defined as the following :

D e f in it io n 2 .3 The Hausdorff distance between sets K and L, K , L £ X , can be
defined as

{ h (K , L) ~ m ax{m ax{<i(a;,/f) : x £ L}, ma,x{d(y, L) : y £ AT}), (2.22)

where d (x , K) is the distance from x to K , d{x, K) = m in{d(a‘, y) : y £ K }, and

d(y i L) is the distance from y to L, d(y , L) = m in{d(y , x) : x £ L] .

D e f in it io n 2 .4 A deterministic iterated function system (IFS) is an N-tuple (w \,W 2 ,' • • ,w n)
of maps from a compact metric space (X , h) into itself, where h is Hausdorff distance.

A map w : X —» X is called a contraction iff there exists a constant c £ R with
0 < c < 1 and h(w(x) , w(y)) < ch(x, y) , Vx , y £ X . The smallest c with this property

is called the Lipschitz constant o f w and is denoted by Lip(iu). A deterministic IF S
consists o f contractions uq, uq, • * ■ , w^f.

H utchinson [96] proved, th a t if W (K) = (j£ i Wi(K) , W is a contraction w ith
respect to h, w ith Lip(FF) < max(Lip(u;1), • • •, Lip(uqv)), and has a unique fixed point

26

A in X . The fixed point A of W is called the attractor of the IFSfrui, w 2, • ■ *, w n).

D e f in it io n 2 .5 A random iterated function system IFS(to1,w 2, ■ • • , i vn ,
P h P 2 5 • ■ * , Pn) consists of Lipschitz map functions wi in compact metric space (X , h)

with probability p i , i = 1,2, • • •, ./V and Y^iLi Pi — 1- Choose xq € X and then choose,
recursively and independently,

X n € ^ 2 (^ 7 1 —1) i 1 ^ N ^ n — l) }) — f j 2 ,

where the probability o f the event x n — Wi(xn~ 1) is pi.

Thus it defines a discrete-tim e Markov process {Z n , n = 1,2, •

P { Z n £ B \Z n—\ X n — i, , X q — & o) — P') 1

where
N

P(x , B) = J 2 p^ A B)
t = 1

is the probability of transfer from x G X to the Borel set B in X , where 8X is the Dirac

m easure concentrated at x. Barnsley [23] proved th a t if p E P (X), the set of Borel

probability m easures 011 X, is a stationary initial d istribution and m aps (w i ,w 2-,' * •)
are Lipschitz, the process { Z nj converges in distribution to p.

For the fractal interpolation problem, let

(2.23)

,} [21,23].

(2.24)

(2.25)

Yt = f (Ah), i = 1 ,2 ,- ..,7V, (2.26)

where n o are data , {X{} are interpolating points w ith X i < X 2 < • • • < X n and / is

an unknown function which displays some sort of self-similarity under m agnification.

Define a graph G = {(^Fz-, FT), z = 1,- • Barnsley [18, 19] suggested finding an
IFS whose a ttrac to r approxim ates this graph G and which would give an estim ate,
/ , for f . The basic structu re is th a t the maps W(are affine transform ations w ith the
special s truc tu re

- \ (. n \ f \ (

\ y J

0

Cj dj j
+

\ v)

\
e,-

(2.27)

Berger [34] uses random IFS and affine transform ations to show how refinem ent

m ethods for sm ooth curve generation can be carried out efficiently. T he applications

include Beziear curves, splines, wavelets and various interpolants. Barnsley et al [26]

have shown th a t it is possible to design the interpolation such th a t / is in C l[Xi,X ;v],

i.e., / has Ith. continuous derivative on [Xi,X/v], where / is any 11011-negative in te

ger. Since any lower-dimensional function / can be regarded as a projection of a

27

high-dim ensional function, the graph G also can be considered as a projection of

another graph in higher dimensions. Barnsley et al [22] have considered finding an
IFS whose a ttrac to r approxim ates this high-dimensional graph, and from this they
obta in an in terpo lan t for / , by projection of this high-dim ensional a ttrac to r, which

will not lim it / to be self-similar. They called it hidden variable fractal interpolation.
G eronim o et al [79] extended IFS interpolation to two-dim ensional fractal surfaces.

Their algorithm allows the construction of these surfaces over polygonal regions w ith
arb itra ry in terpolation points.

The recurrent ite ra ted function system (RIFS) [24, 4-4], also called local itera ted
function system (LIFS), generalizes iterated function systems. T he flexibility of RIFS
perm its the construction of more general sets and m easures which do not have to
exhibit the s tric t self-sim ilarity of the IFS case. RIFS can be defined as follows :

D e f in it io n 2 .6 Let (X j , d j) be compact metric spaces, j £ {1, 2, • • • , N } ,a n d let

(H j , h j) denote the associated metric spaces o f nonempty compact subsets which use
the Hausdorff metrics. Let there be defined maps W{j : Hj —> Hi, V(i, j) £ I , where I

is some set o f pairs o f indices with the property that I(i) = { j \ (i , j) £ 1} 7̂ 0 } and
hi (wi j (A) , Wi j (B)) < S{jhj(A, B) , fo r some Sij, V(«, j) £ I and VA, B £ ILj. Then

when s < 1 there is a unique element A = (A i, • • ■, Aw) £ H such that

Ai = | J Wij(Aj), for i — 1,2, • • •, N, (2.28)

i.e., W (A) — A , where IL consists o f a stack o f planes AA,A"2, • • •, AOv with a point
in H being the N-tuple o f one image in each plane and

W (A \ , ■ • •, Ajv) = (U U w N j (A i)] • (2-29)
Vied i) j e i (N) J

B arnsley’s Collage theorem [25, 19] tells us th a t, in order to control the closeness
between the a ttrac to r A and the da ta set K under the Hausdorff distance, it is
sufficient to control the closeness between K and W { K) which is obtained by one-

step iteration ahead of K by W under the Hausdorff distance. Here is th e Collage
theorem for IFS.

T h e o re m 2.1 Suppose IFS{wi,W 2 , • • • , «dv) has an attractor A on a compact metric
space (X , h) . Let K C X and W : K —» K , where W (K) = w f f K) U • • • U w n (K)
and L i p s (W) - 5 . I f h (W (I<), L) < e then

h { A , K) < j f - . (2.30)

28

For a RIFS, there exists a corresponding collage theorem [24]. <kien et al [154]

present a new collage theorem holding for a certain class of affine m appings called
Affine Block wise Averaging maps, which operate on the space of discrete signals and

are suitable for the orthogonalized version of Jacqu in’s algorithm [103], introduced

in 4?ien and Lepsoy [155]. The theorem provides a b e tte r bound on the distance
between the original image and the a ttrac to r, by considering in th e estim ate norm s

of collage errors at successively coarser resolutions. B aharav et al [16] proposed a
fast decoding algorithm based on a hierarchical in terpreta tion of the IFS-code which
can reduce the com putation tim e by more than an order of m agnitude.

2.4.2. F itting D ata with Fractional Brownian M otion

An im portan t class of fractal signals is 1 / f processes [109], which exhibit rich be

haviour well suited to modelling a wide range of one-dim ensional n a tu ra l phenom ena.
1 / f processes are a class of random processes of which average spectral density is
p roportional to the inverse of frequency 1 / / and can be characterized by an inherent
scale invariance and persistent long-term correlation structu re . In contrast to the
w ell-studied family of ARIMA process, 1 / f processes have received relatively little
a tten tion in the transitional signal processing literature. This has been due, at least

in p art , to the m athem atical in tractab ility of fractal processes. However, 1 / f frac
ta l signal representations in term s of orthonorm al wavelet bases have been suggested

recently [65, 163, 191] th a t considerably simplify the analysis of these processes.

A popular exam ple of the 1 / f processes is th a t of fractional Brownian m otion

(fBm) [128], which is a generalization of norm al Brownian m otion. The fBm B u (t)

is a zero m ean non-stationary Gaussian random process w ith the covariance function

s) = £ (| + M 2" - |t - a n + o(|<|), (2.31)

where the param eters a 2 and 0 < H < 1 characterize the process. The param eter H
controls the “roughness” of the fBm such th a t an individual realization of the process
has a fractal dim ension [127] D ~ 2 — H. The H param eter also controls the shape

of the average spectral density defined as

S (f) = ^ (2-32)

where r*, = 2H + 1. As a result, the fBm serves as a good m odel for 1 / f processes
where 1 < r& < 3.

W ornell [191, 190, 189] suggests a new algorithm which uses the discrete wavelet

transform [164, 126, 52] to derive an approxim ate m axim um likelihood estim ator

29

when a 1 / f process is em bedded in white Gaussian noise. W ornell’s algorithm needs

th e wavelet coefficients of a Karhunen-Loeve-like expansion for 1 / f noise [188] to be
uncorrelated over scale and tim e. Kaplan et al [109] improve W ornell’s algorithm by

using H aar based wavelets [126]. The coefficients of the new algorithm are weakly
correlated and have a variance th a t is exponentially related to scale. Theoretical
analysis and num erical sim ulation of K aplan’s algorithm indicate th a t it improves

th e accuracy of estim ating H for m oderate da ta length of the fBm; for longer lengths,

bo th algorithm s can find a very good estim ate; for short d a ta length of the fBm w ith
additive noise, bo th algorithm s are unreliable. The problem of how to im prove a
wavelet based fractal estim ator for short data length is still open.

2.4.3. Inverse Problem s of the Itera ted Function Systems

As usual, inverse problem s are hard, and potentially ill-posed. In a typical inverse

problem in fractal construction, a single phenom enon is given, and m ust be reproduced

in term s of some of its characteristics, or in the whole, by a fractal approxim ation.
T here are two forms [180] of inverse IFS problem; Measure: given a ta rge t (norm alized

Borel) m easure v, find an IFS whose invariant m easure ft approxim ates v as closely
as possible (in term s of the H utchinson m etric); Geometric: given a ta rge t set S \ find

an IFS whose a ttrac to r A approxim ates S as closely as possible in geom etry (in term s
of the Hausdorff m etric).

T he inverse problem for m easure can be defined as follows [21, 25] :

D ef in it io n 2 .7 Given a probability measure A on K, where K is a compact metric

space, find an IF S and associated probabilities p fo r which the p-balanced measure pt
is close to A (in the weak * topology).

Consider an IFS {K , : i = 1,2, - -*, where K C C and wfiz) — S{Z +

i = 1,2, -*' , . /V, w ith S{,bi € C , 0 < |s t-| < 1. T hen the m om ents M n =

f k z ndpt[z) n — 0 ,1 , * • • can be calculated. This follows from the s ta tionarity condi
tion ^ (B) = f k P (x y ’B)dpt(x), where B is Borel subset of K . T he recursive form ula
is

(N \ 1 N n—1 ̂ ^
M n = (1 — ^ 2 pis/ j ^

\ i = 1 / 1 = 1 .7 = 0

n
4 ^ ~ 3F M r (2.33)

T he M n values can be com puted starting from Mo = 1. In particu lar, we have
available the reverse procedure, th a t of m atching a finite num ber of m om ents, M n =

gn, where gn = f z ndX(z), n = 1,2 to get the IFS param eters [25, 2, 129,

130, 87]. However, because of the problems associated w ith the nonlinearity of the

equations, the scheme is found to be extrem ely unstable [181, 180], and hence useless

30

from a practical viewpoint. Moreover, the complexity of this approach increases
enorm ously in the two-dimensional case. Vrscay [181, 180] suggested a new m ethod
for m inim izing a “Euclidean distances” between m om ents M n and gn. For a fixed

num ber, N , of IFS m aps, and M , the num ber of m om ents Mi to be “m atched” , the

objective function to be minimized was the sum of the squared Euclidean distance in
“m om ent space” ,

M

K (*) = (2-34)
i=l

Vrscay suggests using a Genetic A lgorithm [93, 82] to m inim ize the above function.
For an inverse IFS problem of the geom etric type, W ithers [187] suggested

applying N ew ton’s m ethod on the param eter space of the IFS to solve the problem

of fitting a given linear function in the L q norm with a function generated by an IFS.
W alach [182] utilized a fixed-length yardstick to traverse the en tire d a ta to construct
a piecewise linear for approxim ating a curve in order to com press an image. The
com pression ra te is near 16:1.

M odern fractal im age compression led to the creation of the concepts and m athe

m atical results of itera ted function systems. Barnsley and Sloan advertised in popular
science m agazines the incredible power of IFS for compressing colour images at com

pression rates of over 10000 : 1 [28]. In 1989 Jacquin proposed a fully au tom ated

algorithm (called as block-based image coding) for fractal im age com pression [100]
which was based on local affine transform ations, and was also called R ecurrent IFS.

He suggested an approach for partitioning a monochrome im age into non-overlapping
square pixel blocks, called range blocks (i?*), and larger square pixel blocks, called
domain blocks (D i), sorted into a set of categories such as shade blocks, edge blocks

and m idrange blocks, following classification [162]. For each range block, a dom ain

block of the sam e category is searched such tha t its grey level under a local stric tly
contractive affine m apping (r,-) minimizes its distance to the original block in the

root-m ean-square sense. Each affine m apping is is composed of a geometric p a rt (Si)

which shrinks the dom ain block down to the size of a range block by pixel averaging,

and a m assif p a rt (Si) th a t transform s the obtained block by shuffling (</{), scaling

(cko), w ith quantized param eters and addition of a constant grey-tone block (A g).
The general form is [104] :

T o S (im-'d) = cx0J (S (f i ^ D)) + A g (2.35)

This scheme is in m any aspects related to vector quantization (VQ) [80], w ith which

it shares the idea of using a codebook providing a library for the selection of the

dom ain blocks. However, the codebook in fractal compression is only a “v irtu a l” one

31

since the dom ain blocks are not stored but are taken from the im age itself, thereby

exploiting the redundancy of the inform ation present in the image.

Jacqu in ’s papers provide a good starting point for fu rther research and ex ten

sions in m any possible directions. Mazel et al [134] use IFS and local IFS to represent

discrete-tim e sequences. Beaum ont [31] extends it to process sequences of video im
ages, and Cochran et al [46] extend it to volum etric data, where the basic elem ents
of the partition are three-dim ensional blocks. The results of fractal volume com pres
sions com pare well against similar techniques based on vector quantization. Jacobs

et al [99] conducted a thorough study to determ ine the optim al num ber of bits for
the uniform quantization of a and A g.

$ ien et al [155, 156] express the item A g in a three-dim ensional subspace A g =

XwUi a kAk, where the otk are real coefficients and {Al 5/ i 2, / I 3} are the fixed basis
vectors. $e in et al first G ram -Schm idt orthogonalize the hxed-basis vectors, in effect

decoupling the optim ization of the scalar otQ and the constant A g. Saupe [166, 167]
suggest another m ethod, th a t of multi-dimensional nearest neighbour search, which

runs in logarithm ic tim e, to replace the common sequential search for a best m atch

of im age portion, which runs in linear time. Monro et al [137, 138] propose to ex

press A g w ith high order item s as A g = Yll=i ak%k *F Y%=1 ^kVk + T he param eters
are optim ally determ ined by applying a least square criterion. T he authors report a
significant increase in image quality by including these higher order item s and, in par
ticu lar, w ith the consequence th a t no searching procedure for dom ain blocks, which is
the m ain factor leading to long encoding tim es with block-based fractal im age coding,
is needed. B arthel et al [29] propose an extension to linear scale transform ation which
applies a high order transform ation in the frequency domain. B it-ra te reductions are

higher th an those achieved by “spatial-dom ain” fractal coding schemes. Fisher and

Jacobs [60, 99] use a quad-tree, rectangular and triangular au tom atic partition of
the range blocks in order to improve image fidelity. A nother triangu lar partition

scheme [54, 55] is provided by the triangular in a Delaunay tessellation [160], which

perm its an adaptive partition of the image support. Davoine etal [54, 55] show
an im provem ent in the visual quality of reconstructed images, com puting tim es and
com pression ratios.

32

CHAPTER 3

D E S I G N O F I N T E R A C T I V E P A R A L L E L D I S T R I B U T E D
C O M P U T I N G E N V I R O N M E N T

3 .1 . In tr o d u c t io n

A Parallel V irtual M achine (P V M) system is a software in frastructu re th a t perm its

connection of heterogeneous Unix com puters to be used as a unified general and

flexible, message-passing, concurrent parallel com putational resource. In this chapter,

we describe the construction of PVM version 3, the principle of program design under
PV M , the approach of dynam ic m onitoring and ways to debug PVM program s. Later
in C hapter 4, we shall build parallel distributed algorithm s w ith PVM system.

In teractive applications need a powerful general-purpose com m and language. We

in troduce such a powerful and em beddable com mand language, Tel. Tk then extends
the core Tel facilities w ith additional commands for building user interfaces so th a t

you can construct Motif-like interfaces by writing Tel scripts instead of C code based

on Tk. It raises the level of X-Windows program m ing and results in application

developm ent th a t is 5-10 tim es faster.
T he com bination of interactive and parallel processing will lead a new and useful

application area, especially for visual science data, image analysis/processing and m ul

tim edia applications. We im plem ent this composition based on a parallel d istribu ted

environm ent, PVM , and the interactive development tool, Tel. T he approach we use
is to provide a Tel version interface for all procedures in the PV M C library so th a t

users can call any PVM procedure to do their parallel com puting interactively. In

order to solve the problem of there being no binary-type d a ta in Tel, we use T e l’s
general-purpose hash tab le to define a kind of object, GBOX, in which to hold any
b inary data. Several Tel procedures are im plem ented to do tasks related to GBOX.

3.2 . T h e M e th o d o f P rogram D es ig n U n d er A P ara lle l V ir tu a l M ach ine

3.2.1. C onstruction of A Parallel V irtual M achine

U nder PVM [74, 75, 76, 173, 175], a user-defined collection of serial, m ulti-processor,

and vector super com puters appears as one large distributed-m em ory com puter,
known as a v irtual m achine as shown in Figure 6 . PVM is a public dom ain, full
source code availability software system , of which the current version is 3. W ith

source code, users can easily port PVM to any other new com puter p latform and

33

Cluster 1
[j] y [j] y [j] [p [j]

Bridge/Router

/ \

MPP

—o
—o
- o
- o
- o
—o
Cluster 2

PVM'
Uniform
View of Virtual Machine

A
N.

Cluster !3

. f o r r r / U ' - 6 [I] [!]_ , /, * *«*•••• —

Vector
SC

Fig. 6 . PVM A rchitectural Overview[175]

im prove the speed of message-pass with new network protocol.

D e f in it io n 3,1 P V M computing environment is composed o f user programs U , sys
tem daemon T>, and interface library X .

D e f in it io n 3 .2 U is a standard single instruction single data-flow program, which

consists o f user data structure, C or Fortran control-jiow statements, and explicit
call-X statements.

Figure 7 illustrates the P V M com puting environm ent.

The PVM system software is composed of two parts. As explained in [75], the
first p a rt is a daem on T>, called pvmd3, th a t resides on all the com puters m aking

up the v irtual machine. Pvm d3 is designed so any user w ith a valid login can in

stall th is daem on on a machine. W hen a user wants to run a PVM application, he

executes pvm d3 on one of the com puters which in tu rn s tarts up pvmd3 on each of
the com puters m aking up the user-defined virtual machine. T he PVM application

can then be sta rted from a Unix prom pt on any of these com puters. M ultiple users
can configure overlapping virtual machines, and each user can execute several PVM
applications simultaneously.

The second p art of the system is a library of PVM interface X routines, libpvm 3.a
for C language or libfpvm 3.a for Fortran 77. This library contains user-callable rou
tines for message-passing, spawning processes, coordinating tasks, and modifying the

v irtual m achine. A pplication program s m ust be linked with th is library in order to
use PVM .

34

PVMD
SUNSparc

PVMD
RS/600

PVMD
CrayYMP

User
Process

User
Process

User
Process

User
Process

Application Process
PVM System Daemon
High Speed Data Channels
Control and Data Transfer
User-Daemon Interface

Fig. 7. PVM Com puting Environm ent

D e f in it io n 3 .3 X consists of a C library and a Fortran library. Multi-data flow will
appear when X is called since send-and-receive message are asynchronous.

D e fin it io n 3 .4 Under a P V M , an application A is made up o f a set o f instances.

An instance of an application subtask or component (realized as a process) [169],
is the un it of com putational abstraction in the PVM system . Each process is an
executing instance of an application component, where a component is a domain-
specific m odule am enable to single program m ulti-data flow (S P M D) execution. All

processes th a t enrol in PVM are represented by an integer task identifier (tid). The

tid is the prim ary and m ost efficient m ethod of identifying processes in PVM . Since

tids m ust be unique across the entire virtual machine, they are supplied by the local
pvm d and are not user-chosen. PVM contains several routines th a t re tu rn tid values

so th a t the user application can identify other processes in the system . An illustrative

exam ple of this com puting model is shown in Figure 8 .

D e f in it io n 3 ,5 In a message-pass model, processes are created by the programmer

explicitly; they communicate explicitly and may send data repeatedly to other pro
cesses.

Instances com m unicate via the use of message-pass models; each message may
contain d a ta of several types. These message segments are built by provided library

routines in a m achine independent m anner. Message exchange is asynchronous, in

35

Input
Component A
Instance 0
Instance 1

*s.

Component B Component CInst. 0 Inst. 2 Inst. 0 SPMDInst. 1 Inst. 3
Inst. 1SPMD

■S*

Component D
Instance 0

Output and Display

Fig. 8 . PVM Concurrent Com putational Model[169]

36

th a t a sending process may continue execution prior to physical message reception by

the destination process. The PVM model guarantees th a t message order is preserved.
If task 1 sends message A to task 2 , and then sends message B to task 2, message A

will arrive a t task 2 before message B. The model assumes th a t any instance can send

a message to any other PVM task, and th a t there is no lim it to the size or num ber of
such messages. W hile all hosts have physical memory lim itations the com m unication

m odel does not restric t itself to a particular m achine’s lim itation and assumes th a t

sufficient m em ory is available.

3.2.2. PVM User Interface Library

T he following are a sum m ary of the functions provided by PVM version 3 [74, 84].

• PVM supplies process control routines tha t enable a user process to become a

PV M task, to becom e a norm al process again, to spawn a new process, and to

te rm inate other processes.

• PVM supplies dynam ic configuration routines to add or delete hosts from the
v irtual m achine, to s ta rt the system daemon, and to halt whole v irtual machine.

• PVM supplies inform ation request routines to find out inform ation about the
v irtual m achine configuration and active PVM tasks.

• PVM provides two m ethods of signalling other PVM tasks. One m ethod sends a

Unix signal to another task. The second m ethod notifies a set of tasks about an
event by sending them a message with a user-specified tag th a t the application

can check for.

• If a host fails, PVM will autom atically detect it and delete the host from the

v irtual machine. The status of hosts can be requested by the application. It
is still the responsibility of the application developer to m ake his application

to leran t of host failure. PVM makes no a ttem p t to autom atically recover tasks
th a t are killed because of a host failure.

• PVM provides routines for packing and sending messages and unpacking m es
sages between tasks.

• The PVM com m unication model provides asynchronous blocking send, asyn
chronous blocking receive, and non-blocking receive functions. In addition to
these point-to-point com m unication functions the model supports broadcast to

a set of tasks and to a user-defined group of tasks. W ildcard can be specified

in the receive for the source and label allowing either or bo th of these contexts

37

to be ignored, A routine can be called to retu rn inform ation about received

messages.

• T he user can define m ulti buffers in PVM version 3. Message buffers are al
located dynam ically so th a t the m axim um size messages th a t can be sent or

received is lim ited only by the am ount of available m em ory on a given host.

• D ynam ic process groups are im plem ented on top of PVM . In this im plem enta

tion, a process can belong to m ultiple groups th a t can change dynam ically at
any tim e during a com putation. Routines are provided for tasks to join and

leave a nam ed group. Tasks can also request inform ation about other group
m em bers.

3.2.3. Developing a Good PVM A pplication

A pplication program s view PVM as a general and flexible parallel com puting re

source th a t supports a message-passing model of com putation. This resource m ay be
accessed a t th ree different levels [56] :

1. T he transparen t mode, in which tasks are autom atically executed on the m ost

appropria te host (general the least loaded com puter).

2. T he architecture-dependent mode in which the user m ay indicate specific archi
tectu res on which particu lar tasks are to be executed.

3. The low-level m ode in which a particular host may be specified.

Such layering perm its flexibility while retaining the ability to exploit particu lar strengths

of individual m achines on the network.

A pplication program s under PVM may possess arb itrary control and dependency
structures. In addition, any process may com m unicate an d /o r synchronize w ith any
other. This allows for the m ost general form of m ulti-instruction m u lti-da ta flow

(M IM D) parallel com putation, bu t in practice-m ode concurrent applications are
m ore structu red . Two typical structures are the Single P rogram M ulti-D ata (SPM D)
m odel, in which all processes are identical, and the m aster/slave m odel, also known

as server/clien ts, in which a set of com putational slave processes perform s work for
one or more m aster processes.

T here are no lim itations to the program m ing paradigm a PVM user may choose.
Any specific control and dependent structure may be im plem ented under the PVM

system by appropria te use of PVM constructs. On the o ther hand there are cer
ta in considerations [175] of which the application developer should be aware when

program m ing any message passing system.

38

T he first consideration is task granularity. This is typically m easured as a ratio of

the num ber of bytes received by a process to the num ber of floating point operations

a process perform s. The tradeoff is the larger the granularity the higher the speedup

bu t often there is a reduction in the available parallelism as well.

The second consideration is the num ber of messages sent. T he num ber of bytes

received m ay be sent in m any small messages or in a few large messages. Using a few

large messages can reduce the to tal message start-up tim e. T here are cases where
sm all messages can be overlapped with other com putations so th a t the ir overhead is
masked.

D e f in it io n 3 .6 Functional parallelism: There are different algorithmic subcompo
nents o f the computation in each processor.

D e f in it io n 3 .7 Data parallelism: the data are partitioned and distributed to all the

processors; algorithmic subcomponents of the computation which are often similar are
performed fo r each part of data and information is passed between processes until the
problem is solved.

A th ird consideration is whether the application is b e tte r suitable to functional
parallelism or d a ta parallelism . For example, a vector supercom puter m ay solve a

p art of a problem suitable for vectorization, a m ultiprocessor m ay solve another p art
of the problem th a t is suited to parallelization, and a graphics w orkstation m ay be

used to visualize the generated da ta in real time. Each m achine perform s different

functions (possibly on the same data). Of course in PVM both m odels can be mixed
in a hybrid th a t exploits the strengths of each machine.

T here are additional considerations about networking for the application devel
oper if he wishes to run his parallel application over a network of m achines. His

parallel program will be sharing the network with other users. This m ultiuser, m u lti
tasking environm ent affects both the com munication and com putational perform ance
of his program in complex ways.

F irst, there is different com putational power on each m achine in the configura

tion. Second, there are the effects of long message latency across the network. Third ,
the com putational perform ance and effective network bandw idth are dynam ically
changing as o ther users share these resources. Many of these network considerations

are taken care of by incorporation of some form of load balancing into a parallel
application.

D e f in it io n 3 .8 A n application A is a f-tuple { P , G f f \ e } , where P is a set o f n

processors; G — (T, A) is an undirected graph; T is a set o f I processes; A is a set o f

39

undirected edges corresponding to communication between processes; / : T x P To

is a function such that f{~j,p) returns the cost required to compute task 7 € T cm

processor p £ P; e : A x A —> To is a function returning the cost associated with
communication between processes i f they are mapped to dijferent processors. The load

balancing is to minimize the global cost [149] o f Y l f i l i P) + 53 e(7 >^)-

In a m ultiuser network environm ent load balancing is the single m ost im portan t

perform ance enhancer. There are many load balancing schemes for parallel program s.

We will describe the two m ost common schemes used in network com puting [74].

The sim plest m ethod is static load balancing. In this m ethod the problem is

divided up, and tasks are assigned to processors only once. The d a ta partition ing

m ay occur off-line before the job is started , or the partitioning m ay occur as an early
step in an application. The size of the tasks or the num ber of tasks assigned to a
given m achine can be varied to account for the different com putational powers of the

m achines. Since all the tasks can be active from the beginning, they can com m unicate
and coordinate w ith one another. On a lightly loaded network, s ta tic load balancing

can be quite effective.

W hen the com putational loads are varying, a dynamic load balance scheme is

required. The m ost popular m ethod is called the Pool of Tasks paradigm . It is

typically im plem ented in a m aster/slave program where the m aster program creates
and holds the pool and farms out tasks to slave programs as they fall idle. The pool
is usually im plem ented as a queue and if the tasks vary in size then the larger tasks

are placed near the head of the queue. W ith this m ethod all the slave processes are
kept busy as long as there are tasks left in the pool.

3.2.4. M onitoring and debugging a PVM A pplication

In general, debugging parallel programs is much more difficult th an debugging serial
program s. Not only are there more processes running sim ultaneously, bu t their in ter

action can also cause errors. W hile PVM provides a solid program m ing base, it does
not provide the user with m any tools for analyzing or debugging PVM program s. Xab

(X-window Analysis and deBugging) [33] is a tool for the visual (X-based) analysis
and debugging of PVM programs. Xab gives the user direct feedback as to w hat PVM
functions his program is performing. In its simplest form, this feedback is displayed
in a X-window. Xab uses PVM to m onitor PVM programs. This makes Xab very

portab le bu t it leads to interesting issues of how to make Xab com patible w ith the

program s it m onitors.

Xab consists of three m ain com ponents, a user library, a m onitoring program and
an X window front end. The user library provides instrum ented versions of the PVM

40

abmon3

Node 2
pvm_recv(...)

' Node 1
pvm_send(...)

xab_send(...)
xab__sendevent
pvm_send (...)

Fig. 9. Node 1 task is calling pvm_send to send a message to node 2 task. Node l ’s

pvm_send actually translates into an xab„send. The xab„send sends an event

message to abm on3 and then performs the actual pvm_send on behalf of the
program .

calls. T he m onitoring program runs as a PVM process and gathers m onitor events in
the form of PVM messages. The Xab front end displays inform ation graphically about

PV M processes and messages. The approach of real tim e m onitoring is particularly

apropos in a heterogeneous m ultiprogram m ing environm ent. M onitoring can help
give the user insight into how a program is behaving in such an environm ent.

T he Xab routines perform the norm al PVM functions for the user bu t they also

send PVM messages to a special m onitoring process, called abmon , illustrated in
F igure 9. T he abm on process receives event messages from the instruction of PVM
calls, and form ats them into hum an readable form. The fo rm atted event messages

can either be w ritten to a file or sent to the Xab display front end program .

3.3 . U se o f T e l to D ev e lo p In teractive A pp lica t ion

A general-purpose program m able com mand language amplifies the power of software

by allowing users to write programs in the com mand language in order to extend the
softw are’s built-in facilities. Among the best-known exam ples of powerful com m and
languages are those of the unix shell [108] and Emacs editor [171].

Nowadays it is possible and easy to develop interactive applications on a personal

w orkstation. U nfortunately, few of today’s interactive applications have the power
of the shell com m and languages. W here good com mand languages exist, they tend

to be tied to specific programs. Each new interactive application requires a new

com m and language to be developed. In most cases application program m ers do not

41

have tim e or inclination to im plem ent a general-purpose facility, so the resulting

com m and languages tend to have insufficient power and clumsy syntax [150],

Tel stands for “Tool Com m and Language” [150, 151, 152] which is general-

purpose, em beddable, and powerful. It consists of a simple Tel shell application called
tclsh and a library package th a t programs can use as the basis for their com m and
languages.

Tel im plem ents an in terpreter for a simple program m ing language th a t provides
variables, procedures, control constructs like z/and fo r , a rithm etic expressions, lists,

strings and o ther features. Tel also allows applications to extend the generic com m and

set w ith application-specific commands. An application need only im plem ent a few

basic Tel com m ands related to the application; when these are com bined with the

Tel library a fully-program m able com mand language results.

3.3.1. Tel language Syntax

D e fin it io n 3 .9 The Syn tax o f Tel language is defined by Backus et al Form (B N F) [15]
as the fo llow ing :

<Tcl-script>
<C-separator>
< T cl- comman d >
< Separator >
< Field >

<R-syntactic-construct>
<W ord>
< Command >

= <Tcl-command> <C-separator> <Tcl-command> •••
= I hiewfine-key’
= <Field> <Separator> < Field> <Separator> • • •
— ‘space’ | ‘tab ’
— <Word> | <L-syntactic-construct> <W ord> (

<Word> <R-syntactic-construct>
<L-syntactic-construct> ::= ‘[’ j

= T I '} ’
= <Command> | <Argument> j <Comment>
= <Built-in-command> | < Application-specific-command>
| ‘proc’

< Argument> ASCII-string | ‘$’ ASCII-string |
ASCII-string ‘\special-cliaracter’ ASCII-string

< Comment> ::= ‘# ’ ASCII-string

The angular brackets (<>) delimit meta-linguistic terms and the vertical bars (\) sep

arate alternatives (read as ‘o r ’). The double-colon equals (::=) is to be read as ‘may
be’.

T el’s basic syntax is similar to th a t of the unix shell: a com m and consist of one
or m ore fields separated by spaces or tabs. Unlike the unix shell, each Tel com m and

returns a string result, or the em pty string if a retu rn value isn’t appropriate. T here

are four additional syntactic constructs in Tel, which give the language a Lisp-like [1]
flavor.

T he following exam ples sum m arize a few of the key features of Tel:
E x a m p le X

42

set a 934
put a; set a b

Simple Tel commands consist o f to ords separated by white space. The first word is a
command name (here is ‘s e t ’ and the additional words are arguments fo r the command
(here is ‘93f ’). ‘set a 93f ’ means that variable ’a ’ is set to a new value 93f- ‘put
a ’ means that character ‘a ’ is displayed on the screen. Commands are separated by

semi-colons or newlines. □

E x a m p le 2

set msg "Hello, world"
set x {a b {xl x2}}

Double-quotes or nested curly braces may be used to delimit complex arguments in Tel
commands. Each o f the above commands has three fields in all. I f an argument is
enclosed in braces then the contents of the braces are passed to the command without
any further interpretation (newline and semi-colons are not command separators and

the substitutions described in Examples 3-5 are not performed). I f an argument is en
closed in quotes, then the substitutions in Examples 3-5 are performed on its contents.
□

E x a m p le 3

print $rasg
if $i < 2 {set j 27}

Dollar signs invoke variable substitution in Tel commands: the dollar sign and vari
able name will be replaced with the value of the variable in the argument passed to the
command. □

E x a m p le 4

print [list q r $x]
set msg [format "x is °/0s" $x]

Tel commands may contain other commands enclosed in brackets. When this occurs,
the nested command is executed and its result is substituted into the argument o f the

enclosing command, replacing the bracketed command. □
E x a m p le 5

set msg "{ and [are special"
print Hellol\n

Backslashes prevent special interpretation of characters like braces and brackets in Tel
commands. Backslashes can also be used to insert control characters into commands,
as in the second command above. □

Tel evaluates a com m and in two steps [152] : parsing and execution, as shown

in Figure 10. In the parsing step the Tel in terpreter divides the com m and up into

43

> Words

Tel Parse

Result

Command String

Command Procedure

Fig. 10. Tel Com m and Execute Flow

words and perform s substitutions. Parsing is done in exactly the sam e way for every
com m and. During the parsing step the Tel in terpreter does not apply any m eaning

to the values of the words. Tel ju st performs a set of simple string operations such as

replacing the characters ”$a” with the string stored in variable a; Tel does not know
or care w hether a or the resulting word is a num ber or anything else.

In the executing step m eaning is applied to the words of the com m and. Tel trea ts
the first words as a com m and nam e, checking to see if the com m and is defined and

locating a com m and procedure to carry out its function. If the com m and is defined
then the Tel in terp re ter invokes its com mand procedure, passing all of the words of
th e com m and to the com m and procedure.

3.3.2. Tel D ata Type

There is only one type of da ta in Tel [152]: strings. All com m ands, argum ents to

com m ands, results returned by commands, and variable values are ASCII strings.

T he use of strings throughout Tel makes it easy to pass inform ation back and forth

between Tel library procedures and C code in the enclosing application.
A lthough everything in Tel is a string, many com m ands expect the ir string ar

gum ents to have particu lar form ats. There are three particu larly com m on form ats

for strings [150]: list, expressions and commands.

1. A list is ju st a string containing one or more fields separated by w hite space,
sim ilar to a com m and. For example, the string

dog c a t { h o rse cow mule} b e a r

is a list w ith three elements.

44

Parser

Build-In
Commands

Init

Command

i n □ □
Application-Specific

Commands

Tel Application

Fig. 11. Tel Em beddable S tructure

2. The second common form for a string is a numeric expression. Tel expressions

have the same operators and precedence as expressions in C.

3. The th ird common form for a string is as com m ands (or sequences of com
m ands). A rgum ents of this form are used in Tel com m ands th a t im plem ent
control structures. For example, consider the following com m and:

E x a m p le 6

if { $a < $b } {
set tmp $a
set a $b
set b $tmp

>

The i f com m and receives two argum ents here, each of which is delim ited by
curly braces. I f is a built-in com mand tha t evaluates its first argum ent as an
expression; if the result is non-zero, i f executes its second argum ent as a Tel
com m and.

3.3.3. Em bedding An Application into Tel

Tel is an em bedded language [150]. It is a library th a t is designed to be linked
together w ith C applications as shown in Figure 11. The main loop of the application
generates Tel com m ands. This could happen in any of serveral ways, depending on

45

the application. One way is to read commands from standard input; this results
in a shell-like program . A nother way, used by Tk, is to associate Tel com m ands
w ith X events such as bu tton presses or keystrokes; when an X event occurs, the

corresponding com m ands are executed. W hen the application has generated a Tel
com m and it passes it to a Tel library procedure for evalution. The Tel in terpreter

parses the com m and, performs the substitutions described in Exam ples 2-5, uses the

first word of the com m and to locate a com m and procedure for the com m and, and

then calls the com m and procedure to actually execute the com m and. T he com m and
procedure carries out its function and returns a string result, which the Tel in terp re ter
re tu rns back to th e calling code in the application.

T he Tel library includes several built-in commands th a t im plem ent the generic

facilities [152] such as variables and looping. Additional com m and procedures m ay be
provided by each application. The application registers its own specific com m ands by
passing the ir nam es and com m and procedures to Tel. This inform ation is used la ter

by the Tel in terpreter when it evaluates com mand strings. Application-specific and

built-in com m ands have exactly the same structure; they are indistinguishable except
th a t built-in com m ands are registered autom atically and users m ay expect them to

be present in all applications. New com mands may be created and deleted a t any

tim e while an application executes.

T he m ost im portan t aspects of Tel are the simplicity of th e language and the
sim plicity of its interface to C programs. The language sim plicity makes Tel easy to

learn; the interface sim plicity makes it easy to use Tel in applications, easy to w rite

new Tel com m ands, and easy to use Tel to compose prim itives w ritten in C.

3.3.4. Tk — Extending Tel into X l l W indow System

Tk is a new toolkit for the X l l window system [168]. Like other X l l toolkits such

as X t [12], Tk consists of a set of C library procedures in tended to simplify the task
of constructing windowing applications. The Tk library procedures, like those of

o ther toolkits, serve two general purposes [151]; framework and convenience. F irst,

they provide a framework th a t allows applications to be built out of m any small

interface elem ents called widgets (e.g. buttons, scrollbars, menus, etc.). The to o lk it’s

fram ework makes it possible to design widgets independently, compose them into
in teresting applications, and re-use them in m any different situations w ithout re

design. The second purpose of the toolkit is to provide ready-m ade solutions for
the m ost com m on needs of windowing applications. For exam ple, Tk includes a set

of com m only used widgets plus procedures to make it easy to build new widgets.

Using Tk, it is possible to build many interesting windowing applications by plugging

46

together existing widgets. Many other applications can be built by constructing one
or two new widget types and combining them with T k ’s existing widgets.

A lthough T k ’s overall purpose is similar to th a t of other toolkits, its im plem en

ta tio n has the unusual property th a t it is based around the Tel com m and language.

The Tel interfaces allow the look and feel of an application to be queried and modified
at any point in the application’s execution. They also allow new interface elem ents,

or even new applications, to be created dynam ically ju s t by w riting Tel script. C
code is needed only for creating new widget types or d a ta structures.

Each w idget/w indow has a tex tual nam e [151] th a t is used to refer to it in Tel
com m ands. W indow names are similar to the hierarchical pa th nam es used to nam e

files in Unix, except th a t is used as the separator character instead of “/ ” . The

nam e refers to the topm ost window in the hierarchy, which is called the m ain
window.

Tk applications are controlled by two kinds of Tel scripts [152]: an initialization
script and event handlers. The initialization script is executed when the application
s ta rts up. I t creates the application’s user interface, loads the app lication’s da ta
structu res, and perform s any other initialization needed by the application. Once
in itia lization is com plete, the application enters an X event loop to wait for user

interactions. W henever an interesting X event occurs, such as the user invoking a

m enu entry or moving the mouse, a Tel script is invoked to process th a t event. These
scripts are called event handlers; they can invoke application specific Tel com m ands,
modify th e user interface, or do m any other things.

Wish is the sim plest possible Tk application. The only Tel com m ands it contains

are the Tel built-ins and the additional commands provided by Tk. T he following is

the famous ’’Hello, world” exam ple.4
E x a m p le 7

button .b -text "Hello, world!" -command "destroy ."
pack .b

Type the above com m ands to wish and the produced application is shown in Figure 12.
T k provides four m ain groups of Tel commands; they create widgets, arrange

widgets on the screen, com m unicate w ith existing widgets, and interconnect widgets
w ithin and between applications. W henever a new widget is created Tk also creates
a new Tel com m and whose nam e is the same as the w idget’s nam e. This com m and is
called a widget com m and, and the set of all widget com m ands (one for each widget

in the application) constitu tes the th ird m ajor group of T k ’s com m ands.

The m ost im portan t feature [151] of Tk is th a t it allows different applications

to work together in powerful ways. Tk provides a rem ote-procedure-call-like facility

47

Hello, worid!
nvor̂ j

a im

Fig. 12. Tk Im plem entation of the Exam ple “Hello, W orld”

called send th a t allows any Tk-based application to invoke Tel com m ands in any

o ther Tk-based application. Send takes two arguments: the nam e of an applica

tion and a Tel com m and. This facility encourages the developm ent of lots of small
specialized tools th a t can be program m ed with send to work together in interesting
ways. The tools could be developed and m aintained independently, and yet be used

in m any different ways. It could result in much richer and m ore powerful interactive

environm ents than we have today.

3 .4 . D es ig n In te ra c tiv e P arallel D istr ib u ted C o m p u tin g E n v iro n m en t

In PVM version 3, there are the C language and Fortran 77 interface libraries. In
order to give PVM the facility of interactive application, we do not want to invent
a new wheel, we ju st use the powerful tool language Tel and bind Tel w ith PVM
C language interface library, called as Interactive Parallel D istributed Com puting
Environm ent (IPD C E).

There are two ways of im plem entation. One is only to use basic Tel and the

o ther is to use T c l+ T k as shown in Figure 13. The advantage of the first is th a t we
do not need to use an X environm ent which is very large in size and slow in some old

machines. We can do interactive parallel com puting character-based applications.
The advantage of the second is we can use Graphics User Interface (GUI) under

X window, which is the de facto standard of GUI. W ith Tk you can develop GUI

beautifully for your interactive parallel com puting application.

In binding Tel with the PVM C language interface library, the first consideration
is the nam es of library procedures. We use the same approach to change the character

to T in the nam e of its corresponding PVM C library procedure, as in the exam ple

48

[interpreter JInterpreter
. PVM 3
Commands

Tk
Commands

PVM 3
Commands

Tel
Build-in
Commands

Tel
Build-in
Commands

TCL + PVM TK + PVM

Fig. 13. Bind Tel or Tk with PVM

PVM C procedure nam e Tel PVM procedure nam e

pvm_mytid

pvm_send

pvm lm ytid

pvm lsend

The second consideration involves the argum ents of library procedures. As in the
C language, we use the value-pass m ethod in IPDCE. As we know, we can sim ulate

th e reference-pass m ethod by a pointer in C language, bu t we do not use the approach
in IPD C E. Instead of a pointer, we use the LIST structure as argum ent to pass input

values into a procedure and return a new LIST structure from the procedure to re tu rn
result values.

E x a m p le 8

int info pvm_config(int *nhost, int *narch, struct hostinfo
**hostp); in PVM C library

RETLIST pvmlconfig; in IPDCE library

where R E T L I S T = info nhost narch hostlist; info, nhost, narch are integer; hostlist
is host-name list. □

In the C version of the procedure, the argum ents nhost and narch are pointers

and hostp is the po in te r’s pointer. They are used to pass result value.

Each Tel com m and is represented by a com m and procedure w ritten in C. The
interface to a com m and procedure is defined by the TcLCmdProc procedure pro to
type:

typedef int Tcl_CmdProc(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]);

Each com m and procedure takes four argum ents. The first, clientData , is useful

when the com m and is associated with object-oriented style program m ing. The sec

ond, interp , is the in terpreter in which the com mand was invoked. T he th ird and

49

fourth argum ents have the same m eaning as the argc and argv argum ents in a C m ain

program : argc specifies the to tal num ber of words in the Tel com m and and argv is

an array of pointers to the values of the words. A com m and procedure retu rns two

values. One is an integer completion code (e.g. TC L-O K or T C L -E R R O R) and the

o ther is a result string or error message in in terp— > result.
The following is the com m and procedure for a new com m and called P V M -m ytid

which enrols your process in PVM.
E x a m p le 9

int PVM.mytidCclientData, interp, argc, argv)
ClientData clientData; Tcl_Interp *interp; int argc; char *argv[];

register int tid;
if(argc != 1)
{ interp->result = "wrong # args"; return TCL_ERR0R; }
if((tid-((PVM_XAB3) ? xab_mytid() : pvm_mytid())) < 0)
{ sprintf (interp-->result, "°/0d" ,tid); return TCL_ERR0R; }
else
{ sprintf (interp->result, n,/0d" ,tid) ; return TCL_0K; }

>

In order for a com m and procedure to be invoked by Tel, we m ust register the

new com m and by calling TcLCreateCommand. For exam ple
E x a m p le 10

Tcl_CreateCommand(interp, "pvmlmytid", PVM_mytid,(ClientData *)NULL,
(Tcl_CmdDeleteProc *)NULL);

The first argum ent to TcLCreateCommand identifies the in terp re te r in which the
com m and will be used. The second argum ent specifies the nam e for the com m and and

the th ird argum ent specifies its com m and procedure. The fourth and fifth argum ents
are rela ted to ClientData, which is not used in IPD CE design. TcLCreateCommand

will create a new com m and for interp nam ed pvmlmytid. W henever pvm lm ytid is

invoked in interp , Tel will call P V M -m ytid to carry out its function. After the above

call to TcLcreateCommand , pvm lm ytid can be used in TCL script ju s t like any other
com m and.

Following the approach described above, we can design the whole PVM 3 Tel
interface from its C library. Here are all the Tel com m and nam es:

Process Control: pvm lm ytid, pvm lexit, pvm lspawn, pvm lkill.

Information: pvm lparen t, pvm lpstat, pvm lpvm lm stat, pvm lconfig, pvm ltasks,
pvm lgetopt, pvm ltid tohost.

D ynamic Configuration: pvm laddhosts, pvm ldelhosts, pvm lhalt, pvm lstart_pvm d.

50

Signalling: pvm lsendsig, pvmlnotify.

Error Messages: pvm lperror, pvm lserror.

Message Buffers: pvm lm kbuf, pvm linitsend, pvmlfreebuf, pvm lgetrbuf, pvm lgets-
buf, pvm lsetsbuf, pvm lsetrbuf.

Packing Data: pvm lpkbyte, pvm lpkcplx, pvm lpkdcplx, pvm lpkdouble, pvm lpk-
float, pvm lpkin t, pvm lpklong, pvm lshort, pvm lpkstr

Sending and Receiving Data: pvm lsend, pvm lm cast, pvm lnrecv, pvm lrecv, pvm lprobe,

pvm lbufinfo, pvmlrecvf, pvm ladvise, pvm lfvend, pvm lvrecv, pvm lvbufinfo.

Unpacking Data: pvm lupkbyte, pvm lupkcplx, pvm lupkdcplx , pvm lupkdouble,

pvm lupkfloat, pvm lupkin t, pvm lupklong, pvm lupkshort, pvm lupkstr.

Dynam ic Group: pvm ljoingroup, pvmllvgroup, pvm lgettid , pvm lgetinst, pvm lget-
gsize, pvm lbarier, pvm lbcast.

We also provide the support of Xab version 3 in IPD C E. Besides the original
function of Xab 3, users can dynam ically set on or off the Xab. There are two new

Tel com m ands ’’xab lon” for starting the Xab and ’’xabloff” for ending the Xab.

One problem in IPD C E is th a t you cannot use binary type d a ta d irectly since
only string type d a ta is officially supported in Tel. A ctually in all packing-data and

unpacking-data com m ands the input from Tel script are string type; for exam ple,
”-13.5el0” is a string expression of a floating point num ber. If the size of da ta

which requires transfer to another machine is small, we can use the string type to
com m unicate w ith the other machine. But if the size of d a ta is large, we cannot use

the string type since there are very high overheads com pared w ith string expressions

and original binary expressions. For example, ”-13.5el0” needs 9 bytes as a string
which also includes a end m ark ’\ 0 ’ of C string style, but the original expression only
uses 4 bytes if it is floating-point type or 8 bytes if it is double-precision type.

A lthough Tel does not allow a user to define any new d a ta type, it provides an
object-oriented style data-save structure, the hash table. A hash tab le is a collection
of entries, where each entry consists of a key and a value. No two entries have the

same key. Given a key, a hash table can very quickly locate its en try and hence the

associated value. Tel exports its general-purpose hash tab le facilities through a set
of G library procedures so th a t applications can use them . In T e l’s hash table, the

values for hash tab le entries are item s of type C lientD ata, which are large enough to

hold either an integer or a pointer.

In order to solve the problem of no binary type in IPD C E, we define a new C
struc tu re as

51

typedef struct GBox_ { unsigned long int total„size, cur_size,
view_pos, width;

char *b_array; } GBOX;

where b-array is a binary character array, totaLsize is the to ta l size of the b-array,
c u rs ize is th e current size of b-array, view-pos is the current position of view point
and width is the w idth of two-dimensional da ta array. Several Tel com m ands are
im plem ented for processing a GBOX da ta structure, gblcreate produces a new GBOX
object, gbldestroy destroys a GBOX object, gblstate states the s ta tu s of a GBOX

object, gblpush pushes a set of string type da ta into a GBOX object, gblpop pops a

set of string type d a ta from a GBOX object, gblview displays value of a p art of a
G OBX object, gblseek seeks a new view position in a GBOX object, gblfread creates
a new GBOX and reads d a ta from a file into the GBOX, gblfwrite w rites d a ta of a

GBOX into a file and destroys the GBOX object.

The first thing to do is define a new hash table. For exam ple,
E x a m p le 11

Tcl_HashTable GBoxTable;

Tcl_InitHashTable(&GBoxTable, TCL_STRING_KEYS);

The second stage is to create an entry with a given key, and TcLSetHash Value
sets the value associated with the entry. For example,

E x a m p le 12

int GBox_create(clientData, interp, argc, argv)

do { sprintf(interp->result, "gbox%d", id); id++;
entryP = Tcl_CreateHashEntry(&GBoxTable, interp->result,

&new);
} while(!new);
if((gbp = (GBOX *)malloc(sizeof(GBOX))) == NULL)
{ interp->result = "wrong # no mem space"; return TCL_ERR0R; }
Tcl_SetHashValue(entryP, gbp);

return TCL_QK;
>

The th ird stage is to find an entry with the procedure TcLFindHashEntry.

TcLFindHashEntry is typically used to find an object given its nam e. For exam
ple,

E x a m p le 13

int GBox_destroy(clientData, interp, argc, argv)

52

for(i=l; Kargc; i++)
{ entryP = Tcl_FindHashEntry(&GBoxTable, argvfi]);

if(entryP == NULL) continue;
gbp = (GBOX *)Tcl_GetHashValue(entryP);
Tcl_DeleteHashEntry(entryP);
free(gbp->array); free(gbp);

}
return TCL OK;

>

T he last stage is to delete an entry with the procedure TcLDeleteHashEntry , as

shown in the above example.
GBOX can be read /w ritten from /to file with gblfread/gblwrite com m ands. The

form at of the file is ppm [159] for two-dimensional da ta and modified ppm 1 for
one-dim ensional data.

1See A ppendix A

53

CHAPTER 4

T H E ST A C K F IL T E R S, M IN IM U M T H R E S H O L D D E C O M P O S IT IO N
A N D IN T E R A C T IV E ST A C K F IL T E R IN G S Y S T E M

4.1 . In tr o d u ctio n

In this chapter we present a new procedure which uses m inim um threshold decom po
sition and the positive Boolean functioii-to realize stack filtering. In order to reduce

the tim e com plexity of stack filters, we try to minimize the num ber of logical op
erations and use the CPU bit-fields parallel m ethod to do stack filtering. A full

parallel algorithm based on the new procedure and the da ta parallel scheme has been
im plem ented. Under the Interactive Parallel D istributed C om puting Environm ent

(IPD C E) we develop a powerful, Interactive Stack F iltering System , which provides

beautifu l G raphics User Interface (GUI), one- and two-dim ensional stack filtering
procedures and convenient selection of series and parallel algorithm s. We apply two
num eric exam ples to the stack filter and the results show th a t the in teractive parallel
stack filtering system is efficient for both sequential and parallel filtering algorithm .

4 .2 . S tack F ilters B a sed on T h resh o ld D e c o m p o sit io n

Consider a signal X — (A i, • • •, A;v), where each A* E {0,1, • • •, 2M _ 1}. The th resh
old decom position property of X can be defined [62, 63] by

!• = r ^) = . (4.1)
1 if Ah > /

0 otherwise

for I = 1,2, -■■ ,2 m_1. (4.2)

Given two binary signals, u and u, a property called the stacking property holds
between u and v if and only if > Vk for all h. Suppose u and v are filtered w ith a
binary filter, of window w idth 6, defined by a Boolean function / : {0, l} b —> {0,1}.

T he binary filter / is said to possess the stacking property if and only if

f{u) > f (v) . (4.3)

In o ther words, if the binary output signals are piled on top of one another according

to their threshold level, the result is a column of 0’s piled on top of a colum n of l ’s.

54

Xl x 2 x 3 x 1X 2 + X\ X3 + X2X3 m ed (a ‘i , x 2, x 3)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

Table IV. D etailed explanation of the MSP form of the P B F for the th ird-order binary

m edian filter

It has been shown[81] th a t a necessary and sufficient condition for a Boolean
function to satisfy the stacking property is th a t the function be a Positive Boolean

Function P B F , i.e., no com plement of any of the input variables m ust appear in the
m inim um -sum -of products (MSP) form of the function. For exam ple, the th ird-order
binary m edian is

f (x u x 2, x 3) = x i x 2 + rr'1^3 + x 2x 3, (4.4)

where m ultip lication denotes logical A N D and addition denotes logical O R . The

details of this are listed in Table IV. The function (4.4) is a PB F , bu t the following
exam ple is not,

f 1 (x 1 , x 2 , x 3) = x i x 2 + x 3 x i , (4.5)

since x i x 2 includes the com plem ent, ah of variable aq.

D e fin it io n 4.1 A stack filter f s (•) of window width b = 2 p + l is based on a b-variable

positive Boolean function P B F /(•) : { 0 ,l} fa —» {0,1} operating on the binary signals.
The output o f the stack filter is obtained by adding all the binary outputs:

/ M \ M

f s (X i) = s , = E S / (t , (^ o)
\/=l J /=i

M M

= E / O x V) = £ / (* ') (4 .6)
/ = i i

= m ax{/ | f (x[) = 1,1 e {1,2, • • • ,2 M_1}}, (4.7)

whtvt , A i5 • 5]■.

The above equations reveal th a t the stack filtering algorithm is composed of
th ree steps. The first is th a t of threshold decomposition, the second involves Boolean
function logic operations, and the th ird involves accum ulation of all th e b inary results

generated w ithin the second step; equivalently, this is a search for the highest level at

55

which the Boolean logical ou tpu t, generated within the second step, is 1 . The general

stack filter algorithm can be expressed as follows:
A lg o r i th m 4.1 : Original stack filter algorithm

1. For each signal apply threshold decomposition equation (4.2) to get the

binary signal x\.

2. For each binary signal, apply the PB F f s (X {) to get the binary ou tpu t value r\.

3. For all b inary outputs for position i, accum ulate them to get the stack filter

ou tp u t f S{Xi).

The com putational com plexity of this algorithm is very high since the num ber
(2m — 1) of threshold decompositions grows exponentially w ith th e num ber bits (M)

associated w ith th e signal value. Lin et al [119] use weighted order s ta tis tic filters

based on threshold logic instead of stack filters since there is equivalence between

linear separable Boolean functions and threshold logic. K ar [107] suggested an al
gorithm which transform s a given sequence to equivalent-rank-preserving sequences
through b it m anipulation. This reduces the problem of finding a rank-order selection

for a &-bit-long num ber to finding out k rank-order selections for ‘l ’-bit-long num bers.

4 .3 . M in im u m T h resh o ld D eco m p o sit io n o f S ignal

In order to speed up the stack filtering algorithm , the first th ing we should do is to
reduce the num ber of threshold decomposition levels, since the com parison operation

th a t underlies threshold decom position is ra ther slow, relative to logic and arithm etic

operations. From the theory of d a ta retrieval, the m inim um operation tim e for picking

out a particu lar one of a set of N values, is log2 N . The search scheme is known as
b inary search in which at each step a m idpoint value is exam ined to find out in which
direction to continue.

Based on the stacking property of the output of stack filters, we can define the
search procedure as follows :

D e f in it io n 4 .2 For an M -bits input signal, search each binary output value r3 from
the set oj , r M~22M ~ 2 , • • • , 7"12 ,?’0} using a binary searching scheme, where

r3 , j = 0 , 1 , ■ • • , M — 1 , are binary and r3 — 0 means that the next threshold level will
decrease and r 3 — 1 means that the next threshold level will increase. The output o f
the stack filter is Y ,]j=o1 r3 2 3.

In com pany w ith the above output searching, we can define a new M inim um
Threshold Decomposition (M T D) which also uses a binary search m ethod to deter

m ine a new threshold decom position value.

56

D e f in it io n 4 .3 For an M -bits input signal, there are M level threshold decomposi
tions. They are

qpM-l „ 2m ~1
M — 1

T 3 = Y . r ‘2‘ + 2J> i = M — 2, ■ • • ,0. (4.8)
1-3+1

In order to present the new m ethod of m inim um threshold decom position, let us

describe a sim ple exam ple of a m edian filter. Consider a 3 th ird-order m edian filter,

where each da tum belongs to the set {0 ,1 ,2 ,3 } , and M = 2. Suppose th a t the da ta
in the window are 1 , (2), 0 and th a t the current filtering position is at 2 , as indicated
by the parentheses. Initially, the threshold decomposition level is 2M~l ~ 2, the m id

range of [0,4). Applying threshold decomposition using logical A N D w ith the datum

w ritten as (10)2 in binary form, we get binary data 0, (1), 0. T he result of m edian
filtering at th is level is r 1 — 0 , which means the next direction of search is to the

lower half of the range. The new threshold is set to r 121 + 2° = 1. A pplying threshold

decom position using logical A N D with datum (01)2 we get the binary inpu t d a ta 1,
(0), 0. The central b inary value is not obtained correctly d irectly from the logical

AND operation since the original datum , 2 , is greater than threshold 1 for ever. The

correct b inary d a ta are 1 , (1), 0. We therefore need a logical variable to record each

s ta te th a t will subsequently always be greater than the threshold. Sim ilarly we need a
variable to record each sta te th a t will subsequently always be less than the threshold.
For this level the m edian filter’s result is L Finally, the m axim um threshold level is 1

and its b inary m edian filter result is 1 . Thus, the output of the m edian filter in this
position is 1 .

In each M TD level, define two new logic variable ‘I t’ and ‘g t’ to record the M TD
sta te of the curren t datum ; It = 1 & gt = 0 means the datum is less th an the threshold

for ever, gt = 1 Sz It = 0 means the datum is greater than the threshold for ever, and

It = 0 &; gt — 0 means th a t the current threshold decomposing value only relates to
the current datum .

D e f in it io n 4 .4 For each M T D level j , j = M — 1 , M — 2, • • •, 0, the variables It3

and gt3 are

lt M - l = gj.M-1 = ()

Ttj = g tj+1 I (F +1 k (f3 I xj))

g t3 = lt1+1 k (gt3+l I (f3 k x j)) , j = M - 2 , • ■ • ,0 , (4.9)

where we use notation o f C language, “\ ” means logical O R , means logical A N D .

57

D e f in it io n 4 .5 The M T D is

xj = lt3+1 k (bj 1 gt3+1), (4.10)

where the input signal X{ is • ■ • b°, and b3, j = M — 1 , • • • , 1 ,0 are binary.

The new algorithm based on MTD can be expressed as follows :

A lg o r i th m 4 .2 : Stack filter algorithm based on m inim um threshold decom po

sition.

1 . For each signal apply MTD equation (4.10) to get xj.

2. For each x 3, apply the PB F f s (X i) to get binary ou tpu t value r\.

3. C alculate the new states of variables It3 - 1 and gt3 - 1 using equation (4.9) for the
next threshold decom position level.

4. After finishing M -level M TD, calculate the ou tpu t of the stack filter at position

i by E j i h 1 r3-

T h e o re m 4 .1 Given inputs {A^}, i — 0 ,1 ,***,N and a positive Boolean function

f s (’), the above algorithm produces the same result as the original stack filter.

P r o o f : Since the difference between algorithm 4.1 and algorithm 4.2 is the

threshold decom position procedure, we need only to prove th a t the new M TD proce

dure works.
Let X i = bM~l bM ~ 2 • • • 616°, and let l tk, g tk be variables to express the s ta te of

threshold decom position of current datum X i. Suppose in threshold decom position

level M — 1, M — 2, • • • , j - f l , variable l tk = g tk = 0, k = M — 1, • ■ • + 1. Now in
new level j , the variables will change their states.

Case 1 : Variable It3 — 1 . Since in level j - f l the variables g t3+1 = 0 and It3* 1 ~ 0,
equation (4.9) can be simplified as

U3 = r3 & x 3. (4-11)

Because It3 = 1, we have r3 = 1 and xj = 0 . x 3 = 0 m eans th a t the threshold
decom position value is zero. We can express it in the original form (4.2)

X i = bM- x2M~l + 6m " 22m “ 2 + • • • + b° < T 3. (4.12)

According to definition 4.3, r3 = 1 means th a t the next threshold value T 3~l increases.

Since T 3~l = T 3+1 + 2 3 + 2J_1, we have

X i = bM~l bM ~ 2 • • • Vb3- 1 • • • b° < T 3 < T 3~l . (4.13)

58

T he current datum X i will be less than threshold value T k, k = j — 1 , j — 2, • • • , 1, 0
for ever. This proves th a t the MTD scheme works in this case.

Case 2: Variable gP = 1. Since in level j + 1 the variables g P +1 — 0 and

IP+1 — 0, equation (4.9) can be simplified as

gP — r 7 & x{. (4.14)

Because gP = 1, we have r 7 = 0 and xj — 1. xj = 1 m eans th a t the threshold
decom position value is one. We can express it in the original form (4.2)

= 6m - 12m “ 1 + 6m~22m - 2 + • • • + b° > TP (4.15)

According to definition 4.3, F — 0 means th a t the next threshold value T J~ 1 decreases.

Since T -7-1 = T J+1 + 27“ l we have

X i = bM- xbM ~ 2 • • • " - b ° > T 3 > T j ~ \ (4.16)

The current da tum X i will be more than threshold value T fc, k = j — 1 , j — 2 , • ■ ■ , 1 , 0

for ever. This proves th a t the MTD scheme works in this case too. □

4 .4 . T h e P o s it iv e B o o le a n F u n c tio n a n d its M in im u m L o g ica l O p e ra t io n s

F o rm u la

We know th a t a positive Boolean function (PB F) has a unique m inim um sum-of-
products (M SP) form [140], bu t the num ber of logical operations associated w ith this
form increases very quickly. For example, the PB F for the th ird-order m edian filter
is

/med(® \ %X2 ,X3) = X1X2 + X\X3 + X2X3, (4-17)

which represents only 3 * 1 + 2 = 5 logical operations. For the fifth-order m edian
filter, the P B F is

f m e d { x 1, «2j £3 , £ 4 , £ 5) = X i X 2X3 + X1X2X4 + X \ X 2X$ + X \ X 3XA + X i X 3X$ + X 1X4X5 +

X2X3 X4 + X2X3 X5 + X2X4X5 + X3X4 X5 (4.18)

and the num ber of logical operations increases to 10*2 + 9 = 29. In general, we sta te
the following theorem .

T h e o re m 4 .2 For the (2 N + 1)th order binary median filter, the M SP fo rm o f its

P B F is composed o f items and the number o f logical operations involved is

f f * (nN+1) + (%N+1) - 1 .

59

P ro o f : We know th a t there are two states, 1 and 0, for each binary datum .

From the definition of the m edian, the condition for the m edian of a set of 2 N + 1
d a ta to be 1 is equivalent to the condition th a t there are at least N + 1 l ’s in the set

of data. T he identities of a set of TV -f 1 da ta can be w ritten in th e Boolean logical

way as x Pix P2 ■ • -£ PJV+1, and these aggregate to form a Sum of P roducts (SP). The

to ta l num ber of “products” in such an SP is clearly ” (a ^ +1) • We notice th a t
if any one of the com ponents of the SP is 1, the m edian is 1 , so th e Boolean function
of the 2TV + 1 dot binary m edian filter can be expressed, using logical O R , as an SP.

Each term in the SP involves N logical A N D operations, and there are

such term s, linked by logical O R operations. The to ta l num ber of logical operations

w ithin the Boolean function is therefore N * + (wV+1) — f
□
In order to reduce the num ber of logical operations, we can rew rite th e MSP

in another way which identifies the m inim um num ber of logical operations. F irst,
let us consider some simple examples. For the third-order m edian filter, the P B F of
E quation (4.17) can be rew ritten as

fmed{x 1,^2? ^ 3) = X\{x2 ~t~ #3) + X2 X3 . (4.19)

Obviously, the num ber of logical operations is 4. For a fifth-order m edian filter, the
P B F of E quation (4.18) can be rew ritten as

fmed,{Xi, X2 , X 3 , £ 4 , £ 5) = X'i(x2 (x3 - f £ 4 + £ 5) + £ 3 (0 : 4 + £ 5) T

£4£ 5) + £ 2(£3(0:4 + £ 5) T x 4 x 5) + X 3 X 4 X 5 (4.20)

We conjecture th a t, in order to achieve the m inim um num ber of logical opera
tions, we m ust adopt the following scheme of evaluation:

S — £ 4£5

m = £4 + £5

M q = £ 31TL -j- S

M i = £2 (£3 + <3) + mo

fmed(x 1,£ 2,£ 3,£’4 ,£ 5) = XxM i + X2 M 0 + £ 3m. (4.21)

From this scheme, the num ber of the Boolean logical operations is seen to be 12
com pared w ith 29 using the basic MSP expression.

For the general (2N + l) th order m edian filter, we can sim ilarly rew rite th e PB F,
as in the following theorem .

60

T h e o re m 4 .3 The P B F of a (2N + l) th order binary median filter can be expressed
as

fmed(x 1: x 2-> ' ' ' i ̂ iV+l) — x l{ x 2(' ' * (£jV-l[x n (x N+1 + XN+2 4“ ' 1 1 4“ x 2N+l)T

x N+l{x N+2 + XN+ 3 + ' * ' + X2N+1~̂ ~

x 2N x 2 N + \ \ J'r

x N + l { x N + 2 4" X N + 3 + 1 ' 1 + x 2N + l) ~ \ ~

X n + 2 (x N + 3 + x N + 4 + ’ + X 2 N + 1 4 ”

^ ’2J V ® 2i V + l] +

x 2N - lx 2Nx 2N+l)~\-

Xn +2x N+3 ' ’ ' ̂ '2JV+l)4“

^2(x 3{' ' * (x n [x N + l (x N+ 2 4" ^iV+3 4“ ' ’ * 4" x 2N+l)~\~

x N + 2 { x N + 3 4- X N +4 4" ’ * * 4“ X 2 N+ 1 ~ \ ~

x 2Nx 2N+l]F

x 2 N - l x 2Nx 2N+l)F

x N+2x N+3 • * • X2N+1) +

x n { x N+l(* • • (x 2N—2 (X2N — f i x 2N 4" a^J V + l ^

X2NX2N+1) 4~

x 2 N - l x 2Nx 2N+l)JT

■■•) +

x N+2x N+3 ' 1 ‘ x 2Nx 2N-\-l̂)~\~

x N+lx N+2 ' ' 1 x 2N+l-
(4.22)

61

P ro o f : W ith in form ula (4.22), none of item s is repeated so th a t, if we prove th a t
the num ber of item s in the form ula is equal to as required by Theorem 4.2,
we can conclude th a t we have proved this theorem. We use the m ethod of induction.

Step 1. In the inner-m ost layer of parentheses of the first row of the formula,

%n+2 + %n+ 3 + • • * + %2N+i involves TV + 1 items. In the next layer, the num ber of
item s is

(TV -}- 1) + TV -j- • • • + 2 + 1 = d~ ^)(T^ d" 2)* (4.23)

In the th ird layer, the num ber of item s is

(l (j v + 1) (N + 2)) + (1(JV)(JV + 1)) + . . . + 3 + 1

= [3 7 2 (iV + V W + 2^ N + 3) “ + XK N + 2)1

+ [^ (W) (« + 1){N + 2) - - L (J V - 1) (N) (N + 1)]

~l ̂ ^ 3 ^ 2 ^ * 3 * 4) “ 2 ^ 3 ^ * 2 * 3)1 + * 2 * 3) _ °1

= ^ 4 _ (iV + l)(iV + 2)(iV + 3). (4.24)

Step 2. Suppose th a t, in the p th layer of parentheses, the num ber of item s is

r * (r - i) 1* . . . * 3 * 2 (iV + ^ + 2) '' ' (^ + rf- (4 -25)

Step 3. In the next layer of parentheses, the num ber of item s is

['p* (p - l) 1* . - . * 3 * 2 (JV + 1)(iV + 2) ' ' ' (7V + ?)1 +

lF l H 1- 2) > - » 2 (f ' + i P + 2) " ' (^ f ~ 1)] + " ' + 1

= t ^ y i) T (;V + 1) " - (JV + p)(iV + P + 1) - (^ w (a ,) - - - (^ + p - i) (^ + p)] +

• ■ • (N + p - 1) (N + p) - _ 1) . . . { N + p _ 2)(7V + p — 1)]

+ . . . + l

= t p + 1 r * p * (P - 1) * ■“ * 3 * 2 { n + 1) { N + 2) " ■ (i V + p) { N + p + (4 -26)

This com pletes the induction proof. Thus the to tal num ber of item s in the form ula
(4.22), corresponding to p — N + 1, is

(j V - H) * (j V) * — * 3 * 2 (iV + W + 2) ■ ■ • ^ 2 N +
(2TV + 1)!

(N)) (N + 1)!

62

27V + 1
\

(4.27)

□
Form ula (4.22) defines the scheme which we believe achieves the m inim um num

ber of logical operations through the following parallel algorithm .

A lg o r i th m 4 .3 : Evaluating the PB F w ith the m inim um num ber of
operations.

I n p u t : the inpu t binary da ta set (ci, c2, • • •, c2;v+i)-
O u tp u t : the ou tpu t binary result r.

1. Ad = c2/v k C2JV+1, S = C2N I C-2N+1*

itera tion , indicated by variable i, one item can be calculated. T he required num ber
of logical operations is derived in the following theorem.

T h e o r e m 4 .4 The number of logical operations required to implement a (2N -f- 1)th

order binary median filter based on formula (4-22) is 27V(7V + 1).

2. - (c 2 N - l & S) | A d .

3. F O R (z — 2, * • •, TV) BEGIN

4. A d ~ A d k C2 N—i-\-l-

5. Ti - (c 2N - i & Ti_!) | TV/. END.

6. F O R (i = 1, • • •, TV - 1) BEGIN

7. S = S | c 2N - i -

8. T \ = (c 2N ~ i ~ \ & S) | Ti.

9. F O R (j = 2 , - - - , 7 V)

0. Tj = (c2N- i - j k Tj -x) | Tj. END

In steps 1 to 5, the algorithm calculates the last two term s of Form ula (4.22)

and from step 6 to the end, the algorithm calculates the other TV — 1 term s. In each

P ro o f : In steps 1 to 7 in the algorithm , the num ber of logical operations is

1 + 1 + 2 + (TV — 1) * (1 + 2) = 37V -f 1 . (4.28)

63

In steps 8 to 14, the num ber of logical operations is

(N - 1) * (1 + 2 -|- (N — 1) * 2) = (N - 1){2N + 1). (4.29)

Thus the to ta l num ber is

3A + 1 + (TV — 1)(2N + 1) = 2N 2 + 2TV - 2 N (N + 1). (4.30)

We can pursue the aim of minimising the num ber of operations for a m edian
Boolean function in the context of any other PBF. For exam ple, consider the PB F
for cascading weighted m edian filters,

—5?) ^ i) X i —5*̂ 1— —2 4" T 2- —̂4 4 " X{ ~*33yj_2 4“ —2X {—\

— X i ^ X i ^ X i ^ 4- X i - 3 X i - i (x i - 5 + X i - 4) + X i - 2 (x i - 3 4" a:*—l) (4.31)

4 .5 . B i t - P a r a l le l S t r u c tu r e a n d a D a ta -P a ra l le l is m S ta c k F i l t e r in g A lg o

r i t h m

B it-held parallel arithm etic is the m ost basic parallel processing m echanism and can
be im plem ented in a com puter with the facility of sta tic random -access memories

from which all the bits of a word can be read conveniently in parallel, can execute

a rithm etic instructions on all bits, and then can w rite all bits back to memories.
T he bit-held w idth of the processor of a modern com puter is not less than 16

and is often 32. In serial mode with a bit held of w idth 32, a b inary da tum occupies

only 1 b it and the other 31 bits are wasted. We need therefore to develop a m ethod

of utilizing this s truc tu re effectively. The natural parallel approach is for each b it in
the bit-held to hold a binary datum and then each logical or arithm etic operation is

applied to all binary d a ta in the bit-held in parallel. However, all of the original binary

da ta are in serial m ode so th a t we need to assemble them in the parallel s tructu re
and then , after accomplishing the filtering operation, we also need to disassemble or
restore the parallel d a ta into the original serial structure.

T he easiest assembly procedure is to hll each bit held d irectly w ith 32 item s of

b inary data. It takes 8*94 = 752 tim e units to accomplish this assembly task, which
can be expressed as

(do& M A SK j) | (d i& M A S K j < 1) | | (^ M A S K , < 31)

j = 1,2, • • • , 8 , (4.32)

where d*, i = 0 ,1 , - • • ,31 are the original data, d ;& M A S K j gives a b inary datum
and, in C language notation, the logical operation “<C n ” m eans logical left shift by

64

n bits and n ” means logical right shift by n bits. Each d{ belongs to the set

(0 ,1 , • •• , 255) .
U tilizing the equivalence of one 32-bit integer w ith a four character array, we can

divide the assembly procedure into two steps which together involve fewer operations

than directly assembly. In stage one, we assemble 4 da ta in byte bound and repeat
th is 8 tim es. In stage two we combine the 8 bytes into one bit-held. The whole

procedure can be expressed as follows.

A lg o r i th m 4 .4 : The two-stage assembly of da ta

I n p u t : The original serial data set (c/i, c/2, • • ■,c/32).
O u tp u t : T he original parallel da ta set (c1, c2, • • •, c8).

1. FO R (Z = 0; i < 7; i + +) BEGIN

2. F O R (j = 0; j < 3; j + +)

3. u>i[j] = di.t+j. END

4. c1 = (u;o&(80808080)2 > 7 (u)!&(80808080)2) > 6 | ■ K & (80808080)2).

5. c2 = (™o&(40404040)2 > 6 ■••|(™s&(40404040)2)) < 1.

6 . c3 = (wo& (2 0 2 0 2 0 2 0)2 > 5 • • • |(u >s &(20202020)2)) < 2.

7. c4 = (u;o&(10101010)2 > 4 •••|(uj8&(10101010)2)) < 3 .

8 . c5 = (ico&(08080808)2 > 3 • • • |(iu8&(08080808)2)) < 4 .

9. c6 = (ioo&(04040404)2 > 2 ■■•|(tDs&(80808080)2)) < 5 .

1 0 . c7 = (u;o& (0 2 0 2 0 2 0 2)2 > 1 tO!&(0 2 0 2 0 2 0 2)2 (tu8& (0 2 0 2 0 2 0 2)2)) < 6 .

1 1 . c8 = tuo&(0 1 0 1 0 1 0 1)2) | (uq&(01010101)2) < 1 | • • • | (u»8&(01010101)2)) < 7

1 2 . End algorithm .

In the algorithm , 32 original data are assembled into 8 parallel data . The su

perscrip ts of the set c1 correspond to the levels of m inim um threshold decom position.
The following theorem gives the tim e requirem ents of this procedure.

T h e o re m 4 .5 The two-stage assembly procedure requires 208 time units.

P ro o f : From steps 1 to 5 of the algorithm , it obviously takes 32 tim e units to

com plete the first stage task and from steps 6 to 13, it takes 8 * 22 = 176 tim e units
to finish th e operation, giving a to tal tim e of

32 + 176 = 208 units. (4.33)

65

n

Using a similar procedure, we present the following algorithm for the disassembly
procedure.

A lg o r i th m 4 .5 : The two-stage disassembly of data

I n p u t : The parallel filtered data set (r°, r 1, • • •, r 7) and M A SK ,-, i =

0, 1, ■• • , 7 : (80808080)2,(40404040)2, (20202020)2, (10101010)2, (08080808)2,
(04040404)2, (02020202)2, (01010I01)2

O u tp u t : The output dataset (oi, o2, • ■ ■, 032).

1. F O R (i = 0; i < 7; i + +) BEGIN

2 . W{ = 0 .

3. F O R (j = 0; j < 7; j + +)

4. Wi = Wi\ ((rj & M ASK,-) > j) . END.

5. F O R (i = 0; i < 7; i + +) BEGIN

6 . F O R (j = 0 ; j < 3; j + +)

7. 04*f+j = Wi\j]. END.

8. End algorithm

T he tim e requirem ent of the disassembly procedure is presented in the following
theorem .

T h e o re m 4 .6 The disassembly procedure requires 232 time units.

P ro o f : From steps 1 to 6 of the algorithm , it takes 8 * (l + 8 * 3) = 200 tim e

units to com plete the first stage and from steps 6 to 11, it takes 32 tim e units for the
second stage, giving a to ta l of

200 + 32 = 232 units. (4.34)

□
T he assembly procedure is used to convert data from serial to parallel form, which

is necessary for obtaining the m edian filter by m inim um threshold decom position, and

the disassembly procedure is used to convert the da ta resulting from the m edian filter

into general serial data. The above procedures for both assembly and disassembly
are tim e consuming.

T he bits-held parallel algorithm for the stack filter by m inim um threshold de
com position can be expressed as follows.

66

A lg o r i th m 4 .6 : One-dimensional stack filter algorithm w ith the m ini
m um threshold decomposition

I n p u t : Length of the original da ta is L, each datum belongs to (0 ,1 , • • • , M —
1), and the window w idth of the m edian filter is 2 N + 1 .

1. Inpu t original serial data and divide them into 32 parts.

2. A pply the first stage of assembly to all 32 parts of data.

3. Initialise variables W and g V .

4. R E PEA T point filtering F ro m 1 To L D o steps 5 to 11

5. R E P E A T each level of the m inim um threshold decom position

F ro m log2 M To 1 D o steps 6 - 1 1

6 . Apply L O A D 2 to the next datum point, giving cl2N+1.

7. Use equation (4.10) to accomplish the m inim um threshold
decom position of c\, c2, * • • , c2iV+1.

8 . Use the m inim um logic operations form ula which is sim ilar to

th a t for evaluating the PB F in Algorithm 4.3 for m edian filters.

c2 i ' ' ' j c2iv+i)) an-d get the result r \

9. U pdate c*2, • ■ ■ , c\ N + 1 to c\+1, c*2+1, • ■ •, c ^ 1.

10. C arry out S A V E i for filtering output r %.

11. Apply equation (4.9) to update variables Iti and

gti for all da ta in the window.

12 . Carry out stage two of disassembly, defined by steps 7 to 12 of algorithm 3.

13. End algorithm .

In the above algorithm , L O A D 2 means applying steps 6 to 14 of algorithm 1 to ac

complish stage two of assembly and SA V E i means applying steps 1 to 6 of algorithm
2 to accom plish stage one of disassembly.

In the two-dim ensional case, there are many possible shapes for the filter window

(square, cross, diam ond, etc) as shown in Figure 14. A lthough the scheme for stack

filtering in two-dim ensions is different from th a t in one-dim ension, the evaluation of
the P B F of the m edian filter in algorithm 1 still obtains. The tw o-dim ensional stack

filters has very sim ilar structu re to th a t of its one-dim ensional algorithm . W hether

the logical variables belong to one-dimension or two-dimensions, the ir action in the al
gorithm is the same, involving only the logical T R U E / l or F A L S E /0 . For exam ple,

67

• • • • 0 • 0 • 0
• • • 0 • 0 • • •
• • • • 0 • 0 • 0
Square Cross Diamond

Fig. 14. The Shape of Windows of Two-dimensional Stack F ilters

for the 3 x 3 square-window median filter, the PBF can be expressed as

(\
. T i l , ^ 1 2 } X 13 ,

f n \ed x 2\, x 22i x 23,

x 3\1 x 321 x 33,

— f m e d (x l l , x 12 , x 1 3 , x 2 1 - , x 2 2 , x 2 3 , x 3 1 , x 3 2 i x 3 3) - (4.35)

For a nin th-order one-dimensional median filter, the PB F can be expressed as

fmed{x \ •> x 2 i ' ’ ' ^ ’9)- Both PBFs have the same form if we replace aq by aqi, X2 by
aq2, x 3 by aq3, x 4 by x 2i, x 5 by x22, x6 by x 23, x 7 by x31, x8 by x32, x 9 by x 33.

The real parallel algorithm of stack filters can be expressed in a PVM environ
m ent. We use the da ta parallelism scheme and m aster/slave models, described in
Section 3-1. We simply partition the original one-dimensional input d a ta into K
parts, such as

K
{X,}, (i = 0 , 1 , - - - — 1) = \ J P „ (4.36)

t - 1

where Pt = {Aj/c+t,} + B , u = 0,1, • • •, — 1 . For two-dimensional data , we partition
it into K x K parts, such as

{Ah,}, (z',i = 0 , 1 , - - - ,7V - 1) = (J Ptq,
t,qe[0,I<)

(4.37)

where P tq = {X tK+ u, qK +v } + Ti, u ,v = 0, 1, • • • , j r — 1 . In both one- and two-
dim ensional cases, there is some da ta , B , in border regions where a processor m ust

share the points which have been assigned to a neighboring processor, as shown in
Figure 15.

The w idth of the shared da ta can be controlled by the new filtering param eter

M a x W id th in the following algorithm .

6 8

i
i

i
i
i
i i

One-dimensional
Two-dimensional

Fig. 15. D ata partitions of One- and Two-dimensional Parallel Stack Filters

A lg o r i th m 4 .7 : Parallel stack filter algorithm with the d a ta parallelism
scheme. A lgorithm for the m aster processor :

I n p u t : Original d a ta length X, Num ber of subtasks 7i, the filtering pa

ram eters (window w idth 2N + 1 , PB F /$(•)> M a x W id t h).

1. P artitio n d a ta according to equation (4.36) or (4.37).

2 . Send each subtask to corresponding slaves.

3. Send stack filter param eters (2N + 1 , /s (-) , M a x W id t h) to its slaves.

4. Receive the com putation results from each slave.

5. Com bine all parts as the stack filter’s output.

6 . End of the m aster algorithm .

A lgorithm for the slave processors : I n p u t : sub-data set length the

filtering param eters (2N + 1 , /$ (•), M a x W id th) .

1. Receive one sub-data set.

2. Receive stack filter param eters.

3. A pply algorithm 4.6 to do stack filtering.

4. Send the p art result back to its m aster.

5. End of the slave algorithm .

i
i
i
i

— — i-----------
i
i
i

Fig. 16. Interactive Parallel D istributed Stack F iltering System

4.6 . I m p le m e n ta t io n o f In teractive Stack F ilter ing S y s te m

In this section we use IPD C E (Interactive Parallel D istributed C om puting Environ

m ent) to design a Interactive Stack Filtering System (ISFS). IPD C E , as shown in 16,

provides both parallel com puting, interactive processing and G raphic User Interface
developm ent facilities.

O ur aims are to provide the following capabilities in the ISFS:

• set any in p u t/o u tp u t file names.

• modify any stack filter param eters (M a x W id th , window w idth 2N -f 1, PB F).

• perm it the use of serial or parallel algorithms.

• modify any parallel processing param eters.

• visualise the original and filtered data.

70

Tel command cq icaton

/ * I ' 'Asynchronous message' cpmmlini\ti>on
/ i ! » \

Master
Window

display
Window

Command
Window

TCLInterpreter

Others PVM
Processes

Fig. 17. The S tructure of Interactive Stack F iltering System

• provide bo th GUI and com m and line mode.

The s truc tu re of the ISFS is illustrated in Figure 17. T he ISFS consists of

D isp lay/C om m and window, a menu File, a menu Filter, a m enu Config, a m enu Run

and a m enu Show. There are two kinds of mode, com m and line and m enu, to process

a user request. The default mode of ISFS is menu. In order to switch to com m and
line m ode, the user clicks on the menu item File/Command. T he com m and sfexit
transfers ISFS back to m enu mode.

In com m and line mode, the user can use any T c l/T k com m ands and any IPD C E

com m ands. For exam ple, the com mands for starting and ending XAB, xablon and
xabloff, are only used in com m and line mode.

In m enu File there are four menu item s, Load, Save, Command, Quit. Load will

display a dialog window to ask the user to input a new original d a ta file nam e as

shown in Figure 18. The param eters of Size and Dimension will be obtained from

the inpu t file. Save will display a dialog to ask the user give a ou tp u t file nam e.
Com mand switches to com m and mode. Quit will quit the ISFS.

Menu Filter is a dialog window as shown in Figure 19. T he user can set the stack
filte r’s param eters in it. These param eters include window w idth, m axim um w idth,
filtering com m ands (PB F) and two additional param eters for the two-dim ensional
filter.

Menu Config is also a dialog window as shown in Figure 20. The user can choose

to use the serial or the parallel algorithm , can partition his task into K subtasks w ith

71

MXXj&XXV

lllii

tlli

MR
jWSWWT;: y .v .:.w sW!«WSSSBSSB

Selection
i®gsgŜs-|:

! !
l l l l ■ft

™—-
SiSSsSs

Fig. 18. Dialog Window of Select an Input File Name

......... .

.
3I

: . • '

Maximum Size

Fillet Command 1§S§$S?N*S

Fig. 19. Dialog Window of Select F ilte r’s Param eters

the d a ta parallelism scheme, and can dynam ically add and delete host of PVM .
In m enu Run there are two menu item s, Start, End. The m enu act as M aster

window in Figure 17. Item Start will begin the parallel algorithm 4.7 and item End

will end the algorithm , of which the function is to destroy all slave processes built

from the m aster process in PVM. Item Start can be called m any tim es, and each tim e
the user can redefine new filtering param eters from the menu Filter

In m enu Show there are three menu items, Show parameters , Show input data
and Show output data. Item Show parameters displays current filtering param eters
and parallel relative configuration in the D isplay/C om m and window. Item Show

input data displays the original input in a special window. For one-dim ensional data ,

H ow lett’s graph widget [95] is applied as shown in Figure 21. For two-dim ensional
data , the M ackerras’s photo widget [125] is applied as shown in Figure 22.

4.7 . N u m e r ic a l E x a m p les

In th is section, we give two numerical simulations to illustrate the perform ance of P ar
allel D istribu ted Stack F ilter Systems (PDSFS). In the first exam ple, we use PDSFS
to process one-dim ensional da ta which are corrupted by additive Gaussian w hite noise

and im pulsive noise. In order to quantitatively com pare the perform ance abilities of

73

SubTask Number

Data Transfer

. i

III
Hill

Fig. 20. Dialog Window of Select the Network and PVM Param eters

m
m

xm

74

Original Data

200

Fig. 21. One-dimensional D ata Display Window

■ B
s ' H§ .a

j ^*m. mmrnfimmMmwmmMMfi• ̂wwwmmmv• ■ in ■r::MMtmwmmrr:r -• <ŝ mmmfmmmmtrrtuwjjujmmwww

a—

Fig. 22. Two-dimensional Data. Display Window

76

Original and G aussian+tm pulsive N o ise M ale S p e e c h D ata
300

original m ale d ata
n o ise+ d a ta

250

200

150

100

0 50 100 250150 200 300

Fig. 23. M ale speech signal corrupted by Gaussian noise w ith p — 0 and a = 10 and

im pulsive noise w ith occurrence probability p = 0.1

several filters used here, we define the Normalized Mean Square E rror (NMSF) be
tween the original, noisy input and the filtered ou tpu t d a ta as the following:

N M S E - — F 7F F (4-38)

D e f in it io n 4 .6
s E o W) - s (o r
e £ o[* (0 - SW P

where S(i) , X (i) , Y (i) are the original signal, the input signal and the filtered output
signal respectively.

E x a m p le 4.X The original input signal is a piece of m ale speech as shown in
Figure 23, of dim ension 256 and with m agnitude belonging to [0, 255]. We suppose

the original signal is corrupted by Gaussian white noise w ith zero m ean and standard
deviation a = 10.0 and by im pulsive noise with the probability p = 0.1 of an im pulse
occurring at any given point, where the impulse m agnitude can be 0 or 255 w ith the
equal probability.

We use two types of filters to sm ooth this signal. One is the standard m edian

(SM) filter and the positive Boolean function (PBF) of the b inary fifth-order SM is

77

Fifth Order Standard Median Filtering
250

original m ale data ------
standard m edian ------

200

150

100

0 50 100 150 200 250 300
Xi

Fig. 24. F ifth-order SM filter for male speech signal corrupted by Gaussian and im
pulsive noise

given by

fmed(x l,a?2,®3,a?4j*5) = ^l(^2(^3 + F ®s) F ^ 3(^4 F # 5) F

’̂4^ 5) F "F £5) F ^ 4^ 5) F X3X4X5 . (4.39)

T he o ther is a weighted order s ta tistic filter. We only use the special version cor
responding to the central weighted m edian (CW M) filter. T he P B F of the binary
weight 2 fifth-order CW M is given by

f c w m { x 1 , x 2, » 3, x 4l x 6) = x 3(x1 + x 2 + x 4 F * 5) F x - ix^x^ F X 5) + x 4x 5(x 1 P x 2). (4.40)

Figures 24 and 25 show the results of filtering the noisy signal in Figure 23 w ith

the fifth-order SM filter and the weight 2 fifth-order CWM filter respectively. Table
V sum m arizes the NMSE of the SM and CWM filters. Com parison of these NM SE

indicates th a t the CW M filter performs slightly be tte r than the SM filter.

78

W eight 2 Fifth Order C entre W eight M edian Filtering
300

original m ale data
cen tre w eight m edian

2 5 0

200

150

100

5 0

0
2 5 0 3 0 00 5 0 150 200100

Xi

Fig. 25. W eight 2 fifth-order CWM filter for male speech signal corrupted by Gaussian
and im pulsive noise

Table V. Normalised Mean Square Error for male speech d a ta corrupted by Gaussian

and im pulsive noise with SM and CWM filters
NMSE

central weight median 0.26
standard median 0.3

79

Table VI. N orm alized M ean Square Error for lena test image corrupted by G aussian
and im pulsive noise w ith two-dimensional SM and CW M filters

NMSE
central weight median 0.22

standard median 0.34

In the second exam ple, we use PDSFS to sm ooth tw o-dim ensional images which

are also corrupted by additive Gaussian white noise and im pulsive noise. T he version

of tw o-dim ensional N ormalized Mean Square Error (NMSE) can be defined as

D e fin it io n 4 .7
E £ o E f =„ [r (i , n - 5 (i , n]2 f l l l 1

where S (i , j) , X (i , j) , Y (i , j) are the original image, the noise corrupted input image
and the filtered output image respectively.

In addition, we shall present the image showing the differences between the original

and th e filtered images. These images provide inform ation about bo th th e detail-

preservation and noise-suppression characteristics of filters. In the difference image,
a zero difference is shown as a black pixel and a difference of 255 is shown as a w hite
pixel.

E x a m p le 4 .2 The original input image is the standard te st im age, “lena” , which

consists of 256 x 256 pixels w ith eight bits of resolution. The original noise-free image

is shown in Figure 22. The noise corrupted image was generated by adding zero
m ean G aussian noise of standard deviation 20 and im pulsive noise w ith occurrence

probability 0.2. We evaluated two types of filters, two-dim ensional SM and CW M,

under PDSFS. The PB F of the 3 x 3 square-window SM have been given in equation
(4.35) and the P B F of 3 x 3 square-window weight 3 CWM is given by

/=

< \
#11) £12? £l3?

£21, £22, £23,

£3 1 , £ 3 2 5 £’3 3 ,
f m e d 5 (£ 1 1 , £ ' 1 2 ? £ l 3 ? £ 2 1 ? £ 2 3 ? £ 3 1 ? £ ' 3 2 ? £ 3 3) +

/ m e d 3 (£ ’2 2 ? £ 1 1 j £ l 2 ? £ 1 3 ? £ 2 1 ? £ 2 3 ? £ 3 1 ? £ 3 2 ? £ 3 s) (d . 4 2)

where fmedsi') is the fifth-order binary SM filter and f med3 (') is the th ird-order binary
SM filter.

Table VI sum m arizes the the NMSE of the two-dim ensional SM and CW M filters.
Figure 28 and Figure 27 show the results of filtering the noisy im age in Figure 26

w ith two-dim ensional window 3 x 3 SM filter and weight 3 window 3 x 3 CWM

8 0

Fig. 26. 256x256 lena test image corrupted by Gaussian noise w ith // = 0 and cr = 20

and im pulsive noise with occurrence probability p = 0.2

8 1

Fig. 27. Two-dim ensional weight 3 window 3 x 3 CWM filter for lena image corrupted
by Gaussian and impulsive noise

8 2

Fig. 28. Two-dim ensional window 3 x 3 SM filter for lena image corrupted by Gaussian
and im pulsive noise

(a) (b) (c)
Fig. 29. Difference images, (a) Fig 26 - original, noise free image, (b) Fig 27 - original,

noise free image, (c) Fig 28 - original, noise free image

Table VII. Execution Tim es (milli-seconds) and Com m unication T im es (milli-seconds)
of two-dim ensional SM and CWM filters for lena image

Computers SM filter CWM filter
Exec. Time Comm. Time Exec. Time Comm. Time

1 3500 0 3900 0
2 2310 476 2460 453
3 1820 699 1950 687
4 1610 917 1715 905

filter respectively. Figure 29 shows the difference between the original and the noisy

and filtered images. It is seen from the above difference images th a t the SM filter

caused m ore blur than the CWN filter. Table VI tells us th a t the noise-suppression
characteristic of the SM filter looks poorer than the one of the CW M filter.

We d istribu ted the filter algorithm s among several com puters under PDSFS in

order to com pute the results for Exam ple 4.2. Table VII sum m arizes the filter exe
cuting tim e and com m unication time. Figure 30 shows the to tal tim e of the parallel
d istribu ted filtering algorithm s. The com puters of the parallel algorithm s used are
SUN Sparc ELC, IPC , Sparc 10, and SUN 470. Based on Figure 30 and Table VII we

find th a t the parallel speed-up is good when the num ber of com puters is small, for
exam ple, two or three. It is worthy of note th a t the main p art of PDSFS was w ritten

using the T C L /T K language. The T C L /T K language is an in terp re ta tive language,

which m eans th a t some execution degradation will appear com pared with a com piler

such as C language.

R
un

ni
ng

Ti

m
e

(m
s)

Running Tim e of Parallel Distributed Filtering Algorithm s
4000

standard m edian
cen tre w eigh t m edian

3800

3600

3400

3200

3000

2800

2600

2400
1 2 43

Num ber of C om puters

Fig. 30. R unning tim e of parallel d istributed filtering algorithm s for lena im age

85

CHAPTER 5

A N I T E R A T E D F U N C T I O N S Y S T E M M O D E L O F

O N E -D I M E N S I O N A L D IS C R E T E S IG N A L

5.1. In tr o d u c t io n

In this C hapter we present an extended Itera ted Function System (IFS) in terpolation
m ethod for m odelling for a given discrete signal. In order to reduce the com puting
com plexity we introduce a suboptim al search algorithm w ith a robust technique for

estim ating the IFS affine m ap param eters. Simulation results show th a t the IFS

approach achieves a higher signal to noise ratio than does an existing approach based

on autoregressive modelling. We also exploit the power of a com puter network in

im plem enting a full parallel d istributed algorithm for the suboptim al search using
an R em ote Procedure Call (RPC) scheme. The sim ulation results show th a t the
speed-up ra te is alm ost proportional to the num ber of com puters.

5.2 . T h e C o n s tru c t io n o f an IFS M o d el for a G iv en S ignal

5.2.1. Background of IFS Theory

In a determ inistic fractal model w ith IFS, a one-dim ensional signal , also known

as a tim e series, { (a^ j/i) : i — 0,1, ■ • •, N] X{ < a?i+i, \x{ — Xj\ < N , V i , j , y i 6
R 1} is divided into M parts by contractive maps. Each p art is self-affine to the
whole signal, known as the self-affine region. The end-points of each com ponent will

be denoted by (uj,U j), j — 0,1 , and, in particu lar, (u0, u0) = (x 0 , y Q) and

(u m >v m) ~ In order to simplify notation, we define a vector P = {i j : j =
0 ,1 ,2 , so th a t, for each i j , (a jq -,^) is an end-point. Throughout we shall
restric t our a tten tion to affine transform ations[20, 22, 26], and we therefore define
the contraction m ap Wj by

I \X a,- 0

Co (L

\

/ /
+ (5.1)

where a, j > 0, which means th a t, for the region «j], Wj m aps (a;0, V o) to

Vij-1) an<I (x n , Vn) to {x iji Vi,]- The affine m aps described above are of
ten known as IFS interpolation[26], and the end-points are known as interpolation

points. In Equation (5.1) the param eter dj is known as the contraction factor for

86

W ,

w c

w

0 2

Fig. 31. Affine transform ations w i , W2 , u>3 , uq applied to the un it square.

m ap j , and it m ust satisfy \dj\ < 1. W ith IFS interpolation th e self-affine region is
described as

: j = 0 , 1 , . . . , M} . (5.2)

It is obvious th a t the m aps are ju st touching, which means th a t overlap occurs only
a t in terpolation points.

In this thesis we extend the idea and define w hat we shall call extended IFS

in terpolation. We construct a new self-affine region, based on each in terpolation point

and its consecutive point (a^.+i, yij+i) to construct the new set of self-affine
regions for all j , except th a t the cases j = 1 and j = M are trea ted differently.

R = {K?-1 + = 2,3, • • • ,M - 1 and

{ [0 ,zi]}, + 1 , N] } . (6-3)

For m ap param eter Uj, we also extend its range to — 1 < ct j < 1 so th a t w j maps

Oo,2/o) to (xi3_1+1, yij_1+1) and (xN l yN) to yi}), or (as0,S/o) to (x^ , y{j) and
(x n , V n) to 1, 1), depending on the sign of c i j . Obviously, extended IFS
interpolation involves a to tally disconnected map.

We use exam ples to show the geom etric properties of the m ap param eters in
F igure 31. Suppose we have a unit square, the bottom left-hand corner of which is

87

located a t (0 ,0), and we use the following affine transform ations to m ap the square:

w i

w 2

w 3

{ \

y y

W 4

b 0
\

1 2 /

h A2 u

1 1

b 0

3 1V 2 2)

\ y)

\
X

\ v /

1
2

b 0

V 2 /

/ \X

\ V

\ y

X

\ y

y

+

+

+

+

+

V 1 /
/ 3 \

2

V 1 /
, \

u /
3 N
2

1 I

In the case of m aps w 2 and uq we see how the param eters dj control the vertical
contraction. M aps W3 and w\ illustrate how the param eters cj control the ro tation ,

and m aps w 4 and illustrate how the param eters ej control the translation . Maps
w 5 and rui illu stra te how the sign of aj controls the m irror transform . Thus, extended

IFS in terpolation should provide a flexible fitting procedure.

The following Collage Theorem [20] gives a bound on the fidelity of a given signal

w ith the IFS a ttrac to r.

T h e o r e m 5.1 Let (X, h) be a complete metric space, let L be a given function (sig
nal) and let e > 0 be given. Choose an IFS {X ; uq, w2, • • • , w m } with contraction
factor X — max{Aj; j — 1, 2, • • • , M] so that

M

h(L, (J Wj(L)) < e,
j = 1

(5.4)

where h is the Hausdorff metric. Then

h { L , A) <
1 - e ’

(5.5)

where A is the attractor o f the IFS.

The Hausdorff m etric is defined as follows,

88

D efin it io n 5,1

h (A , B) = max{max{min{d(.T, y); y £ B } : x £ A},

max{min{d(?/, x)] x £ A} : y £ P } } , (5-6)

where A , B are sets o f points and d (•,•) is the distance between points.

Note th a t the Collage Theorem does not provide a procedure for constructing a
m ap. It only provides us with a way of assessing the goodness-of-fit of an IFS w ithout

com puting its a ttrac to r. From definition 5.1 we see th a t the Hausdorff m etric involves

heavy calcu la tion[170], In practice we can use an approxim ation m ethod in place of

precise com putation to save the calculation time. The approxim ation m ethod is to

calculate the Hausdorff m etric for each local neighbourhood, not for the whole space,
and this was done in all the following num erical work.

D ef in it io n 5 .2 The local neighbourhood c of X{ can be expressed as — c,Xi -f- c)

where c <C N is called the local neighbourhood width and Xi — c, x ; -f c £ [0, N].

D efin it io n 5 .3 The approximate Hausdorff metric o f a one-dimensional discrete sig
nal is defined by

ha(A , B) — max{max{min{<i(a^, xf)\ Xj £ (xi — c,Xi + c)} : Xi £ A},

max{min{d(.Tj, Xi £ (xj — c,Xj + c)} : xj £ B }}, (5-7)

where A, B are subsets o f R 1.

5.2.2. Estim ation of affine transform ation param eters

We essentially have an inverse problem: given a signal L, find an IFS for which L is

the approxim ation of the IFS attrac to r. The main problem is to estim ate the self-
affine region, which is also determ ined by the index vector P of the in terpolation

points. Once we have estim ated P , we can com pute the param eters of the affine
transform ation , aj, Cj, dj, e^, / j , as follows.

Suppose we have a m ap Wj so th a t Wj : [0, N] =>■ ij]y and i j ^ i , i j £ P .
Then we have

x i j ~ x i j - \ - 1-1
d j == —-------- -------

Xn — Xq

= 1 2------XJV — Xq
(5.8)

89

Since the m ap is a contraction in the x-axis direction, we should allow for the
approxim ate calculation in which discrete da ta on a larger interval along the x-axis

is m apped into a sm aller interval. In practice, the m ethod is to average y-values of

points which are m apped into each destination point.

Define the set A p by

and let

Vp

A P = {j : p = in t(ajXj + Sj)}.

_____________ E j e a ?3 x j______________
num ber of points included in set A p

E jeAp Vj
num ber of points included in set A p

The least-squares estim ates of Cj ,dj , and f j are the m inim izers of

E j — 'y ~) (c j X p T d j y p T f j j/p) j — 1, 2, • • •, M .

i hi

T he s ta tionarity equations are

E x P X) 'EpVp X) ■J'p cj E x pyp

E x pyp E y ; E yP dj = E V pVp

E x P E yP E l J ’ .
E 2/p

(5.9)

(5.10)

(5.11)

(5.12)

and we can solve (5.12) easily.
In o ther cases to be considered, where we have Wj such th a t Wj : (xq, yo) =*'

(a)q, yjj) and (xN , y N) => (£q_1+1, + i), we need only interchange and
in E quation (5.8). The Equations (5.12) are unchanged.

5.2.3. Suboptim al A lgorithm for the Inverse Extended IFS In terpolation Problem

In order to choose interpolation points optimally, we have to m inim ize the objective
function

M
min h(L, iUj(T)), (5.13)

i—1

where L is th e given one-dimensional discrete signal, and Wj is determ ined by the index
vector P of in terpolation points and by equation (5.12). This is a global optim ization

problem . As a result of the required scale of com putation, there is no acceptable
algorithm for obtaining the globally optim al solution. However, there is a m ethod,

based on local search, which achieves an acceptable solution, as justified em pirically

90

in the following sim ulation section. The m ethod is based on th e following rem ark.

F irst we note th a t M is known im plicitly once P is determ ined. Secondly,

each ij of P is an integer th a t satisfies 0 < ij < IV, and i\ < i<i < * * • <

iM-iy so th a t we can first search for then «2, and so on.

We m odify the global objective function (5.13) to the local objective function

m in h(L(Rj))Wj (L)) or min h(L(i j - i , ij], Wj(L)) ,

j = 1 ,2 , • • •, M , sequen tia lly , (5-14)

where L(Rj) and L(i j - i , i j] are the da ta which belong to the self-affine region R j y
each Wj m aps L into region R j , and the self-afhne region Rj is defined by equation
(5.3). The corresponding inverse algorithm can be described as follows.

A lg o r i th m 5 .1 . Inverse Extended IFS Interpolation A lgorithm .

IN P U T: (xQi jfo),' ' •, (x n > Vn) and W.
O U TPU T: the num ber M and the IFS maps Wjy j = 1,2, • • • , M .

1. Initialize in terpolation point indices i0 = 0, iw = N for aj > 0 and «o = N ,
iM — 0 for aj < 0. For the index ii of the other in terpolation point of self-affine
region R i , set the lim its [s,e] of the search space, where th e integer s and e

satisfy x s = xo + W and x e = xjy — W .

2. E stim ate th e interpolation point index i j , j = 1,2, • • • , M — 1, and construct
the self-affine region R j using equation (5.3) for bo th aj > 0 and aj < 0.

2.1 For each elem ent c in [s, e] construct the tem porary in terpolation region

{(^i 1+i, 2/i j+ i), (&'c, Vc)}' Apply equations (5.8) and (5.12) to estim ate
th e param eters of the m ap Wj , com pute the approxim ate Hausdorff m etric,

and store the Hausdorff error in BUFFERjc].

2.2 Choose, as the candidate interpolation index, ij in [5 , e] such th a t
BU FFER[ij] is minimum.

2.3 Choose the m inim um from the aj > 0 case and the a ?- < 0 case and

determ ine the sign of aj.

3. If i j - 1 7 ̂ 0, construct the self-affine region Rj = (^ - iC m] an d estim ate the
param eters of the m ap Wj.

4. If i j - 1 7 ̂ 0 and if h(L(i j - i , z’m], wj(L)) < h (L (^ _ i, zy], Wj(L)) , discard the can

d idate in terpolation point index ij. Exit from the algorithm .

91

5. A ccept the candidate interpolation point index ij and identify the new in terpo

lation point (xi j iyi j) . Construct the self-affine region

R j 2/ij-l+l)’ ’ 2/ * jr) } *
6. U pdate the search lim it s — ij -j- W + 1.

7. If e < s, exit from the algorithm .

8. R etu rn to step 2.

In the algorithm described above, B U FFE R is a one-dim ensional array, and W

is a inpu t constant, known as the m inim um self-affine region w idth, which is not

required when m odelling a continuous signal. However, when we try to build a model

for a d iscrete signal, W is required since a region containing only two points is self-
affine to any signal and the h t is perfect. W has some influence on the value taken

by M. T he larger W we use, the smaller is the resulting M. The choice of a specific

value is, in practice, not a sensitive one. In the following sim ulation section, we chose
W = 9. T here are two ways of exiting from the algorithm . One is at step 7 and
occurs if no fu rther self-affine region wider than W exists. The o ther is a t step 4 and

occurs if inclusion of another interpolation point will increase th e error of fitting the
given signal.

A lgorithm 5.1 emphasizes the fidelity of fitting the given signal. In order to
em phasize d a ta compression, we can revise step (2.2) so as to satisfy some prescribed

tolerance in the choice of the value from B U FFE R th a t allows a larger region w idth.

5.2.4. Enhancem ent of the Robustness of the Inverse A lgorithm

A lgorithm 5.1 is natu ra lly sensitive to the given signal, as seen la ter in the exam ples in

Section 5.4. In the estim ation of each self-affine region, the point th a t m inim izes H aus

dorff error m ay be not a valid interpolation point. Suppose, for exam ple, th a t (i j - i , *y],
w ith i j - i , ij G -P, is a valid self-affine region. It is possible th a t there exists a point

where ip E P and i j ^i < ip < i j , such th a t h { L(i j - i , 2P], W{(L)) < h(L(i j - i , i j] , Wj (L)) .
This m ay occur, in particular, if the given signal is approxim ately self-affine or non

self-affine. One way to avoid this is to use instead th e “next b es t” as a m inimizing
point i s. A t the next step, and after com puting the self-affine region based on point
i j , choose the point i s also as one of the interpolation points, com pute a new self-affine

region based on th e point i s and locate the new m inim um error point ij+i. If

i ? U"]i ^i(T)) T W{±i(T)) >

/i(J5(ij_i, zs] 5 î(-F)) + U+i] i (T)), (5.15)

92

then discard the in terpolation point indices i j , i j+1, replacing them by i Si ij+i- The
robustness of the m ethod follows from the fact th a t, if ij is not a valid in terpolation

index bu t i s is, the self-affine region (ij, ij+i] based on the point index ij produces

larger Hausdorff error, and the self-affine region , iy-f-i] based on the index i s will
keep the Hausdorff error at a low level since it is a valid self-affine region. Thus
inequality (5.15) is true if the Hausdorff error of region large enough.

T he robust algorithm can be described as follows.
A lg o r i th m 5.2 . Robust Inverse Extended IFS Interpolation A lgorithm

IN P U T: (®o}y0).-**,(®Ar,yN) and W.
O U TPU T: the num ber M and the IFS maps Wj, j = 1, 2, • • • , M .

1. Step 1 is the sam e as for A lgorithm 5.1.

2. Step 2 is the sam e as for A lgorithm 5.1.

2.1 Step (2.1) is the same as for (2.1), (2.2), and(2.3) of A lgorithm 5.1.

2.2 Choose, as the possible alternative index, i s from (ij, e] such th a t

BU FFER[zs] is minimum.

2.3 If i j -1 ^ 0 and i fl_i -f W < e then

2.3.1. Set new lim its of the search space (itf_ i,e] for bo th the cases aj > 0

and aj < 0.
2.3.2. For each element c in (C -i,e] construct the tem porary region

),(*£> Uc)}- Apply equations (5.8) and (5.12) to esti
m ate the param eters of m ap Wj, com pute the approxim ate Hausdorff
m etric, and store the Hausdorff error in BUFFER[c].

2.3.3. Choose, as the candidate interpolation index, ij in (zs-i?e] such th a t
BUFFER[£j] is minimum.

2.3.4. Choose the m inim um from the aj > 0 case and the dj < 0 case and
determ ine the sign of dj.

2.3.5. Choose, as the possible alternative index, is in (ij ,e] such th a t
BU FFER[«J is minimum.

2.3.6. If h (L (i j - 2 , i j - i] , w3- i (L)) + h(L(i j - 1 , i j) , wj (L)) >
h(L (i j - 2 , i s - i \ , Wj - i (L)) + h(is- 1 , i j]yWj(L)), then set i j - X — i s - 1

and ij — is.

3. Steps 3-8 are the same as for A lgorithm 5.1.

A lgorithm 5.2 is sim ilar in structu re to the search algorithm in [134]. However,
in algorithm 5.2 we use extended IFS interpolation to get a b e tte r fit and we store
the possible alternative indices to enhance the robustness of the algorithm .

93

5.3. D is tr ib u te d P aralle l C o m p u tin g for th e IFS M o d e l o f a G iv en S ignal

5.3.1. D istributed Parallel Com puting Based on R em ote P rocedure Call (R PC)

The essence of d istribu ted parallel com puting (DPC) is th a t m any autonom ous gen
eral com puters, connected by a com munications m edium of which the m ost popular
is Ethernet, cooperate in dealing with a single com puting task. Each com puter has

its own independent memory, processor and ability to com m unicate.

T he basic m ethod of D PC is the client-server model. A single server works for
clients who have special com putational dem ands. After com pleting one clien t’s task ,
the server waits for the next.

One way to convert a sequential algorithm into a D PC algorithm is as follows.

• Select a basic subtask as the server task in order th a t the num ber of servers can

be determ ined and assign to each server one client.

• Use one com puter as a control unit to manage com m unication am ong clients

and servers and to synthesize the data resulting from the different servers.

This m ulti-clients-m ulti-servers model is shown in Figure 32.

R em ote Procedure Call (RPC) is a high-level message-passing paradigm which

allows network applications to be developed by way of specialized kinds of procedure
calls designed to hide the details of the underlying networking mechanism s. The
net effect of program m ing with RPC is th a t programs are designed to run w ithin a
clien t/server network model. W ith RPC, the client makes a procedural call which

sends requests to the server as necessary and it then awaits the resu lt from the server.
W hen these requests arrive, the server calls a dispatch routine, perform s w hatever

service is requested, sends back the reply, and the procedural call retu rns to the client
as shown in Figure 33.

R PC uses X D R (eX ternal D ata Representation) routines to convert procedure

argum ents and results into network form at and vice-visa. Each R PC procedure is
uniquely defined by a program num ber, version num ber, and procedure num ber. The
program num ber and version num ber specify a group of related rem ote procedures,
each of which has a different procedure number.

T he details of program m ing in applications of RPC can be tedious. One of the
m ore difficult areas is w riting XDR routines. Fortunately, the com piler rpcgen exists
to help program m ers w rite RPC applications simply and directly. It accepts a rem ote

program interface definition w ritten in a language, called R PC language[136], which

is sim ilar to C; see subsection 5.3.2. However, it only supports a one-client-one-server

m odel, and we have to use a tex t editor to modify it for our m ulti-clients-m ulti-servers

94

ServerServerServer

reply
reply \ reply

- -Ethernet

callcall

Control unit

Call all servers
Send Demand

Receive Result

Synthesize Data

Fig. 32. D istributed Parallel Com puting Model of m ulti-clients-m ulti-servers.

client
program

Ethernet
RPC Call

Machine i , - -^
a i WAIT)A v— "

program
continue^

return reply

invoke
service 4r call

Machine
B

service

request
completed

service
executes

Answer Return

Fig. 33. RPC program m ing model.

95

Parent process'''*.

RPC
call

-jjerver 1

Synthesize Data

Receive/Send Data

interprocess
communication

Child
process 1

Child
rocess 2

Child
rocess N

reply
RPC
call

server 2
reply

R V C S
call

server N
reply

Control unit

Fig. 34. Control u n it’s parent- and child-process

model. T he ou tp u t of rp c g e n includes client routines, a server skeleton, X D R filter
routines for bo th procedure param eters and results, and a header file th a t contains
com m on definitions.

In norm al R P C , clients send a call and wait for the server to reply to the
effect th a t the call has succeeded. This implies th a t clients do not com pute while
servers are processing a call, which also means th a t clients cannot work in parallel
in one com puter simultaneously. We should utilize the UNIX concurrent process
ability. F irst, we can build multi-child processes. Each child-processor runs a R PC
client associated w ith the special server, and the parent processor processes the d a ta

synthesis and interprocessor com m unication as shown in Figure 34

T he system call “forkQ ” in UNIX can build a child process, which returns zero

in the child process and returns non-zero, which is the child process identifier, in the
parent. The sim plest bu t slowest m ethod of interprocess com m unication is through

file. A lternatively one m ight use pipe and named pipe> which em ploy the basic stream
m odel used for file in p u t/o u tp u t. A more advanced m ethod is Message. A message
queue identifier msqid is a unique positive integer created by the “m sgget()” system
call. Each msqid has a message queue and da ta structu re associated w ith it. The

system call “m sgctlQ ” can destroy a message msqid. The system call “m sgsnd()” can
send a message to other processes and the system call “m sgrcvQ ” can receive special
kinds of message.

96

5.3.2. Im plem entm ent of the D istributed Parallel A lgorithm

In order to utilize the powerful ability of m ulti-com puter processors, a server task
should be a massive floating-point calculation task and not ju s t logical decision

m aking or I /O processing. In A lgorithm 5.2, the massive calculation comes from

step 2.1 and step 2.4.2, which use equations (5.8) and (5.12) to com pute the param

eters of the affine m ap. Since com m unication among com puters is a slower operation

th an th a t of calculation, we use larger task granularity, see subsection 3.1.3, to reduce

the quan tity of com m unication operations in order to construct a good d istribu ted
parallel algorithm .

We select the procedure of estim ation of the affine m ap param eters in some in
terval as th e server task according to the num ber of com puters connected by E thernet
and each server processes the same length of search space. Suppose we have three

com puters. We choose one as the control unit and the other two as servers. In order
to keep the control un it busy in com puting, we have to allocate some com puting task

to it. For exam ple we m ay assign the search region [s, kc • e] to the control unit. One

server deals w ith the search region [kc ■ e + 1, A:c,.e+e+1]; and o ther server deals w ith

the search region [^•?+e+3 ; e]. The constant kc controls the d istribu tion of the tasks

betw een the control un it and the servers.
W hen each dem and is sent, the only inform ation needed by the servers is the

la test in terpolation index i j~\. Given the constant W we can easily construct the
search region as [ij-i + W + 1, N — W]. The results from the server include the
m inim um Hausdorff error and its associated index and the next to m inim um Hausdorff

error and its associated index. The parallel protocol w ritten in the rp c g e n language
is as follows:

/* priei.x: Parallel Robust Inverse Extended IFS
Interpolation Protocol */

/* define a variable named "poserr" */
typedef struct int„float poserr;
/* data structure of */
struct int_float { int posO; int posl; int mirror;
float errO; float errl; }; /* computing result */

program PRIEIPROG {
version PRIEIVERS {

/* The following is a RPC procedure, named SEIFSP,
argument type is integer,
and return value is a struct named "poserr" */
poserr SEIFSP(int) = 1 ; /* procedure number */

} = 1; /* version number */
}■ - 0x20000999; /* program number */
The suboptim al search algorithm from the server’s point of view is as follows.
A lg o r i th m 5.3 . Server’s Contribution to the Robust Inverse E xtended IFS

Interpolation A lgorithm

97

INPUT: (®o, yo)-, ■ ■', (®jv, £/aO> the num ber of servers, S V n, the constant,
W , and the constant, kc. The la test interpolation index, i j -
O UTPUT: the position of the m inim um and the next to m inim um Haus

dorff error and their indices.

1. Initialize R PC server program.

2. R epeat until the condition of new RPC dem and coming is TRU E. T hen call the

service procedure SEIFSP.

2.1 In SEIFSP, set up the search region of the servers: s = i j -1 + W +
Z, { N - i 3- x - 2 W) . , (J Y - 2 W)
Kc (SVn+kc) ^ e ^ (SVn+kc) ‘

2.2 For each integer c in [s, e] construct the tem porary self-affine region

.1+1? J/*j_i+i)) (^c? Vc)}- Apply equations (5.8) and (5.12) to estim ate
the param eters of the m ap Wj, com pute the approxim ate Hausdorff m etric,

and store the Hausdorff error in BUFFER[c] for bo th aj > 0 and aj < 0.

2.3 Choose the ij from [s, e] for which BUFFERfij] is m inim um as the candi

date in terpolation index.

2.4- Choose the m inim um from the aj > 0 case and the aj < 0 case and

determ ine the sign of ay Store the m inim um error and the index to re tu rn
s t r u c t “poserr” .

2.5 Choose the i s from (zy, e] for which B U F FE R [iJ is the m inim um value

as the next-to-m inim um error index. Store the error and index to re tu rn

s t r u c t “poserr”.

3. Answer the R PC and return the com puting result s t r u c t “poserr” .

4. R etu rn to step 2.

The subojDtimal search algorithm for the clients consists of parent and child

algorithm s. The parent algorithm is described as follows.
A lg o r i th m 5 .4 . C lient’s Contribution to Robust Inverse E xtended IFS In ter

polation P aren t Algorithm .

INPUT: {x§, yo)j • • •, (x n i Un), the num ber of servers, SVnj the constant,
W j the constant, kc, the servers name.

OUT PUT: the num ber M and the IFS maps wj, j = 1,2, • ■ • , M .

1. Initialize the m e ssa g e structu re and build the child process. Initialize the
in terpolation point indices i0 = 0 and ij\/j — N . For the other in terpolation

point index U of the self-affine region i?i, set the lim it of the search region [a, e],

where integer s and e satisfy x s — a:o + W and x e = x n — W .

98

2. B roadcast the index = 1,2, • • ■, M — 1, to all child processes.

3. As in step 2.1 - step 2.3 of algorithm 2, to com pute the m inim um index ij and

the next to m inim um index i s in the search space [s, kc • e].

4. Receive the results from other child processes.

4.1 Set the message size, state, and message identifier.

4.2 Apply system call “m sgrcv()” to receive messages.

4.3 If no message is received after five a ttem pts, suspend the parent process.

5. Com pare all results and choose the m inim um and the next-to-m inim um Haus

dorff errors and the interpolation point indices i j , i s-

6. If i j~i 0 and zs_! + W < e then :

6.1 Set new lim its for the search region (zs_i,e].

6.2 Step (6.2) is the same as Step 2.

6.3 As in step 2.3.2 - step 2.3.4 of algorithm 2, com pute th e m inim um and

the next to m inim um interpolation point indices zy, i s in the search space

[s, kc • e].

6.4 Step (6.4) is the same as Step 4.

6.5 Com pare all results and choose the m inim um and the next-to-m inim um
Hausdorff error and interpolation point index ij>is.

6.6 Choose the m inim um from the aj > 0 case and the aj < 0 case and

determ ine the sign of aj.

6.7 If h(L(i j ^ 2 , i j~i] i Wj-.1 {L)) + h(L(i j - 1 , i j) , w j (L)) >
h(^L{ij—2 , i s—i] , Wj—i (X)) -f-/i((*5—1, ij], tOj(Z/)), then set i j—i is—i
and ij = i s.

7. Step 7-11 are the same as Steps 3-8 in A lgorithm 5.1.

All child-process algorithm s are the same. We describe one as follows.

A lg o r i th m 5 .5 . C lient’s Contribution to the Robust Inverse E xtended IFS

Interpolation Child A lgorithm

I NPUT: Server nam e and the la test interpolation point index i j - 1.
OUTPUT: The m inim um and the next to m inim um point indices and

the ir Hausdorff errors.

1. Initialize the client side of the RPC.

99

2. R epeat indefinitely the following.

2.1 Set the message size, state, and message identifier.

2.2 R epeatedly apply the system call “m sgrcvQ” until i j -1 is received.

2.3 Execute the R PC procedure to the corresponding server and await its
return .

2.4 Set the message size, state, and message identifier.

2.5 Apply system call “m sgsndQ” to send the R PC result.

2.6 Awaken the parent process to receive the result.

5 .4 . N u m e r ic a l S im u la tio n o f I tera ted F unction S y s te m M o d el

We use four num erical exam ples to test algorithm 5.1 and algorithm 5.2 w ith W = 9.
For stric tly self-affine d a ta generated by a self-affine IFS m ap, the standard algorithm
(algorithm 5.1) and the robust algorithm (algorithm 5.2) produced the same result,

m atching the original data. For approxim ately self-affine data , however, they gave

different results. The “approxim ate” da ta are produced by subsam pling stric tly self-

affine data. For exam ple, we sample every other point in a 512-point stric tly self-affine
d a ta set to produce an approxim ately self-affine da ta set of length 256.

Exam ple 5.1 is based on approxim ately self-affine d a ta produced by large con

trac tion factors dj and sparse interpolation points w ith sam ple ra te 50%. We find a
solution by try ing M — 2 ,3 ,4 , The best result is obtained w ith M — 5 w ith the

robust algorithm (algorithm 5.2) and M = 12 with the standard algorithm (algorithm

5.1) as shown in Figure 35 (top picture) and Table V III (top). N ote th a t the layout

of Table V III is such th a t, to save space, each row includes two self-affine regions.

The in terpolation po in ts’ indices are listed in the first column of Table V III. If the
first index is greater than the second one, it means th a t the param eter aj of the affine
m ap Wj is negative. In Table V III the last column is the signal-to-noise ratio (S N R),
defined by

ni4TT. ̂ , ((Original D ata - Produced D a ta)2\S N R - - 1 0 x log ±-----2 L_ _
\ (Original D ata) /

In the results for the robust algorithm , the interpolation po in ts’ indices are the same
as in the original, and the affine m ap param eters dj are alm ost th e same. The S N R ,
indicating fidelity of fit to the data, are about 15db, which is acceptable. In the

results from the standard algorithm , the num ber of interpolation points is m ore than

the num ber from the original, which does not represent good d a ta compression. The

m ap param eters dj are not the same as w ith the original, and the fidelity of fit to the

100

E xtended IFS Interpolation (M = 5)
400

’original’ ------
’standard’ ------
I ’robust’I -AR- -----

3 5 0

3 0 0

2 5 0

200

150

100

-50

-100
0 50 100 200 2 5 0150

Xi
E xtended IFS Interpolation (M = 14)

5 0 0

’standard’
’robust’

’A R ’4 0 0

3 0 0

200

100

-100

-200
0 50 100 2 5 0150 200

Xi

Fig. 35. Inverse IFS Interpolation with M = 5 (top) and M = 14 (bo ttom) with Large
clj A pproxim ately Self-affine D ata (50% sample).

101

Table V III. Original and Calculated IFS Interpolation Point Indices, M ap param e

ters, Hausdorff Error, Signal-to-noise Ratio of Large dj for A pproxim ately
Self-affine D ata
Index Map Param. I-I SNR Index Map Parame. H SNR

Orig.
22,0, .15 .92 5.8 67,23 -.17 -.89 224.0

68,113 .24 .9 5.3 114,209 .35 -.93 246.9
210,255 -.29 .98 148.5

Robust
22,0 .18 .71 29.3 57.6 15.5 67,23 -.13 -.95 226.9 46.6 12.6

68,113 .2 .87 12.6 56.9 17.7 114,209 .36 -.94 245.8 68.3 15.9
210,255 -.58 .95 150.7 47.3 19.3

Stand.

9,0 .52 -.7 233.1 59.8 15.4 19,10 .66 -.26 103.9 27.1 13.8
29,20 .4 .74 -124.0 46.6 5.2 30,40 .75 -.93 108.1 54.6 6.1
50,41 -.06 .71 -58.4 28.5 5.2 61,51 -.29 -.77 267.9 56.9 14.6
62,81 -.57 .97 27.3 67.0 8.7 104,82 .22 -.39 219.0 72.7 15.9

115,209 .22 -.7 228.8 73.8 11.6 210,255 -.58 .95 150.7 52.8 16.0

Orig.

0,11 .16 .89 8.0 29,12 .06 .84 97.7
54,30 -.46 .92 150.0 55,75 .28 -.95 216.2
76,92 .37 -.83 231.6 117,93 -.44 .92 155.8

118,133 .3 -.85 219.1 134,157 -.21 .91 123.6
158,178 -.48 .87 118.5 193,179 -.26 .94 34.4
194,211 -.28 .89 21.0 235,212 .53 -.91 125.4
236,246 .03 .9 81.3 255,247 -.46 .81 141.9

Robust
and

Stand.

0,11 .19 .52 64.7 48.0 14.8 29,12 -.07 .76 121.0 5.5 16.2
54,30 -.52 .78 191.4 46.0 21.6 55,75 .5 -.8 172.2 45.9 13.0
76,92 .57 -.63 167.7 6.6 13.6 117,93 -.51 .78 197.4 45.9 21.7

118,133 .45 -.72 178.2 71.9 13.7 134,157 -.42 .73 192.4 51.4 18.5
158,178 -.68 .74 157.5 48.5 14.6 193,179 -.4 .97 29.5 59.6 16.9
194,211 -.52 .68 91.8 6.6 13.5 235,212 .56 -.82 100.8 56.7 13.2
236,246 -.24 .56 194.4 72.3 17.2 255,247 -.51 .08 262.3 6.5 14.9

102

Table IX. Original and Calculated IFS Interpolation Points Indices, Map param e
ters, Hausdorff Error, Signal-to-noise Ratio of Small dj for A pproxim ately
S elf- affine D at a

Index Map Param. H SNR Index Map Param. H SNR

Orig.
22,0 .32 .08 67.2 67,23 -.34 -.04 161.9

68,113 .41 .05 67.4 114,209 .19 -.16 190.7
210,255 -.38 .04 217.1

Robust
and

Stand.

22,0 .33 .05 69.9 1.3 42.7 67,22 -.33 -.05 161.7 1.0 44.8
68,113 .41 .06 67.2 .9 45.7 114,209 .19 -.14 188.9 1.3 48.7

210,255 -.37 .04 215.9 1.3 47.9

Orig.

0,11 .32 .09 66.4 29,12 .21 .07 153.9
54,30 -.29 .12 208.2 55,75 .1 -.05 151.7
76,92 .21 -.03 173.2 117,93 -.27 .05 219.4

118,133 .14 -.05 160.7 134,157 -.05 .11 182.0
158,178 -.32 .07 176.9 193,179 -.08 .04 100.1
194,211 -.12 .09 79.4 235,212 .36 -.11 67.0
236,246 .19 .1 139.7 247,255 -.33 .13 191.5

Robust
and

Stand.

0,11 .31 .07 67.9 2.2 39.7 29,12 .2 .07 155.8 4.4 4.5
54,30 -.29 .11 209.0 1.8 45.0 55,75 .1 -.04 149.8 1.7 44.4
76,92 .2 -.02 172.5 1.1 47.8 117,93 -.27 .05 219.3 1.1 47.5

118,133 .14 -.04 158.8 1.3 45.3 134,157 -.06 .09 186.3 3.0 43.3
158,178 -.32 .06 177.7 1.9 41.8 193,179 -.07 .04 100.6 1.0 42.0
194,211 -.13 .07 82.9 3.0 35.0 212,235 .36 -.1 65.5 2.1 39.1
236,246 .16 .7 150.2 3.6 39.4 247,255 -.32 .05 199.9 3.9 36.3

d a ta is not good in the (20,29) and (40,51) regions, in which the S N R is only about
5db.

Exam ple 5.2 involves approxim ately self-affine da ta produced by large contrac

tion factors dj and dense interpolation points, with sample ra te 50%. We try to search
for a solution using M = 2 ,3 ,4 , - • *. The best result is obtained w ith M = 14 for
both the standard and robust algorithm s in Figure 35 (bottom picture) and Table
V III (bo ttom). In the results the num ber of interpolation points is the sam e as for
the original, and the m ap param eters dj are nearly equal to those in the original. The

m easures of fidelity of fit to the da ta are close to 13db, which is acceptable.

Exam ple 5.3 involves approxim ately self-affine da ta produced by sm all contrac

tion factors dj and sparse interpolation points with sample ra te 50%. We try to search
for a solution using M = 2 ,3 ,4 , The best result is obtained w ith M = 5 for both

the standard and robust algorithm s; see Figure 36 (top p icture) and Table IX (top).
In the results the num ber of interpolation points is the same as in the original and the
param eters of the m ap dj are close to those in the original. The m easures of fidelity
of fit to the data , are about 45db, which is very good.

Exam ple 5.4 involves approxim ately self-affine d a ta produced by sm all contrac-

103

E xtended IFS Interpolation (M = 5)
240

’original’ ------
standard’ ------

’robust’
’A R ’ ------

220

200

180

160

140

120

100

2 5 0 3 0 00 5 0 100 150 200
Xi

E xtended IFS Interpolation (M = 1 4)
2 4 0

’original’
’standard’

’robust’
’A R ’

220

200

180

160

140

120

100

8 0

6 0

4 0
0 5 0 2 5 0 3 0 0100 150 200

Xi

Fig. 36. Inverse IFS Interpolation of M = 5 (top) and M = 14 (bo ttom) with small

dj A pproxim ately Self-affine D ata (sampled at 50%).

104

Sound of Male Speaking
300

’original’
'standard’

’robust’
’A R ’

250

200

150

100

0 50 100 150 200 250
Xi

Fig. 37. E stim ated IFS fitted curves for male speaking data.

tion factors dj and dense interpolation points w ith sample ra te 50%. We search for a
solution using M = 2, 3 ,4 , • • •. The best result occurs w ith M = 14 for bo th the s tan

dard and robust algorithm s; see Figure 36 (bottom picture) and Table IX (bottom).

The num ber of in terpolation points is the same as for the original and the param eters

of the m ap dj are nearly equal to those of the original. The m easures of fidelity of fit
to the d a ta are about 35db, which is very good. Since the param eters of the IFS maps

are alm ost the same as the original one in Exam ple 5.3 and 5.4, the curves produced

by the standard and robust algorithm are almost coincident w ith the original d a ta in
Figure 36.

In com paring these results, note th a t the larger the vertical contraction factors
dj are, the larger are the resulting Hausdorff errors and the sm aller are th e S N R .

The closer to self-affinity the given signal is, the less are the Hausdorff errors of the
extended IFS in terpolation model. The larger the distance between two consecutive

in terpolation points, the more likely it is th a t the standard algorithm does not con

verge. W hen the standard suboptim al search algorithm does not converge, th e robust
suboptim al search algorithm can converge to the best solution.

We now consider d a ta from male speech in Exam ple 5.5 and apply the standard

105

Table X. C alculated IFS Interpolation Points Indices, Map param eters, Hausdorff Er-

Index Map Param. II SNR Index Map Param. H SNR
s 16,0 -.69 .38 203.1 52.1 16.4 17,35 .01 -.02 249.2 1.9 47.4
t 36,48 -.69 .43 196.1 43.5 16.3 49,60 -.05 .01 113.8 1.7 39.8
a 76,61 -.67 .35 189.2 48.2 16.0 89,77 .004 .01 223.2 1.9 47.8
n 101,90 .12 .4 141.5 64.2 19.2 102,118 -.67 .38 146.5 73.6 8.6
d 135,119 -.44 -.25 268.8 47.5 15.6 136,155 .71 -.07 71.4 75.4 13.4
a 167,156 .15 .03 47.2 14,1 2.1 184,168 -.44 -.33 29.8 75.5 13.9
r 185,197 .63 -.46 170.0 42.9 16.5 209,198 .08 .0007 79.6 2.0 18.9
d 221,210 .06 .03 205.2 27.1 24.7 222, 234 .19 -.68 268.4 45.3 14.6

255,235 -.33 .45 90.3 142.5 7.14
16,0 -.69 .38 203.1 52.1 16.4 17,38 .02 -.01 245.4 4.8 42.6

R 70,39 .13 -.1 126.9 111.44 1.5 71,81 -.09 -.02 246.1 4.5 39.5
o 82,94 .01 .01 222.2 2.3 45.0 95,120 -.87 -.14 278.3 81.4 1.6
b 136,121 -.04 .18 157.7 68.1 15.2 137,155 .71 -.25 103.2 82.5 14.1
u 170,156 .07 .005 62.1 23.8 15.6 184,171 .02 .04 198.1 45.1 2.6
s 185,197 .63 -.46 170.0 42.7 16.5 209,198 .07 .0007 79.6 2.0 18.9
t 221,210 .06 .03 205.2 27.1 24.7 222, 234 .19 -.68 268.4 42.3 14.6

255,235 -.33 .45 90.3 142.5 7.14

and robust algorithm s to estim ate the param eters of the m ap. T he results are shown

in Figure 37 and Table X. We search for the solution using M — 2 ,3 ,4 , - * *. The
best result comes from M = 17 for the standard algorithm and M = 15 for the robust

algorithm . The fit obtained from the robust algorithm is b e tte r th an th a t from the

standard algorithm since there are indices [102,118] from the standard algorithm
between which the S N R is less than lOdb.

In order to create a comparison with other techniques, we used autoregression
(A R) models [41] to fit the above examples. An AR process w ith non-zero m ean [i

Table XI. AutoRegression Model Param eters Estim ation w ith Yule-W alker Equations
for the Five Exam ples

Example AR
order

Mean Variance
<72

AR coefficients
(cq, n2r' 1 ' 5

1 14 153.37 2975.37 0.55 0.05 0.15 0.06 -0.06 -0.08 0.17 0.04
-0.0033 -0.098 0.049 -0.066 -0.16 0.26

2 16 185.87 7039.92 0.15 0.12 -0.032 0.02 -0.08 0.048 0.042 0.19
-0.038 -0.13 -0.11 0.24 -0.059 -0.017 -0.12

3 1 156.59 34.56 0.99
4 1 157.21 206.38 0.95
5 1 166.66 1332.32 0.85

106

Table XII. Signal-to-Noise Ratios from the Various M ethods
Example Standard S N R Robust S N R AR S N R

1 13.11 17.25 10.53
2 15.73 15.73 8.88
3 47.97 47.97 29.34
4 31.28 31.28 22.02
5 14.25 14.27 13.95

can be expressed in te rm of the recursive equation[98]:

Xt = CliXt-i -j- "}"•’ • + &px t-p T Q) (5.16)

where et is a w hite noise process w ith zero m ean and finite variance <r2 and th e order

of th e A R process is p. Table XI shows the results where A R models are fitted to the
exam ples, using the S Plus com m and, ar.yw, based on the Yule-W alker algorithm .

The S N R achieved by applying the inverse extended IFS in terpolation standard
and robust algorithm s, and the AR model to the exam ples are listed in Table XII.

The IFS algorithm s achieve uniform ly higher SNR than the A R m odel in exam ples
1, 2, 3, and 4. In the case of the audio signal there is little difference.

By applying the parallel d istributed algorithm to the sam e num erical exam ples

we obtained the same m ap param eters, but the running tim e obviously decreased.

The num erical values are listed in Table X III where the first colum n is the num ber of
com puters. T he com puters of the parallel algorithm s used are SUN Sparc ELC, IPC ,
Sparc 2, and SUN 470. There are m any factors to influence the running tim e, such
as the num ber of processors in each com puter, the CPU speed of each com puter, etc.

The results listed in Table X III and Figure 38 are averages taken from several tests.
The tim e com plexity of A lgorithm 5.1 relative to N , the size of the d a ta set, is

not linear. We see th a t the speed-up ratio based on using two com puters, relative to

the case of a single com puter, is approxim ately three. The tim e spent on com m uni
cation increases quickly especially if the num ber of com puters exceeds 3, so th a t the

im provem ent in the tim e spent on calculating the self-affine region cannot cover the

increase in com m unication tim e. The best distributed parallel com puting proposal
for these exam ples is to use two or three com puters.

The algorithm s have been applied to various examples of approxim ately self-affine
signals selected on the basis of their self-affine param eters, i.e., the num ber of maps
and the vertical contraction factors. The sim ulation results show th a t the robust
algorithm is strong enough to converge to the true result when th e s tandard m ethod

does not. Real da ta on m ale speech have also been used to te st the algorithm s, and

the results show th a t the robust algorithm achieved be tte r fidelity to d a ta than did

R
un

ni
ng

Ti

m
e

R
un

ni
ng

T

im
e

107

T h e T im e of IFS Param eters Estimating With Large Vertical Contractivity Factor
14

12

10

8

6

,-+—

4

2
1 2 3 54 6 7

Num ber of C om puters
T h e Tim e of IFS P aram eters Estimating With Small Vertical Contractivity Factor

14

12

10

8

6

4

2

0
2 3 5 6 74

N um ber of C om puters

Fig. 38. R unning T im e for E stim ating IFS Param eters for A pproxim ately Self-affine

D ata (50% sample) w ith Large dj (top diagram) and w ith Small dj (bo ttom
diagram).

108

Table X III. Running Tim e (Seconds) for E stim ating IFS P aram eters
No. Example 1

M = 14, di large
Example 2

M = 5, cl{ large
Example 3

M = 14, d{ small
example 4

M — 5, d{ small
Compu. Comm. Compu. Comm. Compn. Comm. Compu. Comm.

1 12.8 0 6.85 0 13.25 0 6.08 0
2 4.0 0.03 2.23 0.08 4.17 0.03 2.13 0.03
3 2.35 1.38 1.23 0.82 2.28 1.28 1.13 0.72
4 1.77 2.67 0.97 2.55 1.53 2.38 0.83 1.23
5 1.4 3.77 0.78 1.87 1.27 2.95 0.6 1.85
6 1.15 4.48 0.63 1.98 1.15 4.22 0.57 2.08
7 1.08 5.28 0.6 2.65 1.05 5.13 0.55 2.53

the s tandard algorithm .

In an em pirical com parison, vve have shown th a t the inverse extended IFS in ter

polation m ethods can achieve noticeably higher S N R them the popular AR model
m ethod in the case of approxim ately self-affine signals.

109

CHAPTER 6

IT E R A T E D F U N C T IO N S Y S T E M (IF S) S M O O T H IN G O F
O N E -D IM E N S IO N A L D IS C R E T E S IG N A L S B A S E D O N L O C A L

C R O SS-V A L ID A T IO N

6 .1 . In tr o d u ctio n

In this chapter, self-affine and approxim ately self-affine d a ta corrupted by G aussian

noise are m odelled w ith a robust IFS inverse algorithm and a local cross-validation
technique. The local cross-validation is applied to com prom ise betw een sm oothness
and fidelity to the data. The parallel d istributed version of the algorithm is im
plem ented in Parallel V irtual Machine (PVM) with optim al task partition . Since

the quan tity of com m unication is small in this parallel algorithm a simplifying task
p artition m odel can be applied which is only concerned w ith each com puter’s speed.
Several num erical sim ulation results show th a t the new IFS inverse algorithm achieves

a higher signal to noise ratio than does autoregressive modelling. T here is little m a

chine idle tim e relative to to ta l com puting tim e in optim al task partition ing mode.

6 .2 . A n In verse IFS A lg o r ith m B ased on L ocal C ro ss-V a lid a tio n

In C hapter 5 we explored the m ethod for constructing an IFS m odel for a noise-free
one-dim ensional signal which is self-affine or approxim ately self-affine. If the input
signal is corrupted by noise, the model we used in C hapter 5 will fail to achieve a good

fit to the original signal. In order to solve this problem , some sm oothing technique
m ust be applied.

Recall the definition of IFS interpolation, th a t A is the graph of a continuous

function / : [m0, —■► R which interpolates the data {(*1, 2/1) , , (*/v» J//v)}. T hat
is,

A = {(&’> f (x)) : x C [*o, ®n]}, (6.1)

such th a t

f (x i3) = f (x h) = Vi,, f o r j = 1,2, (6.2)

Generally, however, we have the fractal interpolation m odel if the original signal is
corrupted by noise:

f (* i) f (* j) T- , f 01 z — 1 ,2 , , n , (6.3)

110

where c; are independent identically d istributed errors.

In Section 5.2, we explained th a t Barnsley’s linear fractal in terpolating function

/ is a real-valued function of unknown param eter vectors R , defined in E quation (5.3),
param eter vectors D which are the set of affine transform param eters {cij, Cj,dj , e?-, f j }
defined in Equations (5.8) and (5.12), and the integer param eter M . Since dj is the
m ost im portan t param eter among all the param eters of an affine transform , we shall

only deal w ith the dj in the following discussion. Therefore, f (x) = /(-/?, M , x)
is the o u tpu t from the a ttrac to r of the IFS {77, w0, , w m - i } based on the d a ta

{(a:i, 2/1), • • •, (x tv, Vn)}- The problem therefore becomes th a t of how to estim ate the
param eter vectors R , D and the integer param eter M. One possible approach is to

m inim ize the residual sum of squares (RSS)

R S S (R , D , M) = £ (! / ; - (6.4)

In C hapter 5 we tried to minimise a similar Hausdorff d istance instead of the L 2

distance. However, R S S (R , D, M) is a decreasing function of M , and M controls the
degree of sm oothness. The fewer affine transform s there are in an IFS, the higher
is the degree of sm oothness bu t the less is the fidelity to the data . T he m ore affine

transform s there are in an IFS, the lower is the smoothness bu t the b e tte r is the fidelity

to the data. Thus, m inim ization of R S S (R , D }m) will lead to over-fitting and is not

the best approach. The problem is analogous to th a t of the identification of an au to

regression AR(p) model, for which Akaike’s AIC criterion [3], cross-validation [172]

and o ther m ethods have been used as a means of penalizing the com plexity of the
fitted model.

The idea of leave — one — out cross-validation is applied here. For 1 < i < n, we
define th e leave-one-out d a ta set by

^ \ i ~ { (’̂l i V i) i ' ' ‘) (^t — 1 •> Vi — 1); (^ t+11 2/i+l) > i (-̂ N i V Af)} • (^‘)̂

Based on S \ i 7 we com pute param eter vectors R , D and the integer param eter M ,

and obtain an ou tpu t, J\i say, from the a ttrac to r of the IFS {7?2, Wo,, w m - i } for
i = 1,2,***, TV. The cross-validation function is defined by

n

CV(R, D, M) = f \ i (R , D , M , Xi)) \ (6.6)
i=l

For the d a ta sets in Figure 39, M = 2, R = {0, Zi}, and D = {do,di}. Thus, if M
is specified, C V (i \ , d o , d \) is a real-valued function of three variables on R X D. In
Figures 40 and 41, we give plots of projections in the in terpolation points subspace

I l l

R and the contraction factor subspace D.

We know th a t in general C V (R) D , M) is a very high dim ensional function and is
not stric tly convex, as shown by Figure 40. Any global search m ethod in high dim en

sions is com putationally highly demanding. However, the function C V (R , D, M) has
a special s truc tu re such th a t we can use a low-dimensional search algorithm to find a
suboptim al solution. F irst, we note th a t M is known im plicitly once R is determ ined.

Secondly, R is an integer-valued vector such th a t each ij in R satisfies 1 < ij < N , and

there is an ordering am ong the elements of R , i.e. A < < • • * < %m ~\> Since each Wj

contracts the d a ta points (# 1, j/i), • • *, (#;v, 2/jv) into the region between the left-end
in terpolation point (xg., j/g.) and the right-end interpolation point (£g+1, ViJ+1), f \ i is
a function of the contraction factor dj only, i.e., — f \ i (d j , x) on [aq.,xij+1] .

Thus the cross-validation function C V { R , D , M) can be expressed as a sum of local
cross-validation functions:

M—1 b'+i-1 M—1
C V (R , D, M) = J 2 E W - = E C V A w + u d i) , (6.7)

3= 0 i:=ij J = 0

where io = 1 and im = N. Thus the m inim um of CV(R>D>M) is achieved if and
only if each of CVj (i j , i j+i ,dj) achieves its m inim um and given correct choices for ij
and ij+1.

In order to enhance the robustness of the local cross-validation algorithm , we
use a technique sim ilar to th a t in Section 5.2 as shown in Figure 42, where P j - i , P j ,
Pj3 ,Pj+1 , Pj> are interpolation points. For each new in terpolation region Rj+i , we
calculate the new best interpolation point and use the next best point Pjs of the
last in terpolation region R j s to calculate the new next best region Rj> • If

C % + C % +1 > C % + CWS+1, (6.8)

then discard the interpolation point indices i j , i j+1, replacing them by A ?^ +x-
We propose the following algorithm in which we m inim ize the CVj (i j , i j+i ,d j)

consecutively.

A lg o r i th m 6.1 Robust Inverse IFS Interpolation A lgorithm Based on Cross-
V alidation

INPUT: (.ti, xi) , • • •, (a'jv, Un) and W, which controls the m inim al dis
tance betw een two consecutive interpolation points along th e x direction
in the algorithm .

OUT PUT: P , M and D.

1. j= 0 .

112

IFS Parameters (M=2, D=(-0.82,0.79), p1=100)
250

2 00

1 50

100

50

0 50 100 1 50 200 250
i

IFS Parameters (M=2, D=(-0.23,0.31) , p1=100)

160

1 40

120

100

80

60

40

20

0 50 100 150 200 250

Fig. 39. Self-affine d a ta generated by determ inistic IFS. For the top picture, the con

trac tion factors are d0 = —0.82 and d\ = 0.79. For the bottom picture, the

contraction factors are d0 = —0.23 and d\ = 0.31.

Cr
os

s-
Va

li
da
ti

on

Va
lu
e

Cr
os
s-
Va

li
da

ti
on

Va
lu

e

113

Cross Validation Function (M=2, D = (-0.82,0.79))
1400

1200

1000

800

600

400

200

0
0 50 100 150 200 250

i

Cross Validation Function (M=2, D = (-0.23,0.31))
50

45

40

35

30

25

20

1 5

10

5

0
0 50 100 150 20 0 250

i

Fig. 40. P ro jection of the CV{i \ , do, cl\) function on the in terpolation point subspace

R for fixed contraction factors D. In the top picture D — (— 0.82,0.79) and
in the bottom picture D = (— 0.23,0.31).

114

Cross-Validation Function (M=2, p1=100)

Cross-Validation Value

Cross-Validation Function (M=2, p1=100)

'CV'

Cross-Validation Value

600
500
400
300
200
100

0.67
0.37

0.07-0.89 -0.59 -0.23-0.29
0 . 0 1 -0. 53d2 -0.83

ig. 41. P rojection of the CV (i \ , fii, d?) function on the contraction factor subspace D
for fixed R = {0,100} in both pictures. For fixed R = {0,100}, the m inim um

of C V appears at (—0.82,0.79) in the top picture and a t (— 0.23,0.31) in the

bo ttom picture.

115

s+1i s + 1

Fig. 42. Robustness modification of local cross-validation algorithm

2- j=j + l.
2.1 Set a search interval [s, e] for ij, where integers s and e satisfy x s = Xi-\-W,

%e — — W.

2.2 For each elem ent c in [5 , ej, let (xc, yc) be the right-end in terpolation point
of the m ap Wj. The left-end interpolation point is (xij_1+i , y i j_1+i) which
has already been determ ined. M inimizing CVj (i j , c , d j) gives an estim ate,
dj, say, of dj. Store CVj(i j , c , d j) in a one-dim ensional array B U F F E R [c \ .

2.3 Choose, as a candidate of the index for the j t h in terpolation point from the

[s, e], the integer ij such th a t B U F F E R [i j] is m inim al among the values in

B U F F E R [c] for which c 6 [s,e). Then determ ine the next best i s, which
cross-validation value is next minimum.

3. If i j - i 7 ̂ 0 and C -i + W < e then

3.1 Set new lim its of the search interval (C~i? e],

3.2 In a sim ilar way to (2.2) and (2.3), calculate indices i's, i's and corresponding

cross-validation values CV{S_n CV^.

3.3 If CVij_ 1 T CVij > CVi s_ 1 + CVi>s then set ij„ 1 = is„ 1 and ij = i s.

4. If CVj(i j , e, dj) < CVj { i j - \ , i j , d j) then discard the candidate index ij and exit
from the algorithm .

5. A ccept ij as the j th interpolation index. U pdate the search lim it to s = ij + VF.

6 . If e < s then exit from the algorithm.

7. Goto step 2.

8 . Finally, when the algorithm stops, let M = j + 1 .

116

There are two kinds of exit condition in the algorithm . One is at step 6 and

occurs if no fu rther in terpolation point exists. The other is at step 4 and occurs if a

fu rther in terpolation point will increase the error of fitting th e given function.

6 .3 . P a ra lle l D is tr ib u te d A lg o r ith m B a sed on S ta tic T ask P a r tit io n

In C hapter 5 we used Rem ote Procedure Call (RPC) library to im plem ent our parallel

d istribu ted algorithm s. RPC is a fundam ental approach to interprocess com m unica

tion based on th e simple concept known as the procedure call. However, R PC does
not provide m achine configuration and process m anagem ent functions which are nec

essary for an in tegrated Parallel D istributed Com puting (PD C) environm ent. In

chapter 5 we used some Unix system calls to im plem ent these functions, bu t this im
plem entation has not been optim ized and it only applies to a special p latform , SUN.

For exam ple, in Figure 34, we need to create m ulti-child processes. The overhead is
high to m ain tain these processes.

Parallel V irtual M achine (PVM) is an integrated PDC environm ent, alm ost th a t

of Unix m achine and a dedicated M ulti-processor m achine can use it. I t means th a t

the algorithm you design for a special platform such as a SUN can also be used on

any o ther p latform which supports PVM .

The prim ary objective in PDC is th a t of faster execution by using m ultiple

processing elem ents th a t work cooperatively on a single problem . There are several
factors, ranging from inherent non-parallelism in the algorithm to th e overheads of

com m unication and synchronization among the m ultiple processors, which influence

the efficiency in speeding up com putations. In network-based environm ents, there are

also ex ternal influences, since bo th the network and the processors m ay be in use by
other applications in general.

In our situation , the quan tity of com m unication is sm all, as we shall indicate in
the following. Therefore, we can ignore the difference in com m unication overheads

am ong the m achines used for parallel com puting and we only consider the com puting

speed of these machines.

As in A lgorithm 5.2, th e intensive com putation requirem ent for A lgorithm 6.1

comes from step (2.2) and step (3.2). We can partition the com putation requirem ent

of steps (2.2) and (3.2) into K sub-tasks if there are K com puters which are available
for us to use. T he scale scalei of each sub-task is determ ined by th e com puting speed
of the corresponding com puter. We can get these speed param eters by running a

benchm ark program . In order to drive these sub-tasks, we need only the left in te r

polation point of the current in terpolation region and the search interval [s;,e;], if
we have preloaded the param eter N and whole set of d a ta into each sub-task. The

117

param eters of S{ and e; can be determ ined by the speed param eters sca/et-, using

Si — e;„ i + 1 (6.9)

ei = Si -f (e — s)scalei, i = 1,2, • • ■, K) (6.10)

where Co = 0 and [s, e] is the current search interval of the sequential algorithm 6.1.

The parallel algorithm based on PVM and static task partition ing can be ex

pressed as follows:

A lg o r i th m 6 .2 M aster P art of Robust Inverse IFS In terpolation Parallel Algo

rith m Based on Cross-Validation, PVM and S tatic Task Partition ing .

INPUT: (aq, aq), • • •, (x j v , yjv) and W , which controls th e m inim al dis
tance between two consecutive interpolation points along the X direction
in th e algorithm .
OUT PUT: P, M and D.

1. Register this process to PVM , pvrrumyt idQ ; Create K PVM slave tasks, p v m s p a w n {)

Initialize the da ta structure , j = 0;

2. j = j + 1.

2.1 Set a search interval [s, e] for Zj, where integers s and e satisfy x s — aq + VF,

x e — xjy — W.

2.2 A pply Equation (6.10) to calculate each search interval [sqe;]; Pack this

data , pvmjpkint () \ Send them to each slave task, p v m s e n d Q ;

2.3 Collect from each, in return , the best and next best index in terpola

tion point, pv?ri-recv(); Unpack them , pvrruupkintQ and p v m . u p k f l o a t ();
Choose the best one as a candidate for the index for the j th in terpolation
point. T hen determ ine the next best one, i s.

3. If ij-.i 7 ̂ 0 and zs~i P W < e then

3.1 Set new lim its of the search interval (zs_ i,e].

3.2 On sim ilar lines to steps (2.2) and (2.3), calculate indices z', i's and the

corresponding cross-validation values CVis_ 15 CVv .

3.3 If CVi j_i + CVij > CViB_ 1 + CVi>s then set i j - 1 — i s- 1 and ij — i s.

4. If CVj (i j , e , d j) < CVj (i j - \ , i j , d j) then discard the candidate index ij and exit

from the algorithm .

5. A ccept ij as the j t h interpolation index. U pdate the search lim it to s = ij + W.

118

6. If e < s then exit from the algorithm .

7. Goto step 2.

8. Finally, when the algorithm stops, set M = j + 1 ; kill all slave tasks, pvrri-ki l lQ;
qu it from PVM , pvm^exit{)]

A lg o r i th m 6 .3 Slave P art of Robust Inverse IFS In terpolation Parallel Algo
rith m Based on Cross-Validation, PVM and S tatic Task Partition ing .

INPUT: (xu s i) , • • ■, (xN , y N)
OUT PUT: th e best and next best indices and cross-validation value of
in terpolation points.

L Register th is process to PVM , p v m j m y t i d Q ; Initialize d a ta structure;

2. W ait for receipt of the new index i j -1 + 1 of the left in terpolation point and the

search interval [sqe;], pvm-recv ();

3. U npack th is new data, p v m j u p i n t Q ;

4. For each elem ent c in [s^e;], let (xc)yc) be the right-end in terpolation point
of the m ap Wj. The left-end interpolation point is (£q_1+i ,), which has

already been determ ined. Minimizing CVj (i j , c , d j) gives an estim ate, dj say, of

dj. Store CVj(i j , c, dj) in a one-dimensional array B U F F E R[c] ,

5. Choose, as a candidate for the index for the j th in terpolation point from the
[st-,ei], the integer ij such tha t B UFF E R [i j] is m inim al am ong the values in

B U F F E R [c] for which c £ [s,-, e j . Then determ ine the next best i Si which gives
the next sm allest m inim um of the cross-validation function.

6. Pack the best and next best indices and cross-validation values of the in te r

polation points, p v m j p k i n t Q , pvmjpk f loa tQ\ Send them to the m aster task,
p v m s e n d () \

7. Goto step 2.

8. Finally, when the slave is killed by the m aster, quit from PV M , pvm.ex i t () .

6 .4 . N u m e r ic a l S im u la tio n

In this section there are two features of interest. F irst, we wish to te st the efficiency of
th e inverse algorithm for the problem of identifying an IFS in term s of accurate esti

m ates of the system ’s param eters P , D , and M. Secondly, since th e IFS is concerned

w ith the fractal in terpolation problem , we want to see how the inverse algorithm

com prom ises between the two contradictory aims of the degree of sm oothness and

119

Table XIV. Original and calculated m ap param eters, local CV values, and Hausdorff

distances for the strictly self-affine da ta w ith sam ple size 256
Original Calculation CV

Value
H.

DistanceP D P D
0,39 0.87 0,39 0.87 0.19 0.62
40,73 -0.83 40,73 -0.83 0.25 0.6
74,115 -0.92 74,115 -0.92 0.27 0.57
116,177 0.85 116,177 0.85 0.3 0.7
178,255 0.91 178,255 0.91 0.26 0.73

0,39 0.16 0,39 0.16 0.19 0.59
40,73 -0.09 40,73 -0.09 0.26 0.48
74,115 -0.24 74,115 -0.24 0.27 0.5
116,177 0.13 116,177 0.13 0.27 0.6
178,255 0.22 178,255 0.22 0.23 0.55

fidelity to the d a ta and also to com pare with the fit of auto-regression models for

sm ooth d a ta to see the capacity for noise suppression.
In Exam ple 6.1 and 6.2, for stric tly self-affine data, we chose two d a ta sets for

which the m ap param eter D s are different but the P s are the same. One corresponds

to large contraction factors whose absolute values are near to 1, whereas the other
has sm all contraction factors whose absolute values are near to zero. To be specific

M = 5, A = (0 .8 7 ,-0 .8 3 ,-0 .9 2 ,0 .8 5 ,0 .9 1), D 2 = (0 .1 6 ,-0 .0 9 ,-0 .2 4 ,0 .1 3 ,0 .2 2)

and P — (0 ,39 ,73 ,115 ,177,255). The results obtained from the inverse algorithm

are reported in Table XIV. A lgorithm 6.1 was used to search for solutions w ith

M = 2, 3 ,4 , 5, 6 • • •. The best solutions for both examples are found a t M — 5 and
the estim ated param eters P and D coincide with the original P and D. In Figure
43 we plot the fractal interpolation on the basis of the estim ated param eters of the
IFS. The fidelity to the given stric tly self-affine da ta is of course very good. The
sm all local cross-validation values and Hausdorff distances in Table XIV are caused
by com putational error in the inverse algorithm since we use integer operations to

replace floating point operations in order to reduce the com puting tim e.

N ext, in Exam ples 6.3 and 6.4 we again used the same stric tly self-affine d a ta as

in Exam ples 6.1 and 6.2 used, respectively. The noise corrupted signal was generated

by adding zero m ean G aussian noise of standard deviation a = 10.0. T he results are
reported in Table XV and Figure 44. The optim al choice for the num ber of affine
m aps was the correct one of M — 7 for Exam ple 6.3 and M — 3 for Exam ple 6.4. The

estim ated P do not coincide with the originals and the estim ated contraction factors

in D also differed in both Exam ples 6.3 and 6.4. The new noise-corrupted input da ta
are not self-affine, because of the Gaussian noise. However we can find from Figure

120

IFS Interpolation (M=5)
300

'original1
calculation!

250

200

1 50

100

50

0
0 50 100 1 50 200 250

l

IFS Interpolation (M=5)
300

'originall
calculation!

250

200

1 50

100

50

0
0 50 100 1 50 200 250

i

Fig. 43. Fractal interpolation (M = 5) for strictly self-affine data w ith large D (top
picture) and small D (bottom picture).

121

IFS Interpolation (M=5, Large D, G au ssian N o ise m ea n = 0 , s t .v a r = 1 0 .0)
200

original
original+noise
our algorithm150

100

5 0

0

-50

100

-1 5 0

•200
0 50 100 150 200 2 5 0

X

IFS Interpolation (M=5, Small D, G au ssian N o ise m ea n = 0 , s t .v a r = 1 0 .0)
100

original
original+noise
our algorithm

ar algorithm
8 0

6 0

4 0

20

0

■20

■40

-60

-80

-100
0 5 0 100 150 200 2 5 0

Fig. 44. F ractal in terpolation for strictly self-affine da ta w ith a large D (top picture)

and a sm all D (bo ttom picture) and additional Gaussian noise w ith zero m ean
and s tandard deviation a ~ 10.0.

122

Table XV. Original and calculated m ap param eters, local CV values, and Hausdorff
distances for the strictly self-affine da ta w ith G aussian noise, m ean= 0,

(j = 10.0 ,_______,__________
Original Calculation CV

Value
H.

DistanceP D P D
0,39 0.87 0,38 0.67 14.08 31.62

40,73 -0.83 39,74 -0.55 19.99 30.13
74,115 -0.92 75,116 -0.64 22.52 40.55
116,177 0.85 117,126 0.99 16.08 39.09
178,255 0.91 127, 151 -0.26 21.62 55.47

152,174 -0.38 23.39 58.21
175, 255 0.4 25.56 67.4

0,39 0.16 0,23 -0.003 10.47 33.28
40,73 -0.09 24,155 0.46 20.84 39.35
74,115 -0.24 156, 245 0.006 18.7 46.33
116,177 0.13
178,255 0.22

44 th a t our algorithm gives a b e tte r compromise than the auto-regression m odel does

betw een sm oothness and fidelity to the data.
Finally in Exam ples 6.5 and 6.6 we applied our algorithm to process fractional

Brownian m otion d a ta which are also corrupted by G aussian noise w ith zero m ean

and s tandard deviation 10.0. A fractional Brownian m otion, is a single-valued

function of one variable, ^(usually time) and H > 0. Its increm ents Vh ^) ~ Vh ^ i)
have a Gaussian distribution. Vj-i(t) exhibits a statistical scaling p roperty in th a t, if

the tim e scale t is changed by a factor r , then the increm ents change by a

factor r H . We generated the fractional Brownian m otion d a ta by the spatial m ethod

w ith displaced in terpolated points [153].
Noise-free fractional Brownian motion also provides approxim ately self-affine

data . We chose two da ta sets of FBM on which to test the inverse algorithm . They

had different param eters, (H = 0.8, r = 0.2) and (H = 0.5, r = 0.4). The sim ulation
results are reported in Table XVI and Figure 45. The optim al choice for the num ber
of affine m aps was M — 7 for Exam ple 6.5 and M = 12 for Exam ple 6.6. We find
from Figure 45 th a t our algorithm gives a be tte r compromise th an the auto-regression
m odel does between the degree of smoothness and fidelity to the data.

All auto-regression models used in this section are described in Equation (5.16).

Table X V II shows the results where AR models are fitted to exam ples 6.3, 6.4, 6.5

and 6.6, using the S Plus com m and ar.yw, based on the Yule-W alker algorithm .
By applying the parallel d istributed algorithm 6.2 to all exam ples we obtained the

same m ap param eters, bu t the running tim e obviously decreased. The com puters used

123

Fractal Brownian Motion (H =0.8, S ca le= 0 .2 , G au ssian N o ise m ea n = 0 , sd = 1 0 .0)
250

original ------
orig inal+noise ------
our algorithm

ar algorithm -
200

150

100

-50

-100

-1 5 0

-200
0 50 2 5 0100 150 200

X

Fractal Brownian Motion (H=0.5, S ca le= 0 .4 , G au ssian N o ise m ea n = 0 , sd = 1 0 .0)
3 0 0

original ------
orig inal+noise ------
our algorithm

ar algorithm ------200

100

-100

-200

-300

-400
0 50 100 150 200 2 5 0

X

Fig. 45. Fractional Brownian Motions and Their IFS Interpolation Expressions.
H =0.8, Scale=0.2 (top diagram) and H=0.5, Scale=0.4 (bottom diagram)

124

Table XVI. C alculated m ap param eters M yD , P , local C V values, and Hausdorff dis
tances H for fractional Brownian m otion corrupted by G aussian noise with

d standard devia non 10.1)
Calculation CV H.
P D Value Distance

0,21 0.08 9.04 28.82
22, 79 -0.09 15.89 37.06

80, 104 0.54 13.37 39.0
105, 202 0.41 17.55 40.21
203, 212 -0.14 10.68 13.79
213, 225 -0.23 8.05 8.31
225,255 0.002 10.83 40,3

0,22 -0.16 10.01 40.14
23, 53 0.14 21.31 34.28
54, 70 0.17 21.12 43.46
71, 81 -0.09 19.44 40.88
82, 93 0.35 16.53 20.14
94, 122 -0.31 18.51 36.73
123,151 -0.26 13.7 19.97
152,161 -0.24 17.71 20.01
162, 177 0.23 11.78 31.46
178, 188 -0.2 17.25 31.46
189, 234 -0.4 18.97 37.99
235, 255 -0.17 10.98 33.53

Table XVII. Auto-Regression Model Param eters Estim ation w ith Yule-W alker Equa-

tions for Exam ples
Ex. AR

order
Mean

A*
Var.
a 2

AR coefficients
(ai, a2, •••, ap)

AR
SNR

IFS
SNR

6.3 4 -2.89 1192.01 0.45 0.002, 0.14, 0.15 1.0 4.64
6.4 9 -2.89 610.48 0.19 0.18 0.17 0.29

-0.006 -0.16 0.06 -0.0002 0.16
0.63 7.13

6.5 3 -0.43 765.16 0.53 0.24 0.23 12.86 19.64
6.6 2 0.69 1112.41 0.68 0.28 10.51 16.45

125

IFS PD Algorithm of CV Approach with Static Load B a lan ce

equal partitioning with D aem on
equal partitior ‘

optimal partitioning
optimal partitioning with TC P -x-

11000 with T C P --t—
i D aem on - b - - -

10000

9 0 0 0

8 0 0 0

7 0 0 0

COE
6 0 0 0o

E
i=

5 0 0 0

4 0 0 0

3 0 0 0
7 80 1 2 3 5 64

Num ber of C om puters

Fig. 46. Total tim e for Exam ple 6.3 using PVM

in the parallel algorithm s are SUN Sparc ELC, IPC, Sparc 10 and SUN 470. Figure 4-6

shows the to ta l tim e (com puting + com m unicating 4- idle) for Exam ple 6.1. T here are
four curves in the Figure. Two of them use a Daemon-based com m unication scheme
and others use a TC P-based com m unication scheme. In the PVM environm ent, the
T C P-based m ode provides a more efficient com m unication p a th th an the Daemon
m ode so th a t we can obtain im provem ent in to tal tim e. Com paring Figure 38 and

Figure 46 we can conclude th a t PVM is be tte r than R PC for parallel d istributed
com puting applications, since both algorithm s have sim ilar s tru c tu re bu t the R PC
approach fails to improve when the num ber of com puters reaches four, while the PVM

approach continues im proving until the num ber of com puters reaches seven.

Task partition ing is a very im portan t issue in parallel d istribu ted com puting. We
shows th is by providing results for optim al task partitioning and equal task p a rtitio n
ing in Table X V III. We note one second to five seconds im provem ent in to ta l tim e in
Table XVIII.

More detailed comparison is shown in Figure 47 and Table XIX. The height
of each box in Figure 47 indicates the scale of each sub-task. In the case of equal
task partition ing , the fastest com puter incurs high idle tim e while aw aiting the new

126

Table XVIIL Total tim es (milli-seconds) for Exam ple 6.3 using PVM D aem on and
_______ T C P com m unication with equal and optim al task partition ing

No Equal (Daemon) Optimal (Daemon) Equal (TCP) Optimal (TCP)
1 11200 11200 11200 11200
2 9364 4015 8848 3699
3 7119 3710 7063 3584
4 6154 3541 5945 3477
5 5594 3470" 5386 3402
6 4626 3243 4372 3197
7 4441 3187 4317 3023

Table XIX. Task Partition ing and Load Balance for Exam ple 6.3 with PVM T C P
Com m unication VIode and Seven Com puters

Computer
Name

Scale of
Sub-task

Computing
Time

Comm.
Time

Idle
Time

1 0.15 1140 30 2720
2 0.14 3652 16 174
3 0.14 734 18 3148
4 0.14 2719 17 1162
5 0.14 3153 13 675
6 0.14 2620 18 1178
7 0.14 2113 21 1703
1 0.1P2 1780 20 850
2 0.091 2062 15 311
3 0.505 1818 21 884
4 0.075 1562 16 878
5 0.065 2077 16 403
6 0.072 2076 12 466
7 0.08 2119 16 462

127

message. This is the case, for exam ple, w ith No. 3 com puter in Table XIX, and

it wastes com puting resource. However, in optim al task partition ing , all com puters

have low idle tim e and keep busy in com puting, as we expect.

Ti
m

e
(m

s)

Ti
m

e
(m

s)

1 2 8

Equal Partitioning IFS CV Algorithm with S ev en W orkstations in TC P C om m unication

idle tim e —
com puting tim e

eq u al partitioning3 5 0 0

3 0 0 0

2 5 0 0

2000

150 0

1000

5 0 0

0 1 2 3 5 7 84 6
Com puter N am e

Static Optimal Partitioning IFS CV Algorithm with S e v e n W orkstations in TC P C om m unication

idle tim e -♦—
com puting tim e -+ ~ -

static optim al partitioning

2000

1500

1000

5 0 0

0 1 2 3 4 5 6 7 8
C om puter N am e

Fig. 47. Task P artition ing and Load Balance for Exam ple 6.3 w ith PVM T C P Com

m unication Mode and Seven Com puters, Equal P artition ing (top diagram)

and O ptim al Partitioning (bottom diagram)

129

CHAPTER 7

U S I N G I N V E R S E L O C A L IT E R A T E D F U N C T I O N S Y S T E M S (IFS)
T O M O D E L O N E D IM E N S IO N A L D I S C R E T E S IG N A L S

7.1 . In tr o d u c t io n

Local IFS realise the IFS lim it if da ta are self-affine and are suitable for modelling

non self-affine signals. However it is difficult to explore the whole param eter space

to achieve globally optim al param eter estim ation. We present a two-stage search

scheme to estim ate the param eters of local IFS in this chapter so th a t we can get

a suboptim al solution in a reasonable tim e. In network-based parallel com puting,
m ost perform ance degradation involve load im balance caused by the difference of
m achines capability and external load. We apply a dynam ic load balance technique

to overcome th e problem . Some numerical sim ulation indicates th a t our inverse local

IFS algorithm works well for serval types one-dimensional signal and the parallel

version, w ith dynam ic load balance, can autom atically have each m achine busy w ith

com puting and w ith low idle time.

7.2 . Inverse L ocal IFS T h eo ry and A lg o r ith m

As we have shown in the last two chapters, IFS interpolation is a viable m ethod for

m odelling a given one-dimensional signal if it is a self-affine or approxim ately self-
affine discrete sequence. Most signals, however, are not approxim ately self-affine. A

sinusoid, for exam ple, is neither self-affine nor approxim ately self-affine. A local IFS

approach m ay be appropriate for modelling general signals.
A general LIFS can be defined as follows:

D e f in it io n 7.1 Let (X ,d) be a compact metric space. Let W{ : R{ —» X be a local
contraction mapping on (A , d), with contraciibility factor S{, fo r i = 1,2, * • • , M ,
where M is a finite positive integer. Then {ic* : Hi —> X : i — 1,2, • • • , M } is called

a local iterated function system. The number s — max{s; : i = 1,2, • * • , M } is called
the contraciibility factor of the LIFS.

A one-dim ensional LIFS interpolation can be defined as :

D ef in it io n 7.2 A one-dimensional signal, { (x i , y i) : i = 0,1, • • • , N \ < a^+i, \ x i ~

is divided into M regions Rj by contractive maps Wj.

130

R 0 — {[0,«i]},

R m — + C N] } , (7-1)

where { (a^-^+ i, j/* . j+ i) , (#q-, Vij)} are terminal points, also known as interpolation
points. Each region is self-affine for an associated region, R j ,

R j = { [i j h i j r \ } J ~ 2,3, • • ■, A/ — 1,

R o {[-Ob—Cb1]})

R m — {ijv/bi-Mr]}? (7-2)

where {(^i 2/i7)? (^i v 5 2/ijr)} are terminal points of the associated region Rj . The
affine map 10j is the same as in Equation (5.1).

Among the affine m ap param eters, dj m ust satisfy \dj\ < 1 so th a t it guarantees

th a t Wj is a contraction m ap. The param eter aj can be located in (— 1,1). If > 0 it

m eans th a t, for the region (i j - i , ij), and associated region [ijh i jT], Wj m aps (x i j ^y i^)

to (aj,-i_1+1, 3/*j_i+i) and (»* , yijr) to (x i}, ?/q). If aj < 0, it m eans th a t, for the region
(i j - 1 , ij], and associated region [ijh i jT], Wj maps (x i ^ y ^) to (x {j, y ^) and (xijr ,

yijr) (a'b - l+ 1’ Vij-l+ l) '
Com paring this w ith the definition of an IFS in C hapter 5, we can find th a t

the difference between an IFS and a local IFS is the associated region Rj . We have
only one associated region [0, TV] in IFS, but, we have M associated regions in local

IFS. We can get new affine m ap param eters estim ation form ulae by m odifying the

corresponding equations.
For m ap param eters a3, e ?, we have

Xij Xij-l + lClj -........... ...
X 2 . X i .V h i

X j X j ■ — X j . , Xj . .. j-1^ Ajl V-1! 1 (7 .3)
x ijT ~ x ij 1

if wj m aps [ijh =>■ (i j - i , ij). The m ap param eters Cj, d3 , j) can be obtained from

E quation (5.12). In other cases wj m aps [ijr, ij(\ => (i j - 1, ij], and we need only
interchange ij and i j - 1 in Equation (7.3).

T he inverse local IFS can be defined as the following optim al problem :

M

min h (L , ^ 2 w j (L j) , (7.4)
j - i

where L is the input signal and L - is the input signal of the associated region Rj .

131

The corresponding sub-optim al problem is given:

M

J2mmh(Lj , Wj (Lj)) , (7-5)
j = 1

where Lj is the inpu t signal of the self-affine region Rj and the unknow n param eters
are the right in terpolation point index ij of self-affine region R j , associated region Rj

indices [iji,ijr] and the m ap Wj param eters (a j , C j , d j , e j f j). We need to search for
all of these unknown param eters w ithin this search space. Even for this sub-optim al

problem , the search space is still too large to explore, where ij £ [0,7V], i j { £ [0,7V]

and ijr £ [0,7V], lim ited by the condition Xj — x± > xi- — Xjj_3. We need fu rther to
simplify the sub-optim al problem in order th a t we can solve it in a reasonable tim e.

We suggest a two-stage search scheme :

F i r s t we suppose th a t the associated region length is twice the length of the self-affine

region, th a t is,

^ijr Xijl — 2 X (7 *0)

We search for estim ation of the param eters ij, i :ji ,i jr in this sub-space.

S e c o n d We receive all self-affine regions Rj , j = 1, • • • , M . Then, for each self-affine

Rj , we search the corresponding associated region in the full search space, th a t
is,

x ijr x i3l x ij ~ ij ^ijr i C [0?TV]. (7.7)

We also use inform ation about the neighbouring self-affine region to enhance the

robustness of the inverse local IFS algorithm , as we have done in C hapter 5. A ctually
for each self-affine region we need to calculate the next best candidate in terpolation

point index is to accom pany w ith ij. Then when we search for the next self-affine

region, we have to calculate two possible self-affine regions, one, iA,+1, based on ij
and other, Ri> , based on i s. If

tS -b 1

H(Ri ,) + H { R il+1) > (7.8)

then we discard the interpolation point indices i j , i j+ 1 , replacing them by i s, i fs+a.
The inverse local IFS algorithm consists of three algorithm s. T he first is the core

of sub-space search (7.6).

A lg o r i th m 7 .1 . Inverse Local IFS Interpolation A lgorithm (E stim ation of Map

Param eters and Hausdorff Distance for One Self-affine Region).

INPU T: (xo,yo), ' " , { x n , v n), self-affine region indices (i j - i , ij) and as
sociated region w idth Awicl.

132

O U TPU T : the best and next best associated regions (i j i , i j r), (is/>isr) an-d
Hausdorff distances H (R i j), H(R{S) and tUj param eters.

1. Initialize H {R i3l) and H (R { si)

2. For each i jr £ [A w i d , N] do steps 3 - 5 .

3. Get iji = i j r — Awid', calculate the m ap Wj param eters (a,j, Cj, dj, ej, f j) for self-

affine region (i j - i , i j) w ith associated region (i j i , i jr) and the Hausdorff distance

IT {ijr).

4. If H(i jr) < H {R i jl), then record the ijr as the new best one and update
H { R ijl) —

5. O therw ise, if H(ijr) < H (R i^) , then record the ijr as the new next best one and
update H (R i sl) = H(ijr).

6. Finally, o u tp u t the best and next best associated regions, defined by (i j i , i jr),

(ishisr) and Hausdorff distances H(R{j), H(R{S) and ivj param eters.

For stage one of the search, we describe the algorithm as follows:

A lg o r i th m 7 .2 . Inverse local IFS Interpolation A lgorithm (Stage One Search
for Self-affine Regions).

INPUT: (ct’o, yo), ■ ■ •, (x N, yN) and W .
OUTPU T: the num ber M and Self-affine Regions Rj , j = 1, 2, • • • , M .

1. Initialize in terpolation point indices io — 0, ijw — N and j = 0.

2. j = j + 1.

2.1 Set a search interval [s, e] for ij, where integers s and e satisfy x s —

Xij-! + W , x e — x n — W.

2.2 For each elem ent c in (s, e], do steps 2.3 - 2.6

2.3 Let (x c, yc) be the right-end interpolation point of the m ap Wj, The left-end

in terpolation point is (a; _1+i, yij^+i) , which has already been determ ined.

2.4 Apply A lgorithm 7.1 to get the best and next best candidate associated

regions, defined by (i j i , i jT), (ishisr)? and the Hausdorff distances H {R i3),

H { R i .)■

2.5 If H(iji) < H (Ri j) , then record ij as the new best one and update H (R i 3) =

Hto,) .
2.6 Otherwise, if H(isl) < H (R i s), then record is as the new best one and

updating H { R is) = H (i sl),

133

3. If z‘j_ i ^ 0 and zs„i + W < e then

3.1 Set new lim its of the search interval (zs~ i,e].

3.2 As in step (2.2), calculate the best and next best indices i's, z's+1 and the
Hausdorff distances J - ^ R i ^) , H(Ri>s).

3.3 If + H (R ij) > H (R i a_1) + H(Ri>s) then set Zj_! = z5_x and ij — i s.

4. A ccept ij as the j -th in terpolation index. U pdate the search lim it to s = ij + W .

5. If e < s then exit from the algorithm .

6. Goto step 2.

7. Finally, ou tpu t M = j + 1 and all self-affine regions R j , j = 1, ■ • • , M .

For stage two of the search, the algorithm is as follows:

A lg o r i th m 7.3. Inverse local IFS Interpolation A lgorithm (Stage Two Search
for A ssociated Region).

INPU T: {xo,yo),' * * , { x n ,Un) and M and all self-affine regions Rj , j —
1

O U TPU T: A ssociated Region Rj , j = 1,2, • • •, M .

1. For each self-affine region Rj , j — 1,2, • • •, M , do step 2 - 6 .

2. Set up a search interval [s , e] as (zj_1} Zj],

3. For each new A w id £ [1.5 x (X{j — N], do steps 4 - 6 .

4. A pply A lgorithm 7.1 to get the best and next best candidate associated regions,

{iji,ijr)> (ishisr)y an(l ^ ie Hausdorff distances H (R i j) and H (R i s).

5. If H[iji) < H (R i j), then recording the ij as new best one and updating H (R i j) =

6. Finally, ou tp u t the associated region (i j i , i \r) which corresponds to H (R i j).

7.3 . P ara lle l D is tr ib u te d Inverse Local IFS A lg o r i th m B a sed on P V M
and D y n a m ic Load B a lan ce

In C hapter 6 we explored the parallel distributed algorithm w ith sta tic optim al task
partition . This sta tic load balance model supposes th a t the w ork-stations have no any

ex ternal job appearing in the task executing period. However, in a real environm ent,
there are ex ternal influences, since, in general, bo th the netw ork and the processors

m ay be in use by other applications. In a network-based com puting environm ent,

134

Scheduler

Master

Slave
Task
Queue Slave

Fig. 48. Schem atic for Dynamic Load Balance A pplication.

load im balance, caused by disparities in machine capabilities as well as by external
loads, emerges as a prim ary cause of lowered overall perform ance. A good parallel

d istribu ted algorithm should com bat this imbalance.
In order to m atch the dynam ic varied com puting resource, we need to apply

a dynam ic task load scheduler. The dynam ic load scheme is illu stra ted in Figure

48. The scheme requires th a t the whole task can be partitioned into com pletely

independent and the same portions, a slave algorithm is applied to each, and partia l

results are com bined using simple com bination schemes. The scheduler keeps each
slave under observation. W hen it finds any slave idle, it tries to get a new sub-task
from the task queue and loads the sub-task into the idle slave.

T he general dynam ic load balance algorithm can be given as follows:
A lg o r i th m 7.4 . General Dynam ic Load Balance Algorithm .

INPU T: slave num ber K , sub-task generation algorithm and d a ta col
lected algorithm .

135

O UTPU T: results from da ta collected algorithm.

1. For each slave p 6 [1, K], do steps 2 - 3

2. Get a new sub-task by applying the sub-task generated algorithm .

3. Load th is sub-task to slave p by pack sub-task, pvn i -pk in tQ , and sending it to
the slave, pvm.send{).

4. Check, if slave p has finished its job, by pvmjrecvQ. Then:

4.1 A pply the d a ta collection algorithm.

4.2 G et a new sub-task by applying the sub-task generated algorithm .

4.3 If the sub-task generation algorithm fails to generate a new sub-task, then
goto step 5.

4.4 Load this sub-task into slave p by packing the sub-task, p v m -p k in t Q , and
sending it to the slave, p v m s e n d Q .

5. W ait for the other slaves to finish their jobs, by p v m recv().

6. A pply the d a ta collection algorithm .

7. Finally, ou tpu t the results.

In the above algorithm , we need two external algorithm s (one is for sub-task

generated and o ther is for da ta collection), since each application m ay have a different

sub-task generation m ethod and a different data collection scheme.
In our parallel local IFS algorithm , we have two choice for sub-task generated.

One is for steps 4-7 of A lgorithm 7.1, when task g ranularity1 is small. The to ta l

th roughpu t of com m unication for estim ating a candidate self-affine is 16 x (TV —
Awid) bytes. O ther sub-task is for the whole A lgorithm 7.1, when task granularity
is m edium . The to ta l th roughput of com munication for estim ating a candidate self-
affine is 16 bytes. Because of the very low speed of com m unication relative to the

speed of the w orkstations, we shall use the m edium task granularity m ethod. The
corresponding sub-task generation for stage one and stage two are given as follows:

A lg o r i th m 7 .5 . Sub-task Generation for Stage One of the Search.

INPU T: left interpolation point index right point search interval

[5 , e] and the associated region width Awid.
OUTPU T: one sub-task which includes the candidate self-affine region
defined by (zy_i, z’y) and the associated region w idth A w i d .

1See page 38 for more.

136

1. Choose one right interpolation point index ij from the search interval (<s,e].

2. If there is no new ij, then ou tpu t th a t a new sub-task cannot be generated.

3. Finally, ou tp u t one sub-task which includes the candidate self-affine region index

(z j_ i, i j) and the associated region w idth Awid.

A lg o r i th m 7 .6 . Sub-task Generation for Stage Two of the Search.

IN PU T : self-affine region indices (i j - i , ij) and the associated region w idth
search interval [Awid, A],

O UTPUT: one sub-task which includes the self-affine region indices (i j - i , ij)

and the associated region w idth Awidj .

1. Choose one associated region width Awidj from the search interval [Awid, N].

2. If there is no new Awidj , then output th a t a new sub-task cannot be generated.

3. Finally, ou tpu t one sub-task which includes self-affine region indices i j - i , i j and

the associated region w idth Awidj .

B oth stages one and two of the search use the same d a ta collection algorithm ,
which is given as follows:

A lg o r i th m 7 .7 . D ate Collection Algorithm.

IN PU T : candidate right interpolation point index ic, Hausdorff distance

H (R C) the and associated region (ici , i cr).
O UTPU T: best and next best right interpolation point indices ij , i s,
H ausdorff distances H (R j) , H (R S) and the associated regions (i j i , i jr),

{.zijl 5 s j r) .

1. Initialize 77(7?^) and H (R i s)

2. Unpack d a ta by pvm jupk in tQ and pvm^upkfloatQ.

3. If H (i c) < 77(7?^), then record ic as the new best right in terpolation point index,

record the associated region {iji, ijr) = (i ci>icr) and update 77(77^) — H(ic).

4. O therw ise, if 77(ZC) < H (R i s), record ic as the new next best right in terpola

tion point index, record the associated region (isi , i sr) = (ic/ , i cr) and update

77(77,) = H(ic) ‘

5. Finally, ou tpu t the best and next best right interpolation point indices ij, i s, the

H ausdorff distances H (R j) , H (R S) and the associated regions (i j i , i jr), (i sh i s r)■

137

T he parallel algorithm based on PVM and dynam ic load balance can be expressed

as follows:
A lg o r i th m 7 .8 . Parallel Inverse Local IFS Interpolation A lgorithm (Stage One

Search for Self-affine Region), M aster Part.

IN PU T: (xQ, i/o), • • • > Vn) and W .
O UTPU T: the num ber M and Self-affine Regions R.j, j — 1,2, •• •, M .

1. Initialize in terpolation point indices io = 0, Im = N and j — 0; register to PVM

by pvrrumyt idQ .

2. j = j + 1.

2.1 Set up a search interval [s, e] for i j , where integers s and e satisfy x s —
i + W , x e = x N - W.

2.2 Apply dynam ic load Algorithm 7.4- to calculate i j , i s and H (R j) .

3. If i j - i 0 and A -i + W < e then

3.1 Set new lim its of the search interval (zs_ i, e].

3.2 A pply dynam ic load Algorithm 7.4 to calculate z's, z '+1 and H(R{>3).

3.3 If H (R ij_1) + H (Ri j) > I I (R i s ^) + II(Ri 'J then set i j_i = is~ 1 and ij — i s.

4. Accept ij as the j- th interpolation index. U pdate the search lim it to s = i j4~W.

5. If e < s then exit from the algorithm .

6. Goto step 2.

7. Finally, o u tpu t M = j + 1 and all self-affine regions R j , j = 1, * * • , M .

A lg o r i th m 7 .9 . Parallel Inverse Local IFS Interpolation A lgorithm (Stage Two
Search for A ssociated Regions) M aster Part.

INPU T: (#0 , Vo), • * •, (%n , Vn) and M = j — 1 and all self-affine regions

j = 1, * • • 5 M.
OUTPU T: Associated Regions Rj , j = 1, 2,*-- , M .

1. For each self-affine region Rj, j = 1, 2, • • • , M , do steps 2 - 4 .

2. Set a search interval [s , e] as (zj_i,Zj].

3. A pply dynam ic load Algorithm 7.4 to calculate ij, i s , i7(7?tj) and the associated

regions (ijh ijr) and {iahi sr).

4. Finally, ou tpu t the associated regions (ijh ijr) which correspond to the H (R iJ).

138

A lg o r i th m 7 .10 . Parallel Inverse Local IFS In terpolation A lgorithm , Slave

P art,

IN PU T: (£0 , 2/0)) * * • i (®jV)S/at)) self-affine region indices ij) and the
associated region w idth Awid.
O U TPU T: the best and next best associated region indices (ijh i j r), (is/ , i sr)
and Hausdorff distances H (R i j) and H (R i a).

1. R egister this process to PVM , pvrrumytidQ; Initialize H (R{jt) and H (R i al);

2. W ait for receipt of the new index i j- 1 of the left in terpolation point and their

search interval [s,-,ei], by pvm_recv();

3. Unpack this new data , by p v m ju p in t ();

4. For each ijr £ [Awid, N] do steps 2 - 9 .

5. Get iji = i jr — Awid] Calculate the m ap Wj param eters (ctj, Cj, d3, e3, f j) for

self-affine region indices (i j - i , i j) w ith the associated regions and the
Hausdorff distance H(ijr).

6. If H (ij r) < H(Rij i) i then record i jr as the new best one and update H{Ri-l) =
H(i_jr).

7. O therw ise, if H(ijr) < H (R j sl), record i jr as the new next best one and update
H (R l£l) - H {iJV).

8. Finally, pack the best and next best candidate associated region defined by

{ijhijr)^ (isiiisr) ant ̂ Hausdorff distances I I (R i j) and H (R{S) w ith p v m j p k i n t Q ,
pvm -pk f loa tQ] Send them to the m aster task, p v m s e n d Q .

9. Go to step 2.

7 .4 . N u m e r ic a l S im u la tio n

In th is section, we first present a variety of non self-affine one-dim ensional signal types,

m odelled w ith local IFS interpolation. Second, we want to see how the inpu t constant

W , which controls the m inim al distance between two consecutive in terpolation points
along the X direction in th e inverse LIFS algorithm , can change th e com pression ratio.
T hird , we d istribu te our com puting task in a network environm ent and test the speed
up ratio.

In Exam ple 7.1, we sample the sinusoid function 128 sin(27ra:/255) in the interval
[0, 255] to get the discrete signal of length 256. We apply inverse LIFS algorithm with

W = 32 and find th a t the best result is obtained when M = 7. The results are listed

139

Table XX. Local IFS calculated self-affine region (S.R) indices, associated region (A.R)

indices, m ap param eters and Hausdorff distances for a Sinusoid Signal

128 sin(27ra;/255)
S.R. Index A.R. Index Map Par am. H SNR

0,35 126, 179 1.06 -0.33 -131.55 0.02 40.6
36, 68 32, 80 0.34 0.44 48.51 0.03 45.83

69, 103 54, 105 -0.6 0.42 107.5 0.04 45.7
149, 104 92, 160 1.28 -0.26 -156.98 0.81 35.7
181, 150 22, 69 1.77 -0.4 -136.79 0.55 44.0
220, 182 156, 213 -0.27 0.45 -18.61 0.07 45.7
255, 221 78, 129 -2.67 -0.31 246.68 1.2 38.4

Table XXL Signal N oise/Ratio of Local IFS and IFS
Example 7.1 Example 7.2 Example 7.3
LIFS IFS LIFS IFS LIFS IFS

SNR 4-5.98 31.05 4.05 2.25 24.36 21.91
H 1.62 5.46 203.35 244.45 16.89 29.97

in Table XX. In order to com pare with the inverse IFS algorithm , we also illustrate

the bo th results in Figure 49. The to tal signal/noise ratios from bo th algorithm s are

listed in TableXXI.

In Exam ple 7.2, we use a real-world male speech signal of length 256. We apply

the inverse LIFS algorithm with W — 9 and find th a t the best results is obtained

when M = 20. The results are listed in Table XXII. For com parison w ith the inverse
IFS algorithm , we illu stra te both results In Figure 50. The to ta l signal/noise ratios
of bo th algorithm are listed in Table XXI.

In Exam ple 7.3, we use a fractional Brownian m otion signal of length 256 gen
erated by the m ethod used in Section 6.4 of length 256. We apply the inverse LIFS

algorithm w ith W = 9 and find th a t the best result is obtained when M = 21. The

results are listed in Table XXIII. For comparison with the inverse IFS algorithm ,

we illu stra te the both results in Figure 51. The to ta l signal/noise ratios of bo th
algorithm s are listed in Table XXI.

In these exam ples, we find th a t the local IFS approach fits the d a ta b e tte r than

the IFS does. The SNR im provement is 14DB for sm ooth d a ta and 2DB for rough
data.

T he constant W influences the compression ratio. We sim ply define the com

pression ratio as R = since our original input signal uses single precision, which

takes four bytes, we can use three bytes describe the self-affine and associated region
and six bytes for the m ap param eters c^c/;,/*-. We choose W — 32, W = 48 and

140

Local IFS Interpolation and S inusoid S ignal
150

original
local IFS algorithm

IFS algorithm

100

5 0

0

-50

-100

-1 5 0
2 5 00 50 100 150 200

X

Fig. 49. Local IFS Modelling of the Sinusoid Signal 128 sin(2?ra;/255)

141

Table XXII. Local IFS calculated self-affine region (S.R) indices, associated region
(A .R) indices, m ap param eters and Hausdorff distances for a M ale Speech
Signal

S.R .Index A.R. Index Map Par am. H SNR
0,9 22, 42 0.81 -0.99 342.52 2.4 41.1

10, 27 56, 122 -0.13 -0.02 262.64 3.0 42.3
41, 28 21, 42 2.05 0.08 157.2 94.6 18.3
42, 56 38, 217 -0.1 0.02 125.85 1.8 43.0
71, 57 37, 65 -0.02 0.99 -0.57 3.6 35.9
72, 80 48, 64 -0.71 0.54 211.43 0.7 53.8
81, 91 180, 226 0.002 -0.02 227.13 0.9 48.4
103, 92 66, 83 0.63 0.94 -34.55 2.64 43.1

113, 104 48, 81 3.23 0.9 -205. 2.8 41.0
114, 132 57, 88 0.46 0.98 -73.94 26.0 26.4
142, 133 152, 166 16.33 0.36 -2513.3 41.8 12.4
154, 143 6, 25 -5.28 0.19 229.24 64.9 14.1
170, 155 40, 70 1.88 0.95 -142.64 24.6 19.9
179, 171 109, 122 2.26 0.3 -83.88 1.7 46.7
189, 180 202, 217 -1.86 0.91 414.0 4.3 37.5
206, 190 158, 182 2.33 0.85 -351.83 9.7 32.1
207, 222 4, 32 0.2 0.99 -35.88 37.2 23.1
223, 234 61, 86 -1.92 0,97 135.58 6.1 33.9
244, 235 157, 173 2.8 0.94 -473.42 3.4 35.7
255, 245 123, 138 -1.3 0.96 165.9 9.7 31.7

142

Local IFS Interpolation and M ale S p e e c h S ignal
3 0 0

original
local IFS algorithm

IFS algorithm

2 5 0

200

150

100

2 5 00 50 100 150 200
X

Fig. 50. Local IFS Modelling of a Male Speech Signal

143

Table X XIII. Local IFS calculated self-affine region (S.R) indices, associated region

(A .R) indices, m ap param eters and Hausdorff distances for a Fractional
Brownian M otion Signal (H=0.5, Scale=0.4)

S.R. Index A.R. Index Map Par am. 11 SNR
14, 0 19, 48 5.68 -0.99 -116.08 13.6 15.1

15, 24 0, 114 0.12 0.06 -7.4 21.8 0.8
25, 40 121, 145 5.87 0.85 -813.55 6.2 21.2
52, 41 129,231 0.15 0.13 50.94 9.5 24.8
53, 62 37, 52 0.01 -0.89 112.75 5.5 25.1
72, 63 104,159 -0.28 -0.23 70.02 14.5 7.1
83, 73 152, 178 0.13 0.1 12.61 11.7 12.0
94, 84 133, 169 -1.31 -0.46 297.19 7.3 28.2

95, 104 92, 130 -0.79 0.23 120.39 4.77 27.19
105,114 102, 205 -0.44 -0.45 134.78 6.7 21.76
124,115 198, 217 4.84 0.97 -807.1 8.8 28.5
125, 140 21, 44 -5.42 0.53 251.46 6.9 29.1
141, 150 174, 192 1.5 0.77 -219.67 2.4 33.8
151, 160 57, 198 -0.69 -0.33 124.08 2.9 27.4
186, 161 121, 211 1.3 0.38 -200.8 9.1 13.6
187, 195 14, 56 -2.38 0.81 69.61 2.54 27.4
205, 196 143, 226 1.79 0.42 -352.01 17.9 9.9
206, 215 37, 69 -2.95 -0.24 44.13 10.9 22.23
216, 226 14, 126 -0.16 -0.07 -154.22 9.4 29.8
227, 241 12, 57 -2.26 0.25 -103.12 26.6 20.9
242, 255 110, 203 -0.38 -0.31 -170.01 16.4 31.7

144

Local IFS Interpolation and Fractional Brownian Motion (H =0.5 , S c a le = 0 .4)
200

original ------
local IFS algorithm ------

IFS algorithm150

100

-50

-100

-1 5 0

-200

-250

-3 0 0
0 50 100 150 200 2 5 0

X

Fig. 51. Local IFS Modelling a Fractional Brownian M otion (H =0.5, Scale=0.4)

145

Local IFS Interpolation and Sinusoid Signal with Different W
150

original
LIFS W =32
LIFS W =48
LIFS W =64

100

5 0

x

-50

-100

-1 5 0
2 5 00 50 100 150 200

X

Fig. 52. Local IFS Model of a Sinusoid Signal 128 sin(27ra:/255) w ith the different W

values

Table XXIV. Local IFS Model of a Sinusoid Signal 128sin(27ra;/255) w ith the different

W values ______________________________
w M H SNll R
32 7 1.62 45.98 0.0615
48 5 3.43 38.17 0.0439
64 3 29.22 22.5 0.0264

W = 64 to test the influence. The results are shown in Figure 52 and Table XXIV.

W ith W = 32 and W = 48 we get a fit to the data, but w ith W — 64 the fit is not

good, although, the compression ratio is high.

To test our dynam ic load balance technique, we set up a PVM configuration w ith
th ree SUN clusters as shown in Figure 53. The first of these is the D epartm ent of
S tatistics SUN cluster which includes nine SUN work-stations (Sparc 10, ELC, IPC
and SUN 470). The second is the S tatistic Lab SUN cluster, which includes th ree
SUN Sparc 10. The th ird is the Com puting Service SUN cluster which includes two

SUN Sparc 10. The first and second clusters are connected w ith E thernet and the

th ird is connected w ith FDDI. All machine use SUN OS 4.1.x.

146

Statistics Dept.
SUN Cluster

1. jupiter.stats
2. mars.stats
3. milkyway.stats
4 . nebula.stats
5. neptune.stats
6. saturn.stats
7. tellus.stats
8. autota.stats
9. orion
10.labservl
11.Iabserv2
12.Iabserv3
13.newton.cent
14 .rockall.cent

Fig. 53. W ork-station Configure for PVM

Figure 54 shows the to ta l tim e (com puting + com m unication + idle) for exam

ple 7.2. T here are four curves in the Figure. Two of them use a Daemon-based
com m unication scheme and others use a TCP-based com m unication scheme. In the

PV M environm ent, the TC P-based mode provides a m ore efficient com m unication

p a th th an the Daemon mode so th a t we can get some im provem ent in to ta l tim e.
From Table XXV we see th a t we get a good speed-up ratio w ith the dynam ic load
balance technique even if the num ber of com puters is fourteen, com pared w ith sta tic

load balance where the num ber of com puters is seven.

More detail com parison is shown in Figure 55 and Table XXVI. T he height of
each box in Figure 55 indicates the scale of each sub-task. In the equal-task-load

case, the fastest com puters incur high idle tim e waiting for a new message; see, for
exam ple, com puters 3, 8, 10, 11, 13, 14- com puters in Table XXVI. This wastes the
com puting resource. In the dynam ic load case, however, all com puters have low idle

tim e and keep busy in com puting, as expected. We also find th a t Nos. 13 and 14
incur large task load. Both com puters are fast Sparc 10s in cluster 3 which is not

connected to the local network. The large task load indicates th a t the network delay

across the cam pus is sm all and th a t the network is suitable for th is type of parallel

d istribu ted com puting application.

Ti
m

e
(s

ec
)

147

LIFS PD Algorithm with Dynam ic Load B a lan ce
9 0 0
8 0 0
7 0 0

6 0 0

equal load with D aem on -«—
equal load with TC P -+—

dynam ic load with D aem on -b - -
dynam ic load with TC P -*—

5 0 0

4 0 0

3 0 0

200

100

0 1 2 12 13 14 153 4 5 6 7 8 9 10 11
Number of C om puters

Fig. 54. Total tim e for exam ple 7.2 using PVM

Table XXV. Total tim es (seconds) for Exam ple 7.2 using PVM daem on and T C P
com m unication with equal and dynam ic task load

No Equal (Daemon) Dynamic (Daemon) Equal (T C P) Dynamic (T C P)
1 744.02 744.02 744.02 744.02
2 434.89 430.22 244.91 226.17
3 286.73 271.13 155.44 136.72
4 265.96 259.76 142.25 120.77
5 219.0 218.01 126.21 113.81
6 184.33 183.14 123.95 102.77
7 163.07 160.24 109.98 92.98
8 149.21 148.91 107.56 89.24
9 151.11 149.9 89.29 78.21
10 139.82 138.83 70.64 67.41
11 126.95 120.48 62.46 56.44
12 118.94 117.83 60.27 48.99
13 110.44 104.36 61.37 47.8
14 106.81 105.1 58.88 47.19

Ti
m

e
(s

ec
)

Ti
m

e
(s

ec
)

148

Equal Load LIFS Algorithm with Fourteen W orkstations in T C P C om m unication

com m unication tim e
com puting tim e -*—

static equal load
100

6 0 -

0 1 2 3 4 5 6 7 8 9 12 13 14 1510 11
C om puter Identifier

D ynam ic Load LIFS Algorithm with Fourteen W orkstations in TC P C om m unication
45

com m unication tim e -♦—
com puting tim e

dynam ic load b a la n ce 4 0

35

3 0

2 5

20

15

10

5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C om puter Identifier

Fig. 55. D ynam ic Load Balance for Exam ple 7.2 with PVM T C P C om m unication

Mode and Fourteen Com puters, Ecjual Load (top diagram) and Dynam ic Load
(bottom diagram)

149

Table XXVI. Task Partition ing and Load Balance for Exam ple 7.2 w ith PVM T C P
Com m unication Mode and Fourteen Com puters

Computer
Name

Scale of
Sub-task

Computing
Time

Comm.
Time

Idle
Time

1 0.0714 1140 30 2720
2 0.0714 65.64 0.38 137.78
3 0.0714 52.41 0.47 49.78
4 0.0714 22.51 0.87 80.99
5 0.0714 43.98 0.36 59.51
6 0.0714 52.23 0.45 50.02
7 0.0714 51.65 0.44 50.44
8 0.0714 51.44 0.4 50.62
9 0.0714 19.49 0.28 84.29
9 0.0714 87.68 0.48 14.95
10 0.0714 19.54 0.27 83.5
11 0.0714 18.68 0.26 84.21
12 0.0714 38.88 0.35 63.67
13 0.0714 20.16 0.31 82.32
14 0.0714 17.71 0.22 84.89
1 0.0284 36.99 0.22 9.67
2 0.0854 35.39 0.77 9.86
3 0.0555 35.4 0.34 9.63
4 0.056 36.41 0.23 9.84
5 0.0557 35.41 0.35 9.46
6 0.0558 34.53 0.34 10.23
7 0.0558 34.77 0.32 10.09
8 0.14 32.22 0.51 13.97
9 0.033 36.86 0.23 0

°
CO

10 0.11 30.72 0.41 14.61
11 0.11 29.89 0.41 15.16
12 0.037 35.52 0.51 9.55
13 0.1 28.95 0.35 16.15
14 0.081 30.59 0.28 14,72

150

C H A P T E R 8

C O N C L U S IO N A N D D IS C U S S I O N

8.1. M a in R e su lts

This thesis concentrates m ainly on stack filtering, fractal m odelling of one-dim ensional

discrete d a ta and their im plem entation using parallel d istribu ted algorithm .
The com bination of interactive and parallel processing will lead to a new and

useful application area, especially for visual science data, im age analysis/processing
and m ultim edia applications. We im plem ented this com bination based on a parallel
d is tribu ted com puting environm ent, PVM , and the in teractive application develop
m ent tool, Tel in C hapter 3. Tel is an em beddable in terpreter language and directly

supports the user’s extension. The approach we use is to provide a T el’s interface

for all procedures of the PVM interface library so th a t users can utilize any PVM

procedure to do their parallel com puting interactively.

In C hapter 4, we im plem ent an interactive parallel stack filtering system based on

the In teractive Parallel D istributed Com puting Environm ent. In order to reduce the

perform ance tim e of the standard stack filter, we suggest a new m inim um threshold
decom position scheme, we try to minimize the num ber of logical operations and we

utilize the CPU bit-fields parallel m ethod to do stack filtering. We also use equal task

partition ing to im plem ent a full parallel d istributed filtering algorithm on PVM . We

apply th e parallel stack filter to two num eric examples and the results show th a t the
in teractive parallel stack-filtering system is efficient for both sequential and parallel
filtering algorithm .

In C hap ter 5, we present an extended Iterated Function System (IFS) in terpola
tion m ethod for m odelling a given discrete signal. This inverse IFS problem is a global
optim al problem and there is no acceptable algorithm for obtain ing the solution in
reasonable tim e. We suggest a suboptim al search algorithm which first estim ates the

local self-affine region and then the m ap param eters, and neighbouring inform ation

for a self-affine region is used for enhancing the robustness of this suboptim al algo

rithm . We also im plem ent a parallel d istributed version of this algorithm using equal

task partition ing and a Rem ote Procedure Call library. The sim ulation results show
th a t the IFS approach achieves a higher signed to noise ratio than does an existing

approach based on autoregressive modelling for self-affine and approxim ately signals,
and, when the num ber of com puters is small, the speed-up ra tio is alm ost linear.

In C hapter 6, we use the robust IFS inverse algorithm w ith a local cross-validation

151

technique to model self-affine and approxim ately self-affine signals corrupted by G aus

sian noise. The local cross-validation is used to com prom ise between the degree of
sm oothness and fidelity to the data. We im plem ent the parallel d istribu ted version
of the algorithm in Parallel V irtual Machine (PVM) w ith optim al task partitioning.
We use a sim ple com puting model and partition tasks based only on each com puter’s

capability. Several num erical sim ulation results show th a t the new IFS inverse algo

rithm achieves a higher signal to noise ratio than does autoregressive m odelling for
noisy self-affine or approxim ately self-affine signal. There is little m achine idle tim e
relative to com puting tim e in the optim al task partitioning mode.

In C hapter 7, we apply local IFS to model non self-affine signals. The local IFS

realises th e IFS lim it for self-affine da ta and is suitable for m odelling general signals.

However it is difficult to explore the whole param eter space to get globally optim al
param eter estim ates. We suggest a two-stage search scheme to estim ate the self-

affine region and the associated region param eters, so th a t we can get a suboptim al

solution in a reasonable tim e. In the first stage, we suppose th a t the associated

region length is twice the length of the self-affine region and we can calculate all
self-affine region param eters. Then in the second stage, for each self-affine region, we
search for corresponding associated region param eters from the full search space. In a

netw ork-based parallel com puting environm ent, most perform ance degradation is load

im balance caused by the different machines capabilities and the external loads. We
apply dynam ic load balance technique based 011 d a ta parallelism scheme to overcome

the problem . Some num erical sim ulation show th a t our inverse local IFS algorithm

works efficiently for several types of one-dimensional signals, and the parallel version
w ith dynam ic load balance can autom atically have each m achine busy w ith com puting
and w ith low idle tim es.

8.2 , D iscu ss io n and S u ggestion

In chapter 4, we cannot use norm al RPC mode, in which a client sends a call and waits

for the server to reply to the effect th a t the call has succeeded. In order to get real

parallel-task sending, we use several UNIX system calls to im plem ent m ulti-process

com m unication and m anagem ent, but this im plem entation has not been optim ized.

PVM is a parallel d istribu ted com puting environm ent. It not only provides a point-to-
point com m unication scheme, bu t also provide process m anagem ent and m any other
facilities. It is b e tte r to im plem ent a parallel d istribu ted algorithm on PV M th an on
RPC .

In a network-based parallel com puting environm ent, we need some load balanc
ing technique to com bat im balance. We investigated static and dynam ic load balance

152

m ethods and found th a t dynam ic load balance based on an d a ta parallelism scheme

is suitable for our algorithm and achieves better results. However dynam ic load bal
ancing requires th a t each sub-task be the same. We need to arrange this, if possible,

so th a t more com puting tasks can benefit from this load balance.

For parallel stack filtering, we can use the dynam ic load balancing technique to

enhance the parallel algorithm . Also, an adaptive stack-filtering algorithm can be
im plem ented on the interactive stack filtering system. For modelling general noisy
signals, we can im plem ent local inverse IFS algorithm s w ith the local cross-validation
technique. A nother possible research topic for local IFS which we do not address in
this thesis is th a t of fractal compression. For a compression problem , our aim is to
find the m inim um num ber of self-affine region subject to a given error lim it. The

problem of compression is still open.

153

A PPEND IX A

FU N C TIO N PRO TO C O LS OF IN TERA CTIV E PARALLEL D ISTR IB U TED

CO M PU TING ENIRONM ENT

A .I . B in d in g th e P V M U ser Interface L ibrary w ith T e l L an gu age

We define here all protocols of functions of Tcl-based PVM user interface library.

M ost of contents com e from reference manual pages of PVM 3.2.

N A M E : pvmladdhosts - Adds one or more hosts to the virtual machine.

S Y N O P S IS : pvmladdhosts hosts N.

P A R A M E T E R S : hosts - LIST returning the host names.
N - the number of the hosts.

R E T U R N : L IST of info, /msU-start-code,-. -Rosti^-start-code,
info - integer status code, info < 0 indicates an error.
/io<st;-start-code - integer returning the start code of the host i.

N A M E : pvmladvise - Advises PVM to use direct task-to-task routing (TCP) or
not.

S Y N O P S IS : pvmladvise route.

P A R A M E T E R S : route - integer advising PVM to set up direct task-to-task
(TCP) links.
PvmDontRoute (!) —*■ don’t allow direct links to this task.
PvmAllowDirect (2) —> allow but don’t request direct links.
PvmRouteDirect (3) —> request direct links.

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : pvmlbufinfo - Returns information about the requested message buffer.

S Y N O P S IS : pvmlbufinfo build.

P A R A M E T E R S : bufid - integer specifying a particular message buffer identi
fier.

R E T U R N : L IST of info, bytes, msgtag, tid.
info - integer status code, info < 0 indicates an error.
bytes - integer returning the length in bytes of the entire message.
msgtag - integer returning the actual message label.
tid - integer returning the source of the message.

154

N A M E : p v m l c o n j i g - Return information about the present virtual machine con
figuration.

S Y N O P S IS : p v m l c o n f i g

P A R A M E T E R S :

R E T U R N : L IS T of info, nhost, narch, hostlist.
info - integer status code, info < 0 indicates an error.
nhost - integer returning the number of hosts (pvmds) in the virtual machine.
narch - interger returning the number of different data formats being used.
hostlist - L IS T of hi_tid, hi_name, hLmtu, hLspeed.
hLtid - pvmd’s task ID; hLname - pvmd’s name;
hLmtu ~ pvmd’s architecture; hLspeed - pvmd’s relative speed.

N A M E : p v m l d e l h o s t - Deletes one or more hosts from the virtual machine.

S Y N O P S IS : p v m l d e l h o s t hostnames N.

P A R A M E T E R S : hostnames - L IS T returning the host names,
N - integer returning the number of hosts.

R E T U R N : L IS T of info, /ros^-error-code, • • •, h o s t n - q y t o i - c o d e .

If any value less than zero, the corresponding error appears.

N A M E : p v m l e x i t - Tells the local pvmd that this process is leaving PVM.

S Y N O P S IS : p v m l e x i t

P A R A M E T E R S :

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : p v m l f r e e b u f ~ Disposes of a message buffer.

S Y N O P S IS : p v m l f r e e b u f b u f i d

P A R A M E T E R S : bufid - integer message buffer identifier.

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : p v m l g e t o p t - Returns the value of various PVM library options.

S Y N O P S IS : p v m l g e t o p t what.

P A R A M E T E R S : what - integer defining what option is being selected. See
also p v m l s e t o p t .

R E T U R N : val - integer returning the value of the option.

155

N A M E : pvm lgetrbuf - Returns the message buffer identifier for the active receive
buffer.

S Y N O P S IS : pvmlgetrbuf

P A R A M E T E R S :

R E T U R N : bufid - integer returning message buffer identifier for the active re
ceive buffer.

N A M E : pvm lgetsbuf - Returns the message buffer identifier for the active send
buffer.

S Y N O P S IS : pvmlgetsbuf

P A R A M E T E R S :

R E T U R N : bufid - integer returning message buffer identifier for the active send
buffer.

N A M E : pvm lhalt - Shuts down the entire PVM system.

S Y N O P S IS : pvmlhalt

P A R A M E T E R S :

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : pvm linitsend - Clear default send buffer and specfy message encoding.

S Y N O P S IS : pvm linitsend encoding

P A R A M E T E R S : encoding - integer specify the next message’s encoding
scheme.
PvmDataDefault (0) XDR if heterogeneous;
PvmDataRaw (1) —> no encoding;
PvmDatalnPlace (2) data left in place.

R E T U R N : bufid - integer returned containing the message buffer identifier and
bufid < 0 indicate an error.

N A M E : pvm lkill - Terminates a specified PVM process.

S Y N O P S IS : pvm lkill tid

P A R A M E T E R S : tid - integer task identifier of the PVM process to be killed
(not yourself).

R E T U R N : info - integer status code, info < 0 indicates an error.

156

N A M E : pvmlmcast - Multicasts the data in the active message buffer to a set
of tasks.

S Y N O P S IS : pvmlmcast ticls N msgtag

P A R A M E T E R S : tids - integer LIST containing the task IDs of the tasks to be
sent to.
N - integer specifying the number of tasks to be sent to.
m sgtag- integer message tag (geqO) supplied by the user.

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : pvmlmstat - Returns the status of a host in the virtual machine.

S Y N O P S IS : pvmlmstat hostname

P A R A M E T E R S : hostname - string specifying the host name.

R E T U R N : mstat - integer returning machine status, PvmOk, PvmNoHost,
PvmffostFail.

N A M E : pvmlmytid - Enrols this process into PVM on its first call and returns
the tid of the process on every call.

S Y N O P S IS : pvmlmytid
P A R A M E T E R S :

R E T U R N : tid - integer returning task identifier of the calling PVM process.

N A M E : pvmlnotify - Notify a set of tasks about some event.

S Y N O P S IS : pvmlnotify what msgtag ntask tids

P A R A M E T E R S : what - integer identifier of what event should trigger the no
tification, PvmTaskExil, PvmHostDelete, PvmHostAdd.
msgtag - integer message tag to be used in notification,
ntask - integer specifying the length of the tids list,
tids - integer LIST specifying the task IDs to be notified.

R E T U R N : info - integer status code, info < 0 indicates an error.

157

N A M E : pvmlnrecv - Non-block receive.

S Y N O P S IS : pvmlnrecv tid msgtag

P A R A M E T E R S : tid - integer task identifier of sending process supplied by the
user, a -1 matching any tid (wildcard).
msgtag - integer message tag supplied by the user, -1 matching any message
tag.

R E T U R N : bufid - integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

N A M E : pvm lpk - Pack the active message buffer with a list of prescribed data.

S Y N O P S IS : pvmlpkbyte bytelist nitem stride;
pvm lpkshort shortlist nitem stride;
pvm lpkint intlist nitem stride;
pvmlpkdouble doublelist nitem stride;
pvmlpkfloat floatlist nitem stride;
pvm lpkstr strname.

P A R A M E T E R S : nitem - the total number of items to be packed,
stride - The stride to be used when packing the items,
bytelist - bytes L IS T to be packed,
shortlist - short integers L IS T to be packed,
intlist - integers L IS T to be packed,
doublelist - double precision real L IS T to be packed,
floatlist - single precision real L IS T to be packed,
strname - character string name to be packed.

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : pvmlparent - Returns the tid of the process that spawned the calling
process.

S Y N O P S IS : pvmlparent

P A R A M E T E R S :

R E T U R N : tid - integer returning the task identifier of the parent of the calling
process.

N A M E : pvmlperror - Prints the error status of the last PVM call.

S Y N O P S IS : pvmlperror msg

P A R A M E T E R S : msg - character string supplied by the user which will be
prepended to the error message of the last PVM call.

R E T U R N : info - integer status code, info < 0 indicates an error.

158

N A M E : pvmlprobe - Check if message has arrived.

S Y N O P S IS : pvmlprobe tid msgtag.

P A R A M E T E R S : tid - integer task identifier of sending process supplied by the
user.
msgtag - integer message tag supplied by ther user.

R E T U R N : bufid - integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

N A M E : pvmlpstcit - Returns the status of the specified PVM process.

S Y N O P S IS : pvmlpstat tid.

P A R A M E T E R S : tid - integer task identifier of the PVM process in question.

R E T U R N : status - integer returns the status of the PVM process identified by
tid, PvmOk, PvmNoTask , PvmBaclParam.

N A M E : pvmlrecv - Blocks until a message with specified message tag has arrived
from the specified source and places it in a new active receive buffer.

S Y N O P S IS : pvmlrecv tid msgtag

P A R A M E T E R S : tid - integer task identifier of sending process supplied by the
user.
msgtag - integer message tag supplied by the user.

R E T U R N : bufid - integer returning the value of the new active receive buffer
identifier and bufid < 0 indicate an error.

N A M E : pvmlsend - Immediately sends the data in the active message buffer.

S Y N O P S IS : pvmlsend tid msgtag

P A R A M E T E R S : tid - integer task identifier of destination process,
msgtag - integer message tag supplied by the user.

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : pvmlsendsig - Sends a signal to another PVM process.

S Y N O P S IS : pvmlsendsig tid signum.

P A R A M E T E R S : tid - integer task identifier of PVM process to receive the
signal.
signum - integer signal number.

R E T U R N : info - integer status code, info < 0 indicates an error.

159

N A M E : pvmlserror - Sets automatic error message printing on or off for subse
quent PVM calls by this process.

S Y N O P S IS : pvmlserror set.

P A R A M E T E R S : set - integer defining whether detection is to be turned on (1)
or off (2).

R E T U R N : oldset - integer defining the previous setting of pvmlserror.

N A M E : pvmlsetopt - Sets various PVM library options.

S Y N O P S IS : pvmlsetopt what vat.

P A R A M E T E R S : what - Integer defining what is being set. Options in
clude: Pvm Routefl), PvmDebugMask(2), PvmAutoErr(3), PvmOutput-
Tid(4), PvmTraceTid(6), PvmTraceCode(7), PvmFragSize(S).
val - integer specifying new setting of option.

R E T U R N : oldval - integer returning the previous setting of the option.

N A M E : pvmlsetrbuf - Switches the active receive buffer and saves the previous
buffer.

S Y N O P S IS : pvmlsetrbuf bufid.

P A R A M E T E R S : bufid - integer specifying the message buffer identifier for the
new active receive buffer.

R E T U R N : oldbuf - integer returning the message buffer identifier for the pre
vious active receive buffer.

N A M E : pvm lsetsbuf- Switches the active send buffer.

S Y N O P S IS : pvmlsetsbuf bufid.

P A R A M E T E R S : bufid - integer the message buffer identifier for the new active
send buffer.

R E T U R N : oldbuf - integer returning the message buffer identifier for the pre
vious active send buffer.

160

N A M E : pvm lspawn~ Starts new PVM process.

S Y N O P S IS : pvmlspawn task argv flag where ntask

P A R A M E T E R S : task - character string containing the executable file name of
the PVM process to be started.
argv - L IST of arguments to the executable with the end of the L IST by
NULL (-1).
flag - integer specifying spawn options, PvmTaskDefault(O), Pvm-
TaskHost(l), PvmTaskArch(2), PvmTaskDebag(3), PvmTaskTrace(4).
where - character string specifying where to start the PVM process, which
depending on the value of flag.
N - integer specifying the number of copies of the executable to start up.

R E T U R N : L IST of numt, host±-tid,- • -Jiostj^-tid.
numt - integer returning the actual number of tasks started.
host{-tid - integer returning the task identifier of new process. Value < 0
indicate an error.

N A M E : pvmlstart.pvmd - Starts new PVM daemon.

S Y N O P S IS : pvmlstarLpvmd argv argv block

P A R A M E T E R S : argc - number of arguments in argv.
argv - L IST of arguments to the executable with the end of the L IST by
NULL (-1).
block - integer specifying whether to block until startup complete or return
immediately.

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : pvmltasks - Returns information about the tasks running on the virtual
machine.

S Y N O P S IS : pvmltasks where

P A R A M E T E R S : where - integer specifying what stasks to return information
about. 0 for all the tasks on the virtual machine; pvmd tid for all tasks on a
given host; tid for a specific task.

R E T U R N : L IST of info, ntask, tasklist.
info - integer status code, info < 0 indicates an error.
ntask - integer returning the number of tasks being reported on.
tasklist - L IST of tLtid, tLptid, tLhost, ti_flag, tLa.out.
ti.tid - its task ID; tLptid - parent tid; ti_host - pvmd task ID;
tLflag - status flag (waiting for a message, waiting for the pvmd, running);
tLa.out - the name of this task’s executable file.

161

N A M E : pvm ltidtohost - Returns the host of the psecihed PVM process.

S Y N O P S IS : pvmltidtohost tid.

P A R A M E T E R S : tid - integer task identifier of the PVM process in question.

R E T U R N : dtid - integer returns the tid of the host’s pvmd or a negative value
if an error.

N A M E : pvm lupk - Unpack the active message buffer into arrays of prescribed
data type.

S Y N O P S IS : pvmlupkbyte bytelist nitem stride;
pvmlupkshort shortlist nitem stride;
pvm lupkint intlist nitem stride;
pvmlupkdouble doublelist nitem stride;
pvmlupkfloat floatlist nitem stride;
pvm lupkstr strname.

P A R A M E T E R S : nitem - the total number of items to be unpacked,
stride - The stride to be used when unpacking the items,
bytelist - bytes L IS T unpacked,
shortlist - short integers L IS T unpacked,
intlist - integers L IS T unpacked,
doublelist - double precision real L IS T unpacked,
floatlist - single precision real L IS T unpacked,
strname - character string name unpacked.

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : xablon - Start monitoring and debugging PVM with Xab.

S Y N O P S IS : xablon

P A R A M E T E R S :

R E T U R N :

N A M E : xa b lo jf- End monitoring and debugging PVM with Xab.

S Y N O P S IS : xabloff

P A R A M E T E R S :

R E T U R N :

162

N A M E : xablshowEvents - Selects event types to be displayed.

S Y N O P S IS : xablshowEvents flags.

P A R A M E T E R S : flags - integer specifying the events to be displayed in abmon.
XAB-NONE, XAIFSENDREC, XAB.PACK, XAB-INFO,
XAB-CONTROL, XAB.D YNAM IC, XAB-GROUP, X A B S IG N A L ,
XAB.BUFFER, XA B.E RRO R , XAB-ALL, XAB.CO M M O N.

R E T U R N :

N A M E : xablbufEvents - Sets the event buffering of a user process.

S Y N O P S IS : xablbufEvents num.

P A R A M E T E R S : nnm - integer specifying the buffer size. A user process will
store num events before sending them to abmon

R E T U R N : .

A . 2. G enera l B in a ry D a ta (G B O X) P ro cess in g F u n ction s

N A M E : gblcreate - Create a new GBOX data structure and a hash table item.

S Y N O P S IS : gblcreate

P A R A M E T E R S :

R E T U R N : gboxname - returnning the new GBOX string name.

N A M E : gbldestroy - Destroy a old GBOX data structure and a hash table item.

S Y N O P S IS : gbldestroy gbox\ gboxw
P A R A M E T E R S : gboxi - GBOX string name to be destroyed.

R E T U R N :

163

N A M E : gblpush - Push new data into GBOX.

S Y N O P S IS : gblpush gboxname mode data packstate.

P A R A M E T E R S : gboxname - GBOX string name.
mode - integer specifying the data mode; 0 for character, 1 for short integer, 2
for integer, 3 for long integer, 4 for single precision real, 5 for double precision
real, 6 for unsigned cliararcter.
data - L IS T of data with ASCII expression.
packstate - integer specifying the packing state; 0 for raw data, 1 for others.

R E T U R N : nitem - integer returning the number of new data to be pushed.

N A M E : gblpop - Pop data from GBOX.

S Y N O P S IS : gblpush gboxname mode nitems packstate.

P A R A M E T E R S : gboxname - GBOX string name.
mode - integer specifying the data mode; See also gblpush.
nitem - integer returning the number of new data to be poped,
packstate - see also gblpush.

R E T U R N : data - L IS T of data with ASCII expression.

N A M E : gblstate - State the internal structure of GBOX.

S Y N O P S IS : gblclisplay gboxname.

P A R A M E T E R S : gboxname - GBOX string name.

R E T U R N : result - L IS T of totaLsize, cur.size, view_pos.
totaLsize - integer specifying the total size of the GBOX buffer;
cur„size - integer specifying the current data size;
view_pos - integer specifying the current position of view point.

N A M E : gb lv iew - View the contents of GBOX.

S Y N O P S IS : gblview gboxname mode nitem packstate.

P A R A M E T E R S : gboxname - GBOX string name.
mode - integer specifying the data mode; See also gblpush.
nitem ~ integer returning the number of data to be viewed,
packstate - see also gblpush.

R E T U R N : data - L IS T of data with ASCII expression.

164

N A M E : gblseek- Move GBOX view_pos to new position.

S Y N O P S IS : gblseek gboxname unit pos mode.

P A R A M E T E R S : gboxname - GBOX string name.
unit - string name specifying the data unit of size;
pos - integer specifying the new position;
mode - integer specifying the direction of moving; (0 from the starting, 1
from the current, 2 from the ending position).

R E T U R N : info - integer status code, info < 0 indicates an error.

N A M E : gblfread- Read data from a file.

S Y N O P S IS : gblfread filename

P A R A M E T E R S : filename - character string file name.

R E T U R N : gboxfile - returning L IST of GBOX file structure,
magic - integer identifying the file type, see also [159];
width - integer specifying the width of data file;
height - integer specifying the height of data hie;
m axval/type - integer specify maximum value of two-dimensional data or
one-dimensional data type (see also gblpush);
gboxname - GBOX string name.

N A M E : gblfwrite - Write data into a file.

S Y N O P S IS : gblfwrite filename gboxfile

P A R A M E T E R S : filename - character string file name.
gboxfile - L IST of GBOX file structure, see also gblfread.

R E T U R N :

165

D efin it io n A . l modified P P M [159] file structure fo r one-d im ensiona l data:

• magic: integer num ber for identifying the file type, P10 for ASCII, P l l for

b inary data.

• white-space: (blanks, TABs, CRs, LFs).

• width: fo rm atted as ASCII characters in decimal.

• w hitespace .

• height: fixed to 1 for the one-dimensional data, again in ASCII decimal.

• w hitespace .

• type : m axim um color-component value, again in ASCII decimal.

• w hitespace .

• array: w id th * h e ig h t data array.

166

REFERENCES

[1] H. Abelson and G. J. Sussman. Structure and Interpretation o f Com puter Pro
grams. M IT Press, 1985.

[2] S. A benda. Inverse problem for one-dimensional fractal m easures via itera ted

function system s and the m om ent m ethod. Inverse Problems, 6:885-896, 1990.

[3] H. Akaike. S tatistical prediction identification, ann Inst. Statist. M ath., 22:203-

217, 1970.

[4] George S. Almas and Allan Gottlieb. Highly Parallel Computing. The Ben

jam in /C um m ings Publishing Company, Inc., 1989.

[5] L. F. Anson. F ractal image compression. B Y T E , pages 195-202, O ct 1993.

[6] G. Arce and N. C. Gallagher. S tate description for the root-signal set of m edian

filters. IE E E Trans. Acoust., Speech, Signal Process., 30:894—902, 1982.

[7] G. Arce and N. C. Gallagher. Stochastic analysis for the recursive m edian filter

process. IE E E Trans. Acoust., Speech, Signal Process., 34:669-679, 1988.

[8] G. R. Arce, N. C. Gallagher, and T. A. Nodes. M edian Filters: Theory foi

One- and Two-dimensional Filters. Advances in C om puter Vision and Image

Processing. JA I Press, T.S.Huang, ed. edition, 1986.

[9] G .R. Arce. M icrostatistics in signal decomposition and the optim al filtering
problem . IE E E Trans. Signal Process., 40:2669-2683, 1992.

[10] G .R. Arce and R.E. Foster. Detail preserving ranked-order based filters for

im age processing. IE E E Trans. Acoust., Speech, Signal Process., 37:83-98, 1989.

[11] G .R. Arce and M.P. McLoughlin. Theoretical analysis of th e m ax /m ed ian filter.

IE E E Trans. Acoust., Speech, Signal Process., 35:960-69, 1987.

[12] P. Asente, R. Swick, and J. McCormack. X window System Toolkit: The Com
plete P rogram m er’s Guide and Specification. Digital Press, 1990.

[13] J. A stola, P. Heinonen, and Y. Neuvo. On root structu re of m edian and m edian-

type filters. IE E E Trans. Acoust., Speech, Signal Process., 35:1199-1201, 1987.

[14] E. A tam an, V. K. A atre, and K. M. Wong. Some statistical properties of m edian

filters. IE E E Trans. Acoust., Speech, Signal Process., 29:1073-1075, 1981.

167

[15] J.W . Backus, J. Bauer, F.L. Green, C. Katz, J. M cCarthy, P. N aur, A .J. Perlis,

H. R utishauser, K. Samelson, B. Vauquois, J.H . W egstein, A. van W ijngaarden,

and M. Woodger. Report on the algorithm ic language algolGO. Num er. M ath.,

2:106-136, 1960.

[16] Z. B aharav, D. M alah, and E.D. Karnin. H ierarchical in terp reta tion of
fractal im age coding and its applications to fast decoding. In Int. Conf.
on Digital Signal Processing, Cyprus, 1993. ftp site: ftp .inform atik .uni-
freiburg.de: / papers/ff ac ta l/B aM *.

[17] Z. B aharav, D. M alah, and E.D. Karnin. H ierarchical in terp reta tion

of fractal image coding and its application to fast decoding. In Intl.
Conf. on Digital Signal Processing, 1993. ftp site: ftp .inform atik.uni-

fre iburg .de:/papers/fractal/B aM *.

[18] M .F. Barnsley. F ractal functions and interpolation. Constr. Approx., 2:303-
329, 1986.

[19] M .F. Barnsley. Fractal Everywhere. Academic Press, New York, 1988.

[20] M .F. Barnsley. Fractals Everywhere. New York: Academ ic, 1988.

[21] M .F. Barnsley and S.G. Demko. Itera ted function system s and the global con

struction of fractals. Proc. R. Soc. London A, 399:24-3-275, 1985.

[22] M .F. Barnsley, J. Elton, and P. Massopust. Hidden variable fractal in terpola

tion functions. S IA M J. Math. Anal., 20:1221—1242, 1989.

[23] M .F. Barnsley and J.H . Elton. A new class of Markov processes for im age

encoding. Adv. appl. Prob., 20:14-33, 1988.

[24] M .F. Barnsley, J.H . Elton, and D.P. Hardin. R ecurrent ite ra ted function sys
tem s. Constr. Approx., 5:3-31, 1989.

[25] M .F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster. Solution of an inverse

problem for fractals and other sets. Proc. Natl. Acad. Sci. USA, 83:1975-1977,
1986.

[26] M .F. Barnsley and A.N. H arrington. The calculus of fractal in terpolation func

tions. J. Approx. Theory, 57:14-34, 1989.

[27] M .F. Barnsley and L.P. Hurd. Fractal Image Compression. AK Peters, L td.,
1993.

168

[28] M .F. Barnsley ancl A.D. Sloan. A bette r way to compress images. B Y T E , pages

215-223, Jan . 1988.

[29] K.U. B arthel and T. Voye. Adaptive fractal image coding in the frequency

dom ain. In Proc. o f Int. Workshop on Image Process., pages 20-22, B udapest,
Hungary, 1994. ftp site: ftp .inform atik .uni-freiburg .de:/papers/fractal/B aV *.

[30] BBN. Parallel com puting, past, present and future. Technical report, BBN

Advanced C om puters Inc., Cambridge, MA, November 1990.

[31] J.M . Beaum ont. Image data compression using fractal techniques. B T Technol
J ., 9:93-109, 1991.

[32] J.B . B ednar and T.L. W att. A lpha-trim m ed m eans and their relationship to

the m edian filters. IE E E Trans. Acoust., Speech, Signal Process., 32:145-153,
1987.

[33] A.L. Beguelin. Xab: A tool for m initoring pvm program s. Techni

cal report, School of Com puter Science, Carnegie Mellon University, ftp
Site: dao.nectar.cs.cm u.edu (128.2.205.73) /a fs /c s .cm u .ed u /p ro jec t/n ec ta r-
ad am b /ftp , 1992.

[34] M.A. Berger. Random affine iterated function systems: Curve generation and

wavelets. S IA M Review, 30:713-747, 1981.

[35] D im itri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Com pu

tation Num erical Methods. P rentice Hall, Inc., 1989.

[36] W .W . Boles, M. Kanewski, and M. Simaan. Recursive tw o-dim ensional m edian
filtering algorithm s for fast image root extraction. IE E E Trans. Circuit S y s t.,
35:1323-1326, 1988.

[37] A. C. Bovik. Streaking in m edian filtered images. IE E E Trans. Acoust., Speech,
Signal Process., 35:493-503, 1987.

[38] A. C. Bovik, T. S. Huang, and D. C. Munson. The effect of m edian filtering

on edge estim ation and detection. IE E E Trans. Pattern Anal. M achine In te l! ,
9:181-194, 1987.

[39] A.C. Bovik and T.S. Huang. A generalization of m edian filtering using linear
com binations of order statistics. IE E E Trans. Acoust., Speech, Signal Process.,

31:1342-1349, 1983.

169

[40] J. Boyle, R. B utler, T. Disz, B. Glickfeld, E. Lusk, R. O verbeek, J. P atterson ,

and R. Stevens. Portable Programs fo r Parallel Processors. Holt, R inehart, and
W inston, 1987.

[41] P .J. Brockwell and R.A. David. Time series: Theory and Method. Springer-
Verlag, second edition edition, 1991.

[42] D .R .K . Brownrigg. Weighted m edian filters. Commun. Ass. Comput. M ach .,

27:807-818, 1984.

[43] R alph B utler and Ewing Lusk. User’s guide to the p4 program m ing system.

Technical R eport ANL-92/17, M athem atics and C om puter Science Division,

Argonne N ational Laboratory, Argonne, IL, O ctober 1992.

[44] C. Cabrelli, U. M olter, and R. Vrscay. Recurrent Iterated Function System s:

Invariant Measures, A Collage Theorem and M om ent Relations , pages 71-80.
Fractals in the Fundam ental and Applied Sciences. Elsevier Science Publishers
B.V. (N orth-H olland), peitgen, h.-o. and henriques, j.m . and penedo, l.f. edition,
1991.

[45] Fah-Chun Cheong. OASIS: An agent-oriented programming language fo r het

erogeneous distributed environm ent PhD thesis, The U niversity of M ichigan,

1992. School of C om puter Science and Engineering.

[46] W .O Cochran, J.C . H art, and P.J. Flynn. F ractal volum e compression.
Technical report, W ashington S tate University, School of EECS, ftp site:
ftp .inform atik .uni-freiburg .de: /papers/frac ta l/G u ide* , 1994.

[47] W .O. Cochran, J.C . H art, and P.J. Flynn. F ractal volum e compression.

Technical report, W ashington S tate University, School of EECS, ftp site:

ftp .inform atik .uni-freiburg .de: / papers/fractal/G uide* , 1994.

[48] Bruno Codenotti and M auro Leoncini. Introduction to Parallel Processing.
Addison-wesley Publishing Company, 1992.

[49] E .J. Coyle and J.H . Lin. Stack filters and the m ean absolute error criterion.
IE E E Trans. Acoust., Speech, Signal Process., 36:1244—1254, 1988.

[50] E .J. Coyle, J.H . Lin, and M. Gabbouj. O ptim al stack filtering and the esti

m ation and structu ra l approaches to image processing. IE E E Trans. Acoust.,
Speech, Signal Process., 38:955-968, 1990.

ftp://ftp.informatik.uni-freiburg.de
ftp://ftp.informatik.uni-freiburg.de

170

[51] R .J. Crinon. The wilcoxon filter: A robust filtering scheme. In Proc. IE E E

Sym p, Circuits and System s , 1985.

[52] I. Daubechies. The wavelets transform , time-frequency localization and signal

analysis. IE E E Trans. Inform . Theory, 36:961-1005, 1990.

[53] H.A. David. Order Statistics. New York: Wiley, 1981.

[54] F. Davoine, E. B ertin , and J.M . Chassert, From rigidity to adaptive tessella

tions for fractal im age compression: com parative studies. In IE E E 8th W ork
shop on Image and M ulti-dimensional Signal Process., Cannes, 1993. ftp site:

ftp .inform atik .uni-freiburg .de:/papers/fractal/D ab*.

[55] F. Davoine and J.M . Chassert. Adaptive delaunay triangulation for a ttrac to r

im age coding. In 12th Int. Conf. on Pattern Recognition , Jerusalem , 1994. ftp
site: f tp .in form atik .uni-freiburg.de: /p ap ers / frac ta l/D ab *.

[56] J. D ongarra, A. Geist, R. M anchek, and V. Sunderam . In tegrated pvm

framework supports heterogeneous network com puting. Technical report,
Oak ridge N ational Laboratory and University of Tennessee, ftp Site:

ftp .m athcs.em ory.edu /p u b /v ss , January 1993.

[57] C. C. Douglas, T. G. M attson, and M. H. Schultz. Parallel program m ing sys
tem s for w orkstation clusters. Technical R eport TR-975, Yale University De

partm en t of C om puter Science, ftp site: ftp.cs.yale.edu /p u b /T R , 1993.

[58] D. EBerly, H. Longbotham , and J. Aragon. Com plete classification of roots to

one-dim ensional m edian and rank-order filters. IE E E Trans. Signal Process.,

39:197-200, 1991.

[59] Y. Fisher. A Discussion o f Fractal Image Compression , pages 903-919. Chaos
and Fractals. Springer Verlag, peitgen, h.o. and jurgens, h. and saupe, d. eds.
edition, 1992.

[60] Y. Fisher. Fractal Image Compression. ACM SIG G RA PH . Prusinkiewicz,

p. (ed) edition, 1992. Course Notes, ftp site: legendre.ucsd.edu:

/pub /R easearch /F ish er.

[61] J. P. F itch , E. J. Coyle, and N. C. Gallagher. Root properties and convergence

rates for m edian filters. IE E E Trans. Acoust., Speech, Signal Process., 33:230-
240, 1985.

ftp://ftp.informatik.uni-freiburg.de
ftp://ftp.mathcs.emory.edu
ftp://ftp.cs.yale.edu

171

[62] J.P . F itch , E .J. Coyle, ancl N.C. Gallagher. M edian filtering by threshold de
com position. IE E E Trans. Acoust., Speech, Signal Process., 32:1183-1189, 1984.

[63] J.P . F itch , E .J. Coyle, and N.C. Gallagher. Threshold decom position of m ul

tidim ensional rank order operators, IE E E Trans. Circuits Syst., 32:445-450,

1985.

[64] P. F landrin . On the spectrum of fractional brownian m otions. IE E E Trans.
In form ation Theory , 35:197-199, 1989.

[65] P. F landrin. W avelet analysis and synthesis of fractional brownian m otion.
IE E E Trans. Inform ation Theory, 38:910-917, 1992.

[66] J. D. Foley and A. Van Dam. Fundamentals o f Interactive Com puter Graphics.
Addison-wesley Publishing Company, Inc., 1982.

[67] Message Passing Interface Forum. Mpi: A message-passing interface standard ,

A pril 1994. ftp site: netlib2.cs.utk.edu /m pi/d raft-final.ps.

[68] R. F. Freund and H. J. Siegel. Heterogeneous processing. Com puter, 26(6): 13-
17, June 1993.

[69] M. Gabbouj and E .J. Coyle. M inimum mean absolute error stack filtering w ith

s tru c tu ra l constraints and goals. IE E E Trans. Acoust., Speech, Signal Process.,
38:955-968, 1990.

[70] N. C. G allagher and G. L. Wise. A theoretical analysis of the properties of

th e m edian filter. IE E E Trans. Acoust., Speech, Signal Process., 29:1135-1141,
1981.

[71] Z .J G an and M. Mao. Two convergence theorems on the determ inistic proper

ties of m edian filters. IE E E Trans. Signal Process., 39:1689-1691, 1991.

[72] P.P. G andhi and S.A. Kassam. Performance of some rank filters for edge pre
serving smoothing. In Proc. IE E E Symp. Circuits and System s, pages 264-267,

1987.

[73] P.P. G andhi, I. song, and S.A. Kassam. Nonlinear sm oothing filters based
on rank estim ates of location. IE E E Trans. Acoust., Speech, Signal Process.,
37:1359-1379, 1989.

[74] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. M anchek, and V. Sunderam .

P V M 3 U ser’s Guide and Reference Manual, version 3.1 edition, 1993.

172

[75] G. Geist and V. Sunderam . Network-based concurrent com puting 011 the pvm

system . Concurrency: Practice and Experience, 4(4):293-311, June 1992.

[76] G. A. Geist and V. S Sunderam m . The evolution of the pvm concurrent com put

ing system . In 38th Annual IE E E Computer Soc Int. Com puter Conf. (COM-

P C O N Spring 93), pages 549-557, 1993.

[77] D. G elernter. G enerative com munications in Linda. A C M Transactions on
Programming Languages and System s , 7(1):80-112, January 1985.

[78] David G elernter. M ultiple tuple spaces in Linda. In P A R L E 89, pages 20-27.

Springer-Verlag, June 1989. Volume 366 of Lecture Notes in C om puter Sciences.

[79] J.S . Geronim o and D. Hardin. Fractal interpolation surfaces and a related 2-d

m ultiresolution analysis. J. o f Math. Analysis and A p p ,, 2:561-586, 1993.

[80] A. Gersho and R.M. Gray. Vector Quantization and Signal Compression.
Kluwer Acad. Press, 1991.

[81] E.N. G ilbert. Lattice-theoretic properties of frontal switching functions. J.
M ath. P hys ., 33:57-67, 1954,

[82] D. Goldberg. Genetic algorithms in Search, Optim ization and M achine Learn

ing. Addison-Wesley, 1989.

[83] S. Graf. B arnsley’s scheme for the fractal encoding of images. J. o f Complexity,
8:72-78, 1992.

[84] B. K. G rant and A. Skjellum. The pvm system s:an in-depth analysis and doc

um enting study. Technical report, Lawrence Livermore N ational Laboratory,
N um erical M athem atics Group, Livermore, CA 94550, Septem ber 1992.

[85] Andrew S. Grimshaw. M eta-system s: an approach com bining parallel pro

cessing and heterogeneous d istributed com puting system s. I11 Proceedings 1992
Workshop on Heterogeneous Parallel Processing, International Parallel Process
ing Sym posium , 1992.

[86] F. Ham pel, E. Roncheti, P. Rousseevw, and W. Stahel. Robust Statistics: an

approach Based on Influence Functions. New York: Wiley, 1986.

[87] C.R. H andy and G. M antica. Inverse problems in fractal construction: M oment

m ethod solution. Physica D , 43:17-36, 1990.

173

[88] R.M. Haralick, S.R. Sternberg, and X. Zhuang. Im age analysis using m athe
m atical morphology. IE E E 'Frans. Pattern Anal. M achine Intell., 9:532-550,

1987.

[89] R. J. Harrison. Portable tools and applications for parallel com puters. In ter
national Journal o f Quantum Chem istry , 40:847-863, 1991.

[90] P. Heinonen and Y. Neuvo. Fir-m edian hybrid filters. IE E E Trans. Acoust.,
Speech, Signal Process., 35:832-838, 1987.

[91] G. H eygster. Rank filters in digital image processing. Com puter Vision, Graph

ics and Image Processing, 19:148-164, 1982.

[92] Roger W. Hockney and C. R. Jesshope. Parallel Com puter 2: Architecture,
Programming and Algorithms. ZOP Publishing Ltd, second edition, 1988.

[93] J. Holland. Adaptation in Natural and Artificial System s. Univ. Mich. Press,

1975.

[94] K.M. Hornik. A pproxim ation capabilities of m ultilayer feedforward networks

are universal. Neural Network, pages 251-257, 1991.

[95] G. Howlett. B it toolkit library based on tk toolkit, 1994. ftp site: har

bor, ecn.purdue.edu / pub / tel / extensions /BLT*.

[96] J. H utchinson. F ractal and self-similarity. Indiana Univ. J ., 30:713-747, 1981.

[97] Kai Hwang and Faye A. Briggs. Computer Architecture and Parallel Processing.
M cGraw-Hill Book Company, 1984.

[98] S tatistical Sciences Inc. S-plus user’s m anual, 1991. M anual.

[99] E .W . Jacobs, Y. Fisher, and R.D. Boss. Image compression: A stud of the
ite ra ted transform m ethod. Signal Process., 29:251-263, 1992.

[100] A.E. Jacquin. A Fractal Theory o f Iterated Markov Operators with Applications
to D igital Image Coding. Phd thesis, Georgia In stitu te of Technology, 1989.

[101] A.E. Jacquin. Fractal image coding based on a theory of itera ted contractive

im age transform ations. In Proc. S P IE ’s Visual Com m unications and Image

Processing, pages 227-239, 1990.

[102] A.E. Jacquin. A novel fractal block-coding technique for digital images. In

Proc. IC A S S P , pages 2225-2228, 1990.

174

[103] A.E. Jacquin. Image coding based on a fractal theory of ite ra ted contractive

im age transform ations'. IE E E Trans, on Image Processing, 1:18-30, 1992.

[104] A.E. Jacquin. F ractal image coding: A review. Proc. o f the IEEE, 81:1451-

1465, 1993.

[105] B. I, Justusson. Median Filter: Statistical Properties. Two-D im ensional D igital
Signal Processing II. Springer Verlag, T .S.H uang, ed. edition, 1981.

[106] L.M. K aplan and C.-C. J. Kuo. Fractal estim ation from noisy d a ta via discrete

fractional gaussian noise (DFGN) and the haar basis. IE E E Trans. Signal
Process., 41:3554-3563, 1993.

[107] B. K. Kar. A new algorithm for order s ta tistic and sorting. IE E E Trans. Signal
Process., 41:2688-2694, 1993.

[108] B.W . K ernighan and D.M. Ritchie. The U NIX Programming Environm ent.
P ren tice Hall, Inc., 1984.

[109] M.S. Keshner. 1 /f noise. Proc. o f the IEEE, 70:212-218, 1982.

[110] S.J. Ko and Y.H. Lee. Center weighted m edian filters and the ir applications to

im age enhancem ent. IE E E Trans. Circuits Syst., 38:984-993, 1991.

[111] D. J. Kuck. A survey of parallel machine organization and program m ing. Corn-
put. Surv ., 9:29-59, 1977.

[112] H. T. Kung, R obert Sansom, Steven Schlick, P eter Steenkiste, M atth ieu
Arnould, Fracois J. Bitz, Fred Christianson, Eric C. Cooper, O nat Menzil-

cioglu, Denise Ombres, and Brian Zill. Network-based m ulticom puters: an
em erging parallel architecture. In Proceedings Supercomputing 91, pages 664-
673, N ovember 1991.

[113] J.H . LEE and J.S. Kao. A fast algorithm for two-dim ensional wilcoxon filtering.
In Proc. IE E E Sym p. Circuits and System s , pages 268-271, 1987.

[114] E. L. Lehm ann. Theory o f Point Estimation. New York: Wiley, 1983.

[115] F. Thom son Leighton. Introduction To Parallel Algorithm s and Architectures:
A R R A Y .T R E S S .H Y P E R C U B E S . Morgan Kaufm ann Publishers, Inc., 1992.

[116] J.H . Lin and E .J. Coyle. M inim um m ean absolute error estim ation over the
class of generalized stack filters. IE E E Trans. Acoust., Speech, Signal Process.,
38:663-678, 1990.

175

[117] J.H . Lin, T.M . Sellke, and E .J. Coyle. Adaptive stack filtering under th e m ean

absolute error criterion. IE E E Trans. Acoust., Speech, Signal Process., 38:938-
954, 1990.

[118] Y. Lin, J. Astola, and Y. Neuvo. A new class of nonlinear filters-neural filters.

IE E E Trans. Acoust., Speech, Signal Process., 38:663-678, 1990.

[119] Y. Lin, J. Astola, and Y. Neuvo. Adaptive stack filtering w ith application to

im age processing. IE E E Trans. Acoust., Speech, Signal Process., 41:162-184,

1993.

[120] H.G. Longbotham and A.C. Bovik. Theory of order s ta tis tic filters and their

relationships to linear fir filters. IE E E Trans. Acoust., Speech, Signal Process.,
37:257-287, 1989.

[121] M. Lottor. In ternet growth (1981-1991). Request for C om m ent 1296, Network

Inform ation Systems Center, SRI International, January 1992.

[122] M.P. Loughlin and G.R. Arce. D eterm inistic properties of the recursive sepa

rable m edian filter. IE E E Trans. Acoust., Speech, Signal Process., 35:98-106,
1987.

[123] T. Lundahl, W .J. Ohley, S.M. Kay, and R. Siffert. F ractional brownian m otion:

A m axim um likelihood estim ator and its application to im age tex ture. IE E E
Trans. Medical Imaging , MI-5:152-161, 1986.

[124] R usty Lusk and Ralph Butler. Portable parallel program m ing w ith p4. In Pro
ceedings o f the Workshop on Cluster Computing , Tallahassee, FL, Decem ber

1992. Supercom puting Com putations Research In stitu te , F lorida S tate U niver
sity. Proceedings available via anonymous ftp from ftp .scri.fsu.edu in directory

pub/parallel-w orkshop. 92.

[125] P. M ackerras, photo: Tk widget for image display, 1994. D ept, of C om puter
Science, The A ustralian N ational University, ftp site: harbor.ecn .purdue.edu
/ pub / tc l/ex tensions/pho to* .

[126] S.G. M allat. A theory for m ultiresolution signal decom position: The wavelets

representation. IE E E Trans. Pattern Anal. Machine In te l!, 11:674-693, 1989.

[127] B. M andelbrot. The Fractal Geometry o f Naure. Freem an, San Francisco,,
1982.

ftp://ftp.scri.fsu.edu

176

128] B. M andelbrot and J.W .V . Ness. Fractional brownian m otions, fractional noises

and applications. S IA M Rev., 10:422-437, 1968.

129] G. M antica. Chaotic optim ization and the construction of fractals: Solution of
an inverse problem . Complex System , 3:37-62, 1989.

130] G. M antica. Techniques fo r solving Inverse Fractal Problems, pages 255-268.
Fractals in the Fundam ental and Applies Sciences. Elsevier Science Publisher
B.V. (N orth-H olland), peitgen, h.-o. and henriques, j.m . and peneclo, l.f. edition,

1991.

131] P. M aragos and R.W . Schafer. Morphological system for m ultidim ensional sig

nal processing. Proc IE E E , 78:690-710, 1989.

132] A. M atrone, P. Schiano, and V. Puoti. Linda and pvm - a com parison between

2 environm ents for parallel programm ing. Parallel Com puting , 19(8):949-957,

1993.

133] D. J . Mayhew. Principles and Guidelines in software User Interface Design.
P rentice Hall, Inc., 1992.

134] D.S. Mazel and M.H. Hayes. Using iterated function system s to m odel discrete
sequences. IE E E Trans, on Signal Processing, 40:1724—1734, 1992.

135] D. R. McNeil. Interactive Data Analysis. John W iley Sons, Inc., 1977.

136] SUN M icrosystem s. Network program m ing guide, 1990. M anual.

137] D.M. Monro and F. Dudbridge. Fractal block coding of images. Electron. Lett.,
28:1053-1055, 1992.

138] D.M. Monro and F. Dudbridge. Fractal block coding of images. Electron. Lett.,
29:362-363, 1993.

139] P. M orrison and E. Morrison. Charles Babbage and his Calculating Engines,
page 244. New York: Dover, 1961.

140] S. M uroga. threshold Logic and Its Applications. New York: wiley Interscience,

1971.

141] L. N aam an and A.C. Bovik. Least squares order s ta tis tic filters for signal
restoration. IE E E Trans. Circut Syst., 38:244-257, 1991.

177

[142] Y. Nakagawa and A. Rosenfeld. A note on the use of local m in and m ax
operations in digital picture processing. IE E E Trans. S y s t., Man, Cybern .,

8:632-635, 1978.

[143] J. Neejarvi and Y. Neuvo. sinusoidal and pulse responses of the fir-m edian
hybrid filters. IE E E Trans. Circuits Syst., 37:1552-1556, 1990.

[144] Dan N essett and Jim Rathkopf. Com puting on heterogeneous supercom puter

clusters. In Proceedings o f the Workshop on Cluster Com puting , Tallahassee,

FL, Decem ber 1992. Supercom puting Com putations Research In stitu te , F lorida

S ta te University. Proceedings ftp site: ftp .scri.fsu.edu.

[145] T .A . Node and N.C. Gallagher. Median filters: some m odifications and their

properties. IE E E Trans. Acoust., Speech, Signal Process., 30:739-746, 1983.

[146] T .A . Node and N.C. Gallagher. Two-dimensional root s truc tu re and conver
gence properties of the separable median filter. IE E E Trans. Acoust., Speech,
Signal Process., 31:1350-1365, 1983.

[147] T .A . Nodes and N.C. Gallagher. Median some m odifications and their proper

ties. IE E E Trans. Acoust., Speech, Signal Process,, 30:739-746, 1982.

[148] T .A . Nodes and N.C. Gallagher. Median some m odifications and their proper

ties. IE E E Trans. Acoust., Speech, Signal Process., 31:1350-1365, 1983.

[149] M.G. N orm an and P. Thanisch. Models of machinese and com putation for

m apping in m ulticom puters. A C M Computing Surveys, 25(3):263-302, 1993.

[150] J. K. O usterhout. Tel: An em beddable com m and language. In Proc. U SEN IX

W inter Conference, pages 133-146, 1990.

[151] J. K. O usterhout. An X I1 toolkit based on the Tel language. In Proc. U SEN IX

W inter Conference, pages 109-115, 1991.

[152] J. K O usterhout. Tel and the Tk Toolkit. Addison-Wesley Publishing Company,
Inc., 1993.

[153] H.O. Peitgen. The Science o f Fractal Images. Springer- Verlag, New York, 1988.

[154] G.E. 4>ien, Z. Baharav, S Leps^y, D. M alah, and E. K arnin. A new

im proved collage theorem with applications to m ultiresolution fractal im

age coding. In Proc. IC A SSP , 1994. ftp site: ftp .inform atik .uni-

freiburg.de:/papers/frac ta l/B aM *.

ftp://ftp.scri.fsu.edu

178

[155] G.E. 4>ien, S Leps</>y, and T.A. Ram stad. A inner product space approach to

im age coding by contractive transform ations. In Proc. IC A S S P , pages 2773-
2776, 1991.

[156] G.E. 4?ien, S Leps</>y, and T.A. R am stad. Reducing the com plexity of a fractal-

based im age coder. In Proc. o f Eur. signal Proc. Conf., pages 1353-1356, 1992.

[157] I. P itas and A. N. Venetsanopoulos, Nonlinear Digital Filters: Principles and
Applications. Boston, MA: Kluwer Academic, 1990.

[158] Ioannis P itas and A. N. Venetsanopoulos. Order s ta tistics in digital im age
processing. Proceedings o f the IE E E , 80(12): 1892—1921, 1992.

[159] J. Poskanzer. Portable pixm ap form at. UNIX ‘m an page’ m anual, 1991.

[160] J.P . P rep ara ta and M.I.S. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, 1988.

[161] P. Prusinkiewicz and A. Lindenmayer. The Algorithm ic Beauty o f Plants.
Springer-Verlag, New York, 1990.

[162] B. R am am urth i and A. Gersho. Classified vector quantization of images. IE E E

Trans, on C o m m u n 34:1105-1115, 1986.

[163] J. R am anathan and 0 . Zeirouni. On the wavelet transform of fractional brow

nian m otion. IE E E Trans. Inform ation Theory, 37:1156-1158, 1991.

[164] O. Rioul and M. Vetterli. Wavelets and signal processing. IE E E Signal Process.
Mag,, 8:14-38, 1991.

[165] Yves R obert. The Impact o f Vector and Parallel Architectures on the Gaussian
Elim ination Algorithm. M anchester University Press, 1990.

[166] D. Saupe. Breaking the tim e complexity of fractal im age compression.

Technical report, U niversittat Freiburg, Institu te fur Inform atik, ftp site:
ft p . in form atik . uni-freiburg. de: / papers /frac ta l/ Saup*, 1994.

[167] D. Saupe and R. Hamzaoui. A guided tour of the fractal im age compression

litera tu re . Technical report, U niversitat Freiburg, In s titu te fur Inform atik, ftp
site: ftp .inform atik .uni-freiburg .de: /papers/frac ta l/G u id e* , 1994.

[168] R. Scheifler, J. G ettys, J. Flowers, R. Newman, and D. Rosenthal. X Window
System : The Complete Guide to Xlib, Xprotocol, ICCCM , XLFD . D igital Press,
second edition, 1990.

ftp://ftp.informatik.uni-freiburg.de

179

[169] D. T . Schm idt and V. S. Sunderam . Em pirical-analysis of overheads in cluster

environm ents. Concurrency-Practice and Experience, 6(1): 1—32, 1994.

[170] R. Shonkwiler. An image algorithm for com puting the hausdorff d istance effi
ciently in linear tim e. Inform ation Processing Letters , 30:87-89, 1989.

[171] R. Stallm an. G NU Em acs Manual, fourth edition, version 7 edition, February

1986.

[172] M. Stone. Cross-validatory choice and assessment of sta tis tica l predictions. J .
Roy. Statist. Soc B , 36:111-147, 1974.

[173] V. S. Sunderam . Pvm : A framework for parallel d istribu ted com puting. Con
currency: Practice and Experience, 2(4):315-339, Decem ber 1990.

[174] V. S. Sunderam . Methodologies and systems for heterogeneous concurrent com

puting. Technical report, Em ory University, D epartm ent of M athem atics and

C om puter Science, ftp Site: ftp.m athcs.em ory.edu /p u b /v ss , 1993.

[175] V. S. Sunderam , G. A. Geist, J. Dongarra, and R. M anchek. The pvm concur

rent com puting system: Evolution, experiences and trends. Technical report,

Em ory University, D epartm ent of M athem atics and C om puter Science, ftp Site:
ftp .m athcs.em ory.edu /p u b /v ss , 1993.

[176] Daniel Tabak. Multiprocessors. P rentice-Iiall Int., Inc., 1990.

[177] J. W. Tukey. Nonlinear (non-superposable) m ethods for sm oothing data . In

Cong. Rec. E A S C O N ’71 1974.

[178] L. H. T urcotte. A survey of software environm ents for exploiting networked

com puting resources. Technical report, Engineering Research C enter for Com
pu ta tional Field Sim ulation, P.O.Box 6176, Mississippi S tate, MS 39762, ftp
site: bulldog.wes.army.mil, 1993.

[179] S. G. Tyan. Median Filtering: D eterm inistic Properties. Two-Dimensional

D igital Signal Processing II. Springer Verlag, T .S .H uang, ed. edition, 1981.

[180] E.R. Vrscay. M om ent and Collage Methods fo r the Inverse Problem o f Fractal

Construction with Iterated Function System s , pages 443-459. Fractals in the

Fundam ental and Applies Sciences. Elsevier Science Publisher B.V. (North-
H olland), peitgen, h.-o. and henriques, j.m . and penedo, l.f. edition, 1991.

ftp://ftp.mathcs.emory.edu
ftp://ftp.mathcs.emory.edu

180

[181] E.R. Vrscay and C.J. Roehrig. Iterated function system s and the inverse prob
lem o f fractal construction using m om ents, pages 250-259. C om puters and
M athem atics, springer Verlag, kaltofen, e. and w att, s.m . edition, 1989.

[182] E, W alach and E. Karnin. A fractal based approach to im age compression. In
Proc. IC A S S P , pages 529-532, 1986.

[183] P.D. W endt, E .J. Coyle, and N.C, Gallagher. Stack filters. IE E E Trans.

Acoust., Speech, Signal Process., 34:898-911, 1986.

[184] P.D. W endt, E .J. Coyle, and N.C. Gallagher. Some convergence properties of

m edian filters. IE E E Trans. Circuits S yst., 34:276-286, 1987.

[185] S. W hite, A. Alund, and V. S. Sunderam. Perform ance of the nas parallel

benchm arks on pvm based networks. Technical report, Em ory University De

p artm en t of M athem atics and Com puter Science, ftp site: ftp .m athcs.em ory.edu

/p u b /v ss , 1993.

[186] R. W ichm an, J. Astola, P. Heinonnen, and Y. Neuvo. F ir-m edian hybrid filters
w ith excellent transien t response in noisy conditions. IE E E Trans. Acoust.,
Speech, Signal Process., 38:2108-2117, 1990.

[187] W m . D. W ithers. N ew ton’s m ethod for fractal approxim ation. Const, approx
im ation, 5:151-170, 1989.

[188] G.W . Wornell. A karhunen-loeve-like expansion for I f f processes via wavelets.

IE E E Trans. Inform ation Theory, 36:859-861, 1990.

[189] G.W . Wornell. W avelet-based representations for 1 /f family of fractal processes.
Proc. o f the IE E E , 81:1428-1450, 1993.

[190] G.W . W ornell and A.V. Openheim. Estim ation of fractal signals from noisy
m easurem ents using wavelets. IE E E Trans. Signal Process., 40:611-623, 1992.

[191] G.W . W ornell and A.V. Openheim. W avelet-based representations for a class

of self-sim ilar signals w ith application to fractal m odulation. IE E E Trans. In
form ation Theory, 38:785-800, 1992.

[192] 0 . Y li-H arja, J. Astola, and Y. Neuvo. Analysis of the properties of m edian

and weighted m edian filters using threshold logic and stack filter representation.
IE E E Trans. Signal Process., 39:395-410, 1991.

ftp://ftp.mathcs.emory.edu

181

[193] G. J. Yong and T. S. Huang. The effect of m edian filtering in edge location es

tim ation . C om puter Vision, Graphics and Image Processing, 15:224-245, 1981.

[194] B. Zeng, M. G abbouj, and Y. Neuvo. A unified design m ethod for rank order,

stack, and generalized stack filters based on classical bayes decision. IE E E

Trans. Circuits and Syst., 38:1003-1020, 1991.

GLASGOW

