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Abstract

The basis o f multifocal ERG is the use of a decimated m-sequence for simultaneous 

and independent stimulation of many areas of the visual pathway. The purpose o f this 

thesis is to investigate the effects of cross contamination from higher orders of the 

response.

To examine the effects of cross contamination a series of primitive polynomials were 

found by constructing finite fields. The first order ERG response is formed by cross 

con-elating the m-sequence with the physiological response. A second order response 

is formed by investigating particular flash sequences of the stimulation sequence and 

is formed by cross correlation of a second order m-sequence with the physiological 

response. Zech Logarithms were used to identify cross contamination between the 

various first and second order sequences. Tables of good and bad primitive 

polynomials were constructed for degree 12 to degree 16 and the effects of window 

length and decimation length examined. If we decimate the sequence into 128 areas, 

and look at a window of length 16, cross-contamination occurs in all sequences 

generated from primitive polynomials o f degree less than or equal 12, but only 26% in 

the case of degree 14, and 5.6% for degree 16. Finally, selected good and bad 

primitive polynomials were used to generate decimated m-sequences for a multifocal 

electrophysiological experiment to demonstrate the practical effects of cross -  

contamination.



Trace arrays showing uncontaminated discreet physiological responses from 61 

individual elements were recorded using the example good primitive polynomial 

whereas additional waveforms were present on the trace array when the same 

experiment was repeated with a bad primitive polynomial.

The use of finite field theory to generate primitive polynomials and zech logorithm 

analysis enables us to predict which primitive polynomials are suitable for m- 

sequence generation for multifocal electroretinography. Practical investigations 

support the theoretical analysis. This has important implications for developers of 

multifocal electrophysiology systems.
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Chapter 1 

EYE ANATOMY AND PHYSIOLOGY

In this chapter, the primate visual system will be introduced.

1.1 ANATOMY OF THE EYE

"EYE -the organ of sight of animals; the ability to see; sense of vision"

- extract from Collins English Dictionary

A large amount of information about our surroundings comes to us through our eyes. 

We gain a panoramic view of the world due to their position and mobility. The 

structure of the eye is designed to supply us with infonnation on depth, distance, 

dimension, and movement. The collective function of the non-retinal parts of the eye 

is to keep a focused, clear image o f the outside world anchored on two retinae. The 

retina is the sense organ of the eye. It allows us to see under a wide range of 

conditions. It discriminates wavelength allowing us to see colour, and provides a 

precision sufficient for us to detect a human hair or speck of dust from a few yards 

away.

It has often been said that looking at a camera can help give an understanding of how 

the eye works. The front part of the eye works as a lens, like the glass lens at the front 

of the camera; the pupil (dark part in middle of eye), acts like the aperture behind the 

camera lens, opening wider or narrowing down to control the amount of light that 

enters the eye; and the retina (inner lining of the eye), is like the film inside the 

camera, where the image or picture is focused.
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The eye is much more complicated than the camera. Humans and animals have the 

ability to make sense of, and act upon, the ever-changing information that comes from 

the light acting on their retinas - this is because the eyes are connected to the brain.

On the other hand, cameras just allow images to be recorded on film.

Each eye is connected to the brain by the Optic Nerve, and messages are transmitted 

along this nerve from the retina to the brain. The function of the retina is to convert 

light photons into electrical impulses, and these impulses are then interpreted by the 

brain to provide visual perception. Our brain enables us to see the right way up. As 

light passes through the lens, the image is inverted. With a camera, the image is 

actually upside down, although we see it the correct way round through the 

viewfinder. Figure 1.1 shows the inverted image on the retina. The brain then 

'reads' the image, and transforms it.

Light travelling in straight fines from a point on 
an
irm
rig

I

Figure 1.1 Inverted Image on Retina

The human eye is spherical (approximately 1 inch in diameter). Figure 1.2,

overleaf, shows the structure of the eye.
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Figure 1.2 Structure o f  the Eye

Light is focused on the retina by the cornea and lens. The cornea is the transparent 

window on the front of the eye. It has a small radius of curvature, therefore, it 

"bulges" forward. The substance of the cornea is stroma, which is formed by a latice 

of cologen fibres. Its function is to be the principal refracted medium of the eye, and 

the cornea accounts for seventy percent of total refracted power. It does not contain 

any blood vessels, which isolates it from the immune system, thus, damaged corneas 

can be transplanted without rejection. The cornea is actually a transparent part of the 

sclera. The sclera extends all the way round the eye, and is lined with 

microscopically thin layers of tissue within which is a layer of fibrous tissue or 

stroma. These layers are known as the choroid, and this has a network of tiny blood 

vessels that supply nutrients to the eye. At the front of the eye, the choroid becomes 

thicker, and more complicated, and has its own name, the ciliary body. Round the
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rest of the eye, it is lined on the inside by the retina.

The coloured part of the eye is known as the iris, and this is a muscular disc with a 

hole at its centre, see Figure 1.3. The hole is the apparently black pupil, and this is 

made smaller or larger by the action of the iris.

Figure 1.3 The Iris

T H E  IRIS

The pupil, the hole in the middle o f  the iris, allows The iris relaxes in dim light, allowing the
Light to enter the eye. The amount o f  light admitted pupil to expand and let as much light as
is governed by the iris. In bright light the iris possible into the eye. The individual is
contracts and the pupil becomes very small, allowing usually unaware o f  this process,
only a little light to enter.

Behind the iris is the lens, set within the ciliary body of the choroid, and held in place 

by a network of fibres, known as the suspensory ligaments. The lens is bi-convex. It 

consists of transparent Epithelial cells in concentric layers (like an onion). The lens is 

held in tension by a circular ligament, called zonula, which connects it to a circular 

ring of muscle, called the ciliary muscle. The function of the lens is to vary the power 

of the eye. When a near object is viewed, the ciliary muscle contracts to relax the 

zonule, and allows the lens to bulge forward because of its natural elasticity.

Between the cornea and iris, exists a chamber of fluid, the anterior (outer) chamber. 

The posterior chamber is located between the iris, zonule fibres, and lens. Both of 

these chambers are filled with aqueous (water-like) humour. Fresh aqueous humour



is constantly being produced, and the excess drains into the cornea, helping to keep it 

clear and infection-free. The vitreous chamber, between the lens and retina, is filled 

with a more viscous humour, the vitreous (glass-like) humour. This is a clear, jelly- 

like substance, through which the light which has been bent, or refracted, by the 

cornea and the lens, passes before reaching the retina.

The function of the retina is to convert light photons into electrical impulses, which 

are then transmitted to the brain along the optic nerve. It is the sense organ of the eye. 

The retina is a circular disk, which measures approximately 42mm in diameter

Figure 1.4, is a fundus1 image of the human retina, which can be viewed through the 

pupil using an opthalmoscope. The most notable feature is the optic disc (pinky, 

yellow disk on nasal side of fundus). This is where the optic nerve fibres leave, on 

the way to the brain. Fanning out from the optic disc, are the retinal arteries, which 

supply the retina. Two and a half disc diameters to the left of the optic disc, the blood 

vessel-free redish spot known as the fovea can be seen. This is in the centre of the 

area known as the macula.

Hur'-ar retiKSr

Figure 1.4 Fundus Image o f Human Retina

1 Fundus - Anal, the base o f  an organ, or the part farthest away from its opening.
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The central retina is the circular field 6mm around the fovea, and beyond this is the 

peripheral retina stretching to the ora serrata, 21mm from the center of the optic disc. 

The retina is held in place by the jelly-like mass of vitreous humor, and any change in 

this vitreous humor leads to the detachment of the retina. The retina is a very 

complex structure, as can be seen from Figure 1.5.

i- ' ’1 .

m i

S’.: :|1

Figure 1.5: Cross-Section o f  the Human Retina.

Figure 1.6 illustrates a simplistic view of the passage of light through the retina.
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- * C

LIGHT

Figure 1.6 Passage o f  light through the retina: Light enters the eye through the cornea and 
lens, and then, has to pass through the complete thickness o f the retina before striking the 
photosensitive elements, the rods and cones. The later are situated at the back o f  the retina against the 
pigment epithelium and choroid layers.

The tier of cells at the back of the retina contain the photoreceptors. They are the 

retinal cells, which convert light photons to electrical impulses. There are two basic 

types of photoreceptors - rods and cones (Figure 1.7). Rods are highly sensitive to 

light intensity, and cones to colour. Cones also help to give a clear image.

.'•-I I •’ • I  i .  «V ’ I P

Figure 1.7: Rod & Cones
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Rods contain the visual pigment Rhodopsin, which, when it absorbs light, splits into 

retinene and scotopsin. This structural change is thought to trigger off nerve 

impulses. Rods are highly sensitive to blue-green light (Figure 1.8), with a peak 

sensitivity at the 500nm wavelength of light, and are used for vision under dim-dark 

conditions at night.

Cones contain cone opsins as their visual pigment. They are maximally sensitive to 

either long wavelengths of light (red light), medium wavelengths of light (green 

light), or short wavelengths of light (blue light), (see Figure 1.8), depending on the 

exact structure of the opsin molecule. These cones, and the consequent pathways of 

connectivity to the brain, are the basis of colour perception in our visual image.

Figure 1.8: Relative absorption spectrum of cone receptors
(http ://insight . med. Utah. eduAVebvi sion)

There are 75-150 million rods, and 5-7 million cones in the average human retina, 

which are organized in a fairly exact mosaic. The fovea (which only accounts for 1 

degree of our central vision) is rod free, and contains a peak cone density of 199,900



cones/mm2, resulting in the highest visual acuity at the central focusing point. The 

mosaic here, is a hexagonal packing of cones. With increasing eccentricity, cone 

density falls steeply and the close hexagonal packing of the cones, is broken up by the 

rods outside the fovea. It is still a fairly organized mosaic, with the cones evenly 

spaced, surrounded by a ring of rods. The highest rod densities are located in a ring 

around the fovea, approximately 18 degrees (4.4mm) from the foveal pit. This is 

illustrated in Figure 1.9.

i

Figure 1.9 Distribution o f  rods and cones along a horizontal line through the fovea

Therefore, to recap, the function of the photoreceptor cells in the retina, is to catch 

quanta of light, and pass a message, concerning numbers of quanta of light and 

sensitivities to the different wavelengths, onto the next stage for processing. 

Information is transmitted laterally across the retina, due to the horizontal cells.

The first stage of processing for the evoked signal is the bipolar cells, which fall into 

two main categories - the on-bipolar and the off-bipolar. The on-bipolar cells 

hyperpolarise (increase the polarity of their transmembrane potential) in response to 

the receptor membrane potential generated. The off-bipolar cells depolarise (decrease

rod peak
cone peak

ro «* so jo 30 to 
TtMKXAL

V 0fovea
»  «  re »  n

NAUl
ECCENTRICITY in degrees O sN rb e rg , 1935
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this transmembrane potential) in response to the same signal (Hubei 1988).

Amacrine cells are analogous to horizontal cells. They are also laterally transmitting 

cells.

The ganglion cells further process the signal. They are categorised as on-centre, off- 

centre or on-off centre. They convert the amplitude modulated (analogue) signal 

generated by the bipolar cells to a pulse frequency modulated signal or digital spike 

varying in frequency of discharge in accordance with the magnitude change of the 

stimulating signal.

The axons of the ganglion cells sweep across the inner surface of the retina to the 

optic nerve head. A certain amount of scatter is caused at the receptor layer, due to 

the fact that the ganglion cell fibres lie at the front of the receptors. To avoid scatter 

at the foveal region (where the acuity of the eye is at its highest), the ganglion cells 

travel in arcs round the fovea, and converge at the optic disc. It is here that the 

ganglion cell axons pass through the sclera and form the optic nerve.

The terminal stage for physiological processing, and the start of more complex visual 

processing, is the visual cortex. This is located at the posterior part of the brain.

1.2 BASIC VISUAL PATHWAYS

1.2.1 The Pathway

Vision is generated by photoreceptors in the retina (Figure 1.10).
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w m m m
Receptor cete 

Optic nerve fibers (rods and cones)

(point of

Figure 1.10 Visual Fields in each eye

The information leaves the eye via the optic nerve, and there is a partial crossing of 

axons at the optic chiasm. The axons are called the optic tract after the chiasm. This 

wraps around the mid brain to get to the lateral geniculate nucleus (LGN), where all 

the axons must synapse. The LGN axons fan out through the deep white matter of the 

brain as the optic radiations, which will ultimately travel to primary visual cortex at 

the back of the brain (Figure 1.11)

M iLro-
d c e m x k r

Prim ary
visual
cortex

Lateral
g en icu la te  b< p " . O ptic:

radiations

Figure 1.11: Human Brain viewed from below

Information about the world enters both eyes with a great deal of overlap. You can 

cut the image which is projected onto the retina down the middle, with the fovea
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defining the centre. Essentially, there are two halves of the retina, a temporal half 

(next to your temple) and a nasal half (next to your nose).

right temporal retina 
right nasal retina

visual world

Figure 1.12 Projection onto the retina

As the visual image passes through the lens, it is inverted. Take for example your 

right eye, the nasal retina sees the right half of the world, and the temporal retina sees 

the left half. The right nasal retina and left temporal retina see pretty much the same 

thing ( Figure 1.12). Also note, from figure 1.12, if you drew a line through the 

world at your nose, they would see everything to the right of that line. That field of 

view is referred to as the right hemifield. The image you see is divided into left and 

right hemifields, with each eye obtaining information from both right and left 

hemifields. For any object that you can see, both eyes are actually seeing it, which is 

important for depth perception, but the image will be falling on one nasal retina and 

one temporal retina.

The brain works on a crossed wires system - the left half of the brain controls the 

right side of the body, and vice versa. Thus, the left half of the brain is only 

concerned with input from the right side of the world. The fibres of the retina sort 

themselves out in order to separate left and right hemifields. Figure 1.13 illustrates 

the nerve fibres from the nasal retina crossing over at the optic chiasm. Whereas, the



temporal retinae, are already positioned to see the opposite sides of the world, so 

do not cross.

lert h o im iie U

optic nerve 

optic tract

LGN

* ‘ hemifield

Meyers loop

optic radiations

occipital poles

Figure 1.13 Visual Fields
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Chapter 2 

MEASUREMENT OF VISUAL FUNCTION

Retinal diseases are the most common cause of blindness in western Countries; the 
prevalence of these conditions is increasing rapidly as the population ages. In 
diagnosing these conditions, and in evaluating treatment, the electrical responses of 
the retina are very important. Vision relies on more than one area o f the retina - the 
central area is specialized for high resolution vision (reading, etc.), and the periphery 
is needed for orientation, and control of position and movement in the world.

The Multifocal Electroretinogram (MFERG) will be introduced in this chapter. It can 
evaluate the retina at up to 103 locations. It describes the way in which the response 
of the retina changes its characteristics after it receives a flash of light, and this 
response contains significant diagnostic information.

2.1 PERIMETRY & VISUAL FIELDS

Non-invasive electro diagnostic and psychophysical testing enable assessment o f the 

entire length of the visual pathway.

Perimetry is a common psychophysical test of visual function - it yields important 

diagnostic information on a wide variety of opthalmic disorders. Traditionally visual 

function has been tested as visual acuity - the ability to discriminate fine details of 

objects and visual field - the portion o f space in which objects are visible at the same 

moment during steady fixation of gaze in one direction.

The two most common types of perimetry are Goldmann kinetic perimetry and 

threshold static automated perimetry. With Goldmann or "kinetic" perimetry, a 

trained perimetrist moves the stimulus; stimulus brightness is held constant. The 

limits of the visual field are mapped to lights of different sizes and brightness.

With threshold static automated perimetry, the patient sits in front of a concave dome,



and visually fixates on a central object within the dome. A computer-driven 

programme flashes small lights at different locations within the domes surface, and 

the patient presses a button to acknowledge whether they saw the stimulus. The most 

commonly used computer programme tests the central 30° of the visual field using a 

six degree spaced grid. This is accomplished by keeping the size and location of a 

target constant and varying the brightness until the dimmest target the patient can see 

at each location is found. These tests produce a visual field map, which is very 

important in diagnosing diseases of the visual system. Scotomas, or non-seeing areas, 

are plotted on this visual field map. Shape, location and sensitivity loss of these 

scotomas are important in the diagnostic process.

There are a number of drawbacks to conventional Perimetry. It is a subjective test, 

which relies on the patient fixating on a central fixation mark. The patient responds to 

an external stimuli, by pressing a button, or giving a verbal response. Perimetry gives 

a field map of the entire pathway, and cannot localise a defect to retina, optic nerve, 

or visual cortex. However, this can usually be achieved in conjunction with other 

clinical information.

Electrodiagnostic testing complements the information obtained from subjective 

measures of visual function. In general, electrodiagnosis gives an objective 

evaluation of retinal function. A variety of techniques are used to stimulate the retina, 

and give global information on a particular level or layer of the visual pathway.

2.2 VISUAL ELECTROPHYSIOLOGY

Traditionally, the main tests carried out in the electrophysiology clinics are, 

Electrooculograms (EOG), Visual Evoked Cortical Potential (VECP), and
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Electroretinogram (ERG). The EOG is a test of the outer retinal layer, called the 

Retinal Pigment Epithelium. It measures a constantly present standing potential 

between the front (cornea), and back (retina) of the eye. The main use o f the EOG is 

in the diagnosis o f Best's disease and other forms of juvenile macular degeneration. 

The VECP is a test of optic nerve tract and optic nerve function. Two young 

Scotsmen Dewar and McKendrick, independently discovered the ERG in 1873, but it 

did not find widespread clinical application until the contact lens electrode was 

developed by Riggs in 1941. The ERG gives functional information on a number of 

retinal cells, such as the photoreceptors, bipolar cells, ganglion cells and the Retinal 

Pigment Epithelium.

When light strikes the retina, a series o f fast and brief changes in electrical potential 

can be detected by recording electrical potential at an electrode placed on or near the 

eye. A plot of the changing electrical potential with time, on a timescale of 

milliseconds, is called an electroretinogram, see Figure 2.1

Figure 2.1 Basic ER G Principle 

Typically, the ERG consists of three components, the "a", "b" and "c" waves, and it is
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the "a" and "b" waves which are of most interest in routine clinical investigations.

The negative component or "a-wave" is measured from the baseline to the trough, and 

The positive component or "b-wave" is measured from the preceding trough to the 

positive peak. Less important waveforms are sometimes observed in ERG waveforms 

known as the "c-wave". The "a", "b" and "c" waves are illustrated in Figure 2.2.

The height, duration or shape of a peak can change with a retinal disorder.

Scientists and ophthalmologists have learned to interpret such changes. For more 

information on the origin of the "a" and "b" waves, see for example Can* & Siegel 

(1990).

The International Society for Clinical Electrophysiology of Vision (ISCEV) published 

Standards in 1989, to ensure that electrophysiology is carried out in safe standard 

conditions throughout the world. It also allows comparisons to be made between data 

produced at different centres.

A full standard ERG is designed to measure the following responses:

c-wave
b-wave

a-wave

Figure 2.2 "a", "b" and "c" Waves
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1. Rod dominated response in the dark adapted eye (primarily rods stimulated)

2. Maximal response in the dark-adapted eye (both rods and cones stimulated)

3. Oscillatory potentials (thought to be produced by horizontal and amacrine cells)

4. Cone mediated response

5. Flicker Response (from cone photoreceptors, since stimulus is driven at a
frequency too high for rods to cope)

Figure 2.3 illustrates the five basic responses:

DARK ADAPTED U G O T  ADAPTED

Single Flasfo "Cone Response"

Maximal Combined Response

Approximate Calibrations

oscillatory
responses poseasMi| 100 39 pv 

SO ms

Oscillatory Potentials (dark-adapted) 30 Hz Flicker Responses
. V V Y

Figure 2.3: Five Basic Responses

To recap, for more than 100 years, it has been known that a flash of light will elicit a 

distinctive response from the human eye -  the electroretinogram (ERG). The ERG
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records the evoked potentials and gives functional information on a number o f retinal 

cells. In particular, it shows marked differences in the response of rod and cone 

membrane potentials to a flash of light (Carr&Siegel 1990). The response will be 

either normal or abnormal, depending on the amplitude and latency o f different 

components of this ERG waveform. It is a mass response from the retina, and has 

been commonplace in Electrophysiology Clinics for around thirty years.

The problem with the global ERG, however, is that approximately thirty percent of 

the photoreceptors have to be malfunctioning before any abnormalities are detected in 

the resulting waveform, and although Electrophysiology plays a prominent role as a 

diagnostic tool, its ability to detect localised pathology leading to specific visual 

dysfunction is necessarily limited, due to the fact that a large number o f retinal 

pathologies originate in small localized regions of the retina. Take for example the 

macula, which only contains about seven percent of the total cone population, 

therefore the combined cone and rod responses from the macula contribute less than 

ten percent of the full photopic ERG. Because of this, disease limited to the macular 

region is typically not detected.

Several elaborate and sophisticated techniques have been designed to refine the ERG, 

in order to allow small areas to be examined. A Focal ERG is an ERG evoked by a 

small (10° or less) focal stimulus. It has not been feasible to obtain ERG responses 

from a sufficient number o f retinal locations to permit response topography maps, due 

to two main reasons, signal detection and stray light from the retina. Sanderberg and 

Ariel (1977) developed a hand-held stimulator opthalmoscope as an alternative 

approach to field topography mapping. This permits placement of a single small 

ERG stimulus to generate a response from a few selected areas. However, it does not
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allow recording from a large number of locations in the same session.

Recent advances in the application of Pseudo Random Binary Sequences (PRBS) to 

signal averaging has yielded higher signal to noise ratios in shorter periods of 

acquisition than was previously practical (Fricker & Sanders 1974, Srebro & Weldon 

1980, Sutter & Tran 1992). The enhancement of signal quality has made it is possible 

to recover functional information from localised regions of the retina by stimulating 

multiple areas of the visual field with independent modulators (flashing lights), 

controlled by a special case of PRBS called an m-sequence (Sutter & Tran 1992).

Electronic engineering textbooks (see for example Horowitz & Hill, 1989), describe 

the use of shift-registers to create pseudo-random binary sequences.

2.3 MULTIFOCAL ELECTRORETINOGRAPHY

The Multifocal ERG technique, which was first described by Sutter and Tran (1991), 

enables derivation of responses from hundreds of locations in approximately the same 

amount o f time it would take to derive one single local response. Multifocal ERG is 

an advanced technology based on the standard Electroretinogram. The current 

generated by the neural activity in the retina changes when the retina is exposed to 

changing light levels. This current can be measured using an electrode (Gold Foil) 

resting against the cornea at the front of each eye.

A description of the methodology behind the multifocal system can be found in Sutter 

& Tran (1991). Linear systems are described by their impulse responses, which can 

be measured directly using pulsed inputs. If white noise is used as a test input, much 

better signal-to-noise ratios can be achieved. The impulse response I(t) is derived 

from the response as the cross-correlation function between input x(t) and the
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response r(t):

T

I( t')  = J x(t -  f)r{ t)d t
o

For correlational shifts larger than the duration r, the impulse response, the recorded 

signal no longer shows any correlation with the input except for background noise. 

Now, if  the same input sequence, delayed relative to the first input by a time interval 

T > t , is used to stimulate the second input, then its impulse response would appear on 

the cross-correlation function starting at the correlational shift T. Therefore, a single 

cross-correlation can be used to extract the impulse response of both inputs.

Figure 2.4, illustrates this process for multiple inputs.

channe!

1  [u u in r

raw data

ru m n r

fu u in r

ru innr-

channel lag 
=1/n cycle

processed
data

Figure 2.4: Cross-Correlation Function. Each channel is stimulated according to the 
same binary m-sequence. A delay in the stimulus between channels 
renders the response from different channels uncorrelated. They are 
extracted from the raw data by computation of cross-correlation between 
the m-sequence and the response cycle. The responses of the individual 
channels are found distributed along the cross-correlation cycle at 
intervals equal to the channel lag.
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Simultaneous stimulation of multiple inputs with this technique does not increase the 

noise - if  noise contamination is overall additive. The input responses of all the inputs 

are obtained with the same signal-to-noise ratio, as if  each one were individually 

stimulated for the same period of time. Fortunately, noise in the ERG signal is overall 

additive, and signal contributions from different inputs have zero correlation, and 

therefore, do not contaminate each other with apparent noise.

The basic principle used in this study is to stimulate all inputs with the same white 

sequence. This is to obtain responses from a large number of inputs. Note that the 

stimulation of all inputs is exactly equivalent. White noise test inputs with a binary 

amplitude distribution, such as m-sequences, are the most efficient, especially in the 

analysis of nonlinear systems. More information on the generation and properties of 

m-sequences follows in Chapters 3 and 4 respectively. The most important feature is 

that, if  the m-sequence is selected properly, then the nonlinear interactions between 

the sequences, will fall between the first order responses mentioned above.

2.3.1 Multifocal Stimulus

Multifocal Electroretinography projects a pattern, which changes pseudo-randomly 

depending on the m-sequence chosen (Figure 2.5a). The algorithm has been chosen 

to guarantee that during an examination, no stimulus sequence is repeated, and all 

stimulus patterns appear once and only once, thus allowing separate signals to be 

extracted for each test location (Figure 2.5b).
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2.5b Whilst the patient sits there, a real 
time map o f their visual function is 
produced which can be used 
instantly for diagnosis

Figure 2.5: Multifocal ERG Stimulus and Trace Array

The stimulus pattern usually consists of 61-241 hexagonal areas covering up to +/- 25 

degrees of the visual field.

An ERG response consists of: large cone and rod response, small contribution from 

ganglion cell and optic nerve head component. Figure 2.6 shows a graph of the 

averaged ERG signals over concentric rings of the retina.

2.5a Patient sits looking at a screen on which 
this hexagonal stimulus is presented

0 10 20 30 40 50 60 70 80 mS«c

Figure 2.6 Averaged ERG Signals over concentric rings o f  the retina.
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A wide range of variables can influence the quality of the multifocal response. These 

variables can be placed into four categoiies:

1. The method o f stimulus delivery will determine the field of view, inference levels 
and the duration of on-state stimulation.

2. Data acquisition variables such as electrode type and placement, amplifier 
specifications and filter bandwidth settings will have a direct inpact on waveform 
shape and on the topographic distribution of signal amplitudes.

3. Patient variables such as fixation, pupil dilation and refractive error.

4. There are a variety of measurements which can be taken from multifocal 
recordings.

For more information, see for example, "Technical aspects of multifocal ERG 

recording" Keating et al (2000).

2.4 THE MULTIFOCAL LED STIMULATOR

The multifocal LED System was developed to improve the understanding of the 

Multifocal response. It shows that significant multifocal responses can be obtained at 

high driving frequencies with short recording techniques. The LED Stimulator is a 

useful tool for investigating and optimising the multifocal technique.

2.4.1 CRT v LCD Stimulus Delivery

The standard output device for both computers and the domestic television set is the 

cathode ray tube (CRT). The LCD is the Liquid Crystal Device. Figure 2.7 compares 

the duration of a white state (i.e. a '1' in the m-sequence) for both the CRT and LCD
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Stimulus.

CRT v LCD stimulus delivery

CRT

m-sequence 61’ = 2 msec On + 11 msec Off 

m-sequence ‘O’ = 13 msec Off 

LCD

m-sequence ‘ 1’ = 13 msec On 

m-sequence £0’ = 13 msec Off

13.3 
msec

Figure 2.7: CRT v LCD Stimulus Delivery

Recently a Multifocal LED Stimulator has been developed in collaboration with the 

Department of Electronics at the Southern General Hospital in Glasgow. Several 

Light Emitting Diodes (LED's) are responsible for illuminating each hexagonal area 

in the multifocal display. The LED's can be controlled to a much finer degree than 

the CRT or LCD systems. Theoretically, we can vary the temporal frequency o f the 

LED's (i.e. the LED's can be switched off or on for any length of time). They have 

the ability to project higher luminance levels, and there is no raster update from the 

screen.

2.4.2 LED Stimulator Specifications and Construction

This is beyond the scope of this thesis, but a summary has been included for 

completeness.

1 1 1 0 1

0 1 0 0 0
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2.4.2.1 LED Stimulator Specifications

• Fixed Stimulus Geometry - 61 element array

• Temporal resolution of 1 msec

• High stimulus intensity (up to 4,200 Cd m :)

• PC Control

2.4.2.2 LED Device Construction

Figure 2.8 (a) - (d) illustrates diagrammatically the construction of the LED System.

Figure 2.8(a): Black Polycarbonate honeycomb LED housing

Figure 2.8(b):Build circuitry & populate with LEDs
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Figure 2.8 (c): Add Diffuser

Figure 2.8(d): Integration with control electronics 

2.4.3 Varying the Temporal Driving Frequency

The Multifocal LED System allows the temporal driving frequency to be altered. The 

standard CRT stimulation rate is 77Hz (1 /13.3 msecs), see Figure 2.9. As 

mentioned previously this is when a 1 in the m-sequence results in the stimulus being 

in an "On" state for 1 msec and "Off' state for 12 msecs. Whereas, a 0 in the 

m-sequence results in the stimulus being in an "Off' state for 13 msecs.
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77 Hz Stimulus

13 msecs

200 Hz Stimulus

|5msec|

Figure 2.9: Stimulation Rate of77Hz and 200 Hz.

Similarly if we stimulate at 200 Hz (1/5msec), then if  a 1 in the m-sequence results in 

the stimulus being in an "On" state for 1 msec and "O ff state for 4 msecs. Whereas, 

a 0 in the m-sequence results in the stimulus being in an "O ff state for 5 msecs.

Figure 2.10(a), (b) and (c) is the results o f a test using a 15 bit m-sequence of length 

32,767, to stimulate each hexagonal area. If the stimulus is driven at 77Hz, the test 

has a recording time of 7 minutes 6 seconds, whereas if we drive the stimulus at 

200 Hz, then the recording time decreases to 2 minutes 44 seconds. The test time can 

decreased even more, to 1 minute 5 seconds if  we stimulate at 500Hz.
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Figure 2.11: Response amplitude as a function o f driving frequency.
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The amplitude of 500Hz responses illustrated in Figure 2.11, are 27% that of the 75Hz 

responses. Which leads to the question, Do these experiments imply that the retina 

can respond at frequencies as high as 500Hz? This is being investigated in more 

detail by Dr David Keating at Gartnavel General Hospital.

2.4.4 Understanding the Multifocal First Order Response

Consider the standard 7 5 Hz Stimulation. The first order or impulse response 

illustrates how the eye responds to a flash o f light, and defined as the sum of 

transitions to a white stimulus minus the sum of transitions to a black stimulus in the 

schematic diagrams of Figure 2.12 (a) and (b).

2.4.5 Understanding the Multifocal Second Order Response

The second order shows how the eye reacts to the interaction between flashes o f light, 

and is represented by the difference between a change of state and no change of state, 

in the schematic diagram illustrated in Figure 2.13 (a) and (b).
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Flash Sequence

m  -

o  ■—

m  -

o  —

Flash Sequence

m  ■

o  —

m  -

o  —

o
o

Responses

+

+

Fig 2.12(a): First order CRT Response

o
o
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Fig 2.12(b): First order LCD Response
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Flash Sequence Responses

0-0
0-« *

-o
+

+

Fig 2.13(a): 2nd order CRT Response

Flash Sequence Responses

0  —  0

o
o

+

+

Fig 2.13(b): 2nd order LCD Response
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Chapter 3

GENERATION OF PSEUDO RANDOM BINARY SEQUENCES

In this chapter pseudo-random binary sequences will be constructed and the 

mathematical foundations for the remainder of the thesis will be introduced.

3.1 THE SHIFT REGISTER

The most popular (and the simplest) Pseudo-Random Binary Sequence (PRBS) 

generator is the feedback shift register. PRBS (which are also called PN (pseudo 

noise) sequences, m- sequences, or maximal length shift register sequences) are 

binary sequences o f length 2m - 1, which satisfy a linear recurrence whose 

characteristic polynomial of degree m, is primitive (McBliece, 1987). Primitive 

polynomials h(x), will be defined below, but for the moment, take an example where 

m = 4:

h(x) = x 4 + x + l  

This corresponds to a feedback shift register as shown in Figure 3.1

FIGURE 3.1 Feedback shift registei' corresponding to x 4 + x  + 1

Generally, this polynomial specifies a shift register with m boxes, each containing a 0 

or 1 (since binary). At each time unit, the contents of the boxes are shifted one place
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to the right, and the boxes corresponding to the terms in the primitive polynomial are 

added together modulo 2, and fed back into the left hand box (MacWilliams &

Sloane, 1976). Therefore, if  the register contains ai+3, aj+2, aj+i, ai (Figure 3.2), at 

time i, then at time i+ 1 , it contains a i+4 = ai+i + ai, ai+3, ai+2? &i+b

|>*— ►—  C O T ? o T  ,

Tkfc r«2^ba.c.li Ŝ a.u.(j$S <y. R&cOi’/ttkta, ftdfdbtat

FIGURE 3.2 Feedback shift to implement the recursion ai+ll ~  ai+j + a,'

The feedback shift register generates infinite sequence ao a 1 a2 a3  a{.... which

satisfies the recurrence

»i+4 = 3i+i + a, (mod 2), where i = 0,1,.......

The maximum possible number of conceivable states o f an m-bit register is 2m (since 

each of the m boxes contains a 0 or 1). Therefore, the output sequence which is 

generated must be periodic. However, the all zero state cannot occur, because if  it 

did, the state of all 0 's would get "stuck" in the circuit, and the output would be the all 

zero sequence (P. Horowitz, 1989). Thus, the maximum possible period is 2m- 1. A 

primitive polynomial h(x), is one for which the output sequence has maximum 

possible period. Figure 3.3 illustrates the successive states of the output sequence for 

the feedback shift register in Figure 3.1, if  the initial state is 1000 (we could start 

anywhere except 0000). It can be seen that the output sequence generated is the same 

as the right-hand column of the list of states.
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1 o 1 0 o
2 G Q 1 0
3 1 0 0 1
4 1 1 o a
6 O 1 1 o
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7 o 1 o 1
Q 1 o 1 G
9 1 1 0 1

10 1 1 1 o
11 1 1 1 1
12 0 1 1 1
13 o Q 1 1
14 0 0 o 1
5 « Q 1 o o Q

1 0 1 0 a
1 (REPEATS)

FIGURE 3.3 Successive states and output sequence from  shift register (MacWilliams & Sloane)

Note that the sequence has period 15 = 24 - 1, which is the maximum possible 

period. Therefore, the original polynomial x 4 + x + 1 is primitive.

For more information on the generation of binary (two-level) maximum shift register 

sequences using a shift register, see also Scholefield, R.E. (1960), Birdsall, T.G. and 

Ristenbatt, M.P.(1958), and Chew, P.E.K. (1964).

Finite field theory will now be used to explain what happens.

3.2 FINITE FIELDS

3.2.1 The Integer Quotient Ring

A ring (R, + ,*) is an algebraic system consisting of a set of elements in which, on any 

two elements, the operations of addition, subtraction and multiplication yield another 

element which is always a member o f the original set. It may be possible to divide in a
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ring, but in order to do this, the multiplicative inverse of the divisor must exist in the 

ring. Clearly the prototype of a ring is the set 2  of integers; for a, b e  Z ,  we have 

a + b, a - b, a * b e  2Z. Let /Zq denote the quotient ring  of integers modulo an integer 

q: which consists of the set {0, 1, 2, ... , q-1} of integers and the result of every 

arithmetic operation is reduced modulo q.

An integer c maps into as the remainder r of c divided by q, e.g. c = r + dq, for 

some integer d. We write, c = r (mod q), read: c is congruent to r modulo q

Definition: Fix an integer q greater than 1 and let r be any integer. The congruence 
class of r modulo q is the set of all integers which are congruent to r 
modulo q:

[r ]q  -  (b : b = r mod q}.

This type of mathematics is called modular arithmetic - only remainders modulo a 

given integer matter.

Example 3.1: When q is 2, there are exactly two congruence classes, namely [0]2, the 
set of even integers, and [1]2  the set of odd integers.

The multiplicative inverse of an element of 2Zq exists if and only if the element is 

relatively prime to the modulus q2. In the case when q is a prime number, every 

nonzero element of Z£qhas a multiplicative inverse, and division becomes a general 

operation in the ring. Then 2Zq is called a fie ld .

2 If a e  5Zq and q are relatively prime, then, 1 = ab + dq = ab (mod q), where b and d are integers. The 
integer b mod q is then referred to as the multiplicative inverse o f a under multiplication modulo q.
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3.2.2 Fields

Definition A field F, is a set of elements with two operations addition  (+) and 

m ultiplication  (*) satisfying the following properties:

(1) F is closed under + and * , i.e. a + b and a * b are in F, whenever a and b 
are in F.

For all a,b and c in F, the following laws hold.

(2) Commutative Laws: a + b = b + a , a * b = b * a.

(3) Associative Laws: (a + b) + c = a + (b + c), (a * b) * c = a * (b * c).

(4) Distributive Law: a * (b + c) = a * b + a * c.

Furthermore, identity elements 0 and 1 must exist in F satisfying:

(5) a + 0 = a for all a in F.

(6) a * 1 = a for all a in F.

(7) For any a in F, there exists an additive inverse element (-a) in F such that 
a + (-a) = 0.

(8) For any a =£ 0 in F, there exists a multiplicative inverse element a _1 in F 
such that a * a '1 = l.

It follows that a field is an algebraic structure in which the operations o f addition, 

subtraction, multiplication and division (providing zero is not involved in division) 

can be performed without producing another quantity differing in kind from the other 

members of the collection.

A field can be defined more concisely to be a set F with two binary operations 

and such that:

(a) F is an abelian group u n d e r , with identity element 0.
(b) The nonzero elements of F form an abelian group under 'V .
(c) The Distributive Law holds.
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A field is called finite or infinite, depending on whether the underlying set is finite or 

infinite. Examples of infinite fields include the real numbers, or the rational numbers.

Definition A finite field is a field which contains a finite number of elements, this 

number being called the order of the field.

The finite fields will now be designated by GF(q), where GF stands for Galois Field3.

Galois Fields consist of the elements 0, 1 ,2 , ........, q-1 , for which addition,

subtraction, multiplication and division (except by 0) are defined, obeying the usual 

commutative, distributive and associative laws.

Example 3.2: Take GF(3), consisting of the elements 0, 1 and 2, we find 
1 + 2 = 0, 1 - 2 = 2, 2 * 2 = 1, 1/2 = 2 etc.

Theorem 3.1: The number of elements q must be a power of a prime: q = pm, p prime.

Proof: Let 1 denote the multiplicative identity in F. Define a sequence {uo,ui U2,.. 
in F as follows:

u o = 0 , u n  = u n - 1  + 1, for n = 1,2,...................

It follows from this definition that for arbitrary m and n,

(t) u m+n= u m + u n

("1*1") nui “  tl m * n

Now, due to the fact that F is finite, all the u n's cannot be distinct; let
u k = u k+c be the first repeat, i.e., the elements uo, u i, , Uk+c-i are all distinct
but u k+c = u k • Then, since by (f), u k+c - u k = u c, it follows that u c = 0, 
but, u o = 0, and so 0 is in fact the first element in the sequence { u n } to occur

2 Evariste Galois (1811-32), was a French mathematician, bom just outside Paris in die village o f  
Bourg-la-Reine, who died in a duel at the age o f 20 (Boyer, 1991). His main interest concerned 
finding solutions to equations, such as quintic equations.
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twice, and so the elements {uo, ui, uc_i}are all distinct.

The integer c (>2) is called the characteristic of the field. We assert that c 
must be a prime. For if on the contrary c = a * b with 1 < a < c and 
1 < b < c, then it follows from (f t) , that u c = u a * Ub. But u 0 = 0, u a £ 0, 
u b =£ 0, and so this is not possible, and conclude that c is, indeed, prime, and 
from now on replace the letter c by the letter p to remind us of that fact.

It is clear that the subset {uq, ui, up-i}of F is a subfield of F, since by (f)
and (f f)  it is closed under "+M and V \  Indeed it is isomorphic to the field 
Fp = Z  Mod p = {0, 1, . . ,  p-1}, if we make the obvious identification U i i .  
Thus it is possible to view F as a vector space over GF(p). Letting
{a)it ( 0 2 .......  <wm} denote a basis (necessarily finite) for F over GF(p), we see
that each element a  e F has a unique expansion of the form

( f f f )  a  = ai coi + a2&>2 + ........+ amojm>

where each ai is an element of GF(p). Since there are p possibilities for each 

ai, it follows from ( f f  f), that the field contains exactly pm elements.

Theorem 3.1 sheds light on the additive structure of F, showing that the elements of F 

can be viewed as m-tuples o f elements from GF(p), but tells very little about the 

multiplicative structure of F. The key fact is that the multiplicative group of F is 

cyclic with order q-1. Let a  e F be an arbitrary non-zero element o f F. Consider the 

sequence o f powers 1, a, a 2, ... , o f , ... of a. Each power of a 1 again lies in F. 

However, F contains only a finite number of elements, therefore, the sequence must 

repeat. Let ak = a k+t be the first repeat in the sequence. Then clearly k = 0; 

otherwise Qrk_1 = cr1̂ ' 1 would be an earlier repeat. Thus, (\,a , a 2,..., a t_1) are all 

distinct, but orl= l.The integer t > 1 is called the order of a  (McEliece,1987).

Theorem 3.2: If t is the order o f or, then t divides q-1.

Proof: Let F* denote the set of nonzero elements of F. Then, F* is a multiplicative 
group with q-1 elements, and {l,u, a 2,..., or1' 1} is a subgroup with t 
elements. Lagrange's theorem tells us that the number of elements in a
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subgroup is always a divisor o f the number of elements in a group; therefore, t
divides q-1 as promised.

Lemma 3.3 If ord(or) = t, then ord (or1) = t / gcd (i,t)

Proof: For any/? =£ 0,

j35 ~ 1 if  and only if  ord (/?) | s.  (*)

Let d -  gcd(i,t). Then a i(,/d) = a t(i/d) = (a  *)m  = 1. Thus, by (*) 
ord (a')| (t /d). Now, suppose s = ord ( a ) .  Then a 's = 1 and so, by (*),
11 is. Since d = gcd(i,t), ia + tb = d for certain integers a and b. Multiplying 
this equation by s, we obtain isa + tsb = ds. But since 11 is, it follows that 
11 ds, i.e., (t/d) | s; i.e., (t/d) | ord (a1). We have thus shown both 
ord (or1) | (t/d) and (t/d) | ord (or1). Hence, ord (a1) -  t/d as asserted. ■

Note: gcd stands for greatest common divisor, namely the largest number that is a 
common factor of the given numbers.

Definition: Let ai, .... ,an be positive integers. Then, their greatest common divisor, 
(ai, .... ,an) also written gcd (ai, .... ,an), is the positive integer d with 
the property that d|ai for each i and, whenever c is an integer with 
c|ai for each i, we have c|d.

Example 3.3: Suppose ord(cr) -  12, a  being an element of some field F. We can
compute the orders of a \  i = 0, 1, ..., 11, using Lemma 3.3; the work 
is summarized below:

i______ gcdfi.12)_____ ordfa1)
0 12 1
1 1 12
2 2 6
3 3 4
4 4 3
5 1 12
6 6 2
7 1 12
8 4 3
9 3 4

10 2 6
11 1 12

This is a bit surprising! Given only the fact that there exists at least
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one element of order 12 in F, it follows that there are exactly 4 
elements of order 12! Furthermore, there are exactly 2 elements of 
order 6, 2 of order 4, 2 of order 3, 4 of order 2 and 1 o f order 1. ■

In order to generalize the result of Example 3.3, we introduce the symbol 0(t) to

denote the number o f integers in the set {0, 1, . . t-1} which are relatively prime to t.

This is Eulers Phi Function4. Euler introduced this function and described its

elementary properties in his Tractatus. Note that since gcd(t,l) = 1 for all t >1, then

0(t) is always at least 1. The value of 0(t) is somewhat unpredictable, but for future

reference, we note that if  t is prime, then 0(t) = t-1, since then every element in the set

{0, 1, . . t-1} except 0 is relatively prime to t.

Theorem 3.4 Let t be an integer, F a field. In F there are either no elements of order 
t, or exactly </>(t) elements of order t.

Proof: There is nothing to prove if  there are no elements of order t. If ord(cr) — t, 
then, as we observed above, every element of order t is in the set 
{1, or,...., a 1}. By Lemma 3.3, a 1 will have order t, if  and only if  gcd(i,t) = 1. 
By definition, the number o f such i, is <p(t). u

Combining Theorems 3.2 and 3.4, we see that if  F is a finite field with q elements, 
and t is a positive integer, if  t does not divide q-1, there are no elements of order t; but 
if  t does divide q-1, there are either no elements of order t, or elements of order t. 
Before stating the next Theorem, consider another example.

Example 3.4: Let q = 16. Then, q-1 -  15. It follows from Theorem 3.2 that the only 
possible values o f t are t = 1, 3, 5, 15. For each of these values of t, 
the number of elements of order t (Using Theorem 3,4), is either 0 or 
(f>(t). Computing 0(t) in each case, we have:

_t______ $(t)
1 1
3 2
4 4
15 8

4 Leonhard Euler (1707-1783) bom Basel, Switzerland. From 1727 to 1783 the pen o f  Euler had been 
busy adding knowledge in virtually every branch o f pure and applied mathematics, from the most 
elementary to the most advanced. Our notations today are what they are more on account o f  Euler than 
any mathematician in history.
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Note: The sum of the numbers in the <p(t) column equals 15. The next Theorem 
illustrates that this remarkable occurrence is no accident.

Theorem 3.5 If n is any positive integer, then

£  <p (d) = n ,
d|n

this notation indicates that the summation is to be extended over all 
positive divisors of n.

Theorem 3.6 Let F be a finite field with q elements, and let t be a positive integer. If 
t does not divide q-1, there are no elements of order t in F. If 11 q-1, 
there are exactly <p(t) elements of order t in F.

Corollary In every finite field, there exists at least one element of order q-1. In 
fact, exactly 0(q-l) elements. Hence, the multiplicative group of any 
finite field is cyclic.

Definition An element o f multiplicative order q-1, i.e. a generator of the cyclic group 
F* = F - {0}, is called a primitive root of the field F.

3.2.3 Polynomials

A polynomial p(x) of degree m over a field F is as follows:

m
j .

£  a k x , m  > 0, am ^  0
k=0

where coefficients ak are elements of the number field F. If the leading term am = 1, 

the polynomial is said to be monic.

Definition An irreducible polynomial of degree m over GF(p) is a polynomial 
£  o < i < m (a i x 1) that cannot be expressed as the product of two 
polynomials each of smaller degree, with coefficients in GF(p).

Example 3.5: In the Finite Field GF(2), x2 + x + 1 is irreducible, but x2 + 1 is not 

since (x +l)(x +1) = x2 + 2x + 1 = x2 + 1 (mod 2).
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Theorem 3.7: Suppose F is a field with pm elements. Associated with each a  e F,

there is a unique monic polynomial p(x) e Fp(x), with the following 
properties:

(a) p(of) = 0 ,

(b) deg(p)< m

(c) If f(x) is another polynomial in Fp(x) with f(or) = 0, 
then p(x) | f(x).

The polynomial described above is the minimal polynomial of a  with respect to the 

subfield GF(p) of F.

Theorem 3.8 Let F be a field with qm elements, and let k be a q-element subfield. If 
a  € F, then the minimum polynomial of a  with respect to the subfield k 
is

f  a (x) = (x - or)(x - a 2)  (x - a  qA(d_1))

where d = degree o f a  with respect to k.

In general, the minimum polynomial of a primitive root in F is called a prim itive  

polynom ial.

A polynomial can be tested to see if it is primitive using the MATHEMATICA 

function:

Irreducible Q [p_jinJ : ~  Same Q [ Factor [ p, Modulus -> m ], p ];

We shall now construct finite number fields of order equal to a prime power q = pm, 

designated GF(pm). All realizations of GF(pm) are isomorphic. Since GF*( pm) 

(GF(pm) without the zero element) forms a cyclic group with multiplication as the 

group operation, we can also represent GF*(pm) which has order pm-l, by a primitive 

element a  and it's pm-l distinct powers a, a 2,..., a  -pAm)_1 = 1 .



From now on, this thesis will exclusively be concerned with finite fields of 

characteristic 2 .

The finite field GF(2m) has 2m elements, where m is a positive integer. Each o f the 

field elements can uniquely be represented with a polynomial of degree up to m -1  

with coefficients from GF(2). For example, if  a is an element in GF(2m), then we 

can have

a = A(x) = a m.i x m"1 + a m-2 x m"2 + .... + a i x + a o .

This type of representation is referred to as the polynom ial or standard  basis 

representation.

One of the simplest examples of a finite field is GV{24).

3.2.4 Construction of GF(24)

The field elements can be represented as either 4-tuples (vectors) of 0’s and l ’s, or 

polynomials of degree 3, all with coefficients mod 2. The reason 4-tuples are used 

a direct consequence of the 4 in GF(24), There are exactly 24 such polynomials or 

4-tuples. To see this, associate a polynomial in a  with each 4-tuple as illustrated in 

Table 3.1.

4-tuple polynomial in a

0000 0
0001 1
0010 a
0011 a + 1
0100 a2

1111 a3+a2+ a+ 1

Table 3.1: Association between polynomials in a  and 4-tuples

Note that subtraction is the same as addition (mod 2), since aoaia2a3 + aoaia2a3 = 0.
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Before constructing the field with 16 elements, multiplication has to be defined. 

Multiplying two polynomials from Table 3.1, will often result in a polynomial which 

has degree greater than 3, which is not in our set of objects, for example,

(1  + f t2)(l + or+ f t2 + f t3) = 1 + ft+  f t4 +or5 (modulo 2 )  (*)

When this occurs, the aim is to reduce the degree of the polynomial to <3. In order to 

do this, we agree ft satisfies a fixed equation h(x) = 0 of degree 4 (MacWilliams & 

Sloane, 1977). For example, take our primitive polynomial, defined earlier,

h (ft) = ft 4 + ft + 1 eg. ft 4 = ft + 1 (mod 2)

Then replace a  4 and f t 5 in(*) by ft 4 = ft + 1; or5 = f t ( f t 4 ) = or(ft + 1) = ft 2 + ft 

Thus, 1+  ft + cr4 + f t 5 = l + f t  + f t + l + f t 2+f t  = f t 2 + ft (modulo 2), which now 

belongs to our set o f objects.

To construct the finite field GF(24) a primitive polynomial of degree 4 is needed. For 

this specific example, there are two choices of primitive polynomials - it does not 

matter which one we choose. Make use of the primitive polynomial h(x) = x4 + x + 1, 

and the primitive element a  = 0010 = x. Start with the 0 element, and the 1 element. 

Proceed by multiplying by a  (which corresponds to a left-shift in the m-tuple), and 

residue reduction modulo h(x) = x4 + x + 1 (Schroeder,1986). This reduces the 

products to a polynomial of degree < 3, equivalent to setting h(x) = 0, so that 

x4 = x + 1 (eg. x4 can be replaced by x + 1) When a 1 disappears off the left-hand 

side of the 4-tuple, it corresponds to adding 1 ’s to the two right-hand places o f the 4- 

tuple, as can be seen in Table 3.2.

This is just a rule method for producing the states of a feedback shift register. Many
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people find it easier to conceptualize if  you have a shift register.

_Ql

-oo 0000
0 0001
1 0010
2 0100
3 1000
4 0011
5 0110
6 1100
7 1011
8 0101
9 1010
10 0111
11 1110
12 1111
13 1101
14 1001
15 0001

TABLE 3. 2: GF(24)

Reading the right-hand side o f column 2 (for the elements 0 to 15) gives an m- 

sequence o f length 15 (24-l). For more information on Finite Fields, see for example, 

Jungnickel (1993), Lidl & Niederreiter (1994), or Biggs (1989).

The Delphi code, which can be used to generate any m-sequence of length 7 to 

32767, from a given primitive polynomial can be found in Appendix A.
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Chapter 4 

PROPERTIES OF PSEUDO RANDOM BINARY SEQUENCES

These sequences have interesting mathematical properties. They are important 
because they are easily generated binary sequences that behave in many respects as if  
their elements were chosen completely at random.

4.1 PROPERTIES OF M-SEQUENCES

Perhaps the simplest property refers to the m-tuples of an m-sequence. If the m- 

sequence in question is (ao, ai, . . . . ,  an_i), then an m-tuple is one of the n subsequences 

of length h i ,  of the form

(at, at+i> . . . . ,  a t+m-i), fo rt = 0 , 1 , . . . ,n - l . (*)

where the subscripts in (*) are taken mod n if  necessary. There are n = 2m - 1 

different m-tuples. An m-sequence includes in one period all possible m-tuples 

(except the all-zero m-tuple) for some fixed m.

Property 4.1: Among the 2m -1 m-tuples of an m-sequence (at), each non-zero binary 
vector of length m occurs once and only once.

Proof: All the m-tuples are distinct, since a repeated m-tuple would cause (at) to
repeat sooner than period n, because of the degree m recurrence relation. The 
all zero m-tuple cannot occur, because if  it did, the sequence (at) would 
continue to be zero because of the degree m recurrence relation.

This is often referred to as the ' Window Property\ and is represented pictorially in 

Figure 4.1 overleaf, for the case m = 4. In general, if  a window of length m is slid 

along the m-sequence, each of the 2 m -1  non-zero binary m-tuples can be seen exactly 

once.
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0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

WINDOW

Figure 4.1 The W indow Property: Every non-zero 4-tuple is seen once.

To avoid difficulties at either end, imagine the sequence is repeated.

Note that 0 0 0 1 was used as the initial register state to obtain the above sequence. If 

we started with a different non-zero initial state in the feedback shift register 

illustrated in Figure 3.3, the output sequence is just a shifted version o f the m- 

sequence displayed in Figure 4.1. Therefore, the same m-sequence is obtained from 

any non-zero starting state, as you would expect from Property 1. This is illustrated 

in Figure 4.2.

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
0 1 1 0 1 0 1 1 1 1 0 0 0 1 0
1 1 0 1 0 1 1 1 1 0 0 0 1 0 0
1 0 1 0 1 1 1 1 0 0 0 1 0 0 1
0 1 0 1 1 1 1 0 0 0 1 0 0 1 1
1 0 1 1 1 1 0 0 0 1 0 0 1 1 0
0 1 1 1 1 0 0 0 1 0 0 1 1 0 1
1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
1 1 1 0 0 0 1 0 0 1 1 0 1 0 1
1 1 0 0 0 1 0 0 1 1 0 1 0 1 1
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

Figure 4.2 The 15 m -sequences obtained fro m  the sh ift register in F igure 3.3

Now, define h(x) to be a primitive polynomial of degree m, and let dm be the set 

consisting o f all the shifts of a pseudo random sequence of length 2 m - 1 , obtained 

from the output o f the shift register specified by h(x), together with the all-zero
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sequence of length 2m - 1. These pseudo-random sequences are the 2m - 1 different 

segments

9-i &i+l • • • • • •  9 - i+ (2 Am )-2  i — 1 5 ---- 5 2  - 2

of length 2m - 1 from the output of the shift register specified by h(x). For example £4

consists of the rows of Figure 4.2, and the all-zero sequence of length 15.

Property 4.2 is often referred to as the 'Shift Property'.

Property 4.2: If b = bo, bi, . . . . ,  b(2*m) - 2 is any of the pseudo-random sequences in
6m then any cyclic shift of b, say

bj> bj+i, . . . . ,  b(2Am) - 2 , bo ,....... , bj-i

is also in dm.

Property 4.3: Suppose

Kx) =  fax

with h 0 -  h m = 1, h  i = 0 or 1 for 0 < i < 1. Any pseudo-random 
sequence b e dm satisfies the recurrence

bi+m— hm_i bi+m-i hm-2 bj+ni-2 —  “t- hi bj+i + b j, for i — 0 , 1 ,2 , .....  (*)

Conversely, contains any solution of (*). If all o f the 2m - 1 
distinct non-zero initial values, bo, bi, ..., bm- 1, are used in (*), the 
2m - 1 pseudo-random sequences are obtained. There are m linearly 
independent sequences in 5m, since there are m linearly independent 
solutions to (*)•

Property 4.4: The sum of two sequences in Sm is another sequence in Sm. (Addition 
is componentwise, mod 2 , without carries).

Proof: Follows from the fact that any sum of two solutions of (*) in Property 4.3, is 
also a solution.
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Example 4.1: Consider the first two sequences in Figure 4.1. Adding them together 
gives:

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1  
+ 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 1 1 0 1 0 1 1 1 1 0 0 0 1

which turn out to be the fifth sequence in Figure 4.1.

An important property of m-sequences, known as the 'Shift & A d d  P r o p e r ty is that 

the termwise addition of phase-shifted versions of a given m-sequence produces 

another phase-shifted version of the same sequence

Property 4.5: The sum of any pseudo-random sequence and a cyclic shift of itself is 
another pseudo-random sequence.

Proof: Follows from Properties 4,2 & 4.4

Property 4.6: H a lf  Zeros and  H a lf  Ones: Any pseudo random sequence in Sm
contains 2m_1 ones and 2 m_1 - 1 zeros. Thus in one period, the number 
of logic 1 states exceeds the number of logic 0  states by one.

This is the case because if  we consider numbers in the range 1 to 2m - 1, we find that 

there are 2 m‘1 odd numbers with binary representation ending in 1 and 2 m_1 - 1  even 

numbers in the same range.

Note: Probability associated with each state approaches 0.5 as sequence length 

increases. Results similar to that of an experiment involving the tossing o f a coin.

The 'Run-Distribution Property ' is one of the most remarkable properties o f m- 

sequences.

Definition: A run o f  length r  in a binary sequence is a subsequence of exactly r  
consecutive l's (or 0 's).
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Example 4.2: Consider one of the m-sequences in Figure 4.2, e.g.

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

If this sequence is viewed cyclically, it has two 0-runs o f length 1, two 
1-runs of length 1, one 0-run of length 2, etc. A histogram of the runs 
can be viewed below:

length 0 -runs 1-runs

1 2 2
2  1 1

3 1 0
 4_________ 0_________1

Totals:_______4_________4

Example 4.3: Given the following m-sequence of length 31,

0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1

generated from a primitive polynomial x5 + x2 + 1, of degree 5, the 
histogram of the runs is as follows:

length 0 -runs 1 -runs

1 4 4
2 2 2
3 1 1
4 1 0
 5_________ 0________ 1

Totals:_______8_________ 8

Out of a total o f 16 runs, half have length 1, one quarter have length 2 and one eighth 

have length 3. This is what you would hope to obtain in a completely random 

sequence of 0 's and 1 's, but to obtain exactly the average for any chosen sequence is 

highly improbable. However, in the case of m-sequences, this nice behavior holds
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for any chosen sequence. The general histogram for an m-sequence of length 2m - 1 is 

as follows:

length 0 -runs 1 -runs

1
2m-3 2 m' 3

2 2 11>4 2 m' 4

r 2 in-r-2

m - 2 1 1

m -1 1 0

m 0 1 .

Totals: 2 m“2 2 m~2.

Property 4.7: The previous table illustrated the run distribution for any m-sequence 
o f length 2 m - 1 .

Proof: Let (ao, a i ,    an_i), where n = 2m - 1, denote the m-sequence in question.
Using Property 4.1, we can count the various run lengths in am m- 
sequence by distinguishing three different cases:

• Length m: There are no 0-runs of length m, and only one 1-run of length 
m -this follows from Property 4.1

• Length m-1: Again from Property 4.1, we know that the all-l's m-tuple, 
111....11111 appears exactly once. It has to occur 
sandwiched between two 0 's; otherwise the all-l's m-tuple 
would appear more than once. Thus the subsequence 
0 1 1 1 . . . . 1 1 1 1 1 0  of length m+ 2  appears somewhere in 
the sequence, resulting in the appearance o f the two m- 
tuples 0111...11111 and 111...111110. If there were a 
separate 1 -run of length m -1  somewhere, it would be 
sandwiched between 0 's, leading to the subsequence
O il 111110, resulting in the appearance of the m-tuples
0111. ..11111 and 111... 111110 again. Property 4.1 tells 
us that these can only occur once each, therefore, there can 
be no separate 1-run of length m-1 .

There is however, one 0-run of length m-1, because o f the 
m-tuples 1 0 0 0 .. . 0 0 0 0 0  and 0 0 0 0 0 .. .0 0 0 1 , which occur 
together as 1 0 0 0 . . .0 0 0 0 1 .



Length r < m-2: Each 1-run of length r < m-2 corresponds to an m-tuple 
of the form

m
1 1
0  1 1 1 1 1 1  . . . 1  0  x x . . . x x

r m-r- 2

Note that the x's denote arbitrary binary digits. Clearly, 
there are 2 m"r"2 such m-tuples, and therefore, 2 m' r' 2 

1 -runs of length r.

A similar argument proves that there are 2m"r“2 0-runs 
of length r. ■

Appendix 2 illustrates the code written in Delphi to generate the m-sequence and then 

check its integrity.

The important'Correlation Properties' of the sequences also have to be taken into 

account.

Definition: Given two binary sequences x =(xj,X2, ....,xn) , y =(yi,y2, . . . .y j  of length 
n, their correlation, C(x,y), is defined to be the number of agreements 
minus the number of disagreements between x and y, divided by n. That 
is

C(x,y) = (A -  D) / n 

where A = |{ i : xj = yi}| and D = |{ i : x* £  y*}j

The correlation is a measure of similarity between x and y. If x and y are identical, 

then C(x,y) = 1, and if the disagree in every component then C(x,y)= -1. In every 

case, - 1 < C(x,y) < 1.

Autocorrelation is a statistical measure of dependence.



Definition: Given a fixed sequence x, its autocorrelation function C(r) is defined 
to be the correlation between x and its Tth cyclic shift.

Let A be the number of places where x and its Tth cyclic shift agree, 
and D the number of places they disagree (so A+D=n). Then,

C(T) = (A -D )/n  ............. (**)

Property 4.8: The autocorrelation function of a pseudo-random sequence of length 
n = 2 m-l is given by

C(0) = 1 

C(r) = -1/n for 1< r<  2m-2

Proof; For a + a' = a" for som e", by the Shift & Add Property.

Then, D = Number of l ’s in a' = 2m' \  by Property 4.6.

A = n - D = 2m_I -1, and the result follows from (**) in Definition above.

4.2 MULTIPLIERS OF PSEUDO-RANDOM BINARY SEQUENCES

4.2.1 Introduction

A pseudo-random binary sequence, for the purpose of this discussion, is defined to be 

a maximum length linear recurring sequence modulo 2. For example, ak is a pseudo­

random binary sequence if and only if  it is a binary sequence which satisfies a linear 

recurrence
m

ak = £  Cf ak-i (modulo 2 ) ............ (1)
i=l

and has period 2m -1 . The number m is referred to as the degree of the pseudo­

random binary sequence ak.

The polynomial

f(x) = 1 + H Ci x 1 (modulo 2 ) ........... (2 )
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is called the characteristic polynomial o f the sequence ak of Equation (1). The 

primitivity of f(x) is a necessary and sufficient condition for ak to be a pseudo 

random binary sequence.

4.2.2 Delay Unit Operator

Let D be a unit delay operator, so that Dak = ak-i, and D2ak = ak-2 . Then, by equations 

( 1) and (2 ),

fD{ak} = 0  ........(3)

is equivalent to the recursion relation in ( 1) satisfied by ak.

Amongst polynomials modulo 2, f  (x2) -  [f(x) ] 2 , and more generally, 

f  (x2 !) = [f(x) ] 2 1, in view of the simplified binomial theorem

(a + b )2Ai = a2Al + b2Al (modulo 2) .............. (4)

In general, the values of j other than a power of 2, do not satisfy f  (xj) = [f(x)]j .

Now, consider the sequence a2k, which is formed by taking every alternate term from 

the sequence ak. Therefore,

f(D2){ak}=f(D ){a2k}, .............(5)

where the two sequences differ at most by a fixed translation. However, 

f(D2){ak} = f(D)[ f(D){ak}] = f(D){0} = {0}. Hence,

f(D){a2k}=0 ................. (6)

so that a2k satisfies the same recursion formula as ak. Therefore, a2k is identical to 

ak, except for a possible phase shift, and we have proved the following property.



Property 4.9 If ak is a pseudo-random binary sequence, then aqk equals ak except for 
a possible phase shift, when q = 1, 2, 4,......, 2m_1.

Note: the numbers 1, 2, 4 ,..... , 2m_1 are called the multipliers of the sequences ak.
Collectively, they are known as the multiplier group because they form a group 
under multiplication.

Example 4.4: Take an m-sequence of length 15:

ak = 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

Take every 2nd element a2k= 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

Take every 4th element a4k= 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

Take every 8 th element agk= 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

Note: that replacing akby a2kin the example above, does not alter the order of the 
terms. Similarly for a4k and ask.

While,

Take every 3rd element a3k = 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Note: that if  ak is replaced by a3k this gives rise to a different sequence - this time 
with period 5.

Example 4.5: Let ak -  0  0  1 0  0  1 1 0  1 0  1 1 1 1 0

Take every 2nd element a2k= 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1

Take every 4th element a4k= 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1

Take every 8 th element a8k= 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

Note: that replacing akby a2kin the example above, does not alter the order of the 
Terms, only the start location. Similarly for a4k and a§k.

While,

Take every 3rd element a3k = 0 0 1 0 1 0 0 1 0 1 0 0 1 0
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4.2.3 Cyclotomic Cosets

Eulers Theorem tells us that there are 0(p) numbers from 1 to p which are relatively 

prime to p. The 0(p) numbers form a group G under multiplication modulo p. If p is 

odd, then the set (1, 2, 4, 8 ,...) forms a subgroup H.

Note: In the case p = 2m-l , the multiplier subgroup H, consists of the m elements 
(1 ,2 ,4 ,......  21" '1),

Definition: Let H  be a subgroup of G, and let a be any element o f G. Define aH  to 
be the set of all elements of G which may be written as ah for some 
element h in H: aH  = {ah : h gH}. This is a (left) coset of H  (in G). 
Similarly, define the (right) coset Ha = [ha : hsH ).

Therefore, a coset is obtained by taking any element of the large group G and 

multiplying it by each number o f the subgroup H  in turn.

Example 4.6: Take p = 31, the cosets of the multiplier subgroup are:

Ci: 1 2 4 8 16
C2: 3 6 1 2 24 17
C3: 9 18 5 1 0 2 0

C4: 27 23 15 30 29
C5: 19 7 14 28 25
C6: 26 2 1 11 2 2 13

The number of cosets is always (j) (2m -1 ) /  m, which in the case o f m  = 5 (above) 
yeilds (f) (31) /  5 — 6.

4.2.4 Decimation of Sequences

Definition: In a pseudo-random binary sequence, if  ak is replaced by a2k, it does not 
alter the order of the terms in the sequence, except perhaps, the location 
of the starting point. More generally, aqk is the same as ak for 
q = 1, 2, 4 ,..... , 2m' 1. (The replacement of ak by aqk is termed decimation).
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Theorem 4.1 If ak is a pseudo-random binary sequence with period p, then aqk is 
again a pseudo-random binary sequence, with the same period if  and 
only if  (q,p) = 1. If both (qbp) = 1 and (q2,p) = 1, then a(qi)k = a(q2)k
(except for the starting point) if  and only if  qi and q2 belong to the same
cyclotomic coset.

Proof: Omitted

4.2.5 The Superposition of Cosets

Let ak be a pseudo-random binary sequence. Then a2k is simply a phase shift o f ak by

Property 4.9, so that termwise

a 2k 3- k+r

for someT. From now on, the notation ak = bk will be used to illustrate term-by-term

equality.

Lemma 4.2 There is a phase shift bk = ak+m of ak, for some m, such that b2k = bk.

Proof: Suppose originally, that a2k = ak+r. Choose m = 2r, so that k' = k + 2t. Then
b 2k U 2k+m a  2k+2r a  2 (k+r) — a  (k+r) +r — a  k+m “  bk- ■

Example 4.6: Let ak = 0 0 1  1 1 0 1

Then, a2k = 0 1 1 1 0 1 0 = a k+i

Hencebk= ak+2 = {l 1 1 0  1 0  0} satisfiesb2k = b^
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Chapter 5 

PSEUDO RANDOM BINARY SEQUENCES RELATED TO 
MULTIFOCAL ELECTRORETINOGRAPHY

The basis of the Multifocal ERG is the use of a decimated m-sequence for 
simultaneous and independent stimulation of many areas of the visual pathway.

5.1 DECIMATION OF M-SEQUENCE

Once the m-sequence has been generated from the shift register, specified by the 

primitive polynomial (satisfying the recurrence relation in property 4.3), it has to be 

decimated in order to stimulate many areas simultaneously, without causing the first- 

order response to cross-contaminate. Decimating the sequence results in a time lag 

between the initial sequence starting in each column (Property 4.9). A distinct shift is 

used to drive each hexagonal stimulus element.

A shifted version of the initial m-sequence is now contained in each column. Due to 

the statistical random properties of an m-sequence (Property 4.8), each shifted m- 

sequence will be uncorrelated with any other shifted cycle o f the same sequence.

Before we continue, the trace function has to be defined.

Definition: Let F -  GF(q), K = GF(qm). If a  is an element of K, its trace relative to 
the subfield F  is defined as follows:

Tr f K (a) = a  + a q + aqA2 +  +arqA(n‘l)
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Theorem 5.1: For all K we have

(a) Tr ( f f ) eF
(b) Tr(or + /?) = Tr (or) + Tr (fi)
(c) Tr(Aor) = A Tr (a) if Ae F
(d) Tr (orq) = Tr (a)
(e) Tr maps K onto F

Theorem 5.2: If a binary m-sequence is decimated over n columns, where n is a
power of 2 , then, each column contains the m-sequence with a relative 
lag between columns of 2 m / n, and a lag of (2 m/ n) - 1  between the 
first and last column.

Proof: Let s* = Tr(a') where a is primitive in GF(2m). So the sequence so, sy... 
has period 2 m-l - it's an m-sequence in characteristic phase.

Our array on decimation of s has elements ty where ty = sj+jd and d is a 
power of 2, the decimation. Here i and j range over some values and 
i —0  gives us the first column, i = 1  the second and so on.

So ty = Si+jd =Tr(a ^ V T iV  . (ady).

Let's fix i for a moment. Write g = a . Because d is a power of 2, it is 
co-prime to 2m-l. Then g is also primitive in GF(2m). Write b = a*. Then 
with i fixed and j varying we get a sequence whose tenns are Tr(b g1)
- this is the column i of the array.

But this is an m-sequence - the one corresponding to primitive 
element g, but at a shift determined by b. But g = ad where d is a power 
of 2. This means that g and the original primitive element a actually 
produce the same m-sequence (because Tr(g*) = Tr(adj) = Tr((a*)d) =
Tr(aJ), so the j-th terms are equal).

So column i is just a shift of our original sequence s. Which shift is it?
Well we have terms Tr(b g1), so the shift is determined by b. Writing 
B = gx, the shift is equal to x. But gx = b -  a1 implies adx = a1 which in turn 
implies dx -  i mod (2m-l). So x = i d ' 1 mod 2m- l . But d is a power of 2, 
say d = 2 e with 0  < e < m.

And now it's easy to see that d '1= 2,n"e mod 2m-l (check by 
multiplying). So x = i 2m_e mod 2m- l .

Summarising, column i is a shifted version of s by an amount
x -  i (2m/d) mod 2m- 1. For i = 0 we get x = 0, i.e. column 0 is just s. For
i = 1 , we get x = 2 m/d, etc. ■



72

Table 5.1 illustrates how this works for a simple example, a 4-bit m-sequence 

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1  of length 15. This sequence is decimated over 4 columns.

Table 5.1: M-sequence decimated over 4 columns

STAGE Area 0 Area 1 Area 2 Area 3
0 1 0 0 0

1 1 0 0 1

2 1 0 1 0

3 1 1 1 1

4 0 0 0 1

5 0 0 1 1

6 0 1 0 1

7 1 1 1 0

8 0 0 1 0

9 0 1 1 0

1 0 1 0 1 1

11 1 1 0 0

1 2 0 1 0 0

13 1 1 0 1

14 0 1 1 1

Imagine only 4 areas from Figure 2.4a. Each of the four areas is now controlled by 

one o f the sequences in Table 5.1, and we are able to derive the response to the 

individual regions independently by use of cross-correlation. The m-sequence is 

cross-correlated with the electrical response from the eye, to obtain the physiological 

response.

In reality, a 15-bit m-sequence (length 32767), decimated over 128 columns, is used 

to drive the multifocal stimulator. For example, consider Figure 2.4a. Each of these 

hexagonal areas will flash black or white depending on whether the sequence is 0  or 1 

respectively.

If we have a 15-bit m-sequence, then any 15 bit segment will occur only once 

(Property 4.1). 15-bit m-sequence steps at the standard presentation rate of 75Hz, or a
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base period of 13.33 msecs will give a time period of 15 x 13.33 msecs or 

approximately 200 msecs. This is longer than the full duration of the ERG response, 

which lasts a maximum of around 150 msecs and should therefore be less susceptible 

to contamination. Signal to noise ratios are also better for 15-bit sequences, thus 

giving clearer responses.

5.2 GENERATION OF FIRST ORDER RESPONSE

The correlation between the binary m-sequence and the response from the retina is 

referred to as the First Order Response. Figure 5.1 illustrates how the response is 

obtained by subtracting the transitions to "O ff states from the transitions to "On" 

states. This is because the number of logic 1 states exceeds the number of logic 0 

states by 1 - making use of Property 4.6.



Figure 5.1: Generation o f  First Order Response

Flash Sequences 

 ►

Response

+

Transitions 
to on-state

Transitions
tb- off-state
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5.3 A SIMPLE SUPERPOSITION MODEL

The run-distribution properties (Property 4.7) are important to enable the responses to 

be extracted from the eye. In a 15-bit m-sequence of length 32767,

1 - 1 (75 Hz) occurs 8192 times

1 - 0 - 1 (37.5 Hz) occurs 4096 times

1

O!o1 (25 Hz) occurs 2048 times

1 0 1 0 1 0 1 (18.75 Hz) occurs 1024 times

1 - 0 - 0 - 0 - 0 - 1 (15  Hz) occurs 512 times

Figures 5.2 and 5.3 illustrates how to extract the individual responses, and Figure 5.4 

illustrates how to construct the global First Order Response from the eye. This uses 

properties 4.2, 4.4 and 4.5.

A simple superposition model
Example Isolated response obtained from m-sequence

0

Shift a second response by 13 msec

Add two responses 

for a 1 -1 part of the sequence

Figure 5.2: Extraction o f Waveforms (1)
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A simple superposition model
Example Isolated response obtained from m-sequence

0

Shift a second response by 26 msec

Add two responses 

for a 1 - 0 - 1 part of the sequence

Figure 5.3: Extraction o f  Waveforms (2)

Constructing the impulse response
1- 1

77 Hz

1 - 0 - 1

38.5 Hz

The Impulse response

25.5 Hz (full cross correlation)

1 - 0 - 0 - 0 - 1  

19 Hz

Summed 

Response

1

Figure 5.4: Constructing the impulse response



77

Chapter 6 

INVESTIGATION OF PRIMITIVE POLYNOMIALS

The purpose of this Chapter is to investigate the effects of cross-contamination from 

higher orders of the response.

6.1 INTRODUCTION

Multifocal stimulation of the retina gives a response, which is non-linear. Recall that 

the correlation between the binary m-sequence and the response from the retina is 

referred to as the first order response. The correlation between the binary m-sequence 

and the response from the retina is referred to as the first order response. In practice, 

the cross-correlation is applied between the m-sequence and the full data recording. 

The ERG response is contained only in the first 200msecs and this is therefore the 

main time window of interest. There should be no signal present in longer time 

periods for the standard Multifocal ERG and this is simply discarded. The first-order 

or impulse response is a composite response containing both linear and non-linear 

components - it selectively recovers how the eye responds to a flash of light and the 

second-order response selectively recovers the interaction between flashes.

Recall, a schematic diagram of the first order response is illustrated in figure 2.11 and 

is simply the difference between transitions to a white stimulus and transitions to a 

black stimulus. Consider the m-sequence generated from the primitive polynomial 

x4 + x + 1 ,

1- 0- 0- 0- 1- 0- 0- 1- 1- 0- 1- 0- 1- 1- 1.

The stimulus is updated according to this sequence at a rate of 75 Hz and the ERG



time window is typically 200 msec. Each m-sequence step therefore occurs every 

13.33 msec. If the m-sequence is ‘ 1 ’ then a data segment of 200msec from this instant 

in time is added and if  the m-sequence is c0 ’ then the data segment o f 2 0 0  msec is 

subtracted.

Also recall that the second order response is the difference between a change o f state 

and no change of state as illustrated in figure 2.12. We would therefore add data 

segments when the m-sequence changes from 1 - 0  or from 0 - 1  and subtract the data 

segment when the m-sequence does not change 0-0 or 1-1. If we make use of the shift 

and add property of m-sequences then we can generate the second order sequence 

direct and simply cross correlate the new second order sequence with the raw data.

1- 0- 0- 0-1 - 0 - 0-1 - 1- 0-1 - 0-1 - 1-1 
shift right 0 -0 -0 - 1  -0 -0 - 1  - 1  -0 - 1  -0 - 1  - 1 - 1 - 1

add mod 2  1 -0 -0 - 1  - 1  -0 - 1  -0 - 1  - 1  - 1 - 1  -0 -0 - 0

Inspection of the above shows that the new sequence contains a 1 at the point where 

there is a change in state in row 1 and a zero when there is no change o f state. We can 

therefore use this second order sequence to directly recover the difference between 

no change of state and a change of state. This provides information on retinal 

adaptation mechanisms.

The engineering requirements are that there should be no overlap o f first or second 

order sequences within the time window of interest, typically 2 0 0  msecs 

corresponding to 16 clear m-sequence steps (since 200/13.33 = 15.00375 >15). The 

effects o f window length 32 were also examined. Cross-contamination is a first or 

second order sequence appearing in an area it was not intended. It is a problem 

because the sum of two shifted m-sequences is itself a shifted m-sequence (using the 

"Shift & Add Property", Property 4.5), and it follows that orthogonality may be
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compromised as higher order contributions from one area may correlate with 

contributions from separate areas of the retina, giving inaccurate wavefonns. M- 

sequence analysis is beneficial, because if  there is an interaction between two 

consecutive stimuli, this can be found by examining the initial sequence - it may 

eliminate cross-contamination. In Multifocal Electroretinography (MFERG), firstly 

the stimulus sequence at each hexagonal area must be uncorrelated with EVERY other 

stimulus sequence, so that when the MFERG signal is cross-correlated with the 

individual sequence, only the hexagons contribution remains, all the other 

contributions cancelling out. Not only must this first condition of orthogonality be 

met, but second-order contamination must also be eliminated. The purpose of this 

chapter is to outline how suitable binary sequences can be selected which satisfy both 

these conditions.

6.2 METHODS

In this section, the mathematical techniques which help identify the exact position of 

cross-contamination between first and second order sequences will be presented.

A more theoretical analysis is required to select the taps for the feedback shift 

register, so that the resulting PRBS is guaranteed to be of maximal length. The taps 

required for the shift register correspond to the terms in a primitive polynomial. All 

primitive polynomials o f degree m, have to be constructed, to allow every possible 

m-sequence for a selection of degrees 3-16 to be investigated. To generate all the 

primitive polynomials o f degree m, finite fields were constructed.

One of the simplest examples of a finite field is GV{24)  which was constructed in 

Chapter 3. In Table 6.1 we show, for each element of GF(2^, its representation as a
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power of the primitive element a , its order and its minimal polynomial. 

Table 6.1: GF*(24t

J_ _a! ord (a 1) Minimal Polvnomial

0 0 0 0 1 1 x+ 1

1 0 0 1 0 15 x4 + x + 1 [i.e. (x-a)(x-a2)(x-a4)(x-a8)]
2 0 1 0 0 15 x4 + x + 1

3 1 0 0 0 5 x4 + x3 + x2 + x + 1

4 0 0 1 1 15 x4 + x + 1

5 0 1 1 0 3 x2 + x + 1

6 1 1 0 0 5 x4 + x3 + x2 + x + 1

7 1 0 1 1 15 x4 + x3 + 1

8 0 1 0 1 15 x4 + x + 1

9 1 0 1 0 5 x4 + X3 + X2 + X + 1
1 0 0 1 1 1 3 X2 + X + 1
11 1 1 1 0 15 X4 + x3 +1
1 2 1 1 1 1 5 X4 + X3 + X2 + X + 1
13 1 1 0 1 15 x4+ x3+l
14 1 0 0 1 15 x4+ x3+l
15 0 0 0 1

To calculate the order of a* in column 3, substitute ord (a) = 2 m - 1  into Lemma 3.3, to 
obtain

ordCa1) = (2 m - 1) / gcd (i, 2 m - 1), .........(*)

(Recall, gcd stands for greatest common divisor).

In the above case, substituting m = 4 into the equation (*), and reading the i-value 

from column 1, results in a 1, a 2, a 4, a 8 having order 15, and a 5, a 10 having order 3, 

etc.

6.2.1 More About Minimal Polynomials

The minimal polynomial of 1 in any field modulo 2 is x + 1 . When i — 1, the 

minimal polynomial of a  will always be the polynomial used to define the field (in 

this instance x4 + x + 1 ). If or is any root of an irreducible polynomial, all other roots



are given by a 2, aA ,....., a 2^ 111' 1̂  called the "conjugates" of a. For example,

multiplying [(x-a)(x-a2)(x-a4)(x-a8)] modulo 2 , gives

x4 + ( a  + a 2 + a 4 + a 8) x3 + (a 3 + a 5 + a 6 + a 9) x2 + (a 7 + a 11 + a 13 + a 14) x + a 14. 

Reading the a  values from Table 6 .1 results in the minimal polynomial x4 + x + 1.

We find, a , a 2, a 4, a 8 has the same minimal polynomial, namely x4 + x + 1.

Similarly, a 1 = a 14, a 2= a 13, a"4= a 11, a ' 8 = a 7, are all conjugates. They will have 

the same reciprocal minimal polynomial, namely x4 + x3 + 1. Consider i = 3, since 

order o f f5 = a 3 is 5 because p5 = 1, p ^  1 implying

0 = p5 - 1 = (p - 1) ( p4 -T p3 4- p2 + p +  l). Hence, the minimal polynomial for is 

x4 + x3 + x2 + x + 1, and similarly for the conjugates a 6, a 12, a 24 = a 9. Although this 

polynomial is irreducible, it does not have any roots which are primitive elements, 

and would produce a sequence of length 5, not an m-sequence. Similarly for f3 = a 5 

of order 3, p3 = 1, p =£ 1 implying 0 = p3 - 1 = (p - 1) ( p2 + p + 1), and the minimal 

polynomial is x2 + x + 1 .

Definition A primitive polynomial is a minimal polynomial, which contains a 
primitive element as a root.

All the primitive polynomials of degree m can be discovered from columns 2 and 3 in 

Table 6.1. In this case, there are only two primitive polynomials, namely x4 + x + 1 

and x4 + x3 + 1

6.2.2 Primitive Polynomials

There are (j) (2m -1 ) /  m primitive polynomials of degree m, as illustrated in 

Table 6.2 (McEliece,1987). Each primitive polynomial produces a distinct m- 

sequence of length 2m - 1. This formula is related to the number of Cyclotomic
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Cosets in Section (see for example, Golomb (1967), "Shift Register Sequences" 

Chapter 3, pg 50 on Cyclotomic Polynomials).

Table 6.2: Number of Primitive Polynomials of each degree

m 4>f2m- n / m

1 1
2 1
3 2
4 2
5 6
6 6
7 18
8 16
9 48
10 60

6.2.3 Zech Logarithms

Once an m-sequence has been generated from the primitive polynomial, it has to be 

decimated (Table 5.1).

The "Shift & Add" Property stated that the sum of any two shifts of an m-sequence is 

a third shift o f that same sequence. Recall that the Second-Order Response is 

obtained from this "new" shifted m-sequence cross-correlated with the unprocessed 

response from the eye.

Table 6.2, illustrated that several polynomials existed for each degree. A simple 

example will be discussed in detail, then an example will be given o f a sequence 

which is o f practical use.

For example, return to the polynomial x4 + x + 1 which was decimated over four



columns. Consider Area 0, adding the sequence 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0  to its 

first shift 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1  modulo 2 gives 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 .  

Note that this "new" sequence occurs at position 4 in the original sequence Ao. For 

larger m-sequences it is more difficult to calculate where this "new" sequence occurs, 

and this is where Zech Logarithms are useful.

Zech Logarithms are used to add elements in a finite field (they are also referred to as 

Jacobi's Logarithms). If we return to Table 6.1, and look at the field elements - the 

4-tuples (notice that each 4-tuple has a corresponding or1 value 

(i read from column 1)) - they can be used to help identify cross-contamination 

between the various first and second-order sequences. The following definition is 

taken from Huber (1990).

Definition: Let a  be a primitive element of GF(q) which is a root of the primitive
polynomial p(x) of degree m. For GF(q) let N q = { 0,1, ..., q-2} U {-oo}. 
Then the Zech Logarithm Z(x) is defined by:

a  z (x) -  1 + a  x

Z is a mapping Z: N q -» N q. Any element {3 from the finite field is assumed to be 

given in its polar representation as a power of the primitive element a: (3 = a 1 

(define a ' =  o). Multiplication can then be undertaken very easily, by adding 

the exponents modulo q-1.

Definition: (Addition) Let z be the exponent of the sum a  x + a  y
(for example a x + a y = a z ) then,

z = x + Z (y-x) = y + Z (x-y)

For more information on Zech Logarithms, see for example Imamura (1980). Some 

properties of Zech Logarithms, which follow very easily are listed overleaf.



Property (Zl): Z ( q - l - x )  = Z(x) - x (mod q - 1), x =£ - infinity,

Property (Z2): Z ( p x ) = p . Z (x) (mod q - 1),

Property (Z3): Z (0) = - infinity, for p = 2,

Property (Z4): Z ( ( q - l ) / 2 )  = - infinity, for p =£ 2,

and for all primes:

Property (Z5): Z (- infinity) = 0.

In this chapter, x = 1 and y = 0. eg a  Z(1) = 1 + a 1 will be considered, corresponding 

to adding the m-sequence to its first shift. Therefore, z(l) tells us at which position in 

the original m-sequence the "new" second-order sequence occurs.

An m-sequence contains the "Window Property", in this case, when m = 4, each 

4-tuple (except the all-zero 4-tuple) occurs once and only once in one period, 

therefore we need only add together the first 4 elements of each sequence. This is 

why we use the finite field elements. It does not matter which two 4-tuples we add 

together from our finite field, as long as they are of the form a  ‘ and a 1+1 for any 

0< i <13. It may help to think of or1 as a sequence. We always discover when the 

4-tuples are added together, the new value occurs a 1 + positions away. Thus, we 

look for the easiest example eg.l + a 1 to find the value of z(l).

Consider the 4-tuples in Table 6.1,

1 = a 0 = 0001 
a 1 = 0010

Addition of the 4-tuples gives 0011 (mod 2)

This is a 4 in Table 6.1. Therefore, 1 + a 1 = a 4 (i.e. z (1) = 4). Telling us, as 

expected, the second-order sequence for Area 0 occurs at position 4 in the initial
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sequence for that area. We have to check that this new sequence does not 

contaminate a sequence from any of the remaining areas.

Take for example Area 1 in Table 5.1. The initial sequence from Area 0 starts at 

position 11 in Area 1. Since the sequence is cyclic (period 15), when the z (l) value 

o f 4 is added, modulo 15, it takes us to position 0. In other words, the m-sequence for 

area 1 is identical to the second-order response from Area 0, and the cross-correlation 

of Area 1 will result in a response that is contaminated with the second order response 

from Area 0. This should have little influence on the first order response, because 

higher order responses are, in general, small in compaiison to first order responses. 

The converse however, is false, and first order responses have a huge effect on the 

second-order responses. The second order response from Area 1 would 

predominately contain contamination from the first order response of Area 0.

Using the methods described above, we can look at all the primitive polynomials of 

each degree, and find out which polynomials give rise to appropriate m-sequences to 

avoid cross-contamination in multifocal electroretinogram responses. Some look up 

tables o f Zech Logarithms exist, but a computer program was written to allow 

tables o f z(l) values to be constructed for all primitive polynomials of degree 3 to 16. 

Appendix C gives a complete list of primitive polynomials of degree 3-11, and their 

corresponding z(l) value.

In the Multifocal ERG, an m-sequence of length 215 - 1 is often used. This sequence 

is decimated over 128 columns to allow a stimulus of 61 or 103 areas to be chosen.

An example of an appropriate degree 15 primitive polynomial which is suitable for m- 

sequence generation for Multifocal Electroretinography can be found in Appendix D,
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Example 6.1: Let h(x) = 1+ x + x2 + x3 + x4 + x5 + x7 + x10 + x12 + x14 + x15.

In this instance z(l) = 8751.

If this z(l) value, when taken modulo 256 (215 / 2 7),occurs in position 
0-15, or 239-255, then the second-order array would be contaminated, 
therefore, the z(l) value must lie between 16 and 238 if  we require a 
window of length 16.

We find 8751 = 47  mod 256, which lies between 16 and 238, 
therefore, this polynomial is suitable for generation o f an m-sequence 
Multifocal Electroretinography.

If a photodiode (artificial eye), fixed on the centre of the stimulus is used in the 

experiment, and a "bad" m-sequence is chosen to control the stimulus, we can predict 

exactly which areas in the second-order array cross-contamination will occur. The 

photodiode is a linear device, and does not have a second-order response. Therefore, 

any spikes that appear on the second-order trace array are a result of contamination 

between the sequences.

6.3 RESULTS

For degrees less than twelve, there are no appropriate primitive polynomials, each one 

gives rise to an m-sequence which has a problem with cross-contamination. This is 

the case, regardless as to whether we decimate the sequence by 64 or 128, and look at 

a window of length 16 or 32.

Consider the 144 primitive polynomials of degree 12 in Appendix C, and decimate the 

m-sequence by 64. If the z(l) value, when taken modulo 64 (212 / 2 6),occurs in 

position 0-15, or 47-63, then the second-order array would be contaminated, 

therefore, the z(l) value must lie between 16 and 46 if  we require a window of length 

16. There are 52 appropriate polynomials in this instance. For a window of length 

32, if  the z(l) value (when taken modulo 64) falls between 0-31 or 32-63, then
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contamination will occur in the second-order trace array. This includes everything! 

Therefore, in this case, we find there are no appropriate polynomials. If we decimate 

by 128 or 256, there are no appropriate polynomials, regardless as to whether we 

require a window of length 16 or 32.

Example 6.2: Let h(x) = 1+ x + x4 + x6 + x 12. Then z(l) = 1937 (from Appendix D).

Decimate by 64 => (212 / 2 6) = 64 (= time lag between cols)

1937 s  17 mod 64.

Note: this is suitable if  we require a window of length 16, since 
16 <17< 46, but not if  we require a window of length 32, 
since 17 < 31.

Decimate by 128 =» (212 / 2 7) = 32 (= time lag between cols)

1937 = 17 mod 32.

Note: this would not be suitable.

Decimate by 256 => (212 / 2 8) -  16 (= time lag between cols)

1937 = 1 mod 16.

Note: this would not be suitable.

Now consider the 756 primitive polynomials of degree 14, and decimate the sequence 

by 64. The z(l) value is calculated modulo 256, and if we require a window of length 

16, the value must lie between 16 and 239 to avoid contamination in the second-order 

response. There are 91 “bad” polynomials in this instance. For a window of length 

32, there are 193 “bad” polynomials. If the sequence is decimated by 128, and we 

require that the z(l) value, when taken modulo 128, falls within 16 and 111, for a 

window of length 16. There are 197 "bad" polynomials in this instance, and 416 

“bad” polynomials if  a window of length 32 is required. Decimating by 256 results in



398 “bad” polynomials for a window of length 16, and 756 “bad” polynomials if  a 

window of length 32 is required, A summary of these results is illustrated in Tables

6.3 & 6.4. The terms "good" and "bad" are only relevant to how the primitive 

polynomial is used in this application. It only becomes "bad" if  when the sequence is 

decimated we get cross-contamination occurring within the time window of interest.

Table6.3: Percentage o f Inappropriate Primitive Polynomials when Window Length 
is 16

8 10 12 14
64 100% 100% 63.9% 12.0%
128 100% 100% 100% 26.0%
256 100% 100% 100% 52.6%

Table 6.4: Percentage o f  Inappropriate Primitive Polynomials when Window Length 
is 32

8 10 12 14
64 100% 100% 100% 25.5%
128 100% 100% 100% 55.0%
256 100% 100% 100% 100%

Figures 6.1 & 6.2 show the graphical representation of the percentage o f "bad" 

polynomials for sequences decimated by 128, with windows of length 16 and 32 

respectively.
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% of 'bad1 primitive polynomials 
Dec by 128, Window length 16
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Figure 6.1: Graph illustrating the percentage o f "bad"polynomials (Decl28, Win 16)

% of 'bad' primitive polynomials 
Dec by 128, Window length 32

120

8 10 12 14 16
d e g re e  of prim  poly

Figure 6.2: Graph illustrating the percentage o f "bad" polynomials (Dec 128, Win 36)

An experiment was undertaken to illustrate the practical effects of cross­

contamination. A custom built multifocal Light Emitting Diode stimulator interfaced 

to a standard PC was used for these experiments. The stimulus consisted o f 61 

hexagonal elements scaled for photoreceptor density as illustrated in Figure 6.3.



Figure 6.3: Hexagonal Stimulus - each area is numbered to correspond to the column 
number o f  the sequence used to stimulate that particular area.

The stimulus can be controlled by any sequence but in this case the elements are 

controlled by a decimated m-sequence. Each of the hexagonal areas in the stimulus 

has a number, which corresponds to the columns containing the decimated m- 

sequences. An m-sequence of degree 15 obtained from the primitive polynomial 

x 15 + x13 + x12+ x n + x6 + x3 + x2+ x  + 1 was chosen to illustrate the effects of cross­

contamination. Using the techniques introduced in the methods section, it was
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discovered that this polynomial would generate an inappropriate sequence to view the 

second-order response fi*om the eye. The second order sequence would occur at 

position 5120 in the initial sequence (Area 0).

A photodiode (artificial eye) was place in front of the stimulus covering areas 

33,32,16 and 17. After the sequence is run and the raw data is cross correlated 

with the m-sequence the result o f Figure 6.4 is obtained.

The second order response should not contain any waveforms as the photodiode is a 

linear device. Note however, that if  the sequence had been decimated over 128 

columns, there would be a time lag between columns of 256. If we take the z(l) value 

of 5120 modulo 256, we find that this contamination occurs at position 0 in one of the 

other Areas. Note that if  we divide this z(l) value by 256 we find the answer is 20. 

We have shown that we would expect cross contamination to occur at position 0 in 

Area 20 if  we use the polynomial x15 + x13 + x12 + x11 + x6 + x3 + x2 + x + 1. Cross 

correlation o f the raw data with the second order sequences show the contaminated 

responses appearing at 53, 52, 37 and 36 respectively - a difference of 20 from the 

initial areas. These waveforms would not be shown if a "good" primitive polynomial 

was chosen.
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Figure 6.4: Results from  experiment using a photodiode placed over areas 33, 32, 16 
and 17.

(a) First Order Trace Array

J 2500 NanoVolts

k

 ̂ 25 ms

(b) Second Order Trace Array

J 2125 NanoVolts

A,

 ̂ 25 ms
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We then performed the same experiment to obtain the physiological response. In this 

case, a control subject placed an electrode in the eye and the raw data was recovered 

from the eye. The results can be seen in Figure 6.5. The first trace array (Figure 

6.5(a)) illustrates the First Order response from the eye, and the second (Figure 

6.5(b)) illustrates the Second Order response.

The cross-contamination is obvious. If you compare this trace array with Figure 6.3, 

you see that contamination occurs, as expected, from area 20 onwards.

Figure 6.5: Physiological Results

(a) First Order Response
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(b) Second Order Response
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Appendix 4 lists some polynomials of degree 14-16, which, when decimated over 

columns, are appropriate for generation of m-sequences for the Multifocal ERG.
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Chapter 7

CONCLUSIONS & FURTHER WORK

7.1 CONCLUSION

An appropriate primitive polynomial must be chosen at the onset to avoid 

contamination between the sequences. The problem will be more severe for VECP 

recordings than ERG recordings, as the window lengths are longer, and the second- 

order response is more important. Also, faster stimulation that 75Hz will be more of a 

problem, for example in multifocal tests using the LED Stimulator.

To drive the multifocal stimulus a polynomial of degree greater than or equal to 12 is 

required, although if  degree 12 is chosen, you are restricted to a stimulus with 63 

areas, and a time window of length 16. The higher the degree of the polynomial, and 

the smaller the length of the window chosen, the less chance there is o f cross- 

contamination between the sequences.

As can be seen from the experiment using the photodiode, choosing an appropriate m- 

sequence at the onset is crucial to avoid misdiagnosis in the test results.

7.2 FURTHER WORK

The possibility exists for this work to be extended to include Ternary Sequences 

instead of Binary Sequences. Firstly, how does the eye respond when faced with 

random flashes of Black, White and Grey, corresponding to a 0, 1, and 2 in the 

Ternary Sequence. How does this affect contamination between the sequences when 

they are decimated over 128 columns?
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What happens if  sequences are examined, which have say, one particular property 

missing? For example, Legendre Sequences have good autocorrelation properties, but 

no "Shift & Add" Property, can they be used to drive the stimulus for Multifocal 

Electrophysiology Tests? What about Random Number Generators - what particular 

properties do they possess? Do any other sequences contain similar properties to 

m-sequences? Or are m-sequences the best modulators for this technique?
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APPENDIX A: DELPHI CODE TO GENERATE AN M-SEQUENCE

Illustrated below is the Delphi code, which can be used to generate any m-sequence o f  

length 7 to (2A15-1), from a given primitive polynomial.

DELPHI CODE 

unit Ch2; 

interface 

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
StdCtrls;

type
TForml = class(TForm)

Buttonl: TButton;
CheclcBoxl: TCheckBox;
CheckBox2: TCheckBox;
CheckBox3: TCheckBox;
CheckBox4: TCheckBox;
CheckBoxS: TCheckBox;
CheckBox6: TCheckBox;
CheckBox7: TCheckBox;
CheckBox8: TCheckBox;
CheckBox9: TCheckBox;
CheckBoxlO: TCheckBox;
CheckBoxll: TCheckBox;
CheckBoxl2: TCheckBox;
CheckBoxl3: TCheckBox;
CheckBoxl4: TCheckBox;
CheckBoxlS: TCheckBox;
E d itl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Label 1: TLabel;
Label2: TLabel;
Label3: TLabel;
procedure ButtonlClick(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 

end;

var
Forml: TForml; 

im plem entation

{$R *.DFM}

function pow(numl ,num2:Integer):Integer; 
var i:Integer;

begin
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Result :=1;

For i:=l to num2 do 

Result:=Result*numl;

procedure TForml.ButtonlClick(Sender: TObject); 
var M Seq:Array[l..655361] o f Byte;

Tap:Array[1..16] o f  Integer; 
a,b,m,p}h,i,code,kj,l,t:Integer; 
s,u,v: String;

begin
Val(Editl .text,i,code);
Val(Edit2.text j,code);
l:=pow(ij);
p:=l-l;

begin

M Seq[l]:= l;
a:=M Seq[l];
Str(a,u);
Edit3.text:=u;

For k:=2 to j do

begin

MSeq[k]:=0;
b:=MSeq[k];
Str(b,v);
Edit3 .text—Edit3 .text+v;
Form 1.Refresh;

end;

If  Checkbox 1.Checked then Tap[l]:=l else Tap[l]:=0;
I f  Checkbox2.Checked then Tap[2]:=2 else Tap[2]:=0;
I f  Checkbox3.Checked then Tap[3]:=3 else Tap[3]:=0;
I f  Checkbox4.Checked then Tap[4]:==4 else Tap[4]:=0;
I f  CheckboxS.Checked then T ap [5]~5 else Tap[5]:=0;
I f  Checkbox6.Checked then Tap[6]:=6 else Tap[6]:=0;
I f  Checkbox7.Checked then Tap[7]:=7 else Tap[7]:=0;
I f  Checkbox8.Checked then Tap[8]:=8 else Tap[8]:=0;
I f  Checkbox9.Checked then Tap[9]:=9 else Tap[9]:=0;
I f  CheckboxlO.Checked then Tap[10]:=10 else Tap[10]:=0; 
I f  Checkboxl 1 .Checked then Tap[l 1]:=11 else Tap[l 1]:=0; 
I f  Checkbox 12.Checked then Tap[12]:=12 else Tap[12]:=0; 
I f  Checkboxl3.Checked then Tap[13]:=13 else Tap[13]:=0; 
I f  Checkbox 14.Checked then Tap[14]:=14 else Tap[14]:=0; 
If  Checkboxl5.Checked then Tap[15]:=15 else Tap[15]:=0;

For k:=j+l to p do

begin
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For h:=l to 16 do 

begin 

If Tap[h]>0 then  

begin

MSeq[k] :=MS eq[k]+MSeq[k-T ap [h]]; 

end; 

end;

MSeq[k]:=MSeq[k] mod 2;

t:=MSeq[k];
Str(t,s);
Edit3 ,text-“ Edit3 .text+s;

end;
end;

end.
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APPENDIX B: DELPHI CODE TO GENERATE RUN DISTRIBUTION 
TABLES

Illustrated below is the Delphi code, which can be used to generate any m-sequence o f  

length 7 to (2A15-1), from a given primitive polynomial, and produce it's run distribution tables.

DELPHI CODE

unit Int;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
StdCtrls;

type
TForml = class(TForm)

Buttonl: TButton;
CheckBoxl: TCheckBox;
CheckBox2: TCheckBox;
CheckBox3: TCheckBox;
CheckBox4: TCheckBox;
CheckBoxS: TCheckBox;
CheckBoxb: TCheckBox;
CheckBox7: TCheckBox;
CheckBox8: TCheckBox;
CheckBox9: TCheckBox;
CheckBoxlO: TCheckBox;
CheckBoxll: TCheckBox;
CheckBoxl2: TCheckBox;
CheckBoxl3: TCheckBox;
CheckBoxM: TCheckBox;
CheckBoxl5: TCheckBox;
CheckBoxl6: TcheckBox;
Editl: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Label 1: TLabel;
Label2: TLabel;
Buttonl: TButton;
M em ol: TMemo;
procedure ButtonlClick(Sender: TObject); 

private 
{ Private declarations } 

public
MSeq: Array[1..65536] o f Byte;

{ Public declarations } 
end;

var
Forml: TForml; 

im plem entation



103

{$R *.DFM}

function pow(numl ,num2:Integer):Integer; 
var i:Integer;

begin
Result:=l;

For i:= l to num2 do 

Result~Result*num 1; 

end:

procedure Consecutive_Ones; 
var kj^jljiijtjCode^ti-Integer;

s:String;
EndOfOnes:Boolean;

Consec_Ones: A rray[ 1.. 16] o f Integer;

begin
Ctr:=0;

Val(Forml.Editl.text, i, code); 
Val(Forml .Edit2.textj,code); 
l:=pow(ij); 

n:=l-l;

For k:=l to j do

begin
Consec_Ones [k] :=0; 

end;

For t:=l to n do

begin
Str(t}s);
Forml .Edit4,text:=s;
Form 1. Re fresh;

I f  Fonn 1 .Mseq[t]= 1 then 
begin

EndOfDnes:=FALSE;
ctr:=ctr-i-l;

end;

else
begin

If  EndOfOnes=False then 
begin 

EndOfOnes :=TRUE;
Consec_Ones[ctr] :=Consec_Ones[ctr]+1; 
ctr:=0; 

end;
end;
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end;

For k:=l to j do 
begin

Str(Consec_Ones[k] ,s);
Forml .Editl .text:=s;
Forml .Refresh;
Forml .Memo 1 .Lines[k]:=IntToStr(Consec_Ones[k]); 

end;

end;

procedure TForml .Buttonl Click(Sender: TObject); 
var Tap:Array[1..16] o f Integer; 

a,b}m,p,h,i,code,kj,l,tInteger; 
s,u,v: String;

begin
Val(Editl .text, i, code);
Val(Edit2.text j,code);
l:=pow(ij);
p:»l-l;

begin

M Seq[l]:= l;
a:=MSeq[l];
Str(a,u);
Edit3.text:=u;

For k:=2 to j do

begin

MSeq[k]:=0;
b:=MSeq[k];
Str(b,v);
Edit3. text:=Edit3. text+v;
Forml.Refresh;

end;

If Checkboxl.Checked then Tap[l]:=l else Tap[l]:=0;
If Checkbox2.Checked then Tap[2]:=2 else Tap[2]:=0;
If Checkbox3.Checked then Tap[3]:=3 else Tap[3]:=0;
If Checkbox4.Checked then Tap[4]:=4 else Tap[4]:=0;
If Checkbox5.Checked then Tap[5]:=5 else Tap[5]:=0;
If Checkbox6.Checked then Tap[6]:=6 else Tap[6]:=0;
If Checkbox7.Checked then Tap[7]:=7 else Tap[7]:=0;
If Checkbox8.Checked then Tap[8]:=8 else Tap[8]:=0;
If Checkbox9.Checked then Tap[9]:=9 else Tap[9]:=0;
If CheckboxlO.Checked then Tap[lQ]:=10 else Tap[10]:=0 
If Checkboxl 1.Checked then Tap[l 1]:=11 else Tap[l 1]:=0 
If Checkboxl2.Checked then Tap[12]:=12 else Tap[12]:=0 
If Checkboxl3.Checked then Tap[13]:=13 else Tap[13]:=0 
If Checkboxl4.Checked then Tap[14];=14 else Tap[14]:=0 
If Checkboxl5.Checked then Tap[15]:=15 else Tap[15]:=0 
If Checkboxl6.Checked then Tap[16]:=16 else Tap[16]:=0
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For k:=j+l to p do 

begin 

For h:=l to 16 do 

begin 

If Tap[h]>0 then 

begin

MSeq[k] :=MSeq[k]+MSeq[k-Tap[h]]; 

end; 

end;

MSeq[k]:=MSeq[k] mod 2;

t:=MSeq[k];
Str(t,s);
Edit3 .text:=Edit3 .text+s;

end;

end;

ConsecutivejOnes;

end;

end.
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Appendix C :

n = 3

{1,0,1,!} 3 
{ 1, 1,0 ,1} 5

n = 4

{ 1,0 ,0 ,1, 1} 4 
{1,1,0,0,1} 12

n =  5

{ 1,0 ,0 , 1,0 , 1} 18 
{ 1,0 , 1,0 ,0 ,1} 14 
{ 1,0 , 1,1,1, 1} 12 
{ 1, 1, 1, 1,0 , 1} 20 
{ 1, 1,0 , 1, 1, 1} 19 
{ 1, 1, 1,0 , 1, 1} 13

n ~  6

{1,0,0,0,0,1,1} 
{1,1,0,0,0,0,1} 
{1,0,1,1,0,1,1} 
{1,1,0,1,1,0,1} 
{1,1,0,0,1,1,1} 
{ 1, 1, 1,0 ,0 , 1, 1}

n =  7

1,0 ,0,0 ,0,0 , 1,1 
1, 1,0,0,0,0 ,0,1 
1,0 ,0,0 ,1,0 ,0,1 
1,0,0, 1,0,0 ,0,1 
1,0,0,0 ,1,1, 1,1 
1, 1,1,1,0 ,0 ,0,1 
1,0 ,0,1, 1,1,0,1 
1,0 ,1,1, 1,0 ,0,1 
1,0 ,1,0 ,0, 1, 1,1 
1, 1,1,0 ,0,1,0,1 
1,0 ,1,0 , 1,0 , 1,1 
1, 1,0, 1,0, 1,0,1 
1,0 ,1,1, 1, 1, 1,1
1. 1.1.1. 1 4 .0.1
1 4 .0 .0 . 1.0 . 1.1
1. 1.0 4 .0 .0 . 1.1
1. 1. 1.0 . 1 4 .1 4
1. 1 4 4 .0 .1 4 4

List of Primitive Polynomials and corresponding z(l) values

n = 8 { 1 4 ,0 ,0 ,0 , 1,1, 1 4 , 1} 428
{ 1 4 , 1,1 4 ,0 ,0 ,0 4 ,1} 84

{ 1,0 ,0 ,0 , 1, 1 4 ,0 , 1} 25 { 1 4 ,0 ,0 , 1, 1, 1,0 , 1 4 } 249
{ 1,0 , 1, 1 4 ,0 ,0 ,0 ,1} 231 { 1, 1,0 , 1, 1, 1,0 ,0 4 ,1} 263
{ 1,0 ,0 , 1,0 , 1,0 4 4 } 243 { 1 4 ,0 , 1,0 ,0 , 1, 1 4 ,1} 135
{ 1,1,0 , 1,0 4 ,0 ,0 , 1} 13 { 1,1 4 4 ,0 ,0 , 1,0 4 , 1} 377
{ 1,0 ,0 , 1,0 4 , 1,0 , 1} 240 { 1, 1,0 , 1,0 4 4 ,0 , 1 4 } 126
{ 1,0 ,1, 1,0 4 ,0 ,0 , 1} 16 { 1, 1,0 , 1 4 ,0 , 1,0 4 4 } 386
{ 1,0 , 1,0 ,0 , 1 4 ,0 , 1} 23 { 1 4 ,0 , 1 4 4 4 4 4 , 1} 404
{ 1,0 , 1,1,0 ,0 4 ,0 , 1} 233 { 1 4 4 4 4 ,1, 1,0 4 , 1} 108
{ 1,0, 1,0 4 4 4 4 , 1} 122 { 1, 1, 1,0 ,0 ,0 4 , 1, 1, 1} 327
{ 1, 1 4 4 4 ,0 , 1,0 , 1} 134 { 1, 1, 1, 1,0 ,0 ,0 4 4 , 1} 185
{ 1,0 ,1, 1,0 ,0 ,0 4 ,1} 197
{ 1,1,0 ,0 ,0 , 1 4 ,0 ,1} 59
{ 1, 1,0 ,0 ,0 ,0 , 1, 1 4 } 99 n =  10
{ 1 4 , 1,0 ,0 ,0 ,0 , 1,1} 157
{ 1 4 4 ,0 ,0 , 1 4 ,1, 1} 141 { 1,0 ,0 ,0 ,0 ,0 ,0 , 1,0 ,0 4 } 77
{ 1 4 4 4 ,0 ,0 , 1 4 , 1} 115 { 1,0 ,0 4 ,0 ,0 ,0 ,0 ,0 ,0 , 1} 947

{ 1,0 ,0 ,0 ,0 ,0 , 1,1,0 , 1,1} 493
{ 1, 1,0 4 ,1,0 ,0 ,0 ,0 ,0 , 1} 531

n = 9 { 1,0 ,0 ,0,0 4 ,0 ,0 , 1,1, 1} 85
{ 1,1, 1,0 ,0 4 ,0 ,0 ,0 ,0 , 1} 939

{ 1,0 ,0 ,0 ,0 ,1,0 ,0,04 130 { 1,0 ,0 ,0 ,0 4 ,0 ,1, 1,0 , 1} 181
{ 1,0 ,0 ,0 4 ,0 ,0 ,0 ,0,1 382 { 1,0 , 1, 1,0 4 ,0 ,0 ,0 ,0 , 1} 843
{ 1,0 ,0 ,0 ,0, 1,1,0 ,14 197 { 1,0 ,0 ,0 , 1,1,0 ,0 4 ,0 , 1} 687
{ 1, 1,0 , 1, 1,0 ,0 ,0,04 315 { 1,0 4 ,0 ,0 , 1, 1,0 ,0 ,0 , 1} 337
{ 1,0 ,0 ,0 , 1,0 4 4 ,0,1 275 { 1,0 ,0 ,0 ,1 4 ,0 , 1 4 , 1, 1} 575
{ 1,0 , 1, 1,0 4 ,0 ,0 ,0,1 237 { 1, 1 4 ,1,0 , 1 4 ,0 ,0 ,0 , 1} 449
{ 1,0 ,0 ,0 , 1 4 ,0 ,0 , 1,1 104 { 1,0 ,0 ,1,0 ,0 ,0 , 1,0 4 , 1} 967
{ 1, 1,0 ,0 , 1,1,0 ,0 ,04 408 { 1, 1,0 4 ,0 ,0 ,0 , 1,0 ,0 , 1} 57
{ 1,0 ,0 4 ,0 , 1, 1,0,0,1 140 { 1,0 ,0 , 1, 1,0 ,0 ,0 ,1,0 4 } 84
{ 1,0 ,0 4 , 1,0 , 1,0,0,1 372 { 1,0 4 ,0 ,0 ,0 , 1, 1,0 ,0 , 1} 940
{ 1,0 ,0 , 1,0 ,1 4 4 4 4 53 { 1,0 ,0 , 1, 1,0 4 ,0 4 4 4 } 945
{ 1 4 4 4 , 1,0 , 1,0 ,0,1 459 { 1,1, 1,0 , 1,0 ,1 4 ,0 ,0 4 } 79

7 { 1,0 ,0 , 1,1,0 , 1, 1,14 93 { 1,0,0 , 1, 1, 1,0 ,0 , 1, 1, 1} 474
121 { 1, 1, 1 4 ,0 ,1, 1,0 ,0,1 419 { 1, 1 4 ,0 ,0 , 1 4 4 ,0 ,0 , 1} 550
31 { 1,0 ,0 , 1,1,1,0 , 1, 1,1 ■ 443 { 1,0,0 ,1 4 4 , 1,0 ,0 , 1 4 } 944
97 { 1 4 , 1,0 ,1,1, 1,0 ,0,1 69 { 1, 1,0 ,0 , 1 4 , 1,1,0 ,0 4 } 80
87 { 1,0 ,0 4 ,1 4 , 1, 1,0,1 ■ 234 { 1,0 ,0 , 1 4 4 4 ,1, 1, 1 4 } 586
41 { 1,0 4 ,1 4 ,1, 1,0 ,0,1 278 { 1 4 , 1,1 4 4 ,1,1,0 ,0 4 } 438
118 { 1,0 , 1,0 ,0 ,0 ,0, 1,14 194 { 1,0 4 ,0 ,0 ,0 ,0 ,1, 1,0 , 1} 921
10 { 1, 1 4 ,0 ,0 ,0 ,0, 1,0,1 318 { 1,0 , 1,1,0 ,0 ,0 ,0 4 ,0 , 1} 103

114 { 1,0 , 1,0 ,0 4 ,0 , 1,0,1 226 { 1,0 4 ,0 ,0 , 1,0 ,0 ,0 , 1,1} 220
14 { 1,0 4 ,0 ,1,0 ,0 , 1,0,1 286 { 1, 1,0 ,0 ,0 4 ,0 ,0 , 1,0 ,1} 804
21 { 1,0 , 1,0 4 ,0 ,0 ,0 , 1,1 36 { 1,0 ,1,0 ,0 , 1,1, 1, 1,0 , 1} 130
107 { 1, 1,0 ,0 ,0 4 ,0 , 1,0,1 ■ 476 { 1,0 4 4 , 1, 1,0 ,0 4 ,0 , 1} 894
19 { 1,0 4 ,0 , 1,0 , 1, 1, 1,1 453 { 1,0 4 ,0 , 1,0 ,0 ,0 ,0 ,1, 1] 756

109 { 1,1 4 , 1,0 , 1,0 ,1,04 59 { 1 4 ,0 ,0 ,0 ,0 , 1,0 ,1,0 , 1} 268
39 { 1,0 ,1,0 4 , 1,0 ,1,14 461 { 1,0 , 1,0 , 1,0 , 1,0 , 1 4 , 1} 747
89 { 1, 1,1,0 4 , 1,0 ,1,04 51 { 1,1 4 ,0 , 1,0 4 ,0 4 ,0 , 1} 277
55 { 1,0 ,1,0 4 , 1, 1 4 ,0,1 26 { 1,0 , 1,0 4 4 ,0 4 ,0 ,1, 1} 290
73 { 1,0 , 1, 1, 1 4 ,0 ,1,0,1 486 { 1,1,0 , 1,0 4 4 ,0 , 1,0 , 1} 734

{ 1,0 , 1,1,0 , 1 4 ,0,14 501 { 1,0 4 4 ,0 ,0 ,0 , 1, 1, 1, 1} 764
{ 1 4 ,0 ,1,1,0 , 1, 1,04 11 { 1 4 4 , 1,0 ,0 ,0 ,1 4 ,0 ,1} 260
{ 1, 1,0 ,0 ,0 ,1,0 ,0 4 4 114 { 1,0 4 , 1,0 ,0 ,1,0 ,1 4 4 } 765
{ 1,1,0 ,0 ,1,0 ,0 ,0,14 398 { 1 4 4 ,0 4 ,0 ,0 , 1, 1,0 , 1} 259
{ 1,0 , 1 4 ,0 ,0 4 , 1, 1,1 441 { 1,0 4 , 1 4 ,0 ,0 ,0 4 , 1, 1} 992
{ 1,1 4 4 ,0 ,0 4 4 ,0,1 71 { 1,1 4 ,0 ,0 ,0 ,1, 1, 1,0 ,1} 32



1,0,1,1,1,1,1,0,1,1,11 274 {1,0,0,1,0,0,0,1,0,0,1,1} 1800 {1,1,0,0,0,0,0,0,1,1,0,1} 1137
1,1,1,0,1,1,1,1,1,0,1} 750 {1,1,0,0,1,0,0,0,1,0,0,1} 248 {1,0,1,1,0,0,1,1,0,0,1,1} 619
1,0,1,1,1,1,1,1,0,1,1} 848 {1,0,0,1,0,0,1,0,0,1,0,1} 1524 {1,1,0,0,1,1,0,0,1,1,0,1} 1429
1,1,0,1,1,1,1,1,1,0,1} 176 {1,0,1,0,0,1,0,0,1,0,0,1} 524 {1,0,1,1,0,0,1,1,1,1,1,1} 1696
1,1,0,0,0,0,1,0,0,1,1} 355 {1,0,0,1,0,0,1,0,1,0,0,1} 789 {1,1,1,1,1,1,0,0,1,1,0,1} 352
1,1,0,0,1,0,0,0,0,1,1} 669 {1,0,0,1,0,0,1,1,1,0,1,1} 1764 {1,0,1,1,0,1,0,0,1,0,1,1} 335
1,1,0,0,0,1,1,0,1,1,1} 992 {1,1,0,1,1,1,0,0,1,0,0,1} 284 {1,1,0,1,0,0,1,0,1,1,0,1} 1713
1,1,1,0,1,1,0,0,0,1,1} 32 {1,0,0,1,0,0,1,1,1,1,0,1} 727 {1,0,1,1,0,1,0,1,1,1,1,1} 107
1,1,0,0,1,0,0,1,1,1,1} 712 {1,0,1,1,1,1,0,0,1,0,0,1} 1321 {1,1,1,1,1,0,1,0,1,1,0,1} 1941
1,1,1,1,0,0,1,0,0,1,1} 312 {1,0,0,1,0,1,0,0,0,1,0,1} 1680 {1,0,1,1,0,1,1,0,1,1,1,1} 1990
1,1,0,0,1,0,1,1,0,1,1} 898 {1,0,1,0,0,0,1,0,1,0,0,1} 368 {1,1,1,1,0,1,1,0,1,1,0,1} 58
1,1,0,1,1,0,1,0,0,1,1} 126 {1,0,0,1,0,1,0,1,1,0,1,1} 1673 {1,0,1,1,0,1,1,1,1,1,0,1} 1992
1,1,0,0,1,1,1,1,1,1,1} 422 {1,1,0,1,1,0,1,0,1,0,0,1} 375 {1,0,1,1,1,1,1,0,1,1,0,1} 56
1,1,1,1,1,1,1,0,0,1,1} 602 {1,0,0,1,0,1,1,1,0,1,0,1} 1152 {1,0,1,1,1,0,0,0,0,1,1,1} 664
1,1,1,0,0,0,1,0,1,1,1} 699 {1,0,1,0,1,1,1,0,1,0,0,1} 896 {1,1,1,0,0,0,0,1,1,1,0,1} 1384
1,1,1,0,1,0,0,0,1,1,1} 325 {1,0,0,1,0,1,1,1,1,1,1,1} 1451 {1,0,1,1,1,0,1,0,1,1,1,1} 555
1,1,0,1,1,0,1,1,1,1,1} 623 {1,1,1,1,1,1,1,0,1,0,0,1} 597 {1,1,1,1,0,1,0,1,1,1,0,1} 1493
1,1,1,1,1,0,1,1,0,1,1} 401 {1,0,0,1,1,0,0,0,0,0,1,1} 842 {1,0,1,1,1,0,0,0,1,0,1,1} 897

{1,1,0,0,0,0,0,1,1,0,0,1} 1206 {1,1,0,1,0,0,0,1,1,1,0,1} 1151
{1,0,0,1,1,0,0,0,1,1,1,1} 889 {1,0,1,1,1,0,0,1,0,0,1,1} 109

=11 {1,1,1,1,0,0,0,1,1,0,0,1} 1159 {1,1,0,0,1,0,0,1,1,1,0,1} 1939
{1,0,0,1,1,0,1,0,1,0,1,1} 1945 {1,0,1,1,1,0,1,1,0,1,1,1} 1399

1,0,0,0,0,0,0,0,0,1,0,1 1029 {1,1,0,1,0,1,0,1,1,0,0,1} 103 {1,1,1,0,1,1,0,1,1,1,0,1} 649
1,0,1,0,0,0,0,0,0,0,0,1 1019 {1,0,0,1,1,0,1,0,1,1,0,1} 1357 {1,0,1,1,1,0,1,1,1,1,0,1} 473
1,0,0,0,0,0,0,1,0,1,1,1 846 {1,0,1,1,0,1,0,1,1,0,0,1} 691 {1,0,1,1,1,1,0,1,1,1,0,1} 1575
1,1,1,0,1,0,0,0,0,0,0,1 1202 {1,0,0,1,1,0,1,1,1,0,0,1} 1003 {1,0,1,1,1,1,0,1,1,0,1,1} 1636
1,0,0,0,0,0,1,0,1,0,1,1 441 {1,0,0,1,1,1,0,1,1,0,0,1} 1045 {1,1,0,1,1,0,1,1,1,1,0,1} 412
1,1,0,1,0,1,0,0,0,0,0,1 1607 {1,0,0,1,1,1,0,0,0,1,1,1} 365 {1,0,1,1,1,1,1,0,0,1,1,1} 909
1,0,0,0,0,0,1,0,1,1,0,1 1889 {1,1,1,0,0,0,1,1,1,0,0,1} 1683 {1,1,1,0,0,1,1,1,1,1,0,1} 1139
1,0,1,1,0,1,0,0,0,0,0,1 159 {1,0,0,1,1,1,1,0,0,1,0,1} 980 {1,1,0,0,0,0,0,0,1,0,1,1} 309
1,0,0,0,0,1,0,0,0,1,1,1 218 {1,0,1,0,0,1,1,1,1,0,0,1} 1068 {1,1,0,1,0,0,0,0,0,0,1,1} 1739
1,1,1,0,0,0,1,0,0,0,0,1 1830 {1,0,0,1,1,1,1,1,0,1,1,1} 625 {1,1,0,0,0,0,0,1,1,1,1,1} 1207
1,0,0,0,0,1,1,0,0,0,1,1 860 {1,1,1,0,1,1,1,1,1,0,0,1} 1423 {1,1,1,1,1,0,0,0,0,0,1,1} 841
i,i,o ,o ,o ,i,i,o ,o ,o ,o ,r 1188 {1,0,1,0,0,0,0,0,0,1,1,1} 53 {1,1,0,0,0,1,0,1,0,1,1,1} 1504
1,0,0,0,0,1,1,0,0,1,0,1 600 {1,1,1,0,0,0,0,0,0,1,0,1} 1995 {1,1,1,0,1,0,1,0,0,0,1,1} 544
1,0,1,0 ,0 ,1,1,0 ,0 ,0,0 ,1; 1448 {1,0,1,0,0,0,0,1,0,0,1,1} 251 {1,1,0,0,0,1,1,0,1,0,1,1} 827
1,0,0 ,0 ,0 ,1,1,1,0 ,0,0 ,1; 874 {1,1,0,0,1,0,0,0,0,1,0,1} 1797 {1,1,0,1,0,1,1,0,0,0,1,1} 1221
1,0,0,0,1,1,1,0,0,0,0,1 1174 {1,0,1,0,0,0,0,1,0,1,0,1} 1088 {1,1,0,0,0,1,1,1,0,0,1,1} 1476
1,0,0,0,0,1,1,1,1,0,1,1 1109 {1,0,1,0,1,0,0,0,0,1,0,1} 960 {1,1,0,0,1,1,1,0,0,0,1,1} 572
1,1,0,1,1,1,1,0,0,0,0,1 939 {1,0,1,0,0,1,1,0,1,1,0,1} 112 {1,1,0,0,1,0,0,1,0,1,1,1} 801
1,0,0,0,1,0,0,0,1,1,0,1 1173 {1,0,1,1,0,1,1,0,0,1,0,1} 1936 {1,1,1,0,1,0,0,1,0,0,1,1} 1247
1,0,1,1,0,0,0,1,0,0,0,1 875 {1,0,1,0,0,1,1,1,1,1,1,1} 190 {1,1,0,0,1,0,0,1,1,0,1,1} 1172
1,0,0,0,1,0,0,1,0,1,0,1 1343 {1,1,1,1,1,1,1,0,0,1,0,1} 1858 {1,1,0,1,1,0,0,1,0,0,1,1} 876
1,0,1,0,1,0,0,1,0,0,0,1 705 {1,0,1,0,1,0,0,1,1,1,0,1} 1114 {1,1,0,0,1,0,1,1,0,0,1,1} 237
1,0,0,0,1,0,0,1,1,1,1,1 2023 {1,0,1,1,1,0,0,1,0,1,0,1} 934 {1,1,0,0,1,1,0,1,0,0,1,1} 1811
1,1,1,1,1,0,0,1,0,0,0,1 25 {1,0,1,0,1,0,1,0,0,1,1,1} 1822 {1,1,0,0,1,0,1,1,1,1,1,1} 1529
1,0,0,0,1,0,1,0,1,0,0,1 378 {1,1,1,0,0,1,0,1,0,1,0,1} 226 {1,1,1,1,1,1,0,1,0,0,1,1} 519
1,0,0,1,0,1,0,1,0,0,0,1 1670 {1,0,1,0,1,0,1,0,1,0,1,1} 997 {1,1,0,0,1,1,0,0,0,1,1,1} 1210
1,0,0,0,1,0,1,1,0,0,0,1 706 {1,1,0,1,0,1,0,1,0,1,0,1} 1051 {1,1,1,0,0,0,1,1,0,0,1,1} 838
1,0,0,0,1,1,0,1,0,0,0,1 3142 {1,0,1,0,1,0,1,1,0,0,1,1} 824 {1,1,0,0,1,1,1,0,1,0,0,1} 950
1,0,0,0,1,1,0,0,1,1,1,1 869 {1,1,0,0,1,1,0,1,0,1,0,1} 1224 {1,0,0,1,0,1,1,1,0,0,1,1} 1098
1,1,1,1,0,0,1,1,0,0,0,1 1179 {1,0,1,0,1,0,1,1,0,1,0,1} 1072 {1,1,0,0,1,1,1,1,0,1,1,1} 548
1,0,0,0,1,1,1,0,0,1,1,1 1392 {1,0,1,0,1,1,0,1,0,1,0,1} 976 {1,1,1,0,1,1,1,1,0,0,1,1} 1500
1,1,1,0,0,1,1,1,0,0,0,1 656 {1,0,1,0,1,1,0,1,1,1,1,1} 573 {1,1,0,1,0,0,0,0,1,1,1,1} 373
1,0,0,0,1,1,1,0,1,0,1,1 1192 {1,1,1,1,1,0,1,1,0,1,0,1} 1475 {1,1,1,1,0,0,0,0,1,0,1,1} 1675
1,1,0,1,0,1,1,1,0,0,0,1 856 {1,0,1,0,1,1,1,0,1,1,1,1} 815 {1,1,0,1,0,0,1,0,0,1,1,1} 1353
1,0,0,0,1,1,1,1,0,1,0,1 959 {1,1,1,1,0,1,1,1,0,1,0,1} 1233 {1,1,1,0,0,1,0,0,1,0,1,1} 695
1,0,1,0,1,1,1,1,0,0,0,1 1089 {1,0,1,0,1,1,1,1,1,0,1,1} 1527 {1,1,0,1,0,1,0,0,0,1,1,1} 1496
1,0,0,1,0,0,0,0,1,1,0,1 433 {1,1,0,1,1,1,1,1,0,1,0,1} 521 {1,1,1,0,0,0,1,0,1,0,1,1} 552
1,0,1,1,0,0,0,0,1,0,0,1 1615 {1,0,1,1,0,0,0,0,0,0,1,1} 911 {1,1,0,1,0,1,1,0,1,1,1,1} 627



1,1,1,1,0,1,1,0,1,0,1 1} 1421
1,1,0,1,1,0,1,1,1,0,1 1} 767
1,1,0,1,1,1,0,1,1,0,1 1} 1281
1,1,0,1,1,0,0,1,1,1,1,1} 329
1,1,1,1,1,0,0,1,1,0,1 1} 1719
1,1,0,1,1,1,0,1,0,1,1 1} 477
1,1,1,0,1,0,1,1,1,0,1 1} 1571
1,1,0,1,1,1,1,0,0,1,1 1} 1155
1,1,1,0,0,1,1,1,1,0,1 1} 893
1,1,1,0,0,0,1,0,0,1,1 1} 718
1,1,1,0,0,1,0,0,0,1,1 1} 1330
1,1,1,0,0,1,0,1,1,1,1 1} 898
1,1,1,1,1,0,1,0,0,1,1 1} 1150
1,1,1,0,1,0,0,1,1,1,1 1} 69
1,1,1,1,1,0,0,1,0,1,1 1} 1979
1,1,1,0,1,1,0,0,1,1,1,1} 1465
1,1,1,1,0,0,1,1,0,1,1 1} 583

n -  12

{1,1,0,0,1,0,1,0,0,0,0,0,1} 1937 
{1,0,0,1,0,1,1,0,0,0,0,0,1} 271
{1,1,0,1,1,1,1,0,0,0,0,0,1} 3495 
{1,0,1,1,1,1,1,0,0,0,0,0,1} 2887 
{1,0,0,1,1,0,0,1,0,0,0,0,1} 64
{1,0,0,0,1,0,1,1,0,0,0,0,1} 966
{1,1,0,1,0,1,1,1,0,0,0,0,1} 2063 
{1,1,1,0,0,0,0,0,1,0,0,0,1} 1808 
{1,1,1,1,1,0,0,0,1,0,0,0,1} 2367 
{1,1,0,0,0,1,0,0,1,0,0,0,1} 1761 
{1,1,0,1,1,1,0,0,1,0,0,0,1} 1804 
{1,1,1,1,0,0,1,0,1,0,0,0,1} 761
{1,1,1,0,1,0,1,0,1,0,0,0,1} 3692 
{1,0,0,0,0,1,1,0,1,0,0,0,1} 3130 
{1,1,0,1,0,1,1,0,1,0,0,0,1} 1500 
{1,0,1,0,0,0,0,1,1,0,0,0,1} 2684 
{1,1,0,0,1,1,0,1,1,0,0,0,1} 1771 
{1,0,0,1,1,0,1,1,1,0,0,0,1} 3648 
{1,1,1,1,1,0,1,1,1,0,0,0,1} 3096 
{1,0,1,1,0,0,0,0,0,1,0,0,1} 506
{1,1,1,0,1,1,0,0,0,1,0,0,1} 4032 
{1,0,1,1,1,1,0,0,0,1,0,0,1} 3940 
{1,1,1,0,0,1,1,0,0,1,0,0,1} 3014 
{1,1,0,0,1,1,1,0,0,1,0,0,1} 2813 
{1,1,1,1,1,1,1,0,0,1,0,0,1} 3022 
{1,0,0,1,1,1,0,1,0,1,0,0,1} 3960 
{1,0,0,0,0,0,1,1,0,1,0,0,1} 3825 
{1,1,0,1,0,0,1,1,0,1,0,0,1} 566
{1,1,1,1,0,0,0,0,1,1,0,0,1} 582
{1,0,1,1,1,0,0,0,1,1,0,0,1} 1481 
{1,0,0,0,0,1,0,0,1,1,0,0,1} 4032 
{1,0,0,1,1,1,0,0,1,1,0,0,1} 3099 
{1,1,1,1,1,1,0,0,1,1,0,0,1} 843
{1,0,1,1,0,0,1,0,1,1,0,0,1} 4032 
{1,0,0,0,1,1,1,0,1,1,0,0,1} 448
{1,0,0,1,1,0,0,1,1,1,0,0,1} 997
{1,1,0,0,0,1,0,1,1,1,0,0,1} 1078 
{1,0,0,1,0,1,0,1,1,1,0,0,1} 136
{1,1,1,0,0,0,0,0,0,0,1,0,1} 2368

{1,0,0,0,1,1,0,0,0,0,1,0,1} 1412 
{1,1,1,0,1,1,0,0,0,0,1,0,1} 2642 
{1,1,1,1,0,0,1,0,0,0,1,0,1} 1509 
{1,0,1,1,1,0,1,0,0,0,1,0,1} 3517 
{1,1,1,0,0,1,1,0,0,0,1,0,1} 3857 
{1,0,1,0,1,1,1,0,0,0,1,0,1} 2177 
{1,1,1,0,0,1,0,1,0,0,1,0,1} 244 
{1,0,1,1,0,1,0,1,0,0,1,0,1} 1608 
{1,1,0,0,1,0,1,1,0,0,1,0,1} 3594 
{1,1,1,1,0,0,0,0,1,0,1,0,1} 2475 
{1,0,1,1,1,0,0,0,1,0,1,0,1} 1350 
{1,0,1,1,0,0,1,0,1,0,1,0,1} 4070 
{1,1,0,0,1,0,0,1,1,0,1,0,1} 3178 
{1,0,1,0,0,0,1,1,1,0,1,0,1} 1919 
{1,1,1,0,1,0,1,1,1,0,1,0,1} 2771 
{1,0,1,1,1,0,1,1,1,0,1,0,1} 2254 
{1,1,0,1,0,1,1,1,1,0,1,0,1} 1030 
{1,0,0,1,0,0,0,0,0,1,1,0,1} 3590 
{1,1,1,0,0,0,1,0,0,1,1,0,1} 3678 
{1,0,1,0,1,0,1,0,0,1,1,0,1} 26
{1,0,0,1,1,0,1,0,0,1,1,0,1} 64 
{1,0,1,0,0,1,0,1,0,1,1,0,1} 2488 
{1,0,1,1,1,1,0,1,0,1,1,0,1} 2418 
{1,0,1,0,1,0,0,0,1,1,1,0,1} 2746 
{1,0,0,1,1,0,0,0,1,1,1,0,1} 2615 
{1,1,0,0,0,0,1,0,1,1,1,0,1} 1991 
{1,0,1,0,0,0,1,0,1,1,1,0,1} 579 
{1,0,1,0,1,1,1,0,1,1,1,0,1} 1842 
{1,0,0,1,0,0,0,1,1,1,1,0,1} 156 
{1,0,1,1,0,1,0,1,1,1,1,0,1} 1678 
{1,1,0,0,1,1,0,1,1,1,1,0,1} 3118 
{1,1,1,1,1,1,0,1,1,1,1,0,1} 86
{1,0,0,0,0,0,1,1,1,1,1,0,1} 1209 
{1,1,1,0,1,0,1,0,0,0,0,1,1} 3304 
{1,0,1,1,1,0,1,0,0,0,0,1,1} 2105 
{1,0,0,0,1,0,0,1,0,0,0,1,1} 2335 
{1,1,1,0,1,0,0,1,0,0,0,1,1} 2696 
{1,0,0,1,1,1,0,1,0,0,0,1,1} 3018 
{1,1,1,1,0,1,1,1,0,0,0,1,1} 1358 
{1,1,0,1,1,0,0,0,1,0,0,1,1} 3156 
{1,0,1,0,1,1,0,0,1,0,0,1,1} 918 
{1,0,0,0,0,0,1,0,1,0,0,1,1} 2159 
{1,0,1,0,0,1,1,0,1,0,0,1,1} 502 
{1,1,0,1,1,1,1,0,1,0,0,1,1} 3709 
{1,1,0,1,0,0,0,1,1,0,0,1,1} 2106 
{1,0,0,0,1,1,0,1,1,0,0,1,1} 2325 
{1,0,1,1,1,1,0,1,1,0,0,1,1} 978 
{1,0,0,1,0,0,1,1,1,0,0,1,1} 1283 
{1,1,1,1,0,0,1,1,1,0,0,1,1} 620 
{1,1,1,0,0,1,1,1,1,0,0,1,1} 1564 
{1,1,0,1,1,0,0,0,0,1,0,1,1} 872 
{1,1,0,1,0,1,0,0,0,1,0,1,1} 3815 
{1,1,0,0,1,1,0,0,0,1,0,1,1} 1990 
{1,0,0,1,0,1,1,0,0,1,0,1,1} 3530 
{1,1,0,1,0,0,0,1,0,1,0,1,1} 281 
{1,0,0,0,1,0,1,1,0,1,0,1,1} 2596 
{1,0,0,0,0,1,1,1,0,1,0,1,1} 2033 
{1,0,1,0,1,1,1,1,0,1,0,1,1} 3066 
{1,1,0,1,0,0,0,0,1,1,0,1,1} 3224 
{1,1,0,0,1,0,0,0,1,1,0,1,1} 940
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1. 1. 1. 1. 1.0 .0 .0 . 1. 1.0 . 1. 1} 774
1. 1. 1.0 .1.0 . 1.0 .1. 1.0 . 1.1} 2935
1.0 .0 .0 . 1.0 .0 . 1. 1. 1.0 .1.1} 2292
1. 1. 1.0 .0 . 1.0 .1. 1. 1.0 . 1. 1} 2250
1. 1. 1. 1. 1. 1.0 .1. 1. 1.0 . 1.1} 1217
1.0 .0 .0 .0 .0 . 1. 1. 1. 1.0 .1.1} 601
1.1.0 .0. 1.0 . 1. 1. 1. 1.0 . 1. 1} 387
1.0 . 1.0 .0 .0 .0 .0 .0 .0 . 1. 1. 1} 1728
1.0 .0 .0. 1.0 .0 .0 .0 .0 . 1. 1.1} 2288
1.1.1.0 . 1.0 .0 .0.0 .0 .1. 1.1} 2695
1. 1.1.0 .0 .1.0 .0 .0 .0 .1. 1.1} 598
1.0 .1. 1.0 .0 . 1.0 .0 .0 . 1. 1. 1} 418
1.1. 1.0 .0 .0 .0 . 1.0 .0 . 1. 1. 1} 3498
1.1. 1. 1. 1.0 .0 . 1.0 .0 . 1. 1. 1} 2830
1.0 . 1.0 .0 . 1.0 . 1.0 .0 . 1. 1. 1} 3852
1. 1.0 . 1. 1. 1.0 . 1.0 .0 . 1. 1. 1} 1846
1.0 . 1.0.0 .0 . 1. 1.0 .0 . 1. 1. 1} 239
1.0 .0 .1.0 .0 . 1. 1.0 .0 . 1.1.1} 1082
1. 1. 1.1.0 .0 . 1.1.0 .0 . 1.1.1} 4041
1.1.0 .0. 1. 1.1. 1.0 .0 . 1. 1. 1} 2532
1. 1.1.0 .0 .0 .0 .0 .1.0 . 1. 1.1} 1401
1. 1.0 .0 .0 . 1.0 .0 . 1.0 . 1. 1. 1} 1400
1. 1.0 .0 .0 .0 . 1.0 . 1.0. 1. 1. 1} 792
1.0 .0 .0 . 1.0 . 1.0 . 1.0. 1. 1. 1} 404
1. 1.0 . 1.1.0 . 1.0 . 1.0. 1. 1.1} 1161
1.0 . 1.0 .1. 1. 1.0 .1.0 . 1. 1.1} 1325
1.0 . 1.0 .0 .0 .0 . 1.1.0 . 1. 1.1} 1454
1.0 .0 . 1.0 .0 .0 . 1.1.0 . 1.1. 1} 64
1.0 . 1.0 .1.0 .0 .0 .0 . 1. 1.1.1} 1621
1.0 .0 .1. 1.0.0 .0 .0 . 1. 1.1.1} 3514
1. 1. 1. 1.0 . 1.0 .0 .0 . 1. 1. 1. 1} 1877
1.0 . 1.0 .0 .0. 1.0 .0 . 1. 1.1. 1} 2587
1.0 .0 .0 . 1.0. 1.0 .0 . 1. 1. 1. 1} 3335
1. 1. 1.0 .0 . 1. 1.0 .0 . 1. 1. 1. 1} 55
1. 1.0 .0 . 1. 1. 1.0 .0 . 1. 1.1. 1} 3476
1. 1. 1.1.0 .0 .0 . 1.0 . 1. 1. 1. 1} 2219
1. 1.0 .0 .0 . 1. 1. 1.0 . 1. 1. 1. 1} 2738
1.0 .0 .0 . 1.0 .0 .0 . 1. 1. 1. 1. 1} 1729
1. 1.0 .1. 1.0.0 .0 . 1. 1. 1.1. 1} 3322
1. 1. 1.0 .0 . 1.0 .0 .1. 1. 1. 1. 1} 1266 
1,0 ,0 ,0 , 1, 1, 1,0 , 1, 1, 1, 1, 1} 1000
1.0 .0 . 1. 1.0 .0 .1. 1. 1. 1. 1. 1} 3253
1. 1.0 . 1. 1. 1.0 .1. 1. 1. 1. 1. 1} 2879
1.0. 1. 1. 1. 1.0 . 1. 1. 1. 1. 1. 1} 4010
1.0 .0 . 1.0 .0 . 1. 1. 1. 1. 1. 1. 1} 1074
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Appendix D - APPROPRIATE POLYNOMIALS FOR MULTIFOCAL 
ELECTROPHYSIOLOGY

D egreel4

{1,0,0,0,0,0,0,0,0,1,0,1,0,151} 15807 
{1,0,0,0,0,0,0,1,0,1,0,1,1,1,1} 4471

D egree 15

{1,1,1,1,1,1,0,1,0,0,1,0,1,0,1,1} 8751 
{1,0,1,1,0,1,0,1,0,1,0,0,0,1,1,1} 9645

D egree 16

{1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1} 15942 
{1,1,0,1,0,0,1,1,0,0,0,1,1,1,0,0,1} 29486


