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Abstract

Vibrational Raman optical activity (ROA), m easured as a sm all 

d ifferentia l Raman scattering of right and le f t circularly polarized 

incident light from chiral molecules, is emerging as a pow erful new 

chiroptical probe of the solution stereochem istry of biopolym ers. Only 

recently  w ith the advent of CCD detection combined w ith a 

backscattering  configuration has ROA achieved the sensitivity required 

fo r the  acquisition o f high quality biopolymer spectra . The work 

presented  in th is thesis represents the f irs t concerted e ffo rt to  acquire, 

assign and in te rp re t the ROA spectra  of carbohydrates ranging from  

m onosaccharides to  polysaccharides.

The opening chapter of this thesis introduces the concept of optical 

activity as well as describing some conventional chiroptical techniques 

and con trasting  the two complementary form s of vibrational optical 

activity: vibrational circular dichroism (VCD) and ROA. The follow ing 

tw o chapters then deal with the fundam entals of the theory o f ROA 

and the instrum entation  required to  measure it. C hapter 4 concen tra tes 

on the description of those aspects of carbohydrate stereochem istry  th a t 

are required to  appreciate the subsequent discussion o f the  ROA 

spectra . In addition, the main conventional physical m ethods of 

establishing carbohydrate conform ation are briefly reviewed and the 

s tren g th  and w eaknesses of each method noted.

The next two chapters deal exclusively with the ROA of 

m onosaccharides. C hapter 5 consists of a detailed study of D -glucose 

employing deuterated  analogues to  assign the ROA signals to  particu lar 

vibrational coordinates where possible and to  re la te  them  to  

stereochem ical features such as anomeric configuration, hydroxym ethyl
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group conform ation and relative disposition of hydroxyl groups around 

the ring. C hapter 6 extends the work on the m onosaccharides to  the 

ketose  sugars and the resu lts  are combined with earlier ROA studies to  

clarify some of the old assignm ents and estab lish  new ones.

In chapter 7 the ROA spectra  of seven disaccharides of D -glucose 

w ith a range of d ifferent linkage types and configurations are presented. 

I t is dem onstrated  th a t their ROA spectra  contain a num ber of new 

signals sensitive to  the conform ation of the glycosidic link as w ell as 

many signals sim ilar to  those found in D-glucose itse lf.

The final chapter concentrates on the ROA spectra  of a num ber of 

cyclodextrins and polysaccharides as well as a single glycoprotein. The 

in terpre ta tion  of these spectra  emphasise the influence o f the  secondary 

s tru c tu re  through ROA signals th a t were identified in the preceding 

chap ter as originating in the coordinates of the glycosidic link.
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Chapter 1

Introduction

This firs t chapter will begin w ith an in troduction to  the concept o f 

optical activity and a brief survey of some conventional chiroptical

techniques before introducing the newer technique o f vibrational optical 

activity, the main subject of th is thesis.

1.1 Optical Activity

N atural optical activity refers to  the differential response to  righ t 

and le ft circularly polarized light from chiral m olecules. For an

isotropic sam ple in the absence of any external m agnetic o r e lectric

fields the determ inant o f chirality is the non-superposability  of the 

co n stitu en t m olecules with their m irror images. From a sym m etry poin t 

o f view this means that, a lthough a chiral m olecule may posess ro ta tio n  

axes, it  m ust lack all im proper ro ta tions i.e. a cen tre  o f inversion,

reflection planes and ro ta tion -reflec tion  axes. The differential in teraction  

o f chiral m olecules with righ t and le ft circularly polarized ligh t has a 

sub tle  dependence on the m olecular properties, especially the 

geom etrical aspects, w ith the re su lt th a t chiroptical techniques provide 

highly sensitive m ethods of probing m olecular struc tu re . The im portance 

o f such m ethods in biology is clear as no t only are the functions of 

biological m olecules intim ately related to  their three-dim ensional 

s tru c tu re  b u t chirality is also b u ilt into all the key m olecules o f life.

The study o f optical activity has had a long and enduring history. 

Since the beginning of the la st century it has provided the im petus fo r 

researchers in a number of fields to  make im portan t discoveries. Early
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exam ples of this include the recognition th a t m olecules m ust adopt 

three dimensional shapes,1 and the connection betw een electrom agnetism  

and light. In more recent tim es, the unification o f the  weak and 

electrom agnetic forces showed th a t parity violation in the weak force 

in filtra tes  into electrom agnetic phenomena to  some ex ten t leading to  

new insights into chirality through the sm all optical ro ta tions of free 

atom s and the  tiny energy differences predicted betw een enantiom ers. 

Also advances in the p ast tw o decades in bo th  the theoretical 

descrip tion4-7 and experim ental acquisition8-12 of vibrational optical 

activity have opened up a new realm of optical activity phenomena.

1.2 Electronic Optical Activity

The f irs t m easurem ent of optical activity was perform ed by Arago in 

1811 who noticed colours in sunlight th a t had passed along the  optic
IDaxis o f a quartz  crystal placed between crossed polarizers. I t was 

la te r established by Biot14 th a t this effect originates in a ro ta tion  of 

the plane of polarization o f linearly polarized ligh t accompanied by a 

wavelength dependence of this optical ro tation. Biot extended th is work 

to  certain organic liquids and aqueous solutions as well as discovering a 

second form  of quartz  th a t ro ta ted  the plane of polarization in the 

opposite sense.15 The fac t th a t randomly oriented fluids were able to  

sustain  optical ro ta tion  led to  the conclusion th a t optical activity 

originated in the individual molecules; whereas in quartz  it  was a 

consequence of the crystal struc tu re .

The discovery of righ t and le ft circularly polarized ligh t by Fresnel 

in 1824 was followed by the realization th a t linearly polarized light 

could be decom posed into coherent right and le ft circularly polarized 

com ponents16 as depicted in Figure 1.1(a). Once th is discovery had been
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appreciated the origin o f optical ro ta tion  was ascribed to  a difference in 

the propagation velocities, and thus the refractive indices, for righ t and 

le f t circularly polarized ligh t through a chiral medium (Figure 1.1(b)). 

This difference in the refractive indices is known as the  circular 

birefringence of the medium. The dependence o f optical ro ta tion  on the 

w avelength of the incident ligh t is known as optical ro ta to ry  dispersion 

(ORD).17
Of

AE

Figure 1.1 (a) The electric field vector of a linearly polarized light beam 

decomposed into coherent right and left circularly polarized 

components, (b) The phase difference introduced by the differential 

refractive indices for right and left circularly polarized light causes 

a rotation, a, in the plane of polarization.

When the frequency of the incident polarized ligh t coincides w ith an

electronic transition  frequency the re su lt is a d ifferen tia l absorp tion  of

the righ t and le ft circularly polarized s ta te s , known as electronic
17circular dichroism (ECD). This phenomenon was f ir s t  observed in

4Q
quartz  crystals  in 1847 by Haidinger and la te r  in so lu tions of

19transition  m etal com plexes by C otton. The d ifferen tia l absorption 

leads no t only to  a difference in the in tensity  o f the  righ t and le ft 

circularly polarized light transm itted  bu t also , as shown in Figure 1.2, 

to  an elliptical polarization. Both are a m easure of circular dichroism  

b u t fo r technical reasons the in tensity  difference is easier to  m easure.
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Figure 1.2 Elliptical polarization resolved into coherent right and left circular 

polarizations of different amplitudes.

The field of optical activity received an enorm ous b o o s t in th e  1950’s 

and 60’s when, as a re su lt of leaps in electronic technology, in 

particu lar in the developm ent of photom ultip lier tubes and e lec tro -op tic  

m odulators, it became possible to  m easure ORD and CD routinely. U ntil 

th a t tim e the majority of optical activity stud ies had relied on optical

ro ta tio n  m easurem ents a t a single wavelength. A lthough the  tw o
20m easurem ents are connected by the Kram ers-Kronig transform ation , 

CD has in recent tim es come to  be favoured over ORD as i t  de tec ts  

the properties of single electron  transitions simplyfing the theoretical 

analysis considerably. Furtherm ore, superior instrum entation  is 

comm ercially available for CD m easurem ents and b e tte r  reso lu tion  can 

be achieved as the CD bands fall to  zero quicker outside the absorption 

region.
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In 1846, Faraday discovered th a t optical ro ta tion  could be induced in 

an otherw ise optically inactive sample by a m agnetic field b u t only in 

the direction of the magnetic field. The sense of ro ta tion  depends on 

the relative orientations o f the magnetic field and the ligh t beam. This 

became known as the Faraday effec t and provided experim ental evidence 

for the connection betw een electrom agnetism  and light. A sim ilar effect, 

known as m agnetic circular dichroism, can also  be observed when the 

CD of an achiral sam ple consisting o f o therw ise optically  inactive 

molecules is measured in the direction of a m agnetic field.

1.3 Vibrational Optical Activity

The conventional chiroptical techniques discussed in the previous 

section are all based on electronic optical activity. It has long been 

appreciated th a t vibrational optical activity m easurem ents could provide 

a porta l in to  a new realm  of chiroptical studies b u t only in the  p a st 

tw o decades has the optical and electronic technology become available 

to  m easure the sm all optical activity inherent in vibrational transitions. 

The m ost obvious way to  achieve th is is to  extend circular dichroism  in 

the visible and ultrav io let regions, where it originates in electronic 

transitions, into the infra-red  where m olecular vibrations absorb 

electrom agnetic radiation. This gives rise to  the technique of vibrational 

circular dichroism  (VCD), which is defined as the sm all differential 

absorption of le ft and righ t circularly polarized infra-red  ligh t by a 

chiral medium. (Optical ro ta tion  in the infra-red  has long been known 

b u t is unpromising in th is con tex t as electronic transitions are mainly 

responsible and the ro ta to ry  power decreases w ith increasing
C

wavelength. ) Perhaps not so obvious is the  use of Raman scattered  

light which is frequency shifted  from the visible incident ligh t by an 

am ount corresponding to  m olecular vibrational transitions. Thus, Raman
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optical activity (ROA) can be defined as a sm all differential Raman 

scattering  of righ t and le ft circularly polarized visible ligh t from  chiral 

m olecules.

Vibrational optical activity can be though t o f as a hybrid of the  tw o 

estab lished  fields of electronic optical activity and vibrational 

spectroscopy. Both techniques rep resen t pow erful m ethods o f probing 

m olecular s tru c tu re  bu t certain advantages can accrue from  their 

combination. Electronic circular dichroism, although very sensitive to  

m olecular conform ation, is res tric ted  to  probing chrom ophores and their 

im m ediate m olecular environm ents and cannot be used a t all when no 

chrom ophores are present. Vibrational optical activity on the o ther hand 

is associated with all the 3N-6 norm al modes o f a chiral molecule. 

Each o f these modes em braces a d ifferen t p a rt of the m olecule which 

acts  as a "vibrational chrom ophore" fo r th a t particu lar vibrational 

transition . The mechanism by which vibrational optical activity is 

generated is d ifferent to  th a t of electronic optical activity so it should 

provide a new perspective on optical activity. Usually, electronic optical 

activity arises indirectly through the chiral pertu rbation  o f an achiral 

chrom ophore by its  immediate environment; w hereas vibrational optical 

activity probes the chirality directly. From the viewpoint o f vibrational 

spectroscopy, the combination w ith optical activity provides a sensitivity 

to  absolu te  configuration plus an increased conform ational sensitivity to  

a m ethod th a t is already highly s tru c tu re  sensitive. To summarise: 

vibrational optical activity should provide a new probe o f chiral 

m olecules with the resolution of a vibrational spectroscopic technique 

bu t w ith the configurational and conform ational sensitivity o f a 

chiroptical technique.
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The two d istinct techniques of VCD and ROA exhibit a high degree 

of com plem entarity. The mechanisms by which the two phenom ena are 

generated are different so each provides an unique perspective on 

vibrational optical activity.5,6 ROA can be m easured down to  ~ 50 cm-1 

with a righ t-angle scattering  geom etry10 b u t is m ore d ifficu lt to  

m easure in the C-H  s tre tch  region betw een ~ 2850 and 3050 cm -1 as 

the signals are an order of m agnitude w eaker than those  norm ally 

observed and the strong polarization of many o f the bands makes the 

elim ination of a rtifac ts difficult. In con trast, VCD was f ir s t  recorded in 

the C-H  s tre tch  region b u t can only provide high quality spectra  down 

to  about ~ 700 cm-1.11,12 For ROA the  w hole wavenumber range can be 

acquired w ithout any alterations to  the instrum ent;9,10 however, th is  is 

no t the  case fo r VCD where changes in the  d e tec to r m aterial and the 

optical layout are required to  make m easurem ents in d ifferen t

wavelength regions. A nother im portant difference is the  w avelength o f 

the incident light. VCD employs in fra-red  radiation which is more

d ifficu lt to  manipulate than the visible ligh t used in ROA. According to  

the X-1 dependence of optical activity, VCD signals will be

approxim ately an order o f m agnitude weaker than those  generated by 

ROA. However, this inherent disadvantage is balanced to  som e degree by 

the fac t th a t Raman scattering  gives much w eaker signals than  infra-red  

absorption. In addition, the sources of a rtifa c ts  in vibrational optical 

activity also  display a wavelength dependence th is tim e in favour o f

VCD. Finally, one im portant consideration fo r biological s tud ies is the 

s trong  in fra-red  absorption of water, the natural so lvent fo r biological 

activity, which obscures large sections of the VCD spectrum  and so 

gives ROA a natural advantage because w ater has few  Raman bands.

The firs t observation o f vibrational optical activity in an isotropic 

sam ple came in 1973 through the m easurem ent o f the  ROA of
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1-phenylethylamine by Barron, Bogaard and Buckingham using a
22depolarized right-angle scattering  configuration. One year la te r the

firs t VCD m easurem ent on an isotropic sam ple, in the  C-H stre tch ing
23region of 2,2,2 trifluoro-l-phenylethanol, was reported . In 1975, Barron 

dem onstrated  th a t even for achiral m olecules a m agnetic field parallel 

to  the incident ligh t beam could induce a circular intensity  difference. 

The firs t example was found in the resonance Raman spectrum  of 

ferrocytochrom e c.24 Similarly, an electric field will also  induce a

circular intensity  difference and th is  e ffec t was f ir s t  observed in 1980
25by Buckingham and Shatwell in the Rayleigh optical activity of 

gaseous m ethyl chloride. On sym m etry grounds there is no electric

analogue of VCD but magnetic VCD is possible and was f ir s t  reported
26in 1981 by Keiderling. Since the  firs t observation of ROA a whole 

range of d ifferen t scattering geom etries have been employed and three 

d istinc t experim ental stra teg ies have been developed which will be 

discussed in more detail in the nex t chapter.
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Chapter 2 

Basic ROA Theory

In th is section a broad outline of the  basic theory of ROA is 

presented a t a level sufficient to  follow  the in terp re ta tion  of 

carbohydrate ROA spectra , the instrum ental stra tegy  employed in the 

m easurem ents and the ab initio  in tensity  calculations th a t appear to  be 

the m ost prom ising m ethod of predicting ROA spectra . Details of 

sim ple m odels fo r ROA generation, such as the bond polarizability or 

inertial models, along w ith the theoretical background fo r m agnetic ROA 

can be found in ref. 1. SI units have been employed th roughou t and 

extensive use has been made of cartesian ten so r notation.

2.1 The Polarizability and Optical Activity Tensors

The fundam ental scattering  mechanism responsible fo r ROA was firs t 

form ulated by A tkins and Barron in 1969 who based the ir developm ent

on the  interference betw een waves sca tte red  via the  polarizability and
2 3optical activity tensors of a chiral m olecule. ’ Later Barron and 

Buckingham4 developed a more definitive theory in which the  sca ttered  

ligh t responsible fo r Rayleigh and Raman optical activity is generated 

through the interaction of the electric and m agnetic fields o f the 

incident light wave and the electric and m agnetic m ultipole m om ents of 

the m olecule. The incident light wave se ts  the m ultipoles oscillating 

which in turn  produces secondary light waves sca tte red  in all directions. 

These secondary light waves are trea ted  using classical electrodynam ics 

and the m olecules are trea ted  as quantum -m echanical objects. Three 

kinds o f dynamic m olecular property tensor are requried to  describe this 

interaction; the  electric  dipole-electric  dipole polarizability ten so r
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the electric dipole-m agnetic dipole optical activity ten so r G'a3f and the 

electric dipole-electric quadrupole optical activity ten so r Aa pY, which are

the dimensionless circular intensity  difference (CID) expressions. The 

quantum -m echanical expressions for these property  tensors  are

where *fi = h/27i: and c») = 27tc/X is the angular frequency o f the incident 

light and G>jn s(i)j-(*>n is the angular frequency separation betw een the 

initial and virtual interm ediate s ta te s  |n> and |j> o f the m olecule. The 

electric dipole, magnetic dipole and traceless quadrupole m om ent 

operators appearing in equations 2.1 (a-c) are defined as

where particle i with a position vector rj has a charge ej, m ass mj and 

momentum The greek subscrip ts denote vector or ten so r com ponents 

and can be equal to  x, y or z; a repeated greek suffix  in a p roduct 

denotes summation over the three com ponents; 8a3 is the  unit second 

rank symmetric tensor, and is the un*t  th ird rank antisym m etric

tensor.

derived from time dependent perturbation theo ry1 and appear la te r in

2  R e(< n |pa |j> < j|p p |n > ) ... 2.1(a)

2 -v
G’a(3 = " 7  2  ( w / u j n-co2 ) I m ( < n|(ia | j > < j | m 3 I n >)

j*n
... 2.1(b)

2 -v
A0£pY= -  ^  R e(< n |pa | j> < j |0 3Y|n > )

*1 J fc nj*n
... 2.1(c)

... 2.2(a)

2  ( e i / 2 m i ) s «3Yr i3PiY ... 2.2(b)

... 2.2(c)
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The real induced oscillating m ultipole m om ents can be w ritten  in 

term s of the real p a rts  of the electric vector E, the  associated 

magnetic vector B and the electric field gradient Va Ep o f the  incident 

light wave:

I1® = a a3^p + + l/3 A a pTVpET + ... ... 2.3(a)

ma = -d /oO G ^pE p  + ... ... 2.3(b)

0 a 3 = A oc3y Ey + -  -  2 ‘3 ( c )

where do tted  electrom agnetic field com ponents rep resen t time 

derivatives and the del operator spatial derivatives. Thus, the 

polarizability tensor a a p describes the oscillating electric  dipole 

m om ents Induced by the  electric field; the m agnetic dipole optical 

activity tenso r G’a p describes the oscillating electric  and m agnetic dipole 

m om ents induced by the time derivatives o f the  m agnetic and electric 

fields, respectively; and the  electric  quadrupole optical activity tensor 

Aa pT describes the oscillating electric dipole m om ents induced by the 

electric field gradient and the oscillating electric  quadrupole m om ents 

induced by the electric  field.

2.2 The ROA Observables

Three d is tinc t circular polarization m odulation s tra teg ies  have now 

been developed for measuring Raman optical activity. In Glasgow, the 

incident circular polarization (ICP) approach is employed which involves 

measuring the d ifferential Raman scattered  in tensities in righ t and le ft 

circularly polarized incident ligh t.s In addition, the Syracuse group has 

recently pioneered the m easurem ent of sca tte red  circular polarization
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(SCP) ROA6 8 and dual circular polarization (DCP) ROA.9,10 SCP ROA 

is defined as the difference in intensities associated w ith rig h t and le ft 

circular polarization s ta te s  in the sca ttered  radiation excited by linearly 

polarized incident light. DCP ROA is the com bination o f the  ICP and 

SCP m odulation techniques where the incident ligh t is sw itched betw een 

righ t and le ft circular and the difference in in tensities of the  righ t and 

le f t circularly polarized sca tte red  ligh t are measured. There are tw o 

ways in which they can be combined: in-phase (DCPj) where the  le ft 

circularly polarized com ponent of the sca tte red  in tensity  generated  by 

the le ft circularly polarized incident ligh t is sub tracted  from  the righ t 

circularly polarized com ponent of the sca ttered  in tensity  generated by 

the right circularly polarized incident light, and o u t-o f-p h ase  (DCPn) 

where the le f t circularly polarized sca ttered  light excited by the right 

circularly polarized ligh t is subtracted  from  the  righ t circularly 

polarized sca ttered  light excited by the le ft circularly polarized incident 

light.

For com parison w ith theoretical calculations the  following

dim ensionless CID’s fo r the three m odulation s tra teg ies  are employed:

A I C P  = -  IL ) / ( I R + IL) -  2.4(a)

^ s c p  = (Ir  “ I I ) * r  + II.) ••• 2.4(b)

Ad c p j = ( I r  ~ I I ) /  ( I r  + I I )  ••• 2.4(c)

Ad c Pu  = d R ” I r ) / ( I R + Ir ) ••• 2.4(d)

where superscrip ts rep resen t the circular polarization s ta te  of the

incident ligh t and subscrip ts the circular polarization s ta te  of the
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sca tte red  light. The denom inator, which is equivalent to  the  conventional 

Raman in tensity , serves to  norm alise the  experim ental m easurem ent 

which is useful as it removes the  need to  consider abso lu te  Raman 

intensities which may vary from one instrum ent to  another. However, 

the raw Raman and ROA intensities are generally displayed separately 

because in certain circum stances coupled norm al modes having d ifferen t 

Raman intensities often  yield conservative ROA couplets. These rep resen t 

an in teresting  special case and if the dim ensionless CID’s were p lo tted  

directly the couplet would no longer appear to  be conservative.

The ICP approach is preferred over SCP because, a lthough the  tw o 

are equivalent within the  far-from -resonance  approxim ation a t 

tran sp aren t frequencies,6 a dead tim e of ~ 9 seconds is required to  

move the quarter-w ave p la te  in the  detection system  betw een a position 

th a t can m easure right and le ft circularly polarized in tensity  in the  SCP
7 8approach. ’ Similarly, a lthough in-phase DCP| m easurem ents should 

yield a  slightly  improved signal-to -no ise  ra tio  (SNR), theoretical analysis 

indicates th a t as well as the dead time problem  a rtifa c t con tro l is more 

d ifficu lt w ith this approach.11

2.3 The ICP CID Expressions

Light scattering  occurs in all directions which means th a t Rayleigh 

and Raman optical activity can be measured in a num ber o f d ifferen t 

experim ental configurations. The m ost common configuration for 

conventional Raman m easurem ents is righ t-angle  (90°) scattering; indeed
17the f ir s t  ROA m easurem ents employed th is geom etry. In righ t-ang le  

sca ttering  two d istinct m easurem ents, polarized and depolarized, can be 

made depending on w hether a linear polaroid analyser is placed in the 

sca tte red  beam with its axis perpendicular o r parallel to  the scattering

-  17 -



plane, respectively. In addition to  righ t-ang le  sca ttering  both  

backscattering (180°) and forward scattering  (0°) are o f prime 

im portance for ROA as we shall see later.

Expressions fo r the dim ensionless ICP CID's fo r all possible 

sca ttering  geom etries can now be obtained by the m ethod outlined 

below. From classical electrodynam ics an expression fo r the electric 

field vector radiated by the oscillating electric  dipole, m agnetic dipole 

and electric quadrupole m om ents induced by righ t and le f t  circularly 

polarized incident light waves in term s of polarizability and optical 

activity tensors  can be form ulated for any sca ttering  direction. The 

intensity  o f the scattered  light, which is proportional to  the squared 

m odulus of the electric field vector, is then  used to  develop the  sum 

(IR +IL) and difference (IR- I L) term s of the dim ensionless ICP CID’s fo r 

any scattering  angle of in terest. An explicit derivation for polarized 

righ t-ang le  scattering  can be found in ref. 1.

The expressions found by the m ethod outlined above are sim plified 

by averaging over all possible orientations o f the m olecule so th a t they 

apply to  isotropic sam ples such as neat liquids and solu tions. The 

averaging procedure generates the following tenso r com ponent p roducts 

th a t are invariant to  axis ro tation:

a  = l / 3 a atx = 1/3 ( a xx + ayy +a z z ) ... 2.5(a)

G’ = 1 /3 G’q̂  = 1/3(G ’XX + G’yy + G’z z ) ... 2.5(b)

3(a)2 = l /2 ( 3 a a3a ap -  a aota 33)

-  1/2 [ (otxx “ ayy^ + ^a xx ~~ + âyy ~~

+ 6 (a2 + a xz + a 2 ) ] ... 2.5(c)
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3(G’)2 = 1/2 ( 3aa 3G’a p -  a ^ G ’pp)

-  1 / 2  { [  ( a x x  -  o L y y ) ( G  j£X  ~  G y y )  +  ( a x x  ~  a z z ) ( G x x  -  G z z )

+  ( a y y  -  a z z ) ( G ’ y y  -  G ’ z z ) ]  ♦  3 C a X y ( G ' x y  +  G * y x )

+ a x z (G’xz + G’zx ) + ay z (G*yz + G'zy)]}  ... 2.5(d)

3 ( A ) 2  =  l ^ w a Q j p e ^ s  A y s p

-  1/2 C O [ ( o C y y  “  O t x x ) A Z X y  +  ( a x x  “  a z z ^ y i x

+ (azz -  ayy)AXyZ + a xy(AyyZ “ ^zyy + ^ zx x  ” ^x iz^

+ n  I A  - A  + A - A  1 ^xz'^yzz rtzzy rtxxy rtyxx ’

+ 0CyZ (Azzx " Axzz + AXyy “ AyXX) ••• 2.5(e)

2 2 2 where a  and G’ are the isotropic invariants and 3(a) , P(G’) and 3(A)

are the anisotropic invariants. (N ote th a t there  is no iso tropic tenso r

invariant for saYsAYS3 because it is trace less). Thus, the  following

dim ensionless ICP CID observables are generated  in term s o f the

m olecular polarizability and optical activity tensors

4 [ 45aG’ + 3(G’)2 -  3(A)2 ]
A(0 ) = ------------------ ----------- 5   ... 2.6(a)

c C 45a + 73(a)2 ]

48C3(G’)2 + 1/3 3(A)2 ]
A(180 ) = -------------- ------------- r------  ... 2.6(b)

2cC 45a + 73(a)2 ]

2 I 45aG* + 73(G*)2 + 3(A)2 ]
Ax(90 ) =----------------r --------- r   ... 2.6(c)

cC 45a + 73(a)2 ]

12[3(G’) -  1/33(A)2 ]
Az (90 ) =-------------------    ... 2.6(d)

6c3(a)

where x and z correspond to  polarized and depolarized righ t-ang le  

scattering  configurations, respectively. Note th a t common fac to rs  in the 

num erators and denom inators have not been cancelled so th a t the 

relative sums and differences can be compared directly. I t is clear from  

inspection of the num erators in equations 2.6 (a-d) th a t the ROA
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2 2intensity  is generated through the term s in ocG\ (3(G’) and (3(A) . These 

term s have a sign dependence on the sense of circular polarization and 

rep resen t the interference betw een light sca tte red  via the polarizability

and the tw o optical activity tensors. O ther interference term s, such as
2 2G* and A also contribute b u t do not show a sign dependence on the 

sense of circular polarization and are in any case expected to  be 

approxim ately three orders of magnitude weaker.

The CID expressions developed in equation 2.6 (a-d) deal only with 

the special case o f Rayleigh scattering, i.e. when the initial and final 

vibrational s ta te s  are the same. For Raman scattering  the  initial and 

final vibrational s ta te s  are d ifferent, so the following transition  

polarizability and optical activity tensors m ust be invoked to  describe 

vibrational Raman optical activity.

a ap < mv |a a p(Q) |n v > ... 2.7(a)

G’a p < mv |G'a p(Q) Inv > ... 2.7(b)

Aa3-r <m v |Aa pY(Q )|n v > ... 2.7(c)

where |nv> and |mv> represen t the initial and final vibrational s ta te s  

and a a p(Q), G*a p(Q) and Aa pY(Q) are the effective polarizability and 

optical activity tensors th a t depend on the  norm al vibrational coordinate 

Q. Developing these transition  tensors using the Placzek approxim ation1 

yields the following expression

t I / \
<m v |o aP(Q )|n v > = (aa p>0 8mvnv + 2 ,  ( 'J q -  )o < mvlQ plnv> -  2.8
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The firs t term  describes Rayleigh sca ttering  and the second term  

represen ts the vibrational Raman scattering. The subscrip t zero indicates 

th a t the function is taken a t the  equilibrium nuclear configuration. 

Applying th is expression to  a fundam ental transition  l<-0 the 

interference term s appearing in the dim ensionless CID’s can now be 

w ritten  as

/ ^  \ / ̂ ®otB \ / \
<Ola<xgl,p X l p l«a glO> = ( - X _ \ ( - ^ ) o  ... 2.9(a)

< 0 ,a„ B,lp > < lp , G ^ | 0 > = ( ^ ) ( ^ ) o ( ^ ) o

< 0 ,a „ 3 llP > < lP I ^ A rSB|0>  = ( i ) ( ^ ) o ^ S ) o ... 2.9(c)

From basic symmetry argum ents Rayleigh optical activity requires 

th a t the same com ponents of a a p, G'a p and Aa pY m ust span the  to ta lly  

sym m etric representation. Similarly, fo r vibrational Raman optical activity 

the com ponents m ust span the same represen tation  as the normal 

coordinate of vibration Q. This can only happen in the  chiral point 

groups in which polar and axial tensors of the sam e rank, such as a a p 

and G’a p, transform  in the same way. Furtherm ore, the  second rank 

axial tenso r s^ -y A ^ p  th a t combines w ith oca p has the  same 

transform ation  properties as G'a p. Thus, all the  Raman active bands in a 

chiral molecule could exhibit ROA.

2.4 ICP ROA in Backscattering

The determ ination of the optimum scattering  geom etry fo r ROA 

m easurem ents o f biological sam ples is based on the tw o group model 

of ROA generation. The basic prem ise o f th is model is th a t tw o waves 

sca ttered  independently from  two groups held in a chiral arrangem ent
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Figure 2.1 The photon scattering picture of the generation of Rayleigh and 

Raman optical activity by a simple chiral two-group model.

as depicted in Figure 2.1 is sufficient to  generate  ROA.1 If axial bond 

symmetry is assum ed the following useful sim plifications can be 

developed

ocG’ = 0 ... 2.10(a)

P(G*)2 = p(A)2 = ~3/4(i)£pTs^ 2 lTa iotpa 2atp ••• 2.10(b)

where and <*2a p are t îe polarizability ten so rs  referred  to  the  local

origins on group 1 and 2, respectively, and R2i is the  vector from  the

local origin of group 1 to  th a t on group 2. These re su lts  mean th a t 

w ithin the two group approxim ation the electric  dipole-m agnetic dipole 

isotropic contribution, aG \ vanishes and the  electric  dipole-m agnetic 

dipole and electric dipole-electric quadrupole anisotropic contributions 

are equal. The expression in equation 2.10(b) expresses the  dependence
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of the ROA on the m olecular geom etry in concise ten so r notation. 

Using these resu lts  the dim ensionless CID expressions reduce to

A(0°) = 0 ... 2.11(a)

A(180°) =
643<G’)2

2c C 45a 2+ 73(a)2! 

163(G’)2

... 2.11(b)

Ax (90°) =
c [ 45a2+ 73(a)2! 

83(G’)2

... 2.11(c)

Az (90°) =
6c3(a)2

... 2.11(d)

Probably the m ost strik ing prediction is the disappearance o f ROA in 

the forward scattering direction. It was found th a t when th is prediction 

was tested  on trans-pinane, a m olecule which is though t to  provide a 

good approximation to  axial bond symmetry, a lm ost all the  ROA signals

of equations 2.11 (a-d) it  is evident th a t a d irect com parison can be 

made between polarized right-angle  and backscattering  Raman and ROA 

m easurem ents. In the backscattering geom etry there  is fou r-fo ld  

increase in the ROA intensity  and a tw o-fo ld  increase in the  Raman 

intensity over the corresponding polarized righ t-ang le  in tensities. 

Combining these two re su lts  leads to  the conclusion th a t im plem enting 

a backscattering geom etry can re su lt in an e igh t-fo ld  reduction in the 

time taken to  achieve a given SNR. Furtherm ore, the  fac t th a t the 

overall dim ensionless CID is two tim es larger in backscattering  means 

th a t the ROA receives an ex tra  bo o st which is crucial when studying 

biological sam ples where the high backgrounds encountered can mean 

th a t ROA signals remain buried in the noise.14,15 In addition to  this 

obvious advantage, backscattered  ROA is also easier to  deal with 

theoretically  as it  contains no isotropic contribution, aG'.

13had either vanished or were extrem ely weak. From a c loser inspection

-  23 -



2.5 Ab Initio ROA Calculations

C urrently  the m ost prom ising m ethod fo r in terpreting  ROA spectra

appears to  be from  ab initio  ROA intensity  calcu lations . 1 6  Such

calculations take advantage o f advances in quantum -m echanical m ethods

for evaluating the polarizability and optical activity tensors th a t appear
17in the  dim ensionless CID expressions. The calculations rely on the 

Placzek approxim ation, given above, to  provide a description of the 

interference term s found in the CID expressions in term s o f the 

derivatives of the polarizability and optical activity tenso rs  w ith respect

to  the  norm al coordinate of vibration a t the  equilibrium nuclear
2 2configuration. Also, the Qjn -w term  found in equations 2.1 (a-c) for 

the polarizability and optical activity tensors  is s e t to  <*> where G>jn is 

the transition  frequency and (*> is the excitation frequency. For 

transparen t Raman scattering  this is a reasonable approxim ation as the 

exciting frequency is much greater than the frequency sh ifts  induced by 

the vibrational transitions of the molecule.

The required derivatives are calculated numerically a t the ir s ta tic  

lim its and a t geom etries displaced 0.005A along each atom ic coordinate.
lftThese calculations are carried o u t using the  CADPAC program . In 

principle, the polarizability and electric d ipole-electric  quadrupole optical 

activity tensors can be calculated analytically b u t no m ethod has been 

developed for doing the same with the e lectric  dipole-m agnetic dipole 

optical activity tensor. Thus, because the calculations are done 

num erically, lim its are placed on both  the size of the m olecule and the 

basis set. Furtherm ore, before the ROA can be calculated the  s tartin g  

geom etry m ust also  be calculated by ab initio  m ethods.
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The accuracy in calculating both  the sign and in tensity  of ROA

signals from ab initio  m ethods has been te s ted  over the  p a s t couple of

years against experim ental re su lts  on a num ber of relatively simple

chiral model com pounds. These include three  membered rings containing

heteroatom s such as m ethyl oxirane, ta rta ric  acid, L-alanine,
19-23m ethylcyclopentanone and m ethylcyclohexanone. The re su lts  obtained 

so far have been encouraging although a scaling fac to r usually has to  

be introduced to  m atch the calculated and experim ental frequencies . 1 6  

The c lo sest agreem ent is usually found for normal modes involving the 

vibrational coordinates m ost directly sampling the  chirality, such as C-C 

or C-O  stretch ing  coordinates of the backbone o f m olecules, found 

betw een ~ 500 and 1100 cm-1. A lthough a t  the p resen t level of

developm ent wide variations from the predicted in tensities are 

som etim es observed, the matching of predicted signs to  those  observed 

provides an excellent method o f assigning absolu te  configuration. 

Furtherm ore, ab initio  calculations autom atically yield data  on the 

relative contributions of the  three  interference term s. This inform ation 

can be isolated  experim entally b u t requires a t le as t th ree d ifferen t 

experim ents w ith linearly independent ROA in tensities. Finally, the 

sensitivity of ROA also provides a more s trin g en t te s t  of the  force 

field than conventional vibrational spectroscopy.

No ab initio  ROA intensity calculations have yet been perform ed on

a carbohydrate so it is d ifficult to  assess the im pact they will have in

this area. However, calculations on L-alanine provided an im portan t firs t

step  in the understanding of the ROA spectra  of the am ino-acids and 
21peptides and sim ilar calculations on a standard m onosaccharide, such 

as D -glucose, may prove equally as useful. The study of com plete 

disaccharides is probably a long way off. As shown la te r a num ber o f 

ROA signals in di- and polysaccharides are assigned to  the  glycosidic
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link and in teresting resu lts  may be forthcom ing from  ab initio  

calculations of disaccharide fragm ents containing the linkage atom s.
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Chapter 3

Instrumentation

In th is chapter the basic design and perform ance of the 

backscattering ICP ROA instrum ent GUROAS1 (Glasgow University ROA 

Spectrom eter No. 1) is described on which all the  carbohydrate ROA 

m easurem ents discussed la te r have been perform ed. The experim ental 

se t-u p  is based on the "m irror with a hole" idea commonly employed 

fo r conventional Raman m easurem ents w ith th is sca tte ring  geom etry . 1 

The ICP ROA approach is used for the reasons d iscussed in chap ter 2 

and polarization m odulation spectroscopy is employed to  overcome 

sh o rt-te rm  instabilities until an acceptable signal-to -no ise  ratio  (SNR) is 

achieved. The m ost im portan t com ponents are the  e lec tro -op tic  

m odulator, the thick Lyot depolarizer, the holographic notch filter, the 

fa s t single grating spectrom eter and the cooled back-th inned  charge 

coupled device (CCD) detector. The layout o f th is in strum ent is sketched 

in Figure 3.1.

collimating
mirror

camera
mirror

shutter

siftCCD
grating

notch filter
| f  . \ \ Y  camera 
t- J /  lens
focusing tens 

rwC?

aperture

laser polarizer
focusing

lens
, c *  • Lyot 45 -mirrorEOM — I sample 

k-K cell
collimating

lens

Figure 3.1 The optical layout of the backscattering Glasgow University ICP 

ROA spectrometer (adapted from ref. 1).
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3.1 The Optical Design

The continuous wave, single line argon ion laser employed generates 

a coherent beam of up to  2 W of power a t 514.5 nm. The choice of 

excitation w avelength is im portant as a balance m ust be s truck  betw een 

the X- 4  dependence of the Raman in tensity  and the increased 

fluorescence encountered a t lower wavelength, especially in biological 

sam ples. The already good linear polarization o f the laser beam is 

improved with a calcite Gian Taylor type prism  polarizer, positioned a t 

the laser head which is an ti-reflection  coated to  ensure a t le as t 95% 

transm ittance  a t 514.5 nm.

For successfu l ICP ROA m easurem ents the accurate m odulation 

betw een righ t and le ft circular polarization s ta te s  is crucial. The 

conversion from  linear to  circular polarization is achieved using an 

e lec tro -op tic  m odulator (EOM). The birefringence required to  produce 

circularly polarized ligh t is induced in the  EOM by a high voltage 

applied across a uniaxial crystal. By reversing the direction of the 

electric field applied to  the crystal it is possible to  produce bo th  righ t 

and le f t circularly polarized light. The EOM employed in Glasgow is 

based on a potassium  dideuterium  phosphate crystal and is tem perature 

stabilised  a t 25±0.1°C to  eliminate birefringence d rifts. The voltage 

across the crystal is supplied by a high voltage linear differential 

am plifier which generates a precise square-w ave causing the  EOM to  

sw itch accurately betw een the right and le ft circular s ta tes . The dead 

time introduced by this switching is on the m illisecond tim escale.

The circularly polarized light is focussed into the sam ple using a 

lens which produces a cylindrical laser focal region ~ 14.7 mm in length 

and ~ 49 pm in diam eter. The sample cell itse lf  is placed in a 6x6x12.5
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mm quartz m icrofluorescence cell which has a maximum capacity of 

~ 300 pi. The mounting on which the cell is placed has con tro ls which 

allow accurate variations to  be made to  the  vertical and horizontal 

position through which the laser beam en ters  the  sam ple and also  the 

angle of t i l t  o f the cell relative to  the laser beam. These con tro ls are 

necessary fo r the precise alignm ent of the cell so  th a t reflections from  

the cell surfaces re tu rn  directly back down the  central axis and not 

into the collection optics. The backscattered  Raman ligh t is effectively

depolarized by a thick Lyot depolarizer consisting o f tw o calcite p la tes
O 2oriented w ith the ir optical axes a t 45 to  one another. The Lyot

depolarizer is m ounted to  allow ro ta tion  to  locate the  optim um

depolarization position. The backscattered light then passes through a

collim ating lens and is reflected  a t righ t angles by an aluminium m irror

tilted  a t 45°. The Lyot depolarizer, collim ating lens and aluminium

m irror are housed in a m ounting block which m ust be precisely aligned.

The three com ponents within the block are an ti-re flec tion  coated and

have holes drilled in their centres to  allow  the  incident ligh t to  reach

the sample.

The collim ated and reflected  light leaves the  block perpendicular to  

the incident beam through a focussing lens. A second cam era lens picks 

up light from  the focal point produced by the f ir s t  focussing lens and 

focusses the  light through the entrance s lit o f the  spectrograph 

magnifying the image by a fac to r of approxim ately tw o to  m atch the 

f-num ber of the spectrograph. Positioned in fro n t o f the entrance s lit 

is a holographic notch filte r  w ithout which stray  ligh t from  the 

Rayleigh line, which has a degrading e ffec t on the SNR and can 

introduce sloping baselines into the ROA spectrum , would en te r the 

spectrograph . 4 - 6  Holographic notch filte rs  are constructed  by recording 

the interference p a tte rn  form ed betw een tw o m utually coherent laser
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beams within a gelatin  emulsion. The recorded image of the  interference 

pa ttern  is then chemically converted in to  a holographic diffraction 

grating. Only light of the wavelength fulfilling the  Bragg condition, in 

th is case the Rayleigh light a t 514.5 nm, will be d iffracted  by the 

grating. The transm ission of these filte rs  is g rea te r than  80% outside 

the blocked region and is nearly co n stan t th roughout the  wavelength 

range studied, as shown in Figure 3.2 fo r the la te s t generation o f filter, 

so no intensity  calibration is necessary. The o th e r main featu res of 

holographic notch filters  include the narrow  bandw idth and extrem ely 

sharp edges of the blocked region, which allow  m easurem ent close to  

the Rayleigh line, and their high optical density of g rea ter than  6  in the 

blocked region, which alm ost com pletely supresses the Rayleigh line . 6

100%

80%

c
'% 60% 
( 0

E</>
|  40%
h-

20%

0%
600550500450400

W avelength (nm)

Figure 3.2 Plot of transmission against wavelength for the 'super notch plus' 

holographic filter.

The excellen t stray  light rejection provided by holographic notch 

filters  make it possible to  employ a single grating spectrograph w ith its
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associated high throughput instead of using slow  double o r trip le 

grating spectrographs previously required . 7  Indeed, earlier ROA 

instrum ents incorporating single grating spectrographs sacrificed low
O Q

wavenumber capability fo r high throughput. ’ In Glasgow, a 24S.671 mm 

focal length  f/4 .1  single grating spectrograph is used. The sca tte red  

ligh t en ters through an adjustable s lit  and is collim ated and deflected  

a t an angle of 20° on to  a plane reflecting holographic grating. This 

grating has 1 2 0 0  grooves per mm and disperses the sca tte red  ligh t onto 

a cam era m irror which focusses the dispersed light in to  the detection  

system . The reflective efficiency of the grating is ~ 60% a t the 514.5 nm.

The detection system  is based upon a cooled, back-th inned 

back-illum inated CCD d e tec to r . 1 0 - 1 2  The use of a CCD de tec to r 

rep resen ts an improvement on earlier m ultichannel d e tec to rs , such as 

intensified diode arrays, fo r a number of reasons. A CCD d e tec to r is 

based upon a tw o-dim ensional array th a t m easures bo th  the  in tensity  

against wavelength and against s lit  height; whereas earlier m ultichannel 

d e tec to rs  only m easure intensity  against wavelength since they only have 

a single line o f elem ents. This advantage is realized by the process o f 

binning. Binning simply involves selectively combining all the d e tec to r 

elem ents in a given row into a single charge packet and w orks because 

although the signal is proportional to  the num ber of pixels in a row 

the noise is only proportional to  the square ro o t o f th a t num ber . 1 0  

Furtherm ore, the  CCD cam era has extrem ely low readout noise and, 

unlike o ther de tec to rs, requires no intensification stage  which degrades 

the SNR. By back-thinning the CCD chip and utilizing back-illum ination 

a quantum  efficiency of ~ 80% can be achieved a t  514.5 nm com pared 

with only 20% of conventional CCD’s, as depicted in Figure 3.3, and over 

the wavelength m easured in an ROA experim ent th is value is a lm ost 

constan t so no intensity calibration is required . 1 0 - 1 2  The CCD is cooled
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to  200 K reducing the therm ally generated dark cu rren t to  only 0.14 

electrons per second making this source of noise a lm ost negligible. To 

maximise the spectra l coverage the CCD is oriented w ith its  long axis 

parallel to  the direction o f dispersion of the spectrom eter. Thus, fo r 

the  CCD cam era of 385 by 578 pixels used in Glasgow a spectra l 

coverage of ~ 1150 cm - 1  is possible for a 1200 grooves per mm grating.

90
CCD Spectral Response

30
Back

Thinned70

60

50

40 Standard
-u v
Option30

20

10

900 1000 1100700 800600500400300
X (nm)

Figure 3.3 Typical response curves for standard and back-thinned CCD 

detectors

3.2 Computer Control and Spectral Acquistion

The whole process o f spectra l acquisition is driven by a high speed 

Dell personal com puter. I t con tro ls the synchronisation o f the EOM and 

CCD d e tec to r and is linked to  a high reso lu tion  m onitor and laser 

printer. A custom ised version o f Lab Calc is used fo r data  acquistion 

and any spectra l m anipulations.
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The sequence of acquisition begins with the rese tting  of the  EOM 

and the amplifier. A signal is then sen t from  the com puter to  the 

m odulator telling it  to  produce right circularly polarized light. At the 

same in stan t the CCD cam era chip is cleared and the sh u tte r  opened to  

perm it the detection of the righ t circularly polarized sca tte red  light.

The sh u tte r rem ains open fo r a predeterm ined exposure tim e before the

row s of data  are vertically binned. This exposure tim e is chosen so th a t 

the chip is nearly satu rated  to  maximise the SNR obtained. The data 

from  the CCD are sen t to  the com puter and s to red  in the  memory in a 

specially created file for the righ t circularly polarized Raman spectra.

The chip is cleared again and a signal sen t to  the m odulator initiating a

sw itch to  le ft circular polarization. Again a fte r the p rese t exposure time 

has elapsed the sh u tte r closes and the data are binned and transferred  

th is time to  a specially created file fo r le ft circularly polarized Raman 

spectra  in the com puter memory. The le ft and righ t circularly polarized 

Raman spectra  are then sub tracted  from  one another, s to red  in the 

memory and the difference displayed on the  com puter screen. This 

sequence is repeated with each additional acquisition pair being added to  

those previously sto red  in the memory. The ROA spectrum  appears on 

screen th roughout the spectra l acquisition so th a t sm all o ffse t 

ad justm ents can be made to  the  am plifier to  co rrec t fo r any 

inaccuracies in the incident polarization s ta tes .

3.3 Artifact Control

Since ROA is such a weak phenomenon, typically th ree  to  four 

orders of m agnitude sm aller than the associated  Raman e ffec t which is 

itse lf  weak, its  m easurem ent tends to  be prone to  a rtifac ts . A rtifacts 

are spurious scattering  differences fo r right and le ft circularly polarized 

light th a t are no t due to  the chirality of the sample, usually taking the
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form  of sharp S-shaped signals on strongly  polarized Raman bands in 

the ROA spectrum . The elimination or reduction o f a rtifac ts  is one of 

the main goals for ROA instrum entation. Indeed, it  was only a fte r the 

origin of the major sources of a rtifac ts  were understood in term s of 

the  polarization dependence o f the m olecular polarizability contributions, 

which revealed th a t strongly polarized Raman bands were the  m ost 

susceptib le  to  a rtifac ts, th a t the f irs t genuine ROA m easurem ent was 

m ade . 1 3

The main sources of a rtifac t generation are the  deviation o f the 

polarization o f the incident ligh t from  precisely righ t and le f t circularity 

which introduces an elliptical polarization and the  differences betw een 

the degree of ellipticity introduced into the  tw o circular s ta te s . 3 , 1 4  

These problem s arise mainly as a re su lt of incorrect alignm ent of the 

EOM, residual linear birefringence in the optical elem ents especially the 

m odulator and the refraction th a t occurs a t all angled surfaces. The 

EOM as discussed in section 3.1 is both  tem perature stab ilised  and 

supplied with an extrem ely stab le and accurate voltage in an a ttem p t to  

improve the degree of circular polarization. The problem  of residual 

linear birefringence, the re tardation  o f one linearly polarized com ponent 

w ith respect to  its  orthogonal com ponent, is reduced by employing 

high quality s tra in -free  quartz  th roughout the optical train , except fo r 

the Lyot depolarizer and the collection lens.

A num ber o f o ther mechanisms fo r the generation o f a rtifac ts  have 

also  been proposed . 3 , 1 4  Backreflected incident ligh t from  the  w alls of 

the sam ple and o ther optical elem ents can travel back in to  the  laser 

cavity causing a deterioration in the degree o f linear polarization o f the 

laser light. This problem  is com batted by coating all the  optical 

elem ents except the sam ples cell w ith an ti-reflec tion  coatings and
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placing tw o aperatures in the optical train. A nother problem  is th a t an

optically active sam ple will ro ta te  the plane o f polarization and

subsequently  generate a rtifac ts  although th is problem  can be reduced by

using a sm aller pa th length  sample cell. D ust particles in the sam ple can

introduce baseline o ffse ts  or slopes into the  ROA spectrum  due to

excessive stray  light. For backscattering ROA a rtifac ts  are greatly

reduced com pared to  righ t-ang le  scattering  as the cone of collection

displays ro ta tional symmetry cancelling o u t some o f the sources of 
ISa rtifa c t generation.

Raman
coo'

ROA

0

- lL-A lany l-L -a lan ine cm

1700150013001100900700

Figure 3.4 Backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

L-alanyl-L-alanine in water.
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Despite the precautions mentioned above the backscattered  cone of 

light will s till contain some linear contam inants and w ithou t the Lyot 

depolarizer and collim ating lens the ROA spectrum  would be swamped 

with artifac ts. The Lyot depolarizer is m ounted on a ro ta ting  block and 

the optimum depolarization position is found by testing  against a 

strongly  polarized band a t  ~ 8 8 6  cm - 1  in L-alanyl-L-alanine until the 

a rtifac t is appropriately suppressed as shown in Figure 3.4. Certain 

depolarizer positions may introduce slopes and baseline o ffse ts  so care 

m ust be taken to  avoid this.

3.5 Calibration

The spectrom eter employed in Glasgow scans through the  spectrum  

in units of wavelength (nm) b u t Raman and ROA spec tra  are 

conventionally presented in term s of wavenumber sh ifts  (cm-1) from  the 

exciting wavelength. Thus, the following expression is required to  

convert betw een the tw o units and calibrate the instrum ent.

where Av is the wavenumber sh ift o f the Raman band from  the 

exciting line. The f irs t term  in the bracket converts X0 , the exciting 

wavelength, from  nanom eters into wavenumbers. The second term  

converts Xc , the wavelength setting  o f the spectrograph, in to  

wavenumbers and is combined w ith a correction term , (c -a )d , which is 

used to  calibrate  the instrum ent. In th is correction term  c is the  pixel 

on the CCD cam era th a t corresponds to  the wavelength se ttin g  on the 

spectrograph, a is the actual pixel th a t is measuring ligh t of th a t 

wavelength and d is the dispersion across the  chip in nm per pixel. The 

dispersion is calculated by measuring the num ber of pixels betw een tw o

Av
(c - a ) d  + Xc

1
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widely spaced bands occurring a t known wavenumber. The actual 

calibration is achieved, w ith a-pinene as a standard, by making sm all 

variations to  d, c and Xc until good agreem ent is obtained w ith the 

reference spectrum . This process is repeated fo r a num ber o f d ifferen t 

spectrograph settings and provides an accuracy o f ± 2  cm - 1  fo r the peak 

wavenumber o f Raman bands.

3.6 Instrument Performance

There are five main criteria  th a t determ ine the  perform ance of a 

ROA instrum ent. These are the sensitivity, the speed o f acquisition, the 

spectra l resolution, the wavenumber range covered and finally the 

con tro l of a rtifac ts  already discussed in section 3.4. It is possib le  with 

the curren t experim ental se t-u p  to  de tec t signals w ith AICP-values as
 r

sm all as ~ 10 . This degree of sensitivity is certainly adequate fo r

studying carbohydrates which typically give rise to  signals w ith 

AICP-values ~ 10”4-

The acquisition tim es fo r ROA spectra  depend upon the  concentration 

of the sample, the s treng th  o f the signals and the  SNR required. An 

example of the speed and reliability o f the cu rren t backscattering  ROA 

instrum ent is shown in Figure 3.5 where the  ROA spectra  o f the  tw o 

enantiom ers of trans-p inane are displayed a f te r  1 0  m inutes along with 

the spectra  acquired a fte r only 20 seconds o f one enantiom er. M ost of 

the prom inent ROA signals are already identifiable a fte r th is sh o rt time. 

Note also the excellent m irror symmetry betw een the spec tra  o f the 

tw o enantiom ers which re flec ts  the reliability o f the m easurem ent. A 

typical m ono- or disaccharide ROA spectrum  can be obtained in one o r 

two hours w ith all the key features identifiable a fte r abou t 1 0  m inutes. 

However, for polysaccharides which are m easured a t much low er
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Figure 3.5 Backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of neat 

(1S)-(-)-trans-pinane recorded in 10 min (top) and backscattered 

ROA spectra of (1R)-(+)-trans-pinane acquired in 10 min (middle) 

and 20 s (bottom).
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concentrations, it can take upto 24 hours to  achieve an acceptable SNR. 

The dead time of the instrum ent is only ~ 0.55 seconds per m odulation 

cycle.

The spectra l reso lu tion  is determ ined principally by the dispersion o f 

the grating and the w idth o f the spectrograph entance s lit. W ith the 

1200 grooves per mm grating currently  in use in Glasgow a reso lu tion  

o f ~ 2.8 cm - 1  is possible fo r a s lit w idth of 10 pm a t 500 nm . 1 

Widening the entrance s lit increases the am ount of ligh t entering the 

spectrograph, and thus the Raman intensity, b u t degrades the  resolution. 

Therefore, a suitable balance betw een Raman intensity  and spectra l 

resolution m ust be struck. For carbohydrates a s lit w idth o f 120 pm is 

employed which corresponds to  a spectra l band pass of 12.3 cm - 1  a t  

540 nm. The s lit height is also variable betw een 1 mm and 8  mm 

although in principle it should no t effec t the  resolution, opening the 

s lit height does increase the Raman intensity  while a t the sam e time 

allowing more stray  light to  en ter the spectrograph.

One o f the difficulties encountered in backscattering  ROA 

m easurem ents is the large am ount of stray  light th a t is p resen t as a 

consequence of the scattering  geometry. U ntil recently  high levels of 

stray  light have restric ted  backscattering ROA m easurem ents to  a low er 

lim it o f ~ 600 cm - 1  for biological sam ples . 1 6  However, im provem ents in 

holographic filte r technology have led to  the replacem ent o f edge filters  

w ith notch filters. These notch filters  have a higher optical density in 

the blocked region so providing b e tte r  suppression of the Rayleigh line 

and cu t-o ff  closer to  the Rayleigh line and w ith a sharper edge . 4 - 6  

Thus, incorporating new m odels of holographic notch filte rs  the  low er 

lim it on backscattering ROA m easurem ents has been successfully  

lowered over the course of this project firs t to  ~ 350 cm - 1  and then
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~ 250 cm 1 on typical biological sam ples such as carbohydrates and 
17 18am ino-acids. ’ To date only prelim inary backscattering  ROA 

m easurem ents have been made in the region above 2 0 0 0  cm - 1  due to  

the d ifficulties encountered with weak signals and strongly  polarized 

bands . 1 9
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Chapter 4 

Carbohydrate Stereochemistry

In this chapter those aspects o f carbohydrate stereochem istry  

relevant to  the ROA studies in the following chapters will be

introduced together w ith some of the physical m ethods available for 

studying saccharide s tru c tu ra l system s.

4.1 Monosaccharides

The m onosaccharides are regarded as the sim plest carbohydrate units 

as they cannot be hydrolysed into sm aller carbohydrate m olecules. They 

have the general empirical form ula (CH 2 0 ) n , although su b stitu en ts  

containing nitrogen, sulphur and phosphorous atom s o ften  appear in 

nature. The sm allest molecules th a t exhibit the  typical physical

p roperties usually associated with carbohydrates are glyceraldehyde and 

dihydroxyacetone shown in Figure 4.1. Both contain th ree  carbon atom s 

and for this reason are known as trioses. Glyceraldehyde contains an

aldehyde functionality and belongs to  the general c lass of

m onosaccharides known as the aldoses. Dihydroxyacetone contains a

ketone functionality and is therefore called a ketose. Furtherm ore, 

glyceraldehyde has a chiral centre a t carbon atom  2  so it can ex ist in 

tw o enantiom eric form s. These two form s are designated D and L 

referring to  the absolute configuration of the chiral centre. In general, 

the designators D and L refer to  the absolu te  configuration o f the 

chiral centre fu rth es t from the aldehyde o r ketone group with D

referring to  s tru c tu res  w ith the hydroxyl group a t th is position on the

right hand side of the Fischer projection and L on the left. A lm ost all

naturally  occurring carbohydrates have the D configuration.
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o H 0 H

H— C— OH HO— C— H c=o
c h 2oh

D-Glyceraldehyde
(An aldose)

CH2OH
L-Glyceraldehyde

(An aldose)

CH2OH
Dihydroxyacetone

(A ketose)

Figure 4.1 Structural formulae of D- and L-glyceraldehyde and dihydroxyacetone.

Sugars with four, five or six carbon atom s are known as te tro ses , 

pentoses and hexoses, respectively. For aldose sugars w ith four carbon 

atom s there are tw o chiral cen tres resu lting  in four possible 

stereoisom ers, two belonging to  the D -series and tw o belonging to  the 

L-series. Likewise, for the aldose sugars with five and six carbon atom s

there are a to ta l of eight and sixteen possible stereoisom ers,

respectively. The s truc tu res  and numbering system  employed for the 

stereoisom ers of aldose sugars belonging to  the D -series are depicted in 

Figure 4.2. (Note th a t the o ther stereoisom ers belonging to  the  L-series 

are simply m irror images of those shown in Figure 4.2.) The ketose 

sugars have one few er chiral centre  which means th a t there  is only half 

the num ber of possible stereoisom ers as shown in Figure 4.3.

The m onosaccharides th a t have been studied by ROA and which are 

discussed in detail la te r fall into three general categories: the

aldohexoses, the aldopentoses and the ketohexoses. The pyranose form s 

of these m onosaccharides d iffer from  one ano ther in the  presence and 

position of substitu tion  of an exocyclic hydroxymethyl group. The 

aldohexoses have an exocyclic hydroxymethyl group su b stitu ted  a t 

carbon atom  5, the aldopentoses lack any such group and for the

ketohexoses this group is found on the anomeric carbon as depicted in
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Figure 4.2 The structure and numbering system employed for the stereo­

isomers of the aldose sugars belonging to the D-series.

CH.OH

CHjOH

CH.OH

HCOH

CH.OH
B -E rn h n ilo M

CH.OHCH.OH

C = 0

HCOH

CH.OH CH,OH
B-XytulOM

CH.OH CH.OH

feJo
CH.OH CH.OH

C = 0 C = 0

HCOH HOCH HCOH HOCH

HCOH HCOH HOCH HOCH

HCOH HCOH HCOH HCOH

CH.OH CHjOH
D -S o rto M

CH.OH

Figure 4.3 The s t r u c t u r e  a n d  n u m b e r i n g  s y s t e m  e m p l o y e d  f o r  t h e  s t e r e o ­

isomers of t h e  k e t o s e  s u g a r s  b e lo n g i n g  t o  t h e  D - s e r i e s .
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Figure 4.4. These struc tu ra l differences can have a major influence on 

the anomeric populations, the chair conform ations and the 

pyranose-furanose equilibria adopted by m onosaccharides falling in to  

these three d ifferent categories. In addition, it is w orth noting th a t the 

ketohexoses have a d ifferent atom  numbering scheme to  the  aldohexoses 

and aldopentoses (Figure 4.4).

OH MH:OH

Figure 4.4 The basic structural formulae of the aldohexoses, aldopentoses and 

ketohexoses.

4.1.1 Ring Conform ations

In solution, the predom inant form  of the pentose and hexose sugars 

is n o t an open-chain, ra ther the sugars cyclise in to  five or six 

m embered rings via intram olecular hem iacetal or hem iketal form ation 

betw een either an aldehyde or ketone functional group, respectively, and 

an alcohol functional group . 1 On cyclisation a new chiral centre is 

created  so th a t two epimeric sugars, called anom ers, can be form ed. 

For the D -sugars which form six membered rings one o f the anom ers 

has the  hydroxyl group a t the newly created chiral centre  in an axial 

orientation and is known as the a-anom eric form  while the o th er has 

th is group in an equatorial orientation and is known as the p-anom eric 

form. (Note th a t these anomeric designators are reversed fo r the 

L -sugars.) The properties of the anomeric centre is an im portan t featu re
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of carbohydrate stereochem istry and will be d iscussed in m ore detail 

la ter.

In carbohydrate nom enclature six membered rings are given the

suffix  ’pyranose’ reflecting the ir sim ilarity to  the  heterocyclic compound

pyran. It is well known th a t fo r a lm ost all m onosaccharides the chair
1 2conform ation of the pyranose ring has the low est energy. * In th is

particu lar conform ation bonds may have either an axial orientation,

approxim ately perpendicular to  the plane o f the  ring, o r an equatorial

orientation, approxim ately in the  plane of the ring. Bulky su b stitu en ts

will preferentially  adopt an equatorial over an axial orien tation  as th is

relieves unfavourable 1,3 diaxial in teractions . 1 The tw o types o f bond are

interconverted, w ithout the cleavage of any bonds, by the process of 
1 2pseudorotation ’ so for each m onosaccharide tw o d is tin c t chair form s 

w ith d ifferent energies are possible as depicted in Figure 4.5.

4 CH2O H , o OH

OHOH

Figure 4.5 The two chair conformations of oc-D-glucose.

When classifying pyranose ring conform ations the le tte r  C is used to  

designate a chair form. To fully specify the conform ation tw o num bers 

representing the atom s th a t lie above and below the b e s t plane defined 

by the remaining ring atom s are w ritten  as super- and subscrip ts, 

respectively. The b est plane is chosen so th a t the low est numbered ring 

carbon atom s are displaced from  the plane. Thus, fo r an aldohexose
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such as a -D -g lucose  (Figure 4.5) the tw o chair form s are designated 

and 1 C 4  with the form er predom inating as sm aller su b stitu en ts  will 

be involved in 1,3 diaxial interactions.

Five membered carbohydrate rings are given the  suffix  ’furanose’ 

reflecting the sim ilarity to  the heterocyclic com pound furan. Furanose 

rings exhibit a much g reater degree of conform ational flexibility than
9

pyranose rings as the barriers to  ro ta tion  are substan tia lly  lower. The 

m ost im portan t conform ations of the furanose rings are the envelope 

and tw is t form s. The envelope form s have one atom  removed from  the 

b e s t plane and are named according to  w hether th is atom  lies above or 

below  the b est plane by using a super- or a subscrip t, respectively. The 

tw is t conform ations have tw o atom s removed from  the b e s t plane and 

are named in a sim ilar manner to  the pyranose chair conform ations 

except th a t only three atom s lie in the b e st plane. Bulky su b stitu en ts  

on furanose rings will preferentially  adopt a pseudo-equatorial 

orientation, in which the C-O bonds move tow ard the  plane o f the ring, 

over a pseudo-axial orientation on steric  grounds.

4.1.2 M utarotatlon

M onosaccharides do not occur exclusively as a single anom er or

solely as a pyranose or furanose ring in solution. This is a consequence
1 2of the  process of m utaro tation  ’ which occurs spontaneously in the 

presence of w ater and involves the breaking o f the labile hem iacetal 

bond in the case of aldose and pentose sugars, o r the hem iketal bond 

in the  case of ketose sugars, as shown in Figure 4.6 fo r D -fructose. 

Each time th is bond is broken the m onosaccharide may adopt a 

d ifferen t tautom eric form and this process continues until finally an 

equilibrium m ixture of a -  and p-anom ers, pyranose and furanose rings
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and also the open-chain form is reached. The com position o f th is 

therm odynam ic equilibrium is determ ined by the  balance of steric  and 

electronic forces acting on the molecule, the  m ost im portan t o f which 

is the anomeric effect.

H O C H

h
2 o
H  H O

O H

C H ,O H

H O C H , C H ,O H

O H  H
/?- D-fructo fu ranose

h.Sn̂ ,

H O C H ,

„°»o
H N1 - f  O H

O H  H 

a-D-fructofuranose

H O

O H  

H H °

O
II
C.

/h ,o

C H ,O H

H O H
open-chain form 

o f fructose
H;0 ^

O H
O

\ H’°

-O H

O H  C H 2O H

/?- D- fructopvranose

H O

O H

O H
O

C H ,O H

O H

a-D-fructopyranose

Figure 4.6 The mutarotation of D-fructose.

4.1.3 The Anom eric E f fec t

By comparing the situation in carbohydrates w ith th a t in 

cyclohexanol it  m ight be expected th a t the  hydroxyl group on the 

anomeric carbon would preferentially  adopt an equatorial orientation on 

steric  grounds. However, this is no t the case on account o f an 

e lec tro sta tic  interaction known as the anom eric e ffec t in which the

presence of a ring oxygen provides an additional stab ilisation  to  the
1  “Saxial orientation of the hydroxyl su b stitu en t a t th is position. 

A lthough th is e ffec t was firs t identified in carbohydrate chem istry it is
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now recognised as being of more general im portance in all molecules
3-5having two heteroatom s linked to  a te trahedral centre.

There are two widely accepted rationalisations fo r the  anomeric 

effect. The f irs t of these invokes the  d ipole-dipole in teraction betw een 

the C -O -C  bond on the ring and the C l-O  bond. When the  C l-O  bond 

is in an equatorial orientation the angle betw een the dipoles is sm aller 

than for an axial orientation, as depicted in Figure 4.7, and the 

molecule has a higher energy. However, this model does no t account 

quantitatively for observed axial preferences and does no t predict the 

bond length and angle changes th a t occur around the anomeric cen tre  in 

carbohydrates . 6  A second mechanism th a t explains the observed 

lengthening of the exocyclic C l-O l bond and the  shortening of the 

endocyclic Cl-OS bond in the crystal s tru c tu re s  o f carbohydrates 6  

involves delocalisation or back-donation o f 7t-electrons from  the 

lone-pair orbital on the ring oxygen to  the anti-bonding orb ital o f the 

exocyclic C l-O l bond. The axial orientation o f the  hydroxyl group is 

b e tte r suited to  this delocalisation because the  C l-O l bond lies in the 

same plane as the lone-pair orbital o f the ring oxygen. I t is m ost 

likely in carbohydrate system s th a t both  these  mechanisms are 

contributing to  some degree.

Figure 4.7 The dipole-dipole interaction mechanism for the explanation of the

OH

anomeric effect.
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The magnitude of the anomeric e ffec t is influenced by th ree  main
3—Sfactors: the nature of the anomeric substituen t, the su b stitu en ts  a t

the o ther chiral centres and the solvent. It has been found th a t the 

polarity of the C l-X  bond is fairly strongly  correla ted  to  the s treng th  

of the anomeric e ffec t . 1 Thus, the halogens give the la rg est effect, 

hydroxyl groups are interm ediate and species such as quaternary

pyridinium cations in fac t display a reverse anomeric e ffec t where the 

axial orientation is destabilised relative to  the equatorial orientation. 

The su bstituen ts  on adjacent carbons can also have an im portan t

influence in w hat is known as the A2 effect. This involves an instability 

brought about by an axial substituen t on the carbon adjacent to  the 

anomeric centre on the equatorial orientation o f the anomeric

substituen t. Solvents with large dielectric constan ts, such as w ater, have 

been found to  exhibit sm all anomeric e ffects  w hilst those w ith sm all 

dielectric constan ts, such as chloroform , exhibit large anomeric e ffe c ts . 1

4.2 Disaccharides

Disaccharides are composed of two monosaccharide units joined 

together by a C-O-C bond known as the glycosidic link as illu s tra ted  

in Figure 4.8 fo r D -m altose. This link always involves the anomeric 

carbon of one of these monosaccharide units which is known as the 

non-reducing residue as the linkage traps it in e ither the a -  or 

3-anomeric form. The second unit is free to  m u taro ta te  and is known 

as the reducing residue. The term s reducing and non-reducing refe r to  

the ability of the corresponding open-chain form, which will only be

presen t in sm all quantities if the residue is m utarotating, to  reduce
^  2+  •Cu ions.
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To fully specify a disaccharide s tru c tu re  the following inform ation is 

required: the type of m onosaccharide residues, the  order of residues, the 

linkage type and the linkage configuration. The linkage type refers to  

the carbon atom s th a t are involved in the linkage which will be the 

anomeric carbon of the non-reducing residue and any one o f the carbon 

atom s of the reducing residue th a t carries an hydroxyl substituen t. The 

linkage configuration can be specified as either a  or 3  depending on 

the anomeric configuration in which the non-reducing residue is trapped.

Non-reducing residue

Reducing residue

H O OHT J £  CHjOH^o

Maltose a(1-4)

Figure 4.8 Structural formula and atomic numbering scheme of D - m a l t o s e .

The glycosidic link is the m ost im portan t single fea tu re  in

determining di—, oligo- and polysaccharide stereochem istry. Two torsion

angles can be used to  describe the linkage conform ation. The torsion

angles <p and ip are defined as H l-C l-O l-C l’ and C l-O l-C i’-H i’,

respectively, where a prime represents the reducing residue and i is the 

carbon atom  of the reducing residue involved in the link (Figure 4.8). A 

special case is disaccharides linked through the hydroxymethyl group of 

the reducing residue. In this situation there are three bonds in the link 

and three torsion  angles cp, t]; and to th a t need to  be defined. For these
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(1-6) linked species <p, ij> and w are defined as H1-C1-01-C6', 

C l-O l-C b’-CS’ and O l-Ch’-CS’-OS’, respectively.

4.3 Polysaccharides

Biological m olecules such as proteins, nucleic acids and 

polysaccharides generally adopt higher o rder s tru c tu res  which define 

their m olecular properties and biological activity . 1  The prim ary s tru c tu re  

of a polysaccharide is determ ined by the identity  o f the co n stituen t 

m onosaccharide residues and by the  type and configuration o f the 

glycosidic linkages which connect them . O ften the prim ary s tru c tu re  is 

characterised by a simple repeating unit consisting of betw een one and 

five residues. The secondary s tru c tu re  is partially  determ ined by the 

ring conform ation of the  individual residues b u t more im portantly  by

the individual torsion  angles, 9  and i}>, about the glycosidic link which

specify the relative orientations of adjacent m onosaccharide rings.

Polysaccharides may under certain conditions adopt ordered secondary 

stru c tu res  which are characterised by fixed values of the glycosidic

to rsion  angles, ra ther than a s ta tis tica l d istribution  as found in random
4 2

coils. ’ Such ordered s tru c tu res  are prom oted by favourable 

non-covalent interactions, which o ften  involve co-operative processes, 

and in some cases may pers is t even in aqueous solution. The form ation 

of ordered s tru c tu res  are inhibited by fac to rs such as e lec tro sta tic  

repulsions, irregular primary stru c tu res, chain branching and loss of 

conform ational entropy. Examples include cellu lose which in the  solid 

s ta te  adopts an extended ribbon-like conform ation and V-amylose, 

agarose and laminarin which adopt single, double and trip le  helical 

s truc tu res, respectively.
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Unlike certain  o ther biopolymers such as proteins, polysaccharides 

are polydisperse . 1 , 7  This means th a t they have no d istinc t m olecular 

w eight and instead exhibit a range of values so th a t only a d istribution  

about a mean value may be specified. This d istribu tion  is found to  

depend on the source, the m ethod of m olecular w eight determ ination 

and the m ethod of isolation of the polysaccharide.

There are a num ber of possible ways of characterising the  s tru c tu re  

of polysaccharides. They can be subdivided into linear and branched 

chains, the difference being th a t branched polysaccharides contain a 

num ber of residues th a t are glycosidically linked to  th ree  o thers, which 

form  the branching points, whereas in linear polysaccharides each 

residue is attached to  only two others, w ith the  exception of the 

term inal residues. Also, if the constituen t residues are all o f the same 

type then the polysaccharide is known as a homoglycan; b u t if there are 

tw o or more types o f residue p resen t the polysaccharide is called a 

heteroglycan. The sequence of residues may also  be classified into three 

general types: periodic, in terrupted  and aperiodic. Polysaccharides w ith a 

periodic sequence have the residues arranged in a regular repeating unit, 

such as in amylose. In terrup ted  sequences also  have regions of regular 

repeating units b u t they are separated by regions th a t have no regular 

s truc tu re , such as carrageenan fo r example. Finally, aperiodic sequences 

are characterised by irregular sequence o f residues, linkage type and 

configuration, such as are found in the carbohydrate chains of 

glycoproteins.

Glycoproteins consist o f carbohydrate chains covalently linked to  

polypeptide chains. The mode of linkage is usually either N-glycosidic, 

betw een the anomeric carbon of the reducing end of the glycan chain 

and the nitrogen atom  of the amide group of an asparagine residue, or
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O-glycosidic, between the anomeric carbon o f the reducing residue o f 

the glycan chain and the oxygen atom  of the hydroxyl group of serine,
O

threonine, hydroxylysine or hydroxyproline residues. The glycan chains 

perform  tw o major ro les of which one is to  im part particu lar 

physiochemical properties on the protein and the o th er is to  ac t as 

signals for cell surface recognition events.

4.4 Physical Methods

4.4.1 X -R ay Crystallography

X -ray crystallography is capable of yielding com plete s tru c tu ra l 

inform ation, to  atomic resolution, on any carbohydrate th a t can be 

obtained in the crystalline form. U nfortunately, the  crystal s tru c tu re  

may deviate significantly from th a t found under physiological conditions. 

To make m atters  worse, carbohydrates are flexible m olecules th a t 

usually ex ist as an equilibrium m ixture o f more than one conform ation 

in so lu tion 9  bu t only a single conform ation will be p resen t in the 

crystal. This flexibility also  has the consequence of making 

carbohydrates d ifficult to  crystallise. To date no single crystal o f an 

oligosaccharide containing more than four residues has been obtained, 

w ith the notable exception of the cyclodextrins . 1 0  This la s t problem  can 

be circum vented by co-crystallising an oligosaccharide com plexed to  a 

suitable protein recep tor 1 1  b u t often  this com plexed form  does n o t 

rep resen t the low est energy conform ation of the  free oligosaccharide.

Polysaccharides are not usually amenable to  x-ray crystallography fo r

the reasons discussed above. However, if they can be prepared as fibres

in which the m olecular axes are all aligned approxim ately parallel then
12fibre d iffraction techniques can be applied. A num ber o f
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polysaccharides have been studied in th is m anner and the re su lts
12 13in terpreted  w ith the aid of potential energy calculations. ’

In a sm all number of special cases the  carbohydrate chains in 

glycoproteins can be resolved by x-ray crystallography as a re su lt o f 

the s trong  in teractions between the polypeptide and carbohydrate chains,
4 4 4 Q

which serve to  re s tric t the flexibility of the carbohydrate chain. ’

4.4.2 Nuclear M agnetic Resonance

Nuclear magnetic resonance (NMR) is one of the m ost pow erful

m ethods fo r determ ining the solution stereochem istry  o f biopolym ers.

However, the power of NMR techniques is dependent on the num ber o f

resonances th a t can be assigned and even though few er resonances

appear in carbohydrate 1H NMR spectra  than in those  of either proteins

or nucleic acids a lm ost all lie in an extrem ely narrow  chemical sh ift
1 6 -1 8region (3.5 to  4.0 ppm) with the consequent overlap problem . One

exception are the anomeric protons which resonate  a t lower field due to

the electron-w ithdraw ing properties o f the ring oxygen. These well

defined resonances are of some use in determ ining anom eric populations

and ring conform ations in m onosaccharides . 1 9  However, in general

tw o-dim ensional techniques are no t only desirable b u t a prerequisite fo r
18the elucidation of di-, oligo- and polysaccharide stereochem istry. 

Indeed, it has even been proposed th a t th ree - and four-dim ensional 

techniques be applied to  the problem s associated  w ith resonance overlap 

in carbohydrates . 2 0 , 2 1

As mentioned earlier the glycosidic link is probably the m ost 

im portan t single feature in determ ining di-, o ligo- and polysaccharide 

stereochem istry. NMR provides two main m ethods fo r studying the
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conform ation of the glycosidic link: the nuclear O verhauser enhancem ent 

(NOE) effect and spin-coupling co n stan ts . 1 6 - 1 8 , 2 2 , 2 3  The NOE effec t is 

governed by a through space interaction betw een tw o nuclei the size o f 

which depends on their separation. Thus, the  distance betw een tw o 

pro tons across the glycosidic link can be determ ined and subsequently 

converted into a range of 9  and (j; torsional angles provided assignm ents 

for suitable nuclei are available. The NOE e ffec t is dependent on r -6 , 

where r  is the in ter-p ro ton  distance, which means th a t sh o rt 

separations will tend to  be over-represented. M easurem ent o f more than 

one NOE can introduce greater confidence in the re su lts  obtained b u t 

unfortunately due to  the short range o f the e ffec t o ften  only one NOE 

can be observed in carbohydrates. Another problem  is the tim e-averaging 

experienced by the NOE signals as the ro ta tion  about the bonds o f the 

glycosidic link is occurring fa s t on the NMR tim escale. This re su lts  in 

a value for the NOE th a t represents an average o r ’virtual* conform ation

of the molecule which may bear no relationship  to  the  conform ations
23th a t actually ex ist in solution. Finally, as the NOE e ffec t is dependent 

on the ra te  of tumbling, for medium sized oligosaccharides the  e ffec t 

can be very weak or even zero.

The data  obtained from  NOE m easurem ents can be supplem ented by
16—18 22 23m easurem ent of coupling constan ts across the glycosidic link. ’ ’

These m easurem ents are som ewhat res tric ted  by the insensitivity o f 

coupling constan ts  to  torsional angles and a poor understanding of the ir 

precise variation in carbohydrate system s. In addition, like NOE data, 

coupling constan ts  will be tim e-averaged. Usually, NMR re su lts  are 

coupled to  potential energy and m olecular dynamics calculations which 

model the dynamics o f the system. Such com putations can then give 

meaning to  the data collected from NOE and spin-coupling constan ts.
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The overlap problem mentioned above for 1H NMR can be alleviated 
13by applying C NMR which has a much larger chemical sh ift dispersion 

(0 - 2 0 0  ppm) b u t w ith approxim ately tw o orders o f m agnitude low er
13sensitivity. A lthough C NMR is detectab le in bo th  solution and the

solid s ta te  it  is m ost readily observed in the cross po larization /m agic

angle spinning (CP-MAS) spectra  of solids. I t has been found th a t  the
13chemical sh ifts  of the glycosidic carbon atom s in the C NMR spectra

are dependent upon conform ation and a ttem p ts  have been made to

correla te  these chemical sh ifts  with the glycosidic torsion  angles of
24-28re la ted  carbohydrates obtained from crystallographic data. Once

correlations have been form ulated it is then possible to  use them  to  

determ ine the conform ation of polysaccharides in gels and sam ples of 

low crystallinity  where no crystallographic flata are available. One 

problem  th a t arises in this technique is the fac t th a t o ther fac to rs  such 

as hydrogen bonding, dipolar interactions and ring cu rren t in teractions 

make it d ifficult to  disentangle conform ational effects.

4.4.3 Conventional Chiroptical Techniques

The tw o chiroptical techniques m ost commonly applied to
29 30—32carbohydrates are CD, and optical ro ta tion . For unsubstitu ted

carbohydrates the only chrom ophores p resen t are the C-O and O-H

groups which absorb below 190 nm in the vacuum UV region. Only the

long w avelength ta ils of these bands, which provide little  stereochem ical
33inform ation, are accessible to  commercial instrum ents. Specially 

designed CD instrum ents th a t com bat the problem  of oxygen absorption 

by operating in a vacuum can be employed for studying carbohydrates. 

However, such instrum ents are expensive and since so many d ifferen t 

chrom ophores are p resent there is g reat d ifficulty  in in terpreting  the 

CD spectra. Another possible solution is to  su b s titu te  the hydroxyl
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groups with chrom ophores th a t absorb above 190 nm, b u t th is su ffers 

from the problem  problem th a t introducing new chrom ophores may a lte r  

the m olecule away from the biologically active conform ation.

Some naturally  occurring carbohydrates do possess chrom ophores,

such as sulphate, amide and carboxyl groups, th a t are accessible to

commercial instrum ents and these  have been the  m ost extensively
29studied by CD spectroscopy. The majority o f d a ta  derived from  CD 

studies on polysaccharides pertains to  their secondary struc tu re . In 

addition, because CD can be applied to  solutions, gels and film s and 

has a high degree of conform ational sensitivity it is an accepted m ethod 

for studying the transitions which polysaccharides will undergo betw een 

d ifferen t s ta tes  on altering environm ental fac to rs  such as tem perature, 

pH or sa lt concentration.

Because of the lack of general experim ental data  on the 

conform ation of the glycosidic linkage even optical ro ta tion  of the NaD 

line is regarded as useful. Based on empirical correlations a contribution 

to  the  optical ro tation  from the  glycosidic link can be isolated. 

Calculations can then be perform ed to  yield values fo r the optical

ro ta tion  for all possible <p and ij> torsion  angles and these  are com pared
30-32with the  experim entally obtained values. The crude approxim ations

inherent in this technique mean th a t only conform ational types ra th e r 

than specific conform ers can be identified. However, it does provide an 

additional source of data which can be used in conjunction w ith NMR 

and m olecular mechanics calculations to  refine the understanding of the 

linkage conform ation.
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4.4.4 Conventional Vibrational Spectroscopy

Infra-red  and Raman spectroscopy are com plem entary techniques 

which m easure absorption o r scattering  in tensities o f a particu lar 

vibrational transition  which depend on changes in the dipole m om ent 

and polarizability with respect to  the associated norm al coordinate, 

respectively . 3 4  This means th a t polar groups such as O-H, N-H or C-O 

will yield intense IR and weak Raman bands b u t th a t fo r skeleta l 

vibrations this situation is reversed. One consequence is th a t w ater has 

intense absorption bands in the IR spectrum  th a t re s tr ic ts  the  regions 

where aqueous solutions can be studied. There is no such problem  in 

Raman spectroscopy as w ater is a poor sca tte re r and does no t absorb 

the visible incident light.

The difficulties associated w ith spectra l in terp re ta tion  have ra th e r

curtailed the application of conventional vibrational spectroscopy to
35carbohydrate stereochem istry. The normal modes in carbohydrates 

generally display a high degree of coupling, due to  the sim ilarity of a 

large proportion of the vibrational coordinates, which hinders the 

assignm ent of contributions from  individual s tru c tu ra l fea tures. In 

addition, the large number of normal modes, 6 6  in glucose fo r example, 

and the sm all wavenumber separation betw een many of them  re su lts  in 

a crowded vibrational spectrum  with the consequent overlap problem . 

However, the s truc tu ra l sensitivity of vibrational techniques m eans they 

do find use as an analytical tool, especially, for su b stitu ted  

carbohydrates where the functional groups vibrate a t som e w ell defined 

group frequency and do not couple extensively w ith the o ther 

vibrational coordinates.
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4.4.5 Vibrational Optical A ctivity

Carbohydrates are particularly  favourable sam ples fo r vibrational 

optical activity studies. The complex, coupled norm al modes th a t hinder 

assignm ent of the conventional vibrational sp ec tra  are in fac t a 

prerequisite fo r strong  vibrational optical activity. The cyclic s tru c tu re  

of the individual m onosaccharide residues confers a certain  degree of 

conform ational rigidity on these m olecules leading to  stronger 

vibrational optical activity. Another fac to r is th a t the crowded nature of 

the conventional vibrational spectrum  is relieved to  som e degree as the 

ROA signals can have either a positive or negative sign. From a

practical standpoin t the high solubility in w ater and ready availability of 

carbohydrate sam ples make them  a ttractive  candidiates for study. In

particular, the availability of a large num ber of d iastereom ers allow s us 

to  probe the influence th a t each chiral cen tre  has on the vibrational

optical activity. Finally, as o ther chiroptical techniques face severe 

restric tions when studying carbohydrates little  u tility  has been made of 

the type of inform ation th a t can be forthcom ing from  such techniques.

The application of VCD to  carbohydrates has n o t been as w idespread

as for o ther biologically im portant m olecules, such as peptides and

proteins, and to  date only resu lts  on m onosaccharides have been

published. The f irs t VCD resu lts  on a -  and p-m ethyl glucoside in

D20  in the C-H  s tre tch  region (2750 to  3050 cm-1) were used to

dem onstrate  the ability of VCD to  focus on a single chiral cen tre  even
37when a large num ber of chiral centres are p resen t in the  m olecule. A

general survey of monosaccharide VCD in the  C-H s tre tch  region
38appeared a few years la te r together w ith som e correlations. Nafie e t 

al. repeated a selection of these m easurem ents and in terp re ted  the 

resu lts  in term s of the ring curren t mechanism of VCD generation. 3 9 , 4 0
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M onosaccharides have also been studied in the mid-IR region (800 to

1650 cm-1) using a FT-IR VCD instrum ent . 4 1 , 4 2  The main problem s

encountered in this wavenumber range are the s trong  IR absorption of

w ater and the lack o f sensitivity. The solvent used in these studies was

DMSO which has absorption bands betw een 950 and 1100 cm - 1

precluding VCD m easurem ents in this wavenumber range. M easurem ents

below 900 cm - 1  are not possible w ithout changing de tec to r m aterial and
36instrum ental configuration. However, th is s till leaves the region 

betw een ~ 1100 and 1500 cm - 1  where some in teresting  re su lts  have been 

obtained. In particular, a VCD signal a t ~ 1150 cm - 1  has been correla ted  

with the absolute configuration of all the chiral cen tres of the  ring. 

The normal modes responsible for this signal involve coupled C-C and 

C-O stre tch ing  coordinates and by adding pairs o f righ t and le ft helical 

contributions made by neighbouring chiral centres the sign of th is VCD 

signal can be predicted . 4 1 , 4 2  The com plem entarity o f the VCD and ROA 

mechanisms is clearly highlighted by com parison o f the  sp ec tra  of 

D-xylose and D-glucose betw een ~ 1200 and 1500 cm -1. In th is range 

the VCD spectra  of D-xylose is s tronger than th a t o f D -glucose while 

the reverse is true  for the ROA.

Only three papers devoted to  the ROA spectra  of carbohydrates had 

been published 4 3 - 4 5  prior to  the commencement o f the work presented 

in this thesis. The f irs t o f these was a preliminary study of some 

in teresting  m ono- and disaccharides which reported  on a num ber of 

prom inent ROA signals th a t appeared in their sp ec tra . 4 3  This was 

followed by a paper reporting the ROA spectra  of a - , 3~ and

y-cyclodextrin  which concentrated mainly on the enorm ous couplet 

found a t ~ 920 cm - 1  in their ROA sp ec tra . 4 4  The ROA spectra

presented in bo th  these papers are of much lower quality than those 

discussed la te r in this thesis as a t th a t time a low th roughput
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double-grating spectrom eter was s till employed and the CCD d e tec to r 

used was not back-thinned. The third paper in th is series concentrated 

on fifteen m onosaccharides and a ttem pted  to  assign ROA signals to  

stereochem ical featu res such as anomeric configuration, hydroxymethyl 

group conform ation and ring hydroxyl group disposition . 4 5  The quality 

of the  spectra  presented in this paper are approxim ately the same as 

those discussed in the following chapters of this thesis  b u t some 

problem s with the in terpreta tion  of the data  will be rectified here.
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Chapter 5

Vibrational Raman Optical Activity
of Glucose

The Raman and ROA studies d iscussed in th is chapter were 

prom pted by a general study of fifteen representative m onosaccharides 

initiated by Wen e t al. which dem onstrated th a t configurational changes 

a t even a single chiral centre can have a com prehensive e ffec t on the 

ROA. 1 Any a ttem p t to  assign ROA signals w ithin a num ber o f sugar 

m olecules belonging to  d ifferent homomorphic series can therefo re  be 

misleading. Instead, it is necessary to  consider each homomorphic series 

separately in order to  improve our understanding o f the  generation of 

ROA in m onosaccharides.

The six m onosaccharides d iscussed  in th is  ch ap te r belong  to  th e  

gluco-  hom om orphic series which share  the  sam e ab so lu te  co n fig u ra tio n  

a t  carbon  a tom s 2,3,4 and S. This p a rticu la r series  w as chosen  as a 

num ber o f d eu te ra ted  analogues o f D -g lucose  are  com m ercially  available 

and can be used to  a s s is t  in th e  a ss ig n m en t o f  ROA s ig n a ls  to  

individual s tru c tu ra l fea tu res . In addition, D -g lucose  has been ex tensively  

s tud ied  by norm al coord ina te  analyses re la tiv e  to  th e  o th e r  

m onosaccharides and is p resen t as th e  so le  c o n s titu e n t in th e  m ajority  

o f th e  d i-  and polysaccharides d iscussed  in th e  la te r  ch ap te rs . 

D -glucosam ine and 5 -th io -D -g lu co se  w ere a lso  included  in an a t te m p t 

to  determ ine the  influence o f su b s titu e n ts  o th e r  th an  hydroxyl g roups 

and th e  ro le  o f th e  ring oxygen, respectively , on th e  genera tion  o f ROA 

in D -glucose.
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5.1 Experimental

All the carbohydrate sam ples used in th is study were dissolved in

distilled  HzO to  a concentration of 4.5 M and were then allow ed to

equilibrate a t room tem perature for a t leas t 24 h. The equilibrated 

sam ples were trea ted  with charcoal to  reduce fluorescence, filtered  

through 0.45 pm Millipore membrane filte rs  into quartz

m icrofluorescence cells, and then centrifuged fo r a t leas t 15 min to  

remove any d u st particles, which may cause spurious ligh t scattering . 

Samples of D -g lucose-l-d j and D -g lucose- 6 ,6 -d 2  were supplied by 

Aldrich; 5-th io-D -glucose by Fluka; D-glucosam ine hydrochloride by 

Sigma and D-glucose by BDH. A sample of D -glucose-O -dg was 

prepared by lyophilising D -glucose from DzO solu tion  twice. During 

spectra l acquisition the laser power was ~ 700 mW a t the  sam ple and 

the s lit w idth was se t for 1 2 0  pm giving a spectra l bandpass of 1 2

cm -1. The spectra  were recorded over 2 to  4 h, depending on the 

s tren g th  of the ROA signals, a t constan t am bient tem perature.

5.2 Results and Discussion

The Raman and ROA spectra  of D -glucose from  ~ 350 to  1500 cm - 1  

and D -glucose-l-d j, D -glucose-6 ,6 -d 2, D -g lu co se-0 -d s , 5-th io-D -glucose 

and D-glucosam ine hydrochloride in the range ~ 600 to  1500 cm - 1  are 

displayed in Figures 5.1-5.6 , respectively. M onosaccharide ROA spectra  

can be conveniently subdivided into three d istinc t regions: the anomeric 

region from  ~ 600 to  950 cm the fingerprint region  from ~ 950 to  

1 2 0 0  cm-1; and the CH2 and COH deform ations region  from  ~ 1200 to  

1500 cm-1. At the time of recording the low er lim it fo r backscattering 

ROA spectra  was ~ 600 cm-1. However, it is now possible to  measure 

the backscattered  ROA from ~ 250 cm - 1  b u t only the spectrum  of
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D -glucose is shown in this extended wavenumber range as isotopic 

su b stitu tio n s  are unlikely to  have any e ffec t in th is  low er wavenumber 

region which is dom inated by skeletal tw isting and bending vibrations. 

Previous conventional vibrational spectroscopic stud ies on glucose
5  Q

isotopom ers relied on a m ixture o f solution Raman spectra  for the 

O -deuterated  sam ples and so lid -s ta te  IR and Raman spectra  fo r the 

C -deu terated  sam ples, b u t no so lu tion  Raman studies of the 

C -deu terated  sam ples have been previously reported.

An empirical approach is employed in the in terp re ta tion  o f the 

Raman and ROA spectra  because, as has been m entioned in chap ter 2, 

no ab in itio  ROA intensity  calculations have yet been perform ed on any 

m onosaccharides and the normal modes are too com plex for the  ROA 

intensities to  be explained by simple models, such as the tw o group 

m odel or the bond polarizability model . 9

5.2.1 Anom eric Region (~ 600-950 c m 1)

Unlike the o ther m onosaccharides previously investigated in this 

laboratory , 1 the  ROA spectrum  of D -glucose (Figure S.l) has few bands 

in th is  region, w ith only tw o weak positive signals appearing a t ~ 913 

cm - 1  and ~ 633 cm -1. In aqueous solution, D -glucose ex ists as an ~ 2:1 

equilibrium m ixture of p- and a-anom eric form s. From exam ination of 

the ROA spectra  of a -  and p-D-m ethyl glucopyranoside it is clear th a t 

the p-anom eric form  of D-glucose yields a lm ost no ROA signal in this 

region while the  a-anom eric form  gives rise to  a num ber of signals . 1 It 

is therefo re  conceivable th a t the lack of signal in D -glucose is simply a 

re su lt o f the  predominance of the p-anom eric form . Since the 

P-anomeric form  of D-glucose has no axial hydroxyl ring substituen ts , 

we may conclude th a t the generation of ROA in th is region somehow

-  71 -



D -glucose
H-OH

OH

ROA

400 550 700 850 1000 1150 1300 1450

Figure 5.1 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-glucose in H2 0 .

depends on the ability of hydroxyl groups in axial orien ta tions to

in teract w ith the exocyclic hydroxymethyl group and the ring oxygen

which are involved in the majority of norm al modes found in th is

reg io n : in d e e d , o th e r  m o n o s a c c h a r id e s  s u c h  a s  D - g a la c t o s e  an d

D -m a n n o s e , c o n ta in in g  a x ia l h y d r o x y l g r o u p s  s h o w  la r g e  ROA s ig n a ls

here . 1 The relatively low density o f bands sim plifies the assignm ent of

the conventional vibrational spectrum  and p a tte rn s  have been found th a t

can identify anomeric configuration in m onosaccharides and can
9  lOdistinguish betw een certain glycosidic linkage types. ’ Furtherm ore, the 

sensitivity of the ROA in this region to  anom eric configuration also

makes it im portan t fo r studying the conform ation of the glycosidic link 

in a-linked di- and polysaccharides of D -glucose as we shall see later.

-  72 -



D - g lu c o s e - l - d
IOH

I  8 . 2 x 1 0

ROA

1500135012001050900750600

Figure 5.2 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-glucose-1-d! in H2 O.

The conventional Raman band of weak to  medium intensity  a t ~ 910 

cm - 1  in D -glucose can in fact be resolved in to  tw o com ponents w ith 

the higher wavenumber constituen t giving rise to  a positive ROA signal 

a t ~ 913 cm -1. This signal corresponds to  the feature  reported  a t ~ 920 

cm - 1  in the earlier work on monosaccharide ROA1  ( the disparity 

betw een the tw o quoted wavenumbers can be a ttrib u ted  to  noise 

fluc tuations on some signals which resu lts  in a g rea ter uncertainty of 

the peak positions in the ROA signals than in the paren t Raman bands). 

Com parison o f the conventional Raman spectra  of a -  and p-D -m ethyl 

glucopyranoside 1 suggests th a t this band is characteristic  of the 

a-anom eric form  in accord with Barker e t a l} °  who a ttrib u ted  th is 

normal mode to  a ring vibration of the a-anom er. This ROA signal
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150013501050900750600

Figure 5.3 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-glucose-6 ,6 -d 2  in H2 0.

vanishes upon deuteration of the C -l— H position (Figure 5.2) and gives 

rise to  a weak negative feature when the C - 6 — H 2  positions are 

deu terated  (Figure 5.3) thus exposing the ro le  th a t m otions of these 

groups play in the generation of the associated ROA. Finally, a C -O -H  

deform ation contribution to  the normal mode can be identified from  the 

wavenumber sh ift o f the conventional Raman band in D -g lu c o se -0 -d s 

(Figure 5.4); however, it  is no t clear w hether the  associated  ROA band 

is a lso  sh ifted  as o ther ROA signals sh ifted  in to  th is region lead to  a
o _ / :

broad ROA signal a t th is wavenumber. Norm al coordinate analyses 

assign this mode to  a highly coupled vibration involving the  C -l—O 

stre tch ing  coordinate, endocyclic ring stretch ing  coordinates and 

deform ation coordinates around the anomeric carbon. Combining all
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Figure 5.4 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-glucose-0-d5 in D20 .

these data i t  is possible to  assign th is vibrational mode to  a ring 

vibration of the a-anom eric form  coupled to  C-O  s tre tch es  around the 

ring with contributions from  C -l—H and CH 2  m otions.

Two conventional Raman bands which are considered indicative of the 

presence o f the a -  and 3-anom ers are found a t ~ 840 cm - 1  and ~ 890 

c m '1, respectively. Although neither gives any ROA signal in D-glucose 

both  were highlighted in earlier work as being im portan t signals in 

o ther m onosaccharides and the band a t ~ 840 cm - 1  also gives rise to  

in teresting ROA signals in a-linked  disaccharides. Early conventional IR 

studies assigned these bands to  vibrations involving C -l—H deform ations 

of the a - and 3~anomers . 1 0  However, only sm all changes are evident fo r 

these two bands in the Raman spectrum  of D -g lu co se-l-d j and much
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Figure 5.5 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

5-thio-D-glucose in H2 O.

larger sh ifts  are observed in the spectrum  of D -glucose- 6 ,6 -d 2. For 

D -xylose , 1 which has the same configuration a t all the chiral cen tres as 

D -glucose bu t lacks an exocyclic hydroxymethyl group, the band a t 840 

cm 1 disappears and in the spectrum  of 5—thio—D -glucose (Figure 5.5), 

which has the ring oxygen replaced by a sulphur atom , the  band is 

sh ifted  to  lower wavenumber. From these re su lts  it would appear th a t 

th is vibration involves m otions of the CH2, C—0 -5  and a sm all 

contribution from  the C -l—H group which is a lm ost identical to  the 

norm al mode predicted by Cael et al. and concurs w ith the  work of 

Korolevich e t a l*  who suggested th a t the C -l—H contribution  was a 

minor one w ith the majority of the po ten tia l energy arising from  

m otions of the O -l—C-l— O -S-C -5—C - 6  chain.
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Figure 5.6 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-glucosamine hydrochloride in H2 O.

The replacem ent of oxygen by sulphur in 5-th io -D -g lucose leads to  

a dram atic increase in the intensity of the Raman and ROA signals 

betw een ~ 700 and 800 cm-1, leading to  the  conclusion th a t C -O -C  

bending m otions about the ring oxygen are intim ately involved in these

n o r m a l m o d e s  in  D - g lu c o s e ,  a  v ie w  w h ic h  is  s u p p o r te d  b y  n o r m a l

2~6coordinate analyses. The ROA spectrum  of D-glucosam ine

hydrochloride (Figure 5.6) is sim ilar to  th a t of D -glucose in th is  region 

w ith only the two positive bands appearing a t ~ 913 cm - 1  and ~ 633 

cm-1. It would appear then th a t the NH3+ su b stitu en t on carbon atom  

2 has no direct e ffect on the ROA in th is region.

D -glucosam ine
H0H

ROA

cm
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5.2.2 Fingerprint Region (~ 950-1200 cm 1)

This region of the conventional Raman spectrum  is dom inated by

exo - and endocyclic C-O and C-C s tre tc h e s  coupled  w ith  sig n ifican t
2—6contributions from  C -O -H  deform ations. I t  was noted in a review o f

12the vibrational spectra of carbohydrates th a t th is region is d ifficu lt to  

in te rp re t on account of the widespread coupling o f C-O  and C-C

stre tches, the poor discrim ination betw een exo- and endocyclic 

contributions and the sm all differences betw een the configurational

positions of each C-O group. This is no t the case fo r ROA where the

extensive coupling is a prerequisite for strong  ROA signals and 

configurational changes have a comprehensive and characteristic  e ffec t 

on the ROA pattern  in this region . 1

For D -glucose (Figure 5.1) the characteristic  sign p a tte rn  is, s ta rtin g  

from low wavenumber; negative a t ~ 988 cm-1, positive a t ~ 1048 cm-1, 

negative a t ~ 1111 cm - 1  and positive a t ~ 1150 cm-1. Previous ROA
1 13s tu d ie s  ’ com pared D -g lucose w ith  D -xylose in th is  reg ion  and th e ir  

sign p a tte rn s  w ere found to  be th e  sam e a lth o u g h  sm all w avenum ber 

sh if ts  w ere evident. D -xylose d iffe rs  from  D -g lucose  only in th a t  i t  has 

no exocyclic hydroxym ethyl group; thus , i t  is c lea r  th a t  th e  ROA 

signals  in th is  region are n o t dependen t on m otions o f th is  group. The 

e f fe c t o f endocyclic C-O s tre tc h e s  in th is  reg ion  can be gauged by 

exam ining th e  ROA sp ec trum  o f 5 - th io -D -g lu c o se  (F igure 5.5) w here i t  

is n o ted  th a t  th e  signals a t  ~ 1150 cm -1 and ~ 1111 cm -1 in D -g lucose  

are sh if te d  to  ~ 1128 cm -1 and ~ 1078 cm -1, respectively , a lth o u g h  they  

re ta in  th e  sam e sign and in tensity , and th a t  th e  tw o  o th e r  signals  are  

u n affec ted . From  th ese  observations i t  can be deduced  th a t  th e  s ignals  

a t ~ 1150 cm -1 and ~ 1111 cm -1 involve som e endocyclic C-O  s tre tc h  

con trib u tio n , w hich is in accord w ith  a norm al coo rd in a te  ana ly sis4
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which placed a 41% potential energy contribution from  the C-O -5

stre tch ing  coordinate to  a normal mode a t 1116 cm-1.

The ROA spectrum  of D-glucosamine hydrochloride (Figure 5.6), 

which has the hydroxyl group a t carbon atom  2 replaced by an NH3+ 

group while retaining the same configuration, reveals profound changes 

in th is  region. The negative and positive signals a t low er wavenumber 

are retained; however, a t higher wavenumber the pa tte rn  changes quite 

dram atically. This is probably due to  the C-2—N s tre tch  coordinate

which is expected 1 4  to  contribute to  norm al modes betw een ~ 1 0 2 0  and 

1220 cm - 1  and which will couple to  the C-O and C-C stre tch ing  

coordinates in a d ifferen t way to  the C-2-O  s tre tch  coordinate which is 

p resen t in D-glucose.

Examining the ROA spectrum  of D -glucose in DzO (Figure 5.4) it is 

c lear th a t it displays the same sign patte rn  in the fingerprin t region as 

found for D-glucose in HzO. The conventional Raman spectrum , 

however, does show changes, namely a new band a t ~ 1108 cm - 1  and a 

sh ift from  ~ 1060 cm - 1  to  1042 cm - 1  o f another. Furtherm ore, normal 

coordinate analyses a ttrib u te  a significant contribution  to  C -O -H

deform ations in this region. From these data  it may be concluded tha t, 

a lthough C -O -H  deform ations make a significant contribution  to  the 

conventional Raman band frequencies and in tensities in th is region, they 

actually  contribute very little  to  the associated ROA band in tensities, 

which are generated mainly by the exo- and endocyclic C-O  and C-C 

s tre tch  coordinates within the normal modes.

The ROA of D -g lucose-l-d j (Figure 5.2) show s only one minor

change, namely a wavenumber sh ift of the  positive signal a t ~ 1150

cm - 1  in D -glucose to  ~ 1175 cm-1, indicating th a t C -l—H deform ations
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are involved in this normal mode and th a t deuterating  th is position

decouples the vibration. However, the ROA sign and intensity  is

unaffected which indicates th a t o ther m otions m ust be largely

responsible for generating the ROA. The origin o f the  changes evident

in the  D -glucose-6 ,6 -d 2  Raman and ROA spec tra  (Figure 5.3) are

difficu lt to  determ ine because, in addition to  sh ifts  in the  bands in the

fingerprint region, many of the bands in the region above ~ 1 2 0 0  cm - 1

have a lso  been sh ifted  into this region. However, the new Raman band

appearing a t ~ 975 cm has previously been assigned to  a CD2  m otion

and the new Raman band a t ~ 1098 cm - 1  can probably be associated

w ith CD2  m otions shifted from the ~ 1460 cm - 1  mode in D -glucose

which has been shown to  be an alm ost pure CH 2  vibration (th is  fits

w ith the ratio  of associated wavenumbers in D -glucose and

D -glucose-6 ,6 -d 2  which is close to  the theoretical maximum of -/2 for
ISa corresponding isotopic wavenumber shift).

5.2.3 CH2 and COH Deformations Region 1200-1500 cm 1)

The effects  of deuteration in this region are far more pronounced

than a t lower wavenumber because there are no added com plications of

overlap from  bands shifted from  higher wavenumber. Previous

assignm ents for C -deuterated  glucoses were based on work carried ou t
7 8by conventional IR in the solid s ta te  or FT-IR in D2 0 , b u t such

re su lts  are no t necessarily transferable  to  Raman in H20  fo r two 

reasons: firs t IR and Raman are com plem entary techniques governed by 

d ifferen t selection rules and giving d ifferen t in tensities, and second the 

solid s ta te  conform ation will not necessarily be the same as the 

solution conform ation. The major contributions to  norm al modes in this 

region come from CH2, C -O -H  and C-H  deform ations 1 so th a t sam ples 

with these  groups deuterated, as discussed here, should be of particular
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1 13in terest. Earlier ROA studies ’ concentrated on the influence o f the

exocyclic hydroxymethyl group in this region.

D -glucose (Figure 5.1) exhibits a ROA couplet, negative a t low 

wavenumber and positive a t high, centred a t ~ 1240 cm - 1  which is 

unaffected by C -l—H deuteration (Figure 5.2) b u t is sh ifted  to  lower

wavenumber in D -glucose-6 ,6 -d 2  (Figure 5.3) and is absen t in 

D -g lu co se-0 -d s (Figure 5.4). For D -glucose-6 ,6 -d 2  the couplet remains 

in tac t and is centred a t ~ 1190 cm-1, which when combined w ith its

sensitivity to  O -deuteration implies th a t this couplet originates in a

mode involving coupling betw een CH 2  and C -O -H  vibrations. In fact, on

the basis of O -deuteration of dextran, an a - ( l - 6 ) linked polysaccharide,
—1 7which exhibits no change in the ~ 1260 cm Raman band, Vasko e t al.

assigned this band to  a C - 6 —O-H bending mode. Support fo r th is

assignm ent was provided by a normal coordinate analysis which

described a mode a t 1259 cm - 1  involving m otions of the CH2, C -6r-0-H

and C-O -H  groups all around the ring. Furtherm ore, recen t conventional

so lid -s ta te  Raman work on glucose isotopom ers assigned bands a t  1267

cm 1 and 1206 cm " 1 to  CH 2  re lated  m odes . 6

Although both  a -  and (3-D-methyl glucopyranosides are known from  

NMR studies 1 6  to  have sim ilar d istributions o f gauche-gauche  (GG) and 

gauche-trans (GT) ro tam ers of the exocyclic hydroxymethyl group 

(Figure 5.7) only the p-D-m ethyl glucopyranoside shows bo th  the 

positive and negative constituen ts of the ~ 1240 cm 1 ROA couplet 

shown by D-glucose itse lf. The positive feature a t 1260 cm 1 is absen t 

from the ROA spectrum  of a-D -m ethyl glucopyranoside , 1 and is also 

absent in the disaccharide trehalose (Figure 7.7) and in a-cyclodextrin  

(Figure 8.3), bo th  of which exist solely in the a-anom eric form . On the 

o ther hand, these la s t three m olecules all show the negative ROA
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o«

H,‘6

HO.

gauche-trans (GT) trana-gauche (TG) gauche-gauche (GG)

Figure 5.7 The three rotameric forms of the exocyclic hydroxymethyl group.

signal a t ~ 1220 cm-1. Thus, the couplet a t ~ 1240 cm - 1  in the ROA

spectrum  of D-glucosam ine hydrochloride (Figure 5.6), which differs

from  D -glucose only a t carbon atom  2, can be explained in term s of
17the anomeric ratio , which is ~ 2 : 1  in favour o f the a-anom eric form. 

These fac ts provide evidence th a t only the p-anom eric form  contributes 

to  the  positive band a t ~ 1260 cm - 1  so we would expect it  to  be 

considerably weaker than the negative band a t ~ 1 2 2 0  cm - 1  as is indeed 

the case fo r D-glucosam ine hydrochloride.

Since our deuteration studies indicate th a t sim ilar vibrational 

coordinates contribute to  the ~ 1220 cm - 1  and ~ 1260 cm - 1  ROA signals, 

it is tem pting to  a ttrib u te  these tw o signals to  the  corresponding 

norm al vibrations of tw o d istinc t conform ers; b u t these  cannot be 

simply a -  and p-anom ers since, as m entioned above, p-D -m ethyl 

glucopyranoside shows bo th  bands. One possibility is th a t the positive ~ 

1260 cm - 1  ROA signal arises from the GT ro tam er o f the  p-anom er in 

the D -glucose homomorphic series, and th a t the negative ~ 1220 cm - 1  

ROA signal arises from  the GG ro tam er and is independent of the
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anomeric configuration. Supporting evidence fo r th is suggestion includes 

the observations on the D -galactose homomorphic series discussed 

below.

It w a s  n o te d  in  th e  e a r lie r  m o n o s a c c h a r id e  w o r k  t h a t  D - g a la c t o s e

and both  the methyl galactosides exhibit a s tro n g  positive ROA signal
“ 1 18 a t ~ 1260 cm which recent normal coordinate analysis re su lts  have

attribu ted  to  a normal mode involving C -4 -O -H  and C - 6 —O-H m otions.

In D - g a la c t o s e  th e  a n o m e r ic  p o p u la t io n  i s  a p p r o x im a te ly  t h e  s a m e  a s  in

D - g lu c o s e  b u t  th e  h y d r o x y l s u b s t i t u e n t  o n  c a r b o n  a to m  4 is  in  a n  a x ia l

orientation. This means th a t the hydroxymethyl group ex ists in either

the gauche-trans (GT) or trans-gauche  (TG) ro tam eric form s w ith the

gauche-gauche (GG) form being strongly  disfavoured as a re su lt of the

syn-diaxial relationship of the C -4-O H  and C -6 ^0 H  groups1 6  (Figure

5.7). The ROA s ig n a l a t  ~ 1260 c m -1 in D - g a la c t o s e 1 is  v e r y  in t e n s e  an d

this may be due to  the proximity of the C -6r-0-H  and C -4—O-H

groups, especially in the TG rotam eric form . This is an exam ple o f the

local nature o f many ROA signals and could explain why th is signal is

not sensitive to  the configuration a t carbon atom  1 in the  galactose

homomorphic series since the effect from  carbon atom  4 overwhelms

th a t from carbon atom  1. None of the spectra  in the D -galactose series

exhibits a negative ROA signal a t ~ 1220 cm - 1  which may provide

fu rther evidence for an assignm ent to  the GG ro tam er because, as

m entioned above, the GG rotam er is strongly  disfavoured in m olecules

with an axial C-4—O-H group so we would no t expect any associated

ROA s ig n a l  in  D - g a la c t o s e .

The conventional Raman band a t ~ 1332 cm - 1  in D -glucose is found 

to  have sh ifted  to  lower wavenumber in the spectra  of D -glucose-l-d^ 

and the associated ROA couplet, negative a t low and positive a t high
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wavenumber disappears, b u t remains unchanged in the  spectra  o f the 

o ther deu terated  analogues. A conventional IR survey 1 9  o f a variety o f 

m onosaccharides selectively deuterated  a t carbon atom  1 revealed th a t a 

C -l—H deform ation mode appears betw een 1275 cm - 1  and 1340 cm -1. In 

particular, a band a t 1312 cm - 1  in the spectrum  of p-D -glucose was 

found to  sh ift to  972 cm - 1  upon deuteration. Thus, the  Raman band 

appearing a t ~ 970 cm - 1  along with the  associated  positive ROA signal 

in D -g lucose-l-d t which is not p resen t in D -glucose may be a ttrib u ted  

to  a C -l—D deform ation th a t has been sh ifted  from  ~ 1332 cm-1. I t may 

be noted th a t the sign of the ROA band has changed and th is probably 

re flec ts  the d ifferent coupling opportunities of the C -l—D bending 

coordinate. The experim ental data imply th a t the ~ 1332 cm - 1  mode 

contains no C -O -H  or CH 2  deform ation contribution and consists  of an
O

alm ost pure C -l—H deform ation m otion instead. FT-IR studies 

a ttrib u ted  this mode to  a coupled m otion of C -l—H and C-5r-H bends

and it is predicted by normal coordinate analysis to  contain
2—6contributions from all the C-H  deform ations around the ring. The 

deform ations of the C -l—H bond would appear then to  play an

im portant ro le  in the generation of the ROA couplet centred  a t ~ 1332
„ - l  cm

The positive ROA band centred a t ~ 1360 cm 1 in D-glucose displays 

d is tinc t s tru c tu re  and would appear to  consist of three  com ponents. 

The f irs t com ponent is the positive constituen t of the ROA couplet 

centred  a t ~ 1332 cm -1. Upon deuteration of the hydroxyl groups the 

cen tral com ponent is sh ifted  from ~ 1364 cm 1 to  ~ 1288 cm - 1  and can 

thus be assigned to  a C -O -H  deform ation. A ssignm ent o f the final 

com ponent is more d ifficu lt as it  is unaffected  in the deuterated  

analogues b u t normal coordinate analyses seem to  indicate th a t it is a 

C-H related  mode.
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5.3 Concluding Remarks

The ROA spectra  reported  and discussed in th is chap ter highlight a 

number o f im portant features which pertain  no t only to  carbohydrate 

examples bu t also to  the fundam ental nature o f ROA generation. In

particular, as we saw in the case of the ROA bands in the fingerprint 

region, not all o f the internal stretch ing  and bending coordinates which 

make up the normal mode and affec t the intensity  of the  paren t Raman 

band are necessarily involved in the generation o f the associated ROA 

signals which often  seem to  be largely determ ined by the vibrational 

coordinates of the skeleton. Similar behaviour has been observed fo r the

ROA associated with skeletal modes in o ther m olecules, including
20ta rta ric  acid and its  O -deuterated  analogue, and illu s tra te s  how the 

sensitivity of ROA to  chirality renders it a more effective probe of

m olecular conform ation than conventional vibrational spectroscopy.

For carbohydrates, the three regions of the ROA spectrum  have been 

found to  give d ifferen t types of stereochem ical inform ation which are 

sum m arised in Table 5.1. The anomeric region, although n o t very 

informative fo r the D -glucose monomer, has been shown to  be sensitive 

to  the anomeric configuration in many o ther m onosaccharides1  and also 

to  contain signals related  to  the type and conform ation o f the

glycosidic link in di- and oligosaccharides containing D -glucose
13 21 22residues. ’ ’ The fingerprin t region has proven to  be sensitive to  the 

configuration a t the individual chiral centres and as such can provide a 

direct probe of the s tru c tu ra l fram ework of carbohydrates. The

stereochem istry of the pendant side groups is m ost im portan t in the 

generation of the ROA signals occurring above ~ 1200 cm - 1  and this

region could, in the future, provide conform ational da ta  on features 

such as the rotam eric populations of the exocyclic hydroxym ethyl group.
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The next s tep  tow ards a com plete understanding o f the D -glucose 

ROA spectrum  would obviously involve ab in itio  ROA intensity 

calculations, introduced in chapter 2 , which would provide details  o f the 

vibrational coordinates contributing to  each ROA signal and help 

elucidate stereochem ical features such as CH2OH rotam eric populations. 

However, o ther fu ture  developm ents could include recording the ROA in 

the C-H  s tre tch  region where, despite the  difficulties encountered, 

in teresting  stereochem ical correlations may be found. Similarly, w ith the 

availability o f improved filte r technology more of the ROA spectrum  

tow ards lower wavenumber may become accessible. A nother in teresting  

possibility  would be to  study the kinetics of the anomeric equilibrium 

using ROA. Such a study would probably require sh o rte r acquisition 

tim es than are presently  possible bu t may prove to  be a valuable 

source o f inform ation on the dependence o f the ROA signals on the 

anom eric configuration.
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Table 5.1 A ssignm ent of ROA signals in the spectrum  of D -glucose.

Wavenumber in cm  

( s ig n )

- l

ROA assignm ents C om m ents

** 913 (+) C-C, C-O  s tre tches This ring vibration o f the

C-O -H , C -l—H and a-anom er is coupled to  C-O

CH 2  deform ations s tre tch es  w ith C -l—H and

CH 2  contributions

~ 950-1200 (- + -  + ) C-C and C-O

stre tches

This sign 

characteristic  

substitu tion .

pa tte rn  is

fo r ring

C -O -H

deform ations are no t involved 

in the generation of the  ROA

1220 (-) CH 2  and C -O -H

deform ations

This signal is characteristic  

fo r the GG ro tam er in bo th  

a -  and p-anom eric form s

1260 (+) CH 2  and C -O -H

deform ations

This signal is characteristic  

fo r the GT ro tam er in the 

p-anom eric form

~ 1332 (- + ) C-l—H deform ation
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Chapter 6

Vibrational Raman Optical Activity
of Ketoses

In this chapter the assignm ent of the ROA spec tra  of 

monosaccharides is extended by studying four ketohexoses, namely, 

D -fructose, L-sorbose, D -tagatose and D-psicose. The opportunity  is 

also taken to  com plete and, where necessary, co rrect the ROA 

assignm ents proposed by Wen e t al} making use o f the larger body of 

experim ental data now available.

From a consideration of the stereochem istry  o f ketose sugars, which 

has already been discussed in chapter 4, it is c lear th a t they provide an 

opportunity to  study the influence of the exocyclic hydroxymethyl group 

on the ROA and provide additional exam ples o f m onosaccharides w ith 

which to  extend our understanding of the generation o f ROA. 

Furtherm ore, since D -fructose residues occur in many o ligo- and 

polysaccharides, the re su lts  presented here will be useful in fu tu re

classifications of the ROA spectra  of these m olecules.

The application of conventional vibrational spectroscopy to  the  study 

of ketose sugars has been even more lim ited than fo r the  o ther 

monosaccharides. M athlouthi e t al. proposed on the basis of relative

intensities th a t a number of Raman bands could be assigned to  the

pyranose and furanose form s. It was la te r shown th a t the majority o f 

the bands assigned to  the furanose form were also p resen t in the

vibrational spectrum  of crystalline p-D -fructose which is known to  ex ist
o

solely in the p-pyranose form. For th is reason it was concluded th a t 

conventional vibrational spectra  were of lim ited po ten tia l for studying
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the solution equilibrium between the five- and six-m em bered ring form s 

of sugars. However, of potential diagnostic value is a ke tose  m arker 

band a t 1175 cm - 1  identified in the so lid -s ta te  Raman spec tra  o f 

D -fructose and L-sorbose . 4

6.1 Experimental

Samples of D -fructose, D -tagatose and D -psicose were supplied by 

Sigma, and L-sorbose by Fluka. The ketose sam ples were dissolved in 

d istilled H20  to  a concentration of 4.5 M then allowed to  equilibrate 

a t room tem perature for a t least 24 h. The equilibrated sam ples were 

trea ted  w ith charcoal to  reduce fluorescence, filtered  in to  quartz 

m icrofluorescence cells through 0.45 pm M illipore membrane filte rs  to  

remove any d u s t particles th a t may cause spurious ligh t scattering , then 

centrifuged fo r a t least 15 min. During spectra l acquisition the  laser 

power was ~ 700 mW a t the sample and the s lit w idth was se t fo r 120 

pm giving a spectral bandpass of ~ 12 cm - 1  a t 514.5 nm. The spectra  

were recorded over 2 to  4 h a t co n stan t am bient tem perature. By
Q

employing the la te s t generation of holographic super notch plus filte r 

the backscattered  ROA could be obtained from  ~ 250 cm - 1  fo r the f irs t 

time.

6.2 Results and Discussion

The Raman and ROA spectra  o f D -fructose, L-sorbose, D -tagatose  and 

D-psicose in aqueous solution for the range ~ 250 to  1500 cm - 1  are 

presented in Figures 6.1-6.4, respectively. Table 6.1 com pares the
^  o

conform ational equilibria in aqueous solution as determ ined by NMR 

for the four ketose sugars presented in th is chapter. All four heavily 

favour the anomeric configuration which places the bulky hydroxymethyl
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Table 6.1 Conform ational equilibria of ketose sugars in aqueous solution.

D-■Fructose L-Sorbose D -Tagatose D -Psicose

a-pyranose — 98% 79% 2 2 %

3 -pyranose 75% — 16% 24%

a-furanose 4% 2 % 1% 39%

3 -furanose 2 1 % — 4% 15%

chair

conform ation
2c s 2 CS SC 2 sC 2 (<x), 2 Cs (g)

reference 6 - 8 6 6 6 , 1 0

group in the less sterically  hindered equatorial orien tation  fo r pyranose 

form s, and pseudo-equatorial orientation fo r furanose form s. (Note th a t 

the anomeric designators a - and 3 “ correspond to  the axial and 

equatorial orientations of the anomeric hydroxyl group fo r D -sugars in 

the SC2  chair conform ation, respectively, and th a t changing e ither to  a 

d ifferen t chair conform ation or to  an enantiom eric L-sugar reverses the 

assignm ent of these anomeric designators). These differences in the 

conform ational equilibria arise because each ketose sugar has a d ifferen t 

orientation of the hydroxyl groups a t carbon atom s 3,4 and 5, so th a t 

each has a unique se t of steric and electronic in teractions governing its
ostructure .
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Comparison with the ROA of o ther m onosaccharides is b e st 

accomplished by subdividing the sugars studied into groups having the 

same orientation of the hydroxyl groups (axial or equatorial) a t carbon 

atom s 3,4 and 5 of the ketose sugars and carbon atom s 2,3 and 4 of 

the aldose and pentose sugars. Thus, the  m onosaccharides studied to  

date can be grouped into four d istinct configurational types: the xy lo -  

type, w ith all three hydroxyl groups in an equatorial orientation, the 

ly xo -  type, w ith the hydroxyl group a t carbon atom  2  in the  aldose and 

pentose sugars bu t a t  carbon atom  3 in the ketose sugars in an axial 

orientation, the r/bo- type, w ith the hydroxyl group a t carbon atom  3 in 

the aldose and pentose sugars b u t a t carbon atom  4 in the  ketose 

sugars in an axial orientation, and, finally, the arabino- type, w ith the 

hydroxyl group at carbon atom  4 in the aldose and pentose  sugars b u t 

a t carbon atom  5 in the ketose sugars in an axial orientation. The 

differences betw een the ketose and the aldose and pentose  sugars are 

due to  the different numbering schemes th a t they have. (Note th a t 

monosaccharides of the same configurational type do n o t necessarily 

have the same anomeric populations or the same chair conform ation).

The ROA spectra  of m onosaccharides of the same configurational type 

are known to  be closely re la ted , 1 as the orientation o f groups around 

the ring determ ines the position and in tensity  o f the ROA signals while 

the sign is dependent on the absolute configuration a t each of the 

chiral centres embraced by the normal modes responsible. Therefore, it 

is possible to  compare directly ketose sugars with aldose and pentose 

sugars with the same orientation of the ring hydroxyl substituen ts , to  

determ ine the sim ilarities between m onosaccharides o f the same 

configurational type, and also to  investigate the  e ffec t o f the position 

and occurrence of the hydroxymethyl group and the o rien tation  of the 

anomeric hydroxyl group on the ROA spectra. Furtherm ore, D -fructose,
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L-sorbose and D -tagatose all ex ist predom inantly in one anomeric form  

(Table 6.1) which would be expected to  dom inate the ROA and allow 

direct com parisons among the ketose sugars. Thus, the  major anom ers 

of D -fructose and L-sorbose both  adopt a Cs chair conform ation and 

differ only in the  orientation and absolu te configuration o f the hydroxyl 

group a t carbon atom  5. On the o th er hand, D -tagatose  adopts a C2  

chair conform ation and the hydroxyl group su b stitu ted  a t carbon atom  3 

is axial. Note th a t fo r D-psicose the predom inant conform er is the

a-furanose form  and th a t the a - and p-anom eric form s of the  pyranose
5 2ring adopt a C2  and Cs chair conform ation, respectively, so both  have 

the anomeric hydroxyl group in an axial o rien ta tion . 1 0

6.2.1 Low Wavenumber Region (~ 250-600 c m 1)

In this region normal coordinate analyses of m onosaccharides11_1S

assign the Raman bands to  normal modes involving exo- and endocyclic

bending deform ations of the C-C-O, C-C-C, C -O -C  and O -C -O  groups

coupled with associated exo- and endocyclic C-O  to rsions. I t has also

been suggested th a t the intense Raman bands in th is region involving

C -C-O  deform ations around the anomeric carbon atom  are among the

m ost sensitive to  anomeric configuration in the  entire m onosaccharide

spectrum . 1 6  Furtherm ore, the sensitivity of the skele ta l bending and

tw isting vibrations located in this region to  sm all s tru c tu ra l changes

resu lts  in large variations in the conventional vibrational spec tra  for
17monosaccharides. This region has only recently  becom e accessible to  

backscattering ROA m easurem ents so the body of data  is s till lim ited.

The ROA spec tra  of the four ketose sugars presented  here appear to  

be highly individual which is to  be expected given the sensitive nature 

of the skele ta l modes found in this region. One common fea tu re  is a
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Figure 6.1 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of D-fructose in H20 .

ROA c o u p le t  c e n tr e d  a t  ~  426, 431, 406 an d  428 c m -1 in  D - f r u c t o s e ,  

L -s o r b o s e , D - t a g a t o s e  an d  D - p s ic o s e  (F ig u r e s  6.1-6.4), r e s p e c t iv e ly .  T h is  

c o u p le t  is  n e g a t iv e  a t  lo w  an d  p o s i t iv e  a t  h ig h  w a v e n u m b e r  f o r  

D - f r u c t o s e  and  L -s o r b o s e ;  w h e r e a s  i t s  s ig n  is  r e v e r s e d  in  D - t a g a t o s e  

an d  D - p s ic o s e .  A ROA c o u p le t  in  d ig lu c o s id e s  a t  430±10 c m -1 w a s  

b e lie v e d  to  o r ig in a te  in  v ib r a t io n s  o f  th e  g ly c o s id ic  l in k  d u e  t o  i t s  

a b s e n c e  fro m  th e  ROA s p e c tr u m  o f  D - g lu c o s e  an d  w i l l  b e  d is c u s s e d  in  

m o re  d e ta il  in  th e  f o l lo w in g  c h a p te r . H o w e v e r , i t  w o u ld  a p p e a r  t h a t  

th is  i s  n o t  th e  c a s e  in  o th e r  m o n o s a c c h a r id e s  an d  in s te a d  th is  c o u p le t  

m ay s im p ly  b e  a s s o c ia t e d  w ith  d e fo r m a t io n s  a ro u n d  t h e  a n o m e r ic  c e n tr e .  

T h u s, a lth o u g h  a ll  fo u r  k e t o s e  s u g a r s  h a v e  a p r e p o n d e r a n c e  o f  t h e  a x ia l  

o r ie n ta t io n  o f  th e  a n o m e r ic  h y d r o x y l g r o u p , th e  a b s o lu t e  c o n f ig u r a t io n  a t
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Figure 6.2 The b a c k s c a t t e r e d  Raman (lR +  lL) a n d  ROA (lR -  lL) o f

L - s o r b o s e  in H20.

th e  a n o m e r ic  c e n tr e  is  d i f f e r e n t  fo r  D - f r u c t o s e  a n d  L - s o r b o s e ,  w h ic h  

b o th  a d o p t  a  Cs ch a ir  c o n fo r m a t io n , a s  c o m p a r e d  t o  D - t a g a t o s e ,  f o r  

w h ic h  th e  a - p y r a n o s e  fo r m  a d o p ts  a  SC2  ch a ir  c o n fo r m a t io n , r e s u lt in g  

in  o p p o s i t e  s ig n s  fo r  th is  c o u p le t .  D - p s ic o s e  e x h ib it s  th e  s a m e  s ig n  a s  

D - t a g a t o s e  b e c a u s e  th e  a -p y r a n o s e  an d  a - f u r a n o s e  f o r m s ,  w h ic h  a c c o u n t  

fo r  61% o f  th e  e q u ilib r iu m  m ix tu r e , h a v e  th e  s a m e  a b s o lu t e  c o n f ig u r a t io n  

a t  th e  a n o m e r ic  c e n tr e  a s  a - D - t a g a t o s e .  F u r th e r m o r e , th e  s ig n  o f  th is  

c o u p le t  is  th e  sa m e  in  D - t a g a t o s e  an d  D - p s i c o s e  a s  in  th e  a - l in k e d

d is a c c h a r id e s , w h ic h  h a v e  th e  a n o m e r ic  h y d r o x y l o f  th e  n o n -r e d u c in g  

r e s id u e  tr a p p e d  in an a x ia l o r ie n ta t io n  b y  t h e  l in k a g e , an d  an a b s o lu t e  

(S )  c o n f ig u r a t io n  a t  th e  a n o m e r ic  c e n tr e . T h e r e fo r e , w e  c a n  d e d u c e  t h a t

D - t a g a t o s e  an d  D - p s ic o s e  a l s o  e x h ib it  an a b s o lu t e  (S )  c o n f ig u r a t io n  a t
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Figure 6.3 The backscattered Raman (lR + lL) and ROA (lR -  lL) of 

D-tagatose in H20.

this particu lar chiral centre. Similarly, D -fructose  and L -sorbose share 

the same sign as the p-linked disaccharides a t this wavenumber and so 

it may be concluded th a t they have an absolu te  (R) configuration a t the 

anomeric centre. Thus, the sign of th is couplet does no t depend upon 

the orientation of the hydroxyl group b u t ra th e r on the absolute 

configuration of the anomeric centre.

6.2.2 Anom eric Region (~ 600-950 cm~*)

In this region of the conventional vibrational spectrum  three se ts  of 

bands designated type la and lb  a t ~ 917±13 and 920±5 cm -1, type Ila 

and lib  a t ~ 844±8 and 891-7 cm - 1  and type Ilia and Illb a t ~ 766-10
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Figure 6.4 The backscattered Raman (lR + lL) and ROA (lR -  lL) of

D-psicose in H20.

and 774-9 cm -1, have been found to  be sensitive to  the anomeric
18configuration. The three d istinc t type a and b bands are connected

with the axial and equatorial orientation o f the anom eric hydroxyl

groups, respectively. Furtherm ore, type lie bands a t 876±9 cm - 1  and

871-7 cm - 1  were found to  be characteristic  o f m onosaccharides of the
1 8lyxo -  and arabino-, respectively.

An earlier ROA study 1 a ttem pted  to  in te rp re t the m onosaccharide 

spectra in term s of the absolute configuration a t the anomeric carbon 

atom  and the  signs of the ROA signals of the type Ila and lib  bands 

a t ~ 844 and 891 cm-1. However, in order to  f i t  the  ROA data  w ith the 

absolute configuration a t the anomeric centre, type la, lb and type lie
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bands were invoked in some cases b u t no t o thers and the fac t th a t the 

vibrational origins of these bands may d iffer fo r m onosaccharides of 

d ifferent configurational types was not taken into account. This leads 

to  some confusion concerning the generation of ROA in the  range 

between ~ 800 and 950 cm - 1  which we will a ttem p t to  clarify below.

The key to  in terpreta tion  of the ROA spectra  in th is  range is to  

separate the m onosaccharides into configurational types and to  then deal 

w ith the axial and equatorial orientations o f the anomeric hydroxyl 

groups separately. The ROA data in th is range are listed  in Table 6.2 

and have been grouped according to  the four m onosaccharide types: 

x y l o a r a b i n o -  ly xo -  and r i b o respectively. This tab le  also includes 

relevant inform ation concerning the predom inant anomer, its  absolu te 

configuration a t the anomeric centre, its  chair conform ation and the 

orientation of the anomeric hydroxyl group. Normal coordinate analyses 

of the anom ers of D-glucose and D -galactose assigned bands in th is 

range to  highly complex, coupled modes involving C-C, C-O, and C-O -C 

stretching together with CH 2  rocking coordinates . 1 1 - 1 5  These calculations 

also seem to  indicate tha t, although deform ations around the anomeric 

centre are involved, they may provide only a sm all percentage o f the 

overall po tentia l energy distribution of the norm al modes and th a t the 

majority o f norm al modes are ra ther delocalised over the ring 

framework. This would certainly appear to  be the  case from  the ROA 

spectra  for, a lthough the ketose sugars have d ifferen t su b stitu en ts  on 

the anomeric carbon as compared to  the pentoses and aldoses, indeed 

they lack any anomeric C-H bond, they s till  display the same sign 

pa tte rn  as the corresponding pentose or aldose sugars although w ith 

some slight wavenumber shifts.
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Table 6.2 ROA data in the range ~ 800 to  950 cm 1 fo r m onosaccharides.

m ono­ type type type type m ajor anom er chair

saccharide la lib lie Ha and co n fig u ra tio n  form

xylo- type

D -glucose 913 (-*-) 845(0 ) 64%3 eq. (R) 4C!

D -xylose 895(♦) 64%3 eq. (R) 4Ci

p-D -m ethy l-

g lucoside
896(0) 100%3 eq. (R) 4Ci

a -D -m e  thy 1- 

g lucoside
9 0 4 (sp) 8 6 0 (sp) 100%a ax. (S) 4Ci

L -so rbose 9 0 7 (sp) 8 2 8 (sp) 98%a ax. (R) 2CS

arablno-  type

D -galac to se 9 0 6 (-) 891(+) 8 7 0 (-) 821 (-) 64%3 eq. (R) 4Ci

D -arabinose 924(+) 881(-) 826(+) 60%a ax. (R)

a -D -m e th y l-

galactoside
917 (-) 867(+) 8 2 4 (-) 100%ac ax. (S) 4Ci

3 -D -m ethy l-

ga lac toside
896 (+) 872 (-) 100%3 eq. (R) 4C t

D -fru c to se 924(+) 881 (-) 826(+) 75%3 ax. (R) 2CS

lyxo- type

D -m annose 914 ( + ) 8 8 5 (-) 825(+) 67%a ax. (S) 4Ct

D -lyxose 903(+) 8 8 3 (-) 838(+) 72%a ax. (S) 4 C i, 1 C 4

a -D -m eth y l-

m annoside
913 ( + ) 8 77 (-) 831(+) 100%a ax. (S) 4C!

D -tag a to se 920 (+) 879(-) 805(+) 79%a ax. (S) SC2

ribo- type

D -allose 878(+) 70%3 eq. (R) 4Ct

D -ribose 911(-) 883(+) 8 5 0 (-) 56%3 eq. (R) 4Ci

D -psicose 913 (-) 879(♦) 8 2 8 (-) * sc 2 2 c s

sp- strongly polarized, * significant quantities of bo th  anom ers
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In the preceding chapter the ROA spectra  o f D -glucose and a num ber 

of its deuterated analogues, which come into the category o f x y lo -  type 

monosaccharides, were discussed in detail. It was found th a t the 

p-anomeric form generates no ROA betw een ~ 700 and 880 cm -1. For 

the a-anom eric form tw o bands in the  conventional Raman spectrum  a t 

~ 904 and 860 cm - 1  were identified as being strongly  polarized and so 

the corresponding weak ROA signals were trea ted  as unreliable. 

Nonetheless, the a-anom eric form does exhibit th ree  weak ROA signals 

in the range ~ 700 to  800 cm-1. The lack o f signals fo r the p-anom eric 

form can be used to  distinguish betw een the tw o anom ers in m ono-, 

oligo-, and polysaccharides of D-glucose. However, of g rea ter 

im portance is the fac t that, for disaccharides of D-glucose, 

characteristic signatures fo r many linkage types have been identified in 

this region which will be discussed in the next chapter. L -sorbose 

(Figure 6.2) exists alm ost exclusively in the a-anom eric form  in solution 

and like the a-anom eric form o f D -glucose exhibits tw o strongly  

polarized Raman bands a t ~ 907 and 828 cm-1, the  la tte r  being

characteristic of the a-anom eric form, b u t does no t exhibit any ROA 

signals between ~ 700 and 800 cm-1.

It is clear from the Raman and ROA spectra  o f the arabino-  type 

monosaccharides th a t they generate a larger num ber of signals than 

those of the xy lo -  type. This can probably be ascribed to  the  fac t th a t 

one of the ring hydroxyls, o ther than the anomeric one, is in an axial 

orientation leading to  a d ifferen t norm al mode com position. This type 

of monosaccharide can be subdivided into tw o groups: those w ith the 

anomeric hydroxyl group predom inantly in the  axial o rien ta tion  and 

those with this group predom inantly equatorial. Further classification 

according to the absolute configuration a t the anomeric cen tre  is also 

possible and this inform ation is displayed in Table 6.2. From
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consideration of the relative orientation and absolu te  configuration o f 

the anomeric group it is possible to  rationalise the sign p a tte rn  

displayed by each of the monosaccharides o f th is particu lar type.

The position and occurrence of ROA signals in th is range are a 

function of the orientation of the  anom eric hydroxyl group, while the 

sign of the individual ROA signals depend on the absolu te  

stereochem istry of the p a rt of the m olecule em braced by the  particu lar 

normal modes. Thus, the anom ers may be distinguished from  one 

another by the position of the ROA signals. Also an empirical 

correlation ex ists  between the absolu te  configuration of the anomeric 

centre and the  sign of the ROA signals within individual groups of 

related  monosaccharides. In particular, m onosaccharides w ith the 

anomeric hydroxyl group equatorial do no t exhibit the type Ha Raman 

band or any associated ROA signal a t ~ 840 cm-1. A correlation  also 

exists between the ROA signals a t ~ 920 cm - 1  and 890 cm - 1  and the 

axial and equatorial orientations of the anomeric hydroxyl group, 

respectively. The o ther ROA signal listed  in Table 6.2, observed in the 

wavenumber range between ~ 870 and 880 cm -1, is characteristic  o f a 

m onosaccharide ring s tru c tu re  with one of the hydroxyl groups, o ther 

than the anomeric, in an axial orientation. This ROA signal is associated  

w ith the type lie band in the Raman spectrum  and undergoes only a 

small wavenumber sh ift on going from  the  axial to  the equatorial 

orientation o f the anomeric hydroxyl group.

F o r  th e  arabino- ty p e  r e d u c in g  s u g a r s  D - g a la c t o s e  an d  D - a r a b in o s e ,1 

fo r  w h ic h  s ig n if ic a n t  q u a n t it ie s  o f  b o th  t h e  a n o m e r s  a re  p r e s e n t ,  th e  

r e s u lt a n t  ROA s p e c tr a  a re  a s u p e r p o s it io n  o f  th e  s p e c tr a  o f  th e  t w o  

a n o m e r ic  s p e c ie s .  F or e x a m p le , D - g a la c t o s e  e x h ib it s  a  n e g a t iv e  ROA 

s ig n a l a t  ~ 906 c m -1 an d  a p o s i t iv e  ROA s ig n a l  a t  ~ 891 c m -1
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corresponding to  the a -  and p- anomeric form s, respectively. Note th a t

the fact th a t these two ROA signals for the a -  and p-anom eric form s

have opposite  signs and are a t  c losely  sep ara ted  w avenum bers does n o t

necessarily  mean th a t  they  have th e  sam e v ib ra tional orig ins as is
12evidenced by the normal coordinate analysis o f D -galactose. Also, the 

signal a t ~ 870 cm - 1  is weak and negative as bo th  anom ers are

contributing signals of opposite sign a t th is wavenumber which cancel 

ou t to  some degree. The appearance of a ROA signal a t ~ 821 cm - 1  is 

indicative of the presence o f the axial o rien tation  of the anomeric 

hydroxyl group.

The ROA sp ec tru m  o f D -fru c to se  (F igure 6.1) is a lm o s t iden tica l to  

th a t  o f D -sucrose  (n o t show n here) in th is  range ind icating  th a t  s ignals  

from  th e  fu ranose  form  o f D -fru c to se  (as  found  exclusively  in 

D -sucrose) are  ind istingu ishab le  from  th o se  o f  th e  py ranose fo rm  in 

th is  region. C om parison w ith  th e  ROA sp e c tra  o f  

a -m e th y l-D -g a la c to s id e ,1 which has th e  sam e o rien ta tio n  o f  a ll th e  ring  

hydroxyl groups, reveals th a t  in D -fru c to se  th e  sign p a tte rn  is reversed  

re flec tin g  th e  fa c t th a t, a lthough  b o th  have th e  sam e o rien ta tio n  o f  

hydroxyl groups around the  ring, th e  ab so lu te  co n figu ra tion  a t  each o f 

the  chiral c en tre s  is d iffe ren t.

The four ly xo -  type m onosaccharides lis ted  in Table 6.2 all have the 

same absolute configuration a t the four chiral centres and therefore  

exhibit the same sign pa tte rn  in this range. Note th a t the sign pa tte rn  

and wavenumbers are the same as identified fo r the  arabino- type 

monosacccharides with an axial orientation and an abso lu te  (R) 

configuration a t the anomeric centre even though the ly xo -  type 

monosaccharides considered here all have an axial o rien tation  b u t an 

absolu te (S) configuration a t the anomeric centre. I t m ight be
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misleading to  assign bands to  the same modes fo r d ifferen t 

configurational types bu t the sim ilarities in the ROA in th is range fo r 

the arabino-, ly xo -  and ribo- type sugars suggests th a t the signals do 

have a sim ilar origin. It is probably im portant to  consider all th e  chiral 

cen tres of the ring and not ju s t the absolu te configuration a t the 

anomeric centre in order to  tie up the assignm ents in th is region.

Only three m onosaccharides of the ribo- type have been studied to  

date and these are listed  in Table 6.2. D-psicose (Figure 6.4) ex ists  in 

aqueous so lution as a complex m ixture of anom ers and ring types 

(Table 6.1). D -ribose in aqueous solution ex ists as 20% a-pyranose in 

the *C4  chair conform ation, 56% (3-pyranose in the  chair

conform ation, 6 % a-furanose and 22% 0-furanose . 1 9  Both the  pyranose 

form s of D-ribose have an equatorial orientation of the  anomeric 

hydroxyl group while both the pyranose form s of D -psicose have an 

axial orientation of this group. However, in the range discussed here 

the ROA spectra  of the two are remarkably similar. As the ROA signals 

a t ~ 911 cm - 1  and 850 cm - 1  would be assigned to  the  axial o rientation 

of the  anomeric hydroxyl group in the o ther m onosaccharides, which is 

a lm ost com pletely absent in D-ribose, it seems likely th a t these  signals 

originate from  another source. A conventional Raman study of 

D-ribose proposed th a t bands a t 913 and 834 cm be assigned to  

vibrations o f the furanose ring and this would explain the  presence of 

ROA signals a t these wavenumbers. In addition, i t  is possible th a t the 

positive ROA signals a t ~ 883 and 879 cm ” 1 in D -ribose and D-psicose, 

respectively, have d ifferent vibrational origins fo r m onosaccharides of 

the ribo- type having axial and equatorial orientations of the anomeric 

hydroxyl group. It is w orth noting here th a t the sign p a tte rn  in 

D -psicose, which has an axial orientation o f the anom eric hydroxyl
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group w ith an absolute (S) configuration, is the  sam e as 

m onosaccharides of the arabino-  and lyxo -  types w ith an axial 

orientation of the anomeric hydroxyl group and an absolu te  (S) and (R) 

configuration, respectively.

The o ther monosaccharide of th is series, D -allose, has no detec tab le  

furanose com ponent, ex ists  only in the 4 C 1 chair conform ation and 

favours the  p-anomeric form  by a ratio  of 2:1. 6  The ROA spectrum  of 

D -allose is indistinct in this region and indeed resem bles more closely 

th a t of a member of the xy lo -  type than of the  ribo-  type. However, 

the presence of a conventional Raman band a t ~ 874 cm - 1  along w ith 

an associated positive ROA signal is indicative o f a m onosaccharide w ith 

a hydroxyl group, o ther than the anomeric, in an axial orientation.

As we have seen above, considering the  individual configurational 

types and anomeric orientations separately is fairly successfu l in 

explaining the ROA spectra  in this range. However, as we shall see 

la ter, this correlation may be purely fo rtu itous and may obscure the 

underlying mechanism for the generation o f ROA in th is range as the 

sign of the ROA signals in the fingerprint region, where the anom eric 

centre is of no particular significance fo r the  vibrations, display the 

same sign dependence as the ROA signals betw een ~ 800 and 950 cm -1. 

N onetheless, the normal modes in this range are certainly sensitive to  

anomeric configuration and this wavenumber range will probably be of 

m ost value in assessing the orientation of the anomeric hydroxyl group 

from the wavenumber a t which signals appear and also  in providing 

estim ates o f anomeric equilibria. Furtherm ore, the sim ilarity w ith  the 

fingerprint region implies th a t there is som e inform ation overlap 

betw een the tw o regions: this can be useful because in some

su b stitu ted  analogues of m onosaccharides, such as D -glucosam ine , 1
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vibrations originating in the su b stitu en t may in terfere  w ith the 

characteristic sign pattern  in the fingerprint region.

6.2.3 Fingerprint Region (~ 950-1200 c m 1)

This region of the vibrational spectrum  is dom inated by exo- and

endocyclic C-O and C-C stre tches w ith significant contributions from
11—ISC -O -H  deform ations. The in terp re ta tion  o f the conventional

vibrational spectra  in this region is d ifficu lt on account o f the

widespread coupling of C-O and C-C s tre tch es , the  poor discrim ination

between exo- and endocyclic contributions and the  sm all differences
17between the configurational positions of each C-O  group. It has been 

dem onstrated in the preceding chap ter th a t, although C -O -H  

deform ations contribute to  the Raman intensity  and position of bands in 

this region, they make no significant contribution to  the  associated ROA 

intensity and th a t configurational changes have a com prehensive and 

characteristic e ffect on the ROA sign p a tte rn . 1 This la tte r  discovery 

implies th a t detailed assignm ent of the individual Raman bands is

unnecessary as the ROA spectrum  provides a ’’fingerprint" characteristic  

of the backbone structure.

From a com parison of the ROA spectra  in th is region o f the ketose, 

aldose and pentose sugars of the same configurational type i t  is clear 

that, although the sign patterns within a series are generally retained, 

some minor changes including sm all wavenum ber sh ifts  and the

disappearance of certain signals are evident. One possible explanation is 

th a t the exocyclic C-C bond linking the hydroxym ethyl group to  the 

ring, which is substitu ted  a t a different position fo r the ketose and 

aldose sugars and is not present a t all fo r the pentose sugars, is

involved in the normal modes. The decoupling of th is s tre tch ing
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coordinate from  the normal modes or changing its  local environm ent 

may be responsible fo r some of the changes observed.

In this region o f the ROA spectra, D -glucose and D-xylose generate a 

characteristic negative, positive, negative and positive sign p a tte rn . 1  In 

the previous chapter it  was determ ined th a t the endocyclic C-O 

stretching coordinates involving the ring oxygen con tribu te  to  the 

normal modes b u t do no t influence the  ROA intensity  and th a t m otions 

of the exocyclic hydroxymethyl group and the C -O -H  deform ations do 

not affect the sign pattern . Introduction of a ring su b stitu en t o ther 

than a hydroxyl group was found to  d isrup t th is sign p a tte rn . The ribo- 

type m onosaccharides have many featu res in common w ith those  o f the 

xy lo -  type in th is region. Thus D-glucose, D -allose, D -ribose and 

D-xylose all exhibit the same characteristic  sign p a tte rn . 1  Furtherm ore, 

the tw o ketose sugars, L-sorbose and D-psicose (Figures 6.2 and 6.4) 

exhibit only the tw o ROA signals a t higher wavenumber. Note th a t the 

sign of these  tw o signals is reversed in L-sorbose relative to  the 

o thers because, although they all have the  same orien tation  of the 

hydroxyl groups a t carbon atom s 3,4 and 5 the abso lu te  configuration 

a t these chiral cen tres is d ifferent fo r the L-sugar. Despite the 

sim ilarities in th is region the two configurational types are readily 

distinguishable by considering the anomeric region where, as discussed 

above, m onosaccharides o f the ribo- type are d ifferen t from  those of 

the xy lo -  type. In addition, the tw o configurational types d iffer 

dram atically in the fingerprint region from  m onosaccharides of the lyxo -  

and arabino- types which fu rther a ss is ts  the identification.

The ROA spectra  in th is region are closely re la ted  to  those  in the

anomeric region in the sense th a t m onosaccharides of the  arabino- type
2 1which ex ist in the C5  or C 4  chair conform ation, such as D -fructose
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(Figure 6.1), and monosaccharides o f the ly xo -  type which ex ist in the 

SC2  o r 4 Ct chair conform ations, such as D -tagatose (Figure 6.3), show a 

remarkably sim ilar sign pattern . U nfortunately , w ithou t p rior knowledge 

of either the chair conform ation o r the  configurational type it  is 

d ifficult to  distinguish betw een the tw o using only the ROA sign 

p a ttern  in th is region. However, in some cases inspection of the CH2  

and COH deform ations region can be productive in th is respect.

M onosaccharides of the same configurational type b u t in d ifferen t 

chair conform ations have the opposite absolu te  configuration a t the  ring 

carbons so the  ROA sign pa tte rn  is reversed. For example, D -fructose 

and D -galactose exhibit nearly m irror image ROA spectra  in th is region 

and in the range from ~ 800-950 cm - 1  as they have the same

orientation o f the ring hydroxyl groups, bo th  being arabino- type 

monosaccharides, bu t d ifferent absolu te configurations a t  all the  chiral 

centres except the anomeric one. The fact th a t  the ROA signals in the 

anomeric region show the same dependence on orientation and absolu te  

configuration implies th a t the vibrations responsible fo r the ROA in the 

anomeric region have a sim ilar origin to  those  in the fingerprin t region,

i.e. delocalised ring modes ra ther than deform ations about the  anomeric 

centre. Thus, although the ROA signals in the anomeric region are 

certainly more sensitive to  the anomeric configuration they do no t 

appear to  be solely dependent on m otions o f th is group. This means 

th a t the correlation made betw een sign and absolu te configuration a t 

the anomeric centre is probably fo rtu itous which explains why the rules 

break down for d ifferent configurational types. The precise origin o f the 

observed ROA signals and the mechanism by which they are generated 

will probably have to  await detailed ab initio  ROA in tensity  calculations 

on monosaccharides.
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One feature in this region which does not appear to  be delocalised 

over the ring is a ROA signal unique to  the ketose  sugars appearing a t 

~ 1190, 1186 and 1200 cm - 1  in D -fructose, L -sorbose and D -tagatose, 

respectively, and as a shoulder a t ~ 1195 cm - 1  in D -psicose. The paren t 

Raman band was a ttribu ted  to  C-O  stre tch ing  and H -C -O  bending 

modes of the hydroxymethyl group attached to  the anomeric carbon and 

is only found a t th is wavenumber in the ketose  su g ars . 4  Therefore, n o t 

only does th is band act as an excellent ketose m arker, as bo th  aldose 

and pentose sugars do not show any signal in th is wavenumber range, 

bu t the ROA signal also depends on the abso lu te  configuration a t the 

anomeric centre. Thus, D -fructose and L-sorbose have a negative sign 

implying an absolute (R) configuration; whereas D -tagatose  and 

D-psicose have a positive sign implying an absolu te  (S) configuration.

6.2.4 CH2 and COH Deformations Region (~ 1200-1500 cmT1)

The preliminary ROA study of the aldose and pentose 

monosaccharides highlighted influences of the  orientation of the 

anomeric hydroxyl and also the adjacent hydroxyl group on the 

conform ation of the exocyclic hydroxymethyl group and the 

consequences fo r the ROA spectra  in this region . 1 This was follow ed by 

the study of D-glucose and several of its  deuterated  analogues 

presented in the previous chapter which produced a num ber of 

in teresting resu lts . The normal modes responsible for the negative and 

positive ROA signals a t ~ 1220 cm - 1  and 1260 cm - 1  in D -glucose were 

shown to  involve coupled CH2  and C -O -H  deform ations and it was 

proposed th a t these tw o signals were associated w ith the gauche-gauche  

(GG) and gauche-trans  (GT) ro tam ers of the exocyclic hydroxymethyl 

group, respectively. In addition, it was dem onstrated  th a t only the 

p-anomeric form  would generate a ROA signal a t ~ 1260 cm-1. O ther
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ROA signals in this region were a ttribu ted  to  C-l—H, C-H and C -O -H  

deform ations.

The ROA of the ketose, . aldose and pentose sugars d iffer more 

dram atically in this region than in any o ther p a rt o f the spectrum . This 

is presum ably due to  the changes in the substitu tion  position of the 

hydroxymethyl group in ketose and aldose sugars and the absence of 

th is group from  the pyranose form  of pentose sugars. The lack of a 

hydroxymethyl group from the s tru c tu re  of the pyranose form  of 

pentose sugars has previously been the explanation fo r the weak 

intensity  of the ROA signals found in these sugars in th is region. In 

addition, although not all the ROA signals in th is region are sensitive 

to  deuteration of the hydroxymethyl group, the absence o f signals from  

the ROA spectra  of the pentose sugars point to  the key ro le th is group 

has in generating the ROA. The exception to  the above is D-ribose 

which has a ROA spectrum  closely resem bling th a t o f D -galactose in 

th is region . 1 A possible explanation is tha t, although D -ribose has no 

exocyclic hydroxymethyl group in the pyranose form , in aqueous 

so lution there is a fairly large furanose com ponent which does and 

which may be responsible for the ROA. Furtherm ore, the  hydroxyl group 

adjacent to  the hydroxymethyl group in the furanose form  has an axial 

orientation and the same situation in the pyranose form  of D -galactose 

is though t to  be responsible for generating the associated ROA sign 

p a tte rn . 1

One feature common to  both  the ketose and aldose sugars is a band 

in their conventional Raman spectra  a t ~ 1260 cm " 1 which has been
11 —I 4*assigned to  coupled CH 2  and C-O -H  deform ations. The associated 

ROA signals are positive in D -fructose and L-sorbose and negative in 

D -tagatose and D -psicose so it would appear tha t, like the signals a t
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~ 430 cm - 1  and 1180 cm-1, the sign is dependent on the absolu te 

configuration a t the anomeric centre to  which the hydroxymethyl group 

is linked in the ketose sugars. In all the aldose sugars studied so far 

th is ROA signal has a positive sign presum ably because the 

configuration a t the chiral centre to  which the  hydroxymethyl group is 

joined has an absolu te (R) configuration fo r all the D -sugars. Likewise 

D -fructose  and L-sorbose, which also exhibit a positive ROA sign a t 

this wavenumber, have the hydroxymethyl group a ttached  to  a chiral 

centre  with an absolute (R) configuration. This would imply also  th a t 

the norm al mode responsible is localised som ew hat around the exocyclic 

hydroxymethyl group and the pa rt o f the ring to  which it is directly 

attached.

6.3 Concluding Remarks

W ith this study of four ketose sugars the assignm ent of 

monosaccharide ROA has been successfully  extended. I t is im portan t to  

note th a t in the  anomeric and fingerprint regions of the  ROA spectra  

the sign pa tte rn s  fo r the ketose sugars are rem arkably sim ilar to  those 

of the corresponding aldose and pentose sugars of the same 

configurational type. This reinforces the opinion th a t the  norm al modes 

in these  two regions are delocalised over the chiral cen tres o f the  ring 

and sam ple the chirality of the ring fram ework ra ther than the  pendant 

s ide-groups . 1 2 , 1 4 , 1 5  In con trast, the  key role o f the exocyclic 

hydroxymethyl group is again in evidence in the CH 2  and COH 

deform ations region with striking differences apparent betw een the ROA 

spectra  o f aldose, pentose and ketose  sugars. In addition, th ree  ROA 

signals appearing a t ~ 430, 1180 and 1260 cm " 1  depend only upon the 

absolute configuration a t the anomeric centre. Definite conclusions about 

the low wavenumber region will probably have to  aw ait the detailed
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investigation of the aldose and pentose m onosaccharides which have 

only been studied down to  ~ 600 cm - 1  to  date.

Future studies on m onosaccharides may involve su b stitu ted

monosaccharides and exploitation o f the low wavenumber and C-H

stre tch  regions for existing m onosaccharides. For the refinem ent of
21assignm ents ab initio  ROA intensity  calculations would appear to  be 

essential although as dem onstrated in the previous chap ter studying 

closely related  analogues and deuterated  sam ples can provide 

considerable insight into the generation o f the ROA. However, the work 

to  date  does provide valuable background m aterial th a t is required for 

in terpreting  the ROA of di—, oligo- and polysaccharides p resented  in the 

following tw o chapters.
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Chapter 7

Vibrational Raman Optical Activity 
of Disaccharides

In th is  ch ap te r th e  ROA sp ec tra  o f D -m alto se , D -m a lto s e -0 -d 8 , 

D -cellob iose, D -isom altose , D -gen tiob iose, D -lam inarib iose , D -treh a lo se  

and D -lac to se  are  p resen ted . All th e  sp e c tra  w ith  th e  excep tion  o f 

D -lac to se , w hich co n s is ts  o f  a D -g a lac to se  residue  linked to  a 

D -g lucose residue, are  o f d isaccharides co n sis tin g  o f tw o  D -g lucose  

residues joined by an O -glycosidic linkage. This p a rticu la r  choice o f  

sam ples m ade i t  possib le  to  build  upon th e  w ork  on th e  D -g lucose  

m onom er p resen ted  in ch ap te r 5 and to  investig a te  th e  in fluence o f  th e  

glycosidic link on th e  ROA sp ec tra . D -lac to se  w as included  in th is  

study  to  a scerta in  w h eth er usefu l in fo rm ation  cou ld  s ti l l  be  e x tra c te d  

from  th e  ROA spectrum  d esp ite  th e  add itional com plexity  arising  from  

the  p resence  o f tw o  d iffe re n t residues.

7.1 Experimental

Sam ples o f D -cellob iose, D -gen tiob iose, D -iso m alto se  and 

D -lam inarib iose w ere supplied  by Sigma; D -treh a lo se  and D -lac to se  by 

Fluka and D -m alto se  by Aldrich. A sam ple o f  D -m a lto s e -0 -d 8 w as 

p repared  by lyophilising D -m alto se  from  DzO so lu tio n  tw ice  b efo re  

d isso lv ing  in D20  to  a co n cen tra tio n  o f 3 M. A ll th e  o th e r  carbohydra te  

sam ples w ere d isso lved  in d is tilled  H 20  to  a co n cen tra tio n  o f  3 M, 

ex cep t fo r D -cellob iose and D -lam inarib iose (1.2 M) and D -lac to se  

2 M), and allow ed to  equ ilib ra te  a t  room  te m p e ra tu re  fo r  a t  le a s t  24 h. 

The equ ilib ra ted  sam ples w ere tre a te d  w ith  charcoal to  reduce 

fluo rescence, f ilte red  in to  q u artz  m icro fluo rescence  ce lls  th ro u g h  0.45
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pm Millipore membrane filters  to  remove any d u s t particles th a t may 

cause spurious light scattering, then centrifuged for a t leas t 15 min. 

During spectra l acquisition the laser power was ~ 700 mW a t the 

sam ple and the s lit w idth was se t for 1 2 0  pm giving a spectra l 

bandpass o f ~ 12 cm ” 1 using 514.5 nm laser excitation. The spectra  were 

recorded over 2 to  4 h.

7.2 Results and Discussion

The Raman and ROA sp ec tra  o f  D -m alto se , D -m a lto s e -0 -d 8 , 

D -cellob iose, D -isom alto se , D -gentiobiose, D -lam inarib iose, D -treh a lo se , 

and D -lac to se  in the  range ~ 350-1500 cm -1 are  show n in Figures 

7.1-7.8 , respectively .

7.2.1 Low  W avenumber Region (~ 350-600 cm~*)

1 2In th is region normal coordinate analyses o f m onosaccharides ’ 

assign the Raman bands to  vibrations involving exo- and endocyclic 

bending deform ations of the C-C-O, C-C-C, C -O -C  and O -C -O  groups 

coupled w ith associated exo- and endocyclic to rsions about C-O bonds. 

It has also been suggested th a t the in tense Raman bands involving 

C -C -O  deform ations around the anomeric carbon which are found in 

this region are among the m ost sensitive to  anomeric configuration in 

the en tire  monosaccharide spectrum . I t has been calculated th a t the
j  e

norm al mode com position is sim ilar in disaccharides ’ b u t th a t there is 

also the possibility of additional contributions arising from  m otions of 

the C -O -C  group which form s the glycosidic link.

The com plexity of the normal modes and the lack of specific 

conventional Raman assignm ents in th is region hinder the assignm ent of
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CHjOH
X 0 D -m altose

Ih -oh
OH

OHOH

ROA

J 5 .0 x 1 0 -lcm

400 550 700 850 1000 1150 1300 1450

Figure 7.1 The backscattered Raman (lR + lL) and ROA (lR — lL) spectra of 

D-maltose in H2 0 .

ROA signals to  particu lar vibrations. These d ifficulties are com pounded 

by the  fac t th a t until recently  backscattering ROA stud ies 6 - 9  did no t 

investigate below  ~ 600 cm-1. However, it is clear from  com parison of 

the spectra  of D -m altose (Figure 7.1) and D -m altose-O -dg  (Figure 7.2) 

th a t C -O -H  vibrations do not contribute significantly to  e ither the 

Raman or ROA intensities in th is region. Thus, it  would appear th a t in 

common with the fingerprint region 6 - 9  the ROA signals in th is  region 

probe the backbone s tru c tu re  of carbohydrates and may prove even more 

sensitive to  conform ation.

One im portan t correlation th a t can be made in th is region is 

betw een the configuration of the glycosidic link and the sign of a ROA

-  117 -



m a l to s e -O -d
.00

00 00

ROA

400 550 700 850 1000 1150 1300 1450

Figure 7.2 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-maltose-O-dg in D2 0 .

couplet centred a t ~ 430110 cm - 1  found in all the  disaccharides

containing only D -glucose residues studied so far. This couplet is 

positive a t low and negative a t high wavenumber fo r a-linked  species 

and negative a t low and positive a t high wavenumber fo r p-linked 

species. At p resen t it  is no t clear w hether the norm al modes 

responsible for generating the ROA couplet are closely re la ted , such as 

the in-phase and ou t-o f-p h ase  com binations o f the  sam e local 

vibrational coordinates, or are composed of quite d ifferen t vibrational 

coordinates embracing d ifferen t regions of the m olecule. The fac t th a t 

th is couplet is centred w ithin an ~ 2 0  cm - 1  range for all the

disaccharides studied and th a t a -  and (3-linked species exhibit ROA 

signals o f opposite signs strongly suggests th a t it has a sim ilar origin
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D-cellobiose
(HOH.PH

OH OH

ROA

I  3 . 5 x 1 0 -lcm

400 550 700 850 1000 1150 1300 1450

Figure 7.3 The b a c k s c a t t e r e d  Raman ( l R + lL ) a n d  ROA ( l R  -  lL ) s p e c t r a  o f  

D - c e l l o b i o s e  in H2 0 .

in all the disaccharides and th a t deform ations around the anomeric 

carbon of the non-reducing residue play a crucial role in generating the 

ROA signals. The work presented in the previous chapter on the  ketose  

m onosaccharides identified a ROA couplet in the same wavenumber 

range showing the same sign dependence on absolu te configuration a t 

the anomeric centre as found in the disaccharides. However, since no 

such couplet is evident in the ROA spectra  o f D -glucose (Figure 5.1) or
g

the methyl glucosides it is likely th a t m otions o f the  glycosidic link 

also make som e im portant contributions here.
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Table 7.1 Position and width (cm *) of low wavenumber glycosidic

couplet.

disaccharide
linkage type and 

con figu ra tion

p o sition  and sign 

o f  ROA co u p le t

deconvo lu ted  

co u p le t w id th

D -m alto se a  (1-4) ax .-eq . 431 (+,-) 31

D -m a lto s e -0 -d 8 a  (1-4) ax .-eq . 428 (+,-) 34

D -cellob iose 3(1-4) eq .-eq . 440 (-,+) 34

D -iso m alto se a  (1-6) ax .-eq. 424 (+,-) 39

D -gen tiob io se 3(1-6) eq .-eq . 420 (-,+) 41

D -lam inarib iose 3(1-3) eq .-eq . 423 (-,+) 33

D -treh a lo se a  (1-1) ax .-ax . 431 (+,-) 19

From inspection o f Table 7.1, which lis ts  the wavenumber a t which 

this ROA couplet is centred along w ith its  sign and w idth m easured 

from  the  band maxima to  the band minima of the  ROA spectra  fo r a 

selection of disaccharides, it  is clear th a t the w idth o f th is couplet 

displays a dependence on the linkage type. I t was found by 

deconvolution o f the Raman spectra  presented here th a t th is dependency 

is a function of the differences in the separation of the paren t Raman 

bands along w ith the appearance of additional Raman bands contributing 

ROA signals o f opposite sign for the d ifferen t anomeric form s.
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CM,OH

D -isom altose
-0 — 1

OH

ROA

I 3 .5 x10 -lcm

400 550 700 850 1000 1150 1300 1450

Figure 7.4 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra o f  

D-isomaltose in H2 0 .

For th e  1-4 linked species D -m alto se , D -m a lto s e -0 -d a  and 

D -cellob iose (F igures 7.1-7.3), th e  ROA signals  o f o p p o site  sign  fo r a -  

and (3-linkages asso c ia ted  w ith  th ree  d is tin c t Ram an bands w ere found 

by deconvolu tion  to  have an overall sep ara tio n  o f  31, 34 and 34 cm -1 , 

respectively . D -lam inarib iose (F igure 7.6), the  only exam ple o f  a  1-3 

linked species, is found to  have an a lm o s t iden tica l c o u p le t to  

D -cellob iose w ith  the  sam e Raman band s tru c tu re  and a deconvolu ted  

separa tion  o f 33 cm -1. This sim ilarity  be tw een  th e  D -cellob iose  and 

D -lam inarib iose is ev ident th ro u g h o u t th e  ROA sp e c tra  ind icating  th a t  

the  tw o  exh ib it very sim ilar con fo rm ationa l behaviour as p red ic ted  by 

m olecu lar m odelling ca lc u la tio n s .10 A sim ilar band  s tru c tu re  w as a lso  

found fo r th e  a (1-1) linked species D -treh a lo se  (F igure 7.7) b u t w ith  an

-  121 -



CHjOH

D -g en tio b io se
■0 — (

OHHO

OH

ROA

I  5 . 7 x 1 0

400 550 700 850 1000 1150 1300 1450

Figure 7.5 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-gentiobiose in H2 0 .

overall separation of only 19 cm-1. This re su lts  in a narrow  ROA 

couplet which may re flec t the rigidity of th is particu lar linkage type 1 1  

or possibly the  fac t th a t bo th  the anomeric cen tres are fixed in the 

a-anom eric form  by the linkage in D -trehalose. The corresponding ROA 

signals in the  1-6 linked species, D -isom altose and D -gentiobiose 

(Figures 7.4 and 7.5), associated w ith a t leas t four and possibly five 

Raman bands were found by deconvolution to  have an overall separation 

o f 39 and 41 cm "1, respectively, thereby showing a dependence on the 

linkage type. The presence o f additional bands, also dependent on the 

configuration of the linkage, serves to  broaden th is couplet relative to  

the o th er disaccharides studied here. This may re flec t the fac t th a t the 

1 - 6  linked species have the CH 2  group of the reducing residue
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D -la m in a r ib io se
HOOH

OH

ROA

I 7 . 5 x 1 0

400 550 700 850 1000 1150 1300 1450

Figure 7.6 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-laminaribiose in H2 0 .

incorporated into the linkage which re su lts  in an increase in the
12 13conform ational freedom ’ and may also  a lte r the com position of the

norm al modes in this wavenumber range.

I t would appear then th a t no t only can th is couplet d ifferentia te  

betw een d ifferen t linkage configurations b u t also betw een d istinc t 

linkage types in molecules containing D -glucose residues using the 

w idth of the ROA couplet. Furtherm ore, detailed analysis o f the 

A -values of these  ROA signals may provide valuable inform ation on the 

conform ation of these linkages.
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Figure 7.7 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-trehalose in H2 0 .

7.2.2 Anom eric Region ( ~ 600-950 c m 1)

I t  is c lear from  exam ination o f  th e  ROA sp e c tra  o f  th e  th ree  

p-linked  di saccharides, D -cellob iose (F igure 7.3), D -gen tiob io se  and 

D -lam inarib iose (F igure 7.6), th a t  they  lack  any ROA signals  in th e  

range from  ~ 700 to  880 cm -1. A sim ilar r e s u lt  w as a lso  found  fo r  th e  

p -anom eric fo rm  o f th e  D -g lucose m onom er. In c o n tra s t , th e  a -lin k ed  

di saccharides, D -m alto se  (Figure 7.1) and D -iso m alto se  (F igure 7.4) 

exh ib it th ree  ROA signals  in th is  range as does th e  a -an o m eric  fo rm  o f 

th e  D -g lucose  m onom er. I t is w ell e s tab lish ed  th a t  th e  Raman band a t  

~ 845 cm -1 is ch a ra c te ris tic  o f the  a -an o m er,14 and norm al coo rd ina te  

an a ly ses4,5 assign  th e  bands in th e  range ~ 700 to  800 cm -1 to

CHjOH D -tre h a lo s e
H 0

OH OH

I 6 . 4 x 1 0

ROA

I 6 . 3 x 1 0

400 550 700 850 1000 1150 1300 1450

-  124 -



cm2o h D -la c to seHO

(HOHOH

OH OH

I  8 . 8 x 1 0

ROA

5 .7 x 1 0

400 550 700 850 1000 1150 1300 1450

Figure 7.8 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra of 

D-lactose in H2 0 .

bending coordinates of the heavy atom s involved in the  glycosidic link 

or possibily of the hem i-acetal fragm ent. Thus, the  presence of ROA 

signals in the spectra  of the a-linked species may re flec t some chirality 

inherent in the linkage o r the hem i-acetal fragm ent when the  C-l— O -l 

group is in an axial position. This simple observation holds fo r all the 

di-, o ligo- and polysaccharides of D-glucose studied so far and provides 

an easy m ethod of distinguishing betw een hom ogeneously a -  and 

3-linked species of D-glucose.

One of the  m ost intriguing and potentially  useful features in this 

region is a ROA couplet in the spectrum  of D -m altose centred a t ~ 917 

cm 1 which is positive a t low and negative a t high wavenumber.
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Previous ROA studies 6 , 7  assigned th is couplet to  a vibration o f the

a  (1-4) glycosidic link since it  was neither p resen t in the spectra  of the

m o n o m e r , D - g lu c o s e ,  n o r  in  th e  s p e c tr a  o f  th e  p - l in k e d  d is a c c h a r id e s

and was found to  have approxim ately twice the in tensity  in the trim er,

D -m altotriose (Figure 8.2), which contains two such links per molecule.

On the basis of the assignm ent of a band a t 901 cm " 1 in the

c o n v e n t io n a l  IR s p e c tr u m  o f  a - D - g l u c o s e  t o  a  C -l-H  d e fo r m a t io n  m o d e 1S

th is ROA couplet was a ttribu ted  to  interactions betw een the anomeric
6 7C -l-H  deform ation and the glycosidic C-O -C  stre tch . ’ However, we 

have already shown in chapter 5 th a t C -l-H  deform ations play only a 

minor role in th is normal mode and furtherm ore th is  assignm ent 

neglects the fac t th a t a D-glucose Raman band a t 913 cm - 1  was 

dem onstrated  to  be sensitive to  O -deuteration and hence to  contain a
ISsignificant contribution from  C -O -H  deform ations. It is c lear from  a

com parison of D -m altose with its  O -deuterated  analogue (Figure 7.2)

th a t the  ROA couplet collapses and broadens and the associated  Raman

band is weakened and sh ifted  to  low er wavenumber upon deuteration. In

a  n o r m a l c o o r d in a te  a n a ly s is  o f  a m y lo s e ,16 fo r  w h ic h  D - m a l t o s e  i s  th e

repeating unit, a conform ation-sensitive mode a t 946 cm ” 1 was described

as a skeletal vibration of the a  (1-4) linkage and contributions were

predicted not only from the linkage atom s b u t also from  the ring

atom s and deform ations of the C -2-O -H  and C -3-O -H  groups. In

addition, a second Raman band a t 923 cm - 1  was shown to  be sensitive

to  O -deuteration  and was assigned to  a C -O -H  deform ation mode. This

leads us to  the conclusion th a t it is probably more accurate to  describe

this couplet as originating in the C-O -C s tre tch  coordinates of the

glycosidic link interacting w ith ring stretch ing  coordinates and C -O -H

deform ations, and to  suggest th a t the 0-2-H---0-3* in tram olecular
17h y d r o g e n  b o n d  fo u n d  in th e  c r y s ta l  s tr u c tu r e  o f  D - m a l t o s e  an d

18though t to  pers is t to  some degree in aqueous so lu tion  may also be
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im portant in generating th is ROA signal. This them e is developed more 

fully in the next chap ter in the discussion o f cyclodextrins.

A sim ilar couplet is p resen t in the ROA spectrum  of D -isom altose

centred a t ~ 918 cm - 1  b u t with the  signs reversed relative to  th a t

found in D -m altose. Deconvolution of the paren t Raman bands 

dem onstrate th a t both  these couplets are associated w ith tw o closely 

separated Raman bands yielding ROA signals of opposite  sign. As these 

two m olecules have the same configuration a t all the chiral centres, the 

sign reversal o f th is glycosidic couplet m ust originate in the  d ifferen t 

linkage type in D -isom altose w ith its  characteristic  conform ations and 

distinct associated normal modes. Thus, th is couplet no t only provides a 

signature characteristic  o f certain  types of a-linked  species b u t also 

carries conform ational data.

The tw o bands a t ~ 839 cm - 1  and 909 cm - 1  in the  Raman spectrum

of D -trehalose (Figure 7.7) are strongly  polarized, and as such bands
19are known to  be particularly  susceptible to  polarization a rtifac ts  the 

weak associated ROA signals m ust be trea ted  as unreliable. The ROA 

spectrum  in th is region does, however, contain tw o unique features: a 

broad positive signal a t ~ 687 cm - 1  and a negative signal a t  ~ 798

cm-1. Normal coordinate analysis 4  assigns a mode a t 697 cm - 1  to  the

C-O-C deform ation of the glycosidic link coupled to  C -C-O  

deform ations and torsions about C-O bonds and a mode a t ~ 784 cm - 1  

to  C-O-C, C -C -O  and O -C-O  deform ations around the  anomeric centres 

in D -trehalose. These tw o ROA signals could therefore  be characteristic  

of the a ( 1- 1 ) linkage type although the im portance of th is observation 

is lim ited, except as a model, as it does no t form  m olecules larger 

than the disaccharide.
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The ROA spectrum  of D -lactose (Figure 7.8) in the  anom eric region 

is a lm ost identical to  th a t of p-D -m ethyl galactoside published by Wen
o

e t al. T h is  m ay b e  u n d e r s to o d  b y  c o n s id e r in g  D - la c t o s e  a s  a  

n o n -r e d u c in g  D - g a la c t o s e  r e s id u e  tr a p p e d  in th e  p -a n o m e r ic  fo r m  b y  th e  

g ly c o s id ic  lin k  p lu s  a r e d u c in g  D - g lu c o s e  r e s id u e . A s  n o te d  in  c h a p te r  S 

D - g lu c o s e  y ie ld s  o n ly  t w o  w e a k  ROA s ig n a ls  in  th is  r e g io n ;  w h e r e a s  th e  

n o n -r e d u c in g  D - g a la c t o s e  r e s id u e , a s  ty p if ie d  b y  p - D - m e t h y l  g a la c t o s id e ,  

g iv e s  r is e  t o  a  n u m b er  o f  s t r o n g  ROA s ig n a ls .  In e f f e c t  th e  s ig n a ls  

fr o m  th e  p - D - g a la c t o s e  r e s id u e  a re  sw a m p in g  t h o s e  fr o m  t h e  D - g lu c o s e  

r e s id u e , th e  g ly c o s id ic  lin k  o r  fr o m  in te r -r e s id u e  in te r a c t io n s .  A s im ila r  

r e s u l t  i s  fo u n d  f o r  D - m e l ib io s e  ( n o t  s h o w n  h e r e )  w h e r e  th e  D - g a la c t o s e  

r e s id u e  i s  tr a p p e d  in  th e  a -a n o m e r ic  fo r m  b y  a  (1 -6 )  lin k  a n d  th e  

r e s u l t in g  s p e c tr u m  c lo s e ly  r e s e m b le s  th a t  o f  a - D - m e t h y l  g a la c t o s id e .

7.2.3 Fingerprint Region (~ 950-1200 cm~1)

The a-linked  disaccharides, D -m altose (Figure 7.1) and D -isom altose

(Figure 7.4), exhibit the same characteristic  negative, positive, negative
8 9and positive sign pa ttern  as D-glucose in th is region ’ b u t w ith an 

additional weak ROA signal, negative in D -m altose and positive in 

D -isom altose, appearing a t ~ 1077 cm - 1  and 1083 cm-1, respectively. A 

norm al coordinate analysis of D -m altose described a norm al mode 

appearing a t 1063 cm - 1  involving C-O stre tch ing  m otions w ith a major 

contribution from  the C -l-O -1 and C -4 '-0 - l  s tre tch ing  coordinates of 

the glycosidic link . 4  Combining th is with the fac t th a t th is signal is 

no t p resen t in D -glucose leads to  the conclusion th a t th is ROA signal 

is generated by m otions of the glycosidic link. Furtherm ore, the sign 

change for D -m altose relative to  D -isom altose also  reveals a 

conform ational sensitivity. The o ther a-linked  species, D -trehalose 

(Figure 7.7), deviates significantly from the D -glucose signature
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presum ably  due to  its  unique diaxial link.

In general, th e  p-linked  species, D -ce llob io se  (F igure 7.3)

D -gen tiob iose  (F igure 7.5) and D -lam inarib iose (F igure 7.6), exh ib it m ore 

changes re la tive  to  th e  ch a rac te ris tic  D -g lucose  s ig n a tu re  th an  the  

a-lin k ed  species. In particu la r, D -cellob iose show s an add itional positive 

ROA signal a t  ~ 976 cm -1, a negative ROA signal a t  ^  1054 cm -1 and a 

ROA co u p le t negative a t  low  and positive a t  high w avenum ber cen tred  

a t  ~ 1120 cm -1 which is overlapping th e  negative ROA signal a t  low er 

w avenum ber. As m entioned above D -lam inarib iose is very s im ilar to  

D -cellob iose  in th is  region ex cep t i t  does n o t exh ib it th e  positive  ROA 

signal a t  ~ 976 cm -1. By com parison , D -gen tiob iose  d iffe rs  only  in the  

p resence o f a co u p le t cen tred  a t  ^  1133 cm -1 w ith  th e  o p p o site  sense  

to  th a t  observed  in D -cellob iose. In addition, b o th  exh ib it changes in 

th e  re la tive  in ten s itie s  o f th e  signals  re la tive  to  D -g lucose  and the

a -lin k ed  di saccharides. N orm al coo rd ina te  an a ly sis4 again seem s to

ind icate  th a t  th e  glycosidic s tre tch in g  coo rd in a tes  co n trib u te  sign ifican tly  

to  th e  norm al m odes responsib le  fo r th e  ROA co u p le ts  in th e  range ~ 

1120 to  1140 cm -1 fo r d isaccharides w ith  a (3-linkage. Thus, i t  appears 

likely th a t  th e  observed changes may be a t tr ib u te d  to  th e  glycosidic 

link and a lso  th a t  th e se  signals  have a  sign dependence on 

confo rm ation .

The com plex nature o f vibrations in this region make it d ifficu lt to  

assign accurately the vibrations involved in generating the ROA.

However, it does mean th a t th is region provides a "fingerprint" 

characteristic  of the individual disaccharide units and no t ju s t a sum of 

the tw o constituen t sugar residues so th a t it  actually  provides 

inform ation com plem entary to  th a t available from  the CH 2  and C -O -H  

deform ations region as will be discussed below. Furtherm ore, the
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isolation of ROA signals originating in the link yields an additional

perspective on their conform ation to  those already identified in the low 

wavenumber and anomeric regions. Finally, it appears th a t the  glycosidic 

link o f the p-linked species has more influence in th is region than the 

a-linked  species which is in co n trast to  the  anomeric region where the 

opposite is true.

7.2.4 CH2 and COH D eform ations Region (~ 1200-1500 cm "1)

The study of the ROA spectra  o f D -glucose and several deu terated  

analogues presented in chapter 5 produced a num ber o f in teresting  

re su lts  in this region. The normal modes responsible fo r the  negative 

and positive ROA signals a t ~ 1220 cm - 1  and 1260 cm - 1  in D -glucose 

were shown to  involve coupled CH 2  and C -O -H  deform ations and it

was proposed th a t these tw o bands were associated  w ith the 

gauche-gauche  and gauche-trans  ro tam ers o f the exocyclic hydroxymethyl 

group, respectively. In addition, it  was dem onstrated  th a t only the 

p-anom eric form  of D-glucose would generate a ROA signal a t ~ 1260 

cm-1. The re su lts  obtained from  m onosaccharides are expected to  have a 

s trong  bearing on the in terpreta tion  of the disaccharide spectra  

presented here as a normal coordinate analysis o f the dim er repeating 

unit o f cellu lose predicted th a t the m ajority of norm al modes above

1 2 0 0  cm - 1  are localised within the individual residues and are a lm ost
22

id e n t ic a l  t o  t h o s e  c a lc u la te d  f o r  th e  m o n o m e r , p - D - g lu c o s e .

The positive ROA signal a t ~ 1260 cm-1, mentioned above, was 

assigned to  the p-anomeric form  because the ROA spec tra  of
O

a -D -m e th y l g lucoside, D -treh a lo se  (Figure 7.7) and a -D -cy c lo d e x trin  

(F igure 8.3), a ll o f w hich ex is t so le ly  in th e  a -an o m eric  fo rm , exh ib it 

no ROA signal a t  th is  w avenum ber; w hereas th a t  o f p -D -m ethy l
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g
glucoside, w hich ex is ts  so le ly  in th e  p-anom eric  form , re g is te rs  an 

increase  in in ten sity  re la tive  to  D -glucose. If we assum e th a t  th e  

ro tam eric  d is tr ib u tio n  o f  th e  exocyclic hydroxym ethyl g roup  in th e  

m olecu les s tud ied  here is s im ilar to  th a t  o f  D -g lucose (o r  is n o t th e  

decisive fa c to r  in determ ining  the  ROA in ten s ity  o f th is  b an d ) th en  i t  

may be used to  e s tim a te  th e  anom eric p ro p o rtio n s  o f D -g lucose  

residues.

Table 7.2 lis ts  the experim ental A-values fo r the ~ 1260 cm - 1  signal 

for a num ber of m ono- and disaccharides which were calculated by 

dividing the in tensity  of the ROA signal by the in tensity  o f the 

deconvoluted paren t Raman band. The A -value o f 4.7xl0 - 4  fo r 

P-D-m ethyl glucoside was taken as a standard representing a molecule 

which has a population of 1 0 0 % p-anom er and the populations o f the 

o thers were calculated relative to  th is standard. For the  disaccharides 

there are two anomeric centres contributing to  the to ta l value: one in 

the non-reducing residue and one in the reducing residue. For a-linked  

species the non-reducing residue is trapped in the a-anom eric form  by 

the linkage so i t  makes no contribution to  the  ROA intensity  o f the 

~ 1260 cm 1 signal. Thus, the to ta l p-anom eric percentage is equal to  

half the  p-anom eric percentage o f the reducing residue. However, fo r 

p-linked species the anomeric centre of the  non-reducing residue is 

trapped by the linkage in the p-anomeric form . Therefore, to  find the 

population of the anomeric centre of the  reducing residue it is 

necessary to  remove the contribution from  the non-reducing residue. 

This is achieved by considering the two residues separately. The 

non-reducing residue is 1 0 0 % in the p-anom eric form  so i t  makes a 

contribution o f 50% to  the to ta l as there are tw o residues contributing. 

The reducing residue makes up the rem ainder so by sub tracting  50% 

from  the to ta l percentage and multiplying by tw o we can find the 

anomeric population of the reducing residue.
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Table 7.2 A - v a lu e s  

a n o m e r ic

fo r  th e  1260 

p e r c e n ta g e s .

c m  1 ROA s ig n a l  a n d  c a lc u la t e d

s a c c h a r id e A - v a lu e  (xlO *4 )
t o t a l  % o f  

p -a n o m e r

% o f  p -a n o m e r  in  th e  

r e d u c in g  r e s id u e

p - D - m e t h y l  g lu c o s id e a +4.7 1 0 0 —

D - g lu c o s e b +3.0 64 64

D - g lu c o s a m in e b +1.4 30 30

D - m a l t o s e c +1 . 8 38 76

D - i s o m a l t o s e c +1 . 8 38 76

D - c e l lo b io s e c +3.7 78 56

D - g e n t io b io s e c +3.7 78 56

D -la m in a r ib io s e c +3.8 81 62

a data  from  ref. 8 , b data from  ref. 9, c th is work.

The percentage of p-anom er p resen t fo r the  tw o m onosaccharides 

D -glucose and D-glucosamine6  listed  in Table 7.2 have been well
23 24.characterised by NMR spectroscopy. ’ For D -glucose the  value o f 64%

obtained is in agreem ent w ith the accepted value of 64% obtained from
23NMR experim ents and our value of 30% for D-glucosam ine 

hydrochloride is no t too  far removed from  the  recognised value 2 4  of
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37%. These figures dem onstrate  th a t although our technique does no t a t 

p resen t o ffer the  precision o f o ther m ethods (due to  the weak intensity  

of th is  ROA signal, the uncertainty as to  where exactly the  baseline 

should lie and the  difficulty of deconvoluting the  paren t Raman band 

accurately) it  can still provide a reasonable guide to  the anomeric 

populations.

I t  is c lear from  inspection  o f  Table 7.2 th a t  th e  tw o  a -lin k ed  

species, D -m alto se  and D -isom alto se , have iden tica l A -values fo r  the  

positive ROA signal a t  ~ 1260 cm -1 as  have th e  th ree  p -linked  species, 

D -cellob iose, D -lam inarib iose and D -gen tiob iose. F urtherm ore , com parison  

o f th e  ROA sp e c tra  o f D -m alto se  (F igure 7.2) w ith  D -cellob iose  (Figure 

7.4) reveals th a t  th e  p-linked  species exh ib its  a  m uch s tro n g e r  ROA 

signal a t  ^  1260 cm -1. This d ifference is re f le c te d  in th e  A -values 

p resen ted  in Table 7.2 and can be  ascribed  to  th e  fa c t th a t  the  

anom eric cen tre  o f th e  non-reducing  residue o f D -m alto se  is trap p ed  in 

the  a -an o m eric  fo rm  by th e  linkage. W hen th e  co n trib u tio n  from  the  

non-reducing  residue  is rem oved th e  a -  and p—(1—4) and (1-6) linked 

d isaccharides are  found to  have 76% and 56% p-anom er p re se n t in the

reducing residue, respectively and the P( 1—3) linked species 62%. NMR
25 25s tu d ie s  on m a lto se  and cellob iose  and on gen tiob io se  cam e to  the

conclusion  th a t  th e  reducing residue o f  th e se  m olecu les had

approx im ate ly  th e  sam e p ro p o rtio n s  as th e  D -g lucose m onom er, i.e. 64%

P-anomer. Our re su lts  seem to  indicate th a t there is a s trong

correlation betw een the intensity o f the ~ 1260 cm - 1  ROA signal and

the  p -anom eric  population; however, due to  th e  p rob lem s m entioned

above it  is d iff icu lt a t  th is  s tag e  to  decide w h eth er th e  d ifferences

found betw een  a -  and p-linked  species cure genuine o r  sim ply re f le c t the

inaccuracies cu rren tly  inheren t in o u r m ethod.
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B etw een ~ 1300 cm 1 and ~ 1400 cm 1 th e  th ree  p -linked

di s a c c h a r id e s , D - c e l lo b io s e ,  D - la m in a r ib io s e  a n d  D - g e n t io b io s e  h a v e

a lm ost identical Raman and ROA spectra  to  D -glucose which can be

a ttr ib u te d  to  th e  p reponderance o f th e  p -anom eric  fo rm  in th e se

m olecules. It would appear then th a t the ROA signals in the  p-linked

species are  localised  in th e  individual res idues  and  may be assigned  to

th e  sam e norm al m odes as in D -glucose. The s itu a tio n  is som ew hat

d ifferen t for the a-linked species as the Raman band a t 1332 cm - 1

in c reases in in ten s ity  in th e se  sp ec tra  re la tive  to  th a t  in D -g lucose  w ith

concom itant changes in the ROA spectra. This intensity  increase was

ascribed  to  th e  p resence o f an add itional band  in th e  conventional

Raman sp ec tru m  o f th e  a -anom eric  fo rm  o f D -g lucose  w hich w as
ISassigned  by d eu te ra tio n  s tu d ie s  to  a norm al m ode involving C -O -H

deform ations and CH 2  tw isting m otions. Normal coordinate analyses o f
21 16 a - D - g l u c o s e  an d  a m y lo s e ,  fo r  w h ic h  D - m a l t o s e  i s  th e  d im e r

rep ea tin g  unit, revealed th a t  th is  m ode w as a com plex  m ix tu re  o f

C -C -H  and O -C -H  deform ations of the  ring hydrogens w ith

contributions from  CH 2  tw isting m otions and significant involvem ent o f

C -O -H  deform ations. It is clear from inspection o f the Raman and ROA

sp e c tra  o f D -m a lto s e -0 -d 8 (F igure 7.2) th a t  th is  band  is indeed

sensitive to  O -deuteration as there is a drop in in tensity  in bo th  the

Raman and ROA bands.

F u rth e r evidence fo r th e  ROA being loca lised  in th e  individual 

re s id u es  in th is  region com es from  th e  ROA sp e c tra  o f  D -lac to se  

(F igure 7.8), w hich d isplays a rem arkab le  s im ilarity  to  th a t  o f  th e  sum  

o f th e  tw o  c o n s titu e n t m onom ers, p -D -g a lac to se  and D -g lucose. The 

only  m ajor d ifference  is th e  appearance o f a sm all negative ROA signal 

a t  ~ 1407 cm -1 in the  spec tru m  o f D -lac to se  w hich is a lso  p re se n t in 

th e  ROA sp ec tru m  o f D -cellob iose and D -lam inarib iose . D auchez e t al.
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assigned disaccharide Raman bands in the range ~ 1400-1500 cm 1 to

angle bending vibrations around the  carbons involved in the  glycosidic 

link.4,s Thus, it is possible th a t th is ROA signal is associated w ith the 

3(1-4) link found in both  D -lactose and D-cellobiose.

7.3 Concluding Remarks

The ROA spectra  of disaccharides based on D -glucose contain a 

num ber o f new signals sensitive to  the glycosidic link in addition to  

many signals sim ilar to  those found in D -glucose itse lf. These signals 

can have quite d ifferent intensities, o r even opposite  signs, for d ifferen t 

linkage conform ations and can appear a t d ifferen t frequencies fo r 

d ifferen t linkage types. This suggests th a t ROA could be particularly

useful for studying oligo- and polysaccharides where the so lu tion

conform ations can be d ifficult to  assign using existing physical m ethods 

on account of the flexibility of the glycosidic links which re su lts  in
27m ultiple conform ations co-existing in solution.

I t is apparent th a t there are four d is tinc t regions in our 

disaccharide ROA spectra  th a t each provide com plem entary inform ation. 

The anomeric region contains inform ation on the  glycosidic link. The 

fingerprint region provides a sign pa ttern  characteristic  o f the  entire 

disaccharide unit and in the CH 2  and COH deform ations region the ROA 

signals are localised in the individual residues. These three regions

could provide estim ates of the residue co n ten t and linkage types 

p resen t in oligosaccharides provided a sufficiently  large database o f 

model m ono- and disaccharides could be b u ilt up. Future developm ent 

of the  assignm ents in a fourth  region a t low wavenumber could provide 

fu rth er inform ation of th is nature.
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In this chapter the number of param eters used to  ex trac t 

inform ation from the ROA spectrum  has been extended. Previous ROA 

studies have concentrated mainly on the frequency and sign, and in 

general term s the intensity, o f the ROA signals. For the ROA couplet 

a t ~ 430*10 cm - 1  we have used the shape o f th is signal to  ex trac t 

inform ation on the linkage type, and for the positive ROA signal a t ~ 

1260 cm - 1  we have accurately calculated the  A-value and used it to  

determ ine the anomeric population o f reducing residues in disaccharides. 

This shows th a t a consideration of shape and intensity  o f the ROA 

signals can significantly increase the inform ation ex tracted  from  ROA 

spectra.

F u tu r e  d e v e lo p m e n t  o f  th e  w o r k  p r e s e n te d  in  th is  c h a p te r  c o u ld  

in v o lv e  s tu d y in g  th e  r e m a in in g  lin k a g e  ty p e s  f o r  d ig lu c o s id e s  and  

e x te n d in g  th e  w o r k  t o  h ig h e r  o r d e r  h o m o lo g u e s ,  s u c h  a s  tr im e r s  an d  

t e tr a m e r s , t o  h e lp  c la r ify  w h ic h  ROA s ig n a ls  a re  a t t r ib u ta b le  t o  th e  

g ly c o s id ic  lin k . In a d d it io n , d is a c c h a r id e s  c o n s is t in g  o f  r e s id u e s  o th e r  

th a n  D - g lu c o s e  n e e d  t o  b e  s tu d ie d  s e p a r a te ly  a l th o u g h  c e r ta in  

c o r r e la t io n s  m ay  b e  fo u n d  fo r  m o le c u le s  w ith  th e  s a m e  lin k a g e  ty p e  b u t  

d if f e r e n t  r e s id u e s  c o n t e n t ,  su c h  a s  th e  ~ 1407 c m -1  ROA s ig n a l  in  

D - c e l lo b io s e  an d  D - la c t o s e .

-  136 -



References

1. M. Dauchez, P. Derreumaux and G. Vergoten, J. Compu. Chem., 

14 (1992) 263-277.

2. M. Sekkal, P. Legrand, G. Vergoten and M. Dauchez, 

Spectrochim . Acta, 48A (1992) 959-973.

3. M. M athlouthi and D. V. Luu, Carbohydr. Res., 81 (1980) 203-13.

4. M. Dauchez, P. Derreumaux, M. Sekkal, P. Legant, P. Legrand 

and G. Vergoten, Spectrochim . Acta., 50A (1994) 87-105.

5. M. Dauchez, P. Lagant, M. Sekkal, B. Som bret, P. Derreumaux 

and G. Vergoten Spectrochim . Acta., 50A (1994) 105-119.

6 . L. D. Barron, A. R. Gargaro and Z. Q. Wen, Carbohydr. Res., 210 

(1990) 39-49.

7. L. D. Barron, A. R. Gargaro, Z. Q. Wen, D. D. MacNicol and C. 

B utters, Tetrahedron: Asym m etry, 8  (1990) 513-516.

8 . Z. Q. Wen, L. D. Barron and L. Hecht, J. Am . Chem. Soc., 115

(1993) 285-292.

9. A. F. Bell, L. D. Barron and L. Hecht, Carbohydr. Res, 257

(1994) 11-24.

10. M. K. Dowd, A. D. French and P. J. Reilly, Carbohydr. Res., 233 

(1992) 15-34.

11. M. Dowd, P. Reilly and A. French, J. Compu. Chem., 13 (1992) 

102-114.

12. S. M elberg and K. Rasmussen, Carbohydr. Res., 78 (1980)

215-224.

13. I. Tvaroska, A. Imberty and S. Perez, Biopolymers, 30 (1990) 

369-379.

14. M. M athlouthi and J. L. Koenig, Adv. Carbohydr. Chem. 

Biochem., 44 (1986) 7-89.

-  137 -



15. P. D. Vasko, J. Blackwell and J. L. Koenig, Carbohydr. Res., 19 

(1971) 297-310.

16. J. J. Cael, J. L. Koenig and J. Blackwell, Biopolymers, 14 (1975) 

1885-1903.

17. G. J. Quigley, A. Sarko and R. H. M archessault, J. Am. Chem. 

Soc., 92 (1970) 5834-5439.

18. I. Tvaroska, Biopolymers, 21 (1982) 1887-1897.

19. W. Hug, Appl. Spectroscopy, 1981, 35, 115-124.

20. M. V. Korolevich, R. G. Zhbankov and V. V. Sivchik, J. Mol.

Structure, 20 (1990) 301-313.

21. J. J. Cael, J. L. Koenig and J. Blackwell, Carbohydr. Res., 32

(1974) 79-91.

22. J. J. Cael, K. H. Gardner, J. L. Koenig and J. Blackwell, J.

Chem. Phys., 62 (1975) 1145-1153.

23. S. J. Angyal, Angew. Chem. Int. Ed. Engl., 8 (1969) 15-68.

24. D. H orton, J. S. Jew ell and K. D. Philips, J. Org. Chem., 31

(1966) 4022-4025.

25. A. Heyraud, M. Rinaudo, M. Vignon and M. Vincedon, 

Biopolymers, 18 (1979) 167-185.

26. D. Bassieux, D. Gagnaire and M. Vignon, Carbohydr. Res., 56 

(1977) 19-33.

27. K. G. Rice, P. Wu, L. Brand and Y. C. Lee, Current Opinion in 

Structural Biology, 3 (1993) 669-674.

-  138 -



Chapter 8

Vibrational Raman Optical Activity of 
Cyclodextrins, Polysaccharides 

and Glycoproteins

In th is chap ter the Raman and ROA spectra  of a num ber of 

cyclodextrins and polysaccharides and of a single glycoprotein are 

presented. The in terpreta tion  of these spectra  em phasise the  influence 

of the  secondary s tru c tu re  through ROA signals th a t were identified in 

the preceding chapter as originating in the coordinates o f the  glycosidic 

link. The particu lar exam ples chosen are the ring s tru c tu re  of CDs, the 

random  coil type conform ation exhibited by dextran, glycogen and 

pullulan and the helical conform ations adopted by laminarin, each of 

which will be discussed separately. Also included is an exam ple of a 

glycoprotein to  dem onstrate  the potential of ROA fo r studying th is 

class o f biopolymers.

6.1 Cyclodextrins

Cyclodextrins (CDs) are cyclic, non-reducing oligosaccharides 

com posed of six, seven or eight D -glucose residues bonded through 

a  (1-4) glycosidic linkages and classified a - ,  p- and y~CD, 

respectively . 1 - 4  A lthough larger analogues are possible it has been 

shown th a t CDs with few er than six residues cannot form  on steric  

g rounds . 5  The D -glucose residues all exhibit the  4 Ct chair conform ation 

w ith the  re su lt th a t CDs adopt the shape of a truncated  cone, w ith all 

the secondary hydroxyl groups projecting from  one side of the  ring and 

all the  prim ary hydroxyl groups from the other, as depicted 

schem atically in Figure 8.1. The size of the  cavity form ed by CDs
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depends on the number o f D-glucose residues, and as all the C-H  

groups face inwards the molecule has a hydrophobic cen tre  and a 

relatively hydrophilic ou te r suface which confers w ater solubility  to  

these  molecules.

A rem arkable property of CDs is their ability to  form inclusion 

com plexes in aqueous solution and the solid s ta te . 1 - 4  In general, 

inclusion com plexes com prise tw o or more m olecules in which a host 

m olecule traps a guest molecule w ithout the form ation o f covalent 

bonds. CDs are capable of forming inclusion com plexes w ith a wide 

variety of m olecules providing the guest’s size is com patible w ith the 

dim ensions of the cavity. Indeed, the entire guest m olecule need not fit 

as it is also possible fo r com plexes to  be form ed w ith the guest 

m olecule only partially  subm erged in the CD cavity. However, the ex ten t 

of com plexation depends no t only on the steric  f it  b u t also  on the 

polarity  of the  molecule, w ith non-polar m olecules being favoured. 

These inclusion complexes are of g reat in te re st to  sc ien tis ts  in a 

num ber of fields as they provide models fo r enzyme catalysis and 

polymeric starch , they find application in the food industry and in the 

solubilisation o f drugs, and in chrom atography fo r separating closely 

re la ted  species o r even enantiom ers . 4 , 6

Figure 8.1 Schematic representation of the truncated cone shape adopted by 

CDs
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8.1.1 Experimental

All the sam ples discussed in th is section were supplied by Sigma. A 

sam ple of a-C D -O ia was prepared by lyophilising oc—CD twice from  DzO 

solution before dissolving in D20  to  a concentration o f 0.4 M. All the 

o th er sam ples were dissolved in H20  to  a concentration o f 0.2 M, 

except fo r D -m alto triose which was made up as a 3 M solution, and 

allowed to  equilibrate fo r 24 h. The equilibrated sam ples were trea ted  

w ith charcoal to  reduce fluorescence, before being filtered  in to  a quartz 

m icrofluorescence cell through 0.45 jim Millipore filte rs  and centrifuged 

for a t least 15 min. During spectral acquisition the laser pow er was ~ 

700 mW a t the  sam ple and the s lit width se t to  120 ^m giving a 

spectra l bandpass of ~ 12 cm - 1  a t 514.5 nm. The spectra  were recorded 

over 3 h fo r a-CD, dimethyl p-CD and trim ethyl p-CD and over 2 h for 

D -m alto triose and y-CD.

8.1.2 R esu lts  and Discussion

The Raman and ROA spectra  o f D -m alto triose, a-D -cyclodextrin , 

a -D -cyclodextrin-O -djg , y-D -cyclodextrin, heptakis(2,6 d i-O -m ethy l)- 

p-cyclodextrin (dim ethyl p-CD) and h ep tak is(2,3,6 tri-O -m eth y l)- 

p-cyclodextrin (trim ethyl p-CD) are presented in the range ~ 650 to  

1500 cm - 1  in Figures 8 .2-8.7, respectively. Both a -  and y-CD are 

m oderately soluble in aqueous solution b u t p-CD did no t have a high 

enough solubility to  allow the ROA spectrum  to  be recorded reliably. 

However, the two m ethylated derivatives of p-CD, namely, dimethyl 

p-CD and trim ethyl P~CD, which have the hydroxyl groups a t carbon 

atom s 2 and 6  and a t 2,3 and 6  m ethylated, respectively, were 

sufficiently  soluble. The ROA spectra  discussed in earlier chapters were 

subdivided into four d istinct regions, bu t fo r the CDs we shall instead
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D -m a lto tr io se
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Figure 8.2 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of D-maltotriose in H2 0.

concentra te  solely on the glycosidic couplet th a t is centred a t ~ 917 

cm 1 in D -m altose, thereby extending its  discussion from  chap ter 7.

8.1.3 The Glycosidic C ouplet

The m ost pronounced signal in the ROA spectrum  of a-CD  (Figure 

8.3) is the glycosidic couplet, positive a t low and negative a t high 

wavenum ber, centred a t ~ 922 cm-1. The A-value and the  centre

wavenumber fo r this couplet in a num ber o f CDs and D -m altose 

oligom ers are listed  in Table 8.1 together w ith the ra tio  of th is  value 

to  th a t found in D -m altose. These values were calculated w ithout 

deconvolution of the parent Raman band w ith the background simply
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Figure 8.3 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of a-cyclodextrin in H2 0 .

taken as a slope from the minima of the Raman spectrum  a t higher 

wavenumber to  the minima a t lower wavenumber. The A -values were 

calculated fo r the negative com ponent of the  couplet as the associated 

Raman band is more distinct.

The m ost in teresting  re su lt from  Table 8.1 is th a t the A -value for 

cyclic a-C D  is approxim ately six tim es larger than five tim es the 

A -value of the dimer, D -m altose, which approxim ately rep resen ts  the 

A-value o f the corresponding linear hexamer. An initial survey o f the 

ROA of CDs proposed th a t this dram atic increase in the in tensity  was 

a ttrib u tab le  to  the delocalisation of the norm al modes responsib le for
•7

the couplet over the CD ring. We now extend this work by suggesting

a -c y c lo d e x tr in

I  3 . 5 x 1 0

ROA

1450130011501000850700
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Table 8.1 The A-value for the negative com ponent o f the glycosidic

couplet in a selection of m altose oligom ers and cyclodextrins.

o l ig o s a c c h a r id e
A -v a lu e

(xlO4)

r a t io  t o  

D - m a lt o s e

c e n tr e

w a v e n u m b e r

D - m a l t o s e 2.3 1 917

D - m a lt o t r io s e 5.4 2.3 917

D - m a l t o t e t r a o s e 8.5 3.7 917

a -C D 70 30 922

a -C D -0 -d 18 9.7 4.2 894

d im e th y l p-CD 82 36 925

tr im e th y l  p-CD 14.5 6.3 926

y - c d 37 16 926

th a t the mechanism by which the additional ROA intensity  is generated 

involves C -O -H  deform ations and possibly in tram olecular hydrogen 

bonding. The existence of such hydrogen bonds is well known from  the
Q _ll

crystal s tru c tu res  of CDs and is likely to  pers is t to  som e degree 

even in aqueous solution, with w ater m olecules com peting fo r the 

hydrogen bonds, because of the cyclic s tru c tu re  o f CDs.

CDs are notable am ongst oligosaccharides fo r the ir ability to  form  

single crystals  which makes them  readily am enable to  determ ination of
ft—11their solid s ta te  conform ation by x-ray crystallography. For a-CD, 

the crystal s tru c tu re  of the hexahydrate is d is to rted  from  a regular 

hexagonal sym m etry thereby reducing the angle stra in  on the glycosidic 

oxygen caused by cyclisation. This is achieved by ro ta ting  one o f the 

D -glucose residues into a position more nearly norm al to  the  axis of 

the CD torus and has the consequence o f breaking tw o of the six 

in tram olecular hydrogen bonds th a t can form betw een hydroxyl groups
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Figure 8.4 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

a-cyclodextrin-O-d-jg in D2 0.

O

on carbon atom s 2 and 3 of adjacent residues. Upon com plexation, 

a-CD is found to  adopt a much more sym m etrical conform ation in the 

solid s ta te . 1 1  The stra in  on the glycosidic oxygen angle is low er in 

3~CD and y-CD and th is is reflected  in their more sym m etrical crystal 

s tru c tu res  and correspondingly stronger intram olecular hydrogen 

bonds . 9 , 1 0  In all three CDs it was found th a t the glycosidic oxygen 

atom s approxim ately define a plane.

In aqueous solution, NMR is unable to  distinguish betw een any of

th e  D - g lu c o s e  r e s id u e s  in  CDs w h ic h  im p lie s  t h a t  th e y  a l l  a d o p t

s t r u c t u r e s  w ith  Cn s y m m e tr y , w h e r e  n i s  t h e  n u m b er  o f  D - g lu c o s e

12residues, a t leas t on the NMR tim escale. However, there is

a -c y c lo d e x t r in - O - d  i8

ROA

I 2.0x10 c m ' 1

14501150 1300700 850 1000

-  145 -



ROA

-lc m

14501150 13001000850700

Figure 8.5 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of f-cyclodextrin in H2 0 .

13— ISconsiderable evidence from m olecular dynamics (MD) sim ulations

th a t CDs are in fac t ra ther flexible m olecules w ith variations o f up to

±40° on the  mean glycosidic torsion  angles found in one sim ulation of
1a-CD  in aqueous solution. This same study also revealed th a t, while 

a-CD can adopt a regular s tru c tu re  with all six in tram olecular hydrogen 

bonds ra th e r weakly form ed, this is slightly  unfavourable and usually 

either one or two of these  hydrogen bonds will be broken w ith the 

o thers form ed a t their expense. Another MD study, th is tim e o f a -, (3- 

and y~CD, dem onstrated  th a t s tru c tu res  o f lower sym m etry actually  had 

a low er energy than the highly sym m etric Cn s tru c tu re s . 1 4  I t  was also 

noted th a t the hydroxyl groups a t carbon atom s 2 and 3 had a 

propensity for forming sm all c lu sters  (dim ers, trim ers or te tram ers) of
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Figure 8 . 6  The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of dimethyl (3-CD in H2 0 .

in tram olecular hydrogen bonds. These re su lts  imply th a t the  NMR 

s tru c tu re  simply represen ts a tim e-averaged view of the  CD

conform ation.

The evidence for the involvement o f C -O -H  deform ations and 

possibly in tram olecular hydrogen bonds in the generation of the 

glycosidic couplet originates from  three main sources. From the  ROA 

spectrum  of a -C D -0 -d 1 8  (Figure 8.4), where all the exchangeable 

hydroxyl hydrogen atom s have been replaced by deuterium  atom s, i t  is 

clear th a t the  glycosidic couplet has collapsed dram atically in intensity, 

has sh ifted  by 28 cm - 1  to  lower wavenumber and has considerably 

broadened. This clearly indicates th a t C -O -H  deform ations are involved

ROA

-lc m

1450130011501000850700
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2,3,6 tr im e th y l  /?-CD
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Figure 8.7 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of trimethyl p-CD in H2 0 .

in the normal modes responsible fo r the glycosidic couplet and from  

the size of the decrease in in tensity  it seem s reasonable to  suggest 

th a t contribu tions of th is type are responsible for the b o o st in intensity  

observed in the ROA spectra  of CDs. Further evidence is forthcom ing 

from the ROA spectra  of di- and trim ethyl p-CD (Figures 8 . 6  and 8.7). 

In dimethyl p-CD the A-value for the glycosidic couplet is slightly  

larger than in a-CD  implying th a t m ethylating the hydroxyl groups a t 

carbon atom s 2  and 6  has no e ffec t on the generation of th is couplet. 

This concurs w ith the crystal s tru c tu re  o f dimethyl p-CD which is 

basically the same as th a t o f p-CD except th a t the h o st cavity is 

extended by the  methyl g roups . 1 6  However, fo r trim ethyl p-CD neither 

of the oxygen atom s substitu ted  a t carbon atom s 2  and 3  has a
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hydrogen atom  w ith which to  form  an in tram olecular hydrogen bond and 

in fac t the methyl groups su b stitu ted  on the oxygen atom s cause steric  

hindrance which tends to  increase the 02-”03* distance. This is reflec ted  

in the  ROA spectrum  of trim ethyl p-CD where the  glycosidic couplet is 

reduced to  approxim ately the sam e in tensity  as the o th e r large signals 

in the ROA spectrum . More specifically the A -value is found to  be
—31.45x10 , roughly the expected figure fo r a linear heptam er. The crystal

s tru c tu re  of complexed trim ethyl p-CD is considerably d is to rted  relative

to  th a t of p-CD with the seven glycosidic oxygen atom s no longer

defining a plane and five o f the residues being tilted  in the  same

direction as the lone residue in a-CD, with the hydroxymethyl group

inclined tow ards the cavity, as a re su lt o f the lack o f any

intram olecular hydrogen bonds . 1 7  The final piece o f evidence is a normal 
18coordinate analysis o f V-amylose, fo r which D -m altose is the dimer 

repeating unit, which predicts th a t C-2-O H  and C -^-O H  deform ations 

are involved in a normal mode a t 946 cm - 1  th a t also has contributions 

from  the glycosidic link as d iscussed in chap ter 7.

From com parison of the change in the glycosidic couplet in 

D -m altose (Figure 7.1) and a-CD (Figure 8.3) upon deuteration  it is 

evident th a t C -O -H  deform ations, and thus the  in tram olecular hydrogen 

bond, has a much weaker influence in D -m altose. In aqueous solution, 

D -m altose is though t to  exhibit tw o main conform ational types; those 

w ith an in tram olecular hydrogen bond p resen t and those  th a t adopt a 

hydrophobically folded s tru c tu re  w ith no in tram olecular hydrogen 

bonding. The consensus from  both  experim ental and theoretical studies 

is th a t the hydrophobically folded conform ation is the  major com ponent 

in aqueous so lu tion . 1 9 - 2 4  The fac t th a t the A -values for D -m alto triose 

and D -m alto te traose  are slightly  more than tw o and th ree tim es g rea ter 

than  in D -m altose may re flec t an increasing propensity  tow ard
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in tram olecular hydrogen bond form ation w ith increasing chain length, 

although fu rth er work on higher analogues is probably required to  

confirm  this conclusion. It is also  w orth noting from  Table 8.1 th a t 

y C D  (Figure 8.5) has approxim ately half the A -value of a-CD. In the 

previous study of CD ROA it was noted th a t the spectrum  of y“CD 

was less d istinct and more closely related  to  the  trim er than th a t o f 

a-CD and th is was a ttribu ted  to  the g rea ter flexibility afforded to  the 

e ight membered ring over a six membered ring. A sim ilar explanation 

could also be invoked to  cover the decrease in the  in tensity  o f the 

glycosidic couplet. W hether or no t the in tram olecular hydrogen bond is 

a p a rt of the mechanism is s till uncertain; however, it  would appear 

th a t th is conform ation, which brings the 02  and 0 3  groups on adjacent 

residues into c lo sest contact, is the  m ost im portan t in generating the 

ROA which would explain the sharp rise in the CDs.

8.2 Dextran, Glycogen and Pullulan

D extran is essentially  an a ( l - 6 ) linked polysaccharide of D -glucose,
OF

b u t containing ~ 5% a(l-3 ) links th a t form  branching points. The 

majority of linkages in glycogen are a (l-4 ) b u t the m olecule is highly

branched with an a ( l - 6 ) link appearing, on average, every 1 0  to  14
26residues. In con trast, pullulan is an entirely  linear glucan consisting

o o

of D -m alto triose units joined together by a ( l - 6 ) linkages. All three 

polysaccharides are thought to  adopt disordered, random  coil type 

conform ations in aqueous solution on account of the flexible a ( l - 6 ) 

links in the main chains in the case of dextran  and pullu lan and the 

frequen t branching in the case of glycogen.
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8.2.1 Experimental

Samples of dextran  from  Leuconostoc m esenteroides  and glycogen 

from rabbit liver w ith num ber average degrees o f polym erisation (DPn)
p

of ~ 300 and 10 , respectively, were supplied by Fluka and a sam ple o f 

pullulan from  Aureobasidium pullu lans  w ith a DPn o f ~ 250 from  

Sigma. All th ree  were dissolved in Tris(hydroxym ethyl)am inom ethane 

(Tris) buffer ( pH=7.5, 50mM) to  a concentration  o f 200 m g/m l, 50 

m g/m l and 2 0 0 m g/m l fo r dextran, glycogen and pullulan, respectively. 

The th ree so lu tions were trea ted  w ith charcoal to  remove trace 

fluorescence im purities, and filtered  through 0.45 pm M illipore filte rs  

into quartz  m icrofluorescence cells. Each was then  le ft to  equilibrate 

for 24 h before being centrifuged for a t leas t 15 min. It was found in 

the case of dextran and pullulan th a t the fluorescence background was 

b u rn t away by the  laser within approxim ately 1 h, bu t th a t in the  case 

of glycogen the sam ple had to  be le f t in the  laser beam overnight 

before ROA acquisition could begin. The higher concentration o f the 

dextran  and pullulan so lu tions allowed recording o f the ROA in the low 

wavenumber region bu t th is was not possible fo r  glycogen because o f 

its high Raman background, due to  its  relatively low concentration, and 

its immense ligh t scattering, which is re la ted  to  its  high m olecular 

weight. The Tris bu ffer gives rise to  Raman bands a t 1475, 1056, 782, 

593, 498 and 474 cm - 1  b u t these are weak and hardly in terfere  w ith the 

Raman spectrum  of the polysaccharides. In any case as the  bu ffer is 

achiral, it should not generate any associated ROA signals. The laser 

power was ~ 700 mW at the sam ple and the s lit  w idth was se t to  120 

pm corresponding to  a spectral band pass o f ~ 12 cm - 1  a t 514.5 nm. 

The acquisition tim es were 8 , 8  and 13 h fo r dextran, glycogen and 

pullulan, respectively.

-  151 -



d e x tra n

I 2 . 4 x  10

ROA

400 550 700 850 1000 1150 1300 1450

Figure 8.8 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of dextran in tris buffer (pH=7.5, 50 mM).

8.2.2 R esu lts  and Discussion

The Raman and ROA spectra  of dextran and pullulan in Tris bu ffer 

in the range ~ 350 to  1500 cm - 1  and glycogen in the range ~ 700 to  

1500 cm - 1  are presented in Figures 8.8-8.10, respectively. In the 

following discussion the spectra  are no t subdivided into d istinc t regions, 

as they were in earlier chapters, bu t instead trea ted  as a whole. The 

Raman and ROA spectra  of dextran, pullulan and glycogen (Figures 

8.8-8.10) are com pared w ith their repeating units D -isom altose (Figure 

7.4), D -m alto triose  (Figure 8.2) and D -m altose (Figure 7.1), respectively.
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D
Figure 8.9 The backscattered Raman (I L) and ROA (lR L) spectra

of pullulan in tris buffer (pH=7.5, 50 mM).

Inspection o f the Raman and ROA spectra  of dextran  and 

D -isom altose and also  o f glycogen and D -m altose reveals th a t within 

each pair there  is a close resem blance b u t th a t there  are som e notable 

differences. These include the absence of the positive ROA signal a t ~ 

1260 cm 1  from  the ROA spectra  of dextran  and glycogen and also 

changes in the relative intensities of a num ber of Raman bands, in 

particu lar, those  occurring a t 1338, 1080, 848, 763 and 693 cm-1. In 

addition, tw o new ROA signals a t ~ 955 and 867 cm - 1  appear only in 

the  spectrum  of dextran.

The positive ROA signal a t ~ 1260 cm - 1  was assigned in the  earlier 

chap ters to  the (3-anomeric form  of D -glucose. I t is n o t surprising th a t
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Figure 8.10 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of glycogen in tris buffer (pH=7.5f 50 mM).

th is signal does not appear in the ROA spectra  of dextran  and glycogen 

as only a negligible am ount o f the p-anom eric form , from  the  term inal 

reducing residues, will be presen t in these m olecules. Similarly, fo r 

o th e r bands sensitive to  anomeric configuration differences in the 

relative intensities may be due to  the increased ratio  of the  a-anom eric 

form  to the p-anomeric form  in the polysaccharides. A nother possibility 

is th a t because in the dimers there is only a single glycosidic link fo r 

every two residues, whereas in the polym ers there  is approxim ately one 

such link per residue, signals originating in the linkage becom e more 

prom inent. Thus, the higher hom ologues of D -isom altose and D -m altose 

should more closely resem ble the polym ers and, indeed, th is appears to  

be true  in the case of D -m altotriose.
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The m ost intriguing features o f the ROA spectrum  of dex tran  are the 

tw o new signals positive a t  ~ 955 cm - 1  and negative a t ~ 867 cm-1. 

The appearance of these signals, which are absent from  the  ROA 

spectrum  of the dimer, may rep resen t glycosidic linkage conform ations 

adopted by the polym er in aqueous solution th a t are n o t available to  

the  dimer. Alternatively, these signals could arise in the  a (l-3 ) linked 

branching points th a t account fo r about 5% of the  residues. U ntil e ither 

an unbranched dextran sam ple or the  a (l-3 ) disaccharide have been 

studied it  is unclear if either of these tw o explanations is correct.

Comparison of the ROA spectra  of pullulan and D -m alto triose  reveals 

th a t the tw o are very sim ilar even though every third linkage is o f the 

a ( l - 6 ) type in pullulan. The m ajority o f the ROA signals o f a (l-4 )  and 

a ( l - 6 ) linked species have the same sign so they would be expected to  

reinforce one another. However, one exception is the glycosidic couplet 

a t ~ 917 cm - 1  which has opposite signs fo r a (l-4 )  and a ( l - 6 ) linked 

species. In the ROA spectrum  of pullulan there is no evidence th a t th is 

couplet is reduced in in tensity  relative to  the trim er; in fact, the 

A -value of 8.9xl0-4> is approxim ately the same as the value fo r the 

te tram er (Table 8.1). These re su lts  are consisten t w ith the possibility 

th a t the m alto triose  units in pullulan are more rigid than in the free 

trim er and th a t the  a ( l - 6 ) linkages are ra th e r flexible.

8.3 Lamlnarin

Laminarin from  the  Laminaria digitata  species is essentially  a 3(1-3) 

linked glucan which is found in algae where it ac ts  as the  main
2 9 -3 1carbohydrate food reserve. It occurs in tw o main form s which have 

d ifferen t fine s tru c tu re  and are distinguished by the ir cold w ater 

solubility. The DPn of the cold w ater soluble form is betw een 26 and
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31 with an average chain length o f betw een 7 and 10 units 

corresponding to  an average of tw o or three branches per chain. The 

branching points have been identified as p(l—6 ) linkages and there  is 

evidence to  suggest in some species th a t the branch chain is only a 

single residue long. It has also  been found th a t ~ 40% o f the
2 9 -3 1

laminarin chains term inate with a D -m annitol group.

8.3.1 Experim ental

A sam ple of laminarin from  Laminaria digitata  was supplied by Sigma. 

A sam ple of O -deuterated  laminarin was prepared by lyophilising 

laminarin from  DzO twice then dissolving in deuterated  Tris bu ffer 

(pD=7.3, 50 mM) to  a concentration of 200 m g/m l. U ndeuterated

laminarin was dissolved in Tris buffer (pH=7.5, 50 mM) to  the  same 

concentration. Neither sam ple was treated  w ith charcoal as th is was 

found to  be d ifficu lt to  remove from  laminarin solutions. A fter 24 h 

equilibration the sam ples were placed in quartz m icrofluorescence cells 

and centrifuged for a t least 15 min. Both sam ples were found to  be 

highly scattering  and to  have very large fluorescence backgrounds so 

they were required to  be le f t in the laser beam overnight before ROA 

acquisition could begin. The laser power was ~ 700 mW a t the  sam ple 

and the  spectra l band pass was ~ 12 cm - 1  a t  514.5 nm. The acquisition 

tim e fo r bo th  laminarin and O -deuterated  laminarin was 8  h.

8.3.2 R esu lts  and Discussion

The Raman and ROA spectra  of the cold w ater soluble form  of 

laminarin and O -deuterated  laminarin in the range ~ 350 to  1500 cm - 1  

are p resented  in Figures 8.11 and 8.12, respectively. The conform ation of 

3(1-3) linked glucans w ith a variety of DPn and degrees o f branching
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Figure 8.11 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of laminarin in tris buffer (pH=7.5, 50 mM).

have been studied by a combination of x-ray fibre diffraction and C 

NMR. 3 2 - 4 - 0  The NMR studies are based on the x-ray data3 2 - 3 7  b u t are 

extended to  include glucans th a t form gels in so lu tion  or do no t 

possess sufficien t crystal Unity to  show fibre d iffraction p a tte rn s . 3 8 - 4 0

From the fibre diffraction data  a trip le  helical s tru c tu re  has been

proposed in the  solid s ta te  for both  linear and branched 3( 1—3) glucans
32-37as well as anhydrous and hydrated form s. The fibre d iffraction

data  are supplem ented by energy calculations which found the m ost 

likely s tru c tu re  to  be a parallel righ t handed trip le  helix, w ith the three 

strands linked through triads of s trong  hydrogen bonds betw een the 

hydroxyl groups on carbon atom  2 , w ith additional s trong  hydrogen

I 1 .9x 107
ROA

-lcm
t — i— i— i— i— i— i— i i i i i i i i i i i i i i r
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O -d eu terated  lam inarin

+

T 2.6xl07

T 1.2xl04
400 550 700 850 1000 1150 1300 1450

Figure 8.12 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of O-deuterated laminarin in deuterated tris buffer (pD=7.3, 

50 mM).

bonds also  form ing within each helix betw een the hydroxyl groups on 

carbon atom s 4 and 6 . This intram olecular hydrogen bond holds all the 

hydroxymethyl groups in the TG rotam eric form . For the anhydrous

form  the <p and ^ glycosidic torsion angles are found to  be 29° and
O 3210 , respectively. The hydrated form  is found to  be a lm ost identical 

to  the  anhydrous form  except th a t the hydroxymethyl groups are
33disordered and ex ist in all three rotam eric form s. S ubstitu tion  o f the 

hydroxyl group on carbon atom  6  was found not to  ham per trip le  helix 

form ation in the solid s ta te  as the su b stitu en ts  are s itua ted  on the 

periphery of the helix which makes la teral packing far more d ifficu lt . 3 4
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A le ft handed trip le  helical s tru c tu re  has also been calculated  to  have 

9  and glycosidic torsion angles o f -10° and -4 0 °, respectively.

The crystal s tru c tu re  of D-laminaribiose, the dimer repeating unit o f 

laminarin, was found to  d iffer som ew hat from  th a t o f the polymer, w ith 

an in tram olecular hydrogen bond form ing betw een the hydroxyl groups 

su b stitu ted  a t carbon atom s 4 and 5, only the  GG and GT rotam eric 

form s of the hydroxymethyl group being p resen t and the 9  and 4 * 

glycosidic to rsion  angles being 28° and -37°, respectively . 3 6  Comparing 

the glycosidic torsion  angles fo r a num ber o f 3(1-3) linked dim ers and

polym ers obtained from  crystal s tru c tu res  revealed a much larger
37variation in the  4 > than the 9  to rsion  angle.

13From C NMR experim ents three main conform ations have been

characterised  for 3(1—3) linked glucans: random  coils, single helices and

trip le  helices .3 8 - 4 0  For chains with DP of betw een 14 and 130 the m ost

likely conform ation in the solid s ta te  is the trip le  helix which accounts

fo r ~ 60% of the  to ta l with the rem ainder being of the  random  coil
38 39type conform ation also adopted by low m olecular w eight oligom ers.

For chains w ith DP of g rea ter than 250 the  am ount o f trip le  helix

drops to  ^  1 0 % and the m ajority of the chains adopt a single helical 
38 39conform ation. ’ (This single helical conform ation is im portan t in the

form ation of gels, b u t as laminarin is a non-gelling polysaccharide it  is

no t expected to  be present.) The branches th a t are p resen t in laminarin

prom ote trip le  helix form ation as they prevent the close packing

required for single helical chains. It was also  noted  th a t the  C-3

chemical sh ift underw ent much larger variation than the C -l chemical

sh ift which indicates th a t the 4 > torsion  angle is less restric ted  than the
39cp torsion  angle in agreem ent w ith the  x-ray data.
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13In aqueous solution, C NMR and optical ro ta tion  data  reveal th a t

bo th  linear and branched 3(1-3) linked glucans adopt ordered

conform ations . 3 4  A NMR relaxation study dem onstrated  th a t ~ 30% 

of a 1 0 % w /w  solution of laminarin adopts a trip le  helical struc tu re , 

w ith the hydroxyl hydrogen atom s unexchanged a fte r 2 hours in D2 0 ,

while the  rem ainder ex ists  as random coils . 4 1  A recent optical ro ta tion

study of lam inaribiose and 3(1*3) linked glucans concluded th a t low 

m olecular w eight chains o f DP less than ~ 20 adopt a conform ation 

sim ilar to  th a t o f the disaccharide b u t th a t changes in the optical 

ro ta tion  o f longer chains were no t characteristic  of any single chain 

conform ation b u t ra ther reflected chain association . 4 2

When the Raman and ROA spectra  o f laminarin (Figure 8.11) are 

com pared w ith those o f D-laminaribiose (Figure 7.6), its  dimer repeating 

unit, it is clear tha t, although the tw o Raman spectra  are ra th e r 

sim ilar, there are some comprehensive differences in the  ROA spectra. 

In particular, in the region betw een ~ 1050 and 1150 cm - 1  the  signs of 

the ROA signals are reversed, and above ~ 1200 cm - 1  there are also 

d istinc t differences. In con trast, below  ~ 1050 cm - 1  the tw o ROA 

spectra  are rem arkably sim ilar w ith the exception of a sign change a t ~ 

445 cm-1. These changes indicate th a t there  is som e major

conform ational difference betw een the dimer and the polym er which is 

now discussed in more detail.

The region betw een ~ 1050 and 1150 cm - 1  in D -lam inaribiose has been 

assigned by normal coordinate analysis to  C-O  and C-C stre tch ing  

coordinates w ith im portan t contributions arising from  the  C-O  s tre tches 

involving the  glycosidic oxygen . 4 3  In th is region there  are some 

differences betw een the Raman spectra  of D-lam inaribiose and laminarin 

b u t the  changes are far more d istinc t in the ROA spectra  where four
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signals a t 1165 ( + ), 1128 ( + ), 1103 (-) and 1083 (♦) in the dim er change 

sign in the polymer. These sign changes may be ascribed to  trip le  helix 

form ation in the polym er and the effec t th is has on the norm al modes 

involving the glycosidic link. As discussed above in the  solid s ta te  the 

dimer has (<p,4>) = (28°, -37°), the righ t handed trip le  helical s tru c tu re  

(29°, 10°) and the le ft handed trip le  helical s tru c tu re  (-10°, -4 0 °). Both
13the x-ray diffraction and the C NMR data  provide evidence th a t the 

qp to rsion  angle is more re s is tan t to  change which implies th a t the 

right handed helical s truc tu re , which only involves a change in the  ip 

to rsion  angle relative to  the dimer, is favoured w ith the  ROA being

sensitive to  th is change. In aqueous solution, there  is probably a

m ixture of trip le  helix and random coil as evidenced by the NMR 

relaxation data of Hills e t a / . 4 1  Thus, the tw o types o f lam inarin chain 

p resen t will tend to  cancel ou t to  a certain degree the ROA signal in 

this wavenumber range. Comparison of laminarin and its  O -deuterated  

analogue (Figure 8.12) reveals th a t although the  Raman spec tra  o f the 

two in th is range are quite d ifferen t the ROA is basically the  sam e b u t 

with sm all sh ifts  to  higher wavenumber. This means th a t although 

C -O -H  deform ations are involved significantly in the norm al modes they 

contribu te  little  to  the associated ROA intensity. However, it  is possible 

th a t the  hydroxyl groups involved in hydrogen bonding in the trip le 

helical conform ation do not fully exchange 4 1  and may be making

im portant contributions to  the ROA intensity.

The region betw een ~ 1200 and 1500 cm - 1  o f the ROA spectrum  of

carbohydrates has, in the earlier chapters, been assigned to  CH 2  and 

C -O -H  deform ations w ith some involvement from  C-H  re la ted  modes. 

Com parison o f the ROA spectra  of laminarin w ith D -lam inaribiose 

reveals some d istinc t differences, in particular, the increase in intensity  

and sh if t to  slightly  higher wavenumber of the  negative ROA signal a t
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~ 1431 cm - 1  in the polymer. The o ther ROA signals in th is region have 

the sam e sign in bo th  the polymer and the dimer b u t are o f much 

w eaker relative intensity  and are less d is tinc t in the polymer. In chap ter 

7, the  negative ROA signals a t ~ 1407, 1410 and 1421 cm - 1  in D -lactose, 

D -cellobiose and D-laminaribiose, respectively, were assigned to  angle 

bending vibrations around the carbon atom s involved in the glycosidic 

link. This assignm ent is certainly consis ten t w ith the  in tensity  increase, 

wavenumber sh ift and insensitivity to  O -deuteration exhibited by this 

signal in the polymer. The o ther ROA signals in th is region are known 

to  be sensitive to  hydroxymethyl group conform ation and it is possible 

th a t the changes observed betw een the polym er and the dim er are due 

to  the presence of the TG rotam eric form . Although th is ro tam er is 

disfavoured in D-glucose residues it is observed in the  crystal 

s tru c tu res  of bo th  the anhydrous and hydrated form s of 3(1-3) linked 

glucans as it  form s stabilising in tra-helix  hydrogen bonds.

The O -deuterated  laminarin undergoes a num ber o f changes in th is 

region including the appearance o f a new ROA couplet, negative a t  low 

and positive a t high wavenumber, centred a t ~ 1400 cm-1. This

particu lar couplet may be a ttribu tab le  to  the decoupling o f the  C -O -H  

deform ation from  the normal mode a t th is wavenumber which then 

produces th is s trong  ROA signal. In addition, the weak positive and 

negative ROA signals a t ~ 1260 and 1220 cm-1, respectively, which were 

assigned to  coupled C -O -H  and CH 2  deform ation in D -glucose are 

sh ifted  to  low er wavenumber and produce a new negative signal a t ~ 

1190 cm "1.

Below ~ 1050 cm - 1  there is little  difference betw een the Raman and 

ROA spectra  except fo r the Raman bands sensitive to  anomeric 

configuration a t 917, 8 8 8  and 846 cm "1, which re flec ts  the  a lm ost
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negligible quantity  of the a-anom eric form  p resen t in the  polymer, and 

in the ROA where the sign is reversed a t ~ 445 cm 1 in the polymer 

relative to  the dimer. A couplet centred a t ~ 427 cm - 1  was assigned in 

the  preceding chapter to  the glycosidic link in diglucosides w ith the 

sign being dependent on the  configuration o f the link. It may be th a t 

the change in the sign a t ~ 445 cm - 1  re flec ts  the difference in the 

glycosidic to rsion  angles in the trip le helical s truc tu re . It has already 

been dem onstrated  in th is chapter w ith the  cyclodextrins th a t ROA 

signals in the  anomeric region are sensitive to  glycosidic linkage 

conform ation for a-linked  species b u t as w ith the (Winked disaccharides, 

laminarin lacks any ROA signals betw een ~ 700 and 890 cm-1. There are 

som e sligh t changes in the Raman bands on deuteration  o f the hydroxyl 

groups b u t the ROA is very sim ilar to  th a t o f the  undeuterated  

laminarin in the region below  ~ 1050 cm "1.

8.4 Glycoproteins

Since bo th  carbohydrates and pro teins 4 4 - 4 6  have now been fairly 

extensively examined by ROA it seem s natural to  enquire w hether ROA 

can provide new inform ation on glycoproteins, especially considering th a t 

in tac t glycoproteins are d ifficult to  study using conventional physical 

m ethods. In th is section the f irs t ROA spectrum  of a glycoprotein, 

orosom ucoid, is presented and discussed briefly.

8.4.1 Experim ental

A sample of orosom ucoid (Cohn Fraction VI, 99%) from  human 

blood serum was supplied by Sigma. The glycoprotein was made up as a 

40 m g /m l so lution in aceta te  buffer (pH=5.4, 200 mM), trea ted  w ith 

charcoal and allow ed to  equilibrate. The sam ple was then filtered
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through a 0.22 pm M illipore filte r into a quartz  m icrofluorescence cell 

and centrifuged for 15 min. It was found to  have a very high 

fluorescen t background and was required to  be le f t  in the beam 

overnight prior to  ROA acquisition. The laser pow er was ~ 700 mW a t 

the sam ple and the s lit w idth was se t for 1 2 0  pm corresponding to  

a spectra l band pass of ~ 12 cm - 1  a t 514.5 nm. The acquisition time 

was 2 0  h.

8.4.2 R esu lts  and Discussion

The Raman and ROA spectra  of orosom ucoid (oq-acid glycoprotein) in 

aceta te  buffer in the range ~ 700 to  1750 cm - 1  is presented  in Figure 

8.13. This particu lar glycoprotein was chosen fo r its  ready availability 

and high carbohydrate con ten t of ~ 40%. It has a m olecular w eight of 

~ 41,000 and consists of a single polypeptide chain o f 181 amino acids 

with five hetero-oligosaccharides attached  via N-glycosidic links to  

asparagine residues . 4 - 7

We shall d iscuss f irs t of all the signals in the ROA spectrum  of 

orosom ucoid th a t are characteristic  of the protein segm ent o f the 

molecule. A broad positive signal a t ~ 1060 cm-1, a strong  sharp

positive signal a t ~ 1313 cm - 1  and a couplet negative a t low and 

positive a t high wavenumber centred a t ~ 1660 cm - 1  indicate th a t the 

protein has a high p-sheet co n ten t . 4 5  This co n tra s t w ith a recen t study 

of orosom ucoid th a t suggested  th a t there may only be a sm all excess 

of 3~sheet over a-helical s tru c tu re s . 4 8  There is also a s tro n g  sharp 

negative ROA signal a t ~ 1245 cm - 1  which also appears in insulin, 

ribonuclease A and lysozyme which may originate in dynamically 

disordered loops and end chains.
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Figure 8.13 The backscattered Raman (lR + lL) and ROA (lR -  lL) spectra 

of orosomucoid in acetate buffer (pH=5.4, 200 mM).

Although protein  signals predom inate, tw o strik ing ROA features

which do no t appear in any of the  previous proteins studied  to  date

could be specific to  the  carbohydrate and its  association w ith the

protein. The f irs t o f these new features is a large couplet, negative and

sharp a t lower wavenumber and positive a t high, centred  a t ~ 1 1 2 0

49cm Early infrared studies on a glycopeptide of orosom ucoid

identified contributions from  the  carbohydrate in the range ~ 1 0 0 0  to  

1200 cm -1. The earlier discussion on f}-linked disaccharides and laminarin 

revealed th a t these m olecules exhibit ROA linkage fea tu res centred  a t ~

1120 cm -1. It seem s likely then th a t this couplet may be assigned to  the

glycosidic links in the glycan chains having a (3-configuration, which in

the case of orosom ucoid predom inate over those  w ith an

T 5 . 4 x l 0 6

1 3 . 9 x l 0 3
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a-configuration . It is in teresting to  note th a t the couplet has the same 

sign in orosom ucoid as in the p-linked disaccharides b u t is reversed 

relative to  laminarin. This would seem to  suggest th a t the  conform ation 

in the glycan chains is sim ilar to  th a t found in disaccharides and 

certainly unlike the trip le  helical s tru c tu re  proposed fo r laminarin.

The second new feature  is a large sharp positive ROA signal a t ^ 

1360 cm -1. In th is  region negative  ROA signals have been identified in 

p ro tein  spectra  th a t originate in p -tu rn  vibrations . 4 6  I t is in teresting  to  

note th a t the carbohydrates of the type p resen t in orosom ucoid are
SOoften  attached  a t p -tu rns so it seem s possible th a t th is positive ROA 

signal may be associated with the p -tu rns with glycan chains attached.

It does appear then th a t the ROA spectra  of glycoproteins can 

contain inform ation about both  the  carbohydrate and the  protein  and 

the m utual influence on each o ther's  conform ation and stability . An 

im portan t aspect o f fu tu re  studies will be the use of linkage-specific 

endo-glycosidase enzymes to  the  cleave the glycan chains from  the 

polypeptide so th a t a com parison can be made of the ROA spectrum  of 

the  com plete glycoprotein with those  of the separate  carbohydrate and 

pro te in  parts. Another valuable source o f inform ation on assignm ents 

should be forthcom ing from  deuteration studies on the glycoprotein.

Recently, Urbanova e t al. applied vibrational circular dichroism  (VCD) 

to  the  study of a glycoprotein, glucoam ylase.sl They found th a t the 

conventional electronic CD analysis of the protein secondary s tru c tu re  

was quantitatively in e rro r due to  in terference by sugar residues. The 

VCD analysis was though t to  be more reliable because it avoids such 

interference, however, unlike ROA, it provides no inform ation on the 

carbohydrate conform ation.
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