
f
w

Computing Science
Ph.D. Thesis

nmsg

1 IT ̂

U N IV E R S IT Y
of

G L A S G O W

Action Notation Transformations

Hermano Perrelli de Moura

Submitted for the degree of

Doctor of Philosophy

© 1993, Hermano Moura

ProQuest Number: 13834129

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13834129

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

■CtA o <iu>
° \ ~ n ^ \

■J> 0^ p y \

GLASGOW
UNIVERSITY
LTD R.'v

A ctio n N o ta t io n T ra n sfo rm a tio n s
by

H erm ano P errelli de M oura

Subm itted to the D epartm ent of Com puting Science
on 15th November, 1993

for the degree of
Doctor of Philosophy

A b s t r a c t

A c t r e s s is a semantics-directed compiler generation system based on action semantics.
Its aim is to generate compilers whose performance is closer to hand-w ritten compilers
than the ones generated by other sem antics-directed compiler generators.

A c t r e s s generates a compiler for a language based solely on the language’s action
sem antic description. We describe the process by which this is achieved.

A compiler for action notation, the formal notation used in action sem antic descrip­
tions, is the core of the generated compilers. We specify and implement a code generator
for the action notation compiler. We also present the design and im plem entation of an
action notation interpreter.

A conventional hand-w ritten compiler eliminates, whenever possible, references to iden­
tifiers a t compile time. Some storage allocation is often performed a t compile-Lime too.
We can see both steps as transform ations whose main objective is to improve the qual­
ity of the object code. The compiler writer, based on his knowledge of properties of the
source language, implements these “transform ations” as best as he can. In the context
of A c t r e s s , where action notation can be seen as the interm ediate language of every
generated compiler, we adopt a similar approach. We introduce a set of transform ations,
called action transform ations, which allow the system atic and autom atic elimination of
bindings in action notation for statically scoped languages. They also allocate storage
statically whenever possible. We formalise and implement these action transform ations.
The transform ations may be included in generated compilers. We show th a t this inclusion
improves the quality of the object code generated by A c t r e s s ’ compilers.

In general, action transform ations are a way to do some sta tic processing of actions.
Transforming actions corresponds to partially performing them , leaving less work to be
done a t performance time. Thus, transform ed actions are more efficient.

Binding elimination exposes the sta tic and dynamic nature of bindings in action nota­
tion. This relates with the binding discipline one can find in a program m ing language. We
study the binding discipline of action notation and we sta te a condition which identifies a
statically scoped action. We extend this condition to a sufficient condition on the action
semantics of a language which tells if the language is statically scoped. This condition can
be implem ented as an analysis to be performed by A c t r e s s , a t compiler generation time,
to decide which transform ations will be included in a generated compiler for the language.

Finally, we list possibilities for improvements and potential areas for further research.

Thesis Supervisor: Dr. David A. W att
Title: Head of the D epartm ent of Com puting Science

To m y parents,
Ebel and Ceiga.

Pregao Turfstico do R ecife

Aqui o mar e uma montanha
regular redonda e azul,

mais alta que os arrecifes
e os mangues rasos ao sul.

Do mar podeis extrair,
do mar deste litoral,

um fio de luz precisa,
matemdtica ou metal.

Na cidade propriamente
velhos sobrados esguios

apertam omhros calcdrios
de cada lado de um rio.

Com os sobrados podeis
aprender ligao madura:

urn certo equilibrio leve,
na escrita, da arquitetura.

E neste rio indigente,
sangue-lama que circula

entre cim enlo e esclerose
com sua marcha quase nula,

e na gente que se estagna
nas mucosas deste rio,
morrendo de apodrecer

r idas inl t iras a fio,

podeis aprender r/ue o homem
e sempre a mclhor medida.

Mais: que a medida do homem
nao e a mortc mas a vida.

Jodo Cabral de Melo Neto, 1955.

A cknow ledgem ents

This thesis would not have come to reality w ithout the great help of my supervisor David
W att. In our weekly meetings, David always participated with clear suggestions and ideas
to improve my current work. I specially remember his care in the form ulation of concepts,
and his patience in answering m y questions about compiler techniques. I will be always
in debt to him.

A special thank to Deryck Brown, my colleague in the A c t r e s s project, for all fruitful
discussions we had, and the innumerable suggestions he gave to improve action transfor­
m ations.

I would like to thank Philip Wadler and Simon Peyton-Jones (my second and th ird su­
pervisors respectively) for their critical feedback on various stages of my research. Kyung-
Goo Dob, Peter Mosses and David Schmidt, for the interesting discussions we had during
their visits to Glasgow (and over e-ma.il occasionally). Gebreselassie Baraki, Nick Holt,
John Launchbury, M artin M usicante and Andre Santos, for their useful com m ents and
interest in my work. Thanks to Silvio M eira for all motivation and support in the early
days of the PhD process. Peter Mosses and Simon Peyton-Jones, as members of the ex­
am ination com m ittee, provided many interesting corrections and suggestions to improve
this thesis.

Deryck Brown, Brian M atthew s, Patrick Sansom and Duncan Sinclair for providing a
nice environm ent in G141. Deryck and Duncan acted many times as my U N IX and X
W indow consultants!

CN Pq (Brazilian Research Council) and CEF (Caixa Economica Federal) provided the
funding necessary to conduct the research which lead to this thesis (and to keep me and
my family alive). Thanks to the D epartm ent of Com puting Science of Glasgow University
for a stim ulating and friendly environment.

Some friends made our stay in Scotland a m ost enjoyable one. Thanks to Augusto
Sam paio, for keeping the “Thesis Factory” spirit alive from Oxford. Joao Lopes was a nice
company in our “saunas” , which helped to relax from the stress of writing up. I am grateful
to the Brazilian community in Glasgow who always gave us encouragement, sharing of
problems, and organized some nice “festas” , which made us feel more a t home. M ark
Rickards, an Englishman who loves Brazil, taugh t us to love the Scottish countryside. I
specially recognize the help of Luiz Amado picking up Leonardo from school daily. Thanks
Tche!

I could not forget to mention the moral support and fondness of my family and family-
in-law. In particular my sister M agda and aunt Lindalva.

Special thanks to LindinaJva. my m other in law. When half of the family was writing
up, she gave all the support we needed to keep the home and family running.

Finally, my gratitude and love to Rose, Clarissa and Leonardo, my wife and children,

v

Acknowledgm ents vi

for all their support, patience, encouragement and love. Particu larly during the over­
loaded writing m oments, when I had to be absent many times, they gave me all their
understanding and solidarity. Big “xxxxx” to you all!

Hermano M oura

C ontents

A bstract ii

A cknow ledgem ents v

1 Introduction 1
1.1 M otivation ... 1
1.2 Scope and O b jec tiv es .. 2
1.3 O rganization ... 3

2 Sem antics-D irected C om piler G eneration 4
2.1 Com pilation and In te rp re ta t io n ... 4
2.2 The Com pilation Process .. 5
2.3 Compiler G e n e ra t io n .. 6
2.4 Sem antics-Directed Compiler G en e ra tio n .. 8
2.5 Approaches to Compiler Generation ... 10

2.5.1 Denotation a.1 S e m a n t ic s .. 11
2.5.2 O perational S e m a n tic s ... 11
2.5.3 Algebraic S e m a n t ic s .. 13
2.5.4 Action S e m a n tic s ... 13
2.5.5 A ttribu te G ra m m a rs .. 14
2.5.6 Partial E v a lu a t io n .. 15

2.6 Compiler G eneration S y s te m s ... 16
2.6.1 SIS ... 17
2.6.2 T y p o l .. 18
2.6.3 P e r l u e t t e ... 19
2.6.4 C a n t o r .. 20
2.6.5 G A G ..21
2.6.6 M i x ... 22

2.7 O ther Compiler G enerator S y s te m s ...24
2.7.1 M E S S 25
2.7.2 A S F + S D F M e ta -e n v iro n m e n t.. 27

2.8 C o m p a ris o n ...27
2.9 Problem s .. 31
2.10 An Ideal Semantics-Directed Compiler G e n e ra to r ... 33
2.11 S y n o p s is ..35

vii

Contents viii

3 A c tio n S e m a n tic s 36
3.1 Inspiration ... 37
3.2 The Program m ing Language Sp e c i m e n ...39
3.3 S tructure of Action Semantic D e sc rip tio n s ... 39
3.4 Action N otation ...42

3.4.1 Concepts ... 42
3.4.2 B a s ic .. 47
3.4.3 F u n c tio n a l... 51
3.4.4 D e c la r a t iv e ..54
3.4.5 Im perative ..57
3.4.6 R e f le c tiv e ... 59
3.4.7 H y b rid .. 61

3.5 D a ta N otation .. 62
3.6 S tandard and A ctress Action N o t a t i o n s ... 62
3.7 Experiences and R e fe re n c e s .. 65

4 A ctress 66
4.1 A rc h ite c tu re ... 66
4.2 The Action N otation C o m p i le r ..68

4.2.1 The P a r s e r ..69
4.2.2 The Sort C h eck er..69
4.2.3 The Code G e n e r a to r ...74

4.3 G enerating Code for Action N o ta tio n ..74
4.3.1 Translation R u le s ... 74
4.3.2 Run-Tim e E n v iro n m e n t.. 94
4.3.3 Im p lem en ta tio n ... 97
4.3.4 L im ita t io n s ..97

4.4 The Actioneer G enerator ..99
4.5 The Action N otation I n t e r p r e t e r .. 100

4.5.1 In terpreting A c t io n s ...100
4.5.2 L im ita t io n s ..106
4.5.3 G enerating an Interpreter for Sp e c i m e n ... 107

4.6 G enerating a Compiler for Sp e c im e n ... 109
4.7 Improving A c t r e s s .. I l l

5 B in d in g E l im in a t io n 113
5.1 M otivation ... 114
5.2 Action T ra n s fo rm a tio n s ... 115
5.3 Known and Unkown B in d in g s ... 118
5.4 Classifying Allocate A c tio n s .. 120
5.5 Transient Elim ination .. 123
5.6 Binding E l im in a t io n ..124
5.7 Action N otation L a w s .. 126
5.8 Elim ination Rules ... 127

5.8.1 Program Action ..132
5.8.2 B a s ic ... 132
5.8.3 F u n c tio n a l... 135
5.8.4 D e c la r a t iv e ..138

Contents ix

5.8.5 Imperative .. 140
5.8.6 R eflective ... 141
5.8.7 Hybrid..144

5.9 Sort Updating R u le s .. 144
5.10 Some E xam ples.. 145
5.11 Implementation.. 150

5.11.1 Action Notation Transformer..154
5.11.2 Changes in the Code Generator..158

5.12 Exploring R elationsh ips... 159
5.13 Improvements... 162

6 B inding A nalysis in A ction Sem antics 164
6.1 Initial Observations... 164
6.2 Bindings in Programming Languages.. 165

6.2.1 What is a Binding?... 166
6.2.2 Binding and Applied Occurrences..166
6.2.3 E nvironm ent...167
6.2.4 Free Identifiers... 167
6.2.5 Static and Dynamic B in d in gs...168

6.3 Bindings in Action N otation.. 170
6.3.1 B in d in g ...170
6.3.2 Binding and Applied Occurrences.. 172
6.3.3 Binding Environment ..172
6.3.4 Free T okens..174
6.3.5 Static and Dynamic B in d in gs...175

6.4 Statically Scoped A c t io n s ... 175
6.4.1 Statically Scoped C ondition..176
6.4.2 Form alisation.. 179
6.4.3 Implementation...187

6.5 Statically Scoped Languages..187
6.5.1 Statically Scoped C ondition ... 187
6.5.2 Formalisation and Im plem entation.. 190

6.6 Discussion and Applicability..191

7 C onclusions and F u tu re W ork 192
7.1 A ssessm en t... 192
7.2 What was A chieved?...194
7.3 Comparison with other System s...195
7.4 Improving Actress Further... 197
7.5 Open Q uestions.. 199
7.6 Final W ords.. 200

B ibliography 201

A Inform al D escrip tion o f Specimen 209
A .l Informal D escrip tion .. 209

A. 1.1 P rogram s.. 209
A .1.2 Type D e n o te r s .. 211

Contents x

A. 1.3 Declarations... 212
A .1.4 C om m ands... 213
A. 1.5 Expressions... 214

B T he A ction Sem antic D escription o f Specimen 217
B .l Abstract Syntax .. 217

B.1.1 P rogram s...217
B .l.2 Declarations... 217
B .l.3 C om m and s... 218
B .l.4 Expressions... 218
B .l.5 Type D en o ters ...218

B.2 Semantic E n tities.. 219
B.2.1 V a lu es... 219
B.2.2 Bindings..219
B.2.3 S to r a g e ..219
B.2.4 Procedures and Functions... 219
B.2.5 A rrays... 219

B.3 Semantic Functions... 219
B.3.1 P rogram s.. 220
B.3.2 Declarations...220
B.3.3 C om m and s... 223
B.3.4 Expressions... 225

B.4 Lexical S y n t a x ... 228
B.4.1 Identifiers.. 228
B.4.2 N u m era ls.. 228

Index 230

List o f F igures

2.1 The basic phases of a com piler... 6
2.2 The inners of a generated compiler... 9
2.3 A compiler generated by a denotational semantics based system 12
2.4 A compiler generated by an action semantics based compiler generator. . . 14
2.5 SIS - Semantics Implem entation System ...17
2.6 P e r l u e t t e ... 20
2.7 C a n t o r ..21
2.8 The G A G system ..23
2.9 The M ESS system .. 26
2.10 Compiler generation system s through the years... 30

3.1 Syntax of A c t r e s s action no tation .. 44
3.2 Sem antic rules for basic action no tation .. 49
3.3 Action diagram for the ‘and’ com binator...51
3.4 Semantic rules for functional action no tation ...52
3.5 Action diagram for the ‘then’ com binator... 54
3.6 Declarative action no tation ..56
3.7 Action diagram for the ‘moreover’ com binator...58
3.8 Sem antic rules for im perative action no tation ... 58
3.9 Semantic rules for reflective action no tation .. 60
3.10 Sem antic rules for hybrid action no tation ... 62
3.11 D a ta notation for lists... 63

4.1 The action notation compiler (A N C)...69
4.2 Program action for the loop program ..70
4.3 The S p e c i m e n loop program ...71
4.4 Ill-formed actions...71
4.5 Ill-sorted actions.. 71
4.6 Syntax of sort inform ation... 73
4.7 Program action translation rule..77
4.8 Basic translation rules... 79
4.9 The overlay bindings rules..80
4.10 Translation rules for the ‘or’ com binator... 81
4.11 Functional translation rules... 83
4.12 Declarative translation rules..85
4.13 Im perative translation rules... 86

xi

List o f Figures xii

4.14 Translation rule for the ‘enact’ action .. 88
4.15 Translation rules for ‘abstraction’, ‘w ith’ and ‘closure’.. 89
4.16 An exam ple of abstraction translation .. 90
4.17 Translation rules for hybrid action notation ... 91
4.18 Example of translation o f a ‘recursively bind’ action .. 92
4.19 D ata notation translation rules.. 93
4.20 The implementation of som e translation rules of Figure 4 .1298
4.21 Two sem antic equations for S p e c im e n ’s declarations (actual input).................... 100
4.22 The actioneer for Specim en (part)...101
4.23 A fragment of S p e c im e n ’s abstract syntax in Sta n d a r d M L 107
4.24 The S p ecim en factorial program.. 108
4.25 A n i , the actioneer generator and an interpreter for C ..109
4.26 A signature with some of A n i’s types and functions...110
4.27 O bject code obtaind by compilation of the loop program... I l l

5.1 Program action for the factorial program (extract)...116
5.2 O bject code for the factorial program... 117
5.3 Some action notation law s...127
5.4 Preservation actions... 132
5.5 Basic elimination rules.. 133
5.6 Functional elimination rules... 137
5.7 Declarative elimination rules.. 139
5.8 Imperative elimination rules...141
5.9 Reflective elimination rules... 142
5.10 Elimination rule for ‘else’ and ‘recursively bind’..144
5.11 Transformed program action for the loop program.. 150
5.12 Generated object code for the loop program after transform ation........................ 151
5.13 Transformed program action for the factorial program..152
5.14 Object code for the factorial program after action transform ation.......................153
5.15 Implementation of the elimination rule for llie program action154
5.16 Implementation of elimination rules (actions)..156
5.17 Implementation of elimination rules (yielders)...157
5.18 Implementation of law s...158

6.1 The S p ecim en loopfact program..167
6.2 The Specim en locale program...169
6.3 Binding and applied occurrences for an action .. 173
6.4 Unfolded annotation rules..182
6.5 Annotation rules for basic action notation ... 182
6.6 Annotation rules for functional action notation ...183
6.7 Annotation rules for declarative action notation ...184
6.8 Annotation rules for imperative action notation ... 184
6.9 Annotation rules for reflective action notation ...185
6.10 A nnotation rules for hybrid actions...185
6.11 The implementation of binding occurrences annotation (extract).........................188
6.12 The implementation o f the statically scoped condition (extract).......................... 189
6.13 Abstract syntax of action sem antic descriptions..189

List o f Figures xiii

A .l The bindings program ... 210
A.2 The block program ... 211

List o f Tables

2.1 Compiler generation systems information tab le ..29

7.1 Compilation time and run time figures (in seconds).......................................193
7.2 Compilation time and run time with action transform ations (in seconds). . 194
7.3 Final figures (in seconds)... 195

xiv

C hapter 1

Introduction

This thesis is about the design, formalisation and im plem entation of action transform a­

tions. Experim entation with the transform ations in the context of an action semantics

based compiler generator reveals their effectiveness in transform ing actions into more ef­

ficient actions.

1.1 M otivation

Action semantics is a formalism for the specification of program m ing languages, developed

by Peter Mosses and David W att [80, 110, 82]. The operational aspect of action semantics

motivated some thoughts on the possibility of its use for (sem antics-directed) compiler

generation (W att’s conjecture). This was the s ta r t point of the design and im plem entation

of A c t r e s s , an action-semantics based compiler generator. The design of A c t r e s s was a

three-person task [16]. After the im plem entation of the preliminary version, possibilities

for improvements were identified. The elimination of bindings and the allocation of storage

a t compile time appeared to be measures which could improve the quality of the object code

generated by A c t r e s s ’ compilers. This was the main motivation for the work presented

here. Therefore we introduced action transform ations, which proved to be a natural

approach to the problem.

1

Introduction 2

1.2 Scope and O b jectives

Com puter program s are complex objects. They are sentences of program m ing languages.

A high-level program ming language program has many different forms: an abstrac t form

in some sem antic model, a source form, its various forms during the compilation process,

its final form as a machine-coded object. One can look a t a program statically, and infer

properties about it w ithout the need to run it. On the other side, the dynam ic world of a

program can be very diverse: memory is allocated, control is transferred, the running can

be eternal, etc. Analysing all these forms and worlds together in an unified framework is

a challenging task.

Formal semantics of program ming languages have helped us greatly to understand

this world of program ming languages and their program s. Designers, implem entors and

program m ers benefit from this formal approach to program m ing languages. In particular,

implementors can have a more system atic way to construct compilers, and their products

are more reliable.

One can view a semantic description of a program ming language from different points.

At one extreme, it is viewed as the base against which a correctness proof for an implemen­

tation of the language should be given. At the other extrem e, and this is the one explored

in this thesis, it is viewed as the base from which an au tom atic im plem entation for the

language can be obtained. Between these extremes, one can view a sem antic description

as a common base for discussions on extensions and enhancem ents to the language; or as

a guide to a manual implementation for it.

However, the use of formal semantics to generate compilers, although feasible, has

not achieved the objective of generating production quality compilers. In other words,

realistic semantics-directed compiler generation is som ething yet to be achieved. Usually,

object program s of generated compilers run two order of m agnitude slower than the object

program s of hand-crafted compilers.

A c t r e s s ’ objective is to narrow this performance gap between hand-crafted compilers

and generated compilers. It seems th a t this gap can be narrowed by the introduction

of various forms of (static) analysis in the compiler generator. The technique of binding

elimination, the main subject of this thesis, can be seen as an a ttem p t 10 include in

an autom atic compiler generation system, in a system atic and formal way, part of the

1.3. Orga.niza.tion 3

knowledge th a t the implementor uses when he is writing a compiler.

1.3 O rganization

This presentation of our work is divided into four parts. The first pa rt, comprising this

and the following two chapters, introduces the work and puts it in context. C hapters 4,

5 and 6 are where the principal part of the work is fully described. C hapter 7 closes the

presentation summarising and comparing the results. Two appendices complement the

presentation. We describe now the main points of each chapter.

C hapter 2 is an overview of semantics-directed compiler generation. We identify main

approaches, describe some systems and discuss the main problems of some of the current

systems.

An introduction to action semantics is the content of C hapter 3. The syntax and

semantics of A c t r e s s ’ action notation is given. S p e c i m e n , the program m ing language

used for illustrative purposes throughout the thesis is introduced. Appendix A contains

an informal description of S p e c i m e n , and Appendix B contains its action semantic de­

scription.

A c t r e s s is introduced in C hapter 4. We describe mainly the code generation process

(action notation to C) and how an action semantic description is used to generate compil­

ers. For illustration, we describe how a compiler for S p e c i m e n is obtained. An interpreter

for action notation is also briefly described.

Action transform ations are described in C hapter 5. Binding elimination and static

storage allocation are explained in detail, and many examples are given.

After reviewing binding notions present in programming languages and acl ion notation,

we present in C hapter 6 a condition which identifies statically scoped languages from their

action sem antic descriptions.

Finally, in C hapter 7, we discuss the effectiveness of action transform ations in the

ACTRESS context, we discuss the relationship of our approach to others, and we point out

some possibilities for future extensions, improvements and further work.

C h apter 2

Sem an tics-D irected C om piler

G eneration

There are various ways o f defining a programming language. How­
ever , the fundamental point is not the choice of one or another type
of semantic definition. It is probably possible to dei ive a compiler
from any kind (denotational, algebraic, operational) o f semantic
definition in a more or less easy way. The point is that one needs
to use a form al semantics in a com piler generator.

M. C. GaudeL 1981, in [37].

This chapter gives an overview of semantics-directed compiler generation. We s ta r t explan-

ing w hat semantics-directed compiler generation is. Then we identify m ajor approaches

used in the design of semantics-directed compiler generation systems. The organization

and features of some typical systems are covered. Finally we discuss some of the problems

with current systems and w hat we think an ideal sem antics-directed compiler generator

would be.

2.1 C om p ila tion and In terp reta tion

Compilation is the process of translating a program written in a source language (source

program) to a program with an equivalent meaning in a target language (object program).

A compiler is a program th a t performs this process. Consider a language £ , a program V

of £ , and a (real) machine M . At compile time, program V expressed in language C is

4

2.2. The Compilation Process 5

translated to a program V expressed in Ad machine code. The compilation is carried out

by a compiler typically running on machine M (it could be also a cross-compiler running

on machine A T). The compiler itself is expressed in M (or AT) machine code. A t run

time, execution of the object program is carried out by machine Ad.

It is worth to distinguish compilation from the interpretation which is used in the

im plem entation of some program m ing languages. The in terpreter executes instructions

in the source program immediately as they are fetched. The main distinction between

compilation and in terpretation is the absence or presence, respectively, of the language

processor a t run time. In compilation, the compiler is discharged as soon as it generates

an object program which can then be run on its own; in in terpretation the object program

needs the in terpreter in order to run. Compilation also exhibits a clear notion of compile

time (static phase) and run tim e (dynamic phase) of the program.

However the borderline between interpretation and compilation is not always so clear.

Some systems use a m ixture of them: compilation is used to transla te source program s

into instructions for an abstract machine — the object program — which will be run by

an in terpreter for the abstract machine. Although unlikely, we could even have the case

where a compiler for a language compiles a source program by generating an interpreter

and preserving the source program . The running of the “object program ” is ju st the

in terpretation of the original source program by the generated interpreter.

We will use the term compiler for a translator from source code to machine code, which

can be run autonomously on a real machine1.

Another measure of how much a particular language processor is near compilation is

the degree of interpretive code in its object program s. Ideally we would like to have no

interpretive code in the object code as this means better quality object code. Notice th a t

run-tim e language support, like garbage collection, is not considered as interpretive code.

2.2 T h e C om p ilation P ro cess

Figure 2.1 illustrates the phases involved in the compilation process. The whole process

has two main parts: the analysis part and the synthesis part. Each of these parts can be

in tu rn divided into several phases.

N o tic e that even in this case some interpretation is present at the machine microprogramming level.

Semantics-Directed Compiler Generation 6

code
generator

contextual
analyser

translatorsyntax
analyser

source
program

analysis

AST decorated
AST

intermediate
code

synthesis•

object
code

^target
program

Figure 2.1: The basic phases of a compiler.

The analysis part comprises the syntax analyser (scanner and parser) and the contextual

analyser (contextual constraint and type checker). The syntax analyser discovers the

syntactic structu re of a source program and (typically) builds an abstract syntax tree

(AST) representation of it. The contextual analyser examines the abstrac t syntax tree in

order to collect sta tic information about the program . Tree nodes can then be decorated

with this information resulting in a decorated abstrac t syntax tree. The p a rt of a compiler

which implements the analysis phase is also known as its front end.

The synthesis part basically comprises the translation phase and the code generation

phase. The former translates the decorated abstract syntax tree into an interm ediate

representation of the program . This representation is convenient for conversion to target

machine code. The code generator translates interm ediate representations into final target

programs. An object program consists of code th a t can be directly executed by the target

machine (which can be an abstract machine). The object code is typically machine code,

but it can also be assembly code or even a high-level language like C. The part of a

compiler which implements the synthesis phase is also known as its back end.

This is not a complete and detailed scheme of the whole compilation process, but is

enough for our presentation purposes. (For a more detailed presentation see [2].)

2.3 C om piler G eneration

The manual construction of a compiler is a big and tim e consuming task. For example, the

first Pa scal compilers took 6-12 m an-m onths to be built. A compiler for A da is likely to

consume several man-years to be finished. Also, the task to assure the correctness of hand-

2.3. Compiler Generation 7

crafted compilers is very demanding. Formal approaches to compiler correctness may be

based on denotational semantics, algebraic semantics or structural operational semantics.

(See [90] for an overview of compiler correctness proofs.)

Thus it is justifiable to search for m ethods and tools which can provide a more pro­

ductive, autom ated, and system atic way to obtain compilers. Compiler correctness can

also benefit from this approach. This is the aim of compiler generation. The decompo­

sition of the compilation process means th a t the compiler generation problem can also

be divided into smaller problems. Some of these subproblems are already satisfactorily

solved. The decomposition also allows for the possibility of reusing compiler components.

For example, we could have a family of compilers with a common front end and different

back ends. Several compiler writing tools are now commonly used to generate parts of

compilers automatically.

The Lex and Yacc systems are examples of compiler writing tools. Lex [67] can be

used to autom atically produce a scanner from a regular-expression specification. Y a c c

[49] autom atically produces an (LR) parser from a gram m atical description of the syntax

of a language.

Front end generators typically process a ttr ib u te gram m ars [59], which have proved

useful for formally specifying the context-sensitive constraints of a program ming language

together with its context-free syntax. Linguist-86, GAG and HLP are examples of such

system s [‘29, 30, 56, 96].

There are also some techniques th a t perm it the generation of code generators [7, 34,

38]. The best systems generate code generators whose object code is comparable to the

object code of hand-w ritten code generators. However, some theoretical problems, such

as proving th a t the translation (interm ediate to object code) preserves the semantics of

the source language, remain to be solved. As mentioned in [65], the correctness proof for

code generators involves intractable congruence proofs, and these have not been given for

practical code generators. In the case of autom atically generated code generators, their

correctness must be taken for granted.

S e n m n l i c s - D i r e c l e d C o m p i l e r G eneration 8

2 .4 S em an tics-D irected C om piler G eneration

The autom atic generation of the translation phase is a more difficult task. This involves

a strong connection to the formal semantics of the source language. The problem of

autom atically generating the translation phase based on the language’s formal semantics

constitu tes a dynamic area of research called semantics-directed compiler generation.

In a broader view, the aim of semantics-directed compiler generation is to generate

a compiler for a language C from £ ’s syntactic and sem antic formal description. This

formal description is defined using some form al notation. Examples of formal notations

are A-notation and action notation. In some semantic methods, the meaning of a source

program is a term in this formal notation. This term can be built and then translated into

a target language. This formal notation should be a well known and general notation for

description of programming languages, not a particular compiler specification language.

It should be theoretically well founded, with a well-defined semantics.

This is an im portant point in the characterization of semantics-directed systems. The

compiler generators and generated compilers can be designed in a way to exploit the

properties of the formal notation, not the other way around. Again, analysis and tran s­

form ation techniques can be built into the compiler generators and generated compilers

based on the properties of the formal notation. It is im portan t to make clear th a t many

so-called compiler generators are merely tools to help the construction of specific compiler

components. They are based on some particular techniques, not on a formal notation for

description of programming languages, and /o r the user has to provide some of the com­

ponents of the generated compiler. Thus, there is a borderline (sometimes not so clear)

between (compiler writing) tools and true semantics based compiler generators.

We can see many advantages of a semantics-directed compiler generation system:

• The precise intentions of the language designer are reflected by the formal description

and transferred to the implementations.

• The compilers are generated autom atically from formal descriptions, which are easier

to write and debug than standard code for a compiler.

• If the compiler generator is correct, the generated compilers are correct with respect

to the formal descriptions.

2.4. Semantics-Directed Compiler Generation 9

parser translatorsource
program

AST intermediate
semantic
language

object
code

tar9et
Y program

Figure 2.2: The inners of a generated compiler.

• The compiler generator provides a convenient tool for executing program s of a lan­

guage as soon as a semantic description of the language is available.

P leban’s language designer’s workbench concept [65] describes an environm ent centered on

the existence of a formal semantic m ethod (with nice pragm atic features) and a compiler

generator based on it. In [112] W att advocates a methodology of program ming language

design th a t exploits the ability to execute semantic descriptions: one only commits to the

construction of a production compiler after some iterations over a design-prototype-test

cycle entirely based on a formal semantics of the source language.

Figure 2.2 illustrates how the generated compiler can incorporate the semantics of the

source language. The parser component is generated from the syntax description of the

source language. The sem anticist component incorporates the sem antic description into

the generated compiler. It takes the source program ’s abstract syntax tree (AST) and

generates an interm ediate representation of the source program . This interm ediate repre­

sentation is usually a term of the semantic meta-language, and represents the denotation

of the source program. The translator translates the interm ediate semantic representation

to object code. In the case of a variable target language organization, the transla to r in­

corporates the semantics of the target language and the translation rules from term s in

the source language to term s in the target language.

One could draw a comparison between the current s ta te of compiler generation tech­

nology and the early days of programming language semantic m ethods. At th a t time,

syntactic description m ethods were well known and semantic m ethods still in their in­

fancy. There are many m ethods and tools widely available and used to generate the

syntactical components of a compiler, but much remains to be done regarding sem antic

components. Although the la tte r is feasible it is not viable a t present. Some semantics

Semantics-Directed Compiler Generation 10

directed compiler generators deliver compilers whose object program s run three orders of

m agnitude slower than code generated by hand-w ritten compilers [65].

2 .5 A pproaches to C om piler G eneration

There are five main well known m ethods for defining semantics of program m ing languages:

operational sem antics, axiomatic sem antics, denotational sem antics, algebraic semantics

and action semantics. Naturally, a lot of the work in semantics-directed compiler genera­

tion has been influenced by some of these methods.

As far as we know axiomatic semantics [32, 45] has not been used for compiler gen­

eration. As pointed in [65], the problem with this m ethod is its inability to trea t easily

such common language features as side effects and scope; also, an axiomatic definition is

designed to support reasoning about particular properties of program s, and it is hard to

use these properties as the meaning of program s to build language im plem entations.

D enotational semantics, a well accepted m ethod to describe semantics of program ming

languages, has inspired much work on semantics-based compiler generation, including the

first system of this kind.

Surprisingly, traditional operational semantics has not been used for compiler gener­

ation. An operational semantics is very suggestive of an im plem entation. An interpreter

can easily be defined from it. However, using new approaches to operational semantics,

some interesting systems have been built.

Although the algebraic approach has been extensively used in algebraic specification

of d a ta types, it seems th a t it has not been applied to compiler generation. However

some system s generate language tools such as editors, parsers and in terpreters from an

algebraic specification of the language. It is im portan t to notice th a t algebraic techniques

make available some useful m athem atical knowledge th a t can help in areas like compiler

correctness and compiler generator correctness.

Action semantics, as introduced in C hapter 3, although a new approach compared with

the others, has already been used to build some systems.

Although attribute grammars and partial evaluation are not general m ethods for spec­

ifying programming languages, compiler generation has become an intensive application

area for both techniques. In particular, a ttrib u te gram m ars have been used to create many

2.5. Approaches to Compiler Generation 11

compiler writing tools.

In this section we review briefly the principles behind each of these approaches and

how they are used to build semantics-based compiler generators.

2 .5 .1 D e n o ta t io n a l S em a n tic s

In denotational sem antics [79, 97], the semantics of a program ming language is expressed

as a mapping from syntactic phrases in the language to m athem atical entities. In standard

denotational sem antics these m athem atical entities are higher-order functions, and they

are w ritten using A-notation [4]. The meaning of a program is a (higher-order) function

which is obtained by the application of the semantic functions to the program ’s abstract

syntax tree. In term s of compiler generation, this corresponds to a syntax-directed trans­

lation of the program ’s abstrac t syntax tree into A-notation. A A-expression constitutes

the “target code” for a program , and can be “executed” by a A-expression evaluator.

Execution is performed by reduction of the A-expression applied to the program ’s input.

Figure 2.3 shows the basic organization of a compiler generated by a denotational se­

mantics based compiler generator. The generated compiler front end is a parser which

maps a source program to its abstract syntax tree representation. The language’s seman­

tic description is incorporated in the semantic function phase (sem anticisi) which is a

transla to r from an abstrac t syntax tree to a A-expression denoting the source program .

The A-expression can be reduced a t compile time using a reduction machine (beta re­

dactor). The b e ta reductor applies the (3 reduction rules of the A-calculus to evaluate a

A-expression. This improves the quality of the object code. At run time the A-expression

is supplied with its required argum ents (program inputs), if any, and further reduced until

a normal form is reached.

2 .5 .2 O p er a tio n a l S em a n tic s

In traditional operational semantics, a language is defined by specifying a translation

from the language to a defined abstract machine. This ab strac t machine can be very

close to real hardw are, in which case it can be simple to analyse and transla te abstract

machine code to real machine code, or high-level enough to facilitate the translation from

the program m ing language. The abstract machine can be seen as an interpreter for the

Semantics-Directed CompiJer Generation 12

Compile Time

source
program

AST

lambda-expression

parser beta
reductor

semantic
function

target
program

reduced
lambda-expression

Run Time

reduced lambda-expression — beta
program input —— > reductor

program output

Figure 2.3: A compiler generated by a denotational semantics based system.

language, and the meaning of a program is the evaluation history th a t the interpreter

produces when it in terprets the program . The evaluation history is a sequence of internal

interpreter configurations. An example of a definitional interpreter can be found in [63].

P lo tk in ’s structu ral operational semantics [95] and K ahn’s natural semantics [54] are

two other interesting approaches to operational semantics. In the former, the semantics

of a programming language is defined by a transition system whose steps describes the

evaluation of a program in the language. In the latter, the semantics is defined by a

m athem atical relation between program s and results2. We will illustrate natural semantics

here.

In general, a natural semantic definition provides axioms and inference rules th a t define

the various semantic predicates to be defined on a language phrase. For example, we could

have a rule of the form:

£, S h E => v

which expresses th a t expression E evaluates to v in environm ent £ and store <5.

2Sometimes the terms transition semantics and relational semantics are used to refer to structural
operational semantics and natural sem antics respectively [40, 20, 6].

2.5. Approaches to Compiler Generation 13

There are probably various approaches to turn a natural semantics description into

a compiler or interpreter. It can for example be compiled into P r o l o g as explained in

[54, 26]. N atural semantics can also be used to specify sta tic semantics and translation

[19].

Hannan and Miller have developed techniques for mechanically constructing provably

correct im plem entations of programming languages based on operational semantics. Their

work is based on the definition of abstract machines as term rewriting systems. In [43]

they consider the transform ation of a description given as a set of inference rules into

abstrac t machines. In [42] is shown how the resulting abstract machines are transform ed

into compilers. A further translation to an even lower-level architecture, which is closer

to machine code, is considered in [41].

2.5 .3 A lgebraic Sem antics

Algebraic semantics has been used extensively for specification of abstract d a ta types

[114, 116, 5, 46]. An algebraic definition specifies some sorts, functionalities of some

operations and some axioms (equations) over the operations. The meaning of an algebraic

definition is an algebra (or a set of algebras).

Interpreting equations as left-to-right rewriting rules, an algebraic semantics specifica­

tion can be executed by a term rewriting system [22].

Algebraic semantics can be used to specify a programming language. But in prac­

tice it is necessary to introduce auxiliary sorts such as environm ents and stores, auxiliary

operations over these sorts, and auxiliary operations over the term s (phrases) of the pro­

gram m ing language. The resulting definition is reminiscent of a denotational definition

w hithout higher-order functions.

2.5 .4 A ction Sem antics

Action semantics is described in detail in C hapter 3. The denotations of program phrases

are actions. An action can be performed. The execution of a program is represented by

the performance of the action denoting the program. For example, the performance of

the action may complete giving some value, which indicates a normal term ination for the

program.

Semantics-Directed Compiler Generation 14

Compile Time

source
program

AST

program-action
action tree

parser
action

notation
compiler

semantic
function

target
program

object
code

Run Time

target program -------

program input --------

target
machine

program output

Figure ‘2.4: A compiler generated by an action semantics based compiler generator.

Figure 2.4 shows the general structure of a compiler generated by an action semantics

based compiler generator. The central part of the system is an action notation compiler

which translates an action to object code suitable for execution in some target machine.

Notice, in Figure '2.4, th a t an action and an action notation compiler correspond, respec­

tively, to a A-expression and a A-expression reductor in a denotational semantics based

compiler generator (Figure 2.3).

2.5 .5 A ttr ib u te G ram m ars

A ttribu te gram m ars were introduced by K nuth [59] as a way to incorporate (so called)

semantics in a context-free gram m ar. They are mainly used to specify context-sensitive

constraints of programming languages, like types and scoping rules, and code generation.

The basic idea is th a t each gram m ar symbol (terminal or nonterm inal) in the syntax tree

has a fixed number of associated values, called attributes. A ttribu tes represent information

associated with the symbol, such as its type, symbol table, code sequence, value, and so

on. A ttribu tes may be evaluated as a program is parsed, or they may be evaluated after

a syntax tree is constructed by the parser. The resulting syntax tree, augmented with

2.5. Approaches to Compiler Generation 15

attribu tes, represents the semantics of the program [31].

To obtain a type checker using an a ttrib u te gram m ar based system , for example, we

first specify an a ttribu te gram m ar with types as a ttribu tes and operations defining the

type checking process. The system uses the specification to generate an a ttribu te evaluator

which implements the type checker.

2.5 .6 P artial E valuation

Although partial evaluation [50] is a program transform ation technique, compiler genera­

tion is an im portan t application of it.

A partial evaluator can be viewed as an interpreter th a t evaluates programs with partial

input data . T ha t is, if we give to a partial evaluator a program (subject program) and part

of its input data , the partial evaluator will evaluate the program , using the known input

da ta , given a new program as result (residual program). The residual program , when run

with the rest of the input, will give the same result as would the subject program when run

with its complete input d a ta (this is the correctness condition). Thus, a residual program

is a specialization of the subject program, with respect to its known input data .

Suppose we have an interpreter int for a language C. Let p be an C program th a t

needs some input da ta d to run. One could use int to run the program as follows:

int p d — r (2-1)

where r is the result of running p with d as input data . Suppose now we use a partial

evaluator (mix) as follows:

mix int p — t (2.2)

th a t is, we specialized int with respect to a particular program p. Now, by the correctness

condition, for all d:

t d = r (2.3)

which is equivalent to saying th a t t is the compiled version of p.

The problem with (2.2) is th a t every time we need to compile a program p we need to

partially evaluate int.. We could avoid this by partially evaluating m ix itself with respect

Semantics-Directed Compiler Generation 16

to in t:

mix mix int = comp (2.4)

where comp is now a compiler for C. Notice tha t, by the correctness condition:

comp p = t (2-5)

To obtain a compiler using (2.4), the partial evaluator m ust be self-applicable. th a t is,

it m ust have the property th a t it can partially evaluate itself. If we specialise m ix with

respect to itself, we obtain a compiler generator:

mix mix mix = cogen (2.6)

which gives a compiler for C if we apply it to int:

cogen int = comp (2-7)

This is the principle which allows us lo use partial evaluation lor compiler generation.

Notice th a t the user should provide an interpreter, which is easier to write than a

compiler, to obtain a compiler for a language. The fa.cl that partial evaluation can be

used for semantics directed compiler generation stem s from the fact th a t the interpreter

can be obtained directly from a denotational semantic definition.

2.6 C om piler G eneration S ystem s

There are many systems around which implement the various approaches to compiler gen­

eration. SIS [71, 73], P S P [92, 93], SPS [106], Kelsey and H udak’s system [57] and DM L

[94] are examples of denotational semantics based systems. The SAM system [115] uses a

fixed sem antic algebra as a m ediator between the source language and the lanibda-calculus

[104]. T y p o l [25] is an example of a system based on natural semantics. PERLUETTE

and A S F + S D F are examples of systems th a t use algebraic semantics techniques. C a n ­

t o r [91], A c t r e s s [16] and D oh’s system [27] are systems based on action semantics.

D ELTA [68], GAG [56. 55], HLP [96. 60, 61], L in c i i s t - 8 6 [29. 30] and VIL'G2 [35] are

among numerous front-end generators developed using a ttribu te gram m ar techniques. For

2.6. Compiler Generation System s 17

source
program

Generated compiler
object program
code input

grammar

semantic
description

program output

parsing
table

encoder
(lambda-exp.)

parser

LAMB
reducer

parser
generator

encoder
generator

LAMB
reducer

object code
(lambda-expression)

 compiler g enera tion ------------------ compilation------------------- — execution —►

Figure 2.5: SIS - Semantics Im plem entation System.

a good survey of a ttr ib u te gram m ars based systems see [21]. M ix [52] and S i m il i x [11]

are examples of partial evaluators. M ESS [65], a system based on high-level semantics, is

an example of a system th a t generates good quality compilers. In the sequel we describe

some of these systems.

2.6.1 SIS

The Semantics Im plem entation System (SIS) was developed by Peter Mosses [71, 73]. It

was the first denotational semantics based compiler generation system . The main compo­

nents of the system are the parser, the parser generator, the encoder generator and the

LA M B-reducer. Figure 2.5 shows the architecture of the system.

Semantic descriptions are w ritten using DSL, a notation similar to the Soott-Strachey

notation used in denotational definitions, and suitable for com puter processing. D SL is a

completely applicative notation [73]. The A-notation used in SIS is called LA M B , which

is in fact a sub-language of DSL. The encoder generator produces the code generator part

of a compiler (encoder) from a denotational semantics of the source language, expressed

in DSL. The encoder generator takes the parse tree of the sem antic description, and

Semantics-Directed Compiler Generation 18

produces basically an expression in A-notation (called a LAM B-expression) denoting the

specified semantic function. When this LAM B-expression (the encoder) is applied to the

parse tree of a program , it produces a LAM B-expression denoting the sem antics of the

program (usually an input-output function). Actually, the produced LAMB-expression

can be reduced a t compile tim e and this reduced expression is taken as the generated

object code.

To run a program we apply the generated A-expression to the input (also a A-expression).

This application is evaluated (reduced to normal form) by the LAMB-reducer giving the

ou tpu t of the program. The LAMB-reducer is also used to evaluate applications of seman­

tic functions to parse trees of programs. A call-by-need reduction strategy is used. SIS is

w ritten in B C P L .

An experiment with SIS is described in [9]. Some problems were reported as follows:

• There are some inefficiencies at compiler generation time, compile time and run time.

The lexical analysers of SIS and of the generated compilers are based on context-

free parsing m ethods rather than finite s ta te techniques. The most critical source of

inefficiency is the use of a reduction machine for the target machine of the “compiled

code” . The execution of loops causes the reducer to make many copies of the loop

body during evaluation, thereby increasing the frequency of garbage collections.

• E rror handling is not adequate. No syntax error recovery is provided a t compiler

generation time. Specifications written in DSL should be syntactically correct, o th­

erwise SIS halts. 'The same applies to the parsers generated by SIS. No type checking

is performed on the semantic equations. The language's abstract syntax must be

specified three times: first in the description of the compiler front end, and sub­

sequently (in a different form) as part of the definition of the sta tic and dynamic

semantics. However, no consistency check is included to ensure th a t the three spec­

ifications define identically structured abstract syntax trees.

2 .6 .2 TYPOL

T y p o l is a formalism th a t implements natural semantics [25, 26]. It can be used to specify

sta tic semantics, dynamic semantics, and translations. A natural semantic description is

expressed and processed as a T y p o l program (ASCII representation). For example, a

2.6. Compiler Generation System s 19

description of a type checker (a T y p o l program) is compiled into P r o l o g to create

an executable type checker. Dynamic semantics and translations can be described and

processed in a similar way [19]. Besides natural semantics rules, a T y p o l program also

contains machinery for im porting externally defined rules, functions, etc.

The T y p o l compiler includes a type checker and a code generator. Every abstract

syntax term occurring in a rule is typed with its syntactic category. The type checking

phase uses this information to verify a T y p o l description and generates an interm ediate

form [13]. After type checking, a T y p o l description can be compiled into P r o l o g code.

A P r o l o g interpreter can then be used to execute the description. As described in

[26], one of the main ideas in the design of the system was to keep the sem antics of

the rules independent of P r o l o g features, for example, the semantics of a T y p o l rule

is independent of the order of the sequents in the num erator of the rule (as in natural

sem antics and logic). The current im plem entation uses M U - P r o l o g [86]. The type

checker and the P r o l o g transla tor are w ritten in T y p o l itself.

T y p o l runs on to p o f th e C e n t a u r s y s t e m , an in terac t ive p r o g r a m m m in g m e ta ­

en v ir o n m en t , being on e o f th e s ta n d a rd se m a n t ic form alism s p rov id ed by th is sy s te m

[13, 47].

2.6 .3 P e r l u e t t e

The P e r l u e t t e system [23, 37, 36] is based on the specification of languages as abstract

d a ta types. It takes as its input three specifications: the source language definition, a

description of the implementation choices, and the target language syntax. Figure 2.6

shows the architecture of the PERLUETTE system.

The source language definition embodies the presentation of an algebraic d a ta type

which describes the properties of the language operations (statem ents, operators, etc).

The sem antic value of a program is a composition of some of these operations, th a t is,

a term of the d a ta type. The meaning of any program is sta ted via a set of algebraic

sem antic equations. The target language is specified as another algebraic d a ta type. The

translation is expressed as a representation of the source data type into the target data

type.

The generated compilers work in three steps: the first step transla tes the source pro­

gram to a term of the source da ta type; the second step translates this term to a term of

Semantics-Directed Compiler Generation 20

Compiler definition PERLUETTE Generated compiler

source program

Source language definition
(syntax and semantic equations)

term of ADT1

Implementation choices _
(representation of ADT1 by ADT2)

term of ADT2

Target language syntax
(ADT2 and code generator)

STEP 1

&3 STEP 3

&2 STEP 2

target program

Figure 2.6: P e r l u e t t e .

the target d a ta type; finally, the third step generates code from this translated term . The

user must supply the code generator.

As described in [37] the semantic equations of the source language are specified using

a ttribu tes. A ttributes and the interm ediate texts are expressed in L isp . Also, it is reported

th a t the use of L isp is very natural as generated compilers perform term rewriting which

can be expressed easily as a L isp evaluation.

As mentioned in [36], P e r l u e t t e takes into account only the “syntactic” part of the

abstract d a ta types associated with source and target languages. Also, according to [36],

the axioms (the “sem antic” part) of the d a ta types are needed for the correctness proofs

which were done by hand.

2 . 6 . 4 C a n t o r

The C a n t o r system generates compilers from action sem antic descriptions of program ­

ming languages [90, 89]. The compiler generator component is w ritten in P e r l [105] and

has as inputs the syntax and the semantics of the source language (these inputs are in the

form of the actual IATgX source of the sem antic description, like the one th a t produced

2.6. Compiler Generation System s 21

program

to action

transformer

Cantor

syntax
checker

action
compiler

assemblersource
program

Compile Generation Time

Compile Time

Generated compiler

semantics

syntax generated
compiler

(target
program

Figure 2.7: C a n t o r .

Appendix B). The generated compiler emits code for an abstract R ISC machine language

(Pseudo SPARC), which is compiled into code for R ISC processors. The generated com­

piler, w ritten in S c h e m e , consists of a syntax checker, a program -to-action transform er,

an action notation compiler (a fixed part in the generated compiler) and a Pseudo SPARC

assembler. Figure 2.7 shows the organization of C a n t o r .

The main nice feature of C a n t o r is th a t its correctness is proved. The proof is

based on a natural semantics of action notation, a natural semantics of the abstract

R ISC machine, and the simplicity of the action notation compiler. It uses a variation

of Despeyroux’s proof technique [24].

As reported in [89] compilation time is very slow (circa 300 times slower than com­

pilation tim e for hand-w ritten compilers). Also the object code generated by C a n t o r ’s

compilers run two orders of m agnitude slower than corresponding code produced by hand­

w ritten compilers. Experim ents with C a n t o r have included the autom atic generation of

compilers for a non-trivial subset of A d a and for Hy p o P L [65].

2.6.5 GAG

From an a ttribu te gram m ar specifying the sta tic properties of a program m ing language,

the G A G system [56] generates an a ttr ib u te evaluator th a t implements the sem antic anal­

ysis phase of a compiler.

The syntactic part of the a ttribu te gram m ar is w ritten in E x t e n d e d B N F [48]. The

Semantics-Directed Compiler Generation 22

input a ttrib u te gram m ar is w ritten in A LA D IN (A Language for A ttribu te Definitions),

a strongly typed applicative language. A LA D IN is suited for specifying sta tic language

properties (for example, scoping and typing rules). Descriptions of code generation and

optim izations are possible, but are not typical applications. The a ttribu ted tree, resulting

from the analysis phase, is further processed by the later compiler phases.

As mentioned in [55] the specification of an a ttr ib u te gram m ar should s ta r t with an

analysis of the given or intended language and proceed in the following steps:

• specification of the context-free gram m ar;

• design of a ttr ib u te types for the description of global language concepts like scope

rules and types of objects;

• and design of the a ttribu te rules and context dependent restrictions for each pro­

duction together with functions for their com putation.

Figure 2.8 shows how the G A G system is organized. The structu re is com parable to

the one found in conventional compilers. F irst the specified a ttribu te gram m ar, w ritten

in A L A D IN , is analysed (this analysis performs scanning, parsing and type checking

for A L A D IN). Then analysis of a ttribu te dependencies and com putation of tables th a t

will control the a ttrib u te evaluator take place. Then the a ttrib u te evaluator performance

(space and run time) is improved by several optim ization techniques (like space reduction

for a ttribu tes using lifetime analysis). Finally, the specification language A L A D IN is

translated into S t a n d a r d P a s c a l [55].

The system is implemented in S t a n d a r d P a s c a l [17] as well as the generated a t­

tribu te evaluators. There are some facilities to embed the generated a ttr ib u te evaluator

in a compiler environment. Front ends have been generated for P a s c a l , A d a and P e a r l

[87]. Performance figures show th a t the efficiency of generated front ends are very close

to those of compilers using a tree as internal structure.

2.6.6 Mix

The first version of M i x , a self-applicable partial evaluator, was developed in 1984 at the

University of Copenhagen [52]. Its subject language is MlXWELL, which is basically a

subset of (pure) statically scoped L isp . M i x itself is w ritten in M i x w e l l . To generate a

2.6. Compiler Generation System s 23

parser tree
constructor

static
semantic
analysis

attribute
evaluator

attribute
optimizations

parser code
generator

attribute
evaluator

attribute
grammar

Attribute Evaluator Generation

Attribute Evaluation Time

source
program

attribute
tree

Figure 2.8: The G A G system.

compiler for a language C, the user must provide an interpreter for £ , w ritten in M i x w e l l .

By using Equation 2.7, the compiler is generated.

Partia l evaluation in M ix comprises the following phases:

• binding time analysis,

• program annotation,

• function specialization,

• call graph analysis, and

• call unfolding and reduction.

Each phase can be understood as a transform ation on the subject program , involving

an analysis or a translation of it. The input to the binding time analysis is the subject

program together with a description of which of the program ’s param eters will be available

during partial evaluation. Binding time analysis is based on an abstract interpretation [1]

of the subject program using the two-value domain {Static, Dynamic} which reflects the

condition of all variables in the program as sta tic or dynamic. A sta tic variable can be

computed during partial evaluation, a dynamic variable cannot. So the aim of binding­

tim e analysis is to analyse the program so annotations may be placed accurately.

The subject program together with the variable descriptions produced by the binding

tim e analysis are used in the annotation phase which produces an annotated version of

the subject program for use by the function specialization phase. Function call annotation

is one of the annotations carried out in this phase: for example, a function call is marked

Semantics-Directed Compiler Generation 24

as unfoldable if there is no risk of infinite expansion during function specialization, and

residual otherwise [52].

The annotated version of the subject program — together with actual values of the

subject program ’s param eters — is used in the function specialization phase to produce

an interm ediate residual program which consists of specialized versions of the subject

program ’s functions.

The call graph analysis produces a list of function names from the interm ediate residual

program th a t are cutpoints of recursive call chains. These cutpoints will be used in the

call unfolding phase to avoid infinite unfolding.

Finally, the call unfolding and reduction phase ou tpu ts the final residual program ,

obtained from the interm ediate residual program , by unfolding calls and reducing the

resulting expressions.

M ix has been used to generate compilers for various im perative and functional lan­

guages [52]. For a small im perative language reported in [52] (with assignm ent, a condi­

tional, a while-loop, and with S-expressions as the only d a ta type), the compilation by

partial evaluation combined with a run of the targe t program is five times faster than the

interpretation of the source program.

2 .7 O ther C om piler G enerator S y stem s

There are some other semantics-directed compiler generators. Paulson’s Semantics P ro­

cessor (P S P) uses semantic grammars as its specification language. A sem antic gram m ar

is an a ttr ib u te gram m ar th a t uses the domains and formulas of denotational semantics

[93]. A traditional denotational definition includes a context-free gram m ar, and intro­

duces a sem antic function for every nonterminal symbol in the gram m ar, defined by cases

(semantic equations) on the rules rewriting th a t nonterm inal. In con trast, a semantic

gram m ar embeds the semantic functions in a ttr ib u te evaluation rules associated with the

rules of the context-free gram m ar. As report in [93] the compiler generator is efficient

enough to run experimental program s, but it is im practical for a production environm ent.

A generated compiler for a subset of P a s c a l compiles 25 times slower and its object code

runs 1000 times slower than a hand-w ritten compiler. P S P is w ritten in P a s c a l .

Mitchell W and’s Semantic Prototyping System (SPS) uses denotational semantics as

2.7. O ther Compiler Generator System s 25

its sem antic formalism, but descriptions are expressed in a standard L isp syntax [106].

A typical language description, provided by the user, consists of definitions of types and

auxiliary functions, and a transla tor (transducer) th a t includes the syntactic and semantic

definition of the source language. The system has a type checker, which is used to debug

sem antic descriptions, and an interface to Y a c c which ex tracts the gram m ar from the

transducer. The transducer is processed to produce a parser and an in terpreter (a SCHEME

function th a t traverses the parse tree) for the language. A program in the defined language

may be run by piping it through the parser and then interpreting the parser’s ou tput. The

system is w ritten in S c h e m e 8 4 [33], a dialect of L isp . There is reported a (CPU) time

of 0.18 seconds to execute the 12-line program in [9] on a VAX 11/780 machine.

2.7.1 MESS

The M ESS system generates compilers from high-level sem antic descriptions [65]. The

following presentation of M ESS is based on the one found in [65]. High-level semantics is

a style of semantic definition th a t overcomes the unsuitability of traditional denotational

semantics for compiler generation. Its main features are: (a) the denotations are expressed

in term s of a semantic algebra of action-based operators rather than the A-calculus; (b) the

operators of a semantic algebra are chosen to directly reflect both fundam ental language

concepts and fundam ental im plem entation concepts — an efficient im plem entation of the

operators can be obtained by interpreting them as tem plates of interm ediate code for

a code generator; (c) the semantic equations and the semantic algebra are defined in

separate specifications called the macrosemantics and microsem antics, respectively; (d)

the only information shared between macrosemantics and microsemantics is the signature

of the semantic algebra defined by the microsemantics. This provides a m odularity which

guarantees the invariance of the macrosemantics under different in terpretations of the

algebra; (e) the separation between m acrosem antics and microsemantics is also used to

distinguish between the sta tic and dynamic components of a language; (f) it is usually

straightforw ard to add new operators to a semantic algebra which provides extensibility;

(g) high-level specifications are written in a readable notation based on S t a n d a r d ML.

A macrosemantics specifies a translation from abstract syntax trees to term s in a se­

m antic algebra of actions called prefix-form operator term s, or PO Ts. This translation

is a sta tic com putation since a PO T represents the to ta l dynamic effect of a program.

Semantics-Directed Compiler Generation 26

source program
MESS

FE Spec

SA

AS Spec

MaS Spec

MiS I F •

MiS Spec
(CG Spec)

Macro
Semantics
Analyser

Micro
Semantics
Analyser

FE Gen

CC

CG

FE

machine code

Figure 2.9: The M ESS system.

In term s of realistic compilation, this means th a t a macrosemantics specifies all of the

compiler com putations involving with translating an abstract syntax tree to a PO T in­

term ediate representation. The microsemantics, then, provides a way of interpreting the

PO Ts, for example by means of a code generator which regards the PO Ts as interm ediate

code (this would be a compiling interpretation for the sem antic algebra).

Figure 2.9 shows the organization of the M ESS system. The system is comprised of

two parts, the front-end generator (FF (Jen) and the semantics analyser (SA). From a spec­

ification of the source language’s concrete syntax augmented with tree building rules (FE

Spec), the front-end generator produces a compiler front-end (FE) th a t parses programs

and builds abstract syntax trees. In addition, a specification of the abstract syntax (AS

Spec) is generated. This is used by the semantic analyser to ensure the consistency of the

abstrac t syntax expressions appearing in the front-end and m acrosem antic specifications.

The generated front-ends and the front-end generator itself are w ritten in P a s c a l .

The semantics analyser processes both the macrosemantic and microsemantic specifica­

tions. From a microsemantic specification (MiS Spec) of a code generator (CG Spec), the

microsemantic analyser generates a code generator (CG). This code generator translates

2.6. C om p arison 2 <

PO Ts to machine code. A nother product of microsemantics analysis is the generation of a

microsemantics interface file (MiS IF) , which contains the specification of the signature of

the sem antic algebra (names of the actions dom ains and functionalities of the operators).

A macrosemantic specification (MaS Spec), along with the microsemantics interface file,

can be processed by the semantics analyser in order to generate a compiler core (CC). The

compiler core, which is w ritten in S c h e m e , transla tes ab strac t syntax trees into PO Ts.

The PO Ts are written as S c h e m e s-expressions. The sem antics analyser is itself written

in S c h e m e . The combination of the front-end, the compiler core and the code generator

constitutes the generated compiler which translates source program s into machine code.

A number of techniques for the generation of code generators from formal specification

[7, 34, 38] may be used since the PO Ts are in prefix form at.

2.7.2 A S F + S D F M eta-en viron m en t

The A S F + S D F M eta-environm ent [58] is based on the A S F + S D F formalism. It allows

for rapid prototyping of algebraic specifications, expressed in the A S F + S D F formalism.

The A S F + S D F formalism combines the “Algebraic Specification Formalism '’ [5] with the

“Syntax Definition Formalism ” [44]. By viewing signatures also as gram m ars, concrete

syntax can be used for term s (e.g., in the equations). The formalism supports m odular­

ization, conditional equations, and built-in associative lists. The formalism is suited to

provide specifications for arb itrary abstract d a ta types (traditional algebraic specification),

as well as definitions of any (formal) language (e.g. program m ing, query, text-processing,

specification, etc).

From the signatures, parsers are generated, and from the equations, term rewriting sys­

tems are generated. Terms can be edited using syntax-directed editors. The A S F + S D F

M eta-environment has an incremental im plem entation; if the specification is changed the

prototyped tools are adapted rather than regenerated from scratch. This supports inter­

active developing and testing of specifications.

2.8 C om parison

A com parative study among the various sem antics-directed compiler generator systems

is a difficult task. Different formalisms, diverse built-in analysis, im plem entations on

Semantics-Directed Compiler Generation 28

different machines, different example languages, etc, are some of the points th a t have to

be analysed. A fair comparison would be against hand-w ritten compilers and their object

code (compile time, run time, size of object code, etc).

Table 2.1 summarizes to the best of our knowledge im portan t information related to

the system s presented in Section 2.6. In general all system s implement only a subset of

the full formal notation. Many factors dictate this restriction. Some are simple syntactic

restrictions, as in D S L /L A M B , others are adopted in order to obtain a subset amenable

to compilation, as C a n t o r ’s and A c t r e s s ’ action notations. The use of a program ming

language (as S c h e m e in SPS) as a description language should be avoided. Regarding

implem entation languages, we notice th a t the m ajority of system s make use of LlSP-like

languages. The reason for this seems to be that in L i s p program s can be m anipulated

as da ta , an obvious advantage in compiler generation systems. A great variation on the

kind of object code em itted by generated compilers is noticed. A good choice points in

the direction of C, which improves the portability of generated compilers and poses no

trade-off on efficiency. The evaluator used has a close connection with the em itted object

code. Considering the systems provided with a type checker, only SPS , T y p o l , G A G and

A S F + S D F do some type analysis on the semantic descriptions. The others have some

type checking only in the formal notation level. C a n t o r and M ix are the only systems

with a correctness proof.

Among the systems in Table 2.1 we consider only SIS, P S P , P e r l u e t t e , M ESS,

C a n t o r and A c t r e s s as systems designed to be a sem antics-directed compiler generator3.

The others are semantic prototyping or compiler writing tools.

Figure 2.10 shows the history (so far) of the development of compiler generator systems.

It seems th a t most (all) compiler generation system s follow a similar development path.

Firstly the organization of the system is designed, and a prototype version is built to check

the ideas and principles which influenced the organization adopted. Secondly, analyses are

built into the system which improve the performance of generated compilers. This la tte r

phase is sometimes more demanding and fruitful than the previous one.

3Although SIS was not specifically designed to be a compiler generator, we have considered it as so.

2.8. Comparison 29

a
u 10

00

10
00

10
00

N
/V

N
/V

N
/V i-H ooi-H N
/A

N
/V 40

C
P no no no no N
/V no no ye
s

no ye
s

no

T
C no no ye
s

ye
s

N
/V ye
s

no ye
s

ye
s

N
/A ye
s

E
xe

cu
tio

n

CB
N

/^
-r

ed
uc

tio
n

SE
CD

m

ac
hi

ne

V
SM

P
r

o
lo

g

in
te

rp
re

te
r

N
/V

N
/V

va
ri

ou
s

SP
A

R
C

/H
P

m
ac

hi
ne

N
/A

S
m

ac
hi

ne

O
bj

ec
t

C
od

e

L
A

M
B

SE
CD

co

de

Sc
h

em
e

fu
nc

tio
ns

P
r

o
l

o
g

N
/V

N
/V

PO
T

P
s

e
u

d
o

S
P

A
R

C

P
a

s
c

a
l

M
ix

w
e

l
l

m

Im
pl

em
en

ta
tio

n

B
C

PL

P
a

s
c

a
l

S
c

h
e

m
e

/U
N

IX

L
e

L
is

p

L
is

p

L
e

L
is

p

P
a

s
c

a
l

/S
c

h
e

m
e

P
e

r
l

/S
c

h
e

m
e

P
a

sc
a

l

M
ix

w
e

l
l

S
t

a
n

d
a

r
d

M

L

D
es

cr
ip

tio
n

D
SL

/L
A

M
B

se
m

an
tic

gr

am
m

ar

S
c

h
e

m
e

T
y

p
o

l

N
/V

A
S

F
+

S
D

F

N
/A

AN

su
bs

et

A
L

A
D

IN

N
/A

AN

su
bs

et

Fo
rm

al
is

m

de
no

ta
tio

na
l

s.

se
m

an
tic

gr

am
m

ar
s

de
no

ta
tio

na
l

s.

na
tu

ra
l

s.

A
D

T

al
ge

br
ai

c
s.

hi
gh

-le
ve

l
s.

ac
tio

n
s.

at
tr

ib
ut

e
gr

am
m

ar
s

N
/A

ac
tio

n
s.

Sy
st

em

COi—i
CO P

SP

SP
S

T
y

p
o

l

P
e

r
l

u
e

t
t

e

A
SF

+S
D

F

M
E

SS

C
a

n
t

o
r

G
A

G

M
ix

A
c

t
r

e
s

s

43
" doo

_DO

-2
'Sh

-O
-fS
eS>d

" dc

d - d

.2 ’ >-t-s o
_QO

- dH(3

q=l

43O,>,
CS
I

O
H

4-<oo
(-1a

Cl,

O

£d
t - ibOO

bO O h

bO

d

j s ~ o

d
-O

c3da4
43"do

a
o

z,<

43
X JL3
d 2
43

'H . £
Q , >

-H-2
O O
& d
1

<
i

>

z z

Ta
bl

e
2.

1:

C
om

pi
le

r
ge

ne
ra

tio
n

sy
st

em
s

in
fo

rm
at

io
n

ta
bl

e.

Semantics-Directed Compiler Generation 30

1975 SIS
(Denotational Semantics)

Mosses

1980 P e r l u e t t e

(A bstract D a ta Types)
Gaudel & Deschamp

1982 GAG
(A ttribu te G ram m ars)

Fastens et al

1982 P S P
(Semantic Gram m ars)

Paulson

1984 SPS
(Denotational Semantics)

Wand

1984 C e r e s

(Partial Evaluation)
Jones & Tofte

1988 M ix
(Partial Evaluation)

Jones et al

1988 T y p o l

(N atural Semantics)
Depeyroux et al

1989 M ESS
(High-level Semantics)

Lee & Pleban

1991 A S F + S D F
(Algebraic Semantics)

Klint et al

1991 A c t r e s s

(Action Semantics)
Brown, M oura & W att

1992 C a n t o r

(Action Semantics)
Palsberg

Figure 2.10: Compiler generation system s through the years.

2.9. Problems 31

2.9 P rob lem s

We describe here some of the problems with the approaches to sem antics-directed gen­

eration. Basically, these problems are related to the sem antic formalism used and the

difficulties in implementing a conventional compiler from them .

D en ota tion a l Sem antics

The simple and elegant approach of denotational semantics has unsuitable properties for

compiler generation [65]. In the sequel we present the causes of this unsuitability.

D enotational semantic descriptions are w ritten using the A-notation, with some syn­

tac tic sugaring. Hence, compiler generation system s based on denotational semantics are

forced to emulate a A-calculus reduction machine. This leads to inefficiences a t compile­

tim e and run-tim e. At compile-time, the use of a partial evaluator to perform the re­

ductions worsens the compile-time performance [65, 66]. At run-tim e, even the reduced

A-expressions involve the handling of numerous closures. These closures are constructed

explicitly, from anonymous A-abstractions, by the reducer. Many of these abstractions sur­

vive the compile-time reductions, leading to closures a t run-tim e. Although some progress

has been made toward the efficient implementation of closures [62], a more relevant source

of inefficiency is caused by the modeling of frequently accessed d a ta structures, such as

environm ents and stores, using composition of A-abstractions. For example, the retrieval

of an element of the store might involve the application of a large num ber of these closures.

A second problem with denotational semantics involves the lack o f separability between

the actual semantics of a language and the model-dependent details underlying it. Mosses

observed this problem and proposed the use of abstract sem antic algebras, where the model

details are eliminated from sem antic descriptions [75, 76]. Mosses cites several problems

with denotational semantics descriptions: the fundam ental concepts embodied within a

program ming language are rarely reflected explicitly in the semantics; the use of A-notation

means th a t formal reasoning about programs usually requires a difficult manipulation

of higher-order functions; denotational descriptions require extensive rewriting with the

addition of new language features. The lack of separability of denotational descriptions

also makes extremely difficult to generate compilers th a t produce efficient target program s

[65].

Semantics-Directed Compiler Generation 32

The blurring o f sem antic distinctions is another unsuitable feature of denotational

descriptions pointed by Lee in [65]. He gives an example of a denotational description

where no distinction is made between variables and formal param eters. However, realistic

compilers implement these variables in different ways. A solution to this problem [70]

brings the necessity of complicated congruence proofs.

Lee explains th a t the problem ju st mentioned also leads to the overspecification of some

aspects of the language semantics. For example, the lack of distinction between local,

nonlocal, and formal param eter variables might be viewed as a requirem ent th a t all three

classes of variables be implemented in the same way. Specification of evaluation orders

is another example where overspecification can badly influence the compiler construction.

We do not see those examples as requirem ents of the sem antic description, but clearly

they complicate the task of semantics-directed compiler generation.

The distinction o f static and dynamic components o f a language is fundam ental for a

real im plem entation of it. D enotational descriptions also blur this aspect of programming

language specifications. This causes problems like how to discover w hat components of

the semantics can be statically evaluated.

Code generation from denotational semantics is closely related to code generation for

functional languages. It seems th a t progress in the area of im plem entation of functional

languages can be fruitful to denotational semantics based compiler generation. However,

the problem lies not so much in the efficient im plem entation of A-notation, as in the

difficulty in recovering (autom atically) useful concepts and inform ation from denotational

descriptions which allows the generation of an efficient compiler.

Although the denotational semantics based compiler generation system s do not gener­

a te realistic compilers, they are im portant because they dem onstrate the feasibility of the

compiler generation process.

O perational S em an tics

In traditional operational semantics, although the derivation of a particular implem enta­

tion (interpreters in general) is very stra igh t forward, each new description defines a new

machine or language on which to base the semantics, and no general m ethod to generate

compilers exists.

S tructural operational semantics and natural semantics descriptions are concise, ele­

2.10. An Ideal Semantics-Directed Compiler Generator 33

gant, and independent of any underlying im plem entation detail. However, as pointed in

[69], the use of quantifiers and various non-standard conventions means th a t there is no

distinct method of implem enting either of the forms. This requires th a t a precise “style”

of writing language descriptions is required, along with a precise intended in terpretation.

A ttr ib u te G ram m ars

A ttribu te gram m ar techniques are often used to specify tools for language processing,

ra ther than as a formalism for giving semantics to program ming languages. Depending on

the language, one needs a lot of auxiliary da ta types and a ttribu tes such as s ta te of regis­

ters, memory allocation, etc. As stated in [37], the work of the compiler designer is made

easier, but the method is far from the main principle of implementation of programming

languages directly from their semantic definitions (see page 100 of [37]).

P artia l E valuation

As mentioned in [64], some of the open problems in partial evaluation are as follows:

term ination is hard to guarantee; speedup is hard to predict; there are no cost/benefit

analysis, which would allow us to know if the benefit gained from expanding a com putation

is worth the increase in size; binding time improvements are not completely autom atic;

sem antic faithfulness not always easy to m aintain, particularly in less pure languages. As

said in [39] a lot of work remains to be done in the application of partial evaluation to

generate “real” compilers: the generated code should be nearer machine code and m any

analysis and optim ization techniques present in a hand-written compiler should be applied.

2 .10 A n Ideal S em an tics-D irected C om piler G enerator

W hat would be the ideal semantics-directed compiler generation system? The first re­

quirem ent for a true semantics-directed compiler generator is the presence of a general,

independent and widely accepted semantic formalism for defining program m ing languages.

The sem antic formalism m ust not be a compiler specification language. A compiler spec­

ification language is often biased towards a particular system and very low level. For

example, it addresses many im plem entation details which are of no main concern for the

language designer.

Semantics-Directed Compiler Generation 34

Experience suggests th a t, due to the generality of semantic formalisms, some restric­

tions are usually made on the formal notation, such as consider only a subset of the formal

notation, when implementing a compiler generator based on the semantic formalism. This

is fully acceptable as long as the class of languages th a t could be specified is not drastically

reduced.

In a semantics-directed system compilation and run time behaviour of generated com­

pilers and their object program s must be guided by the program ming language semantics.

The only input to the system should be the semantic definition. The user does not need to

provide any additional components of the generated compilers or run time environment.

A compiler writer puts in a compiler his knowledge of the source program ming language,

the target language, the target machine, etc. This knowledge is built into the compiler

code and is responsible for the compiler’s performance. This knowledge is very difficult to

mimic in a compiler generator system, but some analysis can be included which improves

the system ’s performance.

The performance of a compiler can be defined basically by three factors: compilation

time, execution time and size of object programs. The same applies to compiler generation

systems: compiler generation time, compilation time and size of generated compilers, and

the execution time and size of their object program s. At present, and also for the purposes

of the present work, compiler generation tim e is not an im portan t issue, but it can well

be in the future. Assessment (benchmarks) should be made against the performance of

hand-w ritten compilers for a fixed language.

Designing a compiler generator which accepts the full notation of the semantic formal­

ism is not a trivial task. The designer should expect th a t the user of his system knows

only about the semantic formalism. So, if a dialect of the formal notation is the input

to the compiler generator, it must be designed syntactically and semantically as close as

possible to the original formal notation.

The ideal semantics-based compiler generator would be one whose only inputs are

the syntactic and the semantic description of the source language, and whose generated

compilers have performance in all respects equal to or better than hand-w ritten compilers

for the same source language.

Some of the system s described in Section 2.6 are not true semantic-based compiler

generators. They allow for executable specifications, which is different from turning the

2.11. Synopsis 35

specification into a compiler. They may be classified as semantic-based in terpreter gen­

erators. They are very useful for rapid semantic prototyping and have contributed to

im portan t techniques for implem entation of the semantic formalism they are based upon.

2.11 Synopsis

Semantics-directed compiler generation approaches and system s are still an area of re­

search. All the described system s, although usable, are academ ic-purpose system s. There

is a lot to be done to see the generated compilers competing with hand-crafted compilers,

and for semantics-directed compiler generation systems to achieve the utility of tools like

le x and yacc.

In C hapter 4 we will present A c t r e s s , our action semantics based compiler generator,

and C hapters 5-6 will show how some analyses were built into the system to improve

overall performance. But first, in C hapter 3, we will cover action sem antics, the sem antic

formalism chosen.

C hapter 3

A ction Sem antics

In m y belief that a large acquaintance with particulars often makes
us wiser than the mere possession o f abstract formulas, however
deep, I have ended this paper with som e concrete examples, and
I have chosen these among the extreme designs o f programming
languages. To some readers I m ay consequently seem, by the time
they reach the end o f the paper, to offer a caricature of the sub­
ject. Such convulsions o f linguistic purity , they will say, are not
sane. It is m y belief, however, that there is much o f value to be
learnt from the study of extreme examples, not least, perhaps, that
our view of sanity is rather easily influenced by our environment;
and this, in the case o f programming languages, is only too often
narrowly confined to a single machine. M y ambition in this and
other related papers, mostly so fa r unwritten, is to develop an un­
derstanding of the mathematical ideas o f programming languages
and to combine them with other principles o f common sense which
serve as correctives o f exaggeration, allowing the individual reader
to draw as moderate conclusions as he will.

Christopher Strachey, 1973, in [100].

Action semantics was developed originally by Peter Mosses [72, 74, 75, 76] with David

W a tt’s collaboration [108, 109, 111]. After a long period of design (and redesign) and

experim entation with action notation (the formal notation used in action semantics)

action semantics became a well-defined m ethod for specifying program m ing languages

[80, 111, 110, 77, 82, 81]. We give in this chapter an introduction to action semantics,

the sem antic formalism used in ACTRESS. We s ta r t by giving the m otivations which in­

fluenced the creation and design of action semantics. Then we introduce informally the

program ming language S p e c i m e n which is our running example throughout the thesis.

36

3.1. Inspiration 37

The structu re of action semantic descriptions, action notation and d a ta notation are ex­

plained. We illustrate its use with parts of an action semantics of S p e c i m e n . The action

notation covered here, a subset of standard action notation [80], is called A c t r e s s action

notation. We conclude the chapter by comparing A c t r e s s and standard action notations.

Experiences with action semantics and references to more detailed presentations are listed

a t the end.

3.1 Insp iration

D enotational semantics is a powerful m ethod for specifying program ming languages. A-

notation is the formal notation used in denotational sem antic descriptions: denotations

are higher-order functions w ritten as A-expressions. Well-known com putational entities

like bindings, storage, etc are also defined using A-notation. The use of an abstract and

m athem atical notation for description of program m ing languages, which was the main

source of inspiration in the design of denotational semantics, turned out to be inconvenient

for the specification of real and full-scale program m ing languages. D enotational semantics

lacks some very desirable pragm atic properties. In [113] we find a list of these properties

a program ming language specification method should have:

• Readability. It is very nice to be able to discover some properties of the language by

simple inspection of its semantic description. Also, this property makes the descrip­

tion accessible to all people with interest in the language (designers, implementors

and program mers).

• Modularity. It is very useful and productive to use parts of an existing description

when describing a new program ming language or extending an already existing one.

M odularity in formal descriptions improves reusability and modifiability. It also

helps in breaking large descriptions into smaller and m anageable components.

• Abstractness. The formalism should be abstrac t enough to free the designer from

biasing towards any im plem entation alternative and to focus on im portan t design

issues.

• Comparability. It should be easy to com pare different languages by looking into their

formal descriptions. We should be able to see, for example, th a t the constructs x

Action Semantics 38

and y , although syntactically different, are equivalent.

• Reasonability. The formalism should facilitate reasoning about program s w ritten in

the defined language.

But why action semantics? It is very natural, when giving a denotational semantics

of a program ming language, to come up with a set of auxiliary operations which identifies

common concepts such as lookups of identifiers in environm ents and allocation of cells.

These operations (defined in term s of A-notation) and their values constitu te an algebra

[97]. If these auxiliary operations operate on values th a t are denotations of phrases of the

programming language being defined (not only on subsidiary objects such as environments,

states, etc) they constitu te a semantic algebra [76]. This leads then to the notion of an

abstract semantic algebra, which is “a semantic algebra where the operations are specified

axiomatically, by giving the (usually algebraic) laws th a t they satisfy, instead of defining

them explicitly in term s of A-notation” [76]. Thus, one can think of the denotation of

phrases now as actions, which carry out some com putations when performed. These

actions are formed using well-defined primitive actions and action com binators. If these

action operators are chosen carefully they will correspond to fundam ental concepts of

com putation like sequencing, iteration, selection, etc. This is the spirit of action semantics!

Action semantics achieves well all the desirable properties cited above:

• Readability. The notation used is verbose and suggestive, which improves readability

of semantic descriptions. The correspondence to well-known com putational concepts

also contributes to the readability of action semantics descriptions.

• Modularity. The semantics of a programming language is given in term s of a small

num ber of standard primitive actions and action com binators. This provides the

possibility of reusing parts of previous action sem antic descriptions when describing

new languages. The polymorphic behaviour of the action operators (regarding the

different kind of information they process) allows their use to specify languages

fundam entally different using the same set of operators. Language descriptions can

be organized in modules.

• Abstractness. Action semantics is operational in flavour, bu t not implem entation-

biased.

3.2. The Programm ing Language S pecimen 39

• Comparability. The use of standard primitive actions and action com binators also

facilitates the semantic comparison of languages.

• Reasonability. The standard primitive actions and action com binators satisfy nice

algebraic properties th a t can be used to reason about program s and allow us to carry

out useful transformations. This property of action sem antics is very much explored

in this thesis.

3 . 2 T h e P rogram m in g L anguage SPECIMEN

S p e c i m e n is the largest of a group of four im perative languages used as a case study in

our research on semantics-directed compiler generation. (The other three are n a n o S p e c i -

m e n , m i c r o S p e c i m e n and m i l l i S p e c i m e n .) It has two types of abstractions: procedures

and functions, which can be recursive; functions are higher-order and free of side effects,

although they can access non-local variables; integers, booleans, and arrays are provided.

The complete action sem antic description can be found in Appendix B. Although a simple

program m ing language, S p e c i m e n embodies many im portan t concepts found in the real

world of program ming languages. Also we use the whole of our action notation subset in

its definition, which makes it broad enough for our purposes.

3 . 3 S tructure o f A ctio n S em antic D escr ip tio n s

Action semantics, like denotational semantics, is compositional: the semantics of each

language phrase is determined by the semantics of its subphrases. The difference is th a t

the denotations of phrases are no longer higher-order functions: they are actions. Thus,

action semantics can be regarded as denotational, where the denotations are actions.

An action semantic description of a program ming language is organized in three parts

(modules): abstract syntax , semantic entities and sem antic functions.

A b stract Syn tax

The notation used for specify lexical, concrete, and abstract syntax is simply a form

of context-free grammar plus regular expressions. For example, the abstrac t syntax for

comm ands in S p e c i m e n is defined as follows:

Action Semantics 40

(1) C o m m a n d = [[Identifier " := ” Expression J |

[[Identifier Expression “] ” " := ” E x p r e s s i o n] |

[[" i f ” Expression " t h e n ” C o m m a n d (“e ls e ” C o m m a n d) ? “e n d ”] |

[[“w h i l e ” Expression “d o ” C o m m a n d “e n d ”] |

[[" c a l l ” Identifier “ (” P r o c A c tu a ls “) ”] |

[[" l o c a l ” D ec la ra t io n "in" C o m m a n d " en d ”] |

(C o m m a n d (“ ; ” C o m m a n d) *) .

The specification is a set of equations (we have shown only one equation). Each equation

is similar to a group of productions in a B N F gram m ar: alternatives on the right hand

side are separated by The last alternative illustrates the use of regular expressions:

it specifies th a t a command can be a sequence of one or more comm ands separated by

Also notice th a t term inal symbols are quoted, and their inclusion in the abstract

syntax suggests what a concrete syntax could be. The occurrences of ‘J . . .] ' indicate the

construction of nodes of a tree; for example, the abstract syntax tree for the command ‘x

:= 4 ’ is 4 [[x := 4] ’ and can be depicted as

4ft11X11 II I vr

In [80] (pages 50-51) a precise formal in terpretation of the above gram m ar as an

algebraic specification is given.

S em an tic E n tities

In this part we specify all sem antic entities used in the sem antic functions part. The

standard semantic entities, primitive actions and action com binators, are already provided

by the standard action notation and d a ta notation (see Section 3.4). W hat we m ust specify

here is the information to be processed by actions, as this can be very different depending

on the program m ing language being defined; for example, an action might m anipulate

d a ta of a sort defined in this part. This may involve extending d a ta notation by defining

3.3. Structure o f Action Sem antic Descriptions 41

new sorts of da ta , and specializing standard sorts, using sort equations1. We list below

some equations found in the sem antic entities part of S p e c i m e n definition:

(1) pr im itive-va lue = tru th -va lu e | in teger .

(2) v a lu e = pr im itive-va lue | fu n ct ion .

(3) cell = cell [truth-value] | cell [integer] .

(4) fu n c t io n = ab stra c t io n .

Sort equation (1) introduces the new sort ‘primitive-value’ in term s o f the two standard

d a ta sorts ‘truth-value’ and ‘integer’. ‘ | ’ is the join (union) operator between sorts. The

sort ‘va lu e’ is specified in (2) as the join of a primitive value and the user-specified sort

‘fu n ct ion ’. An expression in S p e c i m e n evaluates to an individual of sort ‘va lu e’. Sort

equation (3) specializes the standard d a ta sort ‘ce ll’ to the join of the two specified sort of

cells: ‘cell [truth-value]’ and ‘cell [integer]’. The first classifies all cells which can store an

individual of sort ‘truth-value’. The second classifies all cells which can store an individual

of sort ‘in teger’. Sort equation (4) captures the fact th a t S p e c i m e n functions are modelled

as abstractions (see Section 3.4.6). The use of ‘funct ion’ instead of ‘abstract ion ’ improves

the readability of sem antic equations; for example, a program m er consulting the semantic

description would feel more confortable with ‘fun ction ’ than ‘ab stract ion’, although both

are identical semantic entities.

Sem an tic Functions

Finally we specify a mapping between syntactic entities (trees) and sem antic entities (ac­

tions) by means of semantic functions. Semantic functions are specified by sem antic equa­

tions, in a form similar to denotational sem antic descriptions. There should be one se­

m antic equation for each form of program m ing language phrase. Each sem antic function

has only one argum ent.

For example, the semantic function for S p e c i m e n comm ands is execute; the semantic

equation for the assignment command is:

• e x e c u te _ :: C o m m a n d —> action .

1 Also we usually define here some abbreviations for patterns that are frequently used in semantic
equations. This helps to shorten semantic equations as well as to capture im portant concepts under the
abbreviation name.

Action Semantics 42

(1) execu te [[/ : Identifier F:Expression]] =
| evaluate E
then
| store the primitive-value in the cell bound to token-of I .

T he first clause defines the functionality of execute: for every abstrac t syntax tree C for

comm ands, ‘execute C ’ is an action (semantic entity) which, when performed, expresses

the behaviour of the comm and C. I and E are variables of (syntactic) sorts Identifier and

Expression respectively. The vertical bars are used for grouping (parentheses can be used

as well), ‘evaluate E'1 is an application to an expression tree of the sem antic function for

S p e c i m e n ’s expressions, and it gives an action as a result. One can read the semantic

equation as plain English: to assign the expression E to the identifier / , we first evaluate

E then we store the resultant primitive value (an integer or a truth-value) in the cell bound

to the identifier /!

3.4 A ctio n N o ta tio n

The formal notation used in action sem antic descriptions is called action notation. In the

following we present A c t r e s s ’s action notation. We s ta r t by stressing the main concepts;

we go on to explain some action notation constructs by given an informal account of each,

its formal meaning and an example of its use in the context of SPECIMEN action semantics.

3.4.1 C oncepts

Before we explore in detail each construct used in action notation, let us cover some basic

and im portan t concepts th a t underly the notation.

A ctions

The main concept in action semantics is the concept of an action. An action is an entity

th a t can be performed, receiving and producing d a ta an d /o r changing storage. Action

combinators combine actions into compound actions.

An action performance consists of a sequence of atom ic steps made by a single agent.

An agent can be thought as a processor or machine where the action is perform ed2. The

2In standard action notation, one can have more than one agent, which gives “true” concurrency on
action performance.

3.4. Action Notation 43

performance of two sequences of steps (actions) can be: sequenced, when one sequence

(action) is performed before the other; interleaved, when steps of both sequences (actions)

are performed in an arb itrary order; or exclusive, when only one sequence (action) is

performed. These concepts are clearly related with the control flow imposed by action

com binators. Prim itive actions are performed in a single step (one can see their perfor­

mances as made in an indivisible step3).

A performance of an action (which may be p a rt of an enclosing action) either4:

• completes, corresponding to normal term ination; the performance of the enclosing

action proceeds normally.

• fails, corresponding to abandoning the performance of an action. The enclosing

action performs an alternative action, if there is one, otherwise it fails too.

• diverges, corresponding to nontermination. The enclosing action also diverges.

The syntax of A c t r e s s action notation is shown in Figure 3.1 . The sem antics is spec­

ified using semantic rules (inference rules). The specification follows the natural semantic

style [54]. The judgem ent

t, b, s h a \> o, t ' , b', s'

sta tes th a t the performance of action a with current transients t, current bindings b and

current storage s, has the outcome sta tu s o, gives transients t ' , produces bindings b' and

changes storage to s'. The outcome, as described informally above, can be completed,

diverged or failed. We adopt the im portant convention th a t for any action a and income

(t , b , s), if no semantic rule specifies otherwise, then

t, 6, s \~ a c> failed , {}, {}, s

holds. The triple (t ,b ,s) , the action income, represents the current information available

a t the s ta r t of performance of an action. Transients t, a m apping between labels (nat-

3In fact, in standard action notation, the action ‘indivisibly a ’ makes a to be performed as a single and
indivisible step.

4 In standard action notation, the performance of an action can also escape, corresponding to exceptional
termination. The enclosing action is skipped until the escape is trapped.

Action Sem antics 44

a ::= complete | fail | a i and 0 2 | a\ and then a 2 (basic)
| unfolding a | unfold | a i or 02 (basic)
| give y label | check y | a\ then 02 (functional)
| bind k to y (declarative)
| furthermore a | a\ hence 02 | a\ moreover a 2 | a i before a? (declarative)
| store yi in y2 | deallocate y (imperative)
| enact y (reflective)
| a\ else a 2 | recursively bind Ar to y | allocate a s (hybrid)

y ::= the s# n (functional)
| the s bound to k (declarative)
| the s stored in y (imperative)
| yi with y2 | closure y \ abstraction a (reflective)
1 y\ is y2 I if y\ then y2 else y3 | op (y i , . . . ,yn) (data operations)
1 d (individual datum)

s token | bindable
| cell | cell [s] | storable
| abstraction
| datum | distinct-datum | integer | truth-value
| empty-list | list | list [s]
1 5 1 s
1 d

(sorts)

Figure 3.1: Syntax of A c t r e s s action notation.

3.4. Action Notation 45

ural numbers) and data , represent transient information, th a t is, d a ta corresponding to

interm ediate results. Although we use the term “transients” for the m apping t, actually

transients are the elements of the range of the mapping t. The labels are used to tag

transients, so th a t one can refer to them later using the corresponding label. Bindings

6, a m apping between tokens (strings) and data , represent scoped information , th a t is,

bindings of tokens to da ta . Storage s, a mapping between cells and data , represents stable

information, th a t is, d a ta stored in cells. For example,

• { 0 i— tru e , 3 1-4 34,4 1-4 cellO} are transients.

• { " c ” 1-4 tru e , “d o z e n ” 1-4 12, “x ” >-4 c e l l2 } are bindings.

• {cellO 1-4 true, c e l l l 1-4 cellO, cell2 9} is a storage.

The various type of information give rise to the so-called facets of actions, according

to the type of information the performance of an action affects:

• the control facet , in which the performance of an action is independent of any infor­

mation.

• the functional facet, which affects transient information. Actions are given and give

transients.

• the declarative facet, which affects scoped information. Actions receiw and produce

bindings.

• the imperative facet, which affects stable information. Actions allocate and deallocate

cells of storage, and change the da ta stored in cells.

Sorts

A nother im portan t concept in action semantics is the concept of sort. A sort is a choice

of individuals. An individual is an element of the sort. W hen one sort is a subsort of

another, all individuals of the first sort are also individuals of the second sort. Sorts th a t

are subsorts of each other are regarded as identical. The notation trea ts sorts themselves

as abstrac t entities, and allows operations and relations to be applied to any argum ents

whatsoever — individuals, sorts, or even a mixture. In fact each individual is regarded

Action Semantics 46

itself as a sort th a t classifies ju st one entity. For example, one can write the following

clauses:

(1) 1 : 1 .

(2) 1 : integer .

(3) 1 < integer .

(4) integer < integer .

where, d : s means d is an individual of sort s, and s < t means th a t sort s is a subsort of

sort t.

Sort symbols (such as ‘integer’) are treated as ordinary constants. The argum ents

and results of operations may be sorts as well as individuals. O perations are to tal, and

monotone with respect to subsort inclusion; they may return the vacuous sort (nothing) to

represent undefinedness. Moreover, sorts are treated as nondeterm inistic choices between

the individuals th a t they classify; a singleton sort is thus treated as its unique individual.

We will use the term proper sort to refer to a non-individual sort like ‘in teger’ or ‘truth-

value’.

Yielders

Yielders are entities th a t can be evaluated to yield d a ta during action performance. The

result of the evaluation may depend on the current income to the action. The evaluation

however does not affect the current information (transients, bindings and storage).

A constant is a special case of a yielder that always yields itself when evaluated.

The judgem ent

t, b, s h y [> d

sta tes th a t the yielder y yields (evaluates to) the individual datum d when evaluated in the

presence of transients t , bindings 6 and storage s. The following im portan t rules applies:

for any yielder y and income (f,6 ,s) , if no semantic rule specifies otherwise, then

t ,b , s h y [> nothing

3.4. Action Notation 47

holds. This is the only case where a yielder evaluates to a proper sort (the vacuous sort).

For example, in the presence of income

{ 0 true, 3 i-4 3 4 , 4 1-4 cellO), {" c ” 1-4 true, "x” 1-4 c e l l2) , {cellO 1-4 true, cell2 1-4 5 }

• ‘the in t e g e r ^ 3 ’ evaluates to ‘3 4 ’.

• ‘the in t e g e r # 0 ’ evaluates to ‘noth ing’.

• ‘the cell bound to "x” ’ evaluates to ‘ce l l2 ’.

• ‘the integer stored in the cell bound to “x ” evaluates to ‘5 ’.

D a ta

W hen performed, actions process individuals of data , selected from the current income,

which is structured so access to individual items is possible.

An action term may contain a yielder composed by data, constants and dal a operations.

For example, in the presence of the income above,

• ‘successor (the i n t e g e r # 3) ’ evaluates to ‘3 5 ’.

• ‘sum (the i n t e g e r # 0 ,8) ’ evaluates to ‘noth ing’.

• ‘not (the truth-value bound to “c”) ’ evaluates to ‘fa lse’.

• ‘difference (4 , 3) ’ evaluates to ‘1 ’.

A bstractions (see Section 3.4.6) are considered as da ta . Many well-known m athem at­

ical entities like integers, truth-values, and lists are also available. Section 3.5 explains in

more detail data notation.

3.4.2 Basic

Basic actions are concerned with flow of control.

The primitive action ‘co m p le te ’ is an indivisible action th a t always completes. It corre­

sponds to a null action. It gives no transients; it produces no bindings; it does not change

the storage. Rule 3 .4 of Figure 3 .2 specifies the behaviour of the ‘co m p le te ’ action.

The action and then a2 performs ai followed by a2. However, a2 is only performed

if ai completes. It corresponds to sequential performance. Both subactions are given the

Action Semantics 48

same transients and bindings as the compound action. W hen the subactions complete, the

compound action gives all the transients th a t both subactions give (assuming the d a ta are

labelled disjointly) and produces all the bindings th a t both subactions produce (assuming

the tokens are bound disjointly).

Rules 3.9, 3.10 and 3.11 of Figure 3.2 give the meaning of the ‘and th e n ' combinator.

The first rule applies when the performance of both subactions complete. The income to

a2 is equal to the income to ai except for storage which is the one after a x performance.

This also implies the sequentiality of the performance: ax is performed before a2, The

mergeable predicate insists th a t the domain of its argum ents (mappings) are disjoint. The

merge operation (0) returns the union of two mergeable mappings:

{} 0 m 2 = m 2 (3.1)

m i 0 {} = m 1 (3.2)

((&i h4 di) • m i) 0 m 2 = (ki i-» di) • (m x 0 m 2), k x £ dom m 2 (3.3)

The second rule applies when the performance of a x fails or diverges. Finally, the third

rule applies when ax completes and a2 fails or diverges.

In A c t r e s s action notation, ‘a i and a2 is semantically identical to ia1 and then a 2’5.

E x a m p l e 3 . 1 . The semantic equation for execution of a sequence of com m ands in S p e c ­

im e n is

(l) e x e c u te [[C - C o m m a n d C 2:C o m m a n d J = e x e c u te C\ and th en e x e c u te C2 .

which precisely determines in which order C\ and C 2 are performed. □

‘unfo ld ing a ’ is an action th a t performs a (the unfolded action), bu t whenever the

dummy action ‘u n fo ld ’ is reached, a is performed in place of ‘u n fo ld ’. It corresponds to

iteration. Rule 3.12 gives the meaning of the ‘u n fo ld in g ’ action, ‘a [unfo ld ing a / u n f o l d] ’

means replacing all free occurrences o f ‘u n fo ld ’ in a by ‘un fo ld ing a \

The compound action ‘ai or a2 is performed as follows: ax is performed. If the

5In standard action notation ‘a i and 0 2 ’ is an action that performs both its subactions, w ith arbitrary
interleaving of their indivisible subactions. It corresponds to arbitrary order of evaluation; an escape or
failure causes any remaining parts of the subactions to be skipped, ‘a 1 and then a2' is a specialization of
‘a i and a2’ when ai is completely performed before a2 .

3.4. Action Notation 49

(c o m p l e t e)

t, b, s h complete \> completed, { } , { } , s (3 .4)

(f a i l)

t , b, s h fail [> failed, { } , { } , s (3 .5)

(a n d)

t, b, s h a x \> completed, t x, b x, s i t, b, s x h a 2 > completed, t 2, b2, s 2
mergeable t x t 2 mergeable bx b2 (3 .6)

t , b , s h a x and a 2 > completed, t x 0 t 2, bx 0 b2, s 2

t , b , s h a x [> o \ , t x,b\ , s i o\ completed
t , b , s \ ~ a x and a 2 \> o x, t x, bx, s x

(3 .7)

t , b , s h a x p> completed, t x, b x, s x t , b , s x \~ a 2 \> o2, t 2,b2, s 2
o2 completed

<,6 , s h a i a n d a 2 > o2, t 2, b2, s 2
(3 .8)

(a n d t h e n)

t , b , s h a i > completed , t x, b x, s x t, b, s x h a2 t> completed, t 2, b2, s 2
mergeable t x t 2 mergeable bx b2 (3 .9)

t , b , s a i and then a 2 \> completed, 11 0 t 2, bx 0 b2, s 2

t , b , s h a x (> ox, t x,b x, s i oi ^ completed
t, b, s h a i and then a2 [> ox, t x, bx, Si

(3 .10)

t, b, s b a i t> completed, t x, b x, s x t , b , s x h a 2 t> o2, t 2,b2, s 2
o2 ^ completed

t , b , s \ ~ a x and then a 2 > o2, t 2, b2, s 2
(3 .11)

(u n f o l d i n g)

t, b, s h a [unfolding a/unfold] [> o ' , t ' , b', s'
t, b, s h unfolding a [> o ' , t ' , b ' ,s '

(3 .12)

(o r)

t, b, s h a x [> ox, t x, bx, s x ox ^ failed
t , b , s \ ~ a x or a 2 [> ox, t x, b x, s x

(3 .13)

t , b , s \ ~ a x O failed, { } , { } , s x t, b, s x h a 2 [> o2, t 2, b2, s 2
t , b , s \ ~ a x or a2 t> o2, t 2,b 2, s2

(3 .14)

Figure 3.2: Semantic rules for basic action notation.

Action Semantics 50

performance of ax fails, o2 is performed instead. The performance of each subaction has

the same transients and bindings as the compound action. Storage for a 2 is the one after

ax failed6.

E x a m p l e 3 . 2 . We could use ‘unfolding’ and ‘or’ to specify the semantics of S p e c i m e n ’s

while command as follows:

execute [[" w h i l e ” E :Expression “do” C:Com m and “en d ” J =
unfolding

| evaluate E
then

| check (the truth-value is true) and then execute C and then unfold
or
| check (the truth-value is false) .

The evaluation of E gives a truth-value, which is passed to the ‘or’ action. If this tru th -

value is true than the first branch of the ‘or’ is performed, causing ‘execute C ’ to be

performed, followed by ‘unfold’. Otherwise the second branch is performed and the while

command term inates (the ‘ch eck ’ action, explained in the next section, guarantees this).

Iteration is achieved by replacing the ‘unfold’ by the ‘unfolding’ action and performing the

la tte r. □

E x a m p l e 3 . 3 . A common use of the ‘or’ com binator in action semantic descriptions is in

the denotation of identifiers in expressions (r-value). For S p e c i m e n we define:

evaluate / id e n t i f i e r =
| give the value bound to token-of I
or
| give the primitive-value stored in the cell bound to token-of / .

If / is a constant or function identifier (th a t is, I is bound to a value), then the first

subaction is performed and it will complete. On the other hand, if I is a variable identifier

(th a t is, / is bound to a cell), the first subaction is performed and fails because a cell is

not a value (an individual cell is not a subsort of value). This failure causes the second

subaction to be performed and the result will be the primitive value stored in the cell. □

6 In standard action notation the performance of each subaction has the same income as the compound
action.

3.4. Action Notation 51

ax and a 2

transients bindings

I L
a 2

Figure 3.3: Action diagram for the ‘and’ com binator.

We will give a pictorial view of the flow of transients and bindings for some action

com binators using action diagrams. Figure 3.3 shows an action diagram for the ‘and’

com binator. The symbol 0 represents the merge operation found in the semantic rules.

3.4.3 Functional

Functional actions are concerned with the processing of transient information. A functional

action may provide some transient information, such as a particular labelled datum . Then

we say th a t the action gives the datum . This datum may be an explicit operand of

the action, or it may be the result of evaluating some yielder th a t refers to the current

information (transient or other), or it may be the result of some d a ta operation. The

transients current a t the s ta r t of an action are given to the action.

The functional action ‘give y label where y is a yielder and n is a natural number,

gives the individual datum yielded by y, labelled with n. It completes if y yields an

individual datum , or fails if y yields nothing. Rule 3.15 sta tes this formally. Notice tha t,

according to our convention, the non-existence of a rule for the case where y yields nothing

implies th a t the action fails in this case (see Section 3.4.1). ‘give y ’ is an abbreviation for

‘give y label # 0 \

The action ‘check y ’, where y is a truth-value yielder, completes if y yields true, and

fails if y yields false (or anything else). It can be used as a guard th a t a condition is true.

Action Semantics 52

(g i v e)

t , b, s b y > d
t , b , s h give y label # n O completed, {n d} , { } , s

(3 .15)

(c h e c k)

t, b, s b y [> true
t , b, s b check y > completed, { } , { } , «

(3 .16)

2 , 6 , s b y > false
6 , s b check y > failed, { } , { } , s

(3 .17)

(t h e n)

/ , 6 , s b a x > completed, t \ , bx, s x t x, b, s x b a 2 C> completed, t 2, b2, s 2
mergeable bx b2 (3 .18)

t , b , s b a x then a2 [> completed, t 2, bx 0 b2, s 2

t, b, s b a x t> ox, t x, bx, s x o x completed
t , b , s b a x then a 2 [> ox, t \ , b x, s x

(3 .19)

t , b , s \ ~ a x > completed , t] . b \ , s x t x, 6 . s x b a.2 o o2 , t 2.b2. s 2
u2 completed

t , b , s i ~ a i then a 2 > o2, t 2,b2 , s 2
(3.20)

(t h e)

d : r
(n i—>■ d) ■ t , b , s b the r # n t> d (3 .21)

Figure 3.4: Semantic rules for functional action notation.

3.4. Action Notation 53

For example, the action

| check the truth-value and then give 0
or
| check not (the truth-value) and then give 1

gives 0 if true is given to it, or gives 1 otherwise.

‘th e n ’ is the only functional action combinator: ia1 then a2 is an action th a t performs a x

followed by a 2. However, a 2 is only performed if ax completes. It corresponds to functional

composition: ax is given the same transients as the compound action; if ax completes, a 2

is given the transients given by ax; the compound action gives only the transien ts given

by a2. Both subactions receive the same bindings as the compound action. W hen the

subactions complete, the compound action produces all the bindings th a t both subactions

produce (assuming the bindings are for disjoint sets of tokens). This is sta ted formally in

Figure 3.4.

‘the is a functional yielder, which yields the datum labelled with the label n in

the current transients, restricted to the sort s. ‘the s ’ is equivalent to ‘the s # O’. The

yielder ‘it’ is an abbreviation for ‘the d a t u m # 0 \

E xam ple 3 .4 . Given the transients {0 i-4 false, 3 1-4 42, 4 1-4 true}:

• the action ‘give the truth-value’ gives the transient {0 1-4 false};

• the action ‘give the in te g e r # 3 label # 4 ’ gives the transient {4 t-4 42};

• the action ‘give the integer’ would fail.

Notice th a t the last action fails because of the restriction on the sort ‘in teger’: the datum

labelled 0 (false) is not an individual of sort ‘integer’. □

Exam ple 3.5. We give below an example of the semantics for S p e c i m e n ' s if-then-else

expression:

ev a lu a te [[“i f ” Ex:Expression “t h e n ” E2:Expression " e l s e ” / ^ E x p r e s s i o n " e n d ”]] =

| evaluate E x
then

| check (it is true) and then evaluate E2
or
| check (it is false) and then evaluate E3 .

Action Semantics 54

transients bindings

ai

• e -

Figure 3.5: Action diagram for the ‘th e n ’ com binator.

We first evaluate the expression then pass its result to the second subaction of ‘th en ’.

The ‘ch eck ’ actions act like guards: if we choose to perform the first subaction of ‘or’ and

E i evaluated to true, then the ‘check (it is tru e)’ action completes and then we evaluate

E 2\ if E i evaluated to false then ‘check (it is tru e)’ fails and the second subaction of ‘or’

will be performed. A similar interpretation applies if we choose to perform the second

subaction of ‘or ’ first. □

Figure 3 .5 shows the action diagram for the ‘th e n ’ combinator.

3 .4 .4 D eclarative

Declarative actions produce bindings between tokens (usually identifiers) and data . The

bindings produced by an action may depend on the current income to the action. The

tokens in produced bindings however, may depend only on the income bindings and on

the action itself. The declarative facet of actions is somewhat similar to the functional

facet, with tokens used instead of numerical labels. The difference between the two facets

lies in the fact th a t the bindings are scoped.

‘bind k to y \ the ‘bind’ action, is an indivisible action th a t produces the binding of

the token k to the datum yielded by y. Figure 3.6 shows the sem antic rules for the ‘bind’

action. The second antecedent insists th a t the datum yielded by y m ust be of sort bindable.

3.4. Action Notation 55

This sort classifies which individuals can be bound in a particular language.

“furthermore a” produces all the bindings received by itself, overlayed by the bindings

produced by a. It can be used, for example, for specifying local declarations: the bindings

established by the local declarations overlay global bindings for the same tokens. Note

th a t it gives the transients given by a. Given m appings m and m ', m Q m 1 means the map

obtained by overlaying map m on to m ap m ':

{} 0 m 2 = m 2 (3.35)

mi 0 {} = mi (3.36)

((k (->• di) • m i) 0 ((& i~> d2) • m 2) = (k d x) • (m j 0 m 2) (3.37)

((k i-* di) • m i) 0 m 2 — (k t-t di) • (m x 0 m 2), if k dom m 2 (3.38)

‘ai hence a2 is an action th a t performs ai followed by a2. a2 is only performed if ai

completes. The bindings received by the compound action are received by a L. a 2 receives

the bindings produced by a i. The bindings produced by the compound action are the

bindings produced by a2. The functional facet is as for ‘a ̂ and a2 .

Lai moreover a2 is an action th a t performs ai followed by a2. a2 is only performed if ai

completes. It corresponds to letting bindings produced by a2 override those produced by

a\. Both subactions receive the bindings received by the compound action. The functional

facet is as for ‘ai and a2 .

The yielder ‘the s bound to yields the datum to which the token k is bound in the

current bindings, restricted to the sort s. It yields ‘n o th ing’ if k is not bound.

E x a m p l e 3 . 6 . Given the bindings {x •-> false, y 42 , z ■—> true}:

• the action ‘give the truth-value bound to "x” ’ give the transient {0 false};

• the action ‘give the truth-value bound to “y” ’ fails.

• ‘give the integer bound to “f ' ’ fails, because there is no binding for token “f ” .

□

T h e sor t ‘b in d ab le ’ classifies in d iv id u a ls which can be b ou n d by th e ‘b in d ’ ac t io n . It

is a su b so r t o f ‘d a t u m ’ and is sp ec ia lized by the user o f act ion n o ta t io n . For e x a m p le , for

Action Semantics 56

(b i n d)

t, b, s h y t> d d : bindable
t , b, s h bind k to y D> completed, {}, {k i-» d}, s

(f u r t h e r m o r e)

t, b, s h a [> completed, t ' , b', s'
t , b , s b fu r the rm o re a [> completed, t ' ,b' 0 6 , s'

t ' , b', s' o' completed
t , b , s h fu r th e rm ore a > o’, t ' , b', s'

(h e n c e)

< , 6 , s l - a i hence a 2 > o i , t i , & i , s i

(m o r e o v e r)

t , b, s h ai moreover a 2 [> completed, t \ © i 2, 6 2 0 6 i , $2

6 , s h ai > o i , , 6 i , si <?i ^ completed
t ,b , s h ai moreover a 2 t> o i , <i, b] , Si

(3.22)

(3.23)

(3.24)

t, b, s h ai [> completed, t \ , b i , s \ t , b\, si h a 2 O completed, t 2, b2, s 2
mergeable t \ t 2 (3.25)

t, 6 , s h a i hence a 2 [> completed, 11 ® t 2, b2, s 2

t, b, s h ai > oi, <i, 6 i, s i oi ^ completed
(3.26)

<, 6, s h ai [> completed, 11 , bi, si t, bi, s i h a2 > o2, t 2, b2, s2
o2 7 ̂ completed (.3.27)

A, 6, s h ai hence a 2 [> o2, /2,62, s2

6 , s b a\ > completed , t \ , b \ , Si t , b, Si h a2 > completed, t 2, b2, s 2
mergeable i\ t 2 (3.28)

(3.29)

t, b, s h ai \> completed, t i , bi, s i t, b, si h a 2 l> o2, t 2, b2, s 2
o2 7 ̂ completed (3.30)

t , b , s b ai moreover a 2 t> o2, t 2,b2, s 2

(b e f o r e)

t, b, s h ai (> completed, t i , b\, s i A, &i 0 6 , si h a 2 [> completed , t 2, b2, s 2
mergeable t \ t 2 (3.31)

t, b, s h a i before a 2 t> completed , 11 0 J2 , b2 0 6 i , s 2

f, 6, s b a i > o i , 11, 6 i , s i oi 7̂ completed
t , b , s \ ~ a\ before a2 t> o i , t i , b \ , s i

(3.32)

t, b, s h a i [> completed, t i , b i , S \ t , b \ 0 6 , Si h a2 £> o2l t 2, b2, s 2
o2 7 ̂ completed (3.33)

t , b, s h a\ before a2 [> o2, t 2,b2, s 2

(b o u n d)

d : r
(A: d) • fc, s h th e r bound to Ar t> d (3.34)

Figure 3.6: Declarative action notation.

3.4. Action Notation 57

S p e c i m e n , w e define

bindable = v a lu e | procedu re | cell | array

E x a m p le 3 .7 . The sem antic equation below specifies how a constant declaration is elab­

orated in S p e c i m e n .

e la b o ra te [[“c o n s t ' ' / i d e n t i f i e r T :P r im it iv e T y p e “=” /^ E x p r e s s io n J =

| e v a lu a te E
then

| bind t o k e n - o f I to th e p r im itive-va lu e .

The expression E is evaluated first, and then the primitive value (a truth-value or an

integer) resulting from this evaluation is bound to identifier I . □

E x a m p le 3 . 8 . S p e c i m e n block c o m m a n d ex e c u t io n is specified as follows:

e x e c u te [[“l o c a l ” D \D ec la ra t ion “i n ” 6 ’:C o m m a n d “e n d ”] =
| fur th erm ore e la b o r a te D
hence
| e x e c u te C .

The declaration D is elaborated first. The bindings received by the block command,

overlayed by the bindings produced by the elaboration of D, are produced to the execution

of C. □

Figure 3 .7 shows the action diagram for ‘m o r e o v e r ’. The symbol used to join the flow

of bindings out of each subaction means th a t the bindings which come from c/2 overlay the

bindings which come from a\.

3.4.5 Im perative

Action notation adopts a simple model of storage: storage is organized as a collection

of primitive ce//s, each of which may contain a single datum . A cell has to be allocated

before it can be used to store data . The datum stored in a cell remains the same until

a new datum is stored in the cell — or until the cell is deallocated. Im perative actions

may inspect the current storage; they may also make changes to the storage by allocating

a n d /o r deallocating cells an d /o r by storing d a ta in allocated cells.

Action Semantics 58

transients bindings

a i moreover a2

Figure 3.7: Action diagram for the ‘m oreover’ combinator.

(s t o r e)

•" vi - - - x

t, b, s h store y-L in y2 \> completed , { } ,{ } , {c *-4 d} 0 s
^ , 6 , s h y i > d < , 6 , s l ~ y 2 [>c 5 = (c t-4 cf0) • s 1 c : cell [r] d : r

(d e a l l o c a t e)

t, b, s h y > c s = (c 4 d) ■ s '
t, b, s h deallocate y > completed , { } ,{ } , s' (3.40)

(s t o r e d)

<, 6, s b y > c s = (c i-4 d) • s ' d :
t , b , s h the r stored in y D> cf

(3 .41)

Figure 3.8: Semantic rules for im perative action notation.

The action ‘store yi in y2 is an indivisible action th a t stores the datum yielded by

in the cell yielded by y2, failing if the cell is not allocated.

The primitive action ‘deallocate y’ deallocates the cell yielded by y. (We look into the

allocate action in Section 3.4.7.)

Storage lookups can be done using the yielder ‘the s stored in y \ It evaluates to the

datum stored in the cell yielded by y, which must be of sort s. Notice (Figure 3.8) th a t

the cell m ust be previous allocated.

Figure 3.8 gives the formal semantics for im perative action notation. Notice th a t we

insist th a t an individual of sort s can only be stored in an individual cell of sort ‘cell [s]’

3.4. Action Notation 59

(the sort ‘cell [s]’ classifies all cells which can be used to store individuals of sort s 7).

The sort ‘storable’ classifies all sorts of d a ta th a t can be stored, and should be specified

in the language definition. For example, for S p e c i m e n we have specified:

storable = primitive-value

Actions and yielders are never storable! Notice however th a t we can indirectly store

actions, using the ‘abstraction’ operation (see Section 3.4.6).

Im perative actions are committed actions. This requirem ent is made to accom m odate

single-threadedness of storage, which guarantees th a t we need only a single copy of storage.

This is because, for any two subactions, a 1 and a 2, if we perform a2 after a2 always

uses the storage after cq’s performance, th a t is, there is no dependency of a2 on the sta te

of the storage before cq’s performance.

In standard action notation, the need for com m itted actions arises because of the ‘or’

com binator. If the chosen alternative fails, the other alternative m ust be performed with

the same initial storage. If the storage has been changed, the alternative action cannot be

performed a t all.

E x a m p l e 3 . 9 . T h e se m a n tic eq u ation for S p e c i m e n ’s a s s ig n m en t c o m m a n d is:

execute [[/ id e n t i f i e r /^Expression J =
| evaluate E
then
| store the primitive-value in the cell bound to token-of / .

T h at is, the expression E is evaluated and its result, a primitive value, is stored in the cell

bound to identifier I . □

3 .4 .6 R e flec tiv e

Abstractions are a special kind of d a ta th a t incorporate actions; an abstraction is formed by

the ‘abstraction’ operation. A bstractions are classified as da ta , although actions themselves

are not. The incorporated action is performed when the abstraction is enacted: ‘en act y ’ is

an action th a t performs the action incorporated in the abstraction yielded by evaluating

7Standard action notation does not have this operation as it would be non inonotonic with respect to
sort inclusion. In the ACTRESS context, however, this causes no practical difficulty.

Action Semantics 60

(e n a c t)

t , b , s \ ~ y > abstraction (a, to, bo) to, bo, s h a t> o' , t ' , b', s'
t, b, s h enact y > o ' , t ' , b', s'

(3 .42)

(a b s t r a c t i o n)

t, b, s h abstraction a [> abstraction (a, { } , {}) (3 .43)

(w i t h)

t, b, s h y\ > abstraction [a, { } , &o) t , b, s h 2/2 > d
t , b , s \ ~ y\ with 2/2 > abstraction(a, {0 i-A d } , 60)

(3 .44)

t, b, s h 2/1 [> abstraction(a, to, bo) t , b , s \ ~ 2/2 > d to ^ {}
t , b , s h 2/1 with 2/2 > abstract ion(a, to, bo)

(3 .45)

(c l o s u r e)

t , b, s h y t> abstraction(a, to, {})
t, b, s h closure y t> abstraction(a, to, b)

(3 .46)

t, b, s h y [> abstraction (a, to, bo) bo ^ {}
t, b, s h closure y > abstract ion(a, to, bo)

(3 .47)

Figure 3.9: Semantic rules for reflective action notation.

y. A single item of da ta can be supplied to an abstraction using the operation ‘with’, and

bindings by using the operation ‘closure’.

Figure 3.9 gives the rules for the above operations, ‘enact y ’’ gives the transients,

produces the bindings and makes change to the storage th a t the incorporated action of

the abstraction yielded by y does. Notice th a t (rules 3.45 and 3.47) the ‘w ith ’ and ‘closure’

operations have no effect when a datum and bindings respectively were previously supplied

to the abstraction. iabstraction(a,t,b)'> is the semantic value of an abstraction. It can be

thought as a triple formed by the incorporated action, and transients and bindings to be

provided to the incorporated action when the abstraction is enacted.

E x a m p l e 3 . 1 0 . Function declaration and application in S p e c i m e n are defined below:

elaborate [["fun” /identifier “(” F^FunFormals ")” T:ValueType "=”
E: Expression]] =

recursively bind token-of / to closure abstraction
| furthermore elaborate-fun-formals FS
hence
I evaluate E then give the fun-result .

3.4. Action Notation 61

evaluate [[/identifier “(” A5:FunActuals ")”]] =
| evaluate-fun-actuals A S
then
| enact (the function bound to token-of / with the fun-argument-list) .

A function declaration binds the function identifier to an abstraction. We close the ab­

straction to ensure th a t all bindings received by the incorporated action are the ones

current a t binding time. The incorporated action binds the formal param eters to the a r­

gum ents (which will be provided a t enaction time) and evaluates the body of the function

(E). For a function application, we first evaluate the actual param eters to give an argu­

m ent list, and then perform (enact) the action incorporated in the abstraction bound to

the function identifier I . The action is performed having the argum ent list as its current

transien t (or the argum ent list is given to the incorporated action). □

3 .4 .7 H yb rid

Hybrid actions are characterized by processing more than one kind of inform ation (mul­

tifaceted actions), or are useful abbreviations. Figure 3.10 shows the formal specification

of the hybrid actions.

‘aj else a2’ performs either ax or a2 depending on the truth-value labelled 0 in the

transients given to it: if it is true a i is performed, if it is false a2 is performed, ‘ai else a2’

is an abbreviation for ‘(check (it is true) then c^) or (check (it is false) then «•_>)’.

‘recursively bind k to y’ produces a recursive binding. The evaluation of y can refer to

the binding produced by the action itself, y must evaluate to an abstraction.

‘allocate s ’ is an action th a t chooses an arb itrary free cell of sort s, stores the special

datum ‘uninitialized’ in it, and gives the cell (thus it involves both the functional facet and

the im perative facet). The sort s must be a subsort of cell.

Exam ple 3.11. Given storage {cellO i-4 false, cell2 ha 42):

• the performance of ‘allocate a cell’ changes storage to (cellO false, cell2 42, cell4

i—̂ uninitialized);

• the performance of ‘allocate a cell then store 9 in the cell’ changes storage to {cellO

false, cell2 t-> 42, cell 1 i-> 9);

Action Semantics 62

(e l s e)

{ } , 6 , s I- flj D>
(0 i-* true) • t, b, s h a i else a 2 O 0\ , , 6 i , Si

(3 .48)

{ } , 6 , S h a 2 > 02, t2, 62 , «2
(0 !->■ false) - t , b , s \ ~ a\ else <12 t> 0 2 , 2̂ , b2, s 2 (3 .49)

(r e c u r s i v e l y b i n d)

t , {& !->• d} 0 b, s h y > d d : abstraction
t, b, s h recursively bind k to y O completed, { } , {k ^ d] , s

(3 .50)

(a l l o c a t e)

c : r < cell c (£ dom s
t , b , s h allocate a r [> completed, {0 c], { } , {c uninitialized} 0 s

(3 .51)

Figure 3.10: Semantic rules for hybrid action notation.

• the performance o f ‘allocate a cell then (store 4 in the cell and then deallocate the cell)’

changes storage to {cellO i-> false, cell2 *-> 42}.

□

3.5 D a ta N o ta tio n

Finally, besides the com putational entities covered in the previous sections (bindings,

storage, abstractions, etc), action notation provides various familiar m athem atical entities

through its data, notation. A c t r e s s ’ d a ta notation provides constants and operations for

truth-values, integers and lists. They are specified algebraically in [80]. They are total,

giving ‘nothing’ for non-defined or ill-sorted argum ents. Figure 3.11 summ arises A c t r e s s ’

d a ta notation for lists.

3 .6 Standard and A c t r e s s A ctio n N o ta tio n s

Standard action notation is a very general and rich formal language. We explain and

justify here the choices we had to make when we restricted standard action notation to

our subset. This restriction was a structured way to approach the problem of generating

3.6. Standard and A ctress Action N otations 63

(1) em pty-list : list

(2) list (_) :: datum —>- list

(3) concatenation :: list, list —> list

(4) head-of (_) :: list —> datum

(5) tail-of (_) :: list —> list

(6) length-of (_) :: list — > integer

Figure 3.11: D ata notation for lists.

compilers from action semantic descriptions, and it gave us a manageable subset. Future

extensions towards standard action notation are possible (see C hapter 7).

To s ta r t with, communicative actions (actions s e n d and rece ive messages, and subcon­

t rac t tasks to other a g e n t s , processing p e r m a n e n t information) were left out of our subset.

This part of action notation, used to describe concurrent aspects found in some program ­

ming languages, like processes, co-routines, tasks, etc, is not used in the description of the

class of languages we have in mind a t present.

Action semantic descriptions are m odular, and a m e t a - n o t a t i o n for m anaging modules

and its values does exist in standard action notation. For example, in Appendix B modules

are sections, submodules are subsections, and so on; modules can be included in other

modules, and precise rules of visibility exist. We did not discuss the sem antics of modules

because they are not im portant in the scope of this thesis. For a description of modules

and their semantics see [80, 14].

General differences between standard action notation and A c t r e s s action notation

are given below:

• A ction perform ance. Non-determinism, parallelism and interleaving of action

performance were left out. Our ‘or’ action is deterministic. There is a single action

performer, th a t is, a t a particular time only a specific action a is being performed;

for all actions ‘a! c om b a 2\ where co m b is an action com binator, the performance

of each subaction is indivisible, th a t is, each subaction is performed in its to tality

before the performance of the other subaction s ta rts . For example, the performance

of a i and a 2 in ia 1 and a 2’ is not interleaved: we perform a i before starting the

Action Semantics 64

performance of a 2.

• T yped subset. Our subset is typed. We ruled out many actions th a t are perfectly

acceptable in standard action notation. For example, we insist th a t the domain of

transients and bindings given by a x and a 2 in the action Yq or a 2 are the same.

However we did not insist on a statically typed subset.

• Transients. In our subset transients are mappings between labels (natural numbers)

and data . In standard action notation they are tuples8. Some properties are changed

with this (for example, our ‘and’ is com m utative), and the ‘g iv e ’ action has a different

syntax in A c t r e s s action notation. Also the standard action notation operation

‘application _ to _’ (which corresponds to ‘w ith ’ in our subset) can give a tuple of

datum to an incorporated action, instead of only a single individual datum .

• D ata operations on sorts. D ata operations operate only on individual data .

The following are primitive actions and action com binators th a t were not included in

A c t r e s s notation:

• Escape actions. Actions cannot escape in A c t r e s s action notation. In standard

action notation the primitive action ‘escape’ is used to signal abnorm al com putation,

‘a! trap a 2 sets a 2 as the trap action to be performed when a,i escapes.

• C om m itted actions. In standard action notation a com m itted action discards

all alternatives except the one being performed, so any later failure will not cause

an alternative (if there is one) to be tried (performed). In general, c o m m i t m e n t

is a property of action performance. For example, in standard action notation,

all im perative actions are com m itted actions, th a t is, after an im perative action is

performed any subsequent failure, for the chosen alternative, will cause the whole

action to fail because the current alternative will not be tried (no b ac k t r a ck in g) . The

A c t r e s s subset does not have com m itting actions.

• T he prim itive action ‘c h o o s e ’. Not included because of its intrinsic non-determ i­

nism.

8 In fact, standard action notation used the label-data mapping when we started the design of ACTRESS.

3.7. Experiences and References 65

• T h e p r im it iv e a c tio n ‘rebind’. Left out because of technical problems th a t it poses

to sort inference.

• I n d ir e c t b in d in g s . We do not trea t indirect bindings.

The following actions are not included in standard action notation:

• ‘ai else a 2\ Adopted as a convenient abbreviation (see Section 3.4.7).

• ‘deallocate y \ The same as ‘unreserve y ’> in standard action notation.

It is worth to sta ting tha t, although not as genera.] as standard action notation, A c ­

t r e s s action notation is general enough to specify most of the features encountered in

some real programming languages.

3 .7 E xp erien ces and R eferen ces

The aim of action semantics is to obtain better pragm atic qualities than those of deno-

tational semantics, and it has been used to give semantics to a variety of programming

languages, including P a s c a l [83], J o y c e [10], S t a n d a r d ML [109, 85], B e t a [88], CCS

and CSP [18]. Action semantics has also been chosen as the specification language for the

formal semantics of A N D F [103].

For technical details on unified algebras, which provides a framework for action seman­

tics, see [78, 77].

Action notation has many nice algebraic properties [80] which will be explored in more

detail in C hapter 5.

For a complete and detailed presentation of action semantics, including an account, of

its development (C hapter 19) and its operational semantics (Appendix C) see [80]. For a

more gentle introduction see [110].

The complete sta tic semantics for A c t r e s s action notation together with a sort checker

are given in [14]. We will say more about sort checking in the next chapter.

C hapter 4

A c t r e s s

This chapter presents A c t r e s s , a semantics-directed compiler generator based on action

semantics. We s ta r t by describing the architecture and design decisions of the system,

as well as an overview of the action notation compiler which constitutes A c t r e s s ’ main

module. Most of the chapter trea ts in detail the action notation code generator, the back

end of the action notation compiler, and the two other A c t r e s s modules, the actioneer

generator and the action notation interpreter. We conclude with some preliminary bench­

m arks (which will also serve as a reference to the ones presented in C hapter 7), identifying

some deficiencies and suggesting some improvements. A c t r e s s is a result of joint work

with David W att and Deryck Brown [16]. In this chapter we describe in detail the parts

of the system I have been responsible for.

4.1 A r chit ec t ur e

Since an action is the meaning of a program in action semantics, it is natural to think of

a compiler for action notation as a first step towards an action semantics based compiler

generator. In fact, the main A c t r e s s module is A N C, an action notation compiler.

A lthough A N C can be used to compile any action, we are particularly interested in the

compilation of program actions, th a t is, actions th a t are denotations of program s. A N C

66

4.1. Architecture 67

can be und ers tood a.s the fol lowing funct ion com pos i t ion:

anc = code o check o parse (4.1)

The function parse takes a source program action and parses it producing an action ab­

s trac t syntax tree (an action parse tree). We will use the term action tree for such a tree.

check verifies whether the action is well-formed and well-sorted. Its ou tpu t is a decorated

action tree (more on this in Section 4.2.2). Finally, the code function implem ents a code

generator for actions which takes the decorated action tree and translates it to a C pro­

gram . The global effect is the translation of the source action into a C program whose

behaviour is equivalent, in some sense , to the source action performance.

A se co n d m o d u le o f th e A c t r e s s s y s t e m , th e act ion eer g en era tor , will care for th e

in corp oration o f th e s e m a n tic s o f th e sou rce la n g u a g e in to th e g en er a ted com piler:

actioneergen = gen o parse' (4-2)

The actioneer generator input is an action semantic description of a program ming language

C. From this it generates a program , the actioneer for £ , which will give meaning for £ ’s

program s. The function parse1, an extension of parse in Equation 4.1 which can also parse

action sem antic descriptions, parses the input and produces a parse tree for it. From this

parse tree gen generates the actioneer for the source language. The actioneer for a source

language takes a parse tree of a source program and composes the program action which

corresponds to it. This can be achieved because the actioneer for a language incorporates

the language’s action semantics.

A third and optional module is an interpreter for action notation, A n i. This can be

expressed by

ani = interp o parse (4.3)

w here interp is a function t h a t in terp rets ac t ion s . A n i takes a sou rce action and p roduces

an o u tc o m e which represents th e act ion p erform ance .

To build a compiler for a language C using ACTRESS, we first need to generate a parser

for C. A c t r e s s does not provide a parser generator and we borrow M L - Y a c c to do this

job [101]. Suppose syntaxc is the syntax description for C\ then we can use the parser

A ctress 68

generator to obtain a parser for £\

parsec = ml-yacc syntaxc (4.4)

If semanticsc stands for £ ’s action semantic description, then an actioneer for C can be

obtained as follows:

actioneerc — actioneergen semanticsc (4-5)

Now we have the generated compiler for C\

compc = code o check o actioneerc o parsec (4-6)

Compilation of an C program V , to an object program O-p can be expressed as

Op = compc V (4.7)

The organization adopted proved to be the right one for its simplicity and flexibility

for future changes.

Except for the run-tim e support, A c t r e s s is entirely implemented in S t a n d a r d M L1.

This choice was based in the good level of abstraction th a t a functional language provides,

which improved the productivity and freed us to concentrate more in conceptual aspects

than in im plem entation details. Also the robustness of S t a n d a r d M L and its implemen-

tion was decisive when we chose it as our implementation language.

The choice of C as our target language gave a good level of abstraction, which freed

us from idiosyncrasies of low-level languages, it gave to our object code a great degree of

portability, and the efficiency penalty is not big when compared to assembly code.

We will detail in the next sections each one of A c t r e s s ’s modules.

4.2 T h e A ctio n N o ta tio n C om piler

A schematic diagram of AN C is shown in Figure 4.1. Its three basic components are

described in the sequence.

! The New Jersey implementation was used [3],

4.2. The Action Notation Compiler 69

parser sort
checker

code
generator

Action Notation Compiler (ANC)

source
action

action tree

decorated
action tree

C object code

target
action

Figure 4.1: The action notation compiler (A N C).

4.2 .1 T he Parser

The action notation parser parses a source action and translates it to the corresponding

action tree. It is an LA LR(l) parser generated using M L - Y a c c . This is a standard

component of A N C. Standard da ta operations and user-defined operations have a prefix

syntax. Figure 4.2 shows a real input (ASCII form at) to the parser, which is the program

action for the S p e c i m e n program shown in Figure 4.3. Source actions can be grouped

using parentheses or vertical rules as in standard action notation.

The action tree is represented internally as a polymorphic S t a n d a r d M L datatype.

This representation, simple and elegant, allows for an uniform trea tm ent of the action tree

by the other compiler components.

4.2 .2 T he Sort Checker

The action notation sort checker is similar in function to an ordinary type checker, but

it is in fact significantly more sophisticated. Its objective is to rule out ill-formed and

ill-sorted actions (ill-formed actions are not ruled out by the parser because its gram m ar

trea ts actions, yielders and d a ta as term s). Figure 4.4 and Figure 4.5 shows examples of

ill-formed and ill-sorted actions respectively.

The sort checker also decorates the action tree with sort information. This information

will be useful to the code generator2. Figure 4.6 shows the syntax of the sort language

2 Also it will play an important role in the transformer as explained in Chapter 5.

A ctress 70

1 1 1 g iv e 1000000
1 1 then
1 1 1 b in d "n" to th e v a lu e
I b e fo r e
1 1 1 1 1 g iv e 0
1 1 1 1 then
1 1 1 1 1 g iv e the v a lu e l a b e l #1
1 1 1 and
1 1 I I I a l l o c a t e an c e l l
1 1 1 1 then
1 1 1 1 1 g iv e th e datum l a b e l #2
1 1 then
1 1 1 I b ind "x" to th e c e l l # 2
1 1 1 and
1 1 1 1 s t o r e th e v a lu e # l in th e c e l l # 2
hence
I | | g iv e the v a lu e bound to "n"
I | th en
1 1 1 s t o r e th e v a lu e in the c e l l bound to "x"
I and then
1 1 u n fo ld in g
1 1 I I I I I g iv e th e va lu e s t o r e d in th e c e l l bound to "x"
I 1 1 I I I then
1 1 1 1 I 1 I g iv e th e v a lu e l a b e l #1
1 1 1 1 1 and
1 1 1 1 1 1 1 g iv e 0
1 I I 1 1 1 then
1 1 1 1 1 1 1 g iv e th e v a lu e l a b e l #2
1 1 1 1 then
I I I I I g iv e isG reaterT han(the v a l u e # l , t h e va lu e#2)
I 1 1 then
I I I I I I I I I I g iv e the va lu e s t o r e d in th e c e l l bound to "x"
1 1 1 1 1 1 1 1 1 then
I I I I I I I I I I g iv e the va lu e l a b e l #1
1 1 1 1 1 1 1 1 and
1 1 1 1 1 1 1 1 1 1 g iv e 1
1 1 1 1 1 1 1 1 1 then
I 1 I I I I I I I 1 g iv e th e va lu e l a b e l #2
1 1 1 1 1 1 1 then
I I I I I I I I g iv e d i f f e r e n c e (t h e i n t e g e r # ! , th e in te g e r # 2)
1 1 1 I I 1 then
1 1 1 1 1 1 1 s t o r e th e v a lu e in th e c e l l bound to "x11

I I I I I and then
1 1 1 1 1 1 u n fo ld
1 1 1 1 e l s e
I I I I I complete

1

Figure 4.2: Program action for the loop program .

4.2. The Action Notation Compiler 71

program loop is
const n : int = 1 0 0 0 0 0 0 ;
var x : int := 0

in
x := rc;
while (x > 0) do x := x — 1 end

end

Figure 4.3: The S p e c i m e n loop program.

give 4 then successor (it)

bind “x" to give 3

allocate a cell then store 8 in the cell give true

bind “x" to 1 and abstraction (give 4)

enact (bind “x" to 3)

Figure 4.4: Ill-formed actions.

give 4 then give successor (the truth-value)

give 3 and give 4

bind "x” to 3 or bind "y” to 8

enact abstraction (give the integer) with true

Figure 4.5: Ill-sorted actions.

A c tr ess 72

used to decorate the action tree. An action term is decorated with an action sort; a yielder

term with a yielder sort and a datum term with a datum sort.

r has information about the sorts of the transients required/given by an action, yielder

or abstraction term . For example, if an action requires only a transien t of sort integer

labelled 3, r (in the left side of the hook arrow) would be ‘{3 : in te g er }’. We can see r as

a natural-DatumSort mapping.

P is similar to r except th a t it contains information about the sort of d a ta bound to

tokens (a token-DatumSort m apping). As an individual sort classifies ju st one element,

the sort for an individual datum like 4 is 4. We write

a : (t ,0)

to say th a t action a has sort “(r, ft) ^ (r ',/3 ')” (or, more concretely, a ’s action tree is

decorated with the correspondent sort). Below some examples:

give 1 : ({ } , { } W ({ 0 : 1 } , { »

bind "x” to true : ({ } , { }) ^ ({ } , { “x" : true})

give 1 and bind "x” to true : ({ } , { }) <—)- ({0 : 1 } , { "x” : true})

In practice the sort checker traverses the action tree and decorates each node with sort

information: action nodes with action sorts, abstraction nodes with abstraction sorts, and

so on.

Sort information is represented internally by record types similar to those introduced

by Wand in [107], and applied by Even and Schmidt in [98]. Each action sort consists of

four record schemes, representing required and given transients, and required and produced

bindings. For example, a record for transients might be:

{0 : integer. 1 : truth-value}

and a record for bindings

{"n ” : 7, "m” : integer, "z” : cell [integer]}

The sort discipline enforced by the sort checker has been specified using a set of infer-

4.2. The Action Notation Compiler 73

Sort ::= Act ionSor t (4 .8)

| YielderSort (4 .9)

| DatumSort (4 .10)

ActionSort (4 .11)

| nothing (4 .12)

YielderSort (r, (3) DatumSor t (4 .13)

DatumSor t Abstract ionSort (4 .14)

| ProperSort (4 .15)

| IndividualSort (4 .16)

Abstract ionSort ::= (T , 0) ^ { T . d) (4 .17)

ProperSort : := d a tu m (4 .18)

| token (4 .19)

| integer (4 .20)

| tru th -va lue (4 .21)

| list [DatumSort] (4 .22)

| cell [DatumSort] (4 .23)

| DatumSor t | . . . | DatumSort (4 .24)

| no thing (4 .25)

IndividualSort Individual (4 .26)

Indi vidual : := true | false (4.27)

1 . . . | - 1 | 0 | 1 | . . . (4 .28)

Figure 4.6: Syntax of sort information.

A ctress 74

ence rules, somewhat analogous to the type inference rules for a program ming language.

There are some cases where the sort checker modifies the action tree. The ‘fa il’ action

can cause a simplification of the action tree, for example, the action ‘fail or o ’ is replaced

by a. An action th a t is certainly ill-sorted is replaced by the action ‘fail’. W here the sort

checker cannot guarantee th a t an action is well sorted, it m ust inform the code generator

th a t some run-tim e sort check will be needed (see Section 4.3.2).

The sort inference algorithm used in the sort checker is based on the one given in [98].

The sort checker is described in detail in [14]. We gave here only a brief account for the

purpose of understanding of our work.

4 .2 .3 T he C ode G enerator

The decorated action tree produced by the sort checker is translated into C object code

by the code generator. An action is translated to a C sta tem ent sequence; a yielder is

transla ted to a C expression. In the generated code, transients and bindings are passed

in registers. The code generator also makes use of sort information provided by the sort

checker.

A run-tim e environment is defined providing d a ta representation, d a ta operations,

sort-checking functions, storage m anagem ent functions and auxiliary functions. In the

next section we will describe code generation for action notation in detail.

4 .3 G enerating C od e for A ctio n N o ta tio n

The code generator translates a decorated action tree into a C program . It is specified by

means of translation rules. As in the case of the semantics for A c t r e s s action notation,

the style of presentation here was inspired by natural semantics. Besides the translation

rules, we present the run-tim e environm ent and we show how the im plem entation is close

to the translation rules and w hat its current lim itations are.

4.3.1 Translation R ules

The translation rules are similar in form to the ones used to give the semantics of A c­

t r e s s ’s action notation. Pieces of C code in the rules are w ritten in t h i s t y p e w r i t e r

fo n t . W herever this convention is not clear we use double quotes to distinguish them.

4.3. Generating Code for Action Notation 75

In general a variable is used instead of the actual C code with the value of the variable

specified in the w h e re part of the rule. Bidimensional layout is used to enhance the code

readability, but we usually do not bother to use a string concatenation operator (^). The

C code in turn can have some variables, for example, ‘_dd’ stands for ‘_d4’ when variable d

is instantiated to 4 (variables are w ritten in italics). Run-tim e functions are w ritten using

capital letters, for example, this is a _RUN_TIME_FUNCTION.

J u d gem en ts

Two types of judgem ents are present. The first one is used in the translation of an action

term . It has the form

/C, (A , b, Au, Ud, Ub, / , r, Z, t, (4 , 6,)) h a - (c, 5, A \ b', / ' , r ', b’x)) (4.29)

where a is the action subject to translation and c (together with S) is the corresponding

C object code. More precisely, c is a C statem ent (a string) resulting from the translation

of a; and S is a set of strings where each one is a C function resulting from the translation

of an abstraction in a. The other variables are as follows:

• /C is sort information from which we can infer the sort of a.

• In the generated C program transients are kept in registers called d-registers (C

variables in fact). During translation the code generator m aintains a m apping from

labels to these d-registers to locate any transient needed; a d-register is identified by

a positive integer. We call this m apping a d-register assignment ; during translation

for each action there is a d-register assignment A into the action and a d-register

assignment A ’ out of the action. Notice th a t the range of A' is a set of d-registers

where the transients given by a are stored.

• A set of bindings is kept in a single b-register. While each d-register contains only

one individual datum , a b-register can contain any number of bindings (each binding

is a token-datum pair). For an action a, 6 is a b-register which contains the bindings

required by a and b' the b-register which contains the bindings produced by a. b

is ju st a natural number; the value 0 is used to indicate th a t the action requires or

produces no bindings (a dummy register).

A ctress 76

• A u is an auxiliary d-register assignment, called the unfold d-register assignment , used

in the translation o f ‘unfolding’ and ‘unfold’ actions.

• Ud is a set of d-registers (a set of positive integers) which indicates which d-registers

cannot be used during the translation of a.

• Ub is a set of b-registers (a set of positive integers) which indicates which b-registers

cannot be reused during the translation of a. An em pty set indicates th a t any b-

register can be used. After the translation of a program action a, b' will be the

b-register where the bindings produced by a are stored.

• / , a natural number, is used to propagate the value of the current failure label. This

will be only used to code the ‘fa il’, ‘or’ and ‘ch eck ’ actions. In the case of the ‘fail’

action it will provide the label where the program flow should jum p to. The C label

correspondent to a failure label is uniquely generated by the translation of an ‘or’

action.

• The current repeat label r is only used to transla te ‘unfolding’ and ‘unfold’ actions.

The translation of ‘unfolding a ’ generates the repeat label, and the translation of a

free ‘unfold’ inside a uses its value as the point it has to jum p to.

• /, a boolean, is the fail action context needed for determ ining the context of the ‘fail’

action during its translation (see the translation of ‘fa il’ later in th is section).

• i is a natural used to generate unique names for the C functions resulting from the

translation of abstractions, for example, if, a t some point during translation, the

value of i is 4, the next abstraction will be translated to the C function _abs4.

• dx and bx are natu ral numbers indicating the maximum number of d-registers and

b-registers used so far in the translation; they work as a high water marks . Their

final values d!x and b'x are needed to code the C declarations for the registers. (We

use C sometimes to stand for (dx ,bx).)

The second judgem ent is used for yielders’ translation:

1C, (A,b, i) I- y -» (c,i, S) (4.30)

4.3. Generating Code for Action Notation 77

£> ([L°> []»{}> (}>M> true, 1, (0,0)) h a -*» (c', { * i , . ., Si'-i}, A', b', / ' , r #, [dx ,bx))
1C h a ► c

(4.31)

w here c = #include "runtime.h"
#include "runtime.c"

S»'-l
DATUM _d l, . . . , _ddx \
BINDINGS _ b l , . . . , _bbx ;
in t main ()
{
c'
e x i t (0) ;
_failureO :
e x i t (l) ;
}

Figure 4.7: Program action translation rule.

where c is a C-expression resulting from the translation of the yielder y. In general S is

the em pty set, except when y contains a term of the form ‘ab stra c t io n a \ All the other

variables are as in the judgem ent for action term s.

P rogram A ction

Figure 4.7 shows the rule used for the translation of the program action. This rule tells

how we s ta r t up the translation process. The variables are initialized which establish our

initial translation hypothesis: the action requires no transients and no bindings (empty

input d-register assignm ent and input b-register 0); the unfold d-register assignment is

empty; all d-registers and b-registers are free; failure and repeat label arc; 0; the ‘fa i l ’

action context flag is true; no abstraction was previously translated; and no d-registers or

b-registers were used. We also assume th a t a gives no transients and produces no bindings.

This rule is applied only once.

The generated C program , c, consists of the runtim e environm ent (see the # in c lu d e ’s

in Figure 4.7), a C function for each abstraction in a (s i , . . . , s ,/_ i), C declarations for

d-registers and b-registers, and the C sta tem ent resulting from the translation of a which

will form the body of m ain (c'). The failure label initial value is 0 so if the program

A ctress 78

action fails, there will be a jum p to label _ fa ilu re O and the program term inates with an

exit s ta tu s equal to I (abnorm ally). Otherwise it will term inate normally (exit s ta tu s 0).

Notice how the high water marks dx and bx are used to code the C declarations for the

d-registers and b-registers used in the object code for a.

B asic

Figures 4.8 and 4.10 show the translation rules for basic action notation.

As would be expected, the ‘complete’ action translates to the C null sta tem ent. This

translation is specified by Rule 4.32. We use as a place holder for a variable th a t is not

needed for the translation of a term .

Two (mutually exclusive) rules specify the translation of ‘fail’. They are distinguished

by the fail action context flag: if it is true, it is because we are inside an ‘or’ action or a t

the program action top level, so we inspect the current failure label (/) and generate a

jum p to it (goto . f a i l u r e / ;) ; otherwise we are inside an abstraction top level, so we ju st

exit the C function returning 1 (abnormally exit). As we will see later, the translation of

the ‘enact’ action generates C code th a t handles these abnormal (and normal) exits.

In the translation of ‘aj and a2 the subactions are translated sequentially, the left

subaction first. This fact is specified in Rule 4.35 by the fact th a t we need .11? blt / i , r l7

and C i for the translation of a2, and these values are only available after the translation

of di.

The translation of ai m ust not reuse any d-register still to be used (read) by the

translation of a2 (Ud)• Similarly, in the translation of a 2 we m ust not reuse any d-register

used (written) by a± (Ud U range Al7 in the second antecedent of Rule 4.35). bi and b2

stand for the b-registers containing the bindings produced by ai and a2 respectively.

The th ird antecedent caters for the binding produced by the whole action. Some code

m ight be needed here to do the merge of the bindings produced by O] and a2. For example,

if ai produces bindings in _ b l and a2 produces no bindings, there is no need for any code

(;) and the ou tpu t b-register will be _bl. If both actions produce bindings we have to rely

on a run-tim e C function to merge the bindings (_OVERLAY_BINDINGS), whose result will

be stored in a free b-register. Figure 4.9 specifies the overlay bindings judgem ent used in

the translation rule of some composite actions like ‘and’. Notice th a t although we use the

name overlay bindings — and in fact this is the semantics of the run-tim e C function —

4.3. Generating Code for Action Notation 79

(c o m p l e t e)

f , r , - , i ,C) h complete —» (“;", {},[], 0, / , r, i, C) (4.32)

(f a i l)

(-, / , r, true, i, C) h fail -» (“goto . f a i lu r e / ; ' ' , {}, [], 0, f , r , i, C) (4.33)

r, false, i ,C) h fail (“re tu rn (l);" , {},[], 0, f , r , i ,C) (4.34)

(a n d)

(A , b, An,Ud, Ub, f , r,l, i, C) I- oti * (c^, S \ , A \ , b\, f \ , ?'], , C \)
IC,{A,b, A u, Ud U range A i, Ub U {6i}, f x, n , /, z'i, Ci) b a2 -» (c2, S2, A 2, b2, / 2, r2) i2, C2)

O V

___________________________ (b,,b2,Ub) H (c3, t')_______________________________
K, (A,b ,Au, Ud, Ub, f , r , l , i ,C) H ai and a2 (c,Si U S2 ,A , ® A 2,b ' , f2, r2, i2,C2)

(4.35)

w here c — C\
C2
C3

(a n d t h e n)

JC,(A,b,Au,Ud,Ub, f , r , l , i ,C) b ax -» (cx, S i , A x, bx, f x, rit n , Ci)
1C, (A, b,Au, Ud U range A i ,UbU {bi}, f i , r u l, i i,Ci) b a2 -» (c2, S 2, A 2,b2, f 2, r2, i2,C2)

OV

_______________________________(bi,b2,Ub) b (c3,V)_______________________________
K, (A, b, A u, Ud, Ub, f , r, I, i, C) b ai and then a2 -» (c, S i U S2, Ai © A 2,b', f 2, r2, i2,C 2)

(4.36)

w here c — c\
C2
C3

(u n f o l d i n g)

K b unfolding a : {r,/3) «-»■ (t',/3')
A'u = A © dom, r . .

1C, (A, b, A'u, Ud, Ub, f , r -I- 1, /, i, C)\~ a -» (o', 5 ', A' , b', f , r ' , i ' , C')
1C, {A, b, A Ui Ud, Ub, f , r, I, i, C) b unfolding a -» (c, S', A', b', f ' , r ' , i', C')

w here c = rep ea t _r + 1:
c'

(u n f o l d)

/C b unfold : (r, /?) (r ' ,/?')

(Au © dom t , A © dom r, £/<*, d^) b (c', d̂ .) (4.38)
£ , (A, b, Au, Ud, Ub, f , r, I, i, (dx, bx)) b unfold -» (c, {},[], 0, f , r, i, (d'x, 6*))

w here c — c'
goto repeat_r;

Figure 4.8: Basic translation rules.

A ctress 80

(OVERLAY-BIN DINGS)
0 V

(0,6,.) b (“;” , 6) (4 .39)

o v

(6,0,.) 1- (“;”,*) (4 .40)

b' = new Ub b\ ^ 0 b2 ^ 0
O V

{bi,b2,Ub) b (“_b6/= _OVERLAY_BINDINGS(_b6i,_b62);”,6/)
(4.41)

Figure 4.9: The overlay bindings rules.

it is in fact here a merge operation (see the semantic rule for ‘a n d ’) . B ut as the action

is well-sorted (tokens produced by the subactions are disjoint) the effect of the overlay

operation is the same as th a t of a merge operation. We have used the presence or absence

of a b-register to decide a t translation tim e if an action produces bindings; alternatively

we could have made use of sort information.

In the translation of ‘unfo ld in g a ’ (Rule 4.37) the code generator generates a repeat

label and proceeds to transla te a. Now, for every free tail-recursive occurrence of the

‘u n fo ld ’ action inside a it generates a jum p to the repeat label (Rule 4.38). We use the

fact (enforced by the sort checker) th a t all transients and bindings required by the ‘u n fo ld ’

action are of the same sort as those required by the enclosing ‘u n fo ld in g ’ action. The unfold

d-register assignment (A 'u) records the d-register assignment for the ‘u n fo ld in g ’ action, so

th a t the translation of its free ‘u n fo ld ’ actions can generate, if needed, C code to rearrange

the d-registers before the jum p to the repeat label. For example, the translation of the

(artificial) action

g ive 5 then unfo ld ing (g iv e su m (th e in teger, 1) then unfold)

produces

dl = -M A K E J N T E G E R (b) ; (1)
-repeat-1 : (2)
-d2 = S U M (- d l , - MA K E - I N TE G E R (1)); (3)

- d l = - d2\ (4)

g o t o -repeat-1; (5)

where the rearrangem ent code is a t line 4.

Notice in the rules how the sort information was essential for the translation. As A

4.3. Generating Code for Action Notation 81

(OR)
JC,(A,b,Au,Ud,Ub, f+ 1 ,r, true,i,C) h ax -» (cx, Si, A i , bi, f lt ru iu C L)

IC,(At b,Au,Ud,Ub, fi ,ri , true,i i ,Ci) b a2 -*» {c2 , S 2,A 2,b2, f 2, r2, i2,(dX2,bX2))
r d r b

_________________ {Au A 2, range A 2,dX2) b (c3, g ^) (6 1 , 6 2) b c4___________________
JC, (A,b, A u, U d ,U b, f , r , f a l se , i , C) b <*1 or a 2 -» (c ,5 i U S2| Ai, 6 1 , / 2, r 2> * 2 , K r A a))

(4.42)

w here c = c\
goto end_/+ 2;
f a i l u r e . / + 1:
C 2

C 3

c4

end_/ + 2:

JC, (A, b, A u, Ud, Ub, / , r, false, U ,C) b cn or a2 ^ [c‘ , S', A', b', f , r ' , i ' , C')
JC, (A, b, A u, Ud, Ub, f , r, true, U ,C) b ax or a 2 ->♦ (c‘, S ' , A ' , b', f , r ' , i ' , C')

(4 .43)

Figure 4 .1 0 : Translation rules for the ‘o r ’ com binator.

contains all the labels (transients) received by ‘u n fo ld in g cC (not only the ones required) we

need to restrict the mapping using r whose domain contains exactly the labels required by

the action (A © dom r) . For simplification we consider th a t all occurrences of the ‘u n fo ld 1

action are tail recursive. This is enforced by a test a t translation time.

Figure 4.10 shows the translation rules for the ‘o r ’ com binator. In the translation of ia1

or a2\ the d-registers assigned to the transient d a ta given by ax m ust be the same as those

assigned to the transient da ta given by a2. The same applies to b-registers. This raises the

need for a rearrangem ent of d-registers and b-registers as the translation of the subactions

may given different d-register and b-register assignments. The rearrangem ent is necessary

so th a t, regardless of what subaction is actually performed, it leaves its transients and

bindings in the same registers. The code generator takes as the reference and rearranges

the registers th a t come out of a2 in a way to match th a t of a x. For example, the translation

of

(g ive 1 or (g ive 2 then g ive 4)) then g iv e su cces so r (it)

produces

_dl = -M A ICE-INTEGER (1);
goto - e n d -2 ;

(1)
(2)

A ctr ess 82

_failure-1: (3)
-d l = -M A K E - I N T E G E R (2); (4)
-d2 = -M A K E -IN T E G E R {4) ; (5)

; (6)
- d l = _c/2; (7)

-end-2: (8)
-d2 = -SUCCESSOR(-d l)] (9)

; (i o)

The code a t line 7 is the rearrangem ent code for d-registers (there is no need for b-

register rearrangem ent in this example). Line 4 to line 6 correspond to the translation of

the second subaction of ‘o r 1. The translation of the ‘o r ’ is the only place in the translation

process where a failure label is introduced — apart from the main program failure label

and incorporated actions’ top level.

F u n c t io n a l

Figure 4.11 shows the translation rules for functional action notation.

The translation of ‘g iv e y label # ? i’ generates code to store the value of y in a newly-

allocated d-register. Notice the d-register assignment out of the action ([n »->• d]). Notice

th a t we have defined a special case in the translation of the ‘g i v e ’ action. W hen y is the

yielder ‘th e s # r a ’, there is no need to generate any code, we need only to update the

d-register assignment accordingly to the relabelling of the transient (from ‘m ■—> d ’ to

‘n h-» gT in Rule 4.45).

The translation of ‘ch eck y ’ corresponds to the C ‘if ’ sta tem ent, where the conditional

expression corresponds to the translation of y (see Rule 4.46). If y evaluates to false then

the control jum ps to the current failure label. Otherwise the next comm and is executed.

The translation of ‘ai then a 2’ is the same as the translation for ‘a n d ’ except th a t

the d-register assignments out of the subactions are not, merged: the one out of a2 is

used instead, which agrees with the sem antic rules of the com binator (see Figure 3.4 in

C hapter 3).

In the translation of ‘th e s # n ’, the code generator inspects the d-register assignment

for the d-register assigned to label n, and gives this register as a result. Now, for example,

the action

(g iv e 30 label # 1 and g iv e true label # 2) th en g iv e th e i n t e g e r # !

4.3. Generating Code for Action Notation 83

(g i v e)

1C, {A, b, i) b y -» [c y , i y , s y) (d , U'd) — ne w Ud
f C , (A , b , . , U d , - , f , r , - , i , (d x , b x)) b give y label # n

-» (c, s y , [n i-t d] , 0 , f , r, iy, (greater d x d, bx))
(4.44)

w h e r e c = _dd - cy ;

(g i v e - s p e c i a l i z e d)

1C, ([m i-> d , f , r, i, C) b give the s # m label
^ (” -,” , { } , [n ^ d] , 0 , f , r , i , C)

(4.45)

(c h e c k)

{A, b, i) b y —■» (Cy, iy, Sy)
1C, {A, b, - , Ud, f , r , . , i, C) b check y -» (c, {}, [], 0, f , r , i , C)

(4.46)

w h e r e c = i f (! cy . datum. t r u t h _ v a lu e) g o t o f a i l u r e . / ;

(t h e n)

) C , (A , b , A u, U d , U b, f , r , l , i , C) b ai -*» (ci, Si , A lf blt / i , n , *i, Ci)
JC, [A, b, A u , Ud U range A i , Ub U {6i}, / i , r l t /, i x, Ci) b a2

-» [c2, S 2, A 2, b2 , f 2 , r 2, i 2 , C 2) (4.47)
{ b i , b 2, U b) b (C3,P)

f C , { A , b , A u , U d , U b, f , r , l , i , C) b a x then a2 -*» (c, 5i U S2, A 2, b ' , f 2 , r 2, i 2 , C 2)

w h e r e c = ci
c2
C3

(t h e)

JC,{[n>-> d , . .] , b , i) b the s # n -» (“_dd” , i, {}) (4.48)

Figure 4.11: Functional translation rules.

A ctress 84

transla tes to

. d l = -M A K E . I N T E G E R (30); (1)
_(d2 = -M A K E - T R U T H (true)] (2)

(3)
(4)
(5)

Notice th a t ‘g iv e th e i n t e g e r # ! . ’ was translated using the special case for the ‘g iv e ’

action (Rule 4.45).

D e c l a r a t i v e

Figure 4.12 shows the translation rules for declarative action notation.

Tokens are translated into C strings. The ‘b in d ’ action (Rule 4.49 is translated to a

run-tim e function (_BIND) which will make the actual binding when the program is run.

This binding is stored in a new b-register which is then passed ahead in the translation

process (6').

The translation of h en ce a2 (Rule 4.51) is similar to the translation of ‘a n d ’. There

are two main differences though: when the code generator translates a2 the tied b-register

is only the one where ai has stored its produced bindings; and no overlay binding code is

necessary because the bindings produced by the whole action are the ones produced by a2

(they are stored in _b&2).

In the translation of ‘th e s bound to y ’ the code generator uses a run-tim e function,

.BOUND, which will look up w hat is bound to the token cy in the set of bindings b (Rule 4.54).

We had to make use of the run-tim e function because a set of bindings is kept in a single

b-register instead of an individual b-register for each binding. Now, for example, the action

(b ind "x” t o 15 and bind “y” t o 3 0) h en ce bind “z ” to su cce s so r (th e in teger b ou n d t o "x”)

transla tes to

-b l = -B IN D("yL" , -M AK EJN TEG ER(lb)) \ (1)
-b2 = -B IN D (" y ", -MA K E - I N T EG ER (30)); (2)
-b3 = -O V E R L A Y - B I N D I N G S (- b 2 , - b l); (3)

-b l = -B IN D (" z " ,S U C C E S S O R (-B O U N D (" x " ,-b3)))-, (4)

4.3. Generating Code for Action Notation 85

(b i n d)

f C , (A , b , i) h yi -» (c i , i 1 , S i) K , { A , b , i i) H 2/2 - » (c2, i 2, S 2) i b' , U b) = ne w Ub
K , { A , b , . , . , U b, f , r , . , i , { d x , bx)) h bind y x to y 2

-» (c, S i U S 2 , [],&', / , r, *2> {dx , grea t er b' bx))
(4.49)

w h e r e c — Job' = _BIND(ci , c 2) ;

(f u r t h e r m o r e)

1C, (A, b, A u , Ud , Ub, f , r, I, i, C) h a - * * (cf, S' , A 1, b', / ' , r ' , i ' , C')
ov

__________________________________(b , b‘, U k) h (c",b")_________________________________ (4.50)
K , (A , b, A u , Ud , Ub, f , r, I, i, C) I- fu r therm ore a - » (c, S ' , A ' 0 A, b", f , r ' , i ' , C')

w h e r e c — d ^ c"

(h e n c e)

K , { A , b , A u, U d , U b, f , r , l , i , C) h a i - 4* (c i , S i , A i t b i , f i t r u i l t C i)
1C, (A , b i , A u , U d U range A i , {&i}, / , r, I, i i , C f) h a 2 - » {c2 , S 2 , A 2, b 2, f 2 , r 2, i.2 , C 2)

1C, (A , b , A u , U d , U b, f , r , l , i , C) h a i hence a 2 -» (c , S \ U S 2 , A i ® A 2, b2, f 2 , r 2 , i 2 , C 2)
(4.51)

w h e r e c = c\ ^ c2

(m o r e o v e r)

1C, (A , b , A u , U d , U b, f , r , l , i , C) h a i -» (cu S u A u bu f u r lt i x, C \)
fC, {A, b, A u , Ud U range A x, Ub U {&i}, / , r, I, z'i, C i) h a 2 - » {c2 , S 2 , A 2, b 2, f 2, r >, i2 , C 2)

O V

 (b i , b 2, U b) h (c3, 6')______________________________________
I C , { A , b , A u, U d , Ub, f , r , l , i, C) h a i moreover a 2 - » (c, S i U S 2 , A 2 0 A \ , b' , f 2 , r 2, i 2 , C 2)

(4.52)

w h e r e c = c\ ^ c2 ^ C3

(b e f o r e)

l C , (A , b , A u, Ud , U b, f , r , l , i , C) h a x -» (c i , S i , A i , 61, / i , r i , *1, C i)
/C, (A , 63l A u , C/rf U range A u (M U {63}, f i , n , I, h , C i) H a 2 -*» {c2 , S 2 , A 2, b 2 , f 2 , r 2, i 2 , C 2)

O V O V

______________________(b , b i , U b) h (03, 63) (b i , b 2 , U b) h (0 4 , 6 4) ______________________
/C, (A , 6, Ud, Ub, f , r, I, i, C) h a i before a 2 - » (c, S i U S 2 , A i ® A 2 , 64, i 2 . C 2)

(4.53)

w h e r e c = Ci ^ C3 '■> c2 ^ C4

(b o u n d)

__________________ I C , { A, b , i) h y - » (c ' ^ S ') __________________ u
/C, (A, 6, i) h th e s bound to y -» (“-BOUND (c ' , _ b 6) ” , i ' , S')

Figure 4.12: Declarative translation rules.

A ctress 86

(s t o r e)

JC, (A, b , i) h y i - » (c i . i i . 5 i) K , { A , b , i i) b y2 -*» (c 2 , i 2 , 5 2) (4.55)
JC, (A , 6 , _ , _ , _ , / , r , _ , i , C) b s tore y i in y2 -» (c, 5 i U S 2 , [], 0, f , r , i 2,C)

w here c = *c2 .datum, c e l l = c i ;

(d e a l l o c a t e)

(A, b, i) b y —» (cy, i y , S y)
(A , 6 , _ , _ , - , / , r , _ , i 1C) b dea lloca te y - » (c, {}, [], 0, / , r, i, C) (4.56)

w here c = _DEALLOCATE_THE_CELL(cy) ;

(s t o r e d)

1C, (A,b , i) b y - * (cw, i„ , 5 W)
1C, (A , b , i) b the s stored in y - » (“*cy .datum.c e l l " , i y , S y)

(4.57)

Figure 4.13: Imperative translation rules.

I m p e r a t i v e

Figure 4.13 shows the translation rules for im perative action notation.

Cells are represented by pointers to run-tim e-allocated cells of memory. (In C hapter 5

we will extend the code generator and cells will also be represented as elements of an

array.) Each of these cells holds a datum (see Section 4 .3 .2 for a description of the run­

tim e environm ent). Rule 4 .5 5 specifies th a t the ‘s t o r e ’ action is translated to a store

operation of the value (a C expression) resulting from the translation of yi in the cell

pointed by the value (another C expression) resulting from the translation of y2. For

example, the action

a l lo c a te a cell th en store true in it

translates to

-dl = _ALLOCATE-A-CELL(); (1)
*-dl. datum, cell = _ MA KE-TRUTH (true)-, (2)

; (3)

where, as we will see later, _ALLOCATE_A_CELL is a run-tim e C function which allocates a

piece of storage which can hold a datum .

In Rule 4.56, _DEALLOCATE_THE_CELL is a run-tim e C function which “deallocates” cell

4.3. Generating Code for Action Notation 87

cy. In fact, we cannot deallocate the cell a t run-tim e. This is because the cell can still be

“alive” in others parts of the action, so an access to the cell (after deallocation) will result

in a failure. Consider, for example, the action

| a l l o c a te a cell
th en

| s to r e 5 in th e cell and g iv e th e cell

th en
| d e a l lo c a te th e cell

and th en
| g iv e su c cessor (th e in teger stored in th e cell)

which translates to

_idl = _A LLOCA TE_A-CELL () ; (1)
*-dl. datum, cell = _ MA K E J N TEG ER (5)] (2)
; (3)
; (4)
; (5)
-D E A L L O C A T E - T H E .C E L L (- d l) ; (6)
- d 2 = - SUCCESSOR(*-dl .datum.cel l); (7)
; (8)
; (9)

If -D EA L L O C A T E -T H E -C E L L (line 6) actually deallocates the cell “stored” in -d l then

the expression iSUCCESSOR(*-d l .da tum.cel l) ’’ might evaluate to garbage instead o f ‘n o th ­

in g ’.

One solution would be to store a special mark (n o th in g) in the cell instead of actually

deallocate it, and every tim e we need to access this cell we would have to check if the

content of the cell is a valid one (different from n o th in g) . If it is n o th in g we ju st fail

(abort) the action. This has the disadvantage of the check for every cell access! Also we

would need a garbage collector to actually deallocate a cell when there is no reference to

it so cells could be reused.

The translation of ‘th e s stored in y’ dereferences the cell which results from the trans­

lation of y (Rule 4.57).

R eflective

Figure 4.14 shows the translation rules for the ‘e n a c t ’ action. Figure 4.15 shows the

translation rules for the ‘a b s t r a c t io n ’, ‘w i t h ’ and ‘c lo s u r e ’ operations.

A ctress 88

(e n a c t)

1C, (A, b, i) h y ^ (cy , i y , S y)
(d',U'd) = new Ud {d" , U d) = new U'd (b1 ,U'b) — new Ub

K, {A, b, A u, Ud, Ub, f , r, I, i, (dx , bx)) h enact y
(c, Sy , [0 d"],b' , f , r, iy , (greater (greater dx d') d" , greater bx bf))

w here c = _dd' = cy ;
i f (_dd'.datum. ab s-> cod eact) (_dd'.datum.abs->datum,

_dd' . datum. a b s -> b in d in g s ,
& _d d " ,
& Job'))

goto - f a i l u r e / ;

(4.58)

Figure 4.14: Translation rule for the ‘e n a c t 1 action.

Before we examine the rules in more detail it is useful to explain how abstractions are

represented. An abstraction is represented a t run-tim e by a C structu re with three fields.

The first field contains a pointer to a C function which was obtained by the translation

of the incorporated action. The second field contains datum which will be given to the

incorporated action at enaction time. Finally, the third field contains bindings which can

be given to the incorporated action a t enaction time.

The enaction of an abstraction, ‘e n a c t y ’ corresponds to a call to the C function pointed

to by the abstraction resulting from the evaluation of y (cy). The datum and binding

fields of th a t abstraction are passed to the C function as argum ents. Also any datum and

bindings given and produced respectively by the performance of the incorporated action

are stored in a new d-register _dd" and b-register Job' (notice the d-register assignment and

b-register out of the enact action). The ‘if1 statem ent handles cases where the incorporated

action can fail.

In Rule 4.59, -ABSTRACTION is a C run-time function. It gives a C structu re (see Sec­

tion 4.3.2) representing the abstraction. _absz is the name of a C function generated at

translation time. (We use _ a b s l, _abs2, etc, as C names for these functions.) The trans­

lation of abstractions should also generate pieces of C code representing the incorporated

action a (the C function body ca). If a itself contains more abstractions (nested abstrac­

tions), these abstraction will generate other C functions. In the translation o f ‘ab strac t ion

a \ the datum and bindings fields are empty. We assume th a t each incorporated action

gives a t most one individual datum (labelled n in the rule).

4.3. Generating Code for Action Notation 89

(a b s t r a c t i o n)

/C h a : (r,/?) ^ (r',/?')
A a = i f r={} then [] else [0 •—>• 1] ba = i f /?={} th en 0 else 1

Uda = i f ?■={} then {} else {1} Uba = i f /?={} th en {} else {1}
1C, (A a ,ba , A u , U da,Uba , 0 ,0, false, i + 1, (0 , 0)) h a

-» (ca,5 a, [n c(],6'a, / ' , < , i ' a, (<**,6*))
C3 = i f r = {) th en else “_dl = _din;”
C4 = i f /?={} th en else “_bl = -b in ;”

C5 = i f r '= { } th en else “*_dout = _dd ; ”
Cq = i f 0' = { } th en “ * _bout = NULL;” else “*_bout = -bb'a ;”
K, (A, b, i) h abstraction a -» (-ABSTRACTION(^absi), i'a , S a U {s})

w here s = in t _absi (_din, _bin, _dout, _bout)
DATUM _din;
BINDINGS -bin;
DATUM * _dout;
BINDINGS * _bout;
{
DATUM _dl, _ddx \
BINDINGS _bl, _d bx ;
C3
c4
ca
c 5

C6
return(O);
_f a ilureO :
return(1);
}

(w i t h)

IC ,(A ,b, i) h yi -» (c i ,» i ,5 i) /C , (A , b , i i) (c2 , h , S 2)
K, (A, b, i) h yi with y2 -*» (“_WITH(ci,c2)” , i 2 , Si U S 2)

(c l o s u r e)

_____________________ K, , (- d , b, j) l~ y » (C y , j y , S y ' j ______________________

1C, (A, 6 , i) h closure y -» (“_CL0SURE(cy , _b6)” , iy , Sy)

(4.59)

(4.60)

(4.61)

Figure 4.15: Translation rules for ‘abstraction1, ‘w ith1 and ‘closure1.

A ctress 90

int _absO(-din, -bin, _dout, -bout)
DATUM -din] BINDINGS -bin] DATUM *.dout] BINDINGS *.bout]

{
DATUM -d l] BINDINGS -bl]
-bl = -bin]
- dl = -SUCCESSOR(-BOUND("y", -bl))]
*-dout = - d l ;
*-bout = NULL]
return (0);

-failure-O:
return (1);

}

DATUM -dl , -d2, - d 3 ; BINDINGS -bl , .b2]

int main()
{

- d l = -ABSTRACTION {-absO)]
- bl = -BIND("y", -MAI<E-INTEGER{6));
-d2 = -CLOSURE(-SORT-CHECK(-dl , 128L), -bl)]
i f ((_d2.datum.abs~>codeact)

(-d2. datum. abs—> datum,-d2. datum, abs —> bindings,&i-d3,&i-b2))
goto -failure-0]

exit(0)]
-failure-0:

exit(l)]
}

Figure 4.16: An example of abstraction translation.

The translation of the ‘w i t h ’ and ‘c lo s u r e ’ operations (rules 4.60 and 4.61 respectively)

relies on the run-time function _WITH and -CLOSURE respectively (see Section 4.3.2).

Now, for example, the action

| g ive abstrac t ion (g iv e su cces so r (th e d a tu m bound to "y"))

th en
| bind "y” to 6 h en ce e n a c t c losu re (th e a b s tra c t io n)

whose sort is

({ } > { }) ^ ({ 0 : i n t e g e r } , { })

transla tes to the C object code shown in Figure 4.16. The enaction of the incorporated

action corresponds to a call to _ a b s l. This function will return in _d3 and _b2 the datum

and bindings given and produced by the action, respectively (in this case only a datum is

given by the abstraction). □

4.3. Generating Code for Action Notation 91

(e l s e)

1C, ([O h d] ■ A , b , A u, U d,U b , f , r , l , i , C) \ ~ ai -» (ci, S u A u b1} f lt rlf *1 , C\)
/C,([Oh-> d] • A,b , Au,Ud,Ub, f i , r i , l , i i , C i) h a 2 ^ (c2> S2> A 2, b2, i2, (^ 3, bXa))

r d r b

______________________(A 1, A 2, U d , d X:i) b (c3, ^) (6 1 , 6 2) b c4_________________________
/C, ([0 !-»• (/] • A, 6, Au, Ud, Ub, f , r, I, i, C) h ai else a2 -» (c, S i U S 2, A i, 6 i, i2, (<^,6*.,))

(4.62)

w h ere c = i f d_d.datum .truth_value { c \ } e l s e { c2 };
C3
c4

(r e c u r s i v e l y b i n d)

1C, (A , b , i) I~ yi -» (c i , i] , 5 i) /C, (A , 6 3 , 1 1) b y6 -» (ct.^ .Sb)

_________V - new Ub (6 , 6 / , Ub U { 6 7}) l~ (c 3 , 6 3 , ^) _________ (4 .63)
£ , (A, 6, t /6, / , (ck, 6*)) b recursively bind yi to yb

-*» (c, 5 i U S&, [],&', / , r, *6, (dx , greater b' bx))

w here c = b’ = _BIND(ci ,_MAKE_UNKNOWN()) ;
C3
63->datum = c&;
b' - _BIND(ci , 6 3 ->datum) ;

• yb is an abstraction yielder.

(a l l o c a t e)

d = new Ud
K,{-, - , -,Ud,-, -, -, -, i , {dx ,bx)) b allocate y -» (c, { } , [0 •—>- d], { } , i, {greater d dx ,bx))

(4.64)

w here c = _dd = _ALLOCATEJt_CELL();

Figure 4.17: Translation rules for hybrid action notation.

H ybrid

Figure 4.17 shows the translation rules for hybrid action notation.

In the translation of ‘recursively bind k to yb we assume th a t yb refers to a closed

abstraction. The translated code is executed in four steps (Figure 4.17):

• firstly we make a binding of token k to the special value ‘unknown’ and store this

binding in 6';

• secondly we overlay this binding on the income bindings. The produced bindings

are stored in a new b-register 63;

A ctress 92

int -absO(-din, -bin, _dout , -bout)
D AT U M -din; BINDINGS -bin; D A T U M *-dout; BINDINGS *-bout;

{
D A T U M -d l , - d2, . d3; BINDINGS -b l , J>2;
- b l = -bin;
- d l = -MAKE-INTEGER(A) ;
-d2 = -B O U N D (' ' i " , - b l) ;
if ({ -d2.datum.abs—>codeact)

(-d2. datum. abs—> datum,-d2. datum, abs —> bindings, i i - d3 , i i - b2))
goto -failureO;

*-dout = -d3;
*-bout = -b2;
return (0);

-failureO:
return (1);

>

D AT U M -d l , -d2; BINDINGS -b l , -b2;

int m a i n ()

{
- b l = .BIND("f" , - M A K E - U N K N O W N ());
- b l —>da tum = -C L O S U R E(-A BS T R AC T IO N (- ab sO) , - b l) ;
-b l = -BIND{"f", - b l —>datum);
- d l = -B O U N D { “t", - b l) ;
if ((-d l . da tum.abs—>codeact)

(- d l .datum, abs— > datum,-dl .datum, abs—>bindings,&i-d2,&i-b2))
goto -failureO;

exit(0);
-failureO:

exi t (\);
}

Figure 4.18: Example of translation of a ‘recursively b in d ’ action.

• the datum field of the binding for k in b3 is then updated to the value resulting from

the evaluation of yb (a closed abstration);

• finally, we produce a new binding of k to the abstraction bound to k in b3 (and store

it in 6').

The translation of the action

recursively bind "f” to c losure abstra c t io n

| g ive 4 th en e n a c t th e ab strac t ion boun d to “f ”

le n c e

| e n a c t th e abstrac t ion bound to "f”

is shown in Figure 4.18.

4.3. Generating Code for Action Notation 93

(d a t a o p e r a t i o n)

IC,(A,b, i) h 2/1 -» (c i , * i >5 i) . . . 1C, {A, b, *„_i) h yn -» (c„, in , Sn)
rop = op-table op

/C, {A ,b , i) F o p { y i , . . . ,yn) -» { “rop(c1} . . . ,cn)", i„ , Si U . . .U Sn)
(4.65)

(d a t a)

/C, (A,b, i) \~ d -» (c , i , {}) (4 .66)

w here c = MAKE-INTEGER(d) , if d is an integer
= MAKE_TRUTH(d) , if d is a truth-value
= "d" , if d is a token

Figure 4.19: D ata notation translation rules.

In Rule 4.64 _ALLOCATE_A_CELL is a run-tim e C function which allocates a free cell (see

Section 4.3.2 for an explanation of this function).

D a t a N o t a t i o n

Figure 4.19 shows how the da ta operations and individual d a ta are translated

textual name for the run-tim e function corresponding to d a ta operation op.

For example, the action ‘give sum (3,4)’ translates to

. d l = _S U M (-M A K E J N T E G E R (3) , - M A K E _ I N T E G E R { 4));

where ‘_SUM’ is implemented as

D A T U M S U M (x,y)
D A T U M x]
D A T U M y\

{
D A T U M z;

z. datum, integer = x. datum, integer + y.datum.integer;
z.tag = 4L;
r e tu r n z\

}

Notice th a t there is no run-tim e sort check on the argum ents of _SUM. The result datum

is tagged 4L (a C long integer) to indicate th a t it is of sort ‘integer’.

. rop is the

(i)

A ctress 94

4 .3 .2 R u n -T im e E nvironm ent

One of the m ajor objectives of the run-tim e environm ent is to give a representation for

da ta . This is achieved by a C structure and a C union. Tags are used to do run-tim e sort

checks. Schematically all d a ta have the following representation (a C structure):

value tag

The value field (a C union) can hold an ordinary individual such as an integer, a tru th -

value, etc; a pointer to an abstraction in the case of an abstraction; a pointer to a datum

in the case of a cell; and a pointer to a list in the case of a list. The tag field is a C long

integer. The d-registers hold values with the above structure.

Bindings are represented as a linked list of token-datum pairs. A set of bindings is

then ju st a pointer to the head of this list:

token datum token datum

Tokens are C strings. The effect of the _BIND function is:

Before:

After:

token datum

As we said before, an abstraction is represented as a C structu re with three fields.

The first one is a pointer to a C function, the one which resulted from the Iranslation of

the incorporated action. The second field is a datum which can be supplied by the ‘w i t h ’

operation. The third field is a pointer to a set of bindings, the ones which can be provided

by a ‘c lo s u r e ’ operation. Schematically:

datum

f
C function bindings

The structu re above is created by the .ABSTRACTION run-tim e function which takes a

pointer to a C function, and returns an abstraction (a C structu re). The '‘da tum ” and

4.3. Generating Code for Action Notation 95

“bindings” fields of the returned structu re are initialized to NOTHING and NULL respectively.

The structu re is used in places where we want to assign an abstraction to a datum register

(assign a C structure to a d-register). Schematically:

Before:

C function text

After:

nothing

C function text

The ‘w ith ’ and ‘closure’ operations are implemented as run-tim e operations. .WITH

takes an abstraction and a datum , and gives an abstraction with the given datum in the

datum field. If the given abstraction has already a proper datum in its field, _WITH will

return the given abstraction. .CLOSURE takes an abstraction and a set of bindings, and

gives an abstraction with the given bindings in the binding field. If the given abstraction

has already a proper set of bindings in its field, .CLOSURE will return the given abstraction.

Notice th a t as the .BIND function makes a new binding every time it is called, all previous

bindings are preserved, and the .CLOSURE operation needs only to store a pointer to them

in the third field of its argum ent abstraction.

An im portan t run-tim e operation is .OVERLAY.BINDINGS. Schematically, this operation

has the following effect (for _b = _OVERLAYS_BINDINGS(_bl , _ b 2)) :

Before:

After:

A ctress 96

b2

b1 ‘

D ata notation operations (like sum , product, concatenation , etc) are also p a rt of the run­

tim e environm ent as well as all the other run-tim e C functions present in the translation

rules (such as _BIND, _ALLOCATE_A_CELL, etc). The storage is implemented as a heap (the

C m allo c function is used to allocate cells). The effect of _d = _ALLOCATE_A_CELL() can

be seen as:

Before:

After:

(_ d)

uninit. tag

tag

One im portan t aspect of the run-tim e environm ent is the necessity of run-tim e sort

checks. This is supported by a run-tim e sort checking function (.SO R T-C H E C K) . Consider

the yielder ‘the S # n ’ and suppose the sort information inferred for the input transients is

{ n : s}

then, if

s < S => term well-sorted
s & S = nothing => term ill-sorted
otherwise => do run-tim e sort checking.

As we said before, the sort checker signals to the code generator points in the action

tree where these run-tim e checks are needed. It provides also the sort th a t should be

checked against a t run time. For a particular datum d the run-tim e sort checking function

4.3. Generating Code for Action Notation 97

simply checks d ’s run-tim e tag against the one provided by the sort checker. For example,

the translation of

| g iv e 2 or g ive true

th en

| g iv e th e tru th -va lue

requires a run-tim e sort check which will be present in the generated code as a call to

SO R T-C H E C K :

-d l = -M A K E -IN T E G E R (2);
goto -end-2 ;

_failure-1 :
-d l = -M A K E - TR U TH (true);

-en d -2 :
-d2 = -SO R T -C H E C K (-d l , 2L);

if the value assigned to -d l is of sort ‘tr u th -v a lu e ’ (2L) then -SO R T-C H E C K returns this

value, otherwise it exits abnorm ally (exit(1)).

4.3 .3 Im plem entation

The implem entation of the action notation code generator is done by a top-down traversal

of the decorated action tree. In fact it is very similar to the translation rules. We have

two code functions (code-action and code-yielder) corresponding to our two judgem ents

(judgem ents 4.29 and 4.30). Also, as each conclusion is unique we can use pa tte rn matching

to implement the rules w ithout having to rely on any dirty trick. For a comparison we give

in Figure 4.20 the S t a n d a r d ML code for a part of the code generator which implements

the translation rules of Figure 4.12. Sort information (/C), which is not relevant for the

rules shown, is the third argum ent of the action tree constructors (B IN D -T O , H E N C E

and BOUND-TO).

4 .3 .4 L im itations

• D ata given by abstractions. We assume the following restriction on d a ta given by

abstractions (not present in standard action notation): an abstraction can only give a

single datum . This simplifies the way the code general or implements the translation

of abstractions. In practice this restriction does not introduce any problem because

A c tr ess 98

(b i n d)

I code.action (BIND-T0(yl,y2,-)) (A,b,-,-, Ub,f,-,-,i,(dx,bx)) =
le t

val (b’,-) = new Ub
val C-b = code-breg b ’
val (c l , i l , S l) = code.yielder y l (A,b, i)
val (c2,i2,S2) = code.yielder y2 (A,b,il)
val c = C-b * " = _BIND(" * cl “ “ c2 **

in
(c,union SI S2)emptymap,b’J,i2,(dx,greater b’ bx))

en d

(h e n c e)

I code.action (HENCE(al,a2,-)) (A,b,Au,Ud,Ub,f,r,l,i,C) =
le t

val (c l ,S l ,A l,b l , f l , i l ,C l) = code.action al (A,b,Au,Ud,Ub,f,r,l,i,C)
val (c2, S2, A 2, b2J2, i2, C2) =

code.action a2 (A ,b l ,A u ,u n ion Ud (range A l) ,s in g le ton b l , f l , r , l , i l . C l)
val c = c l c2

in
(c,union SI S2,merge A l A 2 ,b2 ,f2 ,i2 ,C 2)

en d

(b o u n d)

I code.yielder {B O U N D -T O (s ,y ,-)) (A ,b ,i) =
let

val (c ’, i ’, S >) = code.yielder y (A ,b ,i)
val C-b = code-breg b
val c — "_BOUND(" ‘ c ’ ‘ * C-b “ ")"

in
(c,i\S ')

end

Figure 4.20: The im plem entation of some translation rules of Figure 4.12.

4.4. The Actioneer Generator 99

more than a single datum can be returned using a list. The same point applies for

d a ta given to abstractions.

• Tail recursion for unfolding. The code generator assumes th a t all occurrences of

‘u n fo ld ’ are tail recursive. This condition is however tested by the code generator.

• Source language data operations. The user of ACTRESS m ust provide code for

the source language d a ta operations not pre-defined in A c t r e s s d a ta notation. Such

code must be included in the run-tim e environment. Because a d a ta operation table

(see Rule 4.65) is used by the code generator to transla te the name of d a ta operations

to the name of the corresponding C function which implements the operation, the

user must update this table every time a new d a ta operation is needed.

There are two cases where information provided by the sort checker was essential in the

translation process: the translation of ‘u n fo ld in g ’ and ‘u n fo ld ’ actions, and the translation

of the ‘a b s t r a c t io n ’ operation. Also, the introduction of run-tim e sort checks is guided by

inform ation given by the sort checker.

4.4 T h e A ction eer G enerator

The objective of the actioneer generator is to generate a program , the actioneer for £ ,

from the action semantic description of £. The actioneer for C incorporates £ action

semantics into a generated compiler for £. The semantic function r for an £ program P ,

present in the actioneer, when applied to the abstract syntax tree of P , gives the program

action for V.

Figure 4.21 shows a piece of the actual input to the actioneer generator used for

the generation of an actioneer for S p e c i m e n (compare with the sem antic description in

Appendix B). Figure 4.22 shows the p a rt of the actioneer for S p e c i m e n which corresponds

to the sem antic equations of Figure 4.21 (S t a n d a r d M L code). The generated actioneer

is an M L program which defines a set of mutually recursive functions. Each function

corresponds to a semantic function in the semantic description, and is defined on the

M L da ta type which represents S p e c i m e n ’s abstract syntax. Notice th a t the semantic

function e la b o r a te is translated to the M L function elaborate. We assume th a t there is no

overloading of semantic functions.

A c tress 100

3.2.1 Elaborating Declarations

(1) elaborate _ :: Declaration -> action .

(2) elaborate [[CONST I:Identifier T:Type E:Expression]] =
I evaluate E
then
I bind tokenOf I to the value .

(3) elaborate [[VAR I:Identifier T:Type E:Expression]] =
I I evaluate E then give the value label #1
I and
I I allocateForPrimitiveValue T then give the cell label #2
then
I I bind tokenOf I to the cell#2
I and
I I store the value#l in the cell#2 .

Figure 4.21: Two semantic equations for S p e c i m e n ’s declarations (actual input).

The im plem entation of the actioneer generator was very straightforw ard as long as we

had defined an abstract syntax for action semantic descriptions.

4 .5 T h e A ctio n N o ta tio n In terpreter

The action notation interpreter [84], An I, takes an action and interprets it giving an

in terpretation ou tput. Interpretation of an action corresponds to its performance. The

in terpretation ou tpu t is basically a triple representing transients and bindings given and

produced respectively by the action, and the sta te of storage after action performance.

Also an outcom e sta tus — completed, escaped or failed — is indicated. W hen an action

diverges, its interpretation also diverges, which causes the interpreter to loop. Finally,

the oup tu t includes the com m itm ent flag, committed or uncommitted. (The ou tpu t can be

sometimes an error message reporting some illegal condition arisen during in terpretation).

4.5 .1 In terpreting A ctions

The interpreter, which includes the action notation abstract syntax, and an interpreting

function th a t takes an action and interprets it, makes use of two auxiliary functions to

in terpret an action term: step and propagate. A state is formed by the action to be

interpreted, together with the transients, bindings and storage to be received by th a t

4.5. The Action Notation Interpreter 101

and

(* elaborate :: Declaration -> action *)

elaborate (CONST (I, T, E)) = ActionAST.THEN (evaluate E,ActionAST.BIND_TO (t
okenOf I ,ActionAST.THE (ActionAST.NAME ("value",()),0,()),()), ())

elaborate (VAR (I, T, E)) = ActionAST.THEN (ActionAST.AND (ActionAST.THEN (ev
aluate E,ActionAST.GIVE (ActionAST.THE (ActionAST.NAME ("value",()),0,()),1,(
)),()),ActionAST.THEN (allocateForPrimitiveValue T,ActionAST.GIVE (ActionAST.
THE (ActionAST.NAME ("cell",()),0,()),2,()),()),()).ActionAST.AND (ActionAST.
BIND_T0 (tokenOf I.ActionAST.THE (ActionAST.NAME ("cell",()),2,()),()).Action
AST.ST0RE_IN (ActionAST.THE (ActionAST.NAME ("value",()),1,()).ActionAST.THE
(ActionAST.NAME ("cell",()),2,()),()),()),())

Figure 4 .22 : The actioneer for S p e c i m e n (part).

action. (The initial state is formed by the top level action, no transients, no bindings and

an em pty store). A step is an in terpretation outcome; it is formed by the outcom e sta tus,

transients, bindings, storage and the com m itm ent flag.

The function step takes a sta te , in terprets it and gives a step. For example, the

following is the definition of step for the ‘g iv e ’ action3:

step State (g iv e y label # n , £, b, s) =
l e t

f d = Step (C om pleted , {n i-> d}, {}, s, Uncommitted)
f Sort (Ind iv idua l d) = f d
f Nothing = Step (Failed, {},{}, s, Uncommitted)
f Sort (_) = Step (Error, p r o p e r s o r t i n g i v e a c t i o n)

in
f (evaluate y t b s)

end

The function evaluate evaluates a yielder term , yielding a datum . The function / is

used to handle the result of the evaluation of y; for example, if y evaluates to ‘n o th in g ’

(Nothing) the result of in terpretation of the ‘g i v e ’ action is Step (F ailed , {}, {}, s , U ncom m itted) .

The step Step (Error, m sg) is exceptional; when it is reached the interpretation is aborted

and message msg is printed.

3The presentation notation is inspired by ML syntax.

A c tr ess 102

For sta tes containing a compound infix action, we use the auxiliary function propagate,

which takes two stepped actions composed by an infix com binator (a stepped infix action),

composes them and gives a new step. For example, for the action ‘ax th en a2 , step is

defined as:

step State (ax th en a2, t ,b , s) =
let

S tep (r i , t i ,b i ,S x ,C i) = step State (ax, t, b, s)
in

if rx — Completed
then propagateThen Step (rx,tx,bx, Sx,Cx) (step State (a2,tx ,b , Sx))

else if rx = Escaped
then 5 te p (r1, t 1,{ } ,5 i ,c 1)

else Step (r l5 {}, {}, s l7 cx)
end

where

propagateThen
Step (C om ple ted , tx, bx, Si, Cx)
Step (Completed, t2,b2, s2, c2) = Step (Completed, t 2, merge bx b2, s2, commit Cx c2)

propagateThen
Step (Completed, tx, bx, Sx, cx)
Step (Escaped, t 2, b2, s 2, c2) = Step (Escaped, t2, {}, s2, commit Cx c2)

propagateThen
Step (Completed, tx, bx, Si, c3)
Step (Failed, t2,b2, s 2,c 2) = Step (Failed, t2, {}, s2, commit Cx c2)

propagateThen

= Step (Error, cannot propagate stepped actions)

The commit function computes the com m itm ent flag for a new step combining the com­

m itm ent flags of two given steps as below:

commit Uncommitted Uncommitted = Uncommitted
commit Committed _ = Committed
commit _ Committed = Committed

Finally, the evaluate function, as we said before, evaluates a yielder giving a datum .

We show below how the yielder ‘th e Sfi^n'' is evaluated:

4.5. The Action Notation Interpreter 103

evaluate (the S # n) t b s = let
S ' = evaluateSort S t b s
d = t at n

in
if d is O f Sort S ' then d else Nothing

end

Transients, bindings and storage (as well as the com m itm ent flag) are propagated

th roughout the interpretation process. In the following paragraphs we explain in more

detail the in terpretation of some action notation term s.

B asic

The performance of the ‘c o m m i t ’ action completes, gives no transients, produces no bind­

ings, does not change storage and changes the com m itm ent flag to Committed. Thus:

step State (c o m m it , t , b, s) = Step (Completed, {}, {}, s, Committed)

We have used some action notation laws ([80]) to implement the in terpretation of some

actions. For example, the law

diverg e = un fo ld ing unfold

was directly applied to in terpret the action ‘d iv e r g e ’ as follows

step State (d iverge , t, b, s) = step State (u n fo ld in g unfo ld , t, b, s)

The in terpretation of ‘un fo ld ing a ’ is equivalent to the in terpreta tion of a with all unfold

actions in a replaced by ‘u nfo ld in g a \ The replacement is done using the auxiliary function

unfold:

step State (u n fo ld in g a, t, b, s) = step State (unfold a a, t, b, s)

where unfold is defined as follows:

unfold unfold a = un fo ld ing a
unfold (u n fo ld in g oq) a = unfold ing a x

unfold (indivisibly a x) a = indivisibly (unfold ax a)
unfold (a ! or a 2) a = (unfold ax a) or (unfold a2 a)
unfold (ax and a2) a = (unfold ax a) and (unfold a2 a)

unfold (ax b efore a2) a = (unfold ax a) before (unfold a2 a)
unfold ax a = ax, where ax is a primitive action

A c tr ess 104

The action ‘ai or a 2’ is interpreted as follows. A random ly-generated num ber is used to

determ ine which subaction should be interpreted. The other subaction is only interpreted

(performed) if the chosen one fails and is uncom m itted. This solution gives an interesting

flavour of non-determinism for the ‘or’ combinator.

R eflective

An abstraction is represented by a value Abstraction{a,t,b), which is basically a triple,

where a is the incorporated action, t is transients, and b is bindings. These three fields

are supplied by the ‘abstraction’, ‘with’, and ‘closure’ operations respectively:

evaluate (abstraction a) t b s = Abstraction (a, {},{})

evaluate (yi with y2) t b s =
let

f Abstraction (a, t',b') = (a, b', {})
/ Closure (a, t', b', s', brec) = (a, b', brec)
f d = Step (Error, not an abstraction)
(a, b', brec) = / (evaluate yi t b s)
d2 = evaluate y2 t b s

in
Abstraction (give d2 then a, {}, R E C (overlay brec b'))

end

evaluate (closure y) t b s =
let

/ Abstraction (a, t', {})
/ Abstraction (a,t.', b')
f Closure (a, t', b', s', brec1)
f -
y' = evaluate y t b s

in
f y'

end

The ‘enact’ action is interpreted as follows:

step State (enact y, t, b, s) =
let

/ Abstraction (a, t ' , b') = step State (a, t', b', s)
/ _ = Step {Failed, {},{}, s, Uncommitted)

in
/ (evaluate y t b s)

end

= Abstraction (a, t',b)
= Abstraction (a, t',b')
= Closure (a, t', b', s', brec')
= Step (Error, n o t an a b s t r a c t io n)

4.5. The Action N otation Interpreter 105

H ybrid

T he in terpretation of the action ‘recursively bind k t o yb is ju s t to bind k to the closure

value Closure (yb,t ,b , s ,r) . The contents of the closure is the unevaluated abstraction

yielder yb, transien ts t , bindings 6, storage s and a recursive binding r. The recursive

binding com ponent r is ju st a binding of fc to a similar closure in which the recursive

binding com ponent is empty. (The effect is th a t the recursive binding com ponent is a

pointer to the binding.)

step State (recursively bind y t o yb, t ,b ,s) =
l e t

/ TokenE(k) = TokenE(k)
f - = Step (Error, n o t a to k e n in r e c u r s iv e ly b in d a c tio n)
token = f (evaluate y t b s)
r = {token Closure (yb, t, b, s, {})}
closure — Closure (yb, t, b, s, r)

in
Step (Completed, {}, {token closure}, s, Uncommitted)

end

Every time a yielder evaluates to a Closure (yb, t, b, s, r) we evaluate yb with income

(t, R E C (o v e r la y r b),s). The unrolling operation R E C is defined as:

R E C { } = {}
R E C b = l e t

d -= domainOf b
r = rangeOfb
r' = map (recVE b) r

in
zip d r'

end

where

recVE b' (Closure (yb, t, b, s, r)) = Closure (yb, t, b, s, b')
rec VE b 'd = d

A nother example of the use of laws in the in terpreter is the im plem entation of the

action ‘a l l o c a te a c e l l ’ from the law

A c t r e s s 106

a l lo c a te c < cell =

indivisibly

| c h o o s e a cell [n ot in d o m a in o f current s tora ge]

then

| reserve it and g iv e it .

which was defined as below:

step State (a l lo c a te y, t , b, s) =

step State (indivisibly (c h o o s e (y & ce ll -n o t- in (d o m a in - o f s t o r a g e))

then

(reserve it and g iv e i t)) ,

t ,b ,s)

where ‘c e l l -n o t - in ’ is an auxiliary function th a t gives a cell th a t is not in a given set.

D a ta N o ta tio n

We also implemented many of the operations present in d a ta notation (such as su m ,

union , etc). Some of them were used in the definition of the interpreting function itself,

for example the function merge in the definition of propagateThen.

4.5 .2 L im itation s

Interleaving of action performance is not implemented. As a consequence actions like

‘di and a2 are specialized to the case where the whole of ax is interpreted before the

in terpreta tion of a2. For this reason, the behaviour of ia1 and a2 is equivalent to ‘ax

and th en a2 . This can be a problem in cases where ax diverges and a2 fails; in A n i

such actions will diverge rather than fail (as it could happen if a more genuine interleaving

in terpreta tion were used). To minimize such effect we could choose random ly the subaction

to be performed first. Due to the absence of interleaving the action ‘indivis ibly a ’ is the

same as a.

Actions like ‘c h o o s e a n a tu ra l’ is implemented, although it gives the same natural

individual every tim e it is performed. In general, ‘c h o o s e y 1 will give an individual of the

sort yielded by the evaluation of y , if this is a subsort of distinct datum .

A n i implem ents only a fixed set of sorts, the standard ones th a t are subsort of datum .

The so rt ‘cell [s]’ is not implemented. User-defined sorts cannot be included in the present

4.5. The Action Notation Interpreter 107

datatype Program = P R O G R A M o f Identifier * Declaration * C om m and

and Declaration = C O N S T o f Identifier * Type * Expression
I VAR o f Identifier * Type * Expression
I P R O C o f Identifier * Formats * C om m and
I F U N o f Identifier * Formats * Type * Expression
I D E C LS E Q o f Declaration * Declaration

and Formats = E M P T Y F O R M A L
I F O R M A L o f Formal
I F O R M A L SE Q o f Formal * Formats

Figure 4.23: A fragm ent of S p e c i m e n ’s abstract syntax in S t a n d a r d ML.

im plem entation. A n i reports an error when it tries to evaluate an unknown sort. Yielders

such as

th e (in teger | tru th -v a lu e)

are properly interpreted (or even ‘th e 1 ’ !).

Comm unicative actions are not present in the current im plem entation.

4 . 5 . 3 G enerating an Interpreter for SPECIMEN

Although A n i was designed to in terpret a rb itrary actions, it has proved to be a useful tool

to in terpret program actions. In order to achieve this, we use A n i in conjunction with

the actioneer generator. We represent the abstract syntax of a language by a S t a n d a r d

M L datatype, which should be provided by the user. Figure 4.23 shows a fragm ent

of S p e c i m e n abstract syntax defined in such a way. To illustrate the use of A n i in

conjunction with the actioneer generator we give a concrete example using SPECIMEN.

Suppose we want to in terpret the factorial program shown in in Figure 4.24 which

calculates the factorial of 10. Firstly we use a parser generator to build a parser for

S p e c i m e n . (We used M L - Y a c c for this purpose [101].) This parser m ust give an instance

of the M L da ta type as the representation of the parsed program . Secondly, we obtain an

actioneer for S p e c i m e n by application of the actioneer generator to S p e c i m e n ’s action

semantic description (Equation 4.5). Applying the parser to the source program gives the

program ’s abstract syntax tree. Now we can apply the sem antic function run , present in

the actioneer, to this tree to obtain the program action for the factorial program . (We

A c t r e s s 108

program factorial is
var

y : int := 0;
proc

fact (n : int) =
if (n = 0)

then y := 1
else

call fact (n — l);
y := n * y

end
in

call fact (10)
end

Figure 4.24: The S p e c i m e n factorial program .

could unparse the program action with a pretty printer for action notation, which would

give an ou tpu t like the program action for loop in Figure 4.2.) Finally, we use A n i to

in terp ret the program action. The following is the in terpretation outcome:

Outcom e Completed!
Transients em pty-transients
Bindings empty-bindings
Storage { cellO — > 3628800 }

{ cellll — > 0 }
{ celllO — > 1 }
{ cell9 — > 2
{ cell8 — > 3
{ cell7 — > 4
{ cell6 — > 5
{ cell5 — > 6
{ cell4 — > 7
{ cell3 — > 8
{ cell2 — > 9
{ celll — > 10 }

Com m itm ent C om m itted action!

Notice th a t this shows the global effect of the program , th a t is, no transien ts are given,

no bindings are produced and the factorial of 10 is stored in cell 0 (the cell allocated

to hold the content of variable y). Also notice th a t 11 additional cells were allocated

during the com putation to hold the argum ent to the fact procedure. (These cells were not

deallocated.) □

4.6. Generating a Compiler for S p e c i m e n 109

Aniactioneerparser

actioneer
generator

ml-lex &

ml-yacc

source
program

syntax

program AST

semantics

program action

L interpreter

interpretation
outcome

Figure 4.25: A n i , the actioneer generator and an interpreter for C.

Figure 4.25 shows the architecture of the whole system . The current version imple­

m ents most of the standard action notation4. It has a good user interface with good error

messages. Some nice functions (tools) such as the unparsing function are provided. In

Figure 4.26 we present a signature with some of the types and functions defined in the

im plem entation. A n i has been used for some students in introductory courses to action

semantics and we think it is a good tool to present to new actioneers. Besides S p e c i m e n ,

we have defined an in terpreter for a subset of S t a n d a r d M L which includes higher-order

functions.

4 . 6 G en eratin g a C om piler for S p e c i m e n

A c t r e s s ’s generated compilers have four components. The following are the steps required

to generate these components for S p e c i m e n (or any other language):

• The first step is to provide an action semantic description for S p e c i m e n . This will

be the actual input to the actioneer generator as in Equation 4.5. In the current

4 In fact we have two versions of the action notation interpreter: one for ACTRESS action notation and
other for standard action notation.

A c t r e s s 110

s ig n a tu r e Ani =
sig

ty p e ast
ty p e datum a n d sort
d a ta ty p e state
an d commitment ■
a n d step ■

an d outcomeStatus ■
val <
val &
val individualToSort
val sortToIndividual
val evaluate
val evaluateSort
val propagateThen
val step
val interp

e n d

a n d transients an d bindings an d storage
- State of ast * transients * bindings * storage
- Uncommitted I C om m itted
- Step of outcomeStatus * transients * bindings * storage *

com m itm ent
= Completed \ Escaped I Failed

sort * sor t -> bool
sort * sor t -> sort
datum -> sort
sort -> datum
AST -> transients -> bindings -> storage -> datum
ast -> sort
step -> step -> step
state -> step
ast -> unit

Figure 4.26: A signature with some of A n i’s types and functions.

version of the actioneer generator, this input is an ASCII version of the description

in Appendix B.

• A parser for S p e c i m e n is obtained using the M L - Y a c c parser generator. A t this

stage, an abstract syntax for SPECIMEN in term s of an M L da ta type m ust be given.

Although this da ta type could be autom atically derived from the sem antic descrip­

tion, we did not implement this derivation. The parser is the first com ponent of the

generated compiler.

• Now we can use Equation 4.5 to obtain an actioneer for S p e c i m e n which will con­

s titu te the second component of the generated compiler. (Note th a t this and the

previous step are the same steps as in generating an in terpreter.)

• The th ird and fourth components are A N C ’s sort checker and code generator re­

spectively.

The C object code produced by A c t r e s s ’s compilers can be compiled using any standard

C compiler (we have used GNU C compiler [99] in our experim ents). One could see this

as a fifth component of the generated compiler. Figure 4.27 shows the generated C object

4.7. Improving ACTRESS 111

D A T U M _d l , -d2, _d3 , _<L*; BINDINGS -b l , J>2,

int mam()
{

_cU = _MA A'£_/7VT£'G£'i?(1000000);
= -BIN D(" n", _dl);
= _MAI<E-INTEGER(0);

-d2 = -AL LO C A T E -A -C E L L Q ;
= -B IND{" x" , -d2);

*-d2. datum, cell = _c?l;
_65 = -O V ER L A Y-BINDINGS(J>2, Jbl) \
- d l = _BOUND(' 'n", - bS);
* - B O U N D (,'x", -bS) .datum.cel l = - d l ;

- repeat-1:
_dl = *-BOUND("x' ' , -b3) .datum.cel l;
- d2 = - M A K E - IN T E G E R (0);

= _I S - G R E A T E R - T H A N (- d l , _d2);
if (-d3. datum.truth-value) {

- d l = * -B O UN D(" x ", -b3) .datum.cel l;
- d2 = _ AM K E-INT E GER(1);

= -D IF F E R E N C E (- d l , . d2);
* -B O UN D(" x”, -b3) . datum.cell = -d4;
goto _repeat -1;

} e ls e {
; /* complete * /

};
ea:*t(0);

-failure-0:
exi t { l);

Figure 4.27: O bject code obtaind by compilation of the loop program .

code for the loop program of Figure 4.3. This is the ou tpu t of an A c t r e s s compiler which

was generated from the sem antic description for S p e c i m e n given in Appendix B.

4 .7 Im proving A c t r e s s

We m easured the run-tim e of the loop program of Figure 4.3 against the run-tim e of a

sim ilar P a s c a l program compiled with a hand-crafted compiler. Timing the running time

with the U N IX tim e command we obtained:

S p e c i m e n 2 3 . 3 0 0 u 0 . 0 9 0 s 0 :2 3 .8 8 97.9*/, 0+99k 0+Oio Opf+Ow

P a s c a l 0 . 5 8 0 u 0 . 1 5 0 s 0 :0 0 .7 4 98.6'/, 0+164k 0+0io Opf+Ow

T h a t is, the object code generated by the A c t r e s s S p e c i m e n compiler runs approx­

A c tr ess 112

im ately 40 times slower than the object code generated by the hand crafted P a s c a l

compiler.

In the next chapter we will address the subject of action transformations. The use of

these transform ations in A c t r e s s will improve significantly the quality of the object code

of its generated compilers.

C h apter 5

B ind in g E lim ination

A ssignm ent o f a value to a variable is a feature found, in some
form , in almost every high-level programming language. Its syn­
tax varies slightly from one language to another: some use ”
to indicate the assignment operation, others or some
require the s ta tem ent to begin with a keyword, such as “SET" or
"LET"; and som e require it to be term inated with a ” or some
other separator. But these syntactic differences are minor. There
is much greater variation in semantics. In som e languages, the
storage area or cell referred to by a variable is fixed throughout
the execution o f a program, while in others it m ay vary in size,
internal structure, or location at various tim es during execution,
under either explicit or purely implicit program m er control. In
some languages, one m ay obtain as a value a reference or pointer
to a variable and manipulate it, including assigning a reference to
one variable as the value o f another, while in others such refer­
ences are completely hidden from the programmer.

Neil Jones and Steven Muchnick, 1978, in [51].

This chapter presents a technique for binding elimination in action notation. We s ta r t by

giving some motivation and by explaining how we identify known and unknown datum

bound to identifiers. We then present how ‘a l l o c a t e ’ actions are classified, which corre­

sponds to compile time storage allocation. After an intuitive introduction to transient

elimination and binding elimination, we formalise both using w hat we call elimination

rules. Some examples are given. The im plem entation is then described. Finally, we

close the chapter by exploring relationships between the different form alisations for action

notation, and by listing some improvements to the current work.

113

Binding Elimination 114

5.1 M otivation

In a conventional hand-w ritten compiler for a statically scoped language, whenever pos­

sible identifiers are replaced by the values they denote a t compile tim e. For example, a

constan t declaration associates a value to an identifier. This value can be, in general,

known or unknown a t compile time. If the value is known, the compiler ju st replaces every

scoped occurrence of the constant identifier by its value and then eliminates the binding

established by the declaration. If the value is unknown, we firstly replace the identifier-

value association by an identifier-location and a location-value association. (Although the

compiler does not know the value, it can determ ine the location, a t compile tim e.) Finally,

after replacing all scoped occurrences of the constant identifier by a location lookup, the

identifier-location association (binding) can be eliminated. Note th a t a location (cell) was

allocated a t compile time. Moreover, probably there is no mention of this location in the

original semantics of the constant declaration.

We call binding elimination the process by which identifier-value associations are elim­

inated from a program at compile time.

A variable declaration is also a good illustration of some aspects of binding elimination.

Usually, a variable declaration (as in P a s c a l) establishes a binding of an identifier to a

memory location. If the compiler knows this location, it replaces all scoped l-occurrences

of the identifier by the location; and all scoped r-occurrences by the contents of the lo­

cation (in fact a location lookup). If the exact location is unknown, for example in the

case of a variable local to a procedure, the compiler makes this unknown location into a

known relative location and then, using this known relative location, replaces the scoped

occurrences of the variable identifier as in the known case. In both cases the compiler can

eliminate the original binding.

As a final illustration, consider a procedure declaration (as in P a s c a l) . The object

code, which results from the translation of the procedure’s body, is referenced by a location

th a t is known a t compile time (actually the location of the first instruction of the object

code). So all subsequent occurrences of the procedure identifier (in procedure calls) are

replaced by subroutine jum ps to th a t location. After replacing all procedure identifiers,

the identifier-procedure binding can be eliminated. Notice th a t, a t run-tim e, when the

actual jum p is made, all the d a ta accessed/m anipulated by the procedure’s code is in

5.2. Action Transformations 115

place and accessible through a pre-determ ined mechanism.

O ur ultim ate goal is to ta l binding elimination, th a t is, the com plete elimination of the

declarative facet from the program action, for statically scoped languages. In term s of

action notation, we can think of transform ing each ‘bind’ action present in the program

action: either by eliminating it or by transform ing it into an im perative action. Also

transform ing every ‘the s bound to fc’ which “corresponds” to the transform ed ‘bind’ action.

Let u s examine in more detail the object code generated by the S p e c i m e n compiler

obtained in Section 4.6.

E x a m p le 5 .1 . E x tracts from the corresponding program action and object code for the

factorial program of Figure 4.24 are in Figure 5.1 and Figure 5.2, respectively. The three

binding registers in line 34 of Figure 5.2 are used to store bindings a t run-tim e. The

‘bind’ actions for y (line 5 in Figure 5.1) and n (line 19 in Figure 5.1) make their way into

the object code as calls to the run-tim e function _B IN D (lines 38 and 7, respectively, of

Figure 5.2). The call to _O V E R LA Y JB IN D IN G S in line 41 of Figure 5.2 resulted from

the translation of the ‘before’ com binator in line 8 of the program action. The calls to

.BO U ND , in lines 10, 14, 19, 23, 24, 26 and 46, of F igure 5.2, represent binding lookups.

All this run-tim e m anipulation of bindings imposes a significant overhead on the object

code. More im portantly, it has no resemblance to the code generated by a hand-crafted

compiler.

A t the end of this chapter we will come back to th is example, showing how the quality

of the object code of Figure 5.2 (an the one in Figure 4.27) is improved after binding

elimination. □

5.2 A ctio n T ransform ations

Binding elimination is accomplished by action transformations. We call the source action

the action th a t is the subject of transform ations, and the target action the action obtained

from the source action by application of one or more transformation rules. Thus, w hat one

should do is a kind of simplification on the source action; for example, one could explore

action notation algebraic properties (as presented in [80]) to obtain sim pler actions. But,

and m ost im portantly, we need to introduce new transform ation rules in order to do

Binding Elim ination 116

1 1 1 1 g iv e 0 th en g iv e th e v a lu e la b e l #1
1 1 1 and
1 1 1 1 a l l o c a t e an c e l l th en g iv e th e c e l l la b e l #2
1 I th en
1 1 1 1 b in d "y" to th e c e l l# 2 (5)
1 1 1 and
1 1 1 1 s t o r e th e v a lu e # l in th e c e l l # 2
1 b e fo r e (8)
1 I r e c u r s iv e ly b in d " fact" to c lo s u r e a b s tr a c t io n
1 1 1 1 furth erm ore
1 1 1 1 1 1 g iv e h ead O f(the p r o c -a r g u m e n t- l is t)
1 1 1 1 1 th en
1 1 1 1 1 1 1 1 g iv e th e v a lu e la b e l #1
1 1 1 1 1 1 1 and
1 1 1 1 1 1 1 1 1 a l l o c a t e an c e l l
1 1 1 1 1 1 1 1 th en
1 1 1 1 1 1 1 1 1 g iv e th e c e l l la b e l #2
1 1 1 1 1 1 then
1 1 1 1 1 1 1 1 b ind "n" to th e c e l l # 2 (19)
1 1 1 1 1 1 1 and
1 1 1 1 1 I I I s t o r e th e v a lu e # l in th e c e l l# 2
1 1 1 hence
I I I I I1 1 1 1 1 . . .
I 1 I I th en
1 1 1 1 1 1 g iv e 1 th en s t o r e th e v a lu e in th e c e l l bound to "y"
1 1 1 1 1 e l s e
I 1 I I I I I I I I I1 1 1 1 1 1 I 1 1 1 1 • • •
1 1 1 1 1 1 1 1 1 1 and
1 1 1 1 1 1 1 1 1 1 1 g iv e 1 th en g iv e th e v a lu e la b e l #2
1 1 1 1 1 1 1 1 1 then
1 1 1 1 1 1 1 1 1 1 g iv e d i f f e r e n c e (t h e in t e g e r # l , t h e in te g e r # 2)
1 1 1 1 1 1 1 1 then
1 1 I I 1 I 1 I 1 g iv e l i s t (t h e datum)
1 1 1 1 1 1 1 th en
1 1 I I I I I I en act (th e procedure bound to " fa c t" w ith th e fu n -a r g u m e n t- l is t)
1 1 1 1 1 1 and then
1 I I I I I I I I I 1 1 g iv e th e v a lu e bound to "n"
1 1 1 1 1 1 1 1 1 1 1 or
1 1 1 1 1 1 1 1 1 1 1 1 g iv e th e p r im it iv e -v a lu e s to r e d in th e c e l l bound to "n"
1 1 1 1 1 1 1 1 1 1 th en
1 1 1 1 1 1 1 1 1 1 1 g iv e th e v a lu e la b e l #1
1 1 1 1 1 1 1 1 1 and
1 1 1 1 1 1 1 1 1 1 1 1 g iv e th e v a lu e bound to "y"
1 1 1 1 1 1 1 1 1 1 1 or
1 1 1 1 1 1 1 I I 1 1 1 g iv e th e p r im it iv e -v a lu e s to r e d in th e c e l l bound to "y"
1 1 1 1 1 1 1 1 1 1 th en
1 1 1 1 1 1 1 1 1 1 1 g iv e th e v a lu e la b e l #2
1 1 1 1 1 1 1 1 th en
1 1 1 1 1 1 1 1 1 g iv e p r o d u c t(th e in t e g e r # l , t h e in te g e r # 2)
1 1 1 1 1 1 1 th en
1 1 1 1 1 1 1 1 s t o r e th e v a lu e in th e c e l l bound to "y"
hence
1 I g iv e 10 th en g iv e l i s t (t h e datum)
1 th en
I | en a ct (th e procedure bound to " fa c t" w ith th e fu n -a r g u m e n t - l is t)

Figure 5.1: Program action for the factorial program (extract).

5.2. Action Transformations 117

in t -absO(-din, -bin, -dout , -bout)
D A T U M -din; BINDINGS -bin; D A T U M *-dout; BINDINGS *.bout;

{ D A T U M -d l , -d2, - d3, -d4, -d5, _d 6 ; BINDINGS _b l , _b2, _bS;
- d l — -din; - b l = -bin;
-d2 = - H E A D . O F { - d l); - d 3 = -SO R T- CH EC K (-d 2 , 4L);
-d4 = -ALLOCATE-A-CELL{) ;
-b2 = -BIND("n", . d4) ; (7)
*-d4-datum, cell = -d3;
J>3 = -OV ERLA Y-BIN DING S(-b2 , - b l) ;
-d2 = *-BOUND{"n", -b3) .datum.cel l; _dS = -MAK E -IN TE G E R(0) ; (10)
-d4 = - IS (.d2 , -d3);
i f (-d4-datum.truth-value) {

-d2 = -MAI<E-INTEGER(1);
* -BO UND (" y", -b3) . datum.cel l = -d2; (14)

} e ls e { -d 2 = * - B O U N D (”n'', -bS).datum.cel l; (15)
- d3 = -M AK E -I N T E G E R (l) ;
- d5 = -DIFFERENCE(-d2 , -d3);
-d2 = -L IS T (.d 5) ;
-d 3 = - W I T H (- B O U N D (" fa c t " , _b3), -d2); (19)
i f ((_d3.datum.abs—>codeact)

(- d3.datum.abs—>datum,-d3.datum.abs—>bindings , i i -d5,&i-bl))
g o t o -failure-0;

-d2 = * - B 0 U N D (" n " , -b3) .datum.cel l; (23)
_d3 = * -BOUND(' ' y" , -b3) .datum.cel l; (24)
- d 6 = - P R O D U C T (- d 2 , - d 3);
* -B 0 U N D (" y " , - b3) . datum.cell = _d 6 ; (26)

} ;

*-dout = - d l ; *-bout. = NULL;
r e tu r n (0);

- fai lure-0:
r e tu r n (1);

}
D A T U M -d l , -d2, -d3; BINDINGS -b l , _b2, -b3; (34)

in t mainf)
{ - d l = -MAI<E-INTEGER(0); - d2 = -ALLO CAT E-A -C ELL Q;

- b l - -B IN Df ' y" , -d2) ; (38)
*-d2.datum.cel l = -d l ;
-b2 = -BIN D(" f a c t " , - M A K E - U N K N O W N ());
-b3 = - 0 VERLAY-BINDINGS(-b2 , - b l) ; (41)
-b3 —> datum = _CLO S U R E (- A B ST R A C T IO N (- a bs O), -b3);
-b2 — -BIND{" fa c t " , - b 3 —>da tum);
-b3 = - 0 VERLAY-BINDINGS(-b2 , - b l) ;
- d l = -MAI<E-INTEGER{ 10); - d2 = -L I S T (- d l) ;
- d l = - W I T H (- B O U N D (”fa c t " , -b3) , -d2) ; (46)
i f ((- d l . da tum.abs—>codeact)

(-dl . datum.abs —> datum,-dl .datum.abs—>bindings, i i -d3,&i-bl))
g o t o -failure-0;

exit(0);
-failure-0:

ex i t (1);
}

Figure 5.2: O bject code for the factorial program .

Binding Elim ination 118

further simplifications and, hopefully, to achieve the to ta l elimination of the declarative

facet. Naturally, each transform ational step m ust be justified by a rule, which implies th a t

the targe t action is, in some sense, semantically equivalent to its source action.

We assume th a t the action subject to transform ation was previously sort-checked;

thus all sort information th a t was derived by the sort checker is available. In fact this sort

inform ation plays a fundam ental role in the transform ations. By analysing sort information

one can easily distinguish known values from unknown ones, as is explained in Section 5.3.

We assume th a t sort checking is complete, th a t is, for every subaction a of the source

action, the sort of a has been inferred by the sort checker. This sort is ‘n o t h i n g ’ for any

action th a t m ust fail and (r, (3) c-> (t',/3 ') for any other action (where r , (3, t ' and (3' are

defined as in Section 4.2.2).

5.3 K n ow n and U nkow n B ind ings

Depending on our compile-time (or static) knowledge of w hat datum (value) is bound to

an identifier, a binding can be (statically) known or (statically) unknown. The transfor­

m ations we apply to eliminate a known binding are different from the ones we apply when

a binding is unknown. The identification of known and unknown bindings is m ade by a

simple inspection of the sort information. We illustrate this with some examples.

E x a m p l e 5 . 2 . Consider the action ‘g iv e 1 th en bind "z" to th e in te g e r ’. The so rt infor­

m ation (decoration) for the second subaction is

which tells th a t the action produces a binding of ‘z ’ to a value of sort 1. But the only

individual x satisfying

x : 1

is 1. So the value bound to ‘z ’ is known and its value is 1. □

E x a m p l e 5 . 3 . Now consider the incorporated action

5.3. Known and Unkown Bindings 119

| bind “x ” t o th e in teger

h en c e

| g iv e su cc es so r (t h e in teger bou n d t o “x ”)

‘x ’ m ight be a formal param eter of a function th a t gives the successor of its argum ent.

Clearly, ‘x ’ is bound to an unknown value. The sort inform ation for the ‘b in d ’ action is:

({ 0 : in t e g e r } , { }) ^ ({ } , { x : in t e g e r })

indicating th a t it produces a binding of ‘x ’ to a value of sort in teger . As m any individuals

x satisfy the assertion

x : in teger

th a t is, in teger is a proper sort, the value bound to ‘x ’ is unknown. □

E x a m p l e 5 . 4 . The ‘b in d ’ action in

| a l lo c a te a cell
then

| bind "x" t o th e cell and store 5 in th e cell

has sort ({ 0 : c e l l } , { }) <-)■ ({ } , (x : c e l l }) . From this we can infer th a t V is bound to an

unknown cell (because cell is a proper sort).

Suppose, however, th a t we statically perform the ‘a l l o c a t e ’ action, so we obtain an

individual cell, say c, as the result of the performance. Now the ‘b in d ’ action has sort

({ 0 : c}, {}) ^ ({}, { x : c}) and now ‘x ’ is bound to a known cell. □

E x a m p l e 5 . 5 . If a token is bound to an abstraction, we tre a t it as if it were bound to an

unknown datum . In

| bind "inc” t o ab s tr a c t io n (g ive su m (th e in te g e r ,1))

h en ce

| e n a c t (th e a b s tra c t io n b ound to “inc” w ith 4)

the ‘b in d ’ action has so rt ({}, {}) ^ ({}, { in c : s}), where s is the abstraction sort

({ 0 : in te g e r } , { }) ^ ({ 0 : in t e g e r } , { }) .

T h at is, ‘in c ’ is bound to an abstraction (whose incorporated action expects an integer

labelled 0 and em pty bindings, and delivers an integer labelled 0 and no bindings). □

Binding Elimination 120

Known bindings are easy to eliminate. Action transform ations tu rn unknown bindings

into known bindings and then eliminate them .

5 .4 C lassify in g A llo ca te A ctio n s

The action ‘a l lo c a te a c e l l ’ allocates a cell dynamically, i.e., the cell is actually allocated

when the action is performed. The allocated cell will be chosen from the currently free cells.

W hich cell will be allocated can depend on such factors as the region of memory where the

program will be loaded, how active the system will be a t allocation tim e, how the system

m em ory m anager works, etc. In this sense, the ‘a l l o c a t e ’ action is a non-determ inistic

action. In general, all variables (in the sense of P a s c a l variables) in a program action

are allocated in the heap, no m atter whether they are global or local or heap variables.

However an A c t r e s s compiler, like any conventional compiler, should use sta tic and stack

allocation wherever possible. S tatic and stack allocation are faster and cheaper than heap

allocation. Also they assign known (relative) addresses to each variable a t compile time,

which is a pre-requisite for binding elimination.

E x a m p le 5 .6 . The ‘allocate’ action in

| a l l o c a te a cell
th en
| s to re 4 in th e cell and g iv e th e cell

th en

| g iv e su m (th e in teger stored in th e ce l l ,3)

can be statically allocated. Suppose we assume th a t ‘a l lo c a te a c e l l ’ allocates cell m. Then

we could transform the source action above into

| s to re 4 in m
th en

| g iv e su m (th e in teger stored in m , 3)

where we ju st replaced all references to the cell (‘th e c e l l ’) by m, an “elim inated” the

‘a l l o c a t e ’ action because we had already performed it. (We will see later why and how the

‘g iv e ’ action in the second line of the source action was eliminated.) □

We introduce a classification procedure which performs ‘a l l o c a t e ’ actions statically

whenever possible. This is achieved by replacing ‘a l lo c a te a c e l l ’ by ‘g iv e cell (/,</)’, where

5.4. Classifying Allocate A ctions 121

‘cell (/,<?)’ represents the <?-th cell a t nesting level I. The program action is a t level 0. The

occurrence of an abstraction defines a new nesting level.

In term s of action notation, we need not only to transform ‘a l l o c a te a c e l l ’ into ‘g ive

ce ll (l ,q) \ but also to reserve the actual cell. For example, suppose th a t after classifying

th e ‘a l l o c a t e ’ actions, we know th a t a particular program action a needs 2 0 cells for its

global variables (nesting level 0). Besides the transform ation above, we need a further

transform ation th a t prepends an action which reserves the cells needed by a:

reserve 2 0 ce lls a t level 0 and th en a

where the action ‘reserve n ce l ls at level V reserves n memory cells (or a memory block of

size n) a t nesting level /, and is defined by:

• reserve _ c e l ls a t level _ :: natural, natural —> a c t ion .

(1) reserve 0 ce l ls a t level I = c o m p le t e .

(2) reserve (su c cesso r (n)) cells a t level / = | reserve n ce l ls a t level I
and

| reserve cell (l ,n) .

For the purposes of compile-time com putations (for example, binding elimination),

‘cell (_,_)’ can be treated as a literal representation of a cell (an individual known cell). In

term s of action notation, ‘cell (-,-)’ can be seen as a yielder operation with functionality:

• cell (_,_) :: natural, natural —»■ yielder [cell] .

which yields a cell computed a t run time.

For simplicity we consider all cells as having the same sort ‘c e l l ’. The A N C code

generator m ust be modified to understand this new operation. It m ust be informed on

how many cells were allocated and at which level (see Section 5.11).

Consider an action a a t level I and an ‘a l l o c a t e ’ action contained in a. Here a m ust be

a program action or incorporated action. Then:

• If the ‘a l l o c a t e ’ action will be performed exactly once whenever a is performed, it

can be replaced by ‘g ive cell (l ,q) \ where ‘cell (/,<?)’ is not used anywhere else in a.

• If the ‘a l l o c a t e ’ action will not be performed exactly once whenever a is performed,

leave it unchanged.

B in d in g E l im in a t io n 122

In action notation it is rather easy to test whether a given suba.ction of a is performed

exactly once when a is performed. For example, if ‘Gq and a 2’ is performed once, then cq

and a2 are also performed once. This point about ‘a n d ’ applies equally to all the other

action com binators except ‘o r ’ and ‘u n fo ld in g ’. If or a 2’ is performed once, one of its

subactions will generally not be performed a t all. If ‘un fo ld in g a ’ is performed once, its

subaction will generally be performed several times.

So the classification procedure works as follows:

• We do not transform ‘a l lo c a t e ’ actions in subactions of conditional actions (‘o r ’ and

‘e l s e ’).

• We do not transform ‘a l l o c a t e ’ actions inside ‘u n fo ld in g ’ actions.

For all o ther action com binators we can be sure th a t an ‘a l l o c a t e ’ action will be performed

exactly once.

Notice th a t, although an incorporated action may be performed more than once, the

‘a l l o c a t e ’ actions inside it, and which do not fall in the two above cases, can be transform ed.

During binding elimination, further cells might be statically allocated, which add to

the num ber of cells allocated by the classification procedure.

Some program m ing languages provide mechanisms for dynamic memory allocation (like

P a s c a l ’s new or C ’s malloc). Although these are genuine dynamic memory allocations, we

could still perform statically such allocations if one can guarantee th a t they are performed

exacly once when the program is run. In general, the classification procedure will not

transform them .

E x a m p l e 5 .7 . C o n sid er th e fo llow in g program in a version o f S p e c im e n e x te n d ed w ith

PASCAL-like p o in ter ty p es:

p rogram poin ter is
v a rp o in ter p : in te g e r

in
w h ile .. .

do

ca ll new (p);

en d
en d

5.5. Transient Elim ination 123

The program action could look like the following:

fu r th erm o r e

| a l lo c a te a cell th en bind "p” t o th e cell
l e n c e

u n fo ld in g

| a l lo c a te a cell th en store p o in ter - to (th e ce ll) in th e cell b ou n d t o "p”

The first ‘a l l o c a t e ’ action can be transform ed to use sta tic allocation, bu t the one inside

the ‘u n fo ld in g ’ action m ust remain as dynamic allocation:

fu r th er m o re

| g iv e cell (0 ,3) th en bind "p” t o th e cell
l e n c e

u n fo ld in g

| a l lo c a te a cell th en s tore p o in te r - to (th e ce ll) in th e cell b ou n d t o “p”

Using other action transform ations which will be introduced later, we can eventually

transform this action to:

u n fo ld in g

| a l lo c a te a cell th en sto re p o in te r - to (th e ce ll) in cell (0 ,3)

□

Although we can think separately about classification of ‘a l l o c a t e ’ actions and binding

elimination, they are specified using a single set of rules and implemented as a single

pass over the decorated action tree. In the same pass we allocate the storage necessary

for the classification of ‘a l l o c a t e ’ actions, as well as storage (if any) necessary for binding

elimination.

5.5 T ransient E lim ination

Suppose we want to simplify the source action

| g iv e 1 th en bind "x” t o th e in teger

h en ce

I g iv e th e in teg er b ou n d to “x”

Binding Elimination 124

F irstly we make the ‘b in d ’ action “consume” the transient given by ‘g iv e 1 ’, and eliminate

the ‘g i v e ’ action:

| c o m p l e t e th en bind "x” to 1

h en ce

j g iv e th e in teg er b ou n d t o "x”

The elimination of the ‘g i v e ’ action is desirable as it became a dead action after the

consum ption of its transien t. (This resembles the dead code elimination transform ation

used in conventional compilers.) Secondly, we can eliminate the ‘b in d ’ action and then

replace all scoped occurrences of ‘th e _ bou n d to "x” ’ by 1:

| c o m p l e t e then c o m p l e t e

h en c e

| g iv e 1

Thus, we have not only eliminated the ‘b in d ’ action but also a ‘g i v e ’ action from the

source action. The elimination of the ‘g iv e ’ action is called transient elimination. In

Section 5.8 we will specify how (partial) transient elimination is achieved together with

binding elimination. (We shall see in Section 5.7 how we can do a further transform ation

and obtain ‘g iv e 1 ’ as the final target action for the above action.)

5.6 B ind in g E lim in ation

Before the form alization of the transform ations, we give some intuition on how the binding

elimination process is carried out. We have to consider two cases in the design of the

elimination rules:

• A token is bound to a statically known datum. If a token k is bound to a statically

known individual datum d (like 5, false , or a particular cell), we can replace all

occurrences of ‘th e s boun d to k ’ by ‘d & s \ (Note th a t ‘d & s ’ can itself be simplified

to d or ‘n o th in g ’, depending on whether d : s or not.)

• A token is bound to a statically unknown datum. If k is bound to a statically unknown

datum of sort S (like a trut.h-va.lue, an integer, a cell or an abstraction), we statically

allocate a cell, say c, store the datum in the known cell c (this is done by replacing

the ‘b in d ’ action by a ‘s t o r e ’ action), and replace all scoped occurrences of ‘th e s

b ound to /j’ by ‘th e s stored in c’.

5.6. Binding Elim ination 125

We describe now some particular examples which clarify the interaction between bind­

ing elimination and storage allocation. We will use the term variable in the sense used in

P a s c a l .

• Suppose A: is a global variable, in which case, the program action contains an action

th a t allocates a cell and binds it to k , e.g., ‘a l lo c a te a cell th en bind k t o th e c e l l ’.

We can classify this ‘a l l o c a t e ’ action by replacing it by ‘g iv e cell (0, q) \ where q is a

natu ral and 0 is the nesting level of the ‘a l l o c a t e ’ action. Now k is bound to a known

cell, so we could replace all occurrences of ‘th e s b o un d t o A:’ by ‘cell (0 , g) ’ and then

elim inate the ‘b in d ’ action for k. Thus lookup a t this cell will be expressed as ‘th e s

stored in cell (0 , ^) ’ instead of ‘th e s stored in th e cell b ou n d t o k \

• Suppose k is a procedure local variable, in which case, there is an incorporated

action which contains an action th a t allocates a cell and binds it (as in the previous

example). We can classify the ‘a l l o c a t e ’ action by replacing it by ‘g iv e cell (l ,q) \ where

I is a positive integer representing the nesting level of the enclosing incorporated

action, and q is a natural representing the next available local cell. Now k is bound

to a known cell, so we could replace all occurrences of ‘th e s b ou n d t o A;’ by ‘cell (/,<?)’

and eliminate the ‘b in d ’ action for k. (As explained in Section 5.4, ‘cell (/,<?)’ can be

seen as a compile-time known cell.)

• Suppose k is bound to a procedure. In this case we store the procedure in a known

cell ‘cell (/,<?)’ and replace all occurrences of ‘th e a b s tra c t io n b ou n d t o A:’ by a storage

lookup for the cell, th a t is, ‘th e a b stra c t io n stored in cell (l ,q) \

• Suppose A: is a procedure formal constant param eter. The token k is bound to an

unknown given value a t the beginning of the incorporated action (the action inside

the abstraction th a t denotes the procedure). In this case we store the unknown given

value in a known local cell ‘cell (l ,q) \ and replace all occurrences of ‘th e s b ou n d to

A;’ by ‘th e s stored in cell (l ,q) \ where I is the procedure nesting level. In this manner

one can eliminate the binding for the formal param eter.

• Suppose k is a procedure formal variable param eter. The token k is bound to an

unknown given cell a t the beginning of the incorporated action. In th is case we store

the unknown given cell in a known local cell ‘cell (l,q) \ and replace all occurrences of

Binding Elimination 126

‘th e cell bou n d t o k 5 by ‘th e cell stored in cell (l,q) \ where I is the procedure nesting

level. In this m anner one can eliminate the binding for the formal param eter.

As one can see from the examples above, there is a strong relation between binding elim­

ination and storage allocation.

5 .7 A ctio n N o ta tio n Laws

Action notation has many nice algebraic properties. For example, the ‘c o m p l e t e ’ action is

the unit element for the ‘a n d ’ combinator:

c o m p le te and a = a

In Figure 5.3 we present some action notation laws. Some of these laws correspond

to the algebraic properties of action notation presented in [80] (Appendix B). Laws are

d istinct from the other transform ation rules in the sense th a t they do not affect sort infor­

m ation. Some of them however are based on certain assum ptions over so rt information.

This is reflected in the two judgem ents encountered in Figure 5.3:

a = a' (5.1)

/C h a = a' (5.2)

The first judgem ent means th a t a is equivalent to a ', th a t is, whenever we find a one can

replace it by a' (and vice versa). Rules with this judgem ent are the ones which resemble

the action notation properties as in [80]. The second judgem ent asserts the equivalence

of a and a' based upon a restriction on the sort of a. For example, one can assert th a t

‘c o m p l e t e th en a = a ’ if the action a uses no transients. This is expressed by Rule 5.4.

It is unusual to find an action like ‘c o m p le t e then a ’ in a program action (and even more

unusual to find one in an action semantic description). However, the rule is useful because,

even when the original program action does not contain one, such an action can arise after

transform ations, which can then be simplified according to the above rule. Moreover, in

A c t r e s s , a program action th a t does not satisfy the antecedent of the rule is ill-sorted.

Because the elimination rules (Section 5.8) preserve sort inform ation (Section 5.12), we

5.8. Elimination Rules 127

(a n d)

complete and a =■ a and complete = a (5.3)

(t h e n)

£ h a :({} ,/?)-> (t ', /? ')
1C h complete then a = a (5.4)

(f u r t h e r m o r e)

1C h furthermore a : (r, {}) «—>• (r ' ,0 ')
1C f- furthermore a = a (5.5)

(h e n c e)

rebind hence a = a (5.6)

K\~ a : (r , {}) ^ {r',0')
1C h complete hence a = a (5.7)

JC \~ a : (r, 0) (r', {})
1C h a hence complete = a (5.8)

(c l o s u r e)

1C h closure y : (r, {}) s
1C h closure y = y (5.9)

Figure 5.3: Some action notation laws.

could drop the antecedent. We decided to keep it for generality though.

5.8 E lim in ation R ules

Transient elimination, binding elimination and classification of allocate actions are speci­

fied by a set of rules called elimination rules. Before we introduce the rules, we will give

an example which helps to build our intuition.

E x a m p le 5 . 8 . The S p e c i m e n program

p rogram intuition is
var x : int := 5

in
x \= x + 1

en d

Binding Elimination 128

has the (slightly simplified) program action

| a l lo c a te a cell
th en

| bind "x" t o th e cell
and

| s to re 5 in t h e cell

l e n c e

| s to re su m (t h e in teger stored in th e cell b ou n d t o ‘' x ' \ l) in th e cell b o un d to "x"

as its denotation. O ur objective is to eliminate the ‘b in d ’ action. U nfortunately V is

bound to an unknown cell. T h a t is because the ‘a l l o c a t e ’ action is a dynamic action which

finds an unreserved cell, reserves it and gives it when the action is performed. Surely, for

th is case, we could perform the ‘a l l o c a t e ’ action statically. If we know th a t no cell was

previously allocated we could use (allocate) ‘cell (0 , 0) ’:

| g iv e cell (0 , 0)

th en

| bind "x” t o th e cell

and
| s to re 5 in th e cell

l e n c e

| s tore su m (th e in teger stored in th e cell boun d t o "x” , l) in th e cell bou n d t o "x”

which by transient elimination can be transform ed into

| c o m p le t e

then
| bind "x” t o cell (0 ,0)
and

| s tore 5 in cell (0 ,0)
le n c e

| s tore su m (th e in teg er stored in th e cell b ound to " x " , l) in th e cell b ou nd t o "x”

Now clearly ‘x ’ is bound to a known datum (cell (0 , 0)) . We could eliminate the ‘b in d ’

action as long as we replace all scoped occurrences o f ‘th e cell bou n d to "x” ’ by ‘cell (0 , 0) ’.

As we shall see, a substitution will be used to record the elim inated bindings. So, we first

elim inate the ‘b in d ’ action, and transform the second subaction of ‘h e n c e ’ knowing th a t

ever}' scoped occurrence of ‘th e _ bou n d t o "x” ’ m ust be replaced by ‘cell (0 , 0) ’:

5.8. Elimination Rules 129

I c o m p le t e

th en

| c o m p le t e

and

| s to re 5 in cell (0 ,0)

l e n c e

| s to re su m (t h e in teger s tored in cell (0 , 0) , 1) in cell (0 ,0)

Using now laws 5.4 and 5.3 we obtain:

| s to re 5 in cell (0 ,0)

h en ce

| s to re su m (th e in teger s tored in cell (0 , 0) , 1) in cell (0 ,0)

B ut we still need to reserve ‘cell (0 , 0) ’:

| reserve 1 cell a t level 0

and then

| s to re 5 in cell (0 ,0)
h en ce

| s to re su m (th e in teger stored in cell (0 , 0) , 1) in cell (0 ,0)

which is the final target action1. □

We introduce some notation and definitions now. A substitution is a m apping from

yielder term s to yielder term s. We express a substitution as

[y'/y, • • •]

where y ' /y means th a t a yielder of the form y can be replaced by y ' . We restrict the term

y' to be either an individual datum d (an integer, a truth-value, or a cell), a yielder of the

form ‘th e _ s tored in c \ or the special individual ‘u n e l im in a te d ’. An em pty substitu tion is

expressed as [].

For example, using substitution

7“ = [4 / th e i n t e g e r # 2 ,

u n e lim in a ted / th e i n t e g e r # 9 ,

true / th e t r u t h - v a lu e # 5]

one can:

JTo simplify the presentation, we tire going to omit the cell reservations action in the target action from
now on.

Binding Elimination 130

• transform ‘g iv e t h e i n t e g e r # 2 ’ into ‘g iv e 4 ’;

• transform ‘g iv e t h e in t e g e r # *) ’ into ‘g iv e th e in t e g e r # *) ’, and

• transform ‘s to re b o th (th e t r u t h - v a l u e # 5 , t h e t r u t h - v a l u e # 6) ’ into ‘s to r e b oth (tru e ,th e

t r u t h - v a l u e # 6) ’.

Using substitu tion

B = [cell (3 , 4) / th e ce ll bound t o “x ” ,

1 0 0 0 / th e in teg er bou n d to "n",

u n e lim in a ted / th e tru th -v a lu e bou nd t o “y " ,

th e in teger s tored in cell (5 ,1) / th e in teger bou nd to "z”]

one can:

• transform ‘bind "w” t o th e cell bound t o 'x '” into ‘bind “w ” t o cell (3 , 4) ’;

• transform ‘g iv e su c c e s so r (th e in teger b ound t o "n”) ’ into ‘g iv e su cc es so r (1 0 0 0) ’;

• transform ‘g iv e n o t (th e tru th -v a lu e b ou n d to "y’) ’ int° ‘g iv e n o t (th e tr u th -v a lu e bound

t o "y”) \ and

• transform ‘s to re th e in teger bound t o "z” in th e c e l l ’ into ‘s to re th e in teger stored in

cell (5 , 1) in th e c e l l ’.

Definition 5.1 (Transient substitution) A transient substitution [y ' / y , . . .] is a sub­
stitution where every y is of the form ‘th e _ # n ’.

Definition 5.2 (Binding substitution) A binding substitution [y'/y,...] is a substitu­
tion where every y is o f the form ‘th e _ bound t o k

M athem atically, transients and bindings substitu tions are label-term m appings and

token-term mappings, respectively. So, for example, one can write for the substitutions

above:

• dom T = { 2 , 9 , 5 } and dom B = { x , n, y , z }

• B(x) = cell (3 ,4)

5.8. Elimination Rules 131

. T (2) = 4

Sometimes is convenient to use the following abbreviations:

• [y'/n] instead of [y'/the _ # n]

• [y'/k] instead of [y'/the _ b ou nd t o k]

As illustrated in Example 5.8, substitutions are used to keep a record of eliminated

transien ts and bindings.

We formalize binding elimination using inference rules. The form alization introduces

two judgem ents: one corresponding to actions and one to yielders. The judgem ent

/C, r , B, S h a => a', V , £ ', S ' (5.10)

s ta tes th a t: in the presence of sort information /C, input transien t substitu tion T , input

binding substitu tion B and input storage allocation context S , action a' is obtained from

a by eliminating transients, eliminating bindings, and transform ing ‘a l l o c a t e ’ actions in

a. The ou tpu t transient substitu tion T ' and ou tpu t binding substitu tion B' record the

transients and bindings eliminated, respectively. The ou tpu t storage allocation context S '

reflects the next cell available for use in a particular nesting level, and in which context

‘a l l o c a t e ’ actions are classified. It is a triple (/,<?, e) where I is the current nesting level, q

the next available cell, and e a boolean telling if ‘a l l o c a t e ’ actions in the current storage

allocation context can be transform ed (true) or not (false). The sort inform ation K, can

be used to infer the sort of a or any of its subactions.

For yielders we have the following simpler judgem ent:

/ C , T , B , S h y ^ y ‘ (5.11)

Here we do not need the ou tpu t substitu tions because yielders do not deliver transien ts or

bindings. Also the current storage allocation context does not change when yielders are

transform ed. Input substitu tions are still needed for yielders. As we shall see shortly, sort

inform ation and input storage allocation context are necessary because of abstractions.

In the sequence we describe the main elimination rules.

Binding Elimination 132

(p r e s e r v e)

g iv e all [] = c o m p le te
g iv e all (u n e l im in a te d /n . • T) = g iv e all T
g iv e all (y/n • T) = g iv e y label and g iv e all T , y / u n e l im in a ted

bind all [] = c o m p le te

bind all (u n e l im in a te d / fc • B) = bind all B
bind all (y/k • B) = bind k to y and bind all B, y / u ne l im in a ted

Figure 5.4: Preservation actions.

5.8.1 P rogram A ction

We apply the following rule to the program action:

K ,[\ ,[] ,(0 ,0 ,true) h a ' ,T ' ,B ' , S '
(5.12)

/C h a ^ a' and th en (g iv e all T 7 and bind all B')

We assume th a t the initial transient and binding input substitu tions are empty, th a t

is, the program action requires no transients and no bindings. If the program action

produces bindings (or gives transients) we preserve them in order to m aintain the action’s

(observational) behaviour; this is achieved by appending preservation actions to the target

action. The preservation actions’ definitions are shown in Figure 5.4. They ju st “pu t back”

transients or bindings eliminated from an action a from which we could not eliminate them .

Notice th a t we do not preserve transients and bindings which were not eliminated (second

line of each definition in Figure 5.4). As we shall see later, there are other cases where the

use of preservation actions will be necessary.

5.8.2 B asic

The elimination rules for basic actions are shown in Figure 5.5. As the ‘c o m p l e t e ’ and

‘fa i l ’ actions do not propagate transients and bindings, the transform ation rules specify

em pty transient and binding ou tpu t substitu tions for them . Com pare the rules with the

semantic rules for the actions given in Figure 3.2.

A part from the presence of the sort information and storage allocation context, the

rule for ‘and t h e n ’ also looks very similar to its sem antic rule in Figure 3.2: we transform

a x; we then transform a 2 using the input substitu tions to the compound action and the

5.8. Elim ination Rules 133

(c o m p l e t e)

K ,T ,B ,S 1- complete =>• complete, [], [],«S (5.13)

(f a i l)

K ,T , B, S h fail =» fail, [] , [] , S (5 .14)

(a n d)

K , T , B , S \ - ai K,,T,B,S{ \~ a2 ^ a'2,Tl,B'2,S'2
K ,,T ,B ,S a i and a 2 => a[and a'2,T{ ®T2,B\ 0 B2,S 2 (5.15)

(a n d t h e n)

! C ,T ,B ,S \ - ai =► a'l ,Tl,B'1,S{ IC,T,B,S(h a 2 => a’2,Tl,B'2,S'2
1C, T, B, S h a i and then a 2 => and then a2, T{ 0 T2, B[0 B'2,S 2 (5.16)

(u n f o l d i n g)

K , r , B \ - a ~ T u ,B u JC,%,BU, (I, q, false) h a => a', T ' ,B ', S'
JC,T,B, (I, q, e) h unfolding a => a" thence unfolding a', T ' , B ', S' (5 .17)

w h ere a" = give all (7* © Tu) and bind all (B © Bu)

(u n f o l d)

fC,T, B ,S unfold => unfold, [], [], S (5 .18)

(o r)

K ,T ,B ,(i ,q , false) h a, => a'^Tf^B'^S', K ,T , B,(l,q, false) h o 2 =>• a^Tf.B't.S'?
(5 .19)IC,T,B, (I, q, e) h ai or a 2 a" or a'j , [], [], greater(S(, S 2)

w h ere a” = a ̂ and then (give all T{ and bind all B[)
a2 = a2 and then (give all T2 and bind all B2)

Figure 5.5: Basic elimination rules.

Binding Elimination 134

o u tp u t storage allocation context of a i. The resulting action is the ‘and t h e n ’ combination

of the transform ed actions, merged transients and bindings ou tpu t substitutions, and a 2’s

ou tp u t storage allocation context.

We m otivate now with an example, the elimination rule for ‘u n fo ld in g ’. Consider the

following source action:

| g iv e 4

th en

un fo ld ing

| bind "x” t o su cc es so r (t h e in teger)

h en c e

| g iv e su m (th e in teger b ou n d t o "x” , l) th en unfold

A naive transform ation would give the following target action (having in mind only tran ­

sient elimination):

| c o m p l e t e
th en

u n fo ld in g

| bind “x ” to su cces so r (4)

h en c e
| g iv e su m (th e in teger b ou nd t o "x” , l) then unfold

which has a different behaviour than the source action. The problem is th a t a t every

iteration the unfolded action receives a different transient. Because of this, one can only

use as the input transient substitu tion to the unfolded action those transients from the

input substitu tion to the ‘u n fo ld in g ’ action which reach all ‘u n fo ld ’ actions. A similar

explanation applies to bindings.

Rule 5.17 specifies the elimination rule for ‘u n fo ld in g ’. The left antecedent is an analysis

on the unfolded action which tells w hat transients in the input transien t substitution to

the ‘u n fo ld in g ’ action reach all ‘u n fo ld ’ actions. (In C hapter 6 we will see how this analysis

can be performed.) These transients will be used as the input transien t substitu tion to

the unfolded action (Tu in the right antecedent of Rule 5.17). The ‘t h e n c e ’ com binator

used in the rule, behaves as ‘t h e n ’ for transients, and as ‘h e n c e ’ for bindings.

Using now Rule 5.17, the above source action will be transform ed into:

5.8. Elimination Rules 135

I c o m p le t e

th en

| g iv e 4

th e n c e

u nfold ing
| bind "x" t o su cc es so r (t h e in teger)

h e n ce

| g iv e su m (t h e in teger b ou n d t o “x” , l) th en unfold

In the rule for ‘u n fo ld ’ (Rule 5 . 1 8) we assumed th a t the unfolded action produces no

bindings (em pty o u tpu t substitu tions in the rule).

The action ‘g ̂ or a 2’ requires some more thought. If the subactions produce bindings

(they should be for the same tokens as required by the sort rules), we cannot eliminate

these bindings as only one of the subactions will be performed. Although we cannot

elim inate the bindings produced by Gq and a 2, we can still elim inate bindings produced

by subactions of Gq and a 2. As we did for the program action, the bindings produced by

Gq and by a 2 m ust be preserved. Again, by using the preservation actions the transients

given, and bindings produced by the source action are preserved. Notice th a t, although we

do not classify ‘a l l o c a t e ’ actions inside the subaction of an ‘o r ’ (current storage allocation

context false), bindings can still be eliminated. This elimination may imply some storage

allocation. As the num ber of allocations for each branch may be different, we take the

biggest of the next available cell using the greater operation.

Even when the ‘o r ’ com binator produces bindings we can identify three cases for which

bindings could still be eliminated. The first case is when identical tokens are bound to the

sam e individual d (an integer or tru th-value individual). The second case is when identical

tokens are bound to a datum of the same sort: we could store the datum in a cell and

pass the substitu tion [cell (l , q) / k] on. The th ird case is when bindings produced by the

‘o r ’ action are not used by subsequent actions. We could perfectly eliminate them in this

case.

5 .8 .3 F unctional

The rules for functional action notation (Figure 5 .6) specify (partial) transien t elimination.

A transien t is only created by a ‘g i v e ’ action. (This ‘g iv e ’ action can be inside an abstraction

which when enacted gives the transient.) A lthough, in general, transien ts have a very short

life, they are sometimes difficult to eliminate. For example, the source action

Binding Elimination 136

| g iv e op (du d2)
th en

| bind “x ” t o it and bind “y ” t o it

could be transform ed into

bind "x” t o op (di,d2) and bind "y” t o op (di,d2)

B ut op might be a very expensive d a ta operation (di and d2 are individuals), which makes

the targe t action less efficient than the source action. A nother alternative target action

could be:

| s to re op (di,d2) in cell (0 ,0)

th en

| bind “x" to th e d a tu m stored in cell (0 ,0)

and

| bind "y” t o th e d a tu m stored in cell (0 ,0)

which again is less efficient than the source action. Storing transien ts in memory is not a

good policy as this is more expensive than to use machine registers to keep them . Therefore

regarding transient elimination we cannot always assert th a t the final target action will

always be more efficient than the original source action. However, when transients are

primitive values (like integer or truth-value individuals), we can be sure th a t a target

action will not be less efficient than its source action as there is no cost associated to the

evaluation of such individuals.

Rules 5.20 and 5.21 in Figure 5.6 cater for such cases. The first rule is applied whenever

the sort of the ‘g i v e ’ action tells us th a t it gives an individual datum d labelled n (see the

antecedent of the rule). Note the ou tpu t transient substitu tion reflecting the elimination

of the ‘g iv e ’ action. The second rule applies whenever the given transien t is unknown

(proper sort S). In this case we transform the yielder y and keep the ‘g i v e ’ action. As

there is no elimination, the ou tpu t transient substitu tion is [u n e l im in a t e d /n] . The ou tpu t

binding substitu tion is empty, as a ‘g iv e ’ action does not produce or propagate bindings.

The rule for the ‘t h e n ’ com binator is straight forward. Note the use of T(as a2 s input

transient substitu tion. This is exactly the behaviour of transients for the combinator.

The rules for the functional yielder ‘th e tells more about the nature of the elim­

ination rules. The first one shows how a reference to an elim inated transien t is treated:

the occurrence of ‘th e is substitu ted by the individual associated to (label) n in the

5.8. Elim ination Rules 137

(g i v e)

/C 1- give y label # n : (t,/3) ^ ({n : d}, {})
IC,T, B ,S give y label => complete, [d/n], [], S (5.20)

K, h give y label # n : (r, f3) <-> ({n : 5}, {}) /C, T, B, S h y =» y'
IC,T, B, S h give y label => give y' label [uneliminated/n], [], S (5.21)

(c h e c k)

IC,T, B ,S y => r/
JC,T, B, S I- check y => check y ' , [], [], «S (5.22)

(t h e n)

£ , T, B, S h fll =► a i , T{, B[,S[K ,T{,B ,S[h a2 => a'2, T2', ^
IC ,T ,B ,S ai then a2 =>• a'j then a2,7^, ® # 2, *S2 (5.23)

(t h e)

/C, [d/the _ # n ,...], B, S h the s# n => d (5.24)

1C, [uneliminated/n,...], B, S \~ the s # n => the (5.25)

n dom T
K ,T ,B ,S \~ the s# n => the s# n (5.26)

Figure 5.6: Functional elimination rules.

Binding Elim ination 138

input transien t substitu tion. Notice th a t we did not check if d is of so rt s because we

assume th a t our actions are well-sorted, so d is guaranteed to be an individual of sort s.

(Otherwise we would have to replace ‘th e by ‘s & d \) If the ‘g i v e ’ action for the

transien t labelled n was not eliminated — n maps to ‘u n e l im in a te d ’ in the input transient

substitu tion — we leave the functional yielder unchanged (Rule 5.25). If n is not in the

input transient substitu tion we leave the functional yielder unchanged (Rule 5.26). As we

shall see in Section 5.8.6, this last case may happen because of incorporated actions.

5 .8 .4 D eclarative

Figure 5.7 shows the elimination rules for declarative actions. As expected, they play a

central role in the binding elimination process.

Rule 5.27 for the ‘b in d ’ action is analogous to Rule 5.20 of the ‘g iv e ’ action. The sec­

ond one (5.28) covers the cases where the datum bound to k is unknown: the transform ed

yielder (y') is “stored” in a newly allocated cell (cell (/,<?)), and the o u tpu t binding substi­

tu tion is made to reflect the elimination. Notice th a t the allocation of the cell is reflected

in the ou tpu t storage allocation context, which implies th a t the targe t action uses one

more cell than its source action. Rule 5.29 is used in a context where we cannot classify

‘a l l o c a t e ’ actions.

The rules for the declarative com binators are very intuitive. An interesting rule is

the one for ‘c^ before a 2’. The input binding substitu tion to a 2 is the input binding

substitu tion to the compound action overlayed by the ou tpu t binding substitu tion of a1.

Again, it is worth to mention the similarity of the flow of substitu tions and operations on

them to the transients and bindings flow and operations in the sem antic rule for ‘b e fo r e ’

(see Rule 3.31).

Notice th a t, in the case of the ‘fur therm o re a \ even when to ta l binding elimination is not

achieved for a the ou tpu t binding substitu tion will be the correct one: inform ation about a

non-eliminated ‘b in d ’ action for token k in a will be in the ou tpu t binding substitu tion for

a as [uneliminated/A:] which will overlay any binding for k in the input binding substitution

for the ‘fu r th e r m o r e ’ action {‘"B' 0 B ’ in Rule 5.30). An analogous explanation applies to

‘m o r e o v e r ’ and ‘b e fo r e ’.

The elimination rules for the declarative yielder ‘th e s b ou n d t o A:’ are sim ilar to those

for the functional yielder. The difference is th a t now we can find com ponents like ‘th e _

5.8. Elim ination Rules 139

(b i n d)

1C b bind k to y : (r, (3) c—>■ ({}, {k : d})
1C, T, B, S b bind k to y => complete, [], [d/k],S (5.27)

1C b bind k to y : (r, (3) ({}, {k : 5 }) 1C, T, B, (I, q, true) b y => y'
K , T , B, (I, q, true) h bind k to y => a', [], [the _ stored in cell (/, q)/k], (I, q + 1, true) (5.28)

w h e r e a' = store y' in cell (l,q)

1C b bind k to y : (r,(3) ^ ({}, {k : 5 }) 1C, T, B, S h y => y'
1C,T, B, (I, q, false) b bind k to y => bind k to y ', [], [uneliminated/A], (/, q, false) (5.29)

(f u r t h e r m o r e)

K , ,T ,B ,S ^ a ^ a ' ,T ' ,B ' ,S '
1C, T, B, S b furthermore a => furthermore a', T ' , B' 0 B, S ’ (5.30)

(h e n c e)

£ , T , £ , S b 0l =► a '1 ,7 7 ,# ;,^ tC,T,B'l ,S[h a 2 => a'2,T^,B'2,S'2
K ,T , B ,S b ai hence a2 a7! hence a2,T{ ® 7^, B2,S 2 (5.31)

(m o r e o v e r)

K ,T ,B ,S h ai T{, B[,S[1C, T , B, S[b a2 =► a'2, T2', # 2 , S 2
/C, T, B, S b a 2 moreover a2 =>■ moreover a'2,T[0>T2,B'2 0 B[, S 2 (5.32)

(b e f o r e)

K ,T ,B ,S \ r ax => a,1,T{,B[,S[1C,T, B[0 B,S[h a 2 ^ a'2,Tl,B'2,S'2
K , T, B, S b ai before a2 => a'j before a2,T{ 0 T 2,B2 0 , S 2 (5.33)

(b o u n d)

1C,T, [d/A,...], b the s bound to A =S> g? (5.34)

1C,T, [the _ stored in c/A ,...], «S b the s bound to A =>• the s stored in c (5.35)

1C, T, [uneliminated/A,...], S b the s bound to A => the s bound to A (5.36)

A ^ dom B
K, T, B, S b the s bound to A => the s bound to A (5.37)

Figure 5.7: Declarative elimination rules.

Binding Elimination 140

sto red in c / A ’ in the input binding substitution. For such cases the yielder is replaced by

‘th e s s tored in c’ (Rule 5.35).

If to ta l binding elimination is achieved, the declarative action com binators can be

replaced as follows:

• ‘fu r th e rm o re o ’ can be replaced by ‘a ’.

• ‘<q h e n c e a2 can be replaced by Lax and th en a 2’.

• ‘a! m o r eo v e r a 2’ can be replaced by ‘<q and a 2’.

• ‘ai b efore a 2’ can be replaced by ‘a! and th en a 2\

This can easily be deduced by examination of the semantics of the com binators involved

with respect to transient flow (see Figure 3.6).

5.8 .5 Im perative

Figure 5.8 shows the elimination rules for im perative action notation. O u tpu t substitutions

are em pty as im perative actions do not give transients and do not produce bindings.

The rules for the ‘a l l o c a t e ’ action2 formalises the classification procedure described

in Section 5.4. Rule 5.39 applies when the ‘a l l o c a t e ’ action occurs in a context where it

is safe to allocate a known address (/, q) statically. Notice th a t (/, q) is taken from the

input storage allocation context, and th a t the cell counter in the ou tpu t storage allocation

context is incremented by 1. The second rule (5.40) applies when the ‘a l l o c a t e ’ action

occurs in a context where allocations must remain dynamic.

Notice th a t if an ‘a l l o c a t e ’ action was classified then its corresponding ‘d e a l l o c a t e ’ action

is transform ed to deallocate the particular classified cell. For example,

| a l lo c a te a cell
then

| a and th en d e a l lo c a te th e cell

is transform ed into

| g iv e cell (l ,q)

then

| a and then d e a l lo c a te cell (l ,q)

5.8. Elim ination Rules 141

(s t o r e)

K ,T ,B ,S \~ y\ => y'x K,,T,B,C\- yc => y'c
K ,T ,B ,S h s t o r e yx in y2 => s t o r e %fx in y'2, [], [] , $

(5.38)

(a l l o c a t e)

/C,T, B , (/ , q, true) h a l l o c a t e a cell =$- c o m p l e t e , [cell (/ , ?) / 0] , [] , (/ , q+ 1, true) (5.39)

)C,T, B, (I, q, false) h a l l o c a t e a cell =>• a l l o c a t e a ce l l , [] , [] , (/ , q, false) (5.40)

(d e a l l o c a t e)

JC,T,B,S y => if
1C, T, B ,S h d e a l l o c a t e y =>• d e a l l o c a t e yf, [], [],*S

(5.41)

(s t o r e d)

IC,T, B ,S y => y'
1C, T , B, S h t h e s s to r e d in y => t h e s s to r e d in y' (5.42)

Figure 5.8: Im perative elimination rules.

For the im perative yielder ‘th e s stored in y ’ we ju st transform y into y' (Rule 5 .4 2) .

5 . 8 . 6 R e f l e c t i v e

Figure 5 .9 shows the reflective elimination rules. If an abstraction gives a transien t and /o r

produces bindings, we do not eliminate them . (In other words, if the enaction of an abstrac­

tion produces bindings then the ‘b in d ’ actions which produce them are not eliminated.) In

fact they are eliminated from their original positions, but “preserved” for the incorporated

action. This is expressed (Rule 5 .4 3) by the em pty ou tpu t substitu tions for the ‘e n a c t ’

action, and the use of the preservation actions for ‘a b s t r a c t io n ’, ‘w i t h ’ and ‘c lo s u r e ’.

The im portan t point is to understand how an abstraction is handled by the transfor­

m ations. We have to consider two cases:

• Binding flow into the abstraction. If an abstraction is not closed when it is

formed (a b s tra c t io n a), then, in general, it can be closed in many different points

with many different bindings. The bindings received by the incorporated action,

2Although the ‘allocate’ action is considered hybrid action notation, its rules are given here for presen­
tation purpose only.

Binding Elim ination 142

(e n a c t)

IC,T,B ,S yb => yi
1C,T,B,S b enact yb => enact %/b, [], [] , $

(5.43)

(a b s t r a c t i o n)

£ , [] , [] , (/ + 1 , 0 , true) h a=> a ' ,T ' ,B ' ,S '
1C,T,B, (l ,q,e) b abstraction a => abstraction a" (5.44)

w h ere a" = (a' and then (give all T' and bind all B'))

(w i t h)

IC,T,B, (l ,q,e) b y=>y' 1C, [], [], (/ + 1,0, true) 1- a => a ! , T , B ' , S '
K ,T ,B , (I, q, e) b abstraction a with y =>• abstraction a" with y' (5.45)

w h ere a" = (a' and then (give all T' and bind all B'))

JC ,T ,B ,S \ - y b =>y'b K , T , B , S b y =► y'
fC, T , B , S b yb with y => yb with y' (5.46)

(c l o s u r e)

K,[\ ,B, (/ + 1,0, true) b a =► a ' , V , B ' , S '
K,T ,B ,{ l ,q ,e) b closure (abstraction a) => closure (abstraction a") (5.47)

w h ere a" =■ (a' and then (give all T' and bind all B'))

1C,T, B, (I, q,e)\~ y => y' K, [], B, (I + 1,0, true) b a => a ' ,T ' , B ' ,S '
(5.48)K ,T ,B , (l ,q,e) b closure (abstraction a with y) => closure (abstraction a" with y')

w h ere a" = (a' and then (give all T' and bind all B'))

1C,T,B,S b yb => y'h
K , T , B , S b closure yb => abstraction (bind all B) hence y'b (5.49)

Figure 5.9: Reflective elimination rules.

5.8. Elim ination Rules 143

if any, are not known a t the form ation point. Free occurrences of ‘th e s b ound to

A’3 for the incorporated action of an unclosed abstraction are not simplified, and

bindings a t every closing point have to be preserved in order to be produced to the

abstraction (c lo su re yb). These two observations are reflected by the em pty input

binding substitu tion in the antecedent of Rule 5 .4 4 and the action ‘bind a l l’ in the

consequent of Rule 5 .4 9 , respectively.

If the abstraction is closed a t the form ation point (c losu re (a b s tr a c t io n a)), then we

can transform a using the input binding substitu tion current a t th is point. This is

reflected in the antecedent of Rule 5 .4 7 . Notice th a t the input binding substitution

is used to simplify all (assuming to ta l binding elimination) the free occurrences of

‘th e s b o un d t o A’ for the incorporated action.

• B in d in g flow o u t o f th e a b s tr a c t io n . If an abstraction produces a binding, no

m atte r whether it is a closed or unclosed abstraction, we do not know, in general,

where this binding will be used. So each reference to this binding is a reference to

an unkown datum . This is a real problem because we can have declarative yielders

which cannot be eliminated. The transform ations preserve all bindings produced by

an incorporated action. This is reflected in rules 5 .4 4 , 5 .4 5 , 5 . 4 7 and 5 . 4 8 by the use

of the preservation action ‘bind a l l ’ in the target actions.

A similar explanation applies to transients. Moreover, ‘g iv e a l l ’ in Rule 5 .4 9 is not necessary

because the ‘w i t h ’ operation expects a datum to be passed to the abstraction.

The em pty ou tpu t substitu tion in the rule for ‘e n a c t ’ is consistent with the preservation

policy for incorporated actions.

As a final observation, notice th a t ‘a l l o c a t e ’ actions inside incorporated actions (for

example, see Rule 5 .4 4) are transform ed (if the storage allocation context is true).

E x a m p le 5 .9 . The two ‘b in d ’ actions in

| g iv e a b s trac t ion (bind "x" to 4) or g iv e a b s trac t ion (bind "y” t o tru e)

th en
| e n a c t th e abstra c t io n

l e n c e

I g iv e th e in teger b ou n d t o "x” or g iv e th e tru th -v a lu e b ou n d t o "y"

3An occurrence of ‘the s bound to A’ is free in the incorporated action if there is no ‘bind’ action which
produced a binding for k (see Section 6.3.4).

Binding Elimination 144

(e l s e)

IC,T,B,(l,q,false) b a i =► a[, T{, B[, IC,T,B,{l,q,false) b a 2 => a ^ T ^ B ^ S ^ (5.50)JC,T,B, (I, q, e) b ai else a 2 => a" else a2, [], [], greater(S[, S 2)

w h e r e a'[— a[and then (give all T{ and bind all B[)
a2 = a'2 and then (give all T2 and bind all B2)

(r e c u r s i v e l y b i n d)

1C, [], B' 0 B, (I, q, e) b closure (abstraction a) =>• y' (5.51)1C, T, B, (I, q, e) b recursively bind k to closure (abstraction a) =>- a', [],B', (I, q + 1, e)

w h ere a' = store y1 in cell (l ,q)
Bf = [the _ stored in cell(Z, <?)/the _ bound to k]

Figure 5 .1 0 : Elimination rule for ‘e l s e ’ and ‘recursively b in d ’.

clearly bind tokens to known values (4 and tr u e) , but as we do not know which abstraction

will be enacted, we cannot eliminate the tokens ‘x ’ and ‘y ’ in the last line of the action.

Notice th a t the above action remains unchanged by the transform ations. □

The example above, and some of the above observations, are pathological situations

which are unlikely to be found in program actions.

5 .8 .7 H ybrid

Figure 5.10 shows the elimination rule for ‘e l s e ’ and ‘recursively b in d ’. In Rule 5.51, the

im portan t point (see the antecedent) is th a t we pre-allocate a cell to store the closed

abstraction, and transform the incorporated action having this in mind.

5.9 Sort U p d a tin g R ules

As m entioned before, action transform ations are partly guided by sort inform ation. This

sort inform ation is affected by the elimination rules. For example, the action ‘bind "x” to

th e in te g e r ’, whose sort, before binding elimination, might be:

({ 0 : 4 } , { }) - 4 ({ } , { x : 4 })

is transform ed into the action ‘c o m p l e t e ’, whose sort is:

5.10. Some Examples 145

({ } . «) - > ({ } . { }) •

Clearly the transform ation affected sort information. We have defined a set of rules which

specify the updating of sort information after a transform ation is performed. For example,

for the ‘b in d ’ action we have:

JC h bind k to y : (r, f3) e-» ({}, {k : d})

K, T , B, S h bind k t o y =► a', T , S ' , S ' (5.52)

1C h a' : (r © dom T , © dom 5) ({}, {})

which justifies and calculates the new sort (in this case the sort of the ‘c o m p l e t e ’ action).

The sort updating rules for actions have the following form:

1C\~ a : s J C ,T ,B ,S \~ a => a', T ', B ' , S '
— — ----------- (5.53)

1C h a1 : s '

where the new sort s' is calculated in term s of the previous sort s, and the input and

o u tp u t substitutions. For yielders we have:

l C \ ~ y : s ! C ,T ,B ,S \ - y = > y '
----------- (5.54)

1C b y‘ : s'

where s' is now calculated in term s of s and the input substitutions.

A n im plem entation for the rules (in A c t r e s s) m ust not throw away sort information,

because the code generator still needs it. Notice th a t the sort updating rules are simpler

th an the original sort rules [14] as they do not rely on any sort inference process such as

the one built into the sort checker. We s ta r t from an already-decorated action tree and

ju st calculate sorts having in mind the sort rules.

5 .10 Som e E xam p les

We give here some examples of the application of the transform ations defined in this

chapter. The first ones are interesting actions we came across during the im plem entation

of the rules, and actions typically found in program actions of languages like P a s c a l . The

two last examples are program actions for the loop program of Figure 4.3 and the factorial

Binding Elimination 146

program of Figure 4.24.

Exam ple 5.10. Using elimination Rule 5.20 and Law 5.3, the action

| g iv e 3 label # 1 and g iv e su m (5 , 4) label # 2

then

| g iv e th e i n t e g e r # 2

is transform ed into

| g iv e su m (5 , 4) label # 2

then

| g iv e th e i n t e g e r # 2

Notice th a t, in this particular example, there was no substitu tion to be m ade because the

transient ‘3 ’ is not used by the second subaction of ‘t h e n ’. We have eliminated a dead

action! □

Exam ple 5 . 1 1 . Using elimination rules 5.31, 5.27, 5.30, 5.21, 5.34 and laws 5.7 and 5.5

the action

| bind "x" t o 1
hence

| fu rth erm ore bind "x” to 3

h ence
| g ive su c c e s so r (th e in teger bound t o “x")

is transform ed into

g ive su c c e s so r (3)

The ‘fu r th e r m o r e ’ action became a dead action after the elimination of ‘bind "x” t o 1 ’ and

was eliminated (Law 5.5). □

Exam ple 5 . 1 2 . Using elimination rules 5.31, 5.27, 5.30, 5.21, 5.34, 5.12, and laws 5.6

and 5.5 the action

| bind “x ” t o 1

h en ce

| fu r th erm o re g iv e su cc es so r (th e in teger bou nd t o “x ”)

le n c e

I bind "y” t o th e in teger bound t o “x ”

5.10. Som e Examples 147

is transform ed into

| g iv e su cc es so r (1)

and then

| bind ” y ” t o 1

We have eliminated only the binding for ‘x \ The target action still produces a binding

for ‘y ’. We had to keep this binding (see Rule 5 .1 2) because it is part of the observational

behaviour of the original source action. Notice again th a t the ‘fu r th e r m o r e ’ action was

elim inated because there were no more bindings to propagate after the ‘b in d ’ action for ‘x ’

was eliminated. On a whole, although the binding elimination was partial, the obtained

action is a lot simpler than the one we started with! □

E x a m p le 5 .13 . The source action

| a l lo c a te a cell th en g iv e it label # 1
and

| a l lo c a te a cell th en g iv e it label # 2
th en

| bind "x” t o th e c e l l # l
and
| bind "y" t o th e c e l l # 2

and
| s to re th e c e l l # 2 in th e c e l l # l
and

| s to re 5 in th e c e l l ^ 2

is transform ed into

1 s tore cell (0 ,1) in cell (0 ,0)
and

1 s to re 5 in cell (0 ,1)
and th en

| bind "x" to cell (0 ,0)
and

| bind "y" to cell (0 ,1)

Again, although we had not eliminate all bindings, the target action is smaller and simpler

than the source action. Notice the transform ation of the two ‘a l l o c a t e ’ actions using

Rule 5.39. □

E x a m p le 5 .14 . The source action

Binding Elimination 148

| bind "c” t o 1 0 0

and

| a l lo c a te a cell th en bind "x” t o it

before

fu r th erm o re
| a l lo c a te a cell th en bind " x ” t o it

h en c e

| s to re th e in teger b ound t o "c” in th e cell b ou n d t o "x"

l e n c e
| s to re su cce s so r (th e in teger b ound t o “c ”) in th e cell b o un d t o "x”

is transform ed into

j s tore 1 0 0 in cell (0 ,1)

h ence

| s to re su c ces so r (1 0 0) in cell (0 ,0)

Notice here the drastic simplification of the source action and the to ta l elimination of

bindings. Also the ‘h e n c e ’ com binator could well be replaced by the ‘and t h e n ’ com binator

(although in term s of code generation in A c t r e s s , no difference exists between ‘h e n c e ’

and ‘and t h e n ’ for this case). □

E xam ple 5.15. The source action

| g iv e 4 label # 1
and

| g iv e a b stra c t io n (g iv e su cc es so r (th e in teger b ound t o ” x ’’)) label # 2

then

| bind ”x" t o 7 and g iv e th e i n t e g e r # l label # 1

hen ce

| e n a c t c lo su re (th e a b s t r a c t i o n # 2)

is transform ed into

| g iv e a b stra c t io n (g iv e su cces so r (th e in teger bou n d t o "x”)) label # 2

then

| e n a c t (a b s tra c t io n (bind "x” t o 7) h en ce (t h e a b s t r a c t i o n # 2))

and then

| g iv e 4 label # 1

Notice the preservation of the ‘g iv e ’ action in line 1 of the source action (last line of the

target action). The ‘b in d ’ action in line 5 of the source action was initially eliminated,

but it had to be reintroduced because of the ‘c lo s u r e ’ operation in line 7 (Rule 5.49). The

5.10. Som e Examples 149

free occurrence of ‘th e in teg er bound t o "x” ’ in the incorporated action (line 1 of the target

action) was not simplified (Rule 5.44). □

E xam ple 5.16. The source action

| a l lo c a te a cell th en bind "x” t o it
b efore

bind "p” t o c losure ab strac t ion
| fu r th erm o re bind “x ” to th e cell
h en c e

| g iv e su cces so r (3) th en s tore it in th e cell b ou n d t o "x”

nence

| s to re 5 in th e cell b ou nd t o "x”

and then

| e n a c t (th e a b strac t ion bound t o "p” w ith th e cell b ound t o “x ”)

and then

g iv e th e in teger stored in th e cell b o un d t o “x”

is transform ed into

s to re ab stra c t io n
| s tore th e cell in cell (1 ,0)
h en ce

| g iv e su c c e s s o r (3)
th en

| s to re th e d a tu m in th e cell stored in cell (1 ,0)
in

| cell (0 ,1)
hence

| s to re 5 in cell (0 ,0)
and then

| e n a c t (th e a b strac t ion stored in cell (0 ,1) w ith cell (0 , 0))
and th en

I g iv e th e in teger s tored in cell (0 ,0)

The abstraction bound to ‘p ’ in the source action was stored in ‘cell (0 , 1) ’ in the target

action. Notice how the ‘b in d ’ action for ‘x ’ in line 1 of the source action was eliminated

(rules 5.39 and 5.27), and how all the references to the binding it produces were eliminated

from the source action. □

Exam ple 5.17. Figure 5.11 and Figure 5.12 show the transform ed program action and

transform ed object code, respectively, for the loop program of Figure 4.3. Both are simpler

Binding Elimination 150

I s t o r e 0 in c e l l (0 , 0)
hence
I I s t o r e 1000000 in c e l l (0 , 0)
I and th en
I I u n fo ld in g
I I I I I I g iv e th e v a lu e s t o r e d in c e l l (0 ,0)
I I I I I then
I I I I I I g iv e th e v a lu e l a b e l #1
I I I I th en
I I I I I g i v e isG reaterT h an(th e v a l u e # l , 0)
I I | th en
I I I I I I I I I g iv e th e v a lu e s t o r e d in c e l l (0 ,0)
I I I I I I I I th en
I I I I I I I I I g iv e th e v a lu e l a b e l #1
I I I I I I I th en
I I I I I I I I g iv e d i f f e r e n c e (t h e i n t e g e r # l , l)
I I I I I I then
I I I I I I I s t o r e th e v a lu e in c e l l (0 ,0)
I I I I I and th en
I I I I I I u n fo ld
I I I I e l s e
I I I I I com plete

Figure 5.11: Transformed program action for the loop program .

and smaller than the original program action (Figure 4.2) and original object code (Fig­

ure 4.27). (As we shall see in Section 7.1 the obtained object code is also much efficient

than the original one.) □

Exam ple 5.18. The transform ed program action for the factorial program of Figure 4.24

is shown in Figure 5.13. The generated object code is shown in Figure 5.14. Notice the

elimination of all run-tim e binding operations in the transform ed object code (compare

with Figure 5.2). □

5.11 Im p lem en ta tion

The im plem entation of the transform ations introduces a new com ponent in A c t r e s s ,

called the transformer, between the sort checker and code generator. Thus, the action

notation compiler becomes:

anct = codet o transform o check o parse (5.55)

5.11. Implem entation 151

D A T U M _d l , _d2, _d 3 ;

i n t m a m ()

{
- d l = -MAKE-CELL(i is t at i c-area[0]) \
static-area[1] = _d l ;
* -d l .datum, cell = _MA KE- 1 NTEGER{0) \
*stat ic-area[l] .datum.cel l = _MAKE-INTEGER(1000000);

_repeat-1:
- d l = *s£a£ic_area[l].datum.ce//;
_d2 = - I S -G R E A T E R -T H A N { -d l , _MAKE-INTEGER(0)) \
i f (-d2.datum.truth-value) {

- d l = *static_area[l]. datum, cell]
- d3 = . D IF F E R E N C E (-d l , -MAI<E-INTEGER{ \)) \
*stat ic-area[l] .datum.cel l = _d3;
g o t o _repeat -1;

} e l s e {

; /* complete * /
} ;

eadt(O);
-fai lure-0:

exi t (l) \
}

Figure 5.12: Generated object code for the /oop program after transform ation.

B in d in g E l im in a t io n 152

1 I I give cell(0,0) label #2
I I then
I 1 1 I store the cell#2 in cell(0,1)
1 1 1 and
1 1 1 1 store 0 in the cell#2
1 before
1 I store (abstraction
1 1 1 1 1 give headOf(the list)
1 1 1 1 then
1 1 1 1 1 1 1 give sort-check(the integer) label #1
1 1 1 1 1 1 and
1 1 1 1 1 1 1 give cell(l,0) label #2
1 1 1 1 1 then
1 1 1 1 1 1 1 store the cell#2 in cell(1,1)
1 1 1 1 1 1 and
1 I 1 1 I I I store the integer#1 in the cell#2
1 I 1 hence
1 I I 1 I I I I I I give the integer stored in the cell stored in cell(1,1)
1 1 1 1 1 1 1 1 1 then
1 I 1 1 I I I I I I give the integer label #1
1 1 1 1 1 1 1 1 then
1 1 1 1 1 1 | 1 1 give (the integer#l is 0)
1 1 1 1 1 1 1 then
1 1 1 1 1 1 1 1 1 1 store 1 in the cell stored in cell(0,1)
1 1 1 1 1 1 1 1 1 else
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 give the integer stored in
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 the cell stored in cell(1,1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 then
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 give the integer label #1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 then
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 give difference(the integer#l,l)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 then
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 give listOf(the datum)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 then
I I I I I I I I I I I I I I I enact (the abstraction stored in cell(0, 2) with the list)
1 1 1 1 1 1 1 II 1 1 1 1 and then
1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 give the integer stored in
1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 the cell stored in cell(1,1)
1 then
1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 give the integer label #1
1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 and
1 give the integer stored in
1 the cell stored in cell(0,1)
1 then
1 give the integer label #2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 then
1 give product(the integer#!,the integer#2)
1 1 1 II II 1 1 II 1 1 II 1 1 1 then
1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 store the integer in
1 I I I I I I I I I I I I I I I I I I the cell stored in cell(0,1)) in cell(0,2)
1 1 1 1 1 1 1 1 1 1 1 1 hence
I 1 I 1 I I I I I I I I 1 1 give listOf(10)
1 1 1 1 1 1 1 1 1 1 1 1 1 then
1 1 1 1 1 1 1 1 1 1 1 1 1 1 enact (the abstraction stored in cell(0,2) with the list)

Figure 5.13: Transformed program action for the factorial program .

5.11. Im plem entation 153

in t -absO(-din, _bin, _dout , -bout)
D A T U M .din; BINDINGS -bin; D A T U M *-dout; BINDINGS *-bout;

{ D A T U M -d l , -d2, -d3, -d4, _d5 , _d 6 ; BINDINGS _b l ;
/* call sequence om itted * /
- d l = -din;
- d2 = -H E A D - O F (- d l) ;
-d 3 = -SO RT- CHE CK [_d2 , 4L);
M = -MAKE-CELL(display[l \ + 0);
*(djsp/ay[l] + 1) = - d 4 ;
*-d4-datum, cell = -d3;
-d2 = *(*(<fjsp/ay[l] + 1)) .datum.cell;
- d 3 = -IS(-d2, -M AKE-INT EGER(0)) ;
i f (-d3.datum.truth-value) {

*static-area[l]. datum, cell = _M A K E - I N T E G E R { \);
} e ls e { - d 2 = *(*(d»\sp/ay[l] + l)) . datum.cell;

-d4 = - D IF FER ENC E(. d2 , _M A K E - I N T E G E R { \));
- d2 = -LIS T(-d4) ;
-d4 = -WITH(s tat ic-area[2] , ~d2);
i f ((_d4-datum.abs—>codeact)

(-d4■ datum.abs—>datum, -d4-datum.abs—>bindings, !L-d5, &.-bl))
g o to -failure-0;

-d2 = *(*(d isp /ay[l] + 1)). datum, cell;
_d4 = *static-area[l]. datum, cell;
- d6 = - P R O D U C T (- d 2 , . d4);
*stat ic-area[l] ,datum.cel l = _d 6 ;

};
*-bout = NULL;
/* return sequence om itted */
re tu rn (0);

-failure-0;
re tu rn (1);

}

D A T U M -d l , -d2, -d3; BINDINGS -b l ;

in t m om ()
{ - d l = - MAKE-CELL(&istat ic-area[0]);

static-area[1] = - d l ;
* -d l .datum.cell = -MAKE-INTEGER(Q) ;
static-area[2] = - A B S T R A C T I O N (-absO);
- d l = -LIST(-MAKE -I NTE GER (10)) ;
-d2 = -WITH(s tat ic-area[2] , - d l) ;
i f ((_d2.datum.abs—>codeact)

(-d2.datum.abs—>datum, -d2.datum.abs—>bindings, &i-d3, &£-bl))
g o to -failure-0;

exit(0);
-failure-0:

exi t (l);
}

Figure 5.14: O bject code for the factorial program after action transform ation.

Binding Elimination 154

(p r o g r a m a c t i o n)

simp a = (1)
l e t (2)

fu n in itS ortV arC ou n ter () = T ra n sform erB ase .lastS ortV ar := 0 (3)
v a l _ = in itSortV arC oun ter () (4)
v a l (a * ,T ’ ,B ’ , (1 ’ , q ’ , e ’ , n x ’)) = sim pA ction a emptysub emptysub (0 , 0 , t r u e , 1) (5)
v a l a ’ ’ = p r e s e r v e T ’ B ’ (6)
v a l a ’_sd = g e tD e c o r a t io n a ’ (7)
v a l a ’ ’ _sd = g e tD e c o r a t io n a ’ ’ (8)
v a l and_then_sd = A ct io n (9)

{ t r a n s _ in = merge (t r a n s i e n t s _ i n a ’_sd) (t r a m s ie n t s _ in a ’ ’_ s d) , (10)
b in d s _ in = merge (b i n d in g s . i n a ’_sd) (b in d in g s _ in a ’ ’_ s d) , (11)
tr a n s _ o u t = merge (t r a n s ie n t s _ o u t a ’_sd) (t r a m s ie n ts_ o u t a ’ ’_ s d) , (12)
b in d s_ ou t = merge (b in d in gs_o u t a ’_sd) (b in d in g s_ o u t a ’ ’_ s d) l (13)

v a l a ’ ” = AND_THEN(a> , a ’ ’ ,and_then_sd) (14)
in (15)

INFO(a> , ’ , l ’ , q , , n x ’) (16)
end (17)

Figure 5.15: Implementation of the elimination rule for the program action.

where the transform er is denoted by the function transform.

The introduction of the transform er also requires some modifications to the code gener­

ator and run-tim e system. In Equation 5.55, codet is an extension to code in Equation 4.1

which includes these modifications.

5.11.1 A ction N o ta tio n Transform er

The transform er is divided into two modules: one implements the elimination rules to­

gether with the sort updating rules, and the other implements the action notation laws.

The transform er is a composition of two functions:

transform = law o simp (5.56)

with the following types:

transform : sort A S T -> sort A S T
law : sort A S T -> sort A S T
sim p : sort A S T -> sort A S T

The simplification function simp implements the program action elimination rule, and

it is defined as shown in Figure 5.15. The transform ed program action a is enclosed by

5.11. Im plem entation 155

an information node, IN F O (a , 0 , q , n x) , which contains the num ber of cells q statically

allocated a t level 0. nx is the maximum nesting level of abstractions in a which will be

needed by the extended code generator (see Section 5.11.2)4. It defines how many display

registers will be needed a t run-tim e. Every ‘a b s tr a c t io n ’ operation in a will also be enclosed

by an information node. The information node is used by the code generator to implement

the cell reservations needed as explained in Section 5.4. The ‘preserve’ function in line 6

is used to build the preservation actions. ‘a ’_sd’ in line 7 is the sort decoration for action

a ’ .

The judgem ents

JC, T , 5 , S h a => a ', T ', B', S ' (5.57)

IC ,T, B ,S \~ y => y' (5.58)

are implemented, respectively, by the functions sim pAction and sim pYielder , whose types

are:

sort A S T -> transient substitution -> binding substitution -> int * int * bool * in t
- >

(sort A S T * transient substitution * binding substitution * (in t * int * bool * int))

and

sort A S T -> transient substitution -> binding substitution -> in t * int * bool * in t
- >

sort A S T

respectively.

The elimination pass is performed in a single traversal of the decorated action tree.

Figure 5.16 shows a fragm ent of the function sim pAction correspondent to the implem enta­

tion of rules 5.13, 5.15, and 5.31. Figure 5.17 shows the im plem entation of rules 5.24, 5.25,

5.34, 5.35, 5.36, 5.42 and 5.44. Notice in both cases how the form of the im plem entation

is close to the rules’ definition.

Figure 5.18 shows a fragm ent of the implemention of the law function which implements

rules 5.3 and 5.9.

4 We have om itted nx from the elimination rules as it does not add anything to the them.

Binding Elim ination 156

(c o m p l e t e)

s im pA ction (COMPLETE sd) T B C = (COMPLETE com plete_sort .em p tysu b .em ptysub ,C)

(a n d)

s im pA ction (A N D (a l ,a 2 ,sd)) T B (C as (l , q , e , n x)) =
l e t

v a l (a l ’ ,T 1 ’ ,B 1 ’ ,C 1’ as (1 1 ’ , q l ’ , e l ’ , n x l ’)) - s im pA ction a l T B C
v a l (a 2 ’ ,T 2 ’ ,B 2 ’ ,C 2’) = sim pAction a2 T B (1 , q l ’ , e , n x l ’)
v a l T ’ = merge_sub T1 ’ T 2’
v a l B ’ = merge_sub B l ’ B2’
v a l s d ’ = A c t io n { t r a n s _ in = deldom (lab e lsO fS u b T) (t r a n s i e n t s _ i n s d) ,

b in d s _ in = deldom (tokensOfSub B) (b in d in g s _ in s d) ,
tr an s_o u t = deldom (lab e lsO fS u b T ’) (t r a n s i e n t s _ o u t s d) ,
b in d s_ou t - deldom (tokensOfSub B ’) (b in d in g s_ o u t s d) }

in
(AND(al’ , a 2 ’ . s d ’) , T ’ ,B ’ ,C2’)

end

(h e n c e)

s im pA ction (HEN C E(al,a2,sd)) T B (C as (l , q , e , n x)) =
l e t

v a l (a l ’ ,T 1 ’ ,B 1 ’ ,C 1’ as (1 1 ’ , q l ’ , e l ’ ,n x l ’)) = s im pA ction a l T B C
v a l (a 2 ’ ,T 2 *,B 2 ’ ,C 2’) = sim pAction a2 T B l ’ (1 , q l ’ , e , n x l ’)
v a l T ’ = merge_sub T 1’ T2’
v a l B ’ = B 2’
v a l s d ’ = A ct io n { t r a n s _ in = deldom (la b e lsO fS u b T) (t r a n s i e n t s _ i n s d) ,

b in d s _ in = deldom (tokensOfSub B) (b in d in g s _ in s d) ,
tra n s_ o u t = deldom (la b e lsO fS u b T ’) (t r a n s i e n t s _ o u t s d) ,
b in d s_out = deldom (tokensOfSub B’) (b in d in g s_ o u t s d) }

in
(HENCE(al’ , a 2 ’ , s d ’) ,T ’ ,B ’ ,C 2’)

end

Figure 5.16: Im plementation of elimination rules (actions).

5.11. Implem entation 157

(t h e)

s im p Y ie ld er (T H E (s ,n ,sd)) T B (l , q , e , n x) =
((c a s e (a p l . s u b (THEVAR n) T) o f VOID => (T H E (s ,n ,sd) ,n x)

I d => (d ,n x))
h an d le Apl => (T H E (s ,n , s d) ,n x))

(b o u n d)

s im p Y ie ld er (BOUND.TO(s, INDIVIDUAL(TOKEN k , i n d s d) , s d)) T B (l , q , e , n x) =
((c a s e (a p l . s u b (BOUNDVAR k) B) o f VOID => (B0UND_T0

(s,INDIVIDUAL(TOKEN k . i n d s d) , s d) , n x)
I d => (d ,n x))

h andle Apl => (B0UND_T0(s.INDIVIDUAL(TOKEN k , i n d s d) , s d) , n x))

(s t o r e d)

s im p Y ie ld er (STORED_IN(s,y,sd)) T B C =
l e t

v a l (y ’ . n x ’) = s im p Y ie ld er y T B C
v a l s d ’ = Dependent { t r a n s _ in = deldom (la b e lsO fS u b T) (t r a n s i e n t s _ i n sd) ,

b in d s _ in - deldom (tokensOfSub B) (b in d in g s _ in s d) ,
so r t _ o u t = so r t _ o u t sd}

in
(STORED_IN(s,y’ , s d ’) , n x ’)

end

(a b s t r a c t i o n)

s im p Y ie ld er (ABSTRACTION(a,sd)) T B (l , q , e , n x) =
l e t

v a l (a ’ ,T ’ ,B ’ , (l ’ , q ’ , e ’ ,n x ’)) =
sim pAction a emptysub emptysub (1 + 1 , 0 , e , m a x (n x , l + l))

v a l s d ’ = (la s tS o r tV a r := !la s tS o r tV a r + 1;
SortVar (~ (! la s t S o r t V a r) ,
r e f (A b stra c t io n

{ t r a n s _ in = deldom (lab e lsO fS u b T) (t r a n s i e n t s _ i n s d) ,
b in d s _ in = deldom (tokensOfSub B) (b in d in g s _ in s d) ,
tr a n s _ o u t = t r a n s ie n t s _ o u t sd ,
b in d s_o u t = b in d in g s_ o u t s d })))

in
(INFO(ABSTRACTION(AND_THEN(a’ .p r e se r v e T’ B ’ . N o t h i n g) , s d ’) , 1 + 1 , q ’ ,nx - n x ’) , n x ’)

end

Figure 5.17: Im plem entation of elimination rules (yielders).

Binding Elim ination 158

(a n d)

law (A N D (a l ,a 2 ,sd)) =
l e t

v a l a l ’ = law a l
v a l a 2 ’ = law a2

in
c a se (a l ’ ,a2») o f (COMPLETE _ ,a) => law a

I (a,COMPLETE _) => law a
I (FAIL s d ,a) => FAIL sd
I (x ,y) => AND(x,y,sd)

end

(c l o s u r e)

law (CLOSURE(y,sd)) = l e t
v a l b e t a = b in d in g s _ in sd

in
i f b e ta = emptymap

th en law y
e l s e CLOSURE(law y , s d)

end

Figure 5.18: Implem entation of laws.

We do not have any problem with application order of the rules, as most of them are

m utually exclusive. The im plem entation (by pattern m atching in M L) is determ inistic, the

rules being ordered in such a way as to m atch the larger patterns first. The cases where a

transform ation originates possibilities of further transform ations are handled satisfactorily

by the composition of Equation 5.56.

5.11.2 C hanges in th e C ode G enerator

The code generator presented in C hapter 4 was extended to use the inform ation node and

to recognize and translate adequately the term cell (l,q). The changes are as follows:

• All the statically allocated cells for the program action are located in a da tum array

{static.area). If the information node of the program action is IN F O (a ,0 ,q ,n x) the

sta tic array will be of size q.

• For every abstraction in the program action we designed a entry sequence and a

return sequence. To generate code for an abstraction’s entry sequence, the code

generator makes use of the abstraction’s information node.

5.12. Exploring Relationships 159

• Access to local and non-local cells are made using the abstraction nesting level /, the

cell q and a display register th a t is kept at run-tim e. The fram es for each abstraction

are still heap allocated though (see Section 5.13). The display is set up as a global

array, and it is updated by the entry and return sequences.

• M odifications in the run-tim e environm ent. These include definition of the static

area array, handle of entry and return sequences, etc.

Notice th a t, if to ta l binding elimination is guaranteed, there is no need for translation

of the ‘c lo s u r e ’ operation as the program action will not have one (eliminated by Law 5.9).

Also, in this case, there would be no need for the binding field in the run-tim e representa­

tion for abstractions (see Section 4.3.2), and the translation for ‘e n a c t ’ would be simpler.

Finally, all run-tim e binding operations could be removed from the run-tim e environm ent.

5 .12 E xp loring R ela tion sh ip s

The exploration of relationships between dynamic semantics, sta tic semantics and trans­

form ation semantics, could reveal im portan t properties. We would like to relate semantic

rules, sort rules, and the various kinds of transform ation rules (laws, elimination rules and

sort updating rules).

The sort of an action can be related to its input and ou tpu t substitutions. The following

proposition establishes this relationship.

P ro p o s i t io n 5.1 (T ra n s fo rm a tio n in v a r ia n t) Let as be a subaction o f an arbitrary
action a. I f

fc \~ as : (t„/3 ,) ^ (t-s',/? ')

and
K.,Ts,B s,S s h a s =>a's,T ; ,8 's,S's

holds, then
dom. TJ Q dom. r'$ A dom B's C. dom fi's

holds.

In general we can say nothing about the domain of (3 and B. However, for some special

cases, such as the program action and incorporated actions, we could s ta te some relation.

For the program action:

dom B = dom ft

Binding Elimination 160

because we assume th a t program actions are closed. For an incorporated action a, of an

unclosed abstraction we have:

dom = {}

so

dom Bi C dom fa

B ut if the incorporated action expects no bindings, we have

dom Bi = dom /?, = {}

On the other hand, an action can produce bindings which are not used by subsequent

actions. In this case, and if we do not consider incorporated actions and unfolded actions,

we could write:

dom T 2 dom r A dom B D dom (3

The following defines bind-free action in term s of binding substitu tions.

Definition 5.3 (Bind-free action) Let as be a subaction o f an action a. I f

IC\~a: (r,{})M > (r 7, {})

K.V- as : (t s , /3s) {t's ,(3's)

and for every transformational step

J C ,T .,B „ S .h a. => a',i r „ B '„ S ,a

the relations
dom (3S C dom Bs A dom (3's C dom B's

and
uneliminated ^ range Bs A uneliminated ^ range B's

holds, then a is a bind-free action .

Consider the income bindings to an action and its transform ational step. If for the

transform ational step all “tokens” required by the action (domain of (3) are in the in­

put binding substitu tion (B), and none of the tokens received by the action is bound to

‘uneliminated’ (this would indicate th a t there is a t least ‘bind’ action which was not elim­

inated), then all the free occurrences of ‘the s bound to k y are elim inated in this step.

Consider now the outcome bindings from the action. If for the transform ational step all

5.12. Exploring Relationships 161

“tokens” produced by the action (domain of (3') are in the o u tpu t binding substitu tion (5),

and none of the “tokens” produced by the action is bound to ‘uneliminated’ (this would

indicate th a t there is a t least a ‘bind’ action which was not eliminated in the action, or

outside it, if the action propagate bindings), then all the ‘bind’ actions of ‘the s bound to

k ’ are eliminated in this step.

Proposition 5.2 I f a' is a bind-free action which satisfies

f C , T , B , S h a=> a \ T ' , B ' , S '

then all subactions as o f a' have sorts o f the form

J C h a s : (r„ { }) (t ', {})

fo r some rs and t 's.

Action transform ations do not introduce ill-sorted actions. In practice we do not need

to sort-check a target action; it can be delivered stra igh t to the code generator.

Proposition 5.3 (Sort preservation) I f a is a well-sorted action and

1 C ,T ,B ,S \ - a = > a ',T \B ',S '

then a' is a well-sorted action.

Action transform ations, in some sense, preserve semantics as defined by the semantic

rules of C hapter 3. However, in order to make this sta tem ent precise, we need a non-trivial

definition of action equivalence.

Definition 5.4 (Functional action equivalence) We say that action a i is function­
ally equivalent to action a2, ax = a2, i f and only if fo r all transients t, bindings b and
storage s, i f

i, 6, s h a\ 0\ , t\, bij Si

and
t, 6, s h a2 t> o2, f2, &2, <s2

then
Oi = o2 A = t2 A &i = b2

holds.

Although we have used the term “functional” equivalence, as one can see from the

Binding Elimination 162

definition it means equivalence for the functional and declarative facets of actions5.

Proposition 5.4 (Semantic faithfulness) If a is a well-sorted program action and

K. h a ^ a!

then a = a '.

We leave the proofs of the above propositions for fu ture work.

5 .1 3 Im provem en ts

We identify below some points which deserve more study in order to improve binding

elim ination and storage allocation.

• Classification of ‘allocate’ actions. If a source program contains variable decla­

rations within a block within a conditional or iterative comm and, for example, it is

well known th a t sta tic allocation is possible. The corresponding allocations in the

program action will occur inside an ‘or’ or ‘unfolding’ action, however, and our ex­

isting transform er will not recognise th a t sta tic allocation is safely possible. Further

work is needed to detect this im portan t special case.

• Storage allocation for blocks. As we do not identify source language’s blocks in

the program action, the use of storage is not the best one. For example, we do not

reuse the deallocated cells on exit of a block. This would require a way to identify

blocks in action notation and to modify the elimination rule for ‘deallocate’. The

use of ‘deallocate’ actions explicitly in action semantic descriptions is desirable, as

it allows a be tter use of storage. Also some analysis is necessary so a memory block

deallocation could be used instead of isolated deallocations.

• Stack allocation. Statically allocated cells for abstractions are allocated in the

heap. They are not deallocated a t abstraction exit (although they can be deallocated

by explicit deallocate actions). We need to keep these cells because references to them

could outlive the incorporated action performance. For example, a local statically

5 The functional equivalence just defined is not a congruence; we recognize that we ought to (somehow)
consider the imperative facet.

5.13. Im provem ents 163

allocated cell can be assigned to a global variable. Also, if cells are ordinary values,

they could be passed as transients, passed in bindings produced by the abstraction,

or stored in global cells. The im pact — of the non-deallocation of statically allocated

cells — in the object code is th a t it allocates more storage than object code for hand­

w ritten compilers. Detection whether a stack storage organization could be used is

desirable. Maybe life-time analysis can be a source of inspiration to improve this

situation.

• Bindings produced by abstractions. The transform ations do not eliminate bind­

ings produced by abstractions. In general, this is an impossible task. B ut probably,

for some special cases, these bindings could be eliminated. To consider this we would

need a way to identify abstractions, to record the binding substitu tion for them and

to use th a t substitu tion whenever the abstraction is enacted.

• Eager strategy. We have no evidence th a t the eager strategy adopted in the trans­

form ations — ‘bind’ actions are eliminated and later, if we find out th a t they are

not eliminable, are preserved — is the better one. Notice th a t, when a ‘bind’ action

has to be preserved the strategy introduces no overheads. In fact, in this case we

replaced the ‘bind’ action by a ‘store’ action which is more efficient, and replaces

all ‘the s bound to fc’ by store lookups, which again are more efficient (a binding

lookup represents a search over a binding environm ent a t run-tim e). We think these

efficient lookups com pensate the preservation of the non-eliminable ‘bind’ action.

Finally, it would be desirable to have a condition on the program m ing language being

defined, th a t is, a condition on the action sem antic description, which guarantees to ta l

binding elimination. For example, if the source language is statically scoped according to

some definition, then to ta l binding elimination is guaranteed for every source program . In

the next chapter, we will address the problem of establish a statically scoped condition

th a t is language-based.

C h ap ter 6

B in d in g A nalysis in A ction

Sem antics

This chapter studies bindings in action semantics. We begin by reviewing the binding

concepts in program ming languages. In the sequel we show th a t action notation has

similar concepts. We continue by giving a precise definition of w hat we mean by a statically

scoped action, and set sufficient conditions which identifies a statically scoped subset of

action notation. The final part of the chapter extends this condition to action semantic

descriptions and gives a sufficient condition for a statically scoped program m ing language.

6.1 In itia l O bservations

We want to s ta te a condition which allows the identification of statically scoped languages

based on their action sem antic descriptions. T h a t is, by analysing an action semantic

description, and checking th a t it satisfies the condition, we will be able to say th a t the

language it defines is statically scoped. The main result is a sufficient statically scoped

condition. Although the condition is not a definitive result, we believe th a t it covers most

of conventional languages and can be of some practical use.

Total binding elimination can only be achieved for statically scoped languages. For

dynamically scoped languages it is possible to eliminate some bindings, bu t not all of them .

In the A c t r e s s context, a generated compiler could incorporate different versions of the

164

6.2. Bindings in Programm ing Languages 165

transform er, code generator and run-tim e system , depending on the binding discipline

of the source language. Which version to use could be decided a t compiler generation

tim e, using the statically scoped condition: if it tells th a t the language is statically scoped

then the specialized versions for statically scoped languages are incorporated, otherwise

the default versions are used. We expect th a t this param eterization will improve the

com pilation tim e of generated compilers.

A simple initial and known condition is th a t the ‘closure’ operation is applied to every

abstraction as soon as it is formed — ‘closure (abstraction a) \ This guarantees th a t all the

bindings to be used by the incorporated action a will be frozen a t abstraction form ation

tim e. Unfortunately, we will see th a t one can have a language which satisfies this initial

condition bu t is not statically scoped.

6 .2 B in d in gs in P rogram m in g L anguages

The notion of binding in program ming languages is derived from a m athem atical concept

[102]. For example, consider the following equations:

x = 4

y = x 2 + 3

One can see the first equation as establishing a binding between the variable x and the

num ber 4. Similarly the second equation establishes a binding between variable y and the

right-hand side expression. To evaluate this expression we need to know w hat is the value

of x or, pu t in another way, w hat is bound to x. Clearly x is free in the right-hand side

expression.

These term s (binding, bound, free) are used with the same meaning for program ­

ming languages. As pointed out in [102] it seems th a t program m ers feel more ease with

assignm ent-related concepts (updating, locations, stores, comm ands, lifetime) than with

these binding-related concepts. In (denotational) semantics of program m ing languages

and functional program ming however, binding-related concepts are widely used and un­

derstood. These concepts will be examined in detail in the following subsections.

Binding Analysis in Action Semantics 166

6.2 .1 W h at is a B inding?

The first concept is th a t of binding itself. A binding is an association of an identifier to

the value (entity) it denotes. In general it is produced by a declaration of the identifier.

For example, the S p e c i m e n declaration

v a r x : int := 4

establishes a binding of the identifier a: to a storage cell. (It also stores the integer 4 in

the cell.) One can only say this based on the semantics of S p e c i m e n (a simple inspection

of the declaration does not tell this). Notice also th a t the actual binding will be made at

run-tim e, th a t is, it is a late binding. In principle, we do not know w hat particular cell will

be bound to x. For efficiency reasons it is im portan t to detect whether a late binding can

be turned into an early binding, th a t is, a binding made a t compile tim e. In this particular

example, the actual binding can be made earlier to a (relative) known storage location.

T he objective is to detect as many early bindings as possible. B ut we can not trea t all

bindings as early bindings.

6 .2 .2 B in d in g and A pp lied O ccurrences

The second concept is th a t of binding occurrence and applied occurrence of identifiers. A

binding occurrence is one th a t creates a binding for the identifier; an applied occurrence is

one where the identifier is used. In the S p e c i m e n program of Figure 6.1 the occurrences

of y in line 7 and fact in line 9 are binding occurrences whereas the one in lines 11 and

14, and 13 and 20 are applied occurrences.

Usually the meaning of an applied occurrence of an identifier is established a t a unique

and explicit binding occurrence of the same identifier; the applied occurrence is in the

scope of a binding occurrence for the identifier. (As we shall see, there are cases where

this uniqueness is not satisfied.) For example, the applied occurrence of y in line 11 of

Figure 6.1 is said to be in the scope of the binding occurrence of y in line 7. Alternatively,

one could say th a t a binding occurrence establishes a region on the program tex t where

all occurrences of the bound identifier have the meaning given by the binding occurrence,

th a t is, the identifier is visible, with its declared meaning, in this region. For example,

the scope of the declaration of n in line 9 goes from line 10 to line 15. Which binding

6.2. Bindings in Programm ing Languages 167

program loopfact is (i)
const (2)

n : int = 1000000; (3)
var (<)

x : int := 0; (5)
var (6)

y : int := 0; (?)
proc (8)

fact (n : int) = (9)
if (n = 0) (10)

then y := 1 (11)
else (12)

call fac t (n — 1); (13)
y := n * y (14)

end (15)
in (16)

x := n; (1?)
while (x > 0) (18)

do (19)
call fact (10); (20)
x := x — 1 (21)

end (22)
end (23)

Figure 6.1: The S p e c i m e n loopfact program .

occurrence of an identifier applies to an applied occurrence is determ ined by the language’s

scope rules.

6.2 .3 E nvironm ent

An environm ent is a collection of bindings. In denotational semantics, for example, it is

modelled as a function from identifiers to their semantic values. In general, expressions

are evaluated relative to an environment, for example, the evaluation of the expression

x 2 + 3y + 20

in the environm ent1 [a: i—>• 4, y i—>- 0, i—>- —1] yields 36.

6.2 .4 FFee Identifiers

Finally we have the im portan t notion of free occurrence of an identifier in a phrase. An

identifier is said to be free if it has an applied occurrence in a phrase which is not in the

1 For convenience we have presented the environment as a mapping.

B in d in g A n a ly s is in A c tio n S e m a n tic s 168

scope of any binding occurrence local to th a t phrase. All occurences of y inside procedure

fa c t in Figure 6.1 are free occurrences.

6 .2 .5 S ta tic and D yn am ic B ind ings

Program m ing languages are usually equipped with some form of abstraction. P a s c a l , for

example, has two forms of abstractions: procedures and functions. In functional languages,

the abstraction mechanism is provided by means of functions. In general, an abstraction

can be seen as the abstraction name, its input param eters, its ou tpu t param eters, and its

body which is a phrase such as an expression or statem ent.

In [102], Tennent begins the explanation of the notion of free identifiers of procedural

abstracts with the following:

In P a s c a l , free identifier occurrences are bound in the environm ent of the

abstract. This is known as static binding, because the binding occurrence is

determined “statically” , th a t is to say, w ithout executing the program ; fur­

therm ore, the binding occurrence does not change during program execution.

Let us examine in more detail the above quotation.

Firstly, Tennent mentions only free variables. T h a t is because binding occurrences for

the non-free (locally defined) identifiers are in the abstraction ’s body and they are the

same no m atte r from where the abstraction is called.

Secondly, he refers only to abstractions (“abstracts”). We can justify this because

only abstractions can be called from different places; blocks (such as expressions) cannot

be “called” from anywhere else, so their free identifiers’ binding occurrences are always

established statically. For example, the (block) expression in lines 10-14 of the program

shown Figure 6.2 has a free identifier, £, whose binding occurrence is at line 3; this binding

occurrence does not vary when we run the program . The value assigned to y in line 13

will always be 20 plus the value most recently assigned to x.

Finally, Tennent refers to the environm ent where the abstraction was defined. So,

regarding abstractions, there are the following im portan t points in the program text: the

point where a.n abstraction is defined, and the points where the abstraction is invoked.

This is exactly where the difference between sta tic and dynamic bindings resides. In

languages with a dynamic binding discipline, free identifiers in the abstraction are bound

6 .2 . B in d in g s in P r o g r a m m in g L a n g u a g es 169

p ro g ra m locale is
c o n s t c : int = 3;
var x : int := 4 (3)

in
lo c a l

var x : int := 5
in

x := 10 + c
en d ;
lo c a l (10)

var y : int := 6
in

y := 20 x (13)
end; (14)
x := x + c

e n d

Figure 6 .2 : The S pecim en locale program .

in the invocation environm ent. Binding occurrences of free identifiers can therefore change

during program execution. In im perative languages with dynamic bindings, abstractions

are functions not only of the store but also of the environm ent of their invocations.

Unfortunately, the absence of abstraction mechanisms does not guarantee a static

binding discipline of a language, as the following example illustrates.

E x a m p le 6 .1 . Consider the following S pecim en (artificial) expression:

let (1)
const x = i f b (2)

th en let const v = 2 in 4 -f v end (3)
else (4)

let const v = 8 in 5 end (5)
end (6)

in (7)
x -f v (8)

end (9)

According to the semantics given in Appendix B, the above expression evaluates to

6 + v if b evaluates to true , or to 5 + v if b evaluates to false, v (in line 8) and b are free

identifiers defined somewhere else outside the expression.

We can change the semantics of the ‘le t’ expression, so th a t bindings defined in it

escape. This is achieved by simply using the ‘before’ com binator instead of ‘h en ce’ in the

semantic equation for ‘le t’:

B in d in g A n a ly s is in A c tio n S e m a n tic s 170

ev a lu a te [[" l e t ” Z?:Declaration " in ” E :Expression "end”] =
j furtherm ore elaborate D
before
| evaluate E .

Now the evaluation of the expression changes: if b evaluates to true then the expression

evaluates to 8, otherwise it evaluates to 13. Furtherm ore, one cannot determ ine statically

w hat is the binding occurrence for the applied occurrence of v a t line 8. W ith the change

above we turned S p e c i m e n into a dynamically scoped language. □

A nother example could be a language with conditional declarations.

6 .3 B ind ings in A ctio n N o ta tio n

As a formal language for describing program ming languages, action notation is general

enough to describe both statically scoped and dynamically scoped languages. So, in gen­

eral, action notation is dynamically scoped. However one can define properties which

identify statically scoped actions. This is one of the objectives of this chapter. Before we

s ta te the statically scoped condition, we examine the main binding concepts in the case

of action notation, and give some definitions.

6 .3 .1 B ind ing

A binding in action notation is created by the ‘bind’ action. Syntactically, there are precise

points in an action where bindings are created. For example, in the action

| bind “c” to 1000
before

| give 0 label # 1
and

| a llocate a cell
then
| give the cell label # 2

then
| bind "x” to th e c e l l# 2
and
| store the v a lu e # l in the c e l l# 2

len ce
| give the value bound to "c”
then
I store the value in the cell bound to "x”

6.3. Bindings in Action Notation 171

th e ‘bind’ actions in line 1 and 9 create the bindings { c ■-» 1000} and {x c} respectively

(assum ing th a t ‘a llocate a c e ll’ at line 5 allocates cell c).

But when we consider abstractions, although the points where bindings can be pro­

duced are quite clear, the points where they are used are not. This is because the enaction

of an abstraction may produce bindings, and the points where these bindings will take

effect are not always statically determined. Consider for example the action

and
give closure abstraction

| bind "p” to th e abstraction
hence

| en act the abstraction bound to “p”
hence
| give successor (th e integer bound to “x")

and

The yielder ‘the ab straction ’ (line 4) evaluates to an unknown abstraction. Because of this,

we do not know which abstraction will be enacted a t line 6, so we do not know which

‘b ind’ action produced the binding expected by the ‘g iv e ’ action in line 8.

A binding {k d} does not change during the performance of an action. It can only

be hidden or overriden by a new ‘bind’ action for k. For example, in the action

| bind “x” to 4
hence

| «i
hence
| bind "x” to true hence a2

and assuming th a t there are no ‘bind’ actions for ‘x ’ in g ̂ and a 2, the bindings {x ■-» 4 }

and {x tru e} will remain constant during the performance of g ̂ and a 2 respectively.

Notice th a t a binding for the same token k can be created many tim es. A token k

can also be bound to a different value each tim e a binding for k is created. Consider, for

example, the action

unfolding
| bind "x” to the integer
hence
| give successor (th e integer bound to "x”) then unfold

B in d in g A n a ly s is in A c tio n S e m a n tic s 172

and assume it is given an integer d. For each iteration of the unfolded action, a new binding

for ‘x ’ is created. In the first iteration, the binding {x ■-> d} is created. In subsequent

iterations, the bindings {x i-> sued1 d}, are successively created (n = 1 ,2 , . . .) . The binding

for ‘x ’ is not changing; a new one is being created a t each iteration.

6 .3 .2 B in d in g and A pp lied O ccurrences

In action notation, a binding occurrence corresponds to the production of a binding. As

we saw before, this is achieved by the ‘bind’ action. T h a t is, an occurrence of the action

‘bind k to y'> defines a binding occurrence for token k in its scope.

An applied occurrence is an occurrence of the declarative yielder ‘th e s bound to k \ It

defines points where a binding for k is used, or, more precisely, the datum bound to k is

used.

For example, in the action of Figure 6.3, we identify a binding occurrence for token

‘x ’ in line 5. By following the flow of bindings through the action, applied occurrences for

‘x ’ are identified in lines 23, 25, 34 and 43. The binding occurrence for all these applied

occurrences is the one in line 5. To find out the binding occurrence for each applied

occurrence of ‘x ’ we have used implicitly our knowledge of the scope rules for bindings in

action notation.

6 .3 .3 B ind ing E nvironm ent

The outcom e of an action performance depends on the binding environm ent for the action.

For example, the action

g ive successor (th e integer bound to "x”)

has outcom e (completed, { 0 5 } , {}, {}) when performed in the binding environm ent {x i->

4 } , and outcome (completed, { 0 i-> 1 0 } , {}, {}) when performed in the binding environment

{x i-» 9 } .

The binding environm ent, a t a particular point in the action, is determined by the

flow of bindings during action performance. The action com binators define precisely this

binding flow. The sem antic rules of C hapter 3 formalize this behaviour. However, due

to the presence of abstractions (as discussed in Section 6.3.1), the flow of bindings is not

always explicit.

6 .3 . B in d in g s in A c tio n N o ta t io n 173

1 1 1 1 g iv e 4 th en g iv e th e v a lu e l a b e l #1
1 1 1 and
1 1 1 1 a l l o c a t e a c e l l th en g iv e th e c e l l l a b e l #2 (3)
1 1 then
I I I I b in d "x" to th e c e l l # 2 (5)
1 1 1 and
1 1 1 I s t o r e th e v a lu e # l in th e c e l l # 2
1 b e fo r e
1 1 r e c u r s i v e l y b in d "add" to c lo s u r e
1 1 1 a b s t r a c t io n
1 1 1 1 I furtherm ore
1 1 1 1 1 1 1 g iv e headOf (th e f u n - a r g u m e n t - l i s t)
1 1 1 1 I 1 then
I I I I I I I b in d "n" t o th e va lu e
1 1 1 1 hence
1 1 1 1 1 1 1 1 1 1 g iv e th e v a lu e bound t o "n"
1 1 1 1 1 1 1 1 1 or
1 1 1 I 1 1 1 1 1 1 g iv e th e p r im i t i v e - v a l u e s t o r e d
1 1 1 1 1 1 1 1 1 1 in th e c e l l bound to "n"
1 1 1 1 1 1 1 1 then
1 1 1 1 1 1 1 1 1 g iv e th e v a lu e l a b e l #1
1 1 1 1 1 1 1 and
I I I I I I I I I I g iv e th e v a lu e bound to "x" (23)
1 1 1 1 1 1 1 1 1 or
1 1 1 I 1 1 1 1 1 1 g iv e th e p r im i t i v e - v a l u e s t o r e d
1 1 1 1 1 1 1 1 1 1 in th e c e l l bound t o "x" (26)
1 1 1 1 1 1 1 1 then
I I I I I I I I I g iv e th e v a lu e l a b e l #2
1 1 1 1 1 1 then
1 1 1 1 1 1 1 g iv e sum (th e i n t e g e r # l , t h e in te g e r # 2)
1 1 1 1 1 then
1 1 1 1 1 1 g iv e th e f u n - r e s u l t
hence
I | g iv e 8 then s t o r e th e v a lu e in th e c e l l bound to "x" (34)
1 and then
1 1 1 1 g iv e 3 th en g iv e l i s t (th e datum)
1 I 1 then
1 1 1 1 enact
1 1 1 1 1 1 th e f u n c t io n bound to "add"
1 1 1 1 1 w ith
1 1 1 1 1 1 th e fu n - a r g u m e n t - l i s t
I | then
1 1 1 s t o r e th e v a lu e in th e c e l l bound to "x" (43)

Figure 6.3: Binding and applied occurrences for an action.

B in d in g A n a ly s is in A c tio n S e m a n tic s 174

The action in lines 34-43 in Figure 6.3 is performed in the following binding environ­

m ent:

{x c, add i->- abstraction(...)}

if we assum e th a t ‘allocate a cell’ in line 3 allocates cell c when performed.

6 .3 .4 Free Tokens

Action notation has a notion of free tokens which corresponds to th a t of free variables.

In the ‘give’ action of the previous section, because there is no binding occurrence for the

token ‘x ’, we say th a t the token ‘x ’ is free in the action.

Im portan t occurrences of free tokens are the ones inside incorporated actions. As these

actions are frozen and can be performed in different places, the question we immediately

ask is from w hat binding environm ent the incorporated action inherits its free tokens. For

an abstraction whose incorporated action expects no bindings, th a t is, one th a t has no free

tokens, one can determ ine the binding occurrence for any applied occurrence of a token k ,

for any k in the incorporated action top level.

We can be more precise about free tokens in actions using sort inform ation:

D e f in itio n 6.1 (A c tio n f re e to k e n s) I f action a has sort

(r ,{ }) ~ . (r ', / 5 ')

then it has no free tokens.

Notice th a t all closed abstractions have no free tokens, as their sorts are (t;,{}) ^

We know exactly where in an (program) action one can have free tokens:

• In the top level. B ut we do not allow this. Program actions are closed.

• In incorporated actions. The abstraction needs to be closed somewhere before enac­

tion to “eliminate” its free tokens.

• After the enaction of an unknown abstraction which produces bindings. For example,

6 .4 . S ta t ic a l ly S c o p e d A c tio n s 175

I en act the abstraction bound to "f”
hence
| give successor (th e integer bound to “x”)

the applied occurrence of token ‘x ’ in line 3 is free.

6 .3 .5 S ta tic and D yn am ic B ind ings

Finally the concept of sta tic scopedness and dynamic scopedness applies naturally to

action notation. The action in Figure 6.3 is statically scoped because one can determine

the binding occurrence for every applied occurrence of a token in the action.

The action below is dynamically scoped:

| bind “x" to 4 or bind "x” to 7
hence
| give the integer bound to "x”

The binding environm ent for the ‘g iv e ’ action is either {x 4 } or {x 7 } . The actual

binding environm ent will only be known a t performance time.

The following is another example of a dynamically scoped action:

| g ive abstraction (g ive successor (th e integer bound to “x”))
then

| bind "x” to 4
hence
| en act closure (th e abstraction) then give it label # 1

and
| bind "x” to 6
hence
| en act closure (th e abstraction) then give it label # 2

In this example there is not a unique binding occurrence for the applied occurrence of

token ‘x’ a t line 1.

6 .4 S ta tica lly S cop ed A ctio n s

From the analogy made with programming languages, we have learned about bindings in

action notation and have developed our intuition. Now we can define (informally) and

s ta te the statically scoped condition.

D e fin itio n 6 .2 (S ta t ic a lly sc o p e d a c tio n) A n action a is statically scoped i f fo r every
applied occurrence ‘the s bound to k ’ there exists a unique ‘bind ’ action which produces
the binding fo r token k.

B in d in g A n a ly s is in A c tio n S e m a n tic s 176

D e fin itio n 6 .3 (D y n a m ic a lly sc o p ed a c tio n) A n action a which is not statically sco­
ped is said to be dynamically scoped.

The above definition is very general. A test to verify if an action is statically scoped

could be a decision procedure which accepts an action as its input, and tells if the action

is definitely statically scoped or dynamically scoped. If an action is dynamically scoped,

this procedure could go one step further and say which bindings in the action are static

and which ones are dynamic. This kind of annotation could be useful as a basis for action

transform ations.

If the decision procedure does not give a definite result, then we could have a statically

scoped action which would not be classified as so.

6.4.1 S ta tica lly Scoped C ondition

In establishing a statically scoped condition, the first point we have to consider is con­

cerned with unclosed abstractions. We will have to check whether abstractions are closed

immediately after they are formed. All occurrences of the ‘ab straction ’ operation must

be immediately enclosed by the ‘closure’ operation. W ith this restriction, any free tokens

in the incorporated action become non-free, and the enaction of the abstraction becomes

independent of the binding environment. If the incorporated action has no free tokens

then it does not have to be closed.

If conditional actions (‘or’ and ‘e lse ’) produce bindings, and these bindings are used,

then we will certainly have dynamic bindings. So we have to check whether conditional

actions produce bindings and whether these bindings get used. For example, the action

| bind "x" to 4 or bind "x" to 30
hence
| give the integer bound to "x”

is dynamically scoped, whereas

| bind "x" to 4 or bind "x” to 30
hence
| give successor (1)

is statically scoped.

For ‘u nfolding’ we have to consider two points. The first point is th a t, if an unfolded

action produces a binding for a token, the binding m ust be produced by the same ‘bind’

6 .4 . S ta t ic a l ly S c o p e d A c tio n s 177

action no m atte r how m any times the unfolded action is performed. For example, the

action

unfolding
| unfold hence unfold
or
| bind ” x” to 3

is statically scoped, whereas

unfolding
| unfold hence bind "x” to true
or
| bind ” x” to 3

is dynamically scoped (notice th a t both actions diverge). In the first action, no m atter the

num ber of iterations for the unfolded action, the binding for V produced will be always

the one created by the ‘bind’ action in line 4. In the case of the second action, the binding

for ‘x ’ produced by the unfolded action can be created by the ‘bind’ action in line 2 or the

‘b ind’ action in line 4.

The second point is better introduced with an example. Consider the following action:

| bind “x” to 0
hence

unfolding | bind "x” to successor (th e integer bound to "x”)
hence

| check (th e integer bound to “x” is 10) and then com p lete
or
| check not (th e integer bound to "x” is 10) and then unfold

Clearly the ‘unfolding’ action does not produce bindings, bu t clearly there is not a unique

‘b ind’ action for ‘the integer bound to “x” ’ in line 3. Therefore the action is dynamically

scoped. This is however a feature hard to find in real program m ing languages. In contrast,

the following action is statically scoped:

| bind "x" to 0
hence

unfolding | furtherm ore (g ive successor (th e integer bound to "x”))
hence

| check (th e integer bound to “x” is 10) and then com p lete
or
I check not (th e integer bound to "x” is 10) and then unfold

B in d in g A n a ly s is in A c tio n S e m a n tic s 178

We noticed th a t when the unfolded action has free tokens, and when the bindings received

by the free ‘unfold ’ actions do not remain sta tic during the performance of ‘u nfold ing’, then

there is no unique binding occurrence for those free tokens. T h a t is, for all iterations, the

bindings which reach all ‘unfold’ actions and contain free tokens of the unfolded action,

m ust have been produced by the same ‘bind’ action as the ones th a t reaches the unfolded

action.

Finally, we observed th a t incorporated actions th a t produce bindings are a source of

dynam ic bindings. This is true because we cannot always determ ine the identity of the

abstraction being enacted, so we do not know, in general, where the bindings produced

by an ‘en a c t’ action came from. For example, the action

| g ive closure abstraction (bind "x” to 1) or give closure abstraction (bind "x” to 2)
then

| en act the abstraction
hence
| ... the s bound to “x” ...

is dynamically scoped (we do not know which is the binding occurrence for token ‘x ’ in

the last line).

An alternative would be to prohibit conditional actions from giving abstractions, and

to prohibit abstractions from being storable. If, for an action a, conditional actions do

not give abtractions, then each abstraction can be uniquely identified by following the

flow of d a ta through the action. (The possibility of abstractions bound to tokens in

conditional actions is caught by the restriction on the bindings produced by these actions.)

An action which stores abstractions has the potential to originate dynam ic bindings. A

stored abstraction can be fetched from store and enacted. In general we do not know the

content of the cell, so we do not know which particular abstraction will be enacted.

For an example illustrating how storable abstractions can introduce dynam ic bindings,

consider the action

6.4 . S ta t ic a l ly S c o p e d A c tio n s 179

| a lloca te a cell
then

| bind "x" to th e cell
and
| store closure abstraction (bind "y" to 12) in the cell
and
| store abstraction (bind "y" to 30) in the cell

len ce
| en act the abstraction stored in the cell bound to V
hence
| g ive su ccessor (th e integer bound to “y”)

The ‘s to re ’ action in line 7 stores a new abstraction in the cell allocated in line 1, which is

the abstraction enacted in line 9. The ‘g iv e ’ action in line 11 “sees” the binding {y 3 0 }

instead of {y i-» 1 2 } .

We s ta te now the statically scoped condition for actions:

Condition 6.1 (Statically scoped action) I f in an action a:

1 every occurrence o f the ‘abstraction a \ where a contains free tokens, is enclosed by
the ‘closure ’ operation,

2 no conditional action produces bindings which are used,

3 no ‘u n fo ld in g ’ action produces bindings which were not produced by a unique ‘b in d ’
action,

4 every ‘unfold ’ action receives the same bindings as the enclosing unfolded action, and

5 no incorporated action produces bindings,

then a is statically scoped.

In the next section we will be more precise about the observations made in this section.

6.4 .2 Form alisation

Before we formalise the definition of statically scoped action we introduce some machinery.

We will formalise the knowledge of bindings and the uniqueness of binding occurrences

using the following judgem ent:

a I S ' , n'

where

• 1C is sort information concerned only with bindings.

Binding Analysis in Action Semantics 180

• 13 and B' are m appings from tokens to the powerset of natural numbers. For an

element {k {n i, n 2, . . nm}} of B, we can assert th a t there are m ‘bind’ actions

(or m binding occurrences) for the free applied occurrences ‘the s bound to fc’ of

a. Moreover, these ‘bind’ actions are uniquely tagged n 1} n 2, . . . , nm. A similar

explanation applies to B' (but regarding the binding occurrences produced by a).

• n and n' are natural numbers.

• a is a well-sorted action.

T he in terpreta tion of the judgem ent is th a t B is the set of binding occurrences received

by a and B' the binding occurrences produced by a .

For a well-sorted yielder we have

/C, B, n h y n'

One can think of B and B' as binding occurrence annotations on actions, and B and

[] as binding occurrence annotations on yielders (the evaluation of a yielder produces no

binding occurrences).

The following observations can be easily inferred from the judgem ents above:

• If K, h a : (3 ^ (3' then dom (3 C dom B and dom (3' = dom B ' .

• | B(k) | = 1 means th a t there is only a unique ‘bind’ action (binding occurrence)

for token k, and this ‘bind’ action is known2.

• \ m \ > 1 means th a t there is potentially more than one ‘bind’ action (binding

occurrence) for token k.

• If a is well-sorted then (3{k) is always defined for all occurrences of k in a . This

implies th a t B(k) is also always defined.

Binding annotation for A c tr ess action notation is shown in Figures 6.5-6.10. Most

of the rules are straight forward and can be obtained directly from the sem antic rules

of C hapter 3 considering only binding information. In the following we will discuss the

interesting cases.

2 |s | means the cardinality of set s.

6.4. Statically Scoped Actions 181

The ‘combine’ operation (o) used in the rules is defined as:

{ } o B 2 = B 2 (6.1)

Bt o { } = B l (6.2)

(k t-> wi • Bi) o (k !->• w 2 ' B 2) = {k (ic i U ^ 2) } 0 (&i 0 # 2) (6-3)

(A: wi ■ Bi) o B 2 = {k i->- Wi} 0 (# 1 o B2), if k £ dom B2 (6.4)

Figure 6.5 contains the annotation rules for basic action notation. In the rule for

‘u nfo ld ing’ we use the “unfolded” judgem ent which rules are in Figure 6.4. The place

holders in the unfolded annotation rules are for /C, B and n, and are to be interpreted as

saying th a t these variables have the same behaviour as th a t specified by the annotation

rules. In the rule for ‘unfold’, the variables A and U are auxiliary binding annotations.

The former is used to record the ou tpu t binding annotation for the unfolded action. The

la tte r is used to record the combined ou tpu t binding annotations for all free ‘unfold’ actions

in the unfolded action.

Each antecedent in the annotation rule for ‘u nfold ing’ (Rule 6.13) represents an anal­

ysis iteration over the unfolded action. In the first iteration (first antecedent), as one

does not know w hat is the ou tpu t binding annotation for the unfolded action, nor the

combined ou tpu t binding annotation for the ‘unfold ’ actions, it has em pty annotations

for these variables. From the second iteration on (see the second antecedent) the input

binding annotation for the unfolded action is the combination of the previous one (B)

and the combined ou tpu t binding annotation for all ‘unfold’ actions (Hi). Finally, the

ou tpu t binding annotation for the ‘unfolding’ action combines the ou tpu t obtained a t each

iteration.

Rule 6.14 in Figure 6.5 specifies the binding annotation for the ‘o r ’ com binator. When

a conditional action produces a binding for &, we do not know which ‘bind’ action produced

this binding, so we associate k to the union of the sets associated to k by ax and a2. For

example, for the action

bind "x" to 1 or bind "x” to true or bind "x” to list (3)

we would have {x h-> {1,2 ,3}} as its ou tpu t binding occurrence annotation.

Binding Analysis in Action Sem antics 182

(u n f o l d e d)

K , B , A , U , n b unfold A , A , B o U , n (6.5)

- , - ,A,U, - \~ p r im i t i v e - a c t i o n s - , A , U , - (6 .6)

- , - ,A,U, - \~ a ©> - yA' ,U'
- ,~,A,U, - b prefix-combinator a 9-> A' ,U' , - (6.7)

-> - > A , U , _ b a i A'i,U[, _ A\ ,U[, - b a 2 A'2,U2, -
- , . , A,U, - \ ~ a\ infix-combinator a 2 -,A!2,U2,- (6 .8)

Figure 6.4: Unfolded annotation rules.

(c o m p l e t e)

lC,B,n 1- complete 4 {}, n (6.9)

(f a i l)

/C,B,n b fail 4 {}, n (6.10)

(a n d)

lC,B,n\~ a i f B[, n[1C,B, n[b 02 4 B2, n'2
(6.11)!C,B,n\- a\ and a2 4 B[© B2, n'2

(a n d t h e n)

1C, B,n\~ a\ 4 B[,n[1C, B,n[b a2 4 B2, n2
(6.12)JC,B,n b a i and then a2 4 B[© B2, n2

(u n f o l d i n g)

1C,B ,{ } ,{) ,n\~ B i,A \,U i,n i
1C, BoU \, {} 0 Bi, {} oU\, n b a ©> B2,A 2,U2, n2

K ,B o U x o .. • 0 , {} 0 B\ 0 . . . 0 Bm—i , {} ^ bi\ 0 . . . 0 Hm—\ j ri b a Bm , Am j Hm > rim
1C,B,n b unfolding a 4 B\ 0 B2 0 . . . 0 Bm ,n m

(6.13)

(o r)

1C, B, n b a i 4 B(, n[1C,B, n'x b d2 4 B2, n2
(6 .14)lC,B,n\~ di or a2 I B[0 B2, n2

Figure 6.5: A nnotation rules for basic action notation.

6.4. Statically Scoped Actions 183

(g i v e)

y i n '
K ,B ,n b give y label i {}, n' (6.15)

(c h e c k)

1C, B, n b y 4 n'
!C,B,n\~ check y 4 {}, n' (6.16)

(t h e n)

1C, B, n b ai i B[, n'x 1C, B , n b a2 4 B2, n2
}C,B,n\- ai then a2 4 B[© B2,n 2 (6.17)

(t h e)

!C,B,n' b the s # n 4 n' (6.18)

Figure 6.6: A nnotation rules for functional action notation.

Figure 6.7 shows the annotation rules for declarative action notation. Notice in the

rule for the ‘b in d ’ action (Rule 6.19), th a t n is increm ented to reflect the tagging of the

‘b in d ’ action.

Figure 6.9 shows the binding occurrence annotations for reflective action notation.

The o u tpu t binding occurrence annotation for the ‘e n a c t ’ action (Rule 6.28) is based on

sort inform ation for the action. The rule specifies th a t the ou tpu t binding occurrence

annotation is formed by associating each token produced by the action with the set of all

na tu ra l num bers (N). The in terpretation is th a t as we do not know which ‘b in d ’ actions

produced the binding for these tokens, we say th a t every ‘b in d ’ action potentially produces

bindings for those tokens. Notice th a t, if in ‘e n a c t y \ y forms an abstraction, we could be

more precise about these ‘b in d ’ actions.

We distinguish two cases for the ‘a b s t r a c t io n ’ operation. One is when it occurs inside

a ‘c lo s u r e ’ operation (Rule 6.31), and the other is when it occurs in isolation (Rule 6.29).

In the first case the input annotation for the incorporated action is the input annotation

for the ‘c lo s u r e ’ operation. In the second case, the incorporated action input annotation

is unknown and we proceed as in the rule for ‘e n a c t ’, except th a t here we are interested

in the input bindings to the incorporated action.

We are ready now to formalize Definition 6.2 (statically scoped action):

Binding Analysis in Action Semantics 184

(b i n d)

fC ,B ,n\- y \ .n '
lC,B,n\~ bind k to y 4 {k t-y { n ' } } , n' + 1

(6.19)

(f u r t h e r m o r e)

1C, B,n\~ a i B ', n'
K ,B ,n \~ furthermore a i B' 0 B, n' (6.20)

(h e n c e)

1C, B, n b a i i B[, n[1C,B[, n[b a2 4 B'2, n2
fC ,B ,n\- a i hence a2 i B2, n2 (6.21)

(m o r e o v e r)

)C,B,n\~ a\ i B^n'^ 1C, B, n[h a2 4 B2, n2
1C, B,n\~ a\ moreover a2 4 B2 0 B[, n2 (6.22)

(b e f o r e)

1C, B, n h ai 4 B[, n[1C, B[0 B, n\ h a2 4 B2, n2
(6.23)1C, B, n b a\ before a2 4 B2 0 B[, n2

(b o u n d)

K ,B ,n b the s bound to k 4 n (6.24)

Figure 6.7: Annotation rules for declarative action notation.

(s t o r e)

1C, B, n b yi 4 n\ 1C,B, n[b y2 4 n2
K..B, n b store y\ in y2 4 { } , n2 (6.25)

(d e a l l o c a t e)

1C, B, n b y 4 n'
1C, B ,n b deallocate y 4 { } , n' (6.26)

(s t o r e d)

K ,B ,n \- y 4 n'
1C, B ,n b the s stored in y 4 n' (6.27)

Figure 6.8: A nnotation rules for im perative action notation.

6.4. Statically Scoped Actions 185

(e n a c t)

1C, B, n h y f n' 1C h enact y :/?<-»■ /?' B' = {k i->- N | k <— dom /?'}
(6 .28)K, B, n b enact y f B ', n'

(a b s t r a c t i o n)

JC \~ a : (3 ^ f3' B' = {k \ k i - dom (3} 1C, B' ,n h a f B" ,n '
(6 .29)fC ,B ,nh abstraction a j n '

(w i t h)

1C, B, n b yi I n[IC,B, n[h y2 I n2
(6 .30)K ,B ,n h t/i with 2/2 f

(c l o s u r e)

/C, 5, n h a f 5 ', n'
lC,B,n h closure (abstraction a) f (6.31)

/C, 5, n h y n'
K ,B ,n h closure j/1 n' (6.32)

Figure 6.9: A nnotation rules for reflective action notation.

(e l s e)

/C, B, n 1- ai 1 # 1 , IC,B, n[h 02 i B'2, n2
(6.33)K ,B ,n h ai else 02 f 5'j 0 B2, n2

(r e c u r s i v e l y b i n d)

1C, {k (-)■ {n}} 0 5, n + 1 h y | n'
(6 .34)/C, B, 11 b recursively bind k to y f {& {«}}, n'

(a l l o c a t e)

fC,B,n h y i n '
IC,B,n\~ allocate t / | {},«' (6 .35)

Figure 6.10: A nnotation rules for hybrid actions.

Binding Analysis in Action Semantics 186

Definition 6.4 (Statically scoped action) Let a be a well-sorted (program) action. I f

/C, {}, n b a I B ' , n'

and fo r every occurrence o f ‘th e 5 bou nd t o k ’ in a we have

/C, B, n h th e s b ou n d t o k n'

and | B (k) | = 1, then a is statically scoped.

If an action satisfies Condition 6.1 (statically scoped action), then the action is s ta ti­

cally scoped according to Definition 6.4.

We can easily identify the cases which break Definition 6.4 by inspection of the anno­

tation rules:

• There is a possibility of introduction of multiple binding occurrences for free tokens

of incorporated actions of unclosed abtractions (see Rule 6.29 in Figure 6.9, all tokens

k in B' satisfy | B{k) | > 1) . This can be avoided by insisting th a t all abstractions

are closed immediatelly after they are formed (see Rule 6.31 in Figure 6.9). This

agrees with Condition 6.1.1.

• By inspection of rules 6.14 and 6.33 one can see, by the presence of the combine

operation, th a t conditional actions can introduce the possibility of | B(k) \ > 1.

This only happens if the subactions produce bindings and these bindings are used.

So, if conditional actions do not produce bindings no possibility of multiple binding

occurrences arises from them . Condition 6.1.2 s ta tes exactly this.

• An ‘u n fo ld in g ’ action is another point where | B(k) | > 1 can be introduced.

By looking a t the annotation rule for ‘u n fo ld in g ’ (Rule 6.13), we can eliminate this

possibility by restricting the unfolded action from producing any binding. This is

exactly w hat Condition 6.1.3 says.

• If Condition 6.1.4 is satisfied then the input binding occurrence annotation to the

unfolded action is the same for all iterations (rules 6.13 and 6.5).

• Finally, in the rule for ‘e n a c t ’ we can see th a t if (3' ^ {} then there is the possibility

of introducing multiple binding occurrences for the free tokens in the scope of the

‘e n a c t ’ action. If we restrict B' to be em pty in Rule 6.28, th a t is, no abstraction

6 .5 . S ta t ic a l ly S c o p e d L a n g u a g es 187

produces bindings, then we eliminate this possibility. This is exactly w hat is stated

by Condition 6.1.5.

6 .4 .3 Im p lem en tation

A prototype im plem entation of the sta tic scopedness condition was done in two steps.

The first step annotates the action according to the annotation rules. The second step

ju s t inspects the annotations for the applied occurrences (yielders of the form ‘the s bound

to &’). If, for all such applied occurrences, \B(k)\ = 1 holds, then the action is statically

scoped, otherwise we do not know. Figure 6.11 shows an ex tract of the M L program

which implements the binding occurrences annotation. Figure 6.12 shows an ex tract of

the im plem entation of the statically scoped condition.

6 .5 S ta tica lly Scoped L anguages

We extend here the statically scoped condition from individual actions to action semantic

descriptions, and define w hat a statically scoped language is, based on the language’s

action sem antic description.

6.5 .1 S ta tica lly Scoped C ondition

Figure 6.13 shows the abstract syntax for an action sem antic description. Each semantic

function composes part of the program action which denotes the source program . By

m aking sure th a t, given an action semantic description of a source language, only statically

scoped actions are composed, we can say th a t the language is statically scoped. If in

the right hand side of one or more semantic equation, there exists a possibility th a t a

dynamically scoped action can be composed, then the action sem antic description has the

possibility to be of a dynamically scoped language.

C o n d it io n 6 .2 (S ta t ic a lly sc o p e d a c tio n s e m a n tic d e s c r ip tio n) I f in an action se­
m antic description V fo r a programming language C, the right hand side o f every semantic
equation is such that

1 every occurrence o f the ‘abstraction ’ operation is enclosed by the ‘closure ’ operation,

2 no conditional action produces bindings,

3 no ‘unfolding’ action produces bindings which were not produced by a unique ‘bind’
action,

B in d in g A n a ly s is in A c t io n S e m a n tic s 188

(t y p e s)

a n n o ta teA ct io n : (s t r i n g , i n t s e t) map -> (s t r i n g , i n t s e t) map ->
(s t r i n g , i n t s e t) map -> in t -> ((s t r i n g , ’a) map * (s t r i n g , ’b) map) AST ->
((s t r i n g , i n t s e t) map * (s t r i n g , i n t s e t) map) AST * (s t r i n g , i n t s e t) map *
(s t r i n g , i n t s e t) map * (s t r i n g , i n t s e t) map * (s t r i n g , i n t s e t) map * in t

a n n o ta te Y ie ld e r : (s t r i n g , i n t s e t) map -> in t ->
((s t r i n g , ’a) map * (s t r i n g , ’b) map) AST ->
((s t r i n g , i n t s e t) map * (s t r i n g , i n t s e t) map) AST * in t

(o r)

a n n o ta te A ct io n B Ua Ui n (O R (a l ,a 2 ,_)) =
l e t

v a l (a l ’ , B i l ’ , B o l ’ , U a l ’ , U i l ’ , n l ’) = an n o ta te A ct io n B Ua Ui n a l
v a l (a 2 ’ , B i 2 ’ ,Bo2’ ,U a2’ , U i 2 ’ , n 2 ’) = an n o ta te A ct io n B U a l ’ U i l ’ n l

in
(0 R (a l ’ , a 2 ’ , (B,combine B o l ' B o2’)) ,B , combine B o l ’ Bo2’ ,U a2’ ,U i 2 ’ ,

end

’ a2

n2 ’)

(b i n d)

a n n o ta teA ct io n B Ua Ui n (BIND.TO(INDIVIDUAL(TOKEN k , _) , y , _)) =
l e t

v a l (y ’ ,n*) = a n n o ta te Y ie ld e r B n y
v a l anot = (B ,s in g le m a p (k ,s in g le to n n ’))
v a l anotk = (B,emptymap)

in
(BIND.TO(INDIVIDUAL(TOKEN k , a n o t k) , y > , a n o t) ,
B ,s in g le m a p (k ,s in g le to n n ’) , U a , U i , n ’+ l)

end

(e n a c t)

an n o ta teA ctio n B Ua Ui n (ENACT(y, (b e t a , b e t a ’))) =
l e t

v a l (y ’ , n ’) = a n n o ta teY ie ld er B n y
v a l B ’ = makeUnknownBindings b e t a ’

in
(ENACT(y’ , (B ,B ’)) , B , B ’ ,U a ,U i ,n ’)

end

(b o u n d)

a n n o ta te Y ie ld e r B n (B0UND_T0(s,INDIVIDUAL(TOKEN k , _) , (_ , _))) =
l e t

v a l (s ’ , n ’) = a n n o ta teY ie ld er B n s
v a l a n n o ta t io n = (B,emptymap)

in
(B0UND_T0(s’ , INDIVIDUAL(TOKEN k , a n n o t a t io n) , a n n o ta t io n) ,n)

end

Figure 6.11: The implem entation of binding occurrences annotation (extract).

6 .5 . S ta t ic a l ly S c o p e d L a n g u a g e s 189

(t y p e s)

s t a t i c : ((s t r i n g , ’a s e t) map * ’b) AST b oo l

(s t a t i c a l l y s c o p e d c o n d i t i o n)

s t a t i c (ABSTRACTION(a,d)) = s t a t i c a
s t a t i c (AND(al, a 2 , d)) ■ (s t a t i c a l) an d a lso (s t a t i c a2)
s t a t i c (AND.THEN(al, a 2 , d)) = (s t a t i c a l) an d a lso (s t a t i c a2)
s t a t i c (AND_THEN_MOREOVER(al,a2,d)) = (s t a t i c a l) an d a lso (s t a t i c a2)
s t a t i c (BIND.TO(k,y,d)) = s t a t i c y
s t a t i c (B0UND_T0(r,INDIVIDUAL(TOKEN k _) , (B , B ’))) =

i f (card (a p l k B)) = 1 then tru e e l s e f a l s e

Figure 6.12: The im plem entation of the statically scoped condition (ex tract).

asd ::= « A .. .s /n (semantic description)

sf ::= f y s e i . . . s e n (semantic function definition)

fy T :: binfo (functionality)

se ::= T J op Ui : Si . . vn : S n | = a (semantic equation)

a ::= complete
| fail

(action)

T v (semantic function application)

binfo ::= bindings
| no-bindings

Figure 6.13: Abstract syntax of action sem antic descriptions.

B in d in g A n a ly s is in A c tio n S e m a n tic s 190

4 every ‘unfold ’ action receives the same bindings as its unfolded action, and

5 no incorporated action produces bindings,

then V is statically scoped.

D e f in it io n 6 .5 (S ta t ic a lly sc o p ed lan g u a g e) L e tV be an action sem antic description
fo r a language C. I f V is statically scoped then we say that C is a statically scoped language.

P r o p o s i t io n 6.1 I f a language C is statically scoped then all C program actions are stat­
ically scoped.

P r o p o s i t io n 6.2 I f fo r a language C there exists a program action that is dynamically
scoped then £ is dynamically scoped.

The proofs of the above propositions are left for future work.

6 .5 .2 Form alisation and Im p lem entation

We defer for future work the formalisation and im plem entation of an analysis which de­

term ines whether a language is statically scoped.

One basic difference from the analysis employed for actions is th a t we do not have

precise binding information in an action sem antic description. At m ost we know whether

an action produces or does not produce bindings. Tokens are not present in a semantic

description (only token variables). A nother difference is the presence of sem antic function

applications on the right hand sides of semantic equations.

We have done some exploration work towards the form alisation of the statically scoped

condition on action semantic descriptions. Below some points which might be of some help

in tackling the problem.

An analysis could use binding information, provided by the specifier in the form of

the functionality for sem antic functions, to analyse occurrences of semantic function ap­

plications in the right hand sides of semantic equations. Restrictions could be imposed

(enforced) based on Condition 6.2. For example, for the ‘or’ action we could have:

£ b a1 ff bindings, hi £ h a 2 JJ- bindings, h 2

£ h ai or a2 if bindings, dynamic
(6 .3 6)

6 .6 . D isc u ss io n a n d A p p l ic a b i l i ty 191

where £ is a semantic function environm ent used to keep inform ation about semantic

functions. The constant bindings indicates th a t the action produces bindings, and dynamic

th a t the action is dynamically scoped. The rule says th a t, if for the action ‘g ̂ or a2\ ax

and a2 may produce bindings, then, no m atter if the subactions are statically scoped or

dynamically scoped (hi and h 2), the ‘or’ is not considered to be a statically scoped action.

For semantic function application we could have:

T - . (b , h) - £ \ - T v $ (b , h) (6.37)

T h a t is, for a semantic function application in the right hand side of a sem antic equation,

we look up in the semantic function environm ent the “type” for T . A fter the analysis of

each right hand side of a sem antic equation, its type is updated.

6.6 D iscu ssion and A p p licab ility

By stating the statically scoped condition, we have defined a subset of ACTRESS action

notation which exhibits the statically scoped property.

The study of bindings in action semantics made in this chapter, might be useful when

incorporated in an action sem antic description analyser (see C hapter 7), which could

inform the language designer about the binding discipline of the source language.

The annotation rules might be also used to check if the bindings which reach every

‘unfold’ are the same which reach the unfolded action (for all iterations), which is w hat is

required by the elimination rule for ‘unfolding’ (Rule 5.17).

Notice that our condition for statically scoped actions can be used to tell if a program

V (program action) of a dynamically scoped language is statically scoped.

It would be nice if one could safely identify cases of dynamically scoped source lan­

guages. Also, it remains to be seen if a definitive result can be achieved.

In general the binding discipline for a program ming language is specified informally and

using syntactic examples. Our analysis is solely based on the formal sem antic description,

and identifies, formally, a statically scoped language. We recognize however th a t much

work is required to the formalisation and im plem entation of the statically scoped condition.

C hapter 7

C onclusions and Future W ork

I f it ca n ’t be expressed in fig u res, i t is n o t S c ien ce; i t is op in ion .

The N otebooks o f L a zaru s Long.

This chapter presents the results we achieved and possibilities for future work. We start

by showing figures for some benchmark programs used to compare an AcTRESS-generated

compiler with a hand-written one, and to assess the effectiveness of action transformations.

We continue by discussing what we think was achieved and how the work compares with

others. Topics for further improvements and some open questions conclude the thesis.

7.1 A ssessm en t

We have assessed the effectiveness of action transform ations and the binding elimination

technique using the program s loop, loopfact, bindings and block (see figures 4.3, 6.1, A .l

and A .2 respectively). The figures obtained are summarized in tables 7.1, 7.2 and 7.3.

We have compared them against the figures obtained for equivalent program s w ritten in

P a s c a l and compiled using the Sun P a s c a l compiler. All program s were run under

SunOS 4.1.3 on a Sun SPARCstation ELC. The m easurem ents were obtained using the

UNIX t c s h built-in tim e command. The figures shown are the arithm etic means of the

CPU user times for five consecutive runs. The compilation tim e figures for SPECIMEN

are shown in three columns, which correspond to compilation of the source program to C,

compilation of the C object code by the GN U C compiler, and the sum of these two figures.

192

7.1 . A s s e s s m e n t 193

Program Compilation time Running tim e
P a s c a l S p e c im e n Penalty P a s c a l S p e c im e n Penalty

loop 1.0 2 .1 2 .1 4 .2 4 .2 0 .6 2 3 .4 39 .0
loopfact 1 .0 3 .1 2 .6 5 .7 5 .7 0 .8 11 .6 14 .5
bindings 1.1 10.8 3 .8 14.6 13.3 0 .4 4 4 .3 110.7
block 1 .0 2 .6 2 .4 5 .0 5 .0 0 .7 4 3 .6 6 2 .3

Table 7.1: Compilation tim e and run tim e figures (in seconds).

T h e p e n a lty co lu m n is th e t im e o b ta in ed for S p e c im e n d iv id ed b y th e co rrep o n d in g on e

for P a s c a l . It rep resen ts th e fa c to r by w hich co m p ila tio n t im e an d ru n n in g t im e for an

A C T R E SS-generated com p iler are w orse w h en co m p a rin g w ith a h a n d -w r itten com p iler .

Table 7.1 shows the figures for a compiler generated by the prelim inary version of

A c t r e s s . We could say th a t compilation tim e is about 4-15 tim es larger than the com­

pilation time for hand-written compilers. Running tim e of object code is slower by factor

of abou t 15-110. Although high, this penalty compares favorably with the compiler gen­

erators based on denotationa.l semantics (classical systems) discussed in C hapter 2. The

compilation time penalty for the bindings program is very anomalous when comparing

with similar figures for the other programs. We suspect th a t this might be caused by the

m anipulation of some inefficient d a ta structure , used by the generated compiler, a t com­

pilation time. The high running tim e penalty for the bindings program can be explained

in term s of the high numbers of binding lookups (calls to the run-tim e function -BOUND)

during the performance of the program.

Table 7.2 shows the result when we use a version of ACTRESS which incorporates

the transform er into the generated compiler. The loopfact object code now runs faster

by a factor of 2. The bindings program runs faster by a factor of 10! We expect th a t

the gain will be even better for larger program s with a lot of bindings. A t least for

the benchmark programs, the transform er introduced no significant tim e overhead in the

generated compiler. It seems th a t its time overhead is com pensated by the smaller program

action which is input to the code generator and the smaller C object program which is

input to the C compiler. However we would need a larger sample of benchm ark program s

to be sure about this statem ent.

Finally, Table 7.3 shows the figures obtained using an optimized C compiler. These

figures assume th a t there are no sort checks a t run tim e (tag-free run tim e environm ent).

Conclusions and Future Work 194

B a s e d on T able 7.3 w e can say th a t A cT R E SS -generated com p ilers h a v e a co m p ila t io n

p e n a l ty a b o u t 5-10 an d a running t im e p e n a lty a b o u t 5-30.

7 .2 W h a t w as A chieved?

We consider the discovery and use of action transform ations as the principal result of

th is thesis. In particular, by using them , we solved the problem of binding elimination,

transien t elimination and storage allocation in A c t r e s s . Action transform ations can also

be seen in a wider context of static performance o f actions. A lthough actions are dynamic

entities, and action semantics does not distinguish w hat is sta tic from w hat is dynamic in

an action, we have m ade such distinction in a formal and system atic way, and have explored

it in order to obtain actions which perform better because part of their perform ance was

carried out statically. The figures presented in Section 7.1 dem onstrated the effectiveness

of action transform ations.

This thesis can also be seen as a study of bindings in action notation and action se­

m antic descriptions. The conditions stated in C hapter 6, as far as we know, were never

sta ted for other sem antic formalisms. We have identified if a language has a s ta tic binding

discipline from its action semantic description. Again, we see this result as part of a wider

spectrum , th a t of useful analyses which are built into a processor for language descrip­

tions. As the sta tic analysis of a program by a compiler can detect many inconsistencies

w ithout the need to run the program, analyses built into a semantics-based compiler gen­

erato r should assist the language designer (and implementor) not only to guarantee the

consistency of the sem antic description but also to give information abou t the binding

discipline, type discipline and other im portan t properties of a language. All th is before

Program Compilation time Running tim e
P a s c a l S p e c i m e n Penalty P a s c a l S p e c i m e n Penalty

loop 1.1 2 .3 2 .0 4 .3 3 .9 0 .6 7 .6 12 .7
loopfact 1 .0 3 .0 2 .3 5 .3 5 .3 0 .8 6 .1 7 .6
bindings 1.1 11.1 3 .3 14 .4 13.1 0 .4 4 .6 11 .5
block 1 .0 2 .4 2 .4 4 .8 4 .8 0 .7 2 1 .8 3 1 .1

• SPECIMEN com piler including transform ations.

Table 7.2: Compilation time and run time with action transform ations (in seconds).

7.3. Comparison with other System s 195

Program Com pilation time Running tim e
P a s c a l S p e c i m e n Penalty P a s c a l S p e c i m e n Penalty

loop 1 .0 2 .3 2 .3 4 .6 4 .6 0 .4 2 .8 7 .0
loopfact 1.1 3 .0 3 .0 6 .0 5 .5 0 .7 3 .7 5 .3
bindings 1 .6 11.1 5 .1 16 .2 10.1 0 .3 1 .5 5 .0
block 1.1 2 .4 2 .8 5 .2 4 .7 0 .4 11 .4 28 .5

• Optim ized PASCAL compiler.

• S p e c im e n compiler including transformations, optimized C compiler, and no run-tim e sort checkings.

Table 7.3: Final figures (in seconds).

an im plem entation is ready! By exploring these properties, more efficient compilers can

be generated. The binding analysis of C hapter 6 is a s ta r t point in the direction of build­

ing useful language analysis into a semantics-based compiler generator. These sem antic

description analysers would be similar in spirit to the analyses found in program ming

language compilers. This is be tter expressed by the following relation:

sem antic description analysers compiler static analysers
languages programs

The use of inference rules to specify the action notation code generator was rewarding.

Besides its im portance as a precise presentation of the code generator, it revealed some

bugs of the im plem entation1.

Our contribution to the im plem entation of A c t r e s s can be described concretely by the

num ber of lines of code w ritten. For A N C, including 800 lines of C code of the run tim e

system , but excluding the parser and sort checker, approxim ately 5,000 lines of M L code

were w ritten. A n i has 3,500 lines and the actioneer generator 1,400 lines. The prototype

implementation for the binding analysis presented in C hapter 6 has about 500 lines.

7.3 C om parison w ith o th er S y stem s

A c t r e s s (with action transform ations), to the best of our knowledge, com pares favorably

with any other semantics-directed compiler generator. There is no doubt th a t its object

code runs better than the code produced by the classical system s. Below we consider some

xT hat was because the specification presented in Chapter 4 was only done after the im plem entation of
the code generator.

Conclusions and Future W ork 196

other system s.

Palsberg’s compiler generator C a n t o r is broadly similar to A c t r e s s , but it accepts a

different subset of action notation. It restricts itself to statically-scoped source languages,

however. The current version does not actually eliminate bindings. AcTRESS-generated

compilers compare favorably to C a n t o r ’s ones. O bject code produced by C a n t o r -

generated compilers has a running tim e penalty about 148-369 and a com pilation time

penalty about 136-542 [89]. Although A c t r e s s does not treat com m itm ents and escape

actions, we believe that their inclusion would not cause much lost in efficiency. Further­

more, we think that some improvement could be expected if we generated machine code

instead of C . A nice fact about C a n t o r is that its correctness proof is given [90]. At

present there is no correctness proof for A c t r e s s .

At the core of both A c t r e s s and C a n t o r is a compiler for actions, hand-w ritten

in both cases. More recently Palsberg and Bondorf have applied partial evaluation to

obtain an action compiler [12]. The compiler is obtained by partial evaluation of an

action in terpreter. The in terpreter is w ritten in S c h e m e , and the compiler is obtained

by applying the S im il ix [11] partial evaluator to it. The generated compiler works by

specializing an action in terpreter with respect to the input action. It is reported th a t the

produced S c h e m e code runs as fast as th a t produced by the previous action compilers.

D oh’s prototyping system [27], based on a category-sorted algebraic model for action

semantics [28], extracts a binding-time semantics from an action-sem antic description. It

generates a syntax-directed translato r th a t translates the source program to a program

action anno tated with binding-time information. This annotation will assist a s ta tic eval­

uator to identify which parts of the program action can be statically performed. D oh’s

m ethod is more strongly influenced by partial evaluation than ours: in the source action

of Exam ple 5.16, he would unfold the abstraction rather than leave it to be enacted. As

compared with D oh’s m ethod, it seems th a t our m ethod can eliminate more bindings, and

is applicable to a larger subset of action notation. Doh reported, for a particu lar program

action, an improvement in efficiency by a factor of 2 using his approach. However, much

assessment would be required to see how effective his approach is. As he suggested in [27],

a good exercise would be to incorporate his system in ACTRESS and assess the result.

Using M ESS, Lee and Pleban have constructed compilers whose object code is excel­

lent. As reported in [65], they compare well with code generated by hand-w ritten compil­

7.4. Improving A c t r e s s Further 197

ers. Unfortunately, the language specifier has to design a new sem antic algebra for each

source language, as high-level semantics has no standard notation as in action semantics,

and must manually implement the translation from this sem antic algebra to the target

machine code. The good performance of generated compilers comes from a distinct sepa­

ration between compile-time and run-tim e objects (macrosemantics and microsemantics,

respectively) [65].

7.4 Im proving A c t r e s s Further

There is some room for improvements and extensions to the current work. We identify

below some of the points which deserves more study.

• T ra n s ie n t e lim in a tio n . We have paid slight a tten tion to transien t elimination. As

sta ted in C hapter 5 transform ations involving transients do not always lead to gain

in efficiency. B ut certainly, transient elimination could be explored in more detail.

• C o m p ile r t r a n s fo rm a t io n s . There is a possibility to explore s tandard compiler

transform ations — such as common subexpression elimination and code motion —

in term s of action notation. This could have the advantage of bringing these trans­

form ations to a formal basis, on which eventually their correctness could be proved.

• C o d e g e n e ra to r . Better C object code could be generated. It seems th a t our

choice to transla te yielders to C expressions does not give good flexibility in the use

of C as a target language. A more assembly-like approach would be to translate

a yielder to C statem ents. A nother possibility is to retarget the code generator to

some machine independent form at such as A N D F [103].

• C o m m itm e n ts a n d e sc a p e a c tio n s . The retargeting of the action notation code

generator could be accompanied by an extension of A c t r e s s action notation to

include com m itm ents and escape actions. (These are the m ost im portan t action

notation concepts — apart from the communicative facet — excluded from the

A c t r e s s subset.)

• T ra n s la tio n c o r re c tn e s s . The specification of the action notation code generator

has helped our understanding of the topic. However one can notice a sem antic gap

Conclusions and Future W ork 198

between a program action and its corresponding C object code. It is desirable to

prove the correctness of the translation process. We could s ta r t by given a semantics

to the C subset used. This work could contribute to a proof of A c t r e s s ’ correctness.

• B e t te r a c tio n e e r g e n e ra to r . The version of the actioneer generator described

in this thesis is very simple. In a fu ture version a deeper analysis of the semantic

description could be implemented. At present, some consistency checks are deferred

to be performed when the generated actioneer is itself compiled (by the M L com­

piler). Some future enhancem ents could include: autom atic extraction of a ML

data type from the abstract syntax definition; consistency checks on the semantic

equations against the abstract syntax definition; sort checking; support for specifier-

defined sorts; and an autom atically-generated Tf^X ou tpu t (similar to the one in

Appendix B). Some of these improvements have already been studied by Brown,

and are described in [14].

• T y p e a n a ly s is o f th e s o u rc e la n g u a g e . For a particular language it can happen

th a t we do not need any run-tim e sort checks. So the code generator should be

parameterized regarding this. If we do not need such checks, the generated code

can be optimized, e.g., the d a ta do not need tags a t run time. A simple approach

to this problem is to examine the decorated action tree, for a particular program

action, looking for SO R T-C H EC K nodes. If there are no such nodes then the run­

time environment for th a t program may be tag-free. This is a per-program solution

and not so elegant. A better approach is to define a type analysis on the source lan­

guage. If this analysis concludes, for example, th a t the source language is statically

typed, A c t r e s s could generate, based on this result, a better compiler which would

generate better object code for all source program s in the language.

• B e t te r s to ra g e a llo c a tio n . Storage for classified ‘allocate’ actions of incorporated

actions is allocated in the heap. For a language where abstractions are first-class

values, frames must be allocated in the heap. However, for a language where a stack

based storage organization can be used, ‘allocate’ actions of incorporated actions

could be allocated in the stack. It seems th a t we need a condition on the language

description to test if its abstractions are first-class values, so we could be sure when

a stack based or heap based storage organization can be used. A condition for stack

7.5. Open Questions 199

allocation must also consider the possibility of cells as values in the source language.

Much study is required here too.

• C o r re c tn e s s o f th e t r a n s fo r m a t io n s . We would like to show th a t a ta rge t action

is equivalent to its source action. This would require a deeper study on the theme

of action equivalence. The transform ations preserve (for program actions) what

we have called functional equivalence of actions. We need however a notion of

equivalence which includes the im perative facet. Using this notion together with

some convenient sem antics for action notation, one could in principle prove th a t

action transform ations preserve action equivalence.

• S e m a n tic ru le s . A lthough possible, we did not give a semantics for A c t r e s s action

notation which takes into account the introduction of statically allocated cells (cell

(l ,n)). This could be an interesting work to be carried out in future.

7.5 O pen Q u estion s

Although we did the best effort to test our ideas using practical examples, and a non­

trivial program ming language, it remains to be seen how the system would work for a real

language. A good exercise would be to use the P a s c a l action semantics [83] as an input

to A c t r e s s , and test the effectiveness of the transform ations for real and large program s.

As dem onstrated by the figures for the bindings program (Table 7.2), we expect th a t

binding elimination will be responsible for a big improvement in the running tim e of those

program s.

Some initial experim ents with a functional subset of S t a n d a r d M L (m i c r o M L),

showed th a t binding elimination can be applied successfully to functional languages [8, 53].

Notice th a t, although it is expected th a t an action sem antic description for a functional

language has no im perative actions, the binding elimination technique does introduce

im perative actions. We believe this does not break the functional behaviour of the orig­

inal semantics. Conventional im plem entations of functional languages also use the store!

Again, although initial figures for the object code generated for m i c r o M L show a per­

form ance comparable to one generated by a hand-w ritten compiler, it remains to be seen

how generated compilers for full functional languages behave.

Conclusions and Future Work 200

It would be nice to have a formal notion of action efficiency. Given an action a, we

would like to answer if an action a' obtained from a by some action transform ations is

more efficient than a. This notion could help in transien t elimination where it is not always

clear if the targe t action is more efficient than the source action.

After the work on the code generator, we thought about the possibility of definition of

an abstract machine fo r actions. This could help to obtain a more independent back end

for the action notation compiler, as well as in a possible correctness proof for A c t r e s s .

Also it could reveal desirable properties a real machine for action performance could have.

7.6 F inal W ords

The A c t r e s s system was the first compiler generator built using action semantics [16,

15]. Although a relatively new formalism, action semantics has also been used to build

o ther systems [90, 27], which dem onstrates its potential in the area of semantics-directed

compiler generation. The action primitives and com binators correspond quite closely to

the operational concepts in term s of which languages are implemented. The store is by

definition single-threaded, and bindings are by definition scoped. Action notation has

more structure than A-notation, which gives a better handle on the problem in an action

semantics directed compiler generator than in a denotational-sem antics based system.

Finally, action transform ations (including algebraic properties of action notation) provide

a rigorous foundation for code-improving transform ations.

We believe th a t the present work on action transform ations represents a m odest step

towards the development of a high-quality semantics-directed compiler generator based on

action semantics.

B ibliography

[1] S. A bram sky and C. Hankin. An introduction to abstract in terpretation. In
S. Abram sky and C. Hankin, editors, Abstract Interpretation o f Declarative Lan­
guages, chapter 1. Ellis Horwood Limited, 1987.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, 1986.

[3] A. W. Appel and D. B. MacQueen. S tandard ML of New Jersey. In M. W irsing,
editor, Third International Symposium on Programming Language Im plem entation
and Logic Programming. Springer-Verlag, August 1991.

[4] H. P. Barendregt. The Lambda-Calculus, its Syntax and Sem antics. North-Holland,
1985.

[5] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press
Frontier Series. The ACM Press in cooperation with Addison-Wesley, 1989.

[6] D. Berry. Generating Program Anim ators from Programming Language Semantics.
PhD thesis, University of Edinburgh, June 1991.

[7] P. Bird. An im plem entation of a code generator specification language for table
driven code generators. In Proceedings o f the S IG P L A N ’82 Sym posium on Compiler
Construction , pages 44-55, June 1982. SIGPLAN Notices, Volume 17, Number 6.

[81 R. A. Bird and P. L. Wadler. Introduction to Functional Proqramminq. Prentice
Hall, 1988.

[9] J. M. Bodwin, L. Bradley, K. Kanda, D. Litle, and U. F. Pleban. Experience with
an experim ental compiler generator based on denotational semantics. SIG P L A N
Notices (S IG P L A N ’82 Symp. On Compiler Construction), 17(6), June 1982.

[10] S. Bondesen and S. Laursen. An action semantics for Joyce. Internal R eport DAIMI
IR-72, Com puter Science D epartm ent, Aarhus University, 1987. O ut of print.

[11] A. Bondorf. Sim ilix 5.0 Manual. DIKU, University of Copenhagen, April 1993.
Included in Similix 5.0 distribution.

[12] A. Bondorf and J. Palsberg. Compiling actions by partial evaluation. In Proceedings
of the Conference on Functional Programming Languages and Computer Architec­
ture, pages 308-317, June 1993.

201

Bibliography 202

[13] P. Borras, D. Clement, Th. Despeyroux, J . Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. CENTAUR: the system . S IG P L A N Notices, 24(2) :14-24, February 1989. Proc.
ACM SIG SO FT/SIG PLA N Software Engineering Symposium on Practical Software
Development Environm ents.

[14] D. F . Brown. Sort Inference in Action Sem antic Specifications. PhD thesis, Univer­
sity of Glasgow, 1993. In preparation.

[15] D. F . Brown, H. M oura, and D. A. W att. Towards a realistic semantics-directed
compiler generator. In R. Heldal, C. K. Holst, and P. W adler, editors, Functional
Programming, Glasgow 1991, pages 51-55. Springer-Verlag, A ugust 1991. Workshops
in Com puting Series.

[16] D. F . Brown, H. M oura, and D. A. W att. A c t r e s s : an action semantics directed
compiler generator. In U. Hastens and P. Pfahler, editors, Compiler Construction,
pages 95-109. Springer-Verlag, October 1992. Lecture Notes in C om puter Science,
volume 641.

[17] BSI. Specification for com puter program ming language Pascal, 1982. BS 6192,
British S tandards Institu tion, Milton Keynes, England.

[18] S. Christensen and M. H. Olsen. Action semantics of “CCS” and “C SP” . Internal
R eport DAIMI IR-82, Com puter Science D epartm ent, Aarhus University, 1988.

[19] D. Clement, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative
language: Mini-ML. R apports de Recherche 529, INRIA Sophia Antipolis, May
1986.

[20] F. Q. B. da Silva. Correctness proofs of compilers and debuggers: an overview of
an approach based on structu ral operational semantics. LFCS R eport Series ECS-
LFCS-92-233, University of Edinburgh, September 1992.

[21] P. D eransart, M. Jourdan, and B. Lorho. Attribute Grammars (Definitions, System s
and Bibliography), volume 323 of Lecture Notes in Computer Science. Springer-
Verlag, 1988.

[22] N. Dershowitz and J. P. Jouannaud. Rewrite system s. In J . van Leeuwen, editor,
Formal Models and Semantics, chapter 6, pages 243-320. Elsevier, 1990. Volume B
of Handbook of Theoretical Com puter Science.

[23] P. Deschamp. PER LU ETTE: a compiler production system using abstract da ta
types. In International Symposium on Programming, Turin, April 1982.

[24] J . Despeyroux. Proof of translation in natural semantics. In L IC S ’86, First Sym ­
posium on Logic in Computer Science, June 1986.

[25] T. Despeyroux. Executable specification of sta tic semantics. R apports de Recherche
295, INRIA Sophia Antipolis, May 1984.

[26] T. Despeyroux. Typol: a formalism to implement natural semantics. Rapports
Techniques 94, INRIA Sophia Antipolis, M arch 1988.

Bibliography 203

[27] Kyung-Goo Doh. A ction Semantics-Directed Prototyping. PhD thesis, K ansas S tate
University, 1992.

[28] S. Even and D. A. Schmidt. Category sorted algebra-based action sem antics. The­
oretical Computer Science , (77):73-96, 1990.

[29] R. Farrow. LINGUIST-86: Yet A nother T ranslator W riting System Based on At­
tribu te G ram m ars. In Proceedings o f the S IG P L A N ’82 Sym posium on Compiler
Construction , pages 160-171, 1982. SIGPLAN Notices, Volume 17, Num ber 6.

[30] R. Farrow. G enerating a production compiler from an a ttr ib u te gram m ar. IE E E
Software, pages 77-93, 1984.

[31] C. N. Fisher and R. J . LeBlanc, Jr. Crafting a Compiler. The Benjam in/C um m ings
Publishing Company, Inc., 1988.

[32] R. W . Floyd. Assigning meanings to program s. In T. Schwartz, editor, Proceedings
o f the Symposia in Applied M athematics 19, pages 19-32. American M athem atical
Society, 1967.

[33] D. P. Friedm an, C. T. Haynes, E. Kohlbecker, and M. W and. The Scheme 84 refer­
ence m anual. Technical report, Indiana University, C om puter Science D epartm ent,
M arch 1984.

[34] M. G anapathi. Retargetable Code Generation and O ptim ization Using Attribute
Grammars. PhD thesis, University of Wisconsin, Madison, W isconsin, 1980.

[35] H. Ganzinger, R. Giegerich, V. Moncke, and R. W ilhelm. A Truly Generative
Semantics-Directed Compiler G enerator. S IG P L A N Notices (S IG P L A N ’82 Symp.
On Compiler Construction), 17(6), June 1982.

[36] M. C. Gaudel. Specification of compilers as abstract d a ta types representations.
In N. D. Jones, editor, Sem antics Directed Compiler Generation. Springer-Verlag,
1980. Lecture Notes in Com puter Science, volume 94.

[37] M. C. Gaudel. Compiler generation from formal definition of program m ing lan­
guages: a survey. In J. Diaz and I. Ramos, editors, Formalization o f Programming
Concepts, pages 96-114. Springer-Verlag, 1981. Lecture Notes in C om puter Science,
volume 107.

[38] R. S. Glanville and S. G raham . A New M ethod for Compiler Code Generation.
In Proceedings o f the 5th Annual A C M Symposium on Principles o f Programming
Languages, pages 231-239. ACM, 1978.

[39] C. K. Gom ard and N. D. Jones. A partial evaluator for the untyped lambda-calculus.
Journal o f Functional Programmming, 1(1) :21—69, January 1991.

[40] C. A. G unter. Sem antics o f Programming Languages. Foundations of Com puting.
The M IT Press, 1992.

[41] J. H annan. M aking abstract machines less abstract. In Fifth A C M Conference
on Functional Programming Languages and Computer Architecture, pages 618-635,
1991. Lecture Notes in Com puter Science, volume 523.

Bibliography 204

[42] J . H annan. Staging transform ations for abstract machines. In A C M S IG P L A N
Sym posium o f Partial Evaluation and Sem antics Based Program M anipulation, pages
130-141, 1991.

[43] J . H annan and D. Miller. From operational semantics to abstract machines. M ath­
ematical Structures in Computer Science, 2(4):415-459, December 1992.

[44] J . Heering, P. R. H. Hendriks, P. Klint, and J . Rekers. The syntax definition for­
malism SDF - reference manual. S IG P L A N Notices, 24 (ll):4 3 -7 5 , 1989.

[45] C. A. R. Hoare. An axiom atic basis for com puter program ming. Com munications
o f the ACM , 12:576-580, 1969.

[46] J . W . Thatcher J . A. Goguen and E. G. W agner. An Initial A lgebra Approach to
the Specification Correctness, and Im plem entation of A bstract D a ta Types. In R. T.
Yeh, editor, Current Trends in Programming Methodology, Volume IV . Prentice-Hall,
1978.

[47] I. Jacobs and L. Rideau-Gallot. A CENTAUR tutorial. R apports Techniques 140,
INRIA Sophia Antipolis, July 1992.

[48] K. Jensen and N. W irth . Pascal - User M anual and Report, volume 18 of Lecture
Notes in Computer Science. Springer-Verlag, second edition, 1975.

[49] S. C. Johnson. Yacc - Yet A nother Compiler Compiler. Technical report, Bell
Laboratories, M urray Hill, 1979. UNIX manual.

[50] N. D. Jones, C. K. Gom ard, and P. Sestoft. Partial Evaluation and Autom atic
Program Generation. Prentice Hall International, June 1993.

[51] N. D. Jones and S. S. Much nick. TEM PO: A unified treatment o f binding tim e and
paramenter passing concepts in programming languages, volume 66 of Lecture Notes
in Computer Science. Springer-Verlag, 1978.

[52] N. D. Jones, P. Sestoft, and H. Spndergaard. Mix: a self-applicable partial evaluator
for experim ents in compiler generation (revised version). Research R eport 87/8,
DIKU, University of Copenhagen, 1987.

[53] S. L. Peyton Jones. The Implem entation o f Functional Programming Languages.
Prentice Hall International Series in Com puter Science. Prentice Hall, 1987.

[54] G. Kahn. N atural semantics. In F. J. Brandenburg, G. Vidal-Naquet, and M. Wirs-
ing, editors, 4th Annual Symposium on Theoretical Aspects o f Com puter Science,
pages 22-39. Springer-Verlag, February 1987.

[55] U. Hastens. The GAG-System - a tool for compiler construction. In B. Lorho,
editor, Methods and tools fo r compiler construction. Cam bridge University Press,
1984.

[56] U. Hastens, B. H utt, and E. Zimmerman. GAG: A Practical Compiler Generator,
volume 141 of Lecture Notes in Computer Science. Springer-Verlag, 1982.

Bibliography 205

[57] R. Kelsey and P. Hudak. Realistic compilation by program transform ation. In
Proceedings o f the 16th A nnual A C M Symposium on Principles o f Programming
Languages, pages 281-292, Austin, Texas, January 1989. Association for Com puting
Machinery.

[58

[59

[60

[61

[62

[63

[64

[65

[66

[67

[68

[69

[70

[71

P. Klint. A m eta-environm ent for generating program m ing environm ents. A C M
Transcations on Software Engineering and Methodology, 2(2): 176—201, April 1993.

D. E. K nuth. Semantics of context-free languages. M athematical System s Theory,
2(2): 127—152, 1968.

K. Koskimies. A specification language for one-pass sem antic analysis. In Proceedings
o f the S IG P L A N ’84 Symposium On Compiler Construction , pages 179-189, June
1984. SIGPLAN Notices, volume 19, number 6.

K. Koskimies, O. Nurmi, J. Paakki, and S. Sippu. The design of the language
processor generator HLP84. Technical Report A-1986-4, D epartm ent of Com puter
Science, University of Helsinki, November 1986.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. Orbit: An
optimizing compiler for scheme. In Proceedings o f the S IG P L A N ’86 Symposium on
Compiler Construction , pages 219-233, July 1986. SIGPLAN Notices, Volume 21,
Number 7.

P. J . Landim. The mechanical evaluation of expressions. Computer Journal, 6:308-
320, 1964.

J. Launchbury. Notes on partial evaluation, June 1991. P E P M ’91 tu torial notes.

P. Lee. Realistic Compiler Generation. M IT Press, Cambridge, M assachusetts, 1989.

P. Lee and U. F. Pleban. On the Use of LISP in Implementing D enotational Seman­
tics. In Proceedings o f 1986 A C M Conference on L ISP and Functional Programming,
pages 233-248, Cambridge, Mass., 1986. ACM.

M. Lesk and E. Schmidt. Lex - A Lexical Analyzer G enerator. Technical report,
Bell Laboratories, M urray Hill, 1979. UNIX manual.

B. Lohro. Semantics a ttribu tes processing in the system DELTA. In A. Ershov and
C. H. A. Koster, editors, Methods o f Algorithmic Language Im plem entation , pages
21-40. Springer-Verlag, 1977.

S. McKeever. A framework for generating compilers from natural semantics spec­
ifications. Technical Report 10, Program m ing Research Group, Oxford University,
1993.

R. E. Milne and C. Strachey. A Theory o f Programming Language Semantics. Chap­
man and Hall, London, England, 1976.

P. D. Mosses. M athematical Sem antics and Compiler Generation. PhD thesis, Ox­
ford University, 1975.

Bibliography 206

[72] P. D. Mosses. M aking denotational semantics less concrete. In Proc. Int. Workshop
on Sem antics o f Programming Languages, 1977.

[73] P. D. Mosses. SIS - Semantics Im plem entation System, Reference M anual and User
Guide. Technical R eport DAIMI MD-30, Aarhus University, 1979.

[74] P. D. Mosses. A sem antic algebra for binding constructs. In Proc. Int. Coll. on
Formalization o f Programming Concepts. Springer-Verlag, 1981. Lecture Notes in
C om puter Science 107.

[75] P. D. Mosses. A bstract sem antic algebras! In D. Bjprner, editor, Formal Description
o f Programming Concepts II, pages 45-72, A m sterdan, 1983. North-Holland.

[76] P. D. Mosses. A basic abstract semantic algebra. In Sem antics o f Data Types.
Springer-Verlag, 1984. Lecture Notes in Com puter Science, volume 173.

[77] P. D. Mosses. Unified algebras and action semantics. In Proceedings o f S T A C S ’89.
Springer-Verlag, 1989. Lecture Notes in Com puter Science, volume 349.

[78] P. D. Mosses. Unified algebras and modules. In Proceedings o f the 16th Annual
A C M Symp. on Principles o f Programming Languages, pages 329-343. ACM, 1989.

[79] P. D. Mosses. D enotational semantics. In J. van Leeuwen, editor, Formal Models
and Sem antics, chapter 11, pages 575-631. Elsevier, 1990. Volume B of Handbook
of Theoretical Com puter Science.

[80] P. D. Mosses. Action Semantics. Cambridge University Press, 1992.

[81] P. D. Mosses and D. A. W att. The potential use of action semantics in standards. De-
partam ental Research Report C S C /86/R 1, Glasgow University, Com puting Science
D epartm ent, 1986.

[82] P. D. Mosses and D. A. W att. The use of action semantics. In M. W irsing, editor,
Formal Description o f Programming Concepts, Am sterdam , 1987. North Holland.

[83] P. D. Mosses and D. A. W att. Pascal action semantics, 1993. In preparation.

[84] H. M oura. An im plem entation of action semantics (sum m ary). In M. Bruynooghe
and M. W irsing, editors, Programming Language Im plem entation and Logic Pro­
gramming, pages 477-478. Springer-Verlag, August 1992. Lecture Notes in Com puter
Science 631.

[85] M. A. M usicante. A nother action semantics of SML, 1993. D raft.

[86] L. Naish. The M U-Prolog 3.2 reference manual. Technical Report 85/11, D epartm ent
of Com puter Science, University of M elbourne, October 1985.

[87] Deutsche Industrie Norma. Program m iersprache PEARL, 1980. Norm entwurf DIN
66253, Teil 2, Reuth-Verlag.

[88] J. Palsberg. An action semantics for inheritance. M aster’s thesis, Aarhus University,
1988.

Bibliography 207

[89] J. Palsberg. An autom atically generated and provably correct compiler for a subset
of Ada. In Proceedings o f IC C L ’92, Fourth IE E E International Conference on
Computer Languages, San Francisco, California, April 1992.

[90] J. Palsberg. Provably Correct Compiler Generation. PhD thesis, A arhus University,
October 1992.

[91] J . Palsberg. A provably correct compiler generator. In In Proceedings o f E SO P ’92,
European Symposium on Programming, pages 418-434, Rennes, France, February
1992. Lecture Notes in Com puter Science.

[92] L. Paulson. A Compiler Generator fo r Sem antic Grammars. PhD thesis, Stanford
University, 1981.

[93] L. Paulson. A Semantics-Directed Compiler G enerator. In 9th Annual A C M Sympo­
sium on Principles o f Programming Languages, pages 224-239, Albuquerque, NM,
January 1982.

[94] M. Pettersson and P. Fritzson. DML - a m eta-language and system for the generation
of practical and efficient compilers from denotational specifications. In International
Conference on Computer Languages, Oakland, California, April 1992.

[95] G. D. Plotkin. A structu ral approach to operational semantics. Technical Re­
port DAIMI FN-19, Aarhus University, Com puter Science D epartm ent, Denm ark,
Septem ber 1981.

[96] K. Raiha. Experiences with the compiler writing system HLP. In N. D. Jones, editor,
Semantics-Directed Compiler Generation, pages 350-362. Springer-Verlag, 1980.

[97] D. A. Schmidt. Denotational Semantics. Allyn & Bacon, 1986.

[98] D. A. Schmidt and S. Even. Type Inference for Action Semantics. In N. Jones, editor,
E SO P ’90, 3rd European Symposium on Programming, pages 118-133. Springer-
Verlag, May 1990. Lecture Notes in Com puter Science, Volume 432.

[99] R. M. Stallm an. Using and porting GNU CC, May 1992. M anual for version 2.2.

[100] C. Strachey. The varieties of program ming language. Technical M onograph PRG-10,
Oxford University Com puting Laboratory, M arch 1973.

[101] D. R. Tarditi and A. W . Appel. M L-Yacc, version 2.0 , 1990. D ocum entation for
Release Version.

[102] R. D. Tennent. Principles o f Programming Languages. International Series in Com­
puter Science. Prentice Hall, 1981.

[103] J. U. Toft. Feasibility of using RSL as the specification language for the ANDF
formal specification. Technical Report T R 2 .1.2-02, DDC International A /S , 1993.

[104] M. Tofte. Compiler Generators. Springer-Verlag, 1990. EATCS M onographs on
Theoretical Com puter Science, volume 19.

[105] L. Wall and R. L. Schwartz. Programming peri. O ’Reilly & Associates, Inc., 1991.

Bibliography 208

106] M. W and. A semantic prototyping system . In A C M S IG P L A N Symposium on
Compiler Construction , pages 213-221, June 1984.

107] M. W and. Type inference for record concatenation and simple objects. In Proceedings
o f the 4th IE E E Symposium on Logic in Computer Science , 1989.

108] D. A. W att. Executable sem antic descriptions. Software - Practice and Experience,
16(1): 13—43, 1986.

109] D. A. W att. An action semantics of S tandard ML. In M athematical Foundations o f
Programming Language Sem antics LN C S 298. Springer-Verlag, 1988.

110] D. A. W att. Programming Language Syntax and Sem antics. Prentice Hall Interna­
tional Series in Com puter Science. Prentice Hall, 1991.

111] D. A. W att. M odular description of program ming languages. The Computer Journal,
35, 1992.

112] D. A. W att. Programming Language Processors. Prentice Hall International Series
in C om puter Science. Prentice Hall, 1993.

113] D. A. W att and P. D. Mosses. Action semantics in action. Unpublished, 1987.

114] W. Wechler. Universal Algebra fo r Computer Scien tists , volume 25 of E A T C S M ono­
graphs on Theoretical Computer Science. Springer-Verlag, 1992.

115] P. Weis. Le Systeme SAM : M etacompilation tres Efficace a Vaide d ‘Operateurs
Semantiques. PhD thesis, INRIA, L’Universite Paris VII, 1987. In French.

116] M. W irsing. Algebraic specification. In J. van Leeuwen, editor, Handbook o f Theo­
retical Computer Science, chapter 13, pages 675-788. Elsevier, 1990. Volume B of
Handbook of Theoretical C om puter Science.

A p p en d ix A

Inform al D escrip tion o f S p e c i m e n

This appendix and the next one define S p e c i m e n . We present here an informal description
of S p e c i m e n ; the formal definition is given in the next appendix. This organization was
inspired by the one found in [110] and it enphasizes the com plem entary aspect of informal
and formal descriptions.

A . l Inform al D escrip tion

S p e c i m e n is a simple im perative program ming language. It has two types of abstractions:
procedures and functions, which can be recursive. Functions are higher-order and free of
side effects, although they can access non-local variables. Integers, booleans, and arrays
are the only d a ta types in the language.

A .1.1 P rogram s

S yn tax

P r o g r a m = [["program” Identifier " i s ” D ec lara t io n " i n ” C o m m a n d “e n d ” J .

S em an tics

• A S p e c i m e n program is a declaration followed by a comm and. The execution of
a program consists of the elaboration of the declaration, followed by the execution
of the command using the bindings produced by the declaration. These bindings
are visible throughout the command (global bindings); holes in the scope of global
bindings can occur by local declarations of the same global identifier.

E xam p les

Figure A .l and A.2 show two examples of S p e c i m e n program s.

209

Informal D escription o f S pecim en 210

program bindings is
const ca : bool = true;
const cb : int = 346;
const cc : in t = 3;
var ba : bool := t r u e ;
var bb : bool := true;
var be : bool := true',
var bd : bool := true',
var be : bool := tr u e ;
var bf •' bool := true',
var bg : bool ;= true',
var bh : bool := tr u e ;
var bi : bool := true',
var bj : bool := true;
var bk : bool := t r u e ;
var bl : bool := true;
var bm : bool := true',
var bn : bool := £rue;
var ia : in t := 56;
var ib : in t := 0;
var ic : in t := 3;
var id : in t := 20;
var ie : in t := 406;
var iF : in t ;:= 78;
var ix : in t := 4;
var iy : in t := 45;
var iz : in t := 4;
var c o u n ter : in t := li

w hile (counter > 0) do
ix := ix + cc;
iz := ia + ib ic + id + ie\
bb := be and bf and bh and bn\
iy := ie + (ia + ib + ic + iF);
counter := counter — 1

end
end

Figure A .l: The bindings program .

A .I . Informal Description 211

p ro g ra m block is
c o n s t c : in t = 3;
var x : in t := 4;
var co u n te r : in t := 0;
p ro c block () =

lo ca l
var y : in t := 6

in
y := 20 + x

en d
in

w h ile (co u n te r < 500000)
d o

c a ll block ();
c o u n te r := co u n ter -f- 1

e n d
e n d

Figure A.2: The block program .

A .1.2 T yp e D en oters

S yn tax

(1) V a lu e T y p e = P r im it iv eT y p e | F u n c t io n T y p e .

(2) P r im it iv eT y p e = " b o o l ” | " i n t ” .

(3) F u n c t io n T y p e = [[V a lu eT y p e V a lu eT y p e J \
I " (” T u p leT yp e ") ” " -> ” V a lu eT y p e]] .

(4) T u p leT y p e = [[] | [[V a lu e T y p e]] | [[V a lu e T y p e " , ” T u p leT yp e | .

(5) A rrayT yp e = [["array” " [” N u m era l "]" " o f ” P r im it iv e T y p e]] .

S em an tics

Types of constants, variables, procedures, functions and arrays m ust be explicitly declared.
A S p e c i m e n expression always evaluate to a value of type V a lu eT y p e . Booleans and inte­
gers are primitive values; they have type P rim it iv eV a lu e . Array com ponents are primitive
values.

E xam p les

• int is the type of integer values.

• a r r a y [20] o f bool is the type of an array of 20 components of type bool.

• (in t , int) -> bool is the type of a function which expects two argum ents of type int
and returns a result of type bool.

• bool -> (in t -> int) is the type of a function which expects one argum ent of type
bool and returns a function of type int -> int as its result.

Informal Description o f S p e c i m e n 212

A .1.3 D eclaration s

S yn tax

(1) D eclaration = [[“c o n s t ” Identifier Prim itiveT ype "=” Expression]] |
[[“v a r ” Identifier “ :” Prim itiveT ype “ := ” Expression]] |
[[“v a r r a y ” Identifier “ :” ArrayType " := ” “ [” A rrayCom ps “] ” | |
[[" p ro c” Identifier “ (” P rocForm als “) ” “- ” C om m and | |
[[" fu n ” Identifier " (” FunForm als “) ” V alueType "=”

Expression J |

(D eclara tion (D e c la ra tio n)*) .

(2) A rrayCom ps = Expression | [[Expression ArrayCom ps J .

(3) P rocF orm als = [[] | [[ProcForm al]] | [[ProcForm al P rocForm als J .

(4) ProcForm al = {[Identifier V alueType J | [[" var” Identifier Prim itiveT ype | .

(5) FunForm als = [[] | [[Fun Formal] | [[FunFormal " ,” FunForm als J .

(6) FunForm al = [[Identifier “ :” V alueType J .

S e m a n t i c s

Declarations allow the program m er to make bindings. S p e c im e n has four types of decla­
rations: constant, variable, procedure and function declarations. Procedure and function
declarations can be recursive. A S p e c im e n program m ust have a t least one declaration.

• A constant declaration “const I :T = F ” binds the constant identifier I to the
prim itive value yielded by the evaluation of expression E . I and E have primitive
type T.

• A variable declaration “var I :T := F ” binds the variable identifier I to a newly
allocated cell. The result of the evaluation of the expression E is stored in this cell.
I and E have primitive type T.

• An array declaration “varray I : array [N] of T : = E ” binds the array variable
identifier / to a list of N newly allocated cell. The expression E , an array aggregate
with N components, is evaluated and every resultant com ponent is stored in the
correspondent cell. I and E have array type “array [A] of T ” , where T is a
prim itive type.

• A procedure declaration “p ro c / (F S) = C ” binds the procedure identifier I to a
procedure. A procedure is a command abstraction. Zero or more formal param eters
can be defined in the procedure declaration. Param eters can be passed by value or by
reference (var param eters). W hen passed by value, the argum ent, a value, is bound
to the correspondent formal param eter; when passed by reference the argum ent, a
cell, is bound to the correspondent formal variable. The body of a procedure is just
a command. The command is executed in an the same environm ent of the procedure
declaration overlaid by the bindings produced by the elaboration of the procedure
and its formal param eters. No result is returned, a procedure works by its side effects
only. Procedure can be recursive. Procedures cannot be passed as param eters (of
procedures or functions) or return as result of functions.

A. I . Informal Description 213

• A function declaration “fu n I (F S) :T = E ” binds the function identifier I to a
function. A function is an expression abstraction. SPECIMEN functions can have zero
or more parameters. Parameters are passed by value only. The body of a function
is just an expression which is evaluated in the sam e environment of the function
declaration overlaid by the bindings produced by the elaboration of the function
and its formal parameters. An application of function I always returns a value of
value type T. Functions can be recursive.

• T he sequential declaration “Di ; D 2” is elaborated by elaborating Di and then
elaborating D 2. D 2 is elaborated in the environment o f the sequential declaration
overlaid by the bindings produced by Di. The resultant bindings are the ones pro­
duced by Di overlaid by those produced by Z)2.

E xam p les

• const year : int = 1991

• const yearPlusOne : int = year + 1

• const factOfFour : int = fact (4)

• var x : bool := false

• var y : bool := not (x)

• varray vec : array [4] of int : = [3 ,5 ,9 ,0]

• proc inc (var x : inf) = x:= x + 1

• fun isGreaterThan (a : int, b : inf) : bool = if a > b then true else false end

A .1.4 C om m ands

A command is used to update variables. S pecim en has six types of commands: assign­
ment, conditional, while, procedure call, block and sequential.

Syn tax

(1) C om m and = [[Identifier " := ” Expression J |
[[Identifier " [” Expression Expression]] J

|[“i f ” Expression "then” C om m and ("else” C om m and) ? "end”]] |
[[“w h ile” Expression "do” C om m and "end” J |
[[“c a l l ” Identifier “(” P rocA ctuals “) ”]] |
[[" l o c a l ” D eclaration “in ” C om m and "end” | |

(C om m an d (" ;” C o m m a n d)*) .

(2) P rocA ctuals = [[J | [[ProcA ctual J j [[P rocA ctual P rocA ctuals | .

(3) P ro cA ctu a l = | Expression]] | [[“v a r ” Identifier]]

Informal Description o f S p e c i m e n 214

S em an tics

• The assignment “/ := E is the simplest form of comm and. It assigns the value of
expression E to variable I. The expression is evaluated and the resultant value is
stored in the cell bound to the variable identifier.

• The array assignment “/ [F i] := F 2” updates a com ponent of array I . The com­
ponent is the one indexed by the result of evalution of F x which m ust be a positive
integer. The primitive value resultant from the evaluation of F 2 will be the new
component.

• The conditional comm and “if F then C \ else C 2 end” is executed as follows:
the expression F is evaluated; if the evaluation result is true then command C\ is
executed; otherwise comm and C2 is executed.

• The while command “while F do C end” is executed as follows: (a) the expression
F is evaluated; (b) if its value is true then the subcom m and C is executed and then
we s ta r t from step (a) again; otherwise, the while-command is term inated.

• A procedure call, “call I (A)” , causes the execution of the procedure bound to
identifier I. A param eter can be passed by value or by reference (var formal).
By value, “/ (F) ” , the actual param eter expression F is evaluated and its value
is bound to the formal param enter; by reference, “/x (var / 2) ” , the cell bound to
variable I 2 is bound to the formal param eter. In the la tte r case the actual param eter
m ust be a variable so the value which is bound to the formal param enter is a cell.
Functions can be actual param eters of procedures.

• The block command “local D in C end” is executed as follows. The declaration
D is elaborated. The command C is then executed in the environm ent of the block
command overlaid by the bindings produced by D.

• The sequential command “Ci ; C 2” is executed by first executing C\ and then
executing C 2.

E xam p les

• i := 314

• x : = x + 1

• if x = 0 then x := x + 1 else x x - 1 end

• while x = true do x := true and true end

• veclt] := 345 ; call p { 3 + 5)

• local var x : int : = 2 in x : = x + y end

A .1.5 E xpressions

The evaluation of an expression yields a value (an integer, a boolean, or a function value).
Expressions are completely free of side effects. Functions are first class: they can be
passed as argum ents to procedures and functions and returned as a result of a function
application.

A. I . Informal Description 215

S yn ta x

(1) Expression = "true” |
" fa lse ” |
Num eral |
Identifier |
[[Identifier " [” Expression "]” | |
[[" i f ” Expression “then” Expression (" e ls e ” E xp ression)? "end” J |
[[Identifier " (” FunA ctuals ")” | |
[[Expression O perator Expression | |
|[O perator Expression |
[[" l e t ” D ec la ra t ion " i n ” E xpression “e n d ”] .

(2) FunA ctuals = [[J I I FunActual | | [[FunActua! FunA ctuals] .

(3) FunActual = [[Expression J .

(4) O perator = "not” | "and” | "or” |
| , , + „ j | . , + » | , y „ | | u y , | „ < s n | j

S em an tics

• A litera l exp ression is o n e th a t d o e s n o t n eed a d d it io n a l ev a lu a tio n (it is a lread y
in a ca n o n ica l fo rm). S p e c im e n h as tw o ty p e s o f litera l ex p ressio n s: b o o lea n and
in teger .

• An identifier is an expression. Its evaluation gives the prim itive value bound to it, in
the case of a constant; or the function bound to it, in the case of a function identifier,
respectively; or the content of the cell bound to it, in the case of a variable.

• The expression “/ [i s] ” is evaluated as follows: expression E is evaluated and its
result, a positive integer, say n, is used to access the n th component of array I
which is the result of the whole expression.

• The conditional expression “if E x then E 2 e lse E 3 end” is evaluates as follows: the
expression Ei is evaluated; if the evaluation result is true then E 2 is evaluate and
the result value is the result of the conditional expression; otherwise E 3 is evaluate
and the result value is the result of the conditional expression.

• The function application, I (. . ., E n) , evaluates as follows: each param eter Ei is
evaluated and a list of argum ents is formed with the resultant values. The function
bound to / is then applied to the list of argum ents. Each occurrence of the formal
param eter inside the function body is replaced by the correspondent resultant value;
the function body is evaluated and its result is returned as the result of the function
application.

• C onstants, variables and functions can be defined locally using a let expression.
(Procedures can also be defined locally but they cannot be used, so in practice there
is no sense in defining them .)

Informal Description o f SPECIMEN 216

• Conventional operations on booleans and integers are provided,
equality between primitive values are present.

E xam p les

• tru e

• 4 5 6 3 7 3 8

• x

• if tag then process (tag) else unprocess (tag) end

• 9 (x + 3) - / (x - 3)

• "3

• 3 + 4 - 4 * 3 - 9

• (3 + 4) - (4 * 3 - 9)

Equality and in-

A p p en d ix B

T h e A ction Sem antic D escrip tion
o f Specimen

This appendix presents the complete action semantics of S p e c i m e n . The description is
organized in four modules (sections): abstract syntax, semantic entities, semantic functions
and lexical syntax.

B . l A b stra ct S yntax

needs: Lexical Syntax .

closed

grammar:

B .1 .1 P rogram s

(i) P r o g ra m = [["program” Identifier " i s ” D eclara t ion " i n ” C o m m a n d “e n d ”]] .

B . l . 2 D eclaration s

(1) D ec lara t io n = [“c o n s t ” Identifier P r im it iv eT y p e “=” Expression] |

[[“var” Identifier “ :” P r im it iv eT y p e “ := ” Expression J |

[["varray” Identifier " :” A rrayT ype " := ” " [” A rr a y C o m p s "] ”]] |

[[" p r o c ” Identifier " (” P r o c F o r m a ls ") ” “=” C o m m a n d J |

[[" f u n ” Identifier " (” F un F o rm a ls ")" V a lu e T y p e "=”

Expression] |

(D e c la r a t io n (D e c l a r a t i o n) *) .

(2) A r ra y C o m p s = Expression | [[Expression A r r a y C o m p s] .

(3) P r o c F o r m a ls = [[] | [[P r o c F o r m a l] | |[P ro cF o rm a l P r o c F o r m a l s] .

(4) P r o c F o rm a l = [[Identifier V a lu eT y p e] | [["var” Identifier ":” P r i m i t i v e T y p e] .

217

The Action Sem antic Description o f S p e c i m e n 218

(5) F u n F o rm a ls = [[] | [[F unForm al J | [[F u n F o rm a l F u n F o r m a ls]] .

(6) F un F orm al = [[Identifier V a lu e T y p e] .

B . l . 3 C o m m a n d s

(1) C o m m a n d = [[Identifier Expression]] |

[[Identif ier " [” E xpression E x p ress io n]] |

[[“i f ” Expression “th e n ' ' C o m m a n d ("else” C o m m a n d) ? " en d ”]] |

[[“w h i l e ” Expression "do” C o m m a n d “e n d ”]] |
[[" c a l l ” Identifier " (” P r o c A c tu a ls ") ” | |

[[" l o c a l ” D ec lara t ion " i n ” C o m m a n d “end"]] |

(C o m m a n d (C o m m a n d) *) .

(2) P r o c A c tu a ls = [[]] | [[P r o c A c tu a l J | [[P r o c A c tu a l P r o c A c t u a ls | .

(3) P r o c A c tu a l = [[Expression]] | [[" v a r ” Identifier]] .

B . l . 4 E x p r e s s i o n s

(1) Expression = “t r u e ” |
" f a l s e " |
N u m era l |

Identifier |
[[Identifier " [” Expression “] ”] |

[[" i f ” Expression " th e n " Expression (“e l s e ” Expression) ? “end"]] |

[[Identifier “ (” F u n A ctu a ls ") ” | |
[[Expression O p era to r Expression]] |

[[O p e ra to r Expression J

[[“l e t ” D ec la ra t io n " in" Expression “e n d ”]] .

(2) F u n A ctu a ls = [[| I [[F unA ctual J | [[F u n A ctu a l F u n A ctu a ls]] .

(3) F u nA ctu a l = [[Expression | .

(4) O p e ra to r = " n o t ” | “a n d ” | “o r ” |
| | t i i i | | t t y i r | t i ^ t t | | | |

“= ” | "<>” .

B . l . 5 T y p e D e n o t e r s

(1) V a lu eT yp e = P r im it iv eT y p e | F u n c t io n T y p e .

(2) P r im it iveT yp e = " b o o l ” | " i n t ” .

(3) F u n ct io n T y p e = [[V a lu e T y p e " -> ” V a lu eT y p e]] |

[["(" T u p leT yp e ") ” V a lu eT y p e J .

(4) T u p leT ype = [[J \ [[V a lu e T y p e]] | [[V a lu e T y p e T u p le T y p e J .

(5) A rrayType = [[" a r r a y " “ [” N u m era l "]" " o f ” P r im it iv e T y p e]] .

B.2. Sem antic E ntities 219

B .2 S em antic E n tities

in c lu d e s : A c t i o n N o t a t i o n .

B . 2 . 1 V a l u e s

in t r o d u c e s : prim itive-value , value .

(1) prim itive-value = truth-value | integer .

(2) value = prim itive-value | function .

B . 2 . 2 B i n d i n g s

(1) alpha = low ercase-letter | uppercase-letter .

(2) token = strin g-of (a lpha,(a lpha | d ig it)*) .

(3) bindable = value | procedure | cell | array .

B . 2 . 3 S t o r a g e

(1) cell = cell [truth-value] | cell [integer] .

(2) storable = prim itive-value .

B . 2 . 4 P r o c e d u r e s a n d F u n c t i o n s

in t r o d u c e s : procedure , proc-argum ent , proc-argum ent-list ,
function , fun-argum ent , fun-argum ent-list , fun-result .

(1) procedure = abstraction .

(2) proc-argum ent = value | cell .

(3) proc-argum ent-list = list [proc-argum ent] .

(4) function = abstraction .

(5) fun-argum ent = value .

(6) fun-argum ent-list = list [fun-argum ent] .

(7) fun-result = value .

B . 2 . 5 A r r a y s

in t r o d u c e s : array .

(l) array = list [cell] .

B .3 Sem antic F unctions

needs: A b stra ct S y n ta x , Sem an tic E n tities .

The Action Sem antic Description o f Specim en 220

B . 3 . 1 P r o g r a m s

i n t r o d u c e s : run _ .

• run _ :: P r o g r a m —> a c t ion .

(l) run [[“program” / : Identifier "is” D:Declaration "in” CiCommand “end” J =
| elaborate D
hence
| e x e c u te C .

B . 3 . 2 D e c l a r a t i o n s

i n t r o d u c e s : e la b o r a te _ , e la b o r a te - fo r m a ls _ , e la b o ra te - fo rm a l _ ,
e v a lu a te -a r r a y -c o m p o n e n ts _ .

B . 3 . 2 . 1 E l a b o r a t i n g D e c l a r a t i o n s

• e la b o r a te _ :: D ec lara t ion —> a c t io n .

(1) e la b o r a te [[" c o n s t ” / : Identifier T :P r im it iveT y p e “=” E \E xpress ion J =

e v a lu a te E th en bind t o k e n - o f I t o th e p r im itive-va lue .

(2) e la b o r a te [[“v a r ” / : Identifier " : ” T :P r im it iveT y p e E :Expression | =
| e v a lu a te E th en g iv e th e pr im itive-va lue label # 1

and

| a llo ca te - fo r -p r im it iv e -v a lu e T th en g iv e th e cell label # 2

th en

| bind to k e n - o f I t o th e c e l l # 2
and

I s to r e th e p r i m i t i v e - v a l u e # l in th e c e l l # 2 .

B.3. Sem antic Functions 221

(3) e la b o r a te [[" v a r r a y ” / : Identifier T :A rra yT yp e A A rra y C o m p s]] =

| e v a lu a te -a r r a y -c o m p o n e n ts A th en g iv e th e list label # 1

and

| a l locate - for -array T th en g iv e th e list label # 2

th en

un fo ld ing

| c h ec k (th e l i s t # l is e m p ty - l i s t)

and th en

| c o m p le te
or

| c h ec k n o t (th e l i s t # l is e m p ty - l i s t)

and then
| s to re h e a d -o f (th e l i s t # l) in h e a d -o f (th e l i s t # 2)

and then

| g iv e ta i l -o f (th e l i s t # l) label # 1

and

| g iv e ta i l -o f (th e l i s t # 2) label # 2

then

j unfold

and
| bind to k e n - o f I t o th e l i s t # 2 .

(4) e la b o ra te ([" p r o c ” Z:Identifier " (” FS:P ro cF o r m a ls ") ” "=” C : C o m m a n d] =
recursively bind to k e n - o f / to c losu re a b stra c t io n

| fu r th erm o re e la b o ra te -p ro c - fo rm a ls FS
h en ce

| e x e c u te C .

(5) e la b ora te [["fun” / i d e n t i f i e r " (” FS: Fun Form a Is ") ” T :V a lu e T y p e "=”

E: Expression] =

recursively bind to k e n - o f / to c losu re abstra c t io n

| fu r th erm ore e la b o r a t e - fu n - fo r m a ls FS
h en ce

| e v a lu a te E then g iv e th e fu n -resu lt .

(6) e la b ora te [[D1:D ecla ra t io n D2:D ecla ra t ion]] =
| e la b o r a te Di
b efore

| e la b o r a te D2 .

B . 3 . 2 . 2 E v a l u a t i n g A r r a y C o m p o n e n t s

• e v a lu a te -a r r a y -c o m p o n e n ts _ :: A rray C om p s —> a c t ion .

(l) ev a lu a te -a r r a y -c o m p o n e n ts [[E :E x p ress io n]| =

e v a lu a te E then g iv e list (pr im it ive -v a lu e)

The Action Sem antic Description o f S pecim en 222

(2) e v a lu a t e -a r r a y -c o m p o n e n t s [[F :E x p re ss io n , A A r r a y C o m p s]] =

| e v a lu a te E th en g iv e list (p r im it ive -va lu e) label # 1

and

| e v a lu a te -a r r a y -c o m p o n e n ts A th en g iv e th e list label # 2

th en

| g iv e c o n c a te n a t io n (th e l i s t # l , t h e l i s t # 2) .

B . 3 . 2 . 3 E l a b o r a t i n g P r o c e d u r e F o r m a l P a r a m e t e r s

• e la b o r a te -p r o c - fo r m a ls _ :: P r o c F o r m a l s a c t i o n .

(1) e la b o r a te -p r o c - fo r m a ls [[]] = c o m p le t e .

(2) e la b o r a te -p r o c - fo r m a ls [[F :P ro cF o rm al]] =

g iv e h e a d -o f (th e p r o c -a r g u m en t- l is t) th en e la b o ra te -p ro c - fo rm a l F .

(3) e la b o r a te -p r o c - fo r m a ls f F iP r o c F o r m a l FS:P r o cF o rm a ls]] =

| g iv e h e a d -o f (th e p r o c -a rg u m en t- l is t) th en e la b o ra te -p r o c - fo rm a l F
and then

| g iv e ta i l -o f (th e p ro c -a r g u m en t- l is t) th en e la b o r a te -p r o c - fo r m a ls FS .

B . 3 . 2 . 4 E l a b o r a t i n g P r o c e d u r e F o r m a l P a r a m e t e r

• e la b o ra te -p ro c - fo rm a l _ :: P ro cF o rm a l —>• a c t ion .

(1) e la b o ra te -p r o c - fo rm a l [[/ . id e n t i f ie r T :P rim it iv eT y p e]] =
| g iv e th e p r im itive-va lu e label # 1
and

| a llo ca te - fo r -p r im it iv e -v a lu e T th en g iv e th e cell label # 2
th en
| bind to k e n - o f / t o th e c e l l # 2 and s tore th e p r i m i t i v e - v a l u e # l in th e c e l l # 2 .

(2) e la b o ra te -p ro c - fo rm a l [[/ i d e n t i f i e r T :F u n c t io n T y p e J =
bind to k e n - o f / t o th e fu n ct ion .

(3) e la b o ra te -p ro c - fo rm a l [[" v a r ” / i d e n t i f i e r T :T yp e]] = bind to k e n - o f / t o th e cell .

B . 3 . 2 . 5 E l a b o r a t i n g F u n c t i o n F o r m a l P a r a m e t e r s

• e la b o r a te - fu n - fo r m a ls _ :: F u n F o r m a l s a c t i o n .

(1) e la b o r a te - fu n - fo r m a ls [[] = c o m p le te .

(2) e la b o r a te - fu n - fo r m a ls [[F :F u n F o r m a l]] =

g iv e h e a d -o f (th e fu n -a rg u m en t- l is t) th en e la b o ra te - fu n - fo rm a l F .

(3) e la b o ra te - fu n - fo rm a ls [[F :F u n F o r m a l F 5 :F u n F o r m a ls]] =
| g iv e h e a d -o f (t h e fu n -a rg u m en t- l is t) then e la b o ra te - fu n - fo r m a l F
and then
| g iv e ta i l -o f (th e fu n -a r g u m e n t- l is t) th en e la b o ra te - fu n - fo rm a ls FS .

B.3. Sem antic Functions 223

B . 3 . 2 . 6 E l a b o r a t i n g F u n c t i o n F o r m a l P a r a m e t e r

• e la b o r a te - fu n - fo r m a l _ :: F unForm al —>• a c t ion .

(1) e la b o r a te - fu n - fo r m a l [[/ i d e n t i f i e r T :V a lu e T y p e]] =

bind t o k e n - o f / t o th e fu n -a r g u m e n t .

B . 3 . 2 . 7 A l l o c a t i n g S t o r a g e

i n t r o d u c e s : a l lo ca te - fo r -p r im it iv e -v a lu e _ , a l locate - for -array _ .

• a l lo c a te - fo r -p r im it iv e -v a lu e _ :: P r im it iv eT y p e —> a c t io n .

(1) a l lo c a te - fo r -p r im it iv e -v a lu e [[“b o o l " J = a l lo c a te a tru th -v a lu e -ce l l .

(2) a l lo c a te - fo r -p r im it iv e -v a lu e [[“i n t ”]] = a l lo c a te an in teger-ce l l .

• a l lo ca te - for -a rray _ :: A rrayT yp e —> ac t ion .

(3) a l lo ca te - for -a rray [["array” " [” A : N u m e r a l "]” “o f ” T : P r im it iv e T y p e]] =
| g iv e v a lu a t io n -o f N label # 1

and
| g iv e 1 label # 2

and

| g iv e e m p ty - l i s t label # 3

then

u nfold ing

| ch eck n o t (th e i n t e g e r # 1 is th e i n t e g e r # 2)
and then

| g iv e th e i n t e g e r # 1 label # 1
and

| g iv e su cces so r (t h e i n t e g e r # 2) label # 2
and

| a llo ca te - fo r -p r im it iv e -v a lu e T and g iv e th e l i s t # 3 label # 1

th en

| g iv e c o n c a te n a t io n (th e l i s t # l , l i s t (th e c e l l)) label #3
then

| unfold

or

| ch eck (th e i n t e g e r # l is th e i n t e g e r # 2)

and th en

| a llo ca te - fo r -p r im it iv e -v a lu e T and g iv e th e l i s t # 3 label # 1

then

| g iv e c o n c a t e n a t io n (t h e l i s t # l , l i s t (th e c e l l)) .

B .3 .3 C o m m a n d s

i n t r o d u c e s : e x e c u te _ , e v a lu a te -a c tu a l s _ , e v a lu a te -a c tu a l

The Action Sem antic Description o f Specim en 224

B . 3 . 3 . 1 E xecuting C o m m a n d s

• execute _ :: Command —>• action .

(1) e x e c u t e [[/ : Identifier E :Expression | =

| e v a lu a t e E
th en

| s to re th e p r im itive-va lu e in th e cell bou n d t o to k e n - o f I .

(2) e x e c u t e [[/ : Identifier “ [” E\ :Expression "] ” E2:Expression] =
| e v a lu a te E1 th en g iv e th e in teger label # 1

and

| e v a lu a te E2 th en g iv e th e p r im itive-va lu e label # 2

and

| g iv e th e list boun d t o to k e n - o f I label # 3

and
| g iv e 1 label # 4

th en

u n fo ld ing
| ch e ck (th e i n t e g e r # l is th e i n t e g e r # 2)

and then

| s to re th e p r im it iv e -v a lu e # 2 in h e a d -o f (th e l i s t # 3)

or
| c h eck n o t (th e i n t e g e r # l is th e i n t e g e r # 2)

and then
| g iv e th e i n t e g e r # l label # 1
and

| g ive th e p r im i t iv e -v a lu e # 2 label # 2
and

| g iv e ta i l -o f (th e l i s t # 3) label # 3

and

| g iv e su cce s so r (th e i n t e g e r # 4) label # 4

then

| unfold .

(3) e x e c u te [[‘‘i f ” F iE x p r e s s io n "then” C :C o m m a n d "end”]] =
| e v a lu a te E
th en

| e x e c u te C
else

| c o m p le t e .

(4) e x e c u te [[“i f ” E :Expression "then” Ci.’C o m m a n d “e l s e ” C2:C o m m a n d “end” J —
| e v a lu a te E
th en

| e x e c u te C\
else

I e x e c u te C2 .

B.3. Sem antic Functions 225

(5) e x e c u te [[" w h i l e ” /^ E x p r e s s io n "do” C : C o m m a n d “e n d ”]] =

un fo ld ing

| e v a lu a te E
then

| e x e c u te C and th en unfold
e lse

| c o m p l e t e .

(6) e x e c u te [[" c a l l ” / . ’Identifier " (” A S'. P r o c A c tu a ls ")”] =
| e v a lu a te -p r o c -a c tu a ls 4 5

th en

| e n a c t (th e p ro cedu re bound t o to k e n - o f I w ith th e p ro c -a rg u m en t- l is t) .

(7) e x e c u te [[" l o c a l ” D : D ecla ra t ion "in” C : C o m m a n d "end” J =
| fu r th erm ore e la b o r a te D
h ence

| e x e c u te C .

(8) e x e c u te [[C i iC o m m a n d C 2 :C o m m a n d | = e x e c u te C\ and th en e x e c u te C2 .

B . 3 . 3 . 2 E v a l u a t i n g P r o c e d u r e A c t u a l P a r a m e t e r s

• e v a lu a te -p r o c -a c tu a ls _ :: P r o c A c tu a ls —> a c t io n .

(1) ev a lu a te -p r o c -a c tu a ls [[]] = g iv e e m p ty - l i s t .

(2) e v a lu a te -p r o c -a c tu a ls [[A :P r o c A ctu a l]] = e v a lu a te -p r o c -a c tu a l A th en g iv e list (i t) .

(3) ev a lu a te -p r o c -a c tu a ls [[A :P ro cA ctu a l " ,” A S:P r o c A c tu a ls]] =
| e v a lu a te -p r o c -a c tu a l A th en g iv e list (i t) label # 1

and
| e v a lu a te -p r o c -a c tu a ls A S then g iv e it label # 2

then

| | g iv e c o n c a te n a t io n (th e l i s t # l , t h e l i s t # 2) .

B . 3 . 3 . 3 E v a l u a t i n g P r o c e d u r e A c t u a l P a r a m e t e r

• e v a lu a te -p r o c -a c tu a l _ :: P ro cA ctu a l —> ac t ion .

(1) ev a lu a te -p ro c -a c tu a l [[E :E x p ress io n] = e v a lu a te E .

(2) e v a lu a te -p r o c -a c tu a l [[" v a r ” / i d e n t i f i e r J = g iv e th e cell bou n d to to k e n - o f / .

B .3 .4 E xpressions

i n t r o d u c e s : e v a lu a te _ , a p p ly -o p era to r _ .

B . 3 . 4 . 1 E v a l u a t i n g E x p r e s s i o n s

• e v a lu a te _ :: Expression —>■ act ion .

(l) ev a lu a te [[“tr u e ” J = g iv e true .

The Action Sem antic Description o f Specimen 226

(2) e v a lu a te [[" fa lse ”]] = g iv e fa lse .

(3) ev a lu a te [[/V :N um era l]] = give v a lu a t io n -o f N .

(4) e v a lu a t e [[/ i d e n t i f i e r | =

| g iv e th e v a lu e b ou n d to t o k e n - o f I
or

| g iv e th e p r im itive-va lue s tored in th e cell b ound t o to k e n - o f I .

(5) e v a lu a te [[/ i d e n t i f i e r “ [” /^ E x p r e s s io n "] ”]] =
| e v a lu a t e E th en g iv e th e in teger label # 1

and
| g iv e th e list b ou n d t o to k e n - o f / label # 2

and
| g iv e 1 label # 3

th en

u n fo ld in g

| ch eck (th e i n t e g e r # l is th e i n t e g e r # 3)

and th en

| g iv e th e p r im itive-va lu e stored in h e a d -o f (th e l i s t # 2)

or

| c h e c k n o t (th e i n t e g e r # 1 is th e i n t e g e r # 3)

and then

| g iv e th e i n t e g e r # ! label # 1
and
| g iv e ta i l -o f (th e l i s t # 2) label # 2

and
| g iv e su cc es so r (th e i n t e g e r # 3) label # 3

th en

| unfold .

(6) e v a lu a te f “i f ” Ep.Expression "then” E2:Expression "end” J =
| e v a lu a te E1
th en

| e v a lu a t e E2
e ls e

| c o m p l e t e .

(7) e v a lu a te [[" if” Ep.Expression "then” /^ -E xp ression " e lse ” E3 :Expression "end”] =
| e v a lu a te Ex
th en

| e v a lu a te E2
e lse

| e v a lu a te E3 .

(8) e v a lu a te [[/ : Identifier "(” A S:F u n A ctu a ls ")” | =
| e v a lu a te - fu n -a c tu a ls

then
| e n a c t (th e fu n c t io n bound t o to k e n - o f I w ith th e fu n -a r g u m e n t- l is t) .

B.3. Sem antic Functions 227

(9) e v a lu a t e [[Ei'.Expression O'.O p era tor E2\Express ion | =
| e v a lu a te Ei th en g iv e th e v a lu e label # 1

and

| e v a lu a te E2 th en g iv e th e v a lu e label # 2

then

j ap p ly -o p era to r 0 .

(10) e v a lu a t e [[0 : 0 p e r a t o r F :E x p ress io n | =
| e v a lu a te E th en g iv e th e va lu e

th en
| ap p ly -o p era to r 0 .

(n) e x e c u t e [[" l e t ” D :D ec larat ion “in " F : Expression “e n d ”] =
| fu r th erm o re e la b o r a te D
h en c e

| e v a lu a te E .

B . 3 . 4 . 2 E v a l u a t i n g F u n c t i o n A c t u a l P a r a m e t e r s

• e v a lu a te - fu n -a c tu a ls _ :: F u n A ctu a ls —» act io n .

(1) e v a lu a te - fu n -a c tu a ls {[] = g iv e e m p ty - l i s t .

(2) e v a lu a te - fu n -a c tu a ls [[A A c t u a l | = ev a lu a te - fu n -a c tu a l A then g iv e list (i t) .

(3) e v a lu a te - fu n -a c tu a ls [[A A c t u a l ^ F iA c t u a l s J =

| e v a lu a te - fu n -a c tu a l A then g iv e list (i t) label # 1
and
| e v a lu a te - fu n -a c tu a ls AS th en g iv e it label # 2

then

| | g iv e c o n c a te n a t io n (th e l i s t # l , t h e l i s t # 2) .

B . 3 . 4 . 3 E v a l u a t i n g F u n c t i o n A c t u a l P a r a m e t e r

• e v a lu a te - fu n -a c tu a l _ :: F unA ctual —> a c t io n .

(l) e v a lu a te - fu n -a c tu a l [[F :E x p ress io n]] = ev a lu a te E .

B . 3 . 4 . 4 A p p l y i n g O p e r a t o r s

• ap p ly -o p era to r _ :: O p era to r —>■ act ion .

(1) a p p ly -o p e ra to r |[“n o t ”]] = g iv e n o t (t h e tru th -v a lu e) .

(2) a p p ly -o p er a to r [“and"] = g iv e b o th (th e t r u t h - v a l u e # l , th e t r u t h - v a l u e # 2) .

(3) a p p ly -o p e ra to r [[“o r ”]] = g iv e either (th e t r u t h - v a l u e # l , th e t r u t h - v a l u e # 2) .

(4) ap p ly -o p era to r [[“~”]] = g ive n eg a t io n (th e in teger) .

(5) a p p ly -o p e ra to r [[“+”]] = g ive su m (th e i n t e g e r # l , th e i n t e g e r # 2) .

(6) ap p ly -o p er a to r [[] = g ive d if feren ce (th e i n t e g e r # ! , th e i n t e g e r # 2) .

The Action Sem antic Description o f S pecim en 228

(7) a p p ly -o p era to r [[]] = g iv e p rod u ct (th e in t e g e r # ! . , th e i n t e g e r # 2) .

(8) a p p ly -o p era to r [[“/"]| = g iv e in te g e r -q u o t ie n t (th e i n t e g e r # l , th e i n t e g e r # 2) .

(9) a p p ly -o p era to r [["<”]] = g iv e is - less-th an (th e in t e g e r # ! . , th e i n t e g e r # 2) .

(10) a p p ly -o p er a to r [[">” | = g iv e is -grea ter - th an (th e in t e g e r # ! . , th e i n t e g e r # 2) .

(n) ap p ly -o p era to r [[“<= ”]] = g iv e e ither (i s - le ss - th a n (t h e i n t e g e r # ! . , th e i n t e g e r # 2) ,

th e in t e g e r # ! , is th e i n t e g e r # 2) .

(12) a p p ly -o p e ra to r [“>=" J = g iv e e ither (is -gr ea ter - th a n (th e i n t e g e r # ! . , th e i n t e g e r # 2) ,

th e in t e g e r # ! , is th e i n t e g e r # 2) .

(13) a p p ly -o p e ra to r [["=”]] = g iv e (t h e p r im it iv e -v a lu e # ! . is th e p r im i t i v e - v a l u e # 2) .

(14) a p p ly -o p era to r [[“<> ”] = g iv e n o t (th e p r im i t i v e - v a l u e # l is th e p r im it iv e - v a lu e # 2) .

B .4 L exical S yntax

i n t r o d u c e s : t o k e n - o f _ , v a lu a t io n -o f _ .

c lo sed

g r a m m a r :

(1) Identifier = letter J Identifier letter | Identifier d ig it .

(2) N u m era l = d ig it | N u m era l d ig it .

(3) d ig it = 0 | 1 | . . . | 9 .

(4) le tter = A | B | . . . | Z | a | . . . | z .

B . 4 . 1 I d e n t i f i e r s

• t o k e n - o f _ :: Identifier —> tok en .

(l) to k e n - o f [[/]] = / .

B . 4 . 2 N u m e r a l s

• v a lu a t io n -o f _ :: N u m era l —> in teger .

(1) v a lu a t io n -o f [[0]] = 0 .

(2) v a lu a t io n -o f | 1 J = 1 .

(3) v a lu a t io n -o f [[2 J = 2 .

(4) v a lu a t io n -o f [[3]] = 3 .

(5) v a lu a t io n -o f [[4] = 4 .

(6) v a lu a t io n -o f [[5]] = 5 .

B.4. Lexical Syn tax 229

(7) v a lu a t io n -o f [[6]] = 6 .

(8) v a lu a t io n -o f [[7 J = 7 .

(9) v a lu a t io n -o f [[8 | = 8 .

(10) v a lu a t io n -o f [[9 | = 9 .

(11) v a lu a t io n -o f | i V D] = su m (p ro d u c t (v a lu a t io n -o f N , 10), v a lu a t io n -o f D) .

Index

A-expression evaluator, 11
A-notation, 11
A c t r e s s , 6 6

action notation, 37
actioneer generator, 99, 198
performance, 193
prelim inary version, 1, 193

A N C , 66, 68
code generator, 69, 121, 197
extended code generator, 158
parser, 69
sort checker, 69, 145
transform er, 150

C a n t o r , 196
DSL, 17
LA M B , 17
M L - Y a c c , 69
P e r l u e t t e , 19
P S P , 24
SIS, 17
S t a n d a r d M L, 68
S p e c i m e n , 39

SPS, 24
T y p o l , 16
law (function), 155
simp Action, 155
bindings program , 210
block program , 211
factorial program , 108
loopfact program , 167
loop program , 71
A N C

transform er, 69
C, 68
allocate action, 120

abstract in terpretation, 23
abstract machine, 11
abstract machine for actions, 200
abstract machines, 13

abstract sem antic algebra, 38
abstract syntax tree, 6
abstraction, 59
action, 42
action diagram , 50

and com binator, 51
moreover com binator, 58
then com binator, 54

action efficiency, 136, 200
action income, 43
action notation, 36, 42

algebraic properties, 115, 126
laws, 126
syntax, 44

action notation code generator
see A N C , 74

action notation compiler, 200
see A N C , 66

action notation in terpreter, 100
action performance, 42
action semantics, 10, 36
action transform ations, 1, 115, 200

correctness, 199
action tree, 67

decorated, 123
actioneer for a language, 99
actioneer generator

see A c t r e s s , 67
actions, 38
agent, 42
algebra, 38
algebraic semantics, 10
analysis, 5
applied occurrence, 166
a ttrib u te evaluator, 21
a ttrib u te gram m ar, 10
a ttribu tes, 14
auxiliary operations, 38

b -reg ister , 75

230

Index 231

back end, 6
back-tracking, 64
basic action notation

annotation rules, 182
elimination rules, 133
sem antic rules, 49
translation rules, 78

benchm ark program s, 192
bind-free action, 160
binding, 114, 165, 166
binding elimination, 114, 124
binding occurrence, 166, 179
binding occurrence annotations, 180
binding substitu tion , 130
binding-time analysis, 23
Bondorf, A., 196
Brown, D. F ., 66, 198

cell counter, 131, 140
classification procedure, 120, 122
code generator generators, 7
com m itm ent, 64
com m itted action, 59
compilation, 4
compiler, 5
compiler generation, 7
compiler transform ations, 197
compound action, 42
consum ption

of transients, 124
context-free gram m ar, 39
contextual analyser, 6
correctness condition, 15
current failure label, 76
current inform ation, 43
current repeat label, 76

d-register, 75
d-register assignment, 75
data , 47
d a ta notation, 62

translation rules, 93
dead action, 124
dead code elimination, 124
decision procedure, 176
declarative action notation

annotation rules, 184
elimination rules, 139

sem antic rules, 55
translation rules, 85

decorated action tree, 72, 155, 198
denotational semantics, 11
Doh, K. -G., 196
dynamic memory allocation, 122
dynamic scopedness, 175

eager strategy, 163
early binding, 166
elimination rules, 127
entry sequence, 158
environm ent, 167

facets, 45
fail action context, 76
flow of control, 47
formal notation, 8
free occurrence, 167
free tokens, 143, 174
free variable, 165
front end, 6
functional action notation

annotation rules, 183
elimination rules, 137
sem antic rules, 52
translation rules, 83

functional languages, 199
functionality, 42

garbage collector, 87

high w ater marks, 76
high-level semantics, 25
history

of compiler generator systems, 28
hybrid action notation

annotation rules, 185
elimination rules, 144
sem antic rules, 62
translation rules, 91

ill-formed action, 69
ill-sorted action, 69, 126
im perative action notation

annotation rules, 184
elimination rules, 141
semantic rules, 58
translation rules, 86

I n d e x 232

income, 43
incorporated action, 59
indirect bindings, 65
individual, 45
inform ation node, 155, 158
input binding substitu tion, 131
input transien t substitu tion, 131
in terp reta tion , 5
in terpreter, 11
interpretive code, 5

known binding, 118

late binding, 166
Lee, P., 32, 196

m eta-notation, 63
Mosses, P. D ., 1, 36

natural semantics, 12, 43
nesting level, 121, 125, 131

current, 131
of program action, 121

object progam , 4
observational behaviour, 132, 147
outcom e sta tu s, 100
ou tpu t binding substitution, 131
ou tpu t transien t substitution, 131

Palsberg, J ., 196
parser, 6
partial evaluation, 10, 15
partial evaluator, 15
performance, 34
Pleban, U., 196
preservation actions, 132, 141
preservations actions, 132
program action

composed by the actioneer, 67
elimination rule, 154
for the factorial program , 116
for the loop program , 70

proper sort, 46

reflective action notation
annotation rules, 185
elimination rules, 142
semantic rules, 60

translation rules, 88, 89
regular expressions, 39
relational semantics, 12
residual program , 15
return sequence, 158
run-tim e sort check, 74

s-expression, 27
scanner, 6
scope, 166
scope rules, 167
self-applicable, 16
semantic algebra, 16, 38
sem antic description analysers, 195
sem antic entities, 40
semantic function, 41
semantic gram m ars, 24
sem antic rules, 43, 161, 172
semantics-directed compiler generation, 8
single-threadedness, 59
sort, 45
sort discipline, 72
sort equations, 41
sort information, 69, 118, 126, 144
sort language, 69
sort rules, 145
sort updating rules, 144
source action, 115
source language, 4
source program , 4
standard action notation, 37
static binding, 168
static scopedness, 175
statically scoped

action sem antic description, 187
language, 190

statically scoped action, 186
statically scoped condition

for actions, 179
storage allocation, 125, 198
storage allocation context, 131
subject program , 15
subroutine, 114
substitu tion, 128, 129
syntax analyser, 6
synthesis, 5

ta r g e t a c tio n , 115

ta rg e t language, 4
Tennent, R. D., 168
term rewriting system , 13
to ta l binding elimination, 115, 159
transform ation rule, 115
transform ations, 39
transien t elimination, 124, 197
transien t substitu tion, 130
transients, 43
transition semantics, 12
transition system, 12
translation rules, 74
type analysis, 198

unclosed abstraction, 143, 176, 186
unfold d-register assignm ent, 76
unfolded action, 48
unknown binding, 118

W a tt’s conjecture, 1
W att, D. A., 1, 36, 66

yielder, 46

