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SUMMARY

1. The studies presented in this thesis investigated some metabolic actions o f P- 

casomorphins in dairy cows. Three p-casomorphins (p-casomorphin-4-amide, -5 and - 

7) were used. Investigations o f the actions of the P-casomorphins in dairy cows require 

gram quantities o f each peptide. This was achieved by synthesising the peptides using 

solid phase peptide synthesis combined with FMOC chemistry.

2. The first experiment examined possible stimulatory actions o f the peptides on amino 

acid uptake by the mammary gland using explants o f lactating rat mammary glands as 

a model in vitro system. There was no evidence o f their actions on amino acid uptake 

by the mammary gland as judged by the lack o f their effects on the uptakes of four 

amino acids (glutamate, histidine, leucine and lysine). Because o f the inability to 

demonstrate effects o f the peptides at the mammary gland level, it was decided to focus 

on their effects at the level of the gut.

3. As a first step, the extent o f ruminal degradation of the P-casomorphins was 

determined in incubations in rumen liquor in vitro. All three peptides were degraded 

rapidly with half-lives of only 15 to 20 minutes. In a subsequent experiment, an 

attempt was made to chemically protect the peptides from the ruminal degradation 

using N-terminal acetylation. The half-lives o f the N-acetyl p-casomorphins were 

markedly increased to 6 j ,  1~  and 4 hours for P-casomorphin-4-amide, -5 and -7 

respectively. However, it was recognised that, whilst the method would be a simple 

and effective method for the protection o f the peptides, further developments of the 

method would be necessary to ensure their release in active form at their sites o f their 

action in vivo.



4. In experiments on the actions of the (3-casomorphins in vivo, the peptides were infused 

direct into the abomasum. The first experiment compared hormonal responses to the 

abomasal infusion o f sodium caseinate, a potential source of P-casomorphins, and an 

acid hydrolysate of casein, which was not a potential source o f P-casomorphins. There 

were clear suggestions of differences in responses o f some hormones, notably insulin 

and GIP. In the second experiment, effects of abomasal infusions o f mixtures of the P- 

casomorphins themselves at three different dose levels on changes in concentrations of 

the hormones were investigated in lactating dairy cows. There was no clear effect of 

the P-casomorphin infusions on insulin concentrations except for some tendency 

towards inhibition at some time points. However, the incremental response o f glucagon 

to the P-casomorphin infusions was linearly increased (P < 0.05) leading to statistically 

significant decreases in the insulin / glucagon ratio at 4 hours by all p-casomorphin 

infusions compared with control.

5. In the final section o f the thesis, attention was focused on the possible inhibitory effects 

o f the p-casomorphins on insulin secretion. Three experiments were carried out. 

Experiment 1 was designed to detect the inhibitory action of the P-casomorphins on the 

insulin level prestimulated by an abomasal infusion of glucose. The insulin 

concentration rise was significantly inhibited by the P-casomorphins (P < 0.05). The 

inhibitory action o f P-casomorphin was shown to be compatible with the action of SS- 

28 as judged from the effects of SS-28 on the insulin secretion when administered 

intravenously in the same experiment. However, the inhibitory action was not evident 

in the next experiment in which lactating animals were used, probably because of 

differences in the sensitivity of insulin secretion in lactating versus non-lactating 

animals. The final experiment confirmed the insulinopenic effect o f the P- 

casomorphins by demonstrating their inhibitory action on the insulin concentrations 

prestimulated by an intravenous infusion of glucose.
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6 . Taken together, the results of the experiments described show effects o f P-casomorphin 

infusions on circulating levels of hormones in the ruminant. The most pronounced 

effect was the modulation of the insulin response to abomasal or intravenous 

administration o f glucose.
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CHAPTER ONE

REVIEW OFLITERA TTURE

1.1. INTRODUCTION

Infusions o f casein or partial hydrolysates of cassein into the abomasum of the dairy 

cow elicit greater increases o f milk production than do iinfusions o f corresponding mixtures 

o f free amino acids (Choung and Chamberlain, 11995a). Furthermore, it has been 

demonstrated that the magnitude of the increase in tlhe yield of milk protein is directly 

proportional to the proportion of peptide-bound aminco acids in the hydrolysates infused 

(Choung and Chamberlain, 1995b).

These results are compatible with an involvememt o f peptides derived from casein. 

Casein is a rich source of biologically active peptides, those produced from P-casein (the 

P-casomorphins) being the most intensively studied.. These are reported to affect the 

physiology o f the gut in a number of ways, ranging froim alterations o f intestinal motility to 

increases in the rate o f absorption of amino acids and stimulation o f the release of various 

gut hormones. However, there is very little information available on the effects of p- 

casomorphins (or other diet-derived bioactive peptides)) in the ruminant. An understanding 

of the role of diet-derived bioactive peptides in the rurminant in relation to their action via 

endocrine regulation may ultimately allow not only (development o f a powerful tool to 

manipulate milk composition and improve efficiency o>f utilisation of dietary nutrients for 

production in the ruminant but also more accurate evaluiation o f feed protein sources.

In Chapter 1 of this thesis, the literature relating ito the digestion and the metabolism 

of protein in the ruminant and their regulation by nnajor metabolic hormones and gut 

hormones is reviewed, as well as the possible involverment o f biologically active peptides



from dietary protein, as an introduction to a series of investigations o f the actions of 

biologically active peptides derived from casein in the metabolism of dairy cows.

1.2. PROTEIN DIGESTION IN THE RUMINANT

1.2.1. Characteristics of the digestive tract of the ruminant

The region within the digestive tract o f the ruminant that corresponds to the gastric 

stomach o f the simple-stomached animal is divided into four different compartments 

(figure 1-1). The first two compartments, the reticulum and rumen, which are functionally 

related and are separated only by a layer o f stomach wall, therefore are often described as 

the reticulo-rumen. This is where the ruminant houses symbiotic microorganisms and 

where extensive fermentation of nutrients by ruminal microorganisms occurs. The 

positioning of an organ of extensive fermentation before the major site of absorption in the 

small intestine makes the ruminant digestive system unique. As a consequence o f the 

rumen fermentation of dietary material, ATP is generated for microbial growth and other 

end products o f fermentation are produced.

Microbes and dietary components that escape microbial attack flow through the 

omasum, where some electrolytes and water are removed, to the abomasum. The 

abomasum has the same function as the glandular stomach in monogastric species 

secreting hydrochloric acid and pepsin. From the abomasum, digesta flow into the 

duodenum, where bile and pancreatic enzymes break down bacteria and undegraded food 

residues to sugars, long-chain fatty acids and amino acids, prior to absorption. Undigested 

material passes from the small intestine to the caecum and colon, where further microbial 

fermentation and some absorption of volatile fatty acids (VFA) occur.
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R u m e n

Reticulum

Duodenum
Abomasum (true stomach)

Omasum

Figure 1-1. A diagram of the digestive tract of the ruminant (side view, right side).
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1.2.2. Ruminal digestion of protein

Dietary protein ingested by ruminant animals is subjected to extensive degradation 

by ruminal microbes, both bacteria and protozoa, releasing oligopeptides and then small 

peptides and amino acids (Broderick et a l , 1991). Between 30 % and 50 % o f the bacteria 

isolated from rumen fluid have proteolytic activity towards extracellular protein (Fulghum 

& Moore, 1963; Prins et a l, 1983) and bacteria classified as Prevotella ruminicola 

(formerly Bacteroides ruminicola) and Butyrivibrio fibrisolvens are commonly thought to 

play a major role in ruminal protein degradation (Wallace and Cotta, 1988; Wallace, 1994), 

with P. ruminicola isolates possessing an activity profile most similar to that o f whole 

ruminal contents (Wallace and Brammall, 1985). Protozoa also play an important role in 

the degradation of particulate and microbial proteins (Hino and Russell, 1987; Ushida et 

a l,  1991), and produce a variety o f enzymes with different specificities (Forsberg et a l ,  

1984; Newbold eta l., 1989).

Although the mixed ruminal microbiota has no absolute amino acids requirement 

(Virtanen, 1966), up to about half of microbial N can be derived from nonammonia N 

sources, which would be predominantly peptides and amino acids (Nolan, 1975; Leng and 

Nolan, 1984). Most reports o f the uptake of 14C-amino acids and peptides indicated that the 

mixed microbial population preferentially incorporated peptides rather than free amino 

acids (Wright, 1967; Prins et a l ,  1979; Copper and Ling, 1985). However, more recent 

studies reported a preference for amino acids over peptides by some microbial species 

(Westlake and Mackie, 1990; Ling and Armstead, 1995), and mixed population (Armstead 

and Ling, 1993). It has been suggested that the numbers o f P. ruminicola in the mixed 

population may decide the preference for nonammonia N sources incorporated into 

microbial proteins as P. ruminicola prefers peptides to amino acids, and this organism can 

comprise more than 60 % of the total microflora (Wallace, 1996).
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Ruminal peptide breakdown is a two-stage process (figure 1-2). The great majority 

of peptidase activity in ruminal contents is similar in specificity to dipeptidyl 

aminopeptidase Type-I that cleaves dipeptides rather than single amino acids from N- 

terminal of peptide chains (Wallace and McKain, 1989; Wallace et a l ,  1990; Wallace et 

a l,  1993b). The dipeptides released as a result o f dipeptidyl aminopeptidase activity are 

then broken down by separate dipeptidases to free amino acids.

Individual amino acids may be incorporated into microbial protein or deaminated 

intracellularly to VFA, ammonia, CO2 and CH4 . For many years, it had been assumed that 

deamination was carried out by a large number o f the principal species o f ruminal bacteria 

that had been shown to produce ammonia from protein or protein hydrolysates. However, 

more recent studies (Chen and Russell, 1988; Russell et al. 1988, Chen and Russell 1989, 

Russell et al., 1991; Allison et al., 1992; McSweeney et a l,  1993; Paster et a l ,  1993) 

suggest that amino acid deamination is carried out by two distinct bacterial populations of 

either low activity with high numbers or high activity with low numbers (see Wallace, 

1996).

The degradation of protein in the rumen is influenced by a number o f factors, some 

of which are related to diet, others to the animal. The secondary and tertiary structure of 

proteins is an important determinant of degradability. Proteins with extensive crosslinking, 

such as disulphide bonds (e.g. albumins and immunoglobulins) appear to be more resistant 

to degradation (Nugent and Mangan, 1978). By the same principle, the use of controlled 

Maillard reactions between soybean meal and xylose (Cleale et a l ,  1987) and pretreatment 

of leaf protein with formaldehyde, which causes methylene crosslinking, have both proven 

to be effective ways to reduce the rate of proteolysis (Ferguson et al., 1967, Mangan et a l,  

1980). More recently N-terminal modification of amino acids and peptides has also been 

shown to reduce their ruminal degradation rates (Wallace et a l,  1993a; Wallace, 1994).
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COOH

Dipeptidyl
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Dipeptidase

Mixture of di- 
and tripeptides

Tripeptidase 

Amino acids

Figure 1-2. Biphasic breakdown of peptides by rumen microorganisms (After Wallace, 

1996).
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In general, soluble proteins are more rapidly and completely degradable in the 

rumen than those that are insoluble. Indeed, solubility o f proteins does correlate well with 

degradability o f proteins as long as it applies to a group of similar feeds (Beever et al., 

1976). However, protein solubility as a measure of protein degradation can lead to serious 

error when applied across a variety o f feeds (Nugent and Mangan, 1978; Leng and Nolan, 

1984).

The products o f protein degradation, peptides, free amino acids, and ammonia, are 

utilised for protein synthesis by ruminal microbes. The microbes almost always improve 

the protein status of ruminants consuming low protein diets through protein synthesis from 

degraded feed protein and efficient use of urea recycled to the rumen via saliva and 

directly across the ruminal wall, such that more protein reaches the small intestine than 

was ingested. However, when high-protein diets are fed, the production o f ammonia often 

exceeds the rate at which it is reassimilated into microbial protein, and the excess is 

absorbed and transported to the liver, then excreted primarily as urea. To minimise this 

‘waste’ o f protein, the objectives of research in this field have been twofold. One is to 

maximise microbial protein synthesis by optimising ruminal degradation of carbohydrates 

and proteins and the other is to minimise protein breakdown in the rumen, and thereby to 

increase the ‘bypass’ dietary protein (i.e. protein escaping degradation in the rumen) 

reaching the lower tract.

Microbial protein flowing to the small intestine accounts for 40 to 80 % of daily 

amino acid supply of ruminants and it has a relatively good amino acid balance (Clark et 

al., 1992). The primary determinant o f the amount of protein synthesised in the rumen is 

the energy available for microbial growth. The amount o f energy required for the 

formation of microbial cells is variable and can be considerably above theoretical estimates 

(Hespell and Bryant, 1979). This is a reflection of modifying factors such as growth rate of 

rumen bacteria, turnover of microbial protein, supplies o f nitrogen and other nutrients,
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variation o f the composition of organisms, and differences o f metabolic pathways of 

microorganisms (Hespell and Bryant, 1979; Leng, 1981; Leng and Nolan, 1984). Minerals, 

especially sulphur and phosphorus, also can affect protein digestion in the rumen in a 

number o f ways including modification of digestibility and alteration of the microbial 

ecosystem (See Rogers et al., 1982; Kandylis, 1984). Recent reviews (e.g., Clark et al., 

1992, Stem et al., 1994) describe the influences of various dietary factors on the amount o f 

microbial protein reaching the duodenum.

Protein flowing from the rumen is further modified through the inclusion of 

mucosal secretions and desquamated epithelial tissue associated with the digestive process. 

However, the precise magnitude of this endogenous fraction is difficult to determine owing 

to the difficulty o f separating it from other proteins.

Ingested protein is, hence, subject to considerable modification in the rumen and, in 

consequence, the quantity and quality of protein entering the abomasum and available for 

digestion and absorption bears little resemblance to the quantity and quality o f protein 

ingested by the ruminant.

1.2.3. Post-ruminal digestion of protein

Microbial cells and undegraded dietary protein together with small amounts of 

peptides and free amino acids pass with the digesta from the rumen-reticulum through the 

omasum and abomasum to the small intestine. Digestion of protein in the abomasum and 

small intestine appears to be the same for ruminants as non-ruminants except for the slow 

neutralisation o f digesta in the small intestine and the abundance o f pancreatic ribonuclease 

(Bergen, 1978).

The proteases found in the lower gut of the ruminant are listed in table 1-1. The 

proteases are secreted as inactive proenzymes or zymogens that become effective enzymes



Table 1-1. Proteases of post-ruminal gut in ruminants.

Protease Origin or source Site o f activity Protease type

Pepsin Abomasum Abomasum Endo

Trypsin Pancreas Small intestine Endo

Chymotrypsin Pancreas Small intestine Endo

Elastase Pancreas Small intestine Endo

Carboxypeptidase A Pancreas Small intestine Exo

Carboxypeptidase B Pancreas Small intestine Exo

N-terminal
exopeptidases

Small intestinal 
mucosa Small intestine Exo
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after activation. There are two general classes of abomasal and pancreatic proteases. The 

endopeptidases such as pepsin, trypsin, chymotrypsin, and elastase attack the interior 

peptide bonds between adjacent amino acids and differ functionally from each other only 

in their specificity for particular amino acids. The principal exopeptidases are the 

carboxypeptidases, which act on terminal peptide bonds at the carboxyl end of protein 

chains (Gray and Cooper, 1971).

Proteins entering the lower gut first become subjects of hydrolysis by the abomasal 

protease, pepsin, which is activated from pepsinogen by acid, and has broad specificity for 

peptide bonds involving aromatic L-amino acids (Gray and Cooper, 1971; Castro, 1991).

Digesta reaching the small intestine stimulate the release o f secretin and 

cholecystokinin (CCK), which in turn causes the pancreas to secrete bicarbonate and 

enzymes into the intestinal lumen (Castro, 1991). Trypsin is secreted from the pancreas 

into the duodenum as the inactive zymogen, trypsinogen, and is activated at pH 7 by 

autocatalysis by trypsin, enterokinase and thrombin (Keil, 1971). It has a very narrow 

specificity compared with pepsin, hydrolysing only peptide bonds containing the carboxyl 

group of arginine or lysine (Keil, 1971).

Chymotrypsinogen, being very similar in structure to trypsinogen (Keller, 1968), is 

activated by relatively small amounts of trypsin (one part in 70) (Nordstrom and Dahlqvist, 

1970). Chymotrypsin hydrolyses peptide bonds adjacent to carboxyl groups of aromatic 

and large hydrophobic amino acids such as tyrosine, tryptophan, phenylalanine, leucine 

and methionine (Bergen, 1978; Castro, 1991).

Proelastase, the inactive zymogen, becomes activated by trypsin to elastase, an 

enzyme with a remarkably similar structure to trypsin and chymotrypsin. Elastase is the 

only protease that can attack elastin and has broad specificity against interior peptide bonds 

involving neutral aliphatic amino acids yielding products with neutral amino acids at C- 

terminal end (Hartsuck and Lipscomb, 1971).
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Exopeptidases can be divided into two categories, carboxypeptidases and 

aminopeptidases. Activation o f bovine carboxypeptidase A involves extensive degradation 

o f its parent zymogen, procarboxypeptidase A, by trypsin. Once secreted from the pancreas 

into the duodenum, carboxypeptidase A acts on peptides with aromatic and neutral 

aliphatic amino acids at the C-terminal end of substrates. Carboxypeptidase B is also 

activated by trypsin but with much simpler steps than carboxypeptidase A and it only 

attacks peptides with C-terminal lysine or arginine residues.

The intestinal mucosa secretes a number of peptidases commonly referred to as 

aminopeptidases or N-terminal exopeptidases, which release free amino acids and small 

peptides from the N terminus of the peptide substrate. Detailed information on the 

peptidases will be dealt with in the next section.

The pancreatic proteases require a pH of at least 5 for activation and their pH 

optimum for proteolytic activity is between 7 and 8 . In ruminants, the duodenum and upper 

jejunum are still notably acid (pH 2 to 3) and the pH does not reach 6  to 7 until the middle 

to lower jejunum (Lennox et a l 1968; Ben-Ghedalia et al., 1974). This slow neutralisation 

of digesta passing from the abomasum to the small intestine can be related to the low 

bicarbonate content of pancreatic juice in the ruminant (Taylor, 1962). Indeed, in sheep, 

considerable proteolysis in the duodenum is still due to the gastric protease, pepsin. 

Optimal carboxypeptidase activity does not occur until the middle jejunum in sheep (Ben- 

Ghedalia et al., 1974). The peak activities o f N-exopeptidases and dipeptidases were found 

in the mid ileum (Ben-Ghedalia et al., 1974)

Ruminal microorganisms contain 10 to 20 % of their N content as nucleic acids 

(Ellis and Pfander, 1965). The breakdown o f the nucleic acids to mononucleotides is 

achieved by deoxyribonuclease (DNAse) and ribonucleases (RNAses).
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1.2.4. Absorption of the end products of protein digestion

Polypeptides and protein fragments, resulting from the actions of gastric and 

pancreatic enzymes, become subjects o f further hydrolysis by various intestinal mucosal 

peptidases prior to absorption across the intestinal epithelium into the circulatory system.

In spite o f extensive studies and technical advancement in past decades in the area 

of intestinal peptidases, there are still new types o f peptidases being discovered (Shneider 

et al., 1997). Hence, the complete details o f the mechanisms involved in this final stage of 

protein digestion by the actions of intestinal peptidases are still to be explored. 

Furthermore, there is relatively limited knowledge on intestinal digestion and absorption of 

protein in ruminant animals compared with simple-stomached animals, although it is 

generally assumed that the basic mechanisms are similar. Therefore, the information 

described here is mostly from simple-stomached animals.

The intestinal peptidases exist on the surface o f the brush border of the intestinal 

epithelium as well as within their columnar cells, and their physiological functions are 

distinctively different (Gray and Cooper, 1971; Adibi and Kim, 1981; Gray, 1989).

There are several peptidases integral to the brush border membrane whose active 

sites, positioned external to the enterocyte’s surface membrane, interact with oligopeptides 

while they are still within the lumen (table 1-2). These peptidases play a pivotal role in the 

interfacial digestion prior to final transport of the amino acids and small peptides (Gray, 

1989).

Among the brush border peptidases, aminooligopeptidase, commonly called 

aminopeptidase N, has been most thoroughly characterised (Adibi and Kim, 1981; Gray,

1989). The aminooligopeptidase has a broad specificity for certain amino acid side chains 

at the N-terminus o f the peptide substrate and sequentially removes single amino acid
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Table 1-2. Peptidases of brush border membrane of intestinal cells (After Woodley, 1994).

Class Name Specificity

Endopeptidase-24.11 — 0 —0 — — o — o —

(EC 3.4.24.11) hydrophobic

Endopeptidase-24.18 — o — o —̂ o  — o —

Endopeptidases
(EC 3.4.24.18) aromatic

— o — o — o — o —Endopeptidase-3
(EC ?) Arg-Arg ?

Enteropeptidase 1 0 1 0 1 > 0 1 0 1

(EC 3.4.21.9) (Asp)4-lys

Aminopeptidase N •  * — 0 — 0 — o — o —

(EC 3.4.11.12) many

Aminopeptidase A •  — o — o — o — o —

(EC 3.4.11.7) Asp, Glu

Aminopeptidase P •  — o — o — o — o —

Exopeptidases (EC 3.4.11.9) Pro
: Amino-terminus Aminopeptidase W •  — o — o — o — o —

(EC 3.4.11.16) Tryp, Tyr, Phe 
|

y-glutamyl transpeptidase •  —o — o — o — o —

(EC 2.3.2.2) y-glutamic acid

Dipeptidyl peptidase IV O — •^— o — o — o —

(EC 3.4.14.5) Pro, Ala

Peptidyldipeptidase A 1 0 1 0 1 0 1 0 1 1 •

(EC 3.4.15.1) Many, but especially His-leu

Carboxypeptidase P 1 0 1 0 1 0 1 0 >

Exopeptidases (EC 3.4.17.16) Pro, Gly, Ala
: Carboxy-terminus Carboxypeptidase M — o — o — o — o —

(EC 3.4.17.12) Lys, Arg

y-glutamyl carboxypeptidase — o — o — o — o —

(EC 3.4.19.9) (y-glutamic acid)n

Dipeptidase Microsomal dipeptidase 
(EC 3.4.13.11)

• — •
Many (2nd residue may be D 

configuration)
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residues, yielding the free amino acids and smaller oligopeptides for transport (Adibi and 

Kim, 1981; Gray, 1989).

Besides the aminooligopeptidase, another aminopeptidase (dipeptidyl amino­

peptidase) and two carboxypeptidases (carboxypeptidase P and dipeptidyl carboxy­

peptidase) have been shown to be concentrated in the brush border membrane of the 

enterocyte and to have a sufficiently high affinity and hydrolytic capacity to perform an 

important physiological role in terminal peptide digestion (Bella et al., 1982; Morita et al., 

1983; Yoshioka et al, 1987 and Yoshioka et al., 1988). As shown in table 1-2, the 

peptidases cleave the first or second peptide bond at either the N-terminus or the C- 

terminus of the oligopeptide substrate, thereby removing a free amino acid or dipeptide.

Dipeptidyl aminopeptidase, commonly known as dipeptidyl aminopeptidase IV, 

acts on peptides with a free a-amino group, cleaving bonds involving the carboxyl group 

of either Pro or Ala and releasing the corresponding dipeptides X-Pro and X-Ala (Adibi 

and Kim, 1981). Since all o f the other aminopeptidases are blocked by the presence of a 

Pro residue when it is at the N-terminal or penultimate position of the peptide substrate, the 

dipeptidyl aminopeptidase plays a pivotal complementary role in the surface digestion of 

dietary peptides.

Similarly, dipeptidyl carboxypeptidase cleaves a pro line-containing dipeptide from 

the C-terminus. Although it has fairly broad specificity for amino acids at the C-terminus, 

its hydrolytic rate is enhanced two- to five-fold when the peptide chain terminates in a Pro 

residue (Yoshioka et al., 1988). The carboxypeptidase P removes a single amino acid 

residue from the C-terminus while its efficiency of hydrolysis increases when a proline 

residue is located at the penultimate position (Yoshioka et al., 1988).

Overall, brush border peptidases appear to break down oligopeptides released from 

pancreatic protease action into both free amino acids and smaller di- and tripeptides in a 

concerted manner to promote efficient surface hydrolysis o f oligopeptides before the

14



transport o f amino acids and small peptides across the brush border by specific intra­

membrane macromolecular carriers of the enterocyte.

Amino acid transport in the small intestine

The duodenal, jejunal, and ileal regions of the small intestine appear to have 

abilities to absorb amino acids, although, in the ruminant, the more distal region o f the 

small intestine, the ileum, has the major capacity for amino acid absorption (Johns and 

Bergen, 1973; Phillips et a l ,  1979; Wilson and Webb, 1990).

The uptake of amino acids across the small intestinal epithelium involves two 

stages: uptake across the brush border membrane, and exit into the blood across the 

basolateral membrane both of which can be achieved by either simple diffusion or 

mediated transport (Matthews, 1991a). Simple diffusion is not generally thought to be a 

major mechanism in the transepithelial transport o f amino acids, although results in vitro 

sugest that it may be more important for lysine and methionine (Moe et al., 1987; Wilson 

and Webb, 1990). Mediated transport involves a ‘special mechanism (carrier)’ which aids 

transport across the membrane and is specific for a group of structurally related substrates, 

hence is subject to competitive inhibition by other substrates sharing the same mechanism 

(Matthews, 1991a). There are two types of mediated transport, one is facilitated diffusion 

(Na+-independent) and the other is active transport (Na+-dependent). Facilitated diffusion 

is dependent for its operation on the presence of a concentration difference of solute across 

the membrane and, naturally, takes place down the concentration gradient whereas active 

transport is capable of transporting a substrate across a membrane against an 

electrochemical gradient and is, directly or indirectly, driven by metabolic energy 

consumption which is actually associated with the continuous outward flux of Na+ from the 

mucosal cells owing to the activity of a Na+ / K+ ‘pump’(Webb, 1990; Matthews, 1991a).
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Although the precise number of transporters for amino acids present in the small 

intestine is not known, there are several transport systems that have been defined and 

characterised in both the brush border membrane and the basolateral membrane, based on 

substrate preference and by kinetic and inhibition analysis measurements (Christensen, 

1984). The major transport systems found in the small intestine and their substrate 

specificities are listed in table 1-3. It is noteworthy that species differences of amino acid 

transport system in the small intestine exist even among simple-stomached animals 

(Munck and Munck, 1994) and that recent advances in the identification and sequencing of 

specific transport proteins by methods of molecular biology have opened new prospective 

opportunities for more detailed understanding of amino acid transport systems in the small 

intestine (McGivan and Pastor-Anglada, 1994).

Peptide transport in the small intestine

Since Newey and Smith (1959, 1960) provided the first convincing evidence 

indicating the possibility of peptide absorption, much effort has been committed to 

advance our knowledge of peptide absorption in the small intestine, and it is now generally 

accepted that small peptides, mostly di- or tripeptides, are absorbed across the intestinal 

epithelium in simple-stomached animals (see Matthews, 1975; Adibi and Kim, 1981; 

Gardner, 1982; Gardner, 1984; Silk et a l , 1985; Matthews, 1991b) and ruminant animals 

(see Webb, 1986; Webb, 1990; Webb and Bergman, 1991; Webb et al., 1992; Webb and 

Matthews, 1998).

There is evidence both in humans and in experimental animals, that dipeptides 

disappear at significantly slower rates in the ileum than in the jejunum (Adibi, 1971; 

Crampton et al., 1973; Schedl et al., 1979) but it is not clear whether it is the same in the 

ruminant. A number of recent studies (Webb et al., 1992; Matthews and Webb, 1995; 

Matthews et al., 1996) suggest that the forestomachs may have an ability to absorb
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Table 1-3. Amino acid transport systems in the small intestine o f higher animals (Modified 

from Barker and Ellory, 1990; McGivan and Pastor-Anglada,1994).

System Specificity

A Small aliphatic amino acids; methyl-AIB

ASC Small aliphatic amino acids; not methyl-AIB

Na+-dependent B Broad specificity; most neutral amino acids

systems B°'+ Broad specificity; most neutral and basic amino acids

XA0' Glutamate, aspartate

P p-Alanine, taurine

L Mainly branched-chain and aromatic amino acids
Na+-independent

systems
y* Lysine, histidine, arginine

b°-+ Neutral and basic amino acids
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significant amounts of peptide. However, this needs to be confirmed by further 

investigations in vivo.

The physiological significance o f peptide transport in amino acid metabolism was 

highlighted by a number o f early studies in which peptides were absorbed from the 

intestinal lumen more rapidly than equivalent mixtures o f free amino acids (Adibi and 

Phillips, 1968; Craft et a l ,  1968; Adibi, 1971; Burston et al., 1972). Furthermore, a 

number o f studies in vivo and in vitro suggested that absorption o f intact peptides may be 

quantitatively significant in the supply of amino acids to tissues for protein synthesis 

(Gardner, 1975; Koeln and Webb, 1982; McCormick and Webb, 1982; Danilson et al., 

1987; Koeln et a l, 1993). However, the quantitative nutritional significance o f the 

absorbed peptides is still the subject o f intense debate owing to the lack of reliable and 

reproducible methods for peptide measurement in the plasma (Seal and Parker, 1998; 

Backwell, 1998).

Although the existence of a transport process for intact peptides in the brush border 

membrane of intestinal epithelial cells has been known for almost three decades, it is only 

recently that the molecular nature of the protein responsible for the transport process in the 

small intestine has been elucidated (Miyamoto et a l ,  1991; Saito et a l ,  1993; Tamai et a l,  

1994; Tamai et al., 1995).

There seems to be a single H+-gradient-dependent peptide transporter, PEPT 1, in 

the small intestine which has high capacity for di- and tripeptides o f widely differing 

structure (Gray, 1989; Leibach and Ganapathy, 1996). It requires at least two, and no more 

than three, amino acid residues covalently linked by a peptide bond with an unsubstituted 

(X-NH2 group at the N-terminal position (Matthews, 1975), and requires an energising or 

driving force (H+) generated and maintained by the combined action of the Na+-H+ 

exchanger in the brush border membrane and the Na+-K+-adenosine triphosphatase 

(ATPase) in the basolateral membrane (Leibach and Ganapathy, 1996). There is no second
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peptide transporter identified in the small intestine at present although the presence of 

multiple transport systems or several subtypes of a single transporter can not be ruled out 

(Muranushi et a l ,  1994; Yuasa et al., 1994).

The peptide transport system exists both in the brush border membrane and the 

basolateral membrane, although some evidence indicates that the transport systems present 

in these two membranes may be distinct (Saito and Inui, 1993; Thwaites et al., 1993a; 

Thwaites et al., 1993b). Peptides absorbed by the transporter in the brush-border 

membrane of intestinal enterocytes are generally assumed to be extensively hydrolysed by 

numerous cytoplasmic peptidases and only less than 10 % of them can reach the blood 

intact (Shoaf et al., 1976; Adibi and Kim, 1981; Matthews, 1991b). However, non­

mediated absorption o f nutritionally significant amounts of oligopeptides has been 

observed through a paracellular pathway (‘leaky’ tight junctions) in enterocytes (Atisook 

and Madara, 1991) which could have at least pharmacological if  not nutritional 

importance.

1.3. PROTEIN METABOLISM IN THE DAIRY COW

The fate o f absorbed amino acids (and peptides) can be either catabolic losses, 

including digestive secretions and tissue oxidation, or anabolic protein gain such as muscle 

and milk. Among the splanchnic tissues, the gastrointestinal tract has the highest rate of 

amino acid turnover owing to a heavy demand from mucosal cell turnover and the 

continual secretion o f digestive enzymes and mucus glycoproteins. This high turnover rate, 

together with the use of amino acids as energy substrates within the mucosa, probably 

accounts for the poor recovery of individual amino acids across the portal drained viscera 

(PDV). Tagari and Bergman (1978) reported that between 30 and 80 % of amino acids 

disappearing from the lumen do not appear in the portal vein in sheep. Although a more
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recent study (MacRae et al., 1995) reported that recovery of absorbed essential amino 

acids across the mesenteric drained viscera was apparently complete, there were still 33 to 

45 % o f essential amino acids disappearing from the small intestine that did not reach the 

portal vein in sheep. Furthermore, Guerino et a l (1991) reported that only 28 % of post- 

ruminal casein nitrogen appeared in the portal blood as a-amino nitrogen in steers. 

Therefore, the pattern o f amino acids available to the liver and peripheral tissues differs 

significantly from that o f absorbed amino acids (Lobley et al., 1980).

Absorbed amino acids and peptides entering the portal circulation reach the liver 

where a large part of the amino acids are removed through catabolic processes and, as a 

by-product, ammonia is released most of which is converted into urea. In lactating dairy 

cows, 42 % of net PDV appearance of a-amino N and 38 % of net PDV appearance of 

total amino acid were subsequently removed on a net basis by the liver (Reynolds et al., 

1988; Cohick, 1989). The rest of the amino acids undergo a great variety o f reactions such 

as the synthesis o f protein, formation of peptide hormones, and production of special 

compounds like detoxification derivatives, ketone bodies, nonpeptide hormones, 

glutathione and many others. In addition to supplying building blocks for protein, amino 

acids, especially alanine, glycine, serine and glutamine, also supply a large proportion (up 

to 30 %) o f the glucose needed by ruminant animals (W olff and Bergman; 1972, 

Huntington and Eisemann; 1988).

1.3.1. Uptake and utilisation of amino acids and peptides by the mammary gland

The lactating mammary gland extracts large amounts o f free amino acids from the 

circulation in order to meet the requirements of milk protein synthesis. This high demand 

for free amino acids by the mammary gland is demonstrated by studies showing substantial
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arteriovenous amino acid concentration differences across the mammary gland (Fleet and 

Mepham, 1985).

Although relatively few studies have been carried out to identify amino acid 

transport systems in the mammary gland compared with other organs (i.e. small intestine, 

liver, kidney and placenta), it appears that amino acids are taken up by mammary secretory 

cells via a large array of distinct transport systems that are similar to the amino acid 

transport systems found in other epithelial cells (see previous section, table 1-3). However 

the amino acid transport systems in the mammary gland are distributed differently to meet 

a large requirement for the anionic amino acid, L-glutamate (system X a g ) and transport 

systems with low-specificity and high-capacity (system L and A) seem to play a major role 

in the mammary gland (see Shennan, 1998).

To study quantitative relationships between substrate supply and milk synthesis, in 

vivo measurements o f arteriovenous differences across a gland and the transfer of 

radioactivity from plasma precursors to milk constituents, or a combination of the two 

techniques have been used most widely. Amino acid requirements o f the mammary gland 

for metabolism and milk synthesis can be estimated quantitatively by using the same 

techniques and, based on this estimation, amino acids that are in shortest supply relative to 

demand (Met, Lys, Phe and His), have been proposed to limit milk protein synthesis 

(Derrig et al., 1974; Clark et al., 1977; Oldham, 1981).

The uptake of most essential amino acids, especially branched-chain amino acids, 

by the mammary gland is in excess of the output in milk. However, some studies of net 

amino acid transfer across the mammary gland have indicated that, for certain amino acids 

(Met, His, Phe and Trp), the amount disappearing from the circulation is insufficient to 

account for their output in milk protein (Bickerstaffe et al., 1974; Metcalf et al., 1994) 

suggesting that other sources of amino acids such as peptides and proteins must be 

involved in their supply. Indeed, indirect evidence for the utilisation o f peptides for milk
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protein synthesis in the lactating dairy goat in vivo have been obtained recently using 

arteriovenous difference and dual-labelled tracer techniques together with an isotope 

kinetic technique (Backwell et al., 1994; Backwell et al., 1996), although methodological 

problems still make it difficult to obtain direct evidence o f peptide uptake across the tissue 

bed.

Despite the strong possibility o f the utilisation o f peptides by the mammary gland, 

there is not much information available on how peptide uptake by the mammary gland 

occurs. However, Shennan et al. (1998) recently demonstrated that the uptake of two 

hydrolysis-resistant dipeptides, D-[3H]phe-L-glu and D-[3H]phe-L-gln, by the perfused 

lactating rat mammary gland is very7 low even under conditions designed to maximise 

uptake o f the radiolabelled compounds, and that anionic dipeptides /nms-stimulate D- 

aspartate efflux from mammary tissue via the high-affinity anionic amino acid carrier 

suggesting the dipeptides were hydrolysed extracellularly followed by uptake of the 

constituent free anionic amino acids via the mammary tissue high affinity, Na-dependent 

anionic amino acid carrier.

1.3.2. Milk production responses to post-ruminal supplements of casein

Attempts have been made successfully to improve milk production of dairy cows by 

supplementing the diet with protein (Van Horn et al., 1979; Cressman et al., 1980; Cowan 

et al., 1981; Holter et al., 1982; Macleod et al., 1984; Chamberlain et al., 1992a). 

However, the mechanisms underlying the responses are not clear for a number o f reasons, 

including accompanying increases in feed intake and fibre digestibility leading to an 

increased supply o f metabolisable energy (ME), as well as the uncertainty over the 

degradability o f dietary protein in the rumen.
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To overcome the difficulty of interpreting milk production responses to protein 

supplements, the infusion of proteins and amino acids direct into the abomasum or the 

duodenum has been used. In most o f these experiments, casein was chosen as a convenient, 

soluble and well-balanced source of amino acids.

In most studies, post-ruminal administration o f casein increased milk production of 

lactating dairy cows (see Rulquin, 1982; Choung and Chamberlain, 1993a and Huhtanen et 

al., 1997) and of lactating goats (Ranawana and Kellaway, 1977a; Ranawana and 

Kellaway, 1977b) with very few exceptions (Hale and Jacobson, 1972 and Vik-Mo et al., 

1974). It appears that the milk production response to post-ruminal administration of 

casein is greater in the high producing cow, and tends to be greater at lower concentrations 

o f protein in the diet.

These increases in milk production in response to casein infusion might not be 

unexpected since it is the major milk protein and therefore should offer an ideal pattern of 

amino acid for synthesis o f milk protein. However, in some studies, there were 

substantially greater incremental increases in the output of energy in milk than was 

provided by the casein infusions suggesting mobilisation of body tissue or a repartitioning 

of ME use in favour o f the mammary gland (0rskov et al., 1977; Konig et al., 1984; 

Whitelaw et al., 1986; Choung and Chamberlain, 1992b). This altered partitioning of 

nutrient use between the mammary gland and adipose tissue might have resulted from 

changes in major metabolic hormones like GH and insulin (Choung and Chamberlain, 

1992c; Oldham, 1994).

Furthermore milk production responses to abomasal infusion of soya protein 

isolates (SPI) were markedly smaller than to casein and the addition o f amino acids to the 

SPI in attempt to make it equivalent to casein in the supply of total amino acids and all the 

individual essential amino acids has failed to make up the differences between two protein 

sources (Choung and Chamberlain, 1992a; Choung and Chamberlain, 1992c). These
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findings suggest that the superiority o f casein over SPI cannot be due solely to its total or 

essential amino acid content but also to additional factors associated with the 

characteristics o f digestion and the patterns of absorption o f amino acids and peptides from 

the protein sources.

In a further series o f experiments, Choung and Chamberlain (1993b, 1995a, b) have 

also reported that the nature o f the milk production response to abomasal infusion of 

various hydrolysates of casein was related to the proportion of peptide-bound amino acids 

in the infusates. There were clear differences between abomasal infusions of caseinate as 

opposed to hydrolysed casein or corresponding mixture o f free amino acids (FAA) in their 

effects on the yield of milk fat and, at some levels o f infusion, caseinate is superior to 

hydrolysates or FAA in its effects on the output o f milk protein. These results together with 

previous findings clearly indicate the possibility of important effects o f peptides produced 

during digestion o f casein on the metabolism o f the lactating dairy cow.

Another interesting finding in these experiments is that the pattern of milk 

production response depended on the level of infusion. For example, differences in effects 

on the output o f milk protein were evident only at the lower level (146 g / d) of input 

where free amino acid mixtures supported a smaller increase in protein yield than did the 

corresponding level o f caseinate. Similarly, the increases in the concentration of fat in the 

milk in response to abomasal infusion of the hydrolysate in comparison with sodium 

caseinate disappeared completely at the highest level (440 g / d) o f infusion (Choung and 

Chamberlain, 1995a). Such effects would probably not be detected using the much larger 

amounts of casein that are typical o f most experiments reported in the literature.

It is not easy to explain why the form in which amino acids enter the post-ruminal 

gut should influence the response of milk production. However, Choung and Chamberlain 

(1995a) suggested that the faster absorption of amino acids in peptide-bound form 

compared with free amino acids might underlie the mechanism, presumably via endocrine
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effects; alternatively, biologically active peptides produced from casein during the 

enzymatic hydrolysis might be involved.

1.4. BIOACTIVE PEPTIDES FROM MILK PROTEIN

Milk contains a large number o f bioactive peptides with various biological 

activities. These include natural bioactive peptides such as epidermal growth factor (EGF), 

transforming growth factor (TGF), nerve growth factor (NGF), insulin and insulin-like 

growth factor I and II (IGF-I and IGF-II) which may have significant influences on 

suckling neonates (table 1-4). Many peptides have also been identified encoded into the 

primary structures of milk proteins, which can be released by enzymatic hydrolyses when 

ingested (table 1-5). Some of these bioactive peptides have marked influences on 

gastrointestinal functions. For example, phosphopeptides enhance gastrointestinal 

absorption of calcium, and p-casomorphins inhibit gastrointestinal contraction and fluid 

secretion (Schlimme and Meisel, 1995). During the past two decades, these bioactive 

peptides have received much attention as potential physiological modulators during the 

gastrointestinal digestion o f milk and, among the peptides, casomorphins have been 

investigated and characterised most extensively.

1.4.1. p-Casomorphins : Discovery and chemical and biological identity

Brantl et al. (1979) first described successful isolation of a material from a peptone 

digest o f bovine p-casein that displayed opioid activity in the guinea pig ileum longitudinal 

muscle-myenteric plexus preparation. They named the material as p-casomorphin which 

implies ‘morphin-like-material from p-casein’. In the accompanying paper (Henschen et 

al., 1979), it was shown that the material is a pure heptapeptide with the sequence ‘Tyr-
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Table 1-4. Bioactive proteins and peptides as natural ingredients of milk (After Schlimme

and Meisel, 1995).

Thyrotropin-releasing hormone (TRH) 

Luteinising hormone-releasing hormone (LHRH) 
Somatostatin
Gastrin-releasing peptide (GRP)
Calcitonin
Adrenocorticotropic hormone (ACTH)
Insulin
Growth factors (e.g. EGF)
Relaxin
Prolactin
Thyroid stimulating hormone (TSH)
Lysozyme
Lactoperoxidase
Lactoferrin
Transferrin
Immunoglobulins (IgA, IgM, IgG)

Enzymes (e.g. plasmin)
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Table 1-5. Bioactive peptides derived from milk proteins (After Schlimme and Meisel,

1995).

Bioactive peptides Protein precursor Bioactivity

a-Casomorphins a-Casein Opioid agonist

P-Casomorphins p-Casein Opioid agonist

a-Lactorphin a-Lactalbumin Opioid agonist

p-Lactorphin p-Lactoblobulin Opioid agonist

Lactoferroxins Lactoferrin Opioid antagonists

Casoxins X-Casein Opioid antagonists

Casokinins a-, p-Casein Antihypertensive

Casoplatelins X-Casein, Transferrin Antithrombotic

Immunopeptides a-, P-Casein Immunostimulants

Phosphopeptides a-, P-Casein Mineral carriers
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Pro-Phe-Pro-Gly-Pro-Ile' which corresponds to the 60th to 66th residues of the p-casein A2 

sequence (figure 1-3).

C-terminally shortened peptides (P-casomorphin-4, P-casomorphin-4-amide and P- 

casomorphin-5) from the heptapeptide (P-casomorphin-7) and its pro-form (P- 

casomorphin-11) have been found to possess opioid activity with p-casomorphin-5 and p- 

casomorphin-4-amide being most potent agonists (Henschen et al., 1979; Brantl et al., 

1981; Chang et al., 1981; Brantl et al., 1982; Meisel and Frister, 1988, 1989). The identical 

sequences o f bovine P-casomorphin-7 also appear in the peptide chains of buffalo (Petrilli 

et al., 1983 and Petrilli et al., 1987) and ovine (Richardson and Mercier, 1979) p-caseins 

but not in that of human (Greenberg et al., 1984) and rat (Blackburn et al., 1982). 

However, similar peptides (i.e. human p-casomorphin-8 [Tyr-Pro-Phe-Val-Glu-Pro-Ile- 

Pro]) have been isolated from human p-casein (Brantl, 1984; Greenberg et al., 1984) and 

their opioid activities have been demonstrated (Brantl, 1984).

Since their discovery, P-casomorphins and their immunoreactive material have been 

identified in an enzymatic digest of bovine casein in vitro (Chang et al., 1985; Svedberg et 

al., 1985), fermented milk (Matar and Goulet, 1996), milk from a woman with postpartum 

psychosis (Renlund et al., 1993), plasma of women during pregnancy and after delivery 

(Koch et al., 1988), the small intestine contents o f adult humans (Svedberg et al., 1985) 

and minipigs (Meisel, 1986), and the plasma of newborn calves (Umbach et al., 1985) after 

ingestion of a casein diet or milk.

The presence o f tyrosine residues at the N-terminal position and o f another aromatic 

residue, Phe or Tyr, in the third or fourth position is a common feature among opioid 

peptides (i.e. enkephalin, endorphins, and dynorphin). Indeed, alterations at the N-terminal 

o f P-casomorphin-7 (e.g. acetylation) completely abolished the opioid activity o f the

28



41 50

Thr -  Glu -  Asp -  Glu -  Leu -  Gin -  Asp -  Lys -  lie -  His -  Pro -  Phe -  Ala -  Gin -  Ser -  Leu -

60 70
Val -  Tyr -  Pro -  Phe -  Pro -  Gly -  Pro -  lie -  Pro -  Asn -  Ser -  Leu -  Pro -  Gin -  Asn -  lie

His (Variants C, A1 and B)
80 90

Pro -  Pro -  Leu -  Thr -  Gin -  Thr -  Pro -  Val -  Val -  Val -  Pro -  Pro -  Phe -  Leu -  Gin -  Pro

100
Glu -  Val -  Met -  Gly -  Val -  Ser -  Lys -  Val -  Lys - Glu

Figure 1-3. P-casomorphin sequences (bold typed region) in the primary structure of 

bovine P-casein A2 variant.
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peptide indicating the importance o f the N-terminal tyrosine residue for the biological 

activity of the peptide.

p-Casomorphins have an intensely bitter taste that is a characteristic of 

hydrophobicity o f a peptide. This high hydrophobicity o f p-casomorphins together with the 

fact that the peptides exist in trace amounts in complex peptide mixtures contributes to 

significant analytical difficulties in identifying the peptides in biological fluids. Recent 

advances in analytical techniques have led to the development of methods to identify p- 

casomorphins and their analogues in mixed samples by HPLC (Meisel, 1993), RIA 

(Teschemacher et al., 1980 and Chang et al., 1985) and Enzyme-Linked Immunosorbent 

Assay (ELISA) (Yannakis and Ozimek, 1998) in conjunction with appropriate 

concentration steps (i.e. solid phase extraction) and production o f antisera for the peptides 

(see Schlimme and Meisel, 1995 for more details). Highly purified P-casomorphins can 

also be obtained by solid phase peptide synthesis, which is easily carried out by the 

polyamide continuous flow method on an automatic peptide synthesiser combined with 

FMOC chemistry (Meisel and Schlimme, 1994)

Many attempts have been made to make P-casomorphins more stable from attack of 

various enzymes as well as more potent and specific to an opioid receptor type. These 

usually involve modification by replacing the natural L-amino acids by their D-analogues 

or by D-pipecolic acid (Schnittler et al., 1990) and amidation o f their C-terminal amino 

acids (Chang et al., 1981).

1.4.2. Pharmacophysiological actions of P-Casomorphins

Since P-casomorphins appear to be highly resistant to proteolytic enzymes, it had 

been speculated that they might reach the blood circulation and the opioid receptors in 

brain intact, modulating physiological function via the opioid system (Brantl and

30



Teschemacher, 1979). However, it soon became evident that the dipeptidyl-peptidase IV 

(DP-IV), the enzyme specific for cleaving dipeptide fragments (X-Pro) from the N- 

terminus of peptides, was able to cleave the p-casomorphins (Kreil et al., 1983). 

Consequently, P-casomorphins are rapidly degraded in bovine or rat plasma with half-lives 

o f less than 10 minutes (Kreil et al., 1983). Since the same peptidase activity is present in 

the brush border o f the small intestine (see previous section), it seems unlikely that natural 

P-casomorphins are absorbed intact by the alimentary tract.

However, contrary to the common belief o f systemic unavailability owing to 

digestion, orally-ingested simple proteins are known to exert biological effects both on the 

central and peripheral nervous systems (Staub et al., 1978; Masson et al., 1979; Morley, 

1982; Kastin et al., 1984). Furthermore, incubation o f buffalo P-casein with proteolytic 

enzymes (Petrilli et al., 1984; Caporale et al., 1985) and in vivo digestion o f the milk 

protein casein in minipigs (Meisel, 1986) leads to the formation o f p-casomorphin 

precursors (i.e. p-casomorphin-11). Therefore, in spite o f their sensitivity to DP-IV, it 

could be suggested that these peptides can survive in blood and reach their putative brain 

receptors in the peptidase-resistant precursor form (i.e. procasomorphins). Alternatively, p- 

casomorphins could be available systemically through a paracellular pathway (‘leaky’ tight 

junctions) in enterocytes (see previous section).

Based on the binding affinity of P-casomorphins to opioid receptor subtypes, it 

appears they are more selective ligands of the p-type opioid agonists (Brantl et al., 1981; 

Grecksch et al., 1981; Koch et al., 1988). Opioid activity o f p-casomorphins has also been 

assessed in isolated tissue preparations like guinea-pig ileum and mouse vas deferens. The 

guinea-pig ileum has both opioid-containing neurons and receptors (Puig et al., 1977; 

Collier et al., 1981). In the electrically stimulated myenteric plexus-longitudinal muscle 

from the guinea-pig ileum, opiates bind with the p-receptors. This binding leads to a
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reduction in the ganglionic release of acetylcholine which in turn produces inhibition o f the 

muscle contractions. The potency of opiates in this preparation correlates closely with their 

analgesic potency (Kosterlitz and Waterfield, 1975). The isolated mouse vas deferens 

preparation is considered to be more sensitive for 5-type opiate agonists (Lord et al., 1977). 

The bovine P-casomorphins display greater opioid activity in the guinea-pig ileum as 

compared with mouse vas deferens (Lottspeich et al., 1980) and this p-type opioid activity 

of the P-casomorphins is well represented by many studies where they have been shown to 

elicit analgesia in rats (Brand et al., 1981; Grecksch et al., 1981; Blass and Blom, 1996).

While their mechanism of action is still not clear, considerable research effort has 

been directed to determining the physiological role o f P-casomorphins both in human and 

experimental animals. Opioid peptides are psychoactive compounds with hormonal and 

neurotransmitter activities and opioidergic systems are located in the central nervous, 

endocrine and immune systems (Schlimme and Meisel, 1995; Xu, 1998). This implies that, 

when an opioid peptide is systemically available, it can exert a range o f various 

physiological and pharmacological effects.

The role o f opioid peptides in gastrointestinal physiology (i.e. antidiarrhoeal effects) 

is well known (Daniel et al., 1984; Miller et a l ,  1984; Miller and Himing, 1989). There is 

indirect evidence that p-casomorphins may regulate gastrointestinal motility. Intragastric 

administration of casein or casein hydrolysates reduces the amplitude and frequency of 

gastrointestinal contraction in dogs (Defilippi et al., 1995) and in cattle (Kil and 

Froetschel, 1994), and slows gastric emptying and gastrointestinal transition in rats (Daniel 

et al., 1990; Brust et al., 1991). Such effects can be suppressed by pretreatment o f the 

animals with naloxone or naltrexone, |^-type opiate receptor antagonists. It has also been 

reported that gastric acid secretion is inhibited in dogs with gastric fistulas by the 

administration of P-casomorphin-5, which is also antagonised by naloxone (Smagin et al.,
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1983). However, no inhibiting activity of the p-casomorphin-5 was observed on gastrin 

secretion in the study.

A particularly interesting observation, in view of the potential nutritional 

importance o f P-casomorphins, is that the L-[3H] leucine uptake by rat jejunum in vitro 

was increased by 40 % when p-casomorphin-5 or an analogue o f P-casomorphins (Tyr-

Q
Pro-Phe-Pyrrolidide) was coincubated at a physiological concentration (10* mol / L) 

indicating that the p-casomorphins may be external signals which regulate transport 

proteins and nutrient transfer via interaction with specific receptors (Ermisch et al., 1989; 

Brust et al., 1991).

Effects o f p-casomorphins and their analogues on the secretion of pituitary, 

hypothalamic, pancreatic and gastric hormones have been reported. Plasma prolactin levels 

were increased in rats following systemic administration of bovine P-casomorphin-7 

(Nedvidkova et al., 1985). Intravenous administration o f P-casomorphins increase the 

hypothalamic content o f immunoreactive thyrotropin releasing hormone (Mitsuma et al.,

1984). Both oral and intravenous administration of p-casomorphins increases insulin 

secretion in dogs (Schusdziarra et al., 1983a; Schusdziarra et al., 1983c). In conscious 

dogs, P-casomorphin-4-amide, -5, -7 and casein peptone augmented the release of 

postprandial insulin after a liver extract-sucrose test meal. The augmented secretion was 

antagonised by oral naloxone (10 mg), suggesting the involvement o f specific opioid- 

receptor mediated mechanism(s) (Schusdziarra et al., 1983a). It was also reported by the 

same research group that intravenous administration of small doses of morphiceptin (5 

nmol / kg) elicits significant inhibition of somatostatin-like immunoreactivity 

(Schusdziarra et al., 1983b; Schick and Schusdziarra, 1985). Other hormones (i.e. CCK 

and pancreatic polypeptide) have also been found to be altered by the P-casomorphins 

(Schusdziarra et al., 1983c; Schusdziarra et al., 1984).
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There has been considerable interest in the role o f P-casomorphins in other aspects 

of pharmacophysiology in humans including food intake (Lin et al., 1998), behaviour 

(Herrera-Marschitz et al, 1985; Maklakova et al., 1993), physical dependence (Chang et 

al., 1983), respiratory frequency (Hender and Hender, 1987) and cardiovascular function 

(Wei et al., 1980) as well as neonatal immunostimulating activity (Parker et al., 1984), 

neuronal differentiation (Sakaguchi et al., 1998) and post-feeding calmness and sleep in 

infants (Stumer and Chang, 1988).

1.5. HORMONAL REGULATION OF NUTRIENT USE

Absorbed nutrients are partitioned differently among metabolic organs and tissues 

to accommodate successful execution o f the dominant productive function according to 

physiological states (i.e. growth, pregnancy and lactation). Lactating animals, in particular, 

face tremendous tasks, especially in the early stage, to maximise available substrate to the 

mammary tissues in order to meet the requirement for milk synthesis. The partitioning of 

nutrients can be manipulated through altering the homeostatic and homeorhetic control of 

metabolism (both anabolic and catabolic) by hormones such as GH, insulin and glucagon 

(Bauman and Currie, 1980). This regulation of metabolism by the hormones occurs mainly 

by altering the kinetics o f biochemical reactions, and by influencing substrate availability.

1.5.1. Nutrient partitioning by metabolic hormones in lactation

1.5.1.1. Insulin

There can be no doubt that insulin, secreted by the p-cells of the islets of 

Langerhans in the pancreas, is at the centre of metabolic regulation in ruminants as in other 

mammalian species (Bassett, 1975). However, it is important to remember that ruminant
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animals on a normal diet absorb little dietary carbohydrate as glucose owing to the 

extensive microbial fermentation in the rumen (see previous section). Consequently 

glucose needs must be met by gluconeogenesis from other sources (i.e. propionate, lactate 

and amino acids) and acetate is the major precursor for de novo fatty acid synthesis 

(Brockman and Laarveld, 1986).

Insulinotrophic agents in ruminants also differ from those of nonruminants. It has 

long been known that VFAs, particularly propionate, are potent stimulants for secretion of 

insulin in the ruminant as well as glucose and amino acids. Increasing nominal propionate 

infusion caused a linear increase in the net portal release o f insulin in lambs (Gross et al.,

1990). However, intramesenteric infusions of propionate and glucose increased arterial and 

portal concentrations of insulin in non-lactating cows but not in lactating cows indicating 

the existence of interactions between pancreatic endocrine secretion and physiological state 

(Lomax et al., 1979). Amino acids may also play an important role in postprandial insulin 

secretion in the ruminant as suggested by studies on sheep (Hertelendly et al., 1970; 

Kuhara et al., 1991). Interestingly, a recent paper by Lemosquet et al. (1997) reported a 

synergistic effect between glucose and amino acids on plasma insulin in lactating dairy 

cows when isocaloric amounts of amino acids or glucose alone or amino acids and glucose 

mixture were infused intravenously. Amino acid infusion induced lower and less prolonged 

plasma insulin release than glucose on an isocaloric basis.

Insulin has a multiplicity of effects in the nonruminant: it acts on a variety of tissues 

including muscle, adipose, liver and mammary gland, stimulating the uptake and utilisation 

of glucose by the peripheral tissues and inhibiting gluconeogenesis and glucose release 

from the liver as well as stimulating the uptake and incorporation of amino acids into 

protein. It has similar effects in ruminants. In vitro studies have reported that uptake of 

glucose by muscle (Jarrett et al., 1974; Hay et al., 1984) and adipose tissue (Vernon et al.,

1985) o f sheep was facilitated by insulin although the responses were generally smaller
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than those in rats and mice (see Brockman and Laarveld, 1986). Insulin, at low 

concentrations, reduced the hepatic removal of lactate, glutamine and glycerol, and also 

reduced the hepatic extractions of pyruvate and alanine at higher concentrations in sheep 

(Brockman, 1985).

The mammary gland, on the other hand, is regarded as insensitive to insulin in the 

ruminant. According to Laarveld et al. (1981), the removal o f glucose by the bovine 

mammary gland is unchanged by insulin. Furthermore, insulin infusion at physiological 

level in conjunction with glucose, KCl-NaCl and amino acids failed to alter mammary 

uptake of glucose and essential amino acids in dairy goats (Tesseraud et al., 1992). 

However, the AV difference across the mammary gland o f lactating ewes for glucose was 

decreased progressively when insulin was increased suggesting that insulin may in fact 

affect mammary uptake o f glucose (Leenanuruksa and McDowell, 1988).

The lack of responsiveness o f tissues o f ruminants to insulin may be linked to the 

pattern of feeding and digestion in the rumen which both minimise surges o f nutrients, 

especially glucose, entering the portal vein thus decreasing the need for insulin to act 

rapidly to move nutrients into storage (e.g. glycogen and fat) although, in some 

circumstances where high concentrate diets are fed in high producing dairy cows, surges of 

propionate entering the portal vein can occur which result in increases in circulating insulin 

concentrations (Sutton et al., 1988).

During early lactation serum insulin concentration falls in most species including 

cattle and sheep, then as lactation progresses and milk yields fall, serum insulin recovers 

(Cowie et al., 1980). This fall in serum insulin has been attributed to the negative energy 

balance, which normally prevails at this stage. Figure 1-4 shows the typical energy input 

and output status of high producing dairy cows throughout lactation. Furthermore, the 

insulin responsiveness o f mammary tissue is known to be low compared with other tissues 

in lactating ruminants (Brockman and Laarveld, 1986). Thus, higher insulin concentration
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Figure 1-4. Trends in milk production, dry matter intake, body weight change and energy 

balance o f dairy cows during lactation (After National Research Council, 1989).

37



could result in incorporation o f available nutrients into non-mammary tissues, so reducing 

substrate availability for milk production. This selectivity o f insulin action on different 

tissues and its lower concentration in lactating ruminants has led to speculation that insulin 

might have an adverse effect on milk production. Indeed, a comparison of circulating 

insulin in high- and low-yielding cattle revealed that during lactation the hormone 

circulated at significantly higher levels in the low-yielding cows (Hart et al., 1978). This 

result is consistent with the finding that plasma insulin and milk yield are negatively 

correlated (Koprowski and Tucker, 1973).

It has long been hypothesised that insulin is responsible for Tow-fat milk syndrome’ 

which occurs in cows consuming a high concentrate, low forage diet since insulin has a 

stimulatory effect on rates of lipogenesis and an inhibitory effect on rates o f lipolysis in 

adipose tissue (Bauman and Elliot, 1983) but not in mammary tissue. This so called 

‘glucogenic-insulin theory’ proposes that increased insulin release, resulting from feeding 

a high concentrate diet, preferentially channels nutrients to adipose tissue, leading to a 

shortage of nutrients at the mammary gland, thus causing milk fat depression (Jenny et al., 

1974; Brockman and Laarveld, 1986). In a study on the effects o f feeding frequency in 

lactating cows, Sutton et al. (1988) found that more frequent feeding reduces the mean 

daily concentration of insulin and the depression in milk-fat concentration caused by 

feeding the low-roughage diets. They concluded that milk-fat depression on low-roughage 

diets with twice-daily feeding was due to a change in rumen VFA proportions 

accompanied by elevated plasma insulin concentrations.

However, insulin infusion studies have yielded no support for the role for insulin in 

milk fat depression (Schmidt, 1966; Thomas et al., 1987). Furthermore, recent studies 

revealed that the mammary gland maintained a constant rate o f milk fat synthesis despite 

the substantial challenges imposed by hyperinsulinemia (McGuire et al, 1995; Griinari et 

al., 1997a). It was proposed that the changes in body fat accretion and adipose tissue
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metabolism in lactating ruminants are consequences o f a more positive energy balance 

caused by the reduced output o f milk fat and the higher net energy intake typically 

associated with high concentrate diets (Griinari et al., 1997a). However, underlying 

mechanisms of the milk fat depression are still not clear.

Recently, studies with the hyperinsulinemic-euglycemic clamp approach (McGuire 

et al., 1995; Griinari et al., 1997b) have reported that both milk protein content and yield 

of cows with a 4-day clamp were significantly increased suggesting a potential stimulatory 

role of insulin on milk protein synthesis in dairy cows although the interpretation of the 

results is still open to debate since it is confounded by differences between treatments in 

ME supply.

I.5.I.2. Glucagon

As in other species, glucagon, a 29 amino acid polypeptide secreted by a-cells of 

the islets o f Langerhans, is a potent hyperglycaemic hormone in ruminants. Glucagon 

dominates the regulation of hepatic metabolism while insulin may dominate the regulation 

of metabolism by peripheral tissues. Glucagon is also known to antagonise some actions of 

insulin and the serum insulin:glucagon ratio is thought to be important in the control of 

liver metabolism (Basset, 1975).

The major action of glucagon is acceleration o f both hepatic glycogenolysis and 

gluconeogenesis resulting in stimulation of hepatic glucose output. A study with multi- 

cannulated, fed sheep (Brockman and Bergman, 1975) has shown that the net hepatic 

uptake of alanine and glutamine, and the conversion o f alanine to glucose were increased 

by portal infusion of glucagon. It was also shown that arterial plasma concentrations of 

alanine and glutamine were decreased by 25 % during glucagon administration, 

presumably as a result o f their increased hepatic uptakes. In a consecutive study by the 

same research group, glucagon directly stimulated the hepatic uptake of amino acids (i.e.
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alanine, glycine, glutamine, arginine, asparagine, threonine, serine) and lactate in fed sheep 

(Brockman et al., 1975). However, an in vitro study with an ovine liver perfusion 

technique found that glucagon caused a 76 % decrease of [14C] threonine utilisation by 

ovine livers, and 14CC>2 production from [14C] threonine was only 38 % o f control when 

glucagon was infused suggesting that glucagon may mediate amino acid sparing by 

ruminant liver (Gill eta/., 1985).

The effect of glucagon on propionate utilisation in gluconeogenesis in the ruminant 

has also been studied both in vivo and in vitro. Glucagon administration did not alter 

glucose production from [2-14C] propionate in sheep in vivo (Brockman and Greer, 1980) 

whereas glucagon stimulated glucose synthesis from propionate in the perfused ovine liver 

(Gill et al., 1985). The stimulatory effect of glucagon on gluconeogenesis in ruminant lamb 

hepatocytes was smaller for propionate that for lactate or alanine (Savan et al., 1986). 

Although it is difficult to reach a firm conclusion from the very limited information, 

glucagon seems to play an important role in maintaining glucose output when amino acids 

are the major glucose precursors, but has quantitatively less, if any, regulatory role in 

gluconeogenesis from propionate in ruminants judging by the concentrations required to 

stimulate glucose production from propionate in the in vitro studies.

It was proposed that glucagon may play an important role in supplying milk 

precursors to the mammary gland and may thus influence milk production (Brockman, 

1978). Indeed, higher milk production throughout lactation was associated with higher 

glucagon concentration in lactating dairy cows, although glucagon concentrations were 

similar throughout lactation (Herbein et al., 1985; Sartin et al., 1985). Interestingly, studies 

with positive milk production responses to casein infused post-ruminally in lactating dairy 

cows have also reported increased glucagon concentrations in blood suggesting possible 

involvement of glucagon in milk production in response to protein supplementation 

(Cohick et al., 1986; Choung and Chamberlain, 1995a).
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1.5.1.3. Growth hormone, IGF-I and the somatostatin axis

Growth hormone (GH), a single polypeptide chain hormone o f about 200 amino 

acid residues with two disulphide bridges, is produced in the anterior pituitary and 

comprises up to 10 % o f the weight o f a dried pituitary, far in excess o f any other hormone 

present (Lewis, 1992). Its release in ruminants, as in most mammals, is pulsatile and occurs 

episodically. There are wide variations in hormonal release patterns between individuals in 

ruminants as in non-ruminant animals and they are probably determined, in part, 

genetically (Wallis et al., 1985).

Feeding causes a marked decrease in plasma concentration o f GH and the 

concentration increases while the animal is deprived of food (figure 1-5). In sheep, GH 

concentrations were found to be negatively correlated with the digestible organic matter 

intake (Bassett et al., 1971). It appears that the effects of feed intake are related to energy 

balance o f the animal rather than to feed intake per se. Indeed, marked changes in plasma 

concentrations o f GH throughout the lactation cycle have been observed in sheep (Vernon 

et al., 1981) and dairy cows (Hart et al., 1978).

Growth hormone acts directly on target tissues when receptors are present. The 

adipocyte and the hepatocyte are well established as major direct targets o f the hormone. 

However many of its actions are indirect and are mediated via insulin-like growth factors, 

IGF-I and IGF-II, which are released mainly by the liver and possibly by most body 

tissues. IGF-I and IGF-II are key members of the somatomedins, a group of related 

polypeptide hormones involved in promotion of cell proliferation and / or DNA synthesis, 

and stimulation o f both protein synthesis and glucose uptake and metabolism (Hall and 

Sara, 1983). In all species studied, IGF-I is the predominant somatomedin after birth while 

IGF-II apparently dominates before birth (Butler and Gluckman, 1986). Effects o f GH on
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mammary tissues are thought to be indirect since mammary epithelial cells lack GH 

receptors.

Commercial interest in the use o f recombinant bST (bovine somatotrophin), 

exogenous growth hormone, to improve efficiency o f animal production has led to 

extensive research efforts in this area for the past two decades and there are a number of 

reviews available on its effects on the metabolism o f producing animals (Johnsson and 

Hart, 1986; Peel and Bauman, 1987; Bauman and Vernon, 1993). Briefly, when bST is 

administered milk yields can be increased substantially and significantly and, in general, 

increases of between 10 and 15 % are commonly obtained in ruminants (Bines and Hart, 

1982). It also causes increased hepatic gluconeogenesis in dairy cows in vivo (Cohick et 

al., 1989) and in vitro (Pocius and Herbein, 1986; Knapp et al., 1992) possibly via a 

decreased ability o f insulin to inhibit gluconeogenesis (Boisclair et al., 1989). Glucose 

clearance after an intravenous insulin challenge is also decreased in bST-treated ruminants 

representing changes in hepatic and / or peripheral tissue metabolism (Hart et al., 1984; 

Sechen et al., 1990).

Therefore the galactopoietic actions of GH are both direct and indirect and indirect 

actions are apparently mediated by the IGF-I system. Administration o f somatotrophin to 

dairy cows increases the plasma levels of IGF-I (Vicini et al., 1991) and intra-arterial 

infusion of IGF-I into the mammary gland o f the goat increases milk secretion and 

mammary blood flow (Prosser et al., 1990) although it has also been reported that a three- 

day jugular infusion of IGF-I had no effect on milk yield (Davis et al., 1989). The 

differences in response to IGF-I in vivo could arise from problems relating to IGF-binding 

proteins (see below). The high concentrations of GH during lactation observed in many 

studies (Hart et al., 1978; Tindal et al., 1978; Falconer et al., 1979; Vicini et al., 1991) are 

in line with the galactopoietic actions of GH. However, plasma levels of IGF-I decrease in 

early lactation. A study of IGF-I concentrations in cows throughout pregnancy and
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lactation (Kerr et al., 1991) found that the concentrations dropped by 50 to 100 % at the 

start o f lactation. Similar findings were made in goats (Nielsen et al., 1990). Furthermore, 

IGF-I is a growth factor stimulating anabolic processes in muscle and other body tissues 

and thus might be expected to have a negative effect on nutrient and energy availability to 

mammary tissues, raising the question of how GH through IGF-I can stimulate milk 

formation in the mammary gland.

Since their discovery in 1988, research focus has been directed toward IGF-binding 

proteins (IGFBPs) in relation to the actions of IGFs. IGFBPs are a family o f six secreted 

proteins that bind to IGF-I and -II with high specificity. IGF-I circulates in plasma bound 

to different IGFBPs and the affinity constants of the IGFBPs are between two- and fifty­

fold greater than the IGF-I receptors, hence effectively controlling the distribution of the 

IGF-I (Jones and Clemmons, 1995). The best known IGFBPs are IGFBP 1, 2 and 3, and 

IGFBP 1 and 2 are found in the 40 to 50 kDa molecular complex whereas the 150 kDa 

complex contains IGFBP 3.

In plasma o f sheep, only 8 to 10 % of the total IGF-I in the plasma was found in the 

free form, 30 to 50 % was in the 40 to 50 kDa complex and 40 to 65 % in the 150 kDa 

complex (Hodgkinson et al., 1991). It was also found in the same study that treatment with 

GH increased IGF-I level in both high and low nutritional status in sheep (although the 

effect was greater in the group with high nutritional status) and increased levels o f IGF-I 

were associated with increased proportions o f total IGF-I in IGFBP 3 bound form. In vivo 

studies with lactating cows (Vicini et al., 1991; Cohick et al., 1992) found that bST 

treatment resulted in not only an increase in IGF-I level but also a threefold elevation of 

circulating IGFBP-3 and a decrease in circulating concentrations o f IGFBP 2.

The functions o f IGFBPs are not well established yet. It is however apparent that 

IGFBPs act not only as carrier proteins, but also as modulators o f IGF actions by 

participating in IGF ligand-receptor interactions through influences on both the
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bioavailability and distribution of IGFs in the extracellular environment (Nielsen and Riis,

1993). Further knowledge of the role of IGFBPs and the significance o f changes in their 

pattern o f distribution (e.g. proportion of bound IGFs to each IGFBP to total IGFs) in 

relation to rate o f milk formation and metabolic status in non-mammary body tissues may 

give answers to the question of how galactopoietic actions o f GH through IGF-I occur.

The hypothalamus produces two neurohormones affecting GH secretion. They are 

growth hormone-releasing hormone (GHRH) and somatostatin. GHRH is a peptide of 

about 44 amino acid residues which specifically stimulates the secretion of GH by 

increasing cAMP production (Kelly, 1990). Lactating rats immunised with antiserum 

raised against GHRH had no increase in GH concentrations in plasma whereas other 

lactating rats with normal rabbit serum showed significant increases, indicating that GHRH 

is directly responsible for the increase in GH during lactation (Wehrenberg and Gaillard, 

1989). Somatostatin, originally known as SRIF (somatotrophin-release inhibiting factor), 

on the other hand specifically inhibits pituitary GH secretion (Kelly, 1990). Somatostatin 

can be secreted both locally and into the general circulation, thus exerting both paracrine 

and endocrine effects. There are two principal biologically active polypeptides present in 

plasma which originate from cleavage o f the prosomatostatin molecule. These are 

somatostatin-14 (SS-14) and somatostatin-28 (SS-28). It is believed that SS-14 is produced 

mainly in the pancreatic and gastric cells whereas SS-28 is synthesised in the proximal 

intestinal epithelial cells (Ensinck et al., 1989); the somatostatin-like immunoreactivity 

(SLI) is known to be present in virtually every tissue in the body in most organisms 

(Yamada and Chiba, 1989). The distribution of the two molecular forms o f somatostatin is 

different among tissues but its physiological significance is not clear (Chiba and Yamada,

1994). Apart from inhibition of GH release, both SS-14 and SS-28 are known to affect a 

variety o f physiological functions in simple-stomached animals including inhibition of gut 

motility and gastric emptying, and inhibition of secretion o f pancreatic hormones (i.e.
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insulin, glucagon and pancreatic polypeptide) and polypeptides (i.e. CCK, gastrin, gut 

glucagon, GIP, GLP-1, motilin, secretin and VIP) secreted by the small intestine (Patel, 

1990; Chiba and Yamada, 1994). Much less is known in ruminant animals but the position 

is thought to be similar. Indeed, exogenous administration of SS-14 significantly reduced 

the plasma concentration of GH and insulin in sheep (Rose et al., 1996). Similarly, 

intravenous SS-28 infusion in sheep also suppressed circulating concentrations of GIP and 

GLP-1 as well as serum insulin levels induced by glucose and GLP-1 (Martin and 

Faulkner, 1996) and by butyrate (Holtenius and Hydbring, 1993). The inhibitory effect by 

somatostatin is believed to occur in part via antagonising the rise in cAMP through 

interaction with G* protein (Fehmann et al., 1993). However, its physiological role in 

regulation of nutrient partitioning via controlling pancreatic and gut hormone release, 

particularly in lactation, is yet to be elucidated.

1.5.2. Gut hormones and the entero-insular axis

Traditionally, gut hormones (or gastrointestinal hormones) have been defined as 

peptides produced by endocrine cells located in the gastrointestinal mucosa, released into 

the circulation under the influence of alimentary stimuli, which are involved in the 

regulation of secretion, motility and growth in the digestive system. However, it is now 

recognised that a number o f gut peptides are also produced by neurons in the central and 

peripheral nervous system, particularly enteric neurons (Desbuquois, 1990).

There are more than a dozen gut hormones found in the gastrointestinal tract of 

humans including gastrin, secretin, cholecystokinin (CCK), glucose-dependent 

insulinotrophic polypeptide (GIP), glucagon-like peptides (GLP-1 and GLP-2), pancreatic 

polypeptide (PP), motilin, vasoactive intestinal peptide (VIP), somatostatin, neurotensin, 

bombesin, peptide YY (PYY), substance P and opioid peptides (Desbuquois, 1990;
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Creutzfeldt and Nauck, 1992; McIntosh, 1995). In ruminant animals, there is very limited 

information available although existence of the peptides and basic mechanisms are 

expected to be similar.

Many gut hormones are known to be involved in the regulation of major metabolic 

hormones especially pancreatic hormones (e.g. insulin). Indeed, the concepts of ‘incretin’ 

and ‘entero-insular axis’ originate from the observations that a component of small 

intestinal extracts augmented pancreatic endocrine responses and lowered plasma glucose 

(Moore et al., 1906; Zunz and La Barre, 1929), and that greater amounts o f glucose could 

be given orally, rather than intravenously, without causing glucosurea (Unger and 

Eisentraut, 1969; Morgan, 1992).

Two gut hormones, generally recognised as being major components o f the entero- 

insular axis with most potent insulin-stimulating activity, are GIP and GLP-1.

GIP, also known as ‘gastric inhibitory polypeptide’ since it was originally 

characterised in terms o f its gastric acid inhibitory properties, is a 42-amino acid 

polypeptide secreted by intestinal K cells principally in the duodenum and proximal small 

intestine (Solcia et al., 1974; Cleator and Gourlay, 1975). In simple-stomached animals, 

GIP is released in response to nutrient absorption. It has long been established that oral 

glucose stimulates GIP in simple-stomached animals (Cataland et al., 1974; Kuzio et al.,

1974), and the glucose-induced GIP secretion is dose-dependent (Martin et al., 1975; 

Schulz et al., 1981). Fat is a particularly potent GIP secretagogue (Brown, 1974; Falko et 

al., 1975) and GIP secretion in response to triacylglycerol ingestion is dependent upon 

fatty acid absorption. Thus, cholestyramine, which impairs micelle formation and 

decreases fat absorption, leads to reduced GIP secretion (Ebert and Creutzfeldt, 1983). 

Notably, long-chain fatty acids (C l8) seem to be more potent in inducing GIP secretion 

compared with short- and medium-chain fatty acids in simple-stomached animals (Ross 

and Shaffer, 1981; Kwasowski et al., 1985). Although the reasons for this are not clear, it
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was proposed that esterification within the enterocyte may be a prerequisite for GIP 

secretion since long-chain fatty acids are esterified before incorporation into chylomicrons 

and secretion into the general circulation, whereas short- and medium-chain fatty acids are 

transferred across the intestinal cells without esterification and enter the portal vein as free 

fatty acids (Clement, 1980; McCarthy, 1993). Intraduodenal administration o f a mixture of 

free amino acids also stimulated GIP secretion, although to a lesser degree than fat and 

carbohydrate (Thomas et al., 1976). However, protein ingestion does not elicit GIP 

secretion when given as a meat extract (Brown, 1974), fillet steak (Cleator and Gourlay,

1975), or turkey steak (Elliot et al., 1993).

Once secreted into the circulation, GIP is known to act in at least two ways in the 

regulation of nutrient utilisation, first by augmenting insulin secretion in response to 

nutrient absorption and secondly, by direct anabolic effects in adipose tissue (Brown et al, 

1989; Pederson, 1994). GIP was the first incretin in potentiating insulin secretion when 

given intravenously, but its insulinotrophic effect is dependent on glucose concentration. 

Elahi et al. (1979) reported that the glucose concentration threshold for the insulinotrophic 

effect in humans is 5.5 mM, approximately 1.4 mM above the basal level, below which 

GIP will not stimulate insulin release. Thus, fat-stimulated GIP secretion will not influence 

insulin secretion unless hyperglycaemia is achieved, for example after ingestion o f a mixed 

meal or by intravenous glucose infusion (Cleator and Gourlay, 1975; Crockett et al., 1976).

In addition to effects on the pancreas, GIP has direct actions on adipose tissue 

metabolism. Physiological concentrations of porcine GIP (0.2 to 4 ng / ml) have been 

shown to stimulate fatty acid synthesis in rat adipose tissue (Oben et al., 1991). The uptake 

and incorporation of glucose into extractable lipid in rat adipocytes were also enhanced by 

GIP although the concentrations applied were unphysiological (Hauner et al., 1988).

GIP is also present in ruminant animals having been isolated from bovine small 

intestine (Carlquist et al., 1984). It is secreted in response to feed intake in sheep
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(McCarthy et al., 1992). However, the primary stimulus for GIP secretion in ruminants 

appears to be fat rather than glucose as feeding milk but not glucose or lactose evokes GIP 

secretion in goats (Martin et al., 1993) and lambs (Martin and Faulkner, 1994), and glucose 

is not a stimulus for GIP secretion in anaesthetised goat kids (McCarthy et al., 1991).

In contrast to simple stomached animals, GIP does not appear to be insulinotrophic 

in ruminants. In sheep, intravenous GIP administration had no effect on insulin 

concentration and furthermore increases in insulin concentration when glucose was 

injected intravenously were unaffected by concurrent administration o f GIP (Martin and 

Faulkner, 1993). A similar inability of GIP to promote insulin secretion has also been 

reported in adult sheep (Faulkner, 1990). However, further confirmation would be 

necessary before concluding that GIP is not insulinotrophic in other ruminant animals.

Despite its lack of insulinotrophic effects in the ruminant, GIP does appear to act as 

an anabolic agent in adipocytes in the ruminant. A study with a microdialysis technique in 

vivo has shown that intravenous GIP infusions reduce concentrations o f glucose in the 

perfusates o f ovine adipose tissue through direct stimulation o f lipogenesis (Martin et al., 

1993). Furthermore, Haji Baba and Buttery (1991) reported a strong positive effect o f GIP 

on acetate incorporation in ovine adipose tissue in vitro.

GLP-1 is another incretin that is capable o f stimulating insulin secretion. It was 

initially characterised through its ability to cross-react with antisera raised against 

pancreatic glucagon and was originally designated as one o f glucagon-like 

immunoreactants or GLIs (see Morgan, 1992). Its precursor, proglucagon, which is 

synthesised in both the pancreas and the gut, is a 160-residue peptide that is processed 

differently in the pancreas and small intestine (Mojsov et al., 1986). GLP-1 is cleaved from 

proglucagon processed in the gut alongside GLP-2, glicentin and oxyntomodulin which is 

further cleaved to GLP-1 (7-3 6 ) amide (Morgan, 1992). It is this truncated form o f GLP-1 

that is the major circulating form following a meal in man (0rskov et al., 1987).
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Like GIP, GLP-1 is not a potent stimulant of insulin secretion at normal blood 

glucose levels and becomes stimulatory during periods o f hyperglycaemia (Goke et al., 

1991; 0rskov, 1992). It has been found that GLP-1 possesses a potency equivalent to 

(Holst et al., 1987) or greater than (Shima et al., 1988) GIP in stimulating insulin secretion 

on a molar basis from the isolated pancreas in simple-stomached animals although its 

circulating concentrations were found to be lower than those o f GIP in humans (Kreymann 

et al., 1987; Takahashi et al., 1990). In ruminant animals, GLP-1, in contrast to GIP, seems 

to be insulinotrophic. Giving intravenous GLP-1 to starved sheep increased the insulin 

response to the intravenous glucose load (Faulkner and Pollock, 1990; Martin and 

Faulkner, 1993). However, GLP-1 on the other hand did not augment insulin secretion in 

response to other known insulin secretagogues such as propionate, octanoate and arginine 

(Martin and Faulkner, 1993).

GLP-1 also seems to share with GIP the ability to stimulate de novo fatty acid 

synthesis in adipose tissue (Oben et al., 1989). However, a lack o f information together 

with the fact that the L cells which secrete GLP-1 are located at the distal region of the 

small intestine make it difficult at present to access its physiological function in lipid 

metabolism in both ruminant and non-ruminant animals.
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1.6. AIMS AND OBJECTIVES

The differences in responses of milk production to abomasal infusions o f casein, 

casein hydrolysates and corresponding mixtures of free amino acids are difficult to explain 

in terms solely o f amino acid supply. Other factors appear to be involved, one o f these 

being the possible generation of bioactive peptides during digestion. The objective of the 

work described in this thesis was to investigate the effects o f casomorphins on the 

metabolism o f the cow. Essentially, the experiments described fall into three groups.

1) At the start o f the project, it was recognised that casomorphins could exert their effects 

on the gut itself or, following entry into the bloodstream, on tissues beyond the gut. 

Evidence already pointed to effects o f casomorphins on amino acid uptake from the gut 

and this raised the possibility that absorbed casomorphins might similarly influence 

amino acid uptake by body tissues, especially the mammary gland. This possibility was 

examined first and the absence of detectable effects on the rat mammary gland in vitro 

led to the decision to focus the rest o f the work on effects at a gut level.

2) With regard to the route of administration of casomorphins to be used in the 

experiments, it was important to determine whether addition of the peptides to the diet 

could deliver them effectively to the small intestine. Hence, the stability of the 

casomorphins in the rumen was measured and a preliminary investigation made of the 

feasibility o f protecting the peptides from ruminal degradation.

3) The main part of the thesis dealt with the effects on blood levels o f hormones and 

metabolites when casein and its digestion products, including casomorphins, were 

infused direct into the abomasum of the cow.
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CHAPTER TWO 

M A TERIALS AND  M ETH O D S

Materials and methods associated with in vivo experiments and hormone and 

metabolite analysis are described here. Materials and methods specifically associated with 

the studies o f Chapter 4, 5 and 6 are described in their respective chapters.

2.1. PREPARATION OF SURGICALLY AND EXPERIMENTALLY MODIFIED 

ANIMALS

2.1.1. Rumen cannulation

The animal was fasted and denied access to water for 24 hours prior to the 

operation. Hair was removed from the area of the operation by clipping and shaving. 

Immediately prior to the operation the animal was weighed and anaesthesia was introduced 

into vertebrae of the animal by injection of local anaesthetic (Lignavet, C-Vet Veterinary 

Products, Ley land, Lancs., UK).

The operation was performed with the cow in a standing position. The area of 

operation was scrubbed with an antiseptic solution. For the insertion of the cannula, a 12 

cm incision was made with a scalpel below the transverse processes o f the lumbar 

vertebrae and 10 cm posterior to the last rib of the cow. The muscle layers o f the 

abdominal wall were separated along the direction of travel of their muscle fibres and 

retracted to expose the peritoneum, which was incised to expose the rumen wall. A pouch 

of ventral rumen wall was exteriorised and clamped completely. The rumen wall, attached 

layers and skin were stitched together paying special attention to stitching securely at the 

lower end of the incision. The exteriorised rumen was wrapped with swabs and tape. Ten 

days later, the clamp and the exteriorised rumen were removed. A bung made from cotton

52



wool, in a plastic bag, was inserted into the hole and secured with elastic bandage over the 

area. The bung was left in position for 3 days or, if  necessary, until the fistula was large 

enough to allow insertion of a rumen cannula with rolled inner flange (Bar Diamond Lane, 

Parma, Idaho, USA). The flange of the cannula was introduced into the rumen, the stem 

was exteriorised through the body wall, and the rubber stopper was inserted into the 

cannula.

2.1.2. Insertion of abomasal infusion catheter

Each animal was fitted with an infusion catheter into the abomasum at least a day 

before the start o f the experiment. A large rumen cannula allowed the positioning by hand 

of an infusion line into the abomasum, secured in position by a plastic bottle and rubber 

cuff (Derrig et al., 1974). The pH of withdrawn digesta was routinely checked twice daily 

to ensure that the catheter was positioned in the abomasum and the cannula and the 

infusion tubing were flushed with warm water every morning prior to the start o f infusion.

2.1.3. Jugular catheterisation

The site of venipuncture on the neck of the animal was sterilised with Hibitane 

solution containing 10 % (v/v) Hibitane (5 %, v/v; Zeneca Ltd., Macclesfield, Cheshire, 

UK), 75 % (v/v) ethanol and 15 % (v/v) distilled water. All catheterisation was completed 

about 18 hours before the start o f infusion and blood sampling. Intravenous catheterisation 

was performed in two ways. When an intravenous catheter was required only for 

experiments where less frequent (at least 30 minute intervals) blood sampling was required 

at the end of a period of treatments lasting at least a week, a temporary catheter was 

inserted as follows. Using a Medicut (14g; Sherwood Medical, Tullamore, Ireland) one of 

the jugular veins was punctured and a Single Lumen Polyethylene Tube (ID 1.0 x OD 1.5 

mm; Silverwater BC, N.S.W. 2128, Australia) was inserted in to the lumen of the jugular
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vein through the Medicut until approximately 20 cm lay in the vein. An adhesive bandage 

(5 cm, Treatplast; Animalcare, Dunnington, York, UK) was used to cover and secure the 

catheter. The catheter was removed at the end o f each day of blood sampling. When an 

intravenous catheter was required for experiments with shorter periods (3 to 4 days) 

involving an intravenous infusion with more frequent (15 minutes) blood sampling, the 

following method was used. One of the jugular veins was punctured with a Medicut and a 

stainless steel guide wire (Meadox Ltd., Dunstable, Beds., UK) was inserted instead of the 

polyethylene tube as described before. An indwelling polyethylene catheter (14g x 8 cm; 

Arrow International Inc., Reading, Berks., UK) was inserted into the lumen, being guided 

by the wire and the catheter clamp was connected with a tubing line (200 cm; Kimal 

Scientific Products Ltd, Uxbridge, Middlessex, UK) and attached to the skin using 

superglue. The adhesive bandage was also used to cover and secure the catheter. The 

bandage was changed and the catheter was checked and corrected when required on the 

day before a blood sampling day throughout the whole experiment. Patency o f the catheter 

was maintained by flushing it with a sterilised sodium citrate saline solution of 0.9 % (w/v) 

sodium chloride and 0.5 % (w/v) trisodium citrate every morning before the start o f blood 

sampling.

2.2. EXPERIMENTAL TECHNIQUES

2.2.1. Intravenous infusion

Only one jugular vein was catheterised for intravenous infusions and blood 

sampling to minimise stress on the cow caused by the operation and the maintenance of 

catheterisation.

A bolus injection of glucose at concentrations of 36 or 72 mg / kg BW (body 

weight) was given manually with a 50 ml syringe. The injection was completed within 1
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minute. For continuous intravenous infusions of glucose, solutions of glucose (1 or 2 mg / 

kg BW / min) were infused into the jugular vein using a 50 ml syringe and a syringe pump 

for 10 minutes at a rate of 2.5 ml / min with intervals o f 15 minutes. This allowed 5 

minutes for blood sampling through the same jugular catheter. The infusion line was 

washed by flushing it with 15 ml of the saline solution before and after each blood 

sampling. Intravenous infusion of somatostatin-28 was given by the same method as for 

the continuous glucose infusion at a rate of 52 pg / kg B W / min for 15 min.

2.2.2. Intra-abomasal infusion

A solution o f glucose in a volume of 1 litre water was infused into the abomasum 

using a single-channel peristaltic pump (Watson and Marlow 502S; Watson and Marlow 

Ltd, Falmouth, Cornwall, UK) with 1.6mm ID silicon tubing (Belmont Instruments, 

Glasgow, UK) at a rate o f 4 1 / h. A bolus infusion o f a mixture of P-casomorphins in 20 ml 

water was given using a 25 ml syringe through the infusion line with a 20 ml flush o f water 

before and after the infusion.

2.2.3. Preparation of infusates

For abomasal infusion, distilled water was used to dissolve p-casomorphins or 

glucose. Solutions o f glucose for the intravenous infusion were prepared by the gradual 

addition o f glucose to distilled water kept warm at about 60 °C with constant stirring. The 

solutions were then filtered through a cellulose-nitrate membrane filter (pore size in 0.45 

pm; Whatman Ltd., Maidstone, UK) and sterilised at 121 °C for 15 minutes.
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2.3. COLLECTION AND PREPARATION OF SAMPLES

2.3.1. Feedstuffs

Silage samples were taken from the silo once before the start o f each experiment 

and once during each experiment, and a subsample o f 1500 g was dried and ground 

through a 1 mm screen before analysis. Another subsample o f 1500 g was minced through 

a 100 mm dye (Crypto Ltd., London, UK) and stored frozen for further analysis.

All other feedstuffs were sampled at least once during each treatment period. 

Subsamples were dried in triplicate at 60 °C in a forced-draught oven for dry matter 

determination and ground through a 1 mm screen and stored for analysis.

2.3.2. Milk

Milk samples were collected from the afternoon milking on the day on which the 

experimental treatments were given and from the morning milking on the next day. 

Approximately 300 ml o f milk were collected into bottles containing 180 mg potassium 

dichromate (Thompson and Capper Ltd, Runcorn, Cheshire, UK), mixed thoroughly to 

dissolve the preservative and stored at 4 °C until analysis. Successive samples from 

individual cows were then bulked in proportion to milk yield.

2.3.3. Blood

Samples o f blood were withdrawn from a jugular vein via the intravenous catheter 

inserted prior to the start o f the infusion. Blood samples were taken into 20 ml syringes and 

transferred into 15 ml heparinised tubes which were prepared by distribution of 143 unit 

heparin /100  pi and dried at 60 °C. Samples were centrifuged at 1500 g for 15 minutes and 

the blood plasma was removed shortly after collection. Plasma was either snap frozen by 

transferring to a container containing liquid nitrogen or harvested and stored immediately
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at -20 °C prior to analysis.

2.4. ANALYTICAL METHODS

2.4.1. Dry matter and ash

Dry matter and ash contents in samples of feedstuffs were determined by standard 

methods (Agricultural Development and Advisory Service, 1981) with the exception of 

silage, which was determined by distillation o f a minced silage sample with toluene 

following the procedure of Dewar and McDonald (1961).

2.4.2. pH of silage

A representative samples o f 20 g of wet silage was taken and mixed with 20 ml of 

distilled water and the pH was read using a pH meter (Hanna instruments, Leighton 

Buzzard, Beds., UK).

2.4.3. Total nitrogen

The N content of feed samples was measured by a macro-Kjeldahl method using a 

Kjeltec Auto 1030 analyser (Foss UK Ltd., Didcot, Oxon, UK).

2.4.4. True protein and non-protein nitrogen (NPN) in silage

The true protein content of silage was determined by Kjeldahl analysis of the 

material precipitated by tannic acid (Van Roth, 1939). NPN content was calculated by 

subtracting the true protein content from the crude protein content.
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2.4.5. Ammonia nitrogen in silage

A water extract of the silage sample was prepared by placing 20 g wet minced 

silage and 200 ml distilled water in a beaker in a water bath at 40 °C for 30 minutes, 

stirring intermittently. The extract was then filtered by squeezing the silage juice through 

muslin, and was centrifuged at 1500 g for 20 minutes. Ammonia nitrogen in silage was 

determined by distillation of ammonia after addition of NaOH to the extract. Ammonia 

was collected in 0.02 M HC1 and determined by titration.

2.4.6. Lactic acid in silage

Lactic acid was determined on a water extract by the method o f Elsden and Gibson 

(1954) in which lactic acid is oxidised to acetaldehyde, which combines with sodium 

metabisulphate and is determined iodimetrically. Sugars, which may give rise to carbonyl 

compounds, and nitrogenous compounds such as protein are removed with copper sulphate 

and calcium hydroxide.

2.4.7. Total soluble sugars in silage

Total soluble sugars in silage were determined on a water extract by a method 

similar to that of Somogyi (1945). The calorimetric determination o f sugars involved the 

use of a Somogyi reagent and an arsenomolybdate reagent.

2.4.8. Ethanol in silage

Ethanol was determined by gas chromatography by the method o f Huida (1982) 

using methanol as an internal standard. Briefly, 30 ml of dry methanol were added to 5 ml 

o f silage extract and 1 pi injected on to the column of a Shimadzu GC-8A gas 

chromatograph (Shimadzu Europe Ltd., Milton Keynes, Bucks., UK) fitted with a flame 

ionisation detector. The columns were 2 m long and of 2 mm internal diameter and were
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packed with Chromosorb 101. The oven setting was 100 °C and the carrier gas (N2 ) flow 

rate was 60 ml / min.

2.4.9. Total and individual volatile fatty acids (VFA)

The VFA in the silage were determined by gas chromatography by the procedure of 

Cottyn and Boucque (1968). The apparatus used was the Shimadzu GC-8A gas 

chromatograph with a glass column packed with 5 % Carbowax 20M / TPA on 

Chromosorb G 80 / 100 mesh. The oven temperature was 100 -  120 °C and carrier gas (N2 ) 

flow rate was 60 ml / min. The molar concentration was calculated for each acid from the 

peak area on the chromatograph relative to that o f hexanoic acid. Corrections were made 

for the differences in the response of the detector to each acid using factors derived from 

the analysis of a standard VFA solution.

2.4.10. Neutral detergent fibre (NDF) and acid detergent fibre (ADF)

The NDF and ADF contents in feed were determined by the standard methods of 

Goering and Van Soest (1970).

2.4.11. Milk fat

Milk fat was determined by the Gerber method according to British Standard 696 

(1969). Fat was separated from the milk by the addition of concentrated sulphuric acid and 

measured directly using a Gerber butyrometer.

2.4.12. Milk protein

Total nitrogen in milk samples was determined by a macro-Kjeldahl method 

(Association of Official Analytical Chemists, 1975) using the Kjeltec Auto 1030 analyser. 

The N content was multiplied by 6.38 to obtain the concentration o f crude protein.
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2.4.13. Milk lactose

Milk lactose was determined using an automatic polarimeter (Thom Automation 

Ltd., Nottingham, UK) according to the method of Grimbleby (1956).

2.5. HORMONE AND METABOLITE ANALYSIS

2.5.1. Preparation of radiolabelled insulin

The iodination procedure used was based on a method first described by Fraker and 

Speck (1978), in which I25Iodine was incorporated into protein using the Iodogen™ 

reagent (Pierce Europe BV, Oud-Beijerland, Netherlands). Microtubes were coated with 30 

pi of Iodogen reagent (50 pg/ml in chloroform) evaporated to dryness at room temperature 

and stored at -20 °C. The iodination was performed by adding 500 pCi (5 pi) I-sodium 

iodide (IMS. 30, Amersham International, Amersham, Bucks., UK) to a 5 pg (5 pi) aliquot 

o f insulin in an Iodogen-coated microtube with 10 pi phosphate buffer (0.4 M, pH 7.4). 

After incubating for 20 minutes, the reaction products were diluted with 100 pi of 

phosphate buffer and transferred to a column ( 1 x 1 5  cm; Biorad, Hemel Hempstead, UK) 

o f sephadex G10 (Sigma Ltd.) which had previously been equilibrated with RIA buffer. To 

stop the reaction, the empty tube was washed with 200 pi of potassium iodide (2 %, w/v) 

which was then added to the column. RIA buffer was added carefully into the top of the 

column and fractions were collected every 2 to 4 minutes, and the radioactivity o f each 

fraction was counted using a Geiger counter (Mini-instruments Ltd., Bumham-on-Crouch, 

Essex, UK) at a distance of 40 cm. Iodinated insulin eluted in the first peak and free iodine 

in the second peak (figure 2-1). The fractions with the highest level of radioactivity were

• m e
combined and stored at -20 °C with 100 pi aliquots. Incorporation o f I into the hormone 

was determined by counting a small aliquot before and after precipitation of the protein
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Figure 2-1. Separation of iodinated insulin from unbound iodine on a sephadex G10 

column. I-Insulin was eluted in the first peak and free iodine in the second peak. 

Fractions 3 to 5, containing precipitable I-insulin, were combined and used as radiolabel 

in the insulin radioimmunoassay.
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with 10 % (w/v) TCA. The specific activity o f 125I-insulin was calculated using equation 2-

3:

C  ^  (B + D) A 500Specific activity (pCi / pg) = —   — x -------x ------ (2-3)
(B + D + E ) 1500 C

where A is 125I added to insulin (cps at 60 cm; where 500 pCi = 1550 cps), B  is residual 125I 

not transferred to the column (cps at 60 cm; assumed to be I-insulin), C is the amount of 

insulin iodinated (pg), D  is I present in insulin peak, E  is I present in iodine peak.

2.5.2. Insulin RIA (radioimmunoassay)

Reagent

RIA buffer:

0.05 M Na2P 0 4*H20 , pH 7.4 

0.15 M NaCl

0.02 % (w/v) sodium azide

0.5 % (w/v) BSA (bovine serum albumin)

Insulin standard:

Natural porcine insulin (Sigma Ltd.) was dissolved in 10 mM HC1 then diluted in 

RIA buffer, batched in 10 pi aliquots (10 pg / ml) in eppendorf tubes and stored at 

-20 °C.

First antibody:

Antiserum to bovine insulin was donated by SAPU (Scottish Antibody Production 

Unit, Glasgow, UK). Final dilution of 1:40,000 was used in the assay.

Second antibody:

140 mg EDTA (ethylene diaminetetra-acetic acid) in 15 ml RIA buffer (adjusted to
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pH 7.4 after adding EDTA), then 5 pi normal guinea pig serum and 125 pi anti­

guinea pig precipitating serum (SAPU) and 15 ml of 16 % (w/v) PEG (polyethylene 

glycol).

Assay procedure

The insulin assay was based on the method described by Vernon et al. (1981). 

Insulin standards ranged from 0.05 to 10 ng / ml. A volume o f 100 pi was taken, in 

duplicate, for standards and samples and 100 pi of first antibody was added to this to give a 

final antiserum dilution of 1:40,000. After incubation at room temperature for 6 hours,

i^f #
I-insulin was added to all tubes (100 pi; 10,000 cpm). Tubes were incubated overnight 

(for at least 8 hours) before the addition of second antibody (300 pi). Tubes were incubated 

for a further 2 hours at room temperature, then centrifuged at 2,000 g for 30 minutes and

t ' y c

the supernatant decanted. The protein precipitate, containing antibody-bound I-insulin, 

was counted on a gamma counter (Cobra Auto-gamma, Packard, Pangboume, Berks., UK). 

The concentration of insulin in the samples was determined by interpolation from a 

standard curve.

2.5.3. Glucagon RIA

Glucagon RIA was carried out using a Double Antibody Glucagon Kit (KGND1; 

Diagnostic Products Corporation, Los Angeles, CA 90045-5597, USA) and the procedure 

was the same as insulin RIA except 24 hours incubations at 2 to 8 °C after both first and 

second antibody additions.

2.5.4. GH RIA

Antiserum to ovine GH (AFP-COl23080, donated by NIH, National Institutes of 

Health) was used with a dilution of 1:20,000, and the standard curve (0.31-40 ng / ml) was
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prepared from ovine GH (AFP-9220A). The procedure described for insulin was followed 

except that the addition of the tracer (20,000 cpm; 125I-bST) was delayed 24 hours after the 

addition of the first antibody to standard curve and sample tubes.

2.5.5. GIP RIA

The GIP assay was based on the method described by Morgan et al. (1978). GIP 

standard ranged from 0.125 to 4 ng / ml and the RIA buffer used was 0.1 M phosphate, 

0.05 M NaCl, 0.01 % sodium azide, 0.1 % triton and 0.1 % BSA. Natural porcine GIP and 

first antibody (rabbit anti-porcine GIP antiserum) were purchased from Guildhay Antisera 

Ltd. (Guildford, Surrey, UK). The rest of the reagents and chemicals were as used in the 

assay of insulin. The procedure itself was also as described for insulin RIA except that the 

volume o f first antibody, tracer and second antibody were 50, 50 and 200 pi respectively.

2.5.6. GLP-1 RIA

GLP-1 was determined by RIA using an antibody raised in rabbits (Peninsula 

Laboratories Inc., St Helens, Merseyside, UK). 125I-GLP-1 was prepared by coupling GLP-

1251 to Na I (ICN, Thame, Oxon, UK) using iodogen. The assay was performed in 0.1 M 

phosphate buffer pH 7.4 containing 0.05 M NaCl, 0.01 % sodium azide and 0.5 % BSA by 

the same procedure as used for GIP RIA.

The antibody reacts specifically with the C-terminal end of the peptide and both (7- 

36) amide and (1-36) amide forms of the peptide are recognised. Similarly, the antibody 

will probably recognise the (9-36) amide which is produced in plasma as a result of 

dipeptidase activity (Mentlein et al., 1993; Deacon, et al., 1995).

2.5.7. IGF-1 RIA

The method described by Flint and Gardner (1989) was used for the determination
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of IGF-I concentration in the plasma after the samples were extracted with acid-ethanol, to 

separate the IGF-I from its binding proteins. The extraction was done by adding 4 volumes 

of the extraction medium (2M HC1 and ethanol 1:7, v/v) to 1 volume o f the samples and 

the standard tubes and incubating for 30 minutes at room temperature. The tubes were 

centrifuged at 3000 g for 10 minutes; after that, a specific amount o f supernatant was 

removed and an equal amount of neutralising buffer (4%, w/v, TRIS : RIA buffer) was 

added and then the samples were further diluted with RIA buffer. Recombinant human 

IGF-I (Bachem, Saffron Walden, Essex, UK) was used to construct the standard curve (10 

-  2500 ng / ml). The first antibody, polyclonal rabbit anti-rhIGF-I (a gift from NIDDK, 

Bethesda, Maryland, USA), at a dilution of 1:2000 was added to standards and sample 

tubes and incubated for 24 hours before adding 125I-IGF-I (approximately 20,000 cpm per 

tube) and then incubated overnight at room temperature. The second antibody (RIA buffer 

/ 16 % PEG with equal volume and 6 % (v/v) anti-rabbit IgG precipitating serum and 0.4 

% (v/v) normal rabbit serum, both from SAPU) was added to the tubes and further 

incubated for 2 to 4 hours before centrifugation at 3,000 g for 30 minutes at room 

temperature. The pellet was counted and IGF-I concentration was determined as described 

for insulin.

2.5.8. Plasma glucose assay

Plasma glucose concentrations were determined using a method described by 

Bergmeyer and Bemt (1974). Glucose was oxidised by the enzyme glucose oxidase to give 

hydrogen peroxide and glucuronic acid. The hydrogen peroxide then reacted with O- 

dianiside to yield a coloured product. The final colour intensity was proportional to the 

glucose concentration.

65



Reagent

Combined Enzyme-Colour Reagent RIA buffer:

0.5 M, Sodium phosphate buffer, pH 7.0; 10 ml 

1 % (w/v, in 95 % ethanol) O-dianisidine; 50 pi 

Peroxidase, 40 units / ml 

Glucose oxidase, 30 units / ml 

Glucose standard, 1 mM

Procedure

The analysis was performed using a Titerteck analyser and 96-well plates. To the 7 

wells nominated as standards was added 0, 5, 10, 15, 20, 25, and 30 pi glucose standard (1 

mM). The plasma sample (5 pi) was added to the remaining wells. Combined Enzyme- 

Colour Reagent Solution (250 pi) was added to all wells and mixed thoroughly. After an 

incubation period of 30 minutes at 37 °C, the absorbance was read at 450 nm, using the 

well with no glucose or sample as a blank. The glucose concentration in the sample was 

determined by interpolation from the standard curve.
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CHAPTER THREE

EFFECT OF p-CASOMORPHINS ON AMINO ACID UPTAKE BYLACTATING RAT

MAMMARY GLAND

3.1. INTRODUCTION

P-casomorphins have been found to be released during the course o f digestion in 

vivo (Meisel et a l ,  1989). They are proline-rich peptides with high resistance to hydrolysis 

by pancreatic proteases (Brantl and Teschemacher, 1979). This could increase the 

concentration o f the peptides at sites of absorption in the intestine. Although their intact 

absorption via the active PEPT-1 transport system is highly unlikely, their accumulation at 

the sites of absorption together with an available route o f absorption (i.e. paracellular 

pathways) could lead to systemic availability of the peptides.

One of the reported actions o f p-casomorphin is a stimulation of amino acid uptake 

in the small intestine (Ermisch et a l,  1989). Since amino acid transport systems present at 

the enterocytes of the small intestine and the mammary gland are similar, it is possible that 

systemically available P-casomorphins might also directly stimulate amino acid uptake by 

the mammary gland.

The main objective of the present work was to determine the effect o f P- 

casomorphins on the uptake o f amino acids by the mammary gland. In vitro experiments 

were conducted, using mammary tissue explants taken from lactating rats during peak 

lactation. Four amino acids, L-glutamate, L-histidine, L-leucine and L-lysine, were 

selected as representative of amino acids using different transport systems. Preliminary 

experiments were also carried out to determine both the feasibility o f the technique and the 

optimum experimental conditions for the main experiments.
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3.2. MATERIALS AND METHODS

Amino acid uptake by isolated mammary tissue explants was measured according to 

the method o f Shennan (1989), modified from Pocius and Baumrucker (1980).

3.2.1. Animals

Primiparous females of the Wistar strain (A. Tuck and Son, Rayleigh, Essex, UK) 

were fed ad libitum on standard rat chow (CRM Irradiated Diet, Labsure, Cambridge, UK) 

and allowed free access to water. They were housed at a constant temperature o f 17 °C and 

under 12 hour light/dark cycles. Animals were housed in groups o f up to three individuals 

on wood shavings from mating and then singly prior to parturition. At parturition, animals 

were given shredded paper as nesting material and the pup numbers were adjusted to 10 

per mother, where possible. Experiments were conducted on females at 9 to 15 days of 

lactation unless stated otherwise.

3.2.2. Chemicals and radiochemicals

A scintillation cocktail, UltimaGold, was obtained from Packard Instrument B. V. 

(Pangboume, Berks., UK). Bovine serum albumin was fraction V obtained from Sigma 

Ltd. (Poole, Dorset, UK). All radio-labelled compounds were obtained from Amersham 

International pic (Little Chalfont, Bucks., UK). All other chemicals used in the amino acid 

uptake experiment were obtained from Sigma Ltd.

3.2.3. Acquisition of mammary tissue

The rats were lightly anaesthetised with ether and killed by cervical dislocation. The 

abdominal mammary glands were removed immediately and placed in an oxygenated/ice 

cold buffer containing 135 mM NaCl, 5 mM KC1, 2 mM CaCh, 1 mM MgSC>4 , 10 mM
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glucose, 10 mM Tris-MOPS pH 7.4, 1 mM aminooxyacetic acid and 5 pM of amino acid 

(glutamic acid, histidine, leucine and lysine). The tissue was gassed with 100 % O2 for 5 to 

10 minutes to remove labile blood and milk from the tissue.

3.2.4. Explant preparation

The mammary tissue was removed from the incubation buffer and as much excess 

connective tissue as possible was removed from the surface o f the gland. The mammary 

tissue was cut into fine strips o f less than 1 mm in diameter. These strips were then finely 

dissected to produce explants, each weighing between 1 and 5 mg. The explants were 

returned to buffer on ice and gassed for at least 5 minutes for further removal o f milk from 

the explants. This point in the experimental protocol was reached not more than one and a 

half hours after harvesting of the mammary tissue.

The mammary explants were then harvested from the buffer by filtration through a 

plastic sieve and washed with 4 ml ice cold buffer. Portions (up to 50 mg of explants per 

vial) of explants were then transferred to 20 ml scintillation vials containing 4 ml of the 

experimental buffer and incubated for a further 2 minutes at 37 °C prior to the addition of 

radiolabelled amino acids. Explants were gassed with O2  at frequent intervals during the 

incubations.

3.2.5. Determination of extracellular space and tissue dry matter in mammary 

explants

The extracellular space in explants was determined in parallel experiments to the 

determination of amino acid uptake. It has previously been established that sucrose is a 

good extracellular marker in mammary tissue (Linzell and Peaker, 1971). Thus,

[ H]sucrose was used as the extracellular marker. The accumulation of radiolabel by 

mammary tissue explants was determined as for amino acid uptake (see section 3.2.6). The
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sucrose space, and hence the extracellular space, was determined from the proportion o f 

radioactivity per g o f tissue compared with the radioactivity per ml of incubation medium 

according to equation 3.1:

F  = DPM sucroset / DPM sucrosem (3.1)

where F  is the proportion o f the wet mass of mammary tissue that was accessible to 

radiolabelled sucrose, and hence the extracellular space, DPM (Disintegrations Per Minute) 

sucroset is the radioactivity associated with the mammary tissue in DPM / mg tissue and 

DPM sucrosem is the radioactivity associated with the incubation medium in DPM / pi 

incubation medium.

3.2.6. Determination of amino acid uptake by mammary explants

Uptake o f amino acid was determined using L-[3H]-amino acids as tracers (0.25 - 

0.5 pCi / ml). Mammary explants were incubated with one o f these tracers for 2 minutes at 

37 °C, after which time the tissue was removed from the incubation vial to a plastic sieve. 

The explants were then washed with 4 ml of ice cold buffer (same composition as in 

section 3.2.2), removed from the sieve and lightly blotted on filter paper (Whatman’s 

N o.l). The explants were transferred to pre-weighed vials that were re-weighed to 

determine the weight o f tissue. Following this, 4 ml of a 10 % trichloroacetic acid (TCA) 

solution was added to each tube which was then left to stand for at least 16 hours at room 

temperature to allow the radio-isotope contained in the tissue to leach out. The tubes were 

then centrifuged at 13,000 g for 2 minutes and 1 ml of the resulting supernatant added to 

10 ml o f UltimaGold scintillation fluid. Radioactivity was counted using a scintillation 

counter (Tri-Carb 2250CA Liquid Scintillation Analyser; Canberra Packard, Pangboume, 

Berks., UK). The specific activity (DPM / nmole) of the radioisotopes in the incubation 

medium was determined by counting the radioactivity in 100 pi aliquots o f each incubation
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medium. The specific activity was used to calculate the concentrations of amino acids 

within mammary tissue according to equation 3.2:

[amino acid]c = ([amino acid]r [amino acid]mF)/(l-F ) (3.2)

where [amino acid]c is the cellular concentration of amino acid in nmol / g cells, [amino 

acid]t is the total tissue concentration of amino acid in nmol / g of tissue wet weight, 

[amino acid]m is the concentration of amino acid in the incubation medium in nmol / ml, F  

is the sucrose space expressed as a proportion of the tissue wet weight determined over the 

same timed period as the corresponding uptake.

3.2.7. Experimental procedures

Lactating rat mammary tissue explants were prepared as described previously and 

incubated at 37 °C for 20 minutes in an oxygenated buffer (see section 3.2.3 for the 

composition) containing 5 pM of one of the amino acids, L-glutamate, L-histidine, L- 

leucine and L-lysine prior to the addition of the L-[ H]-amino acids. Following this, at 

predetermined times, mammary tissue fragments were removed from the buffer, washed 

and the tissue weight was determined. Amino acid uptake was measured as described 

previously and expressed as nmoles / g of tissue.

For the preliminary experiments, the time course o f L-leucine and the sodium 

dependence o f L-glutamate and L-histidine uptake by lactating rat mammary tissue 

explants were measured to allow comparison with corresponding data in the literature. The 

effects of addition of L-leucine, BCH, L-glutamine, L-histidine and L-lysine, each at a 

concentration o f 20 mM, on the uptake of L-histidine were also examined to determine the 

feasibility of the technique.

For the experiments designed to determine the effect o f p-casomorphins, one of 

three p-casomorphins (P-casomorphin-4-amide, P-casomorphin-5 and P-casomorphin-7) 

was added to the buffer at a concentration of 100 nM.
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3.2.8. Statistical analysis

Statistical analysis was performed on the data using Genstat 5 (Payne et al., 1993) 

and differences between treatments were determined by ANOVA and were considered 

significant when P < 0.05.

3.3. RESULTS

3.3.1. Characteristics of the amino acid uptake

Previous work has shown that L-glutamate and L-lysine uptake by rat mammary 

explants is linear for at least 2 minutes (Shennan et al., 1994; Millar et al., 1996). 

Therefore, in the present experiments the uptake o f each amino acid after 2 minutes of 

incubation was used as an initial rate o f influx. However, there are no data concerning the 

time-course o f L-leucine and L-histidine uptake by rat mammary tissue and, in view of 

this, experiments were conducted to investigate the time dependence o f L-leucine and L- 

histidine uptake by rat mammary tissue explants. In addition, the ion dependence o f L- 

leucine and L-glutamate was studied.

Figure 3-1 a shows the time-course of L-leucine uptake in the presence of 

extracellular Na+. It is evident that L-leucine influx is time-dependent being linear for at 

least 2 minutes. Figure 3 -lb  shows that L-histidine uptake by rat mammary explants is also 

time-dependent but not a Na+-dependent process. Thus, replacing extracellular Na+ with 

choline had no significant effect. In contrast, replacing Na+ with choline markedly reduced 

L-glutamate uptake (inset).

Figure 3-2 shows the effect o f the amino acids (L-leucine, BCH, L-glutamine, L- 

histidine and L-lysine) at a concentration of 20 mM on the uptake of L-histidine. It is 

evident that the mammary tissue explants with 2-minute incubations can be a convenient 

and effective method for the measurement of amino acid uptake.
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Figure 3-1. a) Time course of L-leucine and sodium dependence (inset) of L-glutamate 

uptake by lactating rat mammary tissue explants. Na+ in the buffer was replaced with 

choline for the sodium dependence experiment. Values for the time course of L-leucine are 

from the tissue o f a single animal and, for the inset, are from tissue o f a single animal with 

the incubation performed in triplicate with SEM shown by a vertical bar. b) Time course of 

L-histidine uptake by lactating rat mammary tissue explants with and without NaCl in the 

buffer. All points are means for three experiments using tissue from separate animals with 

SEM shown by vertical bars.

73



3

0)3</></)
O)
a3 2
o
Ec
CD

ro
Q.

Z  1c
ig
CO

JZi_ j

0
BCH*LysLeuHisControl Gin

Figure 3-2. Effect of amino acids on L-histidine uptake by lactating rat mammary tissue 

explants in the presence of external Na+. Values are means for four experiments using two 

animals with SEM shown by vertical bars. L-histidine uptake was assayed after 2-minutes 

incubation.

* 2-aminobicyclo[2,2,l]heptane-2-carboxylic acid
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3.3.2. Effect of p-casomorphins on the amino acid uptake

Table 3-1 shows the effect of P-casomorphins on L-glutamate, L-histidine, L-lysine 

and L-leucine uptake where data are expressed as nmole / g of tissue with SEM (Standard 

Error of the Means). The effects of P-casomorphins were tested on the initial rate o f amino 

acid uptake. The results o f the experiments are also summarised in figure 3-3. The addition 

o f p-casomorphins to the incubation medium failed to affect the uptake of the amino acids 

by the lactating rat mammary tissue explants.

3.4. DISCUSSION

The accumulation o f leucine in everted sacs o f the rat jejunum was increased when 

p-casomorphin-5 or its synthetic analogue, [D-Ala2] p-casomorphin-5-NH2, was 

coincubated with the amino acid (Ermisch et al., 1989). As an initial step in the overall 

study of the possible involvement o f P-casomorphins in milk production responses to 

abomasal infusions of casein, in vitro experiments were carried out using lactating rat 

mammary tissue explants to test the effects of P-casomorphins on amino acid uptake by the 

mammary gland.

Mammary tissue explants provide a convenient and viable model for studying 

amino acid transport, particularly the basolateral aspect of the transport, by lactating 

mammary cells (see Shennan et al, 1997). In the experiments designed to detect the ability 

o f P-casomorphins to alter the mammary uptake of representative amino acids (two neutral, 

one anionic and one cationic amino acid), there was no evidence o f action of the peptides 

on amino acid uptake by mammary tissue. It might be argued that the technique applied to 

the study was not sensitive enough to detect a possibly small effect o f the P-casomorphins. 

However, examination of the results o f Ermisch et al. (1989) shows that the effects on 

amino acid uptake were evident by 1 minute (i.e. stimulation of 80 to 100 %). It is, then, a
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Table 3-1. Effect o f p-casomorphin-4-amide (CM-4 -NH2 ), P-casomorphin-5 (CM-5) and P- 

casomorphin-7 (CM-7) on the uptake (nmole / g tissue) o f L-glutamate, L-histidine, L- 

leucine and L-lysine by lactating rat mammary tissue explants in the presence o f external 

Na+. Values are means ± SEM for three measurements using separate animals. Each 

experiment was carried out in triplicate. All the amino acid uptakes were assayed after 2- 

minute incubation.

Experiment 1 Experiment 2

Control CM-4 -NH2 CM-7 Control CM-5

Glutamate 2.11 ±0.42 1.85 ±0.52 1.94 ±0.50 2.95 ± 0.07 2.71 ±0.13

Histidine 3.00 ±0 .30 2.86 ±0.45 2.92 ±0.38 2.29 ±0.16 2.37 ±0.35

Leucine 3.19 ±0.24 3.22 ±0.33 3.43 ± 0.44 2.31 ±0.05 2.16 ±0.14

Lysine 2.60 ±0.13 2.60 ± 0.04 2.66 ± 0.04 2.48 ± 0.37 2.76 ±0.38
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Figure 3-3. Effects o f P-casomorphin-4-amide (CM-4 amide), P-casomorphin-5 (CM-5) 

and P-casomorphin-7 (CM-7) on the uptake of L-glutamate, L-histidine, L-leucine and L- 

lysine by lactating rat mammary tissue explants in the presence of external Na+. Values for 

each amino acid uptake are expressed as percentage o f controls and means for three 

experiments using separate animals with SEM shown by vertical bars. All the amino acid 

uptakes were assayed after 2-minutes incubation.
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fair assumption that the technique used in this study, which is an equivalent in vitro 

preparation for the mammary gland, should be able to detect any similar action o f the 

peptides on amino acid uptake.

It was suggested (Ermisch et al., 1989) that the stimulation o f L-leucine uptake in 

the small intestine by P-casomorphins is via their interaction with opioid receptors at the 

luminal membrane o f the enterocytes. The lack of response in the present study may be due 

to the absence or low number of the opioid receptors in the mammary tissue. Although 

opioid receptors were expressed in the human mammary cancer cell line A431 (Ammer 

and Schulz, 1997), there is no direct evidence of the existence o f opioid receptors at the 

surface of mammary epithelial cells whereas the small intestine is regarded as one o f the 

major sites of the receptors (Dashwood et al., 1985; Nishimura et al., 1986). Furthermore, 

even if  opioid receptors do occur in mammary tissue, the effects on amino acid uptake 

presumably require a specific receptor type, which may not be among those present.

Different cell types have different distributions of amino acid transport systems to 

meet the specific demands o f each cell type. For example, the transport o f L-leucine in the 

brush-border membrane vesicles prepared from guinea-pig small intestine is largely Na- 

dependent with a small fraction of Na+-independent transport (Satoh et al., 1989) whereas, 

in the mammary gland, its uptake is largely Na+-independent (Figure 3-4 or ref). 

Furthermore, it has been suggested that there may be mammary tissue variants of the 

system L, the major Na+-independent system for L-leucine (see Shennan et al., 1997). 

Therefore, the differences in the conformation of transport systems in the mammary tissue 

may also be, at least in part, responsible for the result.

Overall, it is concluded that direct action of p-casomorphins on mammary amino 

acid transport is unlikely, although further investigations would be necessary before 

completely ruling out the possibility.
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CHAPTER FOUR

THE SYNTHESIS AND ANALYSIS OF J3-CASOMORPHINS AND THEIR RUMINAL 

DEGRADATION IN ‘PROTECTED’AND ‘ UNPROTECTED’FORMS

4.1. INTRODUCTION

The results in Chapter 3 produced no evidence o f actions o f P-casomorphins on the 

mammary gland. Therefore the remaining experiments in this thesis were directed towards 

the effects of p-casomorphins at the level of the gut.

There were two major concerns in investigating the action o f P-casomorphins in the 

ruminant. First, experiments in the ruminant, especially in the dairy cow, require large 

quantities of the peptides. Peptides with high purity can be obtained by solid phase peptide 

synthesis, which is easily carried out on a peptide synthesiser combined with FMOC (9- 

fluorenylmethoxycarbonyl) chemistry (Fields and Noble, 1990). However, synthesising 

large quantities o f peptides with relatively high purity could become a time-consuming 

process and would require access to a peptide synthesiser with a single large or multiple 

smaller reaction vessels. Second, although the most convenient way of administering the p- 

casomorphins is by addition to the diet, the ability o f the peptides to survive degradation in 

the rumen, and to reach the small intestine, was not known. Hence it was essential to study 

the fates of P-casomorphins in the rumen if dietary supplements o f the peptides were to be 

used. P-casomorphins, like proline-rich peptides in general, display remarkable resistance 

to the attack of pancreatic proteases of simple-stomached animals in vitro (Brantl and 

Teschemacher, 1979). However, there was no information available on their stability 

against hydrolysis by enzymes of microbes in the rumen.

In investigating the fate of P-casomorphins in the rumen, another concern was that 

their quantitative as well as qualitative analysis in mixed rumen samples might be
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problematic, not only because o f their high hydrophobicity but also because o f the 

presence o f background concentrations o f other nitrogenous compounds (e.g. small 

peptides) in the rumen samples, which would be expected to interfere with the analysis.

The aims of the present study were to synthesise p-casomorphins in gram 

quantities; to develop methods o f detecting p-casomorphins in mixed rumen samples; and 

to determine their stability in the rumen. As the first experiment revealed that the P- 

casomorphins are readily degraded in the rumen in vitro, an attempt was also made to 

chemically protect the peptides from ruminal hydrolysis.

4.2. MATERIALS AND METHODS

4.2.1. HPLC (High-performance liquid chromatography) analysis

The concentration of the individual peptides was determined by HPLC using a 

reverse-phase Cl 8 column by modifications of the methods o f Wallace & McKain (1989) 

and Muehlenkamp et a l  (1996). The HPLC apparatus used was a LDC / Milton Roy 

system (Riviera Beach, Florida, USA) fitted with Spherisorb S5 ODS (5 pm, C l8; LDC / 

Milton Roy) column (250 by 4.6 mm) with a 20 pi loop. The peptides were obtained from 

Calbiochem-Novabiochem (UK) Ltd. All chemicals and reagents were HPLC grade and 

were supplied by Sigma Ltd.

Effects of organic solvent on retention time ofpeptides

To determine the effects o f different ratios o f organic solvent in the eluant on the 

retention time of peptides, three peptides (Ala-Ala, Ala-Ala-Ala and Ala-Ala-Ala-Ala) 

were eluted in a mixture of solvent A (30 mM orthophosphoric acid) and solvent B 

(methanol) in the ratios o f 0:100, 10:90, 20:80 and 30:70 (solvent A:solvent B).
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Effects of ion-pairing reagent on retention time of peptides

To determine the effects of ion-pairing reagents in the eluant on the retention time 

o f peptides, three peptides (Ala-Ala, Ala-Ala-Ala and Ala-Ala-Ala-Ala) were eluted in a 

mixture o f 60 %, 30 mM orthophosphoric acid and 40 % methanol with heptane sulfonic 

acid (HSA) as the ion-pairing reagent at the concentrations o f 0, 5, 10 and 50 mM.

HPLC of p-casomorphins

For the analysis o f the p-casomorphins in mixed rumen samples, optimal flow rate 

and eluant compositions, including concentrations o f the ion-pairing reagent were 

determined from elution profiles for the peptides and rumen samples determined under a 

range of conditions. The flow rate was 1.2 ml / min for p-casomorphin-4-amide and p- 

casomorphin-5 and 1.0 ml / min for P-casomorphin-7, and the detector was set at 206 nm 

for p-casomorphin-4-amide and P-casomorphin-5 and 220 nm for P-casomorphin-7. The 

eluant for the analysis of p-casomorphin-4-amide was a mixture o f 60 %, 30 mM 

orthophosphoric acid plus 2 mM HSA as the ion-pairing agent and 40 % methanol. For p- 

casomorphin-5, the eluant was as for P-casomorphin-4-amide except that 5 mM HSA 

concentration was used, p-casomorphin-7 was eluted in a mixture o f 70 % solvent A (0.1 

% triflouroacetic acid, TFA and 99 % HPLC grade water) and 30 % solvent B (0.1 % TFA, 

90 % acetonitrile and 9.9 % HPLC grade water).

4.2.2. Chemical synthesis of p-casomorphins

The peptides (P-casomorphin-4-amide, p-casomorphin-5 and P-casomorphin-7) 

used in the experiments were synthesised by solid-phase peptide synthesis using FMOC 

chemistry (see Fields and Noble, 1990 for detailed information). The peptide synthesiser 

used was BT 7500 Solid Phase Peptide Synthesiser (Biotech Instrument Ltd, Luton, UK) 

with a 45 ml reaction vessel.
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Figure 4-1 gives a brief outline of the process. At each coupling step, a small 

amount of resin from the reaction vessel was taken and subjected to the Kaiser test (see 

below) in order to confirm the successful coupling of each sequence. After the coupling 

process was completed, peptides were cleaved and all side-chain protection groups were 

deprotected from the resin by incubating in a cleavage reagent at room temperature for 2 

hours and filtering through a sintered glass funnel under positive pressure o f N2 . The 

composition o f the cleavage reagent was 90 % (v/v) TFA, 2.5 % (v/v) H2 O, 2.5 % (v/v) 

thioanisole, 1.25 % (v/v) 1,2-ethanedithiol and 3.75 % (w/v) phenol. The filtered cleavage 

solution was then transferred to a round-bottomed flask and was evaporated using a 

vacuum evaporator at 60 °C for 30 minutes. Peptides were extracted by the cold ether 

extraction method. Briefly, 20 ml o f ice cold ether was slowly added to the evaporated 

filtrate in a drop-wise manner. After the peptides were successfully extracted, all contents 

were transferred to a 20 ml centrifuge tube with a cap and centrifuged at 1500 g for 5 

minutes at 4 °C. The pellet was resuspended very gently (finger vortexing) in 10 ml cold 

ether and centrifuged at 1500 g for 5 minutes at 4 °C. The process was repeated 5 times 

before drying the pellet in a dessicator overnight.

All resins, FMOC amino acids and TBTU (2-[lH-Benzotriazol-l-yl]-l,l,3,3- 

tetramethyluronium tetrafluoroborate) were obtained from Calbiochem-Novabiochem 

(UK) Ltd. (Beeston, Nottingham, UK) and all other chemicals and reagents were obtained 

from Sigma Ltd.

Kaiser test

A small amount (about 10 mg) of samples from the reaction vessel of the 

synthesiser was transferred into a glass tube containing 2 ml o f 0.1 mM potassium cyanide. 

The tube was heated in a block thermostat at 100 °C for 5 minutes. The reactivity of 

samples, which was proportional to colour intensity, was accessed by eye.
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4.2.3. MALDI-TOF-MS (Matrix-assisted laser desoption/ionisation time-of-flight 

mass spectrometer)

To authenticate synthesised peptides, 1 mg o f samples from extracted crude 

peptides was dissolved in 1 ml o f matrix solution and their molecular weight was 

determined by MALDI-TOF-MS (figure 4-2). The matrix used was a-Cyano 

hydroxy cinnamic acid and the matrix solution was 0.1 % TFA in 70 : 30 acetonitrile : 

water. 1 pi aliquots of samples and matrix were pipetted onto a metal target slide and 

allowed to air-dry (approximately 5 minutes). Peptide spectra were obtained using a 

Finnigan MAT (Hemel Hempstead, Hertshire, UK) LaserMat 2000 time-of-flight mass 

spectrometer.

4.2.4. Acetylation of p-casomorphins

N-terminal acetylation of the peptides was carried out using acetic anhydride 

according to the method of Means and Feeney (1964). 5 mg of each of the peptides was 

dissolved in distilled water at a concentration o f 2 % (w/v) and chilled in an ice-water 

slurry. Acetic anhydride was added to the peptide solution to a concentration of 1 M and the 

mixture was incubated on ice for 1 hour. Solutions of acetylated peptides were dried using a 

centrifugal evaporator, then resuspended in distilled water (300 pi) and freeze-dried.

To measure the success rate o f the acetylation, (X-NH2 -N measurement of the 

acetylated peptides and the non-acetylated peptides was performed using a ninhydrin 

method (Moore and Stein, 1954).

4.2.5. Protein assay of rumen fluid samples

Protein concentrations of the rumen fluid samples from each sheep were determined 

by a modified Lowry method as follows.
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Reagents

Lowry B solution: 1 % potassium sodium tartrate + 0.5 % CuSCVSLLO, pH 7.0

Reagent 1: 50 ml 5 % Na2 C 0 3  + 2 ml Lowry B solution

Reagent 2: Folin Ciocalteu reagent diluted 1:1 in distilled water 

Procedure

1 ml o f rumen fluid samples was added to a 1.5 ml eppendorf tube containing 0.25 

ml 25 % (v/v) TCA which was then centrifuged at 12000 rpm for 5 minutes. The 

supernatant was discarded and the remaining pellet was resuspended in 1 ml 0.5 M NaOH. 

Standards (0, 0.04, 0.08, 0.12, 0.16 and 0.2 mg / ml) which were prepared using BSA and 

diluted samples (1:50) were boiled for 5 minutes in a boiling water bath and cooled at 

room temperature. 50 pi of samples and standards were transferred to a microtitre plate and 

1.25 pi of reagent 1 was added to each well which was then incubated at room temperature 

for 10 minutes before 25 pi of reagent 2 was added to each well. The plate was incubated 

at room temperature for 30 minutes and OD values were read at 700 nm on a MR 5000 

plate reader (Dynex Laboratories, Billinghurst, West Sussex, UK).

4.2.6. Experiment 1. Rumen incubation of p-casomorphins

Animals

Four adult sheep, fitted with permanent rumen cannulas, received a maintenance 

diet o f hay, barley, molasses, fish meal and vitamins-minerals mixture (500, 299.5, 100, 91 

and 9.5 g / kg dry matter respectively). Samples of rumen fluid were removed 3 hours after 

feeding. These samples were strained through four layers o f muslin and used immediately.
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Rumen incubation and sampling

p-Casomorphin-4-amide, P-casomorphin-5 and P-casomorphin-7 were added to 

strained rumen fluid from each of the four sheep to a final peptide concentration o f 0.125 

mM in a total incubation volume of 10 ml, and the mixtures were incubated under carbon 

dioxide in stoppered containers in a shaking water-bath at 39 °C. Samples (1.0 ml) were 

removed after 0, 5, 10, 30, 60 minute(s), 2 and 6 hours into microcentrifuge tubes 

containing 0.25 ml phosphoric acid (1.25 M). Tubes were chilled at 4 °C and centrifuged at 

12,000 g for 5 min at 20 °C and the supernatant fluid was stored at -20 °C until analysis. 

Peptide analysis was done on the supernatant fluid filtered through 0.45-pm-pore-size 

membrane filters. Owing to the accidental breakage of one container before the incubation, 

data from one sheep were excluded and data are expressed as means o f values from three 

sheep.

4.2.7. Experiment 2. Rumen incubation of N-terminal acetylated and non-acetylated 

p-casomorphins

Animals

Four adult sheep, fitted with permanent rumen cannulas, received the same diet as 

described in the Experiment 1. Samples o f rumen fluid were removed 5 hours after 

feeding. These samples were strained through four layers o f muslin and used immediately.

Rumen incubation and sampling

Rumen incubations of three p-casomorphins (p-casomorphin-4-amide, p- 

casomorphin-5 and P-casomorphin-7) and their corresponding acetylated peptides were 

carried out by the procedure described for the Experiment 1 except that samples were 

removed after 0, 15, 30, 60, 90 minute(s) and 6 hours.
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4.3. RESULTS

4.3.1. Solid phase peptide synthesis

0.6 mmole o f the p-casomorphins (P-casomorphin-4-amide, p-casomorphin-5 and 

P-casomorphin-7) were produced by one synthesis cycle. The average recovery rate of the 

peptides after the extraction was 80 %.

4.3.2. HPLC of peptides

Effects o f methanol and HSA concentrations on the retention time ofpeptides.

The retention times of alanine oligopeptides with different concentrations of 

methanol and HSA in the mobile phase are shown in table 4-1 and table 4-2 respectively. 

The higher methanol content of the eluant resulted in a shorter retention time o f the alanine 

oligopeptides. Increasing the concentration of HSA in the mobile phase delayed the 

retention times of the peptides.

It was found that, by altering combination o f the two components o f the mobile 

phase, the selectivity o f the reversed-phase HPLC system for oligopeptides could be 

increased.

HPLC analysis of P-casomorphins in rumen fluid

The elution profiles of P-casomorphins and a typical rumen fluid sample from two 

different eluants are shown in figure 4-3. There was no interference between p- 

casomorphin-7 and other compounds found in rumen fluid in either eluant conditions 

whereas p-casomorphin-4-amide and p-casomorphin-5 appear to be subject to interference 

from other compounds in the rumen fluid in both eluant conditions.



Table 4-1. Effects o f different concentrations o f methanol on the retention time (min) o f 

Alan. Values are means o f two observations.

Methanol Concentration (%)
rcpuuc

0 10 20 30

Ala2 11.4 5.9 3.8 2.9

Ala3 22.7 8.1 4.4 3.0

Ala4 34.3 10.0 4.9 3.1
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Table 4-2. Effects of adding different concentrations o f the ion-pairing reagent (HSA, 

heptane sulfonic acid) on the retention time (min) o f Alan. Values are means of two 

observations.

HSA Concentration (mM)

0 5 10 50

Ala2 1.92 3.82 4.15 5.20

Ala3 2.12 4.39 4.62 5.60

Ala4 2.22 4.92 4.99 5.72
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The chromatograms shown in figure 4-4 are the profiles o f P-casomorphin-4-amide, 

P-casomorphin-5 and rumen fluid samples containing the peptides where the compositions 

of the eluants were optimised to separate the peaks of the peptides from other peaks in the 

rumen fluid. It was possible to selectively alter the retention times o f P-casomorphin-4- 

amide and P-casomorphin-5 with the inclusion o f HSA at the concentrations o f 2 mM and 

5 mM respectively in order to avoid interference from other compounds in the rumen fluid, 

so enabling quantitative analysis o f the peptides in mixed rumen samples.

4.3.3. Disappearance of p-casomorphins in rumen fluid

The rates o f hydrolysis o f three P-casomorphins (p-casomorphin-4-amide, p- 

casomorphin-5 and P-casomorphin-7) were determined by incubating the peptides in 

rumen fluid in vitro and measuring the disappearance o f the peptides after analysis by 

HPLC. All three peptides were rapidly broken down in the rumen fluid with half-lives of

20.7, 19.5 and 17.0 minutes respectively (figure 4-5).

4.3.4. Disappearance of N-terminal acetylated and non-acetylated p-casomorphins in 

rumen fluid

Average protein concentration of the rumen fluid samples was 2.36 mg / ml (SED = 

0.384) which was very similar to that in the experiments of Wallace and McKain (1989, 

2.31 mg / ml). Treatment of P-casomorphin-4-amide, P-casomorphin-5 and P- 

casomorphin-7 with acetic anhydride resulted in the blocking of 82.2, 92.6 and 93.5 % of 

N-terminus amino groups respectively, as determined by the ninhydrin method.

Figure 4-6 shows the pattern of hydrolysis o f three P-casomorphins (P- 

casomorphin-4-amide, P-casomorphin-5 and P-casomorphin-7) and their acetylated forms 

in rumen fluid. The rates of hydrolysis of the non-acetylated p-casomorphins were similar 

to those of Experiment 1 with half-lives of 17.6, 24.1 and 15.8 minutes respectively.
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casomorphin-4-amide(100 nmole / ml) in rumen liquid, c) P-casomorphin-5 (125 nmole / 
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30mM orthophosphoric acid plus 2 mM HSA and 40 % methanol, 2) 60 %, 30mM 
orthophosphoric acid plus 5 mM HSA and 40 % methanol.
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Acetylation o f the p-casomorphins caused marked resistance to hydrolysis in rumen fluid 

with half-lives increased to 6.5, 7.5 and 4 hours respectively.

4.4. DISCUSSION

Since its development (Merrifield, 1963), solid phase peptide synthesis has become 

an essential tool in all areas o f peptide research. An essential part o f the investigation of 

the actions o f p-casomorphins in the dairy cow was the synthesis o f the peptides in large 

quantities with relatively high purity. This was achieved in the present study by solid phase 

peptide synthesis combined with more recent FMOC chemistry with a large reaction vessel 

coupled with the cold ether extraction of the peptides.

Investigations of actions of p-casomorphins in the ruminant at the level of the gut 

could be carried out by simply supplementing the peptides as dietary supplements if  the 

peptides were relatively stable in the rumen, so allowing them to reach the site of action 

(i.e. small intestine of the ruminant). Proline-containing peptides (Yang and Russell, 1992) 

and peptides with glycine or proline as the N-terminal or penultimate N-terminal residue 

(Wallace et al., 1990) were relatively more resistant to ruminal degradation in vitro. This is 

supported by an observation in vivo that peptides remaining in the rumen several hours 

after feeding tended to be enriched with glycine and proline (Wallace et al., 1993c). 

Indeed, the rate o f breakdown of a tetra-peptide (Gly-Pro-Gly-Gly) was 0.07 pmol / ml 

rumen fluid / h whereas another tetra-peptide (Ala-Ala-Ala-Ala) was hydrolysed at a rate 

of 1.18 pmol / ml rumen fluid / h (Wallace et al., 1990). Therefore, it was expected that 0- 

casomorphins, as proline-rich peptides with a penultimate N-terminal proline residue, 

would be stable in the rumen. However, the results of Experiment 1 show all three of the 

most potent p-casomorphins to be readily degraded in the rumen with half-lives o f only 17 

to 20 minutes. Such short half lives rule out a simple dietary addition of p-casomorphins as
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an effective route o f administration in the dairy cow unless the peptides can be protected 

from hydrolysis.

Peptide breakdown in the rumen depends on various factors including the amino 

acid sequence, molecular weight and solubility of the peptide and the composition of the 

microbial population. There seems to be a positive correlation between molecular size and 

hydrolysis rate (Copper and Ling, 1985). The more rapid breakdown o f P-casomorphin-7 

compared with the other two, shorter peptides in the present study (see table 4-3) may be 

because o f its longer peptide chain, which would be expected to make it more susceptible 

to endopeptidase activities o f the nominal microbes. This difference becomes clearer when 

the breakdown rates o f the N-terminal acetylated P-casomorphins are compared (table 4-3).

The mechanism of the breakdown of the P-casomorphins by rumen microorganisms 

is not known. However, studies indicated that the predominant mechanism for hydrolysis 

o f peptides by ruminal microbes is a dipeptidyl aminopeptidase like activity which cleaved 

dipeptides from the N-terminus o f the peptide chain (Wallace and McKain, 1989; Wallace 

et al., 1990). Furthermore, Prevotella ruminicola was reported to be the only species 

among the common ruminal microbial species responsible for the activity (Wallace, 1996). 

Thus, considering that the experimental procedure and the composition o f the diet used in 

the present study were the same as, or very similar to, those of the studies mentioned 

above, the rapid breakdown o f the P-casomorphins is probably largely due to the dipeptidyl 

aminopeptidase activity o f P. ruminicola in the rumen fluid, although the intermediate 

products of the breakdown were not determined.

In Experiment 2 of the present study, an attempt was made to protect the P- 

casomorphins from ruminal hydrolysis by chemical treatment of the peptides with acetic 

anhydride. The results indicate that blocking the N-terminus of p-casomorphins could be a 

simple and effective method to protect the peptides from ruminal hydrolysis leading to

52.2, 56.3 and 34.1 % respectively remaining after 6 hours. The effectiveness of N-
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terminal acetylation of the peptides is consistent with the earlier hypothesis that the 

dipeptidyl aminopeptidase activity of P. ruminicola is the predominant mechanism for the 

hydrolysis of the peptides.

Protection of nutrients from ruminal hydrolysis or fermentation is not a new 

concept. Proteins and limiting amino acids have been subjects o f rumen protection for 

decades (Chalupa, 1975, 1980; Mangan et al. 1980; Casper et al., 1987). Heat and 

chemical treatments were the major approaches to achieve rumen bypass in early studies 

because these methods are relatively simple and cost-effective (Vicini et al., 1983; Lynch 

et al., 1987). Other methods include the use of low solubility peptides or amino acid 

analogues (Papas et al., 1974) and the use o f lipids as a protective matrix for proteins 

(Palmquist, 1984). Protection o f peptides received little attention until information on 

mechanisms of peptide metabolism accumulated (Copper and Ling, 1985; Wallace et al., 

1990) and the acetylation method was shown to be effective in the rumen (Wallace, 1992).

Table 4-3 summarises the results of Experiment 1 and Experiment 2. Although 

acetylation proved to be an effective way o f delaying ruminal hydrolysis o f P- 

casomorphins in this study, there are some hurdles to overcome before it can be applied to 

practical dietary supplementation o f biologically active peptides. First, only 49.2, 51.8 and 

35.8 % of the acetylated p-casomorphins would be expected to escape the ruminal 

degradation respectively if the breakdown rates are maintained in vivo (table 4-3). This 

degree of the protection, particularly for P-casomorphin-7, was far from complete and, 

hence, the escape rate o f the acetylated peptides in vivo in various conditions should be 

evaluated fully before a successful development of rumen-stable delivery system for p- 

casomorphins can occur. Second, it is not known whether N-acetylated p-casomorphins 

escaping from the rumen can release active P-casomorphins in the small intestine. Since N- 

acetylated P-casomorphins are not expected to possess opioid activity (Henschen et al., 

1979), some form of modification o f the acetylated peptides may be essential to ensure
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post-ruminal release of the peptides in active form. Acetylation o f N-terminally extended 

P-casomorphins with an extension that is sensitive to pancreatic proteases would be one 

solution. Alternatively, a pH-sensitive polymeric coating might also meet the requirement 

(see Wu and Papas, 1997).
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CHAPTER FIVE 

TH E E F F E C T O F POST-RUM INAL IN FU SIO N S O F C ASE IN  AND  

/3-CASOMORPHINS O N CIRCULA TING GUT AN D  M ETAB O LIC  HO RM O NES IN

D A IR Y  COWS

5.1. INTRODUCTION

It has been suggested that physiological actions of p-casomorphins in simple- 

stomached animals might occur via their influence on the circulating levels o f some 

regulatory hormones such as insulin, prolactin and somatostatin as well as some gut 

hormones (e.g. CCK and PP) (see Chapter 1). Many studies have demonstrated that post- 

ruminal administration of casein increased milk production o f lactating dairy cows (see 

section 1.3.2 for references). Furthermore, a number of studies reported that the post- 

ruminal casein infusions altered the partitioning of nutrients in favour o f the mammary 

gland at the expense of adipose tissue. Such mobilisation or repartitioning of nutrients is 

regulated by metabolic hormones and gut hormones (Bauman and Currie, 1980; Martin et 

al., 1993). Although some studies suggested that a possible mechanism underlying the 

superior milk production responses to post-ruminal casein over other proteins might be a 

repartitioning of nutrient use via changes in concentrations of metabolic hormones 

(Choung and Chamberlain, 1992c; Oldham, 1994), none of the studies closely monitored 

hormonal changes in response to post-ruminal casein infusion in dairy cows. Since P- 

casomorphins can be produced during the digestion o f casein, it is possible that the positive 

milk production responses to post-ruminal casein derive, at least in part, from hormonal 

changes induced by p-casomorphins.

Therefore, two experiments were carried out to monitor hormonal changes to post- 

ruminal casein and p-casomorphins. The first experiment examined the effects of two 

levels o f casein and an acid hydrolysate of casein infused intra-abomasally on circulating
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levels o f two major metabolic hormones (insulin and glucagon) and two gut hormones 

(GIP and GLP-1) in dairy cows. In the second experiment, three different levels of 

synthetic P-casomorphin mixtures were infused into the abomasum of lactating dairy cows 

to examine their effects on the levels o f various hormones.

5.2. MATERIALS AND METHODS

5.2.1. Experiment 1 

Animals

Three non-lactating Friesian cows of average body weight 531 kg, fitted with 

permanent ruminal cannulas, were used in Experiment 1. The animals were individually 

housed in metabolism stalls and fed 30 kg / d grass silage as a basal diet in two equal meals 

at 07:00 and 17:00 h. Water was available 24 hours a day. The chemical composition of the 

dietary ingredients is shown in table 5-1.

Experimental procedures

All animals received the basal diet for at least 7 days before the start of the 

experiment. On the day prior to the beginning of the experiment, abomasal infusion lines and 

jugular catheters were inserted at least 18 hours before the beginning of the infusion as 

described previously.

The experiment was designed as a duplicated 3 x 3  Latin square with infusion level 

fixed in each of the two blocks. Each block involved three animals, three treatments and 

three one-day periods. The experimental treatments for the first square were the basal diet 

alone (Con) and the basal diet plus abomasal infusions of 25 g / d of sodium caseinate 

(CSN1) or 27.5 g /d of an acid hydrolysate of casein (CAH1). The second square consisted 

of the same treatments but with the level increased to 50 (CSN2) and 55 (CAH2) g / d of the 

infiisates respectively. Five days of resting time were given between the two blocks. All
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Table 5-1. Chemical composition of silage used in Experiment 1.

Determinant Content

Dry matter, g / kg 255

Organic matter, g / kg DM 898

PH 3.50

Total N, g / kg DM 16.8

True-protein N, g / kg N 285

NH3-N, g / kg N 83

Water soluble carbohydrate, g / kg DM 55

Lactic acid, g / kg DM 80

Ethanol, g / kg DM 31

VFA

Acetic acid 9

Propionic acid 0

Iso-butyric acid 0

Butyric acid 1

NDF, g / kg DM 625

A D F ,g /k g  DM 362
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infusions within a block supplied equivalent amounts of all the amino acids; this was 

achieved by adding to CAH the acids destroyed during hydrolysis: 0.35 g o f tryptophan, 

1.49 g o f glutamine and 0.83 g of asparagine to the 24.83 g / d of CAH1 (0.7, 2.98 and 1.66 

g to the 49.66 g / d of CAH2 for the second block) to provide equivalent concentrations to 

those for CSN1 and CSN2. The infusates were dissolved in 500 ml o f water and were 

infused at a rate o f 30 ml / min using a peristaltic pump (Watson Marlow, Falmouth, UK). 

500 ml o f clean water was infused for the CON treatment. For the hormonal analysis, 

samples o f blood were obtained from the jugular catheter at 09:30, 10:00, 10:30, 11:00, 

11:30, 12:00, 13:00, 14:00, 15:00, 16:00 and 17:00 h on the day of infusions.

Statistical analysis

All results are presented as means o f observations from 3 animals. Since REML 

analyses indicated that there was generally not a period effect and no carry-over effects 

were expected owing to the very short interval between the two squares, ANOVA was 

performed using Genstat 5 on the combined data from the two 3 x 3  Latin squares. The 

model used was: Y = Mean + Cow + Control + Control-ProteinSource + Control- 

Protein Level + Control-ProteinSource-ProteinLevel + Error. Comparisons between the 

control treatment and each individual treatment were performed by t-test using SED from 

the ANOVA and were considered significant when P < 0.05.

5.2.2. Experiment 2 

Animals

Four lactating Friesian cows in weeks 29 to 34 o f lactation, o f average body weight 

622 kg, fitted with permanent ruminal cannulas, were used in Experiment 2. The average 

milk yield of the cows during the experiment was 12.9 kg / d (milk fat, protein and lactose 

of 41, 35 and 45 g / kg respectively). The animals were individually housed in metabolism
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stalls and allowed to become established on an ad libitum intake o f silage plus 6 kg / d 

barley and 1 kg / d rapeseed meal as a basal diet. The animals were fed equal meals twice 

daily at 09:00 and 16:00 h and given free access to water. Consumption o f concentrate was 

complete on all occasions and daily silage intakes varied little, ranging only from 34 to 37 

kg / d throughout the experiment. The chemical composition of the dietary ingredients is 

shown in table 5-2.

Experimental procedures

All animals received the basal diet for at least 15 days before the start o f the 

experiment. Abomasal infusion lines and jugular catheters were inserted as in Experiment

1. The animals were allocated according to a 4 x 4 Latin square design with four, three-day 

periods and four treatments. The experimental treatments were basal diet only (control) and 

basal diet plus three increasing amounts (120, 240 and 480 mg respectively) o f abomasal 

infusions containing one-third by weight of each of three P-casomorphins (p-casomorphin- 

4-amide, P-casomorphin-5 and p-casomorphin-7). These dose levels were calculated based 

on published data (Brantl et al., 1979) to be the amounts expected to be produced from 

110, 220 and 440 g of casein respectively. The infusates were dissolved in 25 ml of water 

and were infused as a bolus using a 50 ml syringe. Blood samples were obtained from the 

jugular catheter at 08:45, 9:30, 10:00, 10:30, 11:00, 12:00, 13:00, 14:00 and 15:00 h o n  the 

day of infusions.

Statistical analysis

The results were subjected to ANOVA using Genstat 5 and comparisons between 

individual treatments were performed as for Experiment 1. The mean response o f each
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Table 5-2. Chemical composition of silage and concentrates used in Experiment 2.

Determinant Silage Barley Rapeseed meal

Dry matter, g / kg 199 989 989

Organic matter, g / kg DM 909 977 919

PH 4.07 ND ND

Total N, g / kg DM 22.8 17.9 58.9

True-protein N, g / kg N 247 ND ND

NH3-N, g / kg N 176 ND ND

Water soluble carbohydrate, g / kg DM 9 ND ND

Lactic acid, g / kg DM 100 ND ND

Ethanol, g / kg DM 10 ND ND

VFA
Acetic acid 36 ND ND

Propionic acid 6 ND ND

Iso-butyric acid 0 ND ND

Butyric acid 6 ND ND

NDF, g / kg DM 582 331 391

ADF, g /kg DM 345 72 217

Starch, g / kg DM ND 667 10

Sugar, g / kg DM ND 15.4 87.0

ND: not determined
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hormone was calculated by taking means of values for each time point corrected for any 

differences in basal values (i.e. values at -15 minutes).

5.3. RESULTS

5.3.1. Experiment 1

Plasma concentrations of insulin and glucagon, and the insulin /glucagon ratio

Concentrations of insulin and glucagon in plasma are shown in table 5-3 and 5-4 

respectively. There were no statistically significant differences in the plasma insulin 

concentrations between the treatments. However, when the results were summarised in 

terms o f responses over basal values, the insulin response during the 2 hours from the start 

o f the infusions o f the CSN treatments was lower than that of CAH at the higher levels of 

infusion (P < 0.05).

Plasma glucagon concentrations of CSN and CAH at both levels were significantly 

lower than CON at 6 hours after the infusions. However, for the daily mean glucagon 

concentration, only for the higher level of CSN was the value significantly lower than 

CON and the difference was not detected when the comparisons were made in terms of the 

responses over the control (table 5-8). A difference in plasma glucagon concentrations 

between the infusion levels of CSN was evident at 1 hour after the infusions and this 

difference was evident in the daily mean concentration. However, there were no 

differences between the treatments in the insulin / glucagon ratio (table 5-5).

Plasma concentrations of GIP and GLP-1

Table 5-6 and 5-7 respectively show the changes in GIP and GLP-1 concentrations 

in plasma during the sampling period. Only plasma GIP concentration at the higher level of 

CSN was significantly lower than the CAH treatment at 30 minutes after the infusion.
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There were some indications o f differences among the treatments at various time points as 

well as in the daily mean values. However, the variation in initial (-30 min) concentrations 

indicates a need for caution in interpretation of these differences. Even so, after allowance 

is made for the differences in values at -30 minutes, significant differences between the 

CSN and CAH treatments were still in evidence (table 5-8).

The pattern o f the changes in plasma GLP-1 concentrations were very similar to 

those o f glucagon except that the effects of CSN level appeared only at 90 minutes after 

the infusion and the inhibitory effect of the protein sources was less evident at 6 hours after 

the infusions. However, there were again no suggestions o f differences between the 

treatments in the mean GLP-1 responses over control (table 5-8).

5.3.2. Experiment 2

Plasma concentrations of insulin and glucagon, and the insulin /glucagon ratio

There were no statistically significant differences between treatments in either the 

daily mean concentrations of plasma insulin or the insulin mean responses over the control 

(table 5-9). However, the insulin concentration with the highest level (480 mg) of the 0- 

casomorphin infusion at 240 minutes was significantly lower than control (figure 5-1). 

Furthermore, there were various time points (30, 90, 240 minutes) where insulin 

concentrations with the P-casomorphin infusions tended (0.05 < P < 0.1) to be lower than 

control values (figure 5-1).

Figure 5-2 shows the changes of plasma glucagon concentrations during the 

sampling. Although there were no significant differences in daily mean values between the 

treatments, table 5-9 shows that the glucagon mean responses over control to the P- 

casomorphin infusions were linearly increased (P < 0.05) over both the first 3 and the 

whole 6 hours o f the sampling period. There were also various time points where glucagon 

concentrations of the treatments tended to differ from corresponding control values as well
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Figure 5-1. Effects of intra-abomasal infusions of three dose-levels (120, 240 and 480 mg) 

of P-casomorphin mixtures (CMx) on plasma concentrations o f insulin (ng / ml) in 

lactating dairy cows. Values are means o f four cows. Values that differ from control values 

within individual times are marked t when P < 0.1 and * when P < 0.05. Error bars are not 

indicated.
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Figure 5-2. Effects of intra-abomasal infusions of three dose-levels (120, 240 and 480 mg) 

o f p-casomorphin mixtures (CMx) on plasma concentrations of glucagon (pg / ml) in 

lactating dairy cows. Values are means of four cows. Values that differ from control values 

within individual times are marked t when P < 0.1 and ** when P < 0.01. Error bars are 

not indicated.
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as a significantly different glucagon concentration of the mid-level infusion compared with 

control at 6 hours after the infusions. Overall, the glucagon response to p-casomorphin 

infusions was stimulatory in a dose dependent manner (table 5-9).

The changes in insulin / glucagon ratio during the sampling are given in figure 5-3. 

There were no effects of the p-casomorphin infusions on daily mean value or on the overall 

responses (table 5-9). However, all p-casomorphin infusions resulted in statistically 

significant decreases in the insulin / glucagon ratio at 4 hours compared with control.

Plasma concentrations of GIP and GLP-1

Figure 5-4 shows the changes in GIP concentrations in plasma during the sampling 

period. The daily mean GIP concentrations were significantly decreased by two levels (120 

mg and 240 mg) of p-casomorphin mixture compared with control treatment (table 5-9) 

owing to the highly significant differences in the GIP concentrations between 2 and 3 

hours after the infusions, there being a linear trend with level of p-casomorphin (P < 0.05). 

However, the GIP concentrations o f p-casomorphin treatments before (-30 minutes) the 

infusions were all lower than that o f control treatment, which might have affected the GIP 

concentrations later. Indeed, this is directly reflected in the result o f the comparisons 

between the treatments in terms of the mean GIP response over control, shown in table 5-9, 

where no differences were found between the treatments.

Apart from some tendencies (P < 0.1) at some time points, there were no significant 

treatment effects on the plasma concentrations of GLP-1 (figure 5-5 and table 5-9).

Plasma concentrations of IGF-1 and GH

Plasma concentrations of GH (figure 5-6) and IGF-1 (figure 5-7) were little affected 

by the P-casomorphin infusions but both GH and IGF-1 concentrations at 90 minutes after
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Figure 5-3. Effects of intra-abomasal infusions of three dose-levels (120, 240 and 480 mg) 

of P-casomorphin mixtures (CMx) on plasma insulin / glucagon molar ratio in lactating 

dairy cows. Values are means o f four cows. Values that differ from control values within 

individual times are marked t when P < 0.1 and * when P < 0.05. Error bars are not 

indicated.
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Figure 5-4. Effects of intra-abomasal infusions of three dose-levels (120, 240 and 480 mg) 

o f P-casomorphin mixtures (CMx) on plasma concentrations of GIP (pg / ml) in lactating 

dairy cows. Values are means o f four cows. Values that differ from control values within 

individual times are marked t when P < 0.1, * when P < 0.05, ** when P < 0.01 and *** 

when P < 0.001. Error bars are not indicated.
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Figure 5-5. Effects of intra-abomasal infusions of three dose-levels (120, 240 and 480 mg) 

o f P-casomorphin mixtures (CMx) on plasma concentrations of GLP-1 (pg / ml) in 

lactating dairy cows. Values are means o f four cows. Values that differ from control values 

within individual times are marked t when P < 0.1. Error bars are not indicated.
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Figure 5-6. Effects o f intra-abomasal infusions of three dose-levels (120, 240 and 480 mg) 

of P-casomorphin mixtures (CMx) on plasma concentrations o f GH (ng / ml) in lactating 

dairy cows. Values are means o f four cows. Values that differ from control values within 

individual times are marked t when P < 0.1 and * when P < 0.05. Error bars are not 

indicated.
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Figure 5-7. Effects of intra-abomasal infusions of three dose-levels (120, 240 and 480 mg) 

o f P-casomorphin mixtures (CMx) on plasma concentrations of IGF-1 (ng / ml) in lactating 

dairy cows. Values are means o f four cows. Values that differ from control values within 

individual times are marked * when P < 0.05. Error bars are not indicated.
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Table 5-9. Daily mean and integrated responses* over the first 3 h and the whole sampling 

period respectively o f insulin, glucagon, molar insulin / glucagon ratio, GIP, GLP-1, GH 

and IGF-1 to intra-abomasal infusions of increasing levels of p-casomorphin mixtures in 

lactating dairy cows.

Hormone Control
P-Casomorphin mix. 

120mg 240mg 480mg
SED

Treat

P value 

Linear Quad
Insulin

Daily mean, pg / ml 446 410 410 405 63.9 0.911 0.604 0.700

Mean360y, pg / ml -56 33 -111 -17 75.2 0.358 0.968 0.691

M eanl80z, pg / ml -14 75 -69 -3 100.3 0.586 0.800 0.886
Glucagon

Daily mean, pg / ml 30.3 33.7 38.5 32.9 4.91 0.464 0.628 0.174

Mean360, pg / ml -1.7a 2.0ab 4.4ab 8.2b 3.50 0.128 0.028 0.662

Mean 180, pg / ml -2.1a 0.7ab 2.5ab 8.1b 3.51 0.119 0.025 0.919
Insulin / Glucagon

Daily mean 9.0 7.5 6.5 7.5 1.31 0.379 0.329 0.163

Mean360 0.5 0.5 -2.6 -4.4 3.05 0.373 0.116 1.000
M eanl80 2.2 1.9 -1.5 -3.5 3.46 0.368 0.111 0.935

GIP
Daily mean, pg / ml 86.9a 54.3b 69.7ab 58.5b 9.11 0.043 0.061 0.167
Mean360, pg / ml 9.7 13.7 27.2 1.2 14.9 0.431 0.586 0.179

Mean 180, pg / ml 20.3 18.3 26.8 5.8 13.7 0.524 0.343 0.365
GLP-1

Daily mean, pg / ml 49.5 60.5 52.0 49.0 10.9 0.711 0.715 0.515
Mean360, pg / ml -0.4 2.6 -4.7 1.2 15.5 0.966 0.993 0.830

Mean 180, pg / ml 0.6 9.0 -2.6 -3.4 16.4 0.868 0.658 0.852
GH

Daily mean, ng / ml 2.99 2.80 3.26 3.39 0.49 0.640 0.318 0.898

Mean360, ng / ml 0.27 1.94 1.79 2.04 1.22 0.482 0.270 0.388

Mean 180, ng / ml 0.02 1.59 1.62 1.51 1.17 0.500 0.331 0.301
IGF-1

Daily mean, ng / ml 13.63 13.68 13.13 12.52 1.12 0.722 0.303 0.868

Mean360, ng / ml -0.86 1.60 -1.35 0.01 2.10 0.555 0.999 0.936

M eanl80, ng / ml 0.08 2.69 -1.67 1.55 2.35 0.361 0.861 0.616

* The integrated response was calculated from the individual means after subtracting basal 
values (values at -15 minutes) in each animal. 
y Integrated response between 30 and 360 minutes after the infusions. 
z Integrated response between 30 and 180 minutes after the infusions.
3,15 Means within rows with different superscripts differ (P < 0.05).
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the infusions were significantly (P < 0.05) and linearly affected by the P-casomorphin 

infusions.

5.4. DISCUSSION

In both experiments, variation in the initial concentrations o f some hormones, 

especially GIP, made the interpretation o f the results difficult. A possible explanation of 

the initial differences may be the lack of control over the pattern o f eating during the 

experiment although the overall intake was relatively constant. In the case o f GIP, since the 

RIA method used in the experiment was an optimised method for sheep plasma samples, 

analytical insensitivity coupled with very low circulating concentrations o f GIP in lactating 

animals may have affected the reliability of the measurement.

Nevertheless, although the emerging picture from the results o f Experiment 1 was 

somewhat complicated, there were clear suggestions of differences in responses of some 

hormones, notably insulin and GIP, to the post-ruminal administrations o f the casein and 

the hydrolysate. Both infusates contained an equal amount o f total amino acids in which 

only the potential yield o f peptides during digestion was different (only approximately 15 

% of amino acids were in peptide form in the CAH treatments, based on amino acid 

analysis before and after complete hydrolysis in 6 M HC1 in this laboratory). Amino acids 

in peptide form are known to be taken up more rapidly in the small intestine than those in 

free amino acid form since peptides are transported by a single high capacity carrier with a 

broad specificity while free amino acids compete with each other for their specific carriers 

(Webb and Matthews, 1998). Therefore, the differences in the responses o f some hormones 

to casein and its acid hydrolysate could derive from differences in rates o f absorption in the 

small intestine. The significantly different responses of glucagon and GLP-1 to both CSN
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and CAH infusions at 6 hours compared with CON may be indications that the rate of 

amino acid absorption following the infusions may have contributed, at least in part, to the 

changes in some o f the circulating hormones.

Another possible explanation of the differences between the two infusates is the 

involvement o f p-casomorphins because the potential for production o f p-casomorphins 

during post-ruminal digestion is considered negligible for CAH. On this basis, furthermore, 

the higher level o f CSN would be expected to produce more p-casomorphins than the other 

treatments. In this connection, it is interesting to note that there were particularly marked 

responses of insulin and GIP to the higher levels of CSN. Effects of opioids on insulin 

secretion have been reported in simple-stomached animals (see below).

In Experiment 2, the three infusion levels were calculated based on results o f Brantl 

et a l (1979) and were equivalent to the amount expected to be produced from 

approximately 110, 220 and 440 g o f casein respectively which are very similar to the 

levels o f infusion used in the experiments of Choung and Chamberlain (1992c). The 

mixture of the three P-casomorphins used in the experiment was assumed to be 

representative of bioactive peptides produced during the digestion o f casein since P- 

casomorphin-5 and -7 were reported to be the two principal products o f the digestion of 

casein in the study o f Brantl et a l  (1979) and P-casomorphin-4-amide best describes the 

characteristics (p-ligand specific opioids) of the bioactivity of p-casomorphins (Henschen 

et al., 1979).

There are a number of reports on the actions o f exorphins and endogenous opioids 

on pancreatic endocrine responses. In general, the responses of circulating pancreatic 

hormones to the exorphins are stimulatory although some reports are contradictory. For 

example, both oral and intravenous p-casomorphins have been reported to augment insulin 

secretion that is prestimulated by amino acids and glucose infusions in dogs, but 

intravenous infusions of P-casomorphins failed to alter basal insulin secretion

125



(Schusdziarra et al., 1983a; Schusdziarra et al., 1983d). Furthermore, oral and intravenous 

gluten exorphins have also been shown to increase postprandial insulin and glucagon levels 

in rats (Fukudome et al., 1995) while there was no response o f insulin to gluten exorphins 

in a peptic hydrolysate o f gluten in humans (Morley et al., 1983). These results suggest 

that there may be species differences in the responses o f pancreatic hormones to exogenous 

opioids and also that metabolic status (e.g. blood glucose concentration) may be an 

important determinant of hormonal responses to opiates (Schusdziarra et al., 1984).

In the results o f Experiment 2, insulin did not respond to the increasing amounts of 

p-casomorphins. Insulin concentration is known to be lower and to be less sensitive to 

exogenous glucose in lactating animals compared with non-lactating or pregnant animals 

(Satin et al., 1985; Faulkner and Martin, 1999). Therefore, apart from the species 

difference mentioned above, the lack of insulin response to the P-casomorphins might have 

been because the animals used in the experiment were lactating. However, there were some 

suggestions of differences in insulin concentrations at individual time points and the 

directions of the differences were consistently inhibitory which is consistent with an 

involvement o f P-casomorphins in Experiment 1.

Glucagon, by contrast, was stimulated linearly by the infusions of the P- 

casomorphin mixtures (P < 0.05). This result is in line with an observation that glucagon 

concentration was significantly higher after post-ruminal administrations o f casein 

compared with an acid hydrolysate of casein similar to that used here (Choung and 

Chamberlain, 1998). The stimulation o f glucagon seen in Experiment 2 is also supported 

by other studies where administrations of exorphins and endogenous opioids stimulated 

glucagon in simple-stomached animals (Kanter et al., 1980; Ipp et al., 1982; Fukudome et 

al., 1995). Since it is expected that the stimulation of glucagon secretion would induce an 

increment in the rates of hepatic gluconeogenesis and glycogenolysis, availability of 

glucose would be increased, thus providing an adequate supply for lactose synthesis and
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milk production. Indeed, the opioid system has been reported to stimulate glucagon 

secretion, resulting in increased blood glucose level in men (Johansen et a l , 1992). In 

addition, although there was little difference in the insulin patterns among the treatments, 

the significant increases in the glucagon concentration led to a suggestion o f linear trends 

in effects on the insulin / glucagon molar ratios, in terms o f the integrated responses, which 

might also have a physiological importance in the alteration o f hepatic gluconeogenesis 

and nutrient partitioning during early lactation (Unger, 1972; Bassett, 1975).

There is very little information available on the influences o f the opioid system on 

secretion o f the other hormones monitored in this study. However, GH has been reported to 

be stimulated by administration o f morphine and DAMME (D-Ala2-MePhe4-Met- 

enkephalin-(O)-ol), a typical p-ligand opiate (Delitala et al., 1984). This may explain the 

early stimulation o f GH by the two higher levels of p-casomorphin observed in Experiment

2. One possible explanation for the lack o f the response in some hormones in Experiment 2 

may be the comparatively low dose levels o f P-casomorphins used in the experiment since 

some of the studies where clear hormonal responses by exorphins were demonstrated in 

simple stomached animals used dosage levels that were more than 100 to 1000 times 

higher (30 to 300 mg / kg body weight) than the dosage used in Experiment 2 

(approximately 0.2 to 0.8 mg / kg body weight).

Identifying possible underlying mechanisms from the results o f the two experiments 

is not easy especially since responses of some hormones to the casein and the P- 

casomorphin infusions were not clearly demonstrated. However, most effects of the casein 

and the P-casomorphin infusions seem to be compatible with an involvement of 

somatostatin. Somatostatin is known to play a vital role in regulating pancreatic secretion 

(see Yamada and Chiba, 1989; Chiba and Yamada, 1994 for review). It has been shown to 

inhibit insulin secretion through receptor linkage to a G j  protein (Fehmann and Habener, 

1992) and such inhibition has been demonstrated in vivo in humans (D’Alessio et a l,
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1989) and in sheep (Rose et al., 1996; Martin and Faulkner, 1996). Support for an 

involvement of somatostatin in the actions o f p-casomorphins comes from reports o f a 

stimulation o f somatostatin or SLI (somatostatin-like imunoreactivity) concentrations in 

simple-stomached animals by exorphins including p-casomorphins (e.g. Morley et al., 

1983; Schusdziarra et a l ,  1983b). Furthermore, p-casomorphins have been reported to bind 

to somatostatin receptors in human mammary cells (Hatzoglou et al., 1996), and 

endogenous opioids have been shown to play a role in the control o f the arginine 

vasopressin response to insulin-induced hypoglycemia by interacting with somatostatin in 

man (Chiodera and Coiro, 1991). Therefore, it is reasonable to hypothesise that the 

inhibitory responses of insulin and GIP in these experiments may derive from interactions 

between P-casomorphins and somatostatin.
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CHAPTER SIX

FU RTH ER IN VE STIG A TIO N S O F  THE E F F E C T O FPO ST-RU M IN AL IN FU SIO N  

O F  P-CASOM ORPHINS ON IN SU LIN  AN D  GLUCOSE L E V E L S  IN  D A IR Y  COWS 

A N D  TH E PO SSIBLE IN V O LVE M EN T O F SOM ATOSTATIN-28

6.1. INTRODUCTION

In the results o f experiments in Chapter 5, there were clear indications o f effects of 

post-ruminal casein and p-casomorphins on pancreatic hormones and, as discussed in that 

chapter, these changes could be mediated via somatostatin.

There are two major molecular forms o f somatostatin derived from the 

prosomatostatin molecule. Somatostatin-28 (SS-28), which is predominantly produced by 

and distributed in the small intestine, responds to intake o f food, particularly fat and 

protein (Chiba and Yamada, 1994) whereas somatostatin-14 is little affected by food intake 

(Ensinck et a l ,  1990; Greenberg, 1993). It is therefore believed that SS-28 plays an 

important endocrine role in the control o f metabolic hormones such as insulin in response 

to food ingestion and, indeed, inhibition of insulin secretion by SS-28 has been 

demonstrated both in simple-stomached animals (D’Alessio et a l, 1989) and in ruminant 

animals (Martin and Faulkner, 1996).

In the present chapter, as a further investigation of the role of p-casomorphins in the 

control of pancreatic hormones, four experiments were carried out. Experiment 1 was 

designed to identify the action of p-casomorphins on the secretion o f insulin induced by a 

post-ruminal glucose infusion and to determine whether their action is compatible with an 

involvement o f SS-28. Because of concern about twice daily feeding in the previous 

chapter, frequent feeding using an automatic feeder was introduced to lessen the effects of 

feeding on hormonal changes.
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As the inhibitory action o f P-casomorphins on insulin secretion was clearly 

demonstrated in non-lactating dairy cows in Experiment 1, the next step, in Experiment 2b, 

was to determine whether p-casomorphins would exert a similar action on the secretion of 

insulin in lactating cows. In addition, an attempt was also made to determine whether the 

results from previous experiments were due to the presence o f the ‘unnatural’ P- 

casomorphin-4-amide in the infused mixture o f P-casomorphins. Prior to the main 

experiment, Experiment 2a was carried out with lactating dairy cows as a preliminary 

experiment to ascertain optimum experimental conditions for the main experiment.

Finally, Experiment 3 was carried out to confirm the result o f Experiment 1, this 

time with intravenous glucose in order to maintain sustained levels o f plasma insulin, and 

to investigate a possible importance of the levels of glycaemia in the response o f insulin to 

the p-casomorphins.

6.2. MATERIALS AND METHODS

6.2.1. Experiment 1 

Animals

Four non-lactating Friesian cows o f average body weight 527 kg, fitted with 

permanent ruminal cannulas, were used in Experiment 1. The animals were individually 

housed in metabolism stalls and fed 30 kg / d grass silage plus 2 kg / d barley as a basal 

diet in eight equal meals at 07:00, 10:00, 13:00, 16:00, 19:00, 22:00, 01:00 and 03:00 h 

using an automatic feeder. Water was available 24 hours a day. The chemical composition 

of the silage used in the experiment is shown in table 6-1.
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Table 6-1. Chemical composition of silage and concentrates used in Experiments 1 and 3.

Determinant Experiment 1 Experiment 3

Silage Barley Silage Sugar beet 
cubes

Dry matter, g / kg 221 855 227 852

Organic matter, g / kg DM 914 977 918 883

PH 3.66 ND 3.96 ND

Total N, g / kg DM 22.3 18.5 26.3 18.4

True-protein N, g / kg N 217 ND 175 ND

NH3-N, g / kg N 138 ND 157 ND

Water soluble carbohydrate, g / kg DM 8 ND 21 ND

Lactic acid, g / kg DM 124 ND 72 ND

Ethanol, g / kg DM 13 ND 3 ND

VFA
Acetic acid 27 ND 24 ND

Propionic acid 0 ND 1 ND

Iso-butyric acid 0 ND 0 ND

Butyric acid 0 ND 0 ND

NDF, g / kg DM 541 292 514 350

ADF, g /kg DM 347 56 341 217

Starch, g / kg DM ND 679 ND 6

Sugar, g / kg DM ND 18 ND 226

ND: not determined
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Experimental procedures

At least 7 days were given to all animals to adapt to the experimental environment 

before the start o f the experiment. On the day prior to the beginning o f the experiment, 

abomasal infusion lines and jugular catheters were inserted at least 18 hours before the 

beginning o f the infusion as described previously.

The experiment was designed as a 4 x 4 non-randomised block with a fixed 

treatment sequence, but individual cows did not receive any given treatments on the same 

day. Each animal served as its own control. The experimental treatments in the order in 

which they were applied were the basal diet alone (Control) and the basal diet plus 

abomasal infusion of 100 g of glucose dissolved in 1 L o f distilled water at a rate o f 6.67 g 

glucose / min (Glucose) with and without either intravenous infusion of SS-28 at a rate of 

52 pg / kg BW / min (Glucose + SS) or abomasal infusion of a bolus of 240 mg P- 

casomorphin mixture containing 80 mg of each o f the three P-casomorphins (Glucose + 

CMx). The glucose was infused for 15 minutes using a peristaltic pump starting at 16:00 h 

and the SS-28 was infused for 15 minutes using a syringe pump at 16:00 h. The P- 

casomorphins were dissolved in 25 ml o f water and were infused as a bolus using a 50 ml 

syringe at 16:00 h. For the analysis of insulin and glucose, samples o f blood were obtained 

from the jugular catheter at 15-minute intervals from 15:15 to 19:00 h.

Statistical analysis

Since no period effect was expected owing to the very short periods (total 

experimental period o f no longer than 13 days for each animal) period effect was ignored. 

The data were summarised as integrated responses during the first 90 and 180 minutes, and 

ANOVA was performed using Genstat 5 on the summary to determine statistically 

significant effects of treatment. Data are given as means with SED and differences were 

deemed statistically significant when P < 0.05.

132



6.2.2. Experiment 2a 

Animals

Three lactating Friesian cows in weeks 12 to 17 of lactation, o f average body 

weight 557 kg, fitted with permanent ruminal cannulas, were used in Experiment 2a. The 

animals were individually housed in metabolism stalls and offered 60 kg / d silage plus 6 

kg / d barley as a basal diet. The animals were fed equal meals twice daily at 08:00 and 

15:00 h and given free access to water. During a 14-day adaptation period silage intakes 

were recorded and the amount offered to individual animals (ranging between 45 and 50 

kg / d) was adjusted in order to make the consumption complete. Consumption of the 

concentrate was complete on all occasions throughout the experiment. The chemical 

composition o f the dietary ingredients is shown in table 6-2.

Experimental procedures

All animals received the basal diet for at least 14 days before the start o f the 

experiment. Abomasal infusion lines and jugular catheters were inserted as in Experiment 

1 at least 24 hours before the start o f the infusions. The animals received two treatments as 

a simple replicated design with three-day periods. The experimental treatments were basal 

diet only (control) and basal diet plus 200 g / d abomasal glucose (glucose). The glucose 

was dissolved in 1 L of distilled water and was infused at a rate o f 13.3 g glucose / min 

starting at 15:00 h. Blood samples were obtained from the jugular catheter at 15-minute 

intervals from 14:15 to 18:00 h.

Statistical analysis

The data were summarised as for Experiment 1 except that only one integrated 

response during the period between 15 and 180 minutes was used. The results were
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subjected to ANOVA using Genstat 5 and comparisons between the treatments were 

performed as for Experiment 1.

6.2.3. Experiment 2b 

Animals

Four lactating Friesian cows in weeks 20 to 26 o f lactation, o f average body weight 

568 kg, fitted with permanent ruminal cannulas, were used in Experiment 2b. The animals 

were housed and fed as for Experiment 2a. The chemical composition o f the dietary 

ingredients is shown in table 6-2.

Experimental procedures

All experimental procedures were as for Experiment 2a except that there were two 

more treatments in addition to Control and Glucose. They were basal diet plus the 

abomasal glucose with either 240 mg of the mixture o f three P-casomorphins (Glucose + 

CMx) or 80 mg o f p-casomorphin-4-amide (Glucose + CM4a). The animals were allocated 

according to a 4 x 4 Latin square design with four, three-day periods and the four 

treatments. Blood samples were obtained from the jugular catheter as for Experiment 2a.

Statistical analysis

The results were subjected to ANOVA using Genstat 5 and comparisons between 

individual treatments were performed on summarised data as for Experiment 1 except that 

integrated responses were divided into three phases, during the periods between 15 and 60, 

75 and 180 and 15 and 180 minutes.
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Table 6-2. Chemical composition of silage and concentrates used in Experiments 2a and 2b.

Determinant Silage 

Exp. 2a Exp. 2b
Barley

Dry matter, g / kg 247 239 841

Organic matter, g / kg DM 924 921 978

pH 3.48 3.60 ND

Total N, g / kg DM 17.7 19.7 19.4

True-protein N, g / kg N 212 214 ND

NH3-N, g / kg N 127 123 ND

Water soluble carbohydrate, g / kg DM 8 8 ND

Lactic acid, g / kg DM 124 126 ND

Ethanol, g / kg DM 13 12 ND

VFA

Acetic acid 20 16 ND

Propionic acid 1 0 ND

Iso-butyric acid 0 0 ND

Butyric acid 1 1 ND

NDF, g / kg DM 564 542 236

ADF, g /kg DM 364 467 57

Starch, g / kg DM ND ND 622

Sugar, g / kg DM ND ND 19

ND: not determined
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6.2.4. Experiment 3 

Animals

Five non-lactating Friesian cows of average body weight 579 kg, fitted with 

permanent ruminal cannulas, were used in Experiment 3. The animals were individually 

housed in metabolism stalls and fed 20 kg / d grass silage plus 5 kg / d sugar beet cubes as 

a basal diet in eight equal meals using an automatic feeder as for Experiment 1. Water was 

available 24 hours a day. The chemical composition o f the silage used in the experiment is 

shown in table 6-1.

Experimental procedures

At least 14 days were given to all animals to adapt to the experimental environment 

before the start o f the experiment. On the day prior to the beginning o f the experiment, 

abomasal infusion lines and jugular catheters were inserted at least 24 hours before the 

beginning o f the infusion as described previously.

The animals were allocated according to a 5 x 5 Latin square design with five, 3- 

day periods and five treatments. The experimental treatments were the basal diet alone 

(Control) and the basal diet plus bolus intravenous infusion of glucose (36 mg / kg BW) 

followed by continuous intravenous infusion of glucose at a rate of 1 mg / kg BW / min (G 

I) with and without an abomasal bolus infusion o f 240 mg P-casomorphin mixture 

containing 80 mg of each o f the three P-casomorphins (G I + CMx) and the basal diet plus 

bolus intravenous infusion o f glucose (72 mg / kg BW) followed by continuous 

intravenous infusion of glucose at a rate of 2 mg / kg B W / min (G II) with and without the 

abomasal infusion of the P-casomorphin mixture (G II + CMx). For the bolus glucose 

infusion, the glucose was dissolved in 30 ml saline and infused at 16:00 h using a 50 ml 

syringe. For the continuous infusion treatments, glucose was infused using a syringe pump 

starting at 16:15 h for 3 hours and the p-casomorphins were injected as in Experiment 1 at
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16:00 h. Since only one jugular vein was used, continuous glucose infusion was stopped 

every 15 minutes, starting at 10 minutes after the start o f the infusions, for 5 minutes in 

which time samples of blood were obtained from the jugular catheter for the analysis of 

insulin and glucose as in Experiment 1.

Statistical analysis

The data were summarised as integrated responses as for Experiment 1 and 

subjected to ANOVA using Genstat 5.

6.3. RESULTS

6.3.1. Experiment 1

The results o f Experiment 1 are shown in figure 6-1 and 6-2 and summarised in 

table 6-3. Figure 6-1 shows the changes of plasma insulin concentrations during the 

sampling period. Insulin responded quickly to abomasal glucose starting to rise from just 

15 minutes after the infusion and reached its peak between 30 and 45 minutes, after which 

the insulin concentration started to decrease gradually to the starting values. The integrated 

response o f insulin during the first 90 minutes to the infusion o f glucose was significantly 

reduced when P-casomorphin or SS-28 was co-administered but the effect was not 

significant when total responses were compared (table 6-3).

The glucose concentrations of all treatments with the glucose infusion were 

significantly higher than that o f Control but there were no statistically significant 

differences between the treatments (table 6-3).

137



3.0
Control

Glucose
Glucose + SS 
Glucose + CMx

2.5

2.0E
o>c
c
o

ca>oc
oo
c
13
(0c

0.5

i------------------------------------------------------— i------------------------------------------------------------1----------------------------------------------------------- 1------------------------------------------------------------ 1------------------------------------------------------------1

-45 0 45 90 135 180

Time after infusion (min)

Figure 6-1. Effects o f intra-abomasal infusions of glucose, glucose + a mixture of P- 

casomorphins (glucose + CMx) and glucose + intravenous somatostatin-28 (glucose + SS) 

on plasma concentrations of insulin (ng / ml) in non-lactating dairy cows. Values are 

means of four cows. For clarity SEM is not indicated.
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Figure 6-2. Effects of intra-abomasal infusions of glucose, glucose + a mixture of p~ 

casomorphin (glucose + CMx) and glucose + intravenous somatostatin-28 (glucose + SS) 

on plasma concentrations o f glucose (mg / L) in non-lactating dairy cows. Values are 

means of four cows. For clarity SEM is not indicated.
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Table 6-3. Integrated responsesx of insulin and glucose to intra-abomasal infusions of

glucose with and without intra-abomasal p-casomorphin mixtures or intravenous

somatostatin-28 in non-lactating dairy cows.

Item Control
alone

Intra-abomasal glucose ------

plus plus 
somatostatin-28 P-casomorphin

SED

Insulin

Responsey, ng / ml 0.21 l a 1.208b 0.337a 0.576a 0.242

Total2, ng / ml 0.046a 0.621b 0.286ab 0.446b 0.151

Glucose

Responsey, mg / L -9a 70b 91b 93b 31

Total2, mg / L -3a 60ab 74b 64ab 30

x The integrated response was calculated from the individual means after subtracting basal 

values (means o f values between -45 and 0 minutes) in each animal. 

y Integrated response between 15 and 90 minutes for insulin, 30 and 135 for glucose.

2 Integrated response between 15 and 180 minutes.

3,6 Means within rows with different superscripts differ (P < 0.05).
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6.3.2. Experiment 2a

Changes in plasma concentrations o f insulin and glucose in response to the 

abomasal glucose infusion are shown in figure 6-3 and 6-4 respectively. The insulin 

concentration rose progressively just 15 minutes after the infusion and reached its peak at 

approximately 90 minutes. However, there was no significant difference between the 

treatments in the patterns o f change in glucose concentrations, although the glucose 

concentrations in response to the glucose infusion appeared to be higher compared with 

Control during the period between 45 and 105 minutes. The failure to reach significance 

in glucose response was only due to one cow that did not show any difference between the 

treatments. Table 6-4 shows the difference in the integrated responses o f insulin and 

glucose to the glucose infusion in which only the insulin response was significantly 

increased by the glucose infusion.

6.3.3. Experiment 2b

Changes in the patterns of plasma insulin secretion and glucose concentration are 

shown in figure 6-5 and 6-6 respectively. Table 6-5 summarises the results in terms of the 

integrated responses during the time periods o f 15 to 60, 75 to 180 and 15 to 180 minutes.

In the integrated responses of glucose during all time periods and of insulin during 

the time periods of 75 to 180 and 15 to 180 minutes, all treatments with glucose infusions 

resulted in significantly higher insulin and glucose concentrations compared with the 

control treatment but there were no differences among the treatments with the glucose 

infusion. However, the integrated response of insulin to Glucose during the period o f initial 

increase (15 to 60 minutes) was not significantly different from Control whereas the 

responses to both Glucose + CMx and Glucose + CM4a were significantly higher than 

Control. Over this period, the insulin response to the additional infusion o f p-casomorphin-
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Figure 6-3. Effects of intra-abomasal infusions of glucose on plasma concentrations of 

insulin (ng / ml) in lactating dairy cows. Values are means of three cows with vertical bars 

indicating SEM.

142



900

800

O)

600

Control500

Glucose

-45 0 45 90 135 180

Time after infusion (min)

Figure 6-4. Effects o f intra-abomasal infusion of glucose on plasma concentrations of 

glucose (mg / L) in lactating dairy cows. Values are means of three cows with vertical bars 

indicating SEM.
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Table 6-4. Integrated responses* of insulin and glucose to intra-abomasal infusions of

glucose in lactating dairy cows.

Item Control Glucose SED P value

Insulin, ng / ml 0.29 1.00 0.08 0.013

Glucose, mg / L -56.1 16.3 40.2 0.214

* The integrated response was calculated from the individual values after subtracting basal 

values (means o f values between -45 and 0 minutes) in each animal and taking means over 

the sampling period between 15 and 180 minutes.
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Figure 6-5. Effects o f intra-abomasal infusions of glucose with and without a mixture of (3- 

casomorphins (glucose + CMx) or P-casomorphin-4-amide (glucose + CM4a) on plasma 

concentrations of insulin (ng / ml) in lactating dairy cows. Values are means o f four cows. 

For clarity SEM is not indicated.
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Figure 6-6. Effects of intra-abomasal infusions of glucose with and without a mixture of p- 

casomorphins (glucose + CMx) or P-casomorphin-4-amide (glucose + CM4a) on plasma 

concentrations of glucose (mg / L) in lactating dairy cows. Values are means of four cows. 

For clarity SEM is not indicated.
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Table 6-5. Integrated responses* of insulin and glucose to intra-abomasal infusions of

glucose with and without intra-abomasal infusion of a mixture of P-casomorphins or P-

casomorphin-4-amide in lactating dairy cows.

Item Control
alone

Intra-abomasal glucose ------
plus plus 

P-casomorphin P-casomorphin 
mixture -4-amide

SED

Insulin

15-60 min, ng / ml 0.38a 0.65ab 0.85bc 1.10c 0.178

75-180 min, ng / ml 0.32a 1,35b 1.32b 1.43b 0.314

15-180 min, ng / ml 0.34a 1.12b 1.16b 1.32b 0.228

Glucose

15-60 min, mg / L -37a 50b 103b 55b 31.9

75-180 min, mg / L -57a 79b 43b 56b 38.5

15-180 min, mg / L -50a 69b 63b 55b 33.9

The integrated response was calculated from the individual means after subtracting basal 

values (means o f values between -45 and 0 minutes) in each animal during the given time 

periods.

a,b,c Means within rows with different superscripts differ (P < 0.05).
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4-amide, but not P-casomorphin mixture, was significantly higher than to the infusion of 

glucose alone.

6.3.4. Experiment 3

Figure 6-7 and 6-8 show the results o f insulin and glucose respectively and table 6-6 

summarises the results. There were rapid and proportionate increases in plasma 

concentrations o f insulin and glucose in response to the two levels o f intravenous glucose 

infusions. During the first 90 minutes, the insulin response to the higher level o f glucose 

infusion was significantly inhibited by the concomitant intra-abomasal infusion of the p- 

casomorphin mixture but the inhibitory action was not evident when the lower level of 

glucose was infused (table 6-6).

The integrated responses o f plasma glucose to the intravenous glucose infusions 

were clearly increased proportionately but the differences in the responses to the different 

glucose levels were less evident compared with the insulin response. There was no effect 

of the p-casomorphins at either level o f glucose infusion although the plasma glucose 

responses to the glucose infusions were generally higher when accompanied by the 

abomasal p-casomorphin mixture compared with those to the glucose alone especially 

during the later period (90 to 180 minutes).

6.4. DISCUSSION

The results o f Experiment 1 clearly demonstrate that post-ruminal administration of 

the p-casomorphin mixture can significantly suppress the insulin rise in response to post- 

ruminal glucose infusion. Furthermore, the inhibitory action of the P-casomorphin is 

compatible with the action of SS-28 as judged from its effects on the insulin secretion 

when administered intravenously. The insulinopenic action o f P-casomorphin is further
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Figure 6-7. Effects o f intra-abomasal infusions of a mixture of P-casomorphins (CMx) on 

plasma concentrations of insulin (ng / ml) prestimulated by two levels o f intravenous 

glucose (G I and G II) in non-lactating dairy cows. Values are means of five cows with 

vertical bars indicating SEM.
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Figure 6-8. Effects of intra-abomasal infusions of a mixture o f P-casomorphins (CMx) on 

plasma concentrations of glucose (mg / L) prestimulated by two levels o f intravenous 

glucose (G I and G II) in non-lactating dairy cows. Values are means o f five cows with 

vertical bars indicating SEM.
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Table 6-6. Integrated responses*of insulin and glucose to two levels of intra-abomasal

infusions of glucose with and without intra-abomasal P-casomorphin mixtures (p-CMx) in

non-lactating dairy cows.

Item Control
-----Glucose I ------

, plus 
810116 p-CMx

-----Glucose I I ------

, plus 
alone p-CMx

SED

Insulin

15-90, ng / ml 0.12a 0.72b 0.80b 1.64d 1.20° 0.147

90-180, ng / ml 0.02a 0.46b 0.53b 1.44c 1.25c 0.154

15-180, ng / ml 0.07a 0.59b 0.67b 1.55° 1.26ct 0.140

Glucose

15-90, mg / L 18a 133b 162b 297° 310° 38.9

90-180, mg / L I T 99a 154ab 257bc 348° 55.4

15-180, mg / L 24a 116ab 153b 277° 327° 42.9

* The integrated response was calculated from the individual means after subtracting basal 

values (means o f values between -45 and 0 minutes) in each animal during the given time 

periods.

a,b,c,d Means within rows with different superscripts differ (P < 0.05).

 ̂Tend to differ from Glucose II alone (0.05 < P < 0.1)
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confirmed by the results o f Experiment 3 where insulin was prestimulated by a 

combination of bolus and continuous intravenous infusion o f glucose. These results are in 

agreement with the results for insulin in Chapter 5 in which inhibition o f insulin 

concentration by post-ruminal casein and P-casomorphin mixtures was indicated.

Although there are a limited number o f reports available, previously reported 

actions of p-casomorphin on insulin are mainly stimulatory. In dogs, both oral 

(Schusdziarra et al., 1983d) and intravenous (Schusdziarra et al., 1983a) administrations of 

various p-casomorphins augmented postprandial insulin rises prestimulated by a liver 

extract-sucrose test meal and intravenous glucose plus an amino acid mixture respectively. 

In rats, additions of P-casomorphin-4-amide or P-casomorphin-3-pyrrolidide, an analogue 

of p-casomorphin, in a diet containing wheat gluten also resulted in a stimulation of insulin 

(Brust et a l ,  1991). Furthermore, a stimulation of insulin secretion by P-casomorphins was 

demonstrated in an in vitro study using isolated islets o f Langerhans (Nieter et a l ,  1981). 

A strong support for the insulinotropic actions of p-casomorphins is a widely accepted 

hypothesis that the p-opioid receptor subtype is responsible for the stimulation o f insulin 

secretion and the 8-opioid receptor subtype for the inhibition of insulin (Schusdziarra et 

a l,  1983a; Schick and Schusdziarra, 1985). Indeed, p-agonists such as morphine (Kanter 

et a l ,  1980) and DAMME (Pierluissi et a l,  1981) stimulated insulin release from 

pancreatic islet cell cultures, while leucine-enkephalin (Lord et a l , 1977; Kanter et a l, 

1980), a 8-agonist, inhibited it. Thus the results in Experiment 1 and 3, considering that P- 

casomorphin is a relatively more potent agonist of the p-opioid receptor type, may appear 

to be ‘unexpected’.

However, there are also several reasons why the results o f Experiment 1 and 3 may 

not be surprising. Firstly, there is evidence against the hypothesis o f p-opioid agonism and 

8-opioid antagonism of insulin (Green et a l,  1983; Rudman et a l,  1983; Sullivan et a l, 

1986). For example, Sullivan et a l  (1986) reported that, in humans, intravenous morphine
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infusion had no effect on plasma insulin when glucose was given intravenously while 

plasma concentrations o f insulin were significantly decreased by the morphine when 

glucose was given by either oral or intraduodenal administrations. They suggested that the 

inhibition o f insulin by morphine might be due to the inhibitory action o f morphine on 

gastric emptying and intestinal motility, thus delaying the entry o f the oral or intraduodenal 

glucose to the circulation.

Secondly, the insulinotrophic action o f P-casomorphins, reported in the study of 

Schusdziarra et al. (1983a), does not obey the p-opioid agonism rule since p-casomorphin- 

4-amide, the most potent and highly specific p-agonist, did not stimulate insulin release 

whereas the infusion o f P-casomorphin-4, an opioid peptide with about 40 times less 

potency than morphine, resulted in the greatest potentiation of insulin release (290 % 

higher than that o f morphine), and the virtually opioid inactive p-casomorphin-3 was the 

second highest stimulant among the p-casomorphins used in the study. These results 

indicate that the action o f p-casomorphins on insulin release reported in that study may not 

be mediated via binding with traditional p-opioid receptors or, at least, there may be other 

system(s) or receptor type(s) involved in the process.

Thirdly, both the concentration o f opioids applied and the dose-level o f glucose in 

the experiments contribute significantly to the responses of insulin to the opioids. It is 

well-recognised that different concentrations o f opioids can produce completely different 

metabolic and physiological responses including effects on plasma insulin and glucose 

concentrations (Green et al., 1980; Nieter et al., 1981; Ipp et al., 1982; Johansen et al., 

1994). Indeed, this dose-dependent opioid effect applies to the actions of p-casomorphins 

on insulin secretion (Schusdziarra et al., 1983a). Furthermore, the background 

concentration of glucose in plasma (in vivo) or in the incubation medium (in vitro) also 

seems to be an important factor affecting insulin responses to opioids since some studies 

reported lack of effects or even completely opposite effects of opioids (including p-
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casomorphin) on insulin release in the presence of different glucose concentrations (Nieter 

et al., 1981; Pierluissi et al., 1981; Schusdziarra et a l , 1983a). A particularly interesting 

finding in this respect is that both P-casomorphin-4-amide and -5 stimulated insulin release 

by isolated islets o f Langerhans o f Wistar rats when the glucose concentration in the 

incubation medium was low (1.5 mmol / L glucose) whereas, at higher glucose 

concentrations (6 and 15 mmol / L glucose), insulin release was significantly inhibited by 

both peptides (Zuhlke et al., 1994). In the same study, various concentrations (ranging 

between 10'4 and 10'8 M) of both P-casomorphin-3-Npyr and -4 significantly stimulated 

insulin biosynthesis in the isolated islets of Langerhans at low glucose concentrations (1.5 

and 6 mmol / L) while, at 15 mmol / L glucose, the biosynthesis was inhibited by the 

peptides. These results are in accordance with the results o f Experiment 3 where the 

inhibitory action o f the P-casomorphin mixture on insulin was only evident when glucose 

was infused at the higher rate (plasma glucose concentrations at approximately 5 - 5 . 5  

mmol / L) and the p-casomorphins had no effect on insulin at the lower glucose infusion 

(plasma glucose at approximately 4 - 4.5 mmol / L).

Finally, in addition to the complications mentioned above, as discussed in Chapter 

5, species differences could also be responsible for the apparently conflicting results of the 

effect o f P-casomorphins on insulin secretion. There is only one report concerning the 

possible involvement o f the opioid system in the control of insulin release in ruminant 

animals. Froetschel et al. (1997) observed a decrease in the postprandial rise in insulin 

concentration after an abomasal infusion of naltrexone, an opioid blocker, in steers 

receiving a diet high in ruminally undegradable protein (RUP) and they speculated that the 

presence of opioid peptides in blood meal (hemorphin) incorporated in the RUP 

supplement fed in the study may have been responsible for the rise in insulin that was 

inhibited by the naltrexone. However, although interesting, this result is probably not 

relevant to the results of Experiments 1 and 3, since the opioid peptide concerned in the
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study is different from that of the present study. Besides, naltrexone can influence the 

actions o f endogenous opioids as well as exogenous ones, so complicating the 

interpretation o f the findings.

The mechanism by which opioids modulate insulin release is not clear although 

some possible mechanisms have been postulated. These include direct action on B cells in 

islets o f Langerhans (Rudman et a l,  1983); direct or indirect mediation by somatostatin 

(Ipp et a l ,  1978; Schusdziarra et a l,  1984); involvement o f the central nervous 

acetylcholinergic system (Salazar and Zuhlke, 1990); glucagon-induced changes in plasma 

glucose concentration (Schusdziarra et a l ,  1984); and secondary mediation through 

inhibition o f gut motility (Sullivan et a l,  1986). Since the inhibitory action o f exogenous 

opioids on gut motility is well known, the decrease in insulin response to the abomasal 

glucose by the p-casomorphin mixture in Experiment 1 might have been due to the slow 

absorption o f the glucose secondary to the inhibitory effect on motility. However, this 

possibility can probably be ruled out because there was no difference in the glucose 

concentrations between the treatments with or without the p-casomorphins in Experiment 1 

and, what is more, the inhibitory action of the p-casomorphins was still evident when 

glucose was administered intravenously in Experiment 3.

Among the mechanisms, hormonal or neuronal mediation by somatostatin has 

received most attention as a predominant underlying mechanism for the opioid effects on 

insulin and glucose, especially when opioids are administered orally or direct into the gut. 

Contrary to the mechanism of effects on insulin, a rule o f ‘p-opioid antagonism and 8- 

opioid agonism’ seems to apply to somatostatin control by opioids (Hermansen, 1983; 

McIntosh et a l ,  1990). Although this hypothesis is still controversial because of some 

exceptions (see Schick and Schusdziarra, 1985), it does fit in the case o f the only available 

evidence of action of P-casomorphin on somatostatin release. In an in vivo study using 

conscious dogs, Schusdziarra et a l (1983b) reported that orally administered p-
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casomorphins augmented the postprandial rise o f peripheral vein plasma SLI levels 

significantly and the effect was inhibited by the administration o f naloxone. This 

observation is particularly relevant to the present study because the administration method, 

the amount o f the P-casomorphins (12 mg per dog weighing 24 - 36 kg) and the 

composition o f the mixture of p-casomorphins (p-casomorphin-4, -4-amide, -5 and -7) 

were very similar to those used in the present study. Therefore, since SS-28 is largely 

responsible for the postprandial SLI (Chiba and Yamada, 1994), the inhibitory action of 

the p-casomorphins on insulin release observed in Experiments 1 and 3 could well be 

mediated by the stimulation o f SS-28 released by the proximal intestinal epithelial cells.

On the other hand, in Experiment 2b where lactating cows were used, there was no 

effect o f the mixture o f P-casomorphins on the insulin response while the co­

administration o f p-casomorphin-4-amide resulted in an increase in insulin response to the 

glucose during the period o f initial rise. This suggests that there may be different 

mechanism(s) involved in the control of metabolic hormones by opioids in lactating 

animals (see previous chapter). The stimulatory effect o f p-casomorphin-4-amide alone, 

but not the mixture, on insulin secretion may be an indication of different actions by the 

different P-casomorphins used in the study although it would be necessary to carry out 

more investigations before drawing any conclusion. It is noteworthy that information on 

glucagon responses to the P-casomorphins in Experiment 2 would have been useful since 

there was a clear indication o f stimulatory action by the peptides on glucagon in 

Experiment 2 of Chapter 5 where lactating animals were used.
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CHAPTER SEVEN

GENERAL D ISCU SSIO N

The results o f the experiments have been discussed in detail in their respective 

chapters but there remains a need for a more general, integrated discussion.

The starting point for this thesis was that positive milk production responses to 

abomasal infusions o f casein could not be explained solely by traditional interpretations 

based on the supply and demand for amino acids for milk protein synthesis. The inability 

to account completely for the superiority of casein over soya protein is well represented by 

figure 7-1 where approximately 35 % of the difference in response to the two proteins, 

casein and SPI, remained unaccounted for even after additions o f amino acids to the SPI to 

make it equivalent to casein in terms of total amino acid content, total essential amino acid 

content and balance o f the essential amino acids.

In investigating actions of p-casomorphin in dairy cows, as one o f the possible 

explanations o f the superiority of casein, certain assumptions had to be made mainly 

because o f the lack o f information on their actions in ruminants. For example, selection of 

individual p-casomorphins was based on the production o f the peptides during digestion in 

vitro (Brantl et al., 1979; Teschemacher et al., 1980; Chang, et al., 1985). However, there 

are two potential problems in the selection o f the peptides. Firstly, although post-ruminal 

protease activities o f ruminants are believed to be similar to gastric and intestinal protease 

activities of simple-stomached animals (see Chapter 1), the profile of P-casomorphins 

produced during post-ruminal digestion in dairy cows may be different from that observed 

in simple-stomached animals. Secondly, errors are possible in extrapolating from the in 

vitro data because variations in the production of P-casomorphins were found depending 

on the source o f casein, the incubation method and the species used. Therefore, it should be 

recognised that, in vivo, the variety of P-casomorphins released in dairy cows may not
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Casein

TAA TEAA
balance

Figure 7-1. Effects of addition of amino acids to abomasal infusions of soya protein isolate 

(SPI) to make them equivalent to casein, in terms of total amino acid content (TAA), total 

essential amino acid content (TEAA) and balance of the total essential amino acids (TEAA 

balance), on the response of milk protein yield in dairy cows. Values are expressed relative 

to the response to infusion of casein which is 1.00 (Calculated from Choung and 

Chamberlain, 1992a).
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accurately reflect those used in the experiments in this thesis. Furthermore, it has to be 

remembered that P-casomorphin-4-amide included in the mixture o f P-casomorphins is 

unlikely to be natural, although it has been suggested that it might be produced naturally 

(Chang et al., 1985). In addition to the difficulties associated with the uncertainty over the 

selection of the peptides, the dose levels o f p-casomorphins used in the study could also be 

different in vivo because they were also calculated by extrapolating from observations 

made in vitro and in vivo in simple-stomached animals; the only data available in vivo 

reports ‘p-casomorphin immuno reactive materials’ rather than individual peptides.

The selection o f the peptides and their dose levels becomes even more complex 

when the full spectrum of bioactive peptides from casein is considered. As shown in table 

1-4 in Chapter 1, there are a number of peptides derived from casein that possess 

biological activities, some o f them with opioid antagonism. Therefore, potential 

interactions o f p-casomorphins with other bioactive peptides that might have opioid or 

non-opioid effects cannot be ruled out. However, although it was fully recognised that the 

selection of the peptides and their dose levels in the present study would, inevitably, be an 

oversimplification, a decision had to be made because o f practical constraints. The type 

and doses o f p-casomorphins selected were judged to be the best approximation to a 

representative mixture, as discussed in Chapter 6.

The investigations in this thesis were mainly focused on the effects o f abomasal 

infusions o f P-casomorphins on hormonal changes over a short period o f time (3 to 7 

hours) after the infusions. Although it was also recognised from the beginning o f the study 

that p-casomorphins may have effects on gut motility (Kil and Froeschel, 1994), this issue 

was not dealt with in this thesis. In passing, it is worth noting that abomasal infusion of 

casein is often associated with increases o f food intake and it is difficult to reconcile such 

effects with the reported increase of gut transit time by P-casomorphins in simple- 

stomached animals. However, there is a more practical reason why the investigations had
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to be limited to short term observations rather than longer-term effects (e.g. milk yield, 

milk composition). The p-casomorphins used in the in vivo experiments o f Chapters 5 and 

6 alone amount to eight grams. To synthesise this quantity of peptides takes more than a 

month o f exclusive use o f a peptide synthesiser. For milk production trials, the total 

amount o f the peptides required would be at least 10 times greater.

The results of experiments in Chapter 6 showed obvious differences between 

lactating and non-lactating cows in their responses o f insulin to the abomasal infusion of p- 

casomorphins. Meeting the nutrient requirements o f lactation necessitates various 

metabolic adaptations including increase in feed intake (Service et al., 1983) and blood 

flow (Miller et a l , 1991), changes in concentrations o f circulating metabolic hormones 

(Vernon et a l , 1981), sensitivity o f hormonal response to substrates (Vernon et a l , 1990; 

Faulkner and Martin, 1999) and tissue responsiveness to hormones (Vernon et a l , 1981; 

Vernon and Taylor, 1988). Among these changes, decreased sensitivity o f insulin to 

exogenous glucose in lactating animals is now well established (Faulkner and Martin, 

1999) and this decrease appears to be evident in the observations made in the experiments 

of Chapter 6 where the average peak insulin response to the 100 g o f abomasal glucose in 

non-lactating dairy cows was 2.86 ng / ml but, in lactating cows, it was only 2.23 ng / ml to 

the 200 g of abomasal glucose. It is tempting to suggest that the lack o f insulin response to 

the p-casomorphins in lactating animals is due to the decreased sensitivity of insulin to its 

triggers. This might reflect also a reduced sensitivity of insulin to P-casomorphin’s action 

in lactating cows which might have made the dose level (240 mg) of the administrated p- 

casomorphins in Experiment 2b of Chapter 6 too low. In any case, the failure to clearly 

demonstrate effects of p-casomorphins on insulin in lactating cows together with the short­

term nature of the experiments makes it difficult to directly relate the observations in the 

present study to results of production experiments, and consequently, the present results do 

not provide an adequate test of the original hypothesis.
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Nevertheless, in spite of these possible difficulties in the interpretation of the 

results, the reproducible insulinopenic action of the abomasal P-casomorphins in the non- 

lactating dairy cows, as demonstrated by Experiments 1 and 3 in Chapter 6, implies that 

casein-derived bioactive peptides can influence hormone levels in dairy cows. Such 

effects, if  they occur in lactating cows, might be expected to result in a repartitioning of 

nutrient use between non-mammary and mammary tissues, which is often observed 

following post-ruminal casein infusions (see Chapter 1). Moreover, the directions of the 

observed changes in concentrations o f various hormones (e.g. inhibition o f insulin and 

stimulation of glucagon and GH) following the abomasal infusion o f P-casomorphins are 

generally in line with the hormonal changes that would be expected to benefit milk 

synthesis by the mammary gland (see Chapter 1). This warrants more detailed 

investigation o f their actions in controlling metabolic hormones, especially GH and 

glucagon. In addition, because the ruminant absorbs only small amounts o f glucose from 

the small intestine (Merchen, 1988) and propionate is the principal glucogenic nutrient 

absorbed by ruminant animals (Thomas and Rook, 1983), it would be interesting to see 

whether the inhibitory action of p-casomorphins occurs when the insulin is augmented by 

pretreatment with propionate or even amino acids.

Although a likely mechanism underlying the insulinopenic effect of the abomasal 

infusion of the p-casomorphins seems to be mediation by SS-28, presumably via 

interactions with the SS-28 secretory cells in the small intestine as discussed in Chapter 5, 

the site o f the action of P-casomorphins is still not clear. Indeed, even their ability to pass 

through the intestinal barrier remains debatable. In view of this, demonstration of 

hormonal responses to intravenously administered p-casomorphins might provide further 

information on the underlying mechanism. Alternatively, in vitro approaches using isolated 

bovine islets o f Langerhans and various preparations o f intestinal tissues could enable 

more intensive investigations on the mechanism of the action of P-casomorphins.
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It should be recognised that, at this stage, any implications that can be drawn from 

the results o f the present study must be speculative. If the insulinopenic action of p- 

casomorphins in non-lactating dairy cows were to be confirmed in lactating dairy cows, 

this would highlight a potential use of the peptides as possible production enhancers in 

dairy cows, although further extensive experimentation would be needed to identify the 

nutritional and physiological circumstances in which their use would be beneficial. For this 

purpose, development o f easy and effective methods o f administering the peptides would 

be an essential step. An example of such a method could be the preparation o f ‘capped N- 

acetyl P-casomorphins’. Although N-terminal acetylation could be used as a simple and 

effective method to protect the peptides from the hydrolysis in the rumen, their release in 

active form in the small intestine cannot be assured. It would, therefore, be necessary to 

introduce a ‘capped design’ in combination with the acetylation so that the active p- 

casomorphins can be delivered by simply adding the modified peptides in the diet of 

ruminant animals (figure 7-2). If this approach were successful, an added advantage would 

be that in vivo investigations of the actions of P-casomorphins or similar bioactive peptides 

in ruminant animals would become less demanding in terms o f experimental technique 

because surgically modified animals would not be needed.

Furthermore, this study suggests that there may be an additional feature of the 

digestion and metabolism of feed proteins to be considered in nutritional evaluations, p- 

Casomorphins may not be of importance in practice for dairy cows in this sense since 

casein is not a typical component o f diets for dairy cows. However, release o f peptides 

with a similar biological activity to P-casomorphins is believed to occur during digestion of 

other protein sources such as wheat gluten and haemoglobin (Fukudome et al., 1997; 

Nyberg, 1997) which could be of more immediate relevance in practice. Furthermore, the
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list o f such peptides is likely to continue to grow as the structure o f more proteins comes 

under scrutiny.
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