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head n. Part of the body containing the eyes, nose, mouth and brain; intellect; 

individual person or animal. (The Oxford Popular Dictionary)

‘Ladies and gentlemen of the class o f '99: Wear sunscreen.

If I could offer you only one tip for the future, sunscreen would be it. The long-term 

benefits of sunscreen have been probed by scientists, whereas the rest of my advice 

has no basis more reliable than my own meandering experience. I will dispense this 

advice now.’

Mary Smich and Baz Luhrmann, Everybody’s Free (To Wear Sunscreen).
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Preface

This thesis is an account of the work carried out between October 1996 and October 

1999 towards the development of suspensions for the GEO 600 ground based laser 

interferometric gravitational wave detector [1+2].

Chapter 1 contains a brief introduction to gravitational waves and an outline of the 

astrophysical processes that give rise to signals which should be detectable by 

ground based detectors. The material presented in this chapter is derived from 

published literature.

In chapter 2 the two main detection schemes for ground based detectors are 

discussed with emphasis on laser interferometric detectors. The noise sources that 

are expected to limit the sensitivity of such a detector are also reviewed. The 

German-British project, GEO 600 is discussed. The noise specification for each test 

mass mirror is derived and the methods used for isolating these mirrors from seismic 

noise are introduced. The material presented in this chapter has been obtained from 

published literature.

Details of the design and testing of the suspension system for auxiliary mirrors used 

to form the GEO 600 mode-cleaner cavities is given in Chapter 3. The work 

presented in this chapter was carried out by the author with Dr. Mike Plissi.

In Chapter 4 the modelling of a single pendulum is presented, including all of the 

geometrical effects due to gravity and the stretching of the wires, for six degrees of 

freedom. The comparison of the theoretical mode frequencies to those obtained from 

experiment is outlined. Further investigation of varying the parameters of a 

pendulum is carried out using the single pendulum model. The equations outlined in 

this chapter were derived by the author with Dr. Noma Robertson and Matt Husman.

Chapter 5 contains an outline of the extension of a single pendulum model to that of 

a triple pendulum. A state-space model of a triple pendulum was developed using 

MATLAB, by the author, to analyse the damping of the normal modes of the 

pendulum using active control. Details of the modelling and the mechanical design 

of the GEO 600 main suspension triple pendulum are given. The equations outlined

XV



in this chapter were derived by the author with Dr. Noma Robertson and Matt 

Husman. The addition of the active control to the pendulum was carried out by the 

author with Dr. Ken Strain.

A discussion of the various experiments conducted on the prototype main 

suspension in Glasgow for GEO 600, including measurements of the vertical and 

horizontal transfer functions of the various isolation stages, is presented in 

Chapter 6. A description of the cantilever spring blades used in GEO 600 is given. 

These tests were carried out by the author with Matt Husman and Dr. Mike Plissi.

In Chapter 7 the conclusions drawn from the work presented in this thesis are given. 

Several suggestions of work that could, and is, being taken up for future detectors 

are also discussed. These discussions have arisen from meetings with Prof. Jim 

Hough and Dr. Ken Strain.

Appendix A contains the equations of motion of a single pendulum, outlined in 

Chapter 4. The use of MATLAB and state space modelling for solving the matrices 

produced by the coupled equations of motion followed from discussions with Matt 

Husman.

In Appendix B the various parameters of the Glasgow prototype suspension and the 

main suspension for GEO 600 are given along with two figures showing the various 

parameters in detail.

Appendix C includes an outline of the various input parameters, the equations of 

motion for all the degrees of freedom, and files which show how the local control is 

added to the triple pendulum. The modelling, using MATLAB, of the triple 

pendulum, was carried out by the author with Dr. Ken Strain and Matt Husman.

Appendix D contains a tutorial for the various pendulum files in Appendix C

Appendix E contains an investigation into the possibility of taking advantage of the 

improved isolation obtained at the centre of percussion of a compound pendulum. 

The derivations were done with Dr. Noma Robertson.
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Summary

DEVELOPMENT OF SUSPENSIONS FOR THE GEO 600 
GRAVITATIONAL WAVE DETECTOR

Einstein, in his 1916 Theory of General Relativity, predicted the existence of 

gravitational waves. These can be thought of as ripples or waves in the curvature of 

space-time. So far there has only been indirect evidence of the existence of 

gravitational waves. Scientists around the world are working on a number of 

gravitational wave detectors. The direct detection of gravitational waves will provide 

information about astrophysical processes and sources that produce them.

Gravitational waves are quadrupole in nature and produce a tidal strain in space. 

However their interaction with matter is very weak, making them difficult to detect. 

Gravitational waves emitted by violent astrophysical events are predicted to produce 

strains at the Earth of the order of 10'21 to 10'22 at frequencies accessible to ground 

based detectors (~ 10 Hz to a few kHz). One method for detecting these strains in 

space is based on the Michelson interferometer.

The gravitational waves group at the University of Glasgow led by Prof. J. Hough is 

working with collaborators from the Max-Planck-Institut fur Quantenoptik at 

Hannover and Garching, the University of Hannover, the University of Cardiff and 

the Albert-Einstein-Institut at Potsdam on a project called GEO 600 to build a laser 

interferometer with 600 m arm length. The GEO 600 gravitational wave detector is 

currently in an advanced stage of construction in Germany.

The GEO 600 (German-British) detector is designed to operate down to 50 Hz. The 

sensitivity limit at this frequency is set by the thermal noise from the internal modes 

of the fused silica test masses. The strain sensitivity limit from thermal noise is

expected to be 2x1 O'22 /VHz at a frequency of 50 Hz. The design goal for the 

seismic isolation system is to achieve a noise level a factor of 10 lower than this.

To ensure that the detector sensitivity is not limited by seismic noise above 50 Hz a 

significant degree of isolation has to be provided for each test mass. It is expected



that this level of isolation can be obtained with a combination of several elements in 

series: a two-layer isolation stack consisting of one active and one passive stage, and 

a triple pendulum, the final stage of which is the test mass which will be made from 

fused silica (mass ~ 6 kg). The triple pendulum will incorporate two stages of 

cantilever springs in order to enhance the vertical isolation and will use fused silica 

fibres in the lower pendulum stage in order to minimise thermal noise from the 

pendulum modes.

The work contained in this thesis covers the design, modelling, construction and 

testing of various aspects of suspension systems for isolating optical components in 

ground based interferometric gravitational wave detectors, and in particular for 

GEO 600.

The first suspension system considered was for the subsidiary mirrors that form the 

mode-cleaner cavities. These take the form of high finesse Fabry-Perot cavities used 

to reduce the geometry perturbations of the laser beam which is used to illuminate 

the interferometer. The mode-cleaner optics have less stringent requirements for 

seismic isolation; they therefore do not require the extra vertical isolation provided 

by the cantilever spring stages. Further work in this thesis involved the design and 

testing of the various stages of this suspension system. This includes the modelling 

of a suitable platform from which to suspend the various optics, the construction and 

testing of a double pendulum, and the testing of a two-layer passive isolation stack. 

The various isolation stages, for the mode-cleaner, were installed at the GEO 600 site 

in the summer of 1999.

As stated above, for the main test mirrors a triple pendulum is required. In order to 

understand the mechanics of such a pendulum it was necessary firstly to model a 

single pendulum by calculating the equations of motion for six degrees of freedom. 

A theoretical model of a triple pendulum was obtained, again by writing down the 

equations of motion. MATLAB was used to predict, for example, the resonant mode 

frequencies, and the response of the triple pendulum to the application of control for 

active damping. Using this analysis the design of a well-damped triple pendulum 

with good coupling between the various stages can be achieved.



A prototype triple pendulum was set-up in Glasgow in order to verify the predictions 

from the model. Further experiments on the individual stages of the overall 

suspension system in Glasgow, including the testing of the cantilever blades, 

indicated that a seismic noise level which is a factor of ~ 4 lower than the thermal 

noise level at 50 Hz should be achievable with the current design. At the time of 

writing the main suspension systems were beginning to be installed in the GEO 600 

detector.
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Chapter 1

The Nature, Sources and Detection of 

Gravitational Waves.

1.1 Introduction

Einstein, in his 1916 Theory of General Relativity [3], predicted the existence of 

gravitational waves. The solutions to the linearised Einstein Field Equations show that 

the effect of gravity propagates as a wave at the speed of light. However it was not 

until the 1960’s that the world-wide interest in detecting gravitational waves started, 

as a result of the suggestion by Weber that they could be detected and his subsequent 

experimental work he carried out [4].

In 1993 Hulse [5] and Taylor [6] were awarded the Nobel Prize for Physics for their 

discovery of the binary pulsar PSR 1913+16 and subsequent observations of the orbit, 

providing indirect evidence of the existence of gravitational waves. These 

observations showed that the orbital period was decreasing with time. Using a model 

based on Einsteins Theory of General Relativity they showed that this decrease in 

orbital period would be accounted for if the energy loss was attributed to gravitational 

waves.

Today there are a number of collaborations around the world working towards the 

challenging goal of the direct detection of gravitational waves. The detection of 

gravitational waves is important for several reasons. Firstly it will allow some of the 

predictions of General Relativity to be tested. Secondly it will provide new 

information on astrophysical events in the universe, for example, the collapse of stars

1



and the birth and interactions of black holes, thereby generating a whole new field of 

astronomy.

The nature (section 1.2) and sources (section 1.3) of gravitational waves will be 

described briefly. The various methods for detecting gravitational waves are discussed 

(section 1.4). In particular, an overview of ground based laser interferometric 

gravitational wave detectors is given. There are a number of noise sources that limit 

the possible sensitivity of such detectors. These are considered in section 1.5.

1.2 The Nature of Gravitational Waves

What are gravitational waves? In order to answer this question it is useful to compare 

them to electromagnetic waves. Electromagnetic waves are produced by the 

acceleration of charge whereas gravitational waves are produced by the acceleration 

of mass.

The conservation of energy and therefore mass, for gravity, is equivalent to 

conservation of charge in electromagnetism. This implies that there can be no 

monopole gravitational radiation. Further because of conservation of momentum there 

can be no dipole gravitational radiation. The lowest order of gravitational radiation 

must be therefore quadrupole in nature, implying that only non-axisymmetric 

accelerations of mass will produce gravitational waves.

Gravitational waves produce ripples or waves in the curvature of space-time. Thus 

they can be considered as a tidal strain in space. The waves, arriving at the Earth from 

a distant source, can be split into two independent polarisations h+ and hx. The effect 

of the strain on a ring of test particles of diameter L is shown, for both polarisations, 

in figure (1.1). If the wave is incident perpendicular to the plane of the page the ring 

of particles is stretched in one direction by an amount AL and compressed in the other 

direction by AL. A suitably polarised gravitational wave of amplitude h will produce a 

strain given by

2



Gravity is the weakest of the four forces of nature. The effect of a gravitational wave 

is, therefore, only significant when very large masses and accelerations are considered 

i.e. on an astrophysical scale.

h,
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Figure (1.1): - The effect o f one cycle o f a gravitational wave on a ring o f test 

particles, the wave is incident at right angles to the plane o f the page.

1.3 Sources of Gravitational Waves

1.3.1 Introduction

Gravitational waves in the frequency range of a few tens of Hz to a few kHz are 

expected to be detected by ground based gravitational wave detectors. The frequency 

range given is limited due to various noise sources, as discussed later. Possible 

sources of waves in this frequency range are summarised in the following sections.
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1.3.2 Burst sources

Supernovae

The rapid brightening of a star, to ~ 1 billion times the luminosity of the sun, followed 

by its gradual decay is one of the most striking events to occur in the sky.

Supemovae can be classified as either Type I or Type II supemovae [7]. Type I 

supemovae are thought to occur when a white dwarf in a binary system has gained 

enough mass from its companion to exceed the Chandrasekhar limit 

(Mch = 1.4M0 « 3x1030 kg) and cause the white dwarf to collapse, triggering a stellar 

explosion. Type II supemovae are thought to occur when the iron core of a massive 

star collapses triggering a stellar explosion. If the collapse is perfectly symmetrical no 

gravitational waves will be produced. However if the collapse is asymmetric, due to a 

significant amount of angular momentum in the core of the star, then there is a 

possibility that strong gravitational waves will be produced.

Schutz [8] approximates the strain amplitude, /*, expected from supemovae as

I  j_
-22 ( E  V (\5 M yc\ (\ kHz) (I ms)2

rhx5xl ° 'W m~7 I — >  — I I — I .  ( i - 2 )/
where E  is the total energy radiated, M& is the mass of the sun, c is the speed of light, 

/  is the frequency of the gravitational signal, r  is the time taken for the collapse to 

occur and r is the distance to the source.

The event rate for both Type I and Type II supemovae, out to the VIRGO cluster at a 

distance of ~ 15 Mpc, has been estimated as several per month [9].

Coalescing binaries

A compact binary system consists of two high-density stars (neutron stars or black 

holes) rotating about their common centre of mass. As already mentioned for the case 

of PSR 1913+16, the orbital period of a compact binary system decays as the system 

inspirals due to a loss of energy in the form of gravitational waves. As the two stars 

approach each other the amplitude and the frequency of the emitted gravitational
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waves increase. A few seconds before the two stars coalesce the amplitude and 

frequency reach values that are expected to be observable by ground based detectors.

Schutz [10] approximates the strain amplitude, h, expected from coalescing neutron 

stars as

h *  1 x 10 100 Mpc i f  Mb v  /  , ,
200 HzJ ’

where Mb = (M\M2) / (Mi + M2) is the mass parameter of the binary, My and M? 

are the masses of the two stars and the other symbols are as defined for 

equation (1.2). The timescale, r, over which the frequency changes is [10]

5 8

( 1.2M®V (200 Hz)3
[— )  ■ (1-4)

Schutz has shown that the product of h and r is independent of mass. If /z, /  and 

t  are detected by several detectors then both the distance and position of the source 

can be obtained. The accuracy will depend on the number of detectors and their 

respective sensitivities and signal to noise ratios.

Of the hundreds of pulsars now known, a few are located in binary systems. The 

number of pulsars existing in binary systems along with the estimated pulsar birth rate 

can be used to estimate the event rate of coalescing binary systems; an event rate of 3 

per year out to 200 Mpc is implied [11].

1.3.3 Periodic sources

Rotating neutron stars and white dwarfs are possible sources of continuous periodic 

gravitational waves. A single detector can detect such a source. For the case of an 

interferometer the sensitivity can be increased, once the frequency of the source is 

known, by using signal recycling to reduce the bandwidth of the detector (see 

section 2.2.2). Some possible sources of continuous periodic gravitational waves, 

detectable by ground based detectors, are outlined below.
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Pulsars

The spin of a pulsar must be non-axisymmetric for it to emit gravitational waves. A 

typical pulsar emits gravitational waves at twice its rotational frequency, f rou An 

estimate of the likely amplitude from a such a source is [12]

where s, the equatorial ellipticity, is a measure of how non-symmetrical the star is.

The Crab pulsar is expected to be emitting gravitational waves at » 60 Hz. An upper

e « 7 x 10^, r » 1.8 kpc and f rot = 30 Hz [12].

Wagoner stars

If as a result of accretion a neutron star with high angular momentum reaches the 

Chandrasekhar-Friedman-Schutz instability point, the neutron star will become non- 

axisymmetric and produce gravitational waves [13]. Due to the fact that the rate of 

accretion of angular momentum is proportional to the rate of accretion of mass, the 

gravitational wave luminosity is therefore proportional to its X-ray luminosity. Recent 

discoveries by the Rossi X-ray timing Explorer [14] suggest that the gravitational 

wave signal strength of the X-ray source SCO X-l could be h ~ 2 x 10'26 at 500 Hz, 

at the surface of the Earth.

1.3.4 Stochastic sources

It is expected that a random background of gravitational waves will exist, as a result 

of the superposition of signals from many sources. This may contain information 

about processes connected with the creation of the Universe. One possible prediction 

of background radiation, from the cosmic string scenario for galaxy formation, 

produces an amplitude given by [15]

(1.5)

limit of the signal from the Crab Pulsar of h ~ 10'24 is calculated for a

h *  2.4 x 10'25 75 kms' Mpc'  ̂100 Hz,

I  1  I
Ho  2 f  f  \ 2 2

A 1 A n  T T „ (1.6)
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in a bandwidth B about a frequency /  where Dgw is the energy density per logarithmic 

frequency interval required to close the Universe and H0 is the present value of 

Hubble’s Constant.

The stochastic background will be difficult to distinguish from other sources of 

Gaussian noise in one detector. However it will be identical in two different detectors. 

Therefore, by cross-correlating the data from several detectors, it should be possible 

to separate the stochastic background from the random noise associated with each 

detector.

For periodic sources such as pulsars and Wagoner stars and for stochastic sources the 

signal to noise ratio can be increased by integrating over a long observation time. For 

example consider a detector with a sensitivity limit of 10-22/VHz at 100 Hz. After an 

integration time of 107 seconds, ~ 1 year, the equivalent sensitivity level would be 

~ 3 x 10'26.

1.4 Gravitational Wave Detectors

In order to detect gravitational waves it is necessary to measure extremely small 

strains, h, produced in space by the wave. There are two types of ground based 

detectors currently being developed: -

• resonant bar detectors (section 1.4.1) and

• laser interferometers (section 1.4.2).

As already mentioned ground based detectors are designed to operate in the 

frequency range from a few tens of hertz to a few kilohertz.

If a laser interferometer is put into space, it is possible to detect gravitational waves at 

lower frequencies (section 1.4.3).

Other methods of detecting gravitational waves include the Doppler tracking of 

spacecraft and pulsar timing. The relative separation of the Earth and a spacecraft will 

be affected by a passing gravitational wave. This could be detected from the Doppler
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shift in the frequency of the radio signals used to follow the spacecraft. The CASSINI 

mission to Saturn could measure a signal of amplitude h ~ 5 x 10'17 at 2 x 10'3 Hz 

from December 2001 [16]. Pulsar timing is similar to the Doppler tracking of a 

spacecraft, except that it is the radio signals from the pulsar that are used [17]. This 

technique is sensitive down to frequencies of the order ~ 10'8 Hz.

1.4.1 Resonant bar detectors

The original bar detector was developed by Weber [4] in the 1960’s. Such a detector 

consists of a large cylinder, typically with a mass of several tonnes. If a gravitational 

wave of the same frequency as the fundamental longitudinal mode of the cylinder 

(typically ~ 1 kHz) is incident on such a detector it will cause the cylinder to vibrate, 

inducing a mechanical strain which can be measured using a transducer and amplifier. 

The signal will be proportional to the gravitational wave amplitude.

The effects of seismic and acoustic noise are reduced on a resonant bar detector by 

suspending the cylinder from vibration isolation stages and placing the bar under 

vacuum. The sensitivity is then limited by both the thermal noise of the cylinder and 

the noise from the sensors. A reduction in the level of thermal noise is achieved by 

cooling the detector to temperatures of a few Kelvin and by constructing the cylinder 

from a material of low loss, or high quality factor, Q, at low temperatures typically 

aluminium or niobium. Using a material with a high Q also ensures that once the 

cylinder is excited it will continue to oscillate for long time, which has the effect of 

increasing the bar’s sensitivity.

Resonant bar detectors have been developed by groups in Stanford, Louisiana State 

University (ALLEGRO), Rome (NAUTILUS), CERN (EXPLORER), Padua 

(AURIGA) and Perth, Western Australia (NIOBE). Strain sensitivities of h » 6 x 10'19 

at ~ 1 kHz [18] at temperatures of ~ 4 K have been achieved. Recently, groups in 

Italy and the USA have developed techniques to improve the strain sensitivity by 

cooling the bars down to temperatures of ~ 50 mK [19+20]. A further increase in the 

sensitivity of a resonant bar detector can be achieved by increasing the mass of the 

detector and one way of doing this is by using a ‘spherical’ bar. Firstly a ‘spherical’ 

bar is more massive than a cylindrical bar of the same resonant frequency and,

8



therefore, the effect of thermal noise is reduced. Secondly a sphere has five usable 

quadrupole modes compared to one in a bar (essentially producing five detectors from 

one). As a gravitational wave passes through the bar the ratio o f the amplitudes o f the 

five modes can be used to determine the direction and polarisation of the wave. There 

have been several proposals for such detectors; currently there is one, called 

MiniGRAIL, seeking funding in Leiden in Holland [21].

1.4.2 Ground-based laser interferometric gravitational wave detector

A simple laser interferometer detector is, in principle, a Michelson interferometer 

whose mirrors are suspended as pendulums. The first work on laser interferometers 

was done by Forward [22] and by Weiss [23] in the 1970’s.

An outline of a Michelson interferometer is shown in figure (1.2). Light from a laser is 

incident on a beamsplitter where the light beam is partially reflected and partially 

transmitted into the two arms each o f length L. The light is then reflected from a 

mirror at the end o f each arm back to the beamsplitter. The combined interference 

pattern is then detected at the photodetector. A gravitational wave would cause a 

change in the intensity of this interference pattern due to the relative motion o f the 

mirrors. The mirrors are suspended as pendulums under vacuum to isolate them from 

noise sources such as ground vibrations or air pressure fluctuations.

Pendulum Test Mass 
MirrorsSuspension

Beamsplitter

\U

O l  t PhotodetectorLaser

Figure (1.2): - Diagram o f  a simple Michelson interferometer.
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The effect of a gravitational wave on a ring of particles is shown in figure (1.1). The 

orthogonal arms of a Michelson interferometer therefore provide an ideal set-up for 

detecting the differential change in length caused by the quadrupole nature of

AL
gravitational waves. For example, a wave of amplitude —j~ propagatmg in a direction

perpendicular to the plane of the arms of the detector will cause one of the arms to be 

stretched by an amount AL and at the same time cause the other arm to be 

compressed by AL. The result is a differential change in arm length oilAL.

As the arm length, Z, is increased so too does the relative size of AL and this, in turn, 

produces a more sensitive detector, so long as the other noise sources are not also 

increased. It can be shown that, if the sensitivity is limited by the statistical 

fluctuations in the number of photons detected, the maximum sensitivity is achieved 

when the light is stored in the arms for approximately half the period of the 

gravitational wave [24]. A gravitational wave of frequency 1 kHz corresponds to an 

X
arm length, L = ~ 75 km [24]. Unfortunately it is impractical to build an

interferometer on Earth with an arm length of more than ~ 4 km.

It is possible, however, to increase the distance that the light travels by making it 

travel up and down the arms of the interferometer several times. This effectively 

increases the arm length and, hence, the storage time of the cavity. The storage time is 

average time the light spends in the arms of the interferometer. This effective increase 

in arm length can be achieved using: -

• a delay line or

• a Fabry-Perot cavity.

The delay line interferometer

The delay line interferometer was first proposed by Weiss [23] in the early 1970’s. 

The optical path length in a delay line interferometer is increased by the use of 

multiple non-overlapping beams that are reflected between two curved mirrors. Each 

delay line cavity is illuminated via a hole in the mirror close to the beamsplitter. In an
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arrangement, such as that developed by the group at the Max-Planck-Institut fur 

Quantenoptik, Garching, Germany [25], the light exits the delay line by the same hole. 

A simplified schematic diagram o f this delay line interferometer is shown in 

figure (1.3). The strain sensitivity achieved in the 30 m delay line prototype 

interferometer at Garching was h ~ lx  10"l9m /VHz above 1.5 kHz achieved in 

1988 [26].

Mirror

Hole

Beamsplitter

Photodetector

Figure (1.3): - Schematic o f  a delay-line interferometer.

Fabry-Perot interferometer

This method o f increasing the storage time inside the interferometer was first 

developed in Glasgow [27] in the early 1980’s. Two Fabry-Perot cavities are built 

into the arms o f the interferometer, as shown in figure (1.4). Each cavity consists of 

one partially and one fully reflecting mirror, with the reflected beams lying on top of 

each other.

The cavity is said to be on resonance, and the amount o f energy in the cavity is a 

maximum, if the length o f the cavity, L, is tuned to fit an integral number o f half 

wavelengths o f the laser light. The cavity is held on resonance using servo control and
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under these conditions the differential displacement is increased by a factor F/n  where

C7TTF = is the finesse o f the cavity and r  is the storage time.

The main advantages o f a Fabry-Perot interferometer compared to a delay line 

interferometer are that it is possible to use much smaller mirrors for operation, since 

the multiple beams overlap one another, and that the effect o f scattered light within 

the interferometer arms is reduced [25]. The main disadvantage however is the need 

to obtain and maintain resonance [28].

The strain sensitivity achieved in the kilohertz region by the prototype Fabry-Perot 

detectors in Glasgow (10 m) is of the order o f a few times 10'18 [29+30] and Caltech 

(40 m) is of the order of 1 O'19 for wideband bursts [31].

Fabry-Perot

cavity

Beamsplitter

Fully
reflecting
mirror

Laser

Partially
reflecting
mirror

r \

dp

Photodetector

Figure (1.4): - Schematic o f  a Fabry-Perot interferometer.
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Laser interferometers around the world

There are several interferometric gravitational wave detectors in advanced stages of 

construction around the world. LIGO [32] is a project in the USA to build two 4 km 

detectors one at a site in Livingston, Louisiana and one at Hanford in Washington 

State. A French-Italian collaboration, VIRGO [33], is constructing a 3 km detector 

near Pisa in Italy. The Japanese are constructing a 300 m detector , TAMA 300 [34], 

near Tokyo and they also have plans to build a 3 km detector in a disused mine under 

a mountain range [35] near Tokyo. AIGO [36] is a proposed Australian project not 

yet funded, to build a detector at a site near Perth in Western Australia. Initially it 

would have an arm length of a few hundred meters although these could be extended 

up to as much as 5 km. The Gravitational Waves Group at the University of Glasgow 

is collaborating in GEO 600 [1], a joint German-British project with 600 m arms. 

GEO 600 is in an advanced stage of construction at a site near Hanover in Germany.

1.4.3 Space-bome detectors

LISA (Laser Interferometer Space Antenna) [37] is a space-bome Michelson 

Interferometer that will observe gravitational waves in the frequency range of 

0.1 mHz to 1 Hz. Space-bome detectors have the advantage of not being limited by 

noise sources which affect ground based detectors at low frequency. Typical sources 

of gravitational waves are, for example, from interactions of massive black holes and 

from binary systems with large separations [38]. LISA has been proposed as a 

cornerstone mission in the Post Horizon 2000 programme in ESA. It will consist of 

three identical spacecraft positioned in orbit 20° behind the Earth, with the three 

spacecraft, separated by a distance of 5 x 109 m, forming an equilateral triangle. Each ’ 

spacecraft contains a test mass and laser transponder (Nd: YAG) allowing the sides of 

the triangle to form two semi-independent interferometers. A gravitational wave strain

sensitivity of h ~ 10-21/VSz at 0.1 mHz is expected to be achieved. ESA/NASA are 

currently discussing a joint mission to launch LISA in ~ 2008.

Space-bome detectors will be complementary to ground-based detectors and, as 

already stated, will extend the frequency range for observations of gravitational 

waves.
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1.5 Noise Sources

The main noise sources that may degrade the sensitivity of ground based laser 

interferometric gravitational wave detectors are: -

• photon noise

• thermal noise, in the mirror test masses and their suspensions.

• seismic noise due to motions of the Earth.

1.5.1 Photon noise

Photon noise, or photon shot noise, is the statistical fluctuation in the number of 

photons detected at the output of an interferometer. The signal detected at the output 

of the interferometer due to N  photons will have a y[N uncertainty associated with it 

due to Poisson counting statistics. This uncertainty gives rise to noise at the 

photodetector that will limit the sensitivity of the detector due to the fact that it is the 

output intensity that is used to measure the gravitational wave amplitude. For a delay- 

line the shot noise sensitivity is given as [39]

where h is Planck’s constant, X is the light wavelength and s  is the photodetector 

quantum efficiency. The input power is I0 while c is the speed of light, and t  is the 

light storage time. From equation (1.7) it can be seen that the shot noise can be 

minimised by setting the storage time equal to half of the period of the gravitational

wave, i.e. f t  = ^  . Furthermore it can be seen that the shot noise sensitivity can be

improved by increasing the level of input power. However as the laser power is 

increased the radiation pressure noise, caused by fluctuations in the number of 

photons reflecting off the surface of the test mass, is also increased. When the input 

laser power is optimised, the shot noise equals the effect of radiation pressure noise at 

a particular frequency. Under these conditions a fundamental noise floor is reached,

' j a y _ £ _  i
.le lo C )  sin(^V )

(1.7)
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the quantum limit [24+40]. For the interferometers currently under construction 

(section 1.4.2) the quantum limit is well below other noise sources.

1.5.2 Thermal noise

The random motion of the atoms of the test mass mirrors and their suspensions, which 

are at a finite temperature and have a number of resonant modes, generates thermal 

noise. The magnitude of the thermal noise depends on Boltzmann's constant, ks, and 

the temperature, T, of the atoms. The sources of thermal noise include the pendulum 

modes of the suspended test masses, the violin modes of the suspension wires and the 

internal modes of the test masses. For each mode it is possible to assign kgT of 

thermal energy, integrated over all frequencies. However it is the shape of the thermal 

noise spectrum as a function of frequency that is important in this application. This 

can be derived using the complex form of Hooke’s Law [41]

where the imaginary term (Jj{(o) is the phase by which the displacement jc lags the 

applied force F. The quality factor Q of a resonance (where Q is a measure of how 

small the dissipation is at the resonant frequency) is related to ^ by Q = M(fi(6)o) 

where co0 is the angular resonant frequency. It is possible to show, using the 

fluctuation-dissipation theorem, that the power spectral density of thermal motion for 

a mass, m is given by [41]

ensure that the off resonance thermal noise is kept to a minimum. The methods used 

to minimise thermal noise for the GEO 600 detector are discussed in more detail in 

section 2.3.

(1.7)

4k BTcol 0(6))
(1.8)

where co„ = Um. The maximum thermal motion occurs at the resonant frequency. By 

designing low loss, high Q suspensions and using high Q materials, it is possible to
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1.5.3 Seismic noise

spectrum of m A /H z , in both the horizontal and vertical directions, has been

Seismic noise results from natural phenomena such as ocean waves as well as from 

artificial effects such as traffic and machinery. The level of seismic noise varies 

throughout the world and also throughout the day. An approximate seismic noise

1(T7 

, / 2

measured from 20 to 300 Hz [42] at the GEO 600 site near Hanover. Each mirror 

must be isolated from the seismic motion of the ground over the range of frequencies 

in which the detector operates. How this is achieved is discussed in section 2.6.

1.5.4 Other noise sources

Gravity gradient noise is a result of the direct coupling of seismic motion to the test 

masses by, for example, the motion of an isolated body in the vicinity of the detector 

[43+44]. Vibration isolation systems, such as discussed in section 2.5, cannot reduce 

the effects of gravity gradient noise as it effectively short-circuits the isolation 

systems. The noise spectrum resulting from gravity gradient noise is negligible 

compared to that of the sensitivity of the initial long base-line detectors [43+44] and 

will therefore not have any observable affect. However as seismic isolation designs 

improve and other noise sources are reduced, interferometers could be limited by 

gravity gradient noise at frequencies below ~ 10 Hz.

Associated with the laser are a number of noise sources which must be controlled to 

reduce their effects to levels that are negligible. Firstly, frequency fluctuations in the 

laser light can be stabilised by locking the laser frequency to one of the arms of the 

detectors. Secondly, operating the detector on a dark fringe reduces the effects of 

intensity fluctuations of the laser. Finally, a mode-cleaning cavity can be used to 

reduce the geometry perturbations of the laser beam.

In order for the detector to operate there must be control systems that operate at all 

times. For example, local control systems are used to damp the various modes of the 

pendulums. It is therefore necessary to ensure that the control noise does not itself 

induce significant motions in the test mass mirrors.
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1.6 Conclusions

Einstein predicted the existence of gravitational waves. Hulse and Taylor have already 

obtained indirect evidence of their existence. The direct observation of gravitational 

waves still remains one of the challenging goals of modem day physics. It can be 

concluded from the theoretical estimates that detectors should aim for a strain 

sensitivity in the region 10'21 to 10'22 or better in a bandwidth of several hundred Hz in 

order to detect gravitational waves on Earth.

There are two types of gravitational wave detectors

• resonant bar detectors and

• laser interferometers.

Laser interferometers are broadband while resonant mass detectors are inherently 

narrow band in frequency. There are several interferometers currently under 

construction throughout the world. The University of Glasgow is working in 

collaboration with others on the GEO 600 detector [2]. This is the topic of chapter 2.
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Chapter 2 

The German-British Project, GEO 600

2.1 Introduction

GEO 600 is a German-British project to build a 600 m arm length gravitational wave 

interferometer. A basic description of the interferometer is given and the optical 

techniques of power and signal recycling are discussed in section 2.2.

The design sensitivity of GEO 600 is based on the assumption that at 50 Hz the 

dominant noise source will be thermal noise associated with the combined losses of 

the internal modes of the fused silica test masses [45+46]. A summary of the aspects 

of thermal noise affecting the test masses and their suspensions is given in section 

2.3.

The work contained in this thesis covers various methods of reducing the levels of 

seismic noise. Seismic noise is one of the most important noise sources that will 

affect the performance of the detector. In order to isolate against seismic noise it is 

necessary to design suitable isolation systems. An introduction to seismic isolation is 

given in section 2.4, and this is followed by a more detailed consideration of the 

isolation required for GEO 600 (section 2.5) and how this is achieved (section 2.6). 

A brief consideration of alternative isolation systems is given in section 2.7 The 

overall sensitivity limit of GEO 600 is presented in section 2.8.
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2.2 GEO 600

2.2.1 Basic outline

GEO 600 [1] is a joint German-British project in an advanced stage of construction 

at a site near Hanover in Germany. The collaboration involves groups from the Max- 

Planck-Institut fur Quantenoptik at Hanover and Garching, the University of 

Hanover, the University of Glasgow, the University of Cardiff, and the Albert- 

Einstein-Institut at Potsdam.

The GEO 600 system uses a four-pass Michelson interferometer of arm length 600 m 

to sense the relative displacements of the test mass mirrors, as shown in figure (2.1). 

The input laser power of ~ 5 W will be provided by a diode pumped NdrYAG laser. 

A mode-cleaner cavity can be used to reduce the geometry perturbations of the laser 

beam. In GEO 600 two triangular mode-cleaner cavities [47], a simple schematic of 

which is shown in figure (2.2), are placed in front of the interferometer. A mode- 

cleaner is a spatial filter designed to pass a pure stable Gaussian mode.

The whole system is entirely closed within a vacuum system. In order to keep the 

noise from refractive index fluctuations below other noise limits, the target vacuum 

is ~ 5 x 10'8 mbar for H2 and 5 x 10‘9 mbar for other gases. In order to prevent 

contamination of the optics from the out-gassing of hydrocarbons all of the materials 

exposed to the vacuum will be made either from metal, PTFE or ceramic.

In order that the sensitivity of GEO 600 is competitive with that of the 1st stage 

LIGO and VIRGO detectors, the limitations set by the smaller budget and shorter 

arm-length of GEO 600 must be overcome.
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600 m
Test mass mirror

Compensator
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mode-cleaners) Beamsplitter
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Power
recycling
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Photodiode

Figure (2.1): - GEO 600 optical layout.
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Figure (2.2): - GEO 600 mode-cleaner layout.

This is achieved by: -

• using the optical techniques o f power recycling [48] and signal 

recycling [49],

• minimising the thermal noise in the mirror test masses and their 

suspensions by using all fused silica mirrors and suspensions [50+51].

2.2.2 Power and signal recycling

As already mentioned, the shot noise can be reduced if the input power is increased. 

When the interferometer is locked on a dark fringe, all o f the light coming back from 

the arms o f the interferometer is returned to the laser whilst the side-bands are 

emitted at the output. An additional partially reflecting mirror, the power recycling 

mirror, is positioned between the laser and the beamsplitter as shown in figure (2.1) 

and reflects most o f the light back into the interferometer [48]. The mirror forms a 

cavity resonating at the frequency o f the light, /light between the mirror and the 

interferometer. The optical power is therefore increased and the effect is equivalent
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to using a more powerful laser. A power recycling factor ~ 2000 is to be used in 

GEO 600 compared to a factor of ~ 30 in LIGO.

When implementing signal recycling, a partially reflecting mirror is placed at the 

output of the interferometer, as shown in figure (2.1). The signal recycling mirror 

forms a resonant cavity at the frequencies flight + fsig or flight - / ig, where / i g is the 

signal frequency. The sensitivity of the detector is therefore resonantly enhanced at a 

particular frequency [49], as shown in figure (2.6). For this reason signal recycling 

will be used to tune to gravitational waves from continuous sources.

2.3 Thermal Noise Aspects

The design sensitivity of GEO 600 is based on the assumption that between 

approximately 50 Hz and 200 Hz the dominant noise source will be thermal noise 

associated with the combined losses of the internal modes of the fused silica test 

masses. Taking a value for the loss of fused silica as ^ = 2 x 1 O'7 the resultant motion 

of each mirror is calculated to be approximately 7 x 10"20 m/ VHz at 50 Hz. For our 

optical system it can be shown that this gives a strain sensitivity limit of 

2 x 10-22 /VHz at a frequency,/, of 50 Hz [45,46]. For this to be the dominant 

noise source, the contribution to the motion of each test mass from the thermal noise 

of the pendulum suspension is required to be below the above noise level. It can be 

shown that a loss factor for the pendulum mode of the last stage of the pendulum

suspension of < 1.4 x 10-7 at 50 Hz is thus required [52].

The loss factor of the pendulum mode of each suspension </>pend (co) is related to the 

loss factor of the material of the suspension fibres (&>), by [51]: -

— -— = — !— (2. i)

where m is the mass of the pendulum, / is the length of pendulum, T is the tension in 

each suspension fibre, a> = 2jif\s the angular frequency, E  is the Young's modulus of 

the fibre material and /  is the bending moment of each fibre, ( I  = nr4/4 for
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cylindrical fibres of radius r). For the final stage of the main suspension for GEO 600

^ p e n d ( < » W ma t ( ® ) / 1 5 0 -

Thus to achieve the necessary low level of pendulum loss factor it is desirable to 

choose, for the suspension fibres, a material with a suitably low loss factor. 

Experiments [53,54] indicate that fused silica has a low intrinsic material loss. 

Measurements performed on fused silica ribbons and fibres produced in the 

laboratory in Glasgow, by Dr. Sheila Rowan and Dr. Sharon Twyford, show that, in 

the frequency range between 6 and 160 Hz, material loss factors of the order of 10"6 

may be repeatably achieved [51].

At the time of writing loss factors for the pendulum mode of the order of ~10'8 for a 

500g mass [50] and 4 x 10'8 on a 3kg mass [55] have been obtained. The latter 

measurements were carried out with colleagues at the University of Perugia.

Given the low levels of mechanical loss required, it is essential that the fused silica 

suspension fibres are jointed to the fused silica test masses in a manner which does 

not add any excess loss to that associated with the pendulum mode of each 

suspension or with internal modes of the test masses. In the GEO 600 main 

suspension fused-silica test masses will be suspended from four vertical fused-silica 

fibres. The fibres are welded on to fused-silica prisms that are hydroxy-catalysis 

bonded to flat areas polished to the sides of the masses.

Initial measurements [56] suggest that the loss factors of the internal modes of a 

GEO 600 test mass with fibres welded to it using this technique over an appropriate 

bond area, would be negligibly degraded by the bonding.

LIGO will initially use steel wires to suspend the test masses, resulting in higher 

thermal noise. VIRGO are now hoping to adopt a similar suspension to that of the 

GEO 600 design to suspend their test mass mirrors.

2.4 Seismic Isolation -  Introduction to 

Techniques
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Seismic noise is one of the most important noise sources that will affect the detector 

at low frequencies. Therefore it is necessary to design adequate isolation systems.

A pendulum suspension is one of the simplest of isolation systems. Consider a point 

mass, m, suspended on a wire of length, /, with negligible mass. The horizontal 

transfer function between the displacement of the point of suspension, xo, and the 

displacement of the mass, xy, can be shown to be

Xy O)0
=  (2.2) x0 S +G)0

assuming no damping and using the Laplace transforms x —» sx and x —» s2x where 

s =jco, (o=2jtf,f= frequency and coo = 27tf0* The resonant frequency of the pendulum

1 [7T
is given by / 0 = — J — in the horizontal direction. It can be seen that, above the

2 k  V /

resonant frequency, the transfer function is ~ A 25cm length pendulumI I  r
withf 0 = 1 Hz, in the horizontal direction, provides an isolation factor of 104 at 

100 Hz.

Introducing a damping force, F = b(x} - x 0) where b is a constant (viscous 

damping), the transfer function becomes

f b '
(ol +

x \ _
s

x .  2 + m  : •  (2-3)
\M J

S +  COq

For such a system the quality factor, Q, is given by Q -  where Q is a measure
b

of how small the dissipation is at the resonant frequency. High Q, low damping 

(blue) and low Q, high damping (red) curves are shown in figure (2.3). Above the 

resonant frequency the horizontal transfer function for a high Q system is

proportional to For a low Q system the horizontal transfer function is

proportional to y j- up to a frequency/ = f 0Q above which its fall off is proportional
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to — . In the case o f gravitational wave detectors the pendulum suspension of the

mirrors is designed to have high quality factors in order to keep the off-resonance 

thermal noise at a sufficiently low level, as previously discussed. As a consequence, 

however, the pendulum suspension resonantly amplifies seismic noise at its resonant 

frequencies; these motions have to be actively damped for the operation of the 

detector. For the case o f GEO 600 this is done with sensor and actuators acting on 

the pendulum. A method o f passively damping the modes o f a triple pendulum using 

high-performance magnets has been demonstrated by the TAMA group [57],

10 

10
Transmissibility

10 

10 

10

Figure (2.3): - Transmissibility versus frequency.

It should be noted that if b is inversely proportional to frequency (structural 

damping) rather than viscous damping, which can be represented by a dashpot in

x  1
parallel with a spring, the transfer function, — , equation (2.3), falls off as —-  for

* 0  /
all frequencies above the resonance. This form of damping is expected for the high Q 

silica suspensions of the main test mass mirrors in GEO 600.

To increase the isolation, we can suspend two or more pendulums in series. Above 

the highest resonant frequency, for a high Q system, the isolation will fall off as —

where n is the number o f pendulums.

\ / foc

x  1/ f2

Frequency (Hz)

25



Another example of a simple isolation system is a mass on a spring. This can be 

reached in practice by using a heavy mass on rubber. The transfer function is the 

same as that for a simple pendulum suspension, equation 2.3, where the resonant 

frequency is related to the mass and the elastic modulus of the rubber. This form of 

isolation provides isolation in both the horizontal and vertical.

2.5 Isolation Requirements for GEO 600

As already mentioned, GEO 600 is designed such that it is limited by thermal noise 

at 50 Hz and this corresponds to a motion of each mirror of approximately 

7 x 10-20 m/VHz at 50 Hz. The design goal for the seismic isolation system is to 

achieve a noise level at each test mass a factor of 10 lower than this [45+46]. Using

the measured seismic noise spectrum of ~

an isolation factor of 6 x 109 at 50 Hz in the horizontal and 6 x 106 in the vertical is 

therefore required for the mirror test masses. This assumes a 0.1 % cross coupling 

factor from vertical to horizontal.

There are various contributions that couple vertical to horizontal motion of the test 

mass. Firstly intrinsic to the design of GEO 600 is that the arms are folded vertically 

implying that the test mass mirrors must be tilted with respect to the gravitational

A t
field [1]. This gives a cross coupling factor of c = ~ 0.02 % for Az = 12.5 cm

where Az is the vertical height separation of the mirrors and L is the length of the 

arm [58]. Secondly due to the fact that the gravitational field is not parallel at both

ends of the cavity there is a further cross coupling factor of c = ^  ~ 0.005 % where D

is the diameter of the Earth [59]. The cross coupling due to mechanical 

misalignments for the proposed GEO 600 suspension design has been studied by 

Matt Husman [60] and he has shown that for reasonable misalignments a cross 

coupling factor <0.01 % is obtained. Therefore 0.1 % is a conservative estimate of 

cross coupling factor from vertical to horizontal motion.

m/VHz between 20 and 300 Hz,
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2.6 Main Mirror Isolation

The overall design of the mirror isolation in GEO 600 has been developed by myself 

and other members of the suspension group at Glasgow. The work carried out by the 

author is presented in chapters 4, 5, and 6. Presented below is a description of how 

the final design will be for each test mass mirror [61].

At the bottom of each suspension system, figure (2.4), there will be three legs each 

consisting of a two-layer isolation stack, the lower layer of which is active and the 

upper layer is passive. The passive layer, which behaves like a mass on a spring, 

consists of a steel mass on pieces of rubber. In the active layer, designed by Dr. Ken 

Strain in Glasgow and Dr. Aniello Grado in Hanover, feed forward, which minimises 

the motion caused by measurable disturbances, will be used to control the effects of 

the micro-seismic peak. This occurs at ~ 0.2 Hz and is caused primarily by waves 

crashing against the shoreline. This noise peak could affect the operation of the 

detector in a heavy storm. Feedback will also be used to improve the isolation at 

frequencies up to 10 Hz. The basic principle of feedback is to detect the vibration of 

a mass using an inertial sensor, to amplify and filter this signal and then to feed it 

back to actuators acting on the mass to reduce the vibration. The combination of 

feedforward and feedback will reduce the bandwidth required in the damping servos, 

and ease the acquisition of locking [62]. It should be noted that in the present design 

the active isolation does not contribute to the overall isolation in the frequency band 

for the detection of gravitational waves.

At the top of each stack there will be a rotational flexure, a flex-pivot, in order to 

reduce the rotational stiffness of the stack system, and a stack stabiliser will connect 

the three legs. A further structure, called the rotational stage, will provide the 

interface between the stack stabiliser and the pendulum system. This rotational stage 

provides a coarse level of rotational alignment for the pendulum assembly. In order 

to minimise friction there is a bearing between the stack stabiliser and rotational 

stage consisting of three sapphire discs sliding upon highly polished ceramic thrust 

plates.
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The seismic isolation stages, both stacks and pendulums, have low horizontal 

resonant frequencies and therefore low transmissibilities in our working frequency 

band. However in the vertical dimension the resonant frequencies are higher. This, 

together with the unavoidable cross-coupling of vertical to horizontal motion of the 

test mass, means that for practical isolation systems involving stacks and pendulums, 

isolation in the vertical dimension is likely to be the overall limiting factor in the 

total isolation achieved.

1 I £The vertical frequency can be shown to be f 0 = —  I—  where 5/ is the static
2 7 i \S l

extension in the wire. For a mass on a wire 8/ ~ 1 mm compared to a mass on a soft 

spring where 8/ ~ 20 cm.

The GEO 600 main test mass mirror suspension involves a triple pendulum in which 

cantilever springs are incorporated in two of the pendulum suspensions to lower the 

vertical frequencies and hence improve the vertical isolation. The typical vertical 

resonant frequency of a single pendulum is -  20 Hz providing an isolation factor of 

only 25 at 100 Hz. A typical cantilever spring has a resonant frequency o f -  3 Hz and 

provides an isolation factor o f -  103 at 100 Hz. Therefore to obtain the required 

vertical isolation outlined in section 2.5, two stages of cantilever blades are 

necessary, in addition to the vertical isolation from the single passive stack.

From the top of the rotational stage an upper mass is suspended from two cantilever 

springs and from the upper mass a double pendulum is suspended by a further four 

cantilever springs. A schematic of the overall suspension system is shown in . 

figure (2.4).

In order to lock the interferometer it is necessary to apply a feedback force to one of 

the test mass mirrors. This force is produced by an electrostatic drive, which will not 

significantly affect the high Q of the test mass mirror. The electrostatic drive is 

mounted on a reaction mass which is also suspended as a triple pendulum (figure 2.4) 

thereby providing a seismically isolated platform for the application of global control 

forces in the detector [59].
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Figure (2.4): - Schematic o f  main suspension. Two o f  the stacks have been removed 

fo r  clarity.

2.7 Other Isolation Systems

Initially most of the large laser interferometric detectors are being designed such that 

they are not limited by seismic noise at ~ 50 to 100 Hz. The effects o f seismic noise 

can be reduced by improvements in isolation. VIRGO are using a multiple isolation 

system such that they should not be limited by seismic noise down to ~ 4 Hz [63]. 

This isolation system includes a superattenuator [64], consisting o f a chain of 

cascaded pendulums, and cantilever springs with magnetic antisprings [65], which 

adds a negative spring constant and thereby reduces the resonance o f each stage 

to ~ 100 mHz. Other groups around the world are looking at methods o f going to 

lower frequencies. These include X-pendulums [66], multiple suspension wires that 

outline an ‘X ’, producing very long periods o f order 10 s for a pendulum of 

length ~ 25 cm, folded pendulums [67], long period vertical vibration isolator based 

on a torsion crank linkage, the use of magnetic levitation [68] and a method of 

combining both active and passive stages o f isolation [69].
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GEO 600 Sensitivity

The sensitivity curve o f GEO 600 is shown in figure (2.5). The black curve is the 

photon shot noise calculated for a four-beam delay line illuminated by 5 W o f laser 

light. The blue curve is the thermal noise calculated from an internal loss factor of 

2 x 10"7, a pendulum loss factor o f 1.4 x 10'8 and structural damping. The red curve 

is the actual seismic isolation produced by the isolation stages outlined in section 2.6 

and produced by Matt Husman from the work done in Chapter 6. The green curve is 

the total noise.
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Figure (2.5): - The estimated strain sensitivity fo r  GEO 600.

The various long baseline interferometric detectors discussed, aim to have initial 

sensitivities in the region ~ 10‘21 to ~ 10'22 over a range o f frequencies, / ,  from a few 

tens o f hertz (possibly as low as 10 Hz) to a few kilohertz. GEO 600 will be able to 

perform stand-alone searches for continuous sources such as SCO-X1 and the Crab 

Pulsar. Over one year’s observing time the detector’s signal to noise ratio would 

increase placing an upper limit o f /z ~ 2 x 10'21 on the strain amplitude spectral
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density for the Crab Pulsar, as shown in figure (2.5). As shown in figure (2.6) the 

sensitivity o f the detector can be resonantly enhanced at a particular frequency 

(section 2.2.2).

Eventually GEO 600 will also be used along with LIGO, VIRGO and TAMA 300 to 

search for coincidence events from burst and stochastic sources. It is expected that 

GEO 600 will become operational in 2001.
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Figure (2.6): - The estimated strain sensitivity for GEO 600. The sensitivity has been 

tuned to 400 Hz.
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Chapter 3

GEO 600 Mode-Cleaner

3.1 Introduction

As mentioned in section 2.2, as well as the main mirrors at the ends of each arm, 

there are also subsidiary suspended mirrors forming two triangular mode-cleaner 

cavities, placed in front of the interferometer. Each mode-cleaner cavity is a three 

mirror cavity one with an optical length of 8 m and the other 8.1 m  The finesse of 

each cavity is chosen to be 1900 and thus suppression of beam geometry fluctuations 

by 6 orders of magnitude should be achievable [46]. The mode-cleaner suspension 

does not have as stringent requirements for seismic isolation [59] and therefore does 

not require the extra vertical isolation supplied by the cantilever springs. The 

displacement noise of each mirror should be less than dx ~ 2 x l0 “15m/VHz above 

50 Hz [59]. The isolation of each mirror is achieved with a combination of several 

elements, as shown in figure (3.1). At the bottom of each suspension there are three 

legs each consisting of a two-layer passive isolation stack. A flex-pivot, as was 

mentioned in section 2.6, is situated at the top of each stack. A further structure, 

called the top-plate, interfaces between the three stack legs and each mirror 

suspension. In order to provide remote levelling of the top-plate a vertical motor is 

included in each stack leg between the passive layer and the flex-pivot. From the 

bottom of the top-plate each mirror is suspended as a double pendulum. Each double 

pendulum can rotate with respect to the top-plate via a rotational clamp, designed by 

Herr Klaus in Hannover, with a range of ~ ± 20 mrad. There is also longitudinal 

adjustment of ~ ± 2 cm provided by a sliding clamp. Both of these adjustments are 

essential in order to allow the mode-cleaner mirrors to be aligned accurately with 

respect to each other.
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Figure (3.1): - Face on view o f  overall mode-cleaner suspension (not to scale).

3.2 Isolation Stack

3.2.1 Stack design

As mentioned in the introduction we are using a two-layer passive stack [70] in 

addition to the double pendulum for isolation. Each layer behaves like a mass on a
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spring. In this stack the lower mass is a steel block, the upper mass is one third of the 

mass of the top-plate and the springs are pieces of graphite loaded silicone rubber, 

RTV (615) [70]. The overall transfer function of one layer is similar to that of a 

pendulum. However, typically the quality factor, Q is chosen to be small so that the 

the residual motion due to seismic noise is not enhanced at the resonances of the 

stack. This implies, as mentioned in section 2.4, off-resonance isolation proportional

«, A  ,b<,™,  . r

assuming viscous internal damping.

Silicone rubber on its own tends to have a Q -  20, rather high for use in seismic 

isolation stacks, and it also becomes stiffer under load [70]. Experiments at Glasgow 

have shown that the addition of graphite results in an improvement in damping as 

well as a reduction in stiffness. However too much graphite also leads to a reduction 

in the tear strength of the rubber making it unsuitable for use. Therefore a 

compromise is reached in loading the rubber with 6 % graphite by weight. The layers 

are encapsulated in stainless steel bellows in order to meet the GEO 600 vacuum 

specification, namely below 5 x 10“8 mbar for H2 and 10’9 mbar for other gases. The 

bellows have approximate dimensions of 145 mm in height, and 140 mm internal 

diameter, with 0.25 mm thick walls. These dimensions have been chosen so as not to 

affect the overall isolation performance of the stack. The bellows are stiffest in 

rotation and so to reduce the possibility of transmission of ground rotation to the top 

of the stack a rotational flexure has been included. A Lucas flex-pivot of 1/2-inch 

diameter is used. With this arrangement a rotational resonance o f - 2 Hz was 

measured experimentally under appropriate load. This compares with a torsional 

frequency of greater than 100 Hz measured without the inclusion of the flex-pivot. 

The bellows have several mechanical resonances. They can be damped successfully 

by coating the inside of the bellows with a layer of Apiezon 2-compound mixed with 

silicone grease. A schematic of the overall stack including flex-pivot and bellows can 

be seen in figure (3.2). Spacers are included, as shown, to match the height of the 

stack to the length of the bellows.
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Figure (3.2): - Vertical cross-section o f  stack leg and flex-pivot (the vertical motor is 

not shown).

3.2.2 Vertical transfer function

A vertical transfer function, the ratio o f vertical motion at the top o f the stack to that 

at the bottom, was measured experimentally for a single prototype stack leg 

consisting o f 2 layers of steel plus damped RTV elements. Three RTV elements per 

layer were used; each element cylindrical in shape with diameter = 30 mm and 

height = 25 mm. Each layer was encapsulated in bellows. The lower mass was 10 kg 

and the top mass was ~ 20 kg, representing the contribution on each stack leg from 

the top-plate and housing for each double pendulum suspension. The transfer 

function was obtained by driving the stack with a vertical shaker, constructed from 

piezoelectric elements, and measuring the required signals using two accelerometers, 

one at the top o f the stack and the other at the bottom. The signals were analysed 

using a FFT spectrum analyser. The accelerometers and the masses were accurately 

centred on the axis of the stack leg in order to minimise tilt coupling to vertical 

motion. The measurements were performed in vacuum to prevent acoustic coupling, 

and indicated that an isolation o f ~ 30 dB at 50 Hz was achieved, as shown in 

figure (3.3). A simple MATLAB [71] model, treating the stack as two spring/mass 

units in series, is also shown. This model was obtained from a program which allows
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the input of the spring constants and masses with damping terms appropriate for the 

damped RTV bellows combination. The spring constants of each layer are obtained 

experimentally from the two resonances of the stack. This model shows a very good 

fit over the frequency range 20 to 120 Hz. The peaks at ~ 40 Hz appear to be related 

to the driving mechanism and the peak at ~ 70 Hz is the damped bellows resonance.

3.2.3 Horizontal transfer function

A horizontal transfer function for a prototype single stack leg of the same design as 

above was also obtained, as shown in figure (3.4). The stack leg was driven by a 

horizontal shaker, provided by Henrich Klein (MPQ, Garching). The accelerometers 

and the masses were accurately aligned on the central axis of the stack leg in order to 

minimise tilt cross coupling to horizontal motion. A theoretical horizontal transfer 

function was again obtained with MATLAB; this is superimposed onto the 

experimental plot. There is some excess around 30 Hz, which appears to be due to 

some cross coupling from vertical to horizontal motion. The peak at 50 Hz 

corresponds to electrical mains interference. Isolation of ~ 50 dB at 60 Hz is 

achieved in the horizontal direction.

As outlined above, experiments on both the vertical and horizontal transfer function 

of a two layer passive stack imply that our stack gives good isolation in both the 

vertical and horizontal direction. The mode-cleaner stacks used for GEO 600 were 

manufactured in Germany, with designs supplied by Dr. Mike Plissi and Dr. Ken 

Strain in Glasgow. A photograph of two of these stacks, taken during the 

construction phase, is shown in figure (3.5).

This photograph shows, starting from the bottom of the stack on the left: steel legs, 

spacer, rubber, central mass, rubber, spacer. The stack on the right hand side includes 

one of the bellows for encapsulating the lower passive layer. The vertical motor and 

the lower half of the flex-pivot can also be seen at the top of the stack. The four 

vertical rods which can be seen on each stack are end-stops which are included to 

prevent damage to the stacks during transit from the laboratory to the GEO 600 site 

and to prevent excessive sideways motion during installation of suspensions.
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Figure (3.3): - Vertical transfer function o f a two layer stack. Both the theoretical 
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Figure (3.4): - Horizontal transfer function o f a two layer stack. Both the theoretical 

and experimental results are shown.
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Figure (3.5): - Photograph o f  two o f  the stacks during construction.
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3.3 Top-Plate

3.3.1 Introduction

A detailed diagram of the optics in the pair of mode-cleaner tanks is shown in 

figure (3.6). Due to the fact that the number and position of the mirrors in each tank 

is not the same a different design of top-plate is required for each tank. Each top- 

plate must meet certain requirements. Firstly each plate has to be able to support 

several double pendulum mirror suspensions without flexing too much. This implies 

it has to be relatively rigid. Secondly in order to avoid the amplification of the 

mechanical motion transmitted from the ground it must have low Q resonances. It 

must also have a low centre of gravity for static stability and the choice of material 

must be vacuum compatible. Lastly it has to interface between the top of the stacks 

and the top of the double pendulums, see figure (3.1). When the top-plate was being 

designed the height of the stack and the double pendulum were already fixed. 

Therefore it was necessary that the top-plate was 320 mm in height to ensure that 

each mirror was at the correct height.

3.3.2 Finite element analysis

Modal Analysis is a means of determining modal parameters (natural frequencies, 

mode shapes and damping factors). This is often done by the approximate theoretical 

method of finite element analysis. Finite element analysis of the top-plate was carried 

out using I-DEAS [72]. Geometric properties, material properties, element types and 

element sizes of the model require to be input into the program [73]. It then 

assembles the corresponding spring and mass matrices and finally solves the 

eigenvalues and eigenvectors to get the natural frequencies and mode shapes 

respectively.

The co-ordinates of the point of attachment of each double pendulum suspension and 

the three stacks were added as initial fixed nodes. The boundary conditions which 

were implemented were that the co-ordinates of the points of attachment of the stacks 

were rigidly constrained in three dimensions.
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Figure(3.6): - GEO 600 mode-cleaner.
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The investigation of various designs, including the overall shape and the choice and 

shape of material elements has been carried out, as outlined below.

3.3.3 Design

Firstly the structure was modelled from solid sections. The lowest resonant mode 

frequencies of the modes of vibration of both mode-cleaner top-plates, calculated 

using I-DEAS [72], were found to be below 100 Hz. The frequencies were raised, 

i.e. the structure was made stiffer, by going to box-section. The initial box section 

results were predicted by calculating the moment of inertia of a solid and box section 

with the same mass per unit length. The ratio of the moments of inertia [75,76] gave 

the factor of improvement by going to box-section for both the vertical and 

horizontal resonances. This prediction was confirmed by modelling the top-plate 

made from box section using I-DEAS [70]. The final stage was to improve the 

choice of box section within the confinements of the overall height and the available 

dimensions of material. This was achieved by maximising the moment of inertia for 

a given mass and also taking into account the bending stress and static deflection of 

the box section. Steel box section was chosen for its high stiffness to weight ratio and 

ease of welding. Aluminium had been chosen initially for its low density, however 

tests indicated that the welding together of aluminium sections would prove difficult 

[77]. The two-layer structure shown in figure (3.7) and figure (3.8) has been chosen 

as the optimum design. Each layer of the top-plate has dimension 40 mm width by 

80 mm depth with 2 mm thick walls. The intermediate struts connecting the two 

layers have dimensions 40 mm by 40 mm with 2 mm thick walls, implying an overall 

weight of each top-plate of ~ 35 kg. The lowest resonant mode frequencies of the 

modes of vibration of both mode-cleaner top-plates, calculated using I-DEAS [72], 

were found to be above 200 Hz. The overall attenuation from the double pendulum 

and the two layer passive isolation stack increases rapidly with frequency. Therefore 

as long as the Q of the resonances are low enough they will not amplify mechanical 

motion transmitted from the ground, which could affect the sensitivity of the 

detector. To ensure that the Qs are low enough, damping is required, as discussed in 

the next section.
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Figure (3.8): - Two schematics o f  the top-plate fo r  tank TCMh: - (a) view from  

above (b) side view.

Figure (3.7): - Two schematics o f  

above (b) side view.
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3.3.4 Damping

Structural elements, like our top-plates, exhibit a number o f normal modes. If  they 

are subjected to random vibrations a number of resonances can become excited. 

Because most engineering materials like steel or aluminium have Q »  50 the 

damping o f resonant vibrations must be done artificially. In order that the top-plate is 

vacuum compatible the damping materials are applied to the inside of the box- 

section. Two main types o f artificial damping were investigated. The first was the 

application o f a visco-elastic polymer with high internal losses. Here the long chain 

molecules are free to vibrate and thereby dissipate kinetic energy as heat.

Visco-elastic layer

Cross section of 
Box-section

The second method was to apply a constrained layer [78]. Here the damping material 

was covered with a thin metal sheet forming a sandwich type arrangement, as shown.

Visco-elastic layer

Thin metal sheet

Cross section of 
Box-section

When the composite material vibrates the constrained damping layers are subjected 

to shear effects, which cause the vibration energy to be converted into heat and hence 

dissipated [79]. It should be noted that the damping properties o f the visco-elastic 

materials can be both frequency and temperature dependent [80].

3.3.5 Tests on damping materials

A section o f box aluminium with dimensions 50 cm long by 10 cm broad by 5 cm 

deep with 0.6 cm thick walls was used for testing various damping materials and 

techniques. To determine its Q, it was hung horizontally as a single pendulum in air. 

A vertical shaker was bolted to one o f the ends and connected to a signal generator

43



that was used to provide the drive. The output was obtained using an accelerometer, 

bolted onto the middle of the box-section, and measured on an oscilloscope. The 

signal generator was used to scan through the frequency range of 1-2 kHz, which 

covered the first four resonances of the section. At a resonance peak the Q was 

measured, using an oscilloscope, as: -

where Af» is the bandwidth at the half power points (6 dB points) and f n is the 

resonant frequency where n is the mode number. For all of the tests the damping 

material formed a thin coating over all of the inside walls of the section and 

contributed to about 10 -  20 % of the total weight. From the measured Qs from the 

first four resonances the loss factor,^ was calculated using: -

kQd Q\
(3.2)

where Q d and Qu are the Qs measured with and without the damping material 

respectively. This eliminated the fact that the experiment was carried out in air, 

allowing the effect of the damping material to be observed on its own. This result is 

also therefore independent of the metal from which the box-section is made. The 

average loss factor, <<j>> was then calculated, and hence the average Q,: -

< Q >  = - L -  (3.3)
< < f > >

< Q > for each material is quoted in table (3.1).

As an example for graphite loaded silicone rubber a value of Qu = 550 and Q d = 40 

was measured for the first resonance of the bar of ~ 1000 Hz, implying a value of 

^=0.023.

The GEO 600 vacuum system will have to be baked to 80°C in order to remove 

water vapour from the vacuum tank, thus allowing an improved vacuum. Therefore

44



due to the variation of the behaviour of the damping materials with temperature [80] 

each material was baked to 100°C for 30 minutes and the Q from before and after 

compared, as shown in table (3.1).

MATERIAL / DESCRIPTION AMOUNT 
ADDED as a % 
of the TOTAL 

WEIGHT
<Q> = —

< 7 J >

AFTER BAKE 
TEST

< Q >  = —
< T J >

VISCO-ELASTIC DAMPING

1. Q- mixture, 3:1 Q compound 10 250 250
+ silicone grease (visco­
elastic)

2. WAXOYL 10 100 (liquefies)
(rust-proofing for cars)
3. Sorbothane (visco-elastic 13 50 70

polymer)
4. Bitumen felt 13 40 140

5. Graphite loaded silicone 15 60 60
rubber (15 % graphite by
weight)

CONSTRAINED LAYER
DAMPING

6. Q- mixture and thin 13 50 50
aluminium sheet (constrained (0.3 mm Al)
layer)

7. 3-M tape and thin aluminium 3 100 120
sheet (constrained layer) (0.3 mm Al)

Table (3.1): - Investigation into various materials for damping the resonant modes 

o f a test box-section o f aluminium.

3.3.6 Final choice

Experience obtained from SKODOCK, the company who manufactured the top- 

plates, told us that the damping material must be applied after the sections have been
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welded together, in order to prevent contamination of the weld from the damping 

material. This therefore restricted our choice o f damping material and ruled out 

completely the use o f constrained layer damping, because it must be applied before 

welding. An aperture nozzle is fitted to each layer o f the top-plate, allowing the 

damping material to be added after welding. The aperture is then sealed with a 

vacuum flange.

Graph of loss factor, against Frequency (Hz)

0.03.
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^  0.02
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M  0.015
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-■ ■■ ■~r- .......  “

±  i
i -1r  1 i

RTV (after bake test)

1500 2000 2500

Frequency (Hz)

3000 3500

Figure (3.9): - Final choice o f  damping material -  RTV (graphite loaded silicone 

rubber) . The straight line represents the average value o f  the loss factor, (f>, before 

(red) and after the bake test (blue).

Graphite loaded silicone rubber is used as the damping material. It is easily applied 

in its initial liquid form before curing, forming a thin coating over the inside walls o f 

the box-section. More importantly it has been shown to survive the bake test at 

100°C with only small changes in its damping properties. Figure (3.9) shows how the 

damping properties of graphite loaded silicone rubber varies with frequency before 

and after the bake test. The results taken for the (j) for each resonance o f the bar, 

after the bake test show that </> is constant over a factor o f three in frequency, 

implying structural damping is present. Finally it has very good damping properties 

leading to an average quality factor, <Q> ~ 65 (1.5 % loss factor) o f the resonances 

with an addition o f 15 % by weight. This is shown as the blue line in figure (3.9).
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3.4 Double Pendulum Suspension

The mode-cleaner mirrors are suspended as double pendulums, where the transfer 

function becomes proportional to above the highest resonant frequency, for a

high Q system. The mirrors are made from fused silica with dimensions 100 mm 

diameter by 50 mm thick, giving a mass of 0.86 kg. Each mirror is suspended on four 

stainless steel wires from an intermediate mass, made from aluminium with 

dimensions 70 mm by 50 mm by 85 mm in the X9 T, and Z directions respectively, 

which in turn is suspended from two stainless steel wires. A schematic of the mode- 

cleaner double pendulum is shown in figure (3.10). The mode frequencies of the 

double pendulum were predicted using a MATLAB [71] model of a double 

pendulum written by Dr. Stuart Killbourn [59]. These mode frequencies were 

verified experimentally on the mode-cleaner prototype [81]. As explained in section 

2.4 for a simple pendulum, the resonant modes of the double pendulum require to be 

actively damped, and this is done with sensors and actuators acting at the 

intermediate mass. Applying the damping at the intermediate mass ensures that any 

extra motion caused by electronic noise in the sensor or actuator is filtered by the 

lower pendulum stage and therefore does not affect the mirror.

The active damping system uses co-located damping, a shadow sensor (consisting of 

a LED/photodiode assembly and an opaque flag interrupting the light beam) is used 

to sense the displacement of the pendulum and then an actuator applies a feedback 

force, after suitable filtering, at the point of sensing to counter the motion. The 

feedback force is provided by passing a current through a coil of wire and this 

interacts with a magnet attached, in this case, to the intermediate mass [29].

The modelling of a local control servo indicated that the longitudinal, tilt, sideways 

and rotational modes of the double pendulum can be actively damped using four­

sensor/actuators [59]. The power spectral density (PSD) was measured on the mode- 

cleaner prototype in both the rotational and tilt directions for both the undamped 

case, red curve, and the damped case, green curve, as shown in figure (3.11) and 

figure (3.12) for the rotational and tilt directions respectively. The vertical and roll 

modes are left undamped.
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The magnets are fixed with Ceramabond 571S, vacuum compatible adhesive, to the 

intermediate mass and the coils are mounted on a coil-holder, attached to the top- 

plate. There is one coil-holder for each double pendulum. The sensor/actuators have 

the following arrangement: -

• Two on the main section of the holder, which damp the tilt and longitudinal 

modes of the double pendulum.

• One on each side arm, acting on either side of the intermediate mass, which damp 

the sideways and rotational modes of the double pendulum.

A schematic of the set-up for each modecleaner mirror is shown in figure (3.10).

As already mentioned in section 2.2, the mode-cleaner cavity must be locked to the 

input laser light. This requires actuation on one of the mirrors to provide feedback to 

the length of the cavity. Three actuators, adapted units without sensors, apply a force 

to one of the mode-cleaner mirrors in each mode-cleaner. The coils are mounted on 

an aluminium reaction mass suspended as a double pendulum, as shown in 

figure (3.13). The hole in the aluminium reaction mass is to allow the laser light to 

pass through as shown in figure (3.6).
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Figure (3.10): -Mode-cleaner double pendulum suspension.
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Figure (3.11):-The power spectral density (PSD) against frequency o f  the mode- 

cleaner prototype in the rotational direction for both the undamped case, red curve, 

and the damped case, green curve.
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Figure (3.12):-77?e power spectral density (PSD) against frequency o f  the mode­

cleaner prototype in the tilt direction for both the undamped case, red curve, and the 

damped case, green curve.
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Figure (3.13):- Mode-cleaner double pendulum suspension and reaction mass 

suspension.
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3.5 Transfer Function

Tv =
fs v

2
’ / p v "

V L / J

It is possible to write an expression for the vertical transmissibility, Tv, of the mode­

cleaner suspension system above the highest resonance frequency, where the system 

consists of a two-layer passive isolation stack and a double pendulum suspension.

In the vertical direction: -

4

c (3.1)

where /sv is the geometric mean frequency of the stack (18 Hz), / pv is the geometric 

mean frequency of the double pendulum (~ 20 Hz) and c is the cross-coupling 

factor (0.1 %).

Tv = 5.2 x 10"8 at / =  100 Hz.

10’7With a ground noise spectrum of m/VHz we obtain a resulting test mass
f

motion dbc ~ 5.2xlO_19m/VHz at 100 Hz, which more than adequately meets the 

noise specification outlined in section 3.1.

3.6 Transfer and Installation of Mode-Cleaner

The design and testing of the prototype mode-cleaner suspension has been outlined 

in the previous sections. The isolation properties have also been shown to satisfy the 

requirements for the GEO 600 mode-cleaner. The installation of the mode-cleaner at 

the GEO 600 site, near Hannover, started in December 1998. The transfer of the 

design has been undertaken by Dr. Mike Plissi and myself working closely with Dr. 

Benno Willke, Dr. Peter Aufinuth and Dr. Harald Lueck in Hannover. Before the 

installation started, several pre-installation stages had to be undertaken. Firstly 

drawings and sketches of the various parts were transferred to Germany for the 

construction in the workshop. Secondly a prototype was put together in the 

laboratory to ensure all of the components interfaced successfully. A photograph of
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the German prototype mode-cleaner suspension is shown in figure (3.14) and (3.15). 

The three stacks can be seen supporting one of the top-plates. One test mode cleaner 

mirror, made from aluminium, can be seen suspended as a double pendulum with the 

coil-holder and coils also shown. The next step was to clean all of the parts from this 

prototype in an ultrasonic bath and bake them in an oven in order to make them 

vacuum compatible. Lastly all of the components were installed into the tanks under 

cleanroom conditions. At the time of writing both sets of stacks and top-plates have 

been installed in the mode-cleaner tanks and three double pendulums have been 

installed. During this installation period I have worked in Hannover on various 

occasions with Dr. Mike Plissi.

53



Figure (3.14): - Photograph o f  the German prototype mode-cleaner suspension.
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Figure (3.15): - Photograph o f  the German prototype mode-cleaner suspension.
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Chapter 4

Model of a Pendulum Suspension

4.1 Introduction

As already mentioned in section 2.6, in GEO 600 a triple pendulum suspension is 

used for each main test mass. A model is therefore required to calculate the mode 

frequencies and dynamic response of such a pendulum. However in order to 

understand the mechanics of a triple pendulum it is necessary firstly to model a 

single pendulum. The equations of motion of a single pendulum (section 4.3 to 4.6) 

are derived for all the degrees of freedom (section 4.2). The model is then used to 

investigate how various parameters, for example the separation of the wires, affect 

the mode frequencies (section 4.7). The extension to a triple pendululm is outlined in 

chapter 5.
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4.2 Single Pendulum

A single pendulum as shown in figure (4.1) was modelled, including all o f the 

geometrical effects o f gravity and the stretching o f the wires, assuming negligible 

damping. The mass is assumed to be rigid with the wires acting as linear springs 

obeying Hooke’s law. A single pendulum has six degrees o f freedom and therefore 

six mode frequencies, which are as follows: -

Longitudinal motion, x, translation parallel to the X-axis 

Sideways motion, y, translation perpendicular to the X-axis 

Vertical motion, z,

Roll, i//, about the X-axis 

Rotation, cr, about the Z-axis 

Tilt, ^ . about the Y-axis 

Two different techniques were used, firstly writing down the differential equations o f 

motion using Newton's second law, as presented here, and secondly calculating the 

kinetic and potential energy in order to utilise Lagrange's equations. This second 

technique was modelled with Matt Husman [82].

SIDE ON FACE ON

Figure (4.1): - Schematic o f  a single pendulum.

The parameters used are: - 

/ = the length o f a wire,

s = the half separation o f the wires in the X-direction,
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tl

t2
d

and

k

= the half separation o f the wires in the Y-direction at the suspension point,

= the half separation of the wires in the Y-direction at the mass,

= the distance the wires break-off above the line through the centre of mass

= the spring constant o f one wire.

The differential equations o f motion for all o f the degrees o f freedom outlined above 

are now obtained for a single pendulum. To first order the vertical and rotation 

frequencies remain uncoupled in the following arrangements. The sideways and roll 

pair and the longitudinal and tilt pair are coupled. Both modelling techniques, 

outlined above, produced the same results.

4.3 Vertical

Consider a single pendulum o f mass m suspended from two wires o f length / with 

spring constant k and at an angle o f Q  with the vertical. In static equilibrium we 

have: -

Z
▲

Y

Figure (4.2): - Face on view o f  cylindrical mass.

l = l0 + Al0 (4.1)

where l0 is the unstretched length o f the wire. T = kAla is the tension in the wire due

mv
to the gravitational loading. Hence since T = ~co^

Al0 mg
2kcosO (4.2)

58



A force now displaces the mass downward in the vertical direction by a small 

amount ‘z’ from the equilibrium position. The length and angle o f the wire are 

changed to / 'a n d  O  ' and the tension in the wire due to gravitational loading also

my
changes such that T f = 2cosf2' ' tens*on *s eclual t0 k A l f  where

AV0
mg_

2kcosf2 '
(4.3)

h+z

Figure (4.3): - Face on view o f  cylindrical mass after displacement z.

A restoring force will act on the mass, proportional to the extra extension Al, where 

Al = r - l 0 -  AV0 = ( / ' - / )  + (Alo -  Al'o) (4.4)

after substitution for l0 from equation (4.1). The calculation o f Al is best carried out 

by considering the two terms separately. Using I = (t2 -  ti f  and

+ z)~ + (t2 ~ t / f  in the first term of equation (4.5) we obtain: -

r - I  = z j j j  = zcosf2 (4.5)

to first order in z.

U s. AI = _mg_ _  — 22K-------— 21K________ ---------Using Al0 2Rcosn and Al 0 2 k c o s n ,
2k I y

(h+z\ ~ (  h+z \
(  / '  J 2k

i h l - z  j
\  lJ

in the second term we obtain

myfztan2!- .
Al0 -  Al'o =  — y J. (4.6)

to first order in z. Simplification is achieved by the use o f the binomial expansion 

and by discarding second and higher order terms. Putting these together gives: -
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A / = zcos/2 +
gf  z tan2i /  

I y2k{ (4.7)

The equation of motion in the vertical direction is: -

mz = -  2kAlcosf2' » -  2kAlcosD to first order. 

Substituting for zl/ from equation (4.6) gives: -

(4.8)

7 n . w£sin2i7) 2&cos /2 + , — —  /cos/2 / (4.9)

This is simple harmonic motion where z = -  (2nf)2z => the vertical frequency of a

2kcos2f2 jgsin2/^  
w /cos/2 ysingle pendulum, /verticalsingle pendulum, /vertical = ^

For the case of four wires the k in equation (4.9) would become 2k, where k is again 

the spring constant of one wire.

In considering equation (4.9) it can be seen that there are two effects which 

determine to the frequency, one related to the spring constant k, and one to g. It is 

clear from the derivation that the first term arises due to the overall length change in 

the wires as the mass moves. It is however less obvious that there should be an 

additional term involving g. The Lagrangian model [82] predicted this term and the 

forces model allowed us to understand that it comes from a change in the angle, Q, 

of the wires when the pendulum moves in the vertical direction. The same argument 

leads to an additional term arising in the rotational equation of motion, see 

equation (4.49).
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4.4 Tilt and Longitudinal Motion

Firstly the mass is rotated through an angle, to the vertical. Secondly the mass is 

displaced in the X-direction such that the wires move through an angle 6. (j> is 

defined as the motion about the centre of mass. x„ is defined as the linear 

displacement of the centre o f mass, xi is defined as the linear displacement of the line 

joining the wires to the mass and xo is defined as the linear displacement o f the line 

joining the wires at the points of suspension (all in the X-direction).

(i) Consider the case of a mass suspended from 2 wires o f length, /, which are 

vertical when the mass is at rest and attached to the mass a distance, d  above 

the line through the centre o f mass.

\ < f ) +  a - 9 )

Figure (4.4): - Side view o f  cylindrical mass.
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Xn-Xj
For small angles p = —^ (4.10)

and 0  =
Xl  ~ X q

I (4.11)

The component of restoring force which acts to tilt the mass for one 

wire = T2sm(<f> -  0 + a) and for the other wire = 7ysin(a -  p + 0). T2 and Tj are the 

tensions in each wire such that: -

7) = ^  + fcd/ 

and Ti=^ 2 ~- kM .

(4.12)

(4.13)

where A/ is the change in vertical height as the mass tilts, equation (4.7). Now 

Torque = (r)x(F) = (distance)x(perpendicular component of Force). Hence the 

equation of motion for tilt for a two wire suspension is: -

Iy (p = -  7>sin(0 -  0 + a) -  7>sin(0 -  0 -  a) (4.14)

where Iy is the moment of inertia about the Y-axis. Expanding equation (4.14) for 

small angle (</>-&) and substituting for Ti and T2 where Al = z = s</>, for small angle, 

(/>, for vertical wires, gives: -

IYip = -mgd{(f) - 0  ) -2 k s 2(p (4.15)

where d = rcosa and s = rs'ma.

Now using equations (4.10) and (4.11) and solving for 0 in terms ofx„ and p gives: -

0 = I

substituting equation (4.16) into (4.15) gives: -

_ 7 mgd
I Y < / > = - j - ( Xn - X o) + -  mgd -  - 2ks2 *

The longitudinal equation of motion is: - 

mcn =-m g0

substituting equation (4.16) into (4.18) gives: -

mg . . mgd ,
= — i - ( x„ ~ xo) + —r - ^

(4.16)

(4.17)

(4.18)

(4.19)

It can be seen that equations (4.17) and (4.19) are coupled.

62



(ii) Consider the case of a mass suspended from 2 wires as in case (i) and 

figure (4.4) but this time the wires are sloping at an angle, /2, to the vertical in 

the Y-direction, in its equilibrium position, as in figure (4.1).

In this case equation (4.10) is the same as before but equation (4.11) becomes:

( 4 - 2 0 )

and subsequently equation (4.16) becomes: -

e = x" ~ x° Z ? d  (4.2i)I cos/2

This time the equation of motion for tilt must take into account the fact that the wires 

are angled in the Y-direction. Thus component of forces acting vertically are 

T2C0 SD and 77 cos/2 Hence: -

Iy <j> = -  7ycos/2 sin(^ -  0 + a) -  7>cos/2 sin(^ -  0 -  a) (4.22)

whereTl=l ^ n - kAl (423)

and T2=l ^ n +kAl (4'24)

expanding equation (4.22) for small angle {(/>- 0) and substituting for 77, T2 and Al,

from equation (4.7) where Al = z = s<f>, gives: -

mgs2 sin2Q , ,
IYf  = -mgdW -  0 )    $ -  Iks2 cos2 Q</> (4.25)

/ cosQ

where again d  = rcosa and s = rsina 

Substituting equation (4.21) into (4.25) gives: -

Ir 4 = ~ ^ : ( x„ - xo) +I cosQ

(   72  2 - 2  \. mgd mgs sin Q _. 2 2 ^-m g d   -----------------------Iks cos Q
I cosQ /cosQ

f  (4.26)

For the case of four wires the k in equation (4.26) would become 2k, where k is again 

the spring constant of one wire.

Now substituting equation (4.21) into equation (4.18) gives the longitudinal equation 

of motion as: -

mxn = -  T ^  (*. -  *0 ) + , mgdn t  (4-27)/ cos Q / cos Q
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Firstly it can be seen when comparing equations (4.26) and (4.27) with equations 

(4.17) and (4.19) that for the case of vertical wires, {2 = 0 ,  equations (4.26) and 

(4.27) simplify to equations (4.17) and (4.19). Secondly as already mentioned it can 

be seen that both sets of equations are coupled. It is therefore necessary to calculate 

the eigenvalues from the matrix of the coupled equations, outlined below, in order to 

find the normal mode frequencies.

(4.28)> ' _
^11 ^12

> '
= [A]

>  '

-Xn_ k  21 ^ 2 2  _ *n_ * n _dtA

where kn = -
mg^svcvQ mgd mgd2 2 ks2cos2 { 2

/y/cos/2 I y  I y  / c o s /2  I y

12 Ty/cos/2 ’

k2 , = l £ n [

k2 2 --- A .
/cos/2

=> the coupled tilt and longitudinal frequencies,/tiit/iongimdinai = ^ {abs{eig[A\)) 

where abs calculates the absolute value of the eigenvalues (eig) o f A.

It can also be seen from both sets of equations that they become uncoupled when the 

distance, d, the wires break-off above the line through the centre of mass equals zero, 

implying the longitudinal motion, x„, and tilt, (j), become uncoupled. Thus the 

coupling has a dependence on a non-zero value of d.
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4.5 Rotation

Due to the complexity o f the equation of motion for rotation four examples are set 

below. In all four o f the cases the wires are assumed to break-off from the line 

through the centre o f mass.

(i) Consider the case o f a mass, m, suspended by two wires o f length, /, which 

are vertical.

If the mass rotates through an angle, a, the wires therefore change through an 

angle, 6\ where the point o f attachment at the mass moves in the arc of a circle, 

shown as a dotted line in figure (4.5). The component of restoring force in the 

rotational direction due to one wire = TsinO&TQ where T = tension in one wire

Figure (4.5): - Effect on one wire when the mass is rotated through an angle, a

Now Torque = (r)x(F) = (distance)x(perpendicular component o f Force). Hence the 

equation of motion for a two wire suspension is: -

where 9 = ~ , Iz is the moment of inertia about the z-axis, t  is the distance the wire 

is from the vertical line through the centre of mass.

..ms „ ms
2cos6 ~ 2 for small angle approximation.

Iz<J = -2T tO (4.29)

tCJ

(4 .30)
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(ii) Consider the case o f a mass suspended from four wires, which are vertical. 

Each wire is distance ( r  + / ) |/2 away from the vertical line through the centre of 

mass, where s and / are the distances in the X and Y direction as shown below. By a 

similar argument to the above the equation of motion for a four wire suspension is: -

_ mgj f+s2) 
h o - -  { a (4.31)

X

Attachment
point

Figure (4.6): - View o f mass from above.

(iii) Consider the case o f a mass suspended from two wires sloping in at an 

angle, O, to the vertical (Z-dircction), as shown in figure (4.2). // and t2 arc as 

defined before.

Lower point of
attachment

Upper point of 
attachment

t2 —ti ti

Figure (4.7): - Projection onto X -Y  plane looking from  above.

The dotted red line, in figure (4.7), represents the projected position o f one wire after 

the mass rotates through an angle, cr. It can be shown that the length v = -  ti

assuming a small angle for cr. The component o f tension, in the X-Y plane acting

Tsin/2
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along direction v = 7sin/2 where T = and sin/2 = ', .& 2 cos/2 /

Nov/ the component o f this, which acts to rotate the mass, is the component in the

11
direction perpendicular to the radius vector i.e. 7sin/2 sin/7, where sinB  =  crti — 11

for small angle a.

Therefore the torque for one wire = (/2)x(Tsin/ 2  sin/7). Implying: -

_ mgt!t2 
z /cos/2 (4.32)

(iv) Finally consider the case o f four wires sloping in at an angle, /2  , to the 

vertical (Z-direction).

Figures (4.8) and (4.9) are a projection onto the X-Y plane looking from above. The 

solid line represents the mass. The dotted line represents the path on which the points 

o f attachments move.

Upper point o f attachment Lower point o f attachment

Figure(4.8): - Before rotation.
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(P) sin(y-cr + s)

Figure(4.9): - After rotation through a small angle, a.

The components o f tensions, in the X-Y plane, in the wires (1) and (2) (dotted red 

lines) when the mass is rotated through a small angle, cr are given by F" and F' 

respectively. The magnitude o f the components o f these tensions which are 

perpendicular to the radius and act to rotate the mass are shown in blue. These forces 

act at points (P) and (Q) respectively. Note that the resulting torques act in the 

opposite sense to each other.

Therefore the total torque from four wires is: -

+s2][F',s in ( /-  <7 + s) -  F 'sin (/ + a-/3)\  (4.33)

where the factor o f 2 takes into account all 4 wires.
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y+cr-p)

M

t2

Figure (4.10): - Figure (4.9) expanded for wire (2).

Firstly an expression for sin(/ + cr -  p) can be found from consideration of geometry, 

in figure (4.10).

Now s' = sin(/ + o) yjtp+s2 (4.34)

n/ )  yjt22+s2 = t2 <J for small angle, cr

(4.36)

s ' -  s = (sin(y + a ) - s i n y )  yjt2 +s = t2 <J for small angle, cr (4.35) 

and t*2 = cos(/ + cr) *\]t2 +s2 

=> t2 ~ t r2 = (co s(/)-  cos(/ + cr)) yJtpT p  = scr for small angle, cr (4.37)

(.s'- s )  t2 (J
and hence tanp  & sinp  =

t i  -  t i  -  (t2 - 1'2) t2 -  t i  - s < j

sin(P-cr)  ~{ f l  -  o)
t/cr

discarding terms in cr"

f / c o s /
s m ( y -  P  + cr) = s m ( / ) c o s ( / ?  -  cr) -  s in (/? -  c j ) c o s ( / )  = | s i n /   ------- cr

*2  * 1 j

for small angles.

It can be shown that sin(/ -  cr + s) = ( sin / + —c—s^  a
V h —  ti >

(4.38)

(4.39)

(4.40)

using a similar argument for

wire (1).
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Total torque = 2 yJtP+P F'ismy  + tlC0S^  G
V V h - t i  J

t-i/i . tjcosy - F \s m y -  t2 _ t ] v} (4.41)

Secondly expressions for F" and F' can be found by considering the dynamics of the 

wires. Assuming the mass does not change vertical position and does not tilt, the 

wires have to change length by an amount Al when the mass rotates through an 

angle, cr.

Before rotation: - After rotation through cr(for wire (2)): - 

y]h2 +(t2 -  17 -SO) 2 ^

t2 - t]  - s  cr

(s' - s)
where CB = s-m^  = t2 - t i  -scr  from equations (4.35) and (4.38)

Al = *\]h2+(t2 - 1] -scr)2 -y lh 2 +(t2 - t }y  

scr(t2 - t i)
A l* - '

h2 +(t2 - 1iY

(4.42)

(4.43)

Wires (1) and (3) are stretched and (2) and (4) are contracted assuming the overall 

height is not changed. Thus the tensions in wires (1) and (2) are given by

T” = + kAl and V  = -kA l respectively.

wires (2) and (4): -

a

wires (1) and (3): -

Finally from the geometry of the triangles shown above the components of force in 

the X-Y plane, F" and F ’ are given by: -

F" = r'sin/2" (4.44)

and F' = T'sini?' (4.45)
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t2 -tj+scr t2 ~ti socos Cl 
where sinu  = i ~ » — ;— +

and sinQ' =

^lh2 +(t2 -ti+ sd ) 2 ~ 1 1

t2 -  ti - s o  t2 -  ti socos2 Q
Ĵh2+(t2 -ti-so)2 I I

Now substituting for F" and F’ and Al into equation (4.33) 

=> total torque =

(4.45)

(4.46)

mg 's 2 co£Q + t]t2
+ 2 ks S

2/cosQ, 2 2 \l/2 
I  ( 2 + S  )  ) \J +(^2 — ̂  1 )  j r* 2 i „2xl/2012 +s )

- i f i f + s 2

the equation of motion is: -

(4.48)

4ks2 (t2 - t jlz&=_ j a ^ b coi n +ttt2 ) * -
z /cosQ 12 '  I

2 \
(4.49)

rotational frequency,/.,,,,,,^ =—
2 7t\

+ — — — (s2 cos2 n +txt2 )+ 
Iz l cosQ

r4 f e V V '
h i 2 J

4.6 Sideways Motion and Roll

The sideways and roll frequency equations are derived in a similar manner to the 

longitudinal and tilt equations but are somewhat more complicated. They become 

coupled when either the wires are angled in the Y-direction or the break-off position 

is moved to above or below the line through the centre of mass. Consider the case of 

a mass suspended from two wires sloping at an angle, /2, to the vertical (Z-direction). 

ti, t2 and d  are as defined before.

Firstly an expression for the change in length of the wires, Al, and also the change in 

angle of the wires, 0, as the mass moves, has to be found. This is achieved by 

considering separately the effect that roll and sideways motions have on the mass.
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(a) Consider the effect o f roll through an angle, y/, on the length and angle o f the 

wire.

/ -  Al,

Figure (4.11): - Face on view o f  cylindrical mass.

(/ - A l r)sw\{Q -  6^ t| ds\n(y/)

I -  Al,

(/ -  Alr)cos(f2 -  0r)

Figure (4.12): - Figure (4.11) expanded to show various lengths.
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The mass is rotated through an angle, y/, to the vertical. As a result, the angle Q  is 

decreased, on the left-hand side of figure (4.11), by an amount 0r. Now

/sin(/2) = t2 -  tj (4.50)

From figure (4.12) it is clear that: -

t2 cos(y/) = (/ -Alr)sm(f2 -  0r)+ ti + dsm(y/) (4.51)

(/ -  Alr)sm{D -  0r) = t2cos(y/)-t] -  Jsin(y/) (4.52)

/cos(/2) = h (4.53)

Again using figure (4.12) it is clear that: -

h =(/ -A lr)cos(,0 -  0r) -d ( l  -  cos(y/)) + ^sin(^) (4.54)

=> (I -  Alr) cos(f2 -Or) = h + d(l -  cos( y/)) - 12 sin( yr) (4.55)

Expanding equations (4.52) and (4.55) for small angle 0 r and y/, substituting for 

equations (4.50) and (4.53) and solving for Alr and 0r gives: -

Alr = + t2 cos(/2) y/ + */sin(/2) y/ (4.56)

f  t2sinf2  dcos&
Or — — » +/ I y/ (4.57)

The previous equations considered one side of the mass rotating. It can be shown that 

to first order the change in length and angle of the wires on the right hand side is 

identical to the change on the left-hand side of the mass.

(b) Consider the effect of a sideways movement, Ay on Al and 0.

I -  Ah

A

h

v

Figure (4.13): - The effect o f a sideways movement.

Where Ay= (yn -yo) (4.58)

Ay is defined as the linear displacement of the point of attachment on the mass from 

the rest position, y 0 to the new position, y„. It can be shown that: -

Als = sinQ (yn-yo) (4.59)
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and a  = cos /2 ( y n - y o )l (4-60)

Adding equations (4.56) and (4.57) to (4.59) and (4.60) respectively gives: -

7? sin/2 r/cos/2)^ ^ cos/2 ( sin/2 r/cos/2)
0  —  O s  ^  O r  —  ^ ( y n  - y o )  — I i  —  i  \ y /

A l = A ls + Air =  sinIK yn - y o )  +  (/?cos/2 +  dsinfl) y/

(4.61)

(4.62)

Secondly the equations o f motion for both the displacement o f the centre o f mass and 

motion about the centre o f mass can be obtained as outlined below with reference to 

figure (4.14).

a  -  y/ +
f2  + 0

a  + y/ + /2 + 0

Figure (4.14): - The effect o f  a sideways movement and roll.

The equation o f motion for the displacement o f the centre o f mass, y n, is: -

m yn = -  72sin(/2 + 0) -  Tis \n(0- f2)  (4.63)

The component o f force which acts to roll the mass for one 

wire = T2sin(a  + y/ + /2  + 0 )  and for the other wire = Tisin(a — y/+ Q  -  0 )  where 

Tj and 77 are as defined in equations (4.23) and (4.24).

Now Torque = (r)x(F) = (distance)x(perpendicular component o f Force). Hence the 

equation o f motion for motion, y/, about the centre o f mass is: -
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h  ¥  = -7Vsin((y/ + 9) + (a  + £2)) -  T/rsin((y/ + 0 ) - ( a +  £2)) (4.64)

Ixty=-T 2r((iff+ 0)cos(a + £2) + sm(a + £2)) -Tir((y/ + 0)cos(a + £2) -  sm(a + £2)) 

for small angle (y/ + 6).

Substituting for Tj, T2 from equations (4.23) and (4.24), for Al and 0 from equations 

(4.61) and (4.62) and using small angle approximations gives: -

m yn =  ^  -  mgc° s^  _  2ks\r?£2 (̂yn - y 0)

and

Ixys = +

+

+

mgdcos£ 2  mgt2 sm£ 2

I

mgt2sm£2

j-------+ 2kdsm £2 + 2 kt2sm£2 cos£ 2  J y/ (4.65)

-m gd  +
2 mgdt2 sm£ 2  mgd2 cos£ 2  m #/sin2/2

cos/2 I I
j2 • 2^  2__ 2,

/cos/2 ¥

+ ( -  4 kdt2 S\n£2cos£ 2  -  2kd sin £2 -  2 kt2 cos £2) y/

+ +
mgdcos£ 2  mgt2sin£ 2

I j + 2kdsin £2 + 2 kt2 sin£2 cos£ 2  \(y„ -yo) (4.66)

For the case of four wires the k in equations (4.65) and (4.66) would become 2k, 

where k is again the spring constant of one wire.

As already mentioned the sideways and roll frequency equations are coupled. 

Therefore it is necessary to calculate the eigenvalues from the matrix of the coupled 

equations, outlined below, in order to find the normal mode frequencies.

(4.67)¥ 1̂1 S12 ¥ = [A] ~¥~—
_ y . _s 2l S 22 _ _y  _ _y  _dt

_ mgt2 sin£ 2  mgd mgd2cos£ 2  mgt2 2sir? £ 2  2&d2sin2/2 
w ere su + cosq j x jx / Ix  /cos/2 Ix h

2 9
2 mgdt2 S\n£ 2  4 kdt2 Sm£2cos£ 2  2 kt2 cos £2 

+  l l x  ~  Ix Ix  ’

_ mgdcos£ 2  mgt2sm£ 2  2 kds\ri£ 2  2 kt2 sm£2 cos£ 2  

s , 2 ~ +  l l x  ~  l l x  +  Ix  +  Ix

gdcos£2 ^ 2  sin/2 2kdsm2£2 2 kt2S\n£2cos£ 2
521 = -  —;—  + — j—   ----     andI I m m

gcos£ 2  2 k sin2/2
522 = -  I
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=> the coupled sideways and roll frequencies,/roii/sideways = ^ 's]{abs{eig[A\)) where 

abs calculates the absolute value of the eigenvalues (eig) o f A.

The equations of motion of a single pendulum, for all the degrees of freedom, are 

outlined in Appendix A.

4.7 Single Pendulum Analysis

4.7.1 Experimental results

To test the model, a single pendulum was set up on a four-wire suspension. The 

resonant frequencies were obtained by exciting the pendulum and measuring the 

response on a FFT spectrum analyser from an accelerometer attached to the mass. 

The table below shows the experimental results obtained for four different examples. 

The first case investigated had four straight wires breaking off from the centre of 

mass (case 1). Secondly the wires were angled in the Y-direction for two different 

angles (case 2 and 3). Finally the wires were attached to the mass above the line 

through the centre of mass (case 4). For all the cases the mass, m, = 20 kg.

The MATLAB [71] routine mcsing.m in Appendix A.1, model of a single pendulum, 

allows the input of the various pendulum parameters, assembles the single pendulum 

model, outlined in this chapter, and returns the theoretical mode frequencies for all 

degrees of freedom.

The first theoretical predictions were too high compared to the measured value for 

the frequencies where the spring constant dominated. The spring constant of the wire 

is given by: -

E m 2
k = (4.68)

where E is the Young’s Modulus, r is the radius of the wire and the other symbols 

have their usual meaning. In the first set of predictions the book value of Young’s 

Modulus [83] of 2.0 x 1011 Pa was used. An attempt was then made to fit the theory 

using the measured vertical frequencies to calculate a new value for E. The new E 

was then used to predict the other frequencies. However this gave the theoretical
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frequencies in tilt, rotation and roll as being too low compared to measured values. 

At this point it was postulated that some of the vertical frequencies might be affected 

by coupling to the support structure which was not completely rigid. Thus it was 

decided to independently measure E of the wire by measuring the vertical and 

rotational frequencies of a pendulum of 8 m in length. A long pendulum was used to 

minimise any coupling effect from its support structure. The measured frequencies 

gave a value for E of ~ 1.7 x 1011 Pa. Using this value the theoretical predictions 

agree with the measured results within experimental error, except for the vertical 

frequencies for case 1 and 2 where it was believed that the support structure was 

coupling to the pendulum, thus giving a lower frequency. The result table (4.1) 

below shows the revised theoretical predictions. The experimental values all have an 

error o f -  10 %. The parameters outlined below for a single pendulum are all given 

in metres and are explained in figure (4.1).

Case 1:7 = 0.27, d=  0,

Case 2 :/ = 0.2572. <7=0,

Case 3 :7 = 0.395. d=  0,

s = 0.0405, 7/ = 0.133, 72 = 0.133

5 = 0.025, tj = 0.0465, t2 = 0.133

7/ = 0,s = 0.025,

Case 4 :7 = 0.363, d  = 0.032, s = 0.025, 7/ = 0,

72 = 0.133 

72 = 0.133

All in (Hz) Tilt Longitudinal Roll Sideways Rotation Vertical
Case 1
Experimental 7 0.94 20.3 0.94 1.78 11.25
Theory 7.6 0.96 22.2 0.96 1.78 14.3
Case 2
Experimental 4.39. 1 . 0 19.4 1 1.9 11.9
Theory 4.5 1.01 21.8 1.01 2 . 0 2 13.74
Case 3
Experimental 3.58 0.81 16.1 0 . 8 1.26 1 0 . 2

Theory 3.6 0.82 17.6 0.8 1.37 11.1
Case 4
Experimental 3.88 0.84 18.5 0.84 1.44 11.4
Theory 3.9 0.85 19.9 0.8 1.5 11.4

Table (4.1): - Results from single pendulum experiment
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4.7.2 Further investigation o f  the single pendulum model

As discussed in chapter 5, there are various constraints in the overall design o f the 

suspension, such as for example the dimensions of the GEO 600 test masses and the 

overall length of the triple pendulum and the number o f wires in each stage. However 

factors such as the separation of the wires in the X-direction and the angle of the 

wires in the Y-direction can be varied, and it is instructive to see how their variations 

affect the tilt and rotational frequencies.

Consider a GEO 600 test mass, for the main suspension, made from fused silica with 

a radius of 9cm  and thickness 10cm giving a mass, m ~ 6 k g .  The mass is 

suspended from four steel wires, o f radius 200 pm, attached 1 mm above the line 

through the centre o f mass.

Tilt frequency (Hz) / separation o f the wires, 2s (m)

001

or

wires

w i r e s  f i n d  v< ;rt i i !2 [ t i p r i n g s

separation o f the wires, 2s (m)

Figure (4.15): - Graph o f tilt frequency (Hz) /  separation o f  the wires, 2s (m)

Figure (4.15) shows how the tilt frequency is affected by varying the full separation 

of the wires in the X-direction, 2s, from 1 mm to 10 cm (the edge o f the mass) for: -
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•  a  fo u r w ire  s u s p e n s io n

• and for a four wire suspension incorporating vertical springs o f low spring 

constant and hence producing a lower tilt frequency to that o f the four wires only.

The above case is for a separation in the Y-direction fixed at 18 cm and for four 

vertical wires o f length 18 cm. It should be noted that the tilt and longitudinal 

frequencies are coupled. The mode, which is shown in figure (4.15), is the one that is 

dominated by the tilt motion. The two effects which contribute to the tilt frequency, 

namely the restoring forces due to gravity and the spring constant o f the wire, can be 

clearly seen in both equation (4.17) and in figure (4.15). When the separation o f the 

wires, s, in the X-direction, is small the tilt frequency is flat as a function of 5 and as 

the separation increases the tilt frequency varies linearly as a function of 5.

Rotational frequency (Hz) / upper separation of the wires, ti (m)

8

7

6
4 wires

5

4

3
4 wires + vertical springs

2

2 wires1

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

N
X
OG<D3
c r

13G.2
c3

■*->O

upper separation o f the wires, t\ (m)

Figure (4.16): - Graph o f  Rotational frequency (Hz) /  upper separation o f  the 

separation o f  the wires, tj (m)

Figure (4.16) shows how the rotational frequency is affected by the upper separation 

of the wires in the Y-direction, t\, for t\ < t2, t\ = t2 and t\ > t2 where t2 = 0.095: -
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• for a two wire suspension, 5 = 0 (green)

• for a four wire suspension (blue)

• and for a four wire suspension incorporating vertical springs of low spring 

constant, k (red)

All of the above cases are for a fixed vertical height, of 18 cm, from the point of 

attachment of the wires on the mass to the point of attachment of the wires at the 

suspension point. For the four wire cases there is a fixed separation of the wires in 

the X-direction of 3 cm.

For the two wire case the rotational frequency decreases as the wires are angled in, in 

the Y-direction (i.e. as Q  and t\ decrease). For the four wire case with a large 

separation of the wires in the X-direction the rotational frequency increases as the 

wires are angled in, in the Y-direction, see figure (4.16). However for the four wire 

and vertical spring case, again for the case of large separation of the wires in the X- 

direction, the rotational frequency decreases as the wires are angled in, in a similar 

way to that of the two wire case. This is explained by the fact that there are two 

effects that contribute to the rotational frequency, see equation (4.49). For the four 

wire case (blue) the spring term dominates whereas for the two wire case (green) 

there is only the gravitational term and the four wire and vertical spring case (red) the 

gravitational term dominates due to the small value of k.

It should be noted that for each graph an example of four wires incorporating vertical 

springs of low spring constant was included, in order to represent the effect that the 

cantilever spring blades have on the particular resonant frequencies of the pendulum. 

The information obtained from both graphs is used to facilitate the selection of the 

various parameters for a triple pendulum suspension, outlined in section 5.4.
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Chapter 5 

Triple Pendulum: analysis and Choice 

of Design

5.1 Introduction

The extension to a triple pendulum model from that of a single pendulum is outlined 

for both the vertical and the longitudinal-tilt degrees of freedom (section 5.2). The 

other degrees of freedom, sideways-roll and rotation, are obtained in a similar 

fashion and are shown in a final form in Appendix C.2. The next step is to add the 

active control to the triple pendulum model in order to design a working triple 

pendulum. This is done by firstly introducing the method of control modelling and 

secondly outlining the form of each triple pendulum model (section 5.3). With all of 

this in place the final choice of the various parameters of the triple pendulum for the 

main suspension for GEO 600 are described in detail (section 5.4).
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5.2 Triple Pendulum Model

5.2.1 Vertical

The extension to a triple pendulum is outlined below for the vertical case. Firstly, as 

a reminder, the equation of motion in the vertical direction for a single pendulum is: -

The modelling of a triple pendulum, see figure (5.1), was developed from the 

equation of motion of a single pendulum.

The parameters used are: - 

lv = the length of a wire,

Qv = angle of the wires with respect to vertical in the Y-direction

mv = the mass of each stage

and

mg sin2/^  
/cos/2 j

mgsin Q  
/cos/2 jaz, where a = 2 keos2/2 +

j.\ ■

h / t

k$t 13 /  i

Figure (5.1): - Face on schematic o f a triple pendulum.
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kv = the spring constant of a wire

where the subscript v= 1,2, 3 for upper, intermediate and test mass respectively.

‘z /  (p = 0,1,2,3) represent a small excursion from the equilibrium position in the 

vertical direction. The extension of the wire of spring constant A:y is: -

Zi -Z o

Similarly the extensions of the wires of spring constant Ay and Aj are: -

Z2 - Z 1

and z3 -  Z2 respectively.

The restoring force on m3 depends only on k3 =>

m3 z3 = z3 = -  a3(z3 -  z2) (5.1)

The restoring force on m2 depends on both k3 and k2 =>

m2 z2 = - a 2(z2 -  zi) - a 3{z2 -  z3) (5.2)

The restoring force on mj depends on both A; and k2 =>

mi zj = - ai(z/ -  zo) ~ a2(zj -  zi) (5.3)

where

ai =
/  2 ^  (mi+m2 +m3)gsm2{2j

2 k,cos n ,  + ilCOSn ,  (5'4-1

_ I , ,  2 „  , (m2+m3 )gsm2n 2)
a2 12 k2Cos n 2 + i2COSq 2 (5-5)

a3 =
2k^  + l ^  (5'6)

Thus

83



(5.7)

•• (£L , £l \ , (<*L
2 2  [m2 m2f 2 \m2. (5.8)

(5.9)

5.2.2 Longitudinal motion and tilt

The extension to a triple pendulum is outlined below for the longitudinal-tilt case. 

Consider the case of a triple pendulum with each mass being suspended from two 

wires which are sloping at an angle, Qy, (where v=  1,2,3), to the vertical in the Y- 

direction. Each set of wires is attached a distance, dt, (where t = 0,1,2,3,4) above or 

below the line through the centre of mass with a half separation of, sq, in the X- 

direction (where q = 0,1,2,3,4,5). In the triple pendulum model, each set of wires for 

each stage is vertical in the X-direction implying that so = sj = Su, s2 = S3 = Si, 

S4 = ss = SI as outlined in Appendix B and figure (5.2).

As already mentioned, when obtaining the equations of motion for a single pendulum 

in the longitudinal-tilt direction (section 4.4) one considers the mass being rotated 

through an angle, (j), to the vertical and displaced in the X-direction such that the 

wires move through an angle, 0. For a triple pendulum this is true for each mass. 

(j>v is defined as the motion about the centre of mass (where v= 1,2,3), xa is defined 

as the linear displacement of the centre of mass (where co = n,m,p), xe is defined as 

the linear displacement of the line joining the wires to the mass (where e = 1,2,3,4,5) 

and xo is defined as the linear displacement of the line joining the upper wires to the 

points of suspension, as outlined in figure (5.2).
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m i, Iiy

UPPER 
MASS (1)

6 2  ,  (f>2 ,  Q

IN T ER M E D IA ^ 
MASS (2)...

TEST 
MASS (3)

Figure (5.2): - Schematic o f  triple pendulum from  the side.
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Now for a single pendulum as in figure (4.4) the equations of motion for longitudinal 

and tilt (refer to section 4.4) are: -

twcn = -m g9  [4.18]

, , mgs sin Q
Iyijf = -m gd{(j)-6)-2ks cos ------------------(j> [4.25]

/ cosQ

The equations of motion for a triple pendulum are therefore: -

m,x„ = ~im, + « ,  +mi )g9l +(m1 +m3 )g01 (5.10)

”hxm =-("22 +rrh)S&i +m3gd 3 (5.11)

m}xp = -m 3g0} (5.12)

I„fa = -(« , +m2 +m,)gd0 (fa, - 0 , ) - 2 k,si cos2 n , (fa,)- (m 2 + m3 )gd,(fa, - 0 2)

. 2 ____2 ^   ̂ (" * i + » » 2  + ”h )& l  s i « 2 n ,  tx  3
2 k2s2 cos \ 1 2 \y\ 02) i nlx cosQj

(jn2 + w3)gs2 sin2 Q2
l 2 c o s Q 2

( A - A )  (5*13)

IlY$2 ~ ®l) ^ 2 S2 C0S ^ 2^ 2  ^l)

- m3 gd2 (</>2 —0 $) — 2 k3sl cos2 Q3(<j>2 - )

(» 2 + m3)gs2 sin2 O _ ^ 42sin2Q 3 _ ^ } (514)
l 2 c o s Q 2 cosQ,

h r ^ = ~ ^ g d M - 0 3 ) - 2 k 3s 2tcos2 Q3(fa -  fa2) L (fa -^ )(5 .1 5 )
/ 3 c o s Q 3
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,  „  Xn ” %0 ~ $ 1  dowhere Uj = —:------±.— ,
11 cos&2i (5.16)

e2 = Xm ~ %n ~ $2 d2 ~ $1 d]
l2 cosQ2

(5.17)

and ~  Xp ~ Xm ~ $3 d4 - (f)2 d2

3 I3 COSQ 3
(5.18)

It is necessary, as it was with the single pendulum, to calculate the eigenvalues from 

the matrix of the coupled equations, outlined below, in order to find the six normal 

mode frequencies associated with the longitudinal-tilt direction.

^ 1 1 1c 1c 1c * 12  *13 *14

fa k2l kji k22) k 24

d 2 xmm ^31 k32̂ 33 3̂4
dt2 fa k 4l 1c 1c k  * 4 2  * 4 3  * 4 4

x p k5l k k k* 5 2  * 53  * 5 4

11 _^61 ^ 6 2  ^ 6 3  ^ 6 4

15 *16

k2s k2(

3̂5 3̂6
kAK kA,
k55 k56

*n
fa
Xmf i t

fa

X P

fa

(5.19)

where the ky terms can be found in Appendix C.2.

5.2.3 Triple pendulum model

The equations of motion of a triple pendulum for the other degrees of freedom, 

sideways-roll and rotation, can be obtained using the same method as that outlined 

above for the longitudinal-tilt and the vertical cases. All of the degrees of freedom 

are outlined in cit.m in Appendix C.2. In chapter 4, it was mentioned that the 

theoretical modelling of a triple pendulum was carried out using two different 

techniques. Matt Husman and I worked on two separate theoretical techniques and 

were able to confirm that our models were consistent [82]. The mode frequencies for 

a triple pendulum can be obtained by running modes.m with both cit.m and jbr.m, 

for example, using MATLAB [71]. All of these files are outlined in appendix C.l to 

C.3. The various input parameters for jbr.m are outlined in Appendix B.l to B.3
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5.3 State Space Modelling

5.3.1 Introduction

As already mentioned, it is not only the mode frequencies of a triple pendulum we

are interested in. Understanding the dynamic response of the triple pendulum is also

essential in order to, for example, model the effect of damping the pendulum mode 

frequencies. One method which can be used to calculate the response of a pendulum 

to a particular input is state-space modelling [84], which uses the following 1st order 

linear differential equations: -

x  =Ax + Bu (5.20)

y  = Cx+Du. (5.21)

Here x  is the state vector and u, y  are the input and output vectors of the system. The 

D matrix allows straight through connection of an input to the output. This is not 

required for the following example and therefore the D matrix is set to zero, and will 

be ignored for the rest of this section.

Numerical packages, such as MATLAB [71], are readily available to model systems 

written in this form.

5.3.2 Example

As an illustration, consider a pendulum of mass, m, spring constant, k, and a damping

force, F = -b x .  where b is a constant (viscous damping). The equation of motion is: -

m x  + b x+ kx = F(t) (5.22)

where x is the displacement of the pendulum and F(t) is an input force.

If you define one state variable as the position x and the other as the velocity, v then 

the equation can be written as: -



These first order linear differential equations can be written in matrix notation as 

follows: -

f  \  
x

X  -

r 0  1  '
k_ b_ 

v m m j V vj
+ m

m (5.25)
vvy

or x = A x + B u  [5.20]

The eigenvalues of the A  matrix would give the mode frequencies for the pendulum. 

Furthermore if you consider the output to be y  = v, it is also possible to write this in 

matrix form: -

or

y = ( 0 1 )

y =  (C)

V vj

V vj

(5.26)

(5.27)

For the local control of the GEO 600 triple pendulum suspension the input force, 

F(t), is produced by the action of a current carrying coil on a magnet attached to a 

mass, see section 5.4.3, and the outputs are displacements measured from a shadow 

sensor.

5.3.3 Triple pendulum model

The six degrees of freedom for the triple pendulum are divided into four models as 

follows: -

• Vertical, z -  scz2.m

• Rotation, rz -  scrz2.m

• Longitudinal, /, + tilt, rt, -  sclrt2.m

• Sideways, t, + roll, r/, -  sctrl2.m

These files are documented in Appendix C. The files read the ABCD matrices from 

cit.m, which in turn calls the input parameters from jbr.m (for example), see 

section 5.2.3. Each 2.m file then calls locaLm, the local control filter, which in turn 

calls several files from the Matlabf package written by Dr. Stuart Killboum and 

internally documented [85]. The form of the local control filter is outlined in 

section 5.4.4. Each 2.m file combines the ABCD matrices of the pendulum model
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with the matrix representation of the local control in such a way so as to close the 

feedback loop.

There are varying numbers of inputs and outputs for each model. All o f the inputs are 

to the upper mass while the outputs represent co-ordinates o f each mass. As an 

example the longitudinal and tilt triple pendulum model incorporating closed loop 

local control is represented in the block diagram in figure (5.3). Both the closed loop 

transfer function and impulse response, for example, can now be obtained for each 

mass of the triple pendulum.

Seismic, x,

  F(j>\ —
(Local Control 1)

Fx i

(Local control 2) 
Fxi —

OUTPUT

Figure (5.3): - Block diagram o f the state space representation o f  the triple pendulum 

in the longitudinal and tilt direction with the addition o f  local control.
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5.4 Triple Pendulum

5.4.1 Introduction

There are several key constraints already in place for the triple pendulum suspension, 

as outlined in section 2.6, which have to be taken into account before finalising the 

design and calculating the mode frequencies. Firstly the intermediate and test mass 

main optics are made from fused silica, each has dimensions 180 mm diameter by 

100 mm thick giving a mass of ~ 6 kg, with four vertical fibres of fused silica 

between them. This design has been chosen to minimise the effects of thermal noise, 

as outlined in section 2.3. Secondly the low frequency resonant modes of the triple 

pendulum must be damped in a way that does not introduce excess noise at the test 

mass, as outlined in section 5.4.3. Some of the secondary constraints on the design 

include the fact that the test mass and its reaction mass, outlined in section 2.6, must 

be separated by approximately 3 mm, in the X-direction. As already mentioned, from 

the upper mass a double pendulum is suspended by four cantilever spring blades. The 

upper mass is 37 cm in the Y-direction and 10 cm in the X-direction, as shown in 

figure (5.3). The central mass in the upper mass, creating the ‘T’ shape, is necessary 

in order to lower the position of the centre of mass of the upper mass, thus making it 

possible to attach both sets of wires so that they break off 1 mm from the centre of 

mass, see section 5.4.2, as shown in figure (5.4). Further, in order to be able to apply 

orientation control of the test masses from the actuators on the upper mass, there 

must be four wires between the upper and intermediate mass.
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Figure (5.4): - Two schematic views o f the upper mass, looking from above and 

below.

5.4.2 Triple pendulum parameters for the main suspension

With reference to Appendix B.l and B.2, the following is a summary of the choice of 

parameters for the GEO 600 main triple pendulum suspension [8 6 ].

The upper stage has two steel wires (s\ = S2 = su = 0) suspended from two cantilevers 

and the intermediate stage has four steel wires = S3 = si = 3 cm) suspended from 

four cantilever blades. The parameters of each set of cantilever blades are outlined in 

section 6.5. The intermediate and upper wires are only tensioned to ~ 10 % of the 

breaking stress of carbon steel. This is chosen since the wires break off from the end 

of the cantilever blade and experiments at Glasgow have shown this safety factor was 

essential in order to ensure the stresses are reduced.

The lower stage has four straight fused silica fibres with a separation of 1 cm in the 

X-direction, this separation being chosen by consideration of both mechanical 

designs of the attachments and the need for a low tilt frequency, (5 4  = s5 = si = 5 mm 

and i? 3  = 0). The lower wires are tensioned to approximately one third of the 

breaking stress, the value of which has been measured by Dr. Sheila Rowan to be 

~ 8xl08 Pa for typical fibres, suggesting the use o f -  150 pm radius for each of the 

four fibres. This conservative estimate for the radius of the fibres was used in the
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triple pendulum model. More recently Dr. Geppo Cagnoli, at Glasgow, has measured 

fibres with a breaking stress of 3 GPa, suggesting the use of four fibres of radius 

~ 80 pm [55].

The choice of local control action on the upper mass places some constraints on the 

pendulum design. It is necessary to ensure that the modes of the triple pendulum that 

are to be damped couple to motion along at least one of the sensed directions of the 

upper mass. This coupling can be made strong enough by following two design 

principles: masses and moments of inertia about corresponding axes of each 

pendulum stage should be within a factor of ~ 2, and the stiffness of each stage 

should increase as you go down the pendulum. These constraints have been found to 

be simple to incorporate into the triple pendulum design and they are achieved by: -

• having all of the break off points as 1 mm with respect to the line through centre 

of mass {dQ=d\=dx=djrdA= 1 mm) (chosen to provide a stable system),

• selecting approximately the same mass in each stage (~ 6 kg),

• ensuring approximately the same moment of inertia about the equivalent axis,

• having the wires for the upper stage angled in, in the Y-direction (/2 1 ~ 1.4°)

• suitable choice of the wire length for each stage (l\ = 42 cm, 12 -  18.5 cm and 

h= 28 cm).

As already mentioned in section 5.2.3, the theoretical mode frequencies for the 

GEO 600 main triple pendulum suspension are obtained by running modes.m with 

both jbr.m and cit.m giving: -

Normal mode Model prediction 

(Hz)

Tilt / longitudinal 3.3 2.6 2.15 1.33 0.55 0.6

Roll / sideways 37 3.55 2.5 1.33 1.15 0.6

Rotation 3.15 1.55 0.4

Vertical 26 4.2 1.25

Table (5.1): - Mode frequencies for the GEO 600 main triple pendulum suspension.

A schematic of the mode shapes for the tilt and longitudinal modes is shown in 

figure (5.5). The frequencies can all be seen to be less than 5 Hz apart from the
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vertical and roll frequencies of the final stage, outlined in blue, which lie between 20 

and 40 Hz. These modes couple weakly to the main interferometer signal. These 

frequencies are left undamped in the present set-up as they occur too near the 

gravitational wave band for sufficient attenuation of electronic noise that would be 

associated with the use of the present design of local sensor. However they are only 

weakly excited by ground noise because they are isolated by the stacks and the two 

upper pendulum stages. As already mentioned, the final stage of suspension is on 

fused silica fibres to minimise thermal noise effects [50,51 ] and does not therefore 

incorporate soft vertical springs, as used in the upper two stages to give low vertical 

frequencies. Such springs would degrade the thermal noise.
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Figure (5.5): - Schematic o f  the mode shapes fo r  the tilt and longitudinal modes.
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5.4.3 Damping of the triple pendulum

REAR Q

TOP 0 60 mm
ONE
SIDE

160 mm

Figure (5.6): - Schematic o f positioning o f sensors and actuators on upper mass.

The local control of the triple pendulum is provided in six degrees of freedom 

between the rotational stage and the upper mass [85]. Applying the active damping at 

the upper mass ensures that the test mass is isolated from local control noise by the 

double pendulum below. The active damping system uses co-located sensing and 

damping, as described in section 3.4. The damping of the longitudinal and rotational 

modes is done by placing the sensors/actuators symmetrically on the long rear side of 

the upper mass. After careful modelling the damping was optimised with spacing for 

the coils of 16 cm, as shown in figure (5.6). The sensor/actuator for sideways 

damping is placed on one of the short sides with the remaining sensors/actuators for 

tilt and vertical damping placed on the top of the upper mass, as shown in 

figure (5.6). This gives an optimised balance of damping in all degrees of freedom. 

The channel gains should then all be within a few dB of each other, apart from the 

sideways gain which should be ~ 6 dB more as there is only one sensor/actuator for 

damping sideways motion. The magnets are again fixed with Ceramabond 571S to 

the upper mass and the sensors and actuators, housed in a vacuum-sealed glass 

encapsulation, are mounted on a rigid structure, which is attached to the rotational 

stage and extends down to the upper mass, as shown in figure (6.20) on page 124.

The theoretical damping performance of each mass of the triple pendulum is shown

in figure (5.7). All of the modes can be seen to be strongly damped within a few
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seconds. A comparison between the theoretical and experimental damping o f the 

pendulum modes is outlined in section 6.7.

t and rl impulse responses

<u£oaw<u
CD
2

-10

I and rt impulse responses
6

4

-2

-4

time [s] time [s]

0.08
<u8
O 0.06
</><u
ro 0 .04 |

0.02

0 2 4 6 8 10
time [s]

0 2 4 6 8 10
time [s]

z impulse responses rz impulse responses

Figure (5.7): - Theoretical impulse response o f  all six local control channels 

(sideways, t, roll, rl, longitudinal, I, tilt, rt, vertical, z, rotation, rz). The motion o f  

each mass is shown fo r  each degree o f  freedom. (The units o f  the response can be 

considered to be arbitrary.)
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5.4.4 Local control transfer function

This work follows closely that done by Dr. Stuart Killboum on a double 

pendulum [59] and it was carried out mainly by Dr. Ken Strain. The local control 

transfer function was selected in order to meet certain requirements. Firstly, as 

already mentioned, all the low frequency (< 5 Hz) modes of the triple pendulum had 

to be actively damped. Secondly, as closely as possible, the same circuit layout 

developed for the local control of the mode-cleaner (designed by Dr. David 

Robertson and Dr. Stuart Killboum) had to be used.

The transfer function of the local control for damping the triple pendulum for the 

main suspension is designed as a series connection of the following units: -

• gain factor (outlined in section 5.4.3)

• high pass filter at 0.7 Hz

• transitional differentiator (real zero and real pole) from 0.35 Hz to 0.8 Hz

• transitional differentiator (real zero and real pole) from 2 Hz to 14 Hz

In addition in order to reduce the control noise at high frequencies the following are 

used:-

• three Scultete two pole low pass + zero filter

1. poles at 18 Hz, Q ~ 3, zero at 26 Hz

2. poles at 24 Hz, Q ~ 4, zero at 50 Hz

3. poles at 28 Hz, Q ~ 5, zero at 55 Hz

• low pass filter at 9 Hz

The zero at 26 Hz is intended to coincide with the undamped vertical mode, 

table 5.1. It should be noted that this frequency is dependent on the final choice of 

radius, r of the fused silica fibres in the final stage. At the time of writing the radius 

of the fibres were expected to be 150 pm.

5.5 Conclusion

A dynamic model for a triple pendulum has been obtained for all six degrees of 

freedom. The dynamics have been verified by checking each term with Matt
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Husman’s Lagrangian model. Further the method of controlling the triple pendulum 

has been introduced. It is now possible to predict, for example, the mode frequencies 

or the step response of a triple pendulum. The design parameters of the GEO 600 

main test mass suspension are introduced, the full list of parameters are documented 

in Appendix B.3. In Chapter 6 both the mode frequencies and the step response of 

the Glasgow prototype pendulum are compared with the theoretical predictions from 

the model.
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Chapter 6

Prototype Suspension in Glasgow for

The various stages of the GEO 600 main suspension system have been tested in 

Glasgow. Firstly a prototype single layer passive stack was tested for its isolation 

properties (section 6.2). Three of these prototype stacks were then interfaced with the

Secondly a prototype triple pendulum suspension was interfaced with the stacks and 

rotational stages, as shown in figure (6.1 (a)). Aluminium masses of the same mass 

and outer dimensions as the fused silica masses to be used in the final design were 

used for the intermediate and test masses, as shown in figure (6.1 (b)). Steel wires 

were used to suspend each stage. The equations required to design a cantilever blade 

are introduced (section 6.4) in order to choose the parameters of the two sets of 

blades for the triple pendulum. Each set of blades was used to suspend a single 

pendulum in order to test their predicted performance (section 6.5). The purpose of 

this prototype was to test the theoretical mode frequencies (section 6.6) and to test 

the performance of the local control for the triple pendulum (section 6.7). All of the 

parameters for the prototype suspension are outlined in Appendix B.4. A schematic 

showing both the side and face-on views of the triple pendulum suspension is in 

Appendix B. 1 and B.2.

6.1 Introduction

stack stabiliser and rotational stage, the design of which is outlined in section 6.3.
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Figure (6.1): - Photograph o f  the Glasgow prototype suspension (a) view from 

above.
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Figure (6.1): - Photograph o f  the Glasgow prototype suspension (h) side view.
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6.2 Isolation Stack

As described in section 2.6, each isolation stack consists o f two layers, the lower 

layer of which is active and the upper layer is passive. In the prototype suspension 

the piezoelectric transducer in the active layer, outlined in section 2.6, are used to 

drive the various stages in the vertical direction for studying transfer functions.

23
3
.ts
£

40

10 dB/div

-60
10 50 110

Frequency (Hz)

Figure (6.2): - Vertical transfer function o f a single layer prototype stack leg (red: - 

theoretical, black: - experimental).

The design of the single layer passive stack is based on the work done for the two 

layer passive stack for the mode-cleaner suspensions, as outlined in section 3.2. A 

single passive layer is used rather than a double layer in the main suspension in order 

to provide improved static stability given that there is also an active layer which has 

a spring constant in the stack. The passive stack can be designed to have a vertical 

frequency at 15 Hz, with a 20 kg load. Experiments at Glasgow, using the same set­

up as that outlined in section 3.2, have shown that a vertical attenuation o f -  18 dB at
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50 Hz can be achieved with this single passive layer, as shown in figure (6.2). Again 

a theoretical vertical transfer function was plotted with MATLAB [71], and is shown 

as the red curve in figure (6.2). The peak at 50 Hz corresponds to electrical mains 

interference. Further, the horizontal transfer function of the single layer passive stack 

has been measured to have a horizontal attenuation of ~ 30 dB at 50 Hz.

6.3 Stack stabiliser / Rotational stage

6.3.1 Design

The stack stabiliser and rotational stage, introduced in section 2.6, are very similar in 

design. Both must meet certain requirements. Firstly the stack stabiliser must rigidly 

attach to the three isolation stacks to provide static stability. Secondly the rotational 

stage must be able to support the triple pendulum suspension, without flexing. This 

implies that both have to be relatively rigid. Lastly the rotational stage must be able 

to rotate with respect to the stack stabiliser in order to allow initial alignment of the 

optics in the interferometer, see figure (6.3)

rotational stage

stack stabiliser

stack leg

Figure (6.3): - A schematic o f the stack stabiliser and rotational stage. The figure 

also shows a schematic o f the three stack legs.
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6.3.2 Finite element analysis

Finite element analysis of the design was carried out again using I-DEAS [72]. The 

boundary conditions which were implemented were that the co-ordinates of the 

points of attachment of the stacks were rigidly constrained in three dimensions.

The investigation of several designs was carried out, with the hexagonal box-section 

structure shown in figure (6.3) chosen as the optimum design. The box section has 

dimensions 40 mm broad by 80 mm deep with 2 mm thick walls. Sections of 

stainless steel box-section are welded together to form each structure. The steel has 

to be annealed, to relieve the stresses within the material and allow for ease of 

welding. The first flexural mode resonance was found to be at 480 Hz. The 

experimental resonance was also found for one of the structures. This was obtained 

by hanging the structure as a single pendulum, driving it with a vertical shaker, and 

measuring the resonances on an oscilloscope using an accelerometer. The first 

resonance was found to be at 400 Hz. This ties up fairly well with the I-DEAS [72] 

prediction as the structure used in the experiment also included steel clamps, used for 

attachment of cantilevers, which were not modelled, and which contributed to an 

extra 5 kg added to the original mass of 20 kg.
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6.4 Design of Cantilever Blades

6.4.1 Introduction

The greater part of the work on cantilever blades in Glasgow [86] has been adapted 

from designs used by the VIRGO group.

As already mentioned, in order to enhance the vertical isolation, two vertical spring 

stages are included in the triple pendulum. Two blades are fixed onto the rotational 

stage and support the upper mass. Four blades then suspend a double pendulum from 

the upper mass. The blades are constructed from maraging (precipitation hardened) 

steel of the type Marval 18, which is low carbon steel with a high tensile stress.

There are three important parameters to consider when designing a cantilever spring 

stage in order to provide improved vertical isolation in the low frequency region 

(i.e. up to 50 Hz): -

1. The uncoupled vertical mode frequency, f s A (associated with that particular 

spring stage).

2. The lowest flexural (internal) mode frequency,f„t.

3. The maximum permissible stress at the support point, <jmax.

All of these parameters are dependent on the width, length and thickness of the 

blade.

A The frequency observed for a spring in a particular stage supporting only the mass 

of that stage.



6.4.2 Manufacture

M i n i

Figure (6 .4): - Geometry o f  the lower GEO 600 blades.

Figure (6 5): - Photo o f  lower GEO 600 blades under load (JILA).

107



Figure (6.4) above shows the GEO 600 lower blade geometry. A set of such blades 

was manufactured recently in JILA in Boulder, Colorado, with designs supplied by 

Dr. Mike Plissi. The manufacturing process starts with a section of steel being rolled 

into the correct radius of curvature. The pre-stressed steel is then cut to the desired 

shape, approximately trapezoidal. Finally the blade is aged for four hours at 480 °C. 

The blades become flat under load as shown in figure (6.5).

6.4.3 Blade specifications

Consider a blade pre-stressed into a curve, which becomes flat under load: -

(a)

A

length

A

A

(b)
unloaded
shape* + m............

'load P ^

blade under load

>J=1
_E=LR

777^^\\
clamp

Figure (6.6): - Blade before and after loading (a) above (b) side view.

For a trapezoidal blade the maximum deflection at the support point, A , is given by: -

PI 3
A = a  — b—  [87] (6.1)

3 E Ib

where P  is the load supported in Newtons, h  is the length of the blade, E  is the

Young’s Modulus (for Marval 18 steel E  = 186 x 109 Pa [86]), h  is the cross-

sectional moment of the blade, a  is a factor related to the ratio between the width at 

the tip to the width at the base (and takes values between 1.0 and 1.5) [87],

The cross-sectional moment for a typical blade is given by: -

h [87] (6 .2 )

where a is the width of the blade base (at the clamp), and h is the blade thickness
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After substitution of equation (6.2) into (6.1) we obtain an expression for the 

maximal deflection: -

A = 4 ^ -  (6.3)
Eah

where mt is the total mass supported by the spring, which will include mass from the 

lower pendulum stages.

The spring constant of the blade is given by: -

A = ^  = (6.4)
/I 4/4 a

Selecting the thickness, length and width for the blade we obtain an uncoupled 

vertical frequency,/*, given by: -

f s=EJ-  = EJ^TT- ( « )
1 I k  _ J _ Eah

2 n \ m s 2n y4mslb5a

^3/2

j ,

where ms is the mass supported by the spring in that stage

/ » K f T (6-6)

The maximum stress at the support point of a cantilever blade (clamped at one end) 

is given by the following expression

° M A X  [87] (67)ah2

=* a MAX x  . 2 (^-®)h2

The maximum permissible stress in the GEO design for the blade is set at 

approximately half of the elastic limit of the maraging steel to minimise the effect of 

long term creep. The blades are designed using the criteria outlined above. The 

choice of and testing of the blades is outlined in section 6.5.
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6.5 Choice of Cantilever Blades

6.5.1 Introduction

The arrangements of the two stages of cantilever blades are shown in figure (6.7). 

The blades have the following parameters obtained using the equations outlined in 

section 6.4.

Figure (6.7): - Photograph o f the Glasgow prototype suspension from  helow 

(showing 2 blades supporting an upper mass and 4 shorter blades supporting the 

intermediate mass).
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6.5.2 Upper blades

In order to obtain an uncoupled vertical mode frequency, f s ~ 1.9 Hz, a blade of 

length, h = 37 cm, thickness, h = 2.0 ± 0.05 mm and width, a = 8.2 cm is required to 

support a mass, ms = 3.0 kg.

After substitution of these parameters into equation (6.3), and with a total supported 

mass, mt ~ 9 kg per blade, we obtain a blade deflection of -  200 mm. For the blade 

specification defined above this leads to a maximum stress of ~ 600 MPa. This is 

approximately 40% of the elastic limit for Marval 18 steel and is therefore 

acceptable.

6.5.3 Lower blades

The double pendulum will be suspended by a set of 4 cantilever blades. In order to 

obtain an uncoupled mode frequency, f s -3 .0  Hz; a blade of 4  = 124 mm, 

h = 1.0 ± 0.05 mm, and a = 28 mm is required to support a mass, ms= 1.5 kg. Putting 

these parameters into equation (6.3), with wf —3 kg, gives a blade deflection of 

49 mm and a maximum bending stress of -  700 MPa, from equation (6.6).

The uncoupled vertical mode frequencies and the maximum deflections of both types 

of blades have been verified experimentally.

The next section explains how these blades were used in a prototype pendulum 

suspension in Glasgow, in order to test the isolation performance of the blades.

6.5.4 Vertical transfer function

A vertical transfer function from the support to a single mass suspended from two 

blades was obtained, as shown in figure (6.8). A shaker constructed from 

piezoelectric elements drove the pendulum and the response was measured using 

accelerometers. The experimental trace is shown in figure (6.9). The flattening of the 

response above -  20 Hz is consistent with measurements carried out by the VIRGO 

group on similar blades [88]. This is discussed more fully in the next section. The
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peak at 55 Hz corresponds to the first flexural (internal) mode of the upper blades. 

The theoretical response of the upper mass suspended from two cantilever blades

was obtained using MATLAB [71], showing a —y  fall off above the uncoupled

frequency of the blade, as in figure (6.9). This simple model assumes that the blade 

acts as a massless spring.

A transfer function o f the lower blades was also obtained using the same 

experimental set-up as that outlined for the upper blades, as shown in figure (6.10). 

An attenuation of ~ 55 dB at 50 Hz was measured, with the blades behaving ideally 

up to a frequency of -  80 Hz. The first internal mode of the lower blades was 

measured at 240 Hz. The peak at 50 Hz corresponds to electrical mains interference.

accelerometersblades

clamp

wire
support

vertical
shaker

ground
mass, m

Figure (6.8): - Schematic o f  set up fo r  measuring the transfer function, — , o f a
z \

blade.

112



-MH-i-f-Hj.......: :

1 10 100

Frequency (Hz)

Figure (6.9): - Vertical transfer function o f upper cantilever blades from a single 

pendulum (ideal theoretical: - red, experimental: - black).
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100

Figure (6.10): - Horizontal transfer function o f lower cantilever blades from  a single 

pendulum (ideal theoretical: - red, experimental: - black).
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6.5.5 Conclusions

The transfer function of the cantilever blade is complicated by the fact that it is not a 

massless spring (i.e. the blades have a finite mass). The consequences of this are 

twofold. Firstly flexural (internal) mode resonances are seen and secondly the 

transfer function begins to flatten off, compromising the isolation achieved at a 

frequency typically approximately 1/3 that of the first flexural mode [88], The 

isolation is degraded by the flexural mode frequency such that the modes will have to 

be damped using a resonant mode damper as outlined in section 6.5.8.

Since the lower blades have a first flexural mode at 240 Hz they therefore behave 

ideally up to a frequency of ~ 80 Hz and are therefore acceptable for the GEO 600 

specification. However a redesign of the upper blades was necessary in order firstly 

to force the flexural mode resonance o f the blade above ~ 100 Hz, where the overall 

attenuation of the stack and triple pendulum increases rapidly with frequency, and 

secondly to improve the isolation at 50 Hz. This therefore required a model to predict 

the flexural mode of the blade.

6.5.6 Modelling o f the flexural (internal) mode o f the blade

tapered section

clamp

A
lode

point of maximum 
deflection

Figure (6.11): - 11 nodes & 10 tapered sections. The shape o f  the first internal mode 

o f  the blade and the point o f maximum deflection is also shown.
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was modelled using the engineeringThe flexural mode frequency, / m( oc

package I-DEAS [72], The blade was modelled from 11 nodes, which were joined 

by 10 tapered beam sections forming a trapezoid, as shown in figure (6.11) and 

(6.12). Both ends were clamped such that they were constrained in three degrees of 

freedom. As an initial test the model was used to predict resonances for VIRGO 

blades for which experimental results were known [88], The model gave values to 

within 10 %. The first flexural modes of the existing blades, outlined in section 6.5 .2 

and 6.5.3, were found to be 60 Hz and 270 Hz for the upper and lower blades 

respectively. This agrees well with what was seen experimentally as stated in section 

6.5.4. For the new blades all three parameters outlined in section 6.4 were carefully 

considered.

The new blades have been designed with an uncoupled vertical mode 

frequency, f s -  2.6 Hz and an internal mode frequency o f 120 Hz, as predicted using 

I-DEAS [72], This corresponds to a blade of length, 4  = 24 cm, h = 2.0 mm and 

a = 4 cm, implying a blade deflection o f - 110 mm and a maximum stress 

of -  800 MPa. A transfer function o f the ‘new’ upper blades was obtained. An 

attenuation of -  40 dB at 50 Hz was measured as shown in figure (6.13). This was an 

acceptable value. The theoretical ideal transfer function is also shown in figure (6.13) 

in red. In addition a theoretical model [88] allowing for first order effects of the mass 

of the blade is shown in blue. The first internal mode of the blade was measured and

B

tapered section

Figure (6.12). - View o f  modelled blade from above.

6.5.7 ‘NEW’ upper blades
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found to be 130 Hz. The feature at 40 Hz is a structural resonance related to the 

prototype experimental set-up. The peak at 50 Hz corresponds to electrical mains 

interference.

• ̂ 4VI

£

40

7'T

0

•~i...... ~ 4  4 - 4 -

i  r*

60

10010i

Frequency (Hz)

Figure (6.13): - Vertical transfer function o f new upper cantilever blades suspending 

a single mass (ideal: - red, experimental: - black, theoretical: - blue).
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6.5.8 Resonant mode damper

Viton Mass

Figure (6.14): - Schematic o f  blades and resonant dampers on the set-up used in 

section 6.5.4.

As already mentioned in section 6.5.5, the flexural mode frequency of the blade 

requires to be damped using a resonant mode damper, as shown in figure (6.14) and

(6.15).

Figure (6.15): - Photograph o f the viton damper on the first set o f  upper blades, 

section 6.5.2.
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As stated earlier the first flexural mode of the first set of upper blades, section 6.5.2, 

has been measured at 55 Hz. The point of maximum deflection and shape of the first 

internal mode are shown in figure (6.11). Attaching a resonant damper at the point of 

maximum deflection of the blade allows this mode to be damped. The damper has 

been adapted from a design used by the VIRGO group [89]. The internal mode of the 

lower blades, measured at 240 Hz, will not be damped as the attenuation provided by 

the stack and triple pendulum is adequate at this frequency.

The damper consists of a viton rod (3cm long by 5mm diameter) with a mass of 20 g 

on it. The mass oscillates, in the vertical direction, on the viton rod with opposite 

phase to that of the blade’s displacement. The damper can be tuned to the resonance 

of the blade by moving the mass along the viton rod. The dampers have been shown 

to reduce the transfer function by ~ 30 dB at the resonance as shown in figure (6.16) 

and (6.17). Figure (6.16) shows the case of one blade with and one blade without a 

damper compared to both without dampers and figure (6.17) shows the case of both 

blades with a damper against both without. Over this small frequency range it is 

possible to resolve the internal mode of each blade which is either due to the fact that 

the blades are slightly different or that the blades might not be loaded identically. 

The resonant damper also dampens the second internal mode of the blade, around 

160 Hz, without affecting the rest of the transfer function of the blade, as shown in 

figure (6.18). The other peaks in the spectrum are probably due to acoustic 

interference since the experiment was carried out in air.

The vacuum specification for GEO 600 requires the partial pressure in the system to 

be below 5 x 10‘8 mbar for H2 and 10'9 mbar for the other gases and so if the viton 

was to be used for the resonant damper it would have to be encapsulated. 

Alternatively a material with better vacuum properties could be used (e.g. copper).
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Figure (6.16): - Transfer function o f upper mass suspended from two cantilever 

blades, one with and one without damper (red) and both without the damper (black).
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Figure (6.17): - Transfer function o f upper mass suspended from two cantilever 

blades with one damper on each blade (red) and without the dampers (black).
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Figure (6.18): - Transfer function o f upper mass suspended from two cantilever 

blades with (red) and without (black) the resonant dampers. The figure shows the 

damping o f the first two flexural modes at 55 and 160 Hz.

120



6.6 Mode Frequencies

The resonant frequencies of the prototype triple pendulum were obtained by exciting 

the pendulum and measuring the response from an accelerometer attached to the 

upper mass, the signal from which was analysed using a spectrum analyser. Both the 

theoretical predictions and experimental results for the prototype triple pendulum are 

given in table (6.1). It can be seen that for those frequencies that have been observed 

there is good agreement with the theoretical predictions. The experimental values all 

have an error of ~ 0 . 1  Hz. A list of the pendulum parameters can be found in 

Appendix B.4.

Theoretical Experimental

Tilt / longitudinal 3.6, 2.7, 2.4 

1.35, 0.5, 0.6

3.5, 2.6, 2.2 

1.35, 0.6

Roll / sideways 52, 3.3, 2.5 

1.35, 0.9, 0.6 1.37, 1.0, 0.6

Rotational 3.1, 1.6, 0.4 3.1, 1.55

Vertical 36, 3.8, 1.0 37, 3.7, 1.0

Table (6.1):- Theoretical and experimental mode frequencies for the prototype 

triple pendulum.

The frequencies can all be seen to be less than 5 Hz apart from the vertical and roll 

frequencies of the final stage, outlined in blue. As already mentioned in section 5.4.2, 

these modes couple weakly to the main interferometer signal. The mode frequencies 

in table (6.1) are different to those quoted in table (5.1) since the final stage of the 

prototype is on steel wires rather than fused silica.
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6.7 Step Response

As discussed in section 5.4, the low frequency resonant modes of the triple pendulum 

are actively damped from the upper mass. Modelling of the local control servo 

indicates that all the modes can be damped with a Q value less than 5 except for the 

vertical and roll frequencies associated with the final stage. The theoretical step 

response of each mass for all six local control channels, are shown in figure (5.7).

Q values of ~ 5 have been observed for the modes which are damped with the local 

control servo outlined in section 5 .4. The step response of the longitudinal actuators 

is outlined below. The two longitudinal actuators act along the rear side of the upper 

mass, as outlined in section 5.4.3 and shown in figure (5.6). An step was applied to 

both of these longitudinal actuators using a signal generator and the response was 

measured using an oscilloscope. The theoretical and experimental responses of the 

two longitudinal actuators are shown in figure (6.19). The experimental plots fit 

closely with the theoretical prediction (dotted line). The disposition of the 

sensors/actuators with respect to the upper mass in the Glasgow prototype suspension 

is shown in figure (6 .2 0 ).

122



N orm alized Longitudinal Step Response

0.8

0.6 —  Step
—  Chan 1
—  Chan 2 
 Theory0.4

0.2

- 0.2

Time (sec.)

Figure (6 .19): - Longitudinal step response o f the two longitudinal actuators. The red 

and blue bold lines are the experimental response, the dotted green line is the 

theoretical response and the black line is the step input.





6.8 Transfer Function

6.8.1 Introduction

It is possible to write an expression for both the vertical transmissibility, Tv, and 

horizontal transmissibility, Tj,, of the entire suspension system above the highest 

resonant frequency, where the system consists of a one-layer passive isolation stack 

and a triple pendulum suspension incorporating two stages of vertical springs 

(assumed massless in the first instance).

6.8.2 Horizontal

In the horizontal dimension: -

/ »
2

fph\
2

fphi
2

fph7>
/ f f f

where / phi (0.54 Hz), / Ph2 (1.3 Hz) and / Ph3 (2.6 Hz) are the coupled pendulum 

frequencies. The stack frequency, (9 Hz) is a measured uncoupled frequency. This 

is a valid input since although the masses of the triple pendulum are all the same, ~ 

6 kg, and therefore well coupled, the dynamic mass loading on the stack is 

significantly greater. Therefore the stack can be taken to be uncoupled from the rest of 

the suspension.

Taking a ground noise spectrum of ~

motion dx ~ (2 . 8  x 10-22 m/ VHz)50Hz , which is well within the design goal outlined in 

section 2.5.

1 0 m/VHz we obtain a resulting test mass

6.8.3 Vertical

In the vertical direction: -

125



71. = /* v
2
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2

f c v l
2 -

/ f f

/
-i2

pv

f
(6.2)

where f sv is the stack frequency (15 Hz), f cy\ and f CV2 are the cantilever spring 

frequencies of the upper and lower stages respectively (4.2 Hz and 1.3 U z ) , f p V is the 

frequency of the lower stage vertical mode (26 Hz) (all coupled frequencies) and c  is 

the cross-coupling factor (0.1 %).

7) = 9.6 x 10‘" a t / =  50 Hz.

With a ground noise spectrum of 

motion d x  ~ (3 . 8  x 10-21 m / >/Hz)50Hz .

10- 7

r
m/VHz we obtain a resulting test mass

However, as mentioned in section 6.5.4, the blades do not act as ideal isolators. The 

lower blades can be taken as ideal at 50 Hz. For the upper blades it is necessary to 

take the experimentally measured vertical isolation for the new upper blades at 50 Hz. 

This value is 10 dB higher than that due to an ideal spring, as shown in figure (6.13).

Furthermore due to the fact that the upper vertical mode, associated with the final 

stage of the pendulum, occurs at 26 Hz, the fall-off in transmissibility is not as high as

expected at 50 Hz (i.e. it has not yet reached its asymptotic value of pv

f
).

Taking all these factors into account, a value for the test mass motion, at 50 Hz, of 

d x  ~ (l .8 x 10-20 m / VHz )50Hz is deduced.

This corresponds to a seismic noise level which is a factor of ~ 4 lower than the 

expected motion due to thermal noise associated with the internal modes.

It should be noted that these calculations do not apply above ~ 120 Hz due to internal 

modes of the isolation system and the presence of wire resonances. Nevertheless the 

overall attenuation of the stack and triple pendulum increases rapidly with frequency 

and therefore at these high frequencies the isolation will be more than adequate.
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6.9 Conclusions

Various aspects of the design of the seismic isolation system for GEO 600 have been 

discussed. The design involves an isolation stack and a triple pendulum incorporating 

two sets of vertical cantilever blades. Experiments on the individual stages of the 

Glasgow prototype suspension indicate that a seismic noise level which is a factor 

o f -  4 lower than the thermal noise level at 50 Hz should be achievable with the 

current design [8 6 ]. Although this does not meet the objective set out in section 2.5 it 

is still an acceptable seismic isolation performance. Thus we have shown that a design 

as outlined in section 2.6 is acceptable for use in GEO 600. Suspensions based on this 

work are, at the time of writing, under construction in Germany.

There are possibilities of further improving the isolation supplied by a triple 

pendulum. One of these would be to take advantage of the enhanced isolation 

obtained at the centre of percussion of a compound pendulum. A theoretical 

investigation of this idea is given in Appendix E.
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Chapter 7

Conclusions
This thesis presents work done in modelling and testing of various suspension systems 

for isolating optical components for the GEO 600 gravitational waves detector.

The GEO 600 detector is designed to operate down to 50 Elz. The sensitivity limit at 

this frequency is set by the internal modes of the fused silica test masses. In order to 

minimise the thermal noise, the main mirror test masses and their suspensions are to 

be made from fused silica. The techniques for suspending the test masses have been 

developed in parallel to the work on seismic isolation in Glasgow. The design goal for 

seismic isolation was to achieve a noise level at each test mass a factor of 1 0  lower 

than the thermal noise level. This level of seismic isolation should be achieved with a 

triple pendulum incorporating two stages of cantilever blades, in order to enhance the 

vertical isolation, and a single passive isolation stack, providing isolation in both the 

horizontal and vertical directions.

The first suspension system considered was for the subsidiary mirrors that form the 

mode-cleaner cavities. The mode-cleaner optics has less stringent requirements for 

seismic isolation. The isolation is achieved using a double pendulum and a two-layer 

passive isolation stack. Experiments in Glasgow have shown that this combination 

more than adequately meets the noise specification.

The triple pendulum suspension for the main test mass mirrors, incorporating two 

stages of cantilever springs, is a simple but effective way of isolating the test mass 

suspension to the required level for GEO 600. A detailed dynamical model for a triple 

pendulum has been developed which enables the various parameters of a triple 

pendulum to be assigned. It can then be used to investigate, for example, the mode 

frequencies, transfer function or impulse response for all degrees of freedom. This is 

essential for the design of a well damped triple pendulum with good coupling between 

the various modes.
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Experiments on the individual stages of a prototype suspension built in Glasgow have 

shown that a seismic noise level which is a factor of ~ 4 lower than the thermal noise 

level at 50 Hz can be achieved.

Current work at Glasgow includes the possibility of further improving the isolation 

supplied by a triple pendulum. One way would be to take advantage of the improved 

isolation offered by using the centre of percussion of a cantilever blade as the point of 

suspension for the underlying mass. Another possibility would be to use a quadruple 

pendulum rather than a triple pendulum. It is proposed that either a triple or a 

quadruple pendulum will be used as the basis of final stage of isolation for an 

advanced LIGO interferometer, which has to be sensitive down to 10 Hz [90]. A 

quadruple pendulum may be required for LIGO in order to meet requirements on local 

control noise. A triple pendulum has been modelled for a LIGO test mass of 30 kg, by 

Dr. Ken Strain using the author’s dynamical model for a triple pendulum.

The various isolation stages for the mode-cleaner were installed at the GEO 600 site 

in the summer of 1999. At the time of writing the first main suspension systems were 

beginning to be installed into the GEO 600 vacuum system. All of the isolation stages 

including the initial optics with steel wire suspensions should be installed in the 

summer of 2000. The following summer the final optics with fused silica fibres will be 

installed and in the autumn of the same year the first data run is expected to take 

place.
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APPENDIX A

Single Pendulum

A.l Model of a single pendulum.
The file mcsing.m assembles the single pendulum model, the ABCD matrices for all 

degrees of freedom and returns the normal mode frequencies, for all six degrees of 

freedom, as outlined in chapter 4.

% mcsing.m

% all units are in S.I. 
g =9.81;

% dimensions of TEST MASS 
tx =0.15; % thickness
tr =0.1245; % radius
m = 2700*pi*trA2*tx; % mass
Ix = m*(trA2 /2 ); % moment of inertia (sideways roll)
Iy = m*(trA2/4 + txA2/12); % moment of inertia (longitudinal tilt)
Iz = m*(trA2/4 + txA2/12); % moment of inertia (rotation)
13 = 0.27; % wire length

(NB: - length defined as / in figure (4.1)) 
d = 0 .0 0 1 ; % height of lower suspension clamp above c. of m.
s = 0.081/2; % 1/2 separation of wires X direction
tl = tr + 0.006; % 1/2 separation of wires Y direction
t2  = tr + 0.006 + 0.006;
R = 140e-6; % radius of wire
Y = 1.65e 11; % Young’s Modulus of the wire
N = 4; % Number of wires (2 or 4)
k = (N/2)*Y*pi*RA2/13; % spring constant of the wire
si = (t2 -  tl)/13; % sin(Q)
co = (13 A2 -  (t2 - 11)A2)A0.5/13; % cos(Q)

% LONGITUDINAL AND TILT FREQUENCIES (L, RT)

k ll = -  m*g*d/Iy -  2*k*sA2*(co)A2/Ty -  m*g*dA2/Iy/13/(co)
-  m* g* sA2* (si) A2/Iy/13 /(co);

k l2 = + m*g*d/Iy/13/(co);
k2 1 = + g*d/13/(co);
k2 2 = -  g/13/(co);
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% matrix
A = [ k ll  kl2

k2 1  k2 2  ];
% calculation of the frequency
longitudinal and tilt frequency = (sqrt(abs(eig[A])))/2/pi 

% SIDEWAYS AND ROLL FREQUENCIES (T, RL)

si 1 = -  m*g*d/Ix + m*g*t2*(si)/Ix/(co) + m*g*d/Ix*(t2*(si)/B -  d*(co)/B)
-  m* g* {2 * (sj)/Ix/(cq) * (t2 * si/13 -  d*(co)/13) + 2 *k* 13 * (si) * t2/Ix* (t2 * (si)/13
-  d*(co)/J3) + 2*k*B*d*(si)A2/Ix/(co)*(t2*(si)/B -  d*(co)/B) -  2*k*t2A2/Ix
-  2*k*d*t2*(si)/Ix/(co);

s i2 = + m*g*d*(co)/Ix/13 -  m*g*t2*(si)/Ix/13 + 2*k*(si)*t2*(co)/Ix
+ 2*k*d*(si)A2/Ix; 

s2 1  = -  g*(t2*(si)/13 -  d*(co)/B)
-  2 *k*(si)A2 /m/co*(t2 *(si) -  d*(co)) + 2 *k5|!t2 !,!(si)/m/(co); 

s22 = -  g*(co)/13 -  2*k*(si)A2/m;

% matrix
A = [ s ll  sl2

s2 1  s2 2  ];

% calculation of the frequency
sideways and roll frequencies =(sqrt(abs(eig[A])))/2/pi

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% ROTATIONAL FREQUENCY (RZ)
% wire break offs assumed to be at the Centre of Mass

ro = -  m*g/B/(co)*(sA2*(co)A2 + tl*t2) -  2*k*sA2*(t2 -  t l)A2/BA2;
rot = + ro/Iz;

% calculation of the frequency
rotational mode frequency = (sqrt(abs(rot))/2 /pi

0 ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% VERTICAL MODES (Z)

ver = + 2*k*(co)A2 + m*g*(si)A2/13/(co);
vert = -  ver / m;

% calculation of the frequency

vertical mode frequency = (sqrt(abs(vert))/2 /pi
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Appendix B

B.l The parameters of a triple pendulum 
(side view).
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B.2 The parameters for a triple pendulum 
(face on view).
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B.3 Parameters of main suspension triple 
pendulum for GEO 600 (jbr.m).
% refer to Appendix B.l and B.2 
% all units are in S.I.

% dimensions of UPPER MASS

% not always used for modelling

% density (stainless steel)

ix = 0.1; % dimension of INTERMEDIATE MASS (cylinder)
ir = 0.09;
den2  = 2 2 0 2 ; % density (fused silica)

uxl = 0 .1 ;
uyl = 0.37;
uzl = 0 .0 1 2 ;
ux2 = 0.05;
uy2 = 0.05;
uz2 = 0.09;
deni = 7800;

0  ̂$  $  $  4c ♦  *  ♦  j(c j(e $  $  ♦  $  % % % $  $  ♦  a)c % 9|e % $  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦  ♦

tx = 0.1; % dimensions of TEST MASS (cylinder)
tr = 0.09;
den3 = 2202; % density (fused silica)

11 = 0.42; % upper wire length
12 =0.187; % intermediate wire length
13 = 0.28; % lower wire length

0^* * * * * $ $ * * * $ * * * * * * 4c * * * % * * * * 4c 4c * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * *

nwl = 2  

nw2 =4 
nw3 =4

% number of wires per stage (2 or 4)

O/'j ♦ =N * ♦ * ♦ * * * ♦ ♦ * ♦ * ♦ ♦ ♦ ♦ ♦ * ♦ * ♦ ♦ * * ♦ ♦ * ♦ * ♦ ♦ * * ♦ ♦ * ♦ ♦ * ♦ * ♦ ♦ * * * ♦ * ♦ * * ♦ * * ♦ * ♦ * ♦ ♦ ♦ * ♦ *

ncl =2 ; % number of cantilever blades per stage (2,4 or 0)
nc2 =4;
nc3 =0 ;
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rl =350e~6; % radius of upper wire
r2 =175e-6; % radius of intermediate wire
r3 = 15Oe-6; % radius of lower wire

Y1 =1.65e 11; % Youngs Modulus of upper wire (s/steel 302)
Y2 =1.65el 1; % Youngs Modulus of intermediate wire (s/steel 302)
Y3 =7el0; % Youngs Modulus of lower wire (fused silica)

ufcl =2 .6 ; % uncoupled mode frequency of cantilever stage( = 0  for no cantilevers)
ufc2 =3;
ufc3 =0;
% NB:- uncoupled mode frequency- the frequency observed for a cantilever in a 
particular stage supporting only the mass of that stage

dO = 0.001
dl = 0 . 0 0 1

d2  = 0 . 0 0 1

d3 = 0.001

% height of upper wire break-off (above c.of m. upper mass) 
% height of int. wire break-off (below c.of m. upper mass)
% height of int. wire break-off (above c.of m. of int. mass)
% height of lower wire break-off (below c.of m. int. mass)
% height of lower wire break-off (above c.of m. test mass)d4 = 0.001

0/̂  £ ♦ ♦ ̂  ♦ * ♦ ♦ ♦ S|C % ♦ ♦ ̂  ♦ ♦ ♦ ♦ ♦ ♦ ♦ ̂   ̂♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

% X direction separation
Su = 0.00; % 1/2 separation of upper wires
Si = 0.03; % 1/2 separation of intermediate wires
SI = 0.005; % 1/2 separation of lower wires

3|c3|e3|e3|e4:4i4c3|c4e3|e4e4e4c3|e3|c3|c3|c3|e3|c3|e3|e3|e3|e4e)|c3|:^e3f:3|e3te3|e3|c3|e3|e4e4e4c3|e3|c3|e3fe3fi4ea|e4e4e4e3|c4c3|e3|c3|c3fc3ic4e4e4c3|e4c4e4e3fe4e3|c3(e

% Y direction separation
n0 = 0.03; % 1 / 2

nl = 0.04; % 1 / 2

n2 =0.045; % 1 / 2

n3 =ir-0.0035+0.01; % 1 / 2

n4 =tr-0.0035+0.005; % 1 / 2

n5 =tr-0.0035+0.005; % 1 / 2
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B.4 Parameters of triple pendulum for 
Glasgow prototype suspension.

% refer to Appendix B.l and B.2 
% all units are in S.I

Jlesic^cHc^e^csie^e^c^sicjic^^cslcslc^s^c^c^c^c^caleslc^c^c^calcslealeslc^cslcjIc^cslesie^c^eafc^esfE^e^e^EHcalesleslE^esiEslc^salcsleslcalcsleslcalesleale^esle^e

uxl =0.1; % dimensions of UPPER MASS
uyl = 0.37;
uzl = 0 .0 1 2 ;
ux2 = 0.05; % not always used for modelling
uy2 =0.05;
uz2 = 0.09;
deni = 7800; % density (stainless steel)

ix =0.1; % dimension of INTERMEDIATE MASS (cylinder)
ir = 0.09;
den2 = 2700; % density (aluminium)

0^****************♦**********♦***♦**********************************

tx =0.1; % dimensions of TEST MASS (cylinder)
tr = 0.09;
den3 = 2700; % density (aluminium)

oyQ % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

11 =0.38; % upper wire length
12 = 0.185; % intermediate wire length
13 = 0.28; % lower wire length

o ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

nwl =2; % number of wires per stage (2 or 4)
nw2 =4;
nw3 =4;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

ncl =2; % number of cantilever blades per stage (2,4 or 0)
nc2 =4; 
nc3 =0;

0^******************************************************************
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rl =250e-6; % radius of upper wire
r2 =175e-6; % radius of intermediate wire
r3 =140e-6; % radius of lower wire

Y1
Y2
Y3

=1.65ell
=1.65ell
=1.65ell

% Youngs Modulus of upper wire (s/steel 302)
% Youngs Modulus of intermediate wire (s/steel 302) 
% Youngs Modulus of lower wire (s/steel 302)

ufcl =1.9; % uncoupled mode frequency of cantilever stage(=0 for no cantilevers) 
ufc2 =3; 
ufc3 =0;
% NB:- uncoupled mode frequency- the frequency observed for a cantilever in a 
% particular stage supporting only the mass of that stage

d0 = 0 . 0 0 1

dl = 0 . 0 0 1

d2 = 0 . 0 0 1

d3 = 0 . 0 0 1

d4 = 0 . 0 0 1

% height of upper wire break-off (above c.of m. upper mass) 
% height of int. wire break-off (below c.of m. upper mass)
% height of int. wire break-off (above c.of m. of int. mass)
% height of lower wire break-off (below c.of m. int. mass)
% height of lower wire break-off (above c.of m. test mass)

0/0 * * ****** * ** * * *** ******* * *** ******** ****** * *** ***** ** ****** **** ** * *

% X direction separation
Su = 0.00; % 1/2 separation of upper wires
Si = 0.03; % 1/2 separation of intermediate wires
SI = 0.005; % 1/2 separation of lower wires

0^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Y direction separation
nO = 0.03; % 1 / 2  separation of upper wires at suspension point
nl = 0.04; % 1 / 2  separation of upper wires at upper mass
n2 = 0.045; % 1 / 2  separation of intermediate wires at upper mass
n3 = ir + 0.005; % 1 / 2  separation of int. wires at intermediate mass
n4 = tr + 0 .0 1 ; % 1 / 2  separation of lower wires at intermediate mass
n5 = tr + 0 .0 1 ; % 1 / 2  separation of lower wires at test mass

0^ % * ♦ % si= ♦ * * * * * * * H* ♦ ♦ * ♦ * ♦ ♦ * * ♦ H* * * ♦ * * ♦ ♦ * ♦ ♦ * ♦ * * * * * * * * ♦ * ♦ ♦ ♦ ♦ * ♦ ♦ * ♦ ♦ * ♦ * ♦♦
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APPENDIX C

Triple Pendulum

C.l Input parameters (jbr.m)
The file jbr.m represents the input parameters for the triple pendulum for the main 
suspension for GEO 600. The various parameters are explained in Appendix B.l

% jbr.m

=9.81;

ux = 0.1; % dimensions of UPPER MASS (square)
uy = 0.3;
uz = 0.07;
deni = 2700; % density (aluminium)
ml = denl*uy*uz*ux; %mass
Ilx = ml *(uyA2 +uzA2 )/1 2 ; % moment of inertia (sideways roll)
1 1 y = ml *(uzA2 +uxA2 )/l 2 ; % moment of inertia (longitudinal tilt)
1 1 z = ml *(uyA2 +uxA2 )/l 2 ; % moment of inertia (rotation)
0/0 * * * * * * 4c % * * * * 4c * % * * * 4c 4c * % * * * * * % * % % % He * * % * * * * * * * * * * * * * * * * * * * * * * * * * ** * *
ix =0.1; % dimension of INTERMEDIATE MASS (cylinder)
ir = 0.09;
den2  = 2 2 0 2 ; % density (fused silica)
m2  = den2 *pi*irA2 *ix; % intermediate mass
I2 x = m2 *(irA2 /2 ); % moment of inertia (sideways roll)
I2y = m2*(irA2/4+ixA2/12); % moment of inertia (longitudinal tilt)
I2z = m2*(irA2/4+ixA2/12); % moment of inertia (rotation)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

tx = 0.1; % dimensions of TEST MASS (cylinder)
tr = 0.09;
den3 = 2202; % density (fused silica)
m3 = den3*pi*trA2*tx; % test mass
I3x = m3*(trA2/2); % moment of inertia (sideways roll)
I3y = m3*(trA2/4+txA2/12); % moment of inertia (longitudinal tilt)
I3z = m3*(trA2/4+txA2/12); % moment of inertia (rotation)

11 = 0.42; % upper wire length
12 = 0.187; % intermediate wire length
13 = 0.28; % lower wire length

nwl =2; % number of wires per stage (2 or 4)
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nw2 =4; % = number of cantilevers (if fitted)
nw3 = 4;

rl = 350e-6
r2 = 175e-6
r3 = 154e-6

% radius of upper wire 
% radius of intermediate wire 
% radius of lower wire

O /q #  ♦  ♦ ♦  ♦  ♦  : | : 3| c 9| s 9| : 3t : 9)e 9|e s |: j |c :fc s |c : |: : |e : |: :J c : |c : |: : |e : )S ! |: : | : : |e s |e s |e : ) s s |e s |e s |c s |e j |c j |e s jc a l : : ( : :J c j |e : |e s |e i |c i |e ! lc s |e a |c : |c s |: j |c :J c : |c : ) : i ( ! : |8 s |e i ( c :J e j |c s |e ^ c s |e a |s s |c

Y1 = 1 .65el 1; % Youngs Modulus of upper wire (s/steel 302)
Y2 = 1 .65el 1; % Youngs Modulus of intermediate wire (s/steel 302)
Y3 = 7el0; % Youngs Modulus of lower wire (fused silica)

ufcl = 2.57;% uncoupled mode frequency of cantilever stage(=0 for no cantilevers)
ufc2 = 3;
ufc3 = 0;
% NB:- uncoupled mode frequency- the frequency observed for a cantilever in a 
% particular stage supporting only the mass of that stage

dO = 0.001; % height of upper wire break-off (above c.of m. upper mass)
dl = 0 .0 0 1 ; % height of intermediate wire break-off (below c.of m. upper mass)
d2  = 0 .0 0 1 ; % height of intermediate wire break-off (above c.of m. of int. mass)
d3 = 0.001; % height of lower wire break-off (below c.of m. intermediate mass)
d4 = 0.001; %height of lower wire break-off (above c.of m.test mass)

% X direction separation
su = 0 .0 0 ; % 1 / 2  separation of upper wires
si = 0.03; % 1 / 2  separation of intermediate wires
si = 0.005; % 1/2 separation of lower wires
(yQ * * * * % * $ * * ̂  % * * He * He He * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ♦ * * * * *
% Y direction separation
nO = 0.03; % 1/2 separation of upper wires at suspension point
nl = 0.04; % 1 / 2  separation of upper wires at upper mass
n2 = 0.045; % 1/2 separation of intermediate wires at upper mass
n3 = ir-0.0035+0.01; % 1/2 separation of int. wires at intermediate mass
n4 = tr-0.0035+0.005; % 1/2 separation of lower wires at intermediate mass
n5 = tr-0.0035+0.005; % 1/2 separation of lower wires at test mass
%NB:- i.e. n4 = (radius) - (flat) + (break-off bar)
0/0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% local control units mechanical details
leverarmrt = 0.03; % half spacing of coils acting on tilt, rt
leverarmrz = 0.08; % half spacing of coils acting on rotation, rz
leverarmrl =0.08; % half spacing of coils acting on roll, rl
%local control gains
gain = 0.4;
gainzrtrl = gain; % vertical, z, tilt, rt, roll rl (coils on top of upper mass)
gaint = gain. *2 ; % sideways, t (coil on one end of upper mass)
gainlrz = gain; % longitudinal, 1, rotation, rz (coils on long rear side of mass)
0/Q * * * * * $ $ * $ * * % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ̂  * * * * * * * *

% represents small loss (so as not dividing by zero) 
bl = 0.03;b2=0.03;b3=0.03;b4=0.03; b5=0.03; b6=0.03;
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********* * * * * * * * * * * * * *

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0/0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
% spring constants
kcl = 1 / 2  * (2 *pi*ufcl)A2 *ml
kc2  = 1 / 2  * (2 *pi*ufc2 )A2 *m2

kc3 = 1/2 * (2*pi*ufc3)A2*m3
kwl = Yl*pi*rlA2 /ll*nwl/2 ;
kw2  = Y2*pi*r2A2/12*nw2/2;
kw3 = Y3*pi*r3A2/13*nw3/2;
if (kcl =  0 ) 
kl = kwl;
else
kl = kcl*kwl/(kcl+kwl);
end
if (kc2  == 0 ) 
k2  = kw2 ;
else
k2  = kc2 *kw2 /(kc2 +kw2 );

if (kc3 =  0) 
k3 = kw3; 
else
k3 = kc3*kw3/(kc3+kw3);
end

% in X-direction wires must be vertical 
sO = su;sl = su;
s2 = si;s3 = si;
s4 = sl;s5 = si;

ml3 = ml+m2+m3;m23 = m2+m3;

% cosine and sine of the angle the wire makes with the vertical (z)

cl = (11 A2-(nl-n0)A2)A0.5/ll; % cos(Ql)
c2 = (12A2-(n3-n2)A2)A0.5/12; % cos(Q2)
c3 = (13A2-(n5-n4)A2)A0.5/13; % cos(Q3)

% END OF INPUT

% CALCULATIONS

end

sil =(nl-n0 )/ll;
si2 = (n3-n2)/12;
si3 =(n5-n4)/13;

% sin(Ql) 
% sin(Q2 ) 
% sin(Q3)
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C.2. Model and ABCD matrices (cit.m)
The file cit.m assembles the triple pendulum model and the ABCD matrices for all 
degrees of freedom, for the input file jbr.m (for example). The states are the 
translation of and rotation about the centre of mass of each mass.

% cit.m

jbr; % input parameters from jbr.m (for example)

% LONGITUDINAL AND TILT FREQUENCIES

k ll = -ml3*g*d0/Ily-2*kl*s0A2*clA2/Ily-m23*g*dl/Ily-2*k2*s2A2*c2A2/Ily- 
m23*g*dlA2/Ily/12/c2-ml3*g*d0A2/Ily/ll/cl-ml3*g*s0A2*silA2/Ily/ll/cl- 
m23*g*s2A2*si2A2/Ily/12/c2; 

kl2 = -m23*g*dl/Ily/12/c2+ml3*g*dO/Ily/ll/cl;
kl3 = -m23 *g*dl *d2/11 y/12/c2+2*k2*s2 A2*c2A2/11 y+

m23 *g* s2 A2*si2 A2/12/c2/I1 y; 
kl4 = +m23*g*dl/Ily/12/c2; 
kl5 =0; 
k l6  = 0 ;

k21 = +ml3*g*d0/ml/ll/cl-m23*g*dl/ml/12/c2;
k22 = -ml3*g/ml/ll/cl-m23*g/ml/12/c2;
k23 = -m23*g*d2/ml/12/c2;
k24 = +m23*g/ml/12/c2;
k25 =0;
k26 = 0 ;

k31 = +2*k2*s2A2*c2A2/I2y-
m23*g*d2*dl/I2y/12/c2+m23*g* s2A2*si2A2/I2y/12/c2; 

k32 = -m23*g*d2/I2y/12/c2 ;
k33 = -m23*g*d2/I2y-2*k2!,ts2A2*c2A2/I2y-m3*g*d3/I2y-2*k3*s4A2*c3A2/I2y-

m23*g*d2A2/I2y/12/c2-m3*g*d3A2/I2y/13/c3-m23*g*s2A2*si2A2/12/I2y/c2- 
m3*gs|ts4A25|!si3A2/13/I2y/c3; 

k34 = +m23 *g*d2/I2y/12/c2-m3 *g*d3/I2y/13/c3;
k35 = -m3*g*d3*d4/I2y/13/c3+2*k3*s4A2*c3A2/I2y+m3*g*s4A2*si3A2/B/I2y/c3;
k36 = +m3 *g*d3/I2y/13/c3;

k41 = +m23*g*dl/m2/12/c2;
k42 = +m23*g/m2/12/c2;
k43 = +m23 ̂ *g*d2/m2/12/c2-d3 *m3 *g/m2/13/c3;
k44 = -m23*g/m2/12/c2-m3*g/m2/13/c3;
k45 = -m3*g*d4/m2/13/c3;
k46 = +m3*g/m2/13/c3;

k51 = 0 ;
k52 = 0;
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k53 = +2*k3*s4A2*c3A2/I3y-m3*g*d4*d3/13/I3y/c3+m3*g*s4A2*si3A2/I3y/13/c3;
k54 = -m3*g*d4/I3y/13/c3;
k55 = -m3*g*d4/I3y-2*k3*s4A2*c3A2/I3y-m3*g*d4A2/I3y/13/c3-

m3*g*s4A2*si3A2/I3y/13/c3; 
k56 = +m3*g*d4/I3y/13/c3;

k61 = 0 ;
k62 = 0 ;
k63 = +g*d3/13/c3;
k64 = +g/13/c3;
k65 = +g*d4/13/c3;
k6 6  = -g/13/c3;
0^ ♦ $ $ $ $ 4c 4c ♦ >|e ♦ ♦ ♦ ♦ * ♦ * * * ♦ ♦ ♦ * ♦ * * ♦ * * ♦ * * ♦ * % * % * ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * * ♦ ♦ * * * * * * * * * ♦ ♦ * ♦ ♦
%state space matrices

% ql xn q2 xm q3 x6 Ql vn Q2 vm Q3 v6

A=[0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

k ll k l2 kl3 kl4 kl5 k l6 -bl 0 0 0 0 0

k2 1 k2 2 k23 k24 k25 k26 0 -b2 0 0 0 0

k31 k32 k33 k34 k35 k36 0 0 -b3 0 0 0

k41 k42 k43 k44 k45 k46 0 0 0 -b4 0

k51 k52 k53 k54 k55 k56 0 0 0 0 -b5 0

k61 k62 k63 k64 k65 k6 6 0 0 0 0 0 -b6 ];

XX = -ml3*g*dO/Ily/ll/cl;
YY = +ml3 *g/ml/ll/cl;
ZZ = -ml 3*g*dO/Ily/ll/cl;
VV = +ml3*•‘g/ml/ll/cl;

B=[
0 0 0 0 0 0 XX YY 0 0 0 0

0 0 0 0 0 0 1 /Ily 0 0 0 0 0

0 0 0 0 0 0 0 1 /ml 0 0 0 0

0 0 0 0 0 0 ZZ 0 0 0 0 0

0 0 0 0 0 0 0 v v 0 0 0 Of;

c= [
1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 o];

D=[ 0 0 0 0 0
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0  0  0  0  0  

0  0  0  0  0  

0  0  0  0  0  

0  0  0  0  0  

0  0  0  0  0 ];

% SIDEWAYS AND ROLL FREQUENCIES

j l l  = -ml3*g*dO/Ilx+ml3*g*nl*sil/Ilx/cl-2*kl*nlA2/Ilx-
2*kl*nl*d0*sil/Ilx/cl-m23*g*dl/Ilx-m23*g*n2*si2/Ilx/c2-
2*k2*n2A2/Ilx+2*k2*n2*dl*si2/Ilx/c2+ml3*g*d0/Ilx*(nl*sil/ll-
d0*cl/ll)-ml3*g*nl*sil/Ilx/cl*(nl*sil/ll-
dO*cl/ll)+2 *kl*ll*sil*nl/Ilx*(nl*sil/ll-
dO*cl/ll)+2*kl*ll*dO*silA2/Ux/cl*(nl*sil/ll-dO*cl/ll)+m23*g*dl/Ux*(- 
n2 * si2/12-d 1 * c2/12)+m23 * g* n2* si2/11 x/c2 * (-n2 * si2/12-d 1 * c2/12)- 
2*k2*12*si2*n2/Ux*(-n2*si2/12-dl*c2/12)+2*k2*12*dl*si2A2/Ux/c2*(- 
n2 *si2 /1 2-dl *c2 /1 2); 

j 12 = -m23*g*dl*c2/Ilx/12-m23*g*n2*si2/Ux/12+2*k2*si2*n2*c2/Ux-
2*k2*dl*si2A2Alx+ml3*g*dO*cl/Ux/ll- 
ml3*g*nl*sil/Ux/ll+2*kl*sil*nl*cl/Ilx+2*kl*dO*silA2/Ux; 

j 13 = m23*g*dl/Ilx*(n3*si2/12-d2*c2/12)+m23*g*n2*si2/Ilx/c2*(n3*si2/12-
d2*c2/12)-2*k2*12*si2*n2/Ilx*(n3*si2/12-
d2*c2/12)+2*k2*12*dl*si2A2/Ilx/c2*(n3*si2/12-d2*c2/12)+2*k2*n2*n3/Ilx- 
2*k2*dl*si2*n3/Ux/c2; 

j 14 = +m238|'g*dl*c2/Ilx/12+m23*g*n2*si2/Ux/12-
2 *k2 *si2 *n2 *c2 A 1 x+2 *k2 *dl * si2 A2 / 1 1 x; 

jl5  =0; 
j 16 = 0 ;

j21 = -ml3*g/ml*(nl*sil/ll-dO*cl/ll)-2*kl*ll*silA2/ml/cl*(nl*sil/ll-
d0*cl/ll)+2*kl*nl*sil/ml/cl+m23*g/ml*(-n2*si2/12- 
dl*c2 /12)+2 *k2 *1 2*si2 A2 /ml/c2 *(-n2 *si2 /1 2-dl*c2 /1 2)+2 *k2 *n2 *si2 /ml/c2 ; 

j22 = -ml3*g*cl/ml/ll-m23*g*c2/ml/12-2*kl*silA2/ml-2*k2*si2A2/ml;
j23 = -2*k2*n3*si2/ml/c2+m23*g/ml*(n3*si2/12-

d2 *c2/12)+2 *k2 * 12 * si2 A2/m 1 /c2 * (n3 * si2/12-d2 * c2/12); 
j24 = +m23*g*c2/ml/12+2*k2*si2A2/ml;
j25 =0;
j26 = 0 ;

j31 =+m23 *g*d2/I2x*(-n2* si2/12-d 1 *c2/12)-m23 *g*n3 * si2/I2x/c2*(-n2* si2/12-
dl*c2/12)+2*k2*12*si2*n3/I2x* (-n2 * si2/12- 
d 1 * c2/12)+2 *k2 * 12 * d2 * si2 A2/I2x/c2 * (-n2 * si2/12- 
dl*c2/12)+2*k2*n2*n3/I2x+2*k2*d2*n2*si2/I2x/c2; 

j32 = -(+m23*g*d2*c2/I2x/12-
m23 * g* n3 * si2/I2x/12+2 *k2 * si2 * n3 * c2/T2x+2 * k2 * d2 * si2 A2/I2x); 

j33 =+m23*g*d2/I2x*(n3*si2/12-d2*c2/12)-m23*g*n3*si2/I2x/c2*(n3*si2/12-
d2*c2/12)+2*k2*12*si2*n3/I2x*(n3*si2/12-
d2 * c2/12)+2 *k2 * 12 * d2 * si2 A2/I2x/c2 * (n3 * si2/12-d2 * c2/12)-2 *k2 * n3 * n3/I2x- 
2*k2*d2 *n3 *si2/I2x/c2-
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m23 *g*d2/I2x+m23 *g*n3 *si2/I2x/c2+m3 *g*d3/I2x*(-n4* sB/B- 
d3*c3/B)+m3*g*n4*sB/I2x/c3*(-n4*sB/13-d3*c3/13)-2*k3*13*sB*n4/I2x*(- 
n4*sB/B-d3*c3/B)+2*k3*B*d3*sBA2/I3x/c3*(-n4*sB/13-d3*c3/13)- 
2*k3*n4*n4/I2x+2*k3*d3*n4*sB/I2x/c3-m3*g*d3/I2x-m3*g*n4*sB/I2x/c3; 

j34 =-(+m3 *g*d3 *c3/I2x/13+m3 *g* n4* si3/I2x/13-
2 * k3 * si3 * n4 * c3/I2x+2* k3 * d3 * si3 A2/I2x)+m23 * g* d2 * c2/I2x/12- 
m23*g*n3*si2/I2x/12+2*k2*si2*n3*c2/I2x+2*k2*d2*si2A2/I2x; 

j35 =+m3*g*d3/I2x*(n5*sB/13-d4*c3/B)+m3*g*n4*sB/I2x/c3*(n5*sB/13-
d4 * c3/13 )-2 *k3 * 13 * sB * n4/I2x* (n5 * si3 /13 -
d4 * c3/13 )+2 * k3 * 13 * d3 * si3 A2/I2x/c3 * (n5 * si3/13 -d4* c3/13 )+2 * k3 * n4 * n5/I2x- 
2 *k3 *d3 *n5 * sB/I2x/c3; 

j36 =+m3*g*d3*c3/I2x/13+m3*g*n4*sB/I2x/B-
2*k3*sB*n4*c3/I2x+2*k3*d3*sBA2/I2x;

j41 = +m23*g*si2*n2/m2/12+m23*c2*g*dl/m2/12+2*k2*si2A3*n2/m2/c2+
2 *k2 *si2 A2 *dl/m2 -2 *k2 *n2 *si2 /m2 /c2 ; 

j42 = +m23*g*c2/m2/12+2*k2*si2A2/m2;
j43 = -m23*g*n3*si2/m2/12+m23*g*d2*c2/m2/12-

2*k2*12*si2A2/m2/c2*(n3*si2/12-
d2*c2/12)+2*k2*n3*si2/m2/c2+2*k3*13*sBA2/m2/c3*(-n4*sB/13- 
d3 *c3/B)+m3 *g/m2*(-n4*sB/13-d3 *c3/B)+2*k3 *n4* si3/m2/c3; 

j44 = -m23*g*c2/m2/12-m3*g*c3/m2/13-2*k2*si2A2/m2-2*k3*si3A2/m2;
j45 = -m3*g*d4*c3/m2/13+m3*g*n5*sB/13/m2-

2 * k3 * n5 * si3 /m2/c3+2 * k3 * 13 * si3 A2/m2/c3 * (n5 *si3/13-d4*c3/B); 
j46 = +m3*g*c3/m2/B+2*k3*sBA2/m2;

j51 = 0 ;
j52 = 0;
j53 =+m3*g*d4/I3x*(-n4*sB/13-d3*c3/13)-m3*g*n5*sB/I3x/c3*(-n4*sB/13-

d3 * c3/13)+2 * k3 * 13 * sB * n5/I3 x* (-n4 * sB/13 - 
d3*c3/B)+2*k3*13*d4*sBA2/I3x/c3*(-n4*sB/13- 
d3*c3/B)+2*k3*n5*n4/I3x+2*k3*d4*n4*sB/I3x/c3; 

j54 = -(+m3*g*d4*c3/I3x/13-
m3*g*n5*sB/I3x/13+2*k3*sB*n5*c3/I3x+2*k3*d4*sBA2/I3x); 

j55 =-m3*g*d4/I3x+m3*g*n5*sB/I3x/c3+m3*g*d4/I3x*(n5*sB/13-d4*c3/B)-
m3*g*n5*sB/I3x/c3*(n5*sB/13-d4*c3/B)+2*k3*13*sB*n5/I3x*(n5*sB/B- 
d4*c3/13)+2*k3*13*d4*sBA2/I3x/c3*(n5*sB/13-d4*c3/13)-2*k3*n5A2/I3x- 
2*k3*d4*n5*sB/I3x/c3; 

j56 = +m3*g*d4*c3/I3x/13-
m3*g*n5*sB/I3x/13+2*k3*sB*n5*c3/I3x+2*k3*d4*sBA2/I3x;

j61 = 0 ;
j62 = 0 ;
j63 = -g*(-n4*sB/13-d3*c3/B)-2*k3*sBA2/m3/c3*(-n4*si3-d3*c3)-

2*k3*n4*sB/m3/c3; 
j64 = +g*c3/B+2*k3*sBA2/m3;
j65 = -g*(n5*sB/13-d4*c3/13)-2*k3*sBA2/m3/c3*(n5*sB-

d4*c3)+2*k3*n5*sB/m3/c3; 
j 6 6  = -g*c3/13-2*k3*sBA2/m3;
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%state space matrices

% ql xn q2 xm q3 x6 Ql vn Q2 vm Q3 v6
A=[0 0 0 0 0 0 l 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1
j l l j l2 jl3 j!4 jl5 j l6 -bl 0 0 0 0 0

j21 j22 j23 j24 j25 j26 0 -b2 0 0 0 0

J31 j32 j33 j34 j35 j36 0 0 -b3 0 0 0

j41 j42 j43 j44 j45 j46 0 0 0 -b4 0 0

j51 j52 j53 j54 j55 j56 0 0 0 0 -b5 0

j61 j62 j63 j64 j65 j66 0 0 0 0 0 ■b6];

SS = -ml 3*g*d0*cl/Ilx/ll+ml3 *g*nl *sil/Ilx/ll -2*kl*sil* n l*cl/Ilx -
2*kl*dO*silA2/Ilx;
TT = +ml3*g*cl/ml/ll+2*kl*silA2/ml;
UU = -ml3*g*dO*cl/Ilx/ll+ml3*g*nl*sil/Ilx/ll-2*kl*sil*nl*cl/Ilx- 

2*kl*dO*silA2/Ilx;
WW = +ml3*g*cl/ml/ll+2*kl*silA2/ml;

B=[
0 0 0 0 0 0 SS TT 0 0 0 0

0 0 0 0 0 0 mix 0 0 0 0 0

0 0 0 0 0 0 0 1 /ml 0 0 0 0

0 0 0 0 0 0 UU 0 0 0 0 0

0 0 0 0 0 0 0 WW 0 0 0 Of;

C=[
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0];

D=[ 0 0 0 0 0
0  0  0  0  0  

0  0  0  0  0  

0  0  0  0  0  

0  0  0  0  0  

0 0 0 0 0];

% ROTATIONAL FREQUENCY

AA = ml3*g/ll/cl*(s0A2*clA2+n0*nl)+2*kl*s0A2*(nl-n0)A2/llA2;
BB = m23*g/12/c2*(s2A2*c2A2+n2*n3)+2*k2*s2A2*(n3-n2)A2/12A2;
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CC = m3 * g/13 /c3 * (s4 A2 * c3 A2+n4 * n5 )+2 * k3 * s4 A2 * (n5 -n4) A2/13 A2;

111 = -AA/Ilz-BB/Ilz;
112 = BB/Ilz;
121 = BB/I2z;
122 = -BB/I2z-CC/I2z;
123 = CC/I2z;
132 = CC/I3z;
133 = -CC/I3z;

% state space matrices

% Ql Q2 Q3 qi q2 q3
ar = [ 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

i l l i l 2 0 -bl 0 0

i2 1 i2 2 i23 0 -b2 0

0 i32 i33 0 0 -b3];

br = [ 0 0 0 1 0 0

0 0 0 1 /Ilz 0 0

0 0 0 1 0 0

cr = [ 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0 ];

dr = [ 0 0 0

0 0 0

0  0  0 ];

0^ * * * * * * * * * * * * * * * * * * * * * * if! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% VERTICAL MODES

hi = 2*kl*clA2+ml3*g*silA2/ll/cl;
h2 = 2*k2*c2A2+m23*g*si2A2/12/c2;
h3 = 2*k3 *c3 A2+m3 *g* si3 A2/13/c3;

h ll = - hl/ml - h2  /ml;
h l2 = h2 /ml ;
h2 1 = h2  / m2 ;
h2 2 = -h 2 /m 2 -h 3  / m2;
h23 = h3 / m2 ;
h32 = h3 / m3;
h33 = - h3 / m3;

% state space matrices
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% xl x2 x3 vl v2 v3
av = [ 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

h ll h l2 0 -bl 0 0

h2 1 h2 2 h23 0 -b2 0

0 h32 h33 0 0 ■b3];

bv = [ 0 0 0 hi / ml 0 0

0 0 0 1 /m l 0 0

0 0 0 1 /m l 0 0

0 0 0 hi / ml 0 Of;

cv = [ 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0];

dv = [ 0  0  0  

0 0 0  
0 0 0 ];

C.3 Mode frequencies

The file modes.m calculates the mode frequencies for all the degrees of freedom of a 

triple pendulum. The spring matrix components are called from cit.m and the input 

parameters are in turn called from jbr.m. (for example)

% modes.m
cit; % input 
% longitudinal and tilt matrx

k ll k l2 kl3 kl4 kl 5 k l6

k2 1 k2 2 k23 k24 k25 k26
k31 k32 k33 k34 k35 k36
k41 k42 k43 k44 k45 k46
k51 k52 k53 k54 k55 k56
k61 k62 k63 k64 k65 k6 6 ];

% calculation of the freq. 
p = sqrt(abs(eig(A_LRT))); 
longtilt = p/2 /pi

% sideways and roll matrix
A TRL = [ jH j l 2 jl3 j 14 J15 j l 6

j 2 1 j2 2 j23 j24 j25 j26
j31 J32 j33 j34 j35 j36
J41 j42 j43 j44 J45 j46
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j51 j52 j53 j54 j55 j56
j61 j62 j63 j64 j65 j66];

% calculation of the freq. 
p = sqrt(abs(eig(A_TRL))); 
sidewaysroll = p/2/pi

% rotational matrix
ill il2 0
i21 i22 i23
0 i32 i33];

% calculation of the freq. 
s = sqrt(abs(eig(A_RZ))); 
rotationalmodes = s/2/pi

% vertical matrix
h ll hl2 0
h21 h22 h23
0 h32 h33];

%calculation of the freq. 
q = sqrt(abs(eig(A_Z))); 
vertical= q/2/pi()

C.4 Vertical transfer function

The file vert.m calculates the transfer function of a triple pendulum. The spring 

matrix components are called from cit.m and the input parameters are in turn called 

from jbr.m. (for example)

% vert.m.
% VERTICAL (Z) 
clear all
% name of input file called 
jbr; % T.P.
%ajt; % T.P. PROTOTYPE

% calculation of the freq. 
eig(av);
q = abs(eig(av));
vertical= q/2/pi

% calculation of the transfer function
% ** 1,2 or 3 single,double or triple input in the bv matrix
% * 1,2 or 3 single,double or triple output in the cv matrix 
o/Q * *  *

[mag,phase] = bode(av,bv(:,3),cv(3,:),0,l,w);
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mag = mag/mag( 1); %normalises the gain
semilogx(v,20* log 10(mag)); 
axis([le-0,100,-70,30]) 
grid

C.5 Vertical bode analysis (scz2.m).
The file scz2.m calls the ABCD matrix from cit.m which in turn calls the input 

parameters from jbr.m (for example). The file adds the local control, outlined in 

section 5.5, to the pendulum and returns, for example, the closed loop transfer 

function and the impulse response of the triple pendulum.

% scz2.m

% vertical (z) 
clear all
cit; % input from cit.m
v = logspace(-1,2,200);
w = 2*pi*v

% calculation of the freq. 
eig(av);
q = abs(eig(av));
vertical= q/2/pi
O^******************************************************
% adding the local control 
as = [0];
bs = [0];
cs = [0];
ds = [1];
coils = 3;
[ac2,bc2,cc2,dc2] = lo cal(gainzrtrl* co ils);
[acv,bcv,ccv,dcv] = append(as,bs,cs,ds,ac2,bc2,cc2,dc2);
[acv,bcv,ccv,dcv] = append(acv,bcv,ccv,dcv,as,bs,cs,ds);
[a,b,c,d] = series(acv,bcv,ccv,dcv,av,bv,cv,dv);
% use this to close the loop (pendulum + control)
[a,b,c,d] = cloop(a,b,c,d,l,-2);

% transfer function closed loop (vertical) 
elf
[mag 1,phase 1 ] = bode(a,b,c,d,2,w); 
subplot(2,l,l); 
loglog(v,magl(:,l),V); 
axis([min(v),max(v),0.01,100]) 
grid
subplot(2,l,2); 
semilogx(v,phase 1 (:, 1 ),V) 
axis([min(v),max(v),-180,180])
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title(Veif)
grid
pause
elf

% impulse response vertical (each mass is shown) 
t = linspace(0,10,300);
imp = impulse(a,b,c,d,l,t);
plot(t,imp(:,l),V,t,imp(:,2),V,t,imp(:,3),W) 
grid

C.6 Rotational bode analysis (scrz2.m).
The file scrz2.m calls the ABCD matrix from cit.m which in turn calls the input 

parameters from jbr.m (for example). The file adds the local control, outlined in 

section 5.5, to the pendulum and returns, for example, the closed loop transfer 

function and the impulse response of the triple pendulum.

% scrz2.m

% rotational (rz) 
clear all
cit; % input
v = logspace(-l,2,200);
w = 2*pi*v;

i t : * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% calculation of the freq. 
eig(ar);
s = abs(eig(ar));
rotationalmodes = s/2/pi
0^ *  * *  *  * $ * *  * * *  *  * *  * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *

% adding the local control 
as = [0];
bs = [0];
cs = [0];
ds = [1];
coils = 2;
[acl ,bcl ,ccl ,dcl ] = local(gainfrz*leverarmrz.A2*coils);
[acr,bcr,ccr,dcr] = append(acl ,bcl ,ccl ,dcl ,as,bs,cs,ds);
[acr,bcr,ccr,dcr] = append(as,bs,cs,ds,acr,bcr,ccr,dcr);
[a,b,c,d] = series(acr,bcr,ccr,dcr,ar,br,cr,dr);
% use this to close the loop (pendulum + control)
[a,b,c,d] = cloop(a,b,c,d,l,-2);
0^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% transfer ftmction 
elf
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[magl,phasel]= bode(a,b,c,d,2,w); 
subplot(2,l,l); 
loglog(v,magl (:, l),'r'); 
axis([min(v),max(v),0.01,100]) 
grid
subplot(2,l,2);
semilogx(v,phase 1 (:, 1 ),'r')
axis([min(v),max(v),-180,180])
title('rz')
grid
pause
elf
0 ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% impulse response fo triple pendulum (each mass is shown)
t = linspace(0,10,300);
imp = impulse(a,b,c,d,l,t);
plot(t,imp(:,l),V,t,imp(:,2),V,t,imp(:,3),W)
grid
0 ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C.7 Sideways, t and roll ,rl bode analysis 
(sctrH.m).

The file sctrl2.m calls the ABCD matrix from cit.m which in turn calls the input 

parameters from jbr.m (for example). The file adds the local control, outlined in 

section 5.5, to the pendulum and returns, for example, the closed loop transfer 

function and the impulse response of the triple pendulum.

%  sctrl2.m.

clear all 
jbr;
v = logspace(-l,2,300);
w = 2*pi*v;

% calculation of the freq. 
eig(A);
p = abs(eig(A));
sideroll= p/2/pi

% adding the local control 
as = [0]; 
bs = [0]; 
cs = [0]; 
ds = [1];
% 1- roll
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coils = 3;
[acl,bcl,ccl,dcl] = local(gainzrtrl*leverarmrl.A2* coils);
% 2 - side
[ac2,bc2,cc2,dc2] = local(gaint);
[ac,bc,cc,dc] = append(as,bs,cs,ds,acl ,bcl ,ccl ,dcl);

[a,b,c,d] = append(ac,bc,cc,dc,ac2,bc2,cc2,dc2);
[a,b,c,d] = append(a,b,c,d,as,bs,cs,ds);
[a,b,c,d] = append(a,b,c,d,as,bs,cs,ds);
[a,b,c,d] = series(a,b,c,d,A,B,C,D);
% use this to close loops 
ops = [ 1 2 ] ;  
ips = [ 2 3 ] ;
[a,b,c,d] = cloop(a,b,c,d,ops,-ips);
[a,b,c9d] = minreal(a,b,c,d);

% bode analysis -  open loop transfer function 
elf
[mag,phase] = bode(a,b,c,d, 1 ,w); 
subplot(2,l,l);
loglog(v,mag(:,l),'r', v,mag(:,2),’b',v,mag(:,3),'w',v,mag(:,4),y, 

v,mag(:,5),'g',v,mag(:,6),'m'); 
axis([min(v),max(v), 1 e-4,1 e2]) 
grid 
hold
subplot(2,l,2);
§emilogx( v,phase(:, l),'r', v,phase(:,2),'b',v,phase(:,3), V,v,phase(:,4),y,

v,phase(:,5),y,v,phase(:,6),'m') 
axis([min(v),max(v),-540,180]) 
grid 
hold 
pause

% transfer function -  closed loop (roll) 
elf
[magl,phasel]= bode(a,b,c,d,2,w); 
subplot(2,l,l); 
loglog(v,magl(:,l),V); 
axis([min(v),max(v),0.01,100]) 
grid
subplot(2,l,2);
semilogx(v,phase 1 (:, 1 ),'r')
axis([min(v),max(v),-180,180])
title('roHf)
grid
pause

% transfer function -  closed loop (sideways) 
elf
[mag2,phase2] = bode(a,b,c,d,3,w); 
subplot(2,l,l);
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loglog(v,mag2(:,2),V); 
axis([min(v),max(v),-0.01,100]) 
grid
subplot(2,l,2); 
semiIogx(v,phase2(:,2),'rr) 
axis([min(v),max(v),-180,180]) 
grid
title('side')
pause

% impulse response 
clg
t = linspace(0,10,300);
imp = impulse(a,b,c,d,l,t);
plot( t,imp(:,l),'r,,t,imp(:,2),,b',t,imp(:,3),'w',t,imp(:,4),y,t,imp(:,5),'g,, 

t,imp(:,6),,ml)
grid

C.8 Tilt, rt and longitudinal, 1 bode
analysis (sclrt2.m).

The file sclrt2.m calls the ABCD matrix from cit.m which in turn calls the input 

parameters from jbr.m (for example). The file adds the local control, outlined in 

section 5.5, to the pendulum and returns, for example, the closed loop transfer 

function and the impulse response of the triple pendulum.

% sclrt2.m.
( ^ / : | c * * * * * : i c 3 | t : j c * : i : : i : : | e * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * *  * * * * * *

clear all
jbr; % input
v = logspace(-l,2,500);
w = 2*pi*v;
0 ^ : | c 3 | c * 3 | e : | c * : | c 3 | c : | c : | e : | : : | c * *  * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * *

% calculation of the freq. 
eig(A);
p = abs(eig(A));
longtilt= p/2/pi
O^* * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *

% adding the local control 
as = [0];
bs = [0];
cs=[0]; 
ds = [1];
% 1 - tilt 
coils = 2;
[ac 1 ,bc 1 ,cc 1 ,dc 1 ] = local(gainzrtrl* leverarmrt. A2*coils);
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% 2 - longitudinal
[ac2,bc2,cc2,dc2] = lo cal(gainlrz* co ils);
[ac,bc,cc,dc] = append(as,bs,cs,ds,ac 1 ,bc 1 ,ccl ,dcl);
[a,b,c,d] = append(ac,bc,cc,dc,ac2,bc2,cc2,dc2);
[a,b,c,d] = append(a,b,c,d,as,bs,cs,ds);
[a,b,c,d] = append(a,b,c,d,as,bs,cs,ds);
[a,b,c,d] = series(a,b,c,d,A,B,C,D);
% use this to close loops 
ops = [ 1 2 ] ;  
ips = [ 2 3 ] ;
[a,b,c,d] = cloop(a,b,c,d,ops,-ips);
[a,b,c,d] = minreal(a,b,c,d);

% bode analysis open loop transfer function 
elf
[mag,phase] = bode(a,b,c,d,l,w);
subplot(2,l,l);
loglog( v,mag(:,l),V, v,mag(:,2),,b,,v,mag(:,3),V,v,mag(:,4),y,

v,mag(:,5),,g,,v,mag(:,6),,m,); 
axis([min(v),max(v), 1 e-4,1 e2]) 
grid 
hold
subplot(2,l,2);
semilogx( v,phase(:,l),V, v,phase(:,2),,b',v,phase(:,3),V,v,phase(:,4),y,

v,phase(:,5),'g,,v,phase(:,6),,m,) 
axis([min(v),max(v),-540,180]) 
grid 
hold 
pause

************************************************
% transfer function closed loop (tilt) 
elf
[magl,phasel]= bode(a,b,c,d,2,w);
subplot(2,l,l);
loglog(v,magl(:,l),V);
grid
subplot(2,l,2);
semilogx(v,phase 1 (:, 1 ),'r')
axis([min(v),max(v),-180,180])
title('tilt')
grid
pause
0 ^ *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% transfer function closed loop (longitudinal) 
elf
[mag2,phase2] = bode(a,b,c,d,3,w);
subplot(2,l,l);
loglog(v,mag2(:,2),V);
grid
subplot(2,l,2);
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semilogx(v,phase2(:,2),,r') 
axisi([min(v),max(v),-180,180]) 
grid
title<('long')
pause

% slhadow sensor noise 
clg
logl<og(v,3e-10.*magl(:,6),'m',v,3e-10. *mag2(:,6),'g');
axisi([min(v),max(v), 1 e-22,1 e-12])
grid
title((’shadow sensor noise with 3e-10m/sqrt(Hz) input’) 
pause

% c<oil driver noise 
clg
[majgl ,phasel] = bode(a,b,c,d,5,w); 
logl<og(v,0.707. * 1 e-3. *3e-10. *mag 1 (:,6),'g'); 
axisi([min(v),max(v), 1 e-22,1 e-12])
titlei('coil driver noise with 190db/Hz driver and 1 mm rms range')
grid!
pause

% impulse response of triple pendulum 
t = linspaee(0,10,300);
imp* = impulse(a,b,c,d, 1 ,t);
ploti( t,imp(:, 1 ),,r',t,imp(:,2),'b',t,imp(:,3),'w',t,imp(:,4),y,t,imp(:,5),'g', 

t,imp(:,6),'m’)
gridl
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APPENDIX D

Tutorial
Several examples to aid the use of the triple pendulum model for a triple pendulum 

outlined in Appendix C and in chapter 5

% EXAMPLE A: - obtain frequencies of GEO 600 triple pendulum.

1. View parameters of triple pendulum in jbr.m using an editor (also using 

Appendix B).

2. Run modes.m in MATLAB window to obtain frequencies. The spring matrix 

components are called from cit.m.

% EXAMPLE B: - input own triple pendulum.

1. Input parameters in jbr.m and save.

2. Run modes.m in MATLAB window to obtain frequencies.

NB:: - Can also save input file, jbr.m, with a new name BUT would have to also 

change the line in cit.m calling this new input file.

% EXAMPLE C: - using this new triple pendulum to obtain transfer function.

1. Change the name of the input file called in vert.m.

2. Run vert.m. in MATLAB window.

% EXAMPLE D: - using this new triple pendulum to obtain the: -

• closed loop transfer function bode plots

• root locus and

• impulse response, looking at the different masses.

1. Change the name of the input file called in each of the 4 control files: -

• vertical - scz2.m

• rotation - scrz2.m

• longitudinal + tilt - sclrt2.m

• sideways + roll - sctrl2.m

2. Run each in MATLAB window. (NB: - Press return to move from one plot to the 

next).
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3. It is also possible to obtain the open loop transfer function bode plot by

commenting out the “cloop” command, using a “%” at the start of the line in each 

o f the control files outlined above.

% EXAMPLE E: - Allows the input of own controller.

1. In jbr.m can change the positioning of the coils on the upper mass by altering the 

“ leverarms” i.e. the half spacing of the coils for a particular rotational degree of 

freedom. It is also possible to change the gain setting for the coils. Both of these 

are outlined in section 5.5

2. Run each of the control files in Example C with this new controller.
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APPENDIX E Centre of Percussion

The purpose of this theoretical work was to investigate the possibility of improved 

isolation in compound pendulums using the centre o f percussion [91].

Compound pendulum

A compound pendulum is a rigid body suspended and free to swing about an axis that 

does not pass through the centre o f mass, see figure (E .l). As outlined below, the 

transfer function of a compound pendulum taken between the point o f suspension and

the centre o f percussion gives isolation proportional to — at high frequencies,
co

whereas the transfer function o f a compound pendulum taken between the point of 

suspension and the centre of mass tends to a constant value at high frequencies [92].

o o

c#-

Figure (E .l): - Compound pendulum.

In the diagram o is the point of suspension, 

c is the centre o f mass, 

o ' is an arbitrary point a distance b from c, 

h is the distance between o and c and 

b is the distance between c and o '.
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The horizontal transfer function of c with respect to o can be shown to be [93] [92]

m g h -IcQ)2 
x0 mgh -  l 0<o 2

where 70, the moment of inertia about o, is given by

I0 = Ic + w/?2 (E.2)

and Ic, the moment of inertia about c, is given by

Ic = mrs2 (E.3)

where rg is the radius of gyration and m is the mass.

x xAs co —> 0 ; —  = 1 and as co —> oo ; —  —» constant value, as shown in

figure (E.2).

One can also consider the transfer function of o' with respect to o [92]. This is: - 

mgh -  (I c -  mbh)co2
x0 mgh -  I0co 2

(E.4)

/  r2
If b is set to the value b = —— = —  (E.5)

mh h

on substitution of equation (E.5) into (E.4) we get: -

Xo = mgh 
x o mgh - 10 co 2

x • x • meh
As <»-> 0 ; —2- = 1 and as °o ; —— >

(E.6)

x o I o <°2

The point o' is called the centre of oscillation of the pendulum with respect to the 

point of suspension, o, and it is the point where the compound pendulum transfer

function is the same as a single pendulum of length, I = , as seen in equation (E.6)
mh

and shown in figure (E.2). Since the equation rg -h b  is symmetrical in h and b the

point o is therefore the centre of oscillation with respect to the point o'. It can be 

shown that the centre of oscillation is the same as the centre of percussion [91]. The 

centre of percussion is the point on a rigid body where if the body is struck at this 

point, no impulse is felt at o. This problem is of interest to a cricketer who is trying to
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hit a ball with his bat. He should hit the ball at the centre o f percussion o' relative to 

his hands at o.

Transmissibility/Frequency

50

h-

-100

Frequency (Hz)

Figure (E.2): - Transfer function against frequency for the centre o f  oscillation, 

x ' x- 2-  (red) and the centre of mass, —  (green) with respect to the point o f suspension.
Xo Xo

Therefore we can conclude that good isolation can in principle be obtained at the 

centre o f oscillation compared to the centre of mass.

In an isolation system there are several opportunities o f taking advantage o f this 

improved isolation. Firstly if you consider the test mass mirror as a compound 

pendulum then in principle an improvement in noise can be obtained by aiming the 

laser beam at the centre of percussion [92]. In practice if the laser beam is a finite size 

it is necessary to calculate the average motion over the diameter o f the laser beam in 

order to investigate how much improvement in isolation is obtained. Secondly the 

argument for a compound pendulum can be applied to a cantilever blade where the 

restoring torque is provided by the springiness o f the blade rather than the force due
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to gravity. In this case for a horizontal blade the improved isolation is in the vertical 

direction. This is o f particular interest to us and is discussed in more detail below.

Cantilever blade

Consider the upper cantilever blade, section 6.4, for the GEO 600 main suspension

such that the clamp at point B , as shown in figure (E.3), is equivalent to the point of

suspension. What we are interested in is the position o f the centre o f percussion.

12 m l
Now the moment ot inertia is Ic = “[g- - assuming a triangular blade where Ic is the

moment o f inertia in the direction perpendicular to the plane o f the blade [94], and 

from equation (E.3) Ic = mrg2.

2 ml2
==> mrg — |g  (E.7)

For the upper blade the length. / = 24 cm 

=> r 2 = 0.00324 m2

r 1 i
and from (E.5) b -  —  » 4.0 cm. where h = — ~ 8 cm. Therefore the centre of

h 3

percussion of the blade is ~ 4.0 cm from the centre o f mass, as shown in figure (E.3).

One could in principle take advantage of the improved vertical isolation gained by

attaching the suspension wire holding the mass below at the centre o f percussion

rather than at the end of the blade.

Centre of Percussion Centre of Mass

length. /

Figure (E.3): - Schematic o f  cantilever blade showing centre o f  mass and centre o f  

percussion.
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Adjusting the position of the centre of percussion

An interesting point to consider is the following. If you have, for example, the 

cantilever blade with fixed points of attachment at each end and you want to make 

one point the centre of percussion with respect to the other, how do you add mass to 

the blade to achieve this?

Consider for simplicity a simple bar that is clamped at the point o. The bar is treated 

as a compound pendulum and the symbols used are as defined before. Firstly the case 

of a bar of length, /, and mass, m, is considered, as in figure (E.4a). Secondly the case 

of extending the bar is considered, as in figure (E.4b) and figure (E.4c).

•  c •  o

Figure (E.4): - (a) shows the case o f a simple bar, (b) with the bar extended on one 

side and (c) with the bar extended on the other side.

(a) The moment of inertia about c, in figure (E.4a), of a thin bar is: -

m l2 12
Ic - = mrg2 from equation (E.3) implying rg = (E.8)

From equation (E.5) the position of the centre of percussion of a compound

r2
pendulum was given by b = — .
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Therefore the position of the centre of percussion of the bar in figure (E.4a) relative

I 12 / l  2 Ito o is given by h + b where h = and b = ^  = —, on substituting for rg2 from

I I 21
equation (E.8). Therefore b + h = ~  ̂+ ^  = .

(b) Now consider the case of extending the bar beyond o ’, as shown in 

figure (E.4b).

. , (/ + A/)2/ l2  l n  in  ( l  + A l)
In this case b = ------- ——  = —(/ + A/) and h =  z .

(/ + Al)/2 6 2

21 2 A I
Therefore b + h -  3 + — and is larger than in example (a).

=> o' is further along the bar i.e. further away from o, than in example (a).

(c) Now consider the case of extending the bar above o, as shown in 

figure (E.4c).

t i -  ,• ;  +  u  , ,  C/ +  A/')2/l2 1 ( l  +  Al)2This time h =  z -A  / =  z and b =  ----- ——  = — ------- -
2 2 (/ -  A /) /2 6 ( / - A 1) 2 *

Thereforeft + 4 ^ .
( / -A/)/2 2

Considering the following examples: - 

/
Al = 2 ^> b + h = I . This is larger than in example (a).

/
AI = 2 => b + h = I . This is again larger.

This shows that o' is further away from o, than in example (a).

Therefore by the addition of mass either to one side, as in (b), or the other side, as in

(c), the centre of percussion moves away from o.

For the case of the upper cantilever blades for GEO 600 it may be easier to add mass 

at one end rather than the other to adjust the position of centre of percussion and this 

is an area of possible investigation for improving the isolation.
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Accuracy of the position of the centre of percussion

Another question that requires to be addressed is the following. How close to the 

position of the centre of percussion do you have to be to take advantage of the 

improved isolation? Figure (E.5) shows the simple transfer function o f the cantilever 

blade, outlined above, for the centre of percussion and 1 mm and 0.1 mm away from 

the centre o f percussion with respect to the point o f suspension.

This shows that to obtain the isolation behaviour o f a simple pendulum over a 

reasonable bandwidth, the attachment point has to be very close to the centre of 

percussion. Therefore careful tuning would have to be carried out to take full 

advantage o f the centre o f percussion.

Transmissibility/Frequency
50

~  0
!5
' ( / )
CO

£
COcco1—I—

-50

-100

10'1 1 0 °  10 1 1 0 2 1 0 3

Frequency (Hz)

Figure (E.5): - The graph o f  the transfer functions o f  (i) the centre o f  percussion 

(red) and (ii and Hi) 1 mm and 0.1 mm from  the centre o f  percussion (blue and 

green) with respect to the point o f  suspension.
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