
The Development of
Computer-Assisted Techniques for

the Classification of Nerve Spike Signals.

Mark Hamilton Browning

being a thesis submitted in fulfilment of the requirements for the degree of
Master of Science in the University of Glasgow, Faculty of Science,

Division of Environmental and Evolutionary Biology.

September 2000.

P ro Q u est N u m b er: 13818949

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818949

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

.i^OsgomT .

12.170- C 0 P7

Abstract.

Since the development of electronic amplification and signal recording facilities, there
has been considerable interest in separating and classifying nerve spike events. Initially
techniques were developed to identify spikes on the basis of amplitude but, as technology has
progressed, the main interest has been in the development of techniques for classifying nerve
spikes on the basis of shape. A range of strategies have been developed for performing the
separation, but these strategies have been (and possibly still are) limited by the capabilities of the
available hardware. These strategies and their implementations are described.

A novel method for performing automated spike shape classification is described.
Software has been written to implement this method, and it is applied to nerve spike data from
extracellular recordings of the superficial flexor nerve of the Norway lobster (Nephrops
norvegicus) and from the coxo-basal chordotonal organ and cuticular stress detector one of the
crayfish (Procambarus clarkii). The results are assessed by the use of contemporaneous
intracellular recordings and compared with the performance of a commercially available spike
classifier, voltage thresholding techniques and an implementation of a pre-existing technique for
classifying spikes.

The relative merits of different strategies are considered, as well as the fundamental
limitations of attempting to segregate spike data on the basis of shape alone. Technical issues
relating to the implementation of a software based spike classifier are also considered.

I

Contents.

1 Introduction...1
1.1 The nature of nerve spike recordings..1
1.2 Single-unit versus multi-unit recordings...2
1.3 Motivation for the separation of multi-unit recordings.. 2
1.4 Strategies for the separation of multi-unit recordings.. 3
1.5 Considerations in the separation of multi-unit recordings... 5
1.6 Testing strategies... 7
1.7 Complications of multi-unit separation methods... 8
1.8 The nature of classification errors... 11
1.9 The approach used here.. 11
2 Computational Materials and Methods... 13
2.1 Computer hardware and its recent development..13
2.1.1 The basis of digital computing... 13
2.2 Operating systems.. 14
2.2.1 MS-DOS..15
2.2.2 Microsoft Windows as an operating environment... 16
2.3 Programming languages and other tools...17
2.3.1 The use of C ... 18
2.3.2 C development tools and their recent history...19
2.3.3 DOS extenders and other resources.. 20
2.4 Program segmentation...21
2.5 Program architecture...22
2.5.1 Structured design... 23
2.5.2 Object-oriented design.. 24
2.5.3 The relative merits of hierarchical and object oriented techniques.. 24
2.6 Sequential input and event input..25
2.7 General considerations in software development.. 26
2.7.1 The trade-offs...27
2.7.2 The testing and debugging of software...28
2.8 The process of generating a functioning program.. 29
2.8.1 Compiling under Microsoft C version 6 .. 29
2.8.2 Compiling under Borland C + + ..30
2.8.3 A few definitions... 31
2.9 The materials available... 31
2.9.1 Additional development tools and libraries..31
2.9.2 Signal capture and analysis facilities...31
2.9.3 Calculation aides used...32
2.9.4 The computer hardware available... 32
2.9.5 The use of the systems available... 32
3 Biological Materials and Methods...34
3.1 The experimental setup... 34
3.2 The technology of signal capture...35
3.2.1 The sampling process..35
3.2.2 Waveform representation and data compression...36
3.2.3 The signal capture facilities available... 37
3.2.4 Alternative matching software... 37

II

3.3 The problem expressed in terms of nerve spikes.. 38
3.4 The matching methods used... 39
3.4.1 The variable envelope template method..39
3.4.2 The minimum merit distance method..40
3.5 The process of creating a spike database..41
3.6 The implementation of the classification methods...42
3.6.1 The signal analysis program described... 43
3.6.2 The implementation of the match methods...43
3.6.3 The variable envelope template method in detail.. 43
3.6.4 The minimum merit distance method in detail.. 44
3.6.5 Data flow and operation of the matching kernel... 45
3.7 Validation..46
3.7.1 Application to comparative data.. 47
3.7.2 Application to FI censored data.. 47
3.7.3 Application to tagged data from the crayfish cuticular stress detector..47
3.7.4 Application to tagged data from the crayfish coxo-basal chordotonal organ................................. 48
3.7.5 Sensitivity testing... 48
3.7.6 Application to synthetic data.. 49
3.8 Design and implementation issues... 50
3.8.1 The design of the signal viewer... 50
3.8.2 The development facilities initially available... 51
3.8.3 Additional development facilities...52
4 Results... 53
4.1 The test data available... 53
4.2 Template sensitivity analysis.. 53
4.3 Comparative analysis of spike data... 54
4.4 Application to FI censored data.. 54
4.5.1 Application to tagged data from the crayfish cuticular stress detector..56
4.5.2 Application to tagged data from the crayfish coxo-basal chordotonal organ................................. 57
4.6 Application to synthetic data.. 59
5 Discussion.. 60
5.1 Event identification methods compared.. 60
5.1.1 Identification of events using neural networks.. 61
5.1.2 Comparison of template and voltage threshold techniques.. 64
5.1.3 Comparison of the techniques used with other template techniques...66
5.1.4 Comparison of the variable envelope and merit distance techniques... 68
5.2 The effectiveness of the software.. 70
5.3 Further development of the software.. 73
5.4 Summary of main conclusions... 76
References.. 77
Appendix A .. 83

III

List of Tables

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Variable envelope template and MMD results for FI and F2.

Results of template searches for FI and F2 waveforms before and after
the cutting of the ventral nerve cord posterior to the ganglion from
which the third root originated.

Results of template searches of tagged data from the crayfish coxo-
basal chordotonal organ.

Results of using Spike2 to generate templates and search the entire set
of tagged data from the crayfish coxo-basal chordotonal organ.

Results of MMD (minimum merit distance) template searches for FI,
F2 and F3 waveforms on synthetic spike overlap data.

IV

List of Figures

Figure 3.1 Diagrammatic representation of a dorsal view of the ventral nerve cord
and superficial flexor muscles of a Norway lobster.

Figure 3.2 Production of event markers by single window discrimination
performed using CED's Spike2 software.

Figure 3.3 Sampling frequency, linear interpolation and oversampling.

Figure 3.4 A typical spike overlap event, in this case probably between a FI and a
F2 spike.

Figure 3.5 Natural variation of the amplitude of spikes during a recording of the
Nephrops system.

Figure 3.6 Camera lucida drawing of a cobalt backfill of one superficial flexor
root.

Figure 3.7 The definition and operation of a variable envelope template.

Figure 3.8 Screenshots of the template generation and result view modules.

Figure 3.9 The variable envelope template matching process in a diagrammatic
form.

Figure 3.10 Flow diagram of the principle stages the user would pass through in the
course of a typical analysis session for either template comparison
mechanism.

Figure 3.11 Diagram showing the basic operation of the minimum merit distance
comparison method.

Figure 3.12 Flow diagram showing the stages of the minimum merit distance
calculation in detail.

Figure 3.13 Flow diagram showing an overview of the operation of the minimum
merit distance.

Figure 3.14 Synthetic waveforms used in validation testing.

Figure 4.1 Single channel recording of the activity on the third root of the
superficial flexor nerve.

Figure 4.2 Results of sensitivity testing of the variable envelope template.

Figure 4.3 Representative FI and F2 spike events from the experiment in which
the ventral nerve cord was cut to sever the FI neuron.

Figure 4.4 The effect of cutting the ventral nerve cord on the activity of the
superficial flexor nerve.

V

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

A representative segment of the tagged data from the cuticular stress
detector, showing various possible outcomes for the template match.

A representative segment of the tagged data from the coxo-basal
chordotonal organ, showing various possible outcomes for the template
match.

A representative segment of the tagged data from the coxo-basal
chordotonal organ, showing the results of template classification using
Spike2.

The effect of increasing background noise on the reliability of the
MMD template method when applied to single spike synthetic data.

The matching success of the MMD template method when applied to
spikes intermediate in shape between FI and F2.

VI

Acknowledgements.

I wish to thank Maria Denheen, Cornelia Leibrock and Daniel Cattaert for access to data
gathered by them and for advice on matters relating to that data. I also wish to thank John
Riddell and David Halliday for providing access to equipment.

I particularly wish to thank my supervisor, Jon Barnes, and also Max Huxham without
whose advice and general encouragement this thesis would never have reached a
successful conclusion.

Finally, I would like to thank everyone who supported and encouraged me during the
course of this work.

VII

Author's Declaration.

I hereby affirm that the thesis entitled "The Development of Computer-Assisted
Techniques for the Classification of Nerve Spike Signals" represents, except where a note
is made to the contrary, work carried out by myself. The text was composed by myself.

Mark Hamilton Browning

September, 2000.

VIII

1 Introduction.

1.1 The nature of nerve spike recordings.

A single neuron conveys information in the form of an all or nothing electrical

pulse. However, there is a fundamental difference between this and the digital

information transported along a fibre-optic cable. This is obvious enough to a biologist,

but the concept of digital communication is fast becoming so culturally ingrained that the

idea that biological systems differ from electronic ones, and that this difference is

important to the operation of the systems concerned may soon seem strange. In essence

then, an electronic system uses sequences of pulses to code information. Over short

distances these are square-wave pulses, but over longer distances square-waves tend to

spread out and merge due to the differing velocities of their frequency components. The

use of soliton waveforms as the binary pulses in digital communication lines is now

becoming accepted since these do not degrade with the same rapidity (Hasegawa and

Kodama, 1981). Also, long distance digital communication lines have relays at regular

intervals to prevent unacceptable levels of signal decay over these distances.

Nerve axons correspondingly transfer information in what can be considered to

be binary pulses (nerve spikes). However, that is where the similarity ends. These pulses

are discrete, the time between pulses is irregular and, even though the distances are short

by engineering standards, the membrane properties ensure the signal is constantly

returned to its original shape - thus sidestepping the engineering issues of separating a

degraded signal from the background noise.

The key point is that the bulk of signal processing research is geared to

engineering and physical applications and not to the understanding of biological signals.

The scientific culture which is therefore applied to the development of spike signal

analysis methods is thus largely foreign to the biologist studying the physiological

importance of these waveforms. This has the obvious potential to lead to fundamental

problems when applying new methodology in this area.

1

1.2 Single-unit versus multi-unit recordings.

A nerve spike activity recording can be effected either by inserting an electrode

into a neuron (an intracellular recording), resulting in a record containing of necessity

only that neuron’s activity (that is a single-unit recording), or by placing an electrode in

close proximity to several neurons (an extracellular recording) - resulting in a multi-unit

recording. Other methods may also be applied, such as the use of voltage sensitive dyes

to measure neuron activity optically (Yamada et al., 1992). In practical terms the only

problem in analysing (as opposed to recording) a single-unit record is the separation of

the spike signal from the background noise. As well as being easier to obtain, multi-unit

records have the enormous advantage of containing information about the activity of

anything from a few neurons (D'Hollander and Orban, 1979) to dozens if not hundreds

of neurons (Abeles and Goldstein, 1977; Jansen and Maat, 1992). However, the use of

this type of recording leaves the problem of how to separate the resultant activity

correctly, as well as the disadvantages of not seeing synaptic potentials or being able to

identify cells anatomically by the use of (say) Lucifer yellow.

1.3 Motivation for the separation of multi-unit recordings.

Before considering how separation of multi-unit recordings may be achieved, it is

worth considering in greater detail why such a separation may be useful, or more

accurately why it should be attempted for recordings in which it is a non-trivial task. To

consider specifically the system used in this study (described in detail in section 3.1),

previous studies (Harris-Warwick and Kravitz, 1984) have not been able to distinguish

reliably between the activity of the FI and F2 tonic motor neurons or the F3 and F4

tonic-phasic motor neurons of the third root of the superficial flexor nerve of the

Norway lobster (Nephrops norvegicus), and related systems have exhibited

corresponding problems (Sokolove and Tatton, 1975). However studies of the effect of

neuromodulators such as serotonin or octopamine on the motor output patterns in this

and related systems require the ability to perform these separations reliably, as do

2

studies which aim to determine neuronal coupling (Tatton and Sokolove, 1975;

Denheen, 1992) by cross-correlation of the activity of separate neurons.

It may initially seem obvious that it is worthwhile to separate a multi-unit record

- particularly when the alternative to one extracellular electrode is the use of two or three

intracellular electrodes. However, the effort required to effect the separation and the

general applicability of hardware or software developed for the purpose must be set

against the effort saved by simplifying the experimental procedure. In this context it

must be noted that no worthwhile experiment requires so much effort or takes such great

resources as to be unrepeatable. Some preparations obviously work better than others.

However, unlike certain areas of physics or astronomy, progress is not based on data

derived from experiments which are unique. On the contrary, if an experimental result

cannot be replicated then the result must be viewed with considerable suspicion. Either

the quantity of data to be analysed must be significant or the results must be

unobtainable by other means in order to justify the effort involved.

1.4 Strategies for the separation of multi-unit recordings.

The nature of the task has been discussed by Glaser and Ruchkin (1976) and the

range of approaches has been reviewed by Schmidt (1984a; 1984b). It is instructive to

consider the pattern which emerges from this. Over the last forty years there have been

various attempts, both hardware and software based, to separate multi-unit records using

threshold detectors (MacNichol and Jacobs, 1955; Littauer and Walcott, 1959; Hermann

et al. , 1962; Landolt and Milliken, 1970), single window discriminators (Hermann et

al. , 1962; Bradley et al. , 1967; Freeman, 1971; Bak and Schmidt, 1977; Millar, 1983),

multiple window discriminators (Simon, 1965; Schmidt, 1971), clustering of reduced

(Dinning and Sanderson, 1981; Worgotter et al., 1986; Salganicoff et al., 1986; Kreiter

et al., 1989) or non-reduced (Gerstein and Clark, 1964; Jansen, 1990; Marion-Poll and

Tobin, 1991; Bergman and DeLong, 1992; Jansen and Maat, 1992) feature waveforms,

contour fitting algorithms (Kent, 1971; Akker et al., 1982), Fourier analysis (Bessou

and Perl, 1969), principal component analysis (Abeles and Goldstein, 1977; Eggermont

3

et al., 1983), curve fitting (Remmel, 1983) and various strategies considering timing of

peak or peak-to-peak amplitudes (O'Connell et al., 1973; Mishelevich, 1970; McCann,

1973). Multiple electrodes have been used to provide conduction velocity information

(Schmidt and Stromberg, 1969; Heetderks and Williams, 1975; Roberts and Hartline,

1975; Kanz et al., 1978) and double electrodes (Camp and Pinsker, 1979; McNaughton

et al., 1983) to provide two recordings with slightly different electrode positions.

Most of these systems have been on-line (Simon, 1965; Mishelevich, 1970;

Schmidt, 1971; D'Hollander and Orban, 1979; Dinning and Sanderson, 1981; Cohen

and Landsberg, 1983; Worgotter et al., 1986; Salganicoff et al., 1988; Bergman and

DeLong, 1992), although some of the more technically ambitious have been off-line

(McCann, 1973; Roberts and Hartline, 1975; Abeles and Goldstein, 1977; Camp and

Pinsker, 1979; Jansen, 1990; Jansen and Maat, 1992). Some have relied partially or

exclusively on hardware for the separation (Schmidt, 1971; Bak and Schmidt, 1977;

Cohen and Landsberg, 1983; Millar, 1983; Worgotter et al., 1986; Kreiter et al., 1989),

while others have been implemented almost entirely in software (Simon, 1965; McCann,

1973; Roberts and Hartline, 1975; Camp and Pinsker, 1979; D'Hollander and Orban,

1979; Studer et al., 1984; Salganicoff et al., 1988; Jansen, 1990; Marion-Poll and

Tobin, 1991; Jansen and Maat, 1992; Bergman and DeLong, 1992; Yamada et al.,

1992), although the extent to which a system that requires a dedicated mini-computer

(McCann, 1973; Camp and Pinsker, 1979; D'Hollander and Orban, 1979) can be said to

be hardware independent is perhaps debatable. There has been a steady growth in the

processing power required to perform the separation (Schmidt, 1971; D'Hollander and

Orban, 1979; Kreiter et al., 1989), and this has been more or less in line with the most

powerful facilities reasonably available at any particular time. Systems have been

challenged with synthesised waveforms, automatically selected events, and live

recordings. Many systems rely on an initial "training" phase for the definition of events

of interest. This training may be performed on the data to be classified (Millechia and

McIntyre, 1978; Jansen and Maat, 1992), on a specific training segment (Salganicoff et

al., 1988; D'Hollander and Orban, 1979) or on manually selected events (Kent, 1971;

Jansen, 1990). A number of investigators have made broad claims as to the utility and

applicability of the systems which they have devised (Kanz et a l., 1978; Worgotter et

al., 1986; Jansen and Maat, 1992). However, with a few exceptions (notably threshold

detectors and single window discriminators), there is little evidence in the literature to

suggest that these systems, and sometimes even the principles underlying them, have

been used extensively except by their originators. In conclusion therefore, the literature

pertaining to this problem indicates that the available computer hardware has been, and

perhaps remains, a major limiting factor. Also some systems which have been

developed, have become unusable because the computer hardware for which they were

developed has become obsolete.

1.5 Considerations in the separation of multi-unit recordings.

Having considered the strategies underlying the attempts to separate multi-unit

recordings, it is now appropriate to consider the concerns and difficulties experienced by

various investigators in the pursuit of these goals.

The first and most fundamental consideration is the signal to noise (S/N) ratio of

the recording. This of course depends on the conduct of the experiment as well as the

performance of the analog to digital (A/D) converter. Any consideration of the

separation of signals from background noise, or the analysis of badly degraded signals is

outwith the scope of the present study, and as such will not be considered further.

The next important consideration is the number of datapoints required to

represent the spike waveform accurately. Obviously, more datapoints result in a more

accurate waveform but this is correspondingly more expensive both in terms of the data

storage and processing requirements. Fortunately an upper limit can be derived for any

particular type of impulsive waveform data, namely twice the bandwidth (Stremler

1990). The bandwidth is defined by the highest frequency component of the waveform,

which is obtained from the Fourier transform. Abeles and Goldstein (1977) point out

that the maximum bandwidth of a nerve spike is around 10kHz, and consequently 20

datapoints are required per millisecond. Anything less than this will result in a loss of

meaningful information about the spike shape. However it must also be considered that

this estimate is for the representation of a waveform in terms of its component

frequencies. In other words, the shape of the waveform can be accurately calculated

from the sample values but this data will not in general contain the maxima or minima of

the waveform since these will usually lie between sample points. This becomes an issue

because much software (including the Spike2 program produced by Cambridge

Electronic Design Ltd. (CED)) uses the simplifying assumption that the values between

two datapoints are linear combinations of the datapoint values, hence cropping the peaks

and troughs of a waveform sampled at only twice the bandwidth.

Having established an adequate sampling regime and captured the data, it is next

necessary to separate the spike waveforms from the background. This is most commonly

achieved by selecting a suitable threshold voltage (MacNichol and Jacobs, 1955;

Hermann et al., 1962; Landolt and Miliken, 1970; Millar 1983) and defining a spike in

terms of the waveform contained in a time interval around any crossing of the threshold

(Schmidt, 1971; Bak and Schmidt, 1977; Abeles and Goldstein, 1977; Kreiter et al.,

1989; Jansen, 1990; Jansen and Maat, 1992; Bergman and DeLong, 1992).

At this point strategies diverge. On the one hand are attempts to classify spikes as

they are sampled (the on-line approach). This must of course be effected in real time,

and leads to the possibility of software based systems suffering from a "dead" period

after each spike, hence encouraging interest in hardware based spike sorters. On the

other hand, off-line systems make no attempt to operate in real time, and hence can

employ more sophisticated identification strategies which may not even operate on the

data in its original time sequence. Investigators following on-line strategies find that

speed is of crucial importance, while those employing off-line strategies sacrifice

immediate answers in favour of more manageable hardware requirements.

There have been major advances in the capabilities of computer hardware

available since the early 1960s, and this is reflected in the complexity of the software

applied to spike classification. In 1970, Mishelevich described a system running on a

Spear Micro-LINC 300 in which the entire computer had the equivalent of 12 kilobytes

(KB) of random access memory (RAM), of which less than 1.5 KB was required to load

the whole program. Not surprisingly, the software was correspondingly simple. At the

6

opposite extreme is the off-line system described by McCann (1973) in which a suite of

programs offering multiple forms of analysis was written for an IBM 360/44 mainframe

with 128 KB of RAM. This used a GUI (graphical user interface) and was controlled by

light pen. For its time the program was an impressive achievement, and even today it

would be a very respectable system. However it would have taken a large research

project to justify using such a (then) powerful computer (O'Connell et a l., 1973). On a

more realistic scale are systems such as that described by D'Hollander and Orban (1979)

using a PDP-11/40 with 28 KB of RAM for on-line classification using a template

method. Software based systems described in the late 1980s and early 1990s are

typically IBM PC based (Jansen, 1990; Marion-Poll and Tobin, 1991; Jansen and Maat,

1992; Bergman and DeLong, 1992) but are not invariably so (Salganicoff et a l , 1988;

Yamada eta l., 1992).

The complexity of hardware based systems has correspondingly increased from

the simple electronic circuits described by MacNichol and Jacobs (1955), Littauer and

Walcott (1959), Landolt and Milliken (1970), Schmidt (1971) or Bak and Schmidt

(1977) through simple microprocessor based systems such as that described by Cohen

and Landsberg (1983) to the system described by Kreiter et a l , (1989) which

incorporates an MC68000 central processor unit (CPU) and 128 KB of RAM, all of

which is controlled by an RS232 connection to an IBM PC. This level of hardware

complexity approaches that of a PC, to the degree that if developed further such a

system would virtually be a full fledged computer. On different lines is the work

described by Worgotter et a l , (1986) in which adjustable analog delay lines are used to

effect the matching process.

1.6 Testing strategies.

Any hardware or software for separating multi-unit recordings must be tested,

and a range of testing strategies have been adopted by different investigators. Data can

be synthesised with varying degrees of realism. At the simpler end of the scale is the

sine wave approximation used by Mishelevich (1970) to which noise was added by

7

Worgotter et al., (1986), and the triangular waveform with added noise used by Cohen

and Landsberg (1983). More complex is the method described by Bergman and DeLong

(1992) in which two principal component waveforms were defined and combined

according to user specified ratio ranges, with added band-limited noise. Synthetic data

has the great advantage that the correct match is known in advance, giving an

opportunity for the system to be tested objectively. Real data does not have this

advantage. However it does fully reflect the natural variability which any worthwhile

system must be capable of handling. All of the systems referred to have been tested

using real data. Some investigators are keen to compare their systems with other

approaches. However, worthwhile comparisons are complicated by the diversity of data

sources and qualities (Schmidt, 1984b). Little serious comparison of techniques has been

effected, an exception being the work of Wheeler and Heetderks quoted by Schmidt

(1984b).

1.7 Complications of multi-unit separation methods.

It is difficult enough to separate spike waveforms at the best of times. However,

there are two further problems which have to be considered. The first of these is

waveform overlap. A multi-unit recording contains the activity of a number of neurons,

and there is absolutely nothing to prevent two (or more) of these from being active at

substantially the same time. The result is the existence of composite events representing

the sum of the activity at that instant. It is important to realise that these events are in

general the outcome of non-aligned spikes, and therefore do not themselves have

characteristic waveforms. This can result in problems both in the training or template

generation phase and in the main data analysis phase.

In the training phase, composite waveforms can be registered as rare but distinct

spike classes, resulting in a subsequent waste of processing capacity attempting to

identify what is in fact a unique event. This has been overcome in a number of ways.

Operator-directed training is one approach (Jansen, 1990). The forming of templates on

clusters with more than a specified number of occurrences is another (Jansen and Maat,

8

1992). In many studies training is effected by using a clustering technique (D'Hollander

and Orban, 1979; Dinning and Sanderson, 1981; Salganicoff et al., 1988; Kreiter et al.,

1989). However, it is often not clear how (or even if) overlapping events are handled by

these systems. Clearly overlapping events give rise to cluster outliers which if added to

cluster based average waveforms will have a minor (but potentially significant) effect on

the template, while outliers which form their own clusters (and hence templates) will

slow the analysis process.

In the analysis phase, processing time is wasted by searching for matches to

overlap events. This is potentially significant but is by no means the major concern. The

failure to identity the spikes causing an overlap results (obviously) in a loss of

information. In an on-line system, there will be insufficient spare capacity to separate

overlap events - judging by the specifications of the hardware typically used in such

systems. This either relegates overlap processing to being an off-line task (Salganicoff et

al., 1988) conflicting with the very idea of on-line processing, or results in such

information as could be extracted from overlaps beiing discarded. This loss of

information is potentially significant, there is after all no point in performing accurate

spike classifications in order to generate crude statistical summaries of the activity. The

analysis of burst activity or neuronal coupling could be seriously affected by the removal

of significant numbers of events, particularly if the overlap is non-random in a particular

system. The actual frequency of overlap events also affects; how they should be resolved.

As rare occurrences it may be appropriate to discard them as not being worth the effort

of separation, but if they are common or if the proposed analysis of activity is sensitive

to data censoring then strategies must be adopted to resolve as many occurrences as

possible.

Various investigators have described spike classification systems in which they

omit details of the handling of spike overlap situations, or alternately make only cursory

reference to the problem (Millechia and McIntyre, 1978; D'Hollander and Orban, 1979;

Dinning and Sanderson, 1981; Worgotter et al., 1986; Salganicoff et al., 1988; Kreiter

et al., 1989; Jansen, 1990; Bergman and DeLong, 1992; Jansen and Maat, 1992). This

is not to suggest that all their systems fail to handle overlaps. Indeed, some like the

9

neural net systems (Jansen, 1990; Jansen and Maat, 1992) could be expected to perform

well in such situations. Some investigators have considered how to extend their

technique to cope with overlaps (Abeles and Goldstein, 1977), and the extent to which

overlap can be tolerated (Mishelevich, 1970). However, no-one has described a single

electrode system in which the overlap problem is systematically tackled - other than by

the vigilance of a trained operator (Prochazka et al., 1972; Prochazka and Kornhuber,

1973; D'Hollander and Orban, 1979).

However, work by Roberts and Hartline (1975) which has been further refined

by Oguztoreli and Stein (1977), Andreassen et al., (1979), Roberts (1979) and Stein et

al., (1979) presents a multielectrode solution to the overlap problem. Their technique

essentially depends on the differences in conduction velocities to provide a non

overlapping event pair at one of the recording electrodes. According to the data

presented by Roberts and Hartline (1975) and Andreassen et al., (1979), their approach

is highly effective at classifying spike events accurately. Their method, although one of

the most theoretically robust and practically successful of those reported, has the obvious

practical limitation of requiring multiple electrodes evenly spaced along the nerve fibre -

which is clearly not a practical arrangement in many studies (McNaughton et a l., 1983).

The second problem of waveform separation is the effect of waveform drift. This

can itself take two forms. In the first, the baseline voltage changes either periodically or

randomly over an extended time. This has the obvious effect of nullifying any separation

method based on series of window discriminators which does not use a baseline

correction (Bergman and DeLong, 1992), but can readily be overcome by differentiating

the waveform numerically and using the derivative waveform in the matching process

(Marion-Poll and Tobin, 1991). The second and more serious problem is that of

amplitude variation, both over the course of a particular experiment and during a single

burst (Bergman and DeLong, 1992). Most investigators who have considered this

problem have added newly matched spikes to the templates, hence any slow bias will be

accommodated over the time of its manifestation (Cohen and Landsberg, 1983; Struder

et al., 1984). On the other hand, the problem has also been resolved by using templates

with an error margin of up to six standard deviations (Bergman and DeLong, 1992).

10

1.8 The nature of classification errors.

Several investigators have discussed the types of classification error which can be

made (Sarna et al., 1988; Bergman and DeLong, 1992). In short, there are four potential

errors which can be described: a false positive in which noise is identified as a spike, a

false negative in which a spike is identified as noise, a false match in which a spike is

incorrectly classified, and a double match in which a spike is matched to two categories.

Within each spike class the false match errors can be further divided into inclusion

errors in which a spike of some other class is sorted into the specified class, and

exclusion errors in which a spike of the specified class is assigned to some other class.

Of these various possible errors the most important and difficult to identify is

undoubtedly the false match, and it is here that considerations of the classification

reliability come to be of importance. For some purposes there may require to be a high

degree of confidence that any spike identified as belonging to a particular class should in

fact be of that class. This implies that the template (or other method) should be set up to

minimise the inclusion errors. For other purposes it may be sufficient to identify

possible members of a particular class, resulting in a minimisation of exclusion errors

(presumably without including everything), or equalise the rates of inclusion and

exclusion errors to obtain general activity over a period.

One implication of this is that by permitting only one attempt at classification an

on-line system necessarily lacks the flexibility of an off-line system to re-analyse the data

set while adjusting the permitted rates of inclusion and exclusion error. To assume that

data (of any description) can necessarily be analysed correctly at the first attempt is to

endow the process of analysis with mystical properties. The involvement of computers

certainly does not improve this situation, and the most prudent course is always to allow

for the possibility of re-analysis.

1.9 The approach used here.

The basic approach used is an off-line system, with manual template creation (the

11

learning phase) and two quite distinct matching methods. The first is a variation of a

contour fitting approach in which the templates are defined on characteristic parts of the

waveform and then linked together after the main analysis. The second is a departure

from the methods described in the literature, in that the distance comparison is not

performed in multi-dimensional space or a transformed multi-dimensional space. Rather

it involves a measure of the similarity o f information content of the spike and the

template. The methods used also attempt to address the problem of spike overlap, in the

first by looking for sets of characteristic features rather than complete waveforms, and in

the second by the information comparison itself.

H2

2 Computational Materials and Methods.

2.1 Computer hardware and its recent development.

Computer hardware has developed at a breathtaking rate over its short history,

and all classes of operating systems and application software have moved apace. The

design, construction and testing of a piece of software are heavily influenced both by the

theoretical state-of-the-art and by the tools and operating systems available at the time.

In particular, it must be realised that when this project was begun in 1990 the first

practically useable version of the Microsoft Windows operating system - version 3.0 -

had not been released. It is therefore difficult simply to refer to previous work as a basis

for describing the methods used here. An expanded description of relevant technical

issues is therefore included to provide an understanding of the technology involved, the

rapidity of its development and how this relates to this project.

2.1.1 The basis of digital computing.

Many of the early computers were analog machines, that is they represented

numbers by voltages which could assume any value within a given range. This approach

was superseded by the digital representation of numbers as sets of binary on/off signals

which are grouped together into bytes (most commonly containing eight bits) and which

consequently represent 2^ or 256 values. Assemblies of bytes give rise to standard data

types such as characters, integers and floating point numbers, as well as higher order

data structures.

Computer hardware and software has developed in parallel, each feeding the

further development of the other. However, a number of distinct types of hardware have

emerged - supercomputers, mainframes, high performance workstations and desktop

computers (specifically the IBM personal computer (PC) and the Apple Macintosh). At

the commencement of this project a typical desktop PC of the type used here had an Intel

286 CPU, 2 megabytes (MB) of RAM and 40 MB of disk capacity. By the time the main

13

part of the work described here was complete the CPU speed and storage capacity of

other components of a similar machine had increased by a factor of about 30.

The single most significant feature of the PC is its use of a segmented memory

architecture, a legacy of the 8 bit memory addressing schemes of the early predecessors

of the PC. However it has important implications for the design and implementation of

software, a point which will be returned to later. Originally the PC had only one

processor mode - real mode - which permitted software to access up to 1 MB of RAM

via a pointer to a physical memory location, and is the mode used by MS-DOS. With the

Intel 386 came 32 bit memory addressing, permitting the use of up to 4 gigabytes (GB)

of RAM and another processor mode - virtual 8086 mode (which is the processor mode

used by Microsoft Windows).

2.2 Operating systems.

An operating system is the link between the application software and the

computer hardware, and as such has developed in parallel with the hardware. It provides

a method by which software can operate without having to consider irrelevant details

such as how data is stored on a disk, and how to retrieve that data. It is also responsible

for loading and running the application software, managing system resources and

providing an application program interface (API).

An operating system in its simplest form will allow a single user to operate a

single piece of software (or task) at any/ one time. More complex systems will allow

multiple users to share hardware (as in mainframes) and may allow multiple tasks to be

run concurrently. This last may use either non-preemptive multitasking (as in Microsoft

Windows) or preemptive multitasking (as in UNIX or IBM OS/2). Some systems permit

multi-threading, that is the capacity for a single program to operate several separate (but

not totally independent) internal processes concurrently. As if this was not enough

complexity, there is a specific problem w/ith some operating systems (such as MS-DOS)

in which some parts of the system requiire access to other parts in a fashion which

precludes any other operation making tthe same demand at the same time. This is

14

referred to as non-reentrance and it is a particularly significant problem with MS-DOS,

even though MS-DOS is a single-user, single-tasking system.

Most operating systems take the approach of forcing a degree of insulation

between the application software and the hardware, a process known as virtualisation.

Taken to its conclusion virtualisation provides a mechanism for insulating separate tasks

from each other's faults. Systems which take this approach also must cope with the

concept that certain pieces of software, notably the operating system kernel itself but

also device drivers, must have a degree of privileged access to the hardware which is

denied to application software.

2.2.1 MS-DOS.

When PCs were first developed, existing operating systems such as UNIX placed

too great a demand on the hardware to be used as the operating system. Thus when IBM

introduced the PC in 1981 it used the MS-DOS operating system developed by Microsoft

Corporation. This owed much to the then common operating system CP/M and also

borrowed heavily from UNIX. However it was a single-user, single-tasking operating

system, and it has many internal features which limit its potential (Dettmann, 1989).

At the commencement of this project DOS was by far the most commonly used

operating system in the world, being used by almost all IBM PCs and it could not have

achieved such success without its simplicity - it is quick and easy to develop a small

DOS application, relatively little expert knowledge is required to run the development

tools or work with the API, and the system is highly error tolerant (perhaps too much

so).

On the other hand, the DOS API lacks anything but the most rudimentary of user

interface capabilities (and little support for interface standards). The precise error

tolerance which makes a small program easy to construct makes the task of debugging a

large program far harder (since the errors have a cumulative effect). Worse still, MS-

DOS only supports the real mode of the Intel processors on which all PCs are based, and

this combines with the location of the system ROM at the memory address 0xA000:0000

15

to limit the available memory to 640 KB - which must be shared by DOS, device

drivers, application software and data.

2.2.2 Microsoft Windows as an operating environment.

Technically Microsoft Windows (or Windows for short) was, at least until version

4 (also known as Windows 95), an operating environment rather than an operating

system. The difference is that it requires DOS in order to operate. This may seem to be

splitting hairs, but Windows depends for many of its basic operations on the capabilities

of DOS, and so must either handle the limitations of DOS or pass these limitations on to

Windows application software.

Windows has two basic components, a GUI and a DOS extender. The GUI

provides the user with a CUA compliant environment, and provides a large range of

useful API facilities. These include support for higher level interface objects such as

bitmaps, dialog boxes, menus, buttons and scroll bars along with the required support

for window management services and a standardised help facility. Early versions of

Windows (prior to version 3.0) were restricted by the 640 KB limit of DOS real mode

operation, but Windows 3.0 introduced two additional operating modes: standard and

386 enhanced, corresponding to the protect and virtual 8086 modes of the Intel CPUs.

This was achieved by including a DOS Protect Mode Interface (DPMI) DOS extender as

an integral part of Windows to provide all applications with access to up to 16 MB of

RAM, and incidentally providing access to hardware based memory access checking

facilities. Windows also provided a standard mechanism for allowing third party

hardware manufacturers (particularly of graphics adapters and printers) to interface their

products with all Windows applications. This sidesteps all the problems DOS has with

successfully supporting a wide range of hardware.

However, Windows has a number of drawbacks, some merely irritating but

others potentially very serious. It uses non-preemptive multitasking (Petzold, 1990), so

any processor intensive operations bring the entire system grinding to a halt. Worse, the

use of a single message queue and the sharing of resources mean that a malfunction in

16

one task can readily compromise system integrity (King, 1994). On top of this, certain

API functions either do not work as documented (by Microsoft) or differ sufficiently

from their documented modes of operation to appear to be unreliable. Overall, Windows

applications tend to require phenomenal amounts of computing resources (processor

speed, RAM, disk space, display capability) relative to their DOS cousins. However,

this is not comparing like with like. Windows applications tend to provide substantially

more functionality than their DOS based predecessors, and part of the rationale for

developing Windows applications is precisely the ability to access these resources.

2.3 Programming languages and other tools.

Programming languages have developed alongside the hardware and operating

systems, from the early plug board (Augarten, 1984) through to languages as diverse as

Smalltalk, Fortran and C. Each language also evolves as new requirements arise

(Metcalf, 1992) and due to commercial pressures.

Currently there are two distinct approaches to the generation of an executable

program. The first is to use an interpreter to take the text file containing the language

instructions (source code) and turn these into machine instructions at execution time.

This approach has one major drawbaick - the interpreter must process the source code

and keep track of what is happening as it happens, consequently the process is slow and

not amenable to efficiency savings. This is usually exacerbated by interpreters

performing elaborate error checking to avoid potential problems.

The second approach is to per form the translation into machine instructions and

then run the program. There are seveiral steps in this process. First a compiler operates

on each source file, undertaking a range of performance enhancing optimisations, or

alternately adding special checking anid debugging information. Once each file has been

compiled, all the resulting object files are passed to the linker which makes the

appropriate connections within and between the object files and with the relevant

libraries (collections of previously bumdled together object files). This approach actively

encourages the use of multiple source lfiles.

17

Systems such as Windows require an additional step following linking. Windows

makes great use of resources (items such as dialog boxes, bitmaps, menus or cursors)

and these are held in a separate resource file. This is passed to a resource compiler

(analogous to the language compiler), but rather than being hooked in by the linker, the

resource file and the executable file produced by the linker are passed to a binder (which

is in essence another type of linker).

The process of compiling and linking is usually more time consuming than

interpreting when a program is only going to be run once or twice, but it provides great

scope both for automated error checking and optimisation as well as removing the run

time time penalty inherent to interpreting. It therefore provides a more robust approach

to development and a better end result.

2.3.1 The use of C.

The language used for all the code developed in this project was C. C is a

compiled language (unlike Basic), with a wide range of development tools readily

available for the PC environment (unlike Fortran or Pascal). Syntactically its structure is

similar to the underlying machine operations, so C code compiles to produce

applications which run almost as fast as the hardware itself permits (unlike C + +) .

While the basic command set is extremely limited, it is intended to be extended by the

use of third party facilities - indeed the American National Standards Institution

specification for C (ANSI-C) insists on a substantial additional command set, and this

provides a natural route for the provision of additional facilities. In common with some

other languages C permits the definition of new data types, and also permits the

definition of data structures containing any combination of pre-defined data types.

However, there are some serious drawbacks with C. It is arguably the hardest high level

language to learn (with the obvious exception of C + +) , and the ANSI specification

provides only for a teletype user interface. Unless software is being developed for

Windows there is a very substantial requirement for user interface development. Also,

the very power and flexibility of C permit bad coding practices to result in extremely

18

unstable software which can potentially do great damage.

2.3.2 C development tools and their recent history.

The choice of programming language depends on suitable development tools

being available. As mentioned earlier, C offers a range of PC based development

systems. The available tools themselves have developed significantly over the course of

the project, and so it is necessary to review both the range available, and the

development of these in the relevant period.

In this period Microsoft distributed versions 5.1, 6 and 7 of their C compiler and

versions 1 and 1.5 of their Visual C + + compiler. Versions 5 and 6 provided a DOS

only compiler, linker, debugger and related support utilities. Source code editing was

undertaken via third party software, the integrated development environment (IDE)

added in version 6 being unworkable. Version 7 added C + + compiler support, and also

provided tools for developing Windows applications. Visual C + + version 1 was the

direct follow on to version 7, and provided a usable Windows based IDE and extensive

Windows debugging and resource editing facilities. The minimum hardware

requirements for version 6 were a PC with 640 KB of RAM and 5 MB of disk space for

a full installation (plus the requirements for the editor). Visual C + + 1 on the other hand

required at least a 386 based PC with at least 4 MB RAM and 65 MB of disk space.

In the same period Borland distributed both Borland C+ + and Turbo C + + (a

cut down version) versions 2, 3, 3.1, and 4. All versions of Borland C+ + provide a

compiler, linker, a consistent range of debuggers, many support utilities, an IDE (DOS

based in versions 2, 3, and 3.1, Windows based in version 4) and full support for the

production of Windows applications, including all the necessary debuggers and resource

editors. Unlike Microsoft C where every version is significantly different to use, the

Borland IDE and debugger have developed in a consistent manner. Version 4 requires a

minimum of a 386 with 4 MB of RAM and 75 MB of disk capacity.

Both of these systems have certain common features, specifically a move from

DOS based systems primarily intended for DOS development to Windows based systems

19

for Windows development, in line with the move towards Windows as the dominant

operating system for PCs. The IDEs for both systems also improved considerably over

the period in question, however there was a substantial increase in the specification of

hardware required to use either system. The precise versions used here will be described

more fully in section 2.8.

2.3.3 DOS extenders and other resources.

One of the benefits of compiled languages is the capacity to link in facilities

produced by (usually commercial) third parties. There are a whole range of libraries

available for C and class-libraries for C + + covering most common requirements from

graph plotting to database manipulation. Additionally, specialist libraries are available

relating to particular products.

One particular category of third party resource warranting specific attention is the

DOS extender. As previously discussed, DOS suffers from a limit of 640 KB on the

available memory. Early DOS software was sufficiently small, and worked with

sufficiently small data sets to fit comfortably into 640 KB. Later, overlaying techniques

permitted parts of the software to be loaded from disk as required. This reduced

program execution speed but was mostly a satisfactory compromise. However it was still

at the mercy of whatever overlay development support the compiler suppliers chose to

provide. Additionally, this only provides a solution for program code segments, data is

not provided for. One approach proposed by a consortium of Lotus, Intel and Microsoft

(Forney, 1989) was to provide hardware support in the Intel 386 for page mapped

expanded memory. This provided a 64 KB "page frame" in upper memory (i.e. in a free

space between memory addresses 0xA000:0000 and 0xFFFF:0000) into which four 16

KB pages could be mapped at any one time from the total pool of up to 32 MB of

expanded memory. As an alternate approach, the device driver HIMEM.SYS was

created to permit software to access high memory (i.e. above 1 MB) by copying 64 KB

blocks of memory into conventional memory. This process does not rely on hardware

support and is consequently significantly slower.

20

Neither access to expanded memory nor access to extended memory via

HIMEM.SYS is a particularly satisfactory approach - both methods require special

modifications within the source code. These approaches are particularly unsatisfactory

when coupled with the use of overlays, since this also places artificial constraints on the

structuring of the code. None of these approaches address the fundamental problem - the

limitations of real mode DOS.

There is however no constraint on the software changing the operating mode of

the processor (Forney, 1989), providing that it also traps and handles all the relevant

operating system functions. A number of commercially provided "DOS extenders" do

precisely this, all that is needed is to link with the replacement libraries and use a real

mode stub loader (see the next section) to load the DOS extender kernel and the

application software. Suddenly all the available memory in the PC is there to be used by

code or data, complete with all the hardware based protect mode memory checking

capabilities. No code modifications are required.

2.4 Program segmentation.

A brief description of how programs are laid out in PC memory is warranted

since details of this will be referred to later. As previously mentioned the PC uses a

segmented memory architecture, with each segment being up to 64 KB in size. DOS

provides a means (the segmented .EXE file) to create software spanning multiple 64 KB

segments. On startup a "stub loader" is invoked to load these segments into memory and

connect them correctly. These are the code segments.

There is also one default data segment which contains the global data area (or

"near heap") and the stack. The near heap uses an area of memory starting at the lowest

address in the data segment, while the stack starts at the highest address and uses

successively lower addresses as data is added to it. The proximity of these two elements,

and the lack of any insulation between them can be a significant source of problems -

mostly when the stack (used to store automatic variables and other function information)

overflows into the global data held in the near heap. The "far heap" is all the free

21

memory apart from the code segments and the data segment. It is available for allocation

in chunks of up to 64 KB.

Each program has a single unique entry point, that is the memory address of the

main (or in Windows the WinMain) function. The execution of the entire program starts

when main starts, and ends when main ends. However, main is free to call other

functions, each of which can in turn call yet other functions. Each function adds its

automatic (i.e. temporary) variables to the stack when it starts and removes them when it

ends. The stack thus expands and contracts depending on how many levels of function

are currently active and the number and size of variables used.

2.5 Program architecture.

At the level of individual commands, any program is simply a sequence of

instructions, and in the early days of computers, programs were sufficiently small that

this was an adequate model for the entire program. However it is naive to expect a

model appropriate to a few dozen or a few hundred lines of essentially linear code to be

effective in projects consisting of dozens of modules, each containing thousands of lines

of code with multiple potential execution paths.

At this level of complexity there is a specific requirement for high level program

design (McConnell, 1993). The quality of the resulting architecture determines in large

part the quality of the finished program. Poor coding can of course undermine the best

designed software, but good coding absolutely cannot replace good design. Furthermore,

design deficiencies detected during coding (or worse still during testing) are much harder

to remedy than those found during the design phase (McConnell, 1993).

Any program architecture must in the first instance address certain basic issues,

specifically (but not exclusively):

- how the modules are defined, what they do, and how they interact

- the capacity for change which is allowed

- the third party components available

- the necessary degree of fault tolerance

22

- the error handling strategy

- the required degree of overall robustness

- the hardware limitations.

Once the purpose of the program and the fundamental design considerations have

been established there are a host of detailed concerns of stylistic consistency such as

naming and calling conventions to be addressed. A consistent coding style increases code

readability and consequentially reduces coding errors. Eventually a design will have split

the program into subsystems, which will in turn be split into modules, these will then be

split into functions. Usually the details of how the functions operate are left to the actual

implementation.

2.5.1 Structured design.

There are two basic approaches to the actual design. The first is the structured

design approach proposed in the early 1970s (McConnell, 1993). Structured design is

usually accomplished either using a top-down or a bottom-up approach or some

combination of these. In the top-down approach the most general level of organisation is

considered first, it is defined, formally described, and verified. Each part of this is then

defined, described and verified in turn, and the process continues until the stage is

reached that implementing the subcomponents as individual functions is appropriate. The

bottom-up approach is a composition strategy based on describing individual relevant

functions and synthesising these into successively more general levels of description

until the top level is reached. This is more than likely to be a prelude to further top-

down refinement.

The advantages of structured design are that it provides a means for decomposing

the problem into manageable pieces while deferring all detailed considerations of how to

implement the individual components. However, it does assume that whatever problem

is being addressed is actually capable of being decomposed into neat, non-overlapping

pieces and it suggests that the data flow and execution paths are tree-like. These

assumptions are often only partially true.

23

2.5.2 Object-oriented design.

The second design strategy is object-oriented design (OOD). This approach is

characterised by the identification of real world and abstract objects which can then be

represented by program objects (McConnell, 1993). The principle underlying this is the

closer the program structure is to the real-world problem it aims to solve, the more

understandable it will be and the less likely that spurious interactions will occur. OOD is

thus a process of identifying objects and classes of objects, and identifying required

operations on object classes.

A number of concepts used here characterise OOD, but are not necessarily

restricted to object orientated programming (OOP) languages such as C + + , and central

to this is the idea of abstraction. Hierarchical systems perform abstraction at the level of

functions (for operations) and structures (for data), object-oriented systems however take

this to its logical conclusion with objects encapsulating both the data and the functions to

access and manipulate that data, with some or all of the data only being available to the

object functions. This is a rigorous implementation of the idea of information hiding,

and serves to permit the internal data organisation to be altered as needed without

disturbing any interaction with other objects. There is no inherent reason why functions

cannot be associated with their data in C provided a reasonable degree of discipline is

used in the coding process.

2.5.3 The relative merits of hierarchical and object oriented techniques.

No discussion of hierarchical and OOD techniques would be complete without a

consideration of the drawbacks of each. This needs to be done in the context of the

practical effects of these approaches, and in relation to the languages commonly used to

translate designs into operational code.

Hierarchical design (even when using abstraction and encapsulation techniques to

their limit) leaves much to the discipline of the programmer. It is easy to crosslink items,

and even when strict separation is observed, modification of one part of the system can

24

have repercussions for others. This type of problem is squarely addressed by OOP

languages such as C + + , however the use of these languages leads to somewhat less

obvious problems. First is excessive encapsulation and abstraction, where base classes

are used to derive operating classes to the extent that even libraries and API functions

are considered to be unavailable unless encapsulated into classes. Linked to this is the

problem caused by modern C + + compilers provide enormous sets of base classes

which, if used, require vast amounts of additional hardware resources. This arises in

part because the classes from which the application classes are derived are themselves

derived - perhaps many times over. Each layer adds bulk and reduces execution speed.

Overall there is a very real risk that exclusive use of OOP techniques will lead to a

fundamental lack of understanding of program operation and an inability to work outwith

the confines of derived classes.

2.6 Sequential input and event input.

DOS was designed to use the then current interaction metaphor - the so called

"glass teletype" - in which information is displayed line by line on a video screen,

commands are typed on the current line and the whole display scrolls up and off the

screen as more lines are added. The great advantage of this system is that it is

technically simple, but it forces the user to be relatively expert.

This form of interface lends itself to linear interactions, and is particularly useful

in such situations. However, for most purposes a more sophisticated interface is

required. In particular, much software operates by guiding the user through a maze of

hierarchical menus. This effect can be achieved by an extension of the linear interaction

model, with each menu supporting only a limited number of current options. In terms of

the underlying code, a hierarchy of decision making functions can quite satisfactorily

cope with this situation, and it is even possible to implement a limited GUI using this

approach. The problem is that code complexity increases as the number of available

choices increases, and full support for GUIs such as Windows is impossible to achieve.

A more recent approach is to consider each keystroke or mouse movement a

25

single event in a stream of events. Taken with any required supplementary information it

can be passed to the message handler for the appropriate window, dialog box, or other

on-screen gadget. The message handler then processes the message based on the current

state of the system and returns control to the message dispatching routine. This is an

intrinsically more complex process than handling linear input, however it is much more

flexible. Differing kinds of input can be handled, even events generated by the operating

system or other application software. This approach also parallells the development of

object-oriented techniques for designing the application software, and it is readily

apparent that such a messaging system could be implemented in an object-oriented

program. However, in terms of GUIs no current alternative to such a message handling

system has the required flexibility to respond to input in multiple windows.

Windows uses an event pushing mechanism to feed event handlers for each

window. It thus makes sense to use this mechanism rather than ignoring it in favour of a

sequential input mechanism. Additionally, Windows (up to version 3.1) uses cooperative

or non-preemptive multitasking, implemented by the message dispatching function

passing messages to each active task in turn. Thus each task has exclusive control of the

PC while the message handler is processing the message (Petzold, 1990), making use of

this mechanism all but essential.

2.7 General considerations in software development.

The primary concerns for any piece of software are: first, is the software stable

(i.e. does it run reliably) to the required degree? Without meeting this requirement, the

software is next to useless. Second, is the code maintainable (i.e. can modifications be

made later) to the necessary degree? In reality whatever the original specification and

however sophisticated and exhaustive the original requirement analysis was, changes

will inevitably be needed later. Third, is the correct operation of the software verifiable

to the required degree? The extent of the verification depends on the importance (and

immediacy) of the real world problem being addressed, particularly in safety critical

applications. Fourth, but most fundamentally, does the software solve the problem that it

26

is supposed to solve? If it does not then it is by definition a failure.

There are also several secondary considerations that cannot be ignored without,

at best, compromising the quality of the finished software. First, how fast is the

software? If the speed is inadequate on the proposed hardware then it does not matter

whether the solution is elegant (or whatever else). The software will not be usable.

Second, how clear is the source code? Clearly written code is more likely to be well

written, (McConnell, 1993) and it is certainly easier to maintain. Third, how

standardised is the software both internally and externally. Code which is written using

a variety of coding standards is not clear, and software which does not employ the

current metaphors for user interactions without good reason is less easily used. Worse

still is software in which different parts use different metaphors or require different

assumptions on the part of the user, and this extends even to ways of laying out

information on the display. In this respect a single bad standard can be better than two

good ones.

2.7.1 The trade-offs.

Any design has to balance the merits of a particular solution against the

drawbacks. In some instances, the advantages of a particular solution are compelling,

but more frequently some sort of reckoning must be made in terms of the fulfilment of

the underlying goals. This is not to suggest that fulfilling the software's basic

requirements is something to be traded against elegant design (although this is sometimes

done), rather how this is done is a legitimate, even necessary, consideration.

In software, the most common trade-off is against execution speed. The more

compact the code the faster it will run. The more highly customised functions that are

used the faster, but harder to write, debug and test the code becomes. Special knowledge

of object structures can allow a quick fixup for a special case. These, and similar

features enhance the speed of the program at the expense of stability, maintainability,

verifiability and testability.

However, speed is not the only currency in software design. Program stability

27

(i.e. the capacity of the program to continue running without error when stressed) is also

a common currency for trade-offs. Standardisation of software usually assists stability by

making the code easier to write, debug, test and maintain. Some external "standards",

particularly enhanced features of operating systems such as Windows may however

compromise stability. Among other things Windows encourages the use of dynamic link

libraries (DLLs) with the idea of making incremental upgrades possible. The result is

often confusion about which version of a particular DLL is correct for a particular

package, and may result in multiple copies of a DLL being required. Windows also

offers dynamic data exchange (DDE) and object linking and embedding (OLE)

mechanisms to permit supposedly "user friendly" standardised inter-task data exchange

facilities. These are good in principle, but are complex to implement and complexity

always implies potential stability problems, particularly when the ideas are not clearly

documented, or like DDE / OLE, when the basic specification of the facilities is

repeatedly revised.

2.7.2 The testing and debugging of software.

A bug can loosely be defined as any unexpected outcome of a particular input,

and it is important to realise that all software contains bugs, which manifest themselves

with differing frequencies (McConnell, 1993). Most bugs rapidly manifest under

ordinary testing, however a few will only appear after years of normal operation - and

can be correspondingly catastrophic (Neumann, 1995). Bugs in executable software are

of two general types: defects of logic and defects of implementation (McConnell, 1993),

syntax errors having already been detected by the compiler. Defects of implementation

themselves divide into boundary value defects and general case defects.

Consistent testing with boundary values and a range of other inputs will allow the

identification of many bugs, however a large proportion will require the use of a

symbolic debugger (a piece of software which takes the debugging information built into

the application executable and allows the programmer to step through the execution of

the application line by line, viewing the source as it is executed and allowing variables to

28

be inspected). The debuggers available will be described later, however it must be noted

that the debugger shares the memory space available for the application being debugged.

For DOS applications this is a highly significant limitation.

2.8 The process of generating a functioning program.

In practise the process of creating software is an iterative process, a new section

of code will be written, it will be compiled, linked, bound, tested, debugging will be

undertaken, the code will be revised and so on until that section is operating. The next

section will then be written, and this process continues until the entire program is

finished. The importance of considering this is that the efficiency of the compile cycle

largely determines the productivity of the entire process of code construction (as distinct

from design), and the efficiency of the compile cycle is itself largely determined by the

IDE - or for that matter the lack of an IDE. The quality of the IDE used may seem to be

relatively trivial in some respects, but it does have a significant impact on the ultimate

software quality and, in a time limited project, whether and to what extent there is a

working piece of software at all.

2.8.1 Compiling under Microsoft C version 6.

One of the development systems used in the course of this project was Microsoft

C version 6 (C6), and this section will describe the capabilities and limitations of this

system as they relate to the process of developing software for this project. The

development system itself is well documented (Microsoft, 1990), and books exist about

the language variations in C6 and the capabilities of the development tools, however

there is sufficient scope for variation within the system setup that it is appropriate to

detail the actual installation used.

C6 in the configuration used is a DOS development system and it does not

incorporate C + + compiler facilities. The Programmers workbench IDE was tested and

discarded on the basis that it provided no significant operational benefits. Editing was

29

performed using Borland Brief version 3.1. This is designed to be a configurable

programming editor and limited IDE. It allows source files to be compiled and lets error

and warning messages be displayed along with the relevant lines of source code. Linking

has to be performed at the DOS prompt and was usually accomplished using custom

written batch files, the make utility being rejected on the basis that it was relatively hard

to use and provided little or no real advantage over a few well structured batch files.

Debugging was accomplished initially using Microsoft CodeView version 3.0 and later

using Borland TDConvert version 2.0 to convert the executables to be debugged using

Borland Turbo Debugger version 3.1, either as a cross-platform debugger or in a remote

debugging configuration.

Overall C6 is totally inadequate for large scale development work without

significant additional tools. Subsequent versions addressed these concerns, but none

were available for this project.

2.8.2 Compiling under Borland C + + .

The other development system used in the course of this project was Borland

C + + (BC) versions 3.1 (initially) and 4.0 (later), and this section will describe the

capabilities and limitations of this system as they relate to the process of developing

software for this project. BC provides an IDE, resource editor a C compiler, and a

debugger, which can generate applications for both DOS and Windows. BC version 4

(BC4) incorporates a Windows version of the Brief editor, and an integrated debugger.

Since this system was used for the development of Windows applications, only

this part will be described. The BC IDE provides excellent project management

capabilities, including the capability to rebuild object files and libraries based on the date

and time of the source files. Resources can be created and edited using the extensive

Resource Workshop facilities. Debugging can be accomplished either using the IDE

debugger or the Turbo Debugger for Windows. This debugger also readily allows dual

monitor debugging - which by permitting the debugger to display on one screen while

the normal Windows display is on the other aids the overall debugging process.

30

2.8.3 A few definitions.

A source file contains the mechanism of the program expressed in the

programming language used. An object file is produced by the action of a compiler on a

source file. A collection of object files constitutes a library file. A resource file contains

bitmaps and other resources used by the software. An executable file is produced by the

action of a linker on the object and library files. Alternately a DLL may be produced,

which links to the executable when the program is executed. These are all either parts of

the operational program or intermediates in the production process. A glossary of other

technical terms is provided as an appendix.

2.9 The materials available.

2.9.1 Additional development tools and libraries.

The only additional development tool made available for this project was the

Phar-Lap Software Inc. 2861 DOS-Extender version 2.5. This version is a sixteen bit

virtual control program interface (VCPI) DOS extender capable of linking with C6

object files to give the application access to up to 16 MB of RAM.

The only commercially produced libraries made available for this project were

the the Cambridge Electronic Design (CED) CFS and SON data storage libraries (see

chapter 3).

2.9.2 Signal capture and analysis facilities.

Signal capture was effected using a CED 1401 and, when available, a CED

1401+ analog to digital interface controlled by CED’s Spike2 software version 3.1 for

DOS, and in the final stages also Spike2 version 3.1 for Windows. Despite having the

same version number these two packages have different capabilities, and neither data

files nor macro scripts from one can readily be used with the other. Spike2 version 3.1

31

for Windows incorporates spike identification capabilities.

2.9.3 Calculation aides used.

Many of the complex calculations implemented in the project software were

checked against specimen calculations implemented on several packages. These were the

spreadsheets Lotus 123 version 2.1 and Microsoft Excel version 4.0 and the

mathematical drafting package MathCad version 4.0 produced by Math Soft.

The spreadsheets used provided all of the required calculation capabilities,

however the implementation of many complex equations in a spreadsheet leaves much

room for error since the cell based formulae bear little resemblance to the mathematical

equations from which they are derived. A mathematical drafting tool such as MathCad

provides a means for implementing equations in a more "natural" fashion.

2.9.4 The computer hardware available.

IBM PCs were the only hardware platform available for this project. Initially, a

25 MHz 386 with 2 MB of RAM, a VGA display, 40 MB of disk storage, and no

floating point coprocessor was made available, and this was eventually replaced by a 33

MHz 486 with 8 MB of RAM, an SVGA display, 200 MB of disk storage and a 120 MB

tape drive.

2.9.5 The use of the systems available.

The original hardware and development tools made available for the project were

inadequate for the task in hand, and were progressively replaced by more powerful

facilities, although the timescale for this could have been more advantageous. However,

certain of the libraries and facilities required the continued use of C6 rather than BC

and this, rather than any philosophical objection to C + + mandated the use of C. The

possibility of using C + + for some of the development, particularly for Windows

32

specific facilities, was considered but rejected on the basis that continual swapping

between C and C + + was likely to lead to a reduction in coding efficiency in both

languages rather than provide benefits in either. This did not however exclude the use of

OOP techniques in C. The Phar-Lap DOS extender became available much later than

was expected, and consequently the focus of development (and the experience) had

already moved to the production of Windows software. Consequently the use of the DOS

extender was somewhat limited, as will be discussed more fully in chapter 3.

The large memory model was used exclusively for the software developed here.

None of the other programming models offered any real advantage, but did offer

significant problems.

33

3 Biological Materials and Methods.

Signals have been recorded, manipulated and analysed since the development of

suitable electronics - if not before (Bures et al., 1967). The development of computers

has however provided for considerable automation of the data capture and analysis

process and many, if not most, data capture devices (such as oscilloscopes or chart

recorders) are today based on digital electronics with interfaces permitting data to be

transferred to computer. Additionally, it is possible to use general purpose analog to

digital (A/D) converters linked to PCs or Macs and driven directly by software running

on the computer.

3.1 The experimental setup.

It is useful to note some of the details of the experiments conducted by Dr. Maria

Denheen (1992) from which the data used here are derived. In summary, extracellular

recordings were made of the third root of the superficial flexor nerve (Fig 3.1) of the

Norway lobster (Nephrops norvegicus). This root innervates a thin muscle sheet (the

slow or superficial flexor muscle) which is involved in abdominal positioning. The third

root itself consists of six motor neurons (F1-F6), five of which are excitatory, the

remaining one being inhibitory (Knox and Neil, 1991; Denheen, 1992). In this and other

crayfish and lobster systems the motor neurons have been numbered sequentially on the

basis of neuron diameters and spike amplitude, the smallest being FI and the largest F6

(Kennedy and Takeda, 1965; Wine et al., 1974; Thompson and Page, 1982; Denheen,

1992). In this scheme F5 is the inhibitor neuron.

Data was initially recorded onto an analog tape recorder, and subsequently

transferred to PC using the 1401 A/D converter interface (manufactured by CED),

controlled by the Spike2 software package (written by CED). Dr. Denheen's analysis of

this was based on the use of the facilities within Spike2 to generate timed event markers

for specific classes of nerve spike (corresponding to individual neurons). This was

achieved by using an appropriate set of threshold voltages to generate sets of event

34

markers which could be compared to give the events corresponding to each of the spike

categories (see Fig 3.2 for an example).

3.2 The technology of signal capture.

Before considering the digitisation process it is first necessary to understand how

analog and digital signals differ. An analog signal is a continuously varying voltage,

while a digital signal uses a stream of numbers to represent (in some way) the waveform

under consideration. Also a general analog signal contains no timing pulses or other

artificial information.

3.2.1 The sampling process.

In the current context the sampling process and its consequences are crucial, and

so particularly relevant aspects need to be pointed out (for a general review of the

process see Stremler (1990)). An analog signal is continuous, and digitisation is

accomplished by sampling, most commonly to 12 bit accuracy, at a specified interval -

with the potential consequence of aliasing the signal. This is a relevant concern only

when the signal contains components with frequencies greater than one half of the

sampling frequency.

Of more specific concern in the recording of electrophysiological events is the

potential for the loss of instantaneous extreme values (see Fig 3.3A), and the consequent

distortion of crucial parts of the waveform under consideration. This can be avoided by

oversampling the signal (see Fig 3.3B), or alternately by using the Fourier transform to

reconstruct the waveform (see section 3.2.2) though this approach is not used by Spike2.

However, this facility is not available in the CED 1401 A/D interface, and as controlled

by the CED Spike2 program (version 3.1) the hardware is not capable of sampling at a

sufficiently high rate to permit software to perform the task. The capabilities of the CED

1401+ interface (a version of the 1401 based on a more powerful CPU) are greatly

enhanced, however a 1401 + was only available for the final data capture session.

35

3.2.2 Waveform representation and data compression.

The sampling process is, however, only part of the story. The shape of the

analog waveform can only be represented approximately by a series of instantaneous

voltage measurements, and the actual voltage of the signal in between two such

measurements most certainly cannot be represented accurately by a linear combination of

the measured values. However, any waveform can be represented to any degree of

accuracy required if it is reconstructed from its Fourier transform or the related Fast

Fourier Transform (FFT) (Stremler, 1990). In this approach the sample values of the

digitised signal are used to calculate the coefficients of the corresponding Fourier series

and this is used to generate intermediate values. This can be extended by using the

instantaneous frequency breakdown of the signal (given by performing a FFT) to

identify "unimportant" frequency components (probably relative to the responses of the

human auditory system) which are then discarded (giving a form of "lossy" data

compression). This gives a simpler signal, which can be stored using fewer bits per

sample or correspondingly a greater number of samples per time interval, at the expense

of losing some information. One major drawback of this method is that the FFT

calculation is too complex to implement in real time using only software - special

hardware must therefore be available. The method of waveform reconstruction (and to a

lesser extent compression) is however the basis of some digital audio devices.

The alternative approach to obtaining a more faithful representation of the analog

signal is to step up the sampling rate. Taken to its limits, this permits a signal to be

represented to any level of accuracy needed, provided only that the sample interval is

small with respect to the time course of events of interest. Lossless data compression

methods such as the Lempel-Ziv algorithm (Ziv and Lempel, 1977; 1978) can then be

applied to the storage of the digital signal, without any concern that the simplifying

assumptions used in lossy data compression methods are in some way altering the data.

36

3.2.3 The signal capture facilities available.

Having outlined the principles of signal acquisition, it is appropriate to consider

the capabilities of the hardware and software available. As mentioned earlier, the A/D

converter used was the CED 1401, a PC controlled unit providing up to 32 analog input

channels and a small amount of onboard memory. This was controlled by CED's Spike2

software (version 3.1) and this combination provided for a maximum data rate of 20

KHz in total, which had to be shared between all the active channels (compared with the

data rate of 44.1 KHz per channel used by digital audio systems). This implies for a

single channel recording that the maximum bandwidth of the signal is 10 KHz. In any

consideration of the identification of nerve spikes by shape, sub-millisecond information

is of importance, since the time course of the entire spike is of the order of one

millisecond (Abeles and Goldstein, 1977). Even for single channel recordings of nerve

spike event data, the sampling rate is therefore close to the low end of the acceptable

scale. The use of a device such as the CED 1401 + , which is capable of capturing short

waveform events with high resolution as well as higher sustained data rates, would

eliminate any concern about the quality of the recording. Indeed the data ultimately

captured with a 1401 + was sampled at 25 KHz on each of two channels.

The output of the 1401/Spike2 system is a data file containing the digitised values

of the signal (to 12 bit accuracy). There are no inbuilt data compression mechanisms,

with the consequence that data files (sampled at 20 KHz) are around 2.4 MB per minute

of recording. This has the practical effect of encouraging the user to operate the system

at lower sampling rates, with consequently lower bandwidth recordings.

3.2.4 Alternative matching software.

Many of the matching systems described in chapter 1 are software based, and a

number of investigators indicated that the source code for their systems was available.

Considering the extensive modification that would be required, the merits of re-using

portions of source code from other projects are debatable, particularly when the code

37

was not designed to be used in this fashion. Indeed when source code is generated in an

incompatible language, or is intended to run on different hardware or use different

operating systems, the benefits of attempting to re-use it are largely outweighed by the

practical problems of integrating it with new material.

With the standardisation of computer equipment, and its widespread availability

in recent years, it is not surprising that commercial interest would develop in the

provision of spike classification techniques. CED have taken an interest in such

techniques and have incorporated a degree of spike classification capability into their

Spike2 software, but only for use with the 1401+ . This is primarily an on-line solution

(hence the requirement for the 1401+), using a version of the variable envelope template

method described here, based upon templates generated using a clustering technique.

3.3 The problem expressed in terms of nerve spikes.

The signal data available was recorded on a four channel analog tape recorder,

with up to three channels being used for nerve spike recordings. Each channel contains

the electrical activity for all the neurons in one fibre and, in terms of the information

content, these consist of discrete events of six categories occurring in any sequence.

Events may overlap (see Fig 3.4) and the signals are subject to a degree of background

noise, as well as alterations in the baseline voltage and the amplitude of the events (see

Fig 3.5). The absolute amplitude of the spikes thus depends on the experimental

conditions prevailing at any particular time. However the ordering of the amplitude of

spike classes FI to F6 remains the same. All of these features must be addressed to at

least some degree by any matching process.

The window discriminator method used by Dr. Denheen and many others

(Littauer and Walcott, 1959; Hermann et al., 1962; Bradley et al., 1967; Freeman,

1971) depends on setting threshold voltages to trigger events. This works well for the

spike categories F3 to F6 but the two smallest spike categories FI and F2 are difficult to

distinguish on this basis. Depending on the properties of the electrode in each particular

instance, the amount of noise, and the variations of voltage, it is often impossible to

38

separate FI events from F2 events by this means (Harris-Warwick and Kravitz, 1984).

Unfortunately the separation of FI from F2 is the most significant classification of all,

since the FI neuron originates in the ganglion posterior to the ganglion (Wine et al.,

1974) from which the others originate (see Fig 3.6).

Clearly if the FI and F2 spike waveforms or any other waveforms being analysed

have the same shape with the same peak voltages from the same baseline on the same

timecourse (within the margins due to background noise), then it will be impossible to

distinguish between them on the basis of a single recording (although two or more

recordings at separate parts of the nerve would add the possibility of separating events

based on propagation speed (Schmidt and Stromberg, 1969; Roberts and Hartline,

1975)). Assuming that there is a difference between the spike waveforms, and that this

difference cannot readily be established by using a threshold voltage, the shape of the

waveforms must be considered.

3.4 The matching methods used.

This section will describe the mathematical and computational aspects of the

matching methods employed by the software for this part of the project. The theoretical

justification for each method and its advantages will be discussed in chapter 5, while the

actual implementation will be discussed in section 3.6.2.

3.4.1 The variable envelope template method.

As a first approximation it is possible to automate an intrinsically manual

approach to shape identification. The manual process under consideration is that of

tracing the shape of the waveform of interest and adding an outline representing the

acceptable level of deviation from that shape, comparing this with each waveform, and

accepting or rejecting matches on the basis of the degree of overlap. Following the

terminology of Schmidt (1984b), this approach is actually a contour matching process,

since it is baseline independent, but considering the diversity of template methods it is a

39

somewhat artificial distinction. The automated equivalent of this is to select a section of

waveform and define the maximum and minimum range curves based on the formulae:

Rmax = V + (kj + k2 D)

Rmin = V - (ki + k2 D)

where R max and R mjn are the range values, V is the value of the datapoint, D is the value

of the derivative of the curve at the datapoint, kj and k2 are user defined constants. The

search is then performed by finding the minimum difference for each of the possible

alignments between the curve defined by the maximum range and the curve of the

waveform to be matched. Then the curve of the minimum range (offset by the minimum

difference) is compared with the waveform curve, and the match is accepted if the range

curve lies below or touches (but does not cross) the waveform curve (see Fig 3.7).

3.4.2 The minimum merit distance method.

A second, and more theoretically interesting, method was used as an alternative

approach to the identification of waveforms. This uses the calculation of a "minimum

merit distance" (MMD) for each template/waveform comparison according to the

methods described by Kruskal (1983). The templates were defined as described above,

but the search did not take account of the relative alignment of the template and

waveform. The assumption was made that the MMD calculation would absorb slight

variations from the default curve alignment (i.e. the alignment on which the template

was defined). One difference with the standard MMD calculation was the use of a user

defined range of perfect match values. This allows for noise effects to be discounted, as

well as providing a consistency of behaviour between the two template methods.

The MMD measures the degree of similarity between the information contained

in the template and the waveform, and this could be treated as a distance measure in

substantially the same fashion as any other. However it was considered to be more

useful to embed the match distance into a Boolean choice of the available templates, with

the most similar (i.e. the comparison with the lowest MMD value) being selected. In

these terms the templates are not useful as independent entities, there being an implicit

40

requirement that most if not all the waveform classes are represented by templates.

3.5 The process of creating a spike database.

As with the spot analysis system, the fundamental approach in the design of the

signal analysis system (or Signal Viewer) was to split the process of data acquisition (via

the 1401 ISpike2 system), data translation, template generation and data analysis into

separate sections, each controlled by a separate program. Having described the data

acquisition stage, this section will consider the generation of a database of nerve spike

waveforms.

The use of a database of spike waveforms was selected in preference to direct

operation on continuous waveform recordings for three reasons. First, it removed the

dependence on a single data source. Nerve spikes are discrete events, and thus capable

of being treated as separate entities, so this approach does not alter the key information

contained in a continuous recording. Indeed much analysis is done on packets of

waveform information, whether gathered by a digital storage oscilloscope or by a

software package such as CED's Sigavg program. Thus restricting the range of data to

continuous recordings would reduce the flexibility (and hence the utility) of the analysis

software without providing corresponding benefits. Second, when this part of the

program was designed it was hoped that other data acquisition methods capable of

sampling at higher rates than the 1401 controlled by Spike2, such as use of the 1401 + or

digital oscilloscopes or even direct control of the 1401 by custom software, would be

available at some stage. These would not produce continuous waveform information, and

consequently would not be compatible with an approach that required data in this form.

Third, at the time the software for this part of the project was designed and coded, the

only library available for accessing data files was for CED's "CFS" data file format.

Spike2 generates data in "SON" format, and it was necessary to use a utility program

(supplied as a standard part of Spike2) to convert it to CFS format. The CFS access

library proved to be less reliable than was desirable for a key component of any piece of

software, and good defensive programming practices dictated that it should be removed

41

from the program kernel. It was therefore replaced by a set of custom extensions to the

Ashton-Tate dBase 4 database file format, implemented through a customised library.

This was the only other available framework for handling data, and was primarily suited

to the handling of discrete data items.

The spike database creation utility thus takes in a CFS format data file together

with user defined information about the channels to be captured, a list of trigger voltages

to use, and the pre- and post-trigger timing intervals. When an event is detected, the

relevant sections of all the channels are stored, together with the time and the identity of

the channel causing the capture event. Once created, this database is passed to the next

stage of analysis as described in the next section.

The actual spike event recognition mechanism is simply a positive going

threshold event, i.e. any situation where one datapoint which lies below the threshold is

followed by one on or above the threshold. This differs from the event definition

mechanisms used by CED (Greg Smith, CED Ltd., personal communication), in that

there is neither a second negative going threshold crossing required within a specified

time, nor is there a "dead" interval before the next possible positive crossing. The latter

is a more sophisticated approach, but in the context of the data available this mechanism

was considered to be over engineered. This, of course, is much less true for CED's

software requirements, hence the difference in approach. Additionally, the mechanism as

used by Spike2 version 4 for the capture of isolated spike events is understood to depend

on processing occurring within the 1401 + rather than in the PC, with surplus waveform

data being discarded. Hence the performance and reliability requirements are

significantly greater for Spike2.

3.6 The implementation of the classification methods.

This section will consider how the final version of the Signal Viewer program

operates, consideration of design and development issues being given in section 3.8.

42

3.6.1 The signal analysis program described.

As ultimately implemented the Signal Viewer consisted of two separate but

closely related programs, the Template Generator and the Result Viewer, both of which

operate on the spike waveform database generated by the import utility. The Template

Generator allows individual spike waveforms to be viewed (see Fig 3.8A) and templates

to be defined (in accordance with the formula in section 3.4.1), edited or deleted. These

are then stored in a template database. The Result Viewer allows the search method to be

selected, performs the search, generates the match database and displays portions of the

spike database with the spikes in their correct temporal alignments (see Fig 3.8B).

Individual channels can be copied, and logical filtering of the display for each channel

can be effected. Information about the timing and numbering of each filtered event can

be generated in a form suitable for importation into a spreadsheet such as Microsoft

Excel.

3.6.2 The implementation of the match methods.

Both search methods use the same format of spike and template databases, and

generate a match database of the same form. All of the routines are coded in C, and the

calculations make extensive use of floating point arithmetic (with consequent

performance implications). In principle both methods rely on off-line analysis, that is

analysis which is not performed in real time, either because it cannot be performed in

chronological sequence or because it cannot be performed in the interspike intervals.

3.6.3 The variable envelope template method in detail.

In this section the principals and implementation of the variable envelope (VE)

template method will be described.

The VE template method is a contour fitting algorithm in which the shape of the

data waveform is compared with two contours (see Fig 3.9), corresponding to the upper

43

and lower bounds for the data waveform, which can be synchronously offset in both

dimensions. In this implementation a series of comparisons are performed to find the

optimal temporal alignment between the data waveform and the upper bound, resulting

in an array of voltage differences corresponding to the possible alignments. The largest

of these corresponds to the near-optimal temporal alignment which allows both upper

and lower bounds to be offset by a value which will tend (but not in all cases be

guaranteed) to maximise the distance between the data waveform and the lower bound

without permitting the data waveform to cross the upper bound, (see Fig 3.9B). If the

data waveform lies entirely above the lower bound then this is classed as a match,

otherwise it is rejected. The search is then repeated on the next (valid) template /

waveform comparison. A flow diagram of this is given in Fig 3.10.

This method is computationally cheap, requiring few calculations per datapoint,

and operates fastest on templates which are close to the data waveform in length. It is in

principal sufficiently fast to be implemented in real time.

3.6.4 The minimum merit distance method in detail.

This section will consider the principles and implementation of the minimum

merit distance (MMD) template method.

This method is a modified implementation of the algorithm described by Kruskal

(1983), in which two sequences are compared by determining the "cost" of inserting,

deleting or substituting sequence elements in order to make the two sequences equal.

The scheme of sequence alterations corresponding to the minimum cost is the optimal

transformation, and the cost represents the distance between the information contained in

the two sequences. This is therefore an intrinsically baseline dependent method. Its

operation is perhaps best understood by considering a simple example as illustrated in

Fig 3.11, and its implementation by considering a flow diagram (Fig 3.12).

In detail, two arrays are created - one containing a total of T template waveform

elements, and the other containing D data waveform elements, but this will normally be

restricted to the sub-sequence corresponding to the one on which the template was

44

defined (giving T=D). A two dimensional matrix of size T x D is created to hold the

intermediate cost values, along with necessary control arrays. The matrix is filled with

the minimum cost values according to the rules given by Kruskal (1983), with the

exception that two elements are deemed to be equal (i.e. have a substitution cost of zero)

if they differ by less than a user specified amount. The matrix entries represent the

comparison of the sub-sequences up to the current positions and should increase from

left to right and from top to bottom (see Kruskal (1983) for examples of this). The entry

in the final column of the final row represents the cost of transforming the template into

the data waveform (or vice versa), and is the significant value. This process is repeated

for each valid template, resulting in an array of cost values. The minimum value in this

array corresponds to the template which best matches the data waveform, and this

correspondence is recorded in the match database as the preferred match - all other

templates being rejected. As with the VE template, the search is then repeated for the

next available data waveform. A flow diagram of the overall process is given in Fig

3.13.

Even from this brief account three points should be obvious. First, the cost

increases in proportion to T x D. Second, the use of templates of varying lengths will

influence the cost of the transformation (small templates necessarily have a lower

transformation cost than large ones in this implementation). Consequently templates of

the same length should be used. A normalisation of the cost could be performed, but this

was not implemented, preference being given to the use of standard length templates.

Third, several calculations are required per matrix entry, with the consequence that the

whole process is computationally expensive and correspondingly slow. The first and

third points taken together imply that as the waveform resolution improves, the speed of

the method will decline in a non-linear fashion, with consequent performance

implications.

3.6.5 Data flow and operation of the matching kernel.

The previous two sections outline the operation of the match methods. However,

45

this is only part of the story. The kernel of the matching system also contains data

management facilities, and it is impossible to understand the operation of the Result

Viewer without some broad explanation of the way in which data flows through the

kernel.

Waveform data is held in a waveform database, the templates are held in a

template database, and the results of matching the templates to the waveform data are

held in a match database (which has as many records as the waveform database and as

many fields as the template database). The waveform and template databases are opened

by the user prior to initiating a search. When a search is started, a match database is

created and initialised. A search is performed on all non-deleted data waveforms using

the current selection of non- deleted templates. The selection mechanism normally

restricts the template search to meaningful combinations (templates and data derived

from the same data channel) but can be altered by the user to permit a search of all the

data channels for all the templates. Matches are determined as described in the two

previous sections and logged to the match database as a three state Boolean variable

(match / no match / no search).

Following the template search, the user is able to copy the display of any data

channel and apply a display filter consisting of any logical combination of match events

to the channel. At its simplest this would allow a channel containing two waveform

classes to be copied so that there were three separate display channels, corresponding to

template one, template two and neither template. This information can then be outputted

(in the form of columns of times of events) along with summary statistics to an ASCII

file, which can then be imported into another package (such as Spike2).

3.7 Validation.

Validation and operational testing of software is a major part of the process in

any development (Adrion et al., 1982). Some software is effectively self validating,

insofar as it either operates or it fails to operate, and everything else is a reliability issue

rather than a correct operation issue. For this type of software, where failure will not

46

result in significant adverse consequences (such as loss of life) and where the anticipated

user base is small, this level of verification is appropriate (McConnell, 1993) - and

applicable to parts of the Signal Viewer. However, the data analysis part of the Signal

Viewer requires specific validation. The Signal Viewer has adequate amounts of real and

synthetic data available for analysis, and more significantly has data analysed by

alternative methods for comparison, as well as data from experiments providing a

physical basis for separating FI and F2 spike waveforms. Various validation tests were

carried out as detailed in the following sections.

3.7.1 Application to comparative data.

Data of a suitable nature was captured as described above, and analysed by Dr.

Denheen in accordance with the methods described by her (Denheen 1992). The same

data were independently analysed by myself using a variety of templates for both search

methods. The results of the two analyses were then compared by overlaying the event

output from the Signal Viewer back onto the original data file (as supplementary event

channels), and new events were generated to mark differences between the two analyses.

This was performed using the macro language facilities provided within Spike2.

3.7.2 Application to FI censored data.

In experiments previously conducted by Dr. Denheen, the ventral nerve cord was

cut posterior to the ganglion from which the relevant third root nerve originated (see Fig

3.6). This had the effect of cutting the FI neuron (and hence removing FI activity) while

leaving F2 to F6 intact. Therefore, the accuracy of the template search for F2 could be

established by considering the number of false FI matches, assuming that the cutting

process did not itself have an effect on the spike waveforms.

47

3.7.3 Application to tagged data from the crayfish cuticular stress detector.

In experiments previously conducted by Dr. Cornelia Leibrock (1993) on the

sensory system of the crayfish Procambarus clarkii, recordings were made

extracellularly from the anterior distal root (adr) nerve and intracellularly from a sensory

terminal (CSDl-t) of the cuticular stress detector one (CSD1) nerve. The CSD1 axons

form a part of the adr, hence the adr recording will contain an extracellular record of the

same activity recorded from the CSDl-t. This gives a means for the independent

verification of template matched CSD1 spikes.

A section of the adr recording was therefore digitised, suitable MMD templates

were defined, and the results of the search compared event by event with the activity of

the CSDl-t.

3.7.4 Application to tagged data from the crayfish coxo-basal chordotonal organ.

A further data set containing both an extracellular and an intracellular channel

was obtained from Dr Daniel Cattaert of the Centre Nationale de la Recherche

Scientifique (CNRS) in Marseille. The intracellular recording is from the fifth thoracic

ganglion of the crayfish Procambarus clarkii, and comes from the central terminals of

one of the sensory axons of the coxo-basal chordotonal organ in the fifth walking leg,

while the extracellular recording is from a tungsten wire electrode pressed against the

sensory nerve coming from the corresponding chordotonal organ, and sealed in place by

vaseline. Again the intracellular recording provides for independent verification of

template matched spikes.

A section of the extracellular recording was therefore digitised, suitable MMD

templates were defined, and the results of the search compared event by event with the

activity recorded by the intracellular electrode.

The same section was also searched using the spike identification facilities in

Spike2 for Windows. Templates were generated using the inbuilt facilities and these were

used to search the extracellular channel. Search results which failed to identify the key

spike categories were discarded.

48

3.7.5 Sensitivity testing.

Sets of variable envelope templates were defined using different k l and k2

parameters (as defined in section 3.4.1) and the number of matches for each combination

was established. This identifies the range of acceptable margins of error.

3.7.6 Application to synthetic data.

Three data sets were prepared using waveform averaged F I, F2 and F3 data (as

identified) from one of Dr. Denheen's experiments. These spike classes were then used

to generate synthetic data sets in which the actual spike identities were known. Three

different protocols were used to generate these data sets.

In the first protocol, each spike event was chosen randomly from one of the three

classes, and a predetermined amount of normally distributed noise (generated using an

implementation of the Box-Muller algorithm (Press et al., 1992)) was added to the spike

waveform. The standard deviation (s.d.) of the noise was varied over a range from zero

(i.e. an infinite signal to noise (S/N) ratio) to a level where the signal was badly

degraded (approximately zero S/N ratio). Templates for each spike class were generated

on the zero s.d. data and the MMD search method was used to identify matches. These

were then compared with the actual events to give absolute performance comparisons.

The three basic spikes are shown in Fig 3.14A, and typical examples of the noise

degraded FI spike are shown in Fig 3.14B.

The second protocol was intended to test the MMD search method's ability to

distinguish overlapping spike events. Spikes were selected randomly as before, and noise

was added as before (though only four different noise levels were used), and a second

(randomly selected) spike of one of the two remaining classes was added. The second

spike could occur prior to the first, at the same time, or subsequent to it. This data set

was searched as before, and the results again compared to the known events. Examples

of the overlap events are shown in Fig 3 .14C.

The third protocol was intended to test the MMD search method's capabilities in

49

an artificial situation, namely its performance when presented with spikes of

intermediate shape (that is linear combinations of FI and F2). Spikes were selected as

before, with noise as before but the FI and F2 spikes were combined using the formula

rF l 4- (l-r)F2 according to predetermined ratios (r). Events were described in terms of

the dominant component (i.e. FI if r > 0.5). F3 spikes were left as single entities.

Again the data set was searched and the results compared to the known events. Examples

of the hybrids are shown in Fig 3.14D.

3.8 Design and implementation issues.

As outlined in chapter 2 the design and implementation process should move

from a consideration of the goals of the software, through a process of formally

specifying the structure and functions of the software, to implementation on the specified

development system. This is followed by integration with third-party components, and

an iterative testing and debugging phase. The smooth operation of this process depends

on two factors, there being no fundamental design changes (such as major changes of

target operating system) and on the expected facilities being available when anticipated

(McConnell, 1993). The overall effort obviously also depends on the amount of pre

existing material available for re-use, the less that has to be designed and coded the

smaller the development - and the faster it can be realised (McConnel, 1993). In this

context there is a major difference between the effort required to add an extra module to

an already existing framework program such as CED's Spike2 and the effort required to

design and implement the framework as well as the analysis module. The only possibly

available framework program was in fact CED's Spike2, but as access was not provided

to either Spike2 source code or object modules, a framework program had to be

developed prior to any implementation of the matching algorithms.

3.8.1 The design of the signal viewer.

The design of the framework program as an entirely new piece of software

50

allowed a relatively free consideration of its design. The program had to be able to

display spike waveforms and permit user definition of templates, and consequently had

to use a graphic display. The use of a mouse was also considered to be indispensable for

an adequate user interface which handled graphic objects. The general design selected

was an event driven system using a simple Windows like GUI. Internally the program

was structured to use event handlers similar to those used in Windows applications, and

in other respects to rely on similar API functionality. The intention of this approach was

to leave the way open for the program to be turned into a full-fledged Windows

application if suitable facilities became available and if the programming (or other)

requirements justified this development. Use was made of existing libraries where

possible, but new facilities were developed using OOP techniques. It would, however,

be inaccurate to suggest that the new facilities were completely object oriented.

3.8.2 The development facilities initially available.

The development system initially available was the Microsoft C6 system

described in section 2.8.1. This was a DOS real mode development system, which had

significant consequences for the design and implementation of the software. As discussed

in section 2.2.1, DOS does not provide the high level API functions required for even a

simple GUI, but more significantly limits memory availability to 640 KB. The API

constraints were dealt with by keeping the requirements for API functions to a

minimum, and providing these in as simple a way as possible.

From an early stage it was apparent that memory availability would be crucial in

determining the operational status of the finished program. However, introducing the

high level API functions only aggravated the existing problems of limited memory

availability. The use of a DOS extender (as discussed in section 2.3.3) would have

alleviated these problems without requiring recoding. However, this only became

available after coding was completed, resulting in major structural and debugging

problems.

51

3.8.3 Additional development facilities.

Given that the program had significant stability and usability problems, it was

necessary to undertake a further stage of debugging and code restructuring to generate

an operational program. There were two possible approaches to this problem.

First, the DOS extender could be used with the C6 development system to

undertake debugging. Final code modifications and enhancements could then be

implemented as appropriate. The advantage of this was the direct use of existing code

without modifications required for a change of operating system. The drawback was the

limitation of a "home made" GUI without multiple parent windows, child windows,

message or dialog boxes, or any form of text input or other standard interface controls.

Additionally, the Phar-Lap API and development tools were relatively unfamiliar, which

necessarily adds to the development time required.

The second possible approach was to use the Borland C+ + development system

to generate a Windows based program. This approach had the advantage that the system

was already familiar, and necessary hardware and software facilities were available. The

standard interface objects for Windows are also much more extensive than anything

available to a "home made" GUI. Also the quality of the IDE and the utility of both the

IDE debugger and the Turbo Debugger enabled levels of productivity (in terms of work

per unit time) which would be impossible with the C6 / Phar-Lap combination. The

drawback was the requirement to sort out various differences between the Signal Viewer

dialog interfaces and message handling system and the standard methods used by

Windows.

Initial attempts to debug the Signal Viewer using the C6/Phar-Lap combination

indicated that the extent of the unresolved problems was such that the time saved by

using the Borland system would more than offset the conversion time required, and a

better user interface would result (almost) as a by-product of this conversion process.

This was therefore the approach ultimately used, and the consequence was a reasonably

stable system with a good user interface.

52

Figure 3.1

Diagrammatic representation of a dorsal view of the ventral nerve cord and

superficial flexor muscles of a Norway lobster.

VNC - ventral nerve cord.

r l - the first ganglionic root which innervates the swimmerets and

contains motor and sensory axons.

r2 - the second ganglionic root which innervates the slow and fast

extensor muscles, stretch receptors and sensory hairs of the body

wall.

Sr3 - the superficial branch of the third ganglionic root which innervates

the superficial flexor muscles.

SFM - superficial flexor muscles.

G - ganglion.

Redrawn after Denheen (1992).

VNC

rl ->

r2 - > Sr3

SFM

1 cm

Figure 3.2

Production of event markers by single window discrimination performed using

CED's Spike2 software. Event channels were generated by voltage thresholding

for the voltage thresholds representing the lower and upper limits of voltage

window w l and the upper limit of voltage window w2. These were then

logically subtracted to give the event marker channels 2 and 6, the residual

events being in channel 7. This analysis although simple requires the use of a

custom written Spike2 macro language program to perform the subtraction

which is outwith the basic capability of Spike2.

Channel 1 - analog waveform channel.

Channel 2 - events exceeding upper threshold of event window w2.

Channel 6 - events lying between lower and upper thresholds of event

window w l.

Channel 7 - events lying between lower and upper thresholds of event

window w2.

w l, w2 - approximate bounds of the voltage windows used.

V o l t s

0.4

0,2
w2
wl

- 0.2

- 0.4

0.40.2 0.30.10.0

Seconds

Figure 3.3

Sampling at twice the bandwidth provides the capability of reconstructing a

waveform accurately from its frequency components. However, performing a

linear interpolation on the sample values is not an accurate way of generating

intermediate values.

A. The effect of linear interpolation on the instantaneous peak value of a

spike waveform. There is a displacement of the peak in both voltage and

time, even with an adequate sampling rate, as well as significant

deviation between the sample and reconstructed waveforms on sections

a l to a2, b l to b2, and cl to c2. Note however that the rest of the

waveform is adequately represented.

B. Oversampling to prevent loss of instantaneous peak values. The

introduction of sample points si and s2 between cl and c2 results in a

much better approximation of the waveform, but triples the sampling

rate. For a system in which the sampling rate is already at the limit of

the hardware capacity this is not a feasible option, and in any case

wastes data storage capacity.

Solid line - linear interpolated waveform.

Dashed line - sample waveform.

Vertical dashed lines - sample points.

A
volts
0.3 n

>610.2 -

0 . 1 -

- 0.1

- 0 .2 -

-0.3 +

0 1.00.6 0.80.40.2

milliseconds

B
volts
0.3 i

0 . 2 -

- 0.2

-0.3
Cl si s2 c2

0.2 0.4 0.6

milliseconds

ii

Figure 3.4

A typical spike overlap event, in this case probably between a FI and a F2

spike.

0.2

0.1

0.0

- 0.1

- 0.2
I i i i i i i i i i i r

3.442 3.444 3.446 „ , 3.448 3.450Seconds

Figure 3.5

Natural variation of the amplitude of spikes during a recording of the Nephrops

system. No deliberate alteration of the electrodes or the saline was effected

during the course of this recording.

Figure 3.6

Camera lucida drawing of a cobalt backfill of one superficial flexor root. The

backfill shows staining in six motor neurons, labelled according to the size of

soma. Five of these are located in the ganglion anterior to the superficial flexor

root (F2-F6), while the remaining motor neuron, FI, has its cell body located

within the posterior ganglion. Cutting at the location indicated selectively

inactivates FI.

Scale bar = 200 jum.

Redrawn after Denheen (1992).

Ganglion 2

Superficial

Flexor Root

Ganglion 3

Figure 3.7

The definition and operation of a variable envelope template. The upper and

lower templates (dotted lines) are defined with respect to the template waveform

(solid line) by respectively adding and subtracting a constant (kl) plus a second

constant (k2) times the derivative of the template waveform. In this diagram k2

= 0 and is not shown.

The value 8 is the minimum difference between the upper template and a data

waveform (dashed line), here represented at a diagrammatically convenient

point. A 8 value is found for each possible alignment of upper template and data

waveform, the optimal alignment between template and data waveforms being

the one yielding the maximum 8.

vo
lta

ge

Upper template

Lower template

time

Template waveform

Data waveform

Template

Figure 3.8

A. Screenshot of the template generation module, showing a template in the

process of being created. The application follows normal Windows style

guidelines for a single document interface window with the exception of

the enhanced toolbar along the bottom of the window. This is designed

more along the lines of an oscilloscope control panel than a conventional

toolbar and, in addition to the display and template generation facilities,

provides controls for displaying on-screen markers giving the voltage

and time for the specified point.

B. Screenshot of the result view module showing the result of a template

search. The data file contains one channel of data (channel 0), and this

has been duplicated (channel 1). The data displayed in channel 0 has

then been filtered according to the results of the template search, in this

case to show the spike events matching the FI template. This process of

channel duplication and filtering can be extended until all of the template

classes are displayed.

The inset shows a magnified version of one of the nerve spikes.

Signal - Tem plate G enerator - [d:\signal\5790x3.dbf]
File Edit View Options Help

Record 0

Channel 0
Units: Volts
Autoscaling

.075 -

0.05 -

1.025 -

1.025 -

0.05 -

1.075 -

0.027 0.028 0.03 0.031

Cursor [T

s m
SDSLS

[~tl Tem plate | Info
E dy
E
By

Delete I I Scroll
Delete Record

LastClear First
lPrevious|l NextSave

B
Signal - R esu lt Viewer - [d:\signat\5790x3.dbf]

File Edit View Search Options Help
Record 0

Channel 0
Units: Volts

0.5 -

Default

0.5 -

Channel 1
Units: Volts

0.5 -Copy of 0

-0.5 -

0.50.2 0.60.1 0.4

Record
First LastFilter Tem plate

Previous] I NextSearchSet

Figure 3.9

The variable envelope template matching process in a diagrammatic form.

A. The upper template (dotted line) and a data waveform (solid line) for the

optimal alignment (2) and the alignments one datapoint left (1) and right

(3) of the optimal. The 5 value (as defined in the previous figure) has

been subtracted from the upper template in each instance.

B. Comparison of the data waveform with the lower template (lower dotted

line), from which 8 has again been subtracted, for a waveform match (1)

and non-match (2). A match is found when the data waveform touches

or lies between the template waveforms but does not cross either.

A

B

Figure 3.10

Flow diagram showing the principle stages the user would pass through in the

course of a typical analysis session for either template comparison mechanism.

Due to the event driven nature of this software, multiple execution paths are

actually possible, but these secondary paths have been omitted for clarity.

This diagram also omits the program logic, which involves many processing

stages and considerable branching, and which could not be adequately

represented in a simple flow diagram.

Template Formation

Result Generation

Define search method

ASCII file

Search for
template matches

Duplicate data channel

Filter data on logical
combination of matches

Bitmap of graph

Define template waveform

Set kl value

Define channel to search

Store template

Set k2 value

Output results

Figure 3.11

Diagram showing the basic operation of the minimum merit distance

comparison method on two arbitrary strings of characters (a and P). This is

intended to show conceptually how the algorithm works rather than how it is

implemented computationally.

a a c a d b c b a

P

a

p

a

p

a

a

p

a b c a c b

First Comparison - Match

a c a d b c b a

a b c a c b

I f Delete 3
Second Comparison < or

v Insert 1 -

a b c a d b c b a

a b c a c b

^ Third Comparison - Match

a b c a d b c b a

a b c a c b

Fourth Comparison - Match

a b c a d b c b a

Preferred

a b c a c b

{Delete 2
Fifth Comparison ^ or

Substitute 1 - Preferred

a a b c a c b c b a

P a b c a c b

Figure 3.12

Flow diagram showing in detail the stages of the minimum merit distance

algorithm. The level of detail is equivalent to pseudocode, however this

diagram omits code level details of program operation, such as memory

allocation, initialisation, error trapping, and resource clean-up stages.

Yes

No

Yes

No

Is there another
template element^.

Is there another data
\ element? ^

Initialise array indices

Create m x n array

Read MMD value from array

Increment data counter

Copy minimum cost to array

Reset data counter

Increment template counter

Compute cost of insertion,
deletion and substitution

at current location.

Figure 3.13

Flow diagram showing an overview of the operation of the minimum merit

distance comparison program. This corresponds to the sequence of events which

follows the initiation of a search.

Yes

No

Is there
remaining data?

Yes

No

Are there
further templates?

Select data waveform

Select template with
smallest MMD

Perform MMD calculation
(see Fig 5.13)

Select template

Store MMD value

Figure 3.14

A. From left to right, the F I, F2 and F3 synthetic waveforms used for the

construction of the synthetic data sets. These waveforms were obtained

by averaging several selected examples from one of the real data sets

available.

B. From left to right, the FI waveform with normally distributed noise

added at 0.01, 0.02 and 0.03 standard deviations. These correspond to

S/N ratios of 13.9 dB, 7.9 dB and 3.0 dB respectively.

C. From left to right, synthetic double event waveforms corresponding to

F2 with FI prior, FI with F2 prior and FI with F2 subsequent. In each

case the offset of the notional trigger point of the secondary event is

1.8ms.

D. From left to right, F1/F2 hybrid waveforms with FI contribution of

20%, 50% and 80%.

The voltage scales in all of the graphs on this figure are comparable.

0.3 0.3 0.3

0.2 0.2 0.2

0.1 0.1 0.1
V

ol
ts

o V
ol

ts
o

<

(

V
ol

ts
o

-0.1 -0.1 -0.1

-0.2 -0.2 -0.2

-0.3 -0.3 -0.3
ms ms 4 ms

0.2

0.1

- 0.1

- 0.2
1 2 3 4 ms

B

o.i

- 0.1

- 0.2
1 2 3 4 ms

0.2

0.1

0

- 0.1

- 0.2
1 2 3 4 ms

0.2

0.1

- 0.1

- 0.2
1 2 3 4 ms

c
o.i

-o.i

- 0.2
1 2 3 4 ms

0.2

0.1

0

- 0.1

- 0.2
1 2 3 4 ms

D

o.i

- 0.1

- 0.2
1 2 3 4 ms

0.2

0.1

- 0.1

- 0.2
1 2 3 4 ms

0.2

0.1

0

- 0.1

- 0.2
1 2 3 4 ms

4 Results.

4.1 The test data available.

The original analog recordings of most, if not all, of Dr. Denheen's experiments

conducted from 1988 to 1991 were available for use. This archive represented the results

of many hours of electrophysiological experiments as described by her (Denheen 1992).

Recordings of some of Dr. Leibrock's and Dr Cattaert's experiments were also

available.

From these, the recordings of four particular experiments were selected. The first

was chosen (by Dr. Denheen and myself) as a representative sample of the complete

system described in section 3.1. The raw data clearly showed the presence of the FI,

F2, F3, F4 and F6 spike classes with a 20mV (approximately) difference in the peak

amplitude of the FI and the F2 spike classes (see Fig 4.1). This data set was therefore

amenable to F1/F2 separation by the methods previously used by Dr. Denheen (see

section 3.1), and (after digitisation) was analysed by her in this fashion. In the second

experiment, the FI spike class was removed by cutting of the ventral nerve cord as

described in section 3.7.2. The third and fourth experiments were those described in

section 3.7.3 and 3.7.4 and contained both a difficult spike separation problem and a

separate means of verifying the classification.

4.2 Template sensitivity analysis.

The sensitivity of the VE (variable envelope) template method to variations in the

error tolerances described in section 3.4.1 was assessed by selecting sections of spike

waveforms representative of the FI and F2 categories. Holding the waveform constant in

each case, the template error parameter (kl) and the derivative error parameter (k2)

were varied over suitable ranges (0 to 30mV for k l and 0 to 200/xV for k2) and the

number of events matching the template were recorded. As expected, the number of

matches increased as the error parameters increased (see Fig 4.2). Interestingly the shape

53

of the curves for the various k2 values are very similar (for both FI and F2), indicating

that the effect of k2 on the sensitivity of the template is minor compared with that of k l.

Since the MMD (minimum merit distance) templates are not independent of each

other and MMD templates are intended to operate with zero error tolerances, no

corresponding analysis was performed using them.

4.3 Comparative analysis of spike data.

The comparative analysis was based on a section of data previously analysed

using voltage thresholds, and for which FI and F2 events had thus already been

identified (as described in section 3.3). This was used as a control to establish the

reliability of both the VE and the MMD template identification methods as applied to the

separation of FI and F2 spike classes.

For the VE method, templates were defined as before with a range of kj values

(10 to 25mV) and a fixed k2 value (100/xV) and a search was performed for both FI and

F2. The results are presented in tables 4.1 A and 4. IB. Again as expected this shows that

as the kl value increases the percentage of false negatives decreases (i.e. those template

comparisons which failed to give a match to the spike class where a match is given by

the corresponding voltage threshold method) while the percentage of false positives

increases.

For the MMD method, templates were defined for all available spike classes,

with zero kl and k2 parameters, and a search was performed. This was repeated

excluding the template for F3 to establish the extent to which false positive matches for

F3 were generating false negative matches for F2. The results are presented in Table

4.1C.

4.4 Application to FI censored data.

Having performed comparisons to the voltage threshold method, both VE and

MMD search methods were applied to the pre- and post-cut data available from the

54

experiment during which the ventral nerve cord was cut posterior to the ganglion, and

hence the FI axon was severed. The data were visually inspected for the occurrence of

FI and F2 events prior to the cut and for F2 events subsequent to the cut (there being no

FI events in this part of the data). Separate sets of suitable VE and MMD templates

were defined on the pre-cut data segment and both the pre-cut and post-cut data segments

were searched. The number of matches found is presented in Table 4.2. As can be seen,

the VE method fails almost totally to identify post-cut F2 events, while the MMD

method identifies most post-cut F2 events. However, a VE template defined on a post

cut F2 event will pick up all the F2 events in that data segment (see Table 4.2). Both

methods however find no post-cut FI events.

A comparison of the pre-cut FI and F2 waveforms and the post-cut F2 waveform

(see Fig 4.3) give a good indication of the likely cause of the failure of the VE method.

The amplitude of the post-cut F2 is intermediate between the pre-cut FI and F2, and

there is some change in the shape of the F2 waveform. This is unlikely to be due to the

preparation deteriorating with time, since the two samples are only a few minutes apart,

it is also unlikely to be an electrophysiological consequence of the severing of the ventral

nerve cord - this does alter the firing patterns, but should not influence the individual

spike waveforms since these are entirely dependent on the properties of the axon.

However, slight movement of the electrode would probably occur during the cutting

process as would contraction of any attached muscle fibres, and this is probably the

explanation for the observed changes in the F2 waveform.

The entire firing pattern is disrupted by the cutting of the ventral nerve cord (see

Fig 4.4), and consequently it is not possible to derive post-cut F2 firing rates and

compare them with pre-cut firing rates as a measure of the accuracy of the template

matching process. Nor is it possible to derive the probability of false FI identification

for either the VE or the MMD template method, since the shape of the F2 waveform is

sufficiently altered by the cutting process to prevent effective matching without the

generation of a new F2 template. Likewise this basic difference in the data set renders

any consideration of the VE template sensitivity meaningless over a sensible range of

sensitivity values.

55

Overall however, this experiment indicates that for suitably defined sets of

templates the MMD method is the more robust in coping with experimental variations.

4.5.1 Application to tagged data from the crayfish cuticular stress detector.

Using data from one of Dr. Leibrock's experiments which contained both an

extracellular (adr) and an intracellular (CSDl-t) channel, templates were defined as

before and an MMD search was carried out on the adr channel. The results of this were

imported into Spike2 as event channels (the adr event channels), and compared with an

event channel (the CSDl-t event channel) created by performing a voltage threshold

search on the CSDl-t channel. It was verified by inspection that all of the events on the

CSDl-t event channel corresponded to events in one of the adr event channels. The

CSDl-t events were then compared with the adr events on the adr event channel showing

correspondence (the template event channel).

Out of a total of 912 adr events, 215 corresponded to CSDl-t events. Of these

198 (92.1% of the CSDl-t events) were identified as template events (i.e. true positive

events). A further 127 template events represented false positive events (39.1% of the

total template events). This gives a probability for a template event being a CSDl-t event

of 60.9% and a probability for a non- template event being a CSDl-t event of 2.9%.

Figure 4.5 shows a representative section of the data and the event markers for the

template events. From this figure it can readily be seen that there is no possibility of

effecting the key separation using a voltage thresholding technique.

Application of the waveform identification method implemented in recent

versions of Spike2 resulted in 172 (79.6%) of the CSDl-t events being identified

correctly (for the same section of data), but with no false positive events being recorded.

This reflects differences in the template generation mechanisms and a different balance

between the acceptable error rates, so without further comparative tests it is difficult to

form meaningful conclusions about the relative accuracy of the two algorithms. It is

however fair to point out that the more sophisticated template generation mechanisms in

Spike2 should, if anything, give better end results than the method for template

56

generation employed here.

4.5.2 Application to tagged data from the crayfish coxo-basal chordotonal organ.

This data set is particularly interesting due to the similarity between the spike

category (designated RO) corresponding to the intracellular event, which always precedes

Intracellular events by an average of 4.26 ms, and another category (designated Rl)

which occurs at uncorrelated times. A section of this data is shown in Fig 4.6A and

representative samples of RO and Rl are shown in Fig 4.6B. Templates were defined as

before and an MMD search was carried out on the extracellular channel.

Due to the size of the data set (12,156 spike events) it was not possible to use the

script facilities of Spike2 to perform the analysis. Accordingly, the results of the search

were tabulated, and integrated (by means of a specially written utility) with events

generated by setting a voltage threshold on the intracellular channel. The correspondence

between template matches and intracellular events was then examined. The results are

summarised in Table 4.3A.

If the MMD template method was performing no better than chance the

distribution of the intracellular events between categories RO and R l (identification as

any other category being expected to be the result of overlap events) should occur in

proportion to the total numbers of RO and Rl events. Applying a chi-square test to the

search results provides a probability value of less than 0.01, indicating that this result

differs significantly from a random distribution, a significantly higher number of

intracellular events being classified as RO (see Appendix A).

All of the other template categories also generated matches, most of which will

have been due to overlap events. However the number of matches for template R4 is

excessive, and an inspection of the spike events indicates that it is indicative of a

systematic problem of misidentification.

This set of data was also filtered using a voltage threshold to remove spikes with

peak voltages significantly larger or smaller than the classes of interest. The resulting

data set was presumed to contain only the two classes of interest, together with a small

57

number of overlap events, and to exclude a small number of relevant overlap events.

The MMD templates for the classes of interest were then used to search this data set.

The results are summarised in Table 4.3B. Applying a chi-square test to the search

results again provides a probability value of less than 0.01, indicating that the number of

intracellular events classified as RO was significantly greater than expected by chance

(see Appendix A).

Using only a voltage threshold to separate spikes gave the results summarised in

Table 4.3C, which may be used as a benchmark for comparing the templating methods

with a method inherently incapable of separating RO and R l events (this data set being

selected precisely for this property).

The template search mechanism of Spike2 was also used as a comparison. A

number of separate template generation and search runs were undertaken, the results

from the usable searches (excluding searches which failed to identify RO and R l as

spikes, and searches using very crude templates) are summarised in Table 4.4. Figure

4.7 shows a representative section of the templates generated by this means.

The voltage thresholding suggests that there are of the order of 3000 spike events

in the R0 and Rl categories, and that approximately 100 (out of 1429) R0 events are

subject to spike overlap. The MMD method identifies 3212 events as either R0 or R l,

including 1281 out of a possible 1329 R0 events (allowing for overlaps). The segregation

between R0 and Rl is better than chance, but is not sufficiently accurate (both because

of false positive and false negative classifications) to be of use in most circumstances.

However, the rate of false positive matches for Spike2 searches varies between 33 % and

75%, when Spike2 is able to identify R0 or R l as events at all, with slight variations in

the template generation parameters giving wildly differing results (including complete

non-recognition of R0 and R l as events). Overall the R0/R1 separation is extremely

difficult, and no mechanism is likely to perform well - at least not to levels which would

be useful in practise. The interesting feature of the MMD classification results is that

the MMD method could do anything with data of this nature.

58

4.6 Application to synthetic data.

The data described in section 3.7.6 was analysed in accordance with the

procedures described there. The single event search results are shown in Fig 4.8, which

shows the expected increasing failure rate with increasing noise levels, though with the

F2 identification failing more dramatically than might perhaps be expected.

The double event search results are presented in Table 4.5. This again shows the

expected decline in matching performance with increasing levels of noise and, as

expected, that simultaneous events completely destroy reliable discrimination. It also

shows that the presence of a non-simultaneous secondary event significantly reduces the

discriminating ability of the MMD search method, suggesting that it would in general

require to be coupled with either the use of compound templates (representing specific

overlap combinations) or identified event subtraction followed by re-matching of

identified overlap situations.

The hybrid event search results are presented in Fig 4.9, except for the zero

noise data which showed 100% reliability for all comparisons except for the F1/F2

50/50 hybrid which was identified as 100% FI. As expected, these show a decline in

the reliability of identification both as the noise and the proportion of the minor hybrid

component increased. Perhaps surprisingly this had an effect on the identification of the

un-hybridised F3, which was included for comparison.

59

Table 4.1

A. Variable envelope template results for FI.

B. Variable envelope template results for F2.

Comparison of the results of the variable envelope method with the voltage

window technique (Denheen, 1992) when applied to the same data set. For a

template search performed with the specified k l and k2 parameters (see text for

definitions), the events identified as being FI and F2 were compared with the

FI and F2 events identified by voltage windowing. False positive events were

defined as being template events which did not match window events, while

false negative events were defined as being window events which did not match

template events. False positive events are also noted as a percentage of the total

template events.

As expected, as the k l value increases so the false negative events decline while

the false positive events increase.

C. Minimum merit distance results for FI and F2 compared with the

voltage window technique. Series a (Fla and F2a) show the results using

templates for F I, F2, F3, F4, F5/F6 (combined), while series b (Fib

. and F2b) show the results using templates for FI, F2, F4, F5/F6

(combined). This should reduce the probability of incorrectly classifying

an F2 event as an F3 event (at the expense of incorrect classification of

F3 events), which is in fact the case.

For the purposes of these tables, the voltage window method is assumed to

identify FI and F2 events with complete accuracy, an assumption which may

not in fact be valid.

A

k l value k2 value actual
matches

template
matches

number (%) of
false positive

number (%) of
false negative

% of template
matches false

10 100 159 100 8
(5.03)

67
(42.14)

8.00

15 100 159 128 12
(7.55)

43
(27.04)

9.38

20 100 159 138 16
(10.06)

37
(23.27)

11.59

25 100 159 165 31
(19.50)

25
(15.72)

18.79

B

k l value k2 value actual
matches

template
matches

number (%) of
false positive

number (%) of
false negative

% of template
matches false

10 100 118 83 6
(5.85)

40
(33.90)

7.23

15 100 118 100 7
(5.93)

24
(20.34)

7.00

20 100 118 105 11
(9.32)

23
(19.49)

10.48

25 100 118 112 15
(12.71)

20
(16.95)

13.39

C

template actual
matches

template
matches

number (%) of
false positive

number (%) of
false negative

% of template
matches false

F la 159 160 15 14 9.38
(9.43) (8.81)

F2a 118 104 9 23 8.66
(7.63) (19.49)

F ib 159 165 17 14 10.30
(10.69) (8.81)

F2b 118 112 12 18 10.71
(10.17) (15.25)

Table 4.2

Results of template searches for FI and F2 waveforms before and after the

cutting of the ventral nerve cord posterior to the ganglion from which the third

root originated. This abolished all FI activity. Figures are absolute numbers of

events for each template, when searches were performed on the same two

sections of data.

The templates are as follows:

F la VE template for FI defined on the pre-cut data segment.

F2a VE template for F2 defined on the pre-cut data segment.

F ib MMD template for FI defined on the pre-cut data segment.

F2b MMD template for F2 defined on the pre-cut data segment.

F2c VE template for F2 defined on the post-cut data segment.

template pre-cut events post-cut events

F la 266 0

F2a 68 3

F ib 267 0

F2b 71 44

F2c N/A 50

Table 4.3

Results of template searches of tagged data from the crayfish coxo-basal

chordotonal organ.

A. Results of searching the entire data set for templates (designated RO to

R5) corresponding to the various classes of spike present in the data set.

B. Results of searching the filtered data set for templates RO and R l,

corresponding to the class separation of interest. The spikes

corresponding to classes R2 to R5 were removed by eliminating all

events with an amplified peak amplitude of less than 0.5 volts or more

than 0.8 volts. This will also remove some overlap events which would

potentially be of interest, as well as some events previously classified as

RO or R l, and will also include representatives of other classes of spike,

resulting in the total number of events not corresponding to the previous

search (which is supported by the 34 intracellular events which did not

correspond to events included in the filtered data).

C. Results of searching the entire data set using a voltage window. The

spikes corresponding to category WO have a peak amplitude of between

0.55 and 0.8 volts, the spikes corresponding to category W1 constitute

the rest of the file.

A

Class Total Events Intracellular Matches

RO 1549 767

R l 1663 514

R2 1005 9

R3 2979 24

R4 2960 101

R5 2000 19

B

Class Total Events Intracellular Matches

RO 1606 821

R l 1634 579

C

Class Total Events Intracellular Matches

WO 2896 1332

W1 9260 97

Table 4.4

Results of using Spike2 to generate templates and search the entire set of tagged

data from the crayfish coxo-basal chordotonal organ. In each run a new set of

templates was generated, and a search performed using these. The template

categories designated SO to S9 differ between runs, the number of categories

differs between sessions, and the number of detected spike events differs.

Class First Run Second Run Third Run

Total Matches Total Matches Total Matches

SO 1865 1241 2859 1363 2683 735

SI 703 68 3079 24 855 322

S2 527 52 286 15 261 16

S3 540 35 1628 10 2211 9

S4 2260 10 369 10 266 8

S5 716 7 360 6 1268 4

S6 1538 6 - - - -

S7 168 5 - - - -

S8 821 4 - - - -

S9 36 1 - - - -

Total 9174 1429 8581 1428 7544 1094

Table 4.5

Results of MMD (minimum merit distance) template searches for FI, F2 and F3

waveforms on synthetic data representing instances where two spike events

overlap. In each instance the primary spike event is the one which is correctly

aligned with respect to the template and the secondary event occurs at the time

indicated (with the timings being relative to the notional voltage threshold

trigger event).

Figures given are percentages of primary events correctly identified for each

template while * denotes combinations not attempted. Each column of tables

corresponds to the specified secondary event, while each row of tables

corresponds to the specified S/N ratios.

The S/N ratios presented here and elsewhere are derived from the standard

deviation of the noise relative to the FI spike. The S/N ratios are given with

[S/NJdb = 101ogio(S2/N2) where S^ and N^ are SS^/n and SP^/n respectively

(S = sample, N = noise, n = number of datapoints).

Se
co

nd
ar

y
ev

en
t

(1
.8m

s
pr

io
r)

Se
co

nd
ar

y
ev

en
t

(at
 s

am
e

tim
e)

Se

co
nd

ar
y

ev
en

t (
1.

8m
s

af
te

r)

©
CO OO o
fa o *

O o
N Oo oofa * T"H

o o
rH

oo oofa *

fa
N
fa

£&

ro o O
fa oo O*

o ors co ■'3"fa * Ov

O
rH o vofa * VO VO

rH rs ro
fa fa fa

F
3

0.
0

25
.0

*

o
O

©
fa <N * VO

rH o p
infa * lO in

rH cc)
fa fa fa

F3 45
.0 O

d *

o
©

O
fa *

rH o O
cofa * o <N

rH Mro
fa fa fa

co Oo
fa Oo *

o
N o oofa o *

o o
o o

rH o ofa *

rs CO
fa fa fa

fa

F3

o
d 11

.0

* F3
O
d 0.

0

*

o
<s o oo N o pvri
f a o * 1—H fa o * ov

o Oo o o o
rH o o rH <N ofa * OV fa * uo fa

rH N co COfa fa fa f a fa fa

F3

O
do
i—fa

o
d * F3

0001 o
d *

o o o
o o o o

n o o n o in
f a f̂a * fa * 00

o o o
o o d o

rH o o ▼H o infa * fa * r-fa ov

rH <s co rofa fa f a fa fa fa

F3

O
OO 6.

0

*

o O

F2 ov* vn

o o
rH
fa * (N

VO
r-r-

rH
fa

N
fa

£1

F3

O
OOOO | 7

.0 *

O O

F2 u-v00 * VOuo

o o
rH
fa * oCO

rH
fa

N
fa

CO
fa

-4->a -4-»c Ov<D <D> > CO<D 8 <D1-fa
5* II€ £ II3
'£ 00 £ 5CAj

■4—>a<u Ov><D
b IITO =g

•cfa
£to

a<Dp><DCO
IITO =§

•a
fa 001

Figure 4.1

A. Single channel recording of the activity on the third root of the

superficial flexor nerve, showing spike events identified as belonging to

the spike classes FI to F6.

B. The FI and F2 spike waveforms in greater detail. Overlaid onto the F2

waveform is a copy of the FI waveform (FT) to show the difference in

shape.

0.6

0 .4

0.2

0.0

S e c t i o n

E n l a r g e d- 0.2

S ec o n d s0.450 .35 0 .400 .25 0.300.20

0.10

0.05

0.00

- 0 .0 5

- 0.10

0.2775 S e co n d s0.2675 0.2700 0 2725 0.27500.26500.2625

Figure 4.2

Results of sensitivity testing of the variable envelope template. The number of

spike matches is shown for each template error tolerance (kl) value for a range

of template derivative error tolerance (k2) values from 0 to 200 /iV. Increasing

the k l value should result in an increased number of matches, until all of the

available spike events are matched for some kl value. As expected the shape of

the curve is only slightly influenced by the k2 value, with increased k2 mostly

resulting in an increased number of matches for any given k l value.

A. Result for FI template search (kl range 0 to 28 mV).

B. Result for F2 template search (kl range 0 to 30 mV).

M
at

ch
in

g
Ev

en
ts

M

at
ch

in
g

E
ve

nt
s

A
300

200

100

200
1 80

Template Error Tolerance (mV)
lO O - i

80

60

40

Template Error Tolerance (mV)

Figure 4.3

Representative FI and F2 spike events from the experiment in which the ventral

nerve cord was cut to sever the FI neuron.

A. Pre-cut FI spike.

B. Pre-cut F2 spike.

C. Post-cut F2 spike. Note the difference in the waveform from B to C.

Figure 4.4

The effect of cutting the ventral nerve cord on the activity of the superficial

flexor nerve.

A. Activity during an eight second period prior to cutting.

B. Activity during an eight second period immediately following cutting.

C. Activity during a ten second period several minutes after cutting.

Note that the timing of the three sections as marked on the traces does not

correspond to the actual intervals between the three recordings.

Figure 4.5

A representative segment of the tagged data from the crayfish cuticular stress

detector, showing various possible outcomes for the template match.

Channel 1 shows the adr activity.

Channel 2 shows the CSDl-t activity.

Channel 21 shows the template events.

A. A short section showing:

a a false positive template event

b a true negative event

c a true positive event

B. A longer section giving a picture of the overall activity.

V o lts

0.5

0.0

-0.5

V o lts

0.50

0.25

i\— IK~ -.................................{• ĵ 1 »■■■1 0.00

-0.25

-0.50

18.2 18.3 18.4 18.5 18.6 18.7 s e c o n d s 18.8

V o lts

0.5

2 0.0

-0.5

V o lt s

0.50

0.25

1 0.00

-0.25

-0.50

i i i i—m —i t r i i i rn rn i i i i i i—m —i m i i i i—i i i i m i—i—r ~\—i—m i—i—i i r
10 12 14 16 18 S eco n d s

Figure 4.6

A representative segment of the tagged data from the crayfish coxo-basal

chordotonal organ, showing various possible outcomes for the template match.

A. A section showing the intracellular activity on channel 1 and the

extracellular activity on channel 2.

B. Representative RO (red) and R1 (blue) waveforms superimposed to show

the similarity in shape and amplitude.

uUl

Figure 4.7

An illustrative segment of the tagged data from the crayfish coxo-basal

chordotonal organ showing the results of template classification using Spike2. A

shows a two second segment, while B shows detail from part of that segment.

There does not appear to be any consistency in the classification of RO and R1

events.

Channel 1 shows the intracellular activity.

Channel 2 shows the extracellular activity.

Channels 3 to 5 show the template classification results of searches from

separate sessions. Within each channel the spikes are colour coded to

show the template category to which they belong. The colour coding is

not consistent between channels.

-T I , " TT-T , | • rj................. |,.................,................. .,.......
0.3 0-1 0.5 0.6 0.7 0.8 0.0 1.0 I 1 1.2

Time (seconds)

R0

I

— I

0.11 0 12 0.13

Time (seconds)

Figure 4.8

The effect of increasing background noise on the reliability of the MMD

template method when applied to single spike synthetic data. The failure rates

are given as percentages of the known events which are correctly identified at

each of the noise levels. The S/N ratios given here are derived from the

standard deviation of the noise relative to the FI spike.

Fa
ilu

re

Ra
te

1 0 0 % - i

90%-

80%-

70%

50%-

40%-

30%-

20% -

10% -

0%
0.02 0.03 0.04 s.d0 0.01

(«0 (13.9) (7.9) (3.0) (1.8) ([S/N]db)

Figure 4.9

The matching success of the MMD template method when applied to spikes

intermediate in shape between FI and F2. Each graph shows the effect of the

ratio of the minor component on the matching success. F3 is not hybridised in

this data set.

A. The result at 0.01 of standard deviation (S/N = 13.9dB).

B. The result at 0.02 of standard deviation (S/N = 7.9dB).

C. The result at 0.03 of standard deviation (S/N = 3.0dB).

The equivalent graph for zero noise would show 100% success at all ratios

tested, except for the F1/F2 50/50 hybrid which was identified as 100% FI.

A

80%

<L>
S 60%
CO
CO<L>O
I 40% FI >F2

F2 > FI
20% —

0%

0.0 0.20.1 0.3 0.4 0.5

B

ru
c5c*
CJCJ
3

C/5

100%

80%

60%

40%

Ratio o f Minor Component

20%

0% —

0.0 0.1 0.2 0.3
Ratio o f Minor Component

0.4 0.5

100%

80%

60%

40%

20%

0.0 0.2 0.3 0.4 0.50.1
Ratio o f Minor Component

5 Discussion.

5.1 Event identification methods compared.

As discussed in chapter 1 there are a number of possible approaches to the

identification of nerve spikes. At the simplest level, events can be identified on the basis

of the waveform crossing a threshold level, while at a somewhat more complex level

waveforms can be compared (by some means) to templates. These range conceptually

from an extension of the voltage threshold to form a continuous series (giving a closed,

bounded region of a poly-dimensional space) to those utilising some measure of

"distance" between waveforms. Various distance measures (or metrics) are used, most

commonly the sum of the absolute values of the differences of the component values

(D'Hollander and Orban, 1979; Jansen and Maat, 1992) or the Euclidian distance

(Salganicoff et al., 1988), using either the entire waveform or a subset of the component

datapoints.

On a slightly different track it is possible to consider the voltage values making

up each waveform as the coordinates of a point in a poly-dimensional space. These

points will form clusters which can be identified (by considering the distance from each

point to its neighbours, as is done in two or three dimensions) and the space can then be

partitioned to separate these clusters. The means of accomplishing this partitioning

becomes the key to the success of this technique. The difference between this approach

and the consideration of a template as describing a bounded region of the same poly

dimensional space lies in the means used to define the region. In a template-based

approach the region is defined simply, for example as the analogue of a sphere or

ellipsoid surrounding a point which represents the average of all currently matched

waveforms, and which may vary depending on data ordering. A true clustering method

instead partitions the data with reference to all of the waveforms. This can be

accomplished by the use of an algorithm such as the "k-means" algorithm (Hartigan,

1975) employed by various investigators (Salganicoff et al., 1988; Kreiter et a l., 1989)

or alternately by use of a "genetic" algorithm (Forrest, 1993), which operates on the

60

principle of swapping elements between clusters until an optimal distribution is achieved.

It would also be possible to consider a waveform as being a form of stochastic

process with each data point having a different probability distribution depending upon

which event class the waveform belonged to. The probability that a given waveform

could take the particular shape given its actual identity could then be calculated and the

class giving the highest probability could then be assigned as the match. However it

seems that this approach has not been discussed in the literature.

In a more deterministic fashion, a curve fitting algorithm could be used to

determine an approximate equation for each waveform. Curve fitting is a standard

capability for "off-the-shelf" mathematical analysis packages such as MathSoft's

MathCad 5 plus, and this approach could be applied to give the class, and with suitable

restrictions the parameters, of the equation for each waveform. This has the advantage of

transforming a set of voltage values into a set of equation parameters which relate to the

information content of the entire waveform. If in addition the waveform equations were

constrained to be either of the same class, or of highly distinct classes (i.e. those

producing waveforms of substantially differing shapes), then the parameter information

could be directly compared. This is the approach followed by Remmel (1983).

Approaches considering some aspects of the information content of waveforms

were among the first to be considered (Mishelevich, 1970; McCann, 1973), probably

due to the suitability of their highly reductive nature to implementations on early

computer systems. Aside from principal component analysis (Abeles and Goldstein,

1977; Eggermont et al., 1983), the more extensive consideration of the information

content which more powerful computing facilities have made possible appears to have

been neglected in favour of high speed templating systems which could be implemented

in real time. Indeed, apart from the Fourier or principal component analyses, no

consideration has been made of systems using a distance metric based on information

content rather than raw shape.

61

5.1.1 Identification of events using neural networks.

One of the most interesting and most generally applicable techniques is that of

neural net classification. The principles of neural net techniques are well known (Hart,

1992), and in short utilise a form of "training" to establish a classification mechanism

for (potentially) highly complex data. This approach is next to useless when there is only

a small quantity of data available. However, the classification of large numbers of

elements is ideally suited to this approach.

However, this should not be taken as suggesting that neural net methods are

necessarily the last word in terms of classification and matching. There are objections on

both theoretical and practical levels to the blanket application of any technique, and

neural networks are no exception in this respect. On the theoretical level there are

several reasons to avoid neural nets, chief amongst which must be its distinct "black-

box" quality. With most matching techniques the exact process by which a comparison is

effected is likely to be understood by its original developers. However, the basic concept

of the neural net is that the training period influences the weights of intermediate

connections between known inputs and outputs. Therefore it is difficult, if not

impossible, to know what actually determines the classification scheme used, giving rise

to the possibility of training the net using data in which secondary characteristics are

present but not readily appreciated resulting in an unreliable classification of real data

(Hart, 1992). On a practical level, most pattern matching algorithms are based directly

on mathematical or statistical procedures and a particular implementation can therefore

be verified both by analysis of the code for correctness and by comparison of the results

of analysing the same data via the new code and by some other method (such as

comparing the behaviour of mathematical equations coded in a programming language

with the same equations handled through a symbolic mathematics system such as

Wolfram's Mathematica) . While the kind of code produced for an implementation of a

neural net can obviously be verified by routine code checking and verification

procedures, these are far from being highly reliable (McConnell, 1993), and

unfortunately neither the algebraic nor comparative techniques are appropriate for this

62

kind of code. All this leaves the problem of adequately verifying a system when the code

cannot be verified and the results cannot be checked. None of this is by any means

insurmountable, indeed similar comments could once have been made about many other

areas, but it does contribute to the use of neural nets without a proper understanding of

the issues involved. Just because a technique has potential drawbacks, or could be

implemented improperly is no reason to reject its use. The volume of nerve spike data is

perfectly adequate for the neural net approach to be applied. There are alternate methods

which could be applied to generate matched sets of data (either from voltage

thresholding or from templating - see the following sections) for training purposes, and

there is also the possibility that a neural net approach could be applied "blind" to new

data sets based on previous training. This summary, however, contains the seeds of the

reasons for rejecting this approach. In the first place a net system has to be trained, and

for data which cannot be classified by voltage thresholding this implies that clustering or

templating has to be performed first. In the second place there are two approaches to the

addition of neural net capabilities. Either a net facility could be developed from scratch,

which is too substantial a task to have been realistically tackled as part of this project, or

alternately an outside system (either commercially available or developed as part of

another research project) could have been grafted onto the data management systems.

This approach avoids the direct development problems. However, there remain the usual

problems of integrating what is necessarily a complex system with the necessary support

facilities. This task is significantly easier when the neural net facilities are already

available (in the form of a set of libraries) at design time. This approach was not even

considered at that stage, and did not prove possible later.

However, this does not remove the possibility of extending the signal analysis

system to use neural net mechanisms in the future. Indeed the data management systems

for the search and result display facilities are designed to be primarily "black-box"

control facilities. Addition of a training stage would require only the routing of the

results of a template search to the net training facility. Overall the programming tasks

necessary to integrate a suitable neural net processing facility into the system are

relatively minor.

63

5.1.2 Comparison of template and voltage threshold techniques.

This section considers the threshold voltage method as an alternate means of

classifying spike events. The results described in section 4.5.2 illustrate the limitations

of voltage thresholding techniques. In this data set there are two distinct categories of

spikes (identifiable on the basis of intracellular recording) which have identical minimum

and maximum amplitudes. As expected voltage thresholding completely fails to separate

this data.

It is clear that the simplest method which reliably identifies events of interest is

likely to be the most satisfactory in a given situation. Thus it goes almost without saying

that if the events of interest (spike waveforms corresponding to the activity of particular

neurons) can be identified reliably on the basis of, say, peak voltage then more

sophisticated methods are inappropriate. This is normally the case in the Nephrops

system when considering spike classes F3 to F6.

It is also clear that when there is no significant difference between two

waveforms (i.e. when the difference between the waveforms is less than the level of

random noise), then it will not be possible to separate them on the basis of the electrical

activity at a single point on the axon (Sarna et al., 1988; Kreiter et al., 1989). This in

general leaves three main possibilities for the separation of waveform events.

First is the option of separating spike waveforms on the basis of the electrical

activity at two distinct points on the axon bundle. Unless the axons have precisely the

same electrical properties, the conduction velocities will differ (Schmidt and Stromberg,

1969; Roberts and Hartline, 1975), and consequently once the conduction velocities for

the various axons have been established, the events can be separated by predicting the

activity at the second recording point based on the activity at the first. This is a highly

reliable method which has been used for this purpose (Schmidt and Stromberg, 1969;

Roberts and Hartline, 1975), however it does require specific experimental procedures.

It at least doubles the data recording requirements and, however desirable it might be to

experiment in this fashion, there will be times when it may be impractical or impossible

to do so.

64

The second approach is to use principal component analysis to derive the

contributions (or eigenvalues) of the basis waveforms (i.e. those waveforms which can

be linearly combined to give each actual spike), and then to use a clustering algorithm to

identify spikes on the grouping of their eigenvalues (Abeles and Goldstein, 1977;

Eggermont et al., 1983). In mathematical terms this corresponds to performing a

template or cluster search on the transform of the spike waveforms.

The third approach is to perform a template or cluster analysis directly on the

untransformed waveform. Taking the data from a single electrode it is probable that the

individual axons will generate waveforms which differ in shape over at least some part

of their timecourse. On the assumption that the waveforms do not differ sufficiently in

peak voltage that they can be distinguished this way, the use of a method considering the

shape is a logical next approach.

The development of an approach like this cannot however be undertaken in

isolation. It is necessary in the first instance to apply a shape based approach to data

which can (albeit marginally) be analysed in another fashion. As described in section

5.1.8, the approach to shape matching used here is the generation of specific template

waveforms which are then compared with all of the data waveforms. As a control

(described in section 3.7.1) the data was suitable for event separation based on peak

voltages and this was carried out separately. The critical separation was that of FI and

F2, in which the difference in recorded peak voltages was of the order of 20mV

(approximately 12% of the overall spike height) in the data used, and this permitted the

comparison of the template search methods with an established mechanism. As the

results show, the template methods provide similar results to voltage thresholding when

applied to real data. This does not of itself say anything about the reliability of the

templating methods, since there is no independent check of the actual identity of the

events.

However the use of tagged data (described in section 3.7.3) provides just such a

check. The results of that analysis are promising though, depending on the requirements,

somewhat mixed. Exclusion errors (false negative events) are rare, but at the expense of

an undesirable inclusion error rate. To what extent this represents a limitation of the

65

MMD search method rather than specific difficulty in generating usable templates

remains unanswered. A partial answer to this is given by the use of synthetic data, in

which the search results can be compared with the known event identities using

templates of a known quality. In particular the use of hybrid waveforms, built from

linear combinations of FI and F2 waveforms together with random noise, enables the

discrimination capabilities of the MMD method to be established with much greater

accuracy and, as the results show, with a fair degree of success. The key difference

between the hybrid waveform data and single or overlapping event data is the duality of

the waveform. It is neither FI nor F2, and so tests the key feature of the MMD

algorithm - the comparison of information content. Of course, to be strictly accurate,

this comparison should use a linear combination weighted by the waveforms being

combined, otherwise the cut-off point will not be at a 50/50 combination. One waveform

will necessarily be predominant at this ratio. However, the test still shows discrimination

capability in circumstances where neither voltage threshold nor voltage windowing

techniques would be applicable.

Overall though, adequate testing to establish the limits of the template methods

involves application to multiple real and synthetic data sets in order for the operational

limits to be established with confidence.

5.1.3 Comparison of the techniques used with other template techniques.

The results described in section 4.5.2 illustrate the difficulty which faces any

technique based upon a single point recording. The template mechanism employed by

Spike2 is a variation of the VE template, with a defined proportion of the data points

making up an individual spike having to lie within the envelope for a match to be

accepted. The templates are generated in the first instance by a clustering mechanism,

with a limited amount of user input. As a commercial product, this system has

presumably been refined and enhanced based upon the experience of users. However it

still fails to perform well when challenged with difficult data.

The template matching techniques which are discussed in the literature are

66

primarily variations of the VE template method, mostly differing in the manner in which

the templates are defined or the distance measurement used for the comparison. Many

approaches utilise a small number of template datapoints, and much effort has been

devoted to strategies for reducing the number of relevant datapoints per template,

particularly in on-line or hardware based spike sorters. Baseline independent templates

have been considered (Marion-Poll and Tobin, 1991), generated by differentiating the

data waveforms prior to template generation and classification process. This study

provides one of the few examples of the use of a mathematical as opposed to a statistical

transform of the data waveforms prior to classification. Overall however, a number of

common themes quickly become apparent from a literature review (see chapter 1). First

is the reduction in data processing and storage requirements by reducing the number of

datapoints in each spike waveform. This is usually carried out either by reducing an

oversampled waveform (Jansen and Maat, 1992) or by feature extraction (Dinning and

Sanderson, 1981; Worgotter et al., 1986; Salganicoff et al., 1988; Kreiter et al., 1989).

Second, templates are defined during a "learning phase", usually a representative subset

of the data (Salganicoff et al., 1988; Kreiter et al., 1989; Bergman and DeLong, 1992),

but sometimes on a first pass through the entire data set (Jansen and Maat, 1992). Third,

on-line systems have difficulty processing the data within expected minimum interspike

intervals (Mishelevich, 1970; D'Hollander and Orban, 1979; Kreiter et al., 1989;

Bergman and DeLong, 1992), particularly when coupled with data storage. Fourth, the

prevailing interest is in on-line systems (Mishelevich, 1970; D ’Hollander and Orban,

1979; Dinning and Sanderson, 1981; Worgotter et al., 1986; Kreiter et al., 1989;

Salganicoff et al., 1989) and these tend to involve various degrees of hardware

implementation and dedicated computer facilities.

None of these template comparison methods consider the actual information

content of the waveform, beyond defining the match distance or the voltage window in

terms of the standard deviation of the background variation in the signal (sometimes, as

with Bergman and DeLong (1992), allowing up to 5 standard deviations in routine

operation). The VE template method takes limited account of the information content by

allowing a derivative contribution to the template envelope as well as by permitting

67

templates to be defined on specific waveform features. However the MMD template

expressly compares the information content of template and data, and is thus

conceptually (though not in its operation) more akin to the principal component analysis

approach.

5.1.4 Comparison of the variable envelope and merit distance techniques.

As described in chapter 4, both methods display the ability to separate similar

waveforms such as FI and F2 with broadly similar levels of effectiveness. The VE

template method allows data to be searched for a single category of event, and this

would be of particular use when applied to data containing many classes of events for

which it would be impractical, or even impossible, to identify reliably templates for each

category. This kind of data poses substantial problems even for systems using automated

template generation facilities, due to the sheer number of resultant templates. Further,

since the templates are not mutually exclusive, it is possible to define templates which

are applicable to characteristic portions of the event waveform and then identify events

based on matches to combinations of characteristic patterns.

The VE templates (as implemented) are very susceptible to problems of partial

event overlap, though no more so than other template systems. This has definite

implications in situations where event overlap is common and, while it is possible to use

combinations of templates to classify events, there are obvious advantages to a system

which does not require high levels of user intervention.

The MMD template method implicitly has the capability to "best guess" in

situations where events do overlap. There will necessarily be a degree of incorrect

assignment, but this is implicit in any method which attempts to resolve overlapping

events in a single pass (see section 5.2). As the results of applying the MMD method to

double event synthetic data show, this method is surprisingly effective in such situations.

This is particularly apparent when considering that any variant of multiple voltage

windowing technique would be completely inapplicable to such data. The MMD method

is therefore a considerable improvement on systems which simply discard overlap

68

events.

One of the key questions that must be considered in respect of any software

which attempts to automate an analysis process is whether it is easier to use the software

or some other means to perform the analysis. This generalises to the question of whether

it is worth performing the analysis at all. The answer to the second question obviously

depends to a considerable extent on the value of the data. However, the first question is

highly relevant to any consideration of working software. It is not enough to be able to

perform a complex analysis if the processes of inputting the data and outputting the

results are so cumbersome or error prone that an alternative approach is preferable.

Correspondingly, the capability of handling the data with ease could in some instances

simplify the analysis process to such a degree that complex analysis techniques would

not actually be necessary for the system to have advantages over other approaches. This

is clearly an extreme position, best suited to cases where the data retrieval is the obstacle

rather than the analysis. However, it does reinforce the point that ease of use is vital in

anything other than early prototype versions of the software.

To this extent, the signal matching system is necessarily a prototype and ease of

use in respect of the interface could be said to be irrelevant except where the design does

not allow for modification based on users' experience. However, the idea of using many

combinations of partial templates is inherently complex and is therefore correspondingly

weak. This does not mean that it is inappropriate on occasion, simply that it should not

be a method of first choice.

Finally, the likely effects of data quality on the operation of both template

methods must be considered. The VE templates are (as implemented) absolute, there are

no degrees of match. Either the waveform matches the template or it does not, and

therefore random noise must be accommodated within the levels of permitted error.

However, the VE templates are base-line independent and, in consequence, drift in the

base voltage will not have any effect. In contrast, the application of the MMD template

method results in a "best" match under all circumstances. The MMD calculation should

reduce the influence of random noise precisely because it is based on common

subsequence identification rather than comparison of the whole sequence. However, the

69

assignment of a match to all events will necessarily result in some spurious assignments

due to event overlap or ambiguity. This could be overcome by replacing the Boolean

choice with a class specific threshold. However, this would require an additional

threshold determining step with a consequent added requirement for user interaction.

As previously mentioned, there will inevitably be a certain degree of random

noise present in the data. Also there will be a degree of variation between spike events

of the same category. Obviously two spike classes can be separated by means of

templates only if the normal variation within each class plus the normal level of noise

leaves a measurable difference between classes over some portion of the waveform. In

this respect, as in others, sophisticated analysis techniques are no substitute for good

quality data. Rather, good data and sophisticated analysis should work together to

produce a better end result. The alternative is to produce increasing quantities of poor

quality results.

5.2 The effectiveness of the software.

The effectiveness of any piece of software can and indeed must be measured both

in terms of the extent to which it performs its allotted task and the degree to which it is

preferable to the available alternatives.

To consider then the signal analysis system in terms of its effectiveness in

separating the key spike classes, it is necessary to look at the results from the single

spike synthetic data. This shows an identification rate better than 75% for all spike

classes even under conditions of significant noise degradation. Of course, given

sufficiently low S/N ratios, the performance of any system degrades to unacceptable

levels. However, it is reasonable to say that useful levels of identification are achieved

with data reflecting realistic S/N ratios, and this using data which is inherently difficult

to classify. In these terms the software must be regarded as being effective. By itself

however this is an incomplete summary of a complex situation. The template matching

methods employed and the strategy for their use may not in fact prove to be as effective

as could be achieved with suitable refinement. As discussed earlier there are many

70

different approaches to the matching problem, and the best approach in terms of

designing a piece of software to be used as an analytical tool is undoubtedly to allow for

the addition of other capabilities. To this extent, the signal matching system is built

around the template approach rather than an ad-hoc classification mechanism such as

multi-dimensional clustering, and is correspondingly limited. In theory of course it could

be modified to do anything, but the point of any software is that it should be possible to

build on what exists rather than starting from the beginning each time and in these terms

the signal analysis system does not provide a substantial framework for the

implementation of a classification scheme which is not based on a comparison of data

with templates. However to the extent that modified templating schemes could readily be

implemented (see section 5.3) the design of the system must be considered a success.

Overall, however, the limit to the range of matching methods which could be

applied with a reasonable degree of effort is only one part of the question. Automated

data handling methods can enhance the process of data analysis by making it possible to

manipulate sufficiently large data sets with a reasonable degree of effort. This is not to

say that bigger is better. Indeed, in many instances, a small amount of data analysed by a

skilled individual may be more valuable than a large amount classified automatically.

However, in biological research statistical analysis is frequently performed on data sets

which are either of insufficient size or which have been selected from the population in a

non-random fashion. Many statistical techniques were originally devised for purposes

such as agricultural research where large sample sizes are usual. Any means of

simplifying the data handling process or performing even crude separation has the

capability of yielding data sets of adequate size. Thus the signal analysis system has to

be viewed also in terms of the other data gathering, analysis, and statistical software

available, as well as the presentation software which will be used for the preparation of

the end results. All too often there are such big gaps between the various steps from raw

data to end results that analysing even one data set becomes an ordeal for the user. No

one link in the chain can cure all the problems. However, as well as permitting the

internal operations to proceed in a straightforward manner, a well designed piece of

software has to move the data in and get the results out painlessly.

71

No novel software design is likely to resolve all the issues involved in the

production of a good interface without going through two stages. First, those parts of the

interface which provide the user with facilities akin to those commonly available should

follow the normal metaphors for user interaction, and those parts which are novel should

extend the normal metaphors as far as possible. Second, the design as initially

implemented should be further refined to reflect the user’s experience with the system. It

may be that one of several different approaches to the interface design turns out to be

much more satisfactory than the others. This is strictly analogous to the design of the

underlying software, in which the problem can ultimately be expressed fully only when

the solution is already known. As software becomes ubiquitous over the coming years,

the number of situations in which novel kinds of operations are to be performed will

decline. Also the current metaphors for interaction will be refined, some change may

occur for purely commercial reasons but hopefully there will be an overall improvement.

The signal analysis system was unfortunately unable to pass through the second

stage of interface refinement within the time available for the project, and the standard

metaphors for interaction were themselves radically altered by the impact of Microsoft

Windows during the course of the project. This left the software rather less refined than

would have been desirable, however, the software is event driven and consequently the

addition of new on-screen buttons or the reorganisation of the menus has little or no

impact on the general design or its current implementation. Of more concern is what

should actually be done with the processed output. The current provision of facilities to

allow results to be imported into Spike2 (together with the necessary Spike2 macro script

to accomplish this) and the corresponding capacity to format the results for importation

into Microsoft Excel or other packages is not altogether adequate. These packages

require their own scripts in order to perform further formatting and basic processing

without necessitating substantial user intervention. Once again, time has proved to be the

limiting factor in this, with such post-processing as has been required in the analysis of

the data described in chapter 4 being undertaken partially manually.

72

5.3 Further development of the software.

Any good software design leaves room for additions and amendments. Indeed

this is part of the definition of good design. Equally any design, however good, closes

off some avenues of development. A good design places as little restriction on the

flexibility of the system as is consistent with keeping the work required to implement

that design within reasonable bounds. In other words some possibilities are designed in

while others are designed out. This section will consider the types of operations which

have been allowed for but not actually implemented in the signal analysis system, and

the work which would be involved in pursuing each.

The most obvious deficiency in the entire system is the lack of any mechanism in

the Result Viewer allowing the user to intervene and determine the classification of a

specific event although this can be remedied by the use of Spike2 at a post-processing

stage. This would be most useful when combined with a search for events which

remained unclassified after a template search of the database, and which thus represent

overlapping or otherwise ambiguous events. The generation of unclassified events

presently occurs with the VE template method and could be introduced with the MMD

method by the definition of a maximum acceptable error for each template class. A user

intervention facility would also require that the templates could be visualised within the

Result Viewer, perhaps in a summary window showing a portion of the template

database at one time. Also a mechanism for inputting the new match information would

be required, a dialog box or (on a technically more complex level) a drag and drop

facility would perform this task. The information would then be written back to the

match database and thereafter processed in the usual way. At a similar level, the

capability to load the match database corresponding to a previous search would be

useful. Technically this is simple, requiring only that the match database is loaded at

startup and internally flagged as existing rather than being created at search time.

Searches would be unaffected, since they presently handle both the cases of no prior

match database and existing databases. This facility was not needed for the purposes of

the analysis described in chapter 4 and was accordingly not implemented.

73

Another consideration would be the addition of alternate result display formats.

Specifically, waveform views become less useful when displaying long sections of data.

Thus an approach using overlaid views of the waveforms for each spike class (as is

common in the literature), or a bar chart summary might be useful supplements to the

current display.

Finally, as regards data management issues, is the question of selecting the

template file separately from the data file. This was not originally perceived as being an

important facility, since judicious renaming of template files allows this to be

implemented indirectly. However, it would be easier if the template file name was

selectable rather than simply being derived from the data filename as at present.

A consideration of the template generation and analysis process leads to the

possibility of a number of other facilities being developed. First, based on events

matched it would be readily possible to generate average waveforms for each template

category, together with the standard deviation of each datapoint. This information could

be used to generate a new set of VE or MMD templates which could then be reapplied to

the entire database. This is analogous to the use of templates defined on the basis of a

"training period" covering part of the waveform database. Second, since long duration

extracellular recordings involve both deterioration of the preparation and local variations

in the sensitivity of the recording (perhaps due to the experimental regime itself) it is

possible that templates which match well during the early portion of the database will be

inappropriate at a later stage. This leads to the idea of modifying the templates based on

the shapes of the waveforms currently being matched. This could take the form of an

average of the matches up to the current position, a rolling average or weighted average

of the last so many matches. Because this process is interactive, it is technically

somewhat more involved than performing a second pass on the data. However, there is

no major internal obstacle to its satisfactory implementation.

Some waveform events will either be unclassifiable or unreliably classified

because they are actually composed of two overlapping spike events. In this case it is

likely that the first event will be closely aligned to the expected position for a single

event, since the alignment depends entirely on the voltage threshold used for

74

distinguishing spikes from background noise. This leaves the possibility that the

waveform template for each spike class could be subtracted from the data waveform, and

the result compared to each of the other template classes (using an appropriate temporal

shift to compensate for the second spike not occurring simultaneously). If, as seems

likely, the data waveform is simply the sum of the two spike events, then (on the

assumption that there is one template per spike class) there will be one comparison

which will yield a match, and consequently identify both waveforms. A second-pass

search operating on these lines could fairly readily be added. All the support facilities

already exist. However, the second-pass search routines would require to be coded

separately as a modified form of the standard search to enable this mechanism to be

integrated in a straightforward fashion. This could be extended to seek events occurring

at user defined frequencies, on the basis that where the occurrence of regular firing

patterns is detected there must be the suggestion that irregularities could be due to event

overlap.

The event filtering facilities of the result viewer presently provide for event

selection based on the occurrence of identified events on two (or more) data channels.

However these events must be exactly concurrent, which in general is an unreasonable

assumption when considering the extracellular activity of either two nerve fibres or two

locations on the same fibre. The introduction of conditional event filters would permit

the separation of correlated events. However this could not be readily achieved using the

current event filter mechanism. Either a new facility could search for conditional events

and write them to the event database or the existing facility for building events could be

extended by the introduction of a restricted search on a second event channel. Of these

two approaches the first has the merits of being conceptually simple and not interfering

with operational code, while the second has the advantage that it does not alter the match

database and is hence reversible.

No consideration of enhancements to the matching system would be complete

without at least mentioning the possibility of performing the search on a convolved or

transformed data set rather than on the original. The nature of the convolution and the

templates would of course depend on the data, but the process of template generation and

75

searching is independent of the shape of the waveform, and consequently the convolution

search could be implemented readily by means of a freestanding filter of the waveform

database. Only slightly more complex would be a system generating a convolved

waveform database on demand prior to template generation or searching operations.

Either approach has the potential to add a powerful additional tool for the segregation of

spike waveforms.

Finally, the implementation of additional non-template matching facilities should

be considered. This is particularly important in respect of neural net methods which, of

course, require extensive training on pre-identified data, and which are consequently

well suited to a two pass system with the learning stage being a template matching

algorithm. As with any other non-template method, the standard data management

facilities are available to load data waveforms, store match information, and display

filtered results as necessary. However the entire matching mechanism, together with the

code to support any user interface requirements would have to be written. This could

then be hooked into the parent window menu and the message handler as an extra

freestanding item.

5.4 Summary of main conclusions.

In summary therefore, a Windows based database management system has been

implemented on the IBM-PC as the basis of a system for the classification of nerve spike

events in terms of their shape. The classification process has two stages, first the manual

selection of template waveforms, and second the automated search for the templates

using either of two identification algorithms. The first of these is a variation of a

previously described contour matching algorithm (Kent, 1971; Akker et al., 1982) while

the second is an entirely novel application of an information comparison algorithm. The

system has been successfully tested both with real and synthetic data. However, further

refinement on the basis of the experience gained has not been undertaken. The system

has the underlying flexibility to be extended in the future to cope with other matching

methods, resulting in a potentially extremely versatile waveform classifier.

76

References.

Abeles, M. and Goldstein, M.H., Multispike train analysis. Proc. IEEE, 65:762-773.

Adrion, W.R., Branstad, M.A. and Chemiavsky, J.C (1982) Validation, verification, and testing of

computer software. Computing Surveys, 14:159-192.

Akker, T.J. van den, Ros, H.H., Koelman, S.M. and Dekker, C. (1982) An on-line method for reliable

detection of waveforms and subsequent estimation of events in physiological signals. Comp.

Biomed. Res., 15:405-417.

Andreassen, S., Stein, R.B. and Oguztoreli, M.N. (1979) Application of optimal multichannel filtering to

simulated nerve signals. Biol. Cybem., 32:25-33.

Augarten, S. (1984) Bit by bit. An illustrated history of computers. George Allen and Unwin, London.

Bak, M.J. and Schmidt, E.M. (1977) An improved time-amplitude window discriminator. IEEE Trans.

Biomed. Eng., BME-24:486-489.

Bergman, H. and DeLong, M. (1992) A personal computer-based spike detector and sorter:

implementation and evaluation. J. Neurosci. Methods, 41:187- 197.

Bessou, P. and Perl, E.R. (1969) Response of cutaneous sensory units with unmyelinated fibres to

noxious stimuli. J. Neurophysiol., 32:1025-1043.

Bradley, W., Conway, C., Glover, E. and McCormick, S. (1967) Discriminator and integrator

instrument for an on line frequency analysis of single unit discharges. Electroenceph. clin.

Neurophysiol., 22:177-179.

Bures, J., Petran, M. and Zachar, J. (1967) Electrophysiological methods in biological research.

Academic Press, New York and London.

Camp, C. and Pinsker, H. (1979) Computer separation of unitary spikes from whole-nerve recordings.

Brain. Res., 169:455-479. Caplan, R.M. (1990) How fingerprints came into use for personal

identification. J. Am. Acad. Dermatol., 23:109-14.

Cohen, A. and Landsberg, D. (1983) Adaptive real-time wavelet detection. IEEE Trans. Biomed. Eng.,

BME-30:332-340.

Denheen, M.T. (1992) Central and peripheral actions of the neuropeptide proctolin on a postural

neuromuscular muscle system in the Norway lobster Nephrops norvegicus (L.). Ph.D. thesis,

Glasgow University.

Dettman, T. (1989) DOS programmers reference. Que, Carmel, California.

77

Dinning, G.J. and Sanderson, A.C. (1981) Real-time classification of multiunit neural signals using

reduced feature sets. IEEE Trans. Biomed. Eng., BME-28:804-811.

D'Hollander, E.H. and Orban, G.A. (1979) Spike recognition and on-line classification by unsupervised

learning systems. IEEE Trans. Biomed. Eng., BME-26:279-284.

Eggermont, J.J., Epping, W.J.M. and Aertsen, A.M.H.J. (1983) Stimulus dependent neural correlations

in the auditory midbrain of the grassfrog (Rana temporaria L.). Biol. Cybem ., 47:103-117.

Forney, J. (1989) MS-DOS beyond 640k: working with extended and expanded memory. Windcrest,

Blue Ridge Summit, Pennsylvania.

Forrest, S. (1993) Genetic algorithms: principles of natural selection applied to computation. Science,

261:872-878.

Freeman, J.A. (1971) A simple multichannel spike height discriminator. J. App. Physiol., 31:939-941.

Gerstein, G.L. and Clark, W.A. (1964) Simultaneous studies of firing patterns in several neurons.

Science, 143:1325-1327.

Glaser, E.M. and Ruchkin, D.S. (1976) Principles of neurobiological signal analysis. Academic Press,

New York and London.

Harris-Warwick, R.M. and Kravitz, E.A. (1984) Cellular mechanisms for modulation of posture by

octopamine and serotonin in the lobster. J Neurosci., 4:1976-1993.

Hart, A. (1992) Using neural networks for classification tasks - some experiments on datasets and

practical advice. J. Opl. Res. Soc., 43:215- 226.

Hartigan, J.A. (1975) Clustering algorithms. Wiley, New York.

Hasegawa, A. and Kodama, Y. (1981) Signal transmission by optical solitons in optical fibre

communications. Proc. IEEE, 69:1145-1150.

Heetderks, W.J. and Williams, W.J. (1975) Partition of gross peripheral nerve activity into single unit

responses by correlation techniques. Science, 188:373-375.

Hermann, H.T., Stark, L. and Willis, P.A. (1962) Instrumentation for processing neural signals.

Electroenceph. clin. Neurophysiol., 14:557- 560.

Jansen, R.F. (1990) The reconstruction of individual spike trains from extracellular multineuron

recordings using a neural network emulation program. J. Neurosci. Methods, 35:203-213.

Jansen, R.F. and Maat, A.T. (1992) Automatic waveform classification of extracellular multineuron

recordings. J. Neurosci. Methods, 42:123-132.

78

Kanz, J., Camp, C. and Pinsker, H. (1978) Computer separation of unitary spikes from whole nerve

recordings. Fed. Proc., 37:219.

Kennedy, D. and Takeda, K. (1965) Reflex control of abdominal flexor muscles in the crayfish. II. The

tonic system. J. exp Biol., 43:229-246.

Kent, E.W. (1971) An educable wave form recognition program suitable for on-line discrimination of

extracellular single units. Electroenceph. clin. Neurophysiol., 31:618-620.

King, A. (1994) Windows the next generation: an advance look at the architecture of Chicago. Microsoft

Systems J ., 3(1):7-19.

Knox, P.C. and Neil, D.M. (1991) The coordinated action of abdominal postural and swimmeret motor

systems in relation to body tilt in the pitch plane in the Norway lobster Nephrops norvegicus. J.

exp. Biol., 155:605-627.

Kreiter, A.K. Aertsen, A.M.H.J. and Gerstein, G.L. (1989) A low-cost single-board solution for real

time, unsupervised waveform classification of multineuron recordings. J. Neurosci. Methods,

30:59-69.

Kruskal, J.B. (1983) An overview of sequence comparison. In: Time warps, string edits and

macromolecules: the theory and practise o f sequence comparison. (Sankoff, D. and Kruskal,

J.B. eds.) Addison-Wesley, Reading, Massachusetts.

Landolt, J.P. and Milliken, W.E. (1970) A discriminator and integrator device for multi-unit neural

activity analysis. Electroenceph. clin. Neurophysiol., 28:83-84.

Leibrock, C.S. (1993) Processing of mechanoreceptive input in crayfish: an in vivo and in vitro study of

the role of the cuticular stress detectors in motor control. Ph.D. thesis, Glasgow University.

Littauer, R.M. and Walcott, C. (1959) Pulse-height analyser for neuro-physiological applications. Rev.

Sci. Instr., 30:1102-1106.

MacNichol, E.F. and Jacobs, J.A.H. (1955) Electronic device for measuring reciprocal time intervals.

Rev. Sci. Instr., 26:1176-1180.

Marion-Poll, F. and Tobin, T.R. (1991) Software filter for detecting spikes superimposed on a

fluctuating baseline. J. Neurosci. Methods, 37:1-6.

McCann, G.D. (1973) Interactive computer strategies for living nervous system research. IEEE Trans.

Biomed. Eng., BME-20:1-11.

McConnell, S. (1993) Code complete: a practical handbook of software construction. Microsoft Press,

79

Redmond, Washington.

McNaughton, B.L., O'Keefe, J. and Barnes, C.A. (1983) The stereotrode: A new technique for

simultaneous isolation of several single units in the central nervous system from multiple unit

records. J. Neurosci. Methods, 8:391-397.

Metcalf, M. (1992) Still programming after all these years. New Scientist, 135(1838):30-33.

Microsoft (1990) Microsoft C advanced programming techniques. Microsoft Corporation, Redmond,

Washington.

Millar, J. (1983) A 'wavegate' spike discriminator for sorting extracellular nerve action potentials. J.

Neurosci. Methods, 7:157-164.

Millecchia, R. and McIntyre, T. (1978) Automatic nerve impulse identification and separation. Comp.

Biomed. Res., 11:459-468.

Mishelevich, D.J. (1970) On-line real-time digital computer separation of extracellular neuroelectric

signals. IEEE Trans. Biomed. Eng., BME- 17:147-150.

Neumann, P.G. (1995) Computer related risks. Addison-Wesley, Reading, Masachusetts.

Oguztoreli, M.N. and Stein, R.B. (1977) Optimal filtering of nerve signals. Biol. Cybem ., 27:41-48.

O'Connell, R.J. and Schoenfeld, R.L. (1973) Minicomputer identification and timing of nerve impulses

mixed in a single channel recording. Proc. IEEE, 61:1615-1621.

Petzold, C. (1990) Programming windows. Microsoft Press, Redmond, Washington.

Press, W .H., Teukolsky, S.A., Vetterling, W.T. and Flannery B.P. (1992) Numerical recipes in C: the

art of scientific computing. Cambridge University Press, Cambridge.

Prochazka, N.J., Conrad, B. and Sindermann, F. (1972) A neuroelectric signal recognition system.

Electroenceph. clin. Neurophysiol., 32:95-97.

Prochazka, N.J. and Komhuber, H. (1973) On-line multi-unit sorting with resolution of superposition

potentials. Electroenceph. clin. Neurophysiol., 34:91-93.

Remmel, R.S. (1983) A computerised discriminator for action potentials. Electroenceph. clin.

Neurophysiol., 56:528-530.

Roberts, W.M. and Hartline, D.K. (1975) Separation of multi-unit nerve impulse trains by a multi

channel linear filter algorithm. Brain. Res., 94:141-149.

Roberts, W.M. (1979) Optimal recognition of neuronal waveforms. Biol. Cybem ., 35:73-80.

Salganicoff, M. Sarna, M.F., Sax, L. and Gerstein, G.L. (1988) Unsupervised waveform classification

80

for multi-neuron recordings: a real-time, software based system. I Algorithms and

implementation. J. Neurosci. Methods, 25:189-196.

Sama, M .F., Gochin, P., Kaltenbach, J., Salganicoff, M. and Gerstein, G.L. (1988) Unsupervised

waveform classification for multi-neuron recordings: a real-time, software based system. II

Performance comparison to other sorters. J. Neurosci. Methods, 25:189-196.

Schmidt, E.M. (1971) An instrument for separation of multiple-unit neuroelectric signals. IEEE Trans.

Biomed. Eng., BME-18:155-157.

Schmidt, E.M. (1984a) Instruments for sorting neuroelectric data: a review. J. Neurosci. Methods, 12:1-

24.

Schmidt, E.M. (1984b) Computer separation of multi-unit neuroelectric data: a review. J. Neurosci.

Methods, 12:95-111.

Schmidt, E.M. and Stromberg, M.W. (1969) Computer dissection of peripheral nerve bundle activity.

Comp. Biomed. Res., 2:446-455.

Simon, W. (1965) The real-time sorting of meuro-electric action potentials in multiple unit studies.

Electroenceph. clin. Neurophysiol., 18:192-195.

Sokolove, P.G. and Tatton, W.G. (1975) Analysis of postural motomeuron activity in crayfish abdomen.

I. Coordination by premotoneuron connections. J. Neurophysiol., 38:313-331.

Stein, R.B., Andreassen, S. and Oguztoreli, M.N. (1979) Mathematical analysis of optimal multichannel

filtering for nerve signals. Biol. Cybem., 32:19-24.

Stremler, F.G. (1990) Introduction to communication systems. Addison-Wesley, Reading,

Massachusetts.

Studer, R.M., de Figueiredo, R.J.P., Moschytz, G.S. (1984) An algorithm for sequential signal

estimation and system identification for EMG signals. IEEE Trans. Biomed. Eng., BME-

31:285-294.

Tatton, W.G. and Sokolove, P.G. (1975) Analysis of postural motomeuron activity in crayfish abdomen.

II. Coordination by excitatory and inhibitory connections between motoneurons. J.

Neurophysiol., 38:332- 346.

Thompson, C.S. and Page, C.H. (1982) Command fibre activation of superficial flexor motoneurons in

the lobster abdomen. J. comp. Physiol., 148:515-527.

Wine, J.J., Mittenhal, J.E. and Kennedy, D. (1974) The structure of tonic flexor motoneurons in

crayfish abdominal ganglia. J. comp. Physiol., 93:315-335.

Worgotter, F ., Daunicht, W.J. and Eckmiller, R. (1986) An on-line spike form discriminator for

extracellular recordings based on an analog correlation technique. J. Neurosci. Methods, 17:141-

151.

Yamada, S., Kage, H., Nakashima, M., Shiono, S. and Maeda, M. (1992) Data processing for multi

channel optical recording: action potential detection by neural network. J. Neurosci. Methods,

43:23-33.

Ziv, J. and Lempel A. (1977) A universal algorithm for sequential data compression. IEEE Trans.

Inform. Theory, IT-23:337-343.

Ziv, J. and Lempel A. (1978) Compression of individual sequences via variable- rate coding. IEEE

Trans. Inform. Theory, IT-24:530-536.

82

Appendix A.

X2 calculation for the results given in table 4.3A.

Observed values

R0 R1 R2 R3 R4 R5 Totals
No of events 1549 1663 1005 2979 2960 2000 12156

MMD
templates

767 514 9 24 101 19 1434

Intracellular
totals

2316 2177 1014 3003 3061 2019 13590

Expected values

R0 R1 R2 R3 R4 R5 Totals
No of events 2071.6 1947.3 907.0 2686.1 2738.0 1806.0 12156

MMD
templates

244.4 229.7 107.0 316.9 323.0 213.0 1434

Intracellular
totals

2316 2177 1014 3003 3061 2019 13590

X2 = (1549-2071.6)2/2071.6 + (1663-1947.3)2/ 1947.3 + (1005-907.0)2/907.0 +
(2979-2686.1)2/2686.1 + (2960-2738.0)2/2738.0 + (2000-1806.0)2/1806.0 +
(767-244.4)2/244.4 + (514-229.7)2/229.7 + (9-107.0)2/107.0 +
(24-316.9)2/316.9 + (101-323.0)2/323.0 + (19-213.0)2/213.0

= 2413.8

X2for p < 0.01 (5 degrees of freedom) = 15.09

i.e. p < < 0.01

X2 calculation for the results given in table 4.3B.

Observed values

R0 R1 Totals
No of events 1606 821 2427

MMD
templates

1634 579 2213

Intracellular
totals

3240 1400 4640

83

Expected values

R0 R1 Totals
No of events 1694.7 732.3 2427

MMD
templates

1545.3 667.7 2213

Intracellular
totals

3240 1400 4640

X2 = (1606-1694.7)2/ 1694.7 + (821-732.3)2/732.3 +
(1634-1545.3)2/1545.3 + (579-667.7)2/667.7

= 32.25

X2for p < 0.01 (1 degree of freedom) = 6.63

i.e. p < < 0.01

84 ̂UNIVl ' tSTTY I
[UBll,uiy rJ

