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Abstract.

Since the development of electronic amplification and signal recording facilities, there 
has been considerable interest in separating and classifying nerve spike events. Initially 
techniques were developed to identify spikes on the basis of amplitude but, as technology has 
progressed, the main interest has been in the development of techniques for classifying nerve 
spikes on the basis of shape. A range of strategies have been developed for performing the 
separation, but these strategies have been (and possibly still are) limited by the capabilities of the 
available hardware. These strategies and their implementations are described.

A novel method for performing automated spike shape classification is described. 
Software has been written to implement this method, and it is applied to nerve spike data from 
extracellular recordings of the superficial flexor nerve of the Norway lobster (Nephrops 
norvegicus) and from the coxo-basal chordotonal organ and cuticular stress detector one of the 
crayfish (Procambarus clarkii). The results are assessed by the use of contemporaneous 
intracellular recordings and compared with the performance of a commercially available spike 
classifier, voltage thresholding techniques and an implementation of a pre-existing technique for 
classifying spikes.

The relative merits of different strategies are considered, as well as the fundamental 
limitations of attempting to segregate spike data on the basis of shape alone. Technical issues 
relating to the implementation of a software based spike classifier are also considered.
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1 Introduction.

1.1 The nature of nerve spike recordings.

A single neuron conveys information in the form of an all or nothing electrical 

pulse. However, there is a fundamental difference between this and the digital 

information transported along a fibre-optic cable. This is obvious enough to a biologist, 

but the concept of digital communication is fast becoming so culturally ingrained that the 

idea that biological systems differ from electronic ones, and that this difference is 

important to the operation of the systems concerned may soon seem strange. In essence 

then, an electronic system uses sequences of pulses to code information. Over short 

distances these are square-wave pulses, but over longer distances square-waves tend to 

spread out and merge due to the differing velocities of their frequency components. The 

use of soliton waveforms as the binary pulses in digital communication lines is now 

becoming accepted since these do not degrade with the same rapidity (Hasegawa and 

Kodama, 1981). Also, long distance digital communication lines have relays at regular 

intervals to prevent unacceptable levels of signal decay over these distances.

Nerve axons correspondingly transfer information in what can be considered to 

be binary pulses (nerve spikes). However, that is where the similarity ends. These pulses 

are discrete, the time between pulses is irregular and, even though the distances are short 

by engineering standards, the membrane properties ensure the signal is constantly 

returned to its original shape - thus sidestepping the engineering issues of separating a 

degraded signal from the background noise.

The key point is that the bulk of signal processing research is geared to 

engineering and physical applications and not to the understanding of biological signals. 

The scientific culture which is therefore applied to the development of spike signal 

analysis methods is thus largely foreign to the biologist studying the physiological 

importance of these waveforms. This has the obvious potential to lead to fundamental 

problems when applying new methodology in this area.
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1.2 Single-unit versus multi-unit recordings.

A nerve spike activity recording can be effected either by inserting an electrode 

into a neuron (an intracellular recording), resulting in a record containing of necessity 

only that neuron’s activity (that is a single-unit recording), or by placing an electrode in 

close proximity to several neurons (an extracellular recording) - resulting in a multi-unit 

recording. Other methods may also be applied, such as the use of voltage sensitive dyes 

to measure neuron activity optically (Yamada et al., 1992). In practical terms the only 

problem in analysing (as opposed to recording) a single-unit record is the separation of 

the spike signal from the background noise. As well as being easier to obtain, multi-unit 

records have the enormous advantage of containing information about the activity of 

anything from a few neurons (D'Hollander and Orban, 1979) to dozens if not hundreds 

of neurons (Abeles and Goldstein, 1977; Jansen and Maat, 1992). However, the use of 

this type of recording leaves the problem of how to separate the resultant activity 

correctly, as well as the disadvantages of not seeing synaptic potentials or being able to 

identify cells anatomically by the use of (say) Lucifer yellow.

1.3 Motivation for the separation of multi-unit recordings.

Before considering how separation of multi-unit recordings may be achieved, it is 

worth considering in greater detail why such a separation may be useful, or more 

accurately why it should be attempted for recordings in which it is a non-trivial task. To 

consider specifically the system used in this study (described in detail in section 3.1), 

previous studies (Harris-Warwick and Kravitz, 1984) have not been able to distinguish 

reliably between the activity of the FI and F2 tonic motor neurons or the F3 and F4 

tonic-phasic motor neurons of the third root of the superficial flexor nerve of the 

Norway lobster (Nephrops norvegicus), and related systems have exhibited 

corresponding problems (Sokolove and Tatton, 1975). However studies of the effect of 

neuromodulators such as serotonin or octopamine on the motor output patterns in this 

and related systems require the ability to perform these separations reliably, as do
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studies which aim to determine neuronal coupling (Tatton and Sokolove, 1975; 

Denheen, 1992) by cross-correlation of the activity of separate neurons.

It may initially seem obvious that it is worthwhile to separate a multi-unit record 

- particularly when the alternative to one extracellular electrode is the use of two or three 

intracellular electrodes. However, the effort required to effect the separation and the 

general applicability of hardware or software developed for the purpose must be set 

against the effort saved by simplifying the experimental procedure. In this context it 

must be noted that no worthwhile experiment requires so much effort or takes such great 

resources as to be unrepeatable. Some preparations obviously work better than others. 

However, unlike certain areas of physics or astronomy, progress is not based on data 

derived from experiments which are unique. On the contrary, if an experimental result 

cannot be replicated then the result must be viewed with considerable suspicion. Either 

the quantity of data to be analysed must be significant or the results must be 

unobtainable by other means in order to justify the effort involved.

1.4 Strategies for the separation of multi-unit recordings.

The nature of the task has been discussed by Glaser and Ruchkin (1976) and the 

range of approaches has been reviewed by Schmidt (1984a; 1984b). It is instructive to 

consider the pattern which emerges from this. Over the last forty years there have been 

various attempts, both hardware and software based, to separate multi-unit records using 

threshold detectors (MacNichol and Jacobs, 1955; Littauer and Walcott, 1959; Hermann 

et al. , 1962; Landolt and Milliken, 1970), single window discriminators (Hermann et 

al. , 1962; Bradley et al. , 1967; Freeman, 1971; Bak and Schmidt, 1977; Millar, 1983), 

multiple window discriminators (Simon, 1965; Schmidt, 1971), clustering of reduced 

(Dinning and Sanderson, 1981; Worgotter et al., 1986; Salganicoff et al., 1986; Kreiter 

et al., 1989) or non-reduced (Gerstein and Clark, 1964; Jansen, 1990; Marion-Poll and 

Tobin, 1991; Bergman and DeLong, 1992; Jansen and Maat, 1992) feature waveforms, 

contour fitting algorithms (Kent, 1971; Akker et al., 1982), Fourier analysis (Bessou 

and Perl, 1969), principal component analysis (Abeles and Goldstein, 1977; Eggermont
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et al., 1983), curve fitting (Remmel, 1983) and various strategies considering timing of 

peak or peak-to-peak amplitudes (O'Connell et al., 1973; Mishelevich, 1970; McCann, 

1973). Multiple electrodes have been used to provide conduction velocity information 

(Schmidt and Stromberg, 1969; Heetderks and Williams, 1975; Roberts and Hartline, 

1975; Kanz et al., 1978) and double electrodes (Camp and Pinsker, 1979; McNaughton 

et al., 1983) to provide two recordings with slightly different electrode positions.

Most of these systems have been on-line (Simon, 1965; Mishelevich, 1970; 

Schmidt, 1971; D'Hollander and Orban, 1979; Dinning and Sanderson, 1981; Cohen 

and Landsberg, 1983; Worgotter et al., 1986; Salganicoff et al., 1988; Bergman and 

DeLong, 1992), although some of the more technically ambitious have been off-line 

(McCann, 1973; Roberts and Hartline, 1975; Abeles and Goldstein, 1977; Camp and 

Pinsker, 1979; Jansen, 1990; Jansen and Maat, 1992). Some have relied partially or 

exclusively on hardware for the separation (Schmidt, 1971; Bak and Schmidt, 1977; 

Cohen and Landsberg, 1983; Millar, 1983; Worgotter et al., 1986; Kreiter et al., 1989), 

while others have been implemented almost entirely in software (Simon, 1965; McCann, 

1973; Roberts and Hartline, 1975; Camp and Pinsker, 1979; D'Hollander and Orban, 

1979; Studer et al., 1984; Salganicoff et al., 1988; Jansen, 1990; Marion-Poll and 

Tobin, 1991; Jansen and Maat, 1992; Bergman and DeLong, 1992; Yamada et al., 

1992), although the extent to which a system that requires a dedicated mini-computer 

(McCann, 1973; Camp and Pinsker, 1979; D'Hollander and Orban, 1979) can be said to 

be hardware independent is perhaps debatable. There has been a steady growth in the 

processing power required to perform the separation (Schmidt, 1971; D'Hollander and 

Orban, 1979; Kreiter et al., 1989), and this has been more or less in line with the most 

powerful facilities reasonably available at any particular time. Systems have been 

challenged with synthesised waveforms, automatically selected events, and live 

recordings. Many systems rely on an initial "training" phase for the definition of events 

of interest. This training may be performed on the data to be classified (Millechia and 

McIntyre, 1978; Jansen and Maat, 1992), on a specific training segment (Salganicoff et 

al., 1988; D'Hollander and Orban, 1979) or on manually selected events (Kent, 1971; 

Jansen, 1990). A number of investigators have made broad claims as to the utility and



applicability of the systems which they have devised (Kanz et a l., 1978; Worgotter et 

al., 1986; Jansen and Maat, 1992). However, with a few exceptions (notably threshold 

detectors and single window discriminators), there is little evidence in the literature to 

suggest that these systems, and sometimes even the principles underlying them, have 

been used extensively except by their originators. In conclusion therefore, the literature 

pertaining to this problem indicates that the available computer hardware has been, and 

perhaps remains, a major limiting factor. Also some systems which have been 

developed, have become unusable because the computer hardware for which they were 

developed has become obsolete.

1.5 Considerations in the separation of multi-unit recordings.

Having considered the strategies underlying the attempts to separate multi-unit 

recordings, it is now appropriate to consider the concerns and difficulties experienced by 

various investigators in the pursuit of these goals.

The first and most fundamental consideration is the signal to noise (S/N) ratio of 

the recording. This of course depends on the conduct of the experiment as well as the 

performance of the analog to digital (A/D) converter. Any consideration of the 

separation of signals from background noise, or the analysis of badly degraded signals is 

outwith the scope of the present study, and as such will not be considered further.

The next important consideration is the number of datapoints required to 

represent the spike waveform accurately. Obviously, more datapoints result in a more 

accurate waveform but this is correspondingly more expensive both in terms of the data 

storage and processing requirements. Fortunately an upper limit can be derived for any 

particular type of impulsive waveform data, namely twice the bandwidth (Stremler 

1990). The bandwidth is defined by the highest frequency component of the waveform, 

which is obtained from the Fourier transform. Abeles and Goldstein (1977) point out 

that the maximum bandwidth of a nerve spike is around 10kHz, and consequently 20 

datapoints are required per millisecond. Anything less than this will result in a loss of 

meaningful information about the spike shape. However it must also be considered that



this estimate is for the representation of a waveform in terms of its component 

frequencies. In other words, the shape of the waveform can be accurately calculated 

from the sample values but this data will not in general contain the maxima or minima of 

the waveform since these will usually lie between sample points. This becomes an issue 

because much software (including the Spike2 program produced by Cambridge 

Electronic Design Ltd. (CED)) uses the simplifying assumption that the values between 

two datapoints are linear combinations of the datapoint values, hence cropping the peaks 

and troughs of a waveform sampled at only twice the bandwidth.

Having established an adequate sampling regime and captured the data, it is next 

necessary to separate the spike waveforms from the background. This is most commonly 

achieved by selecting a suitable threshold voltage (MacNichol and Jacobs, 1955; 

Hermann et al., 1962; Landolt and Miliken, 1970; Millar 1983) and defining a spike in 

terms of the waveform contained in a time interval around any crossing of the threshold 

(Schmidt, 1971; Bak and Schmidt, 1977; Abeles and Goldstein, 1977; Kreiter et al., 

1989; Jansen, 1990; Jansen and Maat, 1992; Bergman and DeLong, 1992).

At this point strategies diverge. On the one hand are attempts to classify spikes as 

they are sampled (the on-line approach). This must of course be effected in real time, 

and leads to the possibility of software based systems suffering from a "dead" period 

after each spike, hence encouraging interest in hardware based spike sorters. On the 

other hand, off-line systems make no attempt to operate in real time, and hence can 

employ more sophisticated identification strategies which may not even operate on the 

data in its original time sequence. Investigators following on-line strategies find that 

speed is of crucial importance, while those employing off-line strategies sacrifice 

immediate answers in favour of more manageable hardware requirements.

There have been major advances in the capabilities of computer hardware 

available since the early 1960s, and this is reflected in the complexity of the software 

applied to spike classification. In 1970, Mishelevich described a system running on a 

Spear Micro-LINC 300 in which the entire computer had the equivalent of 12 kilobytes 

(KB) of random access memory (RAM), of which less than 1.5 KB was required to load 

the whole program. Not surprisingly, the software was correspondingly simple. At the
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opposite extreme is the off-line system described by McCann (1973) in which a suite of 

programs offering multiple forms of analysis was written for an IBM 360/44 mainframe 

with 128 KB of RAM. This used a GUI (graphical user interface) and was controlled by 

light pen. For its time the program was an impressive achievement, and even today it 

would be a very respectable system. However it would have taken a large research 

project to justify using such a (then) powerful computer (O'Connell et a l., 1973). On a 

more realistic scale are systems such as that described by D'Hollander and Orban (1979) 

using a PDP-11/40 with 28 KB of RAM for on-line classification using a template 

method. Software based systems described in the late 1980s and early 1990s are 

typically IBM PC based (Jansen, 1990; Marion-Poll and Tobin, 1991; Jansen and Maat, 

1992; Bergman and DeLong, 1992) but are not invariably so (Salganicoff et a l , 1988; 

Yamada eta l., 1992).

The complexity of hardware based systems has correspondingly increased from 

the simple electronic circuits described by MacNichol and Jacobs (1955), Littauer and 

Walcott (1959), Landolt and Milliken (1970), Schmidt (1971) or Bak and Schmidt 

(1977) through simple microprocessor based systems such as that described by Cohen 

and Landsberg (1983) to the system described by Kreiter et a l , (1989) which 

incorporates an MC68000 central processor unit (CPU) and 128 KB of RAM, all of 

which is controlled by an RS232 connection to an IBM PC. This level of hardware 

complexity approaches that of a PC, to the degree that if  developed further such a 

system would virtually be a full fledged computer. On different lines is the work 

described by Worgotter et a l , (1986) in which adjustable analog delay lines are used to 

effect the matching process.

1.6 Testing strategies.

Any hardware or software for separating multi-unit recordings must be tested, 

and a range of testing strategies have been adopted by different investigators. Data can 

be synthesised with varying degrees of realism. At the simpler end of the scale is the 

sine wave approximation used by Mishelevich (1970) to which noise was added by
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Worgotter et al., (1986), and the triangular waveform with added noise used by Cohen 

and Landsberg (1983). More complex is the method described by Bergman and DeLong 

(1992) in which two principal component waveforms were defined and combined 

according to user specified ratio ranges, with added band-limited noise. Synthetic data 

has the great advantage that the correct match is known in advance, giving an 

opportunity for the system to be tested objectively. Real data does not have this 

advantage. However it does fully reflect the natural variability which any worthwhile 

system must be capable of handling. All of the systems referred to have been tested 

using real data. Some investigators are keen to compare their systems with other 

approaches. However, worthwhile comparisons are complicated by the diversity of data 

sources and qualities (Schmidt, 1984b). Little serious comparison of techniques has been 

effected, an exception being the work of Wheeler and Heetderks quoted by Schmidt 

(1984b).

1.7 Complications of multi-unit separation methods.

It is difficult enough to separate spike waveforms at the best of times. However, 

there are two further problems which have to be considered. The first of these is 

waveform overlap. A multi-unit recording contains the activity of a number of neurons, 

and there is absolutely nothing to prevent two (or more) of these from being active at 

substantially the same time. The result is the existence of composite events representing 

the sum of the activity at that instant. It is important to realise that these events are in 

general the outcome of non-aligned spikes, and therefore do not themselves have 

characteristic waveforms. This can result in problems both in the training or template 

generation phase and in the main data analysis phase.

In the training phase, composite waveforms can be registered as rare but distinct 

spike classes, resulting in a subsequent waste of processing capacity attempting to 

identify what is in fact a unique event. This has been overcome in a number of ways. 

Operator-directed training is one approach (Jansen, 1990). The forming of templates on 

clusters with more than a specified number of occurrences is another (Jansen and Maat,
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1992). In many studies training is effected by using a clustering technique (D'Hollander 

and Orban, 1979; Dinning and Sanderson, 1981; Salganicoff et al., 1988; Kreiter et al., 

1989). However, it is often not clear how (or even if) overlapping events are handled by 

these systems. Clearly overlapping events give rise to cluster outliers which if added to 

cluster based average waveforms will have a minor (but potentially significant) effect on 

the template, while outliers which form their own clusters (and hence templates) will 

slow the analysis process.

In the analysis phase, processing time is wasted by searching for matches to 

overlap events. This is potentially significant but is by no means the major concern. The 

failure to identity the spikes causing an overlap results (obviously) in a loss of 

information. In an on-line system, there will be insufficient spare capacity to separate 

overlap events - judging by the specifications of the hardware typically used in such 

systems. This either relegates overlap processing to being an off-line task (Salganicoff et 

al., 1988) conflicting with the very idea of on-line processing, or results in such 

information as could be extracted from overlaps beiing discarded. This loss of 

information is potentially significant, there is after all no point in performing accurate 

spike classifications in order to generate crude statistical summaries of the activity. The 

analysis of burst activity or neuronal coupling could be seriously affected by the removal 

of significant numbers of events, particularly if the overlap is non-random in a particular 

system. The actual frequency of overlap events also affects; how they should be resolved. 

As rare occurrences it may be appropriate to discard them as not being worth the effort 

of separation, but if they are common or if the proposed analysis of activity is sensitive 

to data censoring then strategies must be adopted to resolve as many occurrences as 

possible.

Various investigators have described spike classification systems in which they 

omit details of the handling of spike overlap situations, or alternately make only cursory 

reference to the problem (Millechia and McIntyre, 1978; D'Hollander and Orban, 1979; 

Dinning and Sanderson, 1981; Worgotter et al., 1986; Salganicoff et al., 1988; Kreiter 

et al., 1989; Jansen, 1990; Bergman and DeLong, 1992; Jansen and Maat, 1992). This 

is not to suggest that all their systems fail to handle overlaps. Indeed, some like the
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neural net systems (Jansen, 1990; Jansen and Maat, 1992) could be expected to perform 

well in such situations. Some investigators have considered how to extend their 

technique to cope with overlaps (Abeles and Goldstein, 1977), and the extent to which 

overlap can be tolerated (Mishelevich, 1970). However, no-one has described a single 

electrode system in which the overlap problem is systematically tackled - other than by 

the vigilance of a trained operator (Prochazka et al., 1972; Prochazka and Kornhuber, 

1973; D'Hollander and Orban, 1979).

However, work by Roberts and Hartline (1975) which has been further refined 

by Oguztoreli and Stein (1977), Andreassen et al., (1979), Roberts (1979) and Stein et 

al., (1979) presents a multielectrode solution to the overlap problem. Their technique 

essentially depends on the differences in conduction velocities to provide a non

overlapping event pair at one of the recording electrodes. According to the data 

presented by Roberts and Hartline (1975) and Andreassen et al., (1979), their approach 

is highly effective at classifying spike events accurately. Their method, although one of 

the most theoretically robust and practically successful of those reported, has the obvious 

practical limitation of requiring multiple electrodes evenly spaced along the nerve fibre - 

which is clearly not a practical arrangement in many studies (McNaughton et a l., 1983).

The second problem of waveform separation is the effect of waveform drift. This 

can itself take two forms. In the first, the baseline voltage changes either periodically or 

randomly over an extended time. This has the obvious effect of nullifying any separation 

method based on series of window discriminators which does not use a baseline 

correction (Bergman and DeLong, 1992), but can readily be overcome by differentiating 

the waveform numerically and using the derivative waveform in the matching process 

(Marion-Poll and Tobin, 1991). The second and more serious problem is that of 

amplitude variation, both over the course of a particular experiment and during a single 

burst (Bergman and DeLong, 1992). Most investigators who have considered this 

problem have added newly matched spikes to the templates, hence any slow bias will be 

accommodated over the time of its manifestation (Cohen and Landsberg, 1983; Struder 

et al., 1984). On the other hand, the problem has also been resolved by using templates 

with an error margin of up to six standard deviations (Bergman and DeLong, 1992).
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1.8 The nature of classification errors.

Several investigators have discussed the types of classification error which can be 

made (Sarna et al., 1988; Bergman and DeLong, 1992). In short, there are four potential 

errors which can be described: a false positive in which noise is identified as a spike, a 

false negative in which a spike is identified as noise, a false match in which a spike is 

incorrectly classified, and a double match in which a spike is matched to two categories. 

Within each spike class the false match errors can be further divided into inclusion 

errors in which a spike of some other class is sorted into the specified class, and 

exclusion errors in which a spike of the specified class is assigned to some other class.

Of these various possible errors the most important and difficult to identify is 

undoubtedly the false match, and it is here that considerations of the classification 

reliability come to be of importance. For some purposes there may require to be a high 

degree of confidence that any spike identified as belonging to a particular class should in 

fact be of that class. This implies that the template (or other method) should be set up to 

minimise the inclusion errors. For other purposes it may be sufficient to identify 

possible members of a particular class, resulting in a minimisation of exclusion errors 

(presumably without including everything), or equalise the rates of inclusion and 

exclusion errors to obtain general activity over a period.

One implication of this is that by permitting only one attempt at classification an 

on-line system necessarily lacks the flexibility of an off-line system to re-analyse the data 

set while adjusting the permitted rates of inclusion and exclusion error. To assume that 

data (of any description) can necessarily be analysed correctly at the first attempt is to 

endow the process of analysis with mystical properties. The involvement of computers 

certainly does not improve this situation, and the most prudent course is always to allow 

for the possibility of re-analysis.

1.9 The approach used here.

The basic approach used is an off-line system, with manual template creation (the
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learning phase) and two quite distinct matching methods. The first is a variation of a 

contour fitting approach in which the templates are defined on characteristic parts of the 

waveform and then linked together after the main analysis. The second is a departure 

from the methods described in the literature, in that the distance comparison is not 

performed in multi-dimensional space or a transformed multi-dimensional space. Rather 

it involves a measure of the similarity o f information content of the spike and the 

template. The methods used also attempt to address the problem of spike overlap, in the 

first by looking for sets of characteristic features rather than complete waveforms, and in 

the second by the information comparison itself.
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2 Computational Materials and Methods.

2.1 Computer hardware and its recent development.

Computer hardware has developed at a breathtaking rate over its short history, 

and all classes of operating systems and application software have moved apace. The 

design, construction and testing of a piece of software are heavily influenced both by the 

theoretical state-of-the-art and by the tools and operating systems available at the time. 

In particular, it must be realised that when this project was begun in 1990 the first 

practically useable version of the Microsoft Windows operating system - version 3.0 - 

had not been released. It is therefore difficult simply to refer to previous work as a basis 

for describing the methods used here. An expanded description of relevant technical 

issues is therefore included to provide an understanding of the technology involved, the 

rapidity of its development and how this relates to this project.

2.1.1 The basis of digital computing.

Many of the early computers were analog machines, that is they represented 

numbers by voltages which could assume any value within a given range. This approach 

was superseded by the digital representation of numbers as sets of binary on/off signals 

which are grouped together into bytes (most commonly containing eight bits) and which 

consequently represent 2^ or 256 values. Assemblies of bytes give rise to standard data 

types such as characters, integers and floating point numbers, as well as higher order 

data structures.

Computer hardware and software has developed in parallel, each feeding the 

further development of the other. However, a number of distinct types of hardware have 

emerged - supercomputers, mainframes, high performance workstations and desktop 

computers (specifically the IBM personal computer (PC) and the Apple Macintosh). At 

the commencement of this project a typical desktop PC of the type used here had an Intel 

286 CPU, 2 megabytes (MB) of RAM and 40 MB of disk capacity. By the time the main
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part of the work described here was complete the CPU speed and storage capacity of 

other components of a similar machine had increased by a factor of about 30.

The single most significant feature of the PC is its use of a segmented memory 

architecture, a legacy of the 8 bit memory addressing schemes of the early predecessors 

of the PC. However it has important implications for the design and implementation of 

software, a point which will be returned to later. Originally the PC had only one 

processor mode - real mode - which permitted software to access up to 1 MB of RAM 

via a pointer to a physical memory location, and is the mode used by MS-DOS. With the 

Intel 386 came 32 bit memory addressing, permitting the use of up to 4 gigabytes (GB) 

of RAM and another processor mode - virtual 8086 mode (which is the processor mode 

used by Microsoft Windows).

2.2 Operating systems.

An operating system is the link between the application software and the 

computer hardware, and as such has developed in parallel with the hardware. It provides 

a method by which software can operate without having to consider irrelevant details 

such as how data is stored on a disk, and how to retrieve that data. It is also responsible 

for loading and running the application software, managing system resources and 

providing an application program interface (API).

An operating system in its simplest form will allow a single user to operate a 

single piece of software (or task) at any/ one time. More complex systems will allow 

multiple users to share hardware (as in mainframes) and may allow multiple tasks to be 

run concurrently. This last may use either non-preemptive multitasking (as in Microsoft 

Windows) or preemptive multitasking (as in UNIX or IBM OS/2). Some systems permit 

multi-threading, that is the capacity for a single program to operate several separate (but 

not totally independent) internal processes concurrently. As if this was not enough 

complexity, there is a specific problem w/ith some operating systems (such as MS-DOS) 

in which some parts of the system requiire access to other parts in a fashion which 

precludes any other operation making tthe same demand at the same time. This is
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referred to as non-reentrance and it is a particularly significant problem with MS-DOS, 

even though MS-DOS is a single-user, single-tasking system.

Most operating systems take the approach of forcing a degree of insulation 

between the application software and the hardware, a process known as virtualisation. 

Taken to its conclusion virtualisation provides a mechanism for insulating separate tasks 

from each other's faults. Systems which take this approach also must cope with the 

concept that certain pieces of software, notably the operating system kernel itself but 

also device drivers, must have a degree of privileged access to the hardware which is 

denied to application software.

2.2.1 MS-DOS.

When PCs were first developed, existing operating systems such as UNIX placed 

too great a demand on the hardware to be used as the operating system. Thus when IBM 

introduced the PC in 1981 it used the MS-DOS operating system developed by Microsoft 

Corporation. This owed much to the then common operating system CP/M and also 

borrowed heavily from UNIX. However it was a single-user, single-tasking operating 

system, and it has many internal features which limit its potential (Dettmann, 1989).

At the commencement of this project DOS was by far the most commonly used 

operating system in the world, being used by almost all IBM PCs and it could not have 

achieved such success without its simplicity - it is quick and easy to develop a small 

DOS application, relatively little expert knowledge is required to run the development 

tools or work with the API, and the system is highly error tolerant (perhaps too much 

so).

On the other hand, the DOS API lacks anything but the most rudimentary of user 

interface capabilities (and little support for interface standards). The precise error 

tolerance which makes a small program easy to construct makes the task of debugging a 

large program far harder (since the errors have a cumulative effect). Worse still, MS- 

DOS only supports the real mode of the Intel processors on which all PCs are based, and 

this combines with the location of the system ROM at the memory address 0xA000:0000
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to limit the available memory to 640 KB - which must be shared by DOS, device 

drivers, application software and data.

2.2.2 Microsoft Windows as an operating environment.

Technically Microsoft Windows (or Windows for short) was, at least until version 

4 (also known as Windows 95), an operating environment rather than an operating 

system. The difference is that it requires DOS in order to operate. This may seem to be 

splitting hairs, but Windows depends for many of its basic operations on the capabilities 

of DOS, and so must either handle the limitations of DOS or pass these limitations on to 

Windows application software.

Windows has two basic components, a GUI and a DOS extender. The GUI 

provides the user with a CUA compliant environment, and provides a large range of 

useful API facilities. These include support for higher level interface objects such as 

bitmaps, dialog boxes, menus, buttons and scroll bars along with the required support 

for window management services and a standardised help facility. Early versions of 

Windows (prior to version 3.0) were restricted by the 640 KB limit of DOS real mode 

operation, but Windows 3.0 introduced two additional operating modes: standard and 

386 enhanced, corresponding to the protect and virtual 8086 modes of the Intel CPUs. 

This was achieved by including a DOS Protect Mode Interface (DPMI) DOS extender as 

an integral part of Windows to provide all applications with access to up to 16 MB of 

RAM, and incidentally providing access to hardware based memory access checking 

facilities. Windows also provided a standard mechanism for allowing third party 

hardware manufacturers (particularly of graphics adapters and printers) to interface their 

products with all Windows applications. This sidesteps all the problems DOS has with 

successfully supporting a wide range of hardware.

However, Windows has a number of drawbacks, some merely irritating but 

others potentially very serious. It uses non-preemptive multitasking (Petzold, 1990), so 

any processor intensive operations bring the entire system grinding to a halt. Worse, the 

use of a single message queue and the sharing of resources mean that a malfunction in
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one task can readily compromise system integrity (King, 1994). On top of this, certain 

API functions either do not work as documented (by Microsoft) or differ sufficiently 

from their documented modes of operation to appear to be unreliable. Overall, Windows 

applications tend to require phenomenal amounts of computing resources (processor 

speed, RAM, disk space, display capability) relative to their DOS cousins. However, 

this is not comparing like with like. Windows applications tend to provide substantially 

more functionality than their DOS based predecessors, and part of the rationale for 

developing Windows applications is precisely the ability to access these resources.

2.3 Programming languages and other tools.

Programming languages have developed alongside the hardware and operating 

systems, from the early plug board (Augarten, 1984) through to languages as diverse as 

Smalltalk, Fortran and C. Each language also evolves as new requirements arise 

(Metcalf, 1992) and due to commercial pressures.

Currently there are two distinct approaches to the generation of an executable 

program. The first is to use an interpreter to take the text file containing the language 

instructions (source code) and turn these into machine instructions at execution time. 

This approach has one major drawbaick - the interpreter must process the source code 

and keep track of what is happening as it happens, consequently the process is slow and 

not amenable to efficiency savings. This is usually exacerbated by interpreters 

performing elaborate error checking to avoid potential problems.

The second approach is to per form the translation into machine instructions and 

then run the program. There are seveiral steps in this process. First a compiler operates 

on each source file, undertaking a range of performance enhancing optimisations, or 

alternately adding special checking anid debugging information. Once each file has been 

compiled, all the resulting object files are passed to the linker which makes the 

appropriate connections within and between the object files and with the relevant 

libraries (collections of previously bumdled together object files). This approach actively 

encourages the use of multiple source lfiles.
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Systems such as Windows require an additional step following linking. Windows 

makes great use of resources (items such as dialog boxes, bitmaps, menus or cursors) 

and these are held in a separate resource file. This is passed to a resource compiler 

(analogous to the language compiler), but rather than being hooked in by the linker, the 

resource file and the executable file produced by the linker are passed to a binder (which 

is in essence another type of linker).

The process of compiling and linking is usually more time consuming than 

interpreting when a program is only going to be run once or twice, but it provides great 

scope both for automated error checking and optimisation as well as removing the run

time time penalty inherent to interpreting. It therefore provides a more robust approach 

to development and a better end result.

2.3.1 The use of C.

The language used for all the code developed in this project was C. C is a 

compiled language (unlike Basic), with a wide range of development tools readily 

available for the PC environment (unlike Fortran or Pascal). Syntactically its structure is 

similar to the underlying machine operations, so C code compiles to produce 

applications which run almost as fast as the hardware itself permits (unlike C + + ) .  

While the basic command set is extremely limited, it is intended to be extended by the 

use of third party facilities - indeed the American National Standards Institution 

specification for C (ANSI-C) insists on a substantial additional command set, and this 

provides a natural route for the provision of additional facilities. In common with some 

other languages C permits the definition of new data types, and also permits the 

definition of data structures containing any combination of pre-defined data types. 

However, there are some serious drawbacks with C. It is arguably the hardest high level 

language to learn (with the obvious exception of C + + ) ,  and the ANSI specification 

provides only for a teletype user interface. Unless software is being developed for 

Windows there is a very substantial requirement for user interface development. Also, 

the very power and flexibility of C permit bad coding practices to result in extremely
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unstable software which can potentially do great damage.

2.3.2 C development tools and their recent history.

The choice of programming language depends on suitable development tools 

being available. As mentioned earlier, C offers a range of PC based development 

systems. The available tools themselves have developed significantly over the course of 

the project, and so it is necessary to review both the range available, and the 

development of these in the relevant period.

In this period Microsoft distributed versions 5.1, 6 and 7 of their C compiler and 

versions 1 and 1.5 of their Visual C + +  compiler. Versions 5 and 6 provided a DOS 

only compiler, linker, debugger and related support utilities. Source code editing was 

undertaken via third party software, the integrated development environment (IDE) 

added in version 6 being unworkable. Version 7 added C +  +  compiler support, and also 

provided tools for developing Windows applications. Visual C + +  version 1 was the 

direct follow on to version 7, and provided a usable Windows based IDE and extensive 

Windows debugging and resource editing facilities. The minimum hardware 

requirements for version 6 were a PC with 640 KB of RAM and 5 MB of disk space for 

a full installation (plus the requirements for the editor). Visual C +  + 1 on the other hand 

required at least a 386 based PC with at least 4 MB RAM and 65 MB of disk space.

In the same period Borland distributed both Borland C+ +  and Turbo C +  +  (a 

cut down version) versions 2, 3, 3.1, and 4. All versions of Borland C+ +  provide a 

compiler, linker, a consistent range of debuggers, many support utilities, an IDE (DOS 

based in versions 2, 3, and 3.1, Windows based in version 4) and full support for the 

production of Windows applications, including all the necessary debuggers and resource 

editors. Unlike Microsoft C where every version is significantly different to use, the 

Borland IDE and debugger have developed in a consistent manner. Version 4 requires a 

minimum of a 386 with 4 MB of RAM and 75 MB of disk capacity.

Both of these systems have certain common features, specifically a move from 

DOS based systems primarily intended for DOS development to Windows based systems
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for Windows development, in line with the move towards Windows as the dominant 

operating system for PCs. The IDEs for both systems also improved considerably over 

the period in question, however there was a substantial increase in the specification of 

hardware required to use either system. The precise versions used here will be described 

more fully in section 2.8.

2.3.3 DOS extenders and other resources.

One of the benefits of compiled languages is the capacity to link in facilities 

produced by (usually commercial) third parties. There are a whole range of libraries 

available for C and class-libraries for C + +  covering most common requirements from 

graph plotting to database manipulation. Additionally, specialist libraries are available 

relating to particular products.

One particular category of third party resource warranting specific attention is the 

DOS extender. As previously discussed, DOS suffers from a limit of 640 KB on the 

available memory. Early DOS software was sufficiently small, and worked with 

sufficiently small data sets to fit comfortably into 640 KB. Later, overlaying techniques 

permitted parts of the software to be loaded from disk as required. This reduced 

program execution speed but was mostly a satisfactory compromise. However it was still 

at the mercy of whatever overlay development support the compiler suppliers chose to 

provide. Additionally, this only provides a solution for program code segments, data is 

not provided for. One approach proposed by a consortium of Lotus, Intel and Microsoft 

(Forney, 1989) was to provide hardware support in the Intel 386 for page mapped 

expanded memory. This provided a 64 KB "page frame" in upper memory (i.e. in a free 

space between memory addresses 0xA000:0000 and 0xFFFF:0000) into which four 16 

KB pages could be mapped at any one time from the total pool of up to 32 MB of 

expanded memory. As an alternate approach, the device driver HIMEM.SYS was 

created to permit software to access high memory (i.e. above 1 MB) by copying 64 KB 

blocks of memory into conventional memory. This process does not rely on hardware 

support and is consequently significantly slower.
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Neither access to expanded memory nor access to extended memory via 

HIMEM.SYS is a particularly satisfactory approach - both methods require special 

modifications within the source code. These approaches are particularly unsatisfactory 

when coupled with the use of overlays, since this also places artificial constraints on the 

structuring of the code. None of these approaches address the fundamental problem - the 

limitations of real mode DOS.

There is however no constraint on the software changing the operating mode of 

the processor (Forney, 1989), providing that it also traps and handles all the relevant 

operating system functions. A number of commercially provided "DOS extenders" do 

precisely this, all that is needed is to link with the replacement libraries and use a real 

mode stub loader (see the next section) to load the DOS extender kernel and the 

application software. Suddenly all the available memory in the PC is there to be used by 

code or data, complete with all the hardware based protect mode memory checking 

capabilities. No code modifications are required.

2.4 Program segmentation.

A brief description of how programs are laid out in PC memory is warranted 

since details of this will be referred to later. As previously mentioned the PC uses a 

segmented memory architecture, with each segment being up to 64 KB in size. DOS 

provides a means (the segmented .EXE file) to create software spanning multiple 64 KB 

segments. On startup a "stub loader" is invoked to load these segments into memory and 

connect them correctly. These are the code segments.

There is also one default data segment which contains the global data area (or 

"near heap") and the stack. The near heap uses an area of memory starting at the lowest 

address in the data segment, while the stack starts at the highest address and uses 

successively lower addresses as data is added to it. The proximity of these two elements, 

and the lack of any insulation between them can be a significant source of problems - 

mostly when the stack (used to store automatic variables and other function information) 

overflows into the global data held in the near heap. The "far heap" is all the free
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memory apart from the code segments and the data segment. It is available for allocation 

in chunks of up to 64 KB.

Each program has a single unique entry point, that is the memory address of the 

main (or in Windows the WinMain) function. The execution of the entire program starts 

when main starts, and ends when main ends. However, main is free to call other 

functions, each of which can in turn call yet other functions. Each function adds its 

automatic (i.e. temporary) variables to the stack when it starts and removes them when it 

ends. The stack thus expands and contracts depending on how many levels of function 

are currently active and the number and size of variables used.

2.5 Program architecture.

At the level of individual commands, any program is simply a sequence of 

instructions, and in the early days of computers, programs were sufficiently small that 

this was an adequate model for the entire program. However it is naive to expect a 

model appropriate to a few dozen or a few hundred lines of essentially linear code to be 

effective in projects consisting of dozens of modules, each containing thousands of lines 

of code with multiple potential execution paths.

At this level of complexity there is a specific requirement for high level program 

design (McConnell, 1993). The quality of the resulting architecture determines in large 

part the quality of the finished program. Poor coding can of course undermine the best 

designed software, but good coding absolutely cannot replace good design. Furthermore, 

design deficiencies detected during coding (or worse still during testing) are much harder 

to remedy than those found during the design phase (McConnell, 1993).

Any program architecture must in the first instance address certain basic issues, 

specifically (but not exclusively):

- how the modules are defined, what they do, and how they interact

- the capacity for change which is allowed

- the third party components available

- the necessary degree of fault tolerance
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- the error handling strategy

- the required degree of overall robustness

- the hardware limitations.

Once the purpose of the program and the fundamental design considerations have 

been established there are a host of detailed concerns of stylistic consistency such as 

naming and calling conventions to be addressed. A consistent coding style increases code 

readability and consequentially reduces coding errors. Eventually a design will have split 

the program into subsystems, which will in turn be split into modules, these will then be 

split into functions. Usually the details of how the functions operate are left to the actual 

implementation.

2.5.1 Structured design.

There are two basic approaches to the actual design. The first is the structured 

design approach proposed in the early 1970s (McConnell, 1993). Structured design is 

usually accomplished either using a top-down or a bottom-up approach or some 

combination of these. In the top-down approach the most general level of organisation is 

considered first, it is defined, formally described, and verified. Each part of this is then 

defined, described and verified in turn, and the process continues until the stage is 

reached that implementing the subcomponents as individual functions is appropriate. The 

bottom-up approach is a composition strategy based on describing individual relevant 

functions and synthesising these into successively more general levels of description 

until the top level is reached. This is more than likely to be a prelude to further top- 

down refinement.

The advantages of structured design are that it provides a means for decomposing 

the problem into manageable pieces while deferring all detailed considerations of how to 

implement the individual components. However, it does assume that whatever problem 

is being addressed is actually capable of being decomposed into neat, non-overlapping 

pieces and it suggests that the data flow and execution paths are tree-like. These 

assumptions are often only partially true.
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2.5.2 Object-oriented design.

The second design strategy is object-oriented design (OOD). This approach is 

characterised by the identification of real world and abstract objects which can then be 

represented by program objects (McConnell, 1993). The principle underlying this is the 

closer the program structure is to the real-world problem it aims to solve, the more 

understandable it will be and the less likely that spurious interactions will occur. OOD is 

thus a process of identifying objects and classes of objects, and identifying required 

operations on object classes.

A number of concepts used here characterise OOD, but are not necessarily 

restricted to object orientated programming (OOP) languages such as C +  + , and central 

to this is the idea of abstraction. Hierarchical systems perform abstraction at the level of 

functions (for operations) and structures (for data), object-oriented systems however take 

this to its logical conclusion with objects encapsulating both the data and the functions to 

access and manipulate that data, with some or all of the data only being available to the 

object functions. This is a rigorous implementation of the idea of information hiding, 

and serves to permit the internal data organisation to be altered as needed without 

disturbing any interaction with other objects. There is no inherent reason why functions 

cannot be associated with their data in C provided a reasonable degree of discipline is 

used in the coding process.

2.5.3 The relative merits of hierarchical and object oriented techniques.

No discussion of hierarchical and OOD techniques would be complete without a 

consideration of the drawbacks of each. This needs to be done in the context of the 

practical effects of these approaches, and in relation to the languages commonly used to 

translate designs into operational code.

Hierarchical design (even when using abstraction and encapsulation techniques to 

their limit) leaves much to the discipline of the programmer. It is easy to crosslink items, 

and even when strict separation is observed, modification of one part of the system can
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have repercussions for others. This type of problem is squarely addressed by OOP 

languages such as C +  + , however the use of these languages leads to somewhat less 

obvious problems. First is excessive encapsulation and abstraction, where base classes 

are used to derive operating classes to the extent that even libraries and API functions 

are considered to be unavailable unless encapsulated into classes. Linked to this is the 

problem caused by modern C + +  compilers provide enormous sets of base classes 

which, if used, require vast amounts of additional hardware resources. This arises in 

part because the classes from which the application classes are derived are themselves 

derived - perhaps many times over. Each layer adds bulk and reduces execution speed. 

Overall there is a very real risk that exclusive use of OOP techniques will lead to a 

fundamental lack of understanding of program operation and an inability to work outwith 

the confines of derived classes.

2.6 Sequential input and event input.

DOS was designed to use the then current interaction metaphor - the so called 

"glass teletype" - in which information is displayed line by line on a video screen, 

commands are typed on the current line and the whole display scrolls up and off the 

screen as more lines are added. The great advantage of this system is that it is

technically simple, but it forces the user to be relatively expert.

This form of interface lends itself to linear interactions, and is particularly useful 

in such situations. However, for most purposes a more sophisticated interface is 

required. In particular, much software operates by guiding the user through a maze of 

hierarchical menus. This effect can be achieved by an extension of the linear interaction 

model, with each menu supporting only a limited number of current options. In terms of 

the underlying code, a hierarchy of decision making functions can quite satisfactorily 

cope with this situation, and it is even possible to implement a limited GUI using this

approach. The problem is that code complexity increases as the number of available

choices increases, and full support for GUIs such as Windows is impossible to achieve.

A more recent approach is to consider each keystroke or mouse movement a
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single event in a stream of events. Taken with any required supplementary information it 

can be passed to the message handler for the appropriate window, dialog box, or other 

on-screen gadget. The message handler then processes the message based on the current 

state of the system and returns control to the message dispatching routine. This is an 

intrinsically more complex process than handling linear input, however it is much more 

flexible. Differing kinds of input can be handled, even events generated by the operating 

system or other application software. This approach also parallells the development of 

object-oriented techniques for designing the application software, and it is readily 

apparent that such a messaging system could be implemented in an object-oriented 

program. However, in terms of GUIs no current alternative to such a message handling 

system has the required flexibility to respond to input in multiple windows.

Windows uses an event pushing mechanism to feed event handlers for each 

window. It thus makes sense to use this mechanism rather than ignoring it in favour of a 

sequential input mechanism. Additionally, Windows (up to version 3.1) uses cooperative 

or non-preemptive multitasking, implemented by the message dispatching function 

passing messages to each active task in turn. Thus each task has exclusive control of the 

PC while the message handler is processing the message (Petzold, 1990), making use of 

this mechanism all but essential.

2.7 General considerations in software development.

The primary concerns for any piece of software are: first, is the software stable 

(i.e. does it run reliably) to the required degree? Without meeting this requirement, the 

software is next to useless. Second, is the code maintainable (i.e. can modifications be 

made later) to the necessary degree? In reality whatever the original specification and 

however sophisticated and exhaustive the original requirement analysis was, changes 

will inevitably be needed later. Third, is the correct operation of the software verifiable 

to the required degree? The extent of the verification depends on the importance (and 

immediacy) of the real world problem being addressed, particularly in safety critical 

applications. Fourth, but most fundamentally, does the software solve the problem that it
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is supposed to solve? If it does not then it is by definition a failure.

There are also several secondary considerations that cannot be ignored without, 

at best, compromising the quality of the finished software. First, how fast is the 

software? If the speed is inadequate on the proposed hardware then it does not matter 

whether the solution is elegant (or whatever else). The software will not be usable. 

Second, how clear is the source code? Clearly written code is more likely to be well 

written, (McConnell, 1993) and it is certainly easier to maintain. Third, how 

standardised is the software both internally and externally. Code which is written using 

a variety of coding standards is not clear, and software which does not employ the 

current metaphors for user interactions without good reason is less easily used. Worse 

still is software in which different parts use different metaphors or require different 

assumptions on the part of the user, and this extends even to ways of laying out 

information on the display. In this respect a single bad standard can be better than two 

good ones.

2.7.1 The trade-offs.

Any design has to balance the merits of a particular solution against the 

drawbacks. In some instances, the advantages of a particular solution are compelling, 

but more frequently some sort of reckoning must be made in terms of the fulfilment of 

the underlying goals. This is not to suggest that fulfilling the software's basic 

requirements is something to be traded against elegant design (although this is sometimes 

done), rather how this is done is a legitimate, even necessary, consideration.

In software, the most common trade-off is against execution speed. The more 

compact the code the faster it will run. The more highly customised functions that are 

used the faster, but harder to write, debug and test the code becomes. Special knowledge 

of object structures can allow a quick fixup for a special case. These, and similar 

features enhance the speed of the program at the expense of stability, maintainability, 

verifiability and testability.

However, speed is not the only currency in software design. Program stability
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(i.e. the capacity of the program to continue running without error when stressed) is also 

a common currency for trade-offs. Standardisation of software usually assists stability by 

making the code easier to write, debug, test and maintain. Some external "standards", 

particularly enhanced features of operating systems such as Windows may however 

compromise stability. Among other things Windows encourages the use of dynamic link 

libraries (DLLs) with the idea of making incremental upgrades possible. The result is 

often confusion about which version of a particular DLL is correct for a particular 

package, and may result in multiple copies of a DLL being required. Windows also 

offers dynamic data exchange (DDE) and object linking and embedding (OLE) 

mechanisms to permit supposedly "user friendly" standardised inter-task data exchange 

facilities. These are good in principle, but are complex to implement and complexity 

always implies potential stability problems, particularly when the ideas are not clearly 

documented, or like DDE / OLE, when the basic specification of the facilities is 

repeatedly revised.

2.7.2 The testing and debugging of software.

A bug can loosely be defined as any unexpected outcome of a particular input, 

and it is important to realise that all software contains bugs, which manifest themselves 

with differing frequencies (McConnell, 1993). Most bugs rapidly manifest under 

ordinary testing, however a few will only appear after years of normal operation - and 

can be correspondingly catastrophic (Neumann, 1995). Bugs in executable software are 

of two general types: defects of logic and defects of implementation (McConnell, 1993), 

syntax errors having already been detected by the compiler. Defects of implementation 

themselves divide into boundary value defects and general case defects.

Consistent testing with boundary values and a range of other inputs will allow the 

identification of many bugs, however a large proportion will require the use of a 

symbolic debugger (a piece of software which takes the debugging information built into 

the application executable and allows the programmer to step through the execution of 

the application line by line, viewing the source as it is executed and allowing variables to
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be inspected). The debuggers available will be described later, however it must be noted 

that the debugger shares the memory space available for the application being debugged. 

For DOS applications this is a highly significant limitation.

2.8 The process of generating a functioning program.

In practise the process of creating software is an iterative process, a new section 

of code will be written, it will be compiled, linked, bound, tested, debugging will be 

undertaken, the code will be revised and so on until that section is operating. The next 

section will then be written, and this process continues until the entire program is 

finished. The importance of considering this is that the efficiency of the compile cycle 

largely determines the productivity of the entire process of code construction (as distinct 

from design), and the efficiency of the compile cycle is itself largely determined by the 

IDE - or for that matter the lack of an IDE. The quality of the IDE used may seem to be 

relatively trivial in some respects, but it does have a significant impact on the ultimate 

software quality and, in a time limited project, whether and to what extent there is a 

working piece of software at all.

2.8.1 Compiling under Microsoft C version 6.

One of the development systems used in the course of this project was Microsoft 

C version 6 (C6), and this section will describe the capabilities and limitations of this 

system as they relate to the process of developing software for this project. The 

development system itself is well documented (Microsoft, 1990), and books exist about 

the language variations in C6 and the capabilities of the development tools, however 

there is sufficient scope for variation within the system setup that it is appropriate to 

detail the actual installation used.

C6 in the configuration used is a DOS development system and it does not 

incorporate C +  + compiler facilities. The Programmers workbench IDE was tested and 

discarded on the basis that it provided no significant operational benefits. Editing was
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performed using Borland Brief version 3.1. This is designed to be a configurable 

programming editor and limited IDE. It allows source files to be compiled and lets error 

and warning messages be displayed along with the relevant lines of source code. Linking 

has to be performed at the DOS prompt and was usually accomplished using custom 

written batch files, the make utility being rejected on the basis that it was relatively hard 

to use and provided little or no real advantage over a few well structured batch files. 

Debugging was accomplished initially using Microsoft CodeView version 3.0 and later 

using Borland TDConvert version 2.0 to convert the executables to be debugged using 

Borland Turbo Debugger version 3.1, either as a cross-platform debugger or in a remote 

debugging configuration.

Overall C6 is totally inadequate for large scale development work without 

significant additional tools. Subsequent versions addressed these concerns, but none 

were available for this project.

2.8.2 Compiling under Borland C + + .

The other development system used in the course of this project was Borland 

C + +  (BC) versions 3.1 (initially) and 4.0 (later), and this section will describe the 

capabilities and limitations of this system as they relate to the process of developing 

software for this project. BC provides an IDE, resource editor a C compiler, and a 

debugger, which can generate applications for both DOS and Windows. BC version 4 

(BC4) incorporates a Windows version of the Brief editor, and an integrated debugger.

Since this system was used for the development of Windows applications, only 

this part will be described. The BC IDE provides excellent project management 

capabilities, including the capability to rebuild object files and libraries based on the date 

and time of the source files. Resources can be created and edited using the extensive 

Resource Workshop facilities. Debugging can be accomplished either using the IDE 

debugger or the Turbo Debugger for Windows. This debugger also readily allows dual 

monitor debugging - which by permitting the debugger to display on one screen while 

the normal Windows display is on the other aids the overall debugging process.
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2.8.3 A few definitions.

A source file contains the mechanism of the program expressed in the 

programming language used. An object file is produced by the action of a compiler on a 

source file. A collection of object files constitutes a library file. A resource file contains 

bitmaps and other resources used by the software. An executable file is produced by the 

action of a linker on the object and library files. Alternately a DLL may be produced, 

which links to the executable when the program is executed. These are all either parts of 

the operational program or intermediates in the production process. A glossary of other 

technical terms is provided as an appendix.

2.9 The materials available.

2.9.1 Additional development tools and libraries.

The only additional development tool made available for this project was the 

Phar-Lap Software Inc. 2861 DOS-Extender version 2.5. This version is a sixteen bit 

virtual control program interface (VCPI) DOS extender capable of linking with C6 

object files to give the application access to up to 16 MB of RAM.

The only commercially produced libraries made available for this project were 

the the Cambridge Electronic Design (CED) CFS and SON data storage libraries (see 

chapter 3).

2.9.2 Signal capture and analysis facilities.

Signal capture was effected using a CED 1401 and, when available, a CED 

1401+ analog to digital interface controlled by CED’s Spike2 software version 3.1 for 

DOS, and in the final stages also Spike2 version 3.1 for Windows. Despite having the 

same version number these two packages have different capabilities, and neither data 

files nor macro scripts from one can readily be used with the other. Spike2 version 3.1
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for Windows incorporates spike identification capabilities.

2.9.3 Calculation aides used.

Many of the complex calculations implemented in the project software were 

checked against specimen calculations implemented on several packages. These were the 

spreadsheets Lotus 123 version 2.1 and Microsoft Excel version 4.0 and the 

mathematical drafting package MathCad version 4.0 produced by Math Soft.

The spreadsheets used provided all of the required calculation capabilities, 

however the implementation of many complex equations in a spreadsheet leaves much 

room for error since the cell based formulae bear little resemblance to the mathematical 

equations from which they are derived. A mathematical drafting tool such as MathCad 

provides a means for implementing equations in a more "natural" fashion.

2.9.4 The computer hardware available.

IBM PCs were the only hardware platform available for this project. Initially, a 

25 MHz 386 with 2 MB of RAM, a VGA display, 40 MB of disk storage, and no 

floating point coprocessor was made available, and this was eventually replaced by a 33 

MHz 486 with 8 MB of RAM, an SVGA display, 200 MB of disk storage and a 120 MB 

tape drive.

2.9.5 The use of the systems available.

The original hardware and development tools made available for the project were 

inadequate for the task in hand, and were progressively replaced by more powerful 

facilities, although the timescale for this could have been more advantageous. However, 

certain of the libraries and facilities required the continued use of C6 rather than BC 

and this, rather than any philosophical objection to C +  +  mandated the use of C. The 

possibility of using C + +  for some of the development, particularly for Windows
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specific facilities, was considered but rejected on the basis that continual swapping 

between C and C + +  was likely to lead to a reduction in coding efficiency in both 

languages rather than provide benefits in either. This did not however exclude the use of 

OOP techniques in C. The Phar-Lap DOS extender became available much later than 

was expected, and consequently the focus of development (and the experience) had 

already moved to the production of Windows software. Consequently the use of the DOS 

extender was somewhat limited, as will be discussed more fully in chapter 3.

The large memory model was used exclusively for the software developed here. 

None of the other programming models offered any real advantage, but did offer 

significant problems.
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3 Biological Materials and Methods.

Signals have been recorded, manipulated and analysed since the development of 

suitable electronics - if not before (Bures et al., 1967). The development of computers 

has however provided for considerable automation of the data capture and analysis 

process and many, if not most, data capture devices (such as oscilloscopes or chart 

recorders) are today based on digital electronics with interfaces permitting data to be 

transferred to computer. Additionally, it is possible to use general purpose analog to 

digital (A/D) converters linked to PCs or Macs and driven directly by software running 

on the computer.

3.1 The experimental setup.

It is useful to note some of the details of the experiments conducted by Dr. Maria 

Denheen (1992) from which the data used here are derived. In summary, extracellular 

recordings were made of the third root of the superficial flexor nerve (Fig 3.1) of the 

Norway lobster (Nephrops norvegicus). This root innervates a thin muscle sheet (the 

slow or superficial flexor muscle) which is involved in abdominal positioning. The third 

root itself consists of six motor neurons (F1-F6), five of which are excitatory, the 

remaining one being inhibitory (Knox and Neil, 1991; Denheen, 1992). In this and other 

crayfish and lobster systems the motor neurons have been numbered sequentially on the 

basis of neuron diameters and spike amplitude, the smallest being FI and the largest F6 

(Kennedy and Takeda, 1965; Wine et al., 1974; Thompson and Page, 1982; Denheen, 

1992). In this scheme F5 is the inhibitor neuron.

Data was initially recorded onto an analog tape recorder, and subsequently 

transferred to PC using the 1401 A/D converter interface (manufactured by CED), 

controlled by the Spike2 software package (written by CED). Dr. Denheen's analysis of 

this was based on the use of the facilities within Spike2 to generate timed event markers 

for specific classes of nerve spike (corresponding to individual neurons). This was 

achieved by using an appropriate set of threshold voltages to generate sets of event
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markers which could be compared to give the events corresponding to each of the spike 

categories (see Fig 3.2 for an example).

3.2 The technology of signal capture.

Before considering the digitisation process it is first necessary to understand how 

analog and digital signals differ. An analog signal is a continuously varying voltage, 

while a digital signal uses a stream of numbers to represent (in some way) the waveform 

under consideration. Also a general analog signal contains no timing pulses or other 

artificial information.

3.2.1 The sampling process.

In the current context the sampling process and its consequences are crucial, and 

so particularly relevant aspects need to be pointed out (for a general review of the 

process see Stremler (1990)). An analog signal is continuous, and digitisation is 

accomplished by sampling, most commonly to 12 bit accuracy, at a specified interval - 

with the potential consequence of aliasing the signal. This is a relevant concern only 

when the signal contains components with frequencies greater than one half of the 

sampling frequency.

Of more specific concern in the recording of electrophysiological events is the 

potential for the loss of instantaneous extreme values (see Fig 3.3A), and the consequent 

distortion of crucial parts of the waveform under consideration. This can be avoided by 

oversampling the signal (see Fig 3.3B), or alternately by using the Fourier transform to 

reconstruct the waveform (see section 3.2.2) though this approach is not used by Spike2. 

However, this facility is not available in the CED 1401 A/D interface, and as controlled 

by the CED Spike2 program (version 3.1) the hardware is not capable of sampling at a 

sufficiently high rate to permit software to perform the task. The capabilities of the CED 

1401+ interface (a version of the 1401 based on a more powerful CPU) are greatly 

enhanced, however a 1401 + was only available for the final data capture session.
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3.2.2 Waveform representation and data compression.

The sampling process is, however, only part of the story. The shape of the 

analog waveform can only be represented approximately by a series of instantaneous 

voltage measurements, and the actual voltage of the signal in between two such 

measurements most certainly cannot be represented accurately by a linear combination of 

the measured values. However, any waveform can be represented to any degree of 

accuracy required if it is reconstructed from its Fourier transform or the related Fast 

Fourier Transform (FFT) (Stremler, 1990). In this approach the sample values of the 

digitised signal are used to calculate the coefficients of the corresponding Fourier series 

and this is used to generate intermediate values. This can be extended by using the 

instantaneous frequency breakdown of the signal (given by performing a FFT) to 

identify "unimportant" frequency components (probably relative to the responses of the 

human auditory system) which are then discarded (giving a form of "lossy" data 

compression). This gives a simpler signal, which can be stored using fewer bits per 

sample or correspondingly a greater number of samples per time interval, at the expense 

of losing some information. One major drawback of this method is that the FFT 

calculation is too complex to implement in real time using only software - special 

hardware must therefore be available. The method of waveform reconstruction (and to a 

lesser extent compression) is however the basis of some digital audio devices.

The alternative approach to obtaining a more faithful representation of the analog 

signal is to step up the sampling rate. Taken to its limits, this permits a signal to be 

represented to any level of accuracy needed, provided only that the sample interval is 

small with respect to the time course of events of interest. Lossless data compression 

methods such as the Lempel-Ziv algorithm (Ziv and Lempel, 1977; 1978) can then be 

applied to the storage of the digital signal, without any concern that the simplifying 

assumptions used in lossy data compression methods are in some way altering the data.

36



3.2.3 The signal capture facilities available.

Having outlined the principles of signal acquisition, it is appropriate to consider 

the capabilities of the hardware and software available. As mentioned earlier, the A/D 

converter used was the CED 1401, a PC controlled unit providing up to 32 analog input 

channels and a small amount of onboard memory. This was controlled by CED's Spike2 

software (version 3.1) and this combination provided for a maximum data rate of 20 

KHz in total, which had to be shared between all the active channels (compared with the 

data rate of 44.1 KHz per channel used by digital audio systems). This implies for a 

single channel recording that the maximum bandwidth of the signal is 10 KHz. In any 

consideration of the identification of nerve spikes by shape, sub-millisecond information 

is of importance, since the time course of the entire spike is of the order of one 

millisecond (Abeles and Goldstein, 1977). Even for single channel recordings of nerve 

spike event data, the sampling rate is therefore close to the low end of the acceptable 

scale. The use of a device such as the CED 1401 + , which is capable of capturing short 

waveform events with high resolution as well as higher sustained data rates, would 

eliminate any concern about the quality of the recording. Indeed the data ultimately 

captured with a 1401 + was sampled at 25 KHz on each of two channels.

The output of the 1401/Spike2 system is a data file containing the digitised values 

of the signal (to 12 bit accuracy). There are no inbuilt data compression mechanisms, 

with the consequence that data files (sampled at 20 KHz) are around 2.4 MB per minute 

of recording. This has the practical effect of encouraging the user to operate the system 

at lower sampling rates, with consequently lower bandwidth recordings.

3.2.4 Alternative matching software.

Many of the matching systems described in chapter 1 are software based, and a 

number of investigators indicated that the source code for their systems was available. 

Considering the extensive modification that would be required, the merits of re-using 

portions of source code from other projects are debatable, particularly when the code
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was not designed to be used in this fashion. Indeed when source code is generated in an 

incompatible language, or is intended to run on different hardware or use different 

operating systems, the benefits of attempting to re-use it are largely outweighed by the 

practical problems of integrating it with new material.

With the standardisation of computer equipment, and its widespread availability 

in recent years, it is not surprising that commercial interest would develop in the 

provision of spike classification techniques. CED have taken an interest in such 

techniques and have incorporated a degree of spike classification capability into their 

Spike2 software, but only for use with the 1401+ . This is primarily an on-line solution 

(hence the requirement for the 1401+), using a version of the variable envelope template 

method described here, based upon templates generated using a clustering technique.

3.3 The problem expressed in terms of nerve spikes.

The signal data available was recorded on a four channel analog tape recorder, 

with up to three channels being used for nerve spike recordings. Each channel contains 

the electrical activity for all the neurons in one fibre and, in terms of the information 

content, these consist of discrete events of six categories occurring in any sequence. 

Events may overlap (see Fig 3.4) and the signals are subject to a degree of background 

noise, as well as alterations in the baseline voltage and the amplitude of the events (see 

Fig 3.5). The absolute amplitude of the spikes thus depends on the experimental 

conditions prevailing at any particular time. However the ordering of the amplitude of 

spike classes FI to F6 remains the same. All of these features must be addressed to at 

least some degree by any matching process.

The window discriminator method used by Dr. Denheen and many others 

(Littauer and Walcott, 1959; Hermann et al., 1962; Bradley et al., 1967; Freeman, 

1971) depends on setting threshold voltages to trigger events. This works well for the 

spike categories F3 to F6 but the two smallest spike categories FI and F2 are difficult to 

distinguish on this basis. Depending on the properties of the electrode in each particular 

instance, the amount of noise, and the variations of voltage, it is often impossible to
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separate FI events from F2 events by this means (Harris-Warwick and Kravitz, 1984). 

Unfortunately the separation of FI from F2 is the most significant classification of all, 

since the FI neuron originates in the ganglion posterior to the ganglion (Wine et al.,

1974) from which the others originate (see Fig 3.6).

Clearly if the FI and F2 spike waveforms or any other waveforms being analysed 

have the same shape with the same peak voltages from the same baseline on the same 

timecourse (within the margins due to background noise), then it will be impossible to 

distinguish between them on the basis of a single recording (although two or more 

recordings at separate parts of the nerve would add the possibility of separating events 

based on propagation speed (Schmidt and Stromberg, 1969; Roberts and Hartline,

1975)). Assuming that there is a difference between the spike waveforms, and that this 

difference cannot readily be established by using a threshold voltage, the shape of the 

waveforms must be considered.

3.4 The matching methods used.

This section will describe the mathematical and computational aspects of the 

matching methods employed by the software for this part of the project. The theoretical 

justification for each method and its advantages will be discussed in chapter 5, while the 

actual implementation will be discussed in section 3.6.2.

3.4.1 The variable envelope template method.

As a first approximation it is possible to automate an intrinsically manual 

approach to shape identification. The manual process under consideration is that of 

tracing the shape of the waveform of interest and adding an outline representing the 

acceptable level of deviation from that shape, comparing this with each waveform, and 

accepting or rejecting matches on the basis of the degree of overlap. Following the 

terminology of Schmidt (1984b), this approach is actually a contour matching process, 

since it is baseline independent, but considering the diversity of template methods it is a
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somewhat artificial distinction. The automated equivalent of this is to select a section of 

waveform and define the maximum and minimum range curves based on the formulae: 

Rmax = V + (kj +  k2 D)

Rmin = V - (ki + k2 D) 

where R max and R mjn are the range values, V is the value of the datapoint, D is the value 

of the derivative of the curve at the datapoint, kj and k2 are user defined constants. The 

search is then performed by finding the minimum difference for each of the possible 

alignments between the curve defined by the maximum range and the curve of the 

waveform to be matched. Then the curve of the minimum range (offset by the minimum 

difference) is compared with the waveform curve, and the match is accepted if the range 

curve lies below or touches (but does not cross) the waveform curve (see Fig 3.7).

3.4.2 The minimum merit distance method.

A second, and more theoretically interesting, method was used as an alternative 

approach to the identification of waveforms. This uses the calculation of a "minimum 

merit distance" (MMD) for each template/waveform comparison according to the 

methods described by Kruskal (1983). The templates were defined as described above, 

but the search did not take account of the relative alignment of the template and 

waveform. The assumption was made that the MMD calculation would absorb slight 

variations from the default curve alignment (i.e. the alignment on which the template 

was defined). One difference with the standard MMD calculation was the use of a user 

defined range of perfect match values. This allows for noise effects to be discounted, as 

well as providing a consistency of behaviour between the two template methods.

The MMD measures the degree of similarity between the information contained 

in the template and the waveform, and this could be treated as a distance measure in 

substantially the same fashion as any other. However it was considered to be more 

useful to embed the match distance into a Boolean choice of the available templates, with 

the most similar (i.e. the comparison with the lowest MMD value) being selected. In 

these terms the templates are not useful as independent entities, there being an implicit
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requirement that most if not all the waveform classes are represented by templates.

3.5 The process of creating a spike database.

As with the spot analysis system, the fundamental approach in the design of the 

signal analysis system (or Signal Viewer) was to split the process of data acquisition (via 

the 1401 ISpike2 system), data translation, template generation and data analysis into 

separate sections, each controlled by a separate program. Having described the data 

acquisition stage, this section will consider the generation of a database of nerve spike 

waveforms.

The use of a database of spike waveforms was selected in preference to direct 

operation on continuous waveform recordings for three reasons. First, it removed the 

dependence on a single data source. Nerve spikes are discrete events, and thus capable 

of being treated as separate entities, so this approach does not alter the key information 

contained in a continuous recording. Indeed much analysis is done on packets of 

waveform information, whether gathered by a digital storage oscilloscope or by a 

software package such as CED's Sigavg program. Thus restricting the range of data to 

continuous recordings would reduce the flexibility (and hence the utility) of the analysis 

software without providing corresponding benefits. Second, when this part of the 

program was designed it was hoped that other data acquisition methods capable of 

sampling at higher rates than the 1401 controlled by Spike2, such as use of the 1401 +  or 

digital oscilloscopes or even direct control of the 1401 by custom software, would be 

available at some stage. These would not produce continuous waveform information, and 

consequently would not be compatible with an approach that required data in this form. 

Third, at the time the software for this part of the project was designed and coded, the 

only library available for accessing data files was for CED's "CFS" data file format. 

Spike2 generates data in "SON" format, and it was necessary to use a utility program 

(supplied as a standard part of Spike2) to convert it to CFS format. The CFS access 

library proved to be less reliable than was desirable for a key component of any piece of 

software, and good defensive programming practices dictated that it should be removed
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from the program kernel. It was therefore replaced by a set of custom extensions to the 

Ashton-Tate dBase 4 database file format, implemented through a customised library. 

This was the only other available framework for handling data, and was primarily suited 

to the handling of discrete data items.

The spike database creation utility thus takes in a CFS format data file together 

with user defined information about the channels to be captured, a list of trigger voltages 

to use, and the pre- and post-trigger timing intervals. When an event is detected, the 

relevant sections of all the channels are stored, together with the time and the identity of 

the channel causing the capture event. Once created, this database is passed to the next 

stage of analysis as described in the next section.

The actual spike event recognition mechanism is simply a positive going 

threshold event, i.e. any situation where one datapoint which lies below the threshold is 

followed by one on or above the threshold. This differs from the event definition 

mechanisms used by CED (Greg Smith, CED Ltd., personal communication), in that 

there is neither a second negative going threshold crossing required within a specified 

time, nor is there a "dead" interval before the next possible positive crossing. The latter 

is a more sophisticated approach, but in the context of the data available this mechanism 

was considered to be over engineered. This, of course, is much less true for CED's 

software requirements, hence the difference in approach. Additionally, the mechanism as 

used by Spike2 version 4 for the capture of isolated spike events is understood to depend 

on processing occurring within the 1401 + rather than in the PC, with surplus waveform 

data being discarded. Hence the performance and reliability requirements are 

significantly greater for Spike2.

3.6 The implementation of the classification methods.

This section will consider how the final version of the Signal Viewer program 

operates, consideration of design and development issues being given in section 3.8.
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3.6.1 The signal analysis program described.

As ultimately implemented the Signal Viewer consisted of two separate but 

closely related programs, the Template Generator and the Result Viewer, both of which 

operate on the spike waveform database generated by the import utility. The Template 

Generator allows individual spike waveforms to be viewed (see Fig 3.8A) and templates 

to be defined (in accordance with the formula in section 3.4.1), edited or deleted. These 

are then stored in a template database. The Result Viewer allows the search method to be 

selected, performs the search, generates the match database and displays portions of the 

spike database with the spikes in their correct temporal alignments (see Fig 3.8B). 

Individual channels can be copied, and logical filtering of the display for each channel 

can be effected. Information about the timing and numbering of each filtered event can 

be generated in a form suitable for importation into a spreadsheet such as Microsoft 

Excel.

3.6.2 The implementation of the match methods.

Both search methods use the same format of spike and template databases, and 

generate a match database of the same form. All of the routines are coded in C, and the 

calculations make extensive use of floating point arithmetic (with consequent 

performance implications). In principle both methods rely on off-line analysis, that is 

analysis which is not performed in real time, either because it cannot be performed in 

chronological sequence or because it cannot be performed in the interspike intervals.

3.6.3 The variable envelope template method in detail.

In this section the principals and implementation of the variable envelope (VE) 

template method will be described.

The VE template method is a contour fitting algorithm in which the shape of the 

data waveform is compared with two contours (see Fig 3.9), corresponding to the upper

43



and lower bounds for the data waveform, which can be synchronously offset in both 

dimensions. In this implementation a series of comparisons are performed to find the 

optimal temporal alignment between the data waveform and the upper bound, resulting 

in an array of voltage differences corresponding to the possible alignments. The largest 

of these corresponds to the near-optimal temporal alignment which allows both upper 

and lower bounds to be offset by a value which will tend (but not in all cases be 

guaranteed) to maximise the distance between the data waveform and the lower bound 

without permitting the data waveform to cross the upper bound, (see Fig 3.9B). If the 

data waveform lies entirely above the lower bound then this is classed as a match, 

otherwise it is rejected. The search is then repeated on the next (valid) template / 

waveform comparison. A flow diagram of this is given in Fig 3.10.

This method is computationally cheap, requiring few calculations per datapoint, 

and operates fastest on templates which are close to the data waveform in length. It is in 

principal sufficiently fast to be implemented in real time.

3.6.4 The minimum merit distance method in detail.

This section will consider the principles and implementation of the minimum 

merit distance (MMD) template method.

This method is a modified implementation of the algorithm described by Kruskal 

(1983), in which two sequences are compared by determining the "cost" of inserting, 

deleting or substituting sequence elements in order to make the two sequences equal. 

The scheme of sequence alterations corresponding to the minimum cost is the optimal 

transformation, and the cost represents the distance between the information contained in 

the two sequences. This is therefore an intrinsically baseline dependent method. Its 

operation is perhaps best understood by considering a simple example as illustrated in 

Fig 3.11, and its implementation by considering a flow diagram (Fig 3.12).

In detail, two arrays are created - one containing a total of T template waveform 

elements, and the other containing D data waveform elements, but this will normally be 

restricted to the sub-sequence corresponding to the one on which the template was
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defined (giving T=D ). A two dimensional matrix of size T x D is created to hold the 

intermediate cost values, along with necessary control arrays. The matrix is filled with 

the minimum cost values according to the rules given by Kruskal (1983), with the 

exception that two elements are deemed to be equal (i.e. have a substitution cost of zero) 

if they differ by less than a user specified amount. The matrix entries represent the 

comparison of the sub-sequences up to the current positions and should increase from 

left to right and from top to bottom (see Kruskal (1983) for examples of this). The entry 

in the final column of the final row represents the cost of transforming the template into 

the data waveform (or vice versa), and is the significant value. This process is repeated 

for each valid template, resulting in an array of cost values. The minimum value in this 

array corresponds to the template which best matches the data waveform, and this 

correspondence is recorded in the match database as the preferred match - all other 

templates being rejected. As with the VE template, the search is then repeated for the 

next available data waveform. A flow diagram of the overall process is given in Fig 

3.13.

Even from this brief account three points should be obvious. First, the cost 

increases in proportion to T x D. Second, the use of templates of varying lengths will 

influence the cost of the transformation (small templates necessarily have a lower 

transformation cost than large ones in this implementation). Consequently templates of 

the same length should be used. A normalisation of the cost could be performed, but this 

was not implemented, preference being given to the use of standard length templates. 

Third, several calculations are required per matrix entry, with the consequence that the 

whole process is computationally expensive and correspondingly slow. The first and 

third points taken together imply that as the waveform resolution improves, the speed of 

the method will decline in a non-linear fashion, with consequent performance 

implications.

3.6.5 Data flow and operation of the matching kernel.

The previous two sections outline the operation of the match methods. However,
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this is only part of the story. The kernel of the matching system also contains data 

management facilities, and it is impossible to understand the operation of the Result 

Viewer without some broad explanation of the way in which data flows through the 

kernel.

Waveform data is held in a waveform database, the templates are held in a 

template database, and the results of matching the templates to the waveform data are 

held in a match database (which has as many records as the waveform database and as 

many fields as the template database). The waveform and template databases are opened 

by the user prior to initiating a search. When a search is started, a match database is 

created and initialised. A search is performed on all non-deleted data waveforms using 

the current selection of non- deleted templates. The selection mechanism normally 

restricts the template search to meaningful combinations (templates and data derived 

from the same data channel) but can be altered by the user to permit a search of all the 

data channels for all the templates. Matches are determined as described in the two 

previous sections and logged to the match database as a three state Boolean variable 

(match / no match / no search).

Following the template search, the user is able to copy the display of any data 

channel and apply a display filter consisting of any logical combination of match events 

to the channel. At its simplest this would allow a channel containing two waveform 

classes to be copied so that there were three separate display channels, corresponding to 

template one, template two and neither template. This information can then be outputted 

(in the form of columns of times of events) along with summary statistics to an ASCII 

file, which can then be imported into another package (such as Spike2).

3.7 Validation.

Validation and operational testing of software is a major part of the process in 

any development (Adrion et al., 1982). Some software is effectively self validating, 

insofar as it either operates or it fails to operate, and everything else is a reliability issue 

rather than a correct operation issue. For this type of software, where failure will not
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result in significant adverse consequences (such as loss of life) and where the anticipated 

user base is small, this level of verification is appropriate (McConnell, 1993) - and 

applicable to parts of the Signal Viewer. However, the data analysis part of the Signal 

Viewer requires specific validation. The Signal Viewer has adequate amounts of real and 

synthetic data available for analysis, and more significantly has data analysed by 

alternative methods for comparison, as well as data from experiments providing a 

physical basis for separating FI and F2 spike waveforms. Various validation tests were 

carried out as detailed in the following sections.

3.7.1 Application to comparative data.

Data of a suitable nature was captured as described above, and analysed by Dr. 

Denheen in accordance with the methods described by her (Denheen 1992). The same 

data were independently analysed by myself using a variety of templates for both search 

methods. The results of the two analyses were then compared by overlaying the event 

output from the Signal Viewer back onto the original data file (as supplementary event 

channels), and new events were generated to mark differences between the two analyses. 

This was performed using the macro language facilities provided within Spike2.

3.7.2 Application to FI censored data.

In experiments previously conducted by Dr. Denheen, the ventral nerve cord was 

cut posterior to the ganglion from which the relevant third root nerve originated (see Fig 

3.6). This had the effect of cutting the FI neuron (and hence removing FI activity) while 

leaving F2 to F6 intact. Therefore, the accuracy of the template search for F2 could be 

established by considering the number of false FI matches, assuming that the cutting 

process did not itself have an effect on the spike waveforms.
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3.7.3 Application to tagged data from the crayfish cuticular stress detector.

In experiments previously conducted by Dr. Cornelia Leibrock (1993) on the 

sensory system of the crayfish Procambarus clarkii, recordings were made 

extracellularly from the anterior distal root (adr) nerve and intracellularly from a sensory 

terminal (CSDl-t) of the cuticular stress detector one (CSD1) nerve. The CSD1 axons 

form a part of the adr, hence the adr recording will contain an extracellular record of the 

same activity recorded from the CSDl-t. This gives a means for the independent 

verification of template matched CSD1 spikes.

A section of the adr recording was therefore digitised, suitable MMD templates 

were defined, and the results of the search compared event by event with the activity of 

the CSDl-t.

3.7.4 Application to tagged data from the crayfish coxo-basal chordotonal organ.

A further data set containing both an extracellular and an intracellular channel 

was obtained from Dr Daniel Cattaert of the Centre Nationale de la Recherche 

Scientifique (CNRS) in Marseille. The intracellular recording is from the fifth thoracic 

ganglion of the crayfish Procambarus clarkii, and comes from the central terminals of 

one of the sensory axons of the coxo-basal chordotonal organ in the fifth walking leg, 

while the extracellular recording is from a tungsten wire electrode pressed against the 

sensory nerve coming from the corresponding chordotonal organ, and sealed in place by 

vaseline. Again the intracellular recording provides for independent verification of 

template matched spikes.

A section of the extracellular recording was therefore digitised, suitable MMD 

templates were defined, and the results of the search compared event by event with the 

activity recorded by the intracellular electrode.

The same section was also searched using the spike identification facilities in 

Spike2 for Windows. Templates were generated using the inbuilt facilities and these were 

used to search the extracellular channel. Search results which failed to identify the key 

spike categories were discarded.
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3.7.5 Sensitivity testing.

Sets of variable envelope templates were defined using different k l and k2 

parameters (as defined in section 3.4.1) and the number of matches for each combination 

was established. This identifies the range of acceptable margins of error.

3.7.6 Application to synthetic data.

Three data sets were prepared using waveform averaged F I, F2 and F3 data (as 

identified) from one of Dr. Denheen's experiments. These spike classes were then used 

to generate synthetic data sets in which the actual spike identities were known. Three 

different protocols were used to generate these data sets.

In the first protocol, each spike event was chosen randomly from one of the three 

classes, and a predetermined amount of normally distributed noise (generated using an 

implementation of the Box-Muller algorithm (Press et al., 1992)) was added to the spike 

waveform. The standard deviation (s.d.) of the noise was varied over a range from zero 

(i.e. an infinite signal to noise (S/N) ratio) to a level where the signal was badly 

degraded (approximately zero S/N ratio). Templates for each spike class were generated 

on the zero s.d. data and the MMD search method was used to identify matches. These 

were then compared with the actual events to give absolute performance comparisons. 

The three basic spikes are shown in Fig 3.14A, and typical examples of the noise 

degraded FI spike are shown in Fig 3.14B.

The second protocol was intended to test the MMD search method's ability to 

distinguish overlapping spike events. Spikes were selected randomly as before, and noise 

was added as before (though only four different noise levels were used), and a second 

(randomly selected) spike of one of the two remaining classes was added. The second 

spike could occur prior to the first, at the same time, or subsequent to it. This data set 

was searched as before, and the results again compared to the known events. Examples 

of the overlap events are shown in Fig 3 .14C.

The third protocol was intended to test the MMD search method's capabilities in
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an artificial situation, namely its performance when presented with spikes of 

intermediate shape (that is linear combinations of FI and F2). Spikes were selected as 

before, with noise as before but the FI and F2 spikes were combined using the formula 

rF l 4- (l-r)F2 according to predetermined ratios (r). Events were described in terms of 

the dominant component (i.e. FI if r >  0.5). F3 spikes were left as single entities. 

Again the data set was searched and the results compared to the known events. Examples 

of the hybrids are shown in Fig 3.14D.

3.8 Design and implementation issues.

As outlined in chapter 2 the design and implementation process should move 

from a consideration of the goals of the software, through a process of formally 

specifying the structure and functions of the software, to implementation on the specified 

development system. This is followed by integration with third-party components, and 

an iterative testing and debugging phase. The smooth operation of this process depends 

on two factors, there being no fundamental design changes (such as major changes of 

target operating system) and on the expected facilities being available when anticipated 

(McConnell, 1993). The overall effort obviously also depends on the amount of pre

existing material available for re-use, the less that has to be designed and coded the 

smaller the development - and the faster it can be realised (McConnel, 1993). In this 

context there is a major difference between the effort required to add an extra module to 

an already existing framework program such as CED's Spike2 and the effort required to 

design and implement the framework as well as the analysis module. The only possibly 

available framework program was in fact CED's Spike2, but as access was not provided 

to either Spike2 source code or object modules, a framework program had to be 

developed prior to any implementation of the matching algorithms.

3.8.1 The design of the signal viewer.

The design of the framework program as an entirely new piece of software
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allowed a relatively free consideration of its design. The program had to be able to 

display spike waveforms and permit user definition of templates, and consequently had 

to use a graphic display. The use of a mouse was also considered to be indispensable for 

an adequate user interface which handled graphic objects. The general design selected 

was an event driven system using a simple Windows like GUI. Internally the program 

was structured to use event handlers similar to those used in Windows applications, and 

in other respects to rely on similar API functionality. The intention of this approach was 

to leave the way open for the program to be turned into a full-fledged Windows 

application if suitable facilities became available and if the programming (or other) 

requirements justified this development. Use was made of existing libraries where 

possible, but new facilities were developed using OOP techniques. It would, however, 

be inaccurate to suggest that the new facilities were completely object oriented.

3.8.2 The development facilities initially available.

The development system initially available was the Microsoft C6 system 

described in section 2.8.1. This was a DOS real mode development system, which had 

significant consequences for the design and implementation of the software. As discussed 

in section 2.2.1, DOS does not provide the high level API functions required for even a 

simple GUI, but more significantly limits memory availability to 640 KB. The API 

constraints were dealt with by keeping the requirements for API functions to a 

minimum, and providing these in as simple a way as possible.

From an early stage it was apparent that memory availability would be crucial in 

determining the operational status of the finished program. However, introducing the 

high level API functions only aggravated the existing problems of limited memory 

availability. The use of a DOS extender (as discussed in section 2.3.3) would have 

alleviated these problems without requiring recoding. However, this only became 

available after coding was completed, resulting in major structural and debugging 

problems.
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3.8.3 Additional development facilities.

Given that the program had significant stability and usability problems, it was 

necessary to undertake a further stage of debugging and code restructuring to generate 

an operational program. There were two possible approaches to this problem.

First, the DOS extender could be used with the C6 development system to 

undertake debugging. Final code modifications and enhancements could then be 

implemented as appropriate. The advantage of this was the direct use of existing code 

without modifications required for a change of operating system. The drawback was the 

limitation of a "home made" GUI without multiple parent windows, child windows, 

message or dialog boxes, or any form of text input or other standard interface controls. 

Additionally, the Phar-Lap API and development tools were relatively unfamiliar, which 

necessarily adds to the development time required.

The second possible approach was to use the Borland C+ + development system 

to generate a Windows based program. This approach had the advantage that the system 

was already familiar, and necessary hardware and software facilities were available. The 

standard interface objects for Windows are also much more extensive than anything 

available to a "home made" GUI. Also the quality of the IDE and the utility of both the 

IDE debugger and the Turbo Debugger enabled levels of productivity (in terms of work 

per unit time) which would be impossible with the C6 / Phar-Lap combination. The 

drawback was the requirement to sort out various differences between the Signal Viewer 

dialog interfaces and message handling system and the standard methods used by 

Windows.

Initial attempts to debug the Signal Viewer using the C6/Phar-Lap combination 

indicated that the extent of the unresolved problems was such that the time saved by 

using the Borland system would more than offset the conversion time required, and a 

better user interface would result (almost) as a by-product of this conversion process. 

This was therefore the approach ultimately used, and the consequence was a reasonably 

stable system with a good user interface.
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Figure 3.1

Diagrammatic representation of a dorsal view of the ventral nerve cord and

superficial flexor muscles of a Norway lobster.

VNC - ventral nerve cord.

r l  - the first ganglionic root which innervates the swimmerets and

contains motor and sensory axons.

r2 - the second ganglionic root which innervates the slow and fast

extensor muscles, stretch receptors and sensory hairs of the body 

wall.

Sr3 - the superficial branch of the third ganglionic root which innervates

the superficial flexor muscles.

SFM - superficial flexor muscles.

G - ganglion.

Redrawn after Denheen (1992).
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Figure 3.2

Production of event markers by single window discrimination performed using 

CED's Spike2 software. Event channels were generated by voltage thresholding 

for the voltage thresholds representing the lower and upper limits of voltage 

window w l and the upper limit of voltage window w2. These were then 

logically subtracted to give the event marker channels 2 and 6, the residual 

events being in channel 7. This analysis although simple requires the use of a 

custom written Spike2 macro language program to perform the subtraction 

which is outwith the basic capability of Spike2.

Channel 1 - analog waveform channel.

Channel 2 - events exceeding upper threshold of event window w2.

Channel 6 - events lying between lower and upper thresholds of event

window w l.

Channel 7 - events lying between lower and upper thresholds of event

window w2.

w l, w2 - approximate bounds of the voltage windows used.
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Figure 3.3

Sampling at twice the bandwidth provides the capability of reconstructing a 

waveform accurately from its frequency components. However, performing a 

linear interpolation on the sample values is not an accurate way of generating 

intermediate values.

A. The effect of linear interpolation on the instantaneous peak value of a 

spike waveform. There is a displacement of the peak in both voltage and 

time, even with an adequate sampling rate, as well as significant 

deviation between the sample and reconstructed waveforms on sections 

a l to a2, b l to b2, and cl to c2. Note however that the rest of the 

waveform is adequately represented.

B. Oversampling to prevent loss of instantaneous peak values. The 

introduction of sample points si and s2 between cl and c2 results in a 

much better approximation of the waveform, but triples the sampling 

rate. For a system in which the sampling rate is already at the limit of 

the hardware capacity this is not a feasible option, and in any case 

wastes data storage capacity.

Solid line - linear interpolated waveform.

Dashed line - sample waveform.

Vertical dashed lines - sample points.
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Figure 3.4

A typical spike overlap event, in this case probably between a FI and a F2 

spike.



0.2

0.1

0.0

- 0.1

- 0.2
I i i i i i i i i i i r

3.442 3.444 3.446 „ , 3.448 3.450Seconds



Figure 3.5

Natural variation of the amplitude of spikes during a recording of the Nephrops 

system. No deliberate alteration of the electrodes or the saline was effected 

during the course of this recording.





Figure 3.6

Camera lucida drawing of a cobalt backfill of one superficial flexor root. The 

backfill shows staining in six motor neurons, labelled according to the size of 

soma. Five of these are located in the ganglion anterior to the superficial flexor 

root (F2-F6), while the remaining motor neuron, FI, has its cell body located 

within the posterior ganglion. Cutting at the location indicated selectively 

inactivates FI.

Scale bar = 200 jum.

Redrawn after Denheen (1992).
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Figure 3.7

The definition and operation of a variable envelope template. The upper and 

lower templates (dotted lines) are defined with respect to the template waveform 

(solid line) by respectively adding and subtracting a constant (kl) plus a second 

constant (k2) times the derivative of the template waveform. In this diagram k2 

= 0 and is not shown.

The value 8 is the minimum difference between the upper template and a data 

waveform (dashed line), here represented at a diagrammatically convenient 

point. A 8 value is found for each possible alignment of upper template and data 

waveform, the optimal alignment between template and data waveforms being 

the one yielding the maximum 8.
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Figure 3.8

A. Screenshot of the template generation module, showing a template in the 

process of being created. The application follows normal Windows style 

guidelines for a single document interface window with the exception of 

the enhanced toolbar along the bottom of the window. This is designed 

more along the lines of an oscilloscope control panel than a conventional 

toolbar and, in addition to the display and template generation facilities, 

provides controls for displaying on-screen markers giving the voltage 

and time for the specified point.

B. Screenshot of the result view module showing the result of a template 

search. The data file contains one channel of data (channel 0), and this 

has been duplicated (channel 1). The data displayed in channel 0 has 

then been filtered according to the results of the template search, in this 

case to show the spike events matching the FI template. This process of 

channel duplication and filtering can be extended until all of the template 

classes are displayed.

The inset shows a magnified version of one of the nerve spikes.
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Figure 3.9

The variable envelope template matching process in a diagrammatic form.

A. The upper template (dotted line) and a data waveform (solid line) for the 

optimal alignment (2) and the alignments one datapoint left (1) and right 

(3) of the optimal. The 5 value (as defined in the previous figure) has 

been subtracted from the upper template in each instance.

B. Comparison of the data waveform with the lower template (lower dotted 

line), from which 8 has again been subtracted, for a waveform match (1) 

and non-match (2). A match is found when the data waveform touches 

or lies between the template waveforms but does not cross either.
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Figure 3.10

Flow diagram showing the principle stages the user would pass through in the 

course of a typical analysis session for either template comparison mechanism. 

Due to the event driven nature of this software, multiple execution paths are 

actually possible, but these secondary paths have been omitted for clarity.

This diagram also omits the program logic, which involves many processing 

stages and considerable branching, and which could not be adequately 

represented in a simple flow diagram.
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Figure 3.11

Diagram showing the basic operation of the minimum merit distance 

comparison method on two arbitrary strings of characters (a and P). This is 

intended to show conceptually how the algorithm works rather than how it is 

implemented computationally.
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Figure 3.12

Flow diagram showing in detail the stages of the minimum merit distance 

algorithm. The level of detail is equivalent to pseudocode, however this 

diagram omits code level details of program operation, such as memory 

allocation, initialisation, error trapping, and resource clean-up stages.
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Figure 3.13

Flow diagram showing an overview of the operation of the minimum merit 

distance comparison program. This corresponds to the sequence of events which 

follows the initiation of a search.
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Figure 3.14

A. From left to right, the F I, F2 and F3 synthetic waveforms used for the 

construction of the synthetic data sets. These waveforms were obtained 

by averaging several selected examples from one of the real data sets 

available.

B. From left to right, the FI waveform with normally distributed noise 

added at 0.01, 0.02 and 0.03 standard deviations. These correspond to 

S/N ratios of 13.9 dB, 7.9 dB and 3.0 dB respectively.

C. From left to right, synthetic double event waveforms corresponding to 

F2 with FI prior, FI with F2 prior and FI with F2 subsequent. In each 

case the offset of the notional trigger point of the secondary event is 

1.8ms.

D. From left to right, F1/F2 hybrid waveforms with FI contribution of 

20%, 50% and 80%.

The voltage scales in all of the graphs on this figure are comparable.
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4 Results.

4.1 The test data available.

The original analog recordings of most, if not all, of Dr. Denheen's experiments 

conducted from 1988 to 1991 were available for use. This archive represented the results 

of many hours of electrophysiological experiments as described by her (Denheen 1992). 

Recordings of some of Dr. Leibrock's and Dr Cattaert's experiments were also 

available.

From these, the recordings of four particular experiments were selected. The first 

was chosen (by Dr. Denheen and myself) as a representative sample of the complete 

system described in section 3.1. The raw data clearly showed the presence of the FI, 

F2, F3, F4 and F6 spike classes with a 20mV (approximately) difference in the peak 

amplitude of the FI and the F2 spike classes (see Fig 4.1). This data set was therefore 

amenable to F1/F2 separation by the methods previously used by Dr. Denheen (see 

section 3.1), and (after digitisation) was analysed by her in this fashion. In the second 

experiment, the FI spike class was removed by cutting of the ventral nerve cord as 

described in section 3.7.2. The third and fourth experiments were those described in 

section 3.7.3 and 3.7.4 and contained both a difficult spike separation problem and a 

separate means of verifying the classification.

4.2 Template sensitivity analysis.

The sensitivity of the VE (variable envelope) template method to variations in the 

error tolerances described in section 3.4.1 was assessed by selecting sections of spike 

waveforms representative of the FI and F2 categories. Holding the waveform constant in 

each case, the template error parameter (kl) and the derivative error parameter (k2) 

were varied over suitable ranges (0 to 30mV for k l and 0 to 200/xV for k2) and the 

number of events matching the template were recorded. As expected, the number of 

matches increased as the error parameters increased (see Fig 4.2). Interestingly the shape

53



of the curves for the various k2 values are very similar (for both FI and F2), indicating 

that the effect of k2 on the sensitivity of the template is minor compared with that of k l.

Since the MMD (minimum merit distance) templates are not independent of each 

other and MMD templates are intended to operate with zero error tolerances, no 

corresponding analysis was performed using them.

4.3 Comparative analysis of spike data.

The comparative analysis was based on a section of data previously analysed 

using voltage thresholds, and for which FI and F2 events had thus already been 

identified (as described in section 3.3). This was used as a control to establish the 

reliability of both the VE and the MMD template identification methods as applied to the 

separation of FI and F2 spike classes.

For the VE method, templates were defined as before with a range of kj values 

(10 to 25mV) and a fixed k2 value (100/xV) and a search was performed for both FI and 

F2. The results are presented in tables 4.1 A and 4. IB. Again as expected this shows that 

as the kl value increases the percentage of false negatives decreases (i.e. those template 

comparisons which failed to give a match to the spike class where a match is given by 

the corresponding voltage threshold method) while the percentage of false positives 

increases.

For the MMD method, templates were defined for all available spike classes, 

with zero kl and k2 parameters, and a search was performed. This was repeated 

excluding the template for F3 to establish the extent to which false positive matches for 

F3 were generating false negative matches for F2. The results are presented in Table 

4.1C.

4.4 Application to FI censored data.

Having performed comparisons to the voltage threshold method, both VE and 

MMD search methods were applied to the pre- and post-cut data available from the
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experiment during which the ventral nerve cord was cut posterior to the ganglion, and 

hence the FI axon was severed. The data were visually inspected for the occurrence of 

FI and F2 events prior to the cut and for F2 events subsequent to the cut (there being no 

FI events in this part of the data). Separate sets of suitable VE and MMD templates 

were defined on the pre-cut data segment and both the pre-cut and post-cut data segments 

were searched. The number of matches found is presented in Table 4.2. As can be seen, 

the VE method fails almost totally to identify post-cut F2 events, while the MMD 

method identifies most post-cut F2 events. However, a VE template defined on a post

cut F2 event will pick up all the F2 events in that data segment (see Table 4.2). Both 

methods however find no post-cut FI events.

A comparison of the pre-cut FI and F2 waveforms and the post-cut F2 waveform 

(see Fig 4.3) give a good indication of the likely cause of the failure of the VE method. 

The amplitude of the post-cut F2 is intermediate between the pre-cut FI and F2, and 

there is some change in the shape of the F2 waveform. This is unlikely to be due to the 

preparation deteriorating with time, since the two samples are only a few minutes apart, 

it is also unlikely to be an electrophysiological consequence of the severing of the ventral 

nerve cord - this does alter the firing patterns, but should not influence the individual 

spike waveforms since these are entirely dependent on the properties of the axon. 

However, slight movement of the electrode would probably occur during the cutting 

process as would contraction of any attached muscle fibres, and this is probably the 

explanation for the observed changes in the F2 waveform.

The entire firing pattern is disrupted by the cutting of the ventral nerve cord (see 

Fig 4.4), and consequently it is not possible to derive post-cut F2 firing rates and 

compare them with pre-cut firing rates as a measure of the accuracy of the template 

matching process. Nor is it possible to derive the probability of false FI identification 

for either the VE or the MMD template method, since the shape of the F2 waveform is 

sufficiently altered by the cutting process to prevent effective matching without the 

generation of a new F2 template. Likewise this basic difference in the data set renders 

any consideration of the VE template sensitivity meaningless over a sensible range of 

sensitivity values.
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Overall however, this experiment indicates that for suitably defined sets of 

templates the MMD method is the more robust in coping with experimental variations.

4.5.1 Application to tagged data from the crayfish cuticular stress detector.

Using data from one of Dr. Leibrock's experiments which contained both an 

extracellular (adr) and an intracellular (CSDl-t) channel, templates were defined as 

before and an MMD search was carried out on the adr channel. The results of this were 

imported into Spike2 as event channels (the adr event channels), and compared with an 

event channel (the CSDl-t event channel) created by performing a voltage threshold 

search on the CSDl-t channel. It was verified by inspection that all of the events on the 

CSDl-t event channel corresponded to events in one of the adr event channels. The 

CSDl-t events were then compared with the adr events on the adr event channel showing 

correspondence (the template event channel).

Out of a total of 912 adr events, 215 corresponded to CSDl-t events. Of these 

198 (92.1% of the CSDl-t events) were identified as template events (i.e. true positive 

events). A further 127 template events represented false positive events (39.1% of the 

total template events). This gives a probability for a template event being a CSDl-t event 

of 60.9% and a probability for a non- template event being a CSDl-t event of 2.9%. 

Figure 4.5 shows a representative section of the data and the event markers for the 

template events. From this figure it can readily be seen that there is no possibility of 

effecting the key separation using a voltage thresholding technique.

Application of the waveform identification method implemented in recent 

versions of Spike2 resulted in 172 (79.6%) of the CSDl-t events being identified 

correctly (for the same section of data), but with no false positive events being recorded. 

This reflects differences in the template generation mechanisms and a different balance 

between the acceptable error rates, so without further comparative tests it is difficult to 

form meaningful conclusions about the relative accuracy of the two algorithms. It is 

however fair to point out that the more sophisticated template generation mechanisms in 

Spike2 should, if anything, give better end results than the method for template
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generation employed here.

4.5.2 Application to tagged data from the crayfish coxo-basal chordotonal organ.

This data set is particularly interesting due to the similarity between the spike 

category (designated RO) corresponding to the intracellular event, which always precedes 

Intracellular events by an average of 4.26 ms, and another category (designated Rl) 

which occurs at uncorrelated times. A section of this data is shown in Fig 4.6A and 

representative samples of RO and Rl are shown in Fig 4.6B. Templates were defined as 

before and an MMD search was carried out on the extracellular channel.

Due to the size of the data set (12,156 spike events) it was not possible to use the 

script facilities of Spike2 to perform the analysis. Accordingly, the results of the search 

were tabulated, and integrated (by means of a specially written utility) with events 

generated by setting a voltage threshold on the intracellular channel. The correspondence 

between template matches and intracellular events was then examined. The results are 

summarised in Table 4.3A.

If the MMD template method was performing no better than chance the 

distribution of the intracellular events between categories RO and R l (identification as 

any other category being expected to be the result of overlap events) should occur in 

proportion to the total numbers of RO and Rl events. Applying a chi-square test to the 

search results provides a probability value of less than 0.01, indicating that this result 

differs significantly from a random distribution, a significantly higher number of 

intracellular events being classified as RO (see Appendix A).

All of the other template categories also generated matches, most of which will 

have been due to overlap events. However the number of matches for template R4 is 

excessive, and an inspection of the spike events indicates that it is indicative of a 

systematic problem of misidentification.

This set of data was also filtered using a voltage threshold to remove spikes with 

peak voltages significantly larger or smaller than the classes of interest. The resulting 

data set was presumed to contain only the two classes of interest, together with a small
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number of overlap events, and to exclude a small number of relevant overlap events. 

The MMD templates for the classes of interest were then used to search this data set. 

The results are summarised in Table 4.3B. Applying a chi-square test to the search 

results again provides a probability value of less than 0.01, indicating that the number of 

intracellular events classified as RO was significantly greater than expected by chance 

(see Appendix A).

Using only a voltage threshold to separate spikes gave the results summarised in 

Table 4.3C, which may be used as a benchmark for comparing the templating methods 

with a method inherently incapable of separating RO and R l events (this data set being 

selected precisely for this property).

The template search mechanism of Spike2 was also used as a comparison. A 

number of separate template generation and search runs were undertaken, the results 

from the usable searches (excluding searches which failed to identify RO and R l as 

spikes, and searches using very crude templates) are summarised in Table 4.4. Figure 

4.7 shows a representative section of the templates generated by this means.

The voltage thresholding suggests that there are of the order of 3000 spike events 

in the R0 and Rl categories, and that approximately 100 (out of 1429) R0 events are 

subject to spike overlap. The MMD method identifies 3212 events as either R0 or R l, 

including 1281 out of a possible 1329 R0 events (allowing for overlaps). The segregation 

between R0 and Rl is better than chance, but is not sufficiently accurate (both because 

of false positive and false negative classifications) to be of use in most circumstances. 

However, the rate of false positive matches for Spike2 searches varies between 33 % and 

75%, when Spike2 is able to identify R0 or R l as events at all, with slight variations in 

the template generation parameters giving wildly differing results (including complete 

non-recognition of R0 and R l as events). Overall the R0/R1 separation is extremely 

difficult, and no mechanism is likely to perform well - at least not to levels which would 

be useful in practise. The interesting feature of the MMD classification results is that 

the MMD method could do anything with data of this nature.
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4.6 Application to synthetic data.

The data described in section 3.7.6 was analysed in accordance with the 

procedures described there. The single event search results are shown in Fig 4.8, which 

shows the expected increasing failure rate with increasing noise levels, though with the 

F2 identification failing more dramatically than might perhaps be expected.

The double event search results are presented in Table 4.5. This again shows the 

expected decline in matching performance with increasing levels of noise and, as 

expected, that simultaneous events completely destroy reliable discrimination. It also 

shows that the presence of a non-simultaneous secondary event significantly reduces the 

discriminating ability of the MMD search method, suggesting that it would in general 

require to be coupled with either the use of compound templates (representing specific 

overlap combinations) or identified event subtraction followed by re-matching of 

identified overlap situations.

The hybrid event search results are presented in Fig 4.9, except for the zero 

noise data which showed 100% reliability for all comparisons except for the F1/F2 

50/50 hybrid which was identified as 100% FI. As expected, these show a decline in 

the reliability of identification both as the noise and the proportion of the minor hybrid 

component increased. Perhaps surprisingly this had an effect on the identification of the 

un-hybridised F3, which was included for comparison.
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Table 4.1

A. Variable envelope template results for FI.

B. Variable envelope template results for F2.

Comparison of the results of the variable envelope method with the voltage

window technique (Denheen, 1992) when applied to the same data set. For a

template search performed with the specified k l and k2 parameters (see text for 

definitions), the events identified as being FI and F2 were compared with the 

FI and F2 events identified by voltage windowing. False positive events were 

defined as being template events which did not match window events, while 

false negative events were defined as being window events which did not match 

template events. False positive events are also noted as a percentage of the total 

template events.

As expected, as the k l value increases so the false negative events decline while 

the false positive events increase.

C. Minimum merit distance results for FI and F2 compared with the

voltage window technique. Series a (Fla and F2a) show the results using

templates for F I, F2, F3, F4, F5/F6 (combined), while series b (Fib

. and F2b) show the results using templates for FI, F2, F4, F5/F6 

(combined). This should reduce the probability of incorrectly classifying 

an F2 event as an F3 event (at the expense of incorrect classification of 

F3 events), which is in fact the case.

For the purposes of these tables, the voltage window method is assumed to 

identify FI and F2 events with complete accuracy, an assumption which may 

not in fact be valid.



A

k l value k2 value actual
matches

template
matches

number (%) of 
false positive

number (% ) of 
false negative

% of template 
matches false

10 100 159 100 8
(5.03)

67
(42.14)

8.00

15 100 159 128 12
(7.55)

43
(27.04)

9.38

20 100 159 138 16
(10.06)

37
(23.27)

11.59

25 100 159 165 31
(19.50)

25
(15.72)

18.79

B

k l value k2 value actual
matches

template
matches

number (%) of 
false positive

number (%) of 
false negative

% of template 
matches false

10 100 118 83 6
(5.85)

40
(33.90)

7.23

15 100 118 100 7
(5.93)

24
(20.34)

7.00

20 100 118 105 11
(9.32)

23
(19.49)

10.48

25 100 118 112 15
(12.71)

20
(16.95)

13.39

C

template actual
matches

template
matches

number (%) of 
false positive

number (% ) of 
false negative

% of template 
matches false

F la 159 160 15 14 9.38
(9.43) (8.81)

F2a 118 104 9 23 8.66
(7.63) (19.49)

F ib 159 165 17 14 10.30
(10.69) (8.81)

F2b 118 112 12 18 10.71
(10.17) (15.25)



Table 4.2

Results of template searches for FI and F2 waveforms before and after the 

cutting of the ventral nerve cord posterior to the ganglion from which the third 

root originated. This abolished all FI activity. Figures are absolute numbers of 

events for each template, when searches were performed on the same two 

sections of data.

The templates are as follows:

F la  VE template for FI defined on the pre-cut data segment.

F2a VE template for F2 defined on the pre-cut data segment.

F ib  MMD template for FI defined on the pre-cut data segment.

F2b MMD template for F2 defined on the pre-cut data segment.

F2c VE template for F2 defined on the post-cut data segment.



template pre-cut events post-cut events

F la 266 0

F2a 68 3

F ib 267 0

F2b 71 44

F2c N/A 50



Table 4.3

Results of template searches of tagged data from the crayfish coxo-basal

chordotonal organ.

A. Results of searching the entire data set for templates (designated RO to

R5) corresponding to the various classes of spike present in the data set.

B. Results of searching the filtered data set for templates RO and R l,

corresponding to the class separation of interest. The spikes 

corresponding to classes R2 to R5 were removed by eliminating all 

events with an amplified peak amplitude of less than 0.5 volts or more 

than 0.8 volts. This will also remove some overlap events which would 

potentially be of interest, as well as some events previously classified as 

RO or R l, and will also include representatives of other classes of spike, 

resulting in the total number of events not corresponding to the previous 

search (which is supported by the 34 intracellular events which did not 

correspond to events included in the filtered data).

C. Results of searching the entire data set using a voltage window. The

spikes corresponding to category WO have a peak amplitude of between 

0.55 and 0.8 volts, the spikes corresponding to category W1 constitute 

the rest of the file.



A

Class Total Events Intracellular Matches

RO 1549 767

R l 1663 514

R2 1005 9

R3 2979 24

R4 2960 101

R5 2000 19

B

Class Total Events Intracellular Matches

RO 1606 821

R l 1634 579

C

Class Total Events Intracellular Matches

WO 2896 1332

W1 9260 97



Table 4.4

Results of using Spike2 to generate templates and search the entire set of tagged 

data from the crayfish coxo-basal chordotonal organ. In each run a new set of 

templates was generated, and a search performed using these. The template 

categories designated SO to S9 differ between runs, the number of categories 

differs between sessions, and the number of detected spike events differs.



Class First Run Second Run Third Run

Total Matches Total Matches Total Matches

SO 1865 1241 2859 1363 2683 735

SI 703 68 3079 24 855 322

S2 527 52 286 15 261 16

S3 540 35 1628 10 2211 9

S4 2260 10 369 10 266 8

S5 716 7 360 6 1268 4

S6 1538 6 - - - -

S7 168 5 - - - -

S8 821 4 - - - -

S9 36 1 - - - -

Total 9174 1429 8581 1428 7544 1094



Table 4.5

Results of MMD (minimum merit distance) template searches for FI, F2 and F3 

waveforms on synthetic data representing instances where two spike events 

overlap. In each instance the primary spike event is the one which is correctly 

aligned with respect to the template and the secondary event occurs at the time 

indicated (with the timings being relative to the notional voltage threshold 

trigger event).

Figures given are percentages of primary events correctly identified for each 

template while * denotes combinations not attempted. Each column of tables 

corresponds to the specified secondary event, while each row of tables 

corresponds to the specified S/N ratios.

The S/N ratios presented here and elsewhere are derived from the standard 

deviation of the noise relative to the FI spike. The S/N ratios are given with 

[S/NJdb = 101ogio(S2/N2) where S^ and N^ are SS^/n and SP^/n respectively 

(S = sample, N =  noise, n = number of datapoints).
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Figure 4.1

A. Single channel recording of the activity on the third root of the 

superficial flexor nerve, showing spike events identified as belonging to 

the spike classes FI to F6.

B. The FI and F2 spike waveforms in greater detail. Overlaid onto the F2 

waveform is a copy of the FI waveform (FT) to show the difference in 

shape.
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Figure 4.2

Results of sensitivity testing of the variable envelope template. The number of 

spike matches is shown for each template error tolerance (kl) value for a range 

of template derivative error tolerance (k2) values from 0 to 200 /iV. Increasing 

the k l value should result in an increased number of matches, until all of the 

available spike events are matched for some kl value. As expected the shape of 

the curve is only slightly influenced by the k2 value, with increased k2 mostly 

resulting in an increased number of matches for any given k l value.

A. Result for FI template search (kl range 0 to 28 mV).

B. Result for F2 template search (kl range 0 to 30 mV).



M
at

ch
in

g 
Ev

en
ts

 
M

at
ch

in
g 

E
ve

nt
s

A
300

200

100

200 
1 80

Template Error Tolerance (mV)
lO O - i  

80

60 

40

Template Error Tolerance (mV)



Figure 4.3

Representative FI and F2 spike events from the experiment in which the ventral 

nerve cord was cut to sever the FI neuron.

A. Pre-cut FI spike.

B. Pre-cut F2 spike.

C. Post-cut F2 spike. Note the difference in the waveform from B to C.





Figure 4.4

The effect of cutting the ventral nerve cord on the activity of the superficial 

flexor nerve.

A. Activity during an eight second period prior to cutting.

B. Activity during an eight second period immediately following cutting.

C. Activity during a ten second period several minutes after cutting.

Note that the timing of the three sections as marked on the traces does not 

correspond to the actual intervals between the three recordings.





Figure 4.5

A representative segment of the tagged data from the crayfish cuticular stress 

detector, showing various possible outcomes for the template match.

Channel 1 shows the adr activity.

Channel 2 shows the CSDl-t activity.

Channel 21 shows the template events.

A. A short section showing:

a a false positive template event 

b a true negative event 

c a true positive event

B. A longer section giving a picture of the overall activity.
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Figure 4.6

A representative segment of the tagged data from the crayfish coxo-basal 

chordotonal organ, showing various possible outcomes for the template match.

A. A section showing the intracellular activity on channel 1 and the 

extracellular activity on channel 2.

B. Representative RO (red) and R1 (blue) waveforms superimposed to show 

the similarity in shape and amplitude.
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Figure 4.7

An illustrative segment of the tagged data from the crayfish coxo-basal 

chordotonal organ showing the results of template classification using Spike2. A 

shows a two second segment, while B shows detail from part of that segment. 

There does not appear to be any consistency in the classification of RO and R1 

events.

Channel 1 shows the intracellular activity.

Channel 2 shows the extracellular activity.

Channels 3 to 5 show the template classification results of searches from 

separate sessions. Within each channel the spikes are colour coded to 

show the template category to which they belong. The colour coding is 

not consistent between channels.
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Figure 4.8

The effect of increasing background noise on the reliability of the MMD 

template method when applied to single spike synthetic data. The failure rates 

are given as percentages of the known events which are correctly identified at 

each of the noise levels. The S/N ratios given here are derived from the 

standard deviation of the noise relative to the FI spike.
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Figure 4.9

The matching success of the MMD template method when applied to spikes 

intermediate in shape between FI and F2. Each graph shows the effect of the 

ratio of the minor component on the matching success. F3 is not hybridised in 

this data set.

A. The result at 0.01 of standard deviation (S/N = 13.9dB).

B. The result at 0.02 of standard deviation (S/N = 7.9dB).

C. The result at 0.03 of standard deviation (S/N = 3.0dB).

The equivalent graph for zero noise would show 100% success at all ratios 

tested, except for the F1/F2 50/50 hybrid which was identified as 100% FI.
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5 Discussion.

5.1 Event identification methods compared.

As discussed in chapter 1 there are a number of possible approaches to the 

identification of nerve spikes. At the simplest level, events can be identified on the basis 

of the waveform crossing a threshold level, while at a somewhat more complex level 

waveforms can be compared (by some means) to templates. These range conceptually 

from an extension of the voltage threshold to form a continuous series (giving a closed, 

bounded region of a poly-dimensional space) to those utilising some measure of 

"distance" between waveforms. Various distance measures (or metrics) are used, most 

commonly the sum of the absolute values of the differences of the component values 

(D'Hollander and Orban, 1979; Jansen and Maat, 1992) or the Euclidian distance 

(Salganicoff et al., 1988), using either the entire waveform or a subset of the component 

datapoints.

On a slightly different track it is possible to consider the voltage values making 

up each waveform as the coordinates of a point in a poly-dimensional space. These 

points will form clusters which can be identified (by considering the distance from each 

point to its neighbours, as is done in two or three dimensions) and the space can then be 

partitioned to separate these clusters. The means of accomplishing this partitioning 

becomes the key to the success of this technique. The difference between this approach 

and the consideration of a template as describing a bounded region of the same poly

dimensional space lies in the means used to define the region. In a template-based 

approach the region is defined simply, for example as the analogue of a sphere or 

ellipsoid surrounding a point which represents the average of all currently matched 

waveforms, and which may vary depending on data ordering. A true clustering method 

instead partitions the data with reference to all of the waveforms. This can be 

accomplished by the use of an algorithm such as the "k-means" algorithm (Hartigan, 

1975) employed by various investigators (Salganicoff et al., 1988; Kreiter et a l., 1989) 

or alternately by use of a "genetic" algorithm (Forrest, 1993), which operates on the
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principle of swapping elements between clusters until an optimal distribution is achieved.

It would also be possible to consider a waveform as being a form of stochastic 

process with each data point having a different probability distribution depending upon 

which event class the waveform belonged to. The probability that a given waveform 

could take the particular shape given its actual identity could then be calculated and the 

class giving the highest probability could then be assigned as the match. However it 

seems that this approach has not been discussed in the literature.

In a more deterministic fashion, a curve fitting algorithm could be used to 

determine an approximate equation for each waveform. Curve fitting is a standard 

capability for "off-the-shelf" mathematical analysis packages such as MathSoft's 

MathCad 5 plus, and this approach could be applied to give the class, and with suitable 

restrictions the parameters, of the equation for each waveform. This has the advantage of 

transforming a set of voltage values into a set of equation parameters which relate to the 

information content of the entire waveform. If in addition the waveform equations were 

constrained to be either of the same class, or of highly distinct classes (i.e. those 

producing waveforms of substantially differing shapes), then the parameter information 

could be directly compared. This is the approach followed by Remmel (1983).

Approaches considering some aspects of the information content of waveforms 

were among the first to be considered (Mishelevich, 1970; McCann, 1973), probably 

due to the suitability of their highly reductive nature to implementations on early 

computer systems. Aside from principal component analysis (Abeles and Goldstein, 

1977; Eggermont et al., 1983), the more extensive consideration of the information 

content which more powerful computing facilities have made possible appears to have 

been neglected in favour of high speed templating systems which could be implemented 

in real time. Indeed, apart from the Fourier or principal component analyses, no 

consideration has been made of systems using a distance metric based on information 

content rather than raw shape.

61



5.1.1 Identification of events using neural networks.

One of the most interesting and most generally applicable techniques is that of 

neural net classification. The principles of neural net techniques are well known (Hart, 

1992), and in short utilise a form of "training" to establish a classification mechanism 

for (potentially) highly complex data. This approach is next to useless when there is only 

a small quantity of data available. However, the classification of large numbers of 

elements is ideally suited to this approach.

However, this should not be taken as suggesting that neural net methods are 

necessarily the last word in terms of classification and matching. There are objections on 

both theoretical and practical levels to the blanket application of any technique, and 

neural networks are no exception in this respect. On the theoretical level there are 

several reasons to avoid neural nets, chief amongst which must be its distinct "black- 

box" quality. With most matching techniques the exact process by which a comparison is 

effected is likely to be understood by its original developers. However, the basic concept 

of the neural net is that the training period influences the weights of intermediate 

connections between known inputs and outputs. Therefore it is difficult, if not 

impossible, to know what actually determines the classification scheme used, giving rise 

to the possibility of training the net using data in which secondary characteristics are 

present but not readily appreciated resulting in an unreliable classification of real data 

(Hart, 1992). On a practical level, most pattern matching algorithms are based directly 

on mathematical or statistical procedures and a particular implementation can therefore 

be verified both by analysis of the code for correctness and by comparison of the results 

of analysing the same data via the new code and by some other method (such as 

comparing the behaviour of mathematical equations coded in a programming language 

with the same equations handled through a symbolic mathematics system such as 

Wolfram's Mathematica) . While the kind of code produced for an implementation of a 

neural net can obviously be verified by routine code checking and verification 

procedures, these are far from being highly reliable (McConnell, 1993), and 

unfortunately neither the algebraic nor comparative techniques are appropriate for this
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kind of code. All this leaves the problem of adequately verifying a system when the code 

cannot be verified and the results cannot be checked. None of this is by any means 

insurmountable, indeed similar comments could once have been made about many other 

areas, but it does contribute to the use of neural nets without a proper understanding of 

the issues involved. Just because a technique has potential drawbacks, or could be 

implemented improperly is no reason to reject its use. The volume of nerve spike data is 

perfectly adequate for the neural net approach to be applied. There are alternate methods 

which could be applied to generate matched sets of data (either from voltage 

thresholding or from templating - see the following sections) for training purposes, and 

there is also the possibility that a neural net approach could be applied "blind" to new 

data sets based on previous training. This summary, however, contains the seeds of the 

reasons for rejecting this approach. In the first place a net system has to be trained, and 

for data which cannot be classified by voltage thresholding this implies that clustering or 

templating has to be performed first. In the second place there are two approaches to the 

addition of neural net capabilities. Either a net facility could be developed from scratch, 

which is too substantial a task to have been realistically tackled as part of this project, or 

alternately an outside system (either commercially available or developed as part of 

another research project) could have been grafted onto the data management systems. 

This approach avoids the direct development problems. However, there remain the usual 

problems of integrating what is necessarily a complex system with the necessary support 

facilities. This task is significantly easier when the neural net facilities are already 

available (in the form of a set of libraries) at design time. This approach was not even 

considered at that stage, and did not prove possible later.

However, this does not remove the possibility of extending the signal analysis 

system to use neural net mechanisms in the future. Indeed the data management systems 

for the search and result display facilities are designed to be primarily "black-box" 

control facilities. Addition of a training stage would require only the routing of the 

results of a template search to the net training facility. Overall the programming tasks 

necessary to integrate a suitable neural net processing facility into the system are 

relatively minor.
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5.1.2 Comparison of template and voltage threshold techniques.

This section considers the threshold voltage method as an alternate means of 

classifying spike events. The results described in section 4.5.2 illustrate the limitations 

of voltage thresholding techniques. In this data set there are two distinct categories of 

spikes (identifiable on the basis of intracellular recording) which have identical minimum 

and maximum amplitudes. As expected voltage thresholding completely fails to separate 

this data.

It is clear that the simplest method which reliably identifies events of interest is 

likely to be the most satisfactory in a given situation. Thus it goes almost without saying 

that if the events of interest (spike waveforms corresponding to the activity of particular 

neurons) can be identified reliably on the basis of, say, peak voltage then more 

sophisticated methods are inappropriate. This is normally the case in the Nephrops 

system when considering spike classes F3 to F6.

It is also clear that when there is no significant difference between two 

waveforms (i.e. when the difference between the waveforms is less than the level of 

random noise), then it will not be possible to separate them on the basis of the electrical 

activity at a single point on the axon (Sarna et al., 1988; Kreiter et al., 1989). This in 

general leaves three main possibilities for the separation of waveform events.

First is the option of separating spike waveforms on the basis of the electrical 

activity at two distinct points on the axon bundle. Unless the axons have precisely the 

same electrical properties, the conduction velocities will differ (Schmidt and Stromberg, 

1969; Roberts and Hartline, 1975), and consequently once the conduction velocities for 

the various axons have been established, the events can be separated by predicting the 

activity at the second recording point based on the activity at the first. This is a highly 

reliable method which has been used for this purpose (Schmidt and Stromberg, 1969; 

Roberts and Hartline, 1975), however it does require specific experimental procedures. 

It at least doubles the data recording requirements and, however desirable it might be to 

experiment in this fashion, there will be times when it may be impractical or impossible 

to do so.
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The second approach is to use principal component analysis to derive the 

contributions (or eigenvalues) of the basis waveforms (i.e. those waveforms which can 

be linearly combined to give each actual spike), and then to use a clustering algorithm to 

identify spikes on the grouping of their eigenvalues (Abeles and Goldstein, 1977; 

Eggermont et al., 1983). In mathematical terms this corresponds to performing a 

template or cluster search on the transform of the spike waveforms.

The third approach is to perform a template or cluster analysis directly on the 

untransformed waveform. Taking the data from a single electrode it is probable that the 

individual axons will generate waveforms which differ in shape over at least some part 

of their timecourse. On the assumption that the waveforms do not differ sufficiently in 

peak voltage that they can be distinguished this way, the use of a method considering the 

shape is a logical next approach.

The development of an approach like this cannot however be undertaken in 

isolation. It is necessary in the first instance to apply a shape based approach to data 

which can (albeit marginally) be analysed in another fashion. As described in section 

5.1.8, the approach to shape matching used here is the generation of specific template 

waveforms which are then compared with all of the data waveforms. As a control 

(described in section 3.7.1) the data was suitable for event separation based on peak 

voltages and this was carried out separately. The critical separation was that of FI and 

F2, in which the difference in recorded peak voltages was of the order of 20mV 

(approximately 12% of the overall spike height) in the data used, and this permitted the 

comparison of the template search methods with an established mechanism. As the 

results show, the template methods provide similar results to voltage thresholding when 

applied to real data. This does not of itself say anything about the reliability of the 

templating methods, since there is no independent check of the actual identity of the 

events.

However the use of tagged data (described in section 3.7.3) provides just such a 

check. The results of that analysis are promising though, depending on the requirements, 

somewhat mixed. Exclusion errors (false negative events) are rare, but at the expense of 

an undesirable inclusion error rate. To what extent this represents a limitation of the
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MMD search method rather than specific difficulty in generating usable templates 

remains unanswered. A partial answer to this is given by the use of synthetic data, in 

which the search results can be compared with the known event identities using 

templates of a known quality. In particular the use of hybrid waveforms, built from 

linear combinations of FI and F2 waveforms together with random noise, enables the 

discrimination capabilities of the MMD method to be established with much greater 

accuracy and, as the results show, with a fair degree of success. The key difference 

between the hybrid waveform data and single or overlapping event data is the duality of 

the waveform. It is neither FI nor F2, and so tests the key feature of the MMD 

algorithm - the comparison of information content. Of course, to be strictly accurate, 

this comparison should use a linear combination weighted by the waveforms being 

combined, otherwise the cut-off point will not be at a 50/50 combination. One waveform 

will necessarily be predominant at this ratio. However, the test still shows discrimination 

capability in circumstances where neither voltage threshold nor voltage windowing 

techniques would be applicable.

Overall though, adequate testing to establish the limits of the template methods 

involves application to multiple real and synthetic data sets in order for the operational 

limits to be established with confidence.

5.1.3 Comparison of the techniques used with other template techniques.

The results described in section 4.5.2 illustrate the difficulty which faces any 

technique based upon a single point recording. The template mechanism employed by 

Spike2 is a variation of the VE template, with a defined proportion of the data points 

making up an individual spike having to lie within the envelope for a match to be 

accepted. The templates are generated in the first instance by a clustering mechanism, 

with a limited amount of user input. As a commercial product, this system has 

presumably been refined and enhanced based upon the experience of users. However it 

still fails to perform well when challenged with difficult data.

The template matching techniques which are discussed in the literature are
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primarily variations of the VE template method, mostly differing in the manner in which 

the templates are defined or the distance measurement used for the comparison. Many 

approaches utilise a small number of template datapoints, and much effort has been 

devoted to strategies for reducing the number of relevant datapoints per template, 

particularly in on-line or hardware based spike sorters. Baseline independent templates 

have been considered (Marion-Poll and Tobin, 1991), generated by differentiating the 

data waveforms prior to template generation and classification process. This study 

provides one of the few examples of the use of a mathematical as opposed to a statistical 

transform of the data waveforms prior to classification. Overall however, a number of 

common themes quickly become apparent from a literature review (see chapter 1). First 

is the reduction in data processing and storage requirements by reducing the number of 

datapoints in each spike waveform. This is usually carried out either by reducing an 

oversampled waveform (Jansen and Maat, 1992) or by feature extraction (Dinning and 

Sanderson, 1981; Worgotter et al., 1986; Salganicoff et al., 1988; Kreiter et al., 1989). 

Second, templates are defined during a "learning phase", usually a representative subset 

of the data (Salganicoff et al., 1988; Kreiter et al., 1989; Bergman and DeLong, 1992), 

but sometimes on a first pass through the entire data set (Jansen and Maat, 1992). Third, 

on-line systems have difficulty processing the data within expected minimum interspike 

intervals (Mishelevich, 1970; D'Hollander and Orban, 1979; Kreiter et al., 1989; 

Bergman and DeLong, 1992), particularly when coupled with data storage. Fourth, the 

prevailing interest is in on-line systems (Mishelevich, 1970; D ’Hollander and Orban, 

1979; Dinning and Sanderson, 1981; Worgotter et al., 1986; Kreiter et al., 1989; 

Salganicoff et al., 1989) and these tend to involve various degrees of hardware 

implementation and dedicated computer facilities.

None of these template comparison methods consider the actual information 

content of the waveform, beyond defining the match distance or the voltage window in 

terms of the standard deviation of the background variation in the signal (sometimes, as 

with Bergman and DeLong (1992), allowing up to 5 standard deviations in routine 

operation). The VE template method takes limited account of the information content by 

allowing a derivative contribution to the template envelope as well as by permitting
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templates to be defined on specific waveform features. However the MMD template 

expressly compares the information content of template and data, and is thus 

conceptually (though not in its operation) more akin to the principal component analysis 

approach.

5.1.4 Comparison of the variable envelope and merit distance techniques.

As described in chapter 4, both methods display the ability to separate similar 

waveforms such as FI and F2 with broadly similar levels of effectiveness. The VE 

template method allows data to be searched for a single category of event, and this 

would be of particular use when applied to data containing many classes of events for 

which it would be impractical, or even impossible, to identify reliably templates for each 

category. This kind of data poses substantial problems even for systems using automated 

template generation facilities, due to the sheer number of resultant templates. Further, 

since the templates are not mutually exclusive, it is possible to define templates which 

are applicable to characteristic portions of the event waveform and then identify events 

based on matches to combinations of characteristic patterns.

The VE templates (as implemented) are very susceptible to problems of partial 

event overlap, though no more so than other template systems. This has definite 

implications in situations where event overlap is common and, while it is possible to use 

combinations of templates to classify events, there are obvious advantages to a system 

which does not require high levels of user intervention.

The MMD template method implicitly has the capability to "best guess" in 

situations where events do overlap. There will necessarily be a degree of incorrect 

assignment, but this is implicit in any method which attempts to resolve overlapping 

events in a single pass (see section 5.2). As the results of applying the MMD method to 

double event synthetic data show, this method is surprisingly effective in such situations. 

This is particularly apparent when considering that any variant of multiple voltage 

windowing technique would be completely inapplicable to such data. The MMD method 

is therefore a considerable improvement on systems which simply discard overlap
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events.

One of the key questions that must be considered in respect of any software 

which attempts to automate an analysis process is whether it is easier to use the software 

or some other means to perform the analysis. This generalises to the question of whether 

it is worth performing the analysis at all. The answer to the second question obviously 

depends to a considerable extent on the value of the data. However, the first question is 

highly relevant to any consideration of working software. It is not enough to be able to 

perform a complex analysis if the processes of inputting the data and outputting the 

results are so cumbersome or error prone that an alternative approach is preferable. 

Correspondingly, the capability of handling the data with ease could in some instances 

simplify the analysis process to such a degree that complex analysis techniques would 

not actually be necessary for the system to have advantages over other approaches. This 

is clearly an extreme position, best suited to cases where the data retrieval is the obstacle 

rather than the analysis. However, it does reinforce the point that ease of use is vital in 

anything other than early prototype versions of the software.

To this extent, the signal matching system is necessarily a prototype and ease of 

use in respect of the interface could be said to be irrelevant except where the design does 

not allow for modification based on users' experience. However, the idea of using many 

combinations of partial templates is inherently complex and is therefore correspondingly 

weak. This does not mean that it is inappropriate on occasion, simply that it should not 

be a method of first choice.

Finally, the likely effects of data quality on the operation of both template 

methods must be considered. The VE templates are (as implemented) absolute, there are 

no degrees of match. Either the waveform matches the template or it does not, and 

therefore random noise must be accommodated within the levels of permitted error. 

However, the VE templates are base-line independent and, in consequence, drift in the 

base voltage will not have any effect. In contrast, the application of the MMD template 

method results in a "best" match under all circumstances. The MMD calculation should 

reduce the influence of random noise precisely because it is based on common 

subsequence identification rather than comparison of the whole sequence. However, the
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assignment of a match to all events will necessarily result in some spurious assignments 

due to event overlap or ambiguity. This could be overcome by replacing the Boolean 

choice with a class specific threshold. However, this would require an additional 

threshold determining step with a consequent added requirement for user interaction.

As previously mentioned, there will inevitably be a certain degree of random 

noise present in the data. Also there will be a degree of variation between spike events 

of the same category. Obviously two spike classes can be separated by means of 

templates only if the normal variation within each class plus the normal level of noise 

leaves a measurable difference between classes over some portion of the waveform. In 

this respect, as in others, sophisticated analysis techniques are no substitute for good 

quality data. Rather, good data and sophisticated analysis should work together to 

produce a better end result. The alternative is to produce increasing quantities of poor 

quality results.

5.2 The effectiveness of the software.

The effectiveness of any piece of software can and indeed must be measured both 

in terms of the extent to which it performs its allotted task and the degree to which it is 

preferable to the available alternatives.

To consider then the signal analysis system in terms of its effectiveness in 

separating the key spike classes, it is necessary to look at the results from the single 

spike synthetic data. This shows an identification rate better than 75% for all spike 

classes even under conditions of significant noise degradation. Of course, given 

sufficiently low S/N ratios, the performance of any system degrades to unacceptable 

levels. However, it is reasonable to say that useful levels of identification are achieved 

with data reflecting realistic S/N ratios, and this using data which is inherently difficult 

to classify. In these terms the software must be regarded as being effective. By itself 

however this is an incomplete summary of a complex situation. The template matching 

methods employed and the strategy for their use may not in fact prove to be as effective 

as could be achieved with suitable refinement. As discussed earlier there are many
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different approaches to the matching problem, and the best approach in terms of 

designing a piece of software to be used as an analytical tool is undoubtedly to allow for 

the addition of other capabilities. To this extent, the signal matching system is built 

around the template approach rather than an ad-hoc classification mechanism such as 

multi-dimensional clustering, and is correspondingly limited. In theory of course it could 

be modified to do anything, but the point of any software is that it should be possible to 

build on what exists rather than starting from the beginning each time and in these terms 

the signal analysis system does not provide a substantial framework for the 

implementation of a classification scheme which is not based on a comparison of data 

with templates. However to the extent that modified templating schemes could readily be 

implemented (see section 5.3) the design of the system must be considered a success.

Overall, however, the limit to the range of matching methods which could be 

applied with a reasonable degree of effort is only one part of the question. Automated 

data handling methods can enhance the process of data analysis by making it possible to 

manipulate sufficiently large data sets with a reasonable degree of effort. This is not to 

say that bigger is better. Indeed, in many instances, a small amount of data analysed by a 

skilled individual may be more valuable than a large amount classified automatically. 

However, in biological research statistical analysis is frequently performed on data sets 

which are either of insufficient size or which have been selected from the population in a 

non-random fashion. Many statistical techniques were originally devised for purposes 

such as agricultural research where large sample sizes are usual. Any means of 

simplifying the data handling process or performing even crude separation has the 

capability of yielding data sets of adequate size. Thus the signal analysis system has to 

be viewed also in terms of the other data gathering, analysis, and statistical software 

available, as well as the presentation software which will be used for the preparation of 

the end results. All too often there are such big gaps between the various steps from raw 

data to end results that analysing even one data set becomes an ordeal for the user. No 

one link in the chain can cure all the problems. However, as well as permitting the 

internal operations to proceed in a straightforward manner, a well designed piece of 

software has to move the data in and get the results out painlessly.
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No novel software design is likely to resolve all the issues involved in the 

production of a good interface without going through two stages. First, those parts of the 

interface which provide the user with facilities akin to those commonly available should 

follow the normal metaphors for user interaction, and those parts which are novel should 

extend the normal metaphors as far as possible. Second, the design as initially 

implemented should be further refined to reflect the user’s experience with the system. It 

may be that one of several different approaches to the interface design turns out to be 

much more satisfactory than the others. This is strictly analogous to the design of the 

underlying software, in which the problem can ultimately be expressed fully only when 

the solution is already known. As software becomes ubiquitous over the coming years, 

the number of situations in which novel kinds of operations are to be performed will 

decline. Also the current metaphors for interaction will be refined, some change may 

occur for purely commercial reasons but hopefully there will be an overall improvement.

The signal analysis system was unfortunately unable to pass through the second 

stage of interface refinement within the time available for the project, and the standard 

metaphors for interaction were themselves radically altered by the impact of Microsoft 

Windows during the course of the project. This left the software rather less refined than 

would have been desirable, however, the software is event driven and consequently the 

addition of new on-screen buttons or the reorganisation of the menus has little or no 

impact on the general design or its current implementation. Of more concern is what 

should actually be done with the processed output. The current provision of facilities to 

allow results to be imported into Spike2 (together with the necessary Spike2 macro script 

to accomplish this) and the corresponding capacity to format the results for importation 

into Microsoft Excel or other packages is not altogether adequate. These packages 

require their own scripts in order to perform further formatting and basic processing 

without necessitating substantial user intervention. Once again, time has proved to be the 

limiting factor in this, with such post-processing as has been required in the analysis of 

the data described in chapter 4 being undertaken partially manually.
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5.3 Further development of the software.

Any good software design leaves room for additions and amendments. Indeed 

this is part of the definition of good design. Equally any design, however good, closes 

off some avenues of development. A good design places as little restriction on the 

flexibility of the system as is consistent with keeping the work required to implement 

that design within reasonable bounds. In other words some possibilities are designed in 

while others are designed out. This section will consider the types of operations which 

have been allowed for but not actually implemented in the signal analysis system, and 

the work which would be involved in pursuing each.

The most obvious deficiency in the entire system is the lack of any mechanism in 

the Result Viewer allowing the user to intervene and determine the classification of a 

specific event although this can be remedied by the use of Spike2 at a post-processing 

stage. This would be most useful when combined with a search for events which 

remained unclassified after a template search of the database, and which thus represent 

overlapping or otherwise ambiguous events. The generation of unclassified events 

presently occurs with the VE template method and could be introduced with the MMD 

method by the definition of a maximum acceptable error for each template class. A user 

intervention facility would also require that the templates could be visualised within the 

Result Viewer, perhaps in a summary window showing a portion of the template 

database at one time. Also a mechanism for inputting the new match information would 

be required, a dialog box or (on a technically more complex level) a drag and drop 

facility would perform this task. The information would then be written back to the 

match database and thereafter processed in the usual way. At a similar level, the 

capability to load the match database corresponding to a previous search would be 

useful. Technically this is simple, requiring only that the match database is loaded at 

startup and internally flagged as existing rather than being created at search time. 

Searches would be unaffected, since they presently handle both the cases of no prior 

match database and existing databases. This facility was not needed for the purposes of 

the analysis described in chapter 4 and was accordingly not implemented.
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Another consideration would be the addition of alternate result display formats. 

Specifically, waveform views become less useful when displaying long sections of data. 

Thus an approach using overlaid views of the waveforms for each spike class (as is 

common in the literature), or a bar chart summary might be useful supplements to the 

current display.

Finally, as regards data management issues, is the question of selecting the 

template file separately from the data file. This was not originally perceived as being an 

important facility, since judicious renaming of template files allows this to be 

implemented indirectly. However, it would be easier if the template file name was 

selectable rather than simply being derived from the data filename as at present.

A consideration of the template generation and analysis process leads to the 

possibility of a number of other facilities being developed. First, based on events 

matched it would be readily possible to generate average waveforms for each template 

category, together with the standard deviation of each datapoint. This information could 

be used to generate a new set of VE or MMD templates which could then be reapplied to 

the entire database. This is analogous to the use of templates defined on the basis of a 

"training period" covering part of the waveform database. Second, since long duration 

extracellular recordings involve both deterioration of the preparation and local variations 

in the sensitivity of the recording (perhaps due to the experimental regime itself) it is 

possible that templates which match well during the early portion of the database will be 

inappropriate at a later stage. This leads to the idea of modifying the templates based on 

the shapes of the waveforms currently being matched. This could take the form of an 

average of the matches up to the current position, a rolling average or weighted average 

of the last so many matches. Because this process is interactive, it is technically 

somewhat more involved than performing a second pass on the data. However, there is 

no major internal obstacle to its satisfactory implementation.

Some waveform events will either be unclassifiable or unreliably classified 

because they are actually composed of two overlapping spike events. In this case it is 

likely that the first event will be closely aligned to the expected position for a single 

event, since the alignment depends entirely on the voltage threshold used for
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distinguishing spikes from background noise. This leaves the possibility that the 

waveform template for each spike class could be subtracted from the data waveform, and 

the result compared to each of the other template classes (using an appropriate temporal 

shift to compensate for the second spike not occurring simultaneously). If, as seems 

likely, the data waveform is simply the sum of the two spike events, then (on the 

assumption that there is one template per spike class) there will be one comparison 

which will yield a match, and consequently identify both waveforms. A second-pass 

search operating on these lines could fairly readily be added. All the support facilities 

already exist. However, the second-pass search routines would require to be coded 

separately as a modified form of the standard search to enable this mechanism to be 

integrated in a straightforward fashion. This could be extended to seek events occurring 

at user defined frequencies, on the basis that where the occurrence of regular firing 

patterns is detected there must be the suggestion that irregularities could be due to event 

overlap.

The event filtering facilities of the result viewer presently provide for event 

selection based on the occurrence of identified events on two (or more) data channels. 

However these events must be exactly concurrent, which in general is an unreasonable 

assumption when considering the extracellular activity of either two nerve fibres or two 

locations on the same fibre. The introduction of conditional event filters would permit 

the separation of correlated events. However this could not be readily achieved using the 

current event filter mechanism. Either a new facility could search for conditional events 

and write them to the event database or the existing facility for building events could be 

extended by the introduction of a restricted search on a second event channel. Of these 

two approaches the first has the merits of being conceptually simple and not interfering 

with operational code, while the second has the advantage that it does not alter the match 

database and is hence reversible.

No consideration of enhancements to the matching system would be complete 

without at least mentioning the possibility of performing the search on a convolved or 

transformed data set rather than on the original. The nature of the convolution and the 

templates would of course depend on the data, but the process of template generation and
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searching is independent of the shape of the waveform, and consequently the convolution 

search could be implemented readily by means of a freestanding filter of the waveform 

database. Only slightly more complex would be a system generating a convolved 

waveform database on demand prior to template generation or searching operations. 

Either approach has the potential to add a powerful additional tool for the segregation of 

spike waveforms.

Finally, the implementation of additional non-template matching facilities should 

be considered. This is particularly important in respect of neural net methods which, of 

course, require extensive training on pre-identified data, and which are consequently 

well suited to a two pass system with the learning stage being a template matching 

algorithm. As with any other non-template method, the standard data management 

facilities are available to load data waveforms, store match information, and display 

filtered results as necessary. However the entire matching mechanism, together with the 

code to support any user interface requirements would have to be written. This could 

then be hooked into the parent window menu and the message handler as an extra 

freestanding item.

5.4 Summary of main conclusions.

In summary therefore, a Windows based database management system has been 

implemented on the IBM-PC as the basis of a system for the classification of nerve spike 

events in terms of their shape. The classification process has two stages, first the manual 

selection of template waveforms, and second the automated search for the templates 

using either of two identification algorithms. The first of these is a variation of a 

previously described contour matching algorithm (Kent, 1971; Akker et al., 1982) while 

the second is an entirely novel application of an information comparison algorithm. The 

system has been successfully tested both with real and synthetic data. However, further 

refinement on the basis of the experience gained has not been undertaken. The system 

has the underlying flexibility to be extended in the future to cope with other matching 

methods, resulting in a potentially extremely versatile waveform classifier.
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Appendix A.

X2 calculation for the results given in table 4.3A.

Observed values

R0 R1 R2 R3 R4 R5 Totals
No of events 1549 1663 1005 2979 2960 2000 12156

MMD
templates

767 514 9 24 101 19 1434

Intracellular
totals

2316 2177 1014 3003 3061 2019 13590

Expected values

R0 R1 R2 R3 R4 R5 Totals
No of events 2071.6 1947.3 907.0 2686.1 2738.0 1806.0 12156

MMD
templates

244.4 229.7 107.0 316.9 323.0 213.0 1434

Intracellular
totals

2316 2177 1014 3003 3061 2019 13590

X2 = (1549-2071.6)2/2071.6 + (1663-1947.3)2/ 1947.3 + (1005-907.0)2/907.0 + 
(2979-2686.1)2/2686.1 + (2960-2738.0)2/2738.0 + (2000-1806.0)2/1806.0 + 
(767-244.4)2/244.4 + (514-229.7)2/229.7 + (9-107.0)2/107.0 + 
(24-316.9)2/316.9 + (101-323.0)2/323.0 +  (19-213.0)2/213.0

= 2413.8

X2for p < 0.01 (5 degrees of freedom) = 15.09 

i.e. p < < 0.01

X2 calculation for the results given in table 4.3B.

Observed values

R0 R1 Totals
No of events 1606 821 2427

MMD
templates

1634 579 2213

Intracellular
totals

3240 1400 4640
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Expected values

R0 R1 Totals
No of events 1694.7 732.3 2427

MMD
templates

1545.3 667.7 2213

Intracellular
totals

3240 1400 4640

X2 = (1606-1694.7)2/ 1694.7 + (821-732.3)2/732.3 + 
(1634-1545.3)2/1545.3 + (579-667.7)2/667.7

= 32.25

X2for p <  0.01 (1 degree of freedom) = 6.63 

i.e. p <  <  0.01
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