
An Investigation into

the Mechanisms that allow CORBA to

preserve Strong Typing

by

David Lievens

A dissertation submitted in partial fulfdment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Glasgow

GLASGOW
j vVO'

December 2000

ProQuest Number: 13818883

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818883

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

The Common Object Request Broker Architecture (CORBA) is a

middleware specification. It aims at transparently extending

programming languages to enable access to objects that are situated

in different address spaces. Extending strongly typed languages

raises the question whether the extension happens in a type-safe

way. Claims are commonly made in the popular literature that this is

indeed the case. However, this is not immediately clear from the

specification.

This thesis is an investigation into the different mechanisms that

CORBA specifies to support remote operation invocations and a

discussion of whether these mechanisms preserve type-safety for

cross-boundary operation invocations. Successively, the object

model, the type system, the architecture and the development

process are reviewed. This is followed by a detailed investigation

into the communications protocol used by CORBA, the server-side

request dispatching mechanism and client-side operation invocation

mechanisms. Conclusions drawn from these investigations are used

to discuss type equivalence and the issues around interface

evolution.

Acknowledgements

This thesis would not have been written without the support of many people. First of

all, I would like to thank all current and former members of the Rapids research group

at Glasgow University and the HIPPO and Smartlab research groups at Strathclyde

University for providing me with a congenial working environment. In particular I

would like to extend my appreciation to Prof. M. Atkinson for the warm welcome

when I first arrived in Glasgow and Prof. A. McGettrick when I returned there.

Prof. Paddy Nixon must be thanked for his leniency in letting me get away with

‘things’ during the writing of this thesis (especially the missing of deadlines) and for

proofreading parts of the document. Both were well appreciated.

I would like to thank Fabio Simeone for the many useful (and enjoyable!) discussions.

A lot of pieces in this jigsaw were formed during these meetings.

Special thanks go to Prof. Richard Connor, my supervisor, for the sound technical

advice and the heaps of confidence. I would also like to thank Richard for telling me

that obtaining a master’s degree is a piece of cake. It stopped me from giving up when

it looked like I would never finish it. But at the same time I would like to scold him

for this, as it probably was not the smartest of things to say to someone who only

knows last-minute panic.

Special thanks also go to Claudie for her love and for coping with the last-minute

stress. I promise, this was the last time ;)

Above all, I would like to thank my parents for their support throughout the years and

for the opportunity to study abroad. It is only natural that I dedicate this work to them.

David Lievens.

2

Table of Content

1 Introduction.. 5

1.1 Middleware.. 5

1.2 Common Object Request Broker Architecture... 6

1.3 Preface to the Thesis... 7

2 An Overview of CORBA ..8

2.1 Object M odel... 8

2.2 Type System...11

2.2.1 Object Types..11

2.2.2 Non-Object Types..11

2.2.3 Interface Definition Language...12

2.3 Architecture..13

2.4 Development Process..14

2.4.1 Establishing the interfaces... 15

2.4.2 Server-side Development.. 16

2.4.3 Client-side Development... 17

2.4.4 Change..18

2.5 Dynamic Invocations and Interface Repository.. 18

2.6 Example...19

2.6.1 Introducing the Exam ple..19

2.6.2 Specification of interfaces... 20

2.6.2.1 Compilation of interfaces... 21

2.6.3 Server-Side Development.. 22

2.6.3.1 Implementation of interfaces..22

2.6.3.2 Server program...23

2.6.4 Client-Side Development.. 24

2.6.4.1 Static Invocation Interface.. 24

2.6.4.2 Dynamic Invocation Interface..24

3 Preserving Strong Typing..27

3.1 Strong Typing...27

3.2 Communications Protocol..29

3

3.2.1 General Inter-ORB Protocol...29

3.2.2 Message Formats..32

3.2.2.1 Request M essage...33

3.2.2.2 Reply Message...34

3.2.3 Common Data Representation..35

3.2.4 Interoperable Object Reference..36

3.2.5 Repository Id ... 38

3.3 Server-side Request Dispatching...39

3.4 Client-side Operation Invocation..42

3.4.1 Static Operation Invocation... 42

3.4.2 Dynamic Operation Invocation.. 46

3.5 Strong Typing in CORBA..46

3.6 Type Equivalence..47

3.6.1 Type Equivalence in CORBA.. 48

3.7 Interface Evolution..50

3.7.1 A very short note on D COM .. 53

4 Conclusions..54

References.. 57

1 Introduction

1.1 Middleware

Modem distributed computing platforms are inherently heterogeneous [EmOO,

HV99]: mainframes handle transactional database access, workstations perform

computing intensive tasks and personal computers mn a host of office automation

tools. Additionally, there might be dedicated systems present for controlling

telephony systems and specialised measurement equipment.

Middleware provides abstractions for distributed object oriented programming to

allow application developers to seamlessly integrate diverse applications into

heterogeneous distributed systems. Middleware can be seen as a software bus -

analogous to a hardware bus- on which software components are plugged (see Figure

l). It defines the wiring and the protocol for interaction, allowing well-behaving

software components to interoperate.

I—O
—O
—o

o—
o—

Software Bus

o— —o

Com ponent

C om p onent

C om p onent

Figure 1 The Software Bus

Wiring standards are not enough though [Szy]. If no domain specific semantic issues

are included in the standard, significantly more effort needs to be put in making

connected components interoperate. Middleware would usually try to address this by

offering a number of semantic layers, ranging from low-level services, essential to the

working of almost all corporate applications, to high-level domain specific

frameworks designed specifically for one class of applications.

There is a wide range of middleware products available on the market, ranging from

message-oriented middleware over transactional middleware to object oriented

5

middleware. In this thesis, we are only considering the Common Object Request

Broker Architecture, which is a specific kind of object oriented middleware.

1.2 Common Object Request Broker Architecture

The Object Management Group (OMG) is a consortium of more than 800 vendors

who banded together to propose a middleware specification. The specification created

by the OMG is the Object Management Architecture (OMA), of which the Common

Object Request Broker Architecture (CORBA) is a fundamental part.

The OMA specification aims to create a framework in which a complete corporate

information system can be developed (cf. Figure 2). It specifies object services

(CORBAServices) such as a naming service, events service, transactions service, etc.

It also specifies common facilities (CORBAFacilities): horizontal end-user-oriented

facilities that are applicable to most application domains, such as an OpenDoc-based

Distributed Document facility. And it specifies a number of domain interfaces for

application domains such as finance, healthcare, manufacturing, telecom, etc.

Application
Interfaces

Domain
Interfaces

Object
Services

Figure 2 The OMA Interface Categories

The central specification that enables all the previous things to form a coherent

framework is CORBA. The CORBA specification outlines an infrastructure allowing

objects to communicate, independent of the specific platforms and techniques used to

implement the addressed objects. It allows a great deal of abstraction over the

difficulties of inter-process, cross-platform and even cross-language application

development.

The CORBA specification is very complex and is even said to contain contradictions

[BS]. The core of the specification covers almost a thousand pages and is

6

a

complemented by a number of language mappings. CORBA is a specification and can

be implemented by different vendors. Among the information contained in the

specification, we can identify a number of themes. The first theme is about the

CORBA data model [chapter 1]. The data model discusses the central modelling

primitives that are offered by CORBA. A second theme is the specification of

additional services that do not fit with the core data model, but for which portability is

important and can therefore not be left entirely to different ORB implementers

[chapters 3,4,5,6,7,8,9,10 and 11]. A third theme revolves around interoperability

issues [12,13,14,15,16,17,18,19 and 20].

Both interoperability and portability help to reduce dependencies on the environment

and therefore reduce the risk of locking in a company with a single ORB vendor.

Interoperability does so by maximising the amount of components that can talk to

each other. When interoperability between two ORB implementations is established,

components connected to one system can also talk to components connected to the

other system. Portability reduces the dependency on the environment by minimising

the amount of code that needs to be adapted when a component is moved from one

middleware system to another. Interoperability leads to black box reuse, portability

leads to white box reuse o f components [Szy].

1.3 Preface to the Thesis

In the following chapters, we will assess whether the mechanisms CORBA provides

to enable inter-address space object interaction are type-safe. We review successively

the object model, the type system, the architecture and the development process. We

then continue with a thorough discussion of the communications protocol, the server-

side request dispatching mechanism and the different client-side operation invocation

mechanisms. At that point we will be able to discuss type-safety issues. We conclude

with a discussion of type equivalence and interface evolution.

S
7

2 An Overview of CORBA

In this chapter, we give a high-level overview of CORBA to provide a framework for

the discussion that follows. We start by reviewing the object model, the type system

and the architecture of CORBA. Discussing the object model will give insight in the

logical abstractions that CORBA offers to facilitate construction of distributed

applications. Analysing the architecture will then show how these logical abstractions

are supported by an implementation. Introducing CORBA in this manner avoids

issues related to particular request broker implementations or language-bindings. To

be able to follow the discussion in the next chapters, it is equally important to be

familiar with how CORBA applications are constructed. We give an overview of the

development process and conclude by demonstrating it with a small but representative

example.

2.1 Object Model

The data model o f a system is the set of modelling primitives that it offers. Discussing

a system in terms of its data model provides abstraction over the concrete

implementation of the system. A well-known data model is the relational data model.

It allows modelling of information organisation, information storage and information

retrieval in terms of tables, columns, rows, primary keys, foreign keys, constraints,

etc. A large number of implementations exist for the relational model in the form of

Relational Database Management Systems such as Oracle, Microsoft SQL Server and

others, each of which has distinctive additional properties and features.

When a data model is organised around the generic concept of an object -as is the

case with CORBA- it is usually called an object model. The CORBA object model

contains primitives for modelling peer-to-peer object interaction in a distributed

computing environment. The specification assumes that any implementation of the

object model relies on one or more programming languages, which we will denote by

the term implementation languages.

An overview of the different modelling concepts:

8

• Object - identifiable, encapsulated entity with an associated state that offers a set

of services that can be requested by a client. A client of a service is any entity

capable of requesting the service. The state is not directly accessible; it can only

be queried and modified via the services the object offers.

Objects have a lifetime. There is no special mechanism to create or destroy

objects; instead, new objects are created and existing objects destroyed as a side

effect of issuing regular requests on existing objects. How the bootstrapping

problem is solved, is not addressed by the object model. The outcome of object

creation is an object reference that denotes the new object (see below).

CORBA defines1 a type system. Objects are instances of interface types. The

interface (type) specifies what services an object offers. An interface consists o f a

set of operation signatures. Each operation signature consists o f an identifier, an

ordered" list of input parameters and an ordered list o f output parameters

(including a single return value). The parameters are also typed. We discuss the

type system in more detail in Section 2.2.

• Object Implementation or servant - provides an object’s state and an

implementation for its operations. Servants have no identity that can be observed

by the client. Servants must be provided using mechanisms that lie outside the

scope of the CORBA specification. They provide a complete separation of

interface and implementation. Two objects of the same object type can have

completely different implementations.

There is not necessarily a one-to-one mapping between objects and servants. One

servant can implement multiple objects and multiple servants can implement one

object. Additionally, the lifetime of objects and servants is independent. An object

can be implemented by multiple servants over time. This provides the possibility

for fault-tolerance or for increasing the performance of a system by doing load

balancing.

1 At least partially, see below.
2 The specification explicitly states that request parameters are identified by their position [Core p i -3].

• Object Reference - value that reliably denotes a particular object. Multiple copies

of an object reference -denoting the same object- can exist. A client that wants to

request services of an object needs to obtain a reference for that object. In

CORBA, object references are opaque to the client application programmer. There

is no standardised API to inspect the content. Therefore, object references provide

location transparency, i.e. abstract over the physical location of an object.

• Request - interaction between two objects. The source of the interaction is called

client and the destination server. The information associated with a request

consists of a target object, an operation identifier (which is the operation’s name3)

and zero or more (actual) parameters. A request causes a service to be performed

on behalf of the client. One possible outcome of performing a service is the

availability of any results defined for that request. If an abnormal condition occurs

during the execution of a request, an exception is made available instead.

CORBA has three invocation modes: synchronous, deferred synchronous and one

way. When a client issues a synchronous request on an object, it blocks while it

waits for the results to become available. When it issues a deferred synchronous

request, it continues processing and can then later poll or block-wait for the

response. When it issues a one-way request, it continues processing and it does

not expect any results to become available. This last invocation mode assumes

best-effort execution semantics. It allows requests to be silently dropped in case of

network congestion or other resource shortages. The first two invocation modes

assume at-most-once execution successfully, i.e. if an operation request returns

successfully, it was performed exactly once; if it returns an exception indication, it

was performed at-most-once.

• Exception - indication that an operation request was not performed successfully.

CORBA defines two kinds of exceptions: system exceptions and user exceptions.

System exceptions are automatically raised when failures are detected such as

3 The specification explicitly states that operations are identified by their name [Core p i -6], Therefore,
operation overloading is not allowed when defining interfaces in IDL (cf. infra).

10

disconnected network connections, etc. User exceptions are raised by the target

object, when a request could violate the object’s integrity. An exception may be

accompanied by additional, exception-specific information.

2.2 Type System

CORBA partially defines a type system. For non-object types it only indicates the

concepts, but for object types it is more specific.

2.2.1 Object Types

An object type or interface type contains a set of operation signatures. Each operation

signature consists of an identifier, an ordered list of input parameters and an ordered

list of output parameters. Each parameter has a name and a type. The parameter-

passing is always by value (although the value could be a reference). The only

operations applicable to an instance of an object type are the operations specified.

Each interface has a unique identity that discriminates it from all other interfaces

(even though their syntactic representations may be identical). Subtype relationships

between interfaces can exist, but have to be established explicitly. This may avoid

some unwanted connections between object types, but comes at the cost of

flexibility[BW].

2.2.2 Non-Object Types

CORBA defines a number of basic types’, a representative subset is shown in Table 1.

For each basic type, it specifies a range, a minimum size and an encoding (e.g. 2-

complement, ISO Latin-1, etc.)4. The different language mappings [OMGa, OMGb]

complementing the core specification specify additionally a mapping from each basic

type to a language-specific type (e.g. in Java, the long integer type is mapped on the

built-in type lo n g) . Neither the language mapping nor the core specification define

any operations on basic types; what operations are defined depend on the semantics of

the mapping type in the implementation language that is used and may therefore vary.

4 The size and the encoding are specified in the chapter on the data model. The range is specified in the
chapter on IDL. It seems that it would have been better just to specfy the range in the chapter on the
data model and leave the size and encoding to the specification o f the data representation.

11

Type Range Size E ncoding

integer -2 15 to 2 I5-1 > 16 bits 2-com plem ent

long integer -231 to 23l- l > 32 bits 2-com plem ent

unsigned integer o r-
+ o +L C

v

> 16 bits plain binary

unsigned long integer Oto 232-l > 32 bits plain binary

floating point specified by encoding > 32 bits IEEE single-precision

double floating point specified by encoding > 64 bits IEEE double-precision

character specified by encoding >8 b its ISO L a tin -1

string finite strings o f

length < 2 32- 1

variab le-length ISO L a tin -1

boolean {true, false} unspecified unspecified

octet 0 to 255 > 8 bits n/a

infin ite Union n/a variab le-length n/a

Table 1 CORBA Basic Types

CORBA also defines a number of type constructors. It defines a record type

constructor, a discriminated union type constructor and sequence and array type

constructors. Again, no operations are formally defined on these type constructors.

But it is clear that the only operation applicable to a record type constructor is field

selection. However, the exact operations available depend on the type constructors on

which they are mapped in the implementation languages. The record type constructor

applied to a set of labels and a set of types is mapped in Java onto a class containing

attributes representing the different (name, value) pairs and therefore.

Applying a type constructor to a (number of) basic type(s) yields a complex type.

Complex types must usually be named, as anonymous types are only allowed in a

limited number of cases. Unlike what was the case for object types, it is not possible

to declare inheritance (substitutability) relationships between complex types.

2.2.3 Interface Definition Language

CORBA provides syntax for writing down type definitions in a language-neutral way.

This syntax is called the (OMG) Interface Definition Language (IDL). It resembles

the syntax of C++ and Java. A discussion of the exact syntax and semantics can be

found in [Core chapter 3, HV]. An example follows later in this chapter (see Section

2 .6 .2)

12

2.3 Architecture

In the last section, we have given an overview o f the logical abstractions that CORBA

offers. This section focuses on the different components that are involved in

implementing that logical picture. Figure 3 shows the components of a CORBA-based

application that are involved in executing a request. In the picture, it is assumed that

some client object issues a request on some target object located in a different address

space and that an object request broker is present at both sides.

stub

skel

object
impl.

client

orb

server

orb

object
adapter

Figure 3 The CORBA Architecture

The Object Request Broker is the central component of the CORBA architecture. An

ORB receives a request to invoke an operation from the stub of a client object and

forwards that request transparently to the request broker at the server-side. In

particular, the client ORB locates the server ORB based on the addressing information

contained in an object reference, transmits the request parameters to the server and

returns the request results to the client.

An ORB is usually implemented in the form of a library; the specification [Core

chapter 4] specifies the interface of an ORB. This means that it is language-specific;

for each component (either client application or object implementation) written in a

different language, a different ORB needs to be present. A client application that

wants to invoke remote operations, need to initialise the ORB first. Once this is done,

the ORB is normally only accessed through a stub. A stub is usually generated

automatically from a set of type declarations. The tool that generates stubs is an

integral part o f any ORB implementation.

13

A stub is an object (not necessarily in the object-oriented meaning) of the

implementation language in which the server is written. The client can access the stub

in the same way as it would access other language objects (again, not necessarily in

the object-oriented meaning). As the stub acts as a local stand-in for a remote object,

this provides access transparency [EmOO] for the client; i.e. the client cannot

discriminate between accessing a local object and accessing a remote object. The stub

marshals the parameters o f the operation that is invoked by the client application, and

uses the ORB to send them to the server-side.

At the server-side, the object adapter is responsible for registration, activation and

deactivation of object implementations. It is also responsible for the generation of

object references for an object. It receives the request from the client and dispatches it

to the skeleton of an appropriate object implementation.

The skeleton demarshals the parameters which were marshalled by the stub. It then

invokes the requested operation on the target object implementation. As was the case

for the stub, the skeleton is an entity belonging to the language in which the object

implementation has been written. This shields the implementer from any low-level

networking issues.

It should be noted that this is only a conceptual picture and serves mainly as a

framework for discussion. The different components listed here all have a set of

logical responsibilities for supporting request flows. However, in some request broker

implementations, none of these components may have a physical counterpart. The

main reason for discussing them is to create reference framework that can be used

when discussing other services that hook into or utilise some functionality that is

specified here.

2.4 Developm ent Process

In the previous sections, we have introduced the CORBA object model its type system

and we have briefly discussed its conceptual architecture. For the discussion to follow

it is also important to understand the steps that application developers go through

when constructing CORBA applications.

14

Like the first part of any application that is being developed using an object-oriented

methodology, the first step in developing a CORBA application is establishing the

interfaces. Interfaces are specified using a special purpose specification language,

called the Interface Definition Language (IDL). Once the interfaces are specified, they

are translated into type declarations5 in the language(s) o f choice of the interface

implemented and interface consumers. The interface implementers are then

responsible for providing an implementation for these types and the interface

consumers write applications that employ instances of these types. Also, both the

implementer and consumer need to write some code to activate the request broker and

access the request broke libraries.

A sketch of the different steps in the development process can be found in Figure 4.

As before, we simplify the discussion to a single consumer and implementer, which

we will refer to as being the client-side and server-side respectively. Next, we discuss

the different tasks in the development process in some more detail.

Design
Interfaces

Generation
of Stubs

Generation
of Sk ele tons

Im plem entation
of Interfaces

D e v e lo p m en t of
Client ApplicationCreation and

Registration of
Servants

S erver-sid e D evelop m en t C lien t-sid e D ev e lo p m en t

Figure 4 Development Process of CORBA Applications

2.4.1 Establishing the interfaces

Similar to what happens in any object-oriented development process, one has to start

with establishing the interfaces when developing a CORBA application. Distributed

computing, however, has some additional characteristics that need to be taken into

account: message latency, network partitioning and partial failure. CORBA cannot

3 In case of dynamically typed languages that have no explicit type declarations, the IDL interface
specifications may be translated in an outline o f the implementation.

15

entirely hide the effects that these characteristics have on applications. Messaging

latency has a potentially profound influence on the application’s performance and it is

important to keep this in mind during interface design. Network partitioning may

deny uniform addressing of network nodes, thereby preventing the location

transparency offered by CORBA object references6. Finally, partial failure demands

for more sophisticated failure handling strategies than are normally employed in

monolithic software applications. And, as exceptions need to be specified in the

signature of the methods that can generate them, failure handling needs to be taken

into account during interface design.

Once the interfaces are fixed, client and server-side development can happen in

parallel. We assume in this discussion physically separated client and server

platforms.

2.4.2 Server-side Development

Server-side development starts with the acquisition of the IDL type specifications.

These type specifications are then translated into the implementation language that is

being used for the server-side development using a dedicated translation tool (IDL

compiler). The bulk of the server-side development lies in the implementation of the

services specified in the interfaces. But solely implementing the interfaces does not

suffice for the server-side development. To finish the server-side development, a host

program needs to be written that takes care of initialisation o f the ORB, creation of

the object adapter(s) and the creation, initialisation and activation of (at least some)

CORBA objects7. The host program acts as a shell around a (number of) servant(s),

providing an entry point for the CORBA application. We refer to the example in the

next section and the appendices for more information on this part of the application.

The implementation of the interfaces needs to be done in a programming language for
8 / j r*which a language mapping exists (and for which an ORB implementation is

available). Note that this language does not need to be object-oriented. Although the

6 Bridge-objects may have to be positioned on the computers sitting between two networks to forward
requests to objects in he other network.
7 CORBA objects are usually created as the result of requests, but for bootstrapping reasons, some must
be instantiated by other means.

I.e. a language in which the IDL interface declarations can be translated.

16

CORBA object model contains the notions of object and interface type, the

architecture is flexible enough to support non object-oriented programming

paradigms. In fact, it suffices that some sort of parameterised expression abstraction

[Sch90] is available for a mapping to be conceivable.

One of the important goals of CORBA is to support legacy applications; the

implementation o f the interfaces does not necessarily has to happen from scratch. But

even when the services are already available in some form, it will generally be

necessary to provide at least a wrapper that forwards incoming requests to the legacy

application9.

Although CORBA has a facility to dynamically host objects (called the Dynamic

Skeleton Interface or DSI), in this document we are always assuming that servers

have static knowledge about the objects they host. In the light o f our previous

discussion of middleware and componentware, this is a natural assumption.

2.4.3 Client-side Development

As was the case for the server-side development, the client-side development starts

with the acquisition the IDL type specifications and the translation of these

specifications into a development language of choice. The application developer can

then use these type declarations in his program in the same way as normal type

declarations. This provides access transparency [EmOO] for instances of CORBA

types.

Clients do not handle CORBA objects directly, they use object references. An object

reference uniquely identifies a CORBA object and provides location transparency

[EmOO], i.e. the client does not have to know the physical location o f the server-object

in order to access it. A client that wants to utilise a certain CORBA object, needs to

obtain a reference to this object. References can be obtained in a number of ways (cf.

Section 3.4.1). Object references are mapped differently in different languages, but

9 Note that the wrapper must then be written in a programming language for which a language mapping
exist, but no such constraint applies to the legacy application, which may be written in any language. In
fact, this is probably the reason why the commercially available Java ORBs are so popular. The
wrapper can be written in Java and the legacy application can be accessed through Java’s Native
Interface.

17

the type of the object reference always conforms to the type resulting from the

interface of the object it refers to and therefore, they may be treated as if they were the

objects themselves.

2.4.4 Change

If the interfaces need change at any point, then the IDL specification needs to be

adapted first. The updated IDL specifications must then be distributed to clients and

servers. They must compile these new specifications and incorporate the resulting

type declarations (e.g. modify an operation invocation to reflect the changes in the

interface). Finally, the whole application must be redeployed. So, when a change is

made to an interface, all the clients of that interface must be redeployed.

2.5 Dynam ic Invocations and Interface Repository

Sometimes, it is necessary to be able to develop clients that do not have compile-time

access to the interface definitions of the services they want to use. This may be

because of the fact that the interface definitions are not available when the client

program is being developed. Or it may be because the application is generic and it is

impractical to incorporate all the interface definitions that it must be able to handle10.

Examples include gateways, bridges, object browsers, distributed debuggers, etc.

To cater for the needs of such applications, CORBA provides the Dynamic Invocation

Interface (DII) and the Interface Repository (IFR). The Dynamic Invocation Interface

allows dynamic creation and invocation of requests on an object. A client can use this

interface to send a request to a target object and will obtain the same semantics with it

as a client using stubs generated from the type specification. A server cannot

discriminate between requests issued by a client that uses the DII or a client that uses

a stub.

Accessing services using stubs can only happen in a synchronous way. This is

because stubs have been introduced to provide access transparency and method

invocation happens in a synchronous way in most programming. The DII provides the

possibility for deferred synchronous and one-way execution access to services.

10 When all the interfaces that must be handled have a common defined supertype, it is only necessary
to have access to the declaration of this supertype.

18

The Interface Repository (IFR) is a component that provides persistent storage of

interface definitions. It is a regular CORBA object and can be queried by a client to

obtain type information at runtime. Using this information, a client can then employ

the DII to issue a request. The IFR is usually populated by the IDL compilers

provided with ORB implementations.

Using these two mechanisms, a client can obtain a reference to an object on which it

has no (static) knowledge, enquire about the interface o f that object using the IFR and

use the knowledge obtained from the IFR to issue requests using the DII.

2.6 Exam ple

We have discussed the object model of CORBA, a set o f concepts and modelling

primitives that can be used to model a domain o f interest. We have also discussed the

architecture of CORBA and we have seen how the different pieces work together to

implement the logical abstractions provided by the object model. Finally, we have

outlined the development process that needs to be followed when constructing a

CORBA application. It is time to demonstrate all this by a small example.

Note that, although we have occasionally included code fragments in this section, no

understanding of the concrete syntax is necessary to follow the discussion in the

following chapters.

2.6.1 Introducing the Example
Imagine a simple bank account application with as its main abstraction a normal

savings account. The basic functionality consists o f querying the balance o f the

account, depositing money into the account and withdrawing money from the

account. For the sake of the argument we choose the currency of the account to be

Belgian Franks. Belgian Franks do not go beyond the decimal point. Therefore,

deposits and withdrawals can only happen by integer amounts. In other words, it is

possible to deposit 875 Bfr. but not 1000,5 Bfr. Let us further assume that the account

has no overdraft facility. The maximum amount of money that can be withdrawn at

any point is the full balance of the account at that point. If it is attempted to withdraw

more money than is actually present in the account, just the full balance is returned;

no error is raised. Each account has an accountholder, i.e. the person who owns the

money that is in the account. For simplicity, we assume that the name of the

accountholder uniquely identifies an account.

Operations on an account can be performed by many different entities, such as

automatic teller machines, terminals in branches, other software components (e.g.

from a web-banking application) and telephony systems (e.g. phone banking).

Management of accounts happens through a separate mechanism. Management

functionality includes opening of new accounts, closing o f existing accounts and

returning existing accounts on request.

Although this is a small, restricted example, it does demonstrate the possibilities of

CORBA quite well. Great deal of heterogeneity. Legacy applications. Easily

decomposable in a set of interfaces.

2.6.2 Specification of interfaces
Another nice property of the example is that it is easy to decompose the specified

functionality into a set of interfaces. Expressing the aforementioned specification in

IDL results in two interfaces: Account and AccountManager, which we have

grouped together in a module called BankApplication. Modules serve as a

namespace construct in IDL. The Account interface contains methods to query and

update the balance of a savings account. The type of the parameters is locally defined

and is called Currency; it is defined as an alias to unsigned long. This suffices

because Belgian Franks go not beyond the decimal point and we have agreed that the

account has no overdraft facility. The AccountManager interface contains

functionality to manage accounts, such as creating and destroying accounts and

looking an account up. As mentioned before, we include the IDL source for the

interested reader; no thorough understanding is needed to follow the argument. Like

the module construct, the prefix pragma also serves for namespace purposes. We will

explain its specific purpose later (cf. Section 3.2.5).

/ / OMG IDL
#pragma prefix "hippo.dcs.gla.ac.uk"

module BankApplication
{

typedef unsigned long Currency;

interface AccountManager
{

Account open (in String name);
void close(in String name);

Account get(in String name);
};

interface Account
{

readonly attribute String accountHolder;
readonly attribute Currency balance;

void deposit(in Currency amount);
Currency withdraw(in Currency amount);

};
};

2.6.2.1 Com pilation of interfaces
One of the things that an actual CORBA implementation must provide is an IDL

compiler. An IDL compiler takes an IDL specification and does a language-specific

mapping of the types specified. It generates stub and skeleton code that handle most

of the low-level stuff, such as marshalling data, invoking the ORB API, etc.

Compiling the above type definitions with the ORBacus 4.0 IDL-to-Java compiler

[OOC] yields the following files:

Account.j ava
AccountOperations.java
AccountHelper.j ava
AccountHolder.j ava
AccountPOA.j ava
_AccountStub.j ava
Account_impl.j ava

AccountManager.j ava
AccountManagerOperations.j ava
AccountManagerHelper.j ava
AccountManagerHolder.j ava
AccountManagerPOA.j ava
_AccountManagerStub.j ava
AccountManager_impl.j ava

21

CurrencyHelper.j ava

The files that are generated differ from language to language and for some language

mappings even from ORB implementation to ORB implementation. In general, for

most languages, there are different files generated for the interface types

(Account. j ava, AccountOperations . j ava, AccountManager . j ava,
AccountManagerOperations . j ava), for the stubs (_AccountStub . j ava,
_AccountManagerStub . j ava) for the skeletons (Account POA. j ava,
AccountHelper . j ava, AccountManagerPOA. j ava,
AccountManagerHelper. j ava). Sometimes additional files are necessary to

assist in translating the CORBA object model into language specific constructs. Java

can, for example, not directly support inout parameters. Therefore, additional

classes need to be introduced (AccountHolder. j ava,
AccountManagerHolder. j ava).

The files in which the different interface types are declared must be generated for both

the client and server (possibly in different languages, using different IDL compilers).

The stubs must only be generated at the client side; the skeletons only at the server-

side.

2.6.3 Server-Side Development
Once the translation of the IDL specification into the target language has been

completed, the server-side development can be started. As we have seen in the section

on the development process, this consists of two stages: implementation of the

interfaces and construction of a server program.

2.6.3.1 Im plem entation of interfaces
For object-oriented implementation languages, it is very common that a matching

abstract base class is generated from each IDL interface. The application programmer

must then subclass this class to provide an implementation for the services specified

in the IDL specification. In this case, partial implementations have been generated for

the interface implementations: Account_impl. j ava and AccountManager
_impl. java. The application programmer should build on these files to provide

22

the implementation for the different methods. The complete implementation of the

Account interface can be found in the appendices. For the interested reader, we have

included an outline of the implementation class.

/ / J a v a

/ / o u t l i n e of t h e p a r t a u t o m a t i c a l l y g e n e r a t e d by th e

/ / I D L - t o - J a v a com pi le r

package u k . a c .g l a . d c s .h i p p o .B a n k A p p l i c a t i o n ;

/ / ID L : h i p p o . dcs . g l a . ac . u k /B a n k A p p l i c a t i o n /A c c o u n t : 1. 0
p u b l i c c l a s s Account_impl e x tends AccountPOA

{

/ / a u t o m a t i c a l l y g e n e r a t e d c o n s t r u c t o r s o m i t t e d

/ / I D L : h i p p o . dcs . g l a . ac . u k /B a n k A p p l i c a t io n /A c c o u n t / a c c o u n t
H o l d e r :1 .0

p u b l i c S t r i n g a c c o u n tH o ld e r (){

/ / im p l e m e n ta t i o n to be p ro v id e d

}

/ / s i g n a t u r e s of o th e r methods o m i t t e d

/ / IDL: h i p p o . d c s .g l a . a c .u k /B a n k A p p l i c a t i o n / <p
A c co u n t /w i th d ra w :1 .0

p u b l i c i n t w i th d ra w (in t am ount){
/ / im plem enta t ion to be p ro v id e d

}

}

2.6.3.2 Server program
As we have seen in Section 2.4.2, the implementer must also provide a server

program that is responsible for instantiating and registering servants of objects with

the ORB. This program acts as the administrative glue that glues CORBA objects to a

real operating system environment. We have omitted the listing of the program here,

the complete source code can be found in the appendices.

23

2.6.4 Client-Side Development
We demonstrate the client-side development both using the Static Invocation Interface

and the Dynamic Invocation Interface.

2.6.4.1 Static Invocation Interface
Again, the IDL specifications must be compiled into type declarations and stubs.

Once this is done, the client program can be developed. As has been explained above,

the client program can access remote services in two ways: using the Static Invocation

Interface and using the Dynamic Invocation Interface.

For this example, we have developed a simple stand-alone client. Because it is a

stand-alone application, it first has to initialise the ORB and obtain the initial

references. Initial references are necessary for bootstrapping reasons and are usually

obtained by means of a special primitive of the ORB. Once this is done, a reference

must be obtained to the service we are interested in: an instance of the Account

interface. We can then invoke operations on this object in the same way we would

invoke operations on a regular Java object. We have omitted most of the code of the

example here, only some example method invocations are listed. The complete code

of the example client can be found in the appendices.

/ / J a v a
AccountManager m = . . .

Account myAccount = m .open(" d a v id ") ;
MyAccount.d e p o s i t (10 00) ;

/ / • . •

2.6.4.2 Dynam ic Invocation Interface
With the Dynamic Invocation Interface, the IDL interface declarations of the server

are not necessary. It suffices that we know the name of the operations we want to

invoke and their signatures. Otherwise we have to obtain this information from the

IFR (not shown here). When using the DII, requests are CORBA objects themselves.

To invoke an operation on an object with the DII, the following steps must be

followed:

1 • Construction of a Request object for the operation:

24

To construct a R e q u e s t object r , one must have first obtained a reference o r to

the target object. On this object reference, the _ c r e a t e _ r e q u e s t () operation

is applied (which is defined in the interface of Object). This operation takes -

among other things- an operation identifier and a list11 of arguments to the

operation and returns a R e q u e s t object.

2. Invocation of the request

Once a R e q u e s t object is created and populated with the different request

parameters, the operation can be requested by a call to the in v o k e () method of

the object. This method calls the ORB, which performs method resolution and

invokes an appropriate method. The result (either the return values or an

exception) of issuing the request is placed in a dedicated field of the R e q u e s t

object.

The DII also provides the possibility of issuing requests that have deferred

synchronous or one-way invocation semantics. In these cases, the request should

be made using the s e n d () method and results (in case of deferred synchronous

calls) can be obtained via the p o l l _ r e s p o n s e () method.

The code for the two lines that were shown in the section on the SII:

/ / J a v a

O b je c t o = . . . / / o b t a i n o b je c t r e f e r e n c e

N V List myArguments = . . . / / g e n e r a t e o r d e r e d l i s t o f a r g s

R eq u e s t r =
o . _ c r e a t e _ r e q u e s t (. . . , " o p e n " , m y A r g u m e n t s , . . .) ;

r . in v o k e () ;

O b je c t a c c o u n t = . . . / / g e t o b j r e f o u t o f r e t u r n v a l

N V L is t o th e r A r g s = . . .

R e q u e s t r2 =

o . _ c r e a t e _ r e q u e s t (. . . , " d e p o s i t " , m y A r g u m e n t s , . . .) ;

. . . / / g e t r e s u l t s o u t o f N V L is t

" The datastructure containing the arguments is standardised. See [7-2] for a complete discussion.

25

'

I

26

3 Preserving Strong Typing

In the previous chapter, we have discussed the CORBA object model and its type

system. Objects have interfaces and clients can only issue requests that conform to

these interfaces. We have also seen that the CORBA specification consists of more

just than an object model. It also takes portability and interoperability issues into

account. It does so by defining a number of APIs and some operational mechanisms

that different ORB implementations must support. On page 13-17, the specification

[Core] states that it allows the preservation of strong typing. Additionally, a common

claim in the popular literature is that CORBA allows static typing through the use of

stubs and skeletons [HV, Em96, EmOO, Rit]. This chapter considers the typing issues

in CORBA in detail and elaborates from this viewpoint on important issues such as

type equivalence and interface evolution.

3.1 Strong Typing

In this treatment, we consider a typed programming language to be strongly type-

checked or strongly typed when it allows the manipulation of values only through

operations that are defined on the type of that value. Types and their operations are

specified in the type system that is associated with the programming language.

Enforcing strong typing is important. Types perform a modelling role; applying an

operation that is not defined for a type on an instance o f that type violates the
12modelling intention of that type .

Checking whether undefined manipulations take place can happen at any time before

the execution of those operations. Strong typing can be achieved by guarding all

manipulations with an explicit check at run-time. Alternatively, strong typing can be

achieved through analysis of the source code. In the latter case, a type must be

associated with every denotation in the program text, in order to allow unsound

manipulations to be mechanically spotted at compile-time.

In general, the earlier an error is detected, the less harmful it might be. Therefore, it is

desirable to do type-checking as early as possible, ideally at compile time. However,

12 Or the modelling has not captured the concept satisfactorily.

27

it is not always possible to do all checking at compile time. When values only become
n

available at run-time , as is the case with distributed and persistent data, the earliest

time possible to check is when the value actually becomes available.

However, even in these cases, in languages in which denotations carry type

annotation, most checks can be performed at compile time. The only dynamic checks

that are needed are the checks to assess whether the values that become available at

run-time conform to the types specified by the programmer for the variables

containing them. All manipulations of variables can be statically checked with respect

to the type annotations of those variables.

In the literature, a dichotomous distinction is usually made between statically and

dynamically checked languages. Statically checked languages being languages that

achieve strong typing through analysis of the source code and dynamically checked

languages being languages that employ explicit run-time checks. However, most so-

called statically typed languages incorporate features that cannot be entirely checked

at compile-time and most so-called dynamically typed languages implement compile

time optimisations to eliminate some run-time checks. Therefore, it would be more

precise to categorise them into mostly statically and mostly dynamically checked

languages, but for the remainder of this document we will adhere to the terms as they

are typically used in the literature.

CORBA is not a programming language in its own right; it extends programming

languages to enable access to objects in different address spaces. The extension

usually comes in the form of a library. Therefore, strictly speaking, neither the syntax

nor the semantics of the host programming language is changed. And, thus also not

whether the language is strongly typed or not. Yet CORBA allows the programmer to

write code that results in the invocation of methods on remote objects. These objects

may be implemented using a different programming language with different

semantics and a different type system. The mechanisms it specifies to make this

13 The alternative is that the program itself creates the value. In that case static checking is - in general-
possible.

28

possible can be seen as an extension of the implementation language’s run-time

system.

When assessing strong typing in such ‘enhanced’ programming languages, we are

interested in whether undefined operations can be invoked. We have to make a

distinction between the CORBA interface type and all CORBA non-interface types

(i.e. the basic types plus the constructed types). Instances of the latter category are

always manipulated within a single language framework; it is only possible to

transmit them from one environment to another as part o f the parameters or return

value of an operation invocation, it is not possible to invoke operations on them from

within a different environment. Therefore, it depends on the algebra of the

implementation languages used whether or not those values can be manipulated in ill-

defined ways.

Manipulations of instances of object types cross the boundaries between client and

server. CORBA specifies a number of mechanisms to support these manipulations and

relies on the semantics of the implementation languages to provide semantics for the

manipulations that happen inside a particular environment. It is these support

mechanisms that will make the subject of the investigation into strong typing for the

remainder o f this chapter.

We start by looking into the communications protocol that CORBA employs. We then

go on to look into the server-side request dispatching mechanism and the client-side

operation invocation mechanisms. Having studied these in detail, we will be able to

assess whether CORBA is strongly typed.

3.2 Com m unications Protocol

3.2.1 General Inter-ORB Protocol

Middleware specifications, such as CORBA, leave room for varying implementations.

This is important from a commercial point of view, as vendors can use this freedom to

build products that are better in certain respects than other implementations of the

specification. CORBA 1.0 did not specify a communications protocol; every ORB

was allowed to employ a proprietary protocol. It was thought that this opportunity for

29

vendor-specific optimisations would benefit the cause of CORBA. However, the

resulting proliferation of communications protocols made interoperability between

different ORB implementations cumbersome. And although CORBA 2.0 still allows

request broker implementations to use whatever communications protocol they prefer,

it has introduced the interoperability architecture to cater for the problems of

interoperability.

The interoperability architecture is built around the notion of bridges. A bridge sits

between two request brokers and translates messages from the communications

protocol used by one broker to messages of the communication protocol used by the

other broker. Bridges allow communication between brokers that have no knowledge

of how the other implements the CORBA standard.

In general, the communication protocols of two brokers may differ so significantly

that constructing a bridge between them is very hard. The sequence of interaction of

communications messages and the information they contain may differ largely.

Additionally, the bridge must take into account the possibly different data encodings

that the communication protocols use. To facilitate easy bridging, CORBA 2.0 has

introduced a number of interoperability protocols. Figure 5 gives an overview.

HOP

GIOP ESIOP

Proprietary
Protocol

Interop erab ility
P rotoco ls

CORBA 2.0

DCE-CIOP

Figure 5 Communications Protocol Family

The General Inter-ORB Protocol (GIOP) is specifically built for ORB-to-ORB

interactions and is designed to work directly over any connection-oriented transport

protocol that meets a minimal set of assumptions. This set includes, for example, the

assumptions that connections are symmetric and full duplex. Other assumptions are

that the transport is reliable and that the transport indicates disorderly loss of

connections. These assumptions exactly match the guarantees provided by the TCP/IP

30

networking protocol [Hal]. However, other transports also meet these requirements.

Among others: the Systems Network Architecture (SNA) [Tan], Xerox Network

Systems’ Internet Transport Protocol (XNS/ITP) [Tan], Asynchronous Transfer Mode

(ATM) [ATM], HyperText Transfer Protocol next Generation (HTTP-NG) [NG], and

Frame Relay [Hal].

The General Inter-ORB Protocol (GIOP) specifies a standard transfer syntax and a set

of message formats for communications between ORBs. We discuss these in more

detail in the following sections. GIOP is not tied to any particular networking

protocol, so different versions, running on different networking protocols can exist.

And while these versions would not be directly interoperable, their commonality

guarantees easy and efficient bridging.

The Internet Inter-ORB Protocol (HOP) is a version of GIOP that specifies how GIOP

messages are exchanged using TCP/IP connections. All request brokers must support

HOP natively or provide a half-bridge that can interpret HOP messages. Therefore,

HOP can be seen as a canonical communications protocol to which all other protocols

must be reducible. Due to this status, a lot of the commercially available ORB

implementations use HOP as their internal communications protocol [OOC, Orbix].

Therefore, these products can interoperate out-of-the-box, without the presence of any

bridges.

CORBA 2.0 also includes an Environment Specific Inter-ORB Protocol (ESIOP) for

environments that want to exploit existing high-level14 communication facilities (e.g.

DCE RPC). ESIOP is an open-ended specification that supports the exploitations of

implementation-specific transport assumptions. While specific ESIOPs may be

optimized for particular environments, all ESIOP specifications will be expected to

implement half-bridges for GIOP.

Note. Because all ORB implementations have to support IIOP to some degree and

because the IIOP specification is for a large part fixed by the GIOP specification, we

14 I.e. higher-level primitives than the ones offered by a connection-oriented network protocol such as
TCP/IP.

31

will assume in the remainder of this document the use of a GlOP-based

communications protocol. Therefore, all the conclusions drawn in the next sections

are only applicable to situations where the ORB implementation uses a GlOP-based

protocol internally or either where several ORB implementations have to interoperate.

3.2.2 Message Formats

GIOP provides a specification of a number of communications messages, what

information they contain and how interaction is achieved using them. IIOP adheres to

these message formats. As we have seen, all CORBA 2.0 compliant ORBs must

support IIOP, therefore, the specification of the messages and their layout enforces a

certain commonality of communication protocols that facilitates easy bridging.

GIOP defines eight message types that are used by clients and servers to

communicate: Request, CancelRequest, LocateRequest, Reply, LocateReply,

CloseConnection, MessageError and Fragment. The first three messages can only be

sent by a client, the next three can only be sent by the server; the last two can come

from both sides. Only two of these messages are necessary to achieve basic remote

procedure call semantics: Request and Reply. The others are control messages or

messages to support certain optimisations.

All messages have the same basic layout (cf. Figure 6). Messages begin with a header

of twelve bytes. The first 6 bytes contain the string ‘GIOP’, followed by the major

and minor version numbers (vm, vn). This can be 1.0, 1.1 or 1.2 at the moment. The

next byte (x) is a flags byte, containing information such as whether the message is

little-endian or big-endian encoded, etc. Byte number eight (y) indicates the message

type: 0 indicates a request message, 1 indicates a reply message, 2 indicates a

CancelRequest message, etc. The last four bytes of the header contain an unsigned

value that indicates the size of the message body. This value is encoded little-endian

or big-endian as indicated by the flags-byte.

0 X y 4 -B y te V ariab le-len gth GIOPG I P Vm M essage S ize M e ssa g e Body

0 4 8 12

Figure 6 Basic Structure of a GIOP Message

The GIOP header is specified using a syntax called Pseudo-IDL or PIDL. This syntax

allows the specification of data structures that are not regular CORBA objects but for

which a language-independent type description is necessary. The following PIDL

shows the GIOP header. The character array m a g ic contains the letters ‘GIOP’, then

comes the protocol version, the flags byte, message type and message length.

struct MessageHeader_l_2
{

char magic[4] ;
Version GIOP_version;
octet flags;
octet message_type;
unsigned long message_size;

};

By definition, the client is the party that opens a connection, and the server is the

party that accepts the connection. To invoke an operation on an object, the client

opens a connection and sends a request message. The client then waits for a reply

message from the server on that connection15. A Request message is always sent from

client to server and is used to invoke an operation or to read or write an attribute.

Request messages carry all in and inout parameters that are required to invoke an

operation. A Reply message is always sent from server to client, and only in response

to a previous request16. It contains the results of an operation invocation -that is, any

return value, inout parameters, and out parameters. If an operation raises an exception,

the Reply message contains the exception that was raised.

3.2.2.1 Request M essage
A request message also consists of a header and a body (cf. Figure 7). The entire

request message is the request body of a general GIOP message. The request header

contains -am ong other things- a request ID, an object key and an operation name. The

client uses the request ID to associate each request with its response; this allows a

client to discriminate between replies for more than one outstanding request when

using deferred synchronous calls. The object key is extracted from the object

15 Remember, GIOP assumes a connection-oriented network protocol.
16 This has recently changed with the support o f bi-directional communication in GIOP 1.2

33

reference and is used to identify the particular object in the server that the request is

for. The operation field contains a string denoting the name of the operation being

invoked. The operation name uniquely identifies operations within an object. This

conforms to the data model as operation overloading is not allowed. The request body

contains the CDR-encoded in and inout parameters in order of their definition in the

IDL specification. We discuss CDR in detail in the next section.

GIOP Request in,inout
Header Header Parameters

Figure 7 GIOP Request Message Layout

The request header is also specified in Pseudo-IDL. The following PIDL shows part
of it:

//PIDL
struct RequestHeader_l_2
{

//...
unsigned long
boolean
sequence<octet>
string

request_id;
response_expected;
obj ect_key;
operation;

} ;

3.2.2.2 Reply M essage
Reply messages have a similar layout (cf. Figure 8). Their header contains

information such as service context, request ID and reply status. The reply status

indicates whether the result of the request is successful, a user exception, a system

exception or a location forward message. If the reply status indicates successful

completion o f the operation, the message body contains the values for the out and

inout parameters of the operation (again in the order of declaration in the IDL

interface specification). If the reply status indicates a user or system exception, the

reply body contains the information associated to the exception. If the reply status

indicates a location forward message, the reply body contains a reference. Such a

message indicates that the target object has moved to a new location and can be

accessed through the reference contained in the message body. It is possible that this

34

reference has also been outdated by another relocation of the object. In that case,

usage of the reference will result in another location forward message, containing a

more recent indication of where the object resides.

in,inout
Parameters

User
Exception

System
Exception

Forward
Reference

Figure 8 GIOP Reply Message Layout

3.2.3 Common Data Representation

The standard data representation of CORBA is called the Common Data

representation (CDR). A standard data representation is needed, to map between the

specific data representations of the different host and programming languages. CDR

uses type information to encode data. It defines a standard representation for all basic

types, constructed types and for object references (see next section). The exact

encoding rules can be found in the specification section 15.3 [Core]. All data that

flows over the network has to have a type associated with it. The GIOP header and the

specific message header are specified in PIDL. The content of the message body is

specified by regular IDL declarations (as part o f e.g. an interface declaration,

exception declaration, etc).

Figure 9 contains an example of an IDL record type declaration and how it is encoded

using CDR. The record consists of two fields: month and year. Encoded, the record is

8 bytes long. The first 2 bytes contain the short value representing the month. The

next 2 bytes are padding data (undefined contents) and the last 4 bytes contain the

long value representing the year. The padding data has been inserted because CDR

specifies that long values be aligned on a 4-byte boundary. Notice that neither the

labels nor the types are encoded and that the values are encoded in the order of

declaration of the fields.

GIOP Reply
Header Header

35

struct Date
{
short month;
long year;

}
paddingm onth

0 2 4 8

Figure 9 CDR-encoded Data

It is important to note that CDR-encoded data is not self-describing. In other words,

one cannot decipher a chunk of CDR-encoded data if one does not know the type of

the encoded data in advance. CDR-encoded data does not carry type information

unless it is encoded by some convention together with the regular data. Some other

encodings take a different approach. For example the Basic Encoding Rules (BER)

used by ASN.l [ASN] use a Tag-Length-Value (TLV) encoding, which tags each

primitive data item with both its type and its length. XML-encoded data [XML] is

also self-describing and may contain similar tags as BER. These encodings provide

type annotations at the communication protocol level but may therefore be less

efficient in both bandwidth and marshalling [ASNb].

3.2.4 Interoperable Object Reference

Object references in CORBA are opaque pieces of data that contain the information

necessary to locate a server object. Every ORB vendor has the freedom to implement

object references in the way he wishes. However, this means that object references

cannot be passed directly between independently developed request brokers.

Therefore, CDR specifies an interoperability format for object references. A reference

in this format is called an Interoperable Object Reference (IOR).

36

The layout of an IOR is illustrated in Figure 10. It consists of a Repositoryld followed

by one or more tagged profdes. A tagged profile consists of a profile id and a profile

rep ository ld T agged Profile! T a g g e d Profilen

Profile Id Profile Body

Figure 10 Structure of an IOR

body. The profile body encapsulates all the basic information needed by the protocol

it supports to identify an object. An IOR is built to support more than one protocol

and can contain multiple profile bodies for the same protocol. This last feature

provides a hook for load balancing and fault-tolerant computing.

What protocol data is captured depends on the specific protocol. In the case of IIOP

(TCP/IP), the protocol profile data contains an Internet domain name or IP address, a

TCP port number and an object key. The object key is an ORB-specific identifier that

is generated by the Object Adaptor of the server where the target object has been

created. Instead of the address and port number of the server that implements the

object, it may also contain the address of an Implementation Repository (IR) that can

be consulted to locate an appropriate server. This extra level of indirection permits

server processes to migrate from machine to machine without breaking existing

references held by clients17. The object key is an ORB-specific identifier that allows

the ORB to locate the target object for which it receives a request.

There also exists a null object reference. A null object reference is indicated by an

empty set of profiles, and by a “Null” type ID (i.e. a string which contains only a

single terminating-character).

The Repositoryld is optional. A Repositoryld is a string that identifies the most

derived type of the IOR at the time the IOR was created. We discuss Repositorylds in

the next section. When a Repositoryld is contained in a reference, it gives the client

an indication of the type of the target object. But the client must have a way of

17 Another mechanism is in place for object relocation. It is embedded in the GIOP message types. The
disadvantage of this mechanism is that the number of lookups may grow linearly with the number of
times an object is relocated.

37

interpreting the Repositoryld and link it to the actual type specification. This can be

achieved by giving the client access to the IDL specification at compile time or by

giving the client access to an Interface Repository. Either way, ju s t18 passing a

Repositoryld between server and client creates a common reference framework within

which both must stay: client and server contain references to this framework in the

form of type names and Repositorylds. This common framework hampers the

independent production and deployment of components and creates a strong cohesion

between client and server. We will come back to this later (cf. Section 3.6).

3.2.5 Repositoryld

A Repositoryld is a unique string that is implicitly associated with every type declared

in an IDL specification. This Repositoryld acts as a global name for the type and can

be used as a key into the Interface Repository (IFR). Repositorylds can have one of

four possible formats: a format derived from IDL names, a format that uses Java class

names, one that uses UUIDs and another intended for short-term use. Which format is

to be used can be specified with different pragma directives in IDL.

1. The default IDL format:

ID L : <fully qualified interface name>(:<version number>]

The <fully qualified interface name> is the fully qualified programmer-defined

name of the interface (i.e. name of type including namespace), prepended with a

prefix (optionally specified with a prefix pragma). Prefixes have been introduced

to avoid Repositoryld clashes and can be chosen to be something unique, like a

trademark or a registered Internet Domain Name. In the introductory example, we

have specified the prefix ‘h ip p o . d c s . g l a . a c . u k ’. The version number can

be set with a pragma directive in the IDL source, but is ignored at the moment

[HV p.l 19]. Two Repositorylds with the same fully qualified name but a different

version number are considered to be identical.

The Repositoryld for the type Account introduced in the introductory example is:

IDL:hippo.dcs.g l a . a c . u k / B a n k A p p l i c a t i o n / A c c o u n t : 1 .0 .

18 as opposed to passing the complete type specification

38

2. The RMI Hashed format:

RMI :<class name>:<hash code>[:<serialisation version UID>|

The RMI hashed format is used for Java RMI values mapped to IDL using the

Java-to-IDL Mapping [OMGb]. It contains the class name of the original Java

class and a hash code of 20 bytes, generated by the NIST Secure Hash Algorithm

(SHA-1)[SHA].

3. The DCE UUID format:

DCE: <UUID>: <minor version number>

The DCE format contains a Universally Unique Identifier (UUID). This is

equivalent to what COM calls a Globally Unique Identifier (GUID). It is a 128-bit

(16 byte) number that is tool-generated, and computed according to a machine’s

network address and a time stamp; a combination that for practical purposes

guarantees uniqueness. An example of a UUID: B 5 F 3 E 2 F E - B 3 7 6 - 1 1 D 1 -

B B 1 E - 0 0 2 0 7 8 1 2 E 6 2 9

4. A local format:

LOCAL: <user-defined type identifier>

The user-defined type identifier is an arbitrary string. The local format IDs are

not intended for use outside a particular repository, and thus do not need to

conform to any particular convention. They are a short-term solution, e.g. for

use within a development environment.

Because Repositorylds are unique, they are used as keys into the Interface Repository

(IFR).

3.3 Server-side Request Dispatching

In Section 3.2, we have discussed the communication layer of CORBA. We have

described the request messages that the client sends to the server to have an operation

invoked remotely. In this section, we discuss the server-side components that interpret

such request messages and dispatch them to the different servants that implement the

target objects.

39

Figure 11 shows the different server-side components that are responsible for request

dispatching. The server-side ORB core handles all the low-level networking issues

Object
Implementation

---------------- N

Skeleton o p era tio n se le c t io n
d e m a rsh a llin g

Object
 ̂ Adapter o b je c t k ey ex tr a c tio n

ORB
A

\ co m m u n ic a tio n

Figure 11 Server-Side Request Dispatching Components

and listens at the communication channel endpoint for GIOP messages. Because of

the standardised layout of GIOP messages, it can decipher the message header and

determine what sort o f message it is. When a Request message is received, it extracts

-again relying on the standardised layout- the different pieces o f information from the

Request header (cf. Section 3.2.2) and hands them over to the object adaptor, together

with the Request body.

The Object Adapter is responsible for a host of tasks. It allows the ORB core to

deliver operation request to an appropriate servant. In addition, it allows object

implementations to use the ORB’s services. The object adapter supports operations

for registering new objects, activating and deactivating existing objects, incarnating

and etherealising servants and accessing object information maintained by the ORB.

The object adapter is also responsible for generating the IOR for a newly created

object. Therefore it can interpret the object key that is embedded in the request-

message header (cf. Section 3.2.2.1) and deliver the message to the skeleton of an

appropriate object implementation. When an object is destroyed, it is unregistered

with the object adapter. Therefore, when a message arrives for an object that has

ceased to exist19, the object key in the request message will be invalid and the object

adapter will return an O B JEC T N O TEX IST system exception.

19 Which may happen because the lifetime of an object reference is independent from the lifetime o f the
object itself.

40

The skeleton is generated from the IDL type specification and has thus knowledge of

(the signatures of) all the operations of a particular object. It can therefore decipher

the CDR-encoded Request body and obtain the different in and inout parameters. If it

recognises the operation name that the object adapter has forwarded to him, it can

invoke the operation on the actual object implementation. The stub then waits for the

results of the operation, marshals the data into a reply message and sends that back to

the client. If it does not recognise the operation name, it issues a BAD OPERATION

system exception, which is propagated back to the client.

To summarise, request dispatching is done by a number of components. The ORB

listens on a communication endpoint for incoming messages. The Object Adapter

interprets the object key and activates a servant if necessary. The skeleton reads the

operation name, unmarshals the operation parameters (based on statically embedded

type information) and does the actual operation invocation.

Note, however, that the integrity of this procedure depends the ability of the server to

correctly decode the CDR-encoded message body. As we have seen in Section 3.2.3,

this implies that client and server must have access to the same type definitions. If

client and server are out of synchronisation and the client sends a message to the

server containing an operation name that the server recognises, the server would

decode the message body erroneously (i.e. based on different type definitions than the

ones used to encode the data). This may result in a violation of strong typing. It would

then be, for example, possible for a client to provide a floating-point number to an

operation expecting an integer number and this would go unnoticed by the system.

Synchronisation of client and server is enforced by the development process, which

demands that the IDL interface specification is distributed unchanged to all nodes

ahead of further development (cf. Section 2.4).

The specification states on page 10-43 that “for interfaces, if stubs and skeletons are

not actually in synch, even though the Repositorylds report they are, the worst that

can happen is that the result of an invocation is a BAD_OPERATION exception.”

Note that this is not true.

41

3.4 Client-side Operation Invocation

3.4.1 Static Operation Invocation

With the Static Invocation Interface (SII), operation invocation happens through a

stub or proxy (cf. Figure 12). A stub is an implementation language entity that is

automatically generated from an IDL specification. It handles the construction,

sending and receiving of GIOP messages using the API of the ORB. The stub acts as

a local stand-in for a remote object. It translates all incoming operation invocations

into request messages and sends them to the remote object it represents. Because the

stub is automatically generated for a specific interface, it can only handle

Client s ' \ ^ \ Server

I proxy] (skeleton)

f oo t
f o o ()

V 1 f o o () Object

I client)-------------- -----
V J O b je c t

R e fe r e n c e

(V
' V / '

Figure 12 Communication via Stub and Skeleton

communications messages for the operations in that are specified in that interface.

Therefore, it is important that the type of the proxy matches the type o f the target

object. In this section we investigate how and when these proxy objects are

instantiated.

The specification states that a stub is created when a new object reference enters the

address space of a client. The exact procedure of how proxies are instantiated depends

on the language mapping of the client language. For the remainder of the discussion

we will assume C++ as the client implementation language. The choice o f C++ over

Java20 in this discussion is pragmatic due to the availability of excellent technical

material on these matters [HV]. Although we will try to keep the language-dependent

discussion to a minimum, we need to go into some detail about the C++ mapping. For

a complete discussion of the C++ mapping we refer to [OMGa, HV].

20 Java is the language we used for the implementation of the example in the introduction.

42

The C++ mapping defines a proxy class for each interface-usually abstract- and an

object reference type. The proxy class has the same name (unqualified) as the IDL

interface it represents; the object reference type has this name followed by the suffix

_ p t r . A client is not allowed to directly instantiate a proxy class, nor is it allowed to

declare a pointer or a reference to a proxy class. All manipulations of proxies must go

via instances o f the automatically declared object reference type. It is always the

client-side ORB run-time that creates proxies on behalf of the client when an object

reference enters the client’s address space.

There are three main ways in which a client can obtain an object reference. It can

obtain one in stringified form, which it transforms into a language entity using a

dedicated function of the ORB. It can obtain one as the result of an operation

invocation, either as the return value, an o u t parameter or an i n o u t parameter. Or it

can obtain one by querying a CORBAService, such as the Naming or the Trading

service.

/. In stringified form:

Assuming a string s containing an IOR in stringified form and the IDL specification

from the introductory example compiled with an appropriate IDL-to-C++ compiler,

the following code reflects how a local stub is instantiated and bound to a remote

object:

CORBA::Object_ptr o = string_to_object(s);
An instance o of the object reference type for O b je c t is declared. O b j e c t is the

implicit supertype of all interface types. The reference type for object can hold

references of no matter what type. The s t r i n g _ t o _ o b j e c t () function takes a

stringified IOR. It instantiates a stub of type O b je c t , configures it according to the

communication endpoint information contained in the IOR and returns a C++ object

reference that is bound to this newly instantiated stub. In order to invoke more

specific operations on the target object than the ones defined in the Object interface,

the reference must be narrowed to a more specific type:

Account_ptr myAccount = Account: :_narrow(o);

An object reference of type Account is declared. This type has been automatically

generated from the IDL definition of the interface Account. On the generic object

reference o, the static narrow function of the proxy type Account is applied. This

43

function checks, by using the Repositoryld, whether the type of the object reference

matches the type of the stub it belongs to. We will explain this check in more detail in

the section on type equivalence (3.6.1). If the check succeeds, a stub o f the type

Account is instantiated. From this point on, it is possible to invoke operations on the

reference for the remote object as if it were a local object. If the check fails, a null

reference is returned.

Currency balance = myAccount->balance();
//. . •

Execution of the above code results in the instantiation o f two proxies to the same

remote object. One of type Object and one of type Account. These proxies utilise

system resources such as memory, network connections, etc. and must therefore be

cleaned up after usage. Usually proxies are either automatically garbage collected or

carry a reference count. The latter is the case in C++. The CORBA: :_release ()
function decreases the reference count. In this example, both stubs have a reference

count of 1 and are therefore cleaned up by the following code:

CORBA::release(o) ;
CORBA::release(myAccount);

2. As the result o f an operation-.

When a reference is obtained as the result of a remote operation invocation, be it as

the return value, an out or inout parameter, its type is specified by the signature

of the method in the IDL specification. The automatically generated stub-code for

each method will instantiate a proxy of the type as specified in the IDL description.

There is no need for an explicit check. This can be deduced from the following

argument. Communication between client and server is type-safe because stub and

skeleton are assumed to be in synchronisation. So, the client receives the object

reference under the same type that the server sees it.

• The server has created the reference itself (i.e. the server has created the target

object), in which case the object reference conforms to the type indicated in the

signature.

• The server has obtained the reference from another server.

o When it has obtained it via a mechanism that has an explicit _narrow ()
in it, type-safety is guaranteed.

44

o Otherwise, it has obtained it in an unchecked manner from another server,

which starts a recursive argument. This recursive argument stops because

all references can either be traced to the place where they have been

created, have been obtained in stringified form or have been obtained by

invoking r e s o l v e _ i n i t i a l _ r e f e r e n c e s () which results in a

reference of type Object and needs an explicit _ n a r r o w () .

In conclusion, the following code executes in a type-safe way without a run-time
check being executed:

Account_ptr myAccount = manager->getAccount("David");
The result o f the operation g e tA c c o u n t () is a reference of type Account. Behind

the scenes, the stub of m a n a g e r instantiates an Account stub and returns a reference

to it.

3. Via a CORBAService:

Sometimes services need to be generic and can not return the exact type of what the

client expects. This is often the case for standardised services such as Naming

Service, Trading Service, etc. In such cases, the client must narrow the result to the

type it expects. This is basically the same scenario as with a stringified reference.

CORBA::Object_var o = nameService->resolve(someName) ;
Account myAccount = Account::_narrow(o);

The static narrow function of the Account stub only instantiates an Account stub

when nameService has indeed returned a reference to an Account object.

From discussion, we can see that no matter how an object reference enters the address

space o f a client, it is guaranteed to be bound to a stub of a matching type. When a

reference enters the address space in a stringified form or in a generic form, it is

explicitly checked by a function called _ n a r ro w () that is automatically generated

from the type definitions. When an object reference enters the address space as the

result of an operation invocation, it is guaranteed to have the correct type. This

because o f the assumption that stubs and skeletons are in synchronisation and the

recursive argument that the reference that is passed on, is either ‘home made’ (it is

safe because of strong typing assumption of implementation language) or obtained

from another server. All references that are not ‘home made’, can be traced back to

45

initial references, which can only be obtained via a mechanism containing an explicit

check.

3.4.2 Dynamic Operation Invocation

The specification states on page 7-2 that “parameters supplied to a request may be

subject to run-time type checking upon request invocation”. It is left to the different

request broker implementers to decide whether or not they provide this ‘feature’ and

if it is provided, how the check is performed.

An important class of applications employing the DII relies on the Interface

Repository to obtain the type information they require to construct requests. For this

kind of applications, type-checking is not very useful as the type information comes

from a trusted source. However, for applications using the DII for its ability to invoke

one-way or deferred synchronous requests, the absence of type-checking may prove

more of a disadvantage.

The ORBacus ORB implementation [OOC] used for the example does not support

type-checking of parameters in case of the DII. So, when a programmer by accident

provides parameters to an operation in the wrong order, this will go undetected!

3.5 Strong Typing in CORBA

In the previous sections, we have discussed in detail the different mechanisms that

CORBA specifies to support request invocations.

We have discussed GIOP, the communications protocol of CORBA. We have shown

that the communications message for requesting an operation of an object contains the

name of the operation and an ordered list of in and inout parameters, encoded in CDR.

We have discussed CDR and explained that one needs to know the type of the data in

advance, in order to be able to decipher CDR-encoded data.

We have also discussed the server-side request dispatching mechanisms and noted

that incoming messages are interpreted according to local type declarations. No

additional check is in place to assess whether the data has been encoded using the

same or conforming type declarations.

46

At the client-side, we have discussed the different request invocation mechanisms.

For static invocations, we have explained when and how stubs are instantiated and we

have demonstrated that the interface of a stub always conforms to the interface o f the

object it represents. The checks to assert that this is indeed the case rely on

Repositorylds and the fact that they represent the identities of the different types.

However, CORBA does not provide mechanical means to maintain the link between a

Repositoryld and a type declaration. They match by virtue of the development process

used to construct CORBA applications. Therefore, under the assumption that a

CORBA application is constructed using the process outlined in the previous chapter,

we can say that the SII is type-safe.

For dynamic invocations, the specification makes type-checking o f parameters

optional. Additionally, it does not provide information on how the check is to be

done. Therefore, we can draw no general conclusions concerning strong typing in the

case of the DII

3.6 Type Equivalence

Type equivalence is the criterion to which type specifications are compared to

establish the correctness of computations. The criterion must preserve the mechanical

correctness o f a computation but yet be flexible enough to allow computations to

execute as intended. A conformance check is required each time a binding is

established between two denotations. Therefore, assignment between two variables

also calls for a type equivalence check.

Each language makes its own trade-off between safety and flexibility and decides on

its own set o f rules for the equivalence check. Some languages may regard primitive

types to be equivalent regardless of whether they are named or not, while treating

each occurrence of a compound type declaration as a new type, regardless of whether

it is named or not (e.g. C++ [Str]). Other languages solely rely on the type rules as

defined in their type systems to deduce whether two types are equivalent (e.g.

Napier88 [Nap]). Yet other languages allow the programmer to indicate a preference

for one o f the aforementioned checks (e.g. Modula-3 [Mod] with its branding

mechanism). The differences in these rules result in the fact that for some languages

47

the types resulting from the following type declarations are equivalent, while for other

languages the resulting types are not equivalent.

//pseudo-code
typedef Point = record [x : float, y : float];
typedef Vector = record [x : float, y : float];

This means that in some languages execution of the function application in the

following pseudo-code fragment, will result in a type error, while in others it will

execute successfully.

//pseudo-code
void f(x : Vector)
a : Point;

f(a); //may or may not result in an error

3.6.1 Type Equivalence in CORBA

Every type is identified by its Repositoryld. Therefore, in CORBA, two types are

considered to be equivalent if their Repositorylds are identical. The CORBA type

system allows subtyping between interfaces. More types may be considered to be

equivalent based on the explicit inheritance relationships defined in an IDL

specification.

The type equivalence check is performed by a method called _narrow, which is

automatically generated for each interface, narrow takes an object reference and tries

to deduce whether the interface associated with the Repositoryld conforms to the

interface that this particular narrow function is associated with. If the object

reference does not contain a Repositoryld or if the client cannot deduce conformance,

the target object of the object reference is contacted. For this purpose, a method is

available in the interface of Object (the root of all interfaces): is_a. This method takes

a Repositoryld and returns true if the object on which it is requested conforms to the

interface associated to the Repositoryld. If conformance is assessed, a stub is

instantiated for the remote object.

48

The specification requires that the equivalence test cannot fail before the server has

been contacted. In fact, ORB implementations that solely rely on the is_a-method for

the implementation of the different narrow-methods are compliant. In such

implementations, binding will always result in contacting the server. The ORBacus

ORB implementation [OOC] used to implement the examples (cf. appendices) for a

large part uses this approach and contacts the server for most bindings.

Contacting the server to determine type equivalence allows for a limited amount of

server-side evolution. A server-object can be replaced with another server-object that

has a more specialised interface without the necessity to redeploy all its clients. In

such cases, a client can access a server for which it has no static knowledge of the

type. However, this flexibility is traded for performance as every binding of such a

kind results in a remote operation invocation.

In CORBA, binding a variable to a remote object results in two equivalence checks.

The first check is the check performed by the narrow function as discussed above.

When it succeeds, a stub is instantiated and a second check is performed. This check

is a check by the implementation language, to assert that the type of the stub conforms

to the type o f the variable it is assigned to. As one of the goals of CORBA (or

distributed middleware in general) is orthogonal distribution, these two checks should

blend together to provide the application programmer with an intelligible check that

fits in a logical way with other features of the implementation language. However,

this is not the approach currently taken by CORBA. The client cannot decide on its

own equivalence check, as it has to contact the server in certain cases (cf supra). It

would, for example, be hard to construct a language mapping that conforms to the

standard but that employs a Napier88 like type equivalence scheme.

The fact that a _narrow may contact the server possibly poses a performance problem

for certain applications, e.g. applications that cannot depend on the unpredictable

response times of the network. Therefore, it is rumoured [New] that a future version

o f the specification will contain an unchecked narrow. Needless to say that strong

typing is not preserved when this narrow is employed.

49

3.7 Interface Evolution

Consider the bank account application of Section 2.6 and imagine the changes

induced by the introduction of the Euro. As long as the currency was Belgian Franks,

deposits and withdrawals could only happen by integer amounts. With the advent of

the Euro, this is no longer the case. Therefore, we have to model such amounts with

floating point numbers rather than with integer numbers. Luckily, we had introduced a

type Currency. So the only change we need to make to the IDL specification is the

alteration of the definition of the type Currency in the module

BankApplication from unsigned long to float. The rest of the

specification can remain untouched.

The IDL specification has to be recompiled to generate type declarations, stubs and

skeletons that reflect the changes we have made. The interface implementation of

Account and all its clients have to be adapted to cope with Euros. And the server-

program has to be restarted. When all this is done, application usage can be resumed.

But the Account interface may be used by a large number of clients, and it may be

difficult to track them all. So what would happen if one client would remain

unchanged and obtain a reference to a ‘new’ A cco u n t object?

Assuming that the default Repositoryld format is being used, the reference would

contain a Repositoryld identical to the one that it contained before, because the

interface name has not been changed (see Section 3.2.5). Therefore, the check

performed by the A c c o u n t: :__narrow () function in the client stub would still

succeed and the client would successfully bind to the object. But the narrow-function

has been generated with respect to the old interface, where the type Currency was still

declared as u n s i g n e d lo n g rather than f l o a t . Any invocations made by the

client on the stub may result in requests containing data encoded as unsigned long.

Unfortunately, the size of a CDR-encoded u n s ig n e d lo n g is the same as the size

of a CDR-encode f l o a t . Therefore, as we have seen in Section 3.3, the server

cannot discriminate between messages from ‘new’ clients and messages from

unmodified clients. When the server receives a message from an old client, he

interprets the values, which have been inserted as u n s i g n e d lo n g s , as f l o a t s .

50

The resulting arbitrary values may invalidate the state of the server and any

manipulations of this value are a violation of strong typing according to the client’s

type declarations.

The underlying reason for the previous unsound behaviour is the fact that the

Repositoryld has not been changed, while the interface has. In the whole of the

CORBA specification, there is the silent assumption that a Repositoryld represents the

identity o f an interface specification. But CORBA does not offer any mechanical

means to maintain this implicit link between a Repositoryld and the type structure

from which it is generated. This is fine in a static world, but when interfaces evolve,

the same Repositoryld may be reused for different, incompatible interfaces over time,

resulting in the aforementioned problems.

The only way to overcome problems such as these with a client that is out of

synchronisation, is to change the interface specification in such a way that the

Repositoryld changes. Simply adding a version number to the interface (with the

version pragma) does not solve the problem, as the version numbers are not taken into

account for Repositoryld comparison [HV p.l 19].

However, with the default Repositoryld format, changing the Repositoryld that is

generated from an interface is not straightforward. It is after all generated from a

prefix (e.g. something unique such as a trademark or an Internet domain name) and a

logical interface name. These two things are not very likely to change when small

adaptations are made to an interface. Therefore, it may be better to use another

Repositoryld format. Using the RMI hashed format, the Repositoryld automatically
2i j

changes when the interface changes, be it not in all cases- and would normally only

be used in conjunction with Java. It may be better to utilise the UUID format and

generate a new UUID every time a change to the interface is made. The fact that there

is no obvious logical connection between a UUID and an interface means that

changing the UUID after every change of interface is more intelligible for the

21 Due to the fact that a fixed length hash value is used, two different type structures can be mapped
onto the same value.

51

programmer than making changes to the specification so that the default Repositoryld

changes.

It is interesting to note that some changes to an interface are harmless. Just adding

new operations, for example, cannot result in a breach of the server-side

encapsulation. The stub of the unmodified client can only send a subset of the

messages that the updated skeleton can understand. The normal practice (see

discussion in appendices) in such cases should be to introduce a new interface that

inherits from the old. When this approach is followed, a client with no static

knowledge of this new interface, will try to bind to such an new object by utilising the

_ i s _ a () function of the (generic) stub that it has instantiated. This will send the

Repositoryld of the most derived interface that the client has knowledge of to the

server. The server can assess that its own interface is in fact a subtype o f the interface

associated to the Repositoryld it receives. Therefore, the binding can succeed and the

client can instantiate the interface-specific stub. Because of the fact that the interface

of this stub is a strict subset of the interface of the target object, it will generate only

request messages that the server object’s skeleton can handle. The advantage of just

adding new operations to an interface, rather than generating a new type, is that even

without redeployment, no performance penalty has to be made for bindings.

A heated debate on whether it is allowed to add new operations to an interface,

without redeploying the clients, can be found in the appendices. Several CORBA

gurus fiercely disagree on this question. This is an indication of the fact that the

specification is not always clear and that deep insight into these matters is not

widespread.

The wider implications of all this is that in CORBA client and server are rather tightly

coupled. Any change to the interface of a server implies redeployment of all its

clients. Failure to do so may not result in compile-time or run-time errors, but in hard

to find logical errors. Additionally, client and server are created with respect to a

common reference framework of type declarations. Both sides must theoretically have

access to the complete specifications of all types that are used in a system. It is hard to

52

maintain such a way ot working in the face of global networks such as the Internet,

where autonomy of client and server is an important property.

3.7.1 A very short note on DCOM

In DCOM interfaces also have a run-time identity (equivalent to a Repositoryld).

There are no formats to choose from. All interfaces are identified by a GUID. The

GUID uniquely identifies that interface over time and space. When an interface is

changed, DCOM regards it as a different interface and therefore, a different GUID

must be assigned to it. This is very similar to what happens in CORBA. The

difference between CORBA and DCOM is that DCOM assumes that a tool generates

its type definitions. When a program is developed using e.g. J++, the interfaces are

written in Java and then exported to DCOM. A tool automatically converts the Java

interface definitions into MS IDL, generates a GUID and inserts it textually into the

specification. It then utilises the Microsoft-provided IDL compiler to generate the

stubs and skeletons (which are called proxy and stub respectively) from this

specification.

One expects that with tool support, a change in an interface automatically results in

the generation of a new GUID (something that is necessary, as we have seen above, to

guard correct execution semantics). However, in J++, exporting an interface to

DCOM happens in two phases. The programmer must first indicate that he wants a

certain class to be available in DCOM. The environment then pastes a GUID textually

in a comment field of the source code. From then on, compilation also generates the

stub and skeletons and registers the class in the registry under the GUID specified in

that comment field. With this way of working, however, recompilation o f a changed

interface does not necessarily result in the introduction of a new GUID. For that to

happen, the programmer has to delete and regenerate the comment-field. Therefore, it

can be concluded that DCOM has the same problems as CORBA with interface

evolution.

53

4 Conclusions

Middleware, such as CORBA, is widely employed to integrate different applications

into a heterogeneous distributed application. An important aspect of middleware is

that it transparently extends programming languages to enable access to objects in

different address spaces. This thesis presents an investigation into the mechanisms

specified by CORBA for such an extension and assesses whether these mechanisms,

when applied to a strongly typed language, still guarantee strongly typed execution

semantics.

We have discussed the communications layer of CORBA. In particular we have

discussed the General Inter-ORB Protocol, which is the protocol specified for the

most general usage scenario. GIOP overcomes the heterogeneity of data

representations of different platforms and languages by adopting the Common Data

Representation (CDR). Transforming data in and out of this encoding happens on

basis of the type of that data. Two parties can only successfully exchange data when

they encode/decode it with respect to matching type declarations.

We have discussed that in CORBA all type declarations are global and are supposed

to be uniquely identified by a Repositoryld. We have noted that CORBA has no

mechanism in place to mechanically enforce this uniqueness over time and space.

We have discussed the server-side request dispatching mechanism. Several

components work together to dispatch a request to the correct object implementation:

the server-side request broker, the object adapter(s) and the skeleton. The main

observation that we made in this context is that operations are only identified by their

name (and the object they belong to). The server-side components cannot determine

from an incoming GIOP message whether the parameters supplied to the operation are

valid. Therefore, the interface of the object can potentially be bypassed or an

operation may be invoked with an undefined set of parameters.

54

We have discussed the two different request invocation mechanisms provided by

CORBA: the Static Invocation Interface (SII) and the Dynamic Invocation Interface

(DII).

* The SII relies on stubs that have been generated at compile-time from the IDL

type declarations. When a remote object is bound to a local variable, a check is

sometimes performed. We have outlined in which cases this check is performed

and in which cases it is not. The check itself is based on the repositorylds of the

type of the local variable and the type of the remote object. The specification

states that the check should not fail without contacting the server. We have seen

that if there is no exact match between the repositorylds, most ORB

implementations resort to contacting the server. Therefore, the use of

polymorphism is usually penalised by an additional network roundtrip. Because

the check is based on repositorylds, it critically depends on the integrity o f the

links between the repositorylds and the type declarations at both client and server-

side. This link is not mechanically enforced by CORBA, but it is implicitly

guarded by the development process of CORBA applications.

We have shown how a check based on Repositorylds restricts the possibilities for

interface evolution and how it creates room for easy to introduce errors that are

possibly hard to detect.

Based on all of the above observations, we have concluded that using the SII,

CORBA preserves the strong typing of strongly typed languages when the

application development procedure is correctly followed.

* Sometimes, it is not possible to have compile-time knowledge of the types of all

the objects that an application has to handle. This is, for example, the case for

gateways, object browsers, etc. The DII allows dynamic construction of requests

by treating requests as objects that are created, populated, invoked and destroyed

at run-time. The specification states that type-checking of the parameters of a

dynamically created request is optional. Additionally, neither an API nor a type-

checking procedure is specified. Therefore, whether strong typing is preserved

when using the DII depends on the ORB implementation.

55

We have also discussed the notion of type equivalence in CORBA. We have noted

that the central definition of CORBA type equivalence violates the programmer

intelligibility of the binding of a programming language variable to a remote object.

The main contribution of this work is the provision of an in-depth discussion of the

main components that guard type soundness in CORBA from a programmer’s

viewpoint, but at a level of abstraction that transcends a mere how-to discussion. This

information is hard to come by, but essential in order to successfully utilise complex

frameworks such as CORBA. The vast complexity of the specification prohibits it

from serving as a guideline. Yet the how-to oriented textbooks provide only

superficial understanding and require a high degree of re-leaming when switching to a

different language or even a different ORB implementation.

Discussing CORBA by identifying common programming language concepts such as

strong typing, type equivalence, naming and binding has allowed us to reach a high

level of abstraction without losing technical accurateness. It can be expected that this

approach can be taken further to shed more light on CORBA, or for that matter any

complex programming framework, such as DCOM, EJB, etc.

56

References

[ASN] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, Information

Technology - ASN. 1 Encoding Rules: Specification o f Basic Encoding Rules (BER),

Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

[ASNb] ASN .l Homepage; http://www-
sop.inria.fr/rodeo/personnel/hoschka/asn 1 .html

[ATM] The ATM Protocol - http://www.atmforum.com/atmforum/specs/specs.html

[Box] D. Box - Essential Com, Addison-Wesley 1998; ISBN 0-201-63446-5.

[BS] R. Bastide, O. Sy - Towards Components that Plug AND Play. ECOOP’2000

Workshop on Object Interoperability, Nice, France, June 2000.

[BW] M. Biichi & W. Week - Java Needs Compound Types, Technical Report nr.

182, Turku Centre for Computer Science.

[CBC] Connor, R. C. H., Brown, A. B., Cutts, Q. I., Dearie, A., Morrison, R. &

Rosenberg, J. - Type Equivalence Checking in Persistent Object Systems, in

Implementing Persistent Object Bases, Principles and Practice, A. Dearie, G. M.

Shaw and S. B. Zdonik (ed.), Morgan Kaufmann, Proc. 4th International Workshop

on Persistent Object Systems, Martha's Vineyard, USA pp 151-164 (1990).

[Con] R. Connor - Types and Polymorphism in Persistent Programming Systems,

Ph.D. Thesis, University of St Andrews (1990).

[Core] OMG - The Common Object Request Broker: Architecture and Specification.

Revision 2.4, October 2000. ftp://www.omg.org/pub/docs/formal/00-10-01.pdf.

[CW85] L. Cardelli and P. Wegner - On Understanding Types, Data Abstraction and

Polymorphism', ACM Computing Surveys 17, 4 (December 1985) pp. 471 - 523

57

http://www-
http://www.atmforum.com/atmforum/specs/specs.html
ftp://www.omg.org/pub/docs/formal/00-10-01.pdf

[Em96] W. Emmerich - Genericity and Interoperability in CORBA(lecture),
http://www.cs.ucl.ac.Uk/staff/W.Emmerich/lectures/DS96-97/

[EmOO] W. Emmerich - Engineering Distributed Objects, John Wiley & Sons 2000;
ISBN 0-471-98657-7.

[Hal] F. Halsall - Data Communications, Computer Networks and Open Systems,
Addison-Wesley; ISBN: 0-20-142293-X

[HV99] M. Henning & S. Vinoski - Advanced CORBA Programming with C++,

Addison-NIQs\zy Professional Computing Series 1999; ISBN 0-201-37927-9.

[Mod] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow & G. Nelson -
(Modula-3) Language dejinition, http://www.luca.demon.co.uk/Bibliography.html

[MS] Microsoft - The COM Specification',

http://www.microsoft.com/com/resources/comdocs.asp

[Nap] R. Morrison, A. Brown, R. Connor, Q. Cutts, A. Dearie, G. Kirby & D. Munro

- The Napier88 Reference Manual (Release 2.0), University of St Andrews Technical

Report CS/94/8 (1994).

[New] Internet Newsgroup, comp.object.corba

[NG] The HTTP-NG Prtotocol - http://www.w3.org/Protocols/HTTP-NG/

[OMA] OMG - Object Management Architecture. January 1997.

[OMGa] OMG - C+ + Language Mapping. June 1999.

ftp://www.omg.org/pub/docs/formal/99-07-45.pdf.

[OMGb] OMG - IDL/Java Language Mapping. June 1999.

ftp://www.omg.org/pub/docs/formal/99-07-53.pdf.

[OOC] Object Oriented Concepts — ORBacus for Java. http.//www.ooc.com

[Orbix] Iona - Orbix 2000; http://www.iona.com

58

http://www.cs.ucl.ac.Uk/staff/W.Emmerich/lectures/DS96-97/
http://www.luca.demon.co.uk/Bibliography.html
http://www.microsoft.com/com/resources/comdocs.asp
http://www.w3.org/Protocols/HTTP-NG/
ftp://www.omg.org/pub/docs/formal/99-07-45.pdf
ftp://www.omg.org/pub/docs/formal/99-07-53.pdf
http://www.ooc.com
http://www.iona.com

[Pri] J. Pritchard - COM and CORBA Side by Side: Architectures, Strategies, and

Implementations; ISBN 0-201-37945-7

[Rit] F. Rittinger - Sicherheit in Verteilte Systemen - CORBA Sicherheitsdienst (talk)

[Sch90] D. A. Schmidt - The Structure o f Typed Programming Languages, MIT

Press; ISBN 0-262-19349-3.

[SHA] Secure Hash Algorithm - http://csrc.nist.gov/cryptval/shs.html

[Str] B. Stroustrup -The C++ Programming Language, Special Edition; Longman

Higher Education; ISBN: 0-20-170073-5

[Szyp] C. Szyperski - Component Software: Beyond Object-Oriented Programming,

ACM Press, Addison-Wesley 1997; ISBN 0-201-17888-5.

[Vin98] S. Vinoski - New Features fo r CORBA 3.0, Communications of the ACM,

Vol. 41, No. 10, October 1998.

[XML] W3C - X M L Specification-, http://www.w3.org/XML/

59

http://csrc.nist.gov/cryptval/shs.html
http://www.w3.org/XML/

Appendix I

Source Code for Introductory Example
This appendix contains the full source of the introductory example. The following
files are included:

• A c c o u n t . j ava
• A c c o u n tO p e r a t io n s . j ava
• A c c o u n tH e lp e r . j a v a
• A c c o u n tH o ld e r . j a v a
• A ccount POA. j ava
• _ A c c o u n tS tu b . ja v a
• A c c o u n t_ im p l . j ava

• A ccou n tM an ag er . j ava
• A ccountM anagerO perat io n s . j ava
• A cco u n tM an ag e rH e lp e r . j ava
• A cco un tM anagerH o lder . j ava
• AccountManagerPOA. j ava
• _A ccoun tM anagerS tub . j ava
• A ccoun t Manage r _ i m p l . j ava

• C u r r e n c y H e lp e r . ja v a

• C l i e n t . j a v a
• S e r v e r . j a v a

C:\Documents and Settings\..\hippo\BankApplication\Account.java 1
j j *

v/ / Generated by the ORBacus IDL to Java Translator
V// Copyright (c) 2 000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
!//// All Rights Reserved
//II *

// Version: 4.0.3
package u k .ac .gla.dcs.hippo.BankApplication;

//
// IDL rhippo. dcs . gla. ac . uk/BankApplication/Account: 1. 0
//1***1

public interface Account extends AccountOperations,
org.omg.CORBA.Obj ect,
org.omg.CORBA.portable.IDLEntity

C..\ . . \hippo\BankApplication\AccountOperations . java
j I **
n
I/ Generated by the ORBacus IDL to Java Translator
//// Copyright (c) 2000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /// All Rights Reserved
/ /II ***

II Version: 4.0.3
package u k .ac.gla.dcs.hippo.BankApplication;

/ /
// IDL: hippo. dcs . gla. ac . uk/BankApplication/Account: 1. 0
/ //***!

public interface AccountOperations

/ /// IDL: hippo. dcs . gla. ac . uk/BankApplication/Account/accountHolder
/ /!***/

public String
accountHolder();

/ /// IDL:hippo.dcs.gla.ac.uk/BankApplication/Account/balance:1.0
/ /1***1

public int
balance();

/ /// IDL:hippo.dcs.gla.ac.uk/BankApplication/Account/deposit:1.0
/ /
/***!

public void
deposit(int amount);

// IDL■hippo.dcs.gla.ac.uk/BankApplication/Account/withdraw:1.0
/ /
/*** /

public int
withdraw(int amount);

C: \..\hippo\BankApplication\AccountHelper.j ava 1
II *

//// Generated by the ORBacus IDL to Java Translator
//// Copyright (c) 2 000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
//// All Rights Reserved
//II *

// Version: 4.0.3
package uk . ac . gla. dcs . hippo. BankApplication;

//
// IDL: hippo . dcs . gla. ac . uk/BankApplication/Account: 1. 0
//
final public class AccountHelper
{ public static void

insert(org.omg.CORBA.Any any, Account val)
{ org. omg. CORBA.portable .OutputStream out = any. create_output_stream() ;

write(out, val);
any.read_value(out.create_input_stream(), type ()) ;

}

public static Account
extract(org.omg.CORBA.Any any)
{ if(any.type() .equivalent(type()))

return read(any.create_input_stream());
else

throw new org.omg.CORBA.BAD_OPERATION();
}

private static org.omg.CORBA.TypeCode typeCode_;
public static org.omg.CORBA.TypeCode
type()
{

if(typeCode_ == null)
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
typeCode_ = orb.create_interface_tc(id(), "Account");

}

return typeCode_;
}

public static String
id()

return "IDL:hippo.dcs.gla.ac.uk/BankApplication/Account:1.0";
}

public static Account
read(org.omg.CORBA.portable.InputStream in)

o r g . o m g . CORBA.Object _ob_v = in.read_Object();
if(_ob_v == null)

return null;
try
{ return (Account)_ob_v;
catch(ClassCastException ex)

p:\ . .\hippo\BankApplication\AccountHelper.java 2

org.omg.CORBA.portable.ObjectImpl _ob_impl;
_ob_impl = (org. omg. CORBA. portable. Object Impl) _ob_v;
_AccountStub _ob_stub = new _AccountStub();
_ob_stub._set_delegate (_ob_impl._get_delegate ()) ;
return _ob_stub;

}

public static void
write(org.omg.CORBA.portable.OutputStream out, Account val)
{ out.write_Object(val);
}

public static Account
narrow(org.omg.CORBA.Object val)
{ if(val != null)

{ try
{ return (Account)val;
}catch(ClassCastException ex)
{
}

if(val._is_a(id()))
{ org.omg.CORBA.portable.ObjectImpl _ob_impl;

_AccountStub _ob_stub = new _AccountStub () ;
_ob_impl = (org. omg. CORBA. port able. Object Impl) val;
~ob_stub._set_delegate (_ob_impl ._get_delegate ()) ;
return _ob_stub;

}
throw new org. omg. CORBA. BAD_PARAM () ;

}

return null;

p : \ . . \hippo\BankApplication\AccountHolder. java 1
I I •kic'k'k'k'kic'k'k'k'k'kic'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'kic'kic'k'k'kic'k'k'k'k'k'k'k'kic'k'k'k'k'k'k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k
1/// Generated by the ORBacus IDL to Java Translator
//// Copyright (c) 2 000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
//// All Rights Reserved
//
/ / ic’k'kick'k'k’kicicic'k'k'k'kicic'k'k'k'k'k'kic'k'k'k'k'k'k'k'k'k'k'k'k'k'kic'k'k'k'k'kic'k'k'k’k'k'kicic'k'k'k'kic'k'kic'k'k-k’k'k'k'kie'k

II Version: 4.0.3
package u k .ac .gla.dcs.hippo.BankApplication;

//// IDL:hippo.dcs .gla . ac. uk/BankApplication/Account: 1. 0
//
final public class AccountHolder implements org.omg.CORBA.portable.Streamable
{ public Account value;

public
AccountHolder()

public
AccountHolder(Account initial)
{ value = initial;
}

public void
_read(org.omg.CORBA.portable.InputStream in)

value = AccountHelper.read(in);
}

public void
_write(o r g . o m g . CORBA.portable.OutputStream out)
{ AccountHelper.write(out, value);
}

public o r g .o m g .CORBA.TypeCode
_type()

return AccountHelper.type();

C: \ .\hippo\BankApplication\AccountPOA.j ava 1
j j *

//// Generated by the ORBacus IDL to Java Translator
//// Copyright (c) 2000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
//// All Rights Reserved
//II *

// Version: 4.0.3
package uk.ac.gla.dcs.hippo.BankApplication;

/ /// IDL: hippo . dcs . gla. ac . uk/BankApplication/Account: 1. 0
//
public abstract class AccountPOA

extends org.omg.PortableServer.Servant
implements org.omg.CORBA.portable.InvokeHandler,

AccountOperations
{ static final String[] _ob_ids_ =

{ "IDL:hippo.dcs.gla.ac.uk/BankApplication/Account:1.0",
};

public Account
this()

T return AccountHelper.narrow(super._this_object());
}

public Account
_this(org.omg.CORBA.ORB orb)

return AccountHelper.narrow(super._this_object(orb));
}

public String[]
all interfaces (org. omg. PortableServer. POA poa, byte[] objectld)

I “

return ob ids ;
} ' '

public org.omg.CORBA.portable.OutputStream
_invoke(String opName,

org.omg.CORBA.portable.Inputstream in,
org.omg.CORBA.portable.ResponseHandler handler)

final String [] _ob_names =
{ "_get_accountHolder",

"_get_balance",
"deposit",
"withdraw"

};

int _ob_left = 0;
int ob right = _ob_names.length;
int _ob_index = -1;
while(_ob_left < _ob_right)

int ob m = (_ob_left + _ob_right) / 2;
int ~ob_res = _ob_names[_ob_m] .compareTo(opName);
if (_ob__res == 0)
{

C: \■AhippoXBankApplicationXAccountPOA.java 2

}

_ob_index = _ob_m;
break;

}
else if(_ob_res > 0)

_ob_right = _ob_m;
else

_ob_left = _ob_m + 1;

switch(_ob index)
{
case 0: // _get_accountHolder

return _OB_att_get_accountHolder(in, handler);
case 1: // _get_balance

return _OB_att_get_balance(in, handler);
case 2: // deposit

return _OB_op_deposit(in, handler);
case 3: // withdraw

return OB op withdraw(in, handler);
} " "

throw new org. omg. CORBA. BAD OPERATION () ;
}

private org.omg.CORBA.portable.Outputstream
_OB_att_get_accountHolder (org. omg.CORBA.portable . InputStream in,

org. omg.CORBA.portable.ResponseHandler handler)
{

String _ob_r = accountHolder() ;
org.omg.CORBA.portable.OutputStream out = handler.createReply();
out.write_string(_ob_r);
return out;

}

private org.omg.CORBA.portable.OutputStream
_OB_att_get_balance (org.omg.CORBA.portable. InputStream in,

org. omg. CORBA.portable . ResponseHandler handler)
{

int _ob_r = balance();
org. omg. CORBA. port able. OutputStream out = handler.createReply();
CurrencyHelper.write (out, _ob_r) ;
return out;

}

private org.omg.CORBA.portable.OutputStream
_OB_op_deposit (org. omg. CORBA.portable . InputStream in,

o r g . o m g . CORBA.portable.ResponseHandler handler)

}

org.omg.CORBA.portable.OutputStream out = null;
int ob_a0 = CurrencyHelper. read (in) ;
deposit (_ob_a0) ;
out = handler.createReply0;
return out;

private org.omg.CORBA.portable.OutputStream
__0B_op w i t h d r a w (org.omg . C O R B A .portable.InputStream in,

o r g . o m g . CORBA.portable.ResponseHandler handler)

o r g . o m g . C O R B A .portable.OutputStream out — null;
int _ob_a0 = CurrencyHelper.read(in);
int ob_r = withdraw(_ob_a0);
out = handler.createReply0;
CurrencyHelper.write(out, _ob_r) ;
return out;

C:\.•\hippo\BankApplication\ AccountStub.j ava 1
j! *

/ /// Generated by the ORBacus IDL to Java Translator
/ /// Copyright (c) 2000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /// All Rights Reserved
/ /II *

// Version: 4.0.3

package uk.ac.gla.dcs.hippo.BankApplication;

/ /
// IDL: hippo. dcs . gla. ac . uk/BankApplication/Account: 1. 0
/ /
public class _AccountStub extends org.omg.CORBA.portable.ObjectImpl

implements Account
{ private static final String[] ob ids{ - - -

"IDL:hippo.dcs.gla.ac.uk/BankApplication/Account:1.0",
};

public String[]
_ids ()
{

return ob ids ;
} " "

final public static java.lang.Class _ob_opsClass = AccountOperations .class;

/ /
// IDL:hippo.dcs .gla.ac.uk/BankApplication/Account/accountHolder: 1. 0
/ /
public String
accountHolder()
{

while(true)
{ i f (!this._is_local())

{ org. omg. CORBA. portable. Output St ream out = null;
org.omg.CORBA.portable.InputStream in = null;
try
 ̂ out = request("_get_accountHolder", true);

in = _invoke(out) ;
String _ob_r = in.read_string();
return _ob_r;

catch(org omg.CORBA.portable.RemarshalException _ob_ex)
{ continue;
catch (org. omg. CORBA.portable . ApplicationException _ob_aex)

final String _ob_id = _ob_aex.getId () ;
throw new org. omg.CORBA.UNKNOWN ("Unexpected User Exception

: » + _ob_id) ;
}finally

_releaseReply(in) ;
}

}
else

C:\..\hippo\BankApplication\ AccountStub.java
{

org.omg.CORBA.portable.ServantObject _ob_so = servant preinvoke
("accountHolder", _ob_opsClass);

if(_ob_so == null)
continue;

AccountOperations _ob_self = (AccountOperations)_ob_so.servant;
try
{

return _ob_self.accountHolder();
finally
{

_servant_postinvoke(_ob_so);

}

/ /
// IDL :hippo. dcs . gla. ac .uk/BankApplication/Account/balance : 1. 0
/ /
public int
balance()
{ while(true)

{ if (!this._is_local())
{ org.omg.CORBA.portable.OutputStream out = null;

org.omg.CORBA.portable.InputStream in = null;
try

■ { out = _request("_get_balance", true);
in = _invoke(out);
int _ob_r = CurrencyHelper.read(in);
return _ob_r;

}catch (org. omg. CORBA.portable . RemarshalException _ob_ex)
{ continue;
catch (org. omg. CORBA.portable . ApplicationException _ob_aex)

final String _ob_id = _ob_aex.getId();
throw new org. omg. CORBA.UNKNOWN ("Unexpected User Exception

: " + _ob_id);
}finally

_releaseReply(in);
}

}
else

o r g . o m g . CORBA. portable. ServantObj ect _ob_so = _servant_preinvoke *
("balance", _ob_opsClass);

if(_ob_so == null)
continue;

AccountOperations _ob_self = (AccountOperations)_ob_so.servant;
try

return ob self-balance();
}finally

servant_postinvoke(_ob_so);

C;\.•\hippo\BankApplication\ AccountStub.java 3

/ /
// IDL:hippo.dcs.gla.ac.uk/BankApplication/Account/deposit:1.0
/ /
public void
deposit(int _ob_aO)
{ while(true)

{ if(!this, is local())
{

org. omg. CORBA. portable. Output St ream out = null;
org.omg.CORBA.portable.InputStream in = null;
try
{

out = _request("deposit", true);
CurrencyHelper.write(out, _ob_aO);
in = _invoke(out);
return;

}
catch (org. omg. CORBA. portable. RemarshalException ob ex)
{ " " continue;
}catch (org. omg .CORBA.portable . ApplicationException _ob_aex)
{ final String _ob_id = _ob_aex.getId () ;

in = _ob_aex.getInputStream();
throw new org.omg.CORBA.UNKNOWN ("Unexpected User Exception

: " + _ob_id);
: }finally

{ __releaseReply (in) ;
}

}else
o r g . o m g . CORBA. portable. ServantObj ect _ob_so = _servant_preinvoke

("deposit", _ob_opsClass);
if(_ob_so == null)

continue;
AccountOperations _ob_self = (AccountOperations)_ob_so.servant;
try

_ob_self.deposit(_ob_aO);
return;

}finally
servant jpostinvoke(_ob_so);

}
}

) >

// IDL:hippo.dcs.gla.ac.uk/BankApplication/Account/withdraw:1.0
/ /
public int
withdraw(int ob aO)
{ ' “

while(true)
if(!this._is_local())

o r g . o m g . CORBA.portable.OutputStream out = null;
o r g . o m g . CORBA.portable.InputStream in = null;
try

C;\..\hippo\BankApplication_AccountStub.java 4
{

out = _request("withdraw", true);
CurrencyHelper.write(out, _ob_aO);
in = _invoke(out);
int _ob_r = CurrencyHelper.read(in);
return ob r;

} ” "

catch (org.omg. CORBA.portable .RemarshalException _ob_ex)
continue;

}
catch (org. omg. CORBA.portable . ApplicationException _ob_aex)

final String _ob_id = _ob_aex.getId();
in = _ob_aex.getInputStream();
throw new org.omg.CORBA.UNKNOWN("Unexpected User Exception

: " + ob id) ;
} " ~ finally
{

_releaseReply(in);

else
{ org. omg. CORBA.portable. ServantObj ect _ob_so = _servant_preinvoke

("withdraw", __ob_opsClass) ;
if(_ob_so == null)

continue;
AccountOperations _ob_self = (AccountOperations)_ob_so.servant;
try
{ return _ob_self.withdraw(_ob_aO);
}finally
{ _servant_postinvoke(_ob_so);
}

C: \..\hippo\BankApplication\AccountManager.j ava 1
j! **
//// Generated by the ORBacus IDL to Java Translator
//// Copyright (c) 2000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /// All Rights Reserved
/ /II *

// Version: 4.0.3
package uk.ac.gla.dcs.hippo.BankApplication;

/ /// IDL:hippo.dcs.gla.ac.uk/BankApplication/AccountManager : 1. 0
///***!

public interface AccountManager extends AccountManagerOperations,
org.omg.CORBA.Obj ect,
org.omg.CORBA.portable.IDLEntity

C : \.•\hippo\BankApplication\AccountManagerOperations.j ava 1
j/ **
//
// Generated by the ORBacus IDL to Java Translator
//// Copyright (c) 2000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /// All Rights Reserved
/ /II *

// Version: 4.0.3
package uk .ac .gla.dcs.hippo.BankApplication;

/ /
// IDL -.hippo. dcs . gla. ac .uk/BankApplication/AccountManager: 1. 0
//I***/

public interface AccountManagerOperations
{

/ /
// IDL :hippo.dcs .gla. ac .uk/BankApplication/AccountManager/open: 1. 0
/ /1***1

public Account
open(String name);

/ /
// IDL:hippo.dcs.gla.ac.uk/BankApplication/AccountManager/close:1. 0
/ /1***1

public void
close(String name);

/ /
// IDL : hippo. dcs . gla. ac . uk/BankApplication/AccountManager/get: 1. 0
/ //***!

public Account
get(String name);

C: \ •\hippo\BankApplication\AccountManagerHelper•java
j! **
/ /
// Generated by the ORBacus IDL to Java Translator
/ /// Copyright (c) 2 000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /// All Rights Reserved
/ /II *

// Version: 4.0.3

package u k .ac.gla.dcs.hippo.BankApplication;

/ /
// IDL:hippo.dcs.gla.ac.uk/BankApplication/AccountManager: 1. 0
/ /
final public class AccountManagerHelper

public static void
insert(org.omg.CORBA.Any any, AccountManager val)

org. omg. CORBA.portable.OutputStream out = any. create_output_stream()
write (out, val);
any.read_value(out.create_input_stream(), type ());

public static AccountManager
extract(org.omg.CORBA.Any any)
{

if(any.type().equivalent(type()))
return read(any.create_input_stream());

else
throw new org.omg.CORBA.BAD OPERATION();

}

private static org.omg.CORBA.TypeCode typeCode_;

public static org.omg.CORBA.TypeCode
type ()
{

if(typeCode_ == null)
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init () ;
typeCode_ = orb. create_interf ace_tc (id () , "AccountManager");

}

 ̂ return typeCode_;

public static String
id()

return " IDL: hippo. dcs . gla. ac . uk/BankApplication/AccountManager: 1. 0 " ;

Public static AccountManager
read(org.omg.CORBA.portable.InputStream in)

org.omg.CORBA.Object _ob__v = in. read_Object () ;
if(_ob_v == null)

return null;
try

return (AccountManager)_ob_v;

catch(ClassCastException ex)

C: \ • • \hiPP°\BankApplication\AccountManagerHelper. java 2

org.omg.CORBA.portable.Objectlmpl _ob_impl;
_ob_impl = (org.omg.CORBA.portable.ObjectImpl)_ob_v;
_AccountManagerStub _ob_stub = new _AccountManagerStub();
_ob_stub._set_delegate(_ob_impl._get_delegate 0) ;
return _ob stub;

}

public static void
write(org.omg.CORBA.portable.OutputStream out, AccountManager val)

out.write Object(val);
}

public static AccountManager
narrow(org.omg.CORBA.Object val)
{ if(val != null)

{ try
{

return (AccountManager) val;
}catch(ClassCastException ex)

if(val. is_a(id()))
{ org.omg.CORBA.portable.Objectlmpl _ob_impl;

_AccountManagerStub _ob_stub = new _AccountManagerStub ();
_ob_impl = (org. omg. CORBA. portable. Obj ectlmpl) val;
_ob_stub ._set_delegate (_ob_impl ._get_delegate 0) ;
return _ob_stub;

}

throw new org. omg. CORBA. BAD_PARAM () ;
}

return null;
}

C: \••\hippo\BankApplication\AccountManagerHolder.java 1
i t *

/ /
// Generated by the ORBacus IDL to Java Translator
/ /
// Copyright (c) 2000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /
// All Rights Reserved
/ /II *

// Version: 4.0.3
package uk .ac.gla.dcs.hippo.BankApplication;

/ /
// IDL:hippo.dcs.gla.ac.uk/BankApplication/AccountManager:1. 0
/ /
final public class AccountManagerHolder implements org.omg.CORBA.portable.Streamable
{ public AccountManager value;

public
AccountManagerHolder()

public
AccountManagerHolder(AccountManager initial)

value = initial;

public void
_read(org.omg.CORBA.portable.InputStream in)
{ value = AccountManagerHelper.read(in);

public void
_write(o r g . o m g . CORBA.portable.OutputStream out)
{ AccountManagerHelper.write(out, value);

public org.omg.CORBA.TypeCode
_type()

return AccountManagerHelper. type () ;

}

C: \ • • \hippo\BankApplication\AccountManagerPOA. j ava
II *

/ /// Generated by the ORBacus IDL to Java Translator
/ /// Copyright (c) 2 000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /// All Rights Reserved
/ /
II ***

// Version: 4.0.3

package uk.ac.gla.dcs.hippo.BankApplication;

/ /
// IDL: hippo. dcs . gla. ac . uk/BankApplication/AccountManager: 1. 0
/ /
public abstract class AccountManagerPOA

extends org.omg.PortableServer.Servant
implements org. omg. CORBA.portable. InvokeHandler,

AccountManagerOperations
{ static final String[] _ob_ids_ =

{
" IDL: hippo. dcs . gla. ac . uk/BankApplication/AccountManager: 1. 0 "

public AccountManager
_this()
{ return AccountManagerHelper. narrow (super ._this object ());
}

public AccountManager
_this(org.omg.CORBA.ORB orb)
{ return AccountManagerHelper .narrow (super ._this_obj ect (orb)) ;
}

public String []
_all_interf aces (org. omg. PortableServer. POA poa, byte[] objectld)

return ob ids ;
} - - -

public org.omg.CORBA.portable .OutputStream
_invoke(String opName,

org.omg.CORBA.portable. InputStream in,
org. omg. CORBA.portable. ResponseHandler handler)

final String[] _ob_names =
{

"close",
"get",
"open"

};

int _ob_left = 0;
int ob right = _ob_names . length;
int _ob_index = -1;
while(_ob_left < _ob_right)

int ob m = (_ob_left + _ob_right) / 2;
int —ob_res = _ob_names [_ob_m] . compareTo (opName) ;
if(_ob_res == 0)

ob index = _ob_m;

C: \•.\hippo\BankApplication\AccountManagerPOA.java 2

}

break;
}
else if(_ob_res > 0)

_ob_right = _ob_m;
else

_ob_left = ob m + 1;

}

switch(ob index)
{ ' ~

case 0: // close
return _OB_op_close(in, handler);

case 1: // get
return _0B_op_get(in, handler);

case 2: // open
return _0B_op_open(in, handler);

throw new org.omg.CORBA.BAD OPERATION();

private org.omg.CORBA.portable.Outputstream
_OB_op_close(org.omg.CORBA.portable.Inputstream in,

org.omg.CORBA.portable.ResponseHandler handler)
org.omg.CORBA.portable.OutputStream out = null;
String _ob_a0 = in.read_string();
close(_ob_a0);
out = handler.createReply();
return out;

}

private org.omg.CORBA.portable.Outputstream
_OB_op_get (org. omg. CORBA.portable . InputStream in,

org.omg.CORBA.portable.ResponseHandler handler)
{ org.omg.CORBA.portable.Outputstream out = null;

String _ob_a0 = in.read_string() ;
Account _ob_r = get(_ob_a0);
out = handler.createReply();
AccountHelper.write(out, _ob_r);
return out;

}

private org.omg.CORBA.portable.OutputStream
_OB_op_open (org. omg. CORBA.portable. InputStream in,

org.omg.CORBA.portable.ResponseHandler handler)
{ org.omg.CORBA.portable.OutputStream out = null;

String _ob_a0 = in.read_string() ;
Account _ob_r = open(_ob_a0) ;
out = handler.createReply0;
AccountHelper.write(out, _ob_r);
return out;

C:\.•\hippo\BankApplication_AccountManagerStub.java 1
j! *

//
// Generated by the ORBacus IDL to Java Translator
/ /// Copyright (c) 2000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /// All Rights Reserved
/ /II **

// Version: 4.0.3

package u k .ac.gla.dcs.hippo.BankApplication;

/ /
// IDL:hippo.dcs.gla.ac.uk/BankApplication/AccountManager: 1. 0
/ /
public class _AccountManagerStub extends org.omg.CORBA.portable.Objectlmpl

implements AccountManager
private static final String[] _ob_ids_ =

"IDL:hippo.dcs .gla. ac .uk/BankApplication/AccountManager: 1. 0" ,
} i

public String []
ids ()

I
return ob ids ;

}

final public static java.lang.Class _ob_opsClass = AccountManagerOperations.class*
/

/ /
// IDL:hippo.dcs.gla.ac.uk/BankApplication/AccountManager/open: 1. 0
/ /
public Account
open(String ob aO)
{ " ~

while(true)
{ if(!this._is_local())

org.omg.CORBA.portable.OutputStream out = null;
org.omg.CORBA.portable.InputStream in = null;
try
{ out = _request("open", true);

out.write_string(_ob_aO);
in = _invoke(out);
Account _ob_r = AccountHelper.read(in);
return _ob_r;

catch(org omg.CORBA.portable.RemarshalException _ob_ex)
{ continue;
catch (org. omg. CORBA. portable . ApplicationException _ob_aex)

 ̂ final String _ob_id = _ob_aex.getld ();
in = _ob_aex.getInputStream();
throw new org.omg.CORBA.UNKNOWN("Unexpected User Exception *

: " + _ob_id);
}finally

: \ •\hippo\BankApplication_AccountManagerStub•java 2
releaseReply(in);

else
{

org.omg. CORBA.portable.ServantObject _ob_so = _servant_preinvoke
("open", _ob_opsClass);

if(_ob_so == null)
continue;

AccountManagerOperations _ob_self = (AccountManagerOperations)_ob_so.tf
servant;

try
{
 ̂ return _ob_self.open(_ob_aO);
finally
{

_servantjpostinvoke(_ob_so);

/ /
// IDL:hippo, dcs .gla. ac .uk/BankApplication/AccountManager/close : 1. 0
/ /
public void
close(String ob aO)
{ " "

while(true)
{ if(!this._is_local())

{ org.omg.CORBA.portable.Outputstream out = null;
org.omg.CORBA.portable.InputStream in = null;
try
{ out = _request("close", true);

out.write_string(_ob_aO);
in = _invoke(out);
return;

}catch (org. omg. CORBA. portable . RemarshalException _ob_ex)
{ continue;
}catch (org. omg. CORBA. portable . ApplicationException _ob_aex)
{ final String _ob_id = _ob_aex.getId ();

in = _ob_aex.getInputStream();
throw new org. omg. CORBA. UNKNOWN ("Unexpected User Exception

: " + _ob_id);
}finally

_releaseReply(in);
}

}
else

o r g . o m g . CORBA.portable.ServantObject _ob_so = _servantjpreinvoke *
("close", _ob_opsClass);

if(_ob_so == null)
continue;

AccountManagerOperations _ob_self = (AccountManagerOperations)_ob_so.kT
servant;

try
ob self.close(_ob_aO);

C;\..\hippo\BankApplication_AccountManagerStub.java 3
return;

}
finally
{

_servant_postinvoke(_ob_so);

}

/ /
// IDL:hippo.dcs .gla.ac .uk/BankApplication/AccountManager/get: 1. 0
/ /
public Account
get(String _ob_aO)
{ while(true)

{
if(!this._is local())
{

org. omg. CORBA. portable. Outputs tream out = null;
org. omg. CORBA. portable. InputStream in = null;
try
{

out = _request("get", true);
out.write_string(_ob_aO);
in = _invoke(out);
Account _ob_r = AccountHelper.read (in) ;
return _ob_r;

}catch(org.omg.CORBA.portable.RemarshalException _ob ex)
{ continue;
}catch (org. omg. CORBA. portable . ApplicationException _ob_aex)
{ final String _ob_id = _ob_aex.getld () ;

in = _ob_aex.getInputStream();

throw new org. omg. CORBA.UNKNOWN ("Unexpected User Exception
: " + _ob_id);

}finally
{ _releaseReply(in);
}

}else
org. omg. CORBA. portable. ServantObject _ob_so = _servant_pre invoke

("get", _ob_opsClass) ;
if(_ob_so == null)

continue;
AccountManagerOperations _ob_self = (AccountManagerOperations)_ob_so.

servant;
try

return _ob_self.get(_ob_aO);
}finally
 ̂ servant_postinvoke(_ob_so);

}

C: \.■\hippo\BankApplication\CurrencyHelper•j ava 1
j j *

/ /
// Generated by the ORBacus IDL to Java Translator
/ /// Copyright (c) 2000
// Object Oriented Concepts, Inc.
// Billerica, MA, USA
/ /
// All Rights Reserved
/ /II *

// Version: 4.0.3

package uk.ac.gla.dcs.hippo.BankApplication;

/ /
// IDL:hippo.dcs.gla.ac.uk/BankApplication/Currency:1.0
/ /
final public class CurrencyHelper
{ public static void

insert(org.omg.CORBA.Any any, int val)
{

org. omg. CORBA.portable .OutputStream out = any. create_output_stream () ;
write(out, val);
any.read_value(out.create_input_stream(), type()) ;

}

public static int
extract(org.omg.CORBA.Any any)
{ if(any.type() .equivalent(type()))

return read(any.create_input_stream());
else

throw new org.omg.CORBA.BAD_OPERATION();
}

private static org.omg.CORBA.TypeCode typeCode_;

public static org.omg.CORBA.TypeCode
type ()
{ if(typeCode_ == null)

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.m i t ();
typeCode_ = orb . create_alias_tc (id() , "Currency", orb. get_j?rimitive_tc x

(org.omg.CORBA.TCKind. tk_ulong)) ;
}

return typeCode_;
}

public static String
id()

return "IDL•hippo.dcs.gla.ac.uk/BankApplication/Currency:1.0" ;
}

public static int
read(org.omg.CORBA.portable.InputStream in)

int _ob_v;
_ob_v = in.read_ulong() ;
return ob v;

} " "

public static voidwrite(o r g . o m g . CORBA.portable.OutputStream out, int val)

}

•>t< aipoo iA>r (:- - j:,, •

■t

;

C:\Documents and Settings\david\..\ac\gla\dcs\hippo\Server.java 1
package u k .ac.gla.dcs.hippo;
public class Server
{ static int run(org.omg.CORBA.ORB orb)

throws org.omg.CORBA.UserException
{

org.omg.PortableServer.POA rootPOA =
org. omg. PortableServer. POAHelper. narrow (orb. resolve_initial_ref erences

("RootPOA"));
org. omg. PortableServer. POAManager manager = rootPOA. the_POAManager () ;
Account_impl accountlmpl = new Account_impl() ;
Account anAccountObject = accountlmpl._this(orb);
try
{

String ref = orb.object_to_string(anAccountObject);
String refFile = "account.ref";
java.io.PrintWriter out = new java.io.PrintWriter(new java.io.

FileOutputStream(refFile)) ;
out.printIn(ref) ;
out.close() ;

}catch (java.io.IOException e)
{ e.printStackTrace() ;

return 1;
}

manager.activate();
orb.run();
return 0;

}

public static void main(String args[])
< • „ java.util.Properties props = System.getProperties ();

props.put("org.omg.CORBA.ORBC1ass", "com.ooc.CORBA.ORB");
props.put("org.omg.CORBA.ORBSingletonClass" ,

"com.ooc.CORBA.ORBSingleton");

int status = 0;
org.omg.CORBA.ORB orb = nul1;

try
orb = org.omg.CORBA.ORB.init(args, props);
status = run(orb);

catch(Exception e)
e . printStackTrace();
status = 1;

if(orb != null)

try
((c o m . ooc . C O R B A . O R B) orb).destroy();

}catch(Exception ex)
^ e x . printStackTrace();

status = 1;
}

}

