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Abstract

Abstract

Results are presented on in situ irradiation of silicon detector’s at cryogenic 

temperature. The results show that irradiation at cryogenic temperatures 

does not detrimentally effect a silicon detectors performance when compared 

to its irradiation at room temperature. Operation of silicon devices at cryo­

genic temperatures offers the advantage of reducing radiation-induced leak­

age current to levels of a few pA, while at 130K the Lazarus Effect plays an 

important role i.e. minimum voltage required for full depletion. Performing 

voltage scans on a ’standard’ silicon pad detector pre- and post annealing, 

the charge collection efficiency was found to be 60% at 200V and 95% at 

200V respectively. Time dependence measurements are presented, showing 

that for a dose of

6.5xl014 p/cm 2 (450GeV protons) the time dependence of the charge collec­

tion efficiency is negligible. However, for higher doses, 1.2xl015 p/cm 2, the 

charge collection efficiency drops from an initial measured value of 67% to a 

stable value of 58% over a period of 15 minutes for reversed biased diodes.

An analysis of the “double junction” effect is also presented. A com­

parison between the Transient Current Technique and an X-ray technique is 

presented. The double junction has been observed in p+/n /n + silicon de-
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Abstract

tectors after irradiation beyond “type inversion” , corresponding to a fluence 

equivalent to ~ 3 x l0 13cm-2 IMeV neutrons, producing p+/p /n + and essen­

tially two p-n junctions within one device. With increasing bias voltage, as 

the electric field is extending into the detector bulk from opposite sides of the 

silicon detector, there are two distinct depletion regions that collect charge 

signal independently. Summing the signal charge from the two regions, one is 

able to reconstruct the initial energy of the incident particle. From Transient 

Current measurements it is apparent that E-field manipulation is possible by 

excess carrier injection, enabling a high enough E-field to extend across the 

width of the detector, allowing for efficient charge collection .
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Chapter 1

Introduction

Detection of radiation was accidental when, in 1896, Becquerel placed ura­

nium salt over photographic film and, when the film was developed, it had 

been “fogged” by the ionising particles released from the uranium [1].

Since the discovey of ionising radiation, the development of radiation de­

tectors in the major classes, visual and electronic, has evolved substantially. 

In the former, film, cloud and bubble chambers as well as higher trigger rate 

spark and streamer chambers, create a visual record of the trajectory of an 

ionising particle via developed emulsion grains, condensation droplets in a su­

persaturated vapour, bubbles in a superheated liquid or electrical discharges, 

respectively, located on the ion trail created in the medium by the ionising 

radiation. The performance limitations in the operating rate of these de­

vices and the analysis of the photographic images [2] used for event storage, 

together with the advent of colliding beam accelerators, have led to their 

large scale replacement by electronic detectors. Electronic detectors have 

evolved similarly, from the gold-leaf electroscopes, used in early investiga­

tions of cosmic rays, to ionisation chambers, Geiger tubes and proportional

2



and streamer chambers. In scintillation counters, short low intensity light 

pulses from phosphors, converted to electrical pulses using phototubes, have 

provided the backbone of the majority of High Energy Physics (HEP) ac­

celerator experiments for several decades. More recently (circa 1980), semi­

conductor detectors have been used as a replacement for particle tracking 

devices [3].

Semiconductor detectors behave like solid state ionisation chambers. In­

cident particles deposit ionisation energy, producing electron hole pairs in 

the material which separate due to the presence of an applied electric field. 

The charge signal is collected at the electrodes and is proportional to the 

deposited energy. Semiconductor detectors offer excellent energy and spa­

tial resolution (pixel sizes < lm m 2) for particle identification. Particle decay 

vertices very close to the interaction point of the colliding beams need to be 

resolved from the primary interaction point as the lifetimes of the particles 

created are very short, (typically 10_12s to 10-13s). Figure 1.1 [4] shows the 

importance of the precision tracking (few /im) of the inner silicon layers of a 

collider vertex detector, without which this event would probably not have 

been detected. Of course the closer that one places the device to the beam 

cross-over point, the higher the flux of particles bombarding the detector, 

the higher the level of radiation damage to the detector medium and read­

out electronics will be, limiting typical silicon detector lifetimes to particle 

fluences of about <1014cm-2 IMeV equivalent neutrons (c.f. Section 3.3.1). 

It is of paramount importance to increase the tolerance of semiconductor 

detectors to harsh radiation environments as the replacement costs are high. 

Combatting the radiation-induced degradation of signal is extremely impor­
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tan t, especially for the harsh radiation environments expected a t the Large 

Hadron Collider (LHC), CERN. Currently the LHC switch-on, expected in 

2005, will require greater radiation resistant detectors than any of its prede­

cessors. The LHC machine will provide proton-proton collisions a t a centre 

of mass energy of 14TeV with design luminosity of 1034cm -2s-1 , testing the 

Standard Model and looking for physics beyond it, such as supersymmet- 

ric particles. As well as this it will provide heavy ion Pb-Pb collisions. Four 

experimental collaborations are pro-active for LHC physics: two general pur­

pose detectors, ATLAS and CMS, plus two more specialised detectors, LHCb 

and ALICE, looking at b-physics and heavy ion physics respectively.

Figure 1.1: A Higgs candidate seen by ALEPH at LEP, CERN.

The pixel detector of the ATLAS1 experiment will receive a radiation 

dose of 5x l014 IMeV equivalent neutrons cm-2 [5] over ten years of opera­

tion, more than any previous silicon detector device could withstand. This 

will be the harshest high energy particle accelerator radiation environment 

to-date and as such offers a tremendous challenge for device physicists to en­

l A Large Toroidal A pparatus.
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sure detector reliability throughout the scheduled 10-year lifetime of ATLAS. 

Working to meet these challenges, CERN is involved in several Research and 

Development (RD) programmes with international groups of scientists and 

universities whose aim is to improve the radiation hardness of silicon. RD48, 

the ROSE Collaboration, in particular has been extremely successful in meet­

ing these challenges through stringent defect analysis and defect engineering 

[6]. By identification of the energy levels of defects and charge carrier trap­

ping characteristics, the Collaboration has been able to neutralise some of 

the radiation-induced damage by the introduction of additional oxygen at 

the wafer growth stage.

As well as microscopic enhancements to semiconductor detectors, one 

may also make macroscopic changes to improve performance. The RD39 

Collaboration is working towards radiation hard detectors by operation at 

cryogenic temperatures. The improvement of highly-irradiated silicon detec­

tors when operated at liquid nitrogen temperature (77K) was first realised by 

Cinzia Da Via and Vittorio Palmieri in 1998 [7]. Placing a heavily irradiated 

silicon device, essentially “dead” , into liquid nitrogen, they found that one 

could again detect charge: in essence the detector appeared to them to have 

come back to life, hence the name: The Lazarus Effect. From this, the RD39 

Collaboration was conceived with the following goals:

1) Demonstrate that irradiation during operation at low temperatures does 

not affect the results obtained with detectors irradiated at room temperature 

and so concentrate on materials that could reduce detector co s t.

2) Demonstrate successful operation of radiation hard CMOS chips 

operation at Liquid Nitrogen (LN2) temperatures.
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3) Demonstrate that low mass cooling at LN2 is feasible at a reasonable cost 

and that electrical and optical feed-through problems of a large system may

be mastered.

Goal 1 is dealt with in detail in Chapter 4, while Goals 2 and 3 are work 

in progress within the RD39 Collaboration at CERN [8]. The concept of 

the low mass cooling system is to determine whether cryogenic operation 

of semiconductor detectors is a feasible option for large particle detectors 

where it is imperative to minimise the scattering and gamma conversion in 

tracking detector material for accurate track reconstruction. The ATLAS 

experiment will benefit greatly from input from both RD48 and RD39. This 

thesis focuses in particular on the behaviour of irradiated silicon detectors 

at a macroscopic level, addressing how defects occur, how they may be de­

tected, and how they may be neutralised. Chapter 2 details the beginning of 

a silicon detector’s life by describing how silicon wafers are grown and then 

processed. The chapter continues by detailing how signal is created in the 

device by different types of ionising radiation. This ionising radiation inflicts 

damage to the silicon lattice and it is important that one can identify this 

damage. Chapter 3 deals with the material characterisation processes and 

outlines different yet complementary techniques. With these tools in place 

it is then possible to make measurements. Goal 1 from the RD39 Collabora­

tion guidelines is realised in Chapter 4. Results are presented of irradiation 

of cryogenic silicon with 450GeV protons at the CERN-SPS facility. This re­

sult allows a direct comparison to room temperature irradiation, and proves 

that irradiation in the cold delivers no adverse effects but can only improve 

detector behaviour. From irradiation tests performed by the RD39 Collabo­
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ration it became clear that an interesting phenomenon was occurring inside 

the p-n junction detector. Further research showed that other groups had 

also noted similar behaviour. While initially the effect was documented in 

1963 by Dearnaley [9], it was put into context by Alexander Chilingarov of 

the Lancaster group, also working under the umbrella of the ROSE Collab­

oration. He found that an irradiated detector will in fact have two high field 

regions, one at each contact, connected via a low central field. This will occur 

after type inversion of the bulk through irradiation. The detectors used in 

this thesis are all initially p+/n /n +, and with a dose beyond ~  lx l0 13/cm 2 

IMeV equivalent neutrons, the bulk changes from n-type to p-type through 

the change of space charge, Ne// .  This gives rise to two p-n junctions as even 

though the bulk will remain less “positive” than the p+ contact, it will be 

more “positive” than the n+ contact (p+/p /n +), causing the so-called “dou­

ble junction” effect. This is examined by a technique pioneered by Steve 

W atts and Cinzia Da Via at Brunei University who are also members or the 

RD48 and RD39 Collaborations. Using X-rays to analyse the silicon bulk, 

one can make spectroscopic measurements from which to infer the depletion 

zone sizes, due to the nature of the X-ray interactions within the silicon bulk. 

This chapter closes with a discussion and comparison with results obtained 

using the Transient Current Technique, pioneered by V. Eremin. The thesis 

is brought to a close with Chapter 5 which contains final discussions and 

options for the future. Details are given of how the characterisation process 

may be improved and where detectors will need to be positioned for possible 

future upgrades to the LHC.
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Chapter 2 

D etector Theory

This chapter provides an overview of the basic semiconductor theory that 

has been used to analyse and test the devices that are reported in subse­

quent chapters. It is useful to have an idea of the fabrication techniques for 

a diode detector and how the processes influence the behaviour of a device. 

In particular, the influence of low concentrations of impurity atoms (such as 

oxygen), introduced during crystal growth, has been shown to be an impor­

tant consideration in studies of radiation hardness enhancement by “defect 

engineering” [10]. Knowing what is expected from a detector, and how the 

charge generated in the active area of the device is interpreted as signal is 

of paramount importance as the results presented later rely heavily on the 

ideas in this chapter.

2.1 Silicon Device Fabrication

Several techniques for silicon crystal growth are outlined in the following sec­

tions. The work reported in this thesis was performed entirely on Float Zone
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2.1 Silicon Device Fabrication

silicon and for this reason it will be given more emphasis. Detector grade 

silicon must be optimised for two important criteria: very high resistivity 

(> lkficm) and high minority carrier lifetime with low bulk generation cur­

rent. The former is required to enable full depletion of a detector of ^  200fim 

to 300/im thickness at a reasonable bias voltage (<100V), while the latter 

helps to minimise detector noise. Float zone material meets these needs with 

the highest purity and hence is used for most detector applications.

2.1.1 Semiconductor Grade Silicon (SGS)

A silicon detector starts off its life as very pure sand. At this point the 

impurities present are AI2O3 and Fe2 0 3  (in the order of a few tenths of a 

percent). The silicon dioxide is melted down with coke and wood chips in an 

electrode furnace at around 1780°C. The main chemical reaction that takes 

place is:

The silicon liquid is 99% pure at this point. When this liquid cools it forms 

a solid that is known as metallurgical grade silicon (MGS). By grinding this 

into a fine powder and heating to 300°C in HC1 gas, causing the chemical 

reaction:

S i0 2 +  2C S i +  2 CO. (2.1)

Si + 3HCI -y  S iH C h  +  H2 (2.2)
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2.1 Silicon Device Fabrication

trichlorsilane and hydrogen are produced. Trichlorsilane has a very low 

boiling point, 31.7°C, while many impurities have a much higher boiling 

point, so that by distillation the impurity concentration may be reduced 

below 1 ppb. The trichlorsilane is passed with hydrogen over a silicon rod 

kept at ~900°C so that the above reaction is reversed with a deposition rate 

of polysilicon of less than lm m /h.

2.1.2 Czochralski Silicon (Cz)

For micro-electronics, the purity of the silicon is not as important as it is for 

semiconductor detectors. As a consequence of this, the majority of commer­

cially grown silicon is Czochralski silicon. This is fast and cheap to produce 

while still maintaining high resistivity. Named after J. Czochralski, the pro­

cess involves “pulling” the silicon crystal from a melt, as shown in Fig. 2.1.

High purity polysilicon, obtained as described in Section 2.1.1, is melted 

with additional dopants, required to ensure a pre-defined resistivity, in a 

rotating quartz crucible. A single crystal silicon seed is placed on the sur­

face, and while rotating, is drawn upward. The molten silicon solidifies and 

extends from the seed as a continuous crystal. During the process of “seed- 

pulling” the crucible dissolves partially, releasing oxygen into the melt. Over 

99% is lost through evaporation from the molten surface, but the remain­

der dissolves into the single crystal silicon. Oxygen is always the impu­

rity with the highest concentration in Cz silicon, with typical values of 5 to 

10xl017cm-3. This does offer some advantages, as will be discussed in more 

detail in Chapter 5. The oxygen allows internal gettering, making the silicon 

crystal more resilient to thermal stress, and more appealing for integrated
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Argon

ccw

RF coil

Seed holder

Solid-liquid
interface

Crystal

Silicon crucible

^Graphite

Argon + Si + CO

Figure 2.1: Schematic of the Czochralski crystal puller, 

circuit production.

2.1.3 Float Zone Silicon (FZ)

The FZ method is shown pictorially in Fig. 2.2.

The production takes place under vacuum or in an inert gaseous atm o­

sphere. A high-purity crystalline rod and a crystal seed are held together 

in vertical position and rotated. Partial melting is accomplished by a radio 

frequency field. Drops of the melt are formed on the tip  of the polycrystalline 

rod and the seed is raised to make contact. The diam eter is allowed to in­

crease and tapers to a desired diam eter for steady-state growth. The molten
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Polysilicon 
feeder rod

RF coil

Single crystal

Molten zone

Seed v  rpTaper

Seed holder-

^ —Neck

Figure 2.2: Schematic of the Float Zone growth method.

zone moves along the polysilicon rod and solidifies into a single crystal while 

the material is simultaneously purified. Typical oxygen concentration in FZ 

silicon is below 5x l015cm-3 . For production of p-type silicon one adds di- 

borane (B2H6) and to produce n-type one dopes with phosphine (PH3). The 

molten silicon is only in contact with the ambient gas, which may also be 

used to dope the material so tha t no additional impurities will perm eate the 

silicon. P-type material is easier to produce due to the segregation of the 

boron atoms.

N e u tro n  T ran sm u ta tio n  D oping (N T D )

Float Zone material displays dopant micro inhomogeneity from tem perature 

fluctuations, melting phenomena and dopant segregation due to the m ate­

rial’s lack of symmetry. If one also considers the fact th a t n-type silicon is less

12



2.2 p-n Junction

homogeneous than p-type then an interesting solution presents itself in the 

form of NTD. For NTD, a high purity p-type FZ ingot is subject to neutron 

bombardment in a reactor. This produces unstable 31 Si, which decays with 

a half-life of 2.62 hours into stable 31P. The neutrons can penetrate ~100cm 

and so dope the material uniformly but they also introduce radiation damage. 

These defects are annealed at 800°C, where the phosphorus dopant activates, 

altering the material to become high resistivity n-type silicon material.

2.2 p-n Junction

The main work of this thesis was carried out on p-n junction diode detectors. 

Both p-type and n-type regions can be doped into a grown substrate as de­

scribed above. This structure behaves as a diode rectifier in that it conducts 

primarily in one direction. Current-Voltage characteristics, described in de­

tail in Section 4.1, show that the properties of the p-n junction are similar to 

those of an ideal diode. For silicon doped with donors, the material will be 

n-type, with predominantly electron charge carriers and with the Fermi level 

nearer the conduction band. Doping with acceptors gives p-type, with pre­

dominantly hole charge carriers, and the Fermi level lies nearer the valence 

band. The junction is formed when these two regions are combined during 

fabrication by means of epitaxy, diffusion or ion implantation. When the two 

regions come into contact, diffusion of the carriers occurs. Holes from the 

p-side diffuse into the n-side and electrons from the n-side diffuse into the 

p-side. As the holes move into the n-side, they leave behind un-compensated 

negative acceptor ions, with concentration Na , near the junction, giving it a 

negative charge. When electrons diffuse into the p-side, positive donor ions,

13
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with concentration ND, are left behind, leaving the boundary with a positive 

charge. At the boundary the excess negative space charge in the p-side and 

excess positive space charge in the n-side creates an electric field in the di­

rection from the n-side to the p-side, as shown in Fig. 2.3. The E-Field is in 

the opposite direction to the diffusion current for each type of carrier. As the 

electrons diffuse from the n-side to the p-side and the field is also from the 

n-side to the p-side, the net current flow is zero for electrons in equilibrium. 

A similar situation occurs for holes. The holes diffuse from the p-side to the 

n-side, the opposite direction of the E-field. The result is no net current in 

equilibrium.

This may be formalised as:

E-field
4 ■■

drift

diffusion

\
diffusion

drift

Figure 2.3: Electric field in the depletion region of a p-n junction
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2.2 p-n Junction

Jp = Jp(drift)  +  Jp(dif  fusion)  (2.3)

=  q^ppE -  qDp

where the subscript p denotes the value for holes, J is the current density, 

q the charge, /jl the mobility and p the hole concentration, E the electric field,

and D the diffusion constant. The derivative term is the rate of change of 

hole concentration over detector thickness, x. A similar expression exists for 

electrons. From the Einstein relation one may substitute Dp=kT/xp/q, and 

also the expression for the hole concentration:

p  =  n i e (-E i - E F V k T  (2.4)

where n* is the intrinsic carrier concentration. Substitution into Equation 

2.4 yields the result that the net hole current density must be zero. The same 

is true for the electron current density. For the condition of zero net current 

to be satisfied, the Fermi level must be constant across the bandgap (Fig. 

2.3). Placing a neutral region between the p and n regions induces a small 

transition region from the junction to that region. The space charge of the 

impurity atoms is compensated by the mobile carriers. The mobile carrier 

density inside the neutral region is zero. Beyond the transition region is the 

depletion region, also known as the space charge region. In typical silicon 

detector diodes, the width of the depletion region compared to the size of the 

transition region is very large. The typical cases reported here have depletion
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widths of 300 to 400/zm, whereas the transition region is of the order of a 

few nanometres. For this reason the transition region is neglected and the 

depletion region of a fully depleted detector is synonymous with the physical 

width of the device.

2.3 Depletion Region

The neutral charge region is the active region of the semiconductor device. 

In this region p=n=0. One then has Poisson’s equation in the form:

w >

where ij) is the electrostatic potential, es is the permittivity and and 

ND have the same meanings as defined earlier. In order to solve this equation 

one must know the impurity concentrations. Impurities may be introduced 

by shallow diffusion or by low-energy ion implantation. An example of such 

doping is the abrupt p-n junction diode. One may approximate this as in 

Fig. 2.4.

The next section deals with the abrupt junction and formalises the idea 

of the depletion region, the “active” part of a diode detector.

2.3.1 Abrupt Junction

In order to analyse the abrupt junction one must consider Poisson’s equation, 

Equation 2.5. As the space charge is distributed non-linearly through the 

junction, Fig. 2.5(a), one must invoke boundary conditions for a solution.
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nd-na

9

Figure 2.4: Schematic of the doping profile of an abrupt junction.

In the depletion region, Fig. 2.5(a), free carriers are totally depleted so 

th a t Equation 2.5 may be simplified to:

and

=  —  { N a ) for -  x p <  x  <  0 (2.6)
a x z e.

=  — ( N D) for 0 <  x <  x n (2.7)
ax/  es

The detector has neutral overall charge, so tha t the negative space charge 

density per unit area in the p-side must cancel the positive space charge 

density per unit area of the n-side:
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Neutral 
) region

< Depletion Region >

Nn-NA
Neutral 
n region

__________

Area = Vbi

(a)

(b)

Figure 2.5: (a) Space charge distribution in the depleted region at ther­

mal equilibrium, (b) Schematic of E-field distribution. The area under 

the graph represents the built-in potential.

N Ax p =  N d x „. (2 .8)

From Fig.2.5(a) one can see tha t the depletion width may be w ritten as:

W  =  x p +  x n. (2.9)

The gradient of the potential is equivalent to the E-field. By integrating
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equations 2.6 and 2.7 one may calculate the E-field shown in Fig.2.5(b). The

maximum field, Em, occurs at x=0 and from the integrals:

E(x)  =  - <~t - =  — — (Nd)(x +  xp) for — xp <  x < 0 (2.10)
(XX  6^

and

E(x) = —Em +  =  jL(Nd)(x -  xn) for 0 < x < x n (2.11)
^8 ^8

setting x=0 gives:

Em = (2.12)
'8

Integrating again gives the potential, V^, the area under the graph in 

Fig.2.5(b):

Vm = — f  E(x)dx  (2.13)
J — X „V

gNAx j  qNDx l  
2ea 2e

l E mW

The depletion width is defined as the active region of the detector. As 

such, it is important that its size be known accurately for particle detec­
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2.3 Depletion Region

tion. By combining Equations 2.8 to 2.12, one obtains an expression for the 

depletion width, W, as a function of V^:

One may manipulate the junctions by doping them with different con­

centrations. When the concentration of one region is much higher than the 

other, this is known as a “one-sided abrupt junction” , Fig. 2.6(a). When 

the negative space charge region is more heavily doped than the positive, the 

distribution of the space charge is as shown in Fig. 2.6(b).

The depletion width of the p-side is much less than that of the n-side, 

xp < <  xn. Applying these conditions, equation 2.14 can be simplified to:

while the electric-field distribution is similar to equation 2.11 and de­

creases to zero at x=W  so that:

where N# is the lightly doped bulk concentration. Combining equations 

2.11 and 2.16 gives the electric field, as shown in Fig. 2.6(c):

q N a N d
(2.14)

(2.15)

E(x) = ( - W  + x) = - E m( 1 - - | ) (2.17)
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v = o
''w m m m  
______  .....

=W

Figure 2.6: A schematic representation of (a) a one-sided abrupt junc­

tion with N^4 > >  Nd (b) Space charge distribution (c) Electric-field 

distribution (d) Potential variation with distance, x.

Integrating Equation 2.17 and substituting Equation 2.14 gives an ex­

pression for the potential:

, ( \  VbiX. x  
w  =  ¥ ( 2 ^ )

(2.18)

21
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The potential distribution is shown in Fig. 2.6(d).

2.3.2 Bias Voltage

Generally, a p-n junction is operated with an external bias voltage applied. 

This section will deal with the different operating modes of a diode and how 

these affect the depletion width. As has been shown, the potential across 

the unbiased junction is given by and the potential energy step from the 

p-side to the n-side is given by q 14*• Figure 2.7 is a schematic representation 

of a junction under various bias conditions. By applying a positive voltage 

V f across the junction, forward bias, current flows from the p-side to the 

n-side. The total potential across the junction decreases by Vp,  as shown 

in Fig. 2.7(b), and as a result the depletion width decreases, reducing the 

sensitive area of the device.

If a voltage is applied to the n-side so that current flows from the n- 

side to the p-side, the device is under reverse bias. The width of the depletion 

layer is increased as shown in Fig. 2.7(c). Substituting these conditions into 

Equation 2.15, an expression is obtained for the depletion width as a function 

of voltage:

can be seen that the depletion width, W, varies with the square root of the 

voltage applied across the junction, V, when V ^V ^ .

(2.19)

For forward bias, V is positive in Equation 2.19. From this relation it
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Figure 2.7: Schematic representation of depletion layer width and band 

bending of a p-n junction under (a) equilibrium conditions (b) forward 

bias and (c) reverse bias conditions.

2.3.3 Depletion Capacitance

Capacitance measurements over a junction are useful as they give an idea of 

the impurity concentration, N#, present in the substrate. The capacitance 

per unit area is defined as:

C, -  §  (2.20)
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Combining this with dE=dQ /es (from Poisson’s equation) one may for­

mulate an expression for capacitance with the approximation of dV to WdE. 

This yields:

This equation, for the depletion capacitance per unit area, is the same as 

the expression for a parallel plate capacitor, where the distance of separation 

of the two plates may be compared to the depletion width. This situation 

is only true for reverse bias where the space charge region has a very low 

concentration variation. For a forward bias device this is not true as a large 

current may flow through the junction. Combining Equation 2.21 with Equa­

tion 2.19 from Section 2.7, one obtains an expression for capacitance related 

to the applied voltage:

Plotting 1/C2 versus V would produce a straight line for a one-sided 

abrupt junction. The gradient of the line allows the calculation of the im­

purity concentration, N#, and the intercept on the V axis gives the built-in 

potential, V^.

(2.21)

(2.22)
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2.4 Signal Generation

2.4 Signal Generation

When an ionising particle passes through the detector, it imparts energy to 

the lattice and creates electron-hole pairs. At room temperature, 3.6eV are 

required on average to produce an electron hole pair [11]. The electron-hole 

pairs created via these interactions are detected as electric signals at the 

electrodes. After the interaction with an atomic electron, in the intermedi­

ate energy case, part of the energy will be absorbed by the semiconductor 

and converted into ionisation energy, while the remainder produces thermal 

energy. When the deposited energy is large enough then the signal will fluc­

tuate around a mean number of charge carriers, N, given by:

where E is the absorbed energy and e the mean energy spent for creating 

an e-h pair. The variance in the number of signal electrons (or holes) N is 

given by:

where F is the Fano Factor. This gives the departure of the observed 

statistical fluctuations in the number of charge carriers from pure Poisson 

statistics. For silicon the theoretical Fano factor is 0.115 [12]. The electric 

field across the detector forces carriers to drift, according to their charge, 

to each electrode. The current received at the electrode is read out and

(2.23)
e

(SN2) =  F . N =  F . j (2.24)
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2.4 Signal Generation

analysed. The route that a drifting carrier takes affects the charge signal 

that it produces on the electrodes so that understanding where the signal 

comes from is crucial. The accumulation of the charge signal is described by 

Ramo’s theorem [13], and the various interaction processes that may occur 

and that are relevant for this work are discussed below.

2.4.1 Ramo’s Theorem

In September 1939, Simon Ramo published a paper “Currents Induced by 

Electron Motion” [13]. This paper has been definitive, if at times misused, 

in describing charge carrier motion in semiconductor detectors. The carrier 

motion depends strongly upon the geometry of the device electrodes. For 

an accurate description of a device one must start with Poisson’s equation

where ip is the electric potential, p the charge density, and e is the di­

electric constant for the medium. This form must be used for an irradiated 

detector as it also considers the case of trapped charges. However, when 

there are no trapped charges, the Poisson equation reduces to the Laplace 

equation:

V V  =  p/e (2.25)

v f y  =  0 (2.26)
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and one must choose an appropriate Laplacian operator for the geometry 

of the device under investigation.

Induced Charge

The charge carriers, namely electrons and holes, have different mobilities 

and drift velocities, thus their collection times are different. In silicon the 

electrons contribute to the fast component (ns) and the holes to the slower 

component (/zs). This is compensated somewhat when interactions occur 

homogeneously through the detector, and the carriers have different distances 

to travel to reach the electrodes. The motion of the charge induces a current 

due to displacement of charge as it drifts towards the collection electrode. 

A useful concept in applications of Ramo’s theorem is that of the weighting 

field and weighting potential [18] [19], ip0. The weighting potential must be 

found from solving Equation 2.25 or Equation 2.26 for the correct detector 

geometry. The instantaneous current induced on an electrode is given by:

where q is the charge of the carrier, v the drift velocity of the carrier,

it is possible to get the charge on the electrode, Q, due to charge carrier 

transport over a path within the weighting field, corresponding to a change 

in weighting potential Aip0:

(2.27)

and E q the aforementioned weighting field. By integrating Equation 2.27

Q = qAip0 (2.28)
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In essence, the moving carrier only contributes to the total charge if it 

moves through the electric field. One must impose certain assumptions. The 

voltage on the electrode on which the induced charge is to be calculated 

is set to unity. The voltage on all other electrodes is set to zero. If the 

Laplacian is used, one must ignore all trapped charge. It is important then 

to note that for radiation damaged detectors, one cannot assume a Laplacian 

approximation.

2.4.2 Charge loss

Radiation damage may cause loss of signal charge to the trapping by accep­

tor and donor levels with the energy bands. The signal charge will not be 

measured by the amplifier if the transit time lies outside the shaping time. 

The probability of signal charge collection is given by P = ex p (-t/r), where 

t is the collection time given by drift distance divided by drift velocity, v,

and r  is the de-trapping time. The occupancy of a defect level is given by

Fermi-Dirac statistics:

1 + e x p ( E - E F) /k T  2̂'2^

So that the probability of occupation of a single defect level may be 

calculated. The probability of emission is given by:

=  vthcrnTiiexp(Et -  E i ) /kT  (2.30)
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It can be seen then that deep levels will give a higher contribution to 

electron generation, which may be calculated from:

Gn = N tF(E)en (2.31)

2.4.3 Alpha Particles

Conventional characterisation of silicon detectors is most simply performed 

with alpha radiation. 5.5MeV alpha particles from an Americium-241 source 

travel only 28/im [20] [21] into silicon. Most of the energy is released at this 

depth, creating electron-hole (e-h) pairs in the semiconductor bulk. Accord­

ing to Ramo’s theorem, the drift of carriers will generate charge, collected 

at the output electrode. One may then be selective of the type of carrier to 

examine by choosing the front or backside, p-side or n-side1, for irradiation. 

As long as a field is present in the bulk, signal will be collected due to the 

drift of carriers to the electrodes. This means that even with a device that 

is not fully depleted, (the electric-field not extending across the entire bulk 

(Fig. 2.6)), one will be able to collect a signal. However, this does not allow 

investigation of the entire bulk of the detector.

2.4.4 Minimum Ionising Particles (MIPS)

Minimum ionising particles traverse the bulk of the detector so collection 

of both electrons and holes from the entire bulk is possible. The specific

1This will be the convention adopted throughout this dissertation.
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energy loss of a single charged particle travelling at velocity, v, in a medium 

of atomic number, Z, is given by the Bethe-Bloch formula [3]:

dE  p  / ^ l x 2 _ r,_ 2mec2/? V  2 (5(7). . .—  =  D e ( ^ )  ne[/n  J p  -  — ] (2.32)

where De= 47rre2 mec2, and re is the classical electron radius. Zi the atomic 

number, ne the number of electrons per unit volume, /3= v /c and 7  the 

Lorentz factor, (l-/?)-1/2, I the mean ionisation potential, and 5 a density 

correction factor. This is shown graphically in Figure 2.8.

A MIP generally releases energy homogeneously as it traverses the semi­

conductor, although there is a probability of high energy (5-rays. The charge 

signal is normally histogrammed using a multi-channel pulse-height analyser 

(MCA), allowing one to assign an appropriate energy range to the binning 

of the data. The peak count position will change with the signal collected to 

a higher position if more charge is collected, the latter normally coinciding 

with increasing reverse bias voltage (and hence increasing depletion region 

size) or decreasing temperature. The signal is proportional to d2, where d is 

the depleted thickness, according to Ramo’s theorem.

2.4.5 X-rays

241 Am is commonly used in detector characterisation as it emits both a  

and 7  radiation, allowing one to probe the detector at different levels. The 

characteristic emissions from an 241 Am source are shown in Table 2.1:

From Table 2.1 it is evident that the 60keV 7 ’s from 241 Americium give 

the largest signal. The source also emits characteristic L-series X-rays with
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F igure 2.8: Energy loss rate in silicon for different high energy particles

[22].

energies <  20keV. Energy loss by X-ray photons is via three different mech­

anisms th a t dominate at different energies, namely the photoelectric effect, 

the Compton effect, and pair production.

From Graph 2.9 it can be seen tha t below a gamma ray energy of ~ lM eV ,
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Photon Intensities per Disintegration of 241 Am

Line Energy (keV) Percentage per Disintegration

L-ct 13.9 13.3±0.4

L-tjP 17.8 19.4±0.6

L-7 20.8 4.9±0.2

7 26.35 2.4±0.1

7 59.54 35.82±0.12

Table 2.1: Photon Intensities per Disintegration of 241 Am

10
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Photon  i n t e r a c t i o n s  m' in s i l i c o n4
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Figure 2.9: Graph of the variation of photon interaction cross-sections 

with photon energy. [23]
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pair production does not play any role, and so is not an issue for the analysis 

described here. An X-ray photon deposits its energy much more locally than 

a MIP. This means tha t the 60keV photo peak position on the MCA should 

be constant for a fully depleted non-irradiated detector, (assuming no charge 

trapping) regardless of bias voltage. For a uniform probability of photon 

interactions across the detector thickness, the count rate, plotted on the 

ordinate-axis of the MCA display, is proportional to the active thickness of 

the detector and will depend upon the bias applied and the tem perature of 

operation.

2.4.6 Photoelectric Effect

The photoelectric effect dominates at lower energies. An X-ray photon inter­

acts with an inner, bound electron of the atom and is absorbed, and a bound 

electron is ejected, as illustrated in Fig 2.10.

Photoelectric Effect
Atom

Incident
Photon

Photoelectron

Figure 2.10: Schematic representation of the photoelectric effect.

In the energy region of ~60keV, the photoelectric cross-section varies with
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photon energy, E, roughly as E 7|/2. For a 60keV photon the cross-section is 

~8barns/atorn  in silicon.

2.4.7 Compton Scattering

The Compton effect becomes significant at intermediate energies, over-taking 

the photoelectric effect around 80keV, but is already significant at 60keV as 

shown in Figure 2.9. The resultant state is an ejected electron and less 

energetic scattered photon (inelastic scatter), as shown schematically in Fig 

2 . 11 .

Compton Scatter
Compton 
Electron 4

Atomic
Electron

Incident
Photon

Scattered
Photon

Figure 2.11: Schematic representation of the Compton effect.

2.5 Readout

As discussed, the electric field across the device forces each charge carrier 

to drift to the collection electrodes, holes to the cathode and electrons to 

the anode. Depending on where an interaction takes place inside the detec­
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tor, the pulse rise time may vary, depending on which particles are collected 

first, while the total integrated charge will remain the same. It is important 

therefore to consider only a certain time interval after the interaction. Im­

mediately after the interaction the carriers begin to drift and so will induce a 

displacement current. This gives an instantaneous signal which will continue 

until all charge carriers are collected. Beyond this time only noise charge, or 

leakage current, will be collected. The signal amplifier “shaping time” is of 

paramount importance for optimising the signal-to-noise ratio. While there 

are essentially two types of signal pre-amplifiers that may be used, charge or 

current sensitive, the work described in this thesis considers energy analysis 

and hence uses only a charge sensitive pre-amplifier.

2.5.1 The Charge Sensitive Amplifier

The charge sensitive amplifier, used in conjunction with semiconductor de­

tectors [24], has a large input impedance, predominantly capacitive, and is 

used for energy analysis. The high impedance is obtained by having a low 

noise FET on-board the amplifier. The amplifier used for this work was the 

ORTEC 142A. It is optimised for low noise and fast timing, <5ns [25], and 

for a detector with a capacitance <100pF.

2.5.2 Pulse Shape

The preamplifier output pulse shape depends strongly upon the point of 

interaction, but will lie between the two extremes (a) and (b) of Figure 2.12.

As X-rays may interact at any point within the bulk, the generated charge 

carriers’ drift distance may vary widely and so the shaping time must be
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x= d etector  width

vd= drift velocity

Figure 2.12: Expected charge pulse shapes in an ideal detector of pla­

nar geometry for (a) an interaction in the central region and (b) an 

interaction near one of the collection electrodes.

optimised. The “rise time” of the voltage pulse depends mainly on three 

things: 1) charge transit time, 2) the integration time constant from the 

amplifier input impedance, and 3) the amplifier’s rise time. For a standard 

planar detector, the equivalent circuit may be drawn as in (Fig 2.13):

For a planar detector with active surface area, A, depletion width, W, 

and to tal thickness D, with material of resistivity p, one may construct the 

following relationships. The depletion zone capacitance, CG, may be written 

as:

C0 =
esA
W

(2.33)
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V W H o

Cs

c0

Figure 2.13: Simplest equivalent circuit of detector with planar geom­

etry. The ohmic resistance of the reverse biased junction is not shown 

here due to its very high value.

The undepletioned zone resistance, Rs, may be calculated using:

furthermore, the undepleted zone capacitance is given as:

Knowing these values allows one to calculate the charge from the voltage

(2.35)

pulse by:
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v(‘> - 5TGe(,)'  c ^ c , f . ,m  (2'36)

where Ac is the amplifier gain and C*=C0+CU, where is the amplifier 

input capacitance.

2.6 Summary

Having gained an appreciation of silicon detector material and how one may 

fabricate devices, extract signals, and interpret different types of interactions, 

one may now consider irradiation of devices, p-n junctions fabricated on 

float zone silicon are used for the work in this thesis. Charge collection by 

manipulation of depletion width is discussed in Chapter 4. X-rays are used to 

analyse devices here, although the interaction within the bulk of other types 

of radiation is important as it allows one to understand the mechanisms that 

occur within the detector.

38



Chapter 3

D etector Irradiation

3.1 M otivation

Semiconductor detectors are used over a wide range of fields, from medi­

cal imaging to particle physics. Common to all applications is exposure to 

radiation-induced damage. W ithout protection from continuous exposure to 

the radiation damage effects the detector performance would deteriorate and 

eventually the detector would fail completely. In order to increase the resis­

tance to radiation, semiconductor detectors are tested with various forms of 

ionising radiation and their responses monitored, with the aim of revealing 

ways to make them more robust. Different types of radiation have different 

effects on the semiconductor material depending on the energy of the particle 

involved in the interaction and its charge. The characteristic damage to the 

periodic lattice induced by particular radiation must be identified. If an un­

derstanding of how it affects the signal can be obtained it may be possible to 

neutralise contributing defects. The methods used in this report include I-V 

measurements, Microwave Absorption, Deep Level Transient Spectroscopy
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and the Transient Current Technique, the basic principles of all of which are 

introduced in this chapter.

3.2 Radiation Defects

As particles penetrate the detector, the release of energy may displace atoms 

from the silicon lattice, leaving lattice vacancies and interstitials (see Fig.3.1).

• t •
vacancy

• ' •
w  ^  in terstitia l

• • •

Figure 3.1: Schematic of irradiated silicon lattice.

These, and other defects resulting from the formation of defect complexes 

(clusters), have energy levels within the band gap and act as electron and 

hole traps. As an ionising particle passes through the silicon, for every 3.6eV 

energy it loses on average, an electron hole pair is produced. An electron may 

travel across the forbidden gap leaving behind a hole carrier. If the bandgap 

is devoid of defects the electron and hole may pass easily through the lattice

high energy  
traversing  p a rtic le
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to the contacts to be interpreted as signal charge. If the silicon has been 

irradiated and has hence suffered radiation-induced damage in the form of 

lattice defects, the band structure will be altered. Radiation-induced defects 

have associated energy levels which lie within the bandgap and each defect 

has a distinctive energy, and individual, tem perature dependent electron or 

hole capture and emission cross-sections. For a defect level below the con­

duction band but above the Fermi level the probability of (vacancy related) 

electron capture is high, whereas for a defect level above the valence band 

but below the Fermi level,(interstitial related) hole capture is more probable 

(Fig.3.2).

Ec 

Ef 

Ev

Figure 3.2: Schematic of some of the radiation-induced trap  levels in 

the silicon energy band.[26]

Electron Traps (Vacancy Related)
V6- very shallow 
CiOs(B)Ec-0.11eV 
VoEc-0.17eV 
V2(=/-) Ec-0.22eV
V2(-/0) Ec-0.4eV (Cured by annealing)

Cj Ev+0.28eV (Cured by annealing) 
C ft  Ev+0.36eV

Hole Traps (Interstitial related)
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Defects are free to move in the crystal lattice and can form complexes 

with each other. Although a wide spectrum of defect energy levels has been 

identified across the bandgap in silicon [10] this work concentrates specifi­

cally on the di-vacancy V2 , and the complexes with oxygen, Vo, and carbon, 

forming Q-O*. The former has an energy which lies 0.17eV below the con­

duction band and can be annealed out while the latter lies 0.36eV above 

the valence band. These complexes have different cross-sections and hence 

a different capacity to absorb carriers. They also have a charge which will 

determine which type of carrier they may absorb. The cross-section and 

charge of a trap will change depending on what type of carrier is trapped. 

Knowing what defects are present after irradiation and how these affect the 

detector performance is of paramount importance. By analysis it may be 

possible to determine how to neutralise degrading effects that defects have 

on the semiconductor detectors and enhance the beneficial effects.

3.3 Preventions and Cures

As different types and energies of radiation affect a semiconductor in dif­

ferent ways, extensive investigations have been performed by many groups, 

in particular by the ROSE Collaboration (RD48, CERN) [27]. The Non- 

Ionising Energy Loss (NIEL) hypothesis [28], introduced below allows one 

to normalise the effects of given fluences of different types of radiation to an 

equivalent fluence of IMeV neutrons by scaling by a “hardness” factor given 

in Figure 3.3 [10]. One can imagine a situation where the optimisation of 

a detector for a particular radiation environment is possible. Adding impu­

rity oxygen to the silicon has been shown to prolong the detector’s lifetime
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against proton and pion bombardment [10]. The oxygen, however, appears 

to have no significant effect against IMeV neutron irradiation. At a macro­

scopic level one can also improve the performance of silicon detectors by 

altering the temperature of operation. An example of this is the “Lazarus 

Effect” , studied by the RD39 Collaboration, CERN [29]. Investigation of 

this effect makes up a large portion of the work described in this thesis and 

is introduced here, with the author’s experimental results and conclusions 

shown later.

3.3.1 NIEL Scaling Hypothesis

Silicon semiconductor detectors used in high radiation environments en­

counter hadronic and leptonic particles. Charged hadrons interact via the 

Coulomb mechanism at lower energies and cause ionisation of lattice atoms 

in a process which is reversible in silicon. Neutrons interact with the nucleus 

and react via elastic scattering and nuclear interactions above 1.8MeV. These 

two types of radiation affect the silicon in different ways at different energies 

and fluences, but they may be compared by the NIEL hypothesis. The NIEL 

hypothesis assumes that any displacement damage induced in the material 

by irradiation may be scaled linearly with the amount of non-ionising energy 

imparted in the collision. Neither the spatial distribution nor the annealing 

of the defects contradicts the hypothesis.

Each interaction releases a Primary Knock-on Atom (PKA) with recoil 

energy, E#. The proportion of the recoil energy that contributes towards 

the displacement damage may be calculated using the Lindhard partition 

function, P(E«)[28]. Using this function the NIEL can be calculated and
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Displacement damage in Silicon 
for neutrons, protons, pions and electrons

protons
\

neutrons: Griffin + Konobeyev + Huhtinen \
 protons: Summers + Huhtinen

pions: Huhtinen 
electrons: Summers

elec trons

to 10 109 I0-8 I0-7 10-6 10'5 to-4 10‘3 10‘2 10 1 10° 10‘ 102 103 
E(MeV]

A. Va.ulescu A G. Undstroem

Figure 3.3: Displacement damage function, D(E), in silicon show­

ing the “hardness factor” values one may use to normalise radia­

tion dose for pions, protons and electrons to that for IMeV neutrons

[30] [31] [32] [33] [34],
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expressed as the displacement damage cross-section, D(E), given by:

D(E) = Y ,  M E )  f  f„(E, E R)P (E R)dER (3.1)
I/ J 0

This equation represents the damage done by all possible interactions, 

i/, with cross-section cr„, between an incoming particle with energy, E, and 

the silicon lattice. iv represents the probability of generating a PKA with 

recoil energy E^. The electric field inside a detector, operated under reverse 

bias, extends from a maximum at the p+ contact, and as the bias voltage 

increases, the field extends through the n-type bulk, with a minimum at the 

n+ contact. The full depletion voltage is proportional to the square of the 

detector thickness and may be written as:

Vaep =  (3-2)

This remains true even after the space charge region sign inversion, the 

removal of donors, and an increase in the concentration of acceptor defects. 

In addition to “beneficial annealing” , (short term annealing of some of the 

radiation damage over a time scale of the order of days), the radiation dam­

aged silicon also exhibits long term (over a timescale of months to years) 

so-called “reverse annealing” , which is in fact detrimental to the detector 

performance. The latter is strongly linked with defect kinetics and hence 

with temperature, permitting the control of the time scale of the reverse an­

nealing by cooling. The timescale of reverse annealing may be increased and
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its effects deemed negligible if the device is cooled to -10°C. Employing the

IMeV neutron equivalent fluence, ij)eq, and the current related damage factor 

a , the leakage current is related to the temperature by [10]:

Leakage current is discussed in more detail in Section 3.4.1. contribution 

due to radiation damage may be calculated by:

where I is the measured leakage current at full depletion, V the volume, 

ipeq the IMeV neutron equivalent fluence, and a  is a current related damage 

factor that allows scaling. For n-type silicon at 20°C, o:=8.0xl0-17Acm-1 

[35], below type inversion fluence. This depends heavily on detector geome­

try, and hence it is important that a guard ring structure is used to define 

clearly the detector volume. The real power of the NIEL hypothesis is the 

ability to compare different types of irradiation, but furthermore, by mea­

suring the increase in leakage current caused by the irradiation of the device 

the radiation dose may be calculated directly.

3.3.2 Oxygen Enriched Silicon

The RD48 Collaboration, of which the University of Glasgow is a member, 

is striving towards the development of more radiation-hard silicon using var­

ious techniques of defect engineering through ion implantation. From an

(3.3)

I  = aipeqV (3.4)
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in-depth investigation of defect production through irradiation, the Collab­

oration postulated that a “getter” agent in the material could be used to 

collect the defects and improve detector performance. Of the various agents 

tried, oxygen proved to be the most successful. One may compare the dam­

age by using the rate at which defects are introduced into the material. A 

pnn diode detector will undergo a transformation to a ppn diode beyond a 

certain dose. The space charge sign inversion results from the donor concen­

tration being compensated by radiation-induced acceptors, with the result 

that Ne/ /  goes through a minimum, where the conduction of the material 

switches polarity from n-type to p-type. Continuing to irradiate beyond this 

point introduces further deep acceptors at a rate /?, which may be extracted 

from the slope of a graph of Ne/ /  vs IMeV neutron equivalent fluence. Figure 

3.4 shows such a graph for oxygen enriched diodes irradiated with neutrons, 

pions, and protons.

The oxygen enriched diodes perform well when irradiated with protons 

and pions, charged particles. However, the (5 value for neutron irradiation is 

unchanged. The difference in response to charged particles and to neutrons 

is not yet understood.

3.3.3 The Lazarus Effect

Silicon semiconductor detectors are generally operated at room temperature 

or cooled to around -10°C. This reduces the leakage current and hence the 

noise. Another consequence of the reduced temperature is the reduced ther­

mal energy in the lattice. At room temperature the electrons and holes have 

sufficient energy to. trap and de-trap over a timescale of seconds and minutes.

47



3.3 P rev en tio n s  and  C ures

I
Eo

(NH
o

St!<D

7
standard FZ6 400A /

o neutrons 
n pions 
a  protons

5 oxygen rich FZ
•  neutrons 
■ pions 
a protons

300 8 CO4

3 200 >

2
100

1

0.5 2 2.50 1 1.5 3 3.5
Oea [1014cm-2]eq

Figure 3.4: Comparison of standard float zone silicon and oxygen en­

riched silicon when irradiated with protons, pions, and neutrons [10].

The trapping time, t *, and de-trapping time, r^, are tem perature dependent 

as described by [36] [37]:

Tt a„Vt(T)Nt (3'5)

and

Td — --------------- / Z f '\ (3-6)
o„VtN cexp  ( -kJ*)
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where the subscript v denotes either electrons or holes and ov is the cross- 

section, N t is the concentration of deep levels and equals the total number of 

deep traps minus the number of filled traps, NCjU is the density of states in 

the conduction or valence band, E* the trap energy level in the band, Vt the 

thermal velocity, k the Boltzmann constant and T the temperature. The de­

trapping time depends exponentially on temperature. As the temperature is 

decreased, the time for the trap to empty increases. By lowering the temper­

ature to liquid nitrogen temperature, a trap may remain full on a timescale 

of many days and so becomes essentially frozen. Taking as an example the 

main traps studied here, as described in Section 3.2, it is instructive to notice 

the variation across the band gap, Table 3.3.3:

Comparison of Trapping and De-Trapping Times of Defects

Defect E((eV) 7~tn [s] TtP[s] Tdp[ s]
W -/0

CjOj

Ec-0.42

E„+0.36

3.4xl0-7

1.85xl0-4

6.3xl05

7.26xl06

5.3xl0-7

2.41xl0-7

2.7xl05

2.6xl013

Table 3.1: Comparisons of trapping (subscript n denotes electron val­

ues) and de-trapping (subscript p denotes hole values) times of relevant 

defects as a function of the position in the bandgap.[38][39][40].

The values shown in Table are calculated for a detector irradiated to 

a fluence of $ n=1.4xl014cm-2 and operated at 130K. A large fraction of 

the traps will become filled and, as the de-trapping time is comparatively 

long, the trap is essentially inactive. If all the traps are full and an incident 

ionising particle produces free carriers in the detector, they will no longer 

be trapped by the radiation-induced defects, but will contribute fully to the
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collected signal. The efficiency of a detector is defined in terms of how well 

it collects charge, its Charge Collection Efficiency (CCE). For this work, 

an unirradiated silicon device is used as a reference detector. One assumes 

that such a detector is 100% efficient when fully depleted so that when a 

pulse height spectrum is taken of a fully absorbed ionising particle, the peak 

position corresponds to the energy of the incident particle.

The CCE of the device for minimum ionising particles is:

where W  is the active thickness, d is the total thickness of a detector, and 

the exponential term holds the time dependence: Ttrap is the mean trapping 

time for electrons or holes and tdrift is the carrier drift time through the 

detector. The active thickness of the detector, referred to as the Depletion 

Width, W, depends on the bias voltage, V, applied to the detector and on 

the space charge density, Nef f ,  and is given by [41]:

where e0 is the relative permittivity of free space and e is the relative 

permittivity of the material. Prom the de-trapping time Equation, 3.6,

(3.7)

(3.8)

(3.9)
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where E(rap is the energy level of the trap, k the Boltzmann constant and 

T  the tem perature. From measurements made on irradiated devices [43], 

the optimum operating tem perature for maximum CCE at minimum bias 

voltage is 130K (Fig. 3.5).
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Figure 3.5: Graph showing various measurements made in irradiated 

devices [43]. The maximum CCE occurs at around 130K in all bias 

voltage cases, irrespective of the dose.

3.3.4 Experimental Set-up

The Lazarus Effect gives the optimum tem perature at which the least bias 

voltage is required to deplete fully a silicon semiconductor detector. The 

following sections in Chapter 3 presents details of measurements th a t were
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made using 400/im silicon detectors irradiated with 450GeV Pb ions at the 

CERN-SPS facility. The lead beam was delivered to the experimental hall 

and beam diagnostic measurements allowed a calculation of fluence. The 

beam size was a Gaussian form of 1mm allowing each pad to be irradiated 

separately to a different fluence. A summary is shown in Table 3.2.

The devices that were investigated are DC-coupled A l/p+/n /n +/A l im­

planted silicon detectors fabricated at Brookhaven National Laboratory 

(BNL), New York. The silicon is phosphorus doped and the backside, n+, is 

uniformly implanted. The crystal is started on FZ n-type material oriented 

in the <111> plane1. The wafers are 100mm diameter and are 400/im thick. 

The passivation layer is 4700Angstroms thick Si02 after 6 hours at 1100°C 

in O2 and TCA2 bath. The aluminium layer is 2500Angstroms thick on both 

sides and forms a mesh to allow laser penetration after fabrication. The 

detector was in a 3x3 array format consisting of 9 individual silicon diode 

detectors with active areas of 1.5x1.5mm2. For the investigation with the 

techniques described here, it was necessary to cleave the devices into single 

pad diodes. The devices were irradiated at CERN in a specially constructed 

cryostat operating on the same principle as described in [44]. A picture of 

the cryostat after installation is shown in Figure 3.6.

The cryostat is operated with a continuous flow liquid nitrogen supply to 

maintain a controlled temperature. The beam entered the cryostat through 

a thin stainless steal window. Scintillation counters mounted along the beam 

axis and an internal detector provided an event trigger. Measurements were 

made on the detectors in situ. By lowering the beam intensity by inserting a

1The BNL group have most experience with crystals grown in this way.
2a carbon containing material.
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Detector and 
trigger

Scintillation
Counters

Cryostat

— V . -I - _ .

Nitrogen flow line

Figure 3.6: The image on the right is the cryostat used in the CERN 

SPS test beam area to irradiate silicon diodes held at near liquid nitrogen 

temperature. The left schematic shows the set-up inside the cryostat and 

also the trigger scintillation counters.

5cm Aluminium target 150m upstream from the experimental hall, reducing 

its energy to 300GeV, at pre-determined irradiation doses, it was possible 

to perform the voltage and tem perature scans which are discussed in depth 

in Chapter 5. The scintillation counters were used for particle counting and 

triggering. LabVIEW was used for data acquisition and on-line analysis as
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well as to control various detector parameters.

3.4 D etecting Defects

The presence of defects induced by radiation in a detector may be inferred 

from the increased leakage current and loss of signal amplitude. However, 

one must employ special techniques to investigate the damage to the lattice 

at the microscopic level. Combining the macroscopic with the microscopic 

data, one may build a picture of what is happening inside the detector.

3.4.1 I-V Measurements - Leakage Current

The leakage current in a diode that is operated in reverse bias mode is not 

only due to impurities in production but also to the defects that irradiation 

introduces. As the dose of irradiation increases, so does the leakage current. 

The leakage current has two components: bulk generation current, Ibuik, and 

surface generation current, ls. The bulk generation current is due mainly to 

defects that exist close to midgap that contribute to electron-hole capture 

and re-emission. The surface current is due mainly to surface states, again 

caused by defects. These may be introduced by dangling bonds at the end of 

the periodic lattice, but are mostly due to the Si02~Si interface states. While 

surface damage is not an issue with neutron irradiation, it is with proton and 

pion irradiation, although the surface current produced is still much smaller 

than the bulk current. Only defects in the space charge region, deep donors 

or acceptors, contribute to the bulk current. As the bulk current is induced 

in the active region, it is also related to the active thickness, and hence the
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applied voltage by:

Ibulk OC W  OC W  , for V  <  Vdep (3.10)

Equation 3.10 saturates when the voltage reaches the depletion voltage. 

An associated generation lifetime, r g, may be defined from:

The strong temperature dependence of the leakage current is a bonus 

to operation at cryogenic temperature. This dependence may be written in 

terms of the leakage current I(Tre/) at a reference temperature T ref  as [39]:

Performing I-V measurements on a diode allows one to compare with the 

perfect diode situation. From the leakage current one may calculate the dose 

of radiation that a detector has received.

3.4.2 Deep Level Transient Spectroscopy (DLTS)

This spectroscopic technique is used to characterise deep level defects in semi­

conductor materials, providing an individual spectral line response for each 

deep level detected. A trap ’s cross-section, concentration, and thermal acti­

vation energy may be determined by performing temperature scans. DLTS

(3.11)

I(TreJ) =  / ( T ) ( ^ ) 2e*P( - | ^ r re/ -  1 ) ) (3.12)
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uses capacitance, voltage or current transient signals resulting from pulsed 

changes in bias voltage applied to the device.

The junction will be held initially at reverse bias, as shown in Figure 3.7, 

at this point the states in the space charge region remain free of electrons. 

The voltage is then pulsed more positively with the consequence of reducing 

the size of the depleted region, (space charge), allowing majority carriers to be 

available for capture in the previously depleted region. For this example, the 

defects will be below the Fermi level and hence occupied with electrons. The 

trapped charge has the effect of altering the capacitance of the space charge 

region. When the pulse is removed, and negative bias voltage reinstated, the 

trapped charge is re-emitted into the conduction band, if thermal excitation 

is sufficient, and swept away by the potential across the device. Emission 

from traps reduces charge compensation and also space charge region width 

while increasing the capacitance. The time constant for this transient is given 

by the reciprocal of the emission rate of the defect, en. The characteristic 

time constants and amplitudes of capacitive transients are used to evaluate 

defect parameters.

The response time of the trapped electrons is relatively slow and heavily 

temperature dependent. As the electrons are emitted into the conduction 

band, a net positive charge remains, increasing space charge density. The 

difference between the two states of the system is measured many times and 

averaged. One may perform these measurements over a range of temper­

atures, analysing how the trap behaves and how its emission time varies 

with temperature. Measurements were made on a non-irradiated sample as 

described in Section 3.3.4. Figure 3.8 shows the DLT spectra measured.
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.Thermal emission

Quasi-Fermi
level

Fill pulse
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Figure 3.7: DLTS process showing initial forward bias pulse, then re­

turning to negative bias and the corresponding capacitance transient

[45].

The peaks correspond to the deep levels E i= E c-0.37eV and E2= E c-0.38eV 

with capture cross-sections of cri=3xl0~14ciri2 and cr2= 3 x l0 - 12cm2 respec­

tively, determined from Arrhenius plots. Using a software based evaluation 

library, one may discern th a t these levels correspond to the impurities P t 

and Ti, at low concentrations, Nm/N p<10-5 .

Silicon samples were irradiated with 450GeV Pb-ions a t the CERN SPS
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F ig u re  3.8: DLT spectra measured on a noil-irradiated diode a t differ­

ent injection pulse duration and corresponding “lock-in” frequencies.

facility to the fiuences shown in Table 3.2. Figure 3.9 shows DLTS signals for 

the moderately irradiated S07 and the non-irradiated device S21 is plotted 

in the same spectrum for comparison.

The irradiated device shows very different DLTS results than  its non­

irradiated counterpart. By varying tem perature, excitation pulse duration, 

and lock-in frequencies, one may identify several peaks. From Arrhenius plots 

and evaluation software routines, one may identify the m ajority carrier traps 

with activation energies E != E c-0.16eV, E2=Ec-0.195eV, E3= E c-0.24eV, and 

E4= E c-0.46eV with corresponding capture cross-sections cri=5xl0~16cm2, 

a 2= l . l x l 0 ~15cm2,cr3==1 .2x lC r15cm2, and <74= 5 .6x l 0 - 16cm2. Comparing the 

results with the evaluation software package and previous publication [47] 

results, one may ascribe the defects as follows: Ei is an A centre (VO), E2
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Figure 3.9: DLT spectra measured on the Pb-ion irradiated sample S7 

and compared with unirradiated sample S21.

is caused by singly charged vacancies (V~), E3 is related to the di-vacancy 

(V2=//_) and E4 is due to the E centre (PV) and di-vacancy (V2°/~). The 

DLTS seems to indicate tha t Pb-ion irradiation induces point like defects 

with vacancy associated centres, with the V2=^~ level dominant. For this 

type of irradiation point defect complexes and clustering appear to be the 

dominant defect types.

Figure 3.10 allows a comparison with proton, pion and neutron irradia­

tion. The defects VOj, Q C S and QO* are a ttributed  to point defects in the 

crystal lattice as expected from the unperturbed shape of the DLTS-signal
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Figure 3.10: DLTS comparison [46]. for different irradiation sources.

3.4.3 Transient Current Technique (TCT)

The Transient Current Technique is an extremely powerful tool for analysing 

a single type of carrier in a detector. Applying a short red laser light pulse 

with wavelength A =  660nm to one side of a device, penetrating ~5/im  into 

silicon, one effectively injects non-equilibrium charge carriers. By illumi­

nating the p-side, an excess of carriers will be produced very close to the 

p+-contact. The electrons have only a short distance to travel before col­

lection. However, the holes have much further to travel across the device. 

One may then use this technique to consider one type of carrier at a time. 

The transient signal is recorded using PC based d a ta  acquisition software
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that allows averaging over the sample. For this to be successful one needs 

electronics with a fast rise and fall time, of the order of < 2ns. The laser 

pulses need to be shorter than 5ns so that one may assume a 5-pulse approx­

imation for carrier generation in the detector material. One may distinguish 

between laser illumination of the back (hole drifting), and the front (electron 

drifting) so that the transient signal observed is either the hole current or 

electron current, respectively. The current pulse slope should in fact give 

an indication of the electric field strength across the device [51]. The pulse 

width for the electrons should be 2 to 3 times smaller than that for holes 

due to the difference in electron and hole mobility. TCT measurements were 

made on devices described in Section 3.3.4. The detectors were irradiated 

with varying doses and the results from TCT measurements shown in Fig­

ures 3.11, 3.12, 3.13, 3.14, 3.15, and Figure 3.16. These give an indication of 

excess carrier behaviour. SA was illuminated from p-side, electron drift. A 

second peak appears as bias voltage is increased but eventually a single peak 

evolves as the two depletion regions merge. SB is more heavily irradiated and 

illumination was from n-side, hole drift. Hole transient peaks are wider due 

to their lower mobility than electrons. SC is illuminated from the p-side. The 

sample has been irradiated to lx l0 14cm2 IMeV neutron equivalent fluence. 

SD was also illuminated from the p-side and has been irradiated just beyond 

type inversion. SE was illuminated from p-side and has been irradiated to 

5xl014cm2 IMeV neutron equivalent fluence. The laser injection current has 

also been increased from that of the previous measurements. SF is the same 

sample as SE but the laser injection current has been increased again, as has 

the bias voltage. The result is that the second peak is not clearly observed.
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Figure 3.11: Sample A (SA) illuminated from p-side, electron drift

3.4.4 Microwave Absorption (MWA)

The microwave transient absorption technique is used to determine excess 

carrier lifetimes in a semiconductor detector. Figure 3.17 is a schematic 

representation of the experimental set-up for measurements on silicon diodes.

The Microwave absorption technique allows an investigation into device 

characteristics and structural imperfections of both the surface and bulk [48]. 

Measurements were carried-out by placing parallel excitation-probes over the 

sample. The laser light pulses were of the order of 10ns and the wavelengths 

used for excitation were 532nm and 1064nm. By using dual excitation wave­

length modes a simple nomograph technique [49] [50] allows the separation 

of surface recombination rate and bulk carrier lifetimes. The short pulse 

duration permits 5-pulse approximation of the excess carrier generation in
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Figure 3.12: Sample B (SB) illuminated from n-side, hole drift.

both the surface and bulk. The microwaves have a wavelength of 3cm and 

enter orthogonal to the laser light pulses. The microwaves check the carrier 

concentration. As their frequency is fast, the carriers move in their field ar- 

round their locality. This process causes the absorption of microwave power 

but it does not redistribute the carriers. The period of microwaves is longer 

than the carrier scattering time and therefore the carrier is influenced by 

microwave electric field. However, the drift length is so small th a t it can be 

neglected. (If a higher power is applied then the drift could be comparable 

with the magnitude of micro-inhomogeneities and then the field from the 

microwaves could play a more im portant role) The devices used in this re­

port typically had a mean carrier lifetime value of ~40/xs before irradiation, 

as shown in Figure 3.18. Non-irradiated silicon diodes have been compared
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Figure 3.13: Sample C (SC) illuminated from the p-side.

with diodes irradiated with 450GeV Pb-ions. It is clear th a t the irradiated 

devices have greatly reduced excess carrier lifetimes due to the creation of 

radiation-induced defects th a t act as charge traps.

The longer the mean lifetime, the more chance a charge carrier will have 

of being collected. The drift time, r ,  may be expressed as:

t =  N  \ 7 (3.13)
V th

where is the trap  concentration, a  the trap  cross-section, and 

the therm al velocity of the carrier. Again the importance of tem perature is 

emphasised here. After being created, the particle drift time depends on its 

mobility, fi, and the electric field, E, applied across the device. The drift
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Figure 3.14: Sample D (SD) illuminated from the p-side. 

length, L, may be expressed as:

L =  f i r E  (3-14)

These quantities determine the collected signal charge per unit drift 

length, Q, through the Hecht relation [12]:

Q =  Q o e x p ( -^ r )  (3.15)

Excess carriers are generated by laser light of X = l . l f i m .  Carrier transport 

is seen as current pulses recorded on a sampling oscilloscope. Assuming tha t
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Figure 3.15: Sample E (SE) illumination from p-side.

at time t = 0  there are no carriers, and a t time t there are n(t) carriers, one 

may write:

n(t)  =  n0e x p (— )
T

(3.16)

where t  is the time of measurement and r  the carrier lifetime. The number 

of photons injected per second into the device, P, is controlled by the power 

of the laser, P opt, given by:

P  =  ̂  (3.17)

At steady-state, carrier generation will equal carrier recombination. If
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Figure 3.16: Sample F (SF) illuminated from p-side.

Figure 3.17: Schematic representation of the MWA technique experi­

mental set-up showing a diode under illumination.

the diffusion length is very much greater than the mean light penetration 

depth (1 /a ), then the generation current, G, will be:
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Figure 3.18: Excess carrier decay kinetics obtained on both irradiated 

and non-irradiated samples. Samples S21-S27 are non-irradiated diodes, 

while the others have various dose levels as documented in Table 3.2.

(3.18)

where D is the diffussion constant, L the diffussion length, W the detector 

thickness and the quantum efficiency, 77, is given by:

G = 7/ Popt
W L D l w
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Relative Doses and Excess Carrier Lifetimes on Irradiated Diodes

Sample name Fluence (P b /cm 2 Lifetime (/zs)

SI 0 45

S5 6.5xl09 7

S7 2.6xl09 1.5

S8 4.8xlOu 0.96

S9 2.3xl010 34

S21 0 43

S25 0 32

S27 0 35

Table 3.2: Irradiation fluence and carrier lifetime for each sample mea­

sured.

r, =  ^  (3.19)
Q Popt

where lp is the photocurrent between the electrodes of the device. Com­

bining these equations gives an expression for Ip:

T)P0pt [l t E

I” = qi ^ - r  (3 -20)

The response time is limited by the diffusion and drift time in the de­

pletion zone. A caveat must be given concerning the capacitance in the 

depletion zone. If the depletion layer is too wide, then transit time effects 

limit the detector’s response. If the depletion layer is very narrow, then the
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excess capacitance will be dominant and only RC effects will be seen, which 

may lead to mis-interpretation of decay time for carrier lifetime. Ideally a 

depletion layer transit time is desired that is equal to about one half of the 

modulation period [52].

3.5 Summary

The various characterisation techniques described here are used extensively 

for irradiated and non-irradiated diodes. DLTS, while yielding important 

information regarding defect levels, does not give any indication of the electric 

field distribution in the device, unlike the TCT measurements. DLTS has 

been applied here to Pb-ion irradiated silicon samples and compared with 

proton, pion and neutron irradiation. The Pb-ions induce point like defect 

complexes and clustering. Applying TCT to proton irradiated silicon samples 

has shown the existence of a double junction beyond type inversion fluence. 

The MWA technique is a direct, non-destructive measurement of the excess 

carrier lifetime of a device. These techniques form an arsenal with which 

to assault the detector’s surface and bulk to determine the causes of the 

deterioration of signal. Probing the Pb-ion irradiated samples has shown 

that the excess carrier lifetime is reduced dramatically with high fluence. 

However, all these techniques require charge carrier injection which alters 

Neff .  This effectively changes the charge in the space charge region. By 

flooding the device with carriers and observing their behaviour, one obtains 

a greater understanding of what is happening in the bulk but not how the 

device will behave under experimental conditions. Chapter 4 describes a 

technique for characterisation using X-ray photons that do not disrupt the
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sign of the space charge region appreciably yet yield spectroscopic analysis 

of the entire bulk of the detector.

71



Chapter 4 

Double Junction in Irradiated  

Silicon

4.1 In Situ Irradiation of Cryogenic Silicon

One of the aims of the RD39 Collaboration was to compare the irradiation 

of silicon detectors at room temperature with irradiation at cryogenic tem­

peratures. The motivation for this measurement was to test the hypothesis 

that the Lazarus Effect may extend the lifetime of an irradiated device, and 

furthermore to show that irradiation at cryogenic temperatures would not be 

detrimental to detector performance. In what follows, a description is given 

of the author’s contributions to these measurements, which included active 

participation in data-taking at the SPS, in particular assuming responsibil­

ity for monitoring of the devices during irradiation and analysis of test beam 

data that are presented here.
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4.1.1 Experimental Set-up

A 400/mi thick 3x3 silicon pad detector matrix was placed inside a liquid ni­

trogen (LN2) continuous flow cryostat [53]. The active area of each pad was 

1.5x1.5mm2. Irradiation was carried out at the CERN-SPS, with a primary 

proton beam of 450GeV. The SPS delivers the beam to the test area in 14 

second spills in which the beam lasts for a 2  second burst and the remaining 

1 2  seconds are empty. As described below, the detector was irradiated and 

its response to MIPS measured in situ in order to provide measurements at 

ever increasing fluences. At each fluence, voltage scans and charge signal 

time dependence measurements were taken of the device being irradiated. 

The voltage was adjusted and the data were recorded at 3 minute intervals 

to observe how the charge collection efficiency changed with time. Between 

measurements the detector was left at OV bias for stabilisation by filling of 

charge carrier traps. For the voltage scans, the beam intensity and energy 

were reduced by inserting a 5cm thick aluminium target at the proton beam 

focus 188m upstream from the detector, producing a 300GeV mixed proton 

and pion beam [54] with a Gaussian beam profile of transverse r.m.s., 

ox ~  oy ~  1mm. The beam was centred on the upper central pad of the 

3x3 array and therefore the fluence on the irradiated pad can be considered 

uniform. The detector signal was read out using a charge amplifier (Amptek 

A225 [55]) placed outside the cryostat. The measured electronic noise of ~  

2500 [43] electrons FWHM was dominated by the effect of the 30cm coaxial 

cable between the detector and the amplifier input. The signal was then 

fed into a sampling oscilloscope (LeCroy 9350) which built histograms of 

the charge spectrum. Detector leakage current and temperature were moni­
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4.1 In Situ  Irradiation of Cryogenic Silicon

tored by a Lab VIEW Slow Control software package, providing a warning of 

temperature increases over 2K.

4.1.2 Temperature Scan Results

In order to meet Goal 1 of the RD39 objectives, irradiation of a silicon 

detector was performed at both room temperature [41], and at liquid nitrogen 

temperature. Performing voltage scans at different temperatures gives some 

indications of relevant annealing effects, as illustrated in 

Figure 4.1.

The scan at 83K before warming, Figure 4.1(a), shows that the CCE 

peaks around 67% at 200V bias following a fluence of 1.2xl015p/cm 2. For 

full depletion prior to irradiation, only 50V were required. At a fluence of 

1.2xl015p/cm 2, the sample was annealed at 207K for 1 hour. From this ben­

eficial annealing there is a marked improvement in CCE as shown in Figure 

4.1(b). The detector was then cooled back down to 83K. The CCE again 

increased to 95% for 200V bias (Figure 4.1(c)). An interesting phenomenon 

is the signal time dependence [56]. At the lower fluence of 6.5xl014p/cm 2, 

the time dependence is not very pronounced. However, at the higher value 

of 1 .2 x l 0 15p/cm 2 a stable value of the CCE is not reached until 15 minutes 

have passed, (Figure 4.1(d)).
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Figure 4.1: Graphs of the CCE.(a) Calibration curve with non- 

irradiated device and heavily irradiated device showing the CCE before 

annealing for 1 hour at 207K. (b) The CCE of the heavily irradiated 

sample taken as tem perature is increased, (c) Comparison of the CCE 

of the heavily irradiated sample before and after warming, (d) Time 

dependence of the CCE is shown to be connected to the dose of irradi­

ation.

4.1.3 Interpretation of the Results

Even after beneficial annealing, and the appliance of a high bias voltage, 

100% CCE is not obtained. Cooling down to 130K gives the optimum con­

ditions for minimum bias voltage with maximum active thickness, while re-
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ducing the leakage current to negligible levels by freezing out traps. The 

problem is the change of Ne// .  Irradiating beyond type inversion, Ne/ /  be­

comes more and more positive. The highest electric field gradient is no longer 

at the p+-side but instead is found at the n+-side. Damage induced in the 

detector bulk by the irradiation prevents the field from being uniform across 

the device. As charge collected is given by Q.(d/D) (c.f. Equation 2.28), 

e-h pairs undergoing an intricate diffusion/drift motion, possibly involving 

trapping and de-trapping, will not contribute all of the charge deposited from 

an interaction in the detector medium on the electrode. In fact, the picture 

is more complicated since there will be a high field region at both front and 

back junctions dropping to a minimum in the damaged bulk. This “double 

junction” is discussed in detail below.

4.2 The Double Junction

The double junction has been observed previously in moderately irradiated 

semiconductors by the Lancaster group, (A. Chilingarov et al. [57]), follow­

ing even earlier hints by Z. Li et al. [58]. Later results published by Z.Li and 

V. Eremin [59] used TCT experimental techniques to map out the electric 

field across silicon devices, showing the two high field regions. Complemen­

tary to this technique, X-ray absorption measurements were performed at 

Brunei University by S. Watts et al. [60]. Within the context of the RD39 

Collaboration, a combination of measurements performed by the author at 

Brunei are discussed in detail in the following sections.
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4.2.1 Experimental Set-up

The experimental results were obtained using the Brunei University system, 

shown schematically in figure 4.2.

241 Am source 60KeV X-Ravs 

Silicon D iode D etector

Hb h

C opper cold finger

L iquid Nitrogen

Figure 4.2: Schematic diagram of the cold finger cryostat used at 

Brunei to obtain results with X-ray sources on silicon devices.

The cryostat operates using the cold finger technique. This requires tha t 

the interior chamber, where samples are mounted, must be m aintained un­

der vacuum during running. The tem perature of the sample was monitored 

using a therm istor diode, connected to a tem perature gauge, and controlled
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by varying the amount of insulation between the cold finger and the liquid 

nitrogen. It was thus possible to take measurements over a range of tem ­

peratures, maintaining a stable tem perature for each measurement to within 

2K. The radiation source was mounted over the sample, a t a distance of 

(0.5±0.01)cm. The Americium-241 source used had a perspex sheet over the 

exit aperture to prevent the o-particles irradiating the sample. Only the 

60keV 7 -rays (and lower energy L-series X-rays, Table 2.1) from the source 

interacted with the detector. The source activity was 0.4//Ci.

4.2.2 Calibration

Calibration of the set-up was performed using a non-irradiated 300/im silicon 

detector. This allows easy scaling to the 400/mi irradiated silicon device. For 

the calibration curve, Americium-241 and Barium -133 spectra were recorded 

on the MCA. These two sources were used as they gave the “cleanest” signal. 

Figure 4.3 shows the pulse height distribution from the sources. Each source 

has characteristic energies as defined in Table 4.2.2.

Characteristic Energies of Calibration Sources

Source Energy (keV)

Barium

Americium

30, 36 

60

Table 4.1: Energies emitted from sources used for calibration
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Calibration of MCA

250 300 350 400 450 500

MCA Channel

Figure 4.3: Graph showing Counts per channel vs. MCA Channel 

Number. Each channel corresponds to a particular energy, defined by 

the characteristic photo peak of each source.

4.2.3 Sample Preparation

The irradiated device to be tested was a 400/im thick, p + /n /n + silicon de­

tector fabricated at the Brookhaven National Laboratory, New York as de­

scribed in Section 3.3.4. Irradiation was performed at the CERN PS facility
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to lx l0 14cm - 2  IMeV neutron equivalent fluence. Before irradiation the de­

tector had Ne//=8.23xlOn cm-3 calculated using Equation 3.8.

As Figure 3.4 shows, as radiation dose increases, Ne/ /  decreases to a mini­

mum value. Beyond this “type inversion” point, Ne/ /  increases linearly with 

IMeV neutron equivalent fluence. As Ne/ /  increases, the magnitude of volt­

age required for full depletion also increases linearly. The sample described 

here has been irradiated beyond type inversion, so the higher electric field 

region will be at the n+ contact, as illustrated in Figure 4.5. By performing

voltage scans at fixed temperatures and temperature scans at fixed voltages,

one may examine different characteristics of the detector.

4.2.4 Analysis

The total flux of incident particles and the total number of X-rays absorbed 

by the detector may be calculated using:

_  Activity of source . .
A incident — 4 7 7 7 * 2  /

where r is the source-to-sample distance. This gives a flux of incident 

60keV photons, Ninciden*> of (47.1±1.8)Mparticles/m2/sec. The detector has 

an active area, A, of 5x5 mm2. The number of particles absorbed per second, 

Nabsorbed, is given by:

Aabsorbed =  (l 6 X p [  /i x]). N i ncidenf . A. (4.2)
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where /i is the linear absorption co-efficient of silicon for 60keV photons, 

and x the material thickness, in this case 300/im. Figure 4.4 shows th a t the 

absorption of 60keV X-rays in a 300/um thick silicon device for 60keV X-rays 

is essentially uniform throughout the bulk. As X-rays have an attenuation 

length of ~7cm  [61][62] in silicon, the dose across the entire thickness of a 

400/im silicon device will be comparable. This is of extreme importance for 

the examination of the entire detector bulk.

—• — Graph showing uniform interaction 
of 60keV X-rays across 300pm of silicon

1.0x10

6.0x10

O)-■s.
>
<DX'w'

4.0x10

0</)
0
Q 2.0x10

0 .0 -

0 50 300100 150 200 250

Penetration Depth (pm)

Figure 4.4: Graph showing penetration of 60keV X-rays into silicon. 

This was performed using Photcof (a 2D detector simulation software

package).
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At the point of photoelectric interaction of the photon, 60keV energy is 

released locally, creating around 16700 electron-hole pairs. Collection of the 

electrons and holes not only determines the charge collection efficiency of the 

device (from the response to individual photons), but can give the size of 

each depleted zone (from the measured intensity versus pulse height). For 

homogeneous interactions throughout the irradiated device, there are only 

three possible scenarios. A photon interacts either in the p+ depleted zone, 

in the dead region between depleted zones, or in the n+ depleted zone. Since 

output signal charge is only generated as the carriers move through an E-field, 

separate peaks are expected in the pulse height spectrum corresponding to 

X-ray absorption processes in each of these three regions. Interactions within 

a depleted zone will give a signal charge dependent upon how far the e-h pairs 

have travelled in the E-field. This is shown in Figure 4.5.

The count rate, the area under each peak in the pulse height spectrum, 

will give the thickness of the corresponding depleted zone. For the model 

shown in Figure 4.5 it is assumed that the contribution from the low field re­

gion is minimal. The implication of this is that 100% of the charge will never 

be collected, unless the strong fields overlap. This is verified experimentally 

in the results presented below.

4.2.5 Voltage Scans

Using the Americium-241 calibration source, voltage scans were performed 

over a range of temperatures from 207K down to 95K at intervals of ~10K. 

The detector was maintained at each new temperature while the bias voltage 

was applied and data recorded over an acquisition time of 2 0 0 s. As the de-
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A /W l-°

(b)

(c)

Figure 4.5: Possible X-ray interactions, (a) Photon interaction at the 

front depleted layer will give a signal contribution from the high E-field 

region, (b) In the “dead” low E-field region one assumes no, or very 

little, contribution to the collected signal charge, (c) Interaction in the 

back depleted region will also give a signal charge contribution due to 

the e-h movement in the high E-field.
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tector was fully annealed, the CCE from signal charge are stable values and 

did not exhibit time dependence. Performing a voltage scan, while monitor­

ing the MCA pulse height spectrum, one may observe the progression from 

under- to fully-depleted. Figure 4.6 shows the MCA photo peak position 

versus bias voltage.
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F ig u re  4.6: Multi-channel analyser data for tem perature scans a t 80V.

Peak 1 corresponds to the electric field region near the P + contact. It is 

a t a lower position, corresponding to less collected signal charge. Peak 2 

corresponds to the higher position and higher collected charge peak. The 

signal collected is from the region near the n+ contact with its higher

electric field.

The lower energy peak maintains a constant position above 40V. This 

means essentially th a t a constant signal charge is being collected from this 

region and hence the depletion width from the p-side remains constant and 

the E-field may be considered unchanging in this region for decreasing tern-

Voltage Scans

, A j

— Peak 1 132K 
Peak 2 132K 

- a-  Peak 1 154K 
— Peak 1 164K 

Peak 2164K 
Peak 1 174K 

- a Peak 2 190K
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perature and increasing voltage. The position of the higher energy peak, 

peak 2 , tends to increase as the voltage is increased. A decrease in tempera­

ture reduces the noise, making the peaks more Gaussian. At 190K peak 2  is 

broadened due to the high radiation-induced leakage current and as a result 

the Gaussian fit is not as good resulting in loss of charge signal. As voltage 

is increased it follows the same trend as the other curves for 165K and 131K. 

This increasing trend implies that the detector is collecting more charge as 

the temperature is reduced and the depletion area increases. For 131K the 

CCE increase between 40V and 160V is about 5%. The E-field from the 

n-side is still extending as the voltage is increased. This will plateau as the 

damaged detector will not allow full depletion due to bulk changes. It has 

been shown recently that the E-field may be manipulated by local charge in­

jection [40], hence dramatically altering Ne// ,  but this will not be discussed 

here.

4.2.6 Temperature Scans

Temperature scans were made while maintaining a constant voltage. The 

results exhibit Lazarus Effect characteristics, i.e. maximum depleted thick­

ness for minimum bias voltage at 130K. A change in depletion thickness is 

observed as it is underdepleted at 80V. For temperatures above 200K, the 

results are dominated by noise from the radiation-induced damage increased 

leakage current. Below 200K, the charge signal emerges from the background. 

For 80V bias and below 200K, a peak at around channel 190 rises above the 

noise. Reducing the temperature further, to below 130K, a second peak can 

be seen around channel 320, (Figure 4.7).

86



4.2 T h e  Double Ju n c tio n

Temperature scan of detector
under 80V bias

6O-1 93K 
101K 
150K 
120K 
132K

50-

40-

c  30- 
3  
0
0  20-

1 0 -

100 200 300 400

Channel Number

F ig u re  4.7: Multi-channel analyser data for tem perature scans at 80V.

These two peaks in Figure 4.7 correspond to energies of 21keV and 38keV 

respectively. Considering the interaction probability of 60keV X-ray photons 

through 400/im silicon, one finds tha t there will be a uniform distribution of 

interactions across the bulk (Fig. 4.4). Taking this into account, it may be 

postulated tha t the two peaks are in fact are due to photons absorbed in the 

two depletion regions, at the front and back contacts respectively. The rela­

tive peak positions means tha t at 132K, and 80V bias, one depletion region 

is about twice the size of the other, assuming th a t the relative probabilities
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4.2 The Double Junction

of electron and hole trapping are the same in both depleted regions for the 

homogeneously irradiated device. However, the fact that the equivalent en­

ergies collected sum to give the total incident photon energy is not entirely 

unexpected due to the fact that the device is all but fully depleted. One can 

infer that there are two well defined strong field areas, but between them 

there must be either negligible dead space or a very weak interconnecting 

field. This may be checked by considering the count rate as discussed in 

Section 4.2.7.

4.2.7 Count Rate

Interpreting the count rate data, the area under the photo peak yields infor­

mation on the size of the depletion area. Combining data from the voltage 

and temperature scans provides a collection of diagrams that act as “snap­

shots” in voltage and temperature for the depleted zone size, (Figure 4.8).
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F ig u re  4.8: Depletion width sizes estimated from photo peak count
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4.2 The Double Junction

Plotting detector sensitive thickness vs. voltage for specific temperatures 

allows easy identification of the progressive increase in depleted width as the 

temperature is reduced. An ~ 8 % error arises from the fitting of the data, 

especially at higher temperatures, (T>170K), where noise levels are much 

higher, increasing the tail of the signal.

4.2.8 Discussion

As there are two high field regions, the device is behaving essentially as two 

p-n junctions.

The diffusion from the p+-side has the effect only of reducing the p-n 

junction potential barrier at this point, hence reducing the field gradient at 

the p+-side. At the n+ contact the motion of carriers causes an enhancement 

of the junction barrier height and hence induces a higher electric field.

Results from TCT measurements (V. Eremin et al. [59]) show the exis­

tence of a double junction from the time dependence of the signal current 

pulse due to the drift of electrons or holes, depending on illumination of 

the p+ contact or n+ contact, respectively. Figure 4.9 shows TCT measure­

ments made on a silicon sample irradiated beyond type inversion taken at 

Brookhaven National Laboratory1.

The slope of the TCT pulse is an “image” of the electric field across 

the device [63]. From the bottom of Figure 4.9 to the top, the bias voltage 

across the device is incremented in regular steps. Initially there is one peak 

appearing at a lower energy, around channel 130, which corresponds to X- 

ray interactions in the lower E-field region from the p+ contact. As the

1 These data were taken by the author with Z. Li on a visit to BNL in December 2000.
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F ig u re  4.9: Measurements made at BNL.

voltage is increased the effect of an E-field from the n+ contact becomes more 

apparent. By increasing the bias voltage the depletion area is increasing and 

the field extends further across the device. This is similar to decreasing 

the tem perature in an under-depleted device. As tem perature is decreased 

to 130K, the depletion area (for an under-depleted device) increases to a 

maximum. In the TCT measurements, as the bias increases further the 

second peak becomes more and more prominent and in fact larger than the 

initial peak observed. One can infer tha t the extending E-field from the 

n + contact is greater than tha t from the p+ contact. Increasing the voltage 

further still leads to the two peaks merging by creating a single depletion area. 

Further studies using TC T provided examples of the effect of illumination of 

the p+ and n+ contacts, shown in Section 3.4.3. A difference in transient peak 

widths of a factor of 2 to 3 [64] [65] for electron and hole drift, respectively,
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4.2 The Double Junction

is due to the difference in their mobilities.

The X-ray measurements are more subtle however. Wherever the pho­

ton interacts, it will deposit 60keV energy and since the charge collection 

efficiency depends on the field across the device, as well as charge trapping 

effects, one can consider the trapping probability, P*:

Pt = T- ^  (4.3)
Ttrap

Since the trapping time depends inversely on the thermal velocity, de­

creasing temperature increases the trapping time. This reduces the prob­

ability of trapping, as does a low drift time. For interactions close to the 

electrodes the electrons or holes will drift in a high field and deposit the sig­

nal charge fully on the electrodes. For the low field region, the carriers have 

a long way to drift and hence their probability of being trapped is greatly 

increased, reducing the amount of charge signal recorded from interactions 

in this area.
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Chapter 5

Discussions

5.1 Conclusions and Future Experim ents

It has been demonstrated that silicon semiconductor detectors irradiated at 

cryogenic temperatures perform as well as silicon devices irradiated at room 

temperature. Performing voltage scans on the irradiated detector pre- and 

post annealing, the charge collection efficiency was found to be 60% at 200V 

and 95% at 200V respectively. Time dependence measurements were pre­

sented, showing that for a fluence of 6.5xl014 p/cm 2 the time dependence of 

the charge collection efficiency is negligible. However, for the higher fluences 

of 1 .2 x l 0 15 p/cm 2, the charge collection efficiency for reversed biased diodes 

will drop from an initial measured value of 67% to a stable value of 58% over 

a period of 15 minutes. Furthermore, silicon devices operated at cryogenic 

temperatures have the advantage of negligible radiation-induced leakage cur­

rent (of the order of pA), allowing a cleaner signal to be measured by a 

charge sensitive amplifier. The cryogenic operation of silicon detectors offers 

an excellent opportunity for the LHC especially in the early stages for ac­
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celerator beam monitoring [6 6 ] and leading proton measurements [67]. The 

RD39 Collaboration is working on the “Roman Pot” designs that will en­

able the silicon to be as close to the beam as possible while still maintaining 

signal integrity. By operating silicon detectors at 130K the voltage required 

for full depletion may be kept to a minimum. Furthermore, applying bene­

ficial annealing to eliminate shallow radiation-induced defects, CCE may be 

optimised. Investigations are being performed on “edgeless devices” . Var­

ious cleaving techniques are being explored that will allow specfic detector 

shapes and hence shroud the beam-pipe more effectively than square geome­

tries. The relatively low cost of producing such p+/n /n + detectors ensures 

that the replacement cost in event of failure would be minimal. For devices 

such as these, with N0 <lO 17cm-3, the mobility of the carriers increases as 

temperature is reduced below 300K, increasing the operation speed of the 

devices [1 1 ].

DLTS measurements taken from Pb-ion irradiated silicon show the forma­

tion of point defect complexes unlike those identified in similar measurements 

made on equivalent detectors with proton, neutron and pion irradiation. The 

heavy ion project at CERN should work toward an appreciation of how one 

may relate heavy ion irradiation with previous reasonably well understood 

results from proton and neutron irradiation of silicon detectors.

Work funded by the Royal Society and co-ordinated by Glasgow and Vil­

nius will work toward in situ measurements on heavy ion irradiated silicon 

detectors to understand the mechanisms occurring inside the material during 

irradiation. Employing the microwave absorption technique one may anal­

yse the carrier lifetimes as the device is irradiated. As shown for similar
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devices, one may expect an average excess carrier lifetime of ~38//s initially, 

while after irradiation this may be reduced to as little as a several hundred 

nanoseconds.

TCT measurements give very clean transient signals and yield much infor­

mation regarding carrier mobilities and the E-field across a silicon detector. 

A modification of this technique would permit laser injection from the edge 

of a detector creating e-h pairs at specific positions across the detector thick-

| ness. Although, this would allow the examination of the E-field at precise
|

positions across the device, it must be remembered that the injection of ex-

| cess charge carriers via laser pulses alters the charge of the space charge
j
| region.

Employing the X-ray technique as described in Section 4.2.1, one may 

uniformly probe the bulk of a silicon detector without injecting excess car­

riers. An X-ray will deposit its energy locally where it interacts within the

detector bulk. This technique has been shown to be powerful for uniform 

probing of the silicon detector bulk to allow an examination of the depletion 

widths after irradiation. As such it has led to this approach being adopted 

for testing devices in the basic research elements of the RD39 Collaboration.
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