
A MULTIMEDIA PROTOTYPE
FOR ANNOTATION AND ILLUSTRATION USING

THE MICROSOFT FOUNDATION CLASS LIBRARY AND C++

Eur Ing Pratul Chandra Chatterjee BTech (Hons), PhD, CEng, MRINA
Department of Computing Science

University of Glasgow

THIS THESIS IS SUBMITTED FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY
Of

GLASGOW

Jd—

© Pratul C. Chatterjee, 2000

ProQuest Number: 13818554

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818554

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW
UNIVERSITY
LIBRARY

IOC60-GoH I

DECLARATION

Except where reference is made to the work of others,
this thesis is believed to be original.

ACKNOWLEDGEMENTS

I am grateful to the Department of Mechanical Engineering, University of Glasgow

for their financial support which enabled the work presented in this thesis.

I wish to express my deepest gratitude to my Supervisor, Dr R. Poet for his advice
and timely encouragement throughout the duration of my research.

I would like to thank Dr R. C. McGregor of the Mechanical Engineering Department
for his invaluable help.

I would like to take this opportunity to thank all the staff in the Research and
Development Department at Lloyd's Register, London who in one way or another
helped me in producing this work. This especially includes Dr S. Rutherford, who
reviewed some chapters of this thesis.

Finally, I am forever indebted to my wife, Keya for her patience and invaluable
support throughout my study.

THESIS LAYOUT

The thesis is arranged in eight chapters, each of which has its own tables, figures and

references. Citations in the text contain the author's name and date and they are

linked to the alphabetical list of references at the end of each chapter. The

numbering system for sections, tables and figures starts with the chapter number in

front. The text is written in British English with the exception of words such as

serialization to keep the text consistent with the C++ code fragments. The word

processing application used to prepare all the chapters is Microsoft Word 97.

Contents

CONTENTS

Declaration i

Acknowledgements ii

Thesis Layout Hi

Contents iv

Summary x

CHAPTER 1 INTRODUCTION

1.1 Software Systems Based on Procedural Code 1-1

1.2 Problems with Earlier User Interfaces 1-2
1.3 Object-Oriented Design and Implementation 1-3
1.4 Evolution of Application Frameworks 1-4

1.4.1 GUI Libraries 1-5

1.4.2 Framework Class Libraries 1-6
1.4.3 Examples of Framework Class Libraries 1-7

1.5 The Main Research Objectives 1-9
1.6 Application Framework Selection 1-11

1.6.1 The Essentials of a Windows Program 1-12
1.6.2 The MFC Library 1-13

1.7 References 1-14

CHAPTER 2 OBJECT PERSISTENCE AND C++

2.1 Introduction 2-1
2.2 Stream Facilities in C++ 2-1
2.3 Hidden Pointers 2-2

2.3.1 Retrieval Using a Special Constructor 2-3
2.3.2 Problem with the Special Constructor 2-4
2.3.3 Retrieval Using the Assignment Operator 2-5

2.4 Memory Management and Smart Pointers 2-6
2.4.1 Smart Pointers 2-7
2.4.2 Evaluation of Smart Pointers 2-9

2.5 Relational Databases 2-9
2.5.1 Mapping Objects to Tables 2-9

Contents

2.5.2 Binary Large Objects (BLOB) 2-10
2.6 Object Oriented Databases 2-11

2.6.1 Querying an OODB 2-11
2.7 Pointer Swizzling at Page-Fault Time 2-12

2.7.1 Two Level Storage Approach 2-13
2.7.2 Difficulties in Using the OS Support for Persistence 2-14
2.7.3 The Essentials of Pointer Swizzling 2-15
2.7.4 Wilson's Approach 2-16
2.7.5 ObjectStore 2-16

2.8 Orthogonal Persistence 2-17
2.9 Closure 2-17
2.10 References 2-18

CHAPTER 3 SERIALIZATION AND MFC

3.1 Introduction 3-1
3.2 The Problems 3-2

3.2.1 Pointer Storage 3-2
3.2.2 Virtual Constructor 3-2
3.2.3 Base Class Pointer 3-3

3.3 A Serializable Class 3-3
3.4 The Macros in MFC 3-4

3.4.1 Run Time Class Information (RTCI) 3-4
3.4.2 Dynamic Creation 3-8

3.5 A Sample Data Structure for Serialization 3-8
3.5.1 An Illustration in GGS 3-11

3.6 Storing Objects 3-12
3.6.1 Storing Vertices and Edges 3-15

3.7 The Serialization Macros 3-17
3.8 On-the-fly Registration and Restoration 3-17
3.9 Versionable Objects 3-18
3.10 Limitations 3-21
3.11 Closure 3-22
3.12 References 3-23

v

Contents

CHAPTER 4 USER INTERFACE AND CLASSES IN GGS

4.1 Principles of User Interface Design 4-1
4.2 Standard GUI of Applications for Windows 4-2
4.3 Separation of Document and View 4-3
4.4 The Document/View Architecture in MFC 4-5

4.4.1 Documents 4-5
4.4.2 Views 4-5

4.4.3 View Frames 4-6
4.4.4 Document Templates 4-6

4.5 Multiple Document Interface (MDI) 4-8
4.6 The Contributions of MFC in GGS 4-9

4.6.1 ToolTips 4-10
4.6.2 Message Boxes 4-10
4.6.3 Status Bar Messages 4-10

4.7 High Level Decomposition of GGS 4-10
4.8 A Case Study Walkthrough 4-12

4.8.1 A Protein Molecule 4-13
4.8.2 Importing the Picture 4-14
4.8.3 The Rectangle Around the Picture 4-15
4.8.4 Recording Sound Objects 4-16
4.8.5 A Text Object 4-17
4.8.6 Creating Timers 4-18
4.8.7 Creating Arrows 4-18
4.8.8 Arranging the Sequence of Objects in the Animation Editor 4-19
4.8.9 Animation 4-20

4.9 Class Hierarchy in GGS 4-20
4.10 Class Construction 4-21

4.10.1 Public Data Member? 4-22
4.10.2 Thin API Wrapper 4-22
4.10.3 Copy Constructor and Assignment Operator 4-23
4.10.4 Other Guidelines 4-24
4.10.5 Commenting Convention 4-24

4.11 Closure 4-25
4.12 References 4-25

Contents

CHAPTER 5 GRAPHICS PRIMITIVES IN GGS AND OTHER
FEATURES

5.1 Collections of Objects 5-1

5.2 Drawing GGS Document 5-2

5.2.1 The Parent Class CGGSObject 5-4

5.2.2 Drawing Sound and Timer Objects! 5-5

5.3 Rubber Banding 5-6

5.3.1 Programming the Mouse 5-7

5.3.2 Raster Operations 5-8

5.3.3 Drawing Curve Objects 5-9

5.4 Deleting and Moving Shapes 5-11

5.4.1 Highlighting Shapes 5-11

5.4.2 Moving Shapes 5-12

5.4.3 Masked Objects 5-13
5.5 Implementing Scrolling with Scaling 5-14

5.5.1 Scaleable Mapping Modes 5-15

5.5.2 Transformation of Coordinates 5-15
5.5.3 Restoring Scrolling 5-17

5.6 Text Objects 5-18
5.6.1 Moving Text Objects 5-19

5.7 Benefits of Serialization 5-20
5.8 Multi-page Printing 5-21

5.8.1 Paper Size 5-23
5.8.2 Preview and Printing 5-24

5.9 References 5-25

CHAPTER 6 BITMAPS AND METAFILES

6.1 Graphics Device Interface (GDI) 6-1
6.2 Bitmaps and Metafiles 6-1
6.3 Colours in Bitmaps 6-2
6.4 The Requirements in GGS 6-3
6.5 The DIB's in GGS 6-4

6.5.1 Construction and Destruction 6-5
6.5.2 Reading a BMP File 6-6
6.5.3 User Defined DIB Size 6-7
6.5.4 Drawing DIB's 6-8
6.5.5 Moving DIB's 6-8

Contents

6.6 DIB Compression 6-9
6.6.1 RLE Compression 6-10

6.7 Palette Programming 6-10
6.7.1 Palettes in GGS 6-11

6.8 DIB Serialization 6-12
6.9 Different Types of Metafiles 6-13

6.9.1 Windows Metafiles Versus Enhanced Metafiles 6-14
6.9.2 Device Independence 6-15

6.10 Metafiles in GGS 6-17
6.10.1 Construction and Destruction 6-18
6.10.2 Reading a Metafile 6-18
6.10.3 Drawing a Metafile 6-19
6.10.4 Basic OpenGL Operations 6-19
6.10.5 Enhanced Metafiles with OpenGL Records 6-21

6.11 Closure 6-22
6.12 References 6-23

CHAPTER 7 SOUND, TIMERS AND STILL ANIMATION

7.1 Audio Clips 7-1
7.2 Digital Sound 7-1

7.2.1 What is MP3? 7-1
7.2.2 WAVE and MIDI Files 7-2
7.2.3 The Contents of a WAVE File 7-3

7.3 Waveform Audio and Windows 7-4
7.3.1 The PlaySound API 7-4
7.3.2 Low-level Audio Services 7-5

7.4 The Media Control Interface (MCI) 7-5
7.5 MCI Audio Architecture 7-7
7.6 Sound Objects in GGS 7-7

7.6.1 Importing WAVE Files 7-8
7.6.2 Playing WAVE Files 7-9
7.6.3 Recording WAVE Files 7-10

7.7 Timers in Windows 7-12
7.7.1 The Recording in Progress Dialogue 7-13
7.7.2 Other Member Functions in CSound 7-13

7.8 Still Animation 7-14
7.9 Timers in GGS 7-15
7.10 References 7-16

Contents

CHAPTER 8 USER FEEDBACK AND CONCLUSIONS

8.1 Software Validation 8-1
8.2 Software Quality 8-2

8.2.1 Process or Product? 8-2
8.3 User Feedback on GGS 8-3

8.3.1 The Checklist 8-3
8.3.2 User Feedback 8-4

8.3.3 Feedback from MFC Developers 8-5
8.4 GGS as an OLE Server - an Afterthought 8-5

8.4.1 Steps to Provide OLE Server Support After the Fact 8-6
8.4.2 Embedded GGS Items 8-6
8.4.3 Why not an ActiveX Document Server? 8-8

8.5 Conclusions 8-9
8.5.0 Criteria for Evaluating Application Frameworks for

Developing Multimedia Applications 8-9
8.5.1 Code Reusability 8-10
8.5.2 Fast Development Time 8-11
8.5.3 Rapid Software Prototyping 8-12
8.5.4 Separation of Concerns 8-14
8.5.5 A Rich Set of Widgets 8-15
8.5.6 Serialization 8-15
8.5.7 Escape Mechanisms 8-15
8.5.8 Defensive Programming 8-16

8.6 Last Words 8-17
8.7 References 8-17

ix

Summary

SUMMARY

One of the major claims of the object-oriented programming approach is that it
facilitates the development of complex programs by allowing reuse of components.
Most compilers for object-oriented languages are now supplied with class libraries.
In addition to those provided with the compilers, there are many others in the public

domain or available from commercial suppliers. Code reuse can be maximised

through the exploitation of framework class libraries for creating interactive

programs. A framework library can be viewed as providing a skeleton application
that can be extended and specialised through class inheritance. The evolution of
application frameworks is discussed briefly in Chapter 1 with an objective to utilise
one of them to develop a prototype multimedia application for annotation and

illustration. This prototype is referred to as Glasgow Graphics and Sound (GGS) in

this thesis.

GGS deals with externally created vector or bitmap images, graphics primitives and
sound objects in any sequence. GGS is designed to provide the end-users with
facilities to work on external images with free-hand curves and other graphics tools,
record their voice, save everything in one disk file and animate them later, if
necessary. GGS has the responsibility to store different objects without knowing in
advance the sequence of object types the user will create. The implementation
language, C++ does not have any built-in support for object persistence. Hence, a
number of techniques and strategies for adding persistence to C++ objects are
reviewed in Chapter 2.

The Microsoft Foundation Class (MFC) library is selected as the application
framework for developing GGS and the serialization mechanism in MFC is chosen to
deal with the object persistence issues. Some of the techniques for persistence,
discussed in Chapter 2, are powerful but incur unacceptable overheads for

lightweight applications. On the other hand, the MFC serialization is found very
useful in creating transportable stream of bytes that can be stored in a file and sent
away as an e-mail attachment.

Chapter 3 presents the serialization internals in MFC and uncovers some
undocumented details that are believed to be valuable for other MFC users. From an

application programmer's viewpoint, it is straightforward to use the MFC
serialization in most cases. However, the actual implementation details are complex.
A sample data structure is serialized and analysed step-by-step to explain the MFC
serialization mechanism.

Summary

The user-friendliness of applications comes not only from an iconic user interface but
also from a uniform user interface across applications. Some common user interface
elements and their importance are discussed in Chapter 4 along with the document/
view architecture in MFC that separates an application's data management code

from its user interface code. The multiple document interface (MDI) in GGS is based
on this document/view architecture. A case study walkthrough is presented, purely

from an end-user's viewpoint, to illustrate a simple use of GGS. The main classes

and their hierarchy are drafted in Chapter 4 based on a high-level decomposition of

GGS.

Chapter 5 presents the final class hierarchy, different drawing operations and other

features involving graphics primitives. Template based type-safe collection classes

are used in GGS to store pointers to objects of any type. This simplifies the

interaction with the document class. Basic drawing operations such as moving,
deleting and highlighting graphics primitives on the screen use an efficient raster
drawing mode. The implementation of view magnification together with the
standard scrolling capabilities in a window is discussed that requires some special
techniques. The benefits of trapping some uncommon messages from the operating
system are also discussed. Chapter 5 ends with an overview of the printing process
and a description of the multi-page printing features in GGS.

Chapter 6 starts with a general discussion on bitmaps and metafiles. A bitmap is a
complete digital representation of a picture. Each pixel in the image corresponds to
one or more bits in the bitmap. A metafile, on the other hand, stores pictorial
information as a series of records that correspond directly to the graphics device
interface (GDI) calls. GGS can import externally created bitmaps and metafiles and
treat them like any other graphic or sound objects. All commercial illustration

programs do something similar. However, the motivation for developing GGS is
slightly different. GGS allows the users to construct and manipulate a fairly complex

picture, adding comments as they go. The process of constructing the picture is

saved, not just the final picture.

Sound can be an effective form of information and interface enhancement when
appropriately used. It can serve purposes other than the transmission of details or
factual information. Chapter 7 describes the facilities in GGS to record someone's

voice or import sounds from WAVE files which are digital copies of the air pressure
alterations of recorded sounds. The sequence of graphic and sound objects can be
edited and separated by timers. In the animation mode, graphic objects are rendered

xi

Summary

on the screen, sounds are played and timers are activated. One of the major
objectives is to produce GGS documents containing graphic and sound objects that
can be delivered as e-mail attachments. GGS avoids fluid animation to restrict the

size of these documents. However, the still animation in GGS can be an effective

way to get some ideas across and create an impact with a meaningful sequence of
objects.

Executable copies of GGS were distributed with an aim to receive feedback about
their ease of use, compatibility with other products and stability. The feedback is

discussed in Chapter 8. The idea of playing sounds and rendering graphic objects

separated by timers was appreciated by a number of users. One of the suggestions
was to convert GGS from a stand-alone application to a full OLE server to integrate

and take advantage of the features offered by other Windows applications. With the
help of MFC, the author found that the conversion was not a difficult exercise.
Finally, Chapter 8 ends with the main conclusions.

Chapter 1 Introduction

1.1 SOFTWARE SYSTEMS BASED ON PROCEDURAL CODE

There are various programs available in the engineering domain that consist of
several hundred thousand lines of procedural code, usually written in Fortran. They

serve as special-purpose tools for the modelling and simulation of physical systems

in diverse fields such as structural mechanics, fluid dynamics, electro-magnetics and

many others.

For the sake of efficiency, various components of such program often directly access

the program's data structures. This compounds the complexity of the components,
by requiring knowledge of the program's data structures. Modification or extension

to a component requires not only the knowledge of the component at hand, but also

a high degree of knowledge of the entire program.

The components of the software system become intimately tied to the program's data
structures. The access to the data structures easily becomes inseparable from the
components' function. Since the layouts of the data structures are unique to each
program, the possibility of the reuse of the code in other systems is greatly
diminished. Also, code from other programs is difficult to adapt for use within the
system.

Since the data structures are globally accessible, a small change in them can have a
ripple effect throughout the program. All portions of the code that access the

affected data structures must be updated. Consequently, the layouts of the data

structures tend to become fixed regardless of how appropriate they remain as the
code evolves.

The components of the software system become dependent on each other via their

common access to the data structures. Little control can be placed on the access. As

a result, these interdependencies are numerous. More importantly, they are implicit.
One component can be completely unaware of another's reliance on the same data

structure. Thus, when modification or extension to a component occurs, it is difficult
to assure that all affected portions of the code are adjusted accordingly.

The access to the program's data structures is usually described by an interface. The

interface may consist of a document describing the layout of the data, or may get as
involved as a memory management tool that shields the data from the component
routines. In either case, it is up to each programmer to honour the interface. The

1-1

Chapter 1 Introduction

best laid plans are easily subverted for the sake of efficiency and ease of
implementation.

A large number of existing software systems based on procedural codes are inflexible
and present a barrier to practising engineers and researchers. Recoding these

systems in a new language will not remove this inflexibility. Instead, a redesign is

needed.

1.2 PROBLEMS WITH EARLIER USER INTERFACES

Older style scientific and business programs tended to have a modal structure with

very rigid control flows: 1) get the input data, 2) process the data, 3) print the results.
Any data input mode would be under the program's control, with the program
prompting the user for successive data elements that had to be provided in a fixed

order. When interactions with users are under the program's control, the
programmer's task is simplified. Because the sequence of any interactions is known

in advance the programmer can plan to have all required data structures created and
correctly initialised prior to use.

Early programs were "user-hostile" in a way, demanding their data in precise
formats and requiring arcane command languages to control their operation. Such
"user-hostility" did not matter because the users of such programs were neither
perceptive enough to notice nor assertive enough to complain. Nowadays, every
program is expected to be "user-friendly" and to indicate this "friendliness" through
graphics displays replete with button controls, pop-up menus, and scrollable views.

Such user interface requirements add extra complexity to programs. Developers

must implement a friendly user interface as well as implementing the data structures
and algorithms required for some computational problem. Fortunately, one facet of
"user friendliness" is consistency. All programs running on a particular platform are
expected to work in similar style. Their windows should have the same functionality

and controls (drag region, grow box, close box, etc.); a menu bar should be placed at
the top of each window or at the top of the screen; dialog boxes are to be used to

select processing options and should use a variety of standardised controls such as

check boxes and groups of radio buttons. Such requirements for consistency really
make the reuse of interface components a part of the specification of a program.
Reuse becomes mandated, it is not simply a matter of enhanced productivity.

However, things get more difficult when the user acts and the program reacts. A

1-2

Chapter 1 Introduction

characteristic of a user driven program is complexity in the flow of control. User

commands such as a change to the page setup, the resizing of a window, or an

editing action that adds or removes data, can occur in any order. Typically, each

such command will affect different aspects of the run-time environment - aspects
such as menu options, data displays, and window/view structures. Since most of
the user commands affect the underlying data, they may necessitate updating the

amount of "travel" in any scroll-bars that may be associated with a window
displaying the data. Consequently, the code determining this travel may have to be

called from any of several quite different contexts. It is in cases like this that
problems arise. A programmer may fail to perceive an implicit consequence of some
user command; this failure could result in programs with abnormal behaviours (e.g.,
a program whose scroll-bars appear oblivious to data editing actions and only
respond when a window is explicitly resized). Alternatively, the programmer

produces some ad hoc solution with a complex flow graph.

Complexity of the control flow often results in program errors. After all, routines are
typically written assuming a particular call pattern, with concomitant prior creation
and initialisation of all necessary data structures. When other call sequences are
imposed later, initialisation steps can be forgotten and so errors may arise. Often
these errors seem intermittent and so are difficult to detect. Problems only arise with
non-standard patterns of interaction. If the programmer implementing an interactive
editor lacks a strong model, the code tends to become convoluted, unreliable, and
difficult to maintain or extend.

1.3 OBJECT-ORIENTED DESIGN AND IMPLEMENTATION

The application of object-oriented design has proven to be very beneficial to the

development of flexible programs. The basis of object-oriented design is abstraction.
The abstraction forms a stable definition of objects in which the relationships among

the objects are explicitly defined. The implicit reliance on another component's data

does not occur. Thus, the design can be extended with minimal effort.

The object oriented paradigm provides four fundamental concepts: objects, classes,
inheritance, and polymorphism. A software is organised into objects that store both
its data and the operators that work on this data. This permits developers to abstract
out the essential properties of an object; those that will be used by other objects. This

abstraction allows the details of the implementation of the object to be hidden, and
thus easily modified. Objects are instances described by a class definition. Classes
are related by inheritance. A subclass inherits behaviour through the attributes and

1-3

Chapter 1 Introduction

operators of the base class. Polymorphism allows the same operation to behave

differently in different classes and thus allows objects of one class to be used in place

of those of another related class.

1.4 EVOLUTION OF APPLICATION FRAMEWORKS

One of the main claims of the object-oriented programming approach is that it
facilitates the development of complex programs by allowing reuse of components.
Most compilers for OO languages are now supplied with class libraries. In addition

to those provided with the compilers, there are many other class libraries that are
either available from commercial suppliers or which exist as public domain code

(usually accessible from archive sites on the Internet). Most of the public domain
class libraries are for C++ on UNIX, with a few for the PC platform.

Some of these class libraries are simply collections of supposedly useful components.
The classes in these libraries will typically define "abstract" (programmer defined)
data types. Instances of these classes can be used to manage particular resources.
For example, a library might provide a class that represents a kind of "sparse array
manager". An instance of this class could be created, in a client program, to provide
an initially empty array to which elements could be added, accessed, modified, or
removed without the client programmer having any need to be concerned with
storage management issues or the coding of efficient access methods. As another
example, a library class might simply provide a "wrapper" around some system
data, for example the data defining the time and date. The library class would
provide several alternative ways of accessing the time data, e.g., as a string, as
millisecond count, etc.

The majority of classes in such a library will be "concrete" (i.e., directly
instantiatable) with minimal or no provision for further extension or specialisation.
Although such class libraries are useful, they do not make a dramatic impact on
program development. Nonetheless, it is often better to use the classes from a

library. Usually, the library classes are thoroughly tested and shown to perform

correctly whereas it is quite likely that a hurriedly implemented version will contain
errors in the handling of less common cases.

Libraries with classes that are designed to be extended or specialised by client
programmers do have a more significant impact on the cost of developing new
applications. Some or most of the classes in these libraries will be partially
implemented abstract classes. Each class will define some concept (abstract type)

1-4

Chapter 1 Introduction

and specify its behaviours. Default implementations of many of the behaviours may
be provided, while the implementation of others will be "deferred" (i.e., left as pure

virtual functions in C++). In some cases, the designer would have been able to

define sensible default implementations for all the behaviours of a class. Any such
class will be instantiatable, but will usually have provision for further specialisation

by subclassing. The designer of each library class should consider the needs of
programmers carefully who must implement the derived classes. Hence, protected
access functions would typically be provided for most (maybe for all) private data

members or the data members might be given protected access status. The majority
of the member functions would be declared as being virtual; and, of course, the

library classes would all have virtual destructors.

1.4.1 GUI Libraries

The graphical user interface (GUI) libraries provide individual building blocks and

complete subassemblies for the construction of user interfaces. The subassemblies
are provided in the form of clusters of related classes. GUI libraries are inherently
platform specific. The classes define various types of visual element from which an
interface can be constructed. Thus, there might be a set of classes that help handle
scrollable views that are too large to be displayed in their entirety. Such a set would
include classes that can be instantiated to provide various forms of scroll-bar that
control movement, and a "scroller" class that maintains a coordinate frame and
interacts with the scroll-bars. A programmer employing such a class library would
probably be able to use the scroll-bar class unchanged. The scroller class might be
abstract, with some member functions left as pure virtual functions. The
programmer creating a new application would then create a specialised subclass of
the class scroller, providing definitions for all pure abstract functions as well as
adding new functionality and, possibly, replacing some inherited virtual functions.

The GUI libraries are more complex than the component libraries. Part of the
complexity results from more extensive use of inheritance. Although the inheritance

structures are usually just trees, they may be quite deep. A specialised element, such
as a radio button, may be six or more branches away from the root of the tree
[Gray94].

Class libraries like these GUI libraries can significantly enhance a programmer's

productivity. The ways in which instances of different classes interact will all have
been sorted out, thus saving the application programmer from having to do a lot of
design work. Typically, there are default implementations for the vast majority of

1-5

Chapter 1 Introduction

the member functions of the various classes. Consequently, instead of writing an
entire interface, the application programmer needs to implement those functions that
are inherently application-specific along with any others whose default
implementations are considered to be unsatisfactory. Furthermore, the use of
standard classes enhances consistency among different products because

applications built using the same GUI classes will tend to have the same "look and

feel".

1.4.2 Framework Class Libraries

Code reuse can be maximised through the exploitation of framework class libraries.
A framework can be viewed as providing a skeleton application that can be extended

and specialised through class inheritance. The framework libraries were developed

for creating interactive programs. In the run-time environment of an interactive
program, there are several objects present that own some part of the program's data
and handle any commands that relate to their data. User actions, such as menu
selections, keyed input, or mouse-based interactions, are translated into commands
or messages that get sent to particular command-handling objects for processing.

The authors of the framework library started by identifying a set of "command-
handier" objects that could be conceived of as being present in any executing
program. The various tasks that a program has to perform were then partitioned
amongst these objects, and so the forms of specialised kinds of command-handier
classes evolved. For example, there was a "document" command-handier. A
document "owned" the data structure that was being manipulated by the program's
user, it looked after changes to that structure, and it arranged transfers between disk

files and the main memory. An "application" command-handier was responsible for

overall organisation of the objects that made up a running program, and it
performed much of the work involved in translating low-level operating system
events into commands that could be sent to other objects. "View" command

handlers provided a x, y-coordinate framework for the display of data, methods for
drawing data, and methods for responding to mouse-based data selection and
editing actions.

The authors of the frameworks sorted out all the typical patterns of interaction that
occur among these principal command-handier objects. These interactions were then
encoded in the member functions that were defined for these classes. For example, if
an application object found that it was dealing with a "Quit" command, it would
remember to warn any document objects that were present. Each document object

1-6

Chapter 1 Introduction

could then check to determine whether its data structure had been altered. If the
data had been altered, the document would display a standard alert asking the user

whether the data should be saved before the program terminated. Once it had either

saved or abandoned its data, each document would proceed by disposing of any

view objects that it had created to display its data. Here, there is a complex pattern
of interactions among instances of the application, document, and view classes. But
the normal responses can all be defined and provided as functions such as
Docum ent::C lo s e () , A p p lic a t io n : :Q u it(), etc. Of course, these functions

would be specified as being virtual - a programmer should have the opportunity of

changing standard patterns of behaviour if really necessary.

In a typical framework, there are hundreds of such patterns of interactions associated
with standard user commands and run-time events. Each interaction may involve
several objects; the work performed by each object may entail a series of nested

function calls; and there may be some cycles in the call patterns. For example, the
application object might ask a view to handle a mouse action and, in doing so, the
view might ask the application object to perform some function such as adding a
"mouse-command object" to a list.

The application, document and view classes in a framework library will be partially
implemented abstract classes. While many of the behaviours of these classes, and
patterns of interactions among instances of these classes, can be identified, actual
details of implementation of some behaviours have to be deferred and left for
definition in derived classes. It is not uncommon for these classes to have one
hundred or more different member functions [Bisc92]; most of which will have

default implementations.

1.4.3 Examples of Framework Class Libraries

MacApp-1.0 [Schm86, RoDo*86] was one of the earliest of these frameworks. It was
created to facilitate the implementation of applications for Macintosh computers. It
had been noted that, excluding games and other special programs, all the early

Macintosh programs could be conceived as involving: 1) an application that handled

interaction with users and managed documents, 2) one or more documents that
managed the run-time data structures representing the information manipulated by
the user, and that organised data transfers to and from disk files, 3) views of the data,
and 4) application specific data structures (e.g., paragraphs in a word-processor,
records in a database, or graphics elements in a MacDraw like graphics editor). The

1-7

Chapter 1 Introduction

first three of these four parts were essentially the same irrespective of the application.
Inevitably, very similar code was being re-implemented in each new program.

It was realised that if suitable abstractions could be found, much of the standard
code could be provided in a library (with the proposed standard Macintosh look and

feel actually implemented correctly for once). For example, every Macintosh

application had to include an event loop [WiRo*91] that received mouse-down,
keystroke, update, and other events from the underlying operating system and

which distributed these to other components in the code for handling. This standard

code could be provided as a Run () method for an application class. This Run ()
method would sort out the events, passing updates to appropriate view objects,
resolving mouse movements into menu requests and drawing actions. The general
behaviour of an application object, and its modes of interaction with views and

documents could be almost completely characterised with default implementations

provided for all required functions.

MacApp started with Object Pascal as its implementation language but switched to
C++ later on. It served as a model for many other framework libraries and it is still a
fairly useful development aid for the Macintosh platform. Version numbering for
MacApp changed after 3.3.3, so that the next major version was called Release 12.
The most recent version of MacApp is Release 13, Update 4 [INET11].

ET++ [WeGa*89, WeGa94] is a public domain class library for UNIX/C++
environments. Its initial structure was based on MacApp-2 with C++ substituted for
Object Pascal. Inspired in part by MacApp's design, ET++ took advantage of a more
powerful platform, typically a Sim Workstation and provided many extensions with
a more consistent design and implementation. Unidraw [VlLi89] is another example

of an application framework on UNIX for structured graphics editors.

Currently, the most active area for framework development is for the Windows™

operating system. The leading product was Borland's Object Windows Library

(OWL) which provided most standard framework components. In addition to the

main framework classes, the Borland product included an extensive set of collection
classes. Microsoft entered this market relatively late but has introduced the
Microsoft Foundation Class (MFC) library. In order to compete with the success of
MFC, Borland has introduced the Visual Component Library (VCL) with its new
product C++Builder [INET12]. Unfortunately, incorporating OWL classes in VCL
applications is not straightforward [INET13].

1-8

Chapter 1 Introduction

1.5 THE MAIN RESEARCH OBJECTIVES

The author has experienced some of the problems with procedural codes in the

structural engineering domain as outlined in Section 1.1. He has seen software

systems with excellent technical contents suffering from poor user interface

problems.

The author has realised that much of the user-friendliness of applications comes not
only from an iconic user interface but also from a uniform user interface across

applications. This leads to a significant amount of development redundancy because

most of the code required by the user interface has to be reengineered for every new
application.

This background motivated the author to undertake this research project to learn

more about object-oriented software design and implementation techniques with an
application framework. The actual project work has evolved from a slightly different
motivation. As a Naval Architect, the author has witnessed the interactions among
various organisations in the lifecycle of a ship:

Port
authoritiesIACS

Engine
builder

Flag
states

Classification
society

Ship
repairers

Ship
designer

Ship
builder Ship

owners
Ship

agents
Insurers

Materials &
equipment
suppliers

Ship
managers

Figure 1.1 Interactions in the Lifecycle of a Ship

This type of interactions generate a huge volume of paper-based communications.
The diagram in Figure 1.1 is just an example. In today's business environment, for

1-9

Chapter 1 Introduction

instance, when a company undergoes a private or public offering, a large number of
documents must be drafted and agreed upon by several parties, including the
company executives, the company's law firm, and the underwriting financial
institution. During the drafting exercise, the document must be distributed to the
different parties many times. Even though more than 90 percent of business

documents originate in electronic form, individuals and organisations still spend 300

billion US dollars annually on physical document delivery services [INET14].

Despite the obvious speed and cost advantages of communicating over the Internet,
most businesses still rely on traditional delivery methods when sending important
information. Customer surveys indicate that the Internet lacks two qualities required
for important business communications and transactions: reliability and trusted
security. However, more communications and business processes are moving online

everyday. The pace at which e-commerce and electronic document exchange

applications are improving is whiplash fast.

However, the author is not concerned about the actual document or information
exchange process. He is more interested in developing a simple tool which might be
useful in resolving the queries or misunderstandings that arise sometimes specially
from paper-based communications. For example, ambiguous official memorandums
are not uncommon when the medium of communication is English but the
participants are non-native English speakers. Annotations are helpful in this context.
An annotation to a document is a comment on or question about the document.
Traditionally, paper annotations are little notes jotted on the margin of a paper.

However, annotations may be organised in "conversations", where one annotation
answers or refers to another. If all the annotations are collected and preserved, the
logical structure of the conversation becomes more apparent. This raises the
possibility of using sound objects for annotating a document. A short question in the
form of natural conversation, recorded and preserved as a sound object can clarify

things quickly and effectively rather than formal speech or writing. However, some

graphics tools are also necessary to mark or highlight a document when sound
objects are used for annotation.

An application, therefore, would be useful if it could deal with externally created
vector or bitmap images, graphics primitives and sound objects in any sequence.
The application should provide the end-users with facilities to work on external
images with free-hand curves and other graphics tools, record their voice, save
everything in one disk file and animate them later, if necessary. This type of

1-10

Chapter 1 Introduction

multimedia application would be useful not only for annotation with sound objects
but also for various illustration purposes. One of the main objectives of this research

is to develop a prototype of such an application. This prototype is referred to as

Glasgow Graphics and Sound (GGS) in this thesis.

The software architecture of GGS should be flexible and robust. It must allow

changes to be made easily and it must be decoupled from the way the objects are

stored and retrieved later. One way of achieving this is to make the objects persistent
and avoid deciding on a file format for storage altogether. However, it is necessary

to understand the techniques or mechanisms available to add persistence to objects

and select one of those techniques for GGS.

Now the research objectives can be summarised. The reasons for engaging in this

line of research are fourfold:

• to learn object-oriented software design and implementation techniques and
to exploit the opportunities provided by an application framework;

• to learn "user-friendly" graphical interface design principles;

• to develop a prototype multimedia application for annotation and
illustration;

• to understand object persistence and select one suitable persistence
mechanism for the multimedia prototype.

1.6 APPLICATION FRAMEWORK SELECTION

The recent advancement in the PC technology has already made a remarkable impact
on the industry. The dramatic enhancement in the PC clock speed and associated

technology has blurred the price/performance difference between UNIX work­
stations and PC's. A number of UNIX based technologies are no longer actively
being developed to cope with the recent advancement. The Microsoft Windows™

market is the growing segment of the industry. In the present circumstances, the
selection of Windows™ as the target platform for this research project has not been a

difficult decision. However, Windows™ comes in various flavours. But only the

32-bit versions - Windows 9 5 /9 8 /NT 4.0 (collectively referred to as Windows later
on) are targeted here for the development of the multimedia prototype.

To work with an application framework, the choice of C++ as the programming
language is almost unavoidable since most of the frameworks are written in C++.
Although Java is getting a lot of press, almost every major Windows application

1-11

Chapter 1 Introduction

shipping today is developed in C++ and most are created using Microsoft's Visual

C++ [INET12].

1.6.1 The Essentials of a W indow s Program

Windows is an event-driven operating system that sits on the computer monitoring

the hardware for events. Whenever an event takes place, for example, when the
mouse is moved, Windozvs detects it and passes the event information on to the

applications it is hosting. The event information is called a message. If the message

is important to a specific window on the screen, that window handles it.

The structure in Figure 1.2 is at the heart of all Windows programs. There are two
essential pieces of a Windows program: the function WinMain(), which is called by

Windows at the start of execution of the program, and a window procedure for each

window class, often referred to as WndProc() or WindowProc(), which will be
called by the operating system whenever a message is to be passed to the

application's window.

WINDOWS

Windows API

API
Calls

API
Calls

CO

CO

W inM ainQ W in d o w P ro c ()

Process messagesInitialise variables
Define windows
Create windows

A Windows Application

Figure 1.2 Two Essential Components of a Windows Program

1-12

Chapter 1 Introduction

The function WinMain() does any initialisation that is necessary and sets up the

window or windows that will be the primary interface to the user. It also contains

the message loop for retrieving messages that have been queued for the application.
The function WindowProc () handles all the messages. WindowProc () contains

the application-specific response to each Windows message. WindowProc () should

handle all the communications with the user by processing the Windows messages

generated by user actions, such as moving or clicking the mouse, or entering

information at the keyboard. A program written in C with Windows API calls, hooks
into the Windows machinery [ShWi97] by writing large sw itc h statements in the

WindowProc () function to handle the messages. It is certainly a better picture
when MFC is used to develop a Windows application. To allow an application to

receive Windows messages, MFC employs a class named CCmdTarget and a lookup

mechanism called message maps.

1.6.2 The MFC Library

The core of the MFC library is an encapsulation of a large portion of the Windows API
in C++ form. Library classes represent windows, dialog boxes, device contexts,
common GDI objects such as brushes and pens, controls, and other standard
Windows items. These classes provide a convenient C++ member function interface
to the structures in Windows that they encapsulate.

But the MFC library also supplies a layer of additional application functionality built
on the C++ encapsulation of the Windows API. This layer is a working application
framework for Windows that provides most of the common user interface expected of
programs for Windows, including toolbars, status bars, printing, print preview,
database support and many others.

The MFC library has been chosen as the application framework for developing the

multimedia prototype, not just because it provides an efficient C++ interface to

Windows programming. An MFC program is portable to a wide variety of platforms.
Since MFC is built on top of the Win32 API, any platform that supports the Win32

API can be targeted by an MFC application. An important aspect of MFC portability

is that Win32-based platforms are not limited to Windows. Through the use of the

Windows Portability Layer, MFC applications built on Win32 can also be built to run

under the Macintosh operating system. MFC applications can target not only Intel
processors but also PowerPC, Alpha AXP and MIPS processors since Windows NT
runs on them. In addition, UNIX and VMS porting kits are also available for the
developers to port their MFC applications to these platforms as well [MSDN11].

1-13

Chapter 1 Introduction

1.7 REFERENCES

[Bisc92] Bischofberger, W.R.: "Sniff - A Pragmatic Approach to a C++
Programming Environment", USENIX Association C++ Technical

Conference, El Cerrito, CA, pp. 67-81,1992.

[Gray94] Gray, N.A.B.: "Programming with Class: A Practical Introduction to

Object-Oriented Programming with C++", John Wiley and Sons, 1994.

[INET11] Apple Computer, Inc.: "Mac OS 8 and 9 Developer Documentation:
MacApp", http://developer.apple.com/techpubs/macos8/DevTools

/ MacApp / macapp.html.

[INET12] Heller, M.: "Keep Building in C++", http://www.winmag.com/

library/1998/0501/ rev0082.htm.

[INET13] Reisdorph, K.: "Using OWL classes in C++Builder", http://
www.zdjoumals.com/cpb/9708/cpb9781.htm.

[INET14] Tumbleweed Communications: "Tumbleweed IME Architecture
White Paper", http://www.tumbleweed.com/solutions/ ime_over-
view_archwhitepaper.htm.

[MSDN11] Microsoft Developer Network Library: "From One Code Base to Many
Platforms Using Visual C++", April 1999.

[RoDo*86] Rosenstein, L.S., Doyle, K. and Wallace, S.: "Object-Oriented
Programming for Macintosh Applications", ACM Fall Joint Computer

Science Conference, Dallas, Texas, pp. 31-35,1986.

[Schm86] Schmucker, K.J.: "Object Oriented Programming for the Macintosh",
Hayden, Hasbrouck Heights, New Jersey, 1986.

[ShWi97] Shepherd, G. and Wingo, S.: "MFC and Windows Messages", Visual
C++ Developers Journal, April 1997.

[VlLi89] Vlissides, J.M. and Linton, M.A.: "Unidraw: A Framework for
Building Domain-Specific Graphical Editors", Technical Report: CSL-
TR-89-380, Stanford University, Computer Systems Laboratory, July
1989.

[WeGa*89] Weinand, A., Gamma, E. and Marty, R.: "Design and Implementation
of ET++, A Seamless Object-Oriented Application Framework",
Structured Programming, Vol. 10, No. 2, pp. 63-87,1989.

[WeGa94] Weinand, A. and Gamma, E.: "ET++ - A Portable, Homogenous Class
Library and Application Framework", Proceedings of the UBILAB'94

1-14

http://developer.apple.com/techpubs/macos8/DevTools
http://www.winmag.com/
http://www.zdjoumals.com/cpb/9708/cpb9781.htm
http://www.tumbleweed.com/solutions/

Chapter 1 Introduction

[WiRo*91]

Conference, Zurich, pp. 66-92, September 1994.

Wilson, D.A., Rosenstein, L.S. and Shafer, D.: "C++ Programming

with MacApp", Addison Wesley, 1991.

1-15

Chapter 2 Object Persistence and C++

2.1 INTRODUCTION

Persistence may well be the most important capability of a computing environment.
Without it, every calculation would have to start anew. Databases and file systems

could not exist. We would have a memory-less computing landscape.

Unfortunately, most of today's popular operating systems still adhere to the model
of flat files developed in the early days of computing and leave it up to the

application to provide any required structure. We can save data but the application

has to contain logic for writing its data to a flat file in a way that will permit it to

reconstruct the data structure later.

C++ has emerged as the de facto standard language for software development. It
blends the C language with support for object oriented programming and its newly

enhanced template features [ANSI97] bring another new programming
methodology, generic programming. This triple heritage makes the language very
powerful but unfortunately, C++ does not have any built-in support for object
persistence. However, there are different techniques for adding persistence to C++
objects and some of these techniques and strategies are discussed in this chapter.

2.2 STREAM FACILITIES IN C++

C++ streams are close to offering some form of language-supported persistence.
"The stream I/O family in C++ is exclusively concerned with the process of
converting typed objects into sequences of discrete characters and vice versa"
[Stro93]. All data is converted to a common ASCII text format, allowing data to be

easily transferred back and forth from secondary storage. Stream-based persistence
stores objects in a text-based data store. The C++ stream library converts and

transfers the built-in types. Structures and classes are the programmer's

responsibility to convert and transfer to a hard disk. They are not as difficult to

stream as it may first appear, since they can be recursively broken down into a set of
built-in types.

The most basic level of persistence is provided by overloading the shift operators to
allow an object's data to be streamed. For example, a class designed to represent a

line in a two-dimensional plane can use the start and end coordinates as the basic
data necessary to describe the line object. Hence, a line object can have four built-in
integer data members representing the coordinates. When saved, each integer is

usually separated by a space to ensure correct interpretation when the data is

2-1

Chapter 2 Object Persistence and C++

restored. The restoration of the line object has to be performed in the same sequence

as when it was stored.

In addition to the correct order of instance data, the order in which the objects

themselves are saved and restored must be maintained. An application's persistent
store would normally contain more than one single data type. For example, a line

class and a rectangle class are created, both using a pair of coordinates. The line
coordinates describe the end points and the rectangle coordinates represent the

locations of the opposite comers. For the items to be restored correctly, the

application needs to be aware of the order in which each object was saved. Without
the explicit knowledge of object restoration order, the application needs to determine

the owner of each data item.

The stream facility is well suited for small amount of simple data types. The
technique works only if the overloaded operators (i.e., « and ») write and read
data members of types for which the insertion and extraction operators have already
been defined and known at compile time. The limits of this technique are revealed if
the objects contain polymorphic data structures. The C++ polymorphism allows a
base class pointer to refer to a base class object and any object derived from it. To
restore a polymorphic pointer correctly, the object's exact type is important. A base
class pointer must be restored with a pointer to an instance of the original
polymorphic type. The stream facility in C++ cannot read back objects without
knowing their exact types [LaSi93].

2.3 HIDDEN POINTERS

Each object of a class that has virtual functions, contains a hidden pointer that points

to a virtual function table, called the v tb l . The v t b l contains the addresses of the

virtual functions. It also contains the offsets or 'deltas' that are used to find the

address of a derived class object given the address of a base class sub-object. Virtual
function invocations involve an indirection that uses the v t b l pointer to access the

entries in the virtual function table. Similarly, a virtual base class requires an
indirection through a pointer, called the vb ase pointer which is required to

implement the sharing of the virtual base class in objects of types specified using

multiple inheritance.

Virtual functions and virtual base classes have an impact on persistence because of
the 'hidden' v t b l and vb ase pointers generated by C++ compilers to implement
these facilities. The v t b l and vb ase pointers are called 'hidden' pointers because

2-2

Chapter 2 Object Persistence and C++

they represent implementation related information and are invisible to the user.
Many C++ programmers are not even aware of their existence [BiDa*93].

Unfortunately, the hidden pointers are volatile pointers, i.e. they are not valid
beyond the lifetime of the program that created them. Saving objects containing

hidden pointers on disk and then reading them back in another program means that
the hidden pointer values in the objects read from disk are invalid. This can also be
true for the same program if it gets relinked for any reason, changing the address

assigned by the linker to the virtual function tables [Dixi98]. The same observation
holds for the values of data members that are volatile pointers. The problems with

volatile data members are discussed later in detail.

2.3.1 Retrieval Using A Special Constructor

There are couple of solutions to fix the hidden pointer problem. One of them is
based on the fact that each class constructor, as translated by the C++ compilers,
contains code to properly initialise the hidden pointers. This code is executed prior
to the execution of the constructor body, written by the user. The basic scheme is as
follows:

• An object is read from a hard disk. As a result, the page on which the object
resides is brought from the disk to the main memory but the object contains
bad hidden pointers.

• A special constructor is applied to the object without changing any data
member.

There are two obstacles to implementing the above scheme. Firstly, C++ does not
allow a constructor to be invoked in conjunction with an existing object. Secondly, a
constructor defined by the user cannot be used to correctly initialise the hidden

pointers in an object read from the disk because the constructor may modify the

values of the data members of the object and even update other objects as well. It is

essential to invoke a constructor that will not modify any data item. Hence, it should
have a null body.

The first problem can be solved by defining an overloaded version of the global
o p era to r new function. When an object of class CMyClass is created by calling

new CMyClass (...), C ++does two things:

• The function o p era to r new is called to allocate memory for the storage of
the object.

2-3

Chapter 2 Object Persistence and C++

• An appropriate constructor (as determined from the arguments to the
constructor supplied with the invocation of new) is called to initialise the

hidden pointers and other components of the object.

In the context of fixing hidden pointers, the storage allocation is completely

unnecessary. We simply want the o p era to r new to execute the constructor. The

following overloaded version of new is an example:

Listing 2.1 One Example of Overloaded Operator New

v o id * o p era to r n e w (s iz e _ t , v o id * p)

{
re tu r n p ;

>

C++ requires the first parameter of an overloaded definition of the o p e r a to r new
to be of type s i z e _ t and that new returns a value of type vo id * . If the memory
address of an object's location is passed to this overloaded function in Listing 2.1, it
simply returns the input address as its result.

Now if we have the previous image of the object from a binary file, we could just do
the following:

char* b u ffe r = new c h a r [s izeo f(C M y C la ss)] ;
b in a r y _ r e a d (b u ffe r , s izeo f(C M y C la ss)) ;
CMyClass* pMyClass = n ew (b u ffer) CMyClass ;

If the constructor has a null body, the data members will remain unchanged but the
'hidden' code in the constructor added by the compiler will reconstruct the v t b l and

vb ase pointers, if present. However, please note that b in a ry _ rea d is an
illustration only; an appropriate I/O routine should be used to bring the object from
the disk to the main memory.

2.3.2 Problem with the Special Constructor

Unless otherwise specified, a constructor for a class will invoke the argumentless
constructor for each of its base class sub-objects and for every data member that is a

class object. All constant and reference members are also initialised by the

constructor. Hence, a special constructor that fixes the hidden pointers but does not
alter the data members must invoke similar special constructors for each base class

sub-object and for every data member that is a class object. This is possible to

2-4

Chapter 2 Object Persistence and C++

implement by generating a default constructor with a null body for every class. But
the classes must have other constructors for regular use. The constructor that takes

no argument has to be reserved for fixing hidden pointers only. But this solution

fails when a class has an array of class objects as a data member. In such a case,
constructors with arguments cannot be used.

The database programming language O++ [AgGe89] is based on C++. Among other

things, 0++ provides facilities for making C++ objects persistent. O++ is an upward

compatible extension of C++. O++ programs are translated into C++, complied and
linked together with the Ode Object Manager [DaAg*93]. The O++ implementation

handles the hidden pointer problem by modifying each user-specified constructor so

that it would do nothing (i.e. execute no statements) when it is called to initialise the

hidden pointers. The value of an integer global variable _ f ix _ h id d en [BiDa*93] is
used to determine whether or not the constructor has been invoked to fix the hidden

pointers:

CMyClass: : CMyClass (parameter declarations) initialiser-list
{

i f (i_ f ix _ h id d e n)

{
... J

>
>

Other initialisers that specify initial values for data members, are modified to change

the values of the data members only if the constructor is called to initialise a newly
created object. They have no effect if the constructor is invoked to fix the hidden
pointers for an object that has been read from the disk. For example, an initialiser of
the form:

m (i n i t i a l_ v a lu e)

where m is a data member, is transformed to the following:

m (_ f ix _ h id d e n ? m : i n i t i a l _ v a l u e)

When _ fix _ h id d e n is nonzero (i.e., true), the initialiser effectively assigns the

member to itself and consequently does not change the value of the data member.

2.3.3 Retrieval Using the Assignment Operator

Another solution to fix the hidden pointer problem is to use the assignment operator.

2-5

Chapter 2 Object Persistence and C++

The basic scheme is as follows:

• Space is allocated for an object read from the disk. The object contains bad

hidden pointers.
• A new object is created with correct hidden pointers.
• The object read from the disk is assigned to the new object.

The default assignment performs member-wise assignment of the components of the

source object to the destination object. In particular, the hidden pointers are not

copied from the source object to the destination object.

The disadvantage is that the storage has to be allocated twice for every object. In
addition, this solution assumes that the assignment operator performs member-wise

assignment. These are the semantics of the default assignment operator generated by

the C++ compilers. However, users are allowed to define their own version of the

assignment operator. This may invalidate this solution if the explicitly defined
assignment operator does not perform member-wise assignment or has side-effects.

2.4 MEMORY MANAGEMENT AND SMART POINTERS

So far we have seen that the objective is to store C++ objects as simple sequences of
bytes in disk files. Then the saving/loading of objects becomes the saving/loading
of a portion of the main memory image. Unfortunately, saving objects on disk
containing volatile pointers such as hidden pointers and embedded pointer data
members and then reading these objects back from the disk does not solve the
persistence issue because the volatile pointer values in the objects will be invalid. We
have discussed about hidden pointers in Section 2.3 and realised that it is necessary
to bypass the usual C++ object allocation mechanism and to get control on object
allocation.

Memory management mechanisms for persistence are not new. In Smalltalk, the

program's entire memory image is dumped on disk and restored when running the

program later. This is one way of saving and loading the memory without worrying

about its content, i.e., without distinguishing the data from the executable.

In a simple memory management approach, all kinds of objects that must be
persistent can be stored in an array and the entire array can be saved on disk or
loaded in memory instead of one object at a time. This is possible by overloading the

o p era to r new so that the objects can be allocated in a predetermined array instead

2-6

Chapter 2 Object Persistence and C++

of scattering them in the heap. The concept of an array can be easily extended to
coarse-grain objects, memory pages or files.

One possible version of the overloaded new is as follows:

v o id * o p era to r new (s i z e _ t s i z e , char* arrayName)

{
v o id * p tr ;
p tr = a l lo c a t e (s i z e , arrayName) ;
re tu r n p tr ;

>

An appropriate a l l o c a t e () function stores the new object in the array,
arrayName. Here is an example of an allocation:

char a r r a y l[1 0 0] ;
CMyClass* pMyClass = n ew (a rra y l) CMyClass (...) ;

Similar functions like a l l o c a t e () are necessary for freeing objects from the array
and the full exploitation of the memory space. The main advantage of this scheme is
that the storing and loading operations are very simple because they just read and
write to an array. For these operations, the array is like a piece of raw memory.

To deal with pointers in user-defined objects, they must be represented in an
address-independent way so that they remain valid every time the array is reloaded.
This can be solved through a logical pointer mechanism that allows the identification

of objects independent from their actual physical address. One good option is to use
an object's offset in the array because it does not change if the array is reloaded and
can be managed easily. But built-in pointers have a behaviour that cannot be

modified. Thus, something similar and more powerful, e.g., a special class can be

used that behaves like a pointer but refers to the actual object's address by using its
offset.

2.4.1 Smart Pointers

The "Smart Pointer" technique allows the implementation of a special class such as

just described. Smart pointers are template classes that behave like pointers to other
classes. One simple example [DaDa95], [Hors93] of their implementation is as
follows:

2-7

Chapter 2 Object Persistence and C++

Listing 2.2 One Example of a Smart Pointer Class

/ / For s im p lic ity , l e t us consider arrayl as a g lob a l v a r ia b le

tem p la te < c la s s X>
c la s s P o in te r

{
P o in te r () : n S to re (O), b S to r e A s s ig n e d (fa ls e) {>
/ / p sh ou ld p o in t t o an o b j e c t in s id e a r r a y l .
/ / That must be checked b e fo r e c a lc u la t in g n S tore

P oin ter(X * p)
{nStore = (char*) p - arrayl; bStoreAssigned = true;}

X* o p e r a to r -> ()
{ a s se r t (bStoreA ssigned); return (X *)& arrayl[nStore]; }

X& o p e r a to r * ()
{ a sse r t (bStoreAssigned); return * ((X*)&arrayl[nStore]) ;}

p r iv a te :
X* n S tore ;
b o o l b S to reA ssig n ed ;

>

Except for the type declaration, instances of this P o in te r class can be used in the
same way as regular pointers:

Pointer<Employee> pe = new (arrayl) Employee("James Bond") ;
s tr c p y (s , pe->nam e()) ;
Employee A gent_007 = *pe ;

The pointers are smarter for two reasons. Firstly, they are always initialised to 0, not to
some random value. Secondly, any attempt to indirect through a smart pointer when
it is not properly assigned, will lead to an assertion failure. Storing/loading operations

on the array (i.e., the object container) do not change the offsets of the objects. Hence,
pointer data members can be stored without problem using the smart pointer

mechanism as illustrated in Listing 2.2. The mechanism solves the problems of
recognising pointers and references among objects inside the array. However, it does

not consider any attempt to access the objects from outside the array.

The mechanism in Listing 2.2 can be extended with an array of smart pointers stored
and loaded together with the arrays containing objects. A solution in [DaDa95]
demonstrates a variation of reference counting technique through the handle class
idiom [Booc91].

2-8

Chapter 2 Object Persistence and C++

2.4.2 Evaluation of Smart Pointers

The persistence mechanism using smart pointers offers some advantages. It could be

associated with a large number of applications without modifying their design. If
the user needs an object to be persistent, s /h e must declare a smart pointer to it. The

user can then execute all the operations usually done with regular pointers. The

object pointed to by the smart pointer can reside in an array and the user can store

and load this object without worrying about its content. The concept of an array

holding objects can be extended to specialised object containers [FuDa93].

A drawback is that the entire array and therefore all the objects must reside in the
main memory. When more than one array is involved, the level of indirection

increases which has its usual penalties.

Unfortunately, smart pointers do not respect a public inheritance hierarchy. If two
classes, Apple and Orange are derived from F r u it , P o in te r< F r u it> cannot be
used like built-in base class pointers in place of P oin ter< A pple> or
Pointer<O range>. As far as compilers are concerned they are three separate
classes and they have no relationship to one another. Fortunately, there is a way to
get around this limitation by using member function templates [Meye96] so that
compilers can generate implicit type conversion functions to help with the
inheritance relationships.

2.5 RELATIONAL DATABASES

Let us now move on to databases before describing other techniques for persistence.
Most real-world commercial applications store their data to a relational database and

with good reason. Most business systems are not created in a vacuum. Typically,
they must interoperate with legacy systems and they must access legacy data. In

other words, in many circumstances there is no choice other than a particular
relational database as the persistence mechanism.

Relational database technology is mature. It has been tested, its performance is well
understood and there are good tools to support the development and maintenance of
large relational database applications.

2.5.1 Mapping Objects to Tables

If a relational database management system (RDBMS) is chosen as the persistence
mechanism, then an object's state will be mapped to a set of rows in one or more

2-9

Chapter 2 Object Persistence and C++

tables in the RDB. Usually the decisions taken in this context affect the system's
performance. Mapping C++ objects to database tables involves the translation of an

object's primitive data types to database data types and the representation of its

hierarchies and associations.

An application programmer has to program in two different languages with distinct
syntax, semantics and type systems, namely, the application programming language

(e.g., C++) and the data manipulation language of the RDBMS (i.e., SQL). The logic

of the application is implemented using the programming language while SQL is

used to create and manipulate the data in the database.

When any data are retrieved from a relational database, they have to be translated
from their database representation to the in-memory programming language specific

representation. Similarly, any data updates have to be explicitly communicated to
the database using another SQL statement, causing the data to be translated from the
in-memory representation back to the database representation. All this comm­
unication back and forth between the database and the application leads to some
unnecessary processing of data which is commonly known as the impedance
mismatch problem [SrCh97].

2.5.2 Binary Large Objects (BLOB)

Mapping an object to database columns can dramatically slow the performance of
the system. An alternative method is to store the entire object as a binary stream of
bytes, known as BLOB. The key values are stored as attributes in columns, but the
bulk of the data is not differentiated. However, the database cannot manipulate or

sort on that data but by using the keys, it can retrieve the BLOB which can then be

reconstituted in the application.

The decision on which parts of an object to put in the BLOB is critical. This decision
changes as the physical design of the database is modified during the development
and maintenance cycles. Indexes can only be put on columns, not on a part of a
BLOB because the BLOB is just binary bits to the database. This forces the developer

to decide once and for all time which fields to key on. The decision to add new keys
requires a change to the definition of the table as well as a redefinition of the BLOB
which can be an expensive maintenance decision. This can make the design more

viscous because it is harder to change as requirements shift. For this reason, many
developers do not use a BLOB. They just make columns for their data and accept the
trade-off in performance.

2-10

Chapter 2 Object Persistence and C++

Classically, when a database-centric system is built first, the developer spends a good

deal of time tweaking the database to make it run faster. The database definitions,
the SQL embedded in the application code, the database utilities are all suspects

when it comes to finding performance bottlenecks [Libe97].

2.6 OBJECT ORIENTED DATABASES

While many systems routinely manage the conversion between objects and relational
databases, there is something unnatural about this relationship. The issues can be

encapsulated, but it is not possible to escape from the fact that relational databases

think in terms of relations, not objects.

An obvious alternative is to build a system on top of a true object-oriented database
(OODB). Just as fixed length rows in tables are the natural unit of storage in a RDB,
objects are the natural unit of storage in an OODB. An OODB is a natural match

when using objects in programs. From the application programmer's viewpoint,
there is no need to transform his/her objects. The database management system
takes care of any transformations required to transmit the objects from the program
to the OODB and vice versa.

There are several advantages of using an OODB when working with a language like
C++:

• There is no need to do any "data modelling" and type conversion as the unit
of storage is an object.

• Translation of objects into rows and rows into objects is not necessary, as
there is when using a RDB. Hence, for certain types of applications, the
runtime performance of an OODB can be superior to a RDB.

• Usually OODBs use implicit persistence. The user of an OODB does not have

to worry about loading and saving his objects and whether they are in the

main memory or in the OODB. This is all done transparently by the OODB.

These advantages are especially important in applications where the data consists of
a small number of objects that have complex inter-relationships and not many

queries are necessary. RDBs tend to perform better when a large number of objects
are present with simpler inter-relationships but with many queries [Libe97].

2.6.1 Querying An OODB

OODBs for C++ typically use native C++ as the language to define and manipulate
objects. Definitions are essentially just the header files normally produced as part of

2-11

Chapter 2 Object Persistence and C++

developing the application. Data manipulation is accomplished through the normal
C++ syntax of accessing data members of objects and pointers to objects.

There are two groups on the subject of query languages. One group tries to embed

SQL in C++, so that the same types of queries are available as in traditional RDBs.
The other group tries to stay with C++. For example, one approach is not to query a

whole database, but to query a container [SrCh97]. A query on a container is a

binary expression which returns the subset of valid elements in the container that are

true for the expression.

As the OODB market matures, clients expect that these products will support the

same set of multi-user features that RDBs support. This includes transactional
control, journalling, security, protection, etc. OODBs are beginning to penetrate the

transaction processing market (e.g., banks and insurance companies), and this will
require them to support thousands of simultaneous users and to store terabytes of
data.

2.7 POINTER SWIZZLING AT PAGE-FAULT TIME

A number of object database management systems (ODBMS) interact with the virtual
memory mechanism of underlying operating systems and provide implicit
persistence to objects. The particular technique used to achieve this object
persistence is often referred to as pointer swizzling. To understand this technique, it
is important to look at the demand-driven interaction between a modem operating
system (OS) and a persistent storage medium (e.g., a hard disk).

Modern operating systems have developed sophisticated techniques to run huge

programs simultaneously by keeping only a small portion of them in the main
memory at any given time. When the data or program accessed by an instruction is

not currently in the main memory, the OS page faults which raises a hardware

interrupt that allows the OS to call a special interrupt service routine [Vada95a] that
brings the required page from the disk after a number of security checks and then
resumes control from where the page-fault occurred. The program runs as if it had

the entire data and code in the main memory all along and the programmer is

completely unaware of the fact that his/her program is straddling the two memories

and thinks that the entire memory is available to use. Thus, the hardware interrupt
processing is done in a way that is transparent to the programmer. The virtual
memory management part of the OS decides (a) the pages to be evicted to bring new

page requests, (b) the pages not to be evicted because they are currently being used,

2-12

Chapter 2 Object Persistence and C++

(c) the size of the buffer, etc. The programmer sees only a single level of storage: the
main memory of size equal to the address space even though the real main memory

or his/her share of it is much less than the address space.

2.7.1 Two Level Storage Approach

Almost all DBMSs maintain a buffer or pool of objects. They bring in an object that is

dereferenced if it is not in the main memory and decide when to flush some objects

and when to lock, when to bring in new objects, etc. This is quite similar to what an
OS does.

However, there is one main difference. The programmer can see the difference

between dereferencing a persistent pointer and a regular pointer. In case of a
persistent pointer, the programmer has to explicitly call a function that does the
following:

• If the corresponding object is in the main memory, the function returns the
object's address.

• If the object is not in the main memory, the function retrieves it from disk and
puts it in memory and then returns the object's new address.

However, in case of a regular pointer, the programmer simply dereferences it. If the
corresponding location is not in the main memory, it is the OS that brings the page

containing the object transparently.

In this two level storage approach, whenever a programmer needs to dereference a
persistent pointer, s/he has to check if the corresponding object is resident in the
main memory. However, dereferencing a transient pointer is fully supported by the

underlying OS and the hardware. The programmer is completely unaware of any
disk interaction as a result of such a dereferencing.

The most important disadvantage of this two level storage approach is the time taken
for residency check. If main-memory objects are accessed frequently, then each such

access becomes a few orders of magnitude more expensive because of this residency

check. A natural question in this context is, why not treat the persistent objects as if
they are main-memory objects and when an object is not in the main memory, raise

an interrupt. Then the DBMS would process this interrupt just like an OS processes
an interrupt raised at page-fault time. Thus, the DBMS would bring the disk-
resident object into a main memory location, give its main-memory address to the
dereferencing program and resume computation as usual. This way, the application

2-13

Chapter 2 Object Persistence and C++

programmer does not see any difference between persistent and main memory
storage. The memory mapped architectures achieve essentially this uniform storage
view. The exact way in which each implementation achieves this single level storage

may differ from one another but they all use an essential technique called pointer

swizzling.

2.7.2 Difficulties in Using the OS Support for Persistence

An important consequence of relying on the OS support for dereferencing persistent
pointers is that the management of object buffers may also have to be done by the
OS. If the OS finds that there is no space available in the virtual memory allocated

for the process to bring in a new object, the OS decides which pages owned by the

process to evict and make room for bringing in the new object. Such a buffer
management by the OS may not exactly be in tune with the requirements of the

DBMS.

The question of using the OS support for persistence has been discussed quite
extensively in the literature and some of the main objections to such a dependence
are the following [Ston84], [Trai82]:

• Lack of control on committing to disk: Databases must be able to commit the
changes they made to the objects when the programmer wants to commit.
The operating systems, on the other hand, commit their files when the virtual
memory manager finds the need to do so, or when an explicit 'close file'
command is issued. The grain of control provided by OS's is thus inadequate
for databases.

• Limitations on the size: In the virtual memory architecture, the size of the

address space, and hence the size of a database if it is managed by an OS for
persistence, will be limited to the 32-bit address space in most hardware.
This may not be adequate for a number of applications.

• Look-ahead algorithms: For reasons of efficiency, one would like to be able

to load database objects ahead of the time they are needed. If we rely
completely on the OS for buffer management, loading ahead may not be
possible with the DBMS.

• Taking advantages of the usage patterns: It is possible that the usage of
database objects follows certain usage patterns and for reasons of efficiency,
the DBMS may want to exploit this pattern to decide which objects should be
flushed out from the buffer pool. Once again, relinquishing the control to the
OS may not be the best idea.

2-14

Chapter 2 Object Persistence and C++

Traditionally, for the above reasons, DBMS's have maintained their own buffers
rather than depending on OS's. However, recently a number of ODBMS developers

have started taking advantage of the 'hooks' provided by modem OS's to provide an

efficient single level storage interface and also to circumvent the problems mentioned

above.

2.7.3 The Essentials of Pointer Swizzling

Let us assume that all objects in an application are initially disk-resident. Then, the

inter-relationship between any two objects is through some disk address. In other

words, one object points to another object using a disk address. When disk-resident
objects are brought into the main memory, the inter-relationship between any two

objects should be maintained in the main memory as well. If objects on disk are

viewed as a network or a graph, then the same topological relationship should be

maintained across the disk-to-main-memory transfer. This is achieved by replacing
all disk addresses by appropriate virtual memory addresses in the objects brought
into the main memory. This process of transforming disk addresses into

corresponding virtual memory addresses is called pointer swizzling.

When an object is brought into the main memory from the disk, it may have member
variables that are references to other objects. These data members are swizzled by
examining their disk addresses and retrieving the referred-to objects. These objects
in turn may need to swizzle their member objects in memory. Bringing a disk-
resident object may cascade through a number of swizzling operations and can,
therefore, be a very expensive process.

One answer to this problem is to defer swizzling the member objects until they are
needed. This lazy evaluation of member references can dramatically improve perfor­
mance at run time. The principle is to maintain the following invariant [Vada95b]:

• Every persistent pointer field of a persistent object that is currently in the
main memory must point to either
> a valid virtual memory address where the valid persistent object currently

resides or
> an unallocated virtual memory address that is access protected and will

be occupied by the valid persistent object when the pointer is
dereferenced.

Thus, whenever a pointer field is dereferenced in the main memory, either the
program reaches a valid object or it reaches an access protection violation and hence

2-15

Chapter 2 Object Persistence and C++

an interrupt is raised and the corresponding object is brought into the main memory.
This process of replacing the pointers at the time of page-fault is called pointer

swizzling at page-fault time and was developed independently by ObjectStore

developers [LaOr*91] and Wilson [Wils91].

When a pointer field is dereferenced a second time, the referred-to object is already

in memory and, therefore, the system will not page-fault and the program runs as if
the referred-to object has always been in the main memory. Thus, further

dereferencing of persistent objects takes place at die same speed as the usual main

memory access, eliminating further residency checks. This is the main advantage of
the pointer swizzling at page-fault time technique.

2.7.4 Wilson's Approach

Motivated by the requirements to support huge address spaces (i.e., bigger than
what the virtual address space can support) at a uniform level, Wilson developed

[Wils91] an interesting way to map a 64-bit address space into a 32-bit virtual
memory address space in a uniform way. Essentially, Wilson uses 64-bit pointers for
referring to the disk-resident objects and the usual 32 bits for referring to the virtual
memory pointers. His scheme transforms the pointers from one format to the other
at the time of page-fault. Wilson used 64 bits as an example size but his methods
work with other sizes as well.

2.7.5 ObjectStore

Object Design International independendy implemented an idea that is essentially
very similar to Wilson's pointer swizzling at page-fault time and built a commercial
ODBMS by the late 1990's. This system is called ObjectStore [LaOr*91]. It differs

from Wilson's approach in the size. The addresses of the disk-resident objects and
the memory resident objects are of the same size. Whereas Wilson's approach uses
64-bit addresses for disk-resident pointers, ObjectStore uses 32 bits to refer to both

main memory and disk-resident pointers. Also different are their motivations:
Wilson's approach is motivated by the need to provide huge persistent stores and

ObjectStore is motivated by the need to eliminate residency checks as far as possible.

Within a short time after the first few approaches were produced, a number of
variations on ObjectStore and Wilson's method were developed. QuickStore of
White and DeWitt [WhDe94] and Texas [SiKa*92] are some examples of these.

2-16

Chapter 2 Object Persistence and C++

2.8 ORTHOGONAL PERSISTENCE

So far we have discussed different extensions to C++ for persistence and some

features of database management systems that support C++. However, there are

persistent programming languages such as PS-Algol [AtBa*83] and Napier88

[SjWe*97] that recognise certain principles for persistent data:

• Orthogonal persistence: The principle of orthogonality states that all data

objects, whatever their type, have equal rights to persistence. This is in line
with the principle of data type completeness that all data objects should be

allowed the full range of persistence.

• Persistence independence: The principle of persistence independence states
that all codes should have the same form irrespective of the longevity of the
data on which they act.

• Transitive persistence: There should be a straightforward and consistent
mechanism for determining the longevity of data objects. The mechanism, in
most cases, is the persistence by reachability from other persistent or root
objects.

These three principles [AtMo95] have been deployed recently in developing
Persistent Java (PJava) which is a persistent programming environment for the Java
programming language. PJava attempts to support a wide range of applications. A
major goal of PJava is to support arbitrary Java code to participate unchanged in
PJava applications [Jord96].

Unfortunately any further discussion on these language-based approaches is beyond
the scope of this thesis.

2.9 CLOSURE

In this chapter, we have reviewed a number of techniques and strategies for adding

persistence to C++ objects. The techniques have their advantages and limitations.
For example, OODB's are quite powerful but there are situations where they are

inappropriate. In particular, OODB's may cause unacceptable overheads for certain

types of applications. The basic problem is that small applications have to pay for

features they do not need. For example, an application that does not require
concurrency control or support for architectural heterogeneity still has to incur

additional time, space and development overheads [Cohe96].

The multimedia prototype, GGS as introduced in Chapter 1 is not a data-access

2-17

Chapter 2 Object Persistence and C++

application. Data-access applications typically update their data on a "per-
transaction" basis. They update the records affected by the transaction rather than

reading and writing a whole data file at once. An important objective is to develop

GGS as a standalone, lightweight and "e-mailable" application. Adding a database

support to GGS for persistence is clearly not the best option.

The MFC serialization is chosen for providing object persistence in GGS.
Serialization is an easy-to-use and easy-to-implement data storage method that
eliminates worries about file formats. It creates transportable stream of bytes that
can be stored in a file, sent around the world as an e-mail attachment or transported

to a remote client or server for later reconstitution. Serialization is discussed in great
detail in the next chapter.

2.10 REFERENCES

[AgGe89] Agrawal, R. and Gehani, N.H.: "Ode (Object Database and
Environment): the Language and the Data Model", Proceedings of the
International Conference on Management of Data, Portland, Oregon,
1989, pp. 36-45.

[ANSI97] ANSI / ISO C++ Committee: "International Standard for Information
Systems — Programming Language C++", ISO/IEC IS 14882,

November 1997.

[AtBa*83] Atkinson, M.P., Bailey, P.J., et al.: "An Approach to Persistent
Programming", The Computer Journal, Vol. 26(4), 1983.

[AtMo95] Atkinson, M.P. and Morrison, R.: "Orthogonally Persistent Object
Systems", VLDB Journal, Vol. 4(3), 1995.

[BiDa*93] Biliris, A., Dar, S. and Gehani, N.H.: "Making C++ Objects Persistent:
the Hidden Pointers", Software Practice and Experience, Vol. 23(12),
pp. 1285-1303, December 1993.

[Booc91] Booch, G.: "Object Oriented Design with Applications",
Benjamin/Cummings, Redwood City, CA, 1991.

[Cohe96] Cohen, S.: "Lightweight Persistence in C++", C++ Report, May 1996.

[Chan96] Channon, D.: "Persistence for C++", Dr. Dobb's Journal, October 1996.

[DaAg*93] Dar, S., Agrawal, R. and Gehani, N.H.: "The O++ Database
Programming Language: Implementation and Experience", IEEE
Conference on Data Engineering, Vienna, Austria, 1993.

2-18

Chapter 2 Object Persistence and C++

[DaDa95]

[Dixi98]

[FuDa93]

[Hors93]

[Jord96]

[LaOr*91]

[LaSi93]

[Libe9 7]

[Lipp96]

[Meye96]

[SiKa*92]

[SjWe*97]

[SrCh9 7]

[Ston84]

[Stro93]

Dabbene, D. and Damiani, S.: "Adding Persistence to Objects Using

Smart Pointers", Journal of Object Oriented Programming, June 1995.

Dixit, S.: "Memory Blasting: Persistent Heaps and Smart Pointers",

C++ Report, January 1998.

Fu, M.M. and Dasgupta, P.: "A Concurrent Programming
Environment for Memory Mapped Persistent Object Systems",
Proceedings of 17th Annual International Computer Software and

Applications Conference, pp. 291-297,1993.

Horstman, C.S.: "Memory Management and Smart Pointers", C++

Report, March-April 1993.

Jordan, M.J.: "Early Experiences with Persistent Java", Proceedings of
the First International Workshop on Persistence and Java, Drymen,

Scotland, September 1996.

Lamb, C., Orenstein, J. and Weinreb, D.: "The ObjectStore Database
System", Communications of the ACM, 34(10), October 1991.

Laurent, P. and Silverio, N.: "Persistence in C++", Journal of Object
Oriented Programming, October 1993.

Liberty, J.: "Beginning Object-Oriented Analysis and Design with

C++", Wrox Press, 1997.

Lippman, S.B.: "Inside the C++ Object Model", Addison-Wesley, 1996.

Meyers, S.: "Smart Pointers, Part 3", C++ Report, September 1996.

Singhal, V., Kakkad, S. and Wilson, P.: "Texas: An Efficient Portable

Persistent Store", Proceedings of the 5th International Workshop on

Persistent Object Systems, San Minato, Italy, September 1992.

Sjoberg, D.I.K., Welland, R., et al.: "The Persistent Workshop - A

Programming Environment for Napier88", Nordic Journal of
Computing, Vol. 4, pp. 123-149,1997.

Srinivasan, V. and Chang, D.T.: "Object Persistence in Object-Oriented

Applications", IBM Systems Journal, Vol. 36(1), 1997.

Stonebraker, M.: "Virtual Memory Transaction Management", ACM

Operating Systems Review, Vol. 18(2), 1984.

Stroustrup, B.: "The C++ Programming Language", Second Edition,
Addison-Wesley, 1993.

Chapter 2 Object Persistence and C++

[Trai82]

[Vada95a]

[Vada95b]

[WhDe94]

[Wils91]

Traiger, I.: "Virtual Memory Management for Database Systems",
ACM Operating Systems Review, Vol. 16(4), 1982.

Vadaparty, K.: "Memory-Mapped Architectures", Journal of Object-

Oriented Programming, 8(6): 18-26,1995.

Vadaparty, K.: "Pointer Swizzling at Page-Fault Time", Journal of
Object-Oriented Programming, 8(7): 12-20,1995.

White, S.J. and DeWitt, D.J.: "QuickStore: A High Performance

Mapped Object Store, International Conference on ACM SIGMOD,

Minneapolis, 1994.

Wilson, P.R.: "Pointer Swizzling at Page-Fault Time: Efficiently

Supporting Huge Address Spaces on Standard Hardware", Computer

Architecture News, pp. 6-13, June 1991.

2-20

Chapter 3 Serialization and MFC

3.1 INTRODUCTION

Serialization is the process of writing or reading one or more objects to or from a

persistent storage medium. In this process, an object is transformed into a linear stream

of bytes, and deserialization is the reverse process of restoring the object from a byte
stream. Serialization is not only used for storing objects in persistent memory such as a
disk file, but also for transporting them from one place to another, for example, through

a network connection.

The basic idea of serialization is that an object should be able to write its current state,
usually indicated by the values of its member variables to a persistent storage. Later, the
object can be re-created by reading or deserializing the object's state from the storage. A

key point is that the object itself is responsible for reading and writing its own state.
Thus, for a class to be serializable, it must implement the basic serialization operations.

This chapter presents an in-depth dissection of the implementation of serialization in the
Microsoft Foundation Class (MFC) library. As indicated before in Chapter 1, this
implementation was important for the development of Glasgow Graphics and Sound
(GGS). The MFC serialization provides the persistence mechanism to the multimedia
objects in GGS. In normal circumstances, the MFC user does not need to know the
serialization internals. It is easy and straightforward to add the serialization support to
an MFC application created by the AppWizard. This has been demonstrated in [Jack97}
by adding only three lines of additional codes to an existing project. However, when
something is that easy, there must be a lot of work going on behind the scenes. This is
especially true for MFC serialization.

It is interesting to look at the details of MFC serialization because it is not clearly

understood by most of the application developers [ShWi96]. MFC is full of
undocumented classes. The only way to explore and understand these classes is to

study the library source code. The discussions and illustrations presented in this

chapter are believed to be valuable for the future MFC users.

MFC supplies built-in support for serialization in the class COb j e c t . All classes derived

from COb j e c t can take advantage of its serialization protocol. There is a lot of debate
about whether it is a good design to have almost every class in MFC derived from

COb je c t . C++ linguists, in general, do not prefer a single rooted hierarchy. They argue

3-1

Chapter 3 Serialization and MFC

that such a design causes the virtual tables to grow and dramatically decreases the run­
time performance. Some others argue that it is not a good object-oriented design. After

revealing a number of important COb j e c t ' s internals, we shall revisit this question

and compare the functionality that COb j e c t delivers with the performance hit taken by

adding its virtual table entries.

3.2 THE PROBLEMS

Serializing an object containing non-dynamic data is a fairly trivial process of
storing/retrieving each data member. For each member of a built-in type (such as in t

or f l o a t) its value is written directly to the stream. But it begs the question of how to

read and write complex user-defined types. The answer is that each object delegates the
responsibility to read and write any non-primitive data members to the member itself
[Libe97]. That is, user-defined types write out their primitive members and tell their
user-defined members to write themselves. Each one, in turn, recursively delegates this
responsibility. Ultimately, every object can be written and read because every user-
defined type is composed of primitive types. The serialization of dynamic data
structures, on the other hand, introduces several complicated issues.

3.2.1 Pointer Storage

Dynamic data structures by definition contain pointers and, as discussed in Chapter 2, it
is meaningless to store pointers in a byte stream since their values will be invalid when
restored later. In the context of serialization, one solution to this problem is to store a

unique object ID in place of the pointer to represent the object referred to by the pointer.
That same ID must then be used in the stream everywhere pointers to that object appear
in the data structure. When the data structure is later restored from the stream, the
dynamic object must be recreated and all occurrences of its ID must become pointers to
the recreated object.

3.2.2 Virtual Constructor

Arbitrary types must be created as needed, but the new operator can only create an

explicit type, so a "virtual constructor" for COb j e c t is necessary. A virtual constructor
is used when the type of an object needs to be determined from the context in which the

object is constructed [Copl92]. In MFC, the context is based on the information read
from a serialized archive. However, a virtual constructor is only a concept and not part
of C++ language.

3-2

Chapter 3 Serialization and MFC

3.2.3 Base Class Pointer

Another issue arises due to the compatibility in C++ between derived and base class

pointers. When storing an object of a derived type through a base class pointer, we must
store (and later restore) the derived type object, even though the static types in the code

performing the serialization are all of the base class pointer type. Performing this

restoration correctly requires the insertion of some class information into the

serialization stream and a mechanism to dynamically create objects of a type indicated

by the information in the stream.

3.3 A SERIALIZABLE CLASS

The following steps establish the general algorithm for serializing an object:

• The parents in the inheritance hierarchy are asked to serialize themselves.
• Primitive data members are serialized.
• Then object pointers are serialized.
• Sub-objects (i.e. user-defined objects) are asked to serialize themselves.

This last act of asking member objects to serialize themselves, allows the implementation
of serialization to be fully encapsulated and localised in that object which knows best
how to do it. In other words, the serializable base class does not change when new
classes are added. Classes that contain a new type do not need to change either. The
responsibility for serializing that new type is encapsulated in the new type itself.

In MFC, five main steps are required to make a class serializable [MSDN31]:

• The class should be derived from COb j e c t or its children.
• The class should override the S e r ia l i z e () member function.
• The DECLARE_SERIAL macro should be placed in the class declaration.
• A constructor that takes no argument is necessary.
• The class implementation should contain the IMPLEMENT_SERIAL macro.

MFC uses an object of the CArchive class as an intermediary between the object to be
serialized and the storage medium. This CArchive object is always associated with a
C F ile object, from which it obtains the necessary information for serialization,
including the file name and whether the requested operation is a read or write. The

object that performs a serialization operation can use the CArchive object without

3-3

Chapter 3 Serialization and MFC

regard to the nature of the storage medium.

A CArchive object uses overloaded insertion («) and extraction (») operators to

perform writing and reading operations. If the S e r ia l i z e () member function is

called directly rather than through the » and « operators of C A rchive, the last three

steps (i.e. the macros and the default constructor) are not required for serialization.

3.4 THE MACROS IN MFC

One common pattern in MFC is the use of pairs of macros (DECLARE/IMPLEMENT) to

add various functionalities to new classes. The DECLARE macros always declare some

member variables and functions for a class, while the IMPLEMENT macros, as the name

suggests, always implement the member functions. The DECLARE macros always go in
the header file and the IMPLEMENT macros always stay in the C++ file. The function­
alities offered by these macros can be divided in three categories as shown in Table 3.1.

Table 3.1 The DECLARE / IMPLEMENT Macro Pairs in MFC

Macro Pair RTCI Dynamic Creation Serialization |

DECL ARE_DYN AMIC /
IMPLEMENT_DYNAMIC

V X x I

DECL ARE_DYNCRE ATE /

IMPLEMENT_DYNCREATE
x I

DECL ARE_SERI AL /
IMPLEMENT_SERIAL

3.4.1 Run Time Class Information (RTCI)

The serialization mechanism is built on top the COb j e c t ' s run time class information

(RTCI) feature that lets the developer determine information about an object such, as
class name and parent at run time. The code to support RTCI lives in all DECLARE/
IMPLEMENT macros. The following example shows how to use RTCI to check that a

polymorphic cast to a derived class is safe:

CObject* pO bject = new CMyClass ;
i f (p O b ject-> IsK in d O f(RUNTIME_CLASS(CMyClass)))

CMyClass* pMyObject = (CMyClass*) pO bject ;

3-4

Chapter 3 Serialization and MFC

It is important to note that the above example is using another macro, RUNT IME_CLAS S.
The natural question is why the MFC developers did not use the C++ run-time type
information (RTTI) features [ANSI97] instead of going to all this trouble with macros. In

fact, they needed RTTI support in the very early days of MFC. A future version of MFC

may replace [ShWi96] the implementation of the RTCI macros to use the C++ RTTI
features. However, this will not affect existing applications because the macros isolate

them from any changes.

Now we look at the definition of DECLARE_DYNAMIC and apply the macro to a sample

class name:

d e f in e DECLARE_DYNAMIC(class_name) \

p u b lic : \

s t a t i c CRuntimeClass c la ss# # c la ss_ n a m e ; \
v ir t u a l CRuntimeClass* G etR untim eC lass() c o n s t ; \

One trick this macro employs is the preprocessor concatenation operator "##".
Operator ## tells the preprocessor to concatenate what is on the right of the operator
onto what is on the left. For example, class##C M yC lass would generate
classC M yC lass. If arguments appear in the concatenation, they are replaced and then
concatenated.

Plugging CMyClass into the DECLARE_DYNAMIC macro and running the preprocessor
causes the following code to be added in the class definition:

p u b l ic :
s t a t i c CRuntimeClass classC M yC lass ;

v ir t u a l CRuntimeClass* G etR untim eC lass() c o n s t ;

The static CRuntimeClass declaration is very important:

Listing 3.1 The CRuntimeClass Declaration

s t r u c t CRuntimeClass

{
/ / A t tr ib u te s
LPCSTR m _lpszClassNam e;
in t m _nO bjectSize;

3-5

Chapter 3 Serialization and MFC

UINT m_wSchema; / / schema number o f th e load ed c l a s s

CObject* (PASCAL* m _p fnC reateO b ject) () ;

CRuntimeClass* m _pBaseClass;
/ / O p eration s

CObject* C r ea teO b jec t() ;
BOOL IsDerivedFrom (const CRuntimeClass* pBaseClass) con st;
/ / Im plem entation
v o id Store(C A rchive& ar) c o n s t;
s ta t ic CRuntimeClass* PASCAL Load(CArchive& ar, UINT* pwSchemaNum);
/ / CRuntimeClass o b j e c t s l in k e d to g e th e r in s im p le l i s t

CRuntimeClass* m _pNextClass;

};

The name "CRuntimeClass" appears to be an MFC misnomer. However, C++
structures are just classes in which everything defaults to public. Because CRuntime­
C la ss is a structure, all of its members are public.

To understand more about CRuntimeClass, it is essential to expose the
IMPLEMENTEDYNAMIC (c la ss_ n a m e, b a se_ c la ss_ n a m e) macro. After running the
preprocessor with the arguments, CMyClass and CObject as the base class:

AFX_DATADEF CRuntimeClass CMyClass: : classC M yC lass =

{
"CMyClass", s izeo f(C M y C la ss) , OxFFFF, NULL,
RUNTIME_CLASS(C O bject) , NULL

> ;
s ta t ic const AFXjCLASSINIT _init_CMyClass (&CMyClass:: classCMyClass);

CRuntimeClass* CMyClass: : G etR untim eC lass() c o n s t

{
re tu rn &CMyClass: : classC M yC lass;

}

First of all, IMPLEMENT_DYNAMIC initialises the static CRuntimeClass structure as
follows:

m _lpszClassNam e = "CMyClass" ;
m _nO bjectSize = s izeo f(C M yC lass) ;

3-6

Chapter 3 Serialization and MFC

m_wSchema = OxFFFF ;
m _pfnC reateO bject = NULL ;
m _pBaseClass = RUNTIME_CLASS(CObject) ;

Second, IMPLEMENT_DYNAMIC creates AFX_CLASSINIT which is a static structure with

only a constructor:

s t r u c t AFX_CLASSINIT
{ AFX_CLASSINIT (CRuntim eClass* pNewClass) ; >

Therefore, IMPLEMENT_DYNAMIC creates a static AFX_CLASSINIT structure and calls
its constructor with a pointer to the static structure, classC M yC lass. This causes the
class to be added to an MFC state list. This is discussed in detail later.

Finally, the IMPLEMENT DYNAMIC macro generates the overridden member function
G etR un tim eC lass() . G etR untim eC lass() just returns the address of the static
CRuntimeClass structure, classC M yC lass just like the RUNTIME_CLASS macro.

This discussion brings up some interesting questions about CRuntimeClass. What are
members like m_wSchema and m _pfnC reateO bject used for? Why does it appear
that CRuntimeClass has a linked list? To help answer some of these questions, it is
necessary to look at how C O bject:: IsKindOf () is implemented:

Listing 3.2 The Implementation of CObject::IsKindOf()

BOOL C O bject: : IsKindOf (c o n s t CRuntimeClass* p C la ss) c o n s t

{
CRuntimeClass* p C la ssT h is = G etR untim eC lass() ;
w h ile (p C la ssT h is != NULL)

{
i f (p C la ssT h is == p C la ss)

r e tu rn TRUE;
p C la ssT h is = p C lassT h is->m _p B aseC lass;

>
re tu rn FALSE; / / w alked t o th e to p , no match

>

3-7

Chapter 3 Serialization and MFC

IsKindOf () takes the static CRuntimeClass pointer and then calls

G etR untim eC lass () for the current object (or t h is) . It then compares the

CRuntim eClass pointers to see if they are pointing to the same static structure. If they

are the same object, a match has been made. If not, IsK indO f() walks up the

inheritance tree looking for a match.

3.4.2 Dynamic Creation

C O bject:: IsKindOf () is the key to RTCI. Similarly, the dynamic creation of objects
is based on the C rea teO b jec t() method of the CRuntimeClass structure. The

DE CL ARE_D YN C RE ATE macro adds only one line on top of the DECLARE_DYNAMIC

macro:

s t a t i c CObject* C rea teO b jec t() ;

IMPLEMENT_DYNCREATE generates the C rea teO b jec t() member function for the

class in addition to the usual IMPLEMENT_DYNAMIC output. The C rea teO b jec t()
implementation is fairly simple:

CObject* PASCAL CMyClass: : C rea teO b jec t()

{
re tu rn new CMyClass ;

>

IMPLEMENT_DYNAMIC initialises C R untim eC lass: :m _pfnC reateO bject function
pointer with NULL because it does not use this feature. On the other hand,
IMPLEMENT_DYNCREATE passes the address of CMyClass: : C rea teO b jec t() to

initialise m _pfnC reateO bject. The static structure, CRuntimeClass uses
m _pfnC reateO bject to dynamically create an object of type CMyClass at run time.
The following is an example of how to use dynamic creation:

CRuntimeClass* pR untim eC lass = RUNTIME_CLASS(CMyClass) ;
CObject* pO bject = p R u n tim eC lass-> C reateO b ject() ;
ASSERT(pObject->IsKindOf(RUNTIME_CLASS(CMyClass))) ;

3.5 A SAMPLE DATA STRUCTURE FOR SERIALIZATION

From an application programmer's viewpoint, it is straightforward to use the MFC
serialization in most cases. However, the implementation details are not easy to grasp

3-8

Chapter 3 Serialization and MFC

as we have seen in the earlier sections. It would be much easier to explain the actual
serialization mechanism with the help of an example.

One example with many patterns is that of graphs, made up of vertices and edges.
Vertices can exist in isolation but edges must connect two existing vertices. Edges know

about their vertices and vertices know the edges belonging to them and this information

is always correct and consistent. Listing 3.3 looks at the declarations of two classes,
CVertex and CEdge, deriving them from CObject. All member functions except
S e r ia l i z e () are left out for clarity:

Listing 3.3 Vertices and Edges

c l a s s CVertex : p u b lic CObject

{

p r iv a te :
in t m_nCordX ;
in t m_nCordY ;
in t m_nEdgeNum ;
CEdge* m_pEdges[MAX_EDGES] ;

p r o te c te d :
v i r t u a l v o id S e r ia liz e (C A r c h iv e S ar) ;
DECLARE_SERIAL(C V ertex)

};

c la s s CEdge : p u b lic CObject

{

p r iv a t e :

i n t m _nLineThickness ;
CVertex* m _pVertexl ;
CVertex* m_pVertex2 ;

p r o te c te d :
v o id S er ia lize(C A rch iv e& ar) ;

3-9

Chapter 3 Serialization and MFC

DECLARE_SERIAL(CEdge)

};

IMPLEMENT_SERIAL(CVertex, C O bject, 1)
IMPLEMENT_SERIAL(CEdge, C O bject, 1)

v o id C Edge:: S er ia lize(C A rch iv e& ar)

{
i f (a r . I s S t o r i n g ())

ar « m _nLineThickness « m _pVertexl « m_pVertex2 ;
e l s e

ar » m _nLineThickness » m _pVertexl » m_pVertex2 ;

>

v o id C V ertex :: S er ia lize(C A rch iv e& ar)

{
i f (a r . I s S t o r i n g ())

{
ar « m_nCordX « m_nCordY « m_nEdgeNum ;
fo r (i n t i= 0 ; i< m_nEdgeNum; i+ +)

ar « m_pEdges[i] ;

}
e l s e

{
ar » m_nCordX » m_nCordY » m_nEdgeNum ;

fo r (i n t i= 0 ; i< m_nEdgeNum; i+ +)
ar » m _pE dges[i] ;

>

>

Two dimensional Cartesian coordinates can be expressed using the MFC class C Point

which is also serializable. In practice, CVertex should maintain a variable-length array
or list of CEdge pointers instead of a fixed-length array, m_pEdges. However, data
members in Listing 3.3 are kept in simple forms so that the serialization mechanism can
be understood clearly.

3-10

Chapter 3 Serialization and M F C

3.5.1 An Illustration in GGS

To illustrate how MFC serialization works, CVertex and CEdge classes are used to

construct a data structure. Figure 3.1 presents this data structure drawn in GGS. GGS

can create such illustrations just like any other graphics packages.

H0 Bit+ f* - G lasgow G raphics and Sou n d - [Chapter 3 Illustration.ggs]

File Objects Pen View Window Help

\M o |M Tafc ■ ■

V 3(3 0 ,10)V1 (1 0,1 0)

E2

Line th ickness of E1 = 2

Line th ickness of E2 = 5
V2(20, 40)

View Scale: 100%

Ready NUM

Figure 3.1 A Sample Pattern of Vertices and Edges

The coordinates and the line thickness values are in arbitrary units. For the sake of

simplicity, let us consider a document class containing pointers to these vertices and
edges:

class CMyDoc : public CDocument
{

CVertex* VI
CVertex* V2
CVertex* V3
CEdge* El
CEdge* E2

};

The Serialize () function of that document class would be equally simple:

3-11

Chapter 3 Serialization and M F C

Listing 3.4 Serialization of Sample Vertices and Edges

void CMyDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
ar « VI « V2 « V3 « El « E2 ;

else
ar » VI » V2 » V3 » El » E2 ;

}

O nce these objects have been initialised, they cou ld be con n ected together as sh ow n

b elow in Figure 3.2:

V2CVertex CVertex V3

Memory address = 0x3333

m nC ordX

m_nCordY

m nE dgeN um = 1

m_pEdges

= 30

= 10

Memory address = 0x4444

m nLineThickness = 2

m_pVertex I = I H —i

m pVertex2 = 1 i i

Memory address = 0x5555

m_nLineThickness = 5

m_p Vertex 1

m_pVertex2

CEdge CEdge E2

Memory address = Ox 1111

m nC ordX

m nCordY

m nEdgeNum = 1

m_pEdges

= 10

= 10

Memory address = 0x2222

m nC ordX = 2 0

m nC ordY = 40

m nEdgeNum = 2

m_pEdges

CVertex VI

Figure 3.2 Possible Data Structure Arrangement in Memory

3.6 STORING OBJECTS

The MFC implementation for persistent data relies on a compact binary format for

saving the data for many objects in a single contiguous part of a file. This binary format

defines the structure for how the data is stored, but it is the object's Serialize ()
member function that provides the actual data saved by the object.

MFC solves the structuring problem by using the class CArchive. A CArchive object

3-12

Chapter 3 Serialization and MFC

provides a context for persistence that lasts from the time the archive is created until the

C A rch iv e::C lo s e () member function is called, either explicitly by the programmer

or implicitly by the destructor when the scope containing the CArchive is exited.

Two member functions, ReadO bject () and WriteOb j e c t () in CArchive do most of
the serialization work. These functions are not called directly from the user code

[OnHa96a]. They are used by class-specific type-safe insertion and extraction operators.

For example:

CMyClass* pObj?
CArchive& ar;
ar « pObj; / / C a lls a r .W riteO b ject(p O b j)
ar » pObj; / / C a lls ar.ReadObject(RUNTIME_CLASS(CMyClass))

C A rch iv e:: WriteOb j e c t () writes the header data used to reconstruct the object.
This data consists of two parts: the type of the object and the state of the object. This
member function is also responsible for maintaining the identity of the object being

written out, so that only a single copy is saved, regardless of the number of pointers to
that object (including circular pointers).

Saving and restoring objects relies on some "manifest constants" or tags [MSDN32].
These are values that are stored in binary and provide important information to the
archive ('w' prefix indicates 16-bit quantities):

Table 3.2 Tags in MFC Serialization

Tags Description Value

wNullTag Used for NULL object pointers. 0

WNewClassTag
Indicates the class description that
follows is new to this archive context.

-1

WOldClassTag
Indicates the class of the object being

read has been seen in this context.
0x8000

When storing objects, CArchive maintains a store map (m_pStoreMap data member of
type CMapPtrToPtr) which is a mapping from a stored object to a 32-bit persistent

| identifier (PID). A PID is assigned to every unique object and every unique class name
!
i

3-23

Chapter 3 Serialization and MFC

that is saved in the context of the archive. These PID's are handed out sequentially

starting at 1. It is important to note that these PID's have no significance outside the

scope of the archive and, in particular, are not to be confused with any database

terminology.

Starting with MFC version 4.0 the CArchive class has been extended to support very

large archives. In previous versions, a PID was a 16-bit quantity [Onio95a], limiting the

archive to 0x7FFE (32766) objects. PID's are now 32-bit, but they are written out as 16-bit
unless they are larger than 0x7FFE. In other words, they are 16-bit until 0x7FFE is

reached but 32-bit thereafter. This technique maintains a backward compatibility with

earlier archives.

When a request is made to save an object to an archive (usually through the global
insertion operator), a check is made for a NULL CObject pointer. If the pointer is NULL,
the wNullTag is inserted into the archive stream.

If there is a real object pointer that is capable of being serialized, the store map is
checked to see if the object has been saved already. If it has, the 32-bit PID associated
with that object is inserted in die stream.

If the object has not been saved before, there are two possibilities to take into account:
either both the object and the exact type (i.e. the class) of the object are new to this
archive context, or the object is of an exact type already seen. To determine if the type
has been seen already, the store map is queried for a CRuntim eClass structure that
matches the CRuntimeClass structure associated with the object being saved. If this

class has been seen before, W riteO b ject() inserts the bit-wise OR'ing of the
wOldClassTag and the PID of this class. If the CRuntimeClass structure is new to
the archive context, then WriteOb j e c t () assigns a new PID to this class and writes the

class description into the archive, preceded by the wNewClassTag. The descriptor for
this class is written using C R untim eC lass:: S to re ():

v o id C R untim eC lass:: Store(CArchive& ar) c o n s t

{
WORD nLen = (W O RD)lstrlenA(m _lpszClassNam e) ;
ar « (WORD)m_wSchema « nLen ;
ar.W rite(m _lpszC lassN am e, n L e n * s iz e o f(c h a r)) ; >

3-14

Chapter 3 Serialization and MFC

C R untim eC lass:: S t o r e () inserts the schema number of the class (discussed later)
and the name of the class as an ASCII string, preceded by the string length. Following

the insertion of the class information, the archive places the object in the m_pStoreMap

and then calls the S e r ia l i z e () member function to insert class-specific data into the
archive. Placing the object in the m_pStoreMap before calling S e r i a l i z e !) prevents

multiple copies of the object from being saved to the archive.

Hence, CArchive uses its store map to access quickly the class information of similar

objects. CArchive also uses the map to ensure that it will write out CRuntim eClass

information only once for a certain class then reference it later in the serialization stream.

3.6.1 Storing Vertices and Edges

To help understand how serialization works, we shall trace a complete write operation
in the earlier example of vertices and edges. In addition to the class instances shown in
Figure 3.2, which are part of the document (i.e. CMyDoc) class, each class type will have
an instance of the CRuntimeClass structure:

Table 3.3 CRuntimeClass Structures of CVertex and CEdge

Class CVertex CEdge 1

Schema 1 1

Length of name string 7 5

Name string "CVertex" "CEdge"

C A rch iv e:: WriteOb j e c t () handles writing both the runtime class structure and the
data associated with a given object. In Listing 3.4, VI is serialized first. When neither
the runtime class structure nor the object itself has been previously written out, what is

actually written to the stream will be as follows:

Tag
RUNTIME_CLASS (CVertex) Part of VI

Schema Length String Coordinates No of Edges

WN ewClassT ag 1 7 "CVertex" 10 10 1

The PID of the CRuntimeClass structure of CVertex and VI will be 1 and 2

3-15

Chapter 3 Serialization and M F C

respectively. When m_pEdges of VI is serialized, El is serialized as a result because
m_pEdges of VI contains a pointer to El. In fact, all objects directly or indirectly

connected to VI are serialized.

At the end of the sample data structure serialization, the store map will appear as shown

in Table 3.4:

Table 3.4 PID's of Vertices and Edges

Objects PID

CRuntimeClass structure of CVertex 1

VI 2

CRuntimeClass structure of CEdge 3

El 4

V2 5

E2 6

V3 7

If the CRuntimeClass structure has already been encountered and written out
previously, then its PID will suffice for all subsequent uses. When the object (and hence
the runtime class information) has been seen before, all that will be written to the stream
is the object's PID. Therefore, the actual data that will be written out for the sample data
structure of vertices and edges is as follows:

WNewClassTag 1 7 "CVertex" 10 10 1 wNewClassTag 1 5

"CEdge" 2 2 wOldClassTag | 1 20 40 2 4 wOldClassTag | 3

wOldClassTag j 1 30 10

The PID's are shown with gray fill. It is important to note that each class instance is
actually stored only once with the PID's referencing previously read in classes. The bit­

wise OR'ing of wOldClassTag with the PID's of CRuntimeClass structures is
important to distinguish the class PID's from the object PID's. This information is
essential when the archives are restored.

3-16

Chapter 3 Serialization and MFC

3.7 THE SERIALIZATION MACROS

There is a good reason for not describing the serialization macros before this section. It
was mentioned earlier in Section 3.4 that DECLARE_SERIAL and IMPLEMENT_SERIAL

provide all the supports offered by the DYNCREATE macro pair. Here is the definition of
DECLARE_SERIAL:

t d e f in e DECLARE_SERIAL(class_name) \

DECLARE_DYNCREATE(class_name) \
fr ie n d CArchive& o p e r a to r » (CArchive& a r , class_nam e* &pOb);

The DECLARE_SERIAL macro is actually adding only one line of code to the RTCI and
dynamic creation sections. The extra line declares a global extraction operator as a

fr ie n d to the new class.

IMPLEMENT_SERIAL generates the implementation of the global extraction operator:

CArchive& o p e r a t o r » (CArchive& a r , CMyClass*& pOb)

{
pOb = (CMyClass*) ar.R eadO bject (RUNTIME_CLASS(CMyClass)) ;
r e tu rn ar ;

>

It is quite natural to expect a global insertion operator as well but that is not included in
the SERIAL macro pair. The internal details are explained as follows.

3.8 ON-THE-FLY REGISTRATION AND RESTORATION

As we have seen before, the persistence and dynamic object creation mechanisms of
MFC use the CRuntimeClass data structure to uniquely identify classes. MFC

associates one structure of this type with each dynamic and/or serializable class in the

application. These structures are initialised at application startup time using a special
static object of type AFX_CLASSINIT as mentioned in Section 3.4.1. The constructor of
AFX_CLASSINIT links CRuntimeClass structures into the MFC type registry.
AFX_CLASSINIT does not take up any data space because it has no member data. This

mechanism allows on-the-fly registration of object types whenever they are linked into
the program. The idea of types registering themselves is the core of object-oriented
design [Beve95]. If a type registers its own existence with a registry instead of

3-17

Chapter 3 Serialization and MFC

hardcoding the type into the registry, then the type can be freely added and removed

from the program without any code changes to the registry.

The SERIAL macros define the o p e r a t o r » for a new class because it is called with a

pointer to the class, but no instance of the class will exist until the instance has been

restored from the file. Without an instance of the class, MFC cannot access the run-time
class information to ensure that the object being loaded is equivalent to or is a derived
class of the given pointer. By overloading o p e r a t o r » , MFC is able to pass a pointer to

the run-time class information so that the serialization mechanism will be typesafe.

A mapping scheme is required to allow a class to be created based on the information
read from a file. The actual class name is the ideal candidate to write to a file in order to
identify a class because C++ class names have to be unique inside an application. That is

why C R untim eC lass:: S to re () writes the class name as an ASCII string while storing
objects. When the name of the class is loaded from the file, the type registry is searched
for that name. While reading, CArchive maintains an array of objects already created
and stores the already-read CRuntimeClass structure information in the array. This
way, CArchive can look it up when it finds a reference that was written in the
serialization stream. As long as the type exists in the registry and was declared with
either DECLARE_DYNCREATE or DECLARE_SERIAL, the object can be constructed. The
actual loading of the data appropriate to that kind of object is delegated to the object
itself by calling its S e r ia l i z e () member function. The type of object created is
separated from the type of object requested. If a derived class is loaded into a pointer to
a base class, then the correct derived class will still be created.

It is time to answer why there is no global insertion operator. W r ite O b je c t() in

CArchive is similar to its ReadOb j e c t (). It writes out the CRuntimeClass
information and then calls the object's S e r ia l i z e () function. Since W r ite O b je c t()
does not need any specific CRuntimeClass information, the CObject insertion

operator is sufficient and a new insertion operator for the CObject derivative is not
necessary.

3.9 VERSIONABLE OBJECTS

The IMPLEMENT_SERIAL macro takes an unsigned integer that defines the schema or
version information for the object. In fact, the data member m_wSchema of the

3-18

Chapter 3 Serialization and MFC

CRuntimeClass structure (Listing 3.1) is initialised with this number. If the schemas

do not match when the data is read, the framework will not read in the object.

Serialization, to some extent is an all-or-nothing proposition [Howa97]. Especially, the
MFC serialization mechanism does not record the length of each object into the archive.
If one object cannot be loaded, MFC will not be able to skip that object and load the rest
of the archive. This can be a serious pitfall unless versionable object creation is possible.

The basic schema technique is adequate for objects that do not exist in multiple versions.
One solution to supporting backward-compatible objects is to use the constant,
VERSIONABLE SCHEMA. Versionable objects in MFC are easily defined by OR'ing the
VERSIONABLE_SCHEMA constant with the schema number in IMPLEMENT_SERIAL:

IMPLEMENT_SERIAL(CMyClass, C O bject, VERSIONABLE_SCHEMA | 1)

This simple change can make the objects backward compatible. For example, if the
CVertex class design in Listing 3.3 is changed to include the Z coordinate value,
C V ertex:: S e r ia l i z e () can be rewritten as follows:

v o id C V ertex :: S er ia lize(C A rch iv e& ar)

{
i f (a r . I s S t o r i n g ())

{
ar « m_nCordX « m_nCordY « m_nCordZ « m_nEdgeNum ;
fo r (i n t i= 0 ; i< m_nEdgeNum; i++)

ar « m _pE dges[i] ;

>
e l s e

{
sw itc h (a r .G etO b jectS ch em a())

{
c a se 1: / / Load o ld v e r s io n

ar » m_nCordX » m_nCordY » m_nEdgeNum ;
break;

c a se 2: / / Load cu rren t v e r s io n
ar » mjnCordX » m_nCordY » m_nCordZ » m_nEdgeNum ;

3-19

Chapter 3 Serialization and MFC

>

fo r (in t i= 0 ; i< m_nEdgeNum; i+ +)

ar » m _pE dges[i] ;

>

>

CArchive: :G etO bjectSchem a() returns the schema for the current object. There is
a caveat with GetOb j ectSchem a (). It can be called only once during the serialization

of an object; subsequent calls return -1. Therefore, it is not possible to build versionable

class hierarchies using VERSIONABLE_SCHEMA. The following example illustrates this

point:

/ / Base and c h i ld c la s s e s have d i f f e r e n t schema numbers

c l a s s CBase : p u b lic CObject { . . . >;
c l a s s CChild : p u b lic CBase { . . . >;
IMPLEMENT_SERIAL(CBase, C O bject, VERSIONABLE_SCHEMA | 1);
IMPLEMENT_SERIAL(CChild, CBase, VERSIONABLE_SCHEMA | 2) ;

v o id C B ase:: S er ia lize(C A rch iv e& ar)

{
i f (a r . I sL o a d in g ())

{
UINT nSchema = ar.G etO bjectSchem a() ; / / R eturns 1
/ / Load v e r s io n a b le o b j e c t . . .

>
>

v o id C C h ild :: S er ia lize(C A rch iv e& ar)

{
C B ase:: S e r i a l i z e (a r) ; / / C a ll b ase c la s s S e r i a l i z e ()
i f (a r . I sL o a d in g ())

{
UINT nSchema = ar.G etO bjectSchem a() ; / / R eturns -1
/ / Second c a l l t o G etO bjectSchem a() FAILS

>
}

3-20

Chapter 3 Serialization and MFC

The call to G etO bjectSchem a() in the S e r ia l i z e () function of CChild fails

because it was already called in the base class code. There is one way to avoid this

problem by storing the version numbers explicitly [Stou97], instead of relying on MFC's

VERSIONABLE_SCHEMA. The following code shows one simple method:

c la s s CBase : p u b lic CObject { enum { verB ase = 1 >; . . . >;

v o id C B ase::S er ia lize(C A rch iv e& ar)

{
C O b jec t:: S e r i a l i z e (a r);

i f (a r . I s S t o r i n g ())

{
ar « verB ase; / / E x p l i c i t l y sa v e v e r s io n
/ / . . . th en save e v e r y th in g e l s e

>
e l s e

{
UINT nMySchema; / / Load v e r s io n number
ar » nMySchema;
sw itc h (nMySchema)

{
c a se verB ase:

/ / Load c u r re n t v e r s io n o f o b j e c t

/ / Other c a s e s fo r o ld e r v e r s io n s

>
>

>

This custom versioning scheme can be implemented in child classes and it does not have

any problem in building versionable class hierarchies.

3.10 LIMITATIONS

By creating a foundation of a run-time type mechanism with a type registry and

building serialization on top, MFC implements a fast, flexible, typesafe serialization

mechanism. This mechanism should be powerful enough to satisfy most design
requirements. There are limitations but it is possible to get around at least some of

3-21

Chapter 3 Serialization and MFC

them. For example, the serialization macros cannot be used with abstract base classes.
The solution [INET31] is to define a macro similar to IMPLEMENT_SERIAL but without

the C rea teO b jec t() reference.

The current implementation of CRuntimeClass does not support multiple inheritance

(MI). This does not mean that MI cannot be used in an MFC application. The
responsibilities involved when working with objects that have more than one base class

are discussed in [MSDN33].

The Standard Template Library (STL) is now part of the C++ language [ANSI97].
Unfortunately, the STL template classes do not have any persistence support [Stev98].
They cannot be serialized using MFC either. The class names must be known at pre­
processing time for this to work, but templates are expanded by the compiler long after
the preprocessor is gone. Consequently, there is no way for the preprocessor to know
the compiler-generated class name [Holu96].

However, the general idea that the MFC serialization does not work with templates is
not right. The STL equivalent template classes in MFC are serializable and typesafe.
The typesafe template classes have inline functions using the C++ type-checking facility
to eliminate errors caused by mismatched pointer types. When serializing the template
based collection classes in MFC, the S e r i a l i z e () member function should only be

used and not the insertion and extraction operators.

3.11 CLOSURE

The advanced memory diagnostic features of CObject are beyond the scope of this

thesis. The diagnostics are implemented by two virtual functions, A sse r tV a lid () and

Dump(). A s s e r t V a l id () validates the object's integrity and Dump() produces a
diagnostic dump of the object. But they work in debug builds only to avoid any

performance hit taken by adding their virtual table entries. [ShWi96] is recommended
as a detailed source of information.

Let us revisit the question posed earlier in the chapter: "Does the MFC architecture with
CObject as root cause performance problems?" C++ has to index the class virtual table

at run-time to determine the correct function to execute. Out of five virtual functions in
CObject, two are in debug builds only, so they do not really affect the release-build

3-22

Chapter 3 Serialization and MFC

performance. The largest overhead with using virtual functions is the increased instance
size from a virtual table. Therefore, the trade-off in deriving from CObject is three

extra virtual functions (i.e. G etR untim eC lass (), S e r i a l i z e () and the destructor) in

exchange for RTCI, dynamic creation, serialization and memory diagnostics. The choice,
of course, depends on the MFC user.

The multimedia objects in GGS are derived from CObject to take advantage of these
attractive features.

3.12 REFERENCES

[ANSI97] ANSI / ISO C++ Committee: "International Standard for Information
Systems — Programming Language C++", ISO / IEC IS 14882, November

1997.

[Beve95] Beveridge, J.: "Inside MFC Serialization: Typesafe Serialization that's Fast
and Flexible", Dr. Dobb's Journal, October 1995.

[Copl92] Coplien, J.O.: "Advanced C++ Programming Styles and Idioms",
Addison Wesley, 1992.

[Holu96] Holub, A.: "Roll Your Own Persistence Implementations to Go Beyond
the MFC Frontier", Microsoft Systems Journal, June 1996.

[Howa97] Howard, R.R.: "Simple Object Persistence with STORE_TABLE", Journal
of Object Oriented Programming, June 1997.

[INET31] Wingo, S.: "Visual C++/MFC Frequently Asked Questions",

http:// www.stingray.com/mfc_faq/.

[Jack97] Jackson, A.G.: "Adding Serialization", Visual C++ Developers Journal,
1997.

[Libe97] Liberty, J.: "Beginning Object-Oriented Analysis and Design with C++",
Wrox Press, 1997.

[MSDN31] Microsoft Developer Network Library: "Serialization (Object Persistence)",
April 1999.

[MSDN32] Microsoft Developer Network Library: "TN002: Persistent Object Data
Format", April 1999.

[MSDN33] Microsoft Developer Network Library: "TN016: Using C++ Multiple

3-23

http://www.stingray.com/mfc_faq/

Chapter 3 Serialization and MFC

[OnHa96a]

[Onio95a]

[ShWi96]

[Stev98]

[Stou97]

Inheritance with MFC", April 1999.

Onion; F. and Harrison, A.: "Dynamic Data Structure Serialization in

MFC", C++ Report, March 1996.

Onion, F.: "Object Persistence in MFC", C++ Report, N ov/D ec 1995.

Shepherd, G. and Wingo, S.: "MFC Internals: Inside the Microsoft
Foundation Class Architecture", Addison-Wesley Developers Press, 1996.

Stevens, A.: "The Persistent Template Library", Dr Dobb's Journal, March
1998.

Stout, J.: "Object Persistence and Versioning: Serialization in MFC",
Visual C++ Developers Journal, 1997.

3-24

CHAPTER 4

CLASSES IN QQS

Chapter 4 User Interface and Classes in GGS

4.1 PRINCIPLES OF USER INTERFACE DESIGN

An important principle of user interface design is that the user should always feel in
control of the software rather than feeling controlled by the software. This has

various implications. The first implication is the operational assumption that the
user initiates actions, not the computer or software. The user plays an active, rather

than a reactive role.

Visibility of information and choices also reduce the user's mental workload. Users

can recognise a command easier than they can recall its syntax. Often they like to

explore an interface and learn by trial and error. An effective interface allows for
interactive discovery. It provides only appropriate sets of choices and warns users

about potential situations where they may damage the system or data, or better,
makes actions reversible or recoverable.

A good interface should always provide feedback for the user's actions. Visual and
sometimes audio cues should be presented with every user interaction to confirm
that the software is responding to their input and to communicate details that
distinguish the nature of the action.

An interface should be simple (not simplistic), easy to learn and easy to use. It must
also provide access to all functionality provided by an application. Maximising
functionality and maintaining simplicity work against each other in the interface. An
effective design balances these objectives.

One way to support simplicity is to reduce the presentation of information to the
minimum required to communicate adequately. For example, wordy descriptions

for command names or messages should be avoided. Irrelevant or verbose phrases
clutter the design, making it difficult for users to easily extract essential information.
Another way to design a simple but useful interface is to use natural mappings and
semantics. The arrangement and presentation of interface elements affect their
meaning and association.

The interface designer can also help users manage complexity by using "progressive
disclosure". Progressive disclosure involves careful organisation of information so
that it is shown only at the appropriate time. By "hiding" information presented to

the user, the designer reduces the amount of information to process. For instance, a
menu displays its choices when clicked and some of these choices can use dialogue
boxes to present various options effectively.

4-1

Chapter 4 U ser Interface and Classes in G G S

What we see influences how we feel and what we understand. Visual information
communicates nonverbally but very powerfully. It can include hints that motivate,
direct or distract the user. Effective visual design serves a greater purpose than

decoration; it is an important tool for communication. How the interface designer

organises information on the screen can make the difference between a design that

communicates a message and the one that leaves a user feeling puzzled or

overwhelmed. Good graphic designers provide a perspective on how to take the

best advantage of the screen and how to use effectively the concepts of shape, colour,
contrast, focus, and composition. Moreover, they understand how to design and

organise information and the effects of fonts and colour on perception.

4.2 S T A N D A R D GUI OF APPLICATIO NS FOR W IN D O W S

Figure 4.1 presents the standard graphical user interface (GUI) of common
applications designed to run on Windows (i.e., Microsoft Windows 95 / 98 / NT 4.0 as

discussed and explained in Chapter 1). The detailed descriptions of different GUI
components can be found in [Micr95].

r Title bar icon

Title barTitle text r Window buttons

Menu bar

L Status: bar - Sise grip

File E d it V iew

"vertical scroll bar

Sizing border

D o cu m en t

Figure 4.1 Typical GUI of Windows Applications

Recently, the design of this interface supports a model where users can browse for
data and edit data directly instead of having to first locate an appropriate editor or

4-2

Chapter 4 User Interface and Classes in GGS

application. As users interact with data, the corresponding commands and tools to
manipulate the data or the view of the data become available automatically. This
frees the user to focus on the information and tasks rather than on applications and

how applications interact.

In this context, a "document" is a common unit of data used in tasks and exchanged

between users. The term document is a little misleading because it seems to imply

the output of a word-processing or spreadsheet application. A document is just a

place to keep data, and a view is a place to represent that data. The use of the term,
document emphasises the fact that the focus of design is on data, rather than the

underlying application.

4.3 SEPARATION OF DOCUMENT AND VIEW

Almost every software development effort has had to deal with data management in
some form or other. Finding out ways of managing an application's data has been a
problem for software developers throughout the history of the IT industry. After all,
information and data management is one of the primary uses of computer
technology.

There are many issues involved in separating data from the user interface display
code, such as (1) deciding which part of the application owns the data, (2) resolving
which part of the application is responsible for updating the data, (3) determining
how to display multiple renderings of the data, (4) coordinating data updates, (5)
storing the data, and (6) managing the user interface. The last item can be difficult
especially when multiple document types are involved because they often require
updating the toolbars and menus.

The application programmers from the C / SDK background [Petz92] understand

how difficult it can be to manage data because of the structure of an SDK program.
There is no easy way to decide where to put the data management code.

The basic idea behind any data management scheme is to split the task into two

conceptual parts: (1) data management and (2) user interface management. In this
context, MFC is very successful in separating the code that manages an application's

data from the code that renders that data. This specific feature — the separation of
an application's data management code from its user interface code is implemented
in the document / view architecture in MFC.

4-3

Chapter 4 User Interface and Classes in G G S

MFC's document / view is not a new idea. It was first created by the computer

scientists at Xerox PARC and was a key part of the Smalltalk environment [Kras83].
Smalltalk's version of the document / view is called model-view-controller (MVC)

where the model is equivalent to the document in MFC.

The MVC paradigm is a way of breaking an application, or even just a piece of an

application's interface into three parts: the model, the view, and the controller. MVC

was originally developed to map the traditional input, processing, output roles into

the GUI realm:

Input <=> Processing <=> Output

Controller ^ Model <=> View

The user input, the modelling of the external world, and the visual feedback to the

user are separated and handled by the model, viewport and controller objects. The

controller interprets the mouse and keyboard inputs from the user and maps these
user actions into commands that are sent to the model and / or viewport to effect the

appropriate change. The model manages one or more data elements, responds to
queries about its state, and responds to instructions to change the state. The
viewport manages a rectangular area of the display and is responsible for presenting
data to the user through a combination of graphics and text.

View Frame

Document

Part of document
currently visible

View

Figure 4.2 The Document / View Architecture in MFC

4-4

User Interface and Classes in GGS

4.4 THE DOCUM ENT/VIEW ARCHITECTURE IN MFC

The MFC document / view architecture provides a consistent way of coordinating

application data and representations of that data. In MFC, the document handles the

data management and an application's views handle the user interface management
(Figure 4.2). In effect, an application's data is centralised in one place and the user

interface code is packaged separately.

There are four main components of the architecture: (1) documents, (2) views, (3)
view frames and (4) document templates. These components are briefly discussed in

the following sections.

4.4.1 Documents

In MFC, the document is embodied by the CDocument class. In fact, when
AppWizard generates an application, it derives a class from CDocument.
CDocument has various functions for performing such operations as managing file
I/O and updating the representation of the data.

MFC's CDocument class is two layers deep in the MFC hierarchy. It is derived from
CCmdTarget, which is derived from CObject. As a result of being derived from
CObject, CDocument is eligible for all the support offered by the CObject class as
explained in Chapter 3. In addition, by virtue of being derived from CCmdTarget,
the CDocument class can handle command messages (i.e., WM_COMMAND messages).
Finally, CDocument can support component object model (COM) interfaces, as well
as OLE automation, because it is derived from CCmdTarget.

The document can receive programmatic commands, and at the same time allow the
user interface to directly bind to its functionality. In other words, the programmer
can implement command handlers in the document itself. Because of the command
routing, the commands find their way to the document from the user interface

elements, such as toolbars and menus, which actually belong to totally different
objects. This fact can be abused to make dangerous access to the document, but if
used correctly, it can be a valuable technique [ShWi96].

4.4.2 Views

An application with only a document would be fairly uninteresting. There has to be
some way of rendering the data on the screen as well as providing a user interface

for manipulating the data. This functionality is supplied by MFC's CView class. In

4-5

Chapter 4 User Interface and Classes in GGS

an MFC program using the document / view architecture, views are responsible for

rendering a document's data. The CView class is three layers deep in the MFC
hierarchy:

CObject

L f CCmdTarget |

H C W n d

CView

Because CView is derived from CCmdTarget, it is eligible to receive command
messages from menus and controls which is a good feature since the view is often

responsible for handling the user interface as well. Since CView is derived from

CWnd, it is also eligible for receiving the Windows messages, such as WM PAINT,
WM SIZE, etc.

Standard MFC applications using the document / view architecture do their drawing

within a view. CView includes a function called OnDraw(), which is called by the
framework whenever a view needs to be updated.

4.4.3 V iew Frames

MFC views are simply borderless windows that supply data renderings. However,
the drawings appear within a window that has a border and menus. This window is
called a frame window and it is necessary for the architecture to work properly.

Now the question is why the menu management is handled by a separate frame and
not by the view itself. It is a good design practice to isolate this type of functionality
and not tightly couple it. That way, the dependencies are reduced, which makes it

much easier to work on a single piece of code at a time. This technique is also the
cornerstone for isolating the differences between the single document interface (SDI),
the multiple document interface (MDI), and the OLE in-place editing. Separating the

view and the frame makes the CView objects more flexible, so that they can be used
in different situations.

SDI applications use a class derived from CFrameWnd as the frame housing the view.

MDI applications derive a class from CMDIChildWnd as the frame housing the

document's views.

4.4.4 D ocum ent Tem plates

One interesting aspect of the document / view architecture is that the three previous

4-6

Chapter 4 U ser Interface and Classes in G G S

components are treated as a unit. In other words, the ideas of a document, its
representation, and its user interface are treated together as a whole. Document

templates tie the whole picture together:

A pplication O bject

D ocum ent T em plate

D ocum ent O bject Fram e W indow

View O bject

Figure 4.3 The Interrelationships between Objects in the Architecture

The controller in the Smalltalk MVC architecture acts like a shield between the model

and the view so that they do not get too dependent on each other. The document
template has a similar role in MFC. An MFC application has one document template

for each type of document that it supports. For example, if the application supports
both a spreadsheet and a database, the application will have two document template

objects. Each document template is responsible for creating and managing all the
documents of its type.

CDocTemplate is an abstract base class that defines the base functionality for

4 -7

C hapter 4 U ser Interface and Classes in G G S

handling documents, frames and views. G e tF ir s tD o c P o s it io n (), G etN ex t-

D o c P o s it io n () and O penD ocum entFile () are the pure virtual functions that

make CDocTem plate an abstract base class. MFC defines two other document

template classes that can be used directly within applications. They are

C S in g leD ocT em p late and C M ultiD ocT em plate. C M ultiD ocT em plate is for

applications using more than one type of document. C M ultiD ocT em plate is very

similar to C Sin g leD ocT em p late . C M ultiD ocT em plate holds a list of document

types, whereas C S in g leD ocT em p late holds only one document type.

4.5 MULTIPLE D O C U M E N T INTERFACE (M DI)

For some applications, the Windows taskbar may not be sufficient for managing a set

of related windows. For example, it can be more effective to present multiple views
of the same data or multiple views of related data in windows that share the

common interface elements. The multiple document interface (MDI) is used for this
kind of situation.

The MDI technique uses a single primary window, called the parent window to
visually contain a set of related child windows. Each child window is essentially a
primary window, but is constrained to appear only within the parent window
instead of on the desktop as shown in Figure 4.4.

ZMM
File Edit View Insert Format Tools Table Window Help

^ ^ A p p lic a tio n Nam e

D ocum ent

Figure 4.4 A Child Window Constrained within its Parent

The parent window also provides a visual and operational framework for its child

windows. For example, child windows typically share the menu bar of the parent
window and can also share other parts of the parent's interface, such as a toolbar or a

status bar. These interface elements can be changed to reflect the commands and
attributes of the active child window.

Secondary windows such as dialog boxes, message boxes, or property sheets —
displayed as a result of interaction within the MDI parent or child are typically not
contained or clipped by the parent window. These windows are activated and

4-8

Chapter 4 User Interface and Classes in GGS

displayed following the common conventions [MSDN41] for secondary windows

associated with a primary window, even if they apply to individual child windows.

4.6 THE CONTRIBUTIONS OF MFC IN GGS

The software developers are moving more and more towards an industry of
frameworks. This is quite a paradigm shift from the old idea of building an entire

program on top of an OS [Walk97]. Nowadays, we purchase a framework like MFC
or Borland OWL [Newa98] or Java's class library AWT [ChLe97]. The advantage is

obvious; we can have an entire Windows application up and running in minutes. The
developer can concentrate on adding components and implementing the special
features of his / her application. S/he does not need to waste time finding answers

to the common questions, such as, "Where and how do I place my first window?". If
someone tries to write a Windows application from scratch, the result could be a

whole lot less attractive and it would certainly take more time.

The skeleton MFC applications created by AppWizard, provide a good starting point
to develop an application that conforms to the published user interface guidelines
[Micr97]. Not only the application developer but also the end-user benefits from a
familiar and consistent user interface because s/h e is not forced to re-leam common
operations. A user who regularly prints documents from Microsoft Word intuitively
looks for a Print option on the File menu when confronted with the task of printing
in an unfamiliar application.

Any solution to the problems encountered when attempting to develop and maintain
a software system written using object-oriented languages has to fulfil two important
requirements [LeMe*92]. Firstly, it has to be able to describe the structure of the
system being supported, and secondly, it has to provide an efficient and user-
friendly interface.

To address the first of these requirements, the author decided to use the MFC
serialization as opposed to other techniques for object persistence. This has been

discussed in detail in Chapters 2 and 3. The second requirement is satisfied by
incorporating the MFC document / view architecture in GGS to provide the "look

and feel" expected by experienced users of the Windows environment.

It is unnecessary to reiterate the descriptions of the WIMP (i.e., windows, icons,
menus and pointers) interface for Windows. However, it is still important to discuss
briefly the ways GGS provides feedback to the user.

4-9

Chapter 4 User Interface and Classes in GGS

4.6.1 ToolTips

GGS uses ToolTips to help the user to identify the icons in the toolbar. A ToolTip is a

small pop-up window that displays a single line of text that describes the purpose of
a toolbar button in an application. A ToolTip control is hidden most of the time,
appearing only when the user puts the cursor on a toolbar button and leaves it there

for approximately one-half second [MSDN42]. The ToolTip control appears near the

cursor and disappears when the user clicks a mouse button or moves the cursor off
the toolbar button.

4.6.2 Message Boxes

Message boxes are used in GGS with caution. It only takes one line of code to
display a message box on the screen:

A fxM essageBox("Sim ple m essage b o x .") ;

However, the message boxes can distract and annoy the user if frequently used.

4.6.3 Status Bar Messages

The status bar in a Windows application is a convenient place to display messages
without interrupting the user action. The ToolTips are usually accompanied by the
flyby texts. A flyby text is a message that is displayed on the status bar, most
commonly in the first "stretchy" pane. The help text provided in a flyby text can be a

bit longer than the ToolTips because there is more space to display the text. In
addition to displaying help texts about the menu and toolbar buttons, GGS displays
descriptive messages on the status bar about the context of any activity in a view
window. Status bar messages can be helpful and they do not have the adverse
effects of message boxes.

4.7 HIGH LEVEL DECOMPOSITION OF GGS

As discussed in Chapter 1, one of the major objectives in developing GGS is to

improve technical communications between engineers separated by distance and
language barriers. In order to achieve such an objective, this prototype multimedia
application should be able to deal with externally created vector or bitmap images,
graphics primitives and sound objects in any sequence. The end-user should be able
to open an external image, record his / her voice wherever appropriate,
draw / scribble on the images and save them in one single file and animate them
later, if necessary. Now with the MFC document / view architecture and seriali­

zation in the background, it is possible to present a high level decomposition of GGS.

4-10

C hapter 4 U ser Interface and Classes in GGS

E xternally created
sound

E xternally created
bitm ap im ages

Externally created
v ector/m eta files

SoundG raphics

C onvertersC onverters

U ser v o ice
or speech

W A V E
file s

W M F/E M F
files

B M P/D IB
files

Sound
R ecording
Interface

Persistent
Bitm ap
O bject

Persistent
M etafile
O bject

Persistent j
Sound Object'

Persistent
G raphics

P rim itives

G G S \
A pplication \ ^
D ocum ent V"

Persistent
T ext

O bject

Persistent
Tim er
O bject

S eria lized O bject Store

Figure 4.5 Glasgow Graphics and Sound (GGS)

It is worth noting from Figure 4.5 that GGS only supports the "core" file formats for

sound, bitmaps and metafiles. They are core file formats because the OS (i.e.,
Windows) heavily relies on them and internally uses them most of the time.
However, there are several other popular graphics and sound file formats and
commercial applications tend to support as many as possible. But writing file
converters is not a primary issue in developing a research prototype such as GGS.

Source codes of several converters are available in the public domain [INET41] and
they can be added on later to expand the scope of GGS. This also raises an important

4-11

Chapter 4 U ser Interface and Classes in G G S

issue that there should be plenty of room for expansion.

4.8 A CASE STUDY W ALK TH RO UG H

Before discussing the software engineering issues involved in the development of

GGS, it is important to introduce the GGS interface and create a short and simple
illustration as an end-user. Figure 4.6 presents the GGS interface where the users can

select commands from the drop-down menus or click the buttons on the toolbar that

represent the frequently used commands.

G lasgow Graphics and Sound - [GGS1]

y. File Objects Pen View Window Help

îq|glTG?M>lTlafcl
AboutText Timer AnimationNew Save Line Circle Metafile Red Blue Pen width

O pen Print R ectang le Curve Bitmap Sound Black G reen Scale

O ther colour Animation editor

Refresh view

View Scale: 100%

Ready

Figure 4.6 The User Interface of GGS

The buttons on a toolbar are analogous to the items in a menu. Both types of user
interface objects generate commands, which a Windows program handles by
providing handler functions. Often toolbar buttons duplicate the functionality of

menu commands, providing an alternative user interface to the same functionality.

In addition to the toolbar buttons, the user can get to the context sensitive menus by
clicking the right mouse button:

4-12

Chapter 4 U ser Interface and Classes in G G S

Line
Rectangle
Circle
Curve
Text

Bitmap
Metafile
Sound
Timer

Black
Red
Green
Blue
Other Colour

(a) General

Figure 4.7 The Context Sensitive Menus

4.8.1 A Protein M olecule

Three-dimensional structures of proteins, the relationships between them and their
sequence are by no means simple. In the computer generated pictures, different
colours are used to highlight the important features found in proteins. Perceptual
response of the eye to visual information is very important in this context. The depth
perception in these images has made it possible to create models of proteins that
stimulate the imagination of the end-user. Figure 4.8 presents the atomic details of a

portion of Thermolysin (3TLN) protein [Belh90]:

#

Figure 4.8 The Atomic Details of a Portion of Thermolysin (3TLN) Protein

Move
Delete

Cancel

(b) Cursor on an object

4-13

C hapter 4 U ser Interface and Classes in G G S

We could use GGS to create a simple presentation to explain different colours used in

Figure 4.8. Unfortunately, greyscale hardcopies are not good in representing colours.

However, the accompanying disc with this thesis contains the presentation and an

executable copy of GGS.

A definite theme or story is very important for any presentation. For the protein

molecule, we can record some sound clips, use one line of text as the caption, create a
rectangle to frame the picture and draw some arrows and circles to highlight the

atomic presentation of the molecule. Some timers are also required to separate the

objects and adjust the pace of the animation. The sequence of objects can be edited in

the GGS Animation Editor.

4.8.2 Importing the Picture

First of all, the picture of the Thermolysin (3TLN) protein molecule should be

imported into GGS. We press the button and click in the active view window
where we want to place the picture. A standard F i l e Open dialogue box pops up
and we navigate through the folders to find the BMP file for the molecule:

| ? J x]

Look in |-_j| molecule_demo d E j
^ Molecull bmp
^ Molecul2.bmp
*•£ Molecul3.bmp

Molecul4.bmp

Fie name: |Molecule bmp Qpen

Files of type: |8itmap Fies (‘.bmp] Cancel

Figure 4.9 The Picture Comes from a BMP File

After the file selection, GGS reads it and provides us with the following information:

Infoimation liom the BMP header r jr OK \
Bitmap width in pixels ■ 425 liii-irir- -T-rinara

Bitmap height n pixels « 445 Cancel I

Pixels per metre in X direction = 3337

Pixels per metre in Y direction « 3337

W Maintain original aspect ratio

Suggested width and height (100 units - 1 inch)------------------------------

Width p25 Height: p45

The width and height can be changed to scale or stretch the bitmap

Figure 4.10 Bitmap Size Related Options

4-14

C hapter 4 U ser Interface and Classes in G G S

Although we have an opportunity to scale or stretch the bitmap, in this case, we
accept the width and height values suggested by GGS. The bitmap is then placed

with its top-left corner at the point where we clicked before with the left mouse

button. If this is not convenient, we can always move the bitmap by clicking on it
with the right mouse button and then selecting the Move option.

4.8.3 The Rectangle Around the Picture

A rectangle can be used to frame the image of the protein molecule. To select an

appropriate colour, we click the button on the toolbar which presents the

following dialogue box:

Basic colors

Red: 0

Custom colors

r r r r r r r r
r r r r r r r r

Define Custom Colors » ColorlSolid
1240 Green: 1128

[GO- Blue: [G4-

OK Cancel Add to Custom Colors

Figure 4.11 Selection of Colours

After choosing the colour as shown in Figure 4.11, the next step is to select the pen

thickness. We click the V button on the toolbar and select 0.03 inches as our choice:

S e t P en Width

Pen Widths

r 1 Pixel (* 0.03 inches

C' 0.01 inches 0.04 inches

0.02 inches 0.05 inches

m
OK l |

Cancel

Figure 4.12 Pen Width Selection

Finally, we click the n button and draw a rectangle around the picture of the

4-25

C hapter 4 U ser Interface and C lasses in GGS

molecule in the active view window by clicking and dragging the mouse. The

rectangle can be moved or deleted like any other object in GGS.

4.8.4 Recording Sound Objects

The sound object creation is very similar. We select the button on the toolbar and

click anywhere in the active view window and the following dialogue box pops up:

a
- Sound source---

(• Record my voice through a microphone

Import from a waveform-audio file

R ecord or Import Sound?

17 Wait until the playback completes
in the animation mode

OK Cancel

Figure 4.13 Sound Recording Options

We accept the default options and click the I button. GGS presents another

dialogue box:

R ecording Time

The recording device should not be kept
open indefinitely.

El

Maximum recording time (sec):

OK Cancel

Figure 4.14 Recording Time

We select 10 seconds as our maximum recording time, click the o* I button, and

then record, "This picture comes from an earlier work done in the Department of Computing
Science", when the following dialogue box appears, and finally, click the I stop Recoil

button when we finish:

R ecording...

{ Stop Recording j|

Elapsed time: 10 seconds

Figure 4.15 Progress Dialogue

4-16

C hapter 4 U ser Interface and Classes in G G S

The same steps are followed to record the other sound clips as shown in Table 4.1:

Table 4.1 Other Sound Clips

Item No. Sound Clips

2 This is a portion of an Alpha Helix in Thermolysin protein.

3 Green segments represent nitrogen atoms.

4 The blue ones are oxygen.

5 The red shaded ones represent carbon atoms.

6 Three letter codes display different Amino acids.

7 This presentation is an example of creating a sequence of objects

in GGS.

4.8.5 A Text Object

A text object is necessary for the caption. Unlike others, a text object is associated
with several font characteristics:

Font: Font st^e:
Times New Roman Bold

T erminal |
■MiriTHiirroisfriTHilB

Times New Roman Sp
I t Times New Roman Sp
IT Transport MT
^ Uni vers — j
T Umvers Condensed I

Bold Italic

J
Effects---------

r Strikeout

I- Underline

Color:

□

Sample

Size:

W

'J
20 z\

A a B b Y y Z z

Script:

[Western

OK

Cancel

Figure 4.16 Font Properties

In order to create the caption, we press the T button and then left click on the view

window where we want to place the text. GGS presents the following dialogue box
and we type, “A Portion of an Alpha Helix in Thermolysin Protein":

4 -1 7

C hapter 4 U ser Interface and Classes in G GS

H I
A Portion of an Alpha Helix in
Thermolysin Protein]

OK

Cancel

Fonts...

Figure 4.17 The Caption

Now, if we click the 1 I button, the dialogue box in Figure 4.16 will appear and

we can select a combination of different font features. If we do not go that far, GGS

will render the text with the default font properties.

4.8.6 Creating Timers

Seven timer objects are necessary for this presentation. To create a timer object, we

select the © button and click anywhere in the active view window. GGS presents
the following dialogue and we type 2000 in the edit box:

A timer will introduce a brief time lapse before
rendering the next object in the animation mode.

Jime lapse: |2000j milliseconds

OK Cancel

Figure 4.18 Time Lapse of 2 Seconds

Timers and sound objects in GGS do not have any top-left corner, but the user is still
expected to click the left mouse button in the active view window. This way
multiple sound or timer objects can be created in one sequence. In addition, when
multiple GGS documents are open, it is also necessary to indicate where the new
object will be placed.

We create another six timers with the time lapse of 2 seconds. Timers can be fine-
tuned in the Animation Editor. It is easier to adjust the time lapse after watching the
animation.

4.8.7 Creating Arrows

Some arrows would be ideal to highlight specific areas on the protein molecule. An

arrowhead (e.g., f\) can be drawn with the freehand curve and the rest with a line.

We select the L in e and the Curve buttons on the toolbar to accomplish this task.
The pen colour and its width are selected as described in Section 4.8.3. We also

4-18

Chapter 4 U ser Interface and Classes in G G S

encircle a three-letter code with the C i r c le tool. The final arrangement should look
like the following:

f r Glasgow Graphics and Sound - [molecule final.ggs]
E 3 £te Objects Pen View Window Help

H E 13

a *

A Portion of an Alpha Helix in Thermolysin Protein

LtJ I
Ready

i f
NUM | ^

Figure 4.19 Explaining Thermolysin Protein

4.8.8 Arranging the Sequence of Objects in the Anim ation Editor

Now it is necessary to arrange the sequence of objects in the Animation Editor. We
invoke the Editor by clicking the button on the toolbar:

GGS Animation Editor

< 0 bject N o> 0 bject Type (Width, H eight)

<1> Bitmap (W = 425 pixels, H = 445 pixels) ▲
<2> Sound Object 8 1
<3> Timer 8 1 (1500 milliseconds)

<5> Sound Object 8 2
<6> Timer 8 2 (500 milliseconds)
<7> Text(W = 350,H = 20)
<8> Timer 8 3 (3000 milliseconds)
<9> Curve (W = 28, H = 34)
<10> Line (W = 19, H = 61)
<11> Sound 0b|ect 8 3 --
<12> Timer 8 4 (2500 milliseconds)
<13> Curve (W = 27, H = 40)
<14> Line (W = 29, H = 81)
<15> Sound Object 8 4
<16> Timer 8 5 (2500 milliseconds) d

El
OK

Delete

Move Up

Move Down

Play'Sound

S ave A s .

Start Animation

Edit Timer...

Refresh View

Figure 4.20 The Animation Editor

4-19

C hapter 4 U ser Interface and Classes in G G S

We arrange the objects with the 1 and MoveDown | buttons. The graphic objects

are highlighted in the view window when they are selected in the Editor. The sound

objects can be checked with sound | and the timers can be altered with the I
button. The animation can be tested incrementally by clicking £><* Amnion | which
switches to ' stop Animation { and awaits the user intervention. The selection of colours, pen

widths, timers, etc. are very subjective. However, the author's final selection of the

objects and their sequence can be found in the accompanying disk.

4.8.9 Anim ation

It is possible to animate the sequence of objects without invoking the Animation
Editor. If we click the Hi button, GGS offers the following alternatives:

Timers in Animation M ode

In the animation mode the sound objects
are played and timers are activated.

Timers

m
OK

Cancel

O Default timer (1 second delay between objects)

(* User defined timers (if apyj

Figure 4.21 Timers in Animation

If the ok | button is pressed, GGS animates the whole sequence of objects from the

start to finish.

4.9 CLASS HIERARCHY IN G G S

Now it is time to come back to the software development issues. It is clear from the

case study walkthrough that a potential user of GGS should be able to, (a) import
externally created images in BMP, WMF and EMF formats, (b) import sound as
WAVE files, (c) record his / her own speech, (d) use graphics primitives such as lines,

circles, rectangles, etc., (e) scribble with freehand curves, (f) add text wherever
necessary, (g) move objects anywhere on the screen, and (h) control the static

animation sequence by inserting timers.

It is not known in advance what sequence of object types the user will create. GGS
must be able to handle any sequence of objects. This suggests that using a base class
pointer for selecting a particular member function might simplify the design. For

example, there is no need to know what an object is, in order to draw it. As long as

the object is accessed through a base class pointer, the object can draw itself by using
a virtual function. To achieve this, we need to make sure that the classes defining

4-20

C hapter 4 U ser Interface and Classes in G G S

similar characteristics, share a common base class. In this base class, the functions to
be selected automatically at run time should be declared as virtual.

The MFC library would impose some restrictions on the design of this class
hierarchy. For example, serializable classes in GGS should define CObject as their

base class. Sound and timer objects are quite different in nature from others. Hence,

one class for sound objects and another for timers can be derived straight from

CObject. Similarly, CExternalImage, derived from CObject, can deal with the

import issues of externally created bitmaps and metafiles. On the other hand, lines,

circles, curves and even text objects have similar characteristics and they can share a
common base class. In essence, the features of GGS can be divided in four main

domains as shown in Figure 4.22. The MFC classes have names beginning with the
letter "C", such as CDocument or CView. Data members of an MFC class are
prefixed with "m_". This convention is followed in developing GGS because it will
be easier to identify and understand the derived classes.

4.10 CLASS C O N ST R U C TIO N

The proposed classes in Figure 4.22, in a way, extend the MFC library. In view if
this, it is important to understand the philosophy and development strategies used
by the MFC developers when adding new classes to the library. This also raises
some controversial class design issues.

CObject

CLine

CElement

CTextCCircle

CSound

CRectangle CCurve

CExternal Image

Figure 4.22 Initial Class Hierarchy

4-21

Chapter 4 User Interface and Classes in GGS

4.10.1 Public Data Member?

The MFC library does not follow an important principle that all data members
should be private or protected and accessor functions should be used to change the

values in those data members. MFC frequently offers both a public data member
and an accessor function for use by the developer. For example, the class CWnd
provides both a public data member, CWnd:: m_hWnd, and an accessor function,
CWnd: :GetSafeHwnd(). Depending on the needs of a particular application, a

developer might use the data member or the member function, or both.

More often, MFC uses accessor functions in significant operations such as setting and
retrieving styles, returning pointers, and obtaining values used in other operations.
The MFC developers encourage application programmers who are writing MFC-
friendly classes to use public data members as often as possible [Micr97], and reserve

accessor functions for operations that do more than simply change values in a data
member, such as incrementing a counter or updating another function.

In other words, the MFC developers encourage delegating the security related
responsibilities to the class user. However, the author supports a different opinion
that classes should be easy to use but difficult to abuse [Meye98]. The classes in GGS
are, therefore, not designed to offer any public data member.

To some extent, it is agreeable that accessor functions or Set() / Get() pairs indirectly

expose the data members and they are not necessary unless they add value or do
some additional work. However, this may not be the most important reason for the

MFC architects to use and encourage public data members. The Windows

environment was designed long before the C++ language became popular.
Thousands of applications still use the procedural C-language API. Procedural
programmers are more familiar with the task of assigning values directly to variables
and structures. This might be another reason behind the existence of public data

members in MFC. From a commercial viewpoint, the MFC designers and developers
have to think about a vast number of Windows programmers with the procedural
background.

4.10.2 Thin API Wrapper

The core of the MFC library encapsulates a large portion of the Windows API in C++
form. The classes represent windows, dialog boxes, device contexts, common GDI
objects and other standard Windows items. These classes provide a convenient C++
member function interface to the structures in Windows that they encapsulate. The

4-22

Chapter 4 User Interface and Classes in GGS

MFC library also supplies a layer of additional application functionality built on the

C++ encapsulation of the Windows API. This layer is a working application

framework for Windows that provides most of the common user interface expected of
programs for Windows.

One important characteristic that sets MFC apart from other class libraries for

Windows is the close mapping to the Windows API written in the C language. An
MFC user can generally mix calls to the class library freely with direct calls to the
Windows API. Part of MFC's success lies in the fact that the framework is a very thin

layer over the Windows API. Most of the time, MFC "wraps" the Windows

functionality in C++ without adding other functionality. In some cases (for example,
dialogue boxes), MFC simplifies the Windows API by managing the details, but the
general rule is to keep the layer as thin as possible.

4.10.3 Copy Constructor and Assignment Operator

It is generally regarded as a good practice to explicitly define copy constructors and
assignment operators. If not defined by the programmer, the C++ compilers
generate them as memberwise initialisors and memberwise assignment operators.
However, implicitly declared copy constructors and assignment operators, most of
the time, do not perform as intended when pointer data members are involved.
Even when explicitly declared, they can be a source of problems [Meye96].

CObject derived classes in MFC avoid copy constructors and assignment operators
altogether. The copy constructor and the o p era to r = are private in CObject with

no implementation. This, in fact, forces the C++ compilers to generate an error if one
CObject is assigned to another via o p era to r =, or any attempt is taken to create
one CObject from another using the copy constructor. In addition, CObject
derived classes do not get the compiler generated default copy constructors and

assignment operators since their base class has declared them private.

In many MFC classes, provision is made for copying in such a way to protect the

integrity of data. For example, in the template collection classes, it is not possible to
do the following:

CArray m yarrayl ;
CArray myarray2 ;
/ / I n s e r t io n o f d a ta ...
m yarrayl = myarray2 ; / / Error

4-23

Chapter 4 User Interface and Classes in GGS

The programmer can, however, do this:

CArray m yarrayl ;
CArray myarray2 ;
/ / I n s e r t io n o f d a ta ...
m yarray2 . R em oveA ll() ;
m yarray2.A ppend(m yarrayl) ;

4.10.4 Other Guidelines

Using c o n s t is a way to protect the accessibility of data. In general, programmers
could use c o n s t more often than they do, and in MFC c o n s t is used whenever

feasible to make the data less vulnerable. The MFC developers encourage
programmers to apply c o n s t to data members as often as possible as a guarantee to
the class users that the accessor functions do not have hidden side effects.

On the other hand, the use of multiple inheritance is discouraged because it adds a
high degree of complexity to application development. The MFC library does not
use multiple inheritance in the design or implementation of any of its classes.
However, the use of templates is encouraged although the level of complexity
inherent to templates is quite high.

4.10.5 Commenting Convention

In both the MFC source files and the files that AppWizard creates, the following
comments are found within the class declarations, usually in this order:

• / / C o n stru ctors: Obviously, the section headed by this comment will
house the class constructor declarations, but other functions that are used in

the initialisation of class members may also appear here.

• / / A ttr ib u te s : This comment indicates that the statements following it
define properties of objects of the class - typically these will be the data
members of the class, but they can also be GetQ / SetQ types of functions that

supply information about the class or just change the data member values.

• / / O perations: The function members following this comment act on the
data members of the class, so they change the attributes of a class object in
some way.

• / / O verr id ab les: This defines a section of the class which declares
function members that can be overridden in a derived class. Pure virtual

4-24

Chapter 4 User Interface and Classes in GGS

functions may also appear in this section.

• / / Im plem entation: This indicates that everything following it is not
guaranteed to be the same in the next release of the library. Anything can be

included in here - data members as well as function members.

MFC recommends these commenting conventions to delineate the sections of the
class declarations containing similar types of class members. Some classes may omit
some sections but all classes should have at least the //Im p lem en ta tio n section

[Micr9 7].

4.11 CLOSURE

In this chapter, we have discussed some principles of graphical user interface design,
the MFC document / view architecture and general recommendations from the MFC

developers regarding class construction. A high-level decomposition of GGS is also
presented based on the requirements set out in Chapter 1. The main classes and their
hierarchy are proposed based on this high-level decomposition. A case study
walkthrough is added, purely from an end-user's viewpoint, to illustrate a simple
use of GGS.

C++ Class design is a complex issue and one may take years to learn how to design
classes and templates well. What is valuable in a class is not the implementation
code, but the insight of the developer. The next chapter will endeavour to improve
the initial class hierarchy for GGS.

4.12 REFERENCES

[ANSI97] ANSI / ISO C++ Committee: "International Standard for Information
Systems — Programming Language C++", ISO / IEC IS 14882,

November 1997.

[Belh90] Belhadj-Mostefa, K.: "Molecular Graphics: Protein Visualisation", PhD
Thesis, Department of Computing Science, University of Glasgow,
May 1990.

[ChLe97] Chan, P. and Lee, R.: "The Java Class Libraries : Java.Applet,
Java.AWT, Java.Beans", Addison-Wesley, 2nd Edition, Vol. 2, October
1997.

4-25

Chapter 4 User Interface and Classes in GGS

[Howl96]

[INET41]

[Kras83]

[LeMe*92]

[Meye96]

[Meye98]

[Micr95]

[Micr97]

[MSDN41]

[MSDN42]

[Newa98]

[Petz92]

[ShWi96]

[Walk97]

Howlett, V.: "Visual Interface Design for Windows : Effective User
Interfaces for Windows 95, Windows NT, and Windows 3.1", John

Wiley and Sons, April 1996.

Liverpool HP-UX Porting and Archive Centre, "Software Porting And
Archive Centre for HP-UX", http://hpux.csc.liv.ac.uk/hppd/hpux.

Krasner, G.: "Smalltalk-80: Bits of History, Words of Advice",
Addison-Wesley, 1983.

Lejter, M., Meyers, S. and Reiss, S.P.: "Support for Maintaining Object-
Oriented Programs", Report No. CS-91-52, Department of Computer

Science, Brown University, January 1992.

Meyers, S.: "More Effective C++: 35 New Ways to Improve Your
Programs and Designs", Addison-Wesley, 1996.

Meyers, S.: "Effective C++: 50 Specific Ways to Improve Your
Programs and Designs", 2nd Edition, Addison-Wesley, 1998.

Microsoft Press: "The Windows Interface Guidelines for Software
D esign: An Application Design Guide", 2nd Edition, July 1995.

Microsoft Corporation: "Microsoft Foundation Class Library
Development Guidelines", March 1997.

Microsoft Developer Network Library: "Displaying Secondary
Windows", Windows User Interface: Platform SDK, April 1999.

Microsoft Developer Network Library: "Using CToolTipCtrl", Visual
C++ Programmer's Guide, April 1999.

Neward, T.: "Advanced OWL 5.0 : Power Tools for OWL

Programmers", Independent Publishers Group, January 1998.

Petzold, C.: "Programming Windows 3.1", Microsoft Press, 3rd
Edition, 1992

Shepherd, G. and Wingo, S.: "MFC Internals: Inside the Microsoft
Foundation Class Architecture", Addison-Wesley Developers Press,
1996.

Walker, C.: "Using Frameworks - For Beginners Only?", h ttp://w w w .
kinetica.com/ootips / using-frameworks.html.

4-26

http://hpux.csc.liv.ac.uk/hppd/hpux
http://www

Chapter 5 Graphics Primitives in GGS and Other Features

5.1 COLLECTIONS OF OBJECTS

The document class in the GGS application needs to be able to store an arbitrary
collection of lines, rectangles, externally created images, sound and other objects in

any sequence. An appropriate vehicle for handling this could be a doubly linked list.
A doubly linked list collection is an ordered arrangement of data items, where each
item has two pointers associated with it which point to the next and previous items

in the list. This type of list collection can be searched in either direction because it
has both backward and forward pointing links.

The MFC collection classes provide two approaches to implementing each type of
collection. One approach is based on the use of class templates and provides type-
safe handling of data in a collection. Type-safe handling means that the data passed

to a function member of the collection class will be checked to ensure that its type

can be processed by the function.

The other approach makes use of a range of collection classes (rather than templates),
that perform no data checking. The MFC user has the responsibility to include
additional code to make these collection classes type-safe. Clearly, the better option is
to work with the template-based classes, since they would provide the best chance of
avoiding errors in the application.

The Standard Template Library (STL) is now part of the C++ language [ANSI97]. If
we consider the portability issues, STL could be a better choice. Unfortunately, as
discussed in Section 3.10, the STL template classes do not have any persistence

support [Stev98]. They cannot be serialized using MFC either.

The template-based type-safe collection classes in MFC support collections of objects

of any type, and collections of pointers to objects of any type. A doubly linked list in

the GGS document class could store pointers to the objects created on the heap,
rather than objects themselves to avoid unnecessary duplication.

The C T ypedPtrL ist class template is selected as a basis for managing objects in the

GGS document class. A typed pointer list class can be declared as the following
statement:

C T yped P trL ist<B aseC lass, Type*> ListNam e;

The first argument specifies a base class that must be one of the two pointer list
classes defined in MFC, i.e., either CObList or C P trL ist. Using CObList creates a

5-1

Chapter 5 Graphics Primitives in GGS and Other Features

list supporting pointers to objects derived from CObject, while C P trL ist supports

lists of v o id * pointers. Since the main classes in GGS (i.e. other than dialogue

template based and helper classes) have CObject as their base class, the choice is

straightforward. The second argument to the C T ypedPtrL ist template is the type

of the pointer to be stored in the list. Based on the initial class hierarchy as presented
in Figure 4.22, this would to be CObject* because CObject is the common root.
But the disadvantage is that the list could contain an object of any class derived from

CObject. To increase the level of security in GGS, it is desirable to store pointers to

objects of a user defined class derived from CObject and not CObject itself.

5.2 DRAWING GGS DOCUMENT

As the GGS document owns the list of objects, and if the list is p r o te c te d , the GGS
view class cannot use it directly. For example, the OnDraw () member of the view
should be able to call the Draw() member of each object in the list. So we need to

consider how best to do this with the following options:

• The list can be made p u b lic , but this would rather defeat the goal of
maintaining p r o te c te d members of the document class, as it would expose
all the function members of the list object.

• A member function could be added to return a pointer to the list, but this
would effectively make the list p u b lic and also incur overhead in accessing

it.

• A public function could be added to the document which would call the
Draw() or similar member for each object. This public function of the
document could be called from the view. This would not be a bad solution,
as it would still maintain the privacy of the list. The negative point is that the

function would need access to a device context, and this is really the domain
of the view.

• The GGS view class can be a fr ie n d of the document class, but this would
expose all the members of the document, which is not desirable, particularly

with a complex class.

• We could add a function to provide a POSITION value for the first list object,
and a second member to iterate through the list. This would not expose the
list, but it would make the object pointers available.

The last option appears to be the best alternative. However, if the document stores
COb j e c t pointers, it would not be easy for the member functions of the view class to

5-2

C hapter 5 G raphics P rim itives in G G S and O ther Features

deal with them. The OnDraw() member function could skip the sound and timer

objects but the following code would be necessary:

// The view class retrieves a CObject pointer, m_pSelected
// from the document
if (m_pSelected->IsKindOf(RUNTIME_CLASS(CElement)))

((CElement*)m_pSelected)->Draw(pDC);
if (m_pSelected->IsKindOf(RUNTIME_CLASS(CExternallmage)))

((CExternallmage*)m_pSelected)->Draw(pDC);

Draw() is not a member function of the CObject class. Hence, not only casting is
necessary, but also RTCI, as described in Section 3.4.1. The C++ run-time type

information (RTTI) could be used instead of RTCI, but that would not improve the

situation. In fact, the above code completely defeats the expected polymorphism in
GGS.

CObject

C G G SO bject

CElement CSoundCG G STim er CExternallm age

CDib CM etaFiles

CLine CRectangle CCurve C TextCCircle

Figure 5.1 Revised Class Hierarchy

5-3

Chapter 5 Graphics Primitives in GGS and Other Features

Clearly, a parent class is necessary for all GGS objects to define the common features
as virtual functions and each derived class would override these functions in order to

define its own characteristics.

Now based on the revised class hierarchy in Figure 5.1, the list in the GGS document
class can be revised as well:

C TypedPtrList<C O bList, CGGSObject*> m _O b jectL ist ;

The declaration of m _O b jectL ist ensures that only CGGSObject pointers can be

stored. This provides an increased level of security in GGS.

5.2.1 The Parent Class CGGSObject

Listing 5.1 presents the CGGSObject class declaration. A virtual destructor is there

to ensure that derived class objects are destroyed properly. The default constructor
is in the protected section of the class to ensure that it cannot be used externally.

/ / G en eric CGGSObject c la s s
c l a s s CGGSObject : p u b lic CObject

{
DECLARE_SERIAL(CGGSObj e c t)
p u b l ic :

v ir t u a l -CGGSObject(){>
v ir t u a l v o id Draw(CDC* pDC, BOOL bSelect=FALSE){>
v ir t u a l CRect GetBoundRect() ;
v ir t u a l v o id S er ia lize(C A rch iv e& ar) ;

p r o te c te d :
/ / D e fa u lt c o n s tr u c to r fo r s e r i a l i z a t i o n

CGGSObject(){>

};
Listing 5.1 The CGGSObject Declaration

The Draw() function will need a pointer to a CDC object to provide access to the

Windows drawing functions. In fact, the Draw() member should be declared as a pine
virtual function in the CGGSObject class - after all, it cannot have any meaningful
content in this class. This would also force any derived class to define it. However,
CGGSObject inherits serialization from CObject and that requires an instance of the

class be created. It is possible to include abstract classes in the MFC serialization, as
discussed in Section 3.10, but it is best to avoid redefining the framework macros.

5-4

Chapter 5 Graphics Primitives in GGS and Other Features

5.2.2 Drawing Sound and Timer Objects!

CSound and CGGSTimer objects do not have anything to draw on the screen. In the

animation mode as explained in Chapter 1, sound objects are played and timers are
activated. Apparently, one alternative solution could be the replacement of the

virtual Draw() by a virtual A c t iv a te () member function. A c t iv a te () could

draw the graphic objects, play sound and enliven timers.

A Windows application does its "permanent" drawings in response to the WMJPAINT
message. The OnDraw() function in the view class should be the only place

initiating any drawing operations for the document data. This ensures that the view

is drawn correctly whenever Windows deems it necessary.

An application draws in a window at a variety of times: when first creating a
window, when changing the size of the window, when moving the window from
behind another window, when minimising or maximising the window, when
displaying data from an opened file, and when scrolling, changing, or selecting a
portion of the displayed data.

The OS manages actions such as moving and sizing a window. If an action affects
the content of the window, the OS marks the affected portion of the window as ready
for updating and, at the next opportunity, sends a WM_PAINT message to the
application. The message is a signal to the application to determine what must be
updated and to carry out the necessary drawing.

Clearly, the drawing operations are frequently needed but the animation is a special
case. Hence, it is necessary to separate them altogether which would finally help in

implementing the incremental animation and other difficult issues. In fact, CSound

and CGGSTimer do not need to override the Draw() member of CGGSObject:

POSITION aPos = p D o c-> G etL is tH ea d P o sitio n ();
CGGSObject* pO bject = 0 ; / / S to re fo r an o b j e c t p o in te r
w h ile (a P o s) / / Loop w h ile aPos i s n ot n u l l

{
pO b ject = pD oc-> G etN ext(aP os);
/ / I f th e o b je c t i s v i s i b l e . . .
if (p D C -> R e c tV is ib le (pO bject->G etB oundR ect()))

pObject->Draw(pDC) ; / / . . .d r a w i t

>

5-5

Chapter 5 Graphics Primitives in GGS and Other Features

CDC: :R e c tV is ib le () is used for efficiency [ShWi96] to save clock cycles from

drawing invisible objects. It is not an uncommon practice to add "nil" virtual
functions to a base class such as CGGSObject: :D raw () so that derived classes are
not burdened with the need to implement them. However, the class designer should

be aware of the fact that such a practice violates the Liskov Substitution Principle

(LSP), leading to reusability problems [Mart96].

5.3 RUBBER BANDING

"Rubber banding" refers to a variety of visual effects to graphic designers. To draw a
line, for instance, the user could position the cursor and press the left mouse button

where s/h e wanted the line to start, and then define the end of the line by moving
the cursor with the left button held down. It would be ideal if the line was

continuously drawn as the cursor was moved with the left button down. This

continuous updating of the line is an example of rubber banding effects:

Left m ouse button down

Line is fixed when the m ouse
button is released

Left m ouse button up

Cursor movement

Line is continuously updated as
the cursor m oves

Figure 5.2 A Line Defined by the Mouse

It is not necessary to worry about coordinates since the graphics primitives in GGS
are there only to support sketching, scribbling, etc. The easiest mechanism for
drawing would be just using the mouse.

A circle could be drawn in a similar fashion. The first press of the left mouse button
would define the centre, and as the cursor is moved with the button down, the

program would track it. The circle would be continuously redrawn, with the current

5-6

Chapter 5 Graphics Primitives in GGS and Other Features

cursor position defining a point on the circumference of the circle. As with drawing
a line, the circle would be fixed when the left mouse button is released.

There is no difference in drawing a rectangle either. The first point is defined by the

position of the cursor when the left mouse button is pressed. This is one comer of
the rectangle. The position of the cursor when the mouse is moved with the left
button held down defines the diagonally opposite comer of the rectangle. The final
rectangle is the last one defined when the left mouse button is released.

A curve will be somewhat different. It may be defined by an arbitrary number of
points as illustrated below:

Left m ouse button down

Cursor path

Left m ouse button up stops
tracking of the cursor and
ends the curve

Figure 5.3 A Curve Defined by Straight Line Segments Joining

Successive Cursor Positions

As with the other shapes, the first point is defined by the cursor position when the

left mouse button is pressed. Successive positions recorded, when the mouse is
moved, are connected by straight line segments to form the curve. In other words,
the mouse track defines the curve.

5.3.1 Programming the Mouse

Information regarding mouse activities is provided by Windows in the form of
messages. The following three mouse messages are important to GGS:

5-7

Chapter 5 Graphics Primitives in GGS and Other Features

Table 5.1 Mouse Messages

Message Occurs...

WM_LBUTTONDOWN when the left mouse button is pressed.

WM_LBUTTONUP when the left mouse button is released.

WM_MOU S E MOVE when the mouse is moved.

These messages are quite independent of one another. It is quite possible for a
window to receive a WM_LBUTTONUP message without having previously received a

WM LBUTTONDOWN message. This can happen if the button is pressed with the cursor
over one window and then moved to another window before being released.

When the user of GGS is drawing a graphics primitive, s /h e will be interacting with
a particular document view. The view class is, therefore, the obvious place to put the
message handlers for the mouse. Capturing the Windows messages is a standard
programming practice. The implementation details that are standard and discussed
in various books and manuals are not described here.

In short, the WM_LBUTTONDOWN message handler records the starting position for a
graphics primitive. The WM_MOUSEMOVE handler will only be concerned with
drawing a succession of temporary versions of an object as the cursor is moved,
because the final object will be created when the left mouse button is released. We
can therefore treat the drawing of temporary objects to provide rubber banding as
being entirely local to the WM_MOUSEMOVE handler, leaving the final version of the
object being created, to be drawn by the OnDraw() member of the view. This
approach will result in the drawing of the rubber-banded objects being reasonably
efficient without involving the OnDraw() member, which will be responsible

ultimately for the drawing of the entire document.

5.3.2 Raster Operations

The CDC: : SetR0P2 () function sets the drawing mode for all subsequent output
operations in the device context associated with a CDC object. When the mode is set
as R2_N0TX0RPEN, it can work some magic for the application programmer! For

example, the first time a particular shape is drawn on the default white background,
it will be drawn normally in the pen colour specified. If the same shape is drawn
again, overwriting the first, the shape will disappear, because the colour that the

shape will be drawn in corresponds to that produced by exclusive ORing the pen

5-8

Chapter 5 Graphics Primitives in GGS and Other Features

colour with itself. The drawing colour that results from this will be white. This is
illustrated through an example in Table 5.2. The colour, white is formed from equal
proportions of the 'maximum' amounts of red, blue, and green. For simplicity, this

can be represented as 1,1,1 being the RGB components of the colour. In the same

scheme, red is defined as 1 ,0 ,0 .

Table 5.2 Drawing First Time

Colour R G B Comments

Background - white 1 1 1 White

Pen - red 1 0 0 Red

XOR 0 1 1 Cyan

NOT XOR 1 0 0 Red

So, the first time a red line is drawn on a white background in the R2_NOTXORPEN
mode, it comes out red. If the same line is drawn a second time, overwriting the
existing line, the background pixels to be written over are red. The resultant
drawing colour works out as follows:

Table 5.3 Drawing Second Time

Colour R G B Comments

Background - red 1 0 0 Red

Pen - red 1 0 0 Red

XOR 0 0 0 Black

NOT XOR 1 1 1 White

Since the rest of the background is white, the line will disappear. Hence, a shape or a
graphics primitive being drawn should be stored temporarily so that it could be

redrawn in the R2_NOTXORPEN mode in order to remove it from the client area of the
view. This will automatically rubber-band the shape being created, so it will appear
to be attached to the cursor position as it moves.

5.3.3 Drawing Curve Objects

Drawing a curve is different from drawing a line or a circle. With a line or a circle, as

the cursor is moved with the left button down, a succession of different lines or

5-9

Chapter 5 Graphics Primitives in GGS and Other Features

circles are created that share a common reference point - the point where the left
mouse button was pressed.

On the contrary, when the cursor is moved, while drawing a curve, the user is not
creating a sequence of new curves, but extending the same curve, so each successive
point adds another segment to the curve's definition. Therefore, a CCurve object
needs to be created as soon as two points are obtained from the WM_LBUTTONDOWN

message and the first WM_MOUSEMOVE message. Points defined by subsequent
mouse move messages then add new segments to the existing curve object. Hence,
the CCurve class should maintain a list of all joining points and a member function,
such as AddSegment() to extend the curve once it has been created by the

constructor.

A further point to consider is how to calculate the enclosing rectangle. This is

defined by getting the minimum x and y pair from all the defining points to establish
the top left comer of the rectangle, and the maximum x and y pair for the bottom
right comer. This involves going through all the points in the list. The enclosing
rectangle, therefore, is computed incrementally in the AddSegment () function as
points are added to the curve.

An object of type CCurve should be treated as a special case once it has been created.
This is because, on all subsequent calls to the WM_MOUSEMOVE handler, the
AddSegment () function should be called for the existing curve, rather than
constructing a new curve to replace the old. The R2_N0TX0RPEN drawing mode is

not necessary to erase the previous curve each time. The way to handle this is by

moving the call to SetR0P2 () to a position after the code processing a curve:

i f (CURVE == GetDocument()->GetObjectType()) / / I s i t a curve?

{ / / W e are drawing a curve
/ / so add a segm ent t o th e e x i s t i n g cu rve

((CCurve*)m_pTempObject) ->AddSegment(m_j?tSecondPoint);

m_pTempObject->Draw(&aDC); / / Now redraw i t
re tu r n ;

}
/ / Redraw ob jec ts other than curves to erase them from the view
aDC. SetR 0P2(R2_N0TX0RPEN); / / S e t th e drawing mode
m_pTempObject->Draw(&aDC); / / D isappear now ...

5-10

Chapter 5 Graphics Primitives in GGS and Other Features

5.4 DELETING AND MOVING SHAPES

Being able to delete shapes is a fundamental requirement in a drawing program.
One question relating to this, that we need to find an answer for, is how the user is

going to select the element to be deleted. Of course, once the process of selecting an

element is decided, this will apply equally well if the user wants to move an element.
Hence, moving and deleting elements can be treated as related problems.

One conventional way of providing move and delete functions would be to have a

pop-up context menu appear at the cursor position when the right mouse button is
clicked. "Move" and "Delete" will be the items on the menu. A pop-up that works
like this is a handy facility that can be used in various other situations.

How should the pop-up be used? The standard way that context menus work is that
the user moves the mouse over a particular object and right-clicks on it. This selects
the object and pops up a menu containing a list of items which relate to actions that
can be performed on that object. This means that different objects can have different
menus. The menu that appears is sensitive to the context of the cursor, hence the
term "context menu". There are two contexts to consider in GGS. The user could
right click on an object with the cursor, or s /h e could right click when there is no
object under the cursor. This can be resolved simply by creating two menus: one for
an object under the cursor, and one for the rest of the client area. After a right click,
if there is an object under the cursor, that should be highlighted so that the user
knows exactly which object the context pop-up is referring to.

MFC provides a class called CMenu for managing and processing menus. The pop­
up menu appears when the user presses (or more specifically, releases) the right
mouse button. Clearly, the implementation code is necessary in the message handler

for WM_RBUTTONUP in the view class of GGS.

5.4.1 Highlighting Shapes

Highlighting a shape is important when it is selected. Before deleting a shape, the

user must know which element s/h e is operating on. The highlighting can be done
in the Draw() member of each shape class. In Listing 5.1, the virtual Draw()
member function has a Boolean flag specifically for this purpose. The default value
for this flag is FALSE when the shape is drawn normally. However, when the flag is
TRUE, in other words, when the shape is selected, it is drawn with the highlighting
colour.

5-11

Chapter 5 Graphics Primitives in GGS and Other Features

5.4.2 Moving Shapes

In GGS, if the user chooses to move a selected object, the mouse pointer is first
moved automatically to the centre of the highlighted object. Then the user can move

(i.e., not click and drag) the pointer and the object will move as well, as if glued to
the pointer.

Moving a shape in a view window is implemented using the R2_NOTXORPEN

drawing mode since it is easy and fast. This is exactly the same mechanism as that
used during the creation of a graphics primitive. The selected object is redrawn to

reset it to the background colour, and then the function Move () is called to relocate
the object by the distance measured between the current and previous cursor
position. For example, the following is the implementation of the Move () function
in the CLine class:

/ / D istance between current & previous cursor p o s it io n = aS ize
v o id C L in e::M ove(const CSize& a S iz e)

{
m _ S tartP o in t += a S iz e ; / / Move th e s t a r t p o in t
m_EndPoint += a S iz e ; / / and th e end p o in t
m_EnclosingRect += aS ize; / / Move th e en c lo sin g rec ta n g le

>

This is easy because of the overloaded += o p era to rs in the C Point and CRect
classes. They all work with C Size objects, so the relative distance specified by
a S iz e can be added to the start and end points for the line, and to the enclosing
rectangle.

Moving C R ectangle or C C ircle objects is even easier. Only the enclosing

rectangle is required to move because it defines these objects. Moving a CCurve
object is a little more complicated because it is defined by an arbitrary number of
points. It is necessary to iterate through all the points defining the curve, moving

each one in turn with the overloaded += o p era to r available in the C Point class.

All that remains is to drop the object in position once the user has finished moving it,
or to abort the whole move. In GGS, to drop the object in its new position, the user

will click the left mouse button. But a right click will cancel the move operation and
the highlighted object will be moved back to its original position.

5-12

Chapter 5 G raphics P rim itives in GGS and O th er Features

5.4.3 M asked Objects

The enclosing rectangles of objects are very likely to overlap. This would create a

situation where multiple objects could be found under the cursor. In this case, the
common practice followed in different drawing packages is to select the first or the

last object in sequence and allow the user to send it "back", if necessary. That can

alter the sequence of objects in the internal list maintained by the package. However,

the sequence of objects in GGS is important for still animation, and must not be
changed to facilitate the selection process. Hence, the user is requested to resolve the

ambiguity when multiple objects are found under the cursor:

■ x|
P le a se se lec t o n e object: !....0K...J
<1> Circle (W = 120 . H = 1 2 0) .
<2> R ectan g le (W = 1 32 , H = 118)
<3> T e x t(W = 3 8 ,H = 2 2)

Cancel

.

R efresh V iew J

_l

Figure 5.4 Dialogue Box Resolving Ambiguity

A dialogue box is actually a window and each control in a dialogue box is also a
specialised window. When Windows runs, most of the things we see on the screen
are windows! There are two aspects to programming for a dialogue: getting it
displayed and handling the effects of its controls. Usually, an application

programmer using MFC creates a dialogue resource by placing different controls on
it, and then associates the new resource with a new class typically derived from the
MFC class CDialog.

The class associated with the dialogue box in Figure 5.4 receives the pointers to the

GGS objects found under the cursor and a pointer to the active view as well. The list

box displays the object type and its width and height. The objects are highlighted in
the active view window, when they are selected in the list box so that they could be

identified. This requires trapping a Windows message. The LBN_SELCHANGE notifi­
cation message is sent when the selection in a list box is about to change. The parent

window of the list box which is the dialogue in this case, receives this notification
message. The following code illustrates the LBNSELCHANGE message handler:

5-13

Chapter 5 Graphics Primitives in GGS and Other Features

v o id C M u ltip leO b jec tsD lg ::O n S e lch a n g eO b jec tsL is t()

{
i n t n S e le c t io n = m _ lis tb o x .G e tC u r S e l() ;
i f (n S e le c t io n 1= LB_ERR)

{
/ / Draw p r e v io u s ly s e le c t e d o b j e c t w ith o u t h ig h l ig h t

i f (m_pObject != NULL)
m_pObject->Draw(m_pDC, FALSE) ;

m_pO b ject = (CGGSObject*) m _ listb o x .G etItem D a ta P tr
(n S e le c t io n) ; / / New s e l e c t io n

m_pObject->Draw(m_pDC, TRUE) ;

>

}
Listing 5.2 Highlighting Objects in a View from a Dialogue Box

The list box is a C ListBox object and it is worth noting that C L istB o x ::
G etltem D ataP tr () returns a v o id pointer that requires suitable casting. The user
not only highlights objects for selection but also refreshes the view window, if
necessary using the "Refresh View" button as shown in Figure 5.4. Bitmaps and
metafiles can obstruct other objects when deselected. Hence, the view may need to
be refreshed.

5.5 IMPLEMENTING SCROLLING WITH SCALING

The MFC class C S c r o l l View is very useful. It is possible to implement standard
scrolling capabilities in any class derived from CView by overriding the message-
mapped OnH Scroll and O nVScroll member functions. But C S crollV iew adds
the following features [MSDN51]:

• It manages the window and viewport sizes and the mapping modes.

• It scrolls automatically in response to the scroll-bar messages.

• It scrolls automatically in response to messages from the keyboard, a non­
scrolling mouse, or the IntelliMouse wheel.

To take advantage of automatic scrolling, application programmers should derive
their view class from C S crollV iew instead of CView.

On the other hand, scaling with Windows usually involves using one of the scaleable
mapping modes, MM_ISOTROPIC or MM_ANISOTROPIC. By using one of these

5-14

Chapter 5 Graphics Primitives in GGS and Other Features

mapping modes, the programmer can get Windows to do most of the work.
Unfortunately, it is not as simple as just changing the mapping mode, because

neither of these mapping modes is supported by C ScrollV iew .

5.5.1 Scaleable Mapping Modes

MM_ISOTROPIC and MM_ANISOTROPIC allow the mapping between the logical and
device coordinates to be altered. The logical coordinates (also referred to as the page
coordinates) are determined by the mapping mode. For example, the

MM_LOENGLISH mapping mode has logical coordinates in units of 0.01 inches, with

the origin at the top left corner of the client area, and the positive y axis direction

running from bottom to top. The logical coordinates are used by the device context

drawing functions.

The device coordinates (also referred to as the client coordinates in a window) are
measured in pixels with the origin at the top left comer of the client area, and with
the positive y axis direction running from top to bottom. These are used outside of a
device context, for example for defining the position of the cursor in the mouse
message handlers.

The screen coordinates are measured in pixels and have the origin at the top left
corner of the screen, with the positive y axis direction from top to bottom. These are
used when getting or setting the cursor position.

MM ISOTROPIC has the property that Windows will force the scaling factor for both
the x and y axes to be the same, which has the advantage that the circles will always
appear as circles. But the disadvantage is that a document cannot be mapped to fit
into a rectangle of a different shape. MM_ANISOTROPIC, on the other hand, permits

scaling of each axis independently. Because it is more flexible, MM_ANISOTROPIC is
used for scaling operations in GGS.

5.5.2 Transformation of Coordinates

The way in which logical coordinates are transformed to device coordinates is
dependent on the parameters presented in Table 5.1. With mapping modes other

than MM_ISOTROPIC and MM_ANISOTROPIC, the window and the viewport extent
are fixed and they cannot be changed. Calling the functions SetWindowExt () or
SetViewportExt () of the CDC object to change them will have no effect, although

the position of (0 ,0) in the logical reference frame can be moved by calling
SetWindowOrg() or SetV iew portO rg().

5-15

Chapter 5 Graphics Primitives in GGS and Other Features

Table 5.1 Coordinate Transformation Parameters

Parameter Description

Window origin The logical coordinates of the top left comer of the

window. This is set by calling the function

CDC: : SetWindowOrg() .

Window extent The size of the window specified in logical coordinates.
This is set by calling the function CDC:: SetWindowExt ().

Viewport origin The device coordinates of the top left comer of the window

(pixels). This is set by calling the function

CDC:: S etV iew p ortO rg().

Viewport extent The size of the window in device coordinates (pixels). This
is set by calling the function CDC:: SetV iew portE xt ().

The viewport referred to here has no physical significance by itself; it serves only as a
parameter for defining how coordinates are transformed from logical coordinates to
device coordinates. For a given document size which will be expressed by the
window extent in logical coordinate units, the scale can be adjusted at which objects
are displayed by setting the viewport extent appropriately. The formulae that are
used by Windows to convert from logical coordinates to device coordinates are:

xDevice = (xLogical - xWindowOrg) x + xViewPortOrg (5.1)

yDevice = (yLogical - yWindowOrg) x + yViewportOrg (5.2)

If the equations are simplified for converting between device and logical coordinates

by setting the window origin and the viewport origin both at (0 ,0), they become:

^ t • 7 xViewPortExtxDevice = xLootcal x ------------------ (5.3)
xWindowExt

„ t • i yViewPortExty Device = yLogical x ---------------- (5.4)
yWindowExt

If the viewport extent values are multiplied by the scale, the objects will be drawn
according to the value of the scale. The equations with the scale included will be:

5-16

Chapter 5 Graphics Primitives in GGS and Other Features

xDevice = xLogical x xViezvPortExt x Scale
xWindowExt

(5.5)

yDevice = yLogical x
yViewPortExt x Scale (5.6)

yWindowExt

It is clear from the above equations that a given pair of device coordinates will vary

in proportion to the scale value. The coordinates at a scale of 3 will be three times the

coordinates at a scale of 1. Of course, as well as making objects larger, increasing the

scale will also move them away from the origin.

This logic is implemented in the OnPrepareDC () member of the GGS view class.
OnPrepareDC () is always called for any WM_PAINT message. However, for scaling

it is necessary to call it before drawing temporary objects in the mouse message

handlers. Although there is nothing else required to scale the view, the scrolling will
not work with the new arrangement because the length of the scroll bars will not
scale appropriately with the rest of the view. Just setting the mapping mode is
clearly not enough.

5.5.3 Restoring Scrolling

The solution to get around the problem with scrolling could be the use of another
mapping mode to set up the scrollbars. The easiest way to do this is to use MM_TEXT,
because in this case the logical coordinates are die same as the device coordinates -
pixels, in other words. The necessary step is to calculate how many pixels are
equivalent to the logical document extent for the scale at which the objects are being
drawn. Hence, a member function is added to the GGS view class to take care of the
scrollbars:

v o id C G G S V iew ::R esetS cro llS izes ()

C Size D ocSize = GetDocument()-> G e tD o c S iz e ();
aD C .LPtoD P(SD ocSize); / / Get th e document s i z e in p ix e l s

SetScrollSizes(MM_TEXT, D ocS ize); / / S et up th e s c r o llb a r s

After creating a local CClientDC object for the view, OnPrepareDC () is called to
set up the MM_ANISOTROPIC mapping mode. Because this takes account of the
scaling, the CDC: :LPtoD P() member will convert the document size stored in the

{
CClientDC a D C (th is);
OnPrepareDC(&aDC); / / S e t up th e d e v ic e c o n te x t

>

5-17

C hapter 5 G raphics P rim itives in G G S and O th er Features

local variable DocSize to the correct number of pixels for the current logical
document size and scale. The total document size in pixels defines how large the
scrollbars must be in the MM TEXT mode. It is important to remember that the

MM_TEXT logical coordinates are also in pixels. Based on this, the SetScroll­
Sizes () member of CScrollView is called to set up the scrollbars by specifying

MM_TEXT as the mapping mode.

It may seem strange that the mapping mode can be changed in this way, but it is

important to note that the mapping mode is nothing more than a definition of how
logical coordinates are to be converted to device coordinates. Whatever mode (and

therefore, coordinate conversion algorithm) has been set up, will apply to all
subsequent device context functions until it is changed again. When a new mode is
set, subsequent device context functions just use the conversion algorithm defined by

the new mode.

Eite Qbjocts Pen View Window Help

□ | < £ | H | S | \ M o F T | * N < f c M f l B | B l B l # | V l B l S l f r l Q l ? l

f t
I

« i I i f 1
[View Scats: 100% /a

^ ^ H H | M B L =J n] x]

d̂tuJL
<i i

View Scale: 150%

Ready NUMl *

Figure 5.5 Scaling and Scrolling in Action

5.6 TEXT OBJECTS

Figure 5.5 presents the author's name in two different ways. Freehand curves are
used on the left-hand side and a scaleable foreign (Bengali) font is used on the right-
hand side. As mentioned earlier, the text objects in GGS are slightly different from

other primitives, although they are derived from the same base class, CElement.
The CText objects not only store the text string and its position, but also the font
information as well.

5 -28

Chapter 5 Graphics Primitives in GGS and Other Features

c la s s C T ex t:p u b lic CElement

{
DECLARE_SERIAL(C T ext)
p u b l ic :

v i r t u a l v o id Draw(CDC* pDC, BOOL b S e le c t = FALSE);
C T ext(C Point p t S t a r t , C Point ptEnd, C S tr in g a S tr in g ,

LOGFONT lo g F o n t, COLORREF a C o lo r);

v ir t u a l v o id Move(CSize& a S iz e) ;
v ir t u a l v o id S er ia lize(C A rch iv e& a r) ;

p r o te c te d :
BOOL m _bFontCreated;
LOGFONT m _logFont; / / Font d e t a i l s
CFont m _font; / / E n ca p su la tes th e fo n t han d le
C Point m _ S ta rtP o in t; / / P o s i t io n o f a t e x t e lem en t
C S trin g m _String; / / T ext t o be d is p la y e d
C T ext(); II P rotected d e fa u lt con stru ctor

};
Listing 5.3 The CText Class Declaration

The CFont object, m_f o n t in Listing 5.3 is initialised with the characteristics stored
in the LOGFONT structure, m logF ont. The font can subsequently be selected as the
current font for any device. When the font is selected by using CDC: : S e l e c t -

O b je c t (), the Windows font mapper attempts to match the logical font with an
existing physical font. If it fails to find an exact match for the logical font, it provides
an alternative whose characteristics match as many of the requested characteristics as
possible.

5.6.1 Moving Text Objects

A CText object in GGS is displayed using the CDC: : TextOut () function. Since
TextOut () does not use a pen, it would not be affected by setting the drawing

mode of the device context. In other words, the raster operations using the
SetR0P2 () function to move the elements will leave temporary trails behind when

applied to the CText objects. To get around this problem, a method of invalidating
the rectangles [Hort98] that are affected by the moving elements could be used. This
can, however, cause some flicker when an element is moving fast. A better solution
would be to use the invalidation method only for the text objects and the original
ROP method for all other graphics primitives.

5-19

Chapter 5 Graphics Primitives in GGS and Other Features

In order to use separate code for the text objects, the runtime class information is

necessary:

i f (m_pSelected->IsKindOf(RUNTIME_CLASS(CText)))

{
CRect OldRect = m_pSelected->GetBoundRect () ; / / Get o ld r ec t
m_pSelected->Move(a S ize); / / Move the ob ject
CRect NewRect = m_pSelected->GetBoundRect(); / / Get new r ec t
OldRect. UnionRect (&01dRect, &NewRect); II Combine rec ts
aDC.LPtoDP(OldRect); / / Convert to device coords
OldRect.NormalizeRect(); / / Normalize combined area
InvalidateRect(& 01dRect); / / In va lid ate combined area
UpdateWindow(); / / Redraw immediately
m_pSelected->Draw(&aDC,TRUE); / / Draw h igh ligh ted
return;

}

Clearly, the above code for invalidating the rectangles for moving the text objects is
much less elegant than the ROP code used for other objects.

5.7 BENEFITS OF SERIALIZATION

The application data to be stored in a document often originates in an unstructured
and unpredictable way. The MFC serialization is not the best solution for object
persistence as discussed in Chapters 2 and 3 but it is relatively easy-to-use and
highly effective in the case of GGS. This section briefly reviews the implementation
of serialization starting with CGGSObject:: S e r ia l i z e ():

v o id CGGSObject:: S er ia lize(C A rch iv e& ar)

{
C O bject: : S e r i a l i z e (a r) ; / / C a ll th e b a se c l a s s fu n c t io n

}

Apart from calling the base class S e r ia l i z e () function, it does not have to do

anything else. The same function in the CElement class serializes the object colour,
the enclosing rectangle and the pen width:

vo id CElement::Serialize(C A rchive& ar)

{
CGGSObject::S e r ia l iz e (a r) ; / / C a ll th e base c la s s fu n ction
i f (a r .I s S t o r in g ())

{

5-20

Chapter 5 Graphics Primitives in GGS and Other Features

ar « m_Color
« m_EnclosingRect
« m_Pen ;

>

e l s e

{
ar » m_Color

» m_EnclosingRect
» m_Pen ;

>

>

S e r ia l i z e () in the C R ectangle and C C ircle class is very simple and identical
since these classes have no additional data member. All they do is to call the direct
base class function to ensure that the inherited data members are serialized. For the

CCurve class, the S e r ia l i z e () function is surprisingly simple:

vo id CCurve: : S e r ia l iz e (CArchive& a r)

{
CElement::S e r ia l iz e (a r) ; / / C all th e base c la s s fu nction
m _ P o in tL is t .S e r ia liz e (a r); / / S e r ia l iz e th e l i s t o f p o in ts

>

It is only necessary to call the S e r i a l i z e () function for the C L ist object,
m _P oin tL ist. Objects of the C L ist, CArray, and CMap classes can be serialized in
this way, since they are all derived from COb j e c t .

C T ex t:: S e r i a l i z e () is also similar but has the responsibility to take care of a
LOGFONT structure as illustrated in Listing 5.3. The members of the LOGFONT

structure are individually serialized using the overloaded extraction and insertion
operators of the CArchive class.

5.8 MULTI-PAGE PRINTING

Printing a document is controlled by the current view. The process is quite

complicated since printing is inherently a complex business and it potentially

involves the application programmer in implementing his/her versions of quite a
number of inherited functions in the view class. The logic of the process and the
functions involved are summarised in Figure 5.6.

5-21

II S tore th e c o lo u r ,
/ / and th e e n c lo s in g r e c ta n g le ,

/ / and th e pen width

/ / R etr iev e th e co lo u r ,
/ / and th e e n c lo s in g r e c ta n g le ,

/ / and th e pen width

i

Chapter 5 G raphics P rim itives in G G S and O th er Features

V iew M em bers

Calculate page count
Call DoPreparePrinting()

O nPreparePrin ting()

OnBeginPrintingO Allocate GDI resources

C D C::S tartD oc()

Loop while there are more pages Change viewport origin
Set DC attributes

OnPrepareDCQ

u.C D C::S tartPage()
Li-

Print headers/footers
Print current page

OnPrint()

CDC ::EndPage()

CDC ::EndD oc()

De-allocate GDI
resources

O nEndPrin ting()

Figure 5.6 The Printing Process

Figure 5.6 shows how the sequence of events is controlled by the MFC framework
and involves calling five inherited members of the view class, which may need to be

overridden. The CDC member functions shown on the left side of the diagram
communicate with the printer device driver and are called automatically by the
framework.

The typical role of each of the functions in the current view during a print operation

is specified in the notes alongside it. The sequence in which they are called is
indicated by the numbers on the arrows. In practice, it is not necessary to implement

all of these functions. Typically, OnPreparePrinting (), OnPrepareDC() and
OnPrint() are implemented based on particular printing requirements of an
application.

The output of data to a printer is done in the same way as outputting data to the
display through a device context. The GDI calls that are used to output text or
graphics are device independent, so they work just as well for a printer as they do for
a display. The only difference is the device that the CDC object applies to.

5-22

Chapter 5 Graphics Primitives in GGS and Other Features

The CDC functions in the process diagram in Figure 5.6 communicate with the device
driver for the printer. If the document to be printed requires more than one printed

page, the process loops back to call the OnPrepareDC () function for each successive

new page, as determined by the EndPage () function.

All the functions in the view class that are involved in the printing process are

passed a pointer to an object of type C P r in t ln fo as an argument. This object
provides a link between all the functions that manage the printing process. A

C P r in tln fo object has a fundamental role in the printing process, since it stores

information about the print job being executed and details of its status at any time. It
also provides functions for accessing and manipulating this data. This object is the
means by which information is passed from one view function to another during

printing, and between the framework and the view functions.

5.8.1 Paper Size

To avoid overcomplicating the problem, GGS supports printing on either A4 or US
Letter size (i.e., 8 V2 by 11 inches) paper only. However, GGS supports both portrait
and landscape orientation. With either paper size, the document is printed in a
central portion of the paper measuring 6 inches by 9 inches in the portrait
orientation, and 9 inches by 6 inches in landscape. With these simplifications, GGS
does not need to worry about the actual paper size. However, for a document larger
than one page, it is necessary to divide up the document into chunks of 6 inches by 9
inches (or the other way around).

AppWizard added versions of O n P rep a reP r in tin g (), O n B egin P rin tin g() and

O nEndPrinting() to the GGS view class at the outset. The base code provided for
O nP rep areP rin ting() calls D o P r e p a r eP r in tin g () in the return statement:

BOOL C G G SV iew ::O nPrepareP rinting(C Printlnfo* p ln fo)

{
r e tu rn D o P rep a reP r in tin g (p ln fo) ;

>

The O n P rep a reP r in tin g () function in the view class is called by the application
framework to initialise the printing process for the document. The basic initialisation
that is required is to provide information about how many pages are in the

document for the print dialogue that will be displayed. The D oPrepare-

P r in t in g () function displays the print dialogue using information about the
number of pages to be printed. Whenever possible, the number of pages to be

5-23

Chapter 5 Graphics Primitives in GGS and Other Features

printed, should be calculated and stored in the C P r in t ln fo object before this call
occurs. Of course, in many circumstances information is required from the device

context for the printer before this can be done. For example, the number of pages

may depend on the size of the font available in the printer, in which case it would

not be possible to get the page count before calling O nP rep areP rin ting () . There

are two ways to solve the problem. The number of pages could be computed in the
O n B eg in P r in tin g () member, which receives a pointer to the device context as an

argument. This function is called by the framework after O nP rep areP rin tin g () .
Otherwise, the page count could be done after D o P r e p a r eP r in tin g () returns

within O nP rep areP rin ting () because the information entered in the print

dialogue would be available. This also means that the paper size and other options
selected by the user in the print dialogue could be accounted for. The following code

fragment is an example:

/ / The p r in t d ia lo g u e box retu rn ed TRUE

/ /P a p e r s i z e in f o i s a v a i la b le now
LPDEVMODE pDevMode = pInfo->m__pPD->GetDevMode() ;
i f ((pDevMode->dmPaperSize != DMPAPER_A4) &&

(pDevMode->dmPaperSize 1= DMPAPER_LETTER))

{
AfxM essageBox (" P le a se s e l e c t A4 or L e t te r s i z e paper") ;
retu rn FALSE ;

>

5.8.2 Preview and Printing

As mentioned earlier, if a document is larger than one page, it is divided into suitable

rectangular areas depending on the paper size and orientation. In the O nPrint ()
function, each rectangular area of the document is mapped to the current page. Then

the document is drawn on the page by calling the OnDraw() function that is used to

display the document in the view. This potentially draws the entire document, but
what appears on the page is restricted by defining a clip rectangle. A clip rectangle
encloses a rectangular area in the device context within which output appears.
Outside the clip rectangle, output is suppressed.

Internally, the objects and the view extents in GGS are measured in terms of
hundredths of an inch. With the unit of size a fixed physical measure, objects are
printed at the same size as they appear in a view window. The unit of object size

corresponds to the MM_LOENGLISH mapping mode. In fact, this mapping mode is
suitable where high precision is not necessary. In MM_HIMETRIC, for instance, each

5-24

Chapter 5 Graphics Primitives in GGS and Other Features

logical unit corresponds to 0.01 millimetre. However, coordinate overflow problems
are not uncommon when the MM_HIMETRIC mapping mode is used [Gery99]. Some

application programmers do not realise that the coordinate systems in Windows NT

are 32-bit but they are still 16-bit in Windows 95.

The printing section in GGS is complete with a preview option. The print preview

functionality comes completely free in any AppWizard generated application with

the MFC document/view architecture. If the application developer writes code for

the multi-page printing operation, the framework uses that code to produce page
images in the print preview window.

Print preview is somewhat different from screen display and printing because,
instead of directly drawing an image on a device, the application must simulate the

printer using the screen. When the user selects the Print Preview command from the
File menu, the framework creates a CPreviewDC object. Whenever the application
performs an operation that sets a characteristic of the printer device context, the
framework also performs a similar operation on the screen device context. For
example, if the application selects a font for printing, the framework selects a font for
screen display that simulates the printer font. Whenever the application would send
output to the printer, the framework instead sends the output to the screen.

Print preview also differs from printing in the order that each draws the pages of a
document. During printing, the framework continues a print loop until a certain
range of pages has been rendered. During print preview, one or two pages are

displayed at any time, and then the application waits; no further pages are displayed
until the user responds. During print preview, the application must also respond to

the WM_PAINT messages, just as it does during ordinary screen display.

5.9 REFERENCES

[ANSI97] ANSI / ISO C++ Committee: "International Standard for Information
Systems — Programming Language C++", ISO/IEC IS 14882,

November 1997.

[Gery99] Gery, R.: "Coordinate Mapping", Technical Articles, Microsoft
Developer Network Library, April 1999.

[Hort98] Horton, I.: "Beginning Visual C++ 6 ", Wrox Press Ltd., August 1998.

[Mart96] Martin, R.C.: "The Liskov Substitution Principle", C++ Report, March

5-25

Chapter 5 Graphics Primitives in GGS and Other Features

[MSDN51]

[ShWi96]

[Stev98]

1996.

Microsoft Developer Network Library: "CScrollView", Microsoft
Foundation Class Library Reference, April 1999.

Shepherd, G. and Wingo, S.: "MFC Internals: Inside the Microsoft

Foundation Class Architecture", Addison-Wesley Developers Press,
1996.

Stevens, A.: "The Persistent Template Library", Dr Dobb's Journal,
March 1998.

5-26

Chapter 6 Bitmaps and Metafiles

6.1 GRAPHICS DEVICE INTERFACE (GDI)

The graphics device interface (GDI) forms part of the Windows operating system.
GDI manages all graphics output from a Windows program. This means that no
matter if a window is displayed on the screen or a screen saver displays some

dazzling graphics or if an application prints a document, GDI is involved in making
it happen.

Windows itself uses GDI to draw user interface elements such as windows, menus

and dialogue boxes. The mouse pointer is displayed using GDI even though it
appears to float over other screen objects. GDI was created to decouple rendering

graphics from the underlying hardware. GDI provides high level drawing functions
that produce generally the same results regardless of the underlying hardware.

The MFC class, CDC is the C++ wrapper of various GDI functions. In the earlier
chapters, member functions of CDC or its derived classes have been used frequently
to illustrate the implementation issues in developing GGS. In this chapter, some
other aspects of GDI will be explored while dealing with externally created bitmaps
and metafiles.

6.2 BITMAPS AND METAFILES

Bitmaps and metafiles represent two very different ways of storing pictorial
information. A bitmap is a complete digital representation of a picture. Each pixel in

the image corresponds to one or more bits in the bitmap. Monochrome bitmaps
require only one bit per pixel; colour bitmaps require additional bits to indicate the
colour of each pixel.

A metafile, on the other hand, stores pictorial information as a series of records that
correspond directly to the GDI calls. A metafile is thus a description of a picture
rather than a digital representation of it. Metafiles are more closely associated with

Windows drawing and computer-aided design (CAD) programs. The user of these

programs draws an image with lines, rectangles, circles, text, and other graphics

primitives. Although drawing or CAD programs generally use a private data format
for storing the picture in a file, they can usually transfer the picture in the form of a
metafile understood by other applications.

Both bitmaps and metafiles have their place in computer graphics. Bitmaps are very
often used for very complex images originating from the real world, such as digitised
photographs. Metafiles are more suitable for human or machine generated images,

6-1

Chapter 6 Bitmaps and Metafiles

such as architectural drawings. Both bitmaps and metafiles can exist in memory or

be stored on a disk as files, and both can be transferred among Windows applications

using the clipboard.

Bitmaps have two major drawbacks. First, they are highly susceptible to problems
involving device dependence. The most obvious device dependency is colour.
Displaying a colour bitmap on a monochrome device is often unsatisfactory.
Another problem is that a bitmap implies a particular resolution and aspect ratio of
an image. Although bitmaps can be stretched or compressed, this process generally

involves duplicating or dropping rows or columns of pixels and can lead to
distortion in the scaled image. A metafile can be scaled to almost any size without
distortion.

The second major drawback of bitmaps is that they require a large amount of storage
space. Metafiles usually require much less storage space than bitmaps. The storage
space for a bitmap is governed by the size of the image and the number of colours it
contains, whereas the storage space for a metafile is governed by the complexity of
the image and the number of individual GDI instructions it contains. One advantage
of bitmaps over metafiles, however, is speed. Copying a bitmap to a video display is
usually much faster than rendering a metafile.

6.3 COLOURS IN BITMAPS

Each pixel in an image corresponds to one or more bits in a bitmap. A monochrome
image requires 1 bit per pixel. A colour image requires more than 1 bit per pixel.
The number of different colours that can be represented by a bitmap is equal to 2 to
the power of the number of bits per pixel. For example, a 16-colour bitmap requires
4 bits per pixel, and a 256-colour bitmap requires 8 bits per pixel.

The PC platform and its operating systems have come a long way since the early
1980s. Prior to Windows 3.0, the only bitmaps supported under Windows were GDI
objects, which were referenced using a bitmap handle. These bitmaps were either

monochrome or had the same colour organisation as a real graphics output device,
such as a video display. For example, a bitmap compatible with a VGA monitor had
four colour planes. The problem was that those colour bitmaps could not be saved

and used on a graphics output device with a different colour organisation.

For Windows 3.0, a new bitmap format was defined, called the device independent
bitmap, or DIB. The DIB included its own colour table that showed how the pixel

6-2

Chapter 6 Bitmaps and Metafiles

bits correspond to RGB colours. DIBs can be displayed on any raster output device
but the DIB colours must be converted to the nearest colours that the device can

actually render.

The DIB format is called "device independent" because it contains a colour table.
With the introduction of the DIB, the GDI bitmap objects are sometimes called

"device dependent bitmaps". They are device dependent because they must be

compatible with a specific graphics output device.

DIBs offer many programming advantages over GDI bitmaps. Because a DIB carries

its own colour information, the colour palette management is easier. DIBs also make
it easy to control grey shades when printing. Any computer running Windows can

process DIBs, which are usually stored in BMP disk files or as resources in a

program's EXE or DLL file. The wallpaper background on a computer monitor is
read from a BMP file when Windows starts. Other graphic interchange formats are
available such as TIFF, GIF and JPEG, but only the DIB format is directly supported
by the Win32 API.

6.4 THE REQUIREMENTS IN GGS

The MFC class, CBitmap encapsulates a GDI bitmap and provides member functions
to manipulate the bitmap. But there is no equivalent MFC class to encapsulate the
DIBs. This opens the door for others to write their own versions of a CDib class.
Most of these implementations [DiLa97], [Krug97], [LeAr*98] concentrate on opening

BMP files and displaying their contents on the screen. However, GGS requires a lot
more functionality in its CDib class. The user of GGS should be able to open any
BMP file and see the original size of the DIB inside. Then s/h e should be able to

scale it up or down before placing it in a GGS view. Once imported, a DIB should
behave like other shape objects discussed in Chapter 5. The user should be able to

import multiple bitmaps from various BMP files, place them side by side or in any
sequence, and move them around whenever necessary.

The DIBs should be serializable but they must be retrievable. The user may create a
complex image with various shapes, bitmaps and other objects but at a later stage,
s/h e should be able to retrieve each and every DIB object, and save them in separate

BMP files. For example, one user of GGS could scan a drawing and save it in a BMP

file. Later on, s /h e could import the drawing into GGS and add some graphics
primitives and sound objects for illustration and send the whole document as an e-
mail attachment. The person at the receiving end could open the e-mail attachment

6-3

C hapter 6 B itm aps and M etafiles

and anim ate the illustration and then retrieve the original picture and save in a BMP

file.

6.5 THE D IB'S IN G G S

Figure 6.1 presents a part of the revised class hierarchy from Figure 5.1. The

CExternalImage class has a protected default constructor for serialization only.

O therw ise, CExternal Image cannot be instantiated. The CExternal Image class

is su p p o sed to abstract the characteristics of externally created im ages. A t present, it

on ly adds one virtual function for the m ove operation. In future, if GGS supports

other graphic interchange form ats, they can be im p lem en ted as classes derived from

CExternal Image and the im plem entation of som e com m on functionality can be

m o v ed up in the class hierarchy.

CObject

C G G S O b ject

C E x tern a llm a g e

C M eta F iles

Figure 6.1 Bitmaps and Metafiles in the GGS Class Hierarchy

The best w a y to get to k now the CDib class is to look at the public m em ber functions.

Listing 6.1 presents the CDib class declaration. The inline functions and the data

m em bers are om itted from Listing 6.1 so that the class interface d oes not look

intim idating.

6-4

Chapter 6 Bitmaps and Metafiles

c l a s s CDib : p u b lic C ExternalIm age

{
DECLARE_SERIAL(CDib)
p u b l ic :

CDib(CPoint p o in t) ;
~C D ib();
v i r t u a l v o id Move(CSize& a S iz e) ;
v i r t u a l v o id Draw(CDC* pDC, BOOL Select=FALSE);
v ir t u a l v o id S e r ia liz e (C A r c h iv e s a r) ;
BOOL R ead(C File* p F i le) ;
BOOL W rite (C F ile* p F i le) ;
v o id Em pty();
UINT U s e P a le t t e (CDC* pDC, BOOL bBackground = FALSE);
BOOL M a k eP a le tte () ;
BOOL SetSystem P alette(C D C * pDC);
BOOL Compress(CDC* pDC, BOOL bCompress = TRUE);
HBITMAP CreateBitmap(CDC* pDC);

p r o te c te d :
CDib() ; / / D e fa u lt c o n s tr u c to r fo r s e r i a l i z a t i o n
BOOL B i t m a p S i z e ();
v o id C o m p u te P a le tte S iz e (in t n B itC ou n t);
v o id C om puteM etrics() ;

>;

Listing 6.1 The CDib Class Declaration with Some Details Omitted

6.5.1 Construction and Destruction

CDib objects are constructed in the WM_LBUTTONDOWN mouse message handler in the
view class, like other objects in GGS. The position of the mouse where the user has

decided to create a CDib object is passed on to the public constructor. This position

indicates the top-left corner of the bitmap. Other than initialising some data

members, the constructor does not do anything else. The general MFC principle of
two-stage construction is followed here. Once the object is created, the R ead ()
function is called to deal with the BMP file selected by the user from a standard file
open dialogue box.

The destructor simply calls the Empty () function. Empty () does the cleaning up
operations. It is also called by other functions to recover from I/O and other error
conditions.

6-5

Chapter 6 Bitm aps and M etafiles

6.5.2 Reading a BMP File

Figure 6.2 shows a layout for a BMP file. The BITMAPFILEHEADER structure

contains the offset to the image bits, which can be used to compute the combined size

of the BITMAPINFOHEADER structure and the colour table that follows. The

BI TMAPFILE HEADER structure contains a file size member which is not trustworthy.

The original documentation in Windows 3.0 did not specify the unit of file size

measurement. Hence, there are several BMP files around with the size measured in

bytes, words or double words!

BITMAPFILEHEADER

BITMAPINFOHEADER

Colour Table
(arrays of RGBQUAD

or RGBTRIPLE,
if present)

Bitmap Bits
(One entry for each pixel,
either one-byte index into
colour table, or full RGB

values. May be compressed)

Figure 6.2 BMP File Structure

The BITMAPINFOHEADER structure contains the bitmap dimensions, the bits per
pixel, compression information for 4-bpp and 8-bpp bitmaps, and the number of
colour table entries. If the DIB is compressed, this header contains the size of the
pixel array; otherwise, the size can be calculated from the dimensions and the bits
per pixel. Immediately following the header is the colour table (if the DIB has a
colour table). The DIB image comes after that. The DIB image consists of pixels

arranged by column within rows, starting with the bottom row. Each row is padded
to a 4-byte boundary.

The CDib: :Read() function accepts a pointer to a C F ile object. Firstly, Read()

verifies the file type and then it tries to read the BITMAPFILEHEADER structure at the

current file position to establish the size of the BITMAPINFOHEADER and the colour
table. Secondly, it reads the info header and the colour table. Finally, it reads the
image bits after constructing the colour palette, if present. Functions such as Read ()

6-6

C hapter 6 B itm aps and M etafiles

in GGS use the t r y / c a t c h loops to trap any exception raised by any I/O error.

As indicated earlier, the user of GGS does not need to accept a DIB at its original size.

Before Read() returns, it checks a Boolean flag to see if the user defined size is

available. When the answer is "no", Read() returns BitmapSize ().

6.5.3 User D efined DIB Size

BitmapSize () presents a dialogue box to the user as shown in Figure 6.3.

Bitmap S iz e

- Information from the BMP header

Bitmap width in pixels = B40
Bitmap height in pixels = 480
Pixels per metre in X direction = 3790
Pixels per metre in Y direction = 3780

F Maintain original a sp ec t ratio

- S u g g ested width and height (100 units = 1 inch)

Width: [664 Height:

T he width and height ca n b e ch an g ed to sc a le or stretch the bitmap

Figure 6.3 The User Can Specify the Bitmap Size

The user gets an opportunity to modify the default bitmap size. But if the suggested
w idth and height values are accepted, the bitmap will appear on the screen at its
original size.

There are two edit controls in the dialogue box in Figure 6.3. An edit control is a
rectangular control window typically used in a dialog box to permit the user to enter

and edit text from the keyboard. When the original aspect ratio of the DIB is to be
maintained, the user can either specify the new width or the new height of the DIB.

The height and width values in the edit controls are dynamically and synchronously

changed. In other words, when the user is typing in one edit control, the other one is

continuously updated. Many commercial applications use this trick to impress the

user! This involves trapping an edit control message - EN_UPDATE. The

EN_UPDATE notification message is sent when an edit control is about to redraw
itself. This notification message is sent after the control has formatted the text, but

C ancel

[493

6-7

Chapter 6 Bitmaps and Metafiles

before it displays the text. If any other edit controls have to be updated
simultaneously, the best place to change them is in the EN_UPDATE message handler.

6.5.4 Drawing DIB's

There are several Win32 functions to display a DIB directly on the screen or printer.
SetDIBitsToDevice() is an example. However, it does not do any scaling; one

bitmap bit corresponds to one display pixel or one printer dot. This scaling
restriction limits the function's usefulness. BitBlt() is similar which copies a

bitmap from the source device context to the current device context using logical
coordinates. The CDib class in GGS uses StretchDIBits () that copies the colour

data for a rectangle of pixels in a DIB to the specified destination rectangle. If the
destination rectangle is larger than the source rectangle, this function stretches the
rows and columns of colour data to fit the destination rectangle. If the destination

rectangle is smaller than the source rectangle, this function compresses the rows and
columns of the DIB. It is worth noting that the StretchDIBits () function has
been extended to allow a JPEG or PNG image to be processed as the source image
[MSDN61]. But this new facility is available only in Windows 98 and 2000. This
could be used to extend GGS in the near future.

6.5.5 Moving DIB's

When a CDib object is underneath the mouse pointer and the right button is pressed,
the object is highlighted and a menu pops up with an option to move or delete the
CDib object. Highlighting a CDib object is slightly different from highlighting
graphics primitives that are drawn in a different colour when selected. GGS

highlights a CDib object by drawing a rectangle around it with the highlighting
colour.

After selecting a CDib object, if the user chooses to move it, the mouse pointer is

moved automatically to the centre of the highlighted object. Then the user could

simply move (i.e., not click and drag) the pointer and the rectangle around the CDib
object would move as well, as if glued to the pointer. In this mode, if the left mouse
button is clicked, the CDib object is moved to the new position. But a right click

would cancel the move operation and the highlighting rectangle would disappear.
In other words, the original object is not moved until the user has decided its new
position. While in the move mode, the temporary rectangle moves with the cursor to
provide guidance to the user.

6-8

Chapter 6 Bitmaps and Metafiles

6.6 DIB COMPRESSION

Large bitmaps require a large amount of storage. This puts heavy demands on

transmission and display systems. For this reason, various forms of data

compression can be used to minimise the storage requirements.

Data compression techniques work on the basis that there are redundant, repeating
elements in any data set. These repeating elements are identified and encoded to

achieve compression. The degree to which image data can be compressed is image
dependent. Images that contain lots of repeated information can be compressed

more efficiently than images containing lots of different information.

There are two fundamental types of image compression. Lossless compression
allows the image to be reconstituted exactly. Lossy compression discards data that is
less important. Both types of compression may be combined to yield high

compression ratios.

Lossless data compression schemes generally involve the substitution of shorter
codes for common patterns in the image data, thus reducing the amount of storage
space required. This can work well for simple graphic images. However, such
conventional data compression methods are not very effective for greyscale or colour
images. Higher resolution colour images do not generally display simple arithmetic
relationships or redundancies among nearby pixels. In the worst case, complex
images can result in negative compression, requiring more storage once data
compression has been applied.

The simplest form of data compression is known as Rim Length Encoding or RLE. In

RLE, a run of a certain value is represented by the length of the run followed by the

value. Such a simple scheme works well for images with large areas of uniform
value.

More complex algorithms include Huffman encoding, Lempel-Ziv Welch or LZW

compression, and Arithmetic compression [KaLe94]. These algorithms use statistical
methods to replace common values with shorter codes, so achieving higher

compression ratios of up to 3:1, although 10:1 is possible for some images. The

Arithmetic compression comes close to the theoretical limit for lossless data
compression, although it has not been widely adopted due to patent protection
[Coop92].

6-9

Chapter 6 Bitmaps and Metafiles

6.6.1 RLE Compression

Windows supplies some important DIB access functions. G etD IB its () constructs a

DIB from a GDI bitmap. To some extent, this function can control the format of the

DIB because the number of colour bits per pixel and the compression type can be

specified.

The Compress () function in the CDib class for GGS can be used for compressing or

decompressing DIBs that define their colours with 8 or 4 bits per pixel (bpp). Firstly,
Compress () calls another member function CreateBitmap() to make a GDI

bitmap from the existing DIB. CreateBitmap() calls the Windows function

CreateDIBitmap() with a device context pointer. Secondly, Compress () makes
a new DIB from the GDI bitmap with compression (or decompression). This
involves calling GetDIBits () twice - once to calculate the memory needed and

again to generate the DIB data. And finally, Compress () replaces the original DIB
with the new one.

6.7 PALETTE PROGRAMMING

Windows palette programming is quite complex and outdated, but it is not sensible to
ignore the possibility that the users may run their displays in the 8-bpp mode if they
have video cards with memory of 1 MB or less. Video adapters that support 24-bit
colour, or true colour, are becoming increasingly common. But Windows still runs on
PC's with video adapters limited to 4 or 8 bpp. Typically, these devices are
"palettised" devices, meaning that they support a wide range of colours but can
display only a limited number of colours at a time. The common case is a video
adapter that can display more than 16.7 million colours in total but only 256 colours
at once.

Windows handles palettised devices by pre-programming a standard selection of
colours into the adapter's hardware palette. A 256-colour adapter is pre­
programmed with 20 static colours. When an application draws on a palettised

device, the GDI maps each colour value to the nearest static colour using a simple
colour matching algorithm.

For many applications, the primitive form of colour mapping that Windows performs

using static colours is good enough. But for others, accurate colour output is a

foremost concern and 20 colours are not enough. In a single-tasking environment
such as MS-DOS, an application running on a 256-colour adapter can program the
hardware palette itself and use any set of 256 colours. In Windows, applications are

6-10

Chapter 6 Bitmaps and Metafiles

not allowed to program the hardware palette directly because the video adapter is a

shared resource. Applications can take advantage of the 236 colours left unused in a

256-colour adapter by using a GDI object known as a logical palette.

A logical palette is a table of RGB colours that tells Windows what colours an

application would like to display. The term "system palette" refers to the hardware

colour palette. At an application's request, the palette manager built into Windows

will transfer the colours in a logical palette to unused entries in the system palette - a

process known as realising a palette, so that the application can take full advantage

of the video adapter's colour capabilities. With the help of a logical palette, an
application running on a 256-colour video adapter can use the 20 static colours plus

an addition of 236 colours of its own. And because all requests to realise a palette go

through the GDI, the palette manager can serve as an arbitrator between programs

with conflicting colour needs and thus ensure that the system palette is used
cooperatively.

The palette manager assigns colour priorities based on each window's position in the
z-order. The window at the top of the z-order (the foreground window) receives the
top priority, the window that is second gets the next highest priority, and so on. If
the foreground window realises a palette of 200 colours, all of them get mapped to
the system palette. If a background window then realises a palette of, say, 100
colours, 36 of them get programmed into the system palette entries left over after the
foreground application has realised its palette, and the remaining 64 get mapped to
the nearest matching colours. However, that may not be the case when these

applications have colours in common. Unless directed to do otherwise, the palette
manager avoids duplicating entries in the system palette.

6.7.1 Palettes in GGS

Each view object in GGS maintains a logical palette. The palette programming has

been made easy by the CPalette class in MFC which encapsulates a Windows
colour palette. The user of GGS has the freedom to create several CDib objects from
different BMP files and place them anywhere on the screen. When a BMP file is

opened and a CDib object is created in GGS, and if there is a colour table, the entries
are added to the logical palette in the view class, using the CPalette::
SetPaletteEntries () member function.

16-bpp, 24-bpp or 32-bpp DIB's do not have colour tables because their image bits
contain actual RGB values. To display DIB's with more than 8-bit colour, it is

6-11

Chapter 6 Bitmaps and Metafiles

important to call the CreateHalftonePalette() function because if the
application is running on a 256-colour palettised display, and if there is no palette
available, only the 20 static colours will appear in the DIB's. CPalette provides

two member functions for palette creation: CreatePalette () creates a custom

palette from RGB values specified; CreateHalftonePalette() generates a

"halftone" palette containing a generic and fairly uniform distribution of colours.
Custom palettes give better results when an image contains few distinctly different
colours but many subtle variations in tone. Halftone palettes are ideal for images

containing a wide range of colours.

6.8 DIB SERIALIZATION

It has been mentioned earlier that the user should be able to retrieve the DIB in its
original format from a CDib object whenever necessary. Therefore, on demand, a

CDib object should be able to generate a BMP file from its contents. The Write ()
function writes out a DIB from the CDib object to a file which has been successfully
opened or created. Write () accepts a pointer to a CFile object as a parameter just
as the Read () function. Both of them read or write data at the current file position.
This fact has been utilised in the implementation of serialization in the CDib class:

void CDib::Serialize(CArchive& ar)
{

CExternalImage::Serialize(ar); // Base class function called
if(ar.IsStoring()) {

ar « m_szDibSize
« m_bBitmapSizeDefined
« m_ptTopLeftCorner ;

>
else {

ar » m_szDibSize
» m_bBitmapSizeDefined
» m_ptTopLeftCorner ;

>
ar.Flush() ; // Necessary before direct read/write
if(ar.IsStoring())

Write(ar.GetFile());
else

Read(ar.GetFile());
>

Listing 6.2 The Implementation of Serialization in the CDib Class

6-12

Chapter 6 Bitmaps and Metafiles

CArchive: :GetFile() retrieves the CFile object pointer associated with a
serialized archive. The Flush () member function forces any data remaining in the

archive buffer to be written to the file. This ensures that all data is transferred from

the archive to the file. Hence, the Read () function can be used to examine a BMP

file and create a CDib object. The function can also be used to read a DIB among

other objects in a serialized archive. The Write () function behaves exactly the other

way around.

6.9 DIFFERENT TYPES OF METAFILES

Like DIB's, the tried-and-true Windows metafile has been an invaluable aid to the
development of numerous drawing and presentation applications for Windows.
However, the Windows metafile did not address issues related to scalability and
device independence. Left on their own, developers attempted to address this issue

in various ways. Some developers embedded application, location, or scaling

comments in the metafiles. This resulted in extremely nonportable metafiles. Others
added headers to the metafile that provided various application-specific information.
The net result of most of these efforts was, once again, nonportable metafiles.
However, one of these endeavours—placeable metafiles—caught on. Developed by
Aldus Corporation, placeable metafiles include a 22-byte header that provides,
among other things, mapping and measurement information that can be used to
scale the metafile.

The proliferation of the placeable metafile, other home-grown formats, and the
confusion of many developers regarding the use of metafiles led to a demand for a
metafile format that addressed the development community's needs. Thus the Win32
enhanced metafile was born [Crai93a]. Developed by Microsoft, the enhanced

metafile distinguishes itself from the Windows metafile in that it is device­
independent and not difficult to use [Chat97]. In order to create a Windows metafile,
developers had to code two paths to deal with the drawing operations. One code

path drew on the screen and the second code path drew to the metafile. The only
way to get around this was to use a subset of GDI functions that used logical
coordinates. Although this permitted limited scaling capabilities, it restricted the use
of many helpful GDI functions. It was not possible to query the metafile device
context (DC) for information such as window origins and extents. The advent of the

enhanced metafile has made those restrictions obsolete. A single code path is all that
is required to draw to any DC, whether it be a metafile, screen, or printer DC.

6-13

Chapter 6 Bitmaps and Metafiles

6.9.1 W indow s M etafiles Versus Enhanced M etafiles

A Windows metafile is used for applications written using the Windows version 3.x

application programming interface (API). The format of a Windows metafile consists

of a header and an array of metafile records. Windows metafiles are limited in their

capabilities and should rarely be used in Win32-based applications. However, they
are still supported in Win32 to maintain backward compatibility with applications

that use the older Windows metafiles.

An enhanced metafile is used in applications written using the Win32 API
(Win32s™, however, does not implement enhanced metafiles). The enhanced format

consists of a header, a table of handles to GDI objects, a private palette, and an array
of metafile records. Enhanced metafiles provide true device independence. The
picture stored in an enhanced metafile can be visualised as a snapshot of the video

display taken at a particular moment. This snapshot maintains its dimensions no

matter where it appears: on a printer, a plotter, the desktop, or in the client area of

any Win32-based application.

Windows Metafile Placeable Metafile Enhanced Metafile

Windows Metafile
Header

Metafile Records

Placeable Metafile
Header

Windows Metafile
Header

Metafile Records

Enhanced Metafile
Header

Description String
(optional)

Metafile Records

Palette
(optional)

Figure 6.4 Three Different Metafile Formats

At first glance, Windows metafiles and enhanced metafiles may appear to share the
same overall structure. They have an array of variable length structures called
metafile records. The first record in a metafile specifies general information such as
the resolution of the device on which the picture was created, the dimensions of the
picture, and so on. The remaining records, which constitute the bulk of a metafile,
correspond to the GDI functions required to draw the picture.

6-14

Chapter 6 Bitmaps and Metafiles

However, a closer inspection reveals a number of differences between a Windows
metafile and an enhanced metafile, as presented in Figure 6.4. Unlike the Windows

metafile format, the enhanced metafile has a different header and may include a

description string and an optional palette stored in a special end-of-file record. The

enhanced metafile format also provides support for additional types of records.

6.9.2 Device Independence

Achieving device independence was very difficult, if not impossible, with Windows
metafiles. The Windows metafile header has the following form:

typedef struct tagMETAHEADER {
WORD mtType;
WORD mtHeaderSize;
WORD mtVersion;
DWORD mtSize;
WORD mtNoObjects;
DWORD mtMaxRecord;
WORD mtNoParameters;

> METAHEADER;
It contains only size and version information. The placeable variant of the Windows
metafile had the best shot at this. The additional header in a placeable metafile
provided an opportunity for an application to render the metafile in a device relative
way:

typedef struct tagPLACEABLEMETAFILEHEADER {
DWORD key;
HANDLE hmf;
RECT bbox;
WORD inch;
DWORD res erved;
WORD checksum;

> PLACEABLEMETAFILEHEADER;

Device independence was typically achieved by setting the mapping mode to

MM_ANISOTROPIC, setting the viewport extents to the physical dimensions of the

device, and finally setting the window's extents to the product of the device's
physical dimensions (in inches) and the metafile units per inch (contained in the
in ch member of the header structure). The biggest problem with that approach was
the variants of the placeable Windows metafile that began surfacing. Often the

6-15

Chapter 6 Bitmaps and Metafiles

mapping mode and the viewport extents were included in the metafile as records.
This necessitated enumerating the metafile as a method of filtering out undesirable

records. Unfortunately, the bounding box and the metafile unit per inch often did

not match the environment being set by the undesirable metafile records! This led to
the situation in which even the placeable metafiles were, once again, application-
specific.

Device independence is a key feature of enhanced metafiles. [Micr93] states that
"...when an application creates a picture measuring 2 inches by 4 inches on a VGA
display and stores that picture in a metafile, it (the picture) will maintain those

original dimensions when it is printed on a 300 dpi laser printer or copied over a
network and displayed in another application that is running on an 8514/ A video
display". The key to achieving this device independence lies inside the enhanced
metafile header:

typedef struct tagENHMETAHEADER
{

DWORD iType;
DWORD nSize;

Record type EMR_HEADER.
Record size in bytes. This may be greater
than the sizeof (ENHMETAHEADER).
Inclusive-inclusive bounds in device units.
Inclusive-inclusive Picture Frame of
metafile in .01 mm units.
Signature. Must be ENHMETA_SIGNATURE.
Version number.
Size of the metafile in bytes.
Number of records in the metafile.
Number of handles in the handle table.
Handle index zero is reserved.
Reserved. Must be zero.
Number of chars in the description string.

// Zero if there is no description string.
DWORD offDescription; //Offset to the metafile description record.

// Zero if there is no description string.
DWORD nPalEntries; // No of entries in the metafile palette.
SIZEL szlDevice; // Size of the reference device in pixels.
SIZEL szlMillimeters; //Size of the reference device in mm.
DWORD cbPixelFormat; // Size of the last recorded pixel format.
DWORD offPixelFormat; // Offset of the last pixel format.

RECTL rclBounds;
RECTL rclFrame;

DWORD dsignature;
DWORD nVersion;
DWORD nBytes;
DWORD nRecords;
WORD nHandles;

WORD sReserved;
DWORD nDescription;

6-16

Chapter 6 Bitmaps and Metafiles

DWORD bOpenGL; // TRUE if any OpenGL records are present.
} ENHMETAHEADER;

Listing 6.3 The Enhanced Metafile Header

The enhanced metafile header contains dimension and resolution information, as

well as size and version information. To achieve device independence, a reference

device context is used. The reference device context is where the picture was formed.
When an enhanced metafile is created, information regarding the reference DC is

placed in its header. More specifically, GDI calls GetDevice-Caps () and assigns

the HORZSIZE and VERTSIZE return values to szlMillimeters and assigns the

HORZRES and VERTRES values to szlDevice. The rclFrame member is assigned

the bounding rectangle specified in the IpRect parameter of CreateEnh-
MetaFile(). If IpRect is NULL, GDI determines the bounding rectangle and

assigns it to rclFrame. This information is sufficient to enable the playback
functions to achieve device independence. When a metafile is played back, the
picture undergoes a series of transformations that scale and translate the picture to
the output rectangle specified in the call to the PlayEnhMetaFile() or Enum-
EnhMetaFile() functions. These transformations rely on the dimensions of the
picture frame (rclFrame), the dimensions of the device upon which the metafile
was created (szlMillimeters and szlDevice), and the world-to-page
transformation values set in the destination DC [Crai93b].

6.10 METAFILES IN GGS

CMetaFile was an old class in MFC to support very basic metafile capabilities.
CMetaFiles in GGS is very different - it supports all three types of metafiles
discussed in Section 6.9. The main public members and some protected members of
the CMetaFiles class are presented in Listing 6.4. Once again, the inline functions

and the data members are omitted for clarity:

class CMetaFiles : public CExternallmage
{

DECLARE_SERIAL(CMetaFiles)
public:

CMetaFiles(CPoint point);
-CMetaFiles();
virtual void Move(CSize& aSize);
virtual void Draw(CDC* pDC, BOOL Select=FALSE);
BOOL Read(CFile* pFile);

6-17

Chapter 6 Bitmaps and Metafiles

BOOL Write(CFile* pFile);
void Serialize(CArchive& ar);

protected:
CMetaFiles(); // For serialization
BOOL CreateTempFile();
BOOL MetaFileSize();
BOOL CleanupOpenGL();
BOOL PrepareOpenGL(HDC hDC, HENHMETAFILE hMeta);
BOOL CopyBytesToTempFile(CFile* pFile, DWORD dwLength);

}?

Listing 6.4 Main Public and Protected Member Functions in CMetafiles

6.10.1 Construction and Destruction

Objects of the CMetaFiles class are constructed exactly in the same way as CDib
objects. The user decides the position of the top-left comer of the metafile to be
imported by clicking the mouse. Then a standard file open dialog box is presented to
help selecting the file. The public constructor initialises some data members and the
Read () function deals with the WMF or EMF file selected by the user.

6.10.2 Reading a M etafile

The Read() function in the CMetaFiles class uses a number of Windows API
functions. First of all, Read() assumes that the file selected by the user contains an

enhanced metafile. The GetEnhMetaFile() API is called which creates a handle

that identifies the enhanced-format metafile stored in the specified file. If this API
function succeeds, the return value is a handle to the enhanced metafile. Otherwise,
the return value is NULL. When the call is successful, GetEnhMetaFileHeader ()

retrieves some header information and then, a dialogue box, very similar to the one

in Figure 6.3, is thrown so that the user can specify the size of the metafile on the
screen. Unlike bitmaps, metafiles can be scaled up or down without any distortion

unless they contain bitmaps inside!

However, the user has the full freedom to select old Windows metafiles. When a

Windows metafile is passed to GetEnhMetaFile (), the return value is NULL. In that
case, the Read() function calls GetMetaFile(). GetMetaFile() does not form

part of the Win32 API. This function is provided for compatibility with 16-bit
versions of Windows. As the name suggests, GetMetaFile() creates a handle for
the given Windows-format metafile.

6-18

Chapter 6 Bitmaps and Metafiles

In the next step, Read() calls GetMetaFileBitsEx() to copy the contents of the

Windows metafile into a buffer space. The SetWinMetaFileBits () API function

then creates an enhanced metafile from the data in the buffer and stores the new

metafile in memory.

Finally, Read() considers the possibility of encountering a placeable metafile.
GetMetaFile() cannot recognise a placeable metafile because of its additional
header. When GetMetaFile() returns NULL, the Read() function checks the file

signature in the first 22 bytes of the file. If the signature matches that of a placeable

metafile, Read() treats the rest of the file as an old Windows metafile. The user,
however, always gets an option to specify the onscreen size of the metafile

irrespective of its format.

6.10.3 Drawing a Metafile

It is a common practice to enumerate Windows metafiles, rather than simply to play
them back, to achieve better control over positioning, scaling, getting access to
application-specific comments, or manipulating the palette records. However, the
improvements to enhanced metafiles reduce the need for enumeration of the
metafile. In Win32, most applications need to use only PlayEnhMetaFile () unless
they need to edit the enhanced metafile by adding, deleting, or modifying records, in
which case they should use EnumEnhMetaFile ().

PlayEnhMetaFile () is sufficient for GGS. The GDI metafile player encapsulates

all the details inside PlayEnhMetaFile (). The Draw() member in the
CMetaFiles class calls PlayEnhMetaFile () . It is reasonable to think that the
implementation of the Draw() function is simple and straightforward. In fact, the

implementation was simple when enhanced metafiles did not contain OpenGL
records.

6.10.4 Basic OpenGL Operations

Originally developed by Silicon Graphics Inc., OpenGL is an industry-standard

procedural software interface for producing 3-D graphics. The OpenGL interface
provides around 120 commands to draw various primitives including points, lines,
and polygons in various modes [Open92]. As a software interface for graphics
hardware, OpenGL's main purpose is to render two and three dimensional objects
into a frame buffer. These objects are described as sequences of vertices or pixels.
OpenGL performs several processing steps on these objects to convert them to pixels
to form the final desired image in the frame buffer.

6-19

Chapter 6 Bitmaps and Metafiles

The high-level block diagram in Figure 6.5 illustrates how OpenGL processes the
image data. In the diagram, commands enter from the left and proceed through

what can be considered a processing pipeline. Some commands specify geometric

objects to be drawn, and others control how the objects are handled during various

processing stages.

Commands

Display
list

Pixel
operations

Texture
memory

Evaluator
Frame
buffer

Per-vertex
operations
& primitive
assembly

Rasterization
Per-fragment

operations

Figure 6.5 Basic OpenGL Operations

The processing stages in basic OpenGL operations are as follows:

• Display list: Rather than having all commands proceed immediately through
the pipeline, some of them can be accumulated in a display list for processing
later.

• Evaluator: The evaluator stage of processing provides an efficient way to
approximate curve and surface geometry by evaluating polynomial
commands on input values.

• Per-vertex operations and primitive assembly: OpenGL processes geometric
primitives - points, line segments, and polygons - all of which are described

by vertices. Vertices are transformed and lit, and primitives are clipped to the
viewport in preparation for rasterisation.

• Rasterisation: The rasterisation stage produces a series of frame-buffer

addresses and associated values using a two dimensional description of a

point, line segment or polygon. Each fragment so produced is fed into the

last stage, per-fragment operations.

• Per-fragment operations: These are the final operations performed on the
data before storing it as pixels in the frame buffer.

Per-fragment operations include conditional updates to the frame buffer based on
incoming and previously stored z values (for z buffering) and blending of incoming

6-20

Chapter 6 Bitmaps and Metafiles

pixel colours with stored colours, as well as masking and other logical operations on
pixel values.

6.10.5 Enhanced Metafiles with OpenGL Records

In Listing 6.3, the last member (i.e., bOpenGL) of the ENHMETAHEADER structure
indicates whether any OpenGL record is present in an enhanced metafile. In fact, the

last three members are added to the ENHMETAHEADER structure later so that EMF
files can capture OpenGL images. The other two members, cb P ixelF orm at and

o f f P ixelF orm at, as their names suggest, specify the recorded pixel format(s) in a

metafile which is very important for an OpenGL rendering.

There are two major steps before an OpenGL rendering can take place. Firstly, the

pixel format of the device must be set up where the OpenGL image will be drawn.
Secondly, a rendering context should be created.

The Read() function in the C M etaFiles class, raises a Boolean flag when it
encounters an enhanced metafile with OpenGL records. The Draw() function
checks the flag and calls PrepareOpenGL () which attempts to set up the target DC
for OpenGL rendering based on the metafile's PIXELFORMATDESCRIPTOR. After
preparing the target DC, the metafile is played using the P layEnhM etaFile () API.
A pointer to a RECT structure that contains the coordinates of the bounding rectangle
for the display of the metafile is required as a parameter to PlayE nhM etaFile ().
This bounding rectangle is constructed from the top-left comer and the metafile size
specified by the user. Finally, CleanupOpenGL() is called to free the rendering
context and the OpenGL libraries loaded by PrepareOpenGL () .

C M eta F ile s::PrepareOpenGL() in GGS is based on the sample code provided

by Microsoft in [MSDN61]. The OpenGL rendering to enhanced metafiles does not
work on all PC's running Windows 95. The original version of Windows 95 was not
OpenGL aware. In the OEM system release 2, Windows 95 was updated with the

OpenGL 1.1 implementation [MSDN62, MSDN63]. OpenGL first became part of a
Microsoft operating system when Windows NT version 3.5 was released [Crai94].

It is therefore important to examine the operating system modules for OpenGL

support before setting up a rendering context. PrepareOpenGL () , at first, tries to
load some OpenGL dynamic link libraries (DLL's) and checks if appropriate

functions are available. It also examines one of die core OS modules, GDI32 . DLL to
see if the module exports the G etE nhM etaFileP ixelForm at () function. Special

6-21

Chapter 6 Bitmaps and Metafiles

programming techniques are necessary to query a DLL. The following code

fragment is from [MSDN61] which was written in C:

FARPROC fn P o in te r = NULL; / / A fu n c t io n p o in te r

m_hOpenGL32 = L oadL ibrary("O penG L32.dll");
i f (i m_hOpenGL32)

r e tu r n FALSE;
fn P o in te r = GetProcAddress(m_hOpenGL32, " w g lD eleteC o n tex t");

(fn P o in te r) (m_hRC); / / m_hRC i s an OpenGL HANDLE

The GetProcAddress () function can retrieve addresses of exported functions in

DLL's. However, the C style function pointer casting is generally not accepted by the

C++ compilers because they cannot do the type checking. Hence, the above code
fragment has been rewritten in CMetaFiles:: PrepareOpenGL () as follows:

BOOL (* fn P o in t e r) (HGLRC) = NULL;
m_hOpenGL32 = L oadL ibrary("O penG L32.dll");
i f (! m_hOpenGL32)

re tu r n FALSE;
fn P o in te r = (BOOL (*) (HGLRC)) GetProcAddress(m_hOpenGL32 ,

" w g lD eleteC o n tex t");
fnPointer(m _hR C);

6.11 CLOSURE

Other member functions such as Move(), Write() and Serialize() in the

CMetaFiles class essentially follow the same principles as those in the CDib class.
Although DIB's and metafiles represent two very different ways of storing pictorial
information, GGS treats them as similar objects but with different file formats.

Now the user can open one or more externally created bitmaps and metafiles in GGS
and arrange them in any sequence suitable for his/her illustration. Figure 6.6

presents some alien characters playing music somewhere near Loch Ness!

Full-blooded illustration programs can produce such an image very easily. They can
also do a lot more with their advanced editing features. However, the motivation for

developing GGS is slightly different. GGS allows users to construct and manipulate
a fairly complex picture, adding comments as they go. The process of constructing
the picture is saved, not just the final picture. There is also an opportunity to add
music as we shall see in the next chapter.

6-22

Chapter 6 Bitmaps and Metafiles

- ln j x |
[UJ File Objects Pen View Window Help - j£ jxj

View Scale: 100%

Ready

Figure 6.6 Alien Music Somewhere Near Loch Ness!

6.12 REFERENCES

[Chat97] Chatterjee, P.C.: "Exporting graphics from U N IX -based FE softw are to

Windows", P ro/E : The M agazine, Vol. 5, N o. 6 ,1997.

[Coop92] C ooper, W.: "Im age Formats: A n Introduction to Im age Form ats for

U se in C om puter Based Learning and M ultim edia", h t tp : //c b lm s u .

le ed s .a c .u k /W W W /p r o je c ts /cb lm su /im ages.htm l.

[Crai93a] Crain, D.: "Enhanced M etafiles in W in32", M icrosoft D eveloper

N etw ork T echnology G roup, June 1993.

[Crai93b] Crain, D.: "EMFDCODE.EXE: A n Enhanced M etafile D ecod in g

Utility", M icrosoft D eveloper N etw ork T echnology G roup, July 1993.

[Crai94] Crain, D.: "W indow s NT OpenGL: G etting Started", M icrosoft

D eveloper N etw ork T echnology G roup, April 1994.

6-23

http://cblmsu

Chapter 6 Bitmaps and Metafiles

[DiLa9 7]

[KaLe94]

[Krug97]

[LeAr*98]

[Micr93]

[MSDN61]

[MSDN62]

[MSDN63]

[Open92]

DiLascia, P.: "More Fun with MFC: DIBs, Palettes, Subclassing, and a

Gamut of Reusable Goodies", Microsoft Systems Journal, Vol. 12, No.
1,1997.

Kay, D.C. and Levine, J.R.: "Graphics File Formats", Windcrest/
McGraw-Hill, August 1994.

Kruglinski, D.J.: "Inside Visual C++", 4th Edition, Microsoft Press,
1997.

Leinecker, R.C., Archer, T., et al.: "Visual C++ 6 Programming Bible",

IDG Books Worldwide Inc., 1998.

Microsoft Corporation: "Microsoft Windows NT Resource Guide", Vol.
1, October 1993.

Microsoft Developer Network Library: "SAMPLE: How to Create &

Play Enhanced Metafiles in Win32", Article ID: Q145999, July 1999.

Microsoft Developer Network Library: "SAMPLE: OpenGL 1.1 Release
Notes & Components", Article ID: Q154877, July 1999.

Microsoft Developer Network Library: "INFO: README for Win32
Software Development Kit, Part 1 of 2", Article ID: Q167799, July 1999.

OpenGL Architecture Review Board: "OpenGL Reference Manual,
The Official Reference Document for OpenGL", Release 1, Addison

Wesley, 1992.

6-24

Chapter 7 Sound, Timers and Still Animation

7.1 AUDIO CLIPS

Sound can be an effective form of information and interface enhancement when

appropriately used. Any presentation material comes to life with audio clips. This is
because audio clips can serve purposes other than transmission of details or factual
information. A greeting or a recitation of a short poem in both text and audio might
help emphasise the tone of the author of the page as effectively as the layout, colours,
and images on the page. All of us know how pervasive the effect of musical score is

on the way we experience a movie. The analogy is not exact, but short audio sections

might help create the tone that we hope for in presenting ideas, opinions, facts,
and/or art.

7.2 DIGITAL SOUND

The number of applications for high quality audio functions on the PC, including
music synthesis, grew explosively after the introduction of Windows 3.0 with
multimedia extensions ("Windows with Multimedia") in 1991. These extensions are
also incorporated and enhanced in the 32-bit versions of Windows. The Multimedia
PC (MPC) specification, originally published by Microsoft in 1991 [Micr91a], states
the minimum requirements for multimedia-capable PC's to ensure compatibility in
running multimedia applications. The audio capabilities of an MPC system must
include digital audio recording and playback (linear PCM sampling), music
synthesis and audio mixing.

Windows applications address hardware devices such as the Musical Instrument
Digital Interface (MIDI) or synthesisers through the use of drivers. The drivers

provide software applications with a common interface through which hardware
may be accessed, and this simplifies the hardware compatibility issues. Multimedia

applications store audio data in different file formats. At present, MP3 is the most
popular format for downloaded music. In fact, MP3 is the second most frequently
requested search term on the Internet search engines [Hedt99].

7.2.1 What is MP3?

The Motion Picture Experts Group (MPEG) is a set of standards for compressing and
storing digital audio and video. MP3 is an abbreviation of MPEG Audio Layer 3, and

it identifies a way to store digital audio files. MP3 files offer high-quality sound in a
file format that requires roughly 1 MB for every minute of sound. CD's and WAVE

files, by contrast, require about 11 MB per minute. This means that a single song or
track in the MP3 format usually takes up between 3MB and 5MB - a reasonable

7-2

Chapter 7 Sound, Timers and Still Animation

download even at a speed of 28.8 Kbit/s. Because of this, a profusion of MP3 Web
sites, newsgroups and FTP sites has sprouted up across the Internet. It also means
that one can create a DVD disc containing over 80 hours' worth of music.

Regardless of where a sound comes from, what we actually hear is analogue.
Computers translate and store this information as digital sound, however. This is

done through sampling - the process of taking a snapshot of the sound many times
per second. Audio CD's store information in a digital audio format known as

CD-DA, which is very similar to the standard WAVE format and samples the

analogue source 44,100 times per second.

The compression techniques used to create MP3 files are based on psychoacoustics,
the study of how the human brain perceives sound. This science has determined that
not all of the sound we hear is perceived by the brain. To create an MP3 file, an MP3
encoder reads a WAVE file and then strips out the parts that we will not miss
hearing, at least in theory. For example, most adults experience attenuated hearing
response at high frequencies, so the encoder strips out any sounds above a preset
threshold frequency, say above 16kHz. Loud sounds will tend to mask quieter
sounds at or near the same frequency, so the encoder removes these too. By
whittling away die parts we are less likely to miss, the encoder creates a file that
sounds very similar to the original, but is dramatically smaller.

MP3 files are not illegal just because they are MP3 files, but there are many files
around that violate someone's copyright and are, therefore, illegal. Almost
everything found on MP3 newsgroups falls into this category and record companies
worldwide are starting to take action against what they perceive as a huge loss of
revenue. As a result of all this attention, most of the large MP3 sites are distributing

only authorised MP3 files. This still lets people download files as music shareware
and if they like the music, then they can buy the CD.

7.2.2 WAVE and MIDI Files

Before MP3 was bom, WAVE and MIDI were the most popular audio file formats for
PC's. WAVE and MIDI files contain coded sound information. When played back in
a modern system, equipped with proper software and hardware, they can result in

impressive sound. Nevertheless, the type of information and the way they are coded
are quite different, in a degree that an attempt for comparison could seem almost
meaningless to specialists.

7-2

Chapter 7 Sound, Timers and Still Animation

A WAVE file contains information on the 'form' of sound, obtained by digitisation of

some analogue signal. A WAVE file is basically a digital copy of the air pressure

alterations of a recorded sound or an artificial sound-like signal (i.e., synthesised

sound). Playing back this copy may result in some quality degradation (harmonic
and dynamic distortions, added noise, pitch deviation, etc.), but not in the

modification of the basic form of the sound signal. A WAVE-coded record of
someone's voice will sound as his/her voice and not something else.

A MIDI file, on the other hand, has information on the musical contents of sound,
expressed in terms similar to those used in the note score. The data refer to the pitch,
duration and volume of different notes, the instrument which they have to be played

with, the way they are supposed to sound (vibrato, echo, reverberation, sustain, etc.).
Playing back a MIDI file may result in quite different sound pictures, depending on

the synthesiser - the device producing sound under the control of the MIDI file data,
but the basic music information will be preserved in any case. A MIDI file essentially
contains a sequence of bytes representing various MIDI events of a musical
composition, which can be directed to a synthesiser or can be translated to a perfect
staff notation to be used in printed form by an interpreter to play the music.

In the context of developing GGS, audio clips of human voice are more important.
The handling of WAVE files is more appropriate. MIDI files are mainly for music
and MP3 is a lossy compression of WAVE files. Writing an MP3 encoder and a
player from scratch is not only challenging and difficult but also beyond the scope of
this research.

7.2.3 The Contents of a WAVE File

A WAVE file consists of a sequence of bytes representing the amplitude of the sound
signal in consequent time moments close enough to represent its form with

acceptable precision. These bytes result from a sound digitisation process. There are

three parameters that determine the inherent quality of the digital copy:

• Sampling frequency (F): The sampling frequency is equal to the number of
samples per second. F determines the maximum signal frequency (= F/2)
that can be digitally coded. Since the (young) human ear perceives

frequencies up to 20 kHz, an F value higher than 40 kHz is required to avoid
audible spectral degradation of the sound. Three standard F values are used:
11025 Hz, 22050 Hz and 44100 Hz, providing digital copies with frequency
spectrum extending to 5,10 and 20 kHz respectively.

7-3

Chapter 7 Sound, Timers and Still Animation

• Sampling accuracy: The sampling accuracy or "depth" depends on the

number of bits per sample, which determines the number of discrete steps

available to represent the amplitude of each sample. Two basic depths are

used in WAVE files. The 8-bit (i.e., 1 byte per sample) depth provides 255

steps (-127 to 127) of amplitude digitisation, resulting in amplitude accuracy
of about ±0.4% of the highest signal level. The 16-bit (i.e., 2 bytes) depth

creates 65535 (-32767 to 32767) steps and amplitude accuracy about ± 0.0015%

of the highest signal level. The 8-bit sampling results in some degradation of
sound, expressed in audible noise and nonlinear distortion, while the 16-bit
sampling virtually creates noise- and distortion-free copy.

• Sound channels: The number of sound channels recorded is also important.
There are mono and stereo WAVE files, the last containing digitised data of
two sound channels.

The sound obtained by various combinations of the above parameters (mainly F) is
often characterised as being of "AM", "FM" or "CD" quality, which are good
approximations with respect to the frequency spectrum, but not always adequate
with respect to other sound quality parameters. The final sound quality depends not
only on the contents of a WAVE file, but also on the quality of the whole recording
and playback system. Nevertheless, a 44 kHz / 16-bit / stereo WAVE file can sound

very good if played back on a top-level hardware. The above parameters coincide
with those used in CD's, while the 22 kHz / 16-bit quality is slightly inferior to the
actual FM sound quality. The 22 kHz / 16-bit / mono is possibly the bottom-level

combination which is still acceptable in sound quality terms [INET71].

7.3 WAVEFORM AUDIO AND WINDOWS

There are several ways to play waveform audio in Windows: using P i ay Sound API,
using the Media Control Interface (MCI) or the low-level audio services. Recording

of waveform audio can be done through MCI or the low-level audio services.

7.3.1 The PlaySound API

The PlaySound API plays waveform audio, as long as the sound file fits into the
available memory. The sound source can be specified in three different ways:

• As a system alert, using the alias stored in the system registry
• As a filename
• As a resource identifier

7-4

Chapter 7 Sound, Timers and Still Animation

If the source specified is a file and it does not fit into the available memory,
PlaySound plays the default system sound. If no default system sound has been

defined, PlaySound fails without producing any sound. Hence, it is suitable for

simple applications dealing with small files or resources.

7.3.2 Low-level Audio Services

Playing waveform audio using the low-level services involves the application in

opening an output device and sending a series of one or more blocks of waveform

data to the device. The output device driver sends a notification message to the

application each time a block has finished playing.

In order to record waveform audio, an application must supply a series of data
buffers to the wave device driver. The device driver fills the buffers with data as it
becomes available, and when each buffer is full, it posts a message to the application
saying that the buffer is full and the application may now process it.

This is rather an over-simplified description of the process. Using the low-level
services provides the most control over what is going on during recording and
playback but most applications such as GGS do not need to deal with audio data at
the buffer level or deal directly with the audio device drivers either.

7.4 THE MEDIA CONTROL INTERFACE (MCI)

The Media Control Interface (MCI) provides applications with device independent
capabilities for controlling devices such as audio and visual peripherals. There are
two MCI interfaces that can be used to communicate with MCI devices: command-
message functions and command-string functions. Either set of functions can be

used to access all MCI device capabilities. The difference between the two interfaces
is in their basic command structure and the method in which they pass information

to the devices.

The command-message interface uses messages to control MCI devices. A bit-vector
of flags and a pointer to a data structure are sent with each message. The flags and

information data structure let an application send information to a device and

receive returned data. MCI passes device messages and information directly to the
device.

The command-string interface uses text commands to control the MCI commands.
The text strings contain all the information needed to execute a command. MCI

7-5

C hapter 7 Sound, Timers and Sti ll Anim ation

parses the text string and translates it into the m essage, flags, and the data structure

to be sent to the com m an d-m essage interface. Because of this process, this interface

is s ligh tly slow er than the com m an d-m essage interface.

Each interface has unique properties. The com m an d-m essage interface is more

versatile if an application controls an MCI device directly. If this is the case, the

application can directly and easily m anipulate and d ecod e data u sed by this

interface. For exam ple, an application can p lay an audio or v id eo segm en t w h en the

user successfu lly com pletes a task. GGS u ses the com m an d-m essage interface to

control the recording and playback devices.

The com m and-string interface sh ou ld be selected if an application u ses a text-based

interface to let the user control an MCI device. In such an application , the user can

easily read and create the necessary com m and strings. For exam ple, the application

m igh t read a user-w ritten script that controls som e MCI d evices. The MCI

com m an ds in the script can be sent directly to MCI w ith ou t interm ediate processing

by the application.

Application
Level Multimedia Application

Multimedia Extensions
Function Call

Translation
Level MMSYSTEM

Driver Call(s)

Device Driver
Level Waveform

Input
Driver

Waveform
Output
Driver

MIDI
Input
Driver

MIDI
Output
Driver

Audio Device Driver

Figure 7.1 Relationship between an Application and Multimedia Device Drivers

7-6

Chapter 7 Sound, Timers and Still Animation

7.5 MCI AUDIO ARCHITECTURE

The MCI audio architecture is designed around the concepts of extensibility and
device-independence. Extensibility allows the software architecture to accommodate

advances in technology without changes to the architecture itself. Device-
independence allows multimedia applications to be developed that will run on a

wide range of hardware providing different levels of multimedia support.

Three design elements of the system software provide extensibility and device-
independence:

• A translation layer (MMSYSTEM) that isolates applications from device

drivers and centralises device-independent code.

• Run-time linking that allows the MMSYSTEM translation layer to link to the

drivers it needs.

• A well-defined and consistent driver interface that minimises special-case

code and makes the installation and upgrade process easier.

Figure 7.1 illustrates how the translation layer translates an MCI function call into an
audio device driver call. Some function calls might result in multiple driver calls, or
they might be handled by MMSYSTEM without causing any driver calls.

7.6 SOUND OBJECTS IN GGS

The main public members and some protected members of the CSound class are
presented in Listing 7.1. Once again, the inline functions and the data members are
omitted for clarity:

class CSound : public CGGSObject
{

DECLARE_SERIAL(CSound)
protected:

BOOL CalculateFileSize() ;
BOOL Read(CFile* pFile) ;
BOOL CreateTempFile() ;
BOOL Check() ;
BOOL Import() ;
BOOL Record() ;

public:
CSound() ;

7-7

Chapter 7 Sound, Timers and Still Anim ation

virtual -CSound() ;
BOOL CreateSound() ;
BOOL Play() ;
BOOL Write(CFile* pFile) ;
virtual void Serialize(CArchive& ar) ;

> ;
Listing 7.1 The CSound Class Declaration with Some Details Omitted

The general MFC principle of two-stage construction is followed when CSound
objects are created in GGS. Other than initialising some data members, the
constructor does not do anything else. Once the object is created, the

CreateSound() function should be called. CreateSound() offers two alternative

ways of creating sound objects by displaying the following dialogue box:

R e c o r d or Import S o u n d ?

Sound source

m
(* (Record my v o ice through a microphone!

C jmport from a waveform-audio file

r W ait until the playback com pletes
in the animation m ode

OK C ancel

Figure 7.2 Options for Selecting the Sound Source

7.6.1 Importing WAVE Files

If the user decides to import sound, GGS checks the selected WAVE file before
creating a CSound object. A WAVE file is one type of RIFF (Resource Interchange

File Format) file. RIFF is the tagged file structure developed for multimedia resource

files. The basic building block of a RIFF file is called a chunk, which looks like the
following:

typedef unsigned long DWORD;
typedef unsigned char BYTE;
typedef DWORD FOURCC; // Four-character code

typedef struct {
FOURCC ckID;
DWORD cksize; // The size of field <ckdata>

7-8

Chapter 7 Sound, Timers and Still Animation

BYTE ckData[ckSizel; // The actual data of the chunk
> CK;

Four-character codes (FOURCC) are used extensively in RIFF files; they identify the
sections of data contained in the file. A four-character code has the following

characteristics:

• A 32-bit quantity represented as a sequence of one to four ASCII alpha­
numeric characters.

• Padded on the right with blank characters (ASCII character value 32).

• Contains no embedded blanks.

For example, the four-character code "RIFF" is stored as a sequence of four bytes ('R'
T 'F' 'F') in ascending addresses. For quick comparisons, a four-character code may

also be treated as a 32-bit number. Two types of chunks, "LIST" and "RIFF"
[Micr91b] may contain nested chunks, or subchunks.

A RIFF form is a chunk with a "RIFF" chunk ID. The first DWORD of chunk data in
the "RIFF" chunk is also a four-character code identifying the data representation, or
the 'form type' of the file. Following the form type code is a series of subchunks.
Which subchunks are present depends on the form type. For a WAVE file, the form
type is 'WAVE'. This is followed by the format chunk and then the data chunk. The
format chunk must always occur before the data chunk. Programs must expect and
ignore any unknown chunks encountered, as with all RIFF forms.

CSound:: Import () calls the Check() member to verify the WAVE file selected by
the user. In other words, GGS does not assume that a file with .WAV extension is a
WAVE file. Import () returns the Play() function so that the user has an
opportunity to listen to the imported file.

7.6.2 Playing WAVE Files

CSound member functions use the mciSendCommand() API to send a command

message to the MCI devices. When an MCI driver receives a command, by default it
should start the operation and then return control to the calling application. The

driver should not wait for the operation to complete before returning. For example,
if an application sends an MCI_PLAY command, the driver should start the play

operation and immediately return. Optionally, an application sending any MCI
command can request the driver to wait until the associated operation is complete

7-9

Chapter 7 Sound, Timers and Still Animation

before returning. The application makes this request by including the MCI_WAIT
flag as a command argument.

In Figure 7.2, the check box can be used to indicate how a CSound object should be
played in the animation mode. When the user decides to wait until the playback of a

CSound object is complete, GGS internally uses the MCI_WAIT flag to request the
driver to complete the operation before returning control to GGS.

A GGS document may contain several sound objects. It is important to close the MCI
playback device when CSound: :Play() returns. This is certainly not a problem

when the MCI_WAIT flag is used. The Play() function requests MCI to close the
device knowing that the playback is complete. However, in the absence of the
MCI_WAIT flag, the MCI driver returns immediately after an MCI_PLAY request. The
play operation will not be complete if the playback device is closed at that point.
Hence, Play() returns without closing the device. This brings into question the
status of the playback device when it finishes playing the sound object.

GGS uses the MCI_NOTIFY flag to request notification when the playback operation
has completed. When the MCI_NOTIFY flag is used, the MM_MCINOTIFY message is
sent to an application indicating that an MCI device has completed an operation.

The MFC library includes macros that an application can include in the message map
of a CWnd or CWnd derived object. These macros, such as ON_WM_PAINT() and
ON_WM_S IZE () , map common messages to default handler functions. Similar
macros are available for all standard Windows messages. To process user-defined
messages or less-common Windows messages, such as MM_MCINOTIFY, the

ON_MESSAGE () macro is used. The ON_MESSAGE () macro must be used in a CWnd
derived class. For example, it cannot be used in a CWinApp class or a CDocument
class because neither of these classes is derived from CWnd. In GGS, the main frame
window handles the MM_MCINOTIFY message. The handler function retrieves the

MCI device ID from the message and closes the device.

7.6.3 Recording WAVE Files

The users have an option of recording their voice instead of importing waveform
audio from externally created WAVE files. As mentioned earlier, WAVE files are

device-independent with respect to its sound content. However, they require a lot of
storage space. A CD-quality stereo WAVE file for one minute measures 60 (sec) x
44100 (samples) x 2 (bytes) x 2 (channels) « 10 MB of storage space. It is crucial that

7-10

Chapter 7 Sound, Timers and Sti ll Anim ation

the waveform recording device is not left open indefinitely. Otherwise, it may fill up

the hard disk and initiate serious problems. As a precautionary measure, GGS
requests the user to specify the maximum time necessary for the recording before

opening the recording device:

■ d

T he recording d ev ice should not b e kept
op en indefinitely.

Maximum recording time (sec): jj

OK 1 C ancel

Figure 7.3 Maximum Recording Time

The sound quality can be controlled by passing relevant information to the
MCI_WAVE_SET_PARMS structure for the MCI_SET command for waveform-audio
devices. However, there is a straightforward way of controlling the sound quality:

M ultim edia P ro p er tie s

Playback

4f\j

R ecording

§

Vnlump 1 n</j High

1 » *

Preferred device:

/
i i 1 l i i i I

| AudioPCI W ave Out d
W S h ow volume control on the taskbar

Volume 1 nw High

1 * •

Preferred device:

/
i i * 1 i i |

| AudioPCI W ave In d
Preferred quality:

| CD Quality J J Customize... |

f" U se preferred d e v ic e s only

OK I C ancel Apply

Figure 7.4 The Properties of Multimedia Devices in the Control Panel

7-11

C hapter 7 Sound, T im ers and S till A nim ation

The properties of multimedia devices can be changed in the Multimedia section of
the Control Panel of Windows. GGS accepts the default settings for the recording
device. In the recording mode, GGS presents the following dialogue box and

automatically closes the recording device depending on the maximum record length

specified by the user. But the recording process can be stopped much earlier. The

user can press the 'Stop Recording' button at any time:

R ecord ing ...

| Stop Recording }

Elapsed time: 10 se co n d s

numum
Figure 7.5 Recording in Progress

7.7 TIMERS IN W IN D O W S

Windows API exports two types of timers to applications: message-based timers
(sometimes referred to as standard timers) and multimedia timers. Standard timers
rely on the message WM TIMER. The message is sent (actually faked by
GetMessage() [Marc98]) to the window whose handle was passed to the
SetTimer() API during the timer object initialisation. The counterpart to
SetTimer() is KillTimer(), whose job is to destroy the timer passed as
parameter, thus stopping the delivery of the WM TIMER expiration messages.

It would be a waste to require the presence of a window just for receiving time-out

notifications. Fortunately, passing a NULL value as the window designated to

handle the timer messages causes the default WndProc to invoke the TimerProc
callback function whose address was passed to SetTimer(). This effectively

permits windowless components like console applications to benefit from timers
without resorting to dirty tricks.

Relying on message delivery provides standard timers advantages and

disadvantages. The best advantage is simplicity. Handling a message and writing a
callback function are straightforward tasks. The disadvantage is a lack of accuracy.
Process scheduling and message queues may cause unpredictable delays, which

might be acceptable in many conditions but are intolerable when the program relies

7-22

Chapter 7 Sound, Timers and Still Animation

on timers for critical tasks.

The need for precise timers is better addressed by so-called multimedia timers. To

achieve superior accuracy, multimedia timers are handled by user-provided callback

functions running in a high-priority independent thread owned by the creating

process. This approach greatly reduces the gap between the moment of the timeout
and the actual execution of the handling code. The resolution should reach the
millisecond [MSDN71], although system computational power and workload

contribute to make this value significantly uncertain.

Using multimedia timers has its own drawbacks. Firstly, they impose a greater cost
to the system than standard timers because multimedia timers run in a separate
thread transparently managed by Windows. Hence, they should be adopted only

when a high degree of precision is required. Secondly, the handling code must often
pay close attention to synchronisation and execution time because of the intrinsic

multithreaded nature of the mechanism. Thirdly, they should not call any system-
defined function except P ostM essage(), O utputD ebugString(), and some
multimedia APT s.

7.7.1 The Recording in Progress Dialogue

The dialogue box in Figure 7.5 is different from many others in GGS. It is driven by a
timer. The object associated with this dialogue template creates a Windows standard
timer just before opening the recording device and displaying the dialogue box. A
s t a t i c function of this dialogue control class serves as the callback function. This
callback function updates the 'Elapsed time' after receiving the time-out
notifications. It can also close the recording device and the progress dialogue when

the maximum recording time expires.

7.7.2 Other Member Functions in CSound

Sound objects can occupy a lot of space. It is necessary to store them in disk files and

load them in memory for playback operations only. CSound:: C reateT em pFile ()
serves this purpose of creating a temporary file for storing the waveform audio data.
The Read() and W rite () functions are used in serializing the sound objects. The

technique has been discussed already in Section 6.8. However, it is important to note
that R ead () is a protected member in Listing 7.1 but W rite () is a public member.
This is because Read() is called only by other member functions in the CSound

class. But the Animation Editor calls the W rite () function when the user of GGS
wants to extract the audio data from a sound object and save it in a WAVE file.

7-13

C hapter 7 Sound, T im ers and S till A n im ation

7.8 STILL ANIMATION

The classic way to implement animation is to define a series of elements, making

each one appear in succession. An animated movie, after all, is nothing but a series

of images drawn by an artist that are displayed on screen one after another. In the

world of animation, things improve, change and reinvent themselves very quickly.

New animation techniques emerge everyday [INET72]. However, there is one thing

in common among various types of animation. A good animation has a definite

theme or story. Successful animators always keep the goal of their "story" in mind
as they animate.

The animation in GGS is simplistic in nature. The objects do not move or the
background does not change. But it is possible to create some impact and get some

ideas across. For instance, structural engineers often face problems with detailed

design drawings. Sometimes, the inquiries regarding drawings are misunderstood
by other parties involved. Fax messages or telephone conversions do not always

identify the exact nature of confusion or misunderstanding. In this type of situation,
to clarify some of h is/her questions, an engineer may scan the drawing and import it
into GGS, mark the areas of interest with the free-hand curve tool and simply record
the questions as sound objects. The final product is a GGS document that can be sent
as an e-mail attachment. The person at the receiving end can open this document in
h is/her copy of GGS and press the 'animation' button. In the animation mode,
graphic objects appear in succession, sound objects are played and timers are
activated, depending on their position in the sequence of objects in the document.

GGS A nim ation Editor

< 0 bject N o> 0 bject Type (W idth, H eight)

<1> Line (W = 71 , H = 2 9) jk.
<2> R ectan gle (W = 94 , H = 64)
<3> Circle (W = 154 , H = 1 5 4)
<4> Curve (W = 1 9 8 ,H = 9 6)
<5> T e x t(W = 3 8 ,H = 2 2)
<6>
fsfsm

Bitmap (W = 375 pixels, H = 368 pixels)
a a
<8>

a L-it-i 11 r T ■ fnnr rf~ r
Sound Object ft 1

<9> Timer 8 1 (1000 milliseconds)
<10> R ectan gle (W = 84 , H = 55)
<11> L in e (W = 7 9 ,H = 2 0)
<12> Line (W = 35 , H = 59)
<13> Timer 8 2 (2000 milliseconds)
<14> Line (W = 41 , H = 44) —
<15> Curve (W = 1 10 , H = 3 6)
<16> Timer 8 3 (1000 milliseconds) z l

OK

D elete

M ove Up

M ove D ow n

Play Sound

S a v e A s ...

Start Animation

Edit Timer...

R efresh View

Figure 7.6 The Animation Editor in GGS

7-14

C hapter 7 Sound, Tim ers and S till A n im ation

The sequence of objects is very important. Especially, sound objects can add realism
to a situation or take it away. They can also create a mood, setting or pace. It is

important to place them correctly, and if necessary, separate them with brief time

lapses. CGGSTimer objects can be used for creating such time lapses or short pauses

for better control on the animation sequence. The focus of attention can be moved as

well by introducing these timers.

The Animation Editor, as presented in Figure 7.6, is an essential feature of GGS to
modify the sequence of objects as they can be added later on and moved forward or

backward using the "Move Up" or "Move Down" button. The Editor shows the
width and height of the bounding rectangle for each object. In addition, the objects

are highlighted in the active view window when they are selected in the Editor's list
box. The highlighting technique is similar to the one described in Section 5.4.3.

Sound objects and timers can be deleted here which is not possible from the right
mouse button pop-up menu. The "Save As" button is useful in extracting the

internal bitmap, metafile or sound objects as BMP, EMF or WAVE files from GGS
documents.

7.9 TIMERS IN GGS

GGS prompts the following dialogue box when the user wants to create a

CGGSTimer object:

M H H i |x |
A timer will introduce a brief time lap se before
rendering the next object in the animation mode.

Time lapse: | milliseconds

OK C ancel

Figure 7.7 Timers in GGS

These timer objects do not use the standard or multimedia timers discussed in

Section 7.7. The main purpose of introducing a CGGSTimer object in the sequence of

other graphic and sound objects is to create a short pause. One effective solution is
to use the Sleep API:

VOID Sleep(DWORD dwMilliseconds) ;

The Sleep function suspends the execution of the current thread for a specified
interval. If the sleep time specified is zero millisecond, it causes the thread to

7-15

Chapter 7 Sound, T im ers and S till A n im ation

relinquish the remainder of its time slice to any other thread of equal priority that is
ready to run. If there are no other threads of equal priority ready to run, the function
returns immediately, and the thread continues execution. In other words, it is an
efficient way of creating short pauses. The CGGSTimer objects use the Sleep API
when activated in the animation mode.

7.10 REFERENCES

[Hedt99] Hedtke, J.: "Hard Facts", PC Magazine, September 1999.

[INET71] Kritidis, P.: "WAV Versus MID", h ttp :// jupiter.int-rpnet.ariadne-
t.g r/e rl/ oth__wm2.html.

[INET72] McMillan, A. and Hobson, E.: "Animation Tutorial", h ttp ://

www.hotwired.com/98/ 32/ indexOa.html.

[Marc98] Marcato, D.: "Encapsulating Windows Timers in MFC", Visual C++

Developers Journal, January 1998.

[Micr91a] Microsoft Corporation: "Microsoft Windows Multimedia Programmer's

Reference", Microsoft Press, 1991.

[Micr91b] Microsoft Corporation: "Microsoft Windows Multimedia Programmer's

Workbook", Microsoft Press, 1991.

[MSDN71] Microsoft Developer Network Library: "About Multimedia Timers",
Windows Multimedia, Graphics and Multimedia Services, Platform

SDK, April 1999.

7-16

http://jupiter.int-rpnet.ariadne-
http://www.hotwired.com/98/

Chapter 8 User Feedback and Conclusions

8.1 SOFTWARE VALIDATION

Software validation is the process of ensuring that the software being developed

satisfies functional requirements and includes the intended products. Validation is a

systematic evaluation of software and associated results of the development process.
Reviews and tests are performed at each phase of the development process to ensure
that the software requirements are complete and testable. Reviews include

walkthroughs and are actually a form of inspection, rather than testing. Reviews
include examinations of documentation to make sure that it will support operation,
maintenance and future enhancements. Reviews are usually conducted at the end of
each phase of the project life cycle to determine whether established requirements,
design concepts, and specifications have been met.

Testing of a software is the operation with real or simulated inputs to demonstrate
that a product satisfies the requirements. Test failures are used to identify the
specific differences between expected and actual results. Software tests may include:

• Unit-level testing
• Various integration testing
• Performance testing
• Operational environment testing
• Acceptance testing

Informal tests are usually performed by the developers' team when the customer of
the software is not involved and the "witnessing" of the testing by independent
parties is not required. Unit, component, and subsystem integration tests are usually
informal tests. Informal testing may be requirements-driven (black box) or design-
driven (white box).

Requirements-driven testing is performed by selecting input data and other

parameters, based on the software requirements, then observing the outputs and
reactions of the software. Usually formal "test cases" are used. Most often, black box
testing is repeated at each successive level of integration.

Design-driven testing is the process where the developer or the tester examines the

internal workings of the code. Design-driven testing is performed by selecting the
input data and other parameters based on the internal logical paths that are checked.
The goal of design-driven testing is to determine that all logical paths through the
code lead somewhere that was intended.

8-1

Chapter 8 User Feedback and Conclusions

Formal testing, on the other hand, demonstrates that the software is ready for
intended uses. A formal test may include an end-user approved test plan, quality

assurance witnesses, a record of all discrepancies, and a test report. Formal testing is

always requirements-driven and independent of design criteria [INET81].

After acceptance of a software product, any changes to the product require a formal
test. Post acceptance testing normally includes a regression testing. A regression

testing involves re-running previously used acceptance tests or test cases to ensure

that the change did not disturb functions that were previously accepted.

8.2 SOFTWARE QUALITY

While the dependability of system hardware has undoubtedly improved over the
last twenty years, the same cannot always be said of software. The complexity of
software has expanded to match the capabilities of hardware, and it is often good
software engineering practices which are sacrificed in an attempt to satisfy the
demand for product.

Software engineering is characterised by a multitude of languages, tools and
processes. In view of this, attempting to establish the fitness for purpose of the end
product remains a difficult task. This section will consider some of the underlying
issues which often give rise to the problems encountered.

8.2.1 Process or Product?

Software engineering differs from 'traditional' engineering in that its end product is
rather nebulous. It cannot be pressure tested, nor can it be subjected to an over­
voltage. Software can be subjected to various analysis techniques, but these are often
esoteric and of questionable benefit.

Software can also be considered as merely a series of instructions which, when

properly executed, serve to provide desired functions. From this viewpoint,
software is essentially a process, rather than an invariant product. It is this duality
which is the root of many of the problems associated with software based systems.

There are two common approaches to assessing software based systems, each with
their own limitations. The first may be considered as the product view of software.
This approach is purely functional and is based upon system testing and the rigorous

definition and identification of component parts, both hardware and software. This
is essentially testing a software as an invariant system component, tested under a

8-2

Chapter 8 User Feedback and Conclusions

defined set of conditions. However, a 'black box' approach is inherently restrictive
and often unrepresentative for complex or integrated systems as the testing can

never be fully comprehensive. The approach does not reconcile itself to on-going

modification since, in principle, the system should be fully tested and redefined after

each alteration. Practice has shown that software based systems are rarely invariant

and will be subject to changes throughout their life-cycle. Comprehensive testing
becomes impractical once the system is installed in the working environment.

In contrast, the process view of software lends itself to an assessment approach based

on the development process, with a corresponding emphasis on quality assurance.

This approach requires software development activities to be subject to adequate

procedural controls. Survey and audit activities provide an external cross check on

the QA activities. Unfortunately, software QA does not in itself guarantee good
software, nor does its absence automatically imply bad software [MeTw98].
However, it is increasingly recognised that a traceable, documented design and
development process is of long term benefit in managing both cost and risk,
particularly for complex systems.

8.3 USER FEEDBACK ON GGS

GGS is a research prototype and not a software system of commercial importance. It
was recognised that software QA procedures might not be necessary but one C++
checklist must be used while developing GGS and some user feedback would be
important at the end.

8.3.1 The Checklist

At first look, it would seem that operating in an object-oriented paradigm would

make code inspections easier rather than harder. The encapsulation of data and

functions results in simple design for the functions and high cohesion between the

data and functions. And because an object-oriented design more closely models
reality, inheritance and polymorphism are used to simplify the design. However,
many of the concepts that work in the object-oriented paradigm also work against
code inspections. The simple functions are easier to comprehend, but usually the
complexity has been moved from the function to the interactions between functions.
The smaller functions scattered across the code leads to "de-localised plans". In fact,
these designs tend to be harder to comprehend. It is the opinion of the author that a
checklist is very important when the implementation language is C++. Some
examples of the items in the checklist are as follows:

8-3

Chapter 8 User Feedback and Conclusions

• Does the class have any virtual functions? If so, ensure that the destructor is
also virtual.

• Is each memory allocation in the constructor matched by a memory de­
allocation in the destructor? This is not always needed, but it is a warning
flag.

• Does any method use one of the m a llo c () family rather than new?
• Are arrays deleted as though they were scalars? That is, code that reads

" d e le te CharArray" should read " d e le te [] CharArray".
• Pointers should be set to NULL following a deletion.
• Does any method return a pointer to class data? If so, is it justified?
• Does any method use a pointer to data outside the class? If so, is it justified?

8.3.2 User Feedback

Executable copies of GGS were distributed with an aim to receive feedback about
their ease of use, compatibility with other products and stability. The distribution
was very informal. The GGS executable was statically linked to the MFC library so
that the users would not face the problems of infamous "DLL conflicts". A Microsoft
Word document with instructions was also distributed in the self-extracting
compressed file. Mainly, two groups of users were targeted:

• Windows users without any GUI programming experience
• Experienced MFC developers

A postgraduate student at the University of Strathclyde, Glasgow claimed that GGS

helped him to despatch information of sentimental value without incurring
expenses. He scanned some photographs, arranged them in a GGS document,
marked them with the free-hand curve tool, recorded some brief messages in

Cantonese, and sent the final document and a copy of the GGS executable as e-mail
attachments to his family members in Hong Kong. He mentioned that he felt very

emotional when he managed to highlight the window of a building and let his family

members know his new place of residence in Glasgow.

Unfortunately, many users did not try the sound recording features in GGS. Rather
they used the graphics tools to draw sketches. Some of them felt that GGS should
have more features to deal with graphic objects. However, a few were pleased to see
that the printing quality was better than that of Paint. Paint only deals with bitmaps

and comes as part of every copy of Windows. Paint diagrams contain raster data and
cannot take advantage of high resolution printers, and therefore, appear with
"jaggies" when printed. The graphic objects in GGS do not suffer from this problem

8-4

Chapter 8 User Feedback and Conclusions

since they are essentially in vector format and independent of any device resolution.
One interesting fact has been revealed in this context. Many users do not have a

vector graphics package installed on their PCs. A number of them use Microsoft
Word and Excel but not aware of the fact that these packages contain a basic drawing

module for sketches, flowcharts, etc. To some extent, GGS has become helpful to

them as a 'cut-down7 vector graphics package.

A lecturer in Singapore mentioned that annotation with sounds could be very useful
and practical. When he goes through the reports submitted by the students, he often
comes up with new ideas in his mind but does not get enough space to write them
down on the reports. He also indicated that a lot of people would prefer to express

their comments and ideas verbally rather than in writing.

8.3.3 Feedback from MFC Developers

GGS was also distributed among software engineers with professional MFC/C++
experience. Unsurprisingly, the reaction was completely different. Most of them
were satisfied with the user interface design and did not find anything unusual or
"abrupt". Some of them felt interested to see the source code. The idea of playing
sounds and rendering graphic objects separated by timers was appreciated.
However, the general impression was that GGS would require a lot more
functionality before achieving any commercial flavour. Firstly, GGS supports BMP,
WMF, EMF and WAVE which are Windows native file formats. GGS has to support
many more to stand as a commercial application. Secondly, in their opinion, it
would be effective and useful if some form of compression mechanism is introduced
in GGS since WAVE and BMP files can be very large and practically without any
compression.

One important suggestion come out of this trial. If GGS is converted from a stand­
alone application to a full OLE (i.e., Object Linking and Embedding) server, GGS

documents could be embedded in OLE containers. OLE is essentially an integration

process and GGS could take advantage of powerful features offered by full-blooded

commercial applications. For example, a Microsoft Word or Excel document could
contain a GGS document as an OLE item.

8.4 GGS AS AN OLE SERVER - AN AFTERTHOUGHT

OLE is an object-oriented technology that enables development of reusable software
components. The OLE component object model paradigm represents a fundamental
shift in the way applications are written. Instead of traditional procedural

8-5

Chapter 8 User Feedback and Conclusions

programming in which each component implements the functionality it requires, the

OLE architecture allows applications to use shared objects that provide specific

functionality. Things like text documents, charts, spreadsheet tables, mail messages,
graphics, all appear as objects to the OLE application.

OLE applications are of two basic types: container applications and server

applications. OLE container applications provide users with the ability to create,
edit, save, and retrieve compound documents. OLE server applications provide

users with the means to create documents and other data representations that can be
contained as either links or embeddings in the OLE container applications. An OLE
application can be a container or a server or both.

8.4.1 Steps to Provide OLE Server Support After the Fact

GGS was not designed to be a full OLE server. Hence, AppWizard was run again to
create a dummy application with the full server option. In the next step, some
essential files and resources were copied from the dummy application to the original
GGS project. The CDocument class implements standard document behaviour in a
stand-alone application. When the application runs as an OLE in-place editing
server, however, the document must do extra work on behalf of OLE. The bulk of
this OLE document support is implemented in the COleServerDoc class. Hence,
the base class of CGGSDoc (i.e., the GGS document class) was changed from

CDocument to COleServerDoc and the document's support for embedded items
was added.

The C O leServerltem class provides the server interface to OLE items. A linked
item can represent some or all of a server document. An embedded item always
represents an entire server document. The server item's OnDraw() member function
is called when the server document needs to draw itself as an inactive embedded
object inside the container window. In contrast, the view's OnDraw() is called when

the document is activated in-place inside the container. The CGGSItem class was

derived from C O leServerltem and some OLE-specific codes were added. Some

application-specific codes were also necessary to complete the conversion.

8.4.2 Embedded GGS Items

At present, GGS only supports embedding but not linking. An embedded item is
physically stored in the compound document, along with all the information needed

to manage the item. In other words, the embedded item is actually a part of the
compound document in which it resides. This arrangement has a couple of

8-6

C hapter 8 U ser Feedback and C onclusions

disadvantages. Firstly, a compound document containing embedded items will be
larger than one containing the same items as links. Secondly, changes made to the

source of an embedded item will not be automatically replicated in the embedded

copy.

Still, for certain purposes, embedding offers several advantages over links. Firstly,
users can transfer compound documents with embedded items to other computers,

or other locations on the same computer, without breaking a link. Secondly, users

can edit embedded items without changing the content of the original. Sometimes,

this separation is precisely what is required. Thirdly, embedded items can be

activated in-place, meaning that the user can edit or otherwise manipulate the item

without having to work in a separate window from that of the item's container.
Instead, when the item is activated, the container application s user interface changes

to expose those tools that are necessary to manage or modify the item. Figure 8.1 is
an example where GGS has taken over Microsoft Word's menu bar and the toolbar
since an embedded GGS item has been activated:

W M icrosoft W ord - C hp8.doc

£ File Objects Pen View Window Help

ma* &
est.- ■ host- acceptance- res ting-normally- inciuaes- a- regression- testing. - • regression-

testing-m volves-re-running-previously-used-acceptance- tests- or- test- cases- to- ensure-

that-the-change-did-not-disturb-functions-that-were-previously-accepted.lj

If

8.2 -SOFTWARE-QUALITY

A G G S d o c u m e n t
a s a n e m b e d d e d
O L E i t e m

M i n

While- the- dependability- of- system- hardware- has

undoubtedly- improved- over- the- last- twenty- years,

the- same- cannot- always- be- said- of- software.- • The

com plexity- of- software- has- expanded- to- match- the

capabilities-of-hardware,-and-it-is-often-good-software

engineering- practices- which- are- sacrificed- in- an

attempt-to-satisfy-the-demand-for-productU

11
Software- engineering- is- characterised- by- a- m ultitude- of- languages,- tools- and-

processes.-- In- vie w- of- this,- attempting- to- establish- the- fitness- for- purpose- of- the- end-

product-remains-a-difficult-task.--This-section-will- consider- some- of- the- underlying-

i q < : i i p , c . w h i r , h - n f t p n . c r l w p . f ' l s p . | - n . H ' - i p . n t v Y h 1p m < ; . p n r n i t - n f p r p r l V

I
< 1 I ►a

Page 2 Sec 1 2/10 [At 3 .5“ In 11 Col 1 [REC [TRK [EXT* [OVR [wpiT [Q jC
i f

A,

Figure 8.1 An Embedded GGS Item in a Word Processor

8 -7

Chapter 8 User Feedback and Conclusions

8.4.3 Why Not An ActiveX Document Server?

ActiveX and OLE have become synonymous. What people once referred to as "OLE
controls (OCX)", they now refer to as "ActiveX controls". OLE D ocO bjects are

now "ActiveX documents". In some cases, Microsoft has updated entire documents
on how to implement OLE technologies to be ActiveX technologies, and the only
material change was to remove the term "OLE" and replace it with "ActiveX"

[LeAr*98]. However, there are some differences as well.

The ActiveX document architecture is an extension of the OLE linking and

embedding model and gives the document more control over the container in which

the user is hosting the document. The most obvious change is how the menus are

presented. A standard OLE document's menu merges with the container, providing

a combined feature set; whereas an ActiveX document takes over the entire menu
system, thus presenting the feature set of only the document and not that of both the
document and the container. The fact that the feature set of the document is exposed
is the premise for all the differences between ActiveX documents and OLE
documents. The container is just a hosting mechanism, and the document has all of
the control.

Another difference between ActiveX documents and OLE documents is in printing
and storage. An OLE document's designer intends for the document to be a part of
the container's document that is hosting it. Therefore, Windows prints and stores the
OLE document as a piece of the host container's document. The operating system
expects ActiveX documents to support their own native printing and storage
functions and therefore does not integrate them with the container's document.

ActiveX documents should be used within a uniform presentation architecture,
rather than within an embedded document architecture, which is the basis for OLE

documents. Microsoft Internet Explorer is an example of a uniform presentation

architecture that supports ActiveX documents. Internet Explorer merely presents the

Web pages to the user, but the user views, prints, and stores the pages themselves as
a single entity, separate from the host container. On the other hand, Microsoft Word
and Microsoft Excel are examples of the OLE document architecture. If a GGS
document is embedded in a Word document, it is actually stored with the Word

document and is an integral part of it. This is more appropriate in the case of GGS.
Hence, GGS was not upgraded from a full OLE server to an ActiveX document
server, although, the steps involved were straightforward and trivial [MSDN81].

8-8

Chapter 8 User Feedback and Conclusions

8.5 CONCLUSIONS

A few years ago, the person learning to program Windows for the first time had a

limited number of programming tools to choose from. C was the language spoken
by the Windows SDK, and alternative Windows programming environment such as

Visual Basic had not arrived on the scene. Most Windows applications were written

in C, and the Windows programmer faced the daunting task not only of learning the
ins and outs of a new operating system but also of getting acquainted with the

hundreds of different API functions that Windows supports.

Today most Windows programs are written in C++. C++ has rapidly replaced C as

the professional Windows programmer's language of choice because the sheer
complexity of Windows, coupled with the wide-ranging scope of the Windows API,

demands an object-oriented programming language. Many programmers have
found that C++ offers a compelling alternative to C because it makes Windows
programming simpler by abstracting the API and encapsulating the basic behaviour
of GUI objects in reusable classes. An overwhelming majority of C++ programmers
have settled on MFC as their class library of choice.

Along with many other Windows programmers, the author acknowledges the
benefits of using MFC and object-oriented programming techniques in C++. In this
concluding section, some of these benefits are reassessed based on the lessons learnt
in this research project.

8.5.0 Criteria for Evaluating Application Frameworks for Developing
Multimedia Applications

There are many ways to evaluate an application framework such as MFC based on
several potential evaluation criteria. Properly evaluating application frameworks is

not a trivial task. The factors to consider are so numerous and the possible

implementations vary so widely that it is easy to become overwhelmed. Criteria

such as cost, support, training and contacts with vendor are very important but they
are not relevant in the context of this project. It is rather important to look at
commercially proven approaches to software development [Walk98] and select
criteria from there. Some of the "best practices" are as follows:

• Develop Software Iteratively: Given today's sophisticated software systems,
it is not possible to first define the entire problem sequentially, design the
entire solution, build the software and then test the product at the end. An
iterative approach is required that allows an increasing understanding of the

8-9

Chapter 8 User Feedback and Conclusions

problem through successive refinements, and to grow incrementally an

effective solution over multiple iterations.

• Use Component-Based Architectures: Components are non-trivial modules,
subsystems that fulfil a clear function and promote more effective software

reuse.

• Visually Model Software: Visual abstractions allow software developers to
hide the details and write code using "graphical building blocks" that help

them to communicate different aspects of their software.

• Verify Software Quality: Poor application performance and poor reliability

are common factors which dramatically inhibit the acceptability of today's
software applications. Hence, quality should be reviewed with respect to the

requirements based on reliability, functionality, application performance and
system performance.

• Control Changes to Software: The ability to manage and track changes is
essential in an environment in which change is inevitable. Successful
iterative development depends heavily on the ability to control, track and
monitor changes to software.

It seems, in the light of these commercially proven approaches to software
development and the lessons learnt in this research project, the following evaluation
criteria are most appropriate:

• Code reusability
• Fast development time
• Rapid software prototyping
• Separation of concerns
• A rich set of widgets
• Serialization
• Escape mechanisms
• Defensive Programming

The remaining sections present an attempt to explain the benefits and deficiencies of
using MFC and OOP for building multimedia applications according to the above
criteria.

8.5.1 Code Reusability

Newcomers are dismayed when they first learn that the famous "Hello, World"

8-10

Chapter 8 User Feedback and Conclusions

program for Windows requires about 75 lines of code in its simplest form! The
problem only gets worse as applications become more sophisticated: windows must
be registered, then created; the window procedure (which not uncommonly runs for

several pages) must be written. Similar lengthy dialogue procedures are required for

all dialogue boxes. There are large applications in which dialogue and window

procedures consume literally thousands of lines of "open" source code (i.e., long

sequences of program statements with no real structure and no function calls)
[Pros96]. Such code is not only difficult to understand and maintain, it can result in

needlessly enormous compiled programs.

The reason Windows programs require so much effort is that Windows fails to

encapsulate enough functionality and it leaves much grunt work for each application

to perform. To make a hardware analogy: writing a program in Windows is like
building a computer from individual resistors and transistors, when what is required
are integrated circuit, modules that perform high-level functions. The solution to
this problem is to write the missing functionality using OOP techniques. But without
a good class library to serve as a starting point, OOP does little to reduce the amount
of code to be written. In the absence of OOP and MFC, Windows programmers
followed the "copy-paste-edit" school of reusability. Most of them wrote
applications by first pasting an existing Windows application into their editor, and
then modifying it to suit their purpose.

This error-prone method of developing applications has changed after the

introduction of OOP and MFC for Windows. Software developers reuse their own
code and gain maximum leverage from their own code libraries. Not only does the
library approach make maximum use of existing code, the applications are easier to
maintain. If there is a bug in the library, the developer fixes it once for all
applications. Likewise, if he adds an enhancement to the library, he adds it to all
applications simultaneously.

In course of developing GGS, the author has created many general classes that can be
used in other applications. The wrapper classes for bitmaps, metafiles and sounds
are expected to be especially helpful for other multimedia applications.

8.5.2 Fast Development Time

An MFC project for the first time is not easy. It is not uncommon for beginners to
wonder why there are so many files in the AppWizard-generated code. The
AppWizard code is liable to be puzzling for the first time because it leans heavily on

8-11

Chapter 8 User Feedback and Conclusions

the code in the class library. Document/view applications can do powerful things

with precious little code but rushing headlong into the documents and views before
mastering the more fundamental aspects of MFC is a little like trying to design a

computer without knowing what an integrated circuit is.

The simpler classes in a GUI library could be studied in isolation. However, the

classes in an application framework form tightly knit clusters. It is essential to study

such classes, particularly their patterns of interactions, before instances can be used
really effectively in programs. Detailed study is necessary before the classes can be
extended through the creation of new subclasses.

The author's experience with the MFC library is no exception in this context. In the
beginning, it did present something of a challenge in the form of a steep "learning
curve". There was a lot to master before exploiting some essential features of the

library. However, the return on this investment of effort has been worthwhile. It has
been found that the user interface components of new programs could be created
with a fraction of the effort that would have been required using just the low-level
graphics primitives and system calls of a host platform. It is also much easier to
develop the interfaces with an application framework that supports the expected
look-and-feel of a graphical environment.

8.5.3 Rapid Software Prototyping

Prototyping is a process that enables the developer to create a model of the software
that must be built. Prototyping begins with requirements gathering. Developer and
customer meet and define the overall objectives for the software, identify whatever
requirements are known, and outline areas where further definition is mandatory. A
"quick design" then occurs. The quick design focuses on a representation of those
aspects of the software that will be visible to the user (e.g., input approaches and
output formats). The quick design leads to the construction of a prototype. The

prototype is evaluated by the customer/user and is used to refine requirements for

the software to be developed. A process of iteration occurs as the prototype is

"tuned" to satisfy the needs of the customer while at the same time enabling the
developer to better understand what needs to be done.

GGS started as a simple prototype but its first version identified most of the software
requirements. Three other versions were implemented based on those requirements

and user feedback. The process of developing GGS shed light on important aspects
of software prototyping. The effects of OOP and MFC in software prototyping are

8-12

Chapter 8 User Feedback and Conclusions

found to be different from those achieved by other popular RAD tools such as Visual

Basic.

To construct a prototype, a suitable implementation approach must be used. This

approach must offer features that satisfy the general requirements of prototyping,
such as rapidity and ease of modification. Obviously, an approach that relies upon a

complex and lengthy development cycle is unsuitable. Some desirable prototyping

features are as follows:

1. An interactive/visual user interface design tool.
2. Easy connection of user interface components to underlying functional

behaviour.
3. Easy to learn and use implementation language.
4. Modifications to the resulting software are easy to perform.

Visual Basic is appropriately suited to this form of rapid development. However,
C++ is not an easy language and a developer has to ride a steep learning curve before
using MFC in his first application. Otherwise, MFC and C++ satisfy other features
for rapid prototyping. There are several IDE's (integrated development
environments) for MFC/C++ including Microsoft Visual Studio. The wizards in
MFC make modifications to the resulting software really easy. The MFC message
map mechanism connects user interface components to underlying C++ objects. This
is definitely a superior alternative to the sw itch statement used in traditional
Windows programs to handle messages.

Visual Basic is very good in developing throwaway prototypes. VB applications are
executed on an interpretative basis, and they do not rely upon lengthy compilation
processes. Although this maybe considered as a limiting factor when developing
production quality systems, whose speed and response times are crucial, prototyping
does not requires this. In most projects, the first system built is barely usable. It may
be too slow, too big, awkward in use or all three. There may not be any alternative

but to start again, and build a redesigned version in which these problems are
solved.

When a new system concept or technology is used, one may have to build a system

to throw away. In fact, the first prototype of MFC was thrown away [ShWi96],
However, throwaway prototyping can be problematic for the following reasons:

• The customer sees what appears to be a working version of the software,
unaware that in the rush to get it working, overall software quality or long­

8-13

Chapter 8 User Feedback and Conclusions

term maintainability were not considered. When informed that the product
must be rebuilt, the customer cries foul and demands that "a few fixes" be
applied to make the prototype a working product. Too often, software
development management relents.

• The developer often makes implementation compromises in order to get a

prototype working quickly. An inefficient algorithm may be implemented

simply to demonstrate capability. After a time, the developer may become

familiar with these choices and forget all the reasons why they were
inappropriate. The less-than-ideal choice has now become an integral part of
the system.

An MFC application such as GGS can be developed as an evolutionary prototype
rather than a throwaway. Once the software requirements are defined by the

prototype, the developer can improve upon individual C++ classes used in the
project with an eye toward quality and maintainability. MFC provides the
infrastructure and OOP lays the basis for later decisions about enhancements.

8.5.4 Separation of Concerns

MFC uses a lot of tricks to make Windows objects such as windows, dialogue boxes,
and controls behave like C++ objects. For example, it is not possible to implement a
reusable list box class using C/SDK that displays a navigable list of drives and
directories on the host PC unless it is written as a custom control. This is because
clicking an item in the list box sends a notification to the list box's parent (the

window or the dialogue box in which the list box appears), and it is up to the parent
to process that notification. In other words, the list box does not control its own

destiny; it is the parent's job to update the list box's contents when a drive or a
directory is changed. However, in an MFC application, windows and dialogues
reflect unprocessed notifications back to the controls that sent them. This makes it
possible to create a self-contained and highly reusable list box class that responds to

its own click notifications by deriving a class from CListBox and overriding the list
box's virtual function, O n C h ild N otify () . Inside O n C h ild N otify () , the
developer provides handlers for different list box events. The resulting list box class
implements its own behaviour and can be ported to another application with little

more than a #in c lu d e statement in a source code file.

There are various other examples of OOP reusability and separation of concerns in

an MFC application. MFC provides abstractions that go above and beyond what the
Windows API has to offer. For example, MFC's document/view architecture builds a

8-14

Chapter 8 User Feedback and Conclusions

powerful infrastructure on top of the API that separates a program's data from its
graphical representations. Such abstractions are totally foreign to the API and do not
exist outside the framework of MFC. In addition, the document class when properly

implemented, deals with abstract class pointers without knowing much details of
individual objects. A multimedia application such as GGS involves lots of similar
objects with slightly different behaviour. The document class in a multimedia

application should manage the objects in most general fashion and reduce overall
complexity in the project.

8.5.5 A Rich Set of Widgets

MFC is renowned for its rich set of widgets to accomplish various design and

implementation tasks. The widgets provide features that were once considered to be
very difficult to implement and only found in heavyweight commercial applications.
For example, the CToolBar class in MFC does 99 percent of the work to implement a

toolbar that can be docked to different sides of a window or floated in a window of
its own. MFC's CFrameWnd class has all the intelligence built in to implement a
dynamic data exchange (DDE) connection that enables a running instance of an
application to open a document whose icon is double-clicked in the operating system
shell. Buttons with pictures on them are also easy with MFC's CBitmapButton
class. Another important example is MFC's OLE support. Only a few developers
have the desire or the know-how to write the code for an OLE container or server
from scratch. But MFC simplifies the development of OLE-enabled applications by
providing the bulk of the code in classes such as COleDocument.

8.5.6 Serialization

The MFC serialization mechanism is very interesting. Like many other MFC controls

and widgets, the serialization mechanism does a lot of work behind the scenes. The

internal details are complex but the author took an attempt to present an in-depth
dissection of the MFC serialization in Chapter 3. The discussions and illustrations

are believed to be valuable for future developers.

8.5.7 Escape Mechanisms

It is not essential for a software developer to embrace the MFC philosophy. MFC
does not limit his freedom to call the Windows API functions as and when necessary.
This type of escape mechanism might be important to experienced Windows
programmers new to MFC. GGS was a good learning exercise and its development
involved the implementation of standard as well as non-standard features. The API

8-15

Chapter 8 User Feedback and Conclusions

functions for Media Control Interface (MCI) had been developed before the MFC
library was created. The task of encapsulating the MCI API's in GGS and fitting

them in the MFC architecture was not straightforward and involved non-standard
implementation techniques. In other words, MFC does support certain escape

mechanisms but not all.

A new developer starts learning an application framework by writing functions such

as MyDocument:: DoMenuCommand () with no idea of how these functions get
invoked. Sometimes, this is exactly what one wants. It is not necessary to redo all
the code that responds to a menu selection and eventually calls a menu-handling
function; it is only the menu-handling function that is new, all the other bits are

standard. However, if any non-standard processing is required in a particular

application, the developer must be able to intervene in these interactions and arrange
for additional processing. This is often difficult for a new developer to know exactly
where and how to intervene. The developer may have to work through the
framework code in order to determine where to override and extend the standard
behaviour of framework classes.

8.5.8 Defensive Programming

MFC has plenty of macros. Although they serve important purposes, the use of
parameterised macros is not regarded as a good programming practice because a
macro call may look like a function call but is not semantically equivalent and is not
type safe. It is difficult to debug macros and new developers may find them
confusing. The practical solution is to avoid user-defined macros and only use well
tested macros in MFC.

It is easy to find and explore good features in MFC rather than a few bad ones. The
author would like to end his evaluation of MFC and OOP in the construction of
multimedia applications with a few words on an important aspect of the MFC design
philosophy: defensive programming. The code for MFC is laced with ASSERT and

ASSERT_VALID macros verifying that the class library is getting the results it
expects. If an assertion fails, a message box pops up to inform the developer where
the error occurred. Better still, the macros compile only in debug builds, so they add

no overhead to the retail code. The developer can also follow the MFC design
philosophy and sprinkle ASSERT and ASSERT_VALID macros throughout his code
as a first line of defence against bugs.

8-16

Chapter 8 User Feedback and Conclusions

8.6 LAST WORDS

This research project was motivated by a desire to find new ways of implementing
simple animation systems. The author and some other users have found that the

GGS documents occupy a lot less space compared to digital video clips, but they

could express questions, clarifications, ideas and themes very well if their contents
are arranged properly.

Converting GGS from a stand-alone application to a full OLE server was an

afterthought. However, it was a useful exercise to check the design and integrity of
GGS and understand some reasons behind the ever-changing specifications in the
software industry. Users always want new features and extra ways of looking at and
manipulating the data. Hence, the software always changes, sometimes in
unexpected ways. Therefore, the software architecture of GUI applications should be

flexible and robust. It must allow changes to be made easily, and it should be highly
decoupled so that when those changes are made they have a minimum effect.

The multimedia prototype developed as part of the project is not complex but the
author would like to build more complex software systems in the future based on
this experience of analysing, designing and implementing GGS. To emphasise this
point and conclude this thesis, the author would like to quote Gall [Gall86]: "A
complex system that works is invariably found to have evolved from a simple system
that worked... A complex system designed from scratch never works and cannot be
patched up to make it work. You have to start over, beginning with a working
simple system."

8.7 REFERENCES

[Gall86] Gall, J.: "Systemantics: How Systems Really Work and How They
Fail", 2nd Edition, The General Systemantics Press, p. 65,1986.

[INET81] BPR 9000 Incorporated: "Software Validation", http://www.bpr9000.

com / validation.html.

[LeAr*98] Leinecker, R.C., Archer, T., et al.: "Visual C++ 6 Programming Bible",
IDG Books Worldwide Inc., 1998.

[MeTw98] Messer, A.C. and Twomey, B.J.: "Software Based Systems in the
Marine Environment", Lloyd's Register Technical Association, Paper
No. 5,1997-98.

8-17

http://www.bpr9000

Chapter 8 User Feedback and Conclusions

[MSDN81]

[Pros96]

[ShWi96]

[Walk98]

Microsoft Developer Network Library: "Upgrade to an Active
Document Server", Porting and Upgrading, Visual C++ Programmer's

Guide, July 1999.

Prosise, J.: "Programming Windows 95 with MFC", Microsoft Press,
Washington, 1996.

Shepherd, G. and Wingo, S.: "MFC Internals: Inside the Microsoft
Foundation Class Architecture", Addison-Wesley Developers Press,
1996.

Walker, R.: "Software Project Management -A Unified Framework",
Addison-Wesley, 1998.

GWsnowU y
* — .

8^18

