
Department of Computing Science

u n i v e r s i t y _ _ P h D T h E s is

G L A S G O W --

A Generic Feedback Mechanism for

Component-Based Systems

by

Karen Vera Renaud

Submitted for the degree of

Doctor of Philosophy

University of Glasgow

June 2000

© Karen Renaud. June 2000.

ProQuest Number: 13818553

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818553

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW

JLffiJRAKT

Abstract

Computers have been integrated into all spheres and occupations and the need

for users to easily understand how to use each computer application has become

paramount. The end-user should not be expected to decipher cryptic messages or

to understand the inner functioning of the computer itself. W ith computer-users

spanning all walks of life, there is a need for a change in the mind-set of software

developers in making their product more user-friendly.

In addition, software systems of the future will increasingly be built from independent

encapsulated software components and will often be distributed over various sites.

This new paradigm brings a new realm of complexity for the end-user, especially

with respect to the increased possibility of failure, so that in addition to the non

trivial task of interpreting the general functioning of an application, the user will be

expected to deal with the results of perplexing errors too. The nature of component-

based systems makes the provision of support for handling errors far more difficult

due to the independent and diffuse nature of the creators of the individual parts

making up these systems.

Other factors with respect to application use also need to be addressed. For example,

it is a rare user who is able to spend 100% of his or her time concentrating on

interaction with the computer, without distractions of some sort interrupting. It is

even rarer to find an application which is not prone to occasionally unintelligible error

messages or breakdowns. Few applications are designed with these realities in mind

and when problems do occur, or users are interrupted, they often find it difficult to

recover and to resume their primary task. It is also difficult for applications to tailor

the provided feedback according to the specific needs of different end-users or the

differing roles within which they function.

This dissertation will highlight the role of feedback in increasing the interpretability of

an application and in alleviating the effects of interruptions, errors and breakdowns.

Rather than expecting feedback to be provided by programmers, this dissertation will

argue that feedback can be enhanced in a distributed component-based system by

separating the feedback concern from the basic functional concern of the application

and executing the application within a generic feedback enhancing framework. The

feedback concept is examined in depth and the role of feedback in enhancing under

standing of applications, and in alleviating the effects of disturbances in our working

day, is explored. The concept of a generic framework for enhancing feedback has

been developed and a prototype implemented. The design and implementation of

this prototype are described, as is the evaluation of the feedback thus produced.

nos sed Deus
Cardross Village Motto

To the men in my life —

my husband, Leon

sons, Gareth, Ashley & Keagan

and my father, Philip Howard

Acknowledgements
I was assisted and supported by many people throughout the production of this dissertation,

and during the course of the accompanying research. I would like to single some out for special

thanks:

* My supervisor, Richard Cooper, for his support, motivation, astute comments and insights,

unfailing patience, and for his unswerving faith in me.

* My husband, Leon, for encouraging me in this endeavour, and for his love and understand

ing. W ithout his support I would not have embarked on this journey of discovery.

* My sons, Gareth, Ashley and Keagan, for putting up with the side-effects of my efforts to

get a PhD so graciously and for being such outstanding young men.

* Huw Evans, for his friendship, wicked sense of humour, and painstaking attempts at refining

my prose.

* Malcolm Atkinson, for his support and for constructive comments on drafts of this disser

tation.

* Ela Hunt, Phil Gray, Ray Welland, Stuart Blair and Susan Spence, for spending time

discussing my work with me and for their extremely helpful comments.

* Rosemary McLeish, for her friendship and for proof-reading this dissertation.

* My family in South Africa: Mom & Dad, Basil & Leonie, Wendy, Felicity, Ken & Joan, Lynn

and Bernice. They supported us from afar, and we could not have borne the separation

without their love and assistance (and regular emails).

* Vera and Ian McCulloch, our adopted Scottish "family” . They gathered us under their

wing and made us feel at home. Dankie, en Weereens Dankie.

* Neill Bogie, for being brave enough to test my prototype.

* The Association of Commonwealth Universities, and the Foundation for Research and

Development in South Africa, who provided the funding for this research.

* The University of South Africa, for allowing me an extended period of absence to undertake

the research necessary to do this degree, and for financial assistance too. Thanks to the

Head of Department, Paula Kotze, for her continued support.

* BEA Systems, who donated the use of their Tengah Server for the duration of this research.

I f it were done when 't/s done, then ’twere well it were done quickly.

William Shakespeare. Macbeth. Act 1 Scene 7

C o n te n ts

I Prologue 1

1 In tro d u c tio n 2

1.1 Thesis S ta te m e n t.. 2

1.2 The S hortfa ll in A p p lica tio n F e e d b a c k ... 2

1.3 Feedback in Component-Based S y s te m s .. 4

1.4 P otentia l S o lu t io n s ... 5

1.5 Road M a p ... 6

I I Summary of Background Material 7

2 S o ftw are C om ponents 8

2.1 W hy Components, and W ha t are T h e y ? ... 8

2.1.1 W ha t are C o m p o n e n ts ? ... 10

2.1.2 How are components d ifferent from o b je c ts ? . ! 13

2.2 The Component R un tim e E n v iro n m e n t.. 15

2.2.1 From T w o -tie r to Three-T ie r A rc h ite c tu re s .. 15

2.2.2 The M idd le , or Business-Logic, T i e r ... 18

2.2.3 From a Component-Framework M idd le T ie r to

Com ponent-O riented M id d le w a re .. 19

2.2.4 M oving to N T iers — The Im pact o f the W orld W ide Web 22

2.2.5 S u m m a ry .. 24

2.3 The E vo lu tion o f C om ponen ts ... 24

2.3.1 Components Embedded w ith in a Process ... 25

2.3.2 Components in D ifferent P rocesses.. 27

2.3.3 Components on D ifferent M a ch in e s .. 27

2.4 P rom inent Component M o d e ls ... 29

2.4.1 The O M G ’s Component M o d e l ... 31

2.4.1.1 A r c h ite c tu r e .. 31

2.4.1.2 M id d le -T ie r A r c h ite c tu re .. 33

2.4.1.3 E x a m p le ... 33

v

vi

2.4.2 Sun’s Component M o d e l.. 34

2.4.2.1 A r c h ite c tu r e .. 34

2.4.2.2 M id d le -T ie r A r c h ite c tu r e .. 35

2.4.2.3 E x a m p le .. 36

2.4.3 M icroso ft’s Com ponent M ode l ... 36

2.4.3.1 A r c h ite c tu r e .. 37

2.4.3.2 M id d le -T ie r A r c h ite c tu r e .. 39

2.4.3.3 E x a m p le .. 39

2.4.4 S u m m a ry .. 40

2.5 Component-Based D eve lopm en t... 42

2.5.1 A D ifferent A p p r o a c h .. 43

2.5.2 Component Sources ... 44

2.5.3 Benefits o f Using Components .. 45

2.5.4 S u m m a ry ... 46

2.6 R e v ie w 47

2.6.1 The good news about c o m p o n e n ts ... 47

2.6.2 Reasons for cautious acceptance o f c o m p o n e n ts .. 48

2.7 Conclusion .. 49

3 Q u irks 51

3.1 In tro d u c t io n .. 52

3.2 Analysis o f Q u i r k s .. 53

3.3 W hy Q uirks are Im p o rta n t ... 54

3.4 System Crashes and B re a k d o w n s .. 56

3.5 Hum an E r r o r ... 63

3.5.1 The N ature o f E r r o r ... 63

3.5.2 Performance Levels and L ike lihood o f E rrors ... 65

3.5.3 Detecting E r r o r s ... 66

3.5.4 Enabling User U nderstand ing o f E r r o r ... 68

3.5.5 Recovering from E r r o r ... 69

3.5.6 S u m m a ry ... 73

3.6 In te r r u p t io n s ... 73

3.6.1 Nature o f I n te r r u p t io n s .. 74

3.6.2 The C om position o f an I n t e r r u p t ... 77

3.6.3 Dealing w ith In te rru p tio n s .. 78

3.6.4 S u m m a ry ... 81

3.7 S u m m a ry ... 81

4 Feedback 82

4.1 In t ro d u c t io n .. 82

4.2 Purpose o f F e e d b a c k ... 85

4.3 W hy give F e e d b a c k ? ... 86

4.4 W hen m ust Feedback be Given? ... 88

4.5 W h a t is Good Feedback? .. 89

4.5.1 Examples o f Inadequate or Bad F e e d b a c k ... 91

4.5.2 L is t o f Desirable Feedback Features...... ... 93

4.5.3 P ro v is o s ... 94

4.5.4 D iffe ring User R o le s ... 96

4.6 Feedback F o r m a t ... 96

4.6.1 Tex tua l versus G raph ica l F eedback .. 96

4.6.2 W h a t Does V isua lisa tion D o ? .. 98

4.6.3 R e s tr ic t io n s .. 98

4.7 Feedback for Q u i r k s ... 99

4.7.1 B re a kd o w n s 100

4.7.2 H um an E rro r ...100

4.7.3 In te r r u p t io n s ... 100

4.7.4 C o n c lu s io n .. 101

4.8 S u m m a r y ..102

I I I Addressing Feedback Needs in Component-Based Systems 103

5 P ro b le m D e s c rip tio n and P roposed S o lu tion 104

5.1 The P r o b le m ...105

5.1.1 T ra d itio n a l Ways o f P rov id ing F e e d b a ck .. 105

5.1.1.1 Guidelines for Programmers ... 105

5.1.1.2 Comprehensive O nline M anuals .. 106

5.1.1.3 A Feedback A pp lica tion Program m er In te r fa c e 106

5.1.1.4 S u m m a ry .. 106

5.1.2 W hy Feedback P rovis ion is (Even More) D ifficu lt

in Component-Based S ys te m s ... 106

5.1.3 W h y E rro r Recovery is (Even More) D ifficu lt

in Component-Based Systems .. 107

5.1.4 C o n c lu s io n .. I l l

5.2 The Proposed S o lu t io n ... I l l

5.3 F irs t Mechanism — Separation o f C o n c e rn s ...113

5.3.1 Separate Specification o f C o n c e rn s .. 113

5.3.2 O rthogona lity o f C once rns ... 115

5.3.3 S u m m a r y ..115

5.4 Second Mechanism — A p p lica tio n T ra c k in g ...116

5.4.1 F irs t Perspective — User-Interface T ra c k in g ... 116

5.4.2 Second Perspective — System-Level M o n ito r in g ...117

5.4.3 F irs t Approach — Invasive T r a c k in g ... 118

5.4.4 Second Approach — Non-invasive T r a c k in g ... 119

5.4.5 S u m m a ry .. 120

5.5 T h ird Mechanism — The V is u a lis a tio n ... 120

5.5.1 V isua lisa tion o f User In te rac tion w ith an A p p lic a t io n120

5.5.2 V isua lis ing Execution o f S o ftw a re ..121

5.5.3 V isua lis ing D ia lo g u e ..121

5.5.4 V isua lis ing serial period ic d a t a ... 121

5.5.5 In te rac ting w ith the V is u a lis a tio n ..122

5.5.6 C o n c lu s io n ...122

5.6 C o n s o lid a tio n ..122

5.6.1 Benefits o f the Proposed A p p ro a c h .. 123

5.6.2 L im ita tio n s o f the Proposed A p p ro a c h .. . 124

5.6.3 S u m m a ry .. 124

IV HERCULE — Design and Implementation 125

6 H ER C U LE’s D esign 126

6.1 Design P h ilo s o p h y' .. 127

6.1.1 Design P r in c ip le s ...127

6.1.2 Accessing H E R C U L E ..129

6.1.3 Required A p p lica tio n F e a tu r e s ... 130

6.1.4 A nd T hus.. 132

6.2 Fac ilita ting HERCULE’s O bservation F u n c t io n .. 132

6.2.1 The “ M in im a l Im pact P roxy” Design P a t te r n .. 134

6.2.2 The User-Interface P r o x y ... 136

6.2.3 The Component P ro x ie s ...140

6.3 Fac ilita ting HERCULE’s E xp lana to ry F u n c tio n ... 142

6.4 HERCULE’s A rc h ite c tu re .. 143

6.4.1 Com m unication m o d u le s ...143

6.4.2 C o n tro lle r .. 144

6.4.3 The W indow M a n a g e r .. 145

6.4.4 The Server P roxy M a n a g e r ..149

6.4.5 The D isplay C o n tro lle r ..152

6.4.6 Hercule C o m p o n e n ts ... 152

6.5 A pp lica tion A c t iv ity V isua lisa tion ..153

6.5.1 How Should the A p p lica tio n A c t iv ity V isua lisa tion be Provided? . . . 154

ix

6.5.2 V isua l R e p re s e n ta tio n .. 156

6.5.3 L a y o u t ...157

6.5.4 C ustom isation ..159

6.6 C onclusion ..161

7 Im p le m e n ta t io n 163

7.1 P ro to type A p p l ic a t io n ...164

7.2 O bserving User-Interface A c t iv i t y .. 165

7.2.1 Java P la tform -Independent User-Interface M e c h a n is m166

7.2.2 Inse rting the P ro x y ...167

7.2.3 The User-Interface P r o x y ... 168

7.2.4 W atching User A c t i v i t y ...170

7.2.5 M a in ta in ing and using the in te rn a l image o f the G U I 172

7.3 O bserving Server C o m m u n ica tio n .. 173

7.3.1 The Enterprise Java Beans Component M odel .. 173

7.3.2 Using Proxies to In tercept C om m unication ...176

7.3.2.1 Inserting the P ro x ie s .. 176

7.3.2.2 Sending the reports to HERCULE ... 179

7.3.3 Using the reports generated by the proxies ...179

7.4 The D escrip tor Tool and P roxy G e n e ra to r:179

7.4.1 The D escrip tor T o o l . . 180

7.4.2 The Proxy Generator 182

7.5 The R un tim e Feedback Tool .. 183

7.6 A p p lica tio n A c t iv ity V isua lisa tion ...184

7.6.1 Characteristics o f V is u a lis a t io n ...184

7.6.2 In te ra c tiv ity o f the D is p la y ...185

7.6.3 E x te n s ib ility o f the D is p la y ...187

7.7 Conclusion ...191

V Epilogue 192

8 E v a lu a tio n 193

8.1 C urren t Approaches to E va luation o f T o o l s ...195

8.2 P re lim in a ry E va lua tion R e s u lts ...196

8.2.1 User N e e d s ..197

8.2.1.1 F e e d b a c k ...199

8.2.1.2 Q uirks ..200

8.2.2 Component-Based System Development and M a in te n a n c e 203

8.2.2.1 Program m er Needs ..203

8.2.2.2 Program m er Experience w ith H E R C U L E .. 204

X

8.2.3 Performance I m p a c t ..205

8.3 Conclusion ... 206

9 C onclusion 207

9.1 R e ite ra tion o f Thesis S ta te m e n t..207

9.2 Sum m ary o f R e s e a rc h ...207

9.3 Thesis C o n t r ib u t io n .. 209

9.4 Future Research ...210

V I Appendices and Bibliography 212

A Glossary 213

B Minimal Impact Proxy Design Pattern Code 216

part I

Prologue

What we call the beginning is often the end

And to make an end is to make a beginning

The end is where we start from.

T S Eliot. 1944

1

/ have striven not to laugh at human actions, not to weep at

them, nor to hate them, but to understand them.

Baruch Spinoza

Tractatus Politicus (1677) ch .l, sect 4

chapter 1

Introduction

1.1 Thesis Statem ent

I subm it th a t feedback can be enhanced in a d is tribu ted component-based system by exe

cu ting the app lica tion w ith in a generic feedback enhancing framework. I fu rthe r subm it th is

supports the user: f irs tly in understanding the app lica tion , secondly in recovering from er

rors, and th ird ly in rebu ild ing m ental context a fter in te rrup tions. The fram ework standard

ises feedback provision, sim plifies app lica tion code, allows continuous post-im plem enta tion

refinement o f exp lana tory messages and promotes reuse.

1.2 The Shortfall in Application Feedback

The feedback provided by app lications in general use is typ ica lly patchy — often inadequate

and sometimes even m isleading. Users often have great d iffic u lty in ascertaining exactly

w hat the app lica tion is doing w ith the ir inpu ts and consequently struggle to b u ild up an

in te rna l model o f how they should in te ract w ith the application.

The im m ediacy o f the reactions o f computers, combined w ith the fact th a t such reactions

are not random bu t considered (having been designed by a human program m er), lead people

to consider the com puter to be a purposefu l social object [Suc87]. Therefore the com puter

app lica tion can be thought o f as fu lf il l in g the same role as a conversational p a rtic ipan t

2

In troduction .3

[PQS96].

Partic ipan ts in a hum an-to-hum an conversation do not m erely take turns, b u t in many

ways collaborate in the conversation. The speaker expects a level o f feedback which is

essential in gauging the listeners’ reaction to w hat is being said, th e ir understanding o f

the current subject, th e ir opinions, emotions and much more. T h is could be referred to as

ind ica ting the listeners’ “ state o f m in d ” and feedback can be considered to p lay a crucia l

role in assisting the speaker in in te rp re ting th is state. The speaker’s in te rp re ta tion o f th is

state w il l p lay an im po rtan t role in steering the conversation in one d irection or another.

D u ring the discourse in fo rm a l “ rules” o f conversation between two people are developed. In

the same way, app lica tion feedback assists the user in understanding the in te raction “ rules”

o f the application.

In gain ing an understanding o f app lica tion in te raction rules, the user often gets l i t t le as

sistance, since applications frequently do not exp la in themselves appropria te ly. Inex tricab ly

bound up w ith th is is the related d ifficu lty o f perceiving the relevant aspects o f the cur

rent state o f the application. The com puter’s func tion ing and in te rna l state are com pletely

im perceptib le , m aking its true nature even more o f a m ystery than i t should be.

W ha t we need to fac ilita te be tte r com m unication between the app lica tion program and

the end-user is, firs tly , a way for the app lica tion to exp la in the in teraction rules to the

end-user and, secondly, a m ethod o f m aking relevant app lica tion state more available and

perceptible. These two requirements can be termed the “ in te rp re ta b ility ” problem .

Fu ll in te rp re ta b ility is d iff ic u lt to achieve, since there is a fundam ental m ism atch and

perennia l m isunderstanding between end-users and app lica tion programmers. Th is m is

match is exacerbated by the fa c t th a t app lica tion programmers produce applications which

must communicate w ith a person about whom the program m er can make very few inform ed

assumptions. Economic realities make i t infeasible to develop an entire app lica tion fo r a

specific user and consequently applications are produced fo r a “generic” user. There is a

tendency to generalise the app lica tion interface to satisfy a ll the needs o f generic users, yet

th is generality makes i t d iff ic u lt for in d iv id u a l users, w ith vastly different levels o f experience

and in d iv id u a l requirements, to understand the app lica tion ’s rationale.

The feedback channel, which is so v ita l to hum an-to-hum an in teraction , can be u tilised

to enhance the in te rp re ta b ility o f the app lica tion by conveying relevant in fo rm a tion about

the app lica tion ’s expectations and understanding of, and response to, the user’s instructions.

Feedback is rou tine ly used to ind ica te e ither a con firm atory response, or to give in form a

tion about the func tion o f some user-interface component — by means o f colour changes,

balloons, icons etc.

Feedback w ith respect to app lica tion state is less common and far more d iff ic u lt to

provide correctly. I t is d iff ic u lt fo r an app lica tion program m er to know which aspects o f the

current app lica tion state should be visualised to enhance in te rp re tab ility , which could serve

no purpose and which would be pos itive ly confusing. M ost rare o f a ll types o f feedback is

in fo rm ation which tells the user how the current state was achieved. Th is causes problems

Introduction A

since hum an discourse is increm ental and conversants w il l typ ica lly refer to som ething they

have previously said. H um an-to -app lica tion in te raction seldom fosters th is type o f referral,

which could p o te n tia lly be very well catered fo r by an enriched model o f feedback.

Furtherm ore, app lica tion programmers are often unrealistic about the the user’s w orking

environm ent and seldom cater fo r the effects o f events which w il l interfere w ith the use

o f the app lica tion . Such events can d is rup t the stra igh tfo rw ard execution o f a task and

interfere w ith a user’s concentration. These events, which w ill be referred to as quirks,

could be system breakdowns, various types o f in te rrup tions to app lica tion use or human

errors. A pp lica tions often make no concession to the in e v ita b ility o f qu irks and seldom give

assistance in rebu ild ing m ental context afterwards or fac ilita te understanding o f the cause

in the case o f an error.

1.3 Feedback in Com ponent-Based System s

Component-based three-tie r systems are the latest paradigm sh ift in the software engineer

ing industry. I t is w ide ly believed th a t fu tu re com puter systems w il l be b u ilt from software

components. U nfortuna te ly , they present new problems and opportun ities which cannot

be ignored. Whereas in te rp re ta b ility is a very real problem in tra d itio n a l m ono lith ic ap

plications, i t becomes an even bigger problem in component-based applications due to the

independent and d is jo in ted nature o f the program m ing a c tiv ity which, produces the in d iv id

ual components used to b u ild the system, and also due to the “ black-box” nature o f said

components. The d is tribu ted nature o f these systems increases the p ro b a b ility o f errors and

breakdowns, once again reducing in te rp re tab ility .

The developers o f the different components used to b u ild a component-based app lica tion

w ill seldom communicate w ith one another. The app lica tion w il l generally be constructed

from pre-developed components and the developer o f the front-end app lica tion w ill merely

be given interfaces to these components specifying the contractua l responsib ilities and func

tio n a lity o f the component.

The developers therefore cannot enhance the feedback provided by the component, since

they have no contro l over the im plem enta tion details and have to accept the feedback pro

vided by the component, whatever its qua lity . The developer w ill also have great d ifficu lty

in an tic ipa ting a ll the possible error s itua tions which could arise from the use o f a server

component. The encapsulation p rinc ip le w hich drives component-based development gives

system engineers the fle x ib ility to be able to change the im plem enta tion o f a component

du ring the life tim e o f the system. T h is could prec ip ita te a whole new range o f errors, h ith

erto unsuspected, which w ill p robab ly be reported to the user in a ll th e ir technical verbosity,

reducing the user’s understanding o f the system and perhaps necessitating in te rven tion by

specialists.

The background knowledge o f the target user o f a component-based app lica tion is harder

to gauge than th a t o f the the user o f a m ono lith ic system since the d is tribu ted nature o f

In troduction .5

the app lica tions is like ly to mean a w ider range o f users. These systems are designed to

support m any d iffe rent styles o f front-end and to be made available on the in te rne t, whereas

stand-alone local deployment was previously the norm.

1.4 Potential Solutions

Program m ing applications in component-based systems is no easy task [Jam99b]. The

curren t approach to p rov id ing feedback is an expectation th a t the program m er w il l program

th is in add ition to b u ild ing code which copes w ith a ll the com plexities o f the d is tribu ted

system. T h is approach appears to be flawed, as evinced by current standards o f feedback

w hich do not always meet the requirements. I t is also not econom ically v iab le to meet

reasonable standards from w ith in each app lica tion . T h is approach also leads to inconsistent

p rov is ion o f feedback m aking i t d iff ic u lt fo r the user to fin d and assim ilate feedback when

having to use several applications.

C urren t approaches to enhancing the in te rp re ta b ility o f the system re ly heavily on e ither

paper or online manuals. The benefits o f th is approach are lim ite d since research has shown

th a t users seldom consult manuals, p re fe rring to fam ilia rise themselves w ith an app lica tion

by using i t [CR87].

A n a lte rna tive approach, described in th is dissertation, is th a t feedback be provided by

a generic feature, produced independently o f the app lica tion im plem entation. T h is approach

necessitates trea ting the provis ion o f feedback as a separate concern. T h is well-established

technique has been successfully applied in separating several non-functiona l characteristics

from the m ain concern o f app lica tion programs, bu t has h ith e rto not been applied to the

p rovis ion o f feedback. Separating feedback provision from the app lica tion makes th ings

easier fo r the program m er and provides a mechanism for augm enting the feedback provided

by the app lica tion itself.

There are m any approaches to achieving separation o f concerns [HL95]. One approach,

app lica tion tracking, requires the least e ffort from the program m er and was thus the ap

proach chosen. I t is also the least invasive way o f achieving the required separation o f

concerns. A p p lica tio n track ing is w ide ly used fo r many purposes, b u t once again has not

h ith e rto been used to augment app lica tion feedback.

A p ro to type im plem enta tion o f th is proposal has been im plem ented, in order to test the

v ia b il ity o f the scheme. Th is p ro to type has been evaluated in terms o f the o rig ina l feedback

needs identified at the outset o f the research.

The success o f the p ro to type app lica tion has shown th a t th is means o f augmenting

app lica tion feedback can indeed be used and th a t i t enriches the concept o f feedback in such

a way th a t i t can enhance the in te rp re ta b ility o f a component-based application.

Introduction .6

1.5 Road Map

The d isserta tion has been d iv ided up in to d iffe rent sections:

• P art I contains th is in troduction .

• P art I I provides the background lite ra tu re in component-based systems, qu irks and

feedback. C hapter 2 provides an overview o f component models, component-based

systems and component-based development. C hapter 3 explores the nature o f qu irks

— those events which interfere w ith our s tra igh tfo rw ard use o f applications. Chapter

4 examines the nature and form at o f feedback, w ith a tten tion being given to the role

feedback can p lay in a llev ia ting the negative effects o f quirks.

• P art I I I describes the problem being addressed, proposes a solu tion, discusses the

techniques used in the so lu tion and enumerates the advantages and lim ita tio n s o f the

proposed so lu tion. Th is discussion constitutes C hapter 5.

• P art IV describes the design (C hapter 6) and im plem enta tion (C hapter 7) o f the

fram ework p ro to type which was developed in order to test the proposals made in P art

I I I .

• Part V evaluates the p ro to type (Chapter 8), concludes, summarises the con tribu tions

o f th is d isserta tion and discusses fu tu re work (C hapter 9).

• Part V I contains the appendices and bib liography.

part II

Summary of Background Material

Read, every day, something no one else is reading.

Think, every day, something no one else is thinking.

Do, every day, something no one else would be silly enough to do.

It is bad for the mind to continually be part o f unanimity.

Christopher Morley

7

Pooh began to feel a little more comfortable, because when

you are a Bear o f Very Little Brain, and you Think of Things,

you find sometimes that a Thing which seemed very Thingish

inside you is quite different when it gets out into the open

and has other people looking at it.

A.A Milne

The House at Pooh Corner. (1928) ch.6

chapter 2

Software Components

T h is thesis proposes a generic feedback mechanism suitable for applications b u ilt ou t o f

components. Therefore th is chapter w ill in troduce software component concepts, since these

fo rm an in tegra l pa rt o f the research discussed in th is dissertation. Section 2.1 describes soft

ware components. A typ ica l com ponent run tim e in fras truc tu re is discussed in Section 2.2.

Section 2.3 discusses the evo lu tion o f components. Section 2.4 describes the three prom inent

component models, and Section 2.5 gives a b r ie f overview o f the process o f component-based

development. Section 2.6 reviews m ate ria l presented in th is chapter, w hile the fina l section

concludes.

2.1 W hy Com ponents, and W hat are They?

Software components are by no means a new concept. They were firs t proposed by M c llro y

back in 1968 [McI68]. He suggested th a t the software in d u s try needed the mass p roduction

o f software components which could be bought and assembled. Parnas [Par72] o rig ina lly

proposed a packaging technology w hich is not very different from the preva iling component

technologies o f today. However, i t is on ly the progress o f the past few years which can make

Software Components .9

th is dream a reality.

Components are the latest a ttem p t by the in fo rm a tion technology w orld to s im p lify the

production and management o f software systems, a task which is notoriously d iff icu lt to

accomplish. Brooks [BF95] argues th a t th is is due to fou r properties o f software systems:

1. Complexity — software systems can exist in a large num ber o f different states which

have to be visualised, described and tested by a developer. Th is increases w ith scale

because o f the added com plexity generated by objects in te racting w ith in the system.

2. C onform ity — due to the nature o f the hum an in s titu tio n s and systems to which

software systems must conform.

3. Changeability — no o ther k ind o f system is subject to as many pressures fo r change as

a software system. Th is is because software is perceived to be easily changeable, and

because user requirements often change w ith tim e.

4. In v is ib ility — Software is very d ifficu lt to visualise, m aking i t very demanding for

humans to understand its func tion comprehensively.

O bject o rien ta tion was in it ia lly hailed as the so lu tion to these problems [Cox90], b u t failed to

address them significantly or to reduce software development tim e as much as was anticipated

[0 ’C99]. O bject o rien ta tion on its own has not made much o f a difference to program m er

p roduc tiv ity . ' A ny C rf T program m er w ill read ily a ttest to th is. The advent o f Java has

made a difference, since i t , hid^s a lo t o f the com plexity inherent in other object-oriented

languages. I t would be more accurate to say th a t pure object-orien ted languages have made a

difference to program m er performance and p roduc tiv ity . However, even w ith Java, software

development remains a complex task.

Software vendors are well known for ju m p in g on the band-wagon and ha iling the latest

innovation as the so lu tion to a ll problems. The aggressive m arketing o f CASE tools is an

example o f th is. The im p o rta n t fact overlooked by, or perhaps conveniently ignored by,

software development to o l vendors in th e ir quest fo r p ro fits is th a t no single innovation can

be the cure for a ll software development d ifficu lties, ju s t as no one medical breakthrough

can be the answer to a ll health problems.

Some have hailed the advent o f components as being the “one best way” o f developing

software [SW98]. O thers advise caution [Cha99c, 0 ’C99]. I t is im po rtan t to bear in m ind

th a t com puting is a re la tive ly new science, and th a t the software development process needs

to evolve s ign ifican tly before we can feel we have arrived at a sufficient understanding o f the

process to cla im th a t the one best way o f developing software systems has been found.

A t th is stage, each new discovery is a step towards be tte r software life-cycle m ethodolo

gies. O bject o rien ta tion has ce rta in ly made a sign ificant con tribu tion and is presently seen

by many to be the best systems design approach. O bject-oriented program m ing languages

such as Java make program m ing much sim pler. A l l the ind icators po in t towards software

components as the next step in th is evo lu tionary process.

Software Components 10

Machine X

Application Linked
Library

rj/cFunctiory Calls

System Calls

Interprocess
Communication

Application

Operating System

Network Communication Application

| Operating System j
Machine Y

Figure 2.1: Different modes of Operation [Cha96]

The section heading posed the question: “W hy should anyone use components?” . One

m a jor reason is in te rope ra b ility in the presence o f increasingly heterogeneous contexts. The

scenario presented in F igure 2.1 demonstrates d ifferent ways in which an app lica tion com

municates w ith d ifferent types o f entities. I f a lib ra ry is being used,, i t w il l be accessed v ia

function calls. O perating system functions w ill be invoked by means o f system calls. Com

m unication w ith other applications is achieved by means o f interprocess com m unication i f

the app lica tion is on the same machine, probab ly invo lv ing the use o f the sockets mecha

nism. Com m unication is achieved by means o f a remote procedure call i f the app lica tion is

on another machine. C om m unication w ith other applications, as well as w ith lib raries, can

usually on ly happen i f bo th have been im plem ented using the same language.

Components provide the means for cross-platform and cross-application functiona lity .

The component in fras truc tu re offered by the prom inent component models (to be discussed

in la ter sections) enables a program m er to make use o f the fu n c tio n a lity w ith in other applica

tions, libraries and the operating system a ll in exactly the same way. M uch o f the com plexity

is hidden, and in add ition , w ith two o f the current component models, the im plem enta tion

language is no longer an issue.

There are other benefits which make components a ttractive . The most im p o rta n t o f these

are th e ir reusab ility and th e ir appropria te size for reconstruction, m arketing and assembly.

2 .1 .1 W h a t a re C o m p o n e n ts ?

“ Com ponent” , like “ob jec t” , is an over-used word. I t means many contrasting th ings to d if

ferent people. M any different defin itions exist for components, some o f w hich are presented

Software Components .11

here:

“ A software component is a u n it o f com position w ith con trac tua lly specified

interfaces and exp lic it context dependencies only. A software component can be

deployed independently and is subject to com position by th ird pa rties .1” [Szy98]

“ Software objects p rov id ing some type o f know n service, or specifications capable

o f creating such objects, th a t can be used in com bination w ith o ther components

to b u ild systems v ia a well-defined interface.” [Kar98]

“ A n identifiab le piece o f software th a t describes and delivers a m eaningfu l service

th a t is on ly used v ia well-defined interfaces” [SW98].

“ A sta tic abstraction w ith plugs” [NT95].

“ A way o f packaging un its or modules o f software th a t makes them such th a t

they could form some p a rticu la r k in d o f p lug standard.” [W D98].

“ A component is a software m odule th a t publishes or registers its interfaces”

[Har98].

“ A coherent package o f software th a t can be developed independently and de

livered as a u n it, and th a t defines interfaces by which i t can be composed w ith

other components to provide and use services” [DW 98].

M ost o f these defin itions emphasise three im p o rta n t features: interfaces, a set o f offered

services, and reuse. Perhaps more he lp fu l than a de fin ition would be a lis t o f the required

and desirable properties o f components. Components should, w ith o u t a doubt [SW98, Cot98,

Szy98, HG99]:

• be accessed on ly v ia interfaces, w ith each interface being a subset o f the fu ll contract

the component has w ith clients. T h is im plies the use o f an interface de fin ition language

— bo th to enable the component user to discover properties o f the component, and

to enable the component developer to advertise services provided by the component;

• have exp lic it context dependencies — fo r example, i f a component needs to access

a re la tiona l database, the context dependencies would include in fo rm a tion about the

structu re o f the tables i t requires. Loca tion dependence is another example o f a context

dependency;

• be adequately documented — an essential p a rt o f the work described here;

• have a unique iden tity ;

lrThis definition was first formulated at the 1996 European Conference on Object-Oriented Programming
(ECOOP).

Software Components 12

• be customisable;

• be a u n it to be managed by a container — i.e. be more than ju s t an executable b inary.

I t must derive many o f its properties from the container, and use fac ilities provided by

the container. I t must obey the rules o f the container, and w ill have standard ways o f

sending events to the container [Pri99]. The services typ ica lly provided by a container

include threading, transactions, security and persistence [Gut99].

Desirable characteristics include, b u t are not lim ite d to:

• possession o f a fu ll descrip tion o f possible exceptions w h ich could be throw n, and

explanations fo r these;

• the po ten tia l fo r the dynam ic discovery o f supported interfaces;

• m in im um context dependencies;

• reusability.

The last two desirable characteristics w ill always conflic t w ith each other. A component is

most useful i f i t can perform its func tion w ith o u t any res tric ting context dependencies, on ly

re ly ing on externa l services general enough to be provided by any component container. To

achieve th is, the component w ould have to have a ll required software bundled w ith it , bu t

th is type :o f over-infla ted software produces exactly the type o f problem th a t components

were meant to solve.

I f a component needs to make use o f a secondary piece o f software, i t should ra the r

request th a t service as a context dependency, so th a t the component on ly encloses software

to execute its prim e functiona lity . T h is makes the component em inently reusable since the

prim e fu n c tio n a lity is probab ly specialised enough, and the component ligh tw eigh t enough,

to be used in other contexts as well. However, th is reliance on externa l services makes the

component more d iff ic u lt to house because o f the increase in context dependencies [Szy98].

For example, consider a desktop bu tton , which is an em inently reusable object. A p a rt

from the obvious requirem ent o f the opera ting system, i t requires the existence o f a container

w ith in which i t w il l be displayed. I t w il l expect to in h e rit some o f its properties from its

container. The b u tto n w ill p robab ly derive its background colour from the container, fo r

example. A lthough i t allows o ther components to register an interest in events executed on

it, i t requires the existence o f an event-propagating mechanism which w il l in fo rm i t o f user

actions. The b u tto n can change its appearance and be ta ilo red fo r any num ber o f purposes

in the user interface o f most applications.

On the other hand, consider a desktop ca lcu la tor component, which encloses a ll software

and has few environm enta l requirements. W henever i t is used, i t w il l have the same purpose

— th a t o f being a calculator. One cannot ta ilo r i t to other purposes, and though i t is very

useful, i t does not fu lf i l l the requirem ents o f reusability.

Software Components 13

T h is section has given details o f characteristics th a t can be expected from software

components. The fo llow ing section w il l shed some lig h t on how components are different

from objects.

2 .1 .2 H o w a re c o m p o n e n ts d if fe re n t f ro m o b je c ts ?

Thus far the characteristics o f components have been discussed. Some have critic ised the

component m odel as s im p ly being the object model rephrased [0 ’C99]. C e rta in ly com

ponents have many features o f tra d itio n a l objects, so perhaps the best way to s ta rt th is

discussion is by looking at the accepted no tion o f an object.

In the early days o f object o rien ta tion people were confused about the meaning o f objects

too, and i t was on ly after some tim e th a t the key concepts o f ob ject technology were d is tilled

and universa lly accepted. The accepted object model tenets are [Tay99]:

1. Objects — executable software representations o f rea l-w orld objects.

2. Messages — a universal com m unication mechanism through w hich objects in teract

w ith one another.

3. Classes — templates for defin ing s im ila r objects.

The key mechanisms o f object technology are [Tay99]:

1. Polym orphism — the a b ility to im plem ent the same message in d iffe ren t ways to su it

d ifferent object types.

2. Encapsulation — the mechanism for packaging related data and procedures together

w ith objects. The aim o f th is mechanism is th a t objects should func tion as a black box,

h id ing the in fo rm a tion and mechanisms for operating on the enclosed in fo rm ation .

3. Inheritance — a specialisation mechanism whereby one class can make use o f in fo r

m ation and messages defined w ith in a generalised class.

The object-oriented com m unity has had d iff icu lty w ith the la tte r tw o mechanisms. Encap

sula tion was not equally well-supported by a ll object-oriented languages2, and most lan

guages’ understanding o f encapsulation d id not extend to a llow ing app lica tions developed

using other languages to use th e ir objects.

The re lative des irab ility and p a rticu la r nature o f inheritance caused a great deal o f debate

in academic circles [Szy98]. Some organisations, such as M icrosoft, argued th a t m u ltip le

im plem enta tion inheritance was a recipe for disaster. C + + allows m u ltip le im plem enta tion

inheritance, so th a t the program m er’s life is made extrem ely d iff ic u lt by unexpected side-

effects o f such inheritance. Im p lem enta tion inheritance can also be regarded as a v io la tion

o f encapsulation.

2The fr ien d function in C + + is a direct violation of the spirit of encapsulation, and Java allows p ub lic
variables, which can be manipulated by other objects

Software Components .14

Q uite apart from these problems is the generally acknowledged fact th a t objects them

selves are too fine-grained to be deployed independently, because o f th e ir logical coupling

w ith o ther objects [0 ’C99]. Th is lim its the reusab ility o f objects, and makes them d ifficu lt

to use independently in a d is tribu ted environm ent. However, i t is possible to iden tify a

group o f objects which collaborate w ith each o ther in p rov id ing some piece o f func tiona lity ,

and which fo rm a type o f u n it, which would be more suitable fo r independent deployment.

Th is co llabora tion can be deployed independently, as a separate component.

In a ttem p ting to d is tingu ish objects and components, some key issues emerge — objects

are fine-grained, w hile components are coarse-grained. O bjects must be im plem ented in an

object-orien ted language, whereas components can be developed in any language. Objects

do not always support encapsulation, bu t the very nature o f components enforces encapsu

la tion by the m andatory use o f interfaces. F ina lly , objects are h igh ly dependent entities,

whereas components are designed to have a considerable measure o f autonomy. Han [Han98]

identifies some characteristics which, he argues, d istingu ish components from objects, w ith

on ly components having the fo llow ing characteristics:

1. structu ra l constraints w hich w ill specify th a t certa in com positions o f a ttr ib u te in

stances are not perm itted ;

2. operational constraints which specify perm issible operation patterns;

3. events which can be fired by the component.

4. m ulti-in terfaces which specify a number o f roles the component can play.

5. non-functiona l properties such as security, performance, and re liab ility .

I t is d iffic u lt to agree w ith th is lis t. Java objects generate events, and in h e rit from m u ltip le

interfaces. N on-functiona l properties mentioned in p o in t 5 are not generic component char

acteristics, bu t ra ther requirements enforced on beha lf o f the component by the container

w ith in which i t is housed. S truc tu ra l and operational constra ints fa ll in to the same cate

gory. The component has context dependencies, which incorporate a ll these requirements,

a lthough these are not properties o f the component itself, since objects too can have these

constraints and non-functiona l requirements. Th is lis t is therefore not useful in draw ing a

d is tin c tio n between components and objects. W h ile components and objects can be seen to

share H an ’s properties, the true difference would appear to be th a t whereas objects have to

im plem ent the constraints themselves, components can expect m any o f the constraints to

be applied by th e ir container.

In summary, we can conclude th a t components are d ifferent from objects, m ostly in terms

o f perspective. O b jec t-o rien ta tion can be considered to be an im plem entation technology,

while component technology is about packaging and d istribu tion . Whereas the te rm “ob ject”

im plies use o f a specific type o f im p lem enta tion language, the te rm “com ponent” should

im p ly a u n it o f deployment p rov id ing a specific functiona lity .

Software Components .15

Before con tinu ing to the next section, which w ill discuss the component run tim e envi

ronm ent, i t is necessary, in the interests o f c la rity , to define the te rm component.

A c o m p o n e n t is a coherent, opaque, u n it o f software, accessible only via one

or more interfaces cooperatively defining the fu l l contractual duty o f the compo

nent, which is independently deployed in a container enforcing and supplying the

contextual requirements o f the component.

2.2 The Component Runtim e Environment

In the not too d is tan t past, a ll applications were m ono lith ic and ran on w hat users deemed

to be “ pow erfu l” and expensive m ainfram e computers. Users connected to these m ainfram e

computers v ia “ dum b” term inals. The mainframes were good at runn ing such applications,

and were not rea lly tuned to reacting speedily to many requests from term inals. The mono

lith ic applications were merely the autom ation o f hand processing systems [BF97]. W ith

the advent o f the Personal Com puter (PC), applications were s im ply moved from the m ain

frames to the PC. M oore ’s law 3 ensured th a t the PCs in it ia lly had no d iff ic u lty in keeping

up w ith ever grow ing app lica tion resource demands.

However, the grow th o f the network and com m unications industry, the increasing de

mands o f applications, and the d ifficu lty o f sharing data between users, changed the way

people thought o f applications, and the poss ib ility o f harnessing a powerfu l com puter in

the background to handle databases, for example, led to the advent, in the early 1970s, o f

client-server, or tw o-tie r, systems. The fo llow ing section w ill discuss the characteristics o f

these systems; and describe th e ir metamorphosis in to th ree-tie r systems.

2 .2 .1 F ro m T w o - t ie r to T h r e e - T ie r A rc h ite c tu re s

The tw o-tie r arch itecture separates a d is tribu ted app lica tion in to two collections o f processes

— clients which handle user in teraction , and servers which manage resources. The form o f

in te r-app lica tion in te raction before the advent o f these systems was fac ilita ted by means o f

Inter-Process Com m unication (IP C). The IP C mechanism operates on a byte level, and the

p ro tocol for com m unication m ust be agreed upon by bo th partic ipan ts , b o th o f whom were

probab ly im plem ented in the same language [Szy98]. In client-server systems, clients could,

as an a lte rnative to IP C , com m unicate w ith the server using a Remote Procedure Call (RPC)

[BN84] mechanism. Th is mechanism places stubs on the client and server machines. W hen

the client app lica tion makes a ca ll to the client stub, i t w il l marshal the parameters and send

them to the server stub. The server stub receives the parameters, unmarshals them, and

sends them to the server for processing. The client is unaware o f th is process and follows

local ca lling conventions in using the procedure. The m arshaling and unm arshaling process

is responsible fo r conversions to different form ats on different machines. R PC sim plifies

3Moore’s law implies that the power of computers doubles every 18 months.

Software Components .16

a ll levels o f com m unication (in-process, inter-process and inter-m achine) by m aking th e ir

mechanism the same — the rem ote procedure ca ll [Szy98].

There are two types o f servers — stateless or stateful [Cor91]. The stateless server does

not m a in ta in any in fo rm a tion about clients between calls. A n example o f th is is a Web

server. A s ta te fu l server “ remembers” c lient in fo rm a tion from one m ethod invocation to the

next. Stateless servers are more fau lt to le ran t than sta te fu l ones, since a c lien t can s im p ly

keep resending a request t i l l the server responds. The c lien t o f a s ta te fu l server needs to

rebu ild server context a fter a crash, and th is could cause the client to fa il. However, s ta te fu l

servers operate in a well-understood program m ing paradigm , and are more efficient [Cor91].

In client-server systems, as shown in F igure 2.2, many clients use the same server on a

request-reply basis. These architectures enable clients to have sophisticated user interfaces

and data v isua lisa tion tools on the ir desktop com puter, and share data w ith other clients

by means o f pow erfu l database servers at the server level [BF97].

User

User

Interface
Client
Application

Figure 2.2: The Client Server 2-Tier Architecture

The client-server arch itecture was a great im provem ent on the previous m ono lith ic sys

tems, b u t had some serious shortcom ings. There was a b ig question o f where to pu t the

app lica tion logic. I f i t is located in the c lient, the clients become “ fa t” , and d iff ic u lt to up

grade, and the app lica tion logic is too closely bound to the user interface code to reuse for

another type o f user interface. I f a great deal o f processing is to be done, i t could adversely

affect the performance o f the c lien t com puter.

Software Components 17

I f the logic is located in the server, often a database server, i t becomes t ig h tly linked to

the actual data source, and i t is d iff ic u lt to use data from other sources as well. I t is also

far too easy to overload the server, degrading performance and affecting response times to

a ll clients. I t is d iffic u lt to provide a re liable service due to the d iff ic u lty o f load-balancing

w ith th is architecture.

O ften the logic was sp lit up between the client and the server, and i t was very d iff ic u lt to

reuse any o f the c lient code i f the server type changed. I f a d ifferent type o f front-end were

needed (for example, a touch-tone phone access front-end), a whole new app lica tion had to

be w ritte n . I t is also w e ll-n igh im possible to integrate legacy systems in to a conventional

client-server system. In summary, c lien t and server processes are too t ig h t ly coupled.

User

Interface
Client
ApplicationClient

Machine

Logic
Server
Machine Components

Data

Database Database Database

Figure 2.3: The 3-Tier Architecture

The three-tie r architecture, shown in F igure 2.3, was developed to a llevia te these prob

lems, w ith the business logic being s itua ted in a m iddle tie r, between the client app lica tion

and the data tie r. The m idd le tie r does not make assumptions about how a resource, such

as a collection o f data, is stored, bu t s im p ly expects i t to be provided by a lower tie r. The

user interface tie r deals d ire c tly w ith the m idd le tie r, and relies on th is tie r to in te ract w ith

the lower tie r and to con tro l access to a ll shared resources. T h is new arch itecture makes i t

much sim pler for d ifferent types o f clients to share business logic and resources.

The m iddle t ie r could provide the same services to a desktop app lica tion , a browser, and

a touch-type telephone, w ith on ly the user interface tie r being specialised in each case. The

Software Components .18

advantage o f th is approach is th a t the client becomes th inner, w ith most o f the business

logic being located in the m iddle tie r. T h is m inim ises the cost o f ownership o f large numbers

o f c lient systems [Dol98].

Tw o o f the three tiers in th is model are well understood — the client app lica tion , and

the lower (data) tie r. However, the m iddle t ie r is re la tive ly new, and w il l be described in

the fo llow ing section.

2 .2 .2 T h e M id d le , o r B u s in e s s -L o g ic , T ie r

The move to incorporate a m iddle t ie r was a logical response to the problems ou tlined in the

previous section. However, when i t came to p lann ing the in fras truc tu re , and the provis ion o f

the required m idd le -tie r functiona lity , th ings were not as stra igh tfo rw ard . I t was necessary

to share resources, such as data sources, and business logic, between different clients, and

also to have a structu re which was flexib le enough to respond to changes in business rules

w ith o u t great d ifficu lty .

The para lle l development o f independently deployable components, which were a viable

a lte rna tive to finely-grained tigh tly -boun d objects, made i t possible fo r the business logic to

be encapsulated in the form o f m idd le -tie r components. (The component evo lution process

is described in Section 2.3.)

The use o f m idd le -tie r components enables sharing between d ifferent types o f applica

tions, and the size and encapsulated nature o f the components makes them easier to upgrade

in a w orld o f ever-changing business rules.' In add ition , instead o f ty in g the business logic

exclusively to one type o f data source, components could be made flexib le enough to lin k to

any available data sources.

Since components are essentially evolved objects, the th ree-tie r arch itecture requires

the c lient to communicate w ith these components in an object-orien ted manner — i.e. v ia

m ethod invocations. In th is new architecture, therefore, the RPC mechanism is hidden from

the program m er, and replaced by a remote m ethod invocation pro toco l, because RPC does

not d ire c tly support m ethod invocations [Szy98]4. A system o f proxies is used to allow the

client to invoke methods on a surrogate proxy object in exactly the same way as methods are

invoked on local objects. The proxy object supports the same interface as the m idd le -tie r

component. The client program w il l request services from the m idd le -tie r components by

means o f locally-based m ethod invocations, and receive replies in the fo rm o f re tu rn values.

A l l components need to be housed w ith in containers, which can provide essential services

required by the components, such as, for example, life-cycle management, and adm in is tra

tion functions. A n in fras truc tu re p rov id ing such services is called a framework? .

4 Method invocations require two things not provided by RPC: runtime inspection of the class of the
receiving object to choose the method to be invoked; and the inclusion of a reference to the receiving object
as a method parameter [Szy98].

5Lewandowski defines a framework as being “a large design patte rn capturing the essence o f one specific

kind o f object system” [Lew98]. Froehlich et al. define it as a reusable design and implementation of a

Software Components 19

The object-orien ted com m unity o rig in a lly used the constructs o f object o rien ta tion to

provide an object-oriented fram ework to house m idd le -tie r components, g iv ing b ir th to com

ponent fram eworks6. The component fram ework provides support fo r the common func tion

a lity w h ich is required by a ll components. Specific components can provide specific solutions,

and make use o f the fram ework to provide common features such as com m unication and

life-cycle management. The fram ework imposes certa in standards, and allows components

to be “ plugged in ” , to allow them to in te ract w ith groups o f o ther components and the

container itse lf in a standard way[Szy98].

Frameworks proved to be a suitable idea for tak ing care o f some o f the “w ir in g ” problems

o f components, bu t had th e ir lim ita tio n s when p rov id ing for o ther special needs, which

became clear as people gained experience in the use o f th ree-tie r component-based systems.

The m idd le tie r o f an app lica tion could be servicing hundreds or thousands o f concurrent

users, and the types o f problems to be dealt w ith could be [RS99]:

• How are client requests to be load balanced?

• How can system up tim e be guaranteed in the face o f system breakdowns and necessary

adm in is tra tion?

• Is i t possible to ensure th a t data in the lower tie r remains consistent when being used

by m u ltip le users?

• How are client requests transferred to other machines in the case o f a fjailure?

• How w ill clients be authenticated and authorised to perform secure operations?

The object-oriented com m unity have had no h is to ry o f dealing w ith these types o f problems,

and in order to solve them , they tu rned to the database industry. The fo llow ing section

describes the so lu tion to th is problem .

2 .2 .3 F r o m a C o m p o n e n t - F r a m e w o r k M id d le T ie r t o

C o m p o n e n t - O r ie n te d M id d le w a r e

Transaction Processing M on ito rs (T P M s), such as IB M ’s CICS [GR93], have vast experi

ence in dealing w ith the issues not dealt w ith by component frameworks — in the context

o f database systems — and the obvious so lu tion to dealing w ith these issues for m idd le -tie r

components is to give component frameworks special T P M capabilities. T P M s are very

system or subsystem [FHLS99]. They describe a framework as being implemented as a set of abstract classes
which define the core functionality of the framework, together with concrete classes for specific applications.
Froehlich et al. point out that frameworks are intended to provide a generic solution for a set of similar
problems, with applications providing a specific solution for a specific problem.

6 “A dedicated and focused architecture, usually a few key mechanisms, and a fixed set of policies for
mechanisms at the component level” [Szy98] (p275).

Software Components .20

good at m a in ta in ing and u tilis in g scarce resources such as database connections, and at co

o rd ina ting d is tribu ted transactions. Th is led to a na tu ra l m arriage o f component fram ework

groups and T P M groups, in order to create a new product which would be able to handle

components, be scalable enough to contro l many d is tribu ted transactions, and deal w ith the

issues mentioned in the previous section [Ses98b].

T h is new in fras truc tu re has been called by m any d ifferent names, often denoting the

specific vendor im plem entation. For example, Dolgicer [Dol98, Dol99] calls i t an Object

Transaction M o n ito r (O T M), and Sessions [Ses98a] calls i t CO M W are. The different names

denote the same functiona lity , im plem ented in d ifferent ways — which w ill be explained

fu rth e r in Section 2.4. In th is tex t, i t w il l be referred to as Com ponent-Oriented Middleware.

T h is concept w ill not have an associated acronym, since the one w hich read ily comes to m ind

has already been used by M icrosoft to describe th e ir specific component model.

The concept o f a c o m p o n e n t m o d e l w ill, in this text, re fer to the fu l l stan

dard encompassing the component defin ition , packaging, conta iner architecture,

component-oriented middleware and com m unication in frastructure.

The com ponent-oriented m iddleware in fras truc tu re takes care o f transaction management,

component life-cycle management, supports component packaging and d is tr ib u tio n , com

m unication, sca lab ility and security. The consequences o f th is are tha t:

• The physical location o f the m idd le -tie r components is u n im po rtan t — they are used

as i f local to the client.

• M idd le -tie r components can be dup lica ted on, or moved to, other servers to meet

increased demand, and to help guarantee required uptim e.

• Process and machine boundaries are more easily crossed [Pri99]. P la tfo rm id iosyn

crasies have ceased to be relevant because a standard in te raction mechanism — the

remote m ethod invocation — provides a standard way o f accessing any component

instance, anywhere.

• A m idd le -tie r persistence service w ill ensure consistency o f the underly ing data sources

in the presence o f d is tr ib u te d transactions.

• Security w ill be handled at the m idd le tie r, ra the r than at the client tie r, decreasing

the chance o f unauthorised access.

• Best o f all, the app lica tion program m er no longer has to be concerned about systems

issues such as security or transaction boundaries.

There are two approaches to p rov id ing access to these, and other, component-oriented m id

dleware services:

Software Components .21

1. The firs t, followed by C O R B A Versions 1 and 2, is to provide them by means o f

d ifferent App lica tion Program m er Interfaces (AP Is) — as illu s tra te d in F igure 2.4.

The client has to invoke the d ifferent services — such as transaction management —

Client Machine Server Machine

Client Process Server Process

API APIAPI

Cmp
Inst

APIProxy

Figure 2.4: Middleware by API [SesOO]

in order to apply, the service i t requires to the component instance. T h is approach

allows the c lien t-app lica tion program m er to exercise contro l over these aspects o f the ir

component usage. C O R B A was designed to be extensible, so th a t organisations could

buy on ly those parts o f the C O R B A im plem enta tion they required, and services they

would use.

However, m idd le -tie r components on ly rea lly become an asset i f they ease the task

o f the app lica tion developer. W h ile one can understand the m o tiva tion behind the

ex tens ib ility and f le x ib ility o f the A P I approach, i t does mean th a t the application

program m er has a great deal o f com plexity to deal w ith which has li t t le to do w ith the

actual fu n c tio n a lity o f the program , and which should be the responsib ility o f a systems

program m er. The a lte rna tive approach, in terception , deals w ith th is com plexity on

beha lf o f the programm er.

Client Machine Server Machine

Client Process

Proxy

Server Process

Interception Cmp
Inst

Figure 2.5: Middleware by Interception [SesOO]

2. The second approach to provide these services au tom atica lly is by means o f intercep-

Software Components .22

tio n a lgorithm s — as illu s tra te d in F igure 2.5. The m o tiva tion behind a component

run tim e environm ent is th a t the com ponent’s needs are declared by se tting component

properties, instead o f these issues being managed program m atica lly. The component-

oriented m iddleware can fu lf i l l these properties, w ith o u t requ iring any effort from the

client. The result is rap id app lica tion development, and a shorter learning curve for

the c lien t-app lica tion program m er.

T h is approach has been followed by b o th M icroso ft and Sun in the ir component m od

els. The in te rception approach requires the server component to be housed w ith in some

sort o f container, so th a t a ll client requests are intercepted and transaction bound

aries can be enforced, life-cycle management can be achieved, and so on. The latest

C O R B A specification — Version 3 — also specifies the use o f in terception , ra ther than

AP Is, to invoke these services.

Sun provides the Enterprise Java Beans (EJB) com ponent-oriented m iddleware spec

ifica tion . M icroso ft provides C O M + . The O bject Management G roup (O M G 7) has

accepted the advantages o f the second approach, and has released its th ird version,

which also applies the in tercep tion approach to p rov id ing component services.

2 .2 .4 M o v in g t o N T ie r s — T h e Im p a c t o f th e W o r ld W id e W e b

The advent o f com ponent-oriented m iddleware was soon followed by the tremendous success

o f the Web. O rganisations began to see the need for W eb-centric applications. There are

two ways o f m aking the com ponent-oriented m iddleware web-wise:

One op tion is to add another tie r to these systems, w ith the web server com ing between

the client and the com ponent-oriented m iddleware. The N -tie r architecture was thus born

— w ith a t ie r fo r each m a jo r service provided in the m idd le tie r, occurring between the

client and the data tie r. The new arch itecture is shown in F igure 2.6.

The other op tion is to make the com ponent-oriented m iddleware itse lf Web-wise, leading

to the application server concept. A p p lica tio n servers are often produced by professionals

who have a lo t o f experience in the T P M world, such as IB M and B E A Systems8. The

te rm “app lica tion server” w il l be used th roughout th is d isserta tion to refer to web-centric

m idd le -tie r component-oriented m iddleware.

Once again, there are m any names for w hat is essentially the same concept. Taylor and

Vaughan [TV99] po in t ou t th a t the te rm “app lica tion server” is often associated w ith the

Java language. I t is ce rta in ly true th a t the te rm “app lica tion server” is many th ings to

many people, w ith as many problems in p inn ing down its true nature, as was experienced in

p inn ing down the te rm “ob jec t” m any years ago [Cha99b, VL99]. Indeed, IB M called the ir

CICS servers, “ app lica tion servers” , long before the current m idd le -tie r component-oriented

flavour was attached to the term .
7 w w w . o r a g . c o m
8 w w w . b easys. com

http://www.orag.com
http://www.beasys

Software Components .23

User

Interface

Logic

Data

O
User

Client
ApplicationClient

Machine

W eb ServerServer

Machine

O w O
Components

Server
Machine

Database

Figure 2.6: The N-Tier Architecture

Software Components .24

Even though the exact nature o f the te rm “ app lica tion server” may be d ifficu lt fo r people

to agree on, i t is generally accepted as a te rm fo r a web-wise m idd le -tie r s tructure , which is

able to provide a re liable service and guarantee required ava ilab ility . There is cu rren tly no

argum ent about the fact th a t app lica tion servers play an increasingly im p o rta n t role in the

development o f enterprise applications [Mes98].

2 .2 .5 S u m m a r y

Previous app lica tion architectures — m onoliths and client-server — fa iled to provide sys

tems which were reliable, easily m ainta inab le and flexib le [BF97]. The three- and N -tie r

architectures recognise the fact th a t business rules are independent bo th o f the user in te r

face and the data source. These architectures offer organisations rich rewards because the

m idd le tie r, being specialised, can offer the fo llow ing run tim e services [Dol98]:

• load balancing, which m igh t be delegated to the operating system;

• high ava ilab ility and recovery;

• security;

• component management and m onito ring ;

• database connection management, shared cache and pooling;

• state/session management;

• result caching;

• location and service transparency.

T h is section has attem pted to give an extrem ely condensed view o f the vast fie ld o f dis

tr ib u te d applications, the in fras truc tu re th a t supports them, and the role th a t components

p lay in these applications. The fo llow ing section w ill take a closer look at the evolution o f

software components from the ob ject to the m idd le -tie r business-logic component.

2.3 The Evolution of Com ponents

Th is section w ill give a synopsis o f the advent and uptake o f components by the com puter

software industry. W h ile app lica tion architectures were m oving from tw o-tie r to N -tie r

systems, a paralle l movement in the component w orld was tak ing place, m oving components

from specialised to generalised entities.

Section 2.1.1 described the differences between objects and components. Basically, ob

jects were s im ply too fine-grained, not easily independently deployed, and had to be used

from w ith in the same language. The component concept dealt w ith these problems and

Software Components .25

offered in te rope ra b ility regardless o f im plem enta tion language, and the chance o f some dis

c ip lined reuse.

Specialised components have been used for qu ite some tim e in a irc ra ft, power and au

tom obile industries. However, the component industry, in the interests o f in teroperab ility ,

realised th a t they needed a standard way to access the services o f components. The fo llow ing

decisions were made:

1. In the firs t place, components would e xh ib it the very valuable p roperty o f encap

sulation. To enforce th is , a ll components would be accessible on ly v ia an interface,

thus separating the behaviour de fin ition from the im plem enta tion . T h is also allows a

measure o f po lym orph ism to be applied, as well as enabling upda ting o f components

w ith o u t in te rfe ring w ith c lien t-app lica tion code.

2. Secondly, a standard mechanism for accessing the services offered by these components

had to be decided upon, and since the above-mentioned interface mechanism was used

to app ly encapsulation, the standard mechanism would be m ethod invocations.

3. Whereas there had been mechanisms for applications to in te ract p rio r to components,

for example, by means o f the socket mechanism, or messaging — as is done by IB M

MQSeries (em ail for applications) — the popu la r component indus try in it ia lly only

used synchronous method invocations to interoperate. W h ile asynchronous commu

n ica tion often achieves be tte r performance than synchronous, such systems are very

complex to design and debug [Szy98]. (The latest M icrosoft component model, C O M + ,

allows asynchronous com m unication, as does C O R B A Version 3 — bu t these are la ter

innovations.)

The advent and grow th o f the component indus try can be traced from the in it ia l embedding

o f components w ith in a single process, followed by the use o f components between different

processes on the same machine, to the current use o f components on different machines.

The fo llow ing subsections w il l trace these stages.

2 .3 .1 C o m p o n e n ts E m b e d d e d w i th in a P ro cess

The firs t non-specialised and popu la r component approach to be seen in general use was

found in com pound document models. One example o f th is is the Object L in k in g and Em

bedding (O LE) model from M icrosoft. O LE documents embed or lin k to other subsid iary

documents. W hen the user activates the subsid iary document, the necessary app lica tion is

started, and the user in teracts w ith i t w ith o u t leaving the context o f the surround ing doc

ument. Com pound documents are more user-centred, since they app ly a docum ent-centric

approach ra the r than an app lica tion-centric approach [Szy98]. T h is means th a t the end-user

does not have to be concerned w ith the pa rticu la r app lica tion used to m anipu la te different

parts o f the document — tex t, c lip a rt or diagrams, for example — bu t can merely be

Soft ware Com ponen ts .2 6

concerned w ith the docum ent itself, leaving these details to the app lica tion being used to

create the document. A no ther com pound docum ent example is the Web, w ith components

embedded in Hypertext M arkup Language (H T M L) pages which summon plug-ins to per

m it user in teraction. The s truc tu re o f an in-process component, which could represent an

embedded component w ith in a document, is shown in F igure 2.7. The sm all clear circles

represent component interfaces. The filled circles represent references, or pointers, w ith in

the process.

C lien t M achine

C lien t Process
In-Process

Server

a Cmp
Inst

Figure 2.7: M icrosoft view of Component w ith in the Same Process [Cha96]

Soon a fter the advent o f O LE, V isua l Basic introduced 16-bit Y B X controls, which

were components o rig ina lly intended to a llow developers to create custom Graphical User

Interface (G U I) objects for use w ith in V isua l Basic. However, developers soon started to

use them to create other kinds o f software components. They were then replaced by 32-b it

O C X controls, and later by A c tive X as the standard for W indows software components

[Kar98].

"Set" Methods

? - O
"Get" Q

Methods (—
G

? -

Figure 2.8: Structure o f GUI Components

—V) Register
Interest

~ 0 Methods

Events

In O ctober 1996 JavaSoft released JavaBeans [Eng97j. JavaBeans are s im ila r to A ctiveX

controls because they are deployed at the desktop, bu t whereas A c tiveX controls can be

Software Coniponents .27

developed in any of a number of languages, JavaBeans are developed in Java. The general
structure of the GUI components is shown in Figure 2.8. Each of the components must have
methods which can either set or query its properties. It also needs methods which allow the
container process to register an interest in user actions 011 the GUI; and it generates events
as a result of those user actions.

2 .3 .2 C o m p o n e n ts in D i f f e r e n t P ro c e s s e s

Microsoft released their COM standard in the early nineties. This standard allowed inter
process use of components, as shown in Figure 2.9. While the components had all to be
011 the same machine, the COM standard provided a mechanism which uniquely identified
components and their interfaces, and dynamically discovered the interfaces implemented by
other components. A component loader sets up component interactions, and the interaction
is relatively painless for the programmer using the components especially when using a
language such as Java.

Client Machine

Interprocess
Communication

Proxy '
for local
object

Client Process

Stub

Server Process

Cmp
Inst

Figure 2.9: Components on the Same Machine [Cha96]

2 .3 .3 C o m p o n e n ts 011 D i f f e r e n t M a c h in e s

While Microsoft was busy perfecting their component standard for desktop components,
another parallel movement was working 011 tlie idea of distributed interoperability. This
would allow components 011 different machines to make use of each other’s functionality, as
shown in Figure 2.10.

The Advanced Networked Systems Architecture (ANSA) originated in a project under
taken by a group of software development organisations within the United Kingdom A Ivey
Technology Programme in 1986 [ANS89]. ANSA wanted to provide an architecture for
distributed systems which would be portable across different platforms, using different op
erating systems. They also worked towards providing a modular structure with maximum
reuse of functionality. ANSA supported a range of distributed functions such as naming,

Software Components .2 8

concurrency, and fault handling. Their basic premise was that architecture should adopt
open standards wherever possible, and that this architecture should operate in such a way
that the fact of distribution should be transparent to application programmers and users.

The Object Management Group (OMG), a software consortium founded in 1989, con
tinued the work of ANSA, and started working towards a set of standards with the aim
of promoting interoperability on all levels of an open market for ‘objects’ [Szy98]. They
were working on specifications for a complete distributed object platform. Their focus was
somewhat different from Microsoft’s in that they were working 011 a specification which
could be implemented by many different vendors, with the main purpose of allowing them
to interoperate. Microsoft has always been quite open about the fact that in order to use
their technology you have to use their operating system. They make 110 apologies for this,
claiming that it makes their system more efficient, and that their approach is better than
a set of standards which they claim to be unproven. A debate 011 merits of the relative
positions is outwith the scope of this discussion.

Client Machine Server Machine

Client Process Server Process

Proxy ^
for local
object

a •a Cmp
Insti RPC Stub

Figure 2.10: Components on Different Machines [Cha96]

After releasing their first standard in 1991, the OMG released their widely accepted and
implemented CORBA Version 2 de ju re standard in 1995. The latest standard, Version
3, was released in 1999. CORBA objects, while satisfying many of the requirements for
components, are referred to simply as objects.

Microsoft quickly realised the potential for distributed components and released DCOM,
which allowed the use of components between different machines. COM/DCOM soon be
came a standard for distributed Windows software components. DCOM treats the cen
tralised option, where components are 011 the same machine, as a special case of the dis
tributed option, as recommended by Stroud [Str93]. This approach allows the user to use
components regardless of location.

Sun released the Java/RM I distributed object protocol, which could be used either 011

the same machine, or between different machines. This required both processes to have been
written using Java, and made use of a naming mechanism called the RMIRegistry to allow

Software Components .29

processes to locate components.

The use o f d is tribu ted components in th is way, which allows the user to use the remote

component instance as i f i t were local, remains an illus ion . In fact, th is mode o f operation

invalidates a num ber o f assumptions which could be made i f the ob ject were loca lly available.

The assumptions are [ANS89]:

• Failure: more fa ilu re modes are possible fo r remote m ethod invocation than fo r local

m ethod invocation. (M ore about th is in Chapter 3.)

• B ind ing : configuration becomes a dynam ic process, w ith b ind ings carried out at ru n

tim e.

• Concurrency: mechanisms are required to impose sequentia lity when resources are

shared by many clients.

• Asynchronous com m unication: required to support p ipe lin ing , and workflow processes.

• Heterogeneity: requires a common data representation for in teractions between d iffe r

ent systems.

• Replication: can provide ava ilab ility and dependability.

• Location independence: necessary to enhance the a va ila b ility and re lia b ility o f the

system.

Local op tim isations can be perform ed i f the object in use is local, b u t local should be treated

as a special case o f d is tribu ted , not vice versa [Str93]. Such optim isations should never be

im plem ented: at a source code level, bu t ra ther a t a com piler level [ANS89]. The fo llow ing

section w ill take a closer look at the three prom inent component models.

2.4 Prom inent Component M odels

In the early days o f components many organisations made use o f the general component

concept to develop the ir software. A n example o f th is is OpenDoc, from Apple. OpenDoc is

a component fram ework fo r visual components, w ith the components being called OpenDoc

parts. OpenDoc d id not conquer the m arket place, even though i t was far ahead o f the field,

m a in ly because o f m arketing fa ilu re [Szy98]. A no the r example o f a non-standard component

approach is B lackBox, which is also a component fram ework fo r visual components. N e ither

o f these component models have made a significant im pact on the market.

The current component w orld sees three m a jo r players, JavaBeans/Enterprise Java

Beans (EJB) from Sun, Common O bject Request B roker A rch itec tu re (C O R B A 9) from

9 While CORBA is often referred to as an object model, it has most of the features of component models, as
discussed in the previous sections. The main reason why CORBA is often not considered to be a component
model is because it is not based on the concept of an interceptive container architecture. This is a feature of
the other two component models but it is not an essential component model feature.

Software Components .30

the O M G , and C O M + from M icrosoft. These standards are a ll s t i l l evolving, w ith C O R B A

having the oldest component standard (since 1991), and M icrosoft having the most m ature

interception-based com ponent-oriented m iddleware (since 1996). Each o f the models w ill be

discussed b rie fly in tu rn in the fo llow ing subsections.

Each component model has d ifferent views about w hat a component is, how i t should be

implem ented, how components should be located, how interfaces should be defined, and how

components should com m unicate w ith one another and th e ir environm ent. A lthough there

are differences in the way th a t each o f these works, there is a certa in generic fu n c tio n a lity

which is required by all. Each has the fo llow ing essential features [SesOO]:

1. A component architecture. The architectures focus on component packaging and in

te roperab ility . Th is includes:

(a) the de fin ition o f an interface de fin ition language, used by the designer to describe

the component.

(b) a remote method invocation protocol. Th is pro toco l specifies how the system w ill

support remote m ethod invocations on d is tribu ted objects.

(c) features for interoperating w ith o ther component models, or the same one runn ing

on a different p la tfo rm .

(d) a nam ing protocol which enables the client app lica tion to search for a pa rticu la r

component.

C lien t applications use th is p a rt o f the component m odel to understand the compo

nent’s features.

2. A component run tim e environment. T h is is the container architecture, discussed fu lly

in Section 2.2, which provides an environm ent for components. Components obey the

rules o f the container, and com m unicate w ith the container in a standard way. They

also derive certa in properties from th e ir container [Pri99].

3. A dm in is tra tion tools — to manage the system and configure components.

4. In teroperability service — w hich allows the component run tim e environm ent to com

m unicate w ith external services. These could include [P ri99]:

(a) Persistence. T h is service provides a un ifo rm mechanism th a t allows transactions

to be perform ed over one or more persistent data stores.

(b) Licencing. T h is ensures th a t the users o f components have paid to use it.

(c) Security. Th is service ensures th a t the client is ac tua lly authorised to use the

component, and controls privileges for different users.

(d) Messages. T h is service supports asynchronous messaging.

Software Components .31

(e) D istribu ted garbage collection. T h is service au tom a tica lly deallocates d is tribu ted

objects when they are no longer being used.

B u ilt upon these s im ila rities are differences in perspective, as w il l be evidenced in the dis

cussions on the prom inent component architectures in use today.

In order to illu s tra te the s im ila rities and differences between these models an example

w il l be introduced. Assume we have a server component called Customer-Component, which

holds the name and password o f an organisation ’s clients. T h is component w il l in teract w ith

a re la tiona l database which stores in fo rm a tion about customers. For the sake o f s im plic ity ,

the Customer re la tion has on ly two a ttribu tes , name and password. The component supports

two groups o f methods. The firs t group consists o f getNameO and g e tP a ssw o rd O , which

are invoked to get in fo rm a tion to validate a client. The second group has the methods

setNameO and se tP assw ordO w hich are used to set up in it ia l accounts fo r clients, or to

change passwords.

2 .4 .1 T h e O M G ’s C o m p o n e n t M o d e l

The O M G is a software consortium , whose 800 current members have a shared goal o f

using integrated software systems [See98]. O M G members came together because they

wanted to find a way for d is tribu ted ob ject systems im plem ented in d ifferent languages on

d ifferent p la tfo rm s to be able to in teract w ith each other. The firs t version o f the C O R B A

specification was released in 1991 and the latest C O R B A standard, Version 3, was released

in 1999.

The O M G ’s m ain focus th roughou t th e ir standards development has been th a t o f in te r

operab ility . M any organisations have been involved in the development o f th e ir standards.

Th is means th a t respected experts in in d u s try and com puting science have partic ipa ted and

th a t the poss ib ility for a rea lly good standard exists. However, th e ir standards are complex,

and often suffer from a “please everyone” syndrome. B ig software firm s ro u tin e ly have the ir

own unique ideas about how th ings ought to be done, and in teg ra ting strong opinions from

different experts is no sm all task. The result is an often overly complex specification, w ith

fa r more features than should be incorporated.

T h a t said, C O R B A has been w ide ly accepted in in d u s try today, and m any im plem en

ta tions o f the standard exist. P ritch a rd avers th a t the C O R B A vendors are respected and

th a t the ir products are perceived to be more appropria te for m ission c r itic a l applications

than C O M [Pri99].

2 .4 .1 .1 A rc h ite c tu re

The C O R B A architecture is illu s tra te d in F igure 2.11. The client and the C O R B A object

in teract w ith the Object Request B roker (O R B) by using an In terface D e fin itio n Language

(ID L) interface. Each C O R B A object must have its interface specified in th is ID L , and

clients on ly ever see th is interface — never the im plem entation. T h is separation guarantees

Software Components .32

Object Request Broker

Application
Objects

CO RBA
Facilities

c p

O O l_Z
CO RBA Services

Figure 2.11: The CORBA Architecture [Sie98]

the s u b s titu ta b ility o f the object. The O RB bu ilds on top o f the network transport, using

its own In te rne t In te r-O R B Protocol (H O P) to com m unicate w ith o ther ORBs. T h is is

illu s tra te d in F igure 2.12.

IDL IDLIDL IDL

O RB ORB

MOP

Client Client
Object

Implementation
Object

Implementation

Figure 2.12: The InterORB Protocol

W hen a client makes a request, the request w il l be intercepted by the O RB, and passed

to the target object. T h is happens for a ll objects, whether local or remote. The ORB is

provided by means o f lib ra ry routines which manage bo th in-process and remote invocations

transparently. C O R B A supports d is tr ib u tio n by having shared In terface Repositories (IR)

which ensure tha t a ll ORBs on the network can gain access to a ll required ID Ls.

C O R B A makes use o f common object service specifications (CORBAservices), and a

set o f common fa c ility specifications (C O R B A fac ilities) to broaden its focus and provide

specification for services to be used on top o f the “w ir in g ” provided by the ORB. The

services provide th ings such as a nam ing service, transaction management, concurrency and

other m iddleware requirements. The fac ilities w hich provide support fo r the enterprise by

specifying standard objects fo r standard functions, used w ith in a dom ain [Sie98]. Examples

o f these are Business Objects, F inance/Insurance and M anufacturing .

C urrent C O R B A im plem enta tions include O rb ix from IO N A , V is ib r o k e r from V is i-

genic and SOM from IB M 10 [Szy98]. Very few im plem entations exist fo r the services and

10SOM follows the CORBA specification in some respects, but has added many of its own extensions so

Software Components .33

fac ilities. I t is in the nature o f vendors to a tte m p t to d iffe rentia te th e ir p roduct [Pri99], and

most organisations w ill therefore use the same ORB th roughout th e ir organisation [AST99],

causing vendor lock-in, which surely was not w hat O M G o rig ina lly envisaged.

2 .4 .1 .2 M id d le - T ie r A r c h ite c tu r e

C O R B A ’s (Versions 1 and 2) approach to p rov id ing the services required o f the m iddle

tie r are cu rren tly based on the provis ion o f an A P I. However, some C O R B A vendors have

incorporated run tim e and deployment services in to th e ir C O R B A im plem entations — even

though th is is not covered by the specification. These w ill often be offered to customers as

an a dd ition a l option , to enhance the sca lab ility , re lia b ility and a va ilab ility o f the product.

C O R B A has recently released th e ir C O R BA Component Model, which changes the ir ap

proach to p rov id ing services from the A P I to in terception , the mechanism used by the other

two com ponent models [SesOO]. T h is in te rcep tion is com pletely inv is ib le to the component

client, w ith a ll details being taken care o f by the underly ing architecture. They also provide

a specification for an E J B /C O R B A bridge, which allows a c lient to use a C O R B A compo

nent as i f i t were an EJB component, and vice versa. A t th is early stage no im plem entations

o f th is specification exist so i t is d iff ic u lt to te ll how in d u s try is going to react to th is latest

standard.

2 .4 .1 .3 E x a m p le

C O R B A version 2, fo r which current im plem entations exist, allows interfaces to in h e rit from

m u ltip le interfaces. Thus in C O R B A we w il l define three interfaces for the example: the

firs t interface Customer 1 for the firs t group o f methods, the second interface Customer2 for

the second group, and the th ird interface Customer inherits from bo th o f them. The client

view is shown in F igure 2.13.

Customer
Customer
ImplementationClient

S E R VE R

Figure 2.13: The CORBA Client View

C O R B A Version 3, released in 1999, allows a C O R B A object to have m u ltip le interfaces.

In th is case, the Customer interface w ould not be necessary, and the clients would have access

to e ither one, or bo th , interfaces for CustomerComponent .
that it is not a “pure” CORBA implementation [TMdlADF99]

Software Components .34

2 .4 .2 S u n ’ s C o m p o n e n t M o d e l

Enterprise Java Beans (E JB), the latest contender in the com ponent-runtim e m iddleware

m arket, is Sun’s specification for a server component m arketplace [RS99]. EJBs were de

signed to support the development, deployment and management o f transactiona l business

systems using d is tr ib u te d objects b u ilt in the Java language [Kar99]. Sessions sees E JB as

Sun’s a ttem p t to provide a po rtab le v ir tu a l machine for the m iddle tie r [SesOO]. Th is is

because o f Sun’s focus on p o rta b ility . The JV M , Sun’s portab le v ir tu a l machine, has been

critic ised on the basis o f performance and fu n c tio n a lity — at least on the user interface level

[SesOO] — which may have con tribu ted to the delayed uptake o f EJBs in industry.

Programmers who enjoy using Java w il l like developing EJBs. However, th is technology

has been critic ised fo r the same reasons th a t reservations about C O R B A exist. People

from several d ifferent com puter organisations were involved in the development o f the EJB

specification, and i t does seem to have the same sort o f flavour o f keeping everyone happy

by inco rpora ting a ll sorts o f d ifferent features.

E JB is the youngest technology in the com ponent-oriented m iddleware club, and i t

remains to be seen whether i t w il l be able to perform as required in electronic commerce

applications.

2 .4 .2 .1 A rc h ite c tu re

EJB SERVER

RMI JNDIr

V
Distribution J

EJB Container

Security

ACL

Entity &
Session
Beans

Config
urability

Transaction
Management JTS

/

Figure 2.14: Enterprise Java Beans [PvV99]

The EJB component model [Tho97, M ic98a] is illu s tra ted in F igure 2.14. A ll EJBs must

be developed using Java. T h is language is used to develop bo th the interface, and the bean

im plem entation. There is no interface de fin ition language to be learnt by the program m er

— as is required for C O R B A and CO M . The client locates the required beans by using

the Java Nam ing and D irec to ry Interface (JN D I) which provides a nam ing service. Th is is

Software Components .35

layered on top o f Remote Method Invocation (R M I), which is used to com m unicate w ith the

server.

EJBs run w ith in a component run tim e environm ent called an E JB container. EJB

containers are typ ica lly provided by any server container th a t satisfies the EJB specification.

Transaction coord ination is provided by the container in te racting w ith the Java Transaction

Service (JTS), which is essentially an im plem enta tion o f the OM Gs Object Transaction

Service (O TS). A ll bean requirements, such as security, transactions and so on, are specified

in a deployment document which defines the bean configura tion requirements.

There are many im plem entations o f the EJB standard. Examples are the Tengah server

from W eblogic11, P ram a ti from P ro to n 12, and PowerSystems from Persistence 13.

2 .4 .2 .2 M id d le -T ie r A rc h ite c tu re

The container housing any EJB acts as an interface between the E JB and the client invok

ing the bean. Each bean w il l typ ica lly have two d is tin c t interfaces, a Home interface (for

managing bean instances) and a Remote interface (for app lica tion specific methods). Th is

would seem to be a weakness o f th is model, since d ifferent roles could conceivably require

more than two interfaces. There are two d is tin c t types o f bean:

1: E n tity Beans: These beans are persistent objects, which model data in the underly ing

data tie r. For example, a cred it card bean would be an e n tity bean, because i t is m od

e lling the cred it card data in the database. Each bean declares its requirements, for

example, transaction iso la tion required, or security procedures, in a special descriptor

object. EJB containers w ill provide the necessary m iddleware services autom atica lly,

as d irected declarative ly by the in d iv id u a l components. There are two kinds o f en tity

beans:

(a) Bean-Managed Persistence — persistence fo r th is bean is managed by the bean

itself. The bean m ust provide methods which w ill be invoked by the container to

ob ta in data from the database, and to update th is data when changed.

(b) Container-Managed Persistence — The persistence fo r th is bean is provided by

the container. The deployment descrip tor document w ill specify the linkage be

tween the bean state and the underly ing data structure ; and the container ensures

th a t the data is always consistent and correctly updated in the database.

2. Session Beans: A session bean models a business process, and executes on beha lf o f

a single client. Th is could be a cred it card verifica tion , or a shopping basket fo r an

In te rne t bookstore. There are two types o f session beans:

(a) Stateful — A s ta te fu l session bean w il l hold state between service requests.

11weblogic.beasys.com
12w w w .pramati.com/products.htm
13w w w .persistence.com

http://www.pramati.com/products.htm
http://www.persistence.com

Software Components .36

(b) Stateless — A stateless bean on ly offers a service. W hen a client uses a state

less bean the c lien t has to take care o f a ll state w ith in th e ir program , and pass

references to the state to the bean to be operated on. T h is bean is identica l in

p rinc ip le to C O M + objects.

2 .4 .2 .3 E x a m p le

To im plem ent the example using EJBs, the firs t th ing to decide is the type o f bean to be

implem ented. Since th is bean w il l be m odelling a database record, an en tity bean w il l be

used. The choice between bean-managed and container-managed persistence w ill depend

on how complex the underly ing data structu re is. Since th is data structu re is very simple,

container-managed persistence can be applied. T h is makes i t far sim pler to im plem ent the

bean, since no database access code must be w r itte n — everyth ing is done by the container.

Every bean has two interfaces, so the Customer Component bean has home interface

CustomerHome and remote interface Customer. The CustomerHome interface implements

factory and finder methods, which w il l be used e ither to create or locate ex is ting EJBs. The

Customer interface w ill encompass methods from b o th groups m entioned in the in troduc tion .

The client view is 1 shown in F igure 2.15. Th is means th a t any c lient p rogram m er w ill be

given access to the fu ll fu n c tio n a lity o f the component, so th a t the security mechanism w ill

have to be used to ensure th a t .clients do not call methods they have no righ t to call.

EJB Container
CustomerHome

Customer

EJB
Home
Object

EJB
Remote
Object

Customer
Component

Client

Figure 2.15: The EJB Client View

2 .4 .3 M ic r o s o f t ’s C o m p o n e n t M o d e l

T h is component m odel’s m ain prob lem is its nomenclature. I t started o ff as “ A c tive X ” ,

which cannot be described as a descriptive name for a software component. Then the Com

ponent Object Model (C O M) was in troduced — and used two words in the name, component

and object, which are meant to denote com pletely d ifferent concepts. The associated compo

nent run tim e environm ent is called M icroso ft Transaction Server (M TS), another m isnomer,

since i t does not handle transactions at all. I t is a component run tim e environm ent, and

delegates responsib ility for transactions to the D istribu ted Transaction C ontro lle r (D T C).

Software Components .37

M icroso ft’s component m odel was updated and the latest model, called C O M + , was released

in 1998. Th is is an um brella name for many d ifferent products m aking up th is component

model. Having said th is, i t must be adm itted th a t th e ir component model is innovative and

m ature, and i f M icrosoft has its way, w ill dom inate the m iddleware component market.

2 .4 .3 .1 A r c h ite c tu re

COM+

Load Balancing
In Memory DB
Object Pooling
Queued Components
New Event Model

ActiveX

Ir
I OLE

I

COM

Admin
Services

DCOM

Translation Services
OLE DB LDAP

Management Layer Services

Security MSMQ MTS

Communication Services

Registry

Figure 2.16: The COM Architecture [RE98]

To make things clearer, a lis t can be given, illu s tra te d in F igure 2.16, o f the m ain

M icrosoft Component Services [Raj99, TK 98, RE98]:

• O LE — standard for com pound document technology. The outer docum ent acts as a

container, w hile the o ther da ta inside the docum ent act as a server. The server e ither

embeds its data inside the document or links i t — in w hich case the component w ill

rem ain in its own file, w ith ju s t a lin k being m ainta ined in the com pound document.

M icrosoft is not the sole vendor supporting th is technology [Cha96]. The user o f the

compound document can ed it the embedded component where i t is — called e ither

in-place activation or visual editing.

• O LE DB provides access to data in databases, files etc. I t provides a set o f classes

Software Components .38

and interfaces which can be used by the developer to access the data which could be

in various d ifferent formats.

• A c tive X — refers to the in teg ra tion o f components in applications. Examples o f th is

are components used w ith in web applications. A c tiveX controls are generally used to

display some v is ib le e n tity a t the user interface. They also have special methods which

allow the client program m er to examine and set the values o f certa in properties which

probab ly have bearing on th e ir appearance.

In add ition , the A c tive X contro l also needs a mechanism which w ill allow i t to com

m unicate events to the client program . For th is purpose the A c tiveX contro l w il l have

methods which allow its container (client program) to register an interest in certa in

events. W hen the event occurs, the A c tiveX contro l w ill invoke a special method

w ith in its container to signal the event.

• C O M — the in teg ra tion in frastructu re , used to im plem ent components th a t in teract

e ither w ith in a single address space, or between processes on the same host. I t supports

O LE and A ctiveX , and other M icrosoft Services such as D irec tX . C O M can be said

to be the foundation on which a ll M ic roso ft’s component software is based [Szy98].

I t accesses other C O M objects v ia interface pointers, which allows data and process

encapsulation and transparent rem oting. Its interfaces are im m utab le so an app lica tion

. w ith a po in te r to an outdated interface w ill not fa il because a new interface has been

added.

• D C O M — extends C O M to enable processes on d ifferent machines to interact.

• M TS — the component run tim e environm ent in w hich components live, which watches

requests coming in to components and partic ipates in processing them, p rov id ing se

curity , au tom atic transaction management and a scaleable environm ent. The in it ia l

M icrosoft component run tim e environm ent, M TS , combines components w ith T P M

capabilities.

• MS D T C — D istribu ted Transaction Coordinator which is very s im ila r to C O R B A ’s

O bject Transaction Service and which au tom atica lly handles d is tribu ted transactions.

• M S M Q — the asynchronous messaging capab ility which is somewhat s im ila r to C O R B A ’s

dynam ic invocation interface.

• L D A P — is an A P I which allows developers to access the registry. The reg istry stores

in fo rm a tion about the loca tion o f components, the users and groups in the system,

passwords o f those users, etc.

• Security Services — controls access to the system and the components a user can

access.

Software Components .39

• M S-RPC — is M ic roso ft’s software which supports remote procedure calls. I t supports

D C O M ’s d is tribu ted processing functiona lity .

C O M + is a component software arch itecture th a t defines a binary standard fo r component

in te roperab ility . Th is means th a t the component w il l always f i t in to the required system

correctly, since i t is ta ilo red to the underly ing opera ting system. The components developed

for the other two environments do not satisfy th is requirem ent. I t is d iff ic u lt to take a

C O R B A component and p lug i t in to another O RB, for example, and assume th a t everyth ing

w ill execute as before. EJBs too, are plagued by vendor-specific extensions, which means

th a t an E JB developed using one type o f E JB container w il l not necessarily f i t in to another

container and work as before. A t the very least the developer w ill have to im p o rt a d ifferent

set o f classes, and recompile in order to change containers.

2 .4 .3 .2 M id d le -T ie r A rc h ite c tu re

The M icrosoft component run tim e environm ent is called M icroso ft Transaction Server (M TS).

I t operates on an in terception basis. C lien t requests w ill be intercepted so th a t the M TS

can carry out various adm in is tra tive functions. The functions offered by. M TS are [RE98]:

• A dm in is tra tive tasks Such as m on ito ring transactions, performance etc.

• Resource management and pooling. T h is is essential for sca lab ility and efficiency. For

example, the pooling o f database connections saves a great deal o f tim e when accessing

the database.

• E ffic ient triggering mechanisms for example the “ Just in T im e” ob ject activation.

• Support for asynchronous processing.

• D is tr ib u te d Transaction Support. The M TS makes use o f the D istribu ted Transaction

Coordinator (D T C) to handle d is tribu ted transactions. Th is ensures th a t transactions

which involve m u ltip le data sources a ll com m it, or a ll abort.

M TS cu rren tly on ly runs on W indows N T and 95. Services can be invoked from a browser,

bu t on ly i f the web server runs on a W indows N T machine. M icrosoft achieves sca lab ility

by sp litt in g data across machines and hand ling the d is tribu ted updates using M TS [RE98].

U n fo rtuna te ly M TS does not support Database Management Systems (DBM Ss) such as

Ingres, Sybase or In fo rm ix , and does not communicate w ith DBM Ss on o ther p latform s.

2 .4 .3 .3 E x a m p le

To im plem ent the example, two interfaces could be defined for Customer Component,
ICustomerl and ICustomer2, fo r the two groups o f methods. C O M objects can have m u l

tip le interfaces, so a new interface can s im p ly be added when required. A dm in is tra to rs

Software Components .40

could be given access to b o th interfaces, and give end-user c lient programs access to on ly

the IC u s to m e rl interface. T h is ensures th a t on ly the adm in is tra to r can change client pass

words. T h is means th a t each d is tin c t feature o f a component can have a separate interface.

The c lien t program m er’s view o f these interfaces is shown in 2.17.

Factory
Wrapper COM+

Server
ObjectICustomerlClient

Object
Wrapper

ICustomer2
Object
Wrapper

Figure 2.17: The COM Client View

2 .4 .4 S u m m a r y

M uch has been said and w r itte n by experts c la im ing the superio rity o f one or another o f

these models. The tab le in F igure 2.18 summarises the basic differences and s im ila rities

between the three models. T h is section a ttem pts to provide an unbiased comparison.

C O R B A , the oldest component model, provides connectiv ity between app lica tion com

ponents, location transparency and many other m iddleware services such as nam ing, trans

actions, events, security and life-cycle management. M any vendors are on ly ju s t delivering

the im plem entations o f the C O R B A services. However, the C O R B A specification does not

address services such as load balancing, database connection pooling , resu lt caching and

failover. Consequently most o f these features are not provided by most C O R B A vendors.

Some C O R B A vendors do provide p rop rie ta ry extensions to im plem ent these services, bu t

they are notoriously d iff ic u lt to use [Dol98].

M any people critic ise the M icrosoft component model w ith o u t rea lly understanding it ,

and often on ly because they disapprove o f the parent com pany’s tactics. C O M + components

are often critic ised because they are stateless. M icrosoft counters th a t th is makes the ir

m iddleware scaleable. C O M + ’s biggest disadvantage, the fact th a t i t on ly runs on W indows

2000, has been turned to its advantage, because M TS is bundled w ith M ic ro so ft’s operating

system. The other advantage is th a t i t has been produced by the same company who made

the opera ting system [Cha98]. C O M + is also said to be easy to use, and i t allows app lica tion

developers to use a number o f languages, inc lud ing V isua l Basic, C + + and Java. On the

Software Components .41

C O M + E JB C O R B A

Interfaces Many &;
Immutable

Home and Remote Many

Transactions Declarative Declarative API

Connection
Pooling

Declarative Declarative API

Instance
Management

Declarative Declarative API

Resource
Sharing

Declarative Declarative A P I

Security Declarative
and Programmatic

Declarative API

Link to
Legacy

Applications

CICS and IMS Via JDBC

Link to Other
Component

Models

CORBA CORBA Link to COM
Proposed

link to EJB
Component

Platform
Windows 2000

IBM , some UNIX
Many . Any

Runtime
Environment

Platform

Windows 2000 Many Any

Programming
Language

Visual Basic
C + + , Java

Java C, C + + , Java
Cobol, Ada

State
Management

Stateless Stateless or Stateful Stateful

Naming Service
(Component Instances)

No Yes Yes

Interface
Definition
Language

Microsoft ID L Java Code OMG ID L

Exception
Specification in

Interface Definition

No Yes Yes

Asynchronous
Messaging

Yes No Yes

Figure 2.18: Differences and Similarities between the Component Models

Software Components .42

other hand, W indow s is sometimes perceived to be less re liable than Solaris or H P /U X , and

is therefore less like ly to be used for c r it ica l applications.

EJB , the newcomer, w il l be available on many p la tfo rm s supporting Java, which means

th a t EJB-based app lica tion servers can ru n on b ig pow erfu l systems as well as cheap W in

dows systems. E JB also has some drawbacks. I t fails to provide specifications for load

balancing, d irec to ry services, d is tribu ted security services, and does not ind icate which w ire

p ro toco l should be used for con tro lling transactions. The EJB specification also allows

vendors to add extensions to the A P I [Cha98]. T h is could inva lida te Sun’s claims o f in te r

operab ility . Some people also feel th a t the res tric tion o f on ly using Java could prove to be

too much o f a lim ita tio n . Supporters o f C O M technologies po in t ou t th a t i t is unrealistic to

expect one language to be a ll th ings to a ll people. They forget th a t C O B O L d id a p re tty

good jo b o f th is fo r m any years, and is s t i l l to be found in many runn ing systems today.

O n ly tim e w ill te ll w hether Java w il l satisfy the needs o f component developers to such an

extent th a t o ther component models w ill overtake CO M .

So, w hat is the conclusion? There is no w inn ing component model. C O R B A Version

3 provides a “ Com ponent Specification” which, among o ther th ings, provides support for

a lin k to EJBs. I t ' seems-as though the O M G and Sun are jo in in g forces to give M icrosoft

some much-needed com petition . In choosing one o f the three models, one has to take in to

account the p la tfo rm s th a t the app lica tion servers w ill be runn ing on, the c r it ic a lity o f the

app lica tion , the program m ing language to be used, and the budget.

2.5 Com ponent-Based Developm ent

Component-Based Development (C B D) can be defined as:

the process o f build ing systems by the combination, aggregation and integration

o f pre-engineered and pre-tested software objects [Kar98]

thus p rov id ing a view o f app lica tion development as an assembly process based on well-

defined pieces o f fu n c tio n a lity [Bro99]. The o rig ina l developers o f component-based sys

tems using generalised components s im p ly glued chosen components together in a visual

development environm ent. U n fo rtuna te ly th is on ly works for re la tive ly sm all applications.

Sophisticated app lications need to have an app lica tion architecture, which has been arrived

at in a new way, using a m ethodology matched to the special needs o f component-based

systems [Cha97]. Section 2.5.1 w il l discuss the special needs o f C BD . Section 2.5.2 considers

the possible sources o f the component bu ild ing blocks used in the C BD process, and Section

2.5.3 w ill enumerate the benefits th a t can be expected from th is approach. Section 2.5.4

summarises th is section.

Software Components .43

2 .5 .1 A D if fe r e n t A p p ro a c h

C B D requires a new approach. Whereas tra d itio n a l m ono lith ic software development fo l

lowed the w aterfa ll model, C BD needs an approach based on concurrency and evolution.

W here tra d itio n a l software development bu ilds systems from scratch, or produces the system

by m od ify ing a previous system ’s code, C B D composes systems from p re -b u ilt components

[Aoy98].

The creation o f a software arch itecture for components w ill p robab ly determ ine whether

the system w ill be successful or a headache for the maintenance team. Bassett [Bas99]

argues th a t there are two types o f architectures in a CBD. The firs t set applies to run tim e

components, and the second to the parts used to construct those components. Execution

architectures — for run tim e components — can be d iv ided in to two layers:

1. Technical architecture layei which technologies are used, how they f i t together, and

how they should be used.

2. A pplica tion architecture layer — how the applications look and feel to the users and

how they should be broken up in to modules.

Com ponent architectures specify how the component can be customised and how it should be

integrated in to different contexts. Bassett contrasts execution and construction architectures

by characterising an execution arch itecture as layering components to isolate independent

sources o f func tiona lity or data, w hile construction architectures layer parts o f a component

to isolate independent sources o f change.

Because components are essentially objects th a t have “grown up” , ob ject-orien ted m ethod

ologies are easily extended to C BD . The w aterfa ll model o f software development has been

rejected for CBS development, and the proposed methodologies suggest an approach based

on ite ra tion , increm ental de livery and overlapping phases [Got98]. Tools fo r C BD need to

support [BW98]:

• m odelling o f interfaces and component specifications;

• im proved m odelling for in te r- and intracom ponent dependencies;

• enabling component specifications to be developed independently o f im plem enta tion

details;

• new component-development approaches based on object-oriented analysis and design

techniques.

Tools fo r C BD are beginning to appear. Some tools, such as R ationa l C o rpo ra tion ’s too l

which applies the Rationa l Unified Process m ethod and IC O N ’S Catalysis are s im p ly exten

sions o f th e ir object-oriented tools. O ther products such as Select’s Component M anager

and S terling Software’s COOL:Spex have been developed specially for the needs o f CBD

[BW 98]. The latest tools support interface-based design as a key approach.

Software Components .44

2 .5 .2 C o m p o n e n t S ources

Component-based development rests on the no tion o f being able to procure the required

components. I t is necessary to d istingu ish between desktop components and m idd le -tie r

components, since the markets fo r these are very different. The current m arket generally

caters for desktop components on ly — sm art d isplay-oriented components. M ost o f these

are C O M components — reflecting the overwhelm ing num ber o f W indows-based computers

on the desktop. In te rne t web-sites selling desktop components have sprung up over the last

few years. Examples o f these are Components O n line14 and Com ponentSource15.

There is, as yet, no equivalent m arket fo r business-logic type components. T h is could be

due to the lack o f standards fo r component description. Terzis and N ixon [TN99] propose

a component trad ing fa c ility which w ill support semantic trad ing w ith in a com m unity o f

component traders. They advocate the inclusion o f non-functiona l in fo rm a tio n in component

descriptions to engender and encourage com ponent-oriented development.

Com ponent buyers w ill have to ensure th a t support for the component w il l be available in

the foreseeable fu tu re , so th a t they w ill be safer buy ing from established vendors ra ther than

one-man businesses. Some software companies, such as IB M , Oracle, A m dah l, F u jitsu and

S terling Software offer .specialised component groups to corporations, and some companies,

such as banks, are considering selling the ir own specialised components [Mac99].

There are problems related to buy ing components, however. Components w il l have to

be o f h igh q ua lity — or organisations w ill create th e ir own and not bo ther to purchase

them. The required q u a lity can on ly be achieved i f the customers are able to match the ir

requirements to the stated capabilities o f the components. C urren t practice merely lis ts

interfaces w ith in fo rm a l descriptions [Szy98], which is s im p ly inadequate. Szyperski suggests

th a t an e xp lic it and unambiguous lin k is required between the component interface and its

contractua l specification to assist customers in choosing the correct components to meet the ir

needs. There are a lternatives to purchasing components, such as [W D98, Cha99c, SW98]:

• Subscribe: pay a subscrip tion to make use o f a remote component, ra the r than de

veloping or purchasing a component for use in-house. A n example o f th is could be a

cred it card va lida tion fac ility .

• M odify : Develop a new component by a lte ring an existing one.

• Wrap: Legacy components could be wrapped and used as components.

• Develop the component in-house and reuse i t w ith in the organisation. Th is is not as

s tra igh tfo rw ard as i t m igh t seem, since a whole new program m ing paradigm must be

introduced.

For example, components are far more coarsely grained than tra d it io n a l objects. A l

though the component’s methods can be invoked by the c lient program as i f they

14w w w .components-online.com
15w w w .ComponentSource.com

http://www.components-online.com
http://www.ComponentSource.com

Software Components .45

were loca lly available, the app lica tion developer has to remember th a t the m idd le -tie r

component could be located on another machine. Remote m ethod invocations, while

g iv ing the illus ion o f being local, have a substantia l tim e pena lty attached. Szyperski

po in ts out th a t remote m ethod invocations can be up to 10 000 tim es slower than lo

cal m ethod invocations [Szy98]. Thus the object-oriented approach, w h ich encourages

the use o f t r iv ia l methods like getNameO and setNam eO, should no t be supported

by m idd le -tie r components, since th e ir use w ill increase network tra ffic unacceptably,

and a significant performance pena lty w ill be paid. To keep com m unication w ith the

(probab ly d is tribu ted) component to a m in im um , the methods should be such th a t a ll

necessary in fo rm a tion is conveyed together w ith a m ethod invocation, and a significant

service carried ou t by the component as a consequence.

A group o f component vendors have recently formed a body — called the Component Ven

dors Consortium (C VC) w hich hopes to encourage the grow th o f a component m arket by de

veloping standards o f in te roperab ility , docum enta tion and technical support [Mac99]. Th is

m igh t be an im p o rta n t step in b u ild in g a substantia l component market.

2 .5 .3 B e n e fits o f U s in g C o m p o n e n ts

The po ten tia l benefits o f the component-based approach include [Kar98, Rog99, A1199,

SesOO]:

• in teroperability — th is is one o f the m ain reasons th a t components made such a b ig

impression in the firs t place. Components w ritte n in a varie ty o f languages can work

together to accomplish a common goal, often m aking use o f diverse p la tfo rm s. Before

the advent o f components, m any organisations were re luctant to move over to object

o rien ta tion because they would have to re tra in a ll th e ir s ta ff in ob ject-orien ted tech

niques. Components can be developed in many languages, so the benefits o f object

o rien ta tion can be enjoyed w ith o u t the rigours o f re tra in ing.

• reusablity — the same component can be used by many applications th roughou t the

organisation, or sold to o ther organisations. Some organisations are a lready p u ttin g

incentives in place to encourage reuse [Bae98]. There are also proposals to w rap legacy

code and reuse i t ra the r than re-develop. One o f the greatest advantages o f reusab ility

is th a t code is well tested and problems are ironed out by long periods o f use. Thus

the p roduct can be expected to be more re liable than code which is not intended for

reuse.

• control o f complexity — components separate the im plem enta tion from the interface,

so th a t a ll actual im p lem enta tion details are hidden. Components are also easy to

understand, so th a t th e ir use is not restricted to technical com m unities b u t is extended

to business communities as well.

Software Components .46

• ease o f change — one component can be replaced by another, which im plem ents the

same interface, w ith the m in im um o f fuss. So long as the component adheres to

the same “contract” published by the replaced component, the replacement w il l be

unnoticed. In th is category benefits such as m a in ta inab ility , c la r ity and accuracy can

also be included. Th is , in tu rn , leads to increased developer p ro d u c tiv ity due to a

com ponent’s b lack-box design — the developer using the component does not need to

understand how th ings are done.

• the rapid development o f h igh ly customised applications — components can be ob

ta ined from various sources to b u ild an app lica tion , and customised to satisfy the

app lica tion ’s p a rticu la r requirements.

• application re liab ility — components should manage th e ir own memory, resources and

error management, bu t some may delegate some o f th is responsib ility to the underly ing

operating system. Developers have to make provis ion fo r fewer o f these issues, which

should increase re lia b ility o f the entire system.

• scalability — the component run tim e environm ent has been developed to take th is

responsib ility, so th a t the component developer does not need to make provis ion for

i t — it happens autom atica lly.

• versioning — some component models have b u ilt - in mechanisms which a llow easy ver

sioning o f components. I t is im perative th a t the holder o f an interface to a component

not be d isrupted should the component be replaced, or upgraded. The old interface

should s t i l l be supported, so th a t progress does not break exis ting applications.

These benefits, however, w il l no t be au tom atica lly derived from m aking use o f components.

The lis t merely gives a flavour o f the tremendous potentia l benefits o f using components.

W hether these benefits w il l be realised depends on many factors, such as the architecture

o f the application, the design o f the component container architecture, and the qua lity o f

the available components.

2 .5 .4 S u m m a ry

I t is w o rth re ite ra ting w hat was said at the beginning o f the chapter: software development

is ju s t as complex as i t ever was. Some developers advocate the use o f methodologies, while

others feel th a t the “ju s t b u ild i t ” approach is be tte r fo r pro jects w ith a short development

tim e. A dd ing com plicating factors such as d is tr ib u tio n , para lle lism and asynchronism to

the software development process tends to make software development even more d ifficu lt.

I t is hoped th a t components w il l make th is process sim pler, b u t i t does seem as i f the “one

best m ethodology” has yet to be found.

Software Components .47

2.6 Review

Components, w hile solving m any problems, have in troduced a new realm o f com plexity in to

the lives o f app lica tion developers. I t is necessary to make an in form ed decision about

components, and th is section a ttem pts to give arguments bo th for, and against, the use o f

components in systems development.

2 .6 .1 T h e g o o d n ew s a b o u t c o m p o n e n ts

Software components have some advantages over ob ject-o rien ta tion which w il l make software

development sim pler and go beyond ob ject-o rien ta tion by doing the fo llow ing:

• having interfaces which pub lish details about how to use the com ponent, and specify

which errors could result from the usage;

• reducing the scale o f the u n it to be produced by programmers;

• having standard ways .of com m unicating w ith other components by means o f method

invocations. M ethod invocations were used previously, bu t th e ir use is more ubiqu itous

since the advent o f component technology.

• p rov id ing a be tte r means for characterising components by th e ir fu n c tio n a lity in the

application;

•. p rov id ing a viable means for hafnessing the fu n c tio n a lity o f legacy systems; and

• prov id ing .a be tte r delivery mechanism than objects [SW98]. Objects (on th e ir own),

have never been reusable entities because they are often too t ig h t ly bound to other

objects w ith in a p a rticu la r system. C urren t practice shows the reuse o f packages

o f objects — the precursors o f the current components. Components, however, can

be reused because o f th e ir qualities o f independent deployment and exp lic it context

dependencies.

M any prom inent people are f irm in the ir be lie f th a t software components w il l be the way

th a t software is going to be b u ilt in the fu tu re [ND99]. I t occurs to us to wonder w hy i t has

taken th ir ty years for the revo lu tion to happen. Reasons for th is could be tha t:

• I t has on ly ju s t become clear to the software in d u s try how the run tim e in fras truc tu re

for these components should be b u ilt. The efforts o f the members o f the O M G , and

the innovations o f companies such as M icrosoft, have made the acceptance and use o f

components possible, and financ ia lly accessible.

• The networks and com m unications indus try has worked hard on solving the problems

o f com m unicating qu ick ly and efficiently. T h is has made d is tr ib u te d app lications the

Software Components .48

order o f the day — w ith d is tr ib u tio n ceasing to be a com plica ting factor. Once dis

tr ib u te d systems became common, i t was on ly logical fo r organisations to want to use

clusters o f machines to load-balance, and they needed the capab ility to move software

around easily.

• Three p rom inent component architectures have emerged and are com peting for cus

tom . T h is can on ly be beneficia l since they w il l learn from one another and develop

be tte r products.

• The advent o f the Web [W D98]. Components w ill be used to bridge th in Web clients

to the tra d it io n a l m ainframes in many organisations.

• The grow ing legacy system problem . The fact th a t these systems can conceivably be

w rapped and used as a system component is a ttrac tive .

M any organisations are th row ing in the ir lo t w ith component-based development [Bae98].

Large companies such as IB M and B E A are producing software to support the deployment

o f components, and companies such as R ationa l, S te rling Software and Sybase are offering

component management tools to enable the development o f component-based systems. Th is

would seem to ind ica te th a t components are not s im p ly a nine-day wonder, b u t something

far more substantia l.

2 .6 .2 R easo n s fo r c a u tio u s a c c e p ta n c e o f c o m p o n e n ts

Even in the face o f th is progress, m any organisations are not yet whole-heartedly embracing

the new w orld o f components. K ie ly [Kie98] m ainta ins th a t th is is due to the fact th a t

there are no standards fo r specifying component fu n c tio n a lity and specific needs. There are

also questions about how components should be b illed for. In view o f the fact th a t they

are intended to be reused, component vendors m igh t feel cheated at on ly receiving a single

payment for a w ide ly used component. Perhaps the w ide ly used licencing systems would

have to be engaged to b i l l clients on run tim e usage o f components. The cost o f find ing and

understanding components, and ta ilo rin g them to specific needs, m igh t prove to be cost

ineffective.

Resistance to change could also be ho ld ing development teams back. Baer po in ts out th a t

developers who were d isappointed by CASE are understandab ly re luctan t to embrace th is

new panacea u n t il i t has proved its e lf [Bae98]. The o ther facto r could be th a t management

generally does not reward reuse, pre fe rring to reward q u a n tity o f new ly created code ra ther

than reusable code [Gla98].

Chappell [Cha99c] argues th a t reusable business logic is ju s t too d iff icu lt to create. Th is

comes back to the po in t made in Section 2.1.1 about reusab ility m in im is ing usage. The other

d iff icu lty w ith respect to reusab ility is th a t business logic changes so fast tha t the effort pu t

in to a tru ly reusable component m igh t not pay o ff i f the com ponent is out o f date in a

Software Components .49

m a tte r o f months. M ost experts agree th a t the one b ig factor standing in the way o f w ider

acceptance o f component-based development is a cu ltu ra l one. I t is unden iab ly d ifficu lt

fo r program mers to p u t fa ith in o ther people’s code, especially i f th is code happens to be

perceived to be inadequately tested. Programmers rou tine ly use o ther people’s code when

they make use o f libraries, opera ting systems, and DBMSs, b u t these are a ll extensively

used, and i t can therefore be expected th a t any la tent bugs w ill have been e lim inated. I f a

program m er does not have th is sort o f reassurance about code, they are usually re luctan t

to tru s t it , and w il l ra the r rew rite it . The entire m ind-set w ill have to be changed for

component-based development to become the order o f the day. However, the fact th a t the

demand for new applications far exceeds the a b ility o f programmers to supp ly th is software

may mean th a t program mers w ill s im p ly have to make the cu ltu ra l sh ift to components.

2.7 Conclusion

Organisations can ha rd ly afford to ignore th is latest innovation. C happe ll [Cha99c], while

expressing d isappo intm ent at the slow uptake o f components, concludes th a t they are a

crucia l pa rt o f software’s fu ture . M any vendors have invested heavily in C O R B A im ple

m entations, and many erstwhile T P M vendors have started m arketing EJB Containers.

However, most o f these organisations have o ther products which could p u ll them through

i f component-based systems were to fa il. C O M + however, is a c rit ica l and in tegra l p a rt o f

M icroso ft’s new W indows 2000 operating system. M icrosoft therefore has a vested interest

in m aking component-based development work [Ses99]. W hen M icrosoft invests everyth ing

in a technology i t is.not going to go away. Component-based development is here to stay.

H aving concluded th is , i t is necessary to acknowledge th a t component-based systems

w ill, w hile solving a set o f problems, create new anomalies. T h is d isserta tion considers

one anomaly, the provis ion o f adequate feedback to end-users. Those characteristics o f

components — th e ir independent nature, th ird -p a rty development and com position — which

make them such an a ttrac tive op tion , are the very characteristics which make the provision

o f feedback to users more d ifficu lt.

Whereas feedback is a d iff ic u lt problem to solve in any app lica tion , the d is tr ib u te d nature

o f component-based systems adds a new dimension to th is d ifficu lty , since i t opens up a

w indow o f o p p o rtu n ity fo r a whole new range o f possible errors. A p p lica tio n programm ers

need to account for these errors, so th a t when they occur they w il l be reported to the user

in an understandable form at.

In add ition to th is, i t is necessary to consider the im pact o f everyday events such as

in te rrup tions on a user’s app lica tion experience. I f a system has not been designed w ith

such events in m ind, i t w il l tend to disadvantage the end-user i f use o f the app lica tion is

in te rrup ted for an unspecified tim e period before resuming. A l l app lica tion user-interfaces

need to be designed w ith the end-user in m ind, and th is includes p lann ing possible responses

to errors made by the user w ith great care. The fo llow ing chapter takes a look at these

Software Components .50

events, which here are called quirks, and analyses th e ir effect on the end-user. Chapter 4

then addresses the general question o f feedback, and considers the role o f feedback in coping

w ith quirks.

From then on, when anything went wrong with a computer,

we said it had bugs in it.

Rear Admiral Grace Murray Hopper, US Navy

on the removal of a bug two inches long from an experimental

computer at Harvard in 1945. (Tim e. 16 April 1984)

chapter 3

Quirks

The previous chapter in troduced the concept o f component-based systems, and concluded

by arguing tha t:

1. the d is tr ib u te d nature o f these systems made e rro r reporting , w ith respect to system

breakdowns, somewhat more d iff icu lt than fo r m ono lith ic systems.

2. the poss ib ility o f in te rrup tion s should be taken in to account when designing app lica tion

front-ends.

3. the reaction o f the app lica tion to user errors should be planned w ith forethought.

These issues are even more im p o rta n t in component-based systems, due firs t ly to the fact

th a t the nature and experience o f the end-user o f these systems cannot be gauged as accu

ra te ly as is possible in m ono lith ic systems; and secondly due to the diffuse nature o f these

applications. Th is chapter thus introduces the concept o f quirks , any occurrence which

interferes w ith the norm al execution o f a task. A q u irk is defined in the O xfo rd English

D ic tiona ry [SW89] as:

1. A sudden tu rn ;

2. A tr ic k or p ecu lia rity in action or behaviour;

51

Quirks. .52

3. A sudden tw is t, tu rn or curve.

Section 3.1 w ill in troduce the general no tion o f qu irks, and Section 3.2 w il l provide a classi

fica tion o f quirks. Section 3.3 discusses the im portance o f quirks. Sections 3.4, 3.5 and 3.6

w ill describe the nature o f each o f the three types o f events w hich cause quirks. Section 3.7

summarises the chapter.

3.1 Introduction

In executing a task, the user may take the d irect route to proceed from beginn ing to end,

as shown in F igure 3.1, m oving d ire c tly from the in it ia l state I to the fina l state F upon

com pletion o f the task. Using th is d irect pa th , w ith no detours on the way, is on ly one

possible way o f proceeding. In reality, th is is a s im p lis tic and unrea lis tic view o f the way

humans in teract w ith com puter applications.

klnitial State
F: Final State
Q: Quirk

Figure 3.1: Initial and Final States in Task Execution

The execution o f a task can be d isrup ted by a system breakdown, an error or an in te rru p tio n

— w hat w ill be referred to as a quirk — ind icated by node Q in F igure 3.1. S imon [Sim69]

po in ts out th a t humans are basica lly serial in th e ir operation , th a t they can process on ly

a few symbols at a tim e, and th a t these symbols m ust be held in a lim ite d capacity area

(working memory) w h ile they are being processed. Seen in th is lig h t i t is not surpris ing th a t

quirks can be so troublesome.

I t is useful to b u ild up a model o f w hat qu irks are and how users are affected by them.

Simon [Sim69] states th a t a taxonom y can be seen as the firs t step in understanding a set

o f phenomena. M any researchers have worked on each o f these different aspects — errors,

in te rrup tions and breakdowns — in iso la tion, bu t since there is often a com m ona lity in the

user’s hand ling o f each o f these and in the effects on the user’s emotions and task com pletion,

i t is useful to study them as fo rm ing p a rt o f group o f s im ila r concepts, as w ill be discussed

in the fo llow ing section.

Quirks. .53

3.2 Analysis of Quirks

The nature o f these d is rup tive events w ill now be analysed to determ ine a com m onality

in the user’s hand ling o f the d isrup tion . Jambon [Jam96] studied these issues and defined

singu larities to encompass the concept o f a federation o f the detection o f hum an errors and

in te rrup tions, which can cause a user to suspend a task. Since the te rm “ s ingu la rity ” is

somewhat ambiguous and since the in ten tion here is to incorpora te a ll errors (bo th detected

and undetected) and also to include events such as system crashes, the te rm quirk w il l be

used to refer to:

any event which causes the user to deviate in any way from the stra ightforw ard

execution o f a task.

Quirk

System
Initiated

User
InitiatedOther

System
Crash InterruptionInterruption InterruptionUser Error

Figure 3.2: Classification of Quirks

Figure 3.2 gives a classification o f quirks, w hich are a superset o f Jam bon’s s ingu la ri

ties. Q uirks can be in it ia te d e ither by the user, by the system, or by some externa l en tity

(O ther). A n external e n tity can in te rru p t the user’s task processing by dem anding a tten tion

elsewhere. The user could make an error, or in te rru p t the process vo lun ta rily . The system

could crash, or in te rru p t the process. Q uirks are ind ica ted by the node labeled Q in F igure

3.1. I t is possible th a t more than one q u irk w ill in terfere w ith a user’s execution o f a task,

hence the recursive arrow . The presence o f a q u irk could cause the system to end up in

any o f a number o f d iffe ren t states, depending on the user’s hand ling o f the qu irk . These

different states w ill be explained in de ta il fu rth e r on. The different types o f qu irks can be

placed in to one o f three d is tin c t categories:

1. breakdown — s ignaling a prob lem w ith some p a rt o f the d is tribu ted app lica tion ;

2. human error,

3. in te rru p tio n — th is includes th ings such as exte rna l in te rrup tions , user-in itia ted in

te rrup tions and sys tem -in itia ted in te rrup tions.

Quirks. .54

Before describing each o f these qu irks in deta il, the fo llow ing section w ill consider the ques

tio n o f w hy quirks are w o rthy o f consideration.

3.3 W hy Quirks are Important

Q uirks are not merely an ir r ita t in g fact o f life, and should not be perceived to be pure ly a

negative occurrence. Humans can on ly concentrate fo r lim ite d periods before th e ir brains

become incapable o f continu ing w ith o u t rest. Q u irks can therefore be beneficia l in increasing

effectiveness and p ro d u c tiv ity by g iv ing the user a rest. Research shows th a t certa in types

o f qu irks can raise worker stress and in some cases affect the health o f workers. Q uirks are

w orthy o f some a tten tion , because the extent to which the system designer develops the

system w ith possible d isrup tions in m ind w ill con tribu te to the usab ility o f the system.

The c r itica l po in t to consider is th a t a user who is busy w ith some a c tiv ity bu ilds up a

context [Cyp86]. The context is a rich m ental environm ent th a t stores a ll sorts o f in fo rm a tion

b u ilt up du ring the tim e spent using th a t p a rticu la r system to execute th a t p a rticu la r task.

Cypher po in ts out th a t even a m om entary d is trac tion w ill cause th is m ental context to

collapse. Czerw inski et al. [CCS91] have shown th a t advance w arning o f an in te rru p tio n

w ill enable the person to remember the context more effectively, and thus enable easier

resum ption o f the in te rrup ted task. People receiving unantic ipated in te rrup tions w ill tend

to struggle more to re-establish th e ir context upon resum ption o f th e ir task.

Whereas qu irks can have an effect on any user regardless o f experience, the problem

tends to be ra ther more serious for novice users. Novice users often experience a feeling o f

lack o f contro l, fear and pressure when they have to use a com puter or new app lica tion for

the firs t tim e. Torkzadeh and Angulo [TA92] discuss the prevalence o f com puter anxiety

amongst workers who firs t encounter com puter technology. They po in t out th a t w h ils t com

puters have the potentia l fo r increasing p ro d u c tiv ity , reducing costs and gain ing com petitive

advantage fo r an organisation, these advantages are not always actua lly realised for the em

ployees. Users w ith the least com puter experience have the most problems w ith com puter

anxiety. These feelings can on ly be exaggerated by error messages which the novice user

often has no chance o f in te rp re ting correctly, let alone using to aid recovery.

Perry et al. [PSV94] found th a t a group o f software developers spent 75 m inutes per day,

on average, in unplanned interpersonal in teractions which makes these in te rrup tion s more

common than m igh t have been envisaged. C om puter applications also b u ild up contexts over

tim e and could lose th is context i f suspended — unless the designer takes the poss ib ility o f

a d is rup tion in to account when developing the system.

Brodbeck et al. [BZPF93] observed users hand ling errors when w ork ing w ith office

computers. They observed negative em otional reactions such as anger, fru s tra tio n and

tension. T he ir findings are shown in Table 3.1. I t is obvious from th is tab le th a t reducing

the tim e users need to spend hand ling an error can reduce negative feelings and lower stress

levels.

Quirks. .55

E r r o r H a n d lin g T im e N u m b e r o f E r ro rs % E rro rs w i t h

N e g a tiv e R e a c t io n

Im m edia te ly 608 7.6

< 2 M inutes 330 15.5

< 5 M inutes 127 33.9

< 1 0 M inutes 11 36.4

> 10 M inutes 28 57.1

Table 3.1: Negative Emotions [BZPF93]

Fogg and Nass [FN97] argue th a t the ru le o f reciprocity, which exists in a ll cultures,

also applies to hum an-com puter interactions. As a consequence o f th is, users w il l tend to

“ help” computers th a t have previously helped them and re ta lia te against computers th a t

have perform ed poorly. The frequent occurrence o f errors would therefore tend to have far

more long-term effects than merely the tim e spent in repa iring the error w ould suggest.

Problems experienced w ith using computers have other negative effects on end-users.

Studies by Yang and Carayon [YC93] have conclusively linked slow responses, breakdowns

and insuffic ient in fo rm a tion to increased worker stress. Schleifer and A m ick [SA89] found

tha t end-users became im pa tien t and frustra ted as a result o f slow response times. End-

users’ health can also be affected, as shown in a s tudy by Johansson and Aronsson [JA84]

where a four hour breakdown was shown to cause an increase in b lood pressure and adrenaline

excretion. L inds trom [Lin91] studied the effects o f breakdowns and slow response times in

office employees and found th a t they could be linked to excessive fatigue and nervousness.

W aern [Wae89] cites research th a t has shown a connection between stress, d issatisfaction

and frequent breakdowns.

There are also occasions when quirks have positive effects [JamOO, OF95]. One can

ha rd ly conceive o f the fire a la rm signaling a fire as a negative in te rru p tio n 1. Some system-

in itia te d qu irks are also he lp fu l to the user. A v irus w arn ing is preferable to an undetected

v irus w hile a message in fo rm ing the user o f some event o f interest can also be positive. We

must therefore conclude th a t qu irks are a fact o f life and i t is as well i f they are accepted

w ith equan im ity and catered fo r by the app lica tion system.

I t is necessary to understand qu irks i f one is to support the user when dealing w ith them.

A categorisation o f quirks has therefore been devised, in w hich they have been sp lit in to

three broad categories — breakdowns, human error and in te rrup tions. Breakdowns w ill be

discussed in Section 3.4, hum an error w ill be discussed in Section 3.5 and in te rrup tion s w ill

be described in Section 3.6.

^ ir e alarm practice runs irritate and interrupt, but the benefit is so obvious that they, too, axe positive
quirks.

Quirks. .56

3.4 System Crashes and Breakdowns

The collapse o f some p a rt o f the com puting system w ill be referred to as a breakdown.

E ld ridge and Newm an [EN96] studied the im pact o f technology failures on work. They

identified so-called “ agenda benders” — the effects o f technology breakdowns w hich led

to im p o rta n t ac tiv ities not being completed on tim e. They found th a t the negative effect

o f an agenda bender, due to tim e lost in dealing w ith it , was exacerbated by the damage

done to the rest o f the day ’s activ ities. There was another knock-on effect, in w h ich one

person’s technological prob lem had an effect on o ther people’s agendas. T hey conclude th a t

unreliable technology has a s ign ificant effect on work done du ring the day.

The rest o f th is section w il l address breakdown issues in th ree-tie r systems. The type o f

problems which can be classified as breakdowns are a fa ilu re o f (shown in F igure 3.3):

Client
Application

Client
Application

Client
Application

Client
Application

o wo
Application

Server

O u O
Application

Server

O w O
Application

Server
pplicatio
Server

X

Database Database Database Database

Figure 3.3: Breakdown Location

1. the user’s computer. T h is would include moderate to c rit ica l failures — e ither o f some

app lica tion or o f the whole com puter.

2. the network. Networks can be affected by the fo llow ing failures [M ul93]:

(a) Crash — a fa u lty lin k stops transpo rting messages, b u t before s topp ing i t behaved

correctly.

(b) Omission — a fa u lty lin k loses messages.

(c) A rb itra ry — a fa u lty lin k exh ib its strange behaviour, perhaps generating too

many messages or dam aging messages.

Quirks. .57

(d) T im in g — characterised by messages being sent e ither faster or slower than ex

pected.

3. the application server —

(a) fa ilu re o f the server host, or

(b) fa ilure o f the server housing the server component.

4. the data store being used. Since the app lica tion is com plete ly separated from the data

store by the m idd le tie r, th is type o f fa ilu re w il l present as a fa ilu re o f the previous

type.

In the case o f the end-user com puter crashing, the user is generally le ft w ith l i t t le choice

about how to handle the s itua tion or doubt o f its severity. A fte r a crash, the user generally

ends up in state IR shown in F igure 3.4 — the in it ia l state re instated after a recovery. Th is

is not the same as the in it ia l state I, since any app lica tion state b u ilt up before the crash

w ill be lost and the user’s context has been m odified by the lost work.

I: Initial State
IR: Initial State after Recovery

F: Final State
Q: Quirk

IR

Figure 3.4: States in Task Execution, including state IR

In the case o f a breakdown o f the other computers involved in the d is tr ib u te d system or

o f the network, th ings become more d ifficu lt. The fa ilu re o f some section o f the system w ill

m ostly manifest itse lf by the repo rting o f an error by the end-user app lica tion . Sometimes

the user w ill s im ply be faced w ith a lack o f response from the com puter, w hich could indicate

a breakdown, bu t w hich could also conceivably s im p ly be a sym ptom o f an overloaded

network. A fte r a certa in tim e period, the user w il l detect the problem and assume th a t

the app lica tion has crashed. The rest o f th is section w il l therefore address the effects o f

breakdowns on the user — whatever the ir source.

The handling and effects o f possible breakdowns can be classified on three axes — extent,

tim e taken to recover and assistance required [JamOO]. The resu lting graph is shown in F igure

3.5.

Q uirks. .58

& - 1 &
i y ' i ' .

 .0 intervention~ i - ~

App

- - advice

Threai none.
< 1min < 10min

Time
> 10minAssistance

Required

Figure 3.5: C lassification o f Breakdowns

Each of the axes will be explained in turn. The planes of the Y axis (labeled E xten t), as
shown in Figure 3.6, refer to the severity of the breakdown which is one of:

1. moderate — where the user’s immediate process is disrupted. This is typically the
failure of an application thread.

2. severe — where the user’s entire task is disrupted. This is the failure of the application.

3. chronic — where the entire end-user computer crashes and no work can be done.

If the probability of each of these combinations is considered, the realistic planes become
those shown in Figure 3.7. This is because a computer failure cannot realistically be resolved
in less than 10 minutes and an application failure cannot be rectified in less than one minute.
Intervention cannot realistically occur in less than 10 minutes, since presumably the user
would have to summon assistance.

The X axis, labeled Tim e , refers to the time taken for the user to recover from the
breakdown. This axis has three possible values, linked to the recovery from the disruption
of the user’s task. The values have been split up into the values of < 1 minute, < 10
minutes and > 10 minutes. This is due to the findings listed in Table 3.1, which show a
sharp increase in negative emotions when longer than 10 minutes is spent in resolving an
error. The different planes are shown in Figure 3.8. A more realistic view of the situation
leads to the planes shown in Figure 3.9, due to the same arguments which limited the Extent

planes.

Quirks. .59

Computer

) intervention

App

advice

Thread none.
< 1min <10min

Time
>10minAssistance,

R equ ired /

Figure 3.6: Extent Planes

Computer

intervention

App

advice

Thread none.
< 1min <10min

Time
>10minAssistance,

R e q u ire d /

Figure 3.7: Realistic Extent Planes

Quirks. .60

Computer

intervention

App

advice

Thread none.
< 1min >10min<10min

Time
Assistance,

R e q u ire d /

Figure 3.8: T im e to Recover Planes

Computer

j intervention

App

advice

Thread none.
< 1min <10min

Time
>10minAssistance.

R e qu ired /

Figure 3.9: Realistic T im e to Recover Planes

Computer

App

J 1' advice

Thread none.
< 1min <10min

Time
>10minAssistance-

R e q u ire d /

Figure 3.10: Assistance Planes

Computer

Assistance
Required

x App

J ' advice

Thread none
< 1min <10mm

Time
>10min

intervention

intervention

Figure 3.11: Realistic Assistance Planes

Quirks. .6 2

The Z axis, labeled Assistance Required — shown in Figure 3.10 — has three possible
values:

1. The user will sometimes be able to handle the recovery from a breakdown — linked
to value none.

2. The user may telephone someone for advice, or consult a manual linked to the value
advice.

3. When all else fails, the user may have to request in terven tion from a specialist.

Once again the planes can be limited as shown in Figure 3.11. It is simply not possible to
get advice or assistance in less than a minute and intervention will probably take longer
than 10 minutes to summon.

/ I

Computer -i- #

^ intervention

App

<g) advice

Threat none.
< 1min <10min

Time
>10min

Assistance
R e q u ire d /

Figure 3.12: C lassification o f Probable Breakdowns

When all these restrictions are taken into account, the classification graph is reduced to
the one shown in Figure 3.12. The obvious conclusion to be drawn from this graph is no
surprise. The summoning of assistance from a specialist should be minimised so that the
user’s problem can be solved in the fastest possible time, thereby improving productivity
and minimising stress. It is also obvious from the graph that breakdowns are almost certain
to lead to negative emotions2, something to which any computer user can attest.

“Since they will probably take longer than 10 minutes to resolve.

Quirks. .63

3.5 Human Error

Using a new com puter app lica tion for the firs t tim e can be in tim id a tin g . Th is is especially

true fo r non-technical people, b u t even applies to sophisticated users. The app lica tion

developer faces an in it ia l hurd le o f ge tting people to use th e ir app lica tion for long enough to

overcome th is in it ia l pe riod o f uncerta inty. Even after th is period, i t is possible fo r people

to be pu t o ff by inadequate docum enta tion or by the software overwhelm ing them w ith

com plexity [Bor91].

These problems are exacerbated when an error occurs. E rrors are exasperating for novice

users, bu t even expert users are not immune. E rrors are always unexpected. The user is

expecting to continue w ith the task, bu t now they are confronted w ith an error message

which w ill require a com plete ly d ifferent reaction. Surveys o f com puter use by expert users

show th a t up to 10% o f w ork ing tim e is spent hand ling errors [BZPF93]. A round 11% o f

successfully handled errors required external support. E rrors are expensive in bo th human

and economic terms. They con tribu te towards stress, in te rru p t the user’s tra in o f thought

and can lead to negative emotions [ZB F+ 92]. The fo llow ing sections w ill discuss issues

perta in ing to error handling.

3 .5 .1 T h e N a t u r e o f E r r o r

The way error s itua tions are handled is c rit ica l fo r usability . In the firs t place the user w ill

p robab ly need help in detecting and understanding the error; and, secondly, w il l probab ly

not be able to continue using the system u n til the error s itua tion has been resolved.

I t is necessary to understand the nature o f error, i f there is to be any hope o f prov id ing

help in dealing w ith the results o f such errors. The next section discusses the types o f

error, while the fo llow ing sections deal w ith the consequences o f such errors. The fo llow ing

discussion draws heavily on the book on human error by James Reason [Rea90]. Reason

considers the notion o f errors in re la tion to intentions, since any a ttem p t at defin ing human

error must s ta rt w ith a consideration o f the varieties o f in ten tion . In ten tion comprises two

elements:

1. an expression o f the end-state to be a tta ined (the goal), and

2. an ind ica tion o f the means by which i t is to be achieved (the p lan) in terms o f one or

more contro l statem ents (actions).

Once an in ten tion has been form ed and a plan formalised, the actions to achieve the in ten tion

are stored in memory and executed. Each o f these cognitive stages (p lanning, storage and

execution), has a re lated error type. A no ther way o f looking at i t is to id e n tify errors which

result from intended or unintended actions, the form er being mistakes, the la tte r e ither slips

or lapses. M istakes are often referred to as planning errors, lapses as storage errors and slips

as execution failures. These concepts are illu s tra te d in Table 3.2.

Quirks. .64

C ognitive Stage E rro r Type A c tion Type

In ten tion

P lan M istake In ten tiona l

Storage Lapse U n in ten tiona l

Execution Slip

Table 3.2: Error Types and Cognition

Slips are characterised by actions w hich d iffe r from intentions. Slips are usually detected

qu ick ly since the state o f the system is not w hat the user intended. The plan is usually

correct, b u t the action fa ils to be executed correctly.

Lapses are due to a fa ilu re o f w ork ing memory and short-te rm memory. Lapses include

[Rea87a] fo rge tting lis t items, fo rge tting intentions, and losing track o f previous intentions.

M istakes are due to errors o f judgem ent and reasoning errors [Rea87a]. M istakes can be

fu rth e r classified according to the ra tio n a lity th a t underlies them [Rea87b]. Th is classifica

tio n relies on the no tion th a t a ll hum an actions are governed by an in te rp lay between the

a tten tiona l and schematic modes o f contro l:

• The a tten tiona l mode is a problem solving mode o f contro l and is good at coping w ith

novel s itua tions bu t is lim ite d , slow and laborious.

• The schematic mode o f contro l makes use o f inner “pa tte rns” o f action to handle

s itua tions for which a person has previously worked out a so lu tion. The schematic

database has no known lim its and holds a vast number o f “ action pa tte rns” , each one

o f which fits a p a rticu la r aspect o f the world or s k ill the person has mastered.

Reason describes these schemata as large gra in size action plans w hich are stored and w hich

can be ins tan tly retrieved for use. K ita jim a and Polsen [KP95] contend th a t ra the r than a

stored action sequence, the “stored” sk ills amassed by a person give the b ra in the a b ility to

generate action sequences very qu ick ly w ith o u t conscious effort.

W hatever the mechanism, we can take i t th a t there is a large body o f knowledge at

a person’s disposal, which represents those tasks the person has mastered. T h is body

o f knowledge makes up a set o f skills which can be used to carry ou t tasks and process

in fo rm a tion ra p id ly and in pa ra lle l w ith o u t conscious thought.

As mentioned in the beginn ing o f th is section, the previous discussion o f hum an error

relied heavily on James Reason’s analysis o f human error as re lated to actions resu lting

from intentions. There is another perspective, not considered by his approach, w h ich takes

account o f the fact th a t some actions may not be prom pted by in tentions b u t ra the r in

fluenced by learned and subconscious behaviour. In s tark contrast to the intention-based

mode o f operation is the undeniable fact th a t people often have subconscious reasons for

the ir actions, and since the ra tiona le behind the ir actions is often a m ystery to the person

Quirks. .65

h im or herself, le t alone to others, they w il l o ften be at a loss as to the cause o f the errors

they w ill make as a resu lt o f learned or subconscious behaviour.

3 .5 .2 P e r fo rm a n c e L e v e ls a n d L ik e lih o o d o f E r ro rs

Experts and novices make different types o f errors because they are func tion in g at d iffe r

ent cognitive levels. New users o f a system typ ica lly have to invest a great deal o f effort

and though t in to discovering how the system works. They have no in te rna l “p a tte rn ” for

achieving goals using the system. D u ring th is discovery period, they are essentially in a

problem solving mode, which involves frequent decision-making episodes. W hen the user

has learnt how to use the system and is a frequent and expert user o f the system, many o f

the sets o f actions required to achieve certa in goals have become “au tom atic ” and require

l i t t le thought.

The a rtif ic ia l intelligence branch o f com puter science is based on the existence o f under

ly ing plans in fluencing user actions. A n a lte rnative view is th a t action is inhe ren tly situated

— w ith plans having a lim ite d prescrip tive affect on user actions [Suc87]. The situated

action view is th a t users react to th e ir circumstances, w ith an objective in m ind, ra ther

than slavishly fo llow ing some set o f plans. Th is would appear to describe the nature o f a

novice’s use o f an app lica tion , whereas the expe rt’s mode o f w orking m igh t be more aligned

to M ille r ’s plan-based mode o f action [MGP60].

I t should also be borne in m ind th a t a user may be an expert a t using some parts o f a

system and yet be a complete novice w ith features not used before. Thus i t is not sensible

to classify any user as w ho lly novice or w ho lly expert, bu t be tte r to consider any user as

ranging between these two extremes at any tim e du ring th e ir use o f the system.

D uring a s tudy o f 198 workers at 11 German companies conducted by Zap f et al.

[ZBF+92] i t was shown th a t experts com m itted many more hab it errors than novices. Z ap f’s

s tudy proves th a t the nature o f user errors changes and the help required by the expert user

is consequently very d ifferent from the help required by the novice. A no the r s tudy done by

K ita jim a and Poison has shown th a t slips are most often made by expert users and error

rates for experienced users are found to be as high as 20% [KP95]. They are caused by

the h igh ly practiced, autom ated behaviour o f the expert w ith the resu lting lack o f focused

a tten tion leading to a s lip [LN86].

In the ligh t o f th is, i t would be beneficia l to consider the error hand ling requirements o f

expert and novice users separately by seeing them as func tion ing at d ifferent performance

levels [Ras87b, Ras87a]:

• The expert is engaged in a rou tine a c tiv ity and the performance o f an action requires

successful re trieva l from long-term memory. Th is re trieva l is fa llib le and restric ted by

factors such as resource lim ita tio n s and m isperceptions. T h is results in errors, hence

the h igh error rate fo r experts. The expert functions at Rasmussen’s skill-based(SB)

level. A c t iv ity at th is level is contro lled by know-how and stored autom ated schemata,

Quirks. .66

or rules. The conscious m ind is often busy w ith o ther thoughts. Slips and lapses are

generally made at th is level.

• The novice user could be seen to be engaged in a problem -solv ing ac tiv ity . The novice

is try in g to discover, by exploration , w hat the system does and th is knowledge w ill

be hard to acquire and d ifficu lt to a tta in [KP95]. The errors made by the novice

user w il l therefore be due to a lack o f knowledge about the unde rly ing system. These

users func tion at Rasmussen’s rule-based(KB) o r knowledge-based(K B) level. Rules or

procedures are derived em p irica lly du ring the use o f a com puter system. These rules

are stored and w hile a user is using a system, in fo rm a tion com ing in w il l be seen as

a signal, which serves to activate some predeterm ined rule. M istakes made at th is

level, such as activa ting the incorrect rule, are called rule-based mistakes. I f no ru le

fits , the user proceeds to the knowledge-based level. D u rin g un fa m ilia r situations,

when no in te rna l ru le can be found to f i t the s itua tion , the person needs to develop a

specific plan. Various plans are form ulated and th e ir effects tested against the goal,

e ither conceptually or physically. E rrors made at th is level are called knowledge-based

mistakes.

W hen a user is tra ined in a p a rticu la r task, contro l moves from the knowledge-based or

rule-based levels towards the skill-based level as the user becomes fa m ilia r w ith the system.

The causes o f mistakes made by the novice user are illu s tra te d in F igure 3.13. The novice

user is pu lled by various forces:

• A : The ra tiona l thought processes, cogn itive ly exhausting b u t capable o f problem

solving.

• R: The rules stored w ith in the schematic database.

• E: Signals from the environm ent.

W hen the user is unable to deal w ith the forces com ing from A , E and R concurrently,

mistakes o f bounded ra tio n a lity occur. W hen the forces from A and R become confusing

and the user veers between them , mistakes o f re luctan t ra tio n a lity occur. W hen the wrong

ru le is retrieved from the schematic database, mistakes o f im perfect ra tio n a lity occur.

3 .5 .3 D e te c t in g E r ro rs

Detecting an error is the firs t step towards recovery. M istakes are generally more subtle,

complex and d ifficu lt to detect than slips. Slips are easier to detect because the action d id

not m atch the in tention . D etection usually occurs as a resu lt o f com paring the outcome w ith

the in ten tion . W aern [Wae89] argues th a t user perception o f performance is often defective

due to inadequate feedback, or because the feedback is d ifficu lt to process.

A fte r a mistake, the outcome matches the in ten tion [LN86]. T h is means th a t i t is

hard to detect the error due to overconfidence, w ith the user using intelligence to expla in

Quirks. .67

Mistakes o f bounded rationality

memory

Environment

mistakes of
imperfect rationality

Mistakes of
reluctant rationality

SchemataAttentional

(Knowledge Based Level)

(Rule Based Level)

Figure 3.13: Shifts in Control causing Mistakes

away unusual occurrences thus failin 'g to register the presence o f an error. Overconfidence

is caused by the person look ing m a in ly for positive evidence o f correctness. In research

c ited by Waern [Wae89], users were found to be be tte r a t detecting ’ errors when they were

d ire c tly instructed to look fo r negative evidence. Zakay [Zak92] has shown th a t im m ediate

computerised feedback reduces th is overconfidence level.

E rrors are typ ica lly detected in three different ways: by self-m onitoring; by some m is

m atch between what the user th in ks the state o f the system should be and w hat i t seems to

be; or by someone else po in tin g ou t the error. These a ll re ly on some feedback mechanism

— either by the com puter or by some other means, a llow ing the user to compare w hat is

expected w ith w hat has occurred.

A study o f error detection d u ring problem solving was carried ou t by A llw ood [AM 82].

P roblem solving here is used as a blanket te rm inc lud ing reasoning, judgem ent, diagnosis

and decision making. A llw ood ins truc ted subjects to check completed work a fte r fin ish ing

a task and found th a t the results o f checking were e ither positive (satisfaction) or negative

evaluation. E rro r detection occured during negative evaluation and involved two stages:

triggering error detection, and tak ing steps to discover and correct the error. Negative

evaluation was found to be o f three types:

• standard check (SC): the subject s im p ly decided to check th e ir progress;

• direct error-hypotheses fo rm a tio n (D E H): triggered by a detection o f a presumed error.

Quirks. .68

T h is im plies actual detection o f the error.

• erro r suspicion (ES): when the subject noticed something unusual and suspects an

error. Th is suspicion does not im p ly actual detection o f the error — m erely a suspicion

o f error.

Once again the stored schemata come in to play. E rro rs may be detected due to a m ism atch

between a stored representation and the cu rren tly observed error [Rea90]. O n the other

hand, the detection may be triggered by the sub ject’s general expectations. The results o f

A llw o o d ’s study can be summarised as follows [Rea90]:

• Subjects had d ifficu lty reacting to the effects o f th e ir errors.

• Am ong the types o f evaluation mentioned above, D E H and ES occurred most fre

quently.

• Slips were detected far more read ily than mistakes and most o f the slips were detected

by D E H episodes.

• The chance o f successful e rro r detection occurring du ring ES episodes decreased w ith

the tim e elapsed between the error and the episode. Th is effect was noticed more w ith

slips than w ith mistakes.

These findings suggest th a t im prov ing the like lihood o f error detection is by no means easy

to achieve. S tud ies.to measure e rro r detection (fu ll deta ils in [Rea90], ch. 6) show tha t

detection rates are 86.1% for skill-based errors, 73.2% for ru le based errors and 70.5% for

knowledge-based errors. The re la tive proportions o f error types were 60.7% fo r skill-based

errors, 27.1% for rule-based errors and 11.3% for knowledge based errors. T h is should not

be m isin terpreted to mean th a t K B errors occur least often, since i t should be borne in m ind

th a t SB errors occur in the SB and RB levels, and th a t SB and RB errors occur a t the K B

level too [Rea90].

3 .5 .4 E n a b lin g U s e r U n d e rs ta n d in g o f E r r o r

E rro r repo rting is fa r more effective i f i t is context sensitive. Ham m ond [Ham87] po in ts out

th a t in te rp re ta tio n o f un fam ilia r in fo rm a tion makes heavy demands on w ork ing memory. A n

error message can be seen as an un fa m ilia r s itua tion — at least to new users o f a system.

Thus i t is to be expected th a t the user w ill be extrem ely like ly to forget exactly w hat was

being done p rio r to the error s itua tion .

M ost systems react to errors by generating error messages, b u t error messages are not

necessarily the so lution to the problem . The d iffic u lty w ith error messages is well known,

fo r instance [LN86, Nie93]:

• The form at and tone o f the e rro r message is often offensive.

Quirks. .69

• The messages w ill often make people believe they have com m itted some serious error

and th a t they are incom petent.

• Messages sometimes supply insuffic ient in fo rm a tion and the user often does not know

how to recover from the error.

• Messages often give obscure codes, instead o f using understandable language.

I t is im p o rta n t to remember th a t d ifferent users have different needs fo r e rro r feedback —

enabling understanding o f e rror [MNG87]:

• E xpe rt users often on ly need to be alerted to the fact th a t an error has occurred and

to the location o f the problem . Te lling them the nature o f the error is no t im po rtan t,

since they can usually w ork th is out fo r themselves.

• Frequent users, on the o ther hand, need to be to ld the nature o f the error.

• Novice users need fu ll explanations.

Understand ing errors which resu lt from learned or subconscious behaviour is far more d if

ficu lt. The action which resulted in the error was autom atic and the user may not have

been fu lly aware o f the action which caused the error. The user w ill p robab ly need to be

rem inded o f the preceding action, and then be given explanations in line w ith his or her

experience.

3 .5 .5 R e c o v e r in g f ro m E r r o r

Sometimes i t is im possible to recover from an error. Th is is especially true o f breakdowns.

I t is im p o rta n t th a t the user knows whether try in g to recover is s im ply a waste o f time.

The occurrence o f a user error can cause the system to enter a num ber o f states, as

illu s tra ted by F igure 3.14. There is a need to d is tingu ish between system detection o f an

error and user detection o f an error. Th is typ ifies the so-called “g u lf o f eva luation” [Nor86].

The w id th o f th is g u lf is determ ined by the q u a lity o f the feedback in the user interface.

(M ore about th is in Chapter 4)

S y s te m D e te c t io n . I f a user subm its some in p u t fo r a system to act upon, the system

could detect an error and abo rt the action. The system needs to in fo rm the user o f the

error w ith the success o f the no tifica tion depending on the qua lity o f the feedback and

on whether the user is concentrating on the system at the tim e. I f the user ignores

or misses th is no tifica tion and continues w orking, the g u lf o f evaluation has become

w ider and fu tu re actions w il l possibly be affected by th is m isunderstanding.

I f the user does indeed realise th a t an error has occurred, e ither a decision can be

made to abort the task — ending up at state IA (In it ia l State after an A b o rt) shown

in F igure 3.15 — or to correct the in p u t and continue working. Since the error was

Quirks. .70

ERROR
OCCURRENCE
ZONE

Human Error

invalid
input

valid but
incorrect
input

SYSTEM ERROR
DETECTION
ZONE

No Error
Message

Error
Message

inadequate
feedback time

delayadequate
feedback

time
delay HUMAN ERROR

DETECTION
ZONE

No
Detection

Delayed
DetectionDetection

Perfect
Forward

Imperfect
Forward
RecoveryRecovery

RECOVERY
ZONE

Compensating
Actions v. Abandon Retry

Approaching Approaching
FU FR

Continue
IA

Figure 3.14: Analysis of an Error Occurrence

IA FR

FUIR

I: Initial State
IA: Initial State after Abort
IR: Initial State after Recovery
F: Final State
FR: Final State after Forward Recovery

FU: Final State after an Undetected Error
Q: Quirk

Figure 3.15: All Possible States in Task Execution

Quirks. .71

detected by the system, the effects o f th is error are not c r it ic a l and the consistency o f

any underly ing data store w il l not be compromised.

U s e r D e te c tio n . I f the user provides in p u t to the system which is va lid b u t not w hat

they intended, the system has no way o f realising th a t th is is a m istake on the pa rt

o f the user and accepts the in p u t. The in p u t w ill thus be processed and changes w ill

possibly be made in one o r more underly ing data stores as a result. I f the user were to

discover the error, as a resu lt o f its effect, a decision could be made to supply inpu ts

to the app lica tion which compensate for the error. The user could continue to work

on the task in hand, b u t the fina l state w ill no t be state F, b u t ra the r state FR, since

another user could have made use o f the incorrect in fo rm a tion between the erroneous

action and the compensation. I f the user does not realise th a t an error has been made,

then the g u lf o f evaluation, which has ju s t become w ider, needs to be bridged in order

for the user to realise th a t an error has been made. The system is now in state FU,

since the state o f the system is not w hat the user intends and the consistency o f the

underly ing data store has possibly been compromised.

Users sometimes do riot realise th a t data was not useful t i l l an inde fin ite ly long tim e

after the event. People also change th e ir ideas about w hat was correct or incorrect over

a period o f tim e. People’s memories are also notoriously inconsistent, even sho rtly a fter

an event has taken place. The vastly d iffe ring eye-witness accounts o f accidents are a

well-known occurrence, ind ica ting th a t people’s perceptions o f the same event are often

coloured by inherent, subconscious factors beyond th e ir contro l. In o ther words, the

user may m isremember inpu ts provided to an app lica tion , and accuse the “ com puter”

o f causing an error. The user may th in k th a t the inpu ts provided are correct, and on ly

realise later, perhaps afte r speaking to a colleague, th a t he or she could possible have

provided incorrect inpu ts to the application. I t is often very d iff ic u lt fo r users to check

up on th e ir actual inpu ts and in te raction w ith an app lica tion once the app lica tion

has term inated. I t is also qu ite common fo r users to change th e ir m inds about the

correctness o f the ir actions over a period o f tim e.

A pp lica tio n errors have purposely been om itted . These errors leave the app lica tion in an

anomalous state and the user has no defence against them. They are not represented in the

state diagram since they are a lm ost impossible fo r the user to recover from .

The effects o f user errors could accumulate, affecting the eventual recovery process and

the error hand ling tim e, and exacerbating long-term effects o f the error. The more unre

solved errors in the system, the more tim e and e ffort w il l be taken to restore the system to

the correct state.

D ifferent types o f errors occur fo r d ifferent reasons, because o f failures at d ifferent cog

n itive levels. I t is logical th a t the recovery needs are different too [BZPF93].

• In non-transactional systems, the undo func tion w il l work adm irab ly for slips and

lapses, for which the user is not exactly sure about w hat happened. As has been

Quirks. .72

explained, th is is p robab ly not an op tion in transaction systems. I f the system de

tected the error, undo is not rea lly necessary since the database has been unaffected

by the error. I f the system d id not detect the error, undo is also not an option, unless

the com puter system is “ in te lligen t” enough to generate a compensating transaction

autom atica lly. Thus, in a transactiona l system, errors such as slips, which are tra d i

tio n a lly easy to recover from , become far more d iff ic u lt to manage. Th is is because

users realise th a t som ething went wrong, bu t have no idea w hat, since the ir actions

d id not match th e ir in tentions.

• Recovering from mistakes — rule-based and knowledge-based errors require complex

actions com pelling the user to go back th rough some actions to recover [BZPF93].

Users w ill often realise th a t something is amiss w ith the ir reasoning, or m ethod o f

achieving the goal, bu t are at a loss as to how to go about recovering. Users, especially

novices bu t occasionally also experts, w il l need externa l assistance to recover from such

errors.

Knowledge activa tion and transfo rm ation are the cruc ia l po in ts which support the human

error hand ling process [RPM B96]. Rizzo et al. argue th a t most mistakes depend on the mis-

activa tion , conscious or unconscious, o f knowledge. They fu rth e r aver th a t error handling is

the process o f supporting the ac tiva tion o f relevant knowledge by m odu la ting the conditions

in which tasks are performed. I t remains to be seen whether the mere re-activation o f

th is knowledge and exp lana tion o f the effects o f the e rro r suffices to fac ilita te effective error

recovery. Rizzo et al. propose the fo llow ing guidelines fo r supporting the handling o f human

errors [RPM B96]:

1. Make the action perceptible — by th is is meant th a t designers should make the m atch

between action and outcome more obvious.

2. Display the error message at a high level — messages should be displayed at the user’s

level o f understanding, w ith the poss ib ility o f ge tting more deta iled messages should

they be required.

3. Provide an activ ity log — thus supp ly ing people w ith an externa l m em ory aid.

4. A llow comparisons — the user must be assisted in com paring the state w ith other,

perhaps intended, states.

5. Make the action result available to user evaluation — th is needs to be achieved as soon

as possible. Th is aspect coincides w ith the discussion on feedback in the fo llow ing

chapter, which stresses th a t the feedback should provide aspects relevant to the task

ju s t performed.

6. Provide result explanations — the best way to provide error diagnosis is to give specific

answers to the user. The user should not be overwhelmed by reams o f explanations.

Quirks. .73

The user should on ly be given a high-level message, w ith fu rth e r deta ils available upon

request.

3 .5 .6 S u m m a ry

T h is section has discussed human errors, th e ir nature, th e ir occurrence, th e ir effects and

issues w ith respect to user recovery from errors. E rrors w il l be handled in the course o f

task execution and can be considered to be pa rt and parcel o f the task execution a lbe it

an unpleasant or unexpected one. E rro r recovery can be likened to a “ repa ir” effect often

encountered in conversation. Listeners w ill give negative feedback i f they e ither do not

understand, or are not satisfied w ith w hat the speaker is saying. The speaker w il l then

a ttem p t a repair and get the conversation back on course.

3.6 Interruptions

In te rrup tion s pervade our 21st C entury lives. Telephones ring, people pop in to the office

and em ail continuously demands to be read and answered. Sometimes in te rrup tion s happen

concurrently — for example, the telephone often rings ju s t as you are about to answer the

door. O ften, people feel th a t one in te rru p tio n follows on from the previous one, leaving

them no tim e to fin ish w hat they were doing. Humans rou tine ly handle up to five activ ities

simultaneously, and w ith ease, by interleaving them. Cypher [Cyp86] m ainta ins th a t they do

th is by linearis ing — organising the para lle l activ ities in to a single linear stream o f actions.

Humans are very good at th is — we have a ll seen evidence o f th is w hile watching someone

cook a meal. The coord ination o f the various different activ ities, often w hile ho ld ing a

conversation, is ample evidence o f the ve rsa tility o f the human race.

T h is in terleaving o f activ ities could be vo lun ta ry — such as when we decide th a t we do

not want to w a it for something to fin ish, and sw itch to another a c tiv ity — or invo lun ta ry

when, fo r example, the phone rings and has to be answered. In Section 3.3, the context

which a user builds up during an a c tiv ity was mentioned. In order fo r a com puter system to

support the user in linearis ing o f m u ltip le activ ities, i t is essential th a t the user be provided

w ith some sort o f memory aid. Th is should keep the a c tiv ity v is ib le and provide a way for

the user to “p ick up the threads” as qu ick ly as possible upon resuming an activ ity .

Care should be taken th a t the m em ory a id itse lf should not be d is trac ting or c lu tte r

up the display. There is a continuous trade-o ff between p rov id ing the user w ith external

memory aids and the lim ita tio n s o f w ork ing space [MN86].

In te rrup tions are common in the fie ld o f operating systems, w ith the de fin ition o f an

in te rru p t being “events which m od ify the norm al course o f the execution o f a program ”

[Kra88]. Th is de fin ition could app ly to errors and exceptions too, so i t w ould be be tte r to

narrow down the de fin ition a l it t le . For the purpose o f th is discussion we w il l define an

in te rru p t as being:

Quirks. .74

events, not caused by an error on the part o f the user, which modify the norm al

course o f execution o f a task by a specific user using an application program.

3 .6 .1 N a tu r e o f I n t e r r u p t io n s

A user in the process of using an application to carry out a task can be interrupted either by
the application itself communicating some problem to be solved; or by something external
to the application. This is illustrated in Figure 3.16. Each of these broad categories will be
considered in turn.

Interruption

Application
Specific

External to
Application

System
Initiated

User
Initiated

Communication
s^Exception

Processing
Exception

Other

Operating
System

Another
Application Distractions Miscellaneous

Nature of
ActivityTemporal Gap External Event Memory Periodic ActionEnvironment

Figure 3.16: Classification o f In terruptions

A p p l ic a t io n - S p e c i f ic

This class of interruption will be split up into two distinct types: processing exceptions,
and communication exceptions. These are different in that processing exceptions refer to
exceptions generated by the application within itself, which have nothing to do with any
communication with other parts of a distributed system. Communication exceptions, on
the other hand, are received from some external entity. Since we are considering distributed
component-based systems, this would indicate the failure of a global method invocation.
The failure of a global method invocation will possibly indicate that the user needs to redo
part or all of the actions which led to the method invocations. Note that breakdowns in the
middleware or network are covered by the breakdown classification.

Quirks. .75

A p p l ic a t io n -E x te r n a l

T h is type o f in te rru p tio n could e ither come from the user’s environm ent (externa l), or the

user (in te rna l). E x te rna l in te rrup tions come from our environm ent, w h ile in te rna l in te rru p

tions are caused by our own though t processes [MN86]. A pp lica tion -ex te rna l in te rrup tions

have been sp lit in to three types:

S y s te m In i t ia t e d — T h is type o f external in te rru p t could come e ither from another ap

p lica tion runn ing on the user’s computer, such as a m a il reading program , or from the

opera ting system itse lf ind ica ting some sort o f problem such as, fo r instance, a fu ll

hard drive.

U s e r I n i t ia t e d — T h is type o f in te rru p tio n is generated by user actions and could be

triggered by one o f the fo llow ing external or in te rna l factors [DRW 95]:

• Environm ent — something external th a t rem inds a user o f som ething to be done.

Th is could be a realisation th a t an error had been made o f which the user has

on ly now become aware. Th is could cause an im m ediate cessation o f a c tiv ity in

the previous task in order to correct the error.

• Temporal gap — an expectation th a t som ething must occur w ith in a certa in tim e

period.

• Externa l event — fo r example, an a larm ring ing to rem ind the user o f an ap

po in tm ent.

• M em ory — a m em ory o f something th a t has to be done, or a need to check up

on the a c tiv ity o f some other app lica tion . Th is is a prim e example o f an in te rna l

in te rrup tion .

• Period ic action — some actions are hab itua l and the im portance o f these actions

could cause the user to in te rru p t the present task.

• Nature o f ac tiv ity — the in te rru p tio n could be caused by the nature o f the ac

t iv i ty the user is engaged in, ra ther than some trigger causing an a c tiv ity to ta lly

unrelated to the present activ ity . Cypher [Cyp86] cites the fo llow ing mismatches

between user ac tiv ities and system programs, which lead to na tu ra l in terleaving

o f actions due to in te rna l in te rrup tions:

— Single ac tiv ity and m ultip le programs — Th is would happen when some ac

t iv i ty requires the use o f more than one program . For example, someone

sending an em ail m igh t need to check a calendar to locate a free slot.

— M ultip le activ ities and single program — T h is occurs when a single program

must be used fo r two different purposes in the execution o f an a c tiv ity . P ro

grams such as browsers handle th is type o f th in g qu ite n icely by allow ing

users to have more than one context (w indow) at a tim e, so th a t m u ltip le

Quirks. .76

activ ities can be handled by the same program. O ther applications are not

as successful.

— W hile -F m -a t-it activ ities — These ac tiv ities occur to the user in the course

o f some activ ity . For example, the user could be ed iting a document and,

in the course o f th is ac tiv ity , realises th a t there is no backup copy o f the

document on a removable disk. A decision could then be made to take the

backup im m ediate ly, ra the r than risk losing the document.

— Related activ ities — A user sending an em ail message could need to incor

porate p a rt o f a docum ent in the message. T h is w ould require opening the

word processing program in order to copy p a rt o f the document in to the

em ail message.

* Simultaneous in te raction — occurs when the user wants bo th activ ities

to be v is ib le a t the same tim e, or wants to transfer data between them.

* Shared context — is required when the user is perhaps using the same

document in two different activ ities , fo r two different purposes. The

system would idea lly merge the ed iting from bo th contexts to arrive at

the fina l document.

O th e r "— Th is category includes two types o f in te rrup tions:

• D istractions — th is is a special type o f in te rrup tion . I f the d is trac tion is s im p ly

an ir r ita t in g noise or a conversation between two other people in the same room,

i t requires no hand ling by the user, b u t does d is rup t the task. The user has to

acknowledge the existence o f the d is trac tion , change context to understand its

content and then resume the o rig ina l task, since the d is trac tion does not require

any processing. I f enough d istractions occur, the user could feel th a t noth ing at

a ll is being achieved. However, the user whose performance is degraded enough

by d istractions m ight feel the need to do something to handle i t — prom oting i t to

an in te rrup tion . The user may leave the room, or use ear plugs to screen ou t the

noise, or even change task to one which does not require as much concentration.

G ardiner [Gar87] po in ts ou t th a t the im m ediate memory fo r visual abstract pa t

terns, such as the s truc tu re and com position o f a p a rticu la r w indow , is d isrupted

by small amounts o f d is trac tion . W ith respect to verbal chunks o f in fo rm ation

(a fam ilia r pa tte rn — eg. a word or group o f words combined according to a

ru le), short te rm fo rge tting increases w ith the level o f d is tractions too. Research

has shown th a t th is find ing can be applied to chunks o f user actions w ith in some

action sequence, so th a t a d is trac tion could make users forget where they were

in an action sequence very easily [CCHOO] — especially i f no advance warning o f

the in te rru p tio n was received.

• Miscellaneous — caused by personal v is its or phone calls, or even the fire bell.

Quirks. .77

Some o f these, such as a phone call, w il l a llow the user to sw itch to the new

context gracefully, w ith tim e to save context i f desired. Others, such as the fire

bell, generally do not allow graceful context sw itching.

3 .6 .2 T h e C o m p o s it io n o f a n In t e r r u p t

The sequential s tructu re o f in te rrup ts is shown in F igure 3.17. There are three sequential

Prologue Interruption Body Epilogue

Taking Signal
of Interrupt

Selecting a
Task Body

Save and Change context of activity

Restoration of Context

Choice of
Post-Implementation

Task

Resume Task

After Interruption

Figure 3.17: The Sequential Structure of an Interruption [Jam96]

stages, the prologue, the body o f the in te rrup tion , and the epilogue. The three together

make up the task , in te rrup tion . Jambon notes th a t the body o f the in te rru p tio n is generally

independent o f the in te rrup ted task, the “E xte rna l to A p p lica tio n ” in the classification. The

classification also includes those in te rrup tions which are dependent on the in te rrup ted task.

We consider th a t the app lica tion could pub lish an error message because o f the fa ilu re o f a

m ethod invocation which cannot be a ttr ib u te d to any error on the p a rt o f th is user. The

error could have been caused by the actions o f some other user m aking use o f the same

m iddleware server, or data layer, and therefore cannot be classed as an error. Th is class o f

in te rru p tio n is classified as an “ A pp lica tio n Specific” in te rrup tion .

The prologue and epilogue are often dependent on the in te rrup ted task. The user has

to take some action in an tic ipa tio n o f handling the in te rrup tion . For example, the user may

choose to save the document being worked on before answering the door. The epilogue w ill

require the user to change context once again. The user has to t r y to remember w hat was

being done and perhaps retrieve a document from the d isk once again before resum ing work.

The epilogue could also lead to the user deciding to work on another task a ltogether — and

not resuming the in te rrup ted task. Waern [Wae89] notes th a t w ork ing m em ory is on ly able

to re ta in in fo rm a tion for a couple o f seconds at a tim e and th a t unexpected in te rrup tions

can thus be fa ta l to an entire prob lem solving process.

Quirks. .78

3 .6 .3 D e a lin g w i t h In te r r u p t io n s

In the previous section the detection o f errors by the system and by the user was analysed.

T h is section w ill address the mechanics o f hand ling in te rrup tions.

Sometimes the hand ling o f an in te rru p tio n is in te rrup ted by yet another in te rrup tion .

E ith e r the firs t in te rru p tio n is suspended so th a t the most recent one can be dealt w ith ,

or the recent one is queued and forced to w a it u n t il the hand ling o f the firs t one has been

completed [WC95]. Th is mode o f hand ling in te rrup tion s is defined by its sequential nature.

However, the user may choose to interleave the hand ling o f the in te rrup tions, as is often

done when a person suspends one phone ca ll in order to answer another incom ing ca ll and

then attem pts to handle bo th in an interleaved fashion.

In some cases, the user w il l resume the o rig ina l task, bu t in 45% o f cases, according

to a study done by O ’C ona ill and F roh lich [OF95], the user w ill no t resume the d isrupted

task. Th is is illu s tra ted in the d iagram in F igure 3.18, by the trans ition to node 0 (O ther

a c tiv ity state), instead o f node F (F in a l state). O ’C ona ill and Frohlich tr ie d to quan tify the

effects o f in te rrup tions in a w ork ing day. They found th a t the in te rru p tio n was often seen

to benefit bo th the in it ia to r and the recip ient, so th a t very few o f those who partic ipa ted

tr ied to dissuade the in it ia to r from m aking the in te rrup tion .

I: Initial State
F: Final State
Q: Quirk
O: Other Activity

Figure 3.18: Non-Resumption of the Primary Task

Studies by van Solingen et a l [vSBvL98] in to the effects o f in te rrup ts in software devel

opment found th a t the subjects o f the s tudy spent 1 to 1.5 hours per day on in te rrup ts , and

concluded th a t they spent up to 20% o f th e ir tim e servicing in te rrup ts . The recovery tim e

after an in te rru p t was gauged to be a m in im um o f 15 m inutes.

M iya ta and Norm an [MN86] offer a perspective for understanding in te rru p tio n handling

by contrasting two types o f processing styles th a t humans can be engaged in: task-driven

and in terrup t-d riven . W hen someone is engrossed in some task-driven ac tiv ity , such as

reading a book, they w ill often screen ou t any in te rrup tion s they can in order to continue

w ith the task in hand. W hen someone is doing a jo b such as answering a sw itchboard,

they are in in te rrup t-d riven mode. T hey are therefore tuned in to tak ing in te rrup tions and

Quirks. .79

dealing w ith them. The task-driven processing mode, when in te rrup ted , w il l be d iff icu lt to

resume because o f the d iff ic u lty o f resuming context, especially where the task involved a lo t

o f though t. In te rru p t-d rive n a c tiv ity w ill, by its very nature, not be as negative ly affected

by in te rrup tions .

F igure 3.19 depicts the in te rru p tio n hand ling process (m odified from [Jam96]). The way

a user deals w ith in te rrup tion s is dependent on th e ir present processing mode and on the

perceived urgency o f the in te rrup tion . A person who is in task-driven mode w ill p robab ly

f ilte r out a ll b u t the most persistent o f in te rrup tions. W aern [Wae89] finds th a t people are

able to e lim ina te irre levant cues and thereby raise th e ir level o f performance. In th is mode,

they w ould p robab ly choose to let em ail messages rem ain unread t i l l they have completed

th e ir task. Someone com ing in to th e ir office for help, on the o ther hand, w il l p robab ly be

“ allowed” to in te rru p t th e ir task. Thus, Jam bon’s [Jam96] model o f in te rru p t handling in

w hich the user e ither accepts or ignores the in te rru p tio n , can be extended to take account

o f the two different processing modes.

As can be seen from the figure, the user can e ither f ilte r out the in te rru p tio n , or choose

to take the in te rru p t signal. In the firs t case the user carries on w ith the task and the

in te rru p tio n does not d is rup t th a t process at a ll. M iya ta and Norm an [MN86] suggest tha t

people in task-driven mode are aware o f the in te rru p tio n , bu t not o f the content. In the

la tte r case, the user acknowledges the purpose and content o f the in te rru p tio n and chooses

to e ither accept or deny it. I f the in te rru p tio n is accepted, the user needs to decide how the

in te rru p tio n w ill be dealt w ith 'and change context in order to deal w ith it . H itch [H it87]

argues th a t the load on w ork ing memory increases d ire c tly in p ro p o rtio n to the am ount

o f m a te ria l th a t must be remembered tem pora rily or “ held in m ind ” . Consequently, the

speed and accuracy w ith which people can process in fo rm a tion w ill depend on the working

m em ory load.

A fte r the in te rru p tio n has been dealt w ith , the user then needs to change context again

and decide which task to proceed w ith . O ften the nature o f an in te rru p tio n w il l determ ine

the continu ing activ ity . For example, i f you are in te rrup ted by a phone ca ll te llin g you th a t

your car has been stolen, i t is like ly th a t you would not continue w ith your previous task,

bu t th a t you would phone the insurance company instead. M iya ta and N orm an [MN86]

suggest th a t a system o f rem inders m igh t be a good idea in ensuring th a t the user does

indeed resume a suspended ac tiv ity . Hum an m em ory lim ita tio n s require these prom pts, i f a

p o te n tia lly c r it ica l a c tiv ity is not to be forgotten. Simon [Sim69] (p40) cites two examples

from lite ra tu re about effects o f in te rru p tio n which show th a t w hile humans generally can

re ta in up to seven un its o f in fo rm a tion i f there is no in te rru p tio n between the encoding o f

the in fo rm a tion and the recounting, they on ly re ta in two “ chunks” o f in fo rm a tion after an

in te rru p tio n . Reason [Rea90] identifies errors o f omission caused by in te rrup tions , which in

some cases have been the cause o f m a jo r disasters.

Quirks. .80

ORIGINAL
TASK

CONTEXT
CHANGE

INTERRUPTION

Interrupt
Occurs

Receive
Signal

screen out

acceptAcknowledge

Select
Action

deny

Change
contextSave

Context Deal with
Interruption

Change
contextResume

Context

Choose
Task

Continue To another
TaskResume

Execution

Figure 3.19: Interruption Handling

Quirks. .81

3 .6 .4 S u m m a ry

From the previous discussion i t would appear th a t the biggest problems confronting users

who are in te rrup ted are f irs t ly th a t they m ight forget w hat they were doing; and secondly

th a t even i f they do re tu rn to the o rig ina l ac tiv ity , they have d iff ic u lty rebu ild ing the context,

or tra in o f thought. In order to assist the user in recovering from in te rrup tions , i t would

thus be he lp fu l to have the fo llow ing features provided by the app lica tion :

• m ental aids, to help the user remember past actions;

• graphica l features to allow the user to take a couple o f steps back to rebu ild the m ental

context.

• user assistance in b u ild ing an awareness o f the h is to ry o f in te raction w ith the app li

cation, by lin k in g past inputs to the results — or ou tpu ts - thereof.

Since each user has d ifferent “ remem bering” needs, the p rinc ip le o f g iv ing the user an

overview and then allow ing zoom ing-in to get required detailed in fo rm ation , applies here.

3.7 Summary

T h is chapter has investigated quirks in some deta il. T h e ir nature has been explored, as have

th e ir negative and positive effects and techniques for dealing w ith them. T h is d issertation

intends exp loring the role o f an enriched model o f feedback to, amongst o ther things, assist

in a llev ia ting the negative effects o f quirks. Such feedback would have to provide in fo rm ation

about current app lica tion a c tiv ity as well as a sense o f the user’s past in te rac tion w ith the

app lica tion . The fo llow ing chapter w ill in troduce the feedback concept in general terms,

and then concludes by discussing how feedback can be used to alleviate the negative aspects

o f quirks.

Ah! What is man? Wherefore does he why? Whence did he

whence? Whither is he withering?

Dan Leno (George Galvin)

Dan Leno Hys Booke. (1901) ch .l

chapter 4

Feedback

The work presented in th is d isserta tion attem pts to provide a general purpose feedback

fram ework fo r applications th a t use the component technology surveyed in Chapter 2. Fur

the r chapters w ill discuss th is prob lem w ith specific reference to component-based systems.

Th is chapter concentrates on the role o f feedback in more general terms and refers to the

role th a t feedback plays in a llev ia ting the negative effects o f quirks.

The need for feedback, the means for p rov id ing i t and the d ifficu lties inherent in th is,

from a program m er’s po in t o f view, are discussed in th is chapter. Section 4.1 explores

the nature o f feedback and likens i t to human conversation. Section 4.2 examines the

use to which people p u t feedback. Sections 4.3 and 4.4 discuss the m o tiva tion for, and

timeliness of, feedback. Section 4.5 examines aspects o f good and bad feedback and makes

recommendations about the type o f feedback th a t should be provided. Section 4.6 explores

the concept o f the provis ion o f feedback g raph ica lly ra the r than te x tu a lly and Section 4.7

considers the role th a t feedback can play in a llev ia ting the negative effects o f quirks. Section

4.8 summarises the chapter.

4.1 Introduction

Feedback is a word w ide ly used w ith different meanings in several academic areas inc lud ing

engineering, economics, biology, m athem atica l models or b iological systems, fo rm a l logic

82

Feedback. .83

and social science [Ric91]. The O xford English D ic tiona ry [SW89] defines feedback as:

1. The m odifica tion , ad justm ent or contro l o f a process or system (as a social

s itua tion or a b io logica l mechanism) by a result or effect o f a process esp.

by a difference between the desired and an actua l result.

2. In fo rm a tion about the result o f a process, experim ent, etc.

3. A response.

Spink and Saracevic [SS98] argue th a t a ll academic perspectives have a basic concept o f

feedback as involving a closed loop o f causal influences, a loop o f m utual o r c ircu la r causality.

The research in th is d isserta tion focuses on the hum an-com puter in te rac tion perspective,

which has an interest in “ the exchange o f in fo rm a tion between partic ipa ting agents through

sets o f channels, where each has the purpose o f using the exchange to change the state itse lf

or one or more others” [Sto94]. The feedback thus concentrates on the m ethod and type

o f in teraction , the partic ipan ts in the in teraction , th e ir purpose, and the interface between

the human and the com puter [SS98].

Shneiderman [Shn86] defines feedback as com m unication w ith a user resulting directly

from the user’s action. Perez-Quinones and S ibert [PQS96] po in t out th a t th is de fin ition

does. not cover com m unication from the system which notifies the user about the state

o f the system, or feedback about long-lived activ ities or transactions. Feedback allows the

com puter to fu lf i l l the same role as a conversational pa rtic ipan t. Suchman [Suc87] po in ts out

th a t the im m ediacy o f the reactions o f computers o f today, combined w ith the fact th a t such

reactions are not random bu t considered (having been designed by a hum an program m er),

lead people to consider the com puter to be a purposefu l social object — a conversational

pa rtic ipan t. Friedman and M ille t t [FM95] found th a t people, even com puter lite ra te people,

a ttr ib u te d social a ttribu tes to com puter technology.

Partic ipan ts in a conversation do not merely take tu rns, b u t in many ways collaborate

in the conversation. The person doing the ta lk ing expects a level o f feedback from the

person being addressed, e ither in the form o f nods, verbal a ffirm ations (“ uh huh”), or facial

expressions. These ind icators are used so th a t the person doing the ta lk in g can determ ine

whether the person being spoken to is receiving the message and understanding it. A

facial expression can convey a negative response to w hat a person is saying, or a positive

response, ind ica ting understanding. A b lank expression, on the other hand, could indicate

th a t the person being addressed is deaf, or does not understand the language o f discourse.

Thus the feedback can be seen to be e ither positive (when th ings are going sm ooth ly) or

negative (when the listener signals a problem), and the feedback w il l determ ine the fu tu re

conversation [BH93].

Th is conversational feedback model neatly fits in w ith the in te raction between humans

and computers. C lark and Schaefer [CS87] proposed a m odel o f co llaborative con tribu tions

to conversation and identified fou r possible states o f the person being addressed:

Feedback. .84

1. no t aware o f being addressed;

2. aware, bu t d id not hear w hat was said;

3. heard it , bu t d id no t understand;

4. heard, and understood;

I f we app ly these princip les to the hum an-com puter conversation, i t is logical to assume

th a t the user w il l want to be able to id e n tify these states in a conversational pa rtne r —

the app lica tion — so as to know how to proceed. Nickerson [Nic76] tries to p in down the

nature o f the pa rtic ipan ts in hum an-com puter in teraction . He points ou t th a t in norm al

conversations one would not ca ll one or the o ther p a rtic ipan t a user. He argues th a t in

hum an-com puter in te rac tion th is nom enclature is correct, since the hum an-com puter con

versational model, a lthough in many aspects s im ila r to the hum an-human conversational

model, is qu ite different, since the human partne r can be characterised by th e ir goals and

cognitive ab ilities , w hile the com puter cannot.

Suchman [Suc87] likens the hum an-com puter in teraction to hum an-to-hum an conversa

tio n in three ways. B o th are:

1. reactive — Com puters react to user actions, meaning th a t the con tro l o f the human-

in te raction process is essentially in the hands o f the user.

2. lingu is tic — The use o f computers today is not a m a tte r o f p u llin g levers and pressing

bu ttons, b u t ra the r o f specifying operations and considering the ir results — exh ib iting

lingu is tic behaviour.

3. opaque — The general opacity o f hum an partic ipan ts in a conversation makes expla

nations about hum an in tentions c r it ica l in understanding human action.

Suchman argues th a t the aforementioned reactive, lingu is tic and opaque properties o f com

puters lead users to a ttr ib u te in tentions to the behaviour o f the com puter system. She

fu rth e r argues th a t, having draw n th is conclusion, users then expect the com puter to ex

p la in itse lf and expect i t to behave in a ra tiona l way.

W hen humans com m unicate they often assume a shared background knowledge o f the

p a rticu la r subject they are discussing. The speaker w ill have to gauge the lis tener’s un

derstanding o f the top ic and take steps to exp la in fu rthe r i f the speaker concludes th a t the

listener does not have some knowledge needed in order to understand the conversation prop

erly. The listener w ill also make assumptions about the speaker’s knowledge and opinions

du ring the conversation. Suchman po in ts out th a t much o f w hat is said o ften requires refer

ence to o ther facts which are unspoken, b u t relevant to the conversation. As a conversation

continues, the two pa rtic ipan ts w ill learn much about each other, th e ir knowledge, a ttitudes

and expectations.

Feedback. .85

The success o f hum an-com puter “ conversation” w il l depend on the user being able to

gauge the “ knowledge” o f the app lica tion — and being able to supply the com puter w ith

those items i t needs in order to continue the conversation successfully. Feedback is a valuable

too l in the hands o f an app lica tion developer, who needs to com m unicate the app lica tion ’s

“ knowledge” and expectations to the user to fac ilita te the app lica tio n ’s role as conversational

pa rtic ipan t. In conclusion, perhaps the best de fin ition o f feedback w ould be

the com munication o f the state o f the system, e ither as a response to user actions,

to in fo rm the user about the conversation state o f the system as a conversation

partic ipant, o r as a result o f some noteworthy event o f which the user needs to

be apprised.

4.2 Purpose of Feedback

The previous sections have ju s tifie d the need for feedback and discussed issues pe rta in ing to

the tim eliness o f feedback provision. Before proceeding to fu rth e r exam ina tion o f feedback

provision and a ttem p ting to compile a lis t o f desirable feedback features, we need to take a

look at the use to which the user w il l pu t the feedback which is provided.

Feedback was defined at the beginn ing o f the chapter as achieving the fo llow ing (some

what paraphrased):

1. s ign ify ing a response. T h is serves to reassure the user and con firm th a t inputs have

. been accepted and th a t the system is acting upon them.

2. m odifying the behaviour o f the user. I f we once again consider the s im ila r ity o f the

hum an com puter in te rac tion to a conversation, feedback w il l serve to help the user

decide how to proceed. W ith o u t feedback, e ither negative or positive, the user is le ft

wondering whether to pursue the o rig ina l course o f action, or to veer to one side or

another to accommodate some fau lt.

Engel and Haakma [EH93] d is tingu ish between two kinds o f feedback w hich are p e rti

nent here — I-feedback and E-feedback. I-feedback refers to the reception o f in fo rm ation

already supplied by the user w h ile E-feedback communicates to the user the next in

puts expected by the system. Whereas I-feedback is genuine feedback, E-feedback is

considered to be feed-forward, affecting fu tu re behaviour. Engel and Haakma argue

the im portance o f E-feedback, since i t reveals the system ’s expectations and allows the

user to judge whether these expectations are com patib le w ith envisaged intentions.

3. prom oting understanding. The user needs to understand the system and the effect

th a t inpu ts are having on the state o f the system. W ith o u t a good understanding

bo th o f the present state and the role the user has played in b ring ing the app lica tion

in to th a t state, he or she cannot hope to proceed knowledgeably.

Feedback. .86

In add ition , feedback can be used for

• overview purposes. The feedback could be used by some other app lica tion , as is the

case w ith app lica tion m on ito ring , or by some d is trib u te d en tity w hich needs to mon

ito r performance o f the app lica tion , or by the user to provide some in fo rm a tion not

pe rta in ing d irec tly to the state o f the system, b u t ra the r to other characteristics such

as performance, workload etc.

The tra d it io n a l role o f feedback is often seen as pe rta in ing exclusively to the firs t use men

tioned above. There is a need to w iden th a t view to encompass the o ther uses, in order

to provide a complete feedback mechanism. These are not tra d itio n a l uses o f feedback and

the fo llow ing sections w il l address the extension o f the feedback concept to include these

features.

4.3 W hy give Feedback?

De Bono [dB98] po in ts ou t th a t i t is often be tte r to s im p lify a process than to tra in people

to cope w ith com plexity. Feedback can be considered as a way o f s im p lify ing the in teraction

between the user and the system. To ju s t ify the “s im p lify in g ” role o f feedback, i t is necessary

to understand the nature o f the in te raction between the user and the com puter.

One o f the firs t a ttem pts to model human in teractive behaviour was done by Card,

M oran and Newell [CM N83], who proposed the GOMS (Goals, Operators, M ethods and

Selection) model. GOMS is a very good model fo r p red ic ting tem pora l properties, b u t not

as good at accom m odating the effects o f human thought [D ix91]. N orm an ’s action-based

approach [Nor86], which analyses the in te raction between humans and computers, identifies

the stages o f hum an a c tiv ity shown on the le ft hand side o f the fo llow ing table, w hile the

m atch ing stages o f conversational a c tiv ity (since we are considering feedback needs w ith

respect to conversational dialogue) are shown on the righ t:

Step Stages o f H um an A c t iv ity Conversational Stages

1 Estab lish ing the goal Establish ing the goal

2 Form ing the in ten tion Deciding w hat to say

3 Specifying the action sequence Form ula ting the words in the m ind

4 Executing the action Saying the words

5 Perceiving the system state Hearing the rep ly

6 In te rp re ting the state Understand ing the rep ly

7 Eva lua ting the system state In te rp re ting w hat was said

D uring th is ac tiv ity , Norm an identifies two gulfs th a t have to be bridged as a result o f the

difference between human goals (in psychological terms) and system states (expressed in

physical terms). The two gulfs w hich need to be bridged to enable hum an use o f a system

Feedback. .87

are the gulfs o f execution and evaluation. The g u lf o f execution represents the effort th a t

the user has to make in order to translate goals in to action sequences which, when applied

to the system, w ill achieve the goal. The g u lf o f evaluation represents the effort the user has

to make to understand the state o f the system as a result o f th e ir actions. Norm an argues

th a t these gulfs can be bridged from e ither d irection . The system can narrow the g u lf by

constructing the interface w ith the needs o f the user in m ind. Norm an notes th a t the user

can bridge the g u lf by creating plans, action sequences and in te rp re ta tions o f the system.

There are two different schools o f though t w ith respect to the m o tiva tion behind user

actions. The a rtif ic ia l intelligence branch o f com puter science is based on the concept o f the

existence o f underlying plans in fluencing user actions. A n a lte rna tive view is th a t action is

inheren tly situated — w ith plans having a lim ite d prescrip tive effect on user actions [Suc87].

The situa ted action view is th a t users react to th e ir circumstances, w ith an objective in

m ind, ra the r than slavishly fo llow ing some set o f plans.

Clancey [Cla97] explains th a t the theory o f s itua ted cognition claims th a t w hat people

perceive, how they conceive o f th e ir a c tiv ity and w hat they physica lly do, develop together.

He adds th a t human action is essentially im prov isa to ry by d irec tly connecting perception,

memory and action, concluding th a t conceptual knowledge is developed over tim e as pa rt

of, and by means of, physical performances.

The conversational model o f user in te rac tion in the current paradigm o f recognition

ra the r than recall [D ix91], seems to lean towards the s ituated action perspective, ra ther

than a plan-based mode o f opera tion as proposed by M ille r et al. [M GP60]. Users behaving

in th is manner are even more dependent on the narrow ing o f the g u lf o f evaluation, since

they react according to the way they in te rp re t the state o f the system. Dascal [Das92] argues

th a t the structu re o f dialogue is inheren tly reactive, w ith the speaker p lann ing what to say

in reaction to w hat was said (according to the current state o f the dialogue).

The tra d itio n a l plan-based approach suggests a fore-knowledge o f the app lica tion ’s user

interface. The expert user may indeed have th is knowledge, bu t the novice or occasional

user would tend to react to the state o f the app lica tion ra the r than act according to some

set o f plans. O ’Hara [0 ’H94] suggests th a t ne ither plan-based nor s itua ted action would

suffice to describe a ll in teraction . He suggests a continuum between the two modes along

which people sh ift according to factors such as knowledge and task.

The qua lity o f the feedback provided by the system can go a long way towards narrow ing

the g u lf o f evaluation — in conversational terms, enabling an understanding o f w hat was

said. Feedback becomes very im p o rta n t when the system is prone to long response times,

which often happens in d is trib u te d systems. A slow response could be ind ica tive o f an error

or s im ply a norm al occurrence i f the network is overloaded. E ith e r way, the user needs to

be fu lly in form ed about the reason for the delay. Feedback becomes c r it ic a l in the case o f

system fa ilure. M any systems s im p ly stop function ing in the case o f a system fa ilu re and

the user is le ft in the unenviable pos ition o f not know ing w hat has happened. The user

w ill de fin ite ly be unsure about whether the a c tiv ity th a t resulted in the fa ilu re is w orth

Feedback. .88

repeating or not.

Norm an [Nor89] argues th a t in any complex environm ent — fo r instance, a new app li

ca tion — one should always expect the unexpected. To deal w ith the unexpected, Norm an

concludes th a t continuous and in fo rm ative feedback is essential. N orm an [Nor86] mentions

three d ifferent concepts w h ich exist when the human com puter in te rac tion process is con

sidered:

1. The design model — the m odel held in the system designer’s m in d o f how the system

should work.

2. The user’s model — the m enta l model o f the system, as b u ilt up by the user du ring

user in te raction w ith the system.

3. The system image — w hich portrays the physical s tructu re o f the system.

As users use a system, they b u ild up a model o f how the system works. In a conversation, the

speaker is also able to gauge the knowledge o f the listener du ring the course o f a conversation

— also b u ild ing up a m ental image o f the thought processes and a ttitudes o f the person

being addressed. W ith respect to b u ild in g th is model for com puter applications, users tend

not to read manuals, wanting ra the r to find out for themselves how the system works [CR87].

They also tend to be im pa tien t to get on w ith the ir task and don ’t want to spend hours

being taught how to use a system (Bor91]. Th is is in accordance w ith cognitive princip les,

which advocate “ learning by do ing” (And83, Man87]. Because o f th is , the user model w ill

no t be based on the design model, b u t ra the r on the system image. The designer thus has

a d iffic u lt task in m aking th is system image exp lic it, in te llig ib le and constant [Nor86].

Therefore, feedback is far superior to user manuals fo r help ing the user to b u ild up

a correct in te rna l model. The role o f clear explanations in th is process is v ita l [Lew86].

Exp lanations o f system actions can provide a sense o f the underly ing purpose o f the system ’s

response to a user’s actions. Chan et al. [CWS95] have also shown th a t an active feedback

system greatly improves user performance.

T h is section has discussed the need for feedback from a cognitive perspective. Th is

perspective is v ita l in understanding the need for feedback w ith respect to app lica tion use

when the app lica tion has the user’s fu ll a tten tion and no th ing occurs du ring use o f the

app lica tion . Th is is an unrea lis tic expectation though, since a user’s w ork ing day w il l be

interspersed w ith d isruptions o f a ll types, which serve to make feedback even more crucial.

The fo llow ing sections consider the timeliness and q u a lity o f feedback.

4.4 W hen must Feedback be Given?

The need for feedback has been argued in the previous section. D iffe rent authors have

a ttem pted to provide guidelines to help developers to provide the r ig h t level o f feedback.

Feedback. .89

W aern [Wae89] suggests th a t feedback should not be delayed, since the user needs i t con

tinuous ly to support a sequence o f m ental operations. O ther researchers also urge th a t im

mediate and continuous feedback be provided [Shn86, App87, Nie93]. Planas and T reurn ie t

[PT88] have shown th a t continuous feedback reduces annoyance caused by slow responses.

Nielsen contrasts d ifferent types o f feedback w ith its persistence. Persistent feedback

refers to som ething such as a d isk space or performance ind ica to r, while transien t feedback

refers to error messages. O thers, such as M arsha ll et al. [MNG87] po in t ou t the difference

between w hat they refer to as required (du ring execution o f the task) versus confirm atory

(at the end o f the task) feedback. The form er is required for more complex tasks, w hile the

la tte r is suitable fo r sim pler tasks or tasks for which the user can be considered to be an

expert.

F ina lly , i t has been shown th a t feedback has an effect on the level to w h ich a pa rticu la r

task is autom ated1. W hen the feedback is im m edia te ly available, the user w il l be less like ly

to autom ate the task and more like ly to work in a contro lled mode — m aking less errors.

Thus, in complex tasks fo r which the user needs to concentrate in order to .notice exceptional

circumstances which w il l require handling, the feedback should be more intense and available

than for simple tasks w hich can be autom ated w ith o u t risk [Gar87]. To summarise, the ru le

seems to be: “A lways provide feedback, fo r every action, and make sure i t is com pletely

unambiguous and in fo rm a tive ” . Q u ite a ta ll order.

4.5 W hat is Good Feedback?

Some feedback needs are fa ir ly standard, such as the need to a lte r the d isp lay to. indicate

th a t something has been selected. S tandard requirem ents such as these lead to un ifo rm

treatm ents in accordance w ith the Hum an-Com puter In te rac tion (H C I) princip les o f consis

tency o f interface. For example, tex t is often h igh ligh ted to ind icate selection w hile an icon

is inverted to show th a t i t has been selected. However, some feedback needs are not nearly

as s tra igh tfo rw ard and the developer may not have ready guidelines to fo llow . A n excellent

example o f th is is the diverse trea tm ent accorded to error management. Some applications

w il l d isplay an error message which requires some acknowledgement from the user before

w ork can continue. O thers s im p ly generate a beep and refuse to continue u n t il the user

provides a correct response, and yet others w ill d isp lay an enigm atic message and close the

app lica tion . I t is d iff ic u lt to provide a general ru le about the exact nature o f the feedback

since i t is d irec tly dependent on the nature o f the task.

The feedback discussed in previous sections has referred to the com m unication o f the

“ here and now” state o f the system to the user. T h is feedback model is impoverished and a

strong case can be made to m otiva te the extension o f the concept to encompass a h isto rica l

perspective th a t would add a dim ension to feedback h ith e rto unexplored.

1That is, promoted from the attentional level to the schematic level, at which the user no longer thinks
about what they are doing.

Feedback. .90

I t has been noted by various researchers th a t discourse typ ica lly has an increm ental

q u a lity about i t [CM93, LM 94]. W hen people converse they often refer back to some part

o f th e ir conversation in order to expla in the ir present remarks. D ix [D ix91] argues th a t i t

is d iff ic u lt fo r users to manage and visualise th is “ sense o f h is to ry ” in th e ir in te raction w ith

the com puter, especially since the current interface is based more on recognition than recall.

The user has no need to remember lis ts o f commands bu t s im p ly chooses one from a menu.

T h is h is to rica l need was also noted by Tweedie [Twe97] who argues th a t past in p u t and

o u tp u t should be linked so th a t a ll h is to rica l in p u t and o u tp u t re lationships can be explored

d irectly . T h is is echoed by Shneiderman [Shn98]. O ften the app lica tio n ’s on ly concession

to a user’s need for th is is the provis ion o f an undo fac ility . Even where some tu to r ia l or

v isua lisa tion applications supply the user w ith a log file conta in ing previous explanations

[EL96, DJA93], th is does not lin k the explanations to user actions and is o f lim ite d assistance

in p rov id ing feedback. I f N orm an ’s stages o f human a c tiv ity are considered, the explanations

on ly provide step 5 — the system state — whereas the user needs to understand the lin k

between step 4 (the ir actions) and step 5 in order correctly to in te rp re t the state o f the

system.

A no ther look at the conversational model w ill serve to illu s tra te th is concept. I f someone

is recounting a conversation w ith a th ird party, the s tructu re o f the na rra tive w ill take the

form : “ She said, and then I said ...” . Th is is so th a t the person being addressed can

understand the context o f the n a rra to r’s statements. I t is no good on ly hearing one side o f

the conversation and i f the na rra to r chooses to present on ly one side i t w il l o ften lead to the

listener being given an incom plete view which is not conducive to understanding.

In addressing the question o f which type o f feedback is to be provided, i t is therefore

appropria te to consider the need for the po rtraya l o f previous system states so th a t the user

can refer to i t in order to understand the present state o f the system. R ich and Sidner

[RS97] refer to the need to relate current actions to the global context and in teraction

history. The previous paragraph has m otiva ted the need to keep a h is to ry o f b o th the user’s

actions, together w ith the system ’s response. T h is type o f in fo rm a tion could be referred

to as archival feedback, as opposed to immediate feedback which communicates the present

state o f the system. Such arch iva l feedback provides the fa c ility often used in conversation

when a person refers to a previous statement and bu ilds on it. In the ligh t o f th is discussion,

good feedback w ould thus involve g iv ing the user bo th im m ediate and arch iva l feedback.

The previous section discussed the use to which feedback w ill be pu t. We can now

b ring these two concepts together, by m arry ing the concepts o f use o f feedback w ith e ither

im m ediate or archival feedback, as follows:

1. signaling a response — satisfied by im m ediate feedback;

2. changing behaviour and prom oting understanding — satisfied by bo th im m ediate and

archival feedback. Im m edia te feedback allows the user to judge the im m ediate state o f

the system, w hile archival feedback supports the generation o f a deeper understanding

Feedback. .91

o f how the system arrived at th a t state over a period o f tim e;

4 .5 .1 E x a m p le s o f In a d e q u a te o r B a d F e e d b a c k

Given the wealth o f examples available, th is section could become long and arduous to read,

bu t instead w ill consist o f a few examples encountered in using w ide ly known applications:

• G hostscrip t — Produced th is message, which could not be cleared t i l l the system was

rebooted. StartDocPrinter() failed, error code 1722.

• In te rne t E xp lorer — The bu ttons at the top o f the In te rne t E xp lorer w indow include

a P r in t bu tton , which provides no feedback. The user w il l often be unsure about

whether the document has been p rin ted or not — especially when a specific tra in

o f thought has been in te rrup ted . Since the p rin te r m igh t be in another room , the

on ly way to make sure is to get up and check w hether the document has come out

o f the p rin te r. I t would be re la tive ly simple to change the appearance o f the b u tto n

to indicate th a t the displayed page had been prin ted . Th is would leave the user in

no doubt about whether the. command had been acknowledged by the system and

whether the page had been p rin ted or not. T h is is an example o f the reliance o f some

applications on o the r tools on the system to provide the required feedback.

• xv — Upon issuing the P r in t command the user hears a series o f beeps and no th ing

comes out o f the p r in te r2.

• W h ite T ige r3 — In contrast to the paradigm applied by most applications, th is ap

p lica tion wants the user to specify the location o f the o u tp u t file, before specifying

the location o f the in p u t file. Doing th ings the o ther way round causes the o u tp u t to

be w ritte n to the w rong file. No feedback is provided about th is and i t is often only

discovered after a period o f frus tra tion .

Whereas the previous examples m erely give inadequate or no feedback, i t should be noted

tha t bad feedback is worse than no feedback at a ll. Some examples are:

• In te rne t Explorer — The message: “Application error. Press OK to exit, and
Cancel to debug.” is frequently displayed. W hy on earth should a user be offered

the o p p o rtu n ity o f debugging? W hen the user re lu c ta n tly chooses to ex it, another

useless message is displayed: “Application Error”, and the user is in v ited to click

on an OK bu tton . I t then closes down the app lica tion , whether the user likes i t or not.

Th is is worse than inadequate, i t is com pletely useless!

• M icrosoft O utlook Express — I f one uses the ir fa c ility fo r connecting v ia a modem to

a m a il server, the program w ill sometimes display a message upon disconnecting th a t

looks very like an error message:

2I s t i l l haven’t figured this one out!
3 A shareware application which converts MP3 files to WAV files, among other things.

Feedback. .92

Internet Explorer cannot open the Internet site
http://www.freeserve.com/email/outlook/infopane.htm.
The connection with the server was reset.

T h is leads the novice user to the conclusion th a t “ something has gone w rong” , whereas

the app lica tion is merely in fo rm ing the user th a t the modem has been disconnected.

W hy is feedback provis ion so inadequate? I t could be because the app lica tion program m er

is expected to provide for the feedback needs o f a t least three com pletely different types

o f users (end-user, program m er and system support) — often w ith o u t guidelines, tru s tin g

only ins tinc t. A ny app lica tion w ill be used by a varie ty o f users du ring its life tim e. The

firs t is the program m er, the next is the end-user and fin a lly the system -support person

supply ing assistance to the end-user. Each needs a d ifferent type or flavour o f feedback.

M any applications in use today evidence the va r ia b ility o f feedback provided by d ifferent

programmers. Some possible reasons fo r th is v a ria b ility w il l be b rie fly discussed:

1. Lack o f H um an-Com puter In te raction (H C I) tra in ing. The program m er belongs to

the w orld o f in fo rm a tion technology and finds i t hard to conceive o f users who do

not have th is understanding. The system developer brings a store o f background

knowledge to the task and tends to assume a certa in taken-for-granted knowledge

in the end-user [FFW 88]. Assumptions about the expectations o f people not known

to the developer are, bound to be inaccurate. Consequently, i t is extrem ely d ifficu lt,

especially for a program m er w ith o u t fo rm a l tra in in g in hum an-com puter in teraction ,

to provide feedback at the level required by the user. Since there is a shortage o f

programmers w ith (Specific tra in in g in hum an-com puter in te raction [MB99, Str99], i t

is rea lis tic to expect th a t most applications w ill fa ll short o f the ideal level o f feedback.

2. Insu ffic ien t com m unication w ith the user. There is a very real d iff ic u lty in judg ing

the knowledge o f the user. The program m er becomes so wrapped up in the program ,

spending hours and hours developing it , th a t i t is extrem ely d iffic u lt to remember

exactly w hat can be presumed fore-knowledge and w hat should be im parted to the

end-user.

3. Layering o f systems. M any errors occur at a depth in the system where there is no

awareness o f the current state o f the dialogue w ith the user. Thus the program from

which the repo rting emanates typ ica lly has no idea o f the context from which the user

needs to be relocated.

4. Difference in goals. G rud in [Gru87] published a paper which looked at the issue o f

technologies in which one person d id w ork for which another person w ould reap the

benefits. Th is was coined by Norm an [Nor94] as G ru d in ’s Law:

“ W hen those who benefit are not those who do the work, then the technology

is like ly to fa il, or, a t least, be subverted.”

http://www.freeserve.com/email/outlook/infopane.htm

Feedback. .93

The program m er achieves li t t le benefit from p rov id ing the r ig h t level o f reporting for

o ther types o f user. Indeed, some organisations actua lly p ro fit from software w hich

provides inadequate feedback — by requ iring users to pay for advice on using th e ir

systems.

5. Unrealistic expectations o f users’ working environment. The user ra re ly devotes fu ll

a tten tion to any app lica tion 100% o f the tim e. A pp lica tions seldom take th is in to ac

count and provide l i t t le or no support to users who are frequently in te rrup ted [JamOO].

I t is clear from the previous discussion th a t feedback is v ita l and th a t i t is often neglected

by app lica tion developers, to the de trim ent o f end-users. The published guidelines do not

seem to go far enough in establishing a clear pa th fo r developers to fo llow in p rov id ing the

necessary feedback. The fo llow ing section w ill a ttem p t to remedy th is by consolidating the

work by researchers in th is fie ld in to a lis t o f desirable feedback features.

4 .5 .2 L is t o f D e s ira b le F e e d b a c k F e a tu re s

I t would be useful to have some sort o f lis t o f requirements, a milestone to measure actual

system feedback against w ha t could or should be provided. Bannon [Ban89] po in ts out the

need for research results which have an a p p lica b ility to design, ra ther than concentrating on

merely delivering tools fo r post-factum analysis. The beginn ing o f th is section argued for

the provision o f b o th im m ediate and archival feedback. The features listed below have been

chosen to meet bo th those needs. A lis t o f desirable features would include the follow ing:

Im m e d ia te F e e d b a c k

1. Keep the user in form ed about system state [SKB99], i.e. whether the system [FvD82]:

• has received th e ir request;

• is working on it;

• has a problem; or

• has completed the task.

2. E xp la in unusual occurrences and errors. Provide context sensitive assistance [Gar87].

Ensure th a t i t is absolute ly clear whether a feedback message is ind ica ting an error or

an event o f interest which is being reported merely in the interests o f good com m uni

cation.

3. Make visib le what would be inv is ib le and improve the user’s feeling o f con tro l [Nor98].

Give each action an obvious and im m ediate effect [Shn98]. In add ition , the feedback

should be structured in such a way th a t the user is le ft in no doubt as to which

pa rticu la r action the feedback refers to [Ham87, Gar87], w ith Nielsen [Nie93] advising

Feedback. .94

th a t the user’s in p u t should be rephrased and re turned to ind ica te w hat the system

d id as a result.

4. P rovide a fo rm o f feedback which is consistent across applications. The degree o f

low-level consistency evidenced by w indow ing systems could usefu lly be extended to

feedback as well. T h is type o f consistency is very com forting to the user.

A r c h iv a l F e e d b a c k

1. M en ta l aids to help users remember th ings [Shn98, Nor98]. People have severely

lim ite d memories, as illu s tra te d by the fo llow ing examples [01s87]:

• Users sometimes forget w hat they have done, especially i f they are in te rrup ted

du ring a processing session.

• Users often do not detect the ir errors. Sometimes the user is vaguely aware tha t

som ething has gone wrong, bu t has no idea how th is occurred.

• D ifficu lties are often experienced in ho ld ing recently experienced in fo rm a tion u n til

needed.

• Users experience problems re ta in ing in fo rm a tion retrieved from long-term mem

ory — such as remembering where they are in a p lan o f action.

2. P rovide in ter-re fe ren tia l feedback. D raper [Dra86] points out the irnportance o f a

m u tua l reference, or lin k , between user in p u t and app lica tion reaction so th a t previous

parts o f the user-machine dialogue can be referred to.

I t is unusual for any system to provide a standard o f feedback which copes w ith these

problems. In add ition , i t seems to be a waste o f program m er resources to dup lica te some

o f these functions for each and every application. Furtherm ore, in p rov id ing the feedback,

there are d ifficu lties which beset app lica tion program mers, as described in the next section.

4 .5 .3 P ro v is o s

Hum ans are diverse and wondrous creatures and th e ir very ve rsa tility makes the p rov i

sion o f feedback, along w ith o ther features o f hum an-com puter in te raction , anyth ing bu t

s tra igh tfo rw ard . Shneiderman [Shn98] discusses the fo llow ing factors which should be kept

in m ind:

• Physical abilities and physical workspaces. A pp lica tions often use a beep sound to

signal an error, w h ile a m a il reading fa c ility run n in g on the same machine w ill use

the same sound to signal the a rriva l o f a message. W h ile the user m igh t not have a

problem d is tingu ish ing these signals from one another, a noisy w ork ing environm ent

could detract from the efficacy o f these signals.

Feedback. .95

• Cognitive and perceptual abilities. The fo llow ing classification o f hum an cognitive

processes is given by the Ergonomics Abstracts jou rna l:

— Short-te rm memory.

— Long-term memory.

— Problem solving.

— Decision m aking.

— A tten tion .

— Search and scanning.

— T im e perception.

People also have d ifferent cognitive styles [Jac73]. However, Tan and Lo [TL91] find

th a t there is evidence, c itin g research done in [Hub83, TB80], to suggest th a t cognitive

styles are not a c r it ica l factor in user interface design. C ognitive styles w ill therefore

not be considered to affect the provis ion o f feedback.

• Personality differences. There are differences in the way people feel about computers.

Some like them w hile others loathe them. Shneiderman argues th a t there are d iffe r

ences between males and females w ith respect to computers too, bu t points out th a t

th is difference has yet to be fu lly explored.

• C ultura l and in te rna tion a l d iversity. Examples o f concerns fo r user-interface devel

opers in th is category could be le ft-to -r ig h t versus r ig h t-to -le ft, currency differences,

addresses or na tiona l iden tifica tion .

• Disabilities. V isua l feedback is not much use to b lin d users and deaf users w il l not be

aware o f audio feedback.

• L im ita tio n s o f elderly users. W ith age people fin d i t more d iffic u lt to d istingu ish

between colours. O lder users are slower to react and can often not read sm all p r in t

on the screen and can hold less in fo rm a tion in th e ir w ork ing mem ory at a given tim e

[Gar87].

• Experience. There is a difference in performance and in expectations between the user

who has had very l i t t le com puter experience and one who is fa m ilia r w ith computers.

The form er is very easily in tim id a te d by com puter applications and w il l need fa r more

explanation o f basic functions. The experienced user, even i f encountering a new

app lica tion fo r the firs t tim e, is not as easily discouraged and needs less reassurance.

I t is d ifficu lt, i f not impossible, fo r an app lica tion to provide feedback which is customisable

to the needs o f a specific user as shown above.

Feedback. .96

4 .5 .4 D if fe r in g U s e r R o le s

A ny com puter app lica tion has different types o f users du ring successive stages o f the life

cycle o f the application. A t least three d is tinc t categories can be identified , as d ifferentia ted

by the ir d ifferent roles. The firs t user is the application program m er, who w ill be creating

the end-user app lica tion . The next is the end-user, the c lien t for whom the app lica tion has

been created. The th ird is the system-support person responsible for p rov id ing technical

assistance and error in tervention to end-users. Each type o f user has very d ifferent feedback

needs:

1. The application programmer w il l need h igh ly technical feedback. The goal o f the

program m er is to produce a working app lica tion and the feedback provided must

therefore assist in the debugging process. The type o f feedback required could be the

parameters provided in a pa rticu la r m ethod ca ll or the re tu rn value supplied or a stack

trace o f an exception th row n by a m ethod call.

2. The end-user needs to be given feedback re la ting to specific goals, linked d irec tly to

the task being carried out. The feedback m ust be on a much higher level than th a t

required by the program mer.

3. The system-support s ta ff w il l o ften, be summoned when the end-user has received

a message from an app lica tion which is indecipherable, or due to an error message

ind ica ting some sort o f problem . The firs t question asked by system support s ta ff w ill

be: “ W ha t were you doing?” followed by, “W h a t message d id the system display?” .

Th is w ill assist them in tracking down the source o f the problem .

The app lica tion program m er is expected to provide for the feedback needs o f these three

completely different types o f users. I t is extrem ely d iff ic u lt for an app lica tion to provide

for a ll these different user needs and many applications in use today are evidence o f the

va ria b ility o f th is provis ion by d ifferent programmers.

4.6 Feedback Format

The previous sections have argued the necessity o f feedback and discussed the type o f feed

back to be provided as well as the d ifficu lties inherent in feedback provis ion have been

discussed. Th is section w ill address the issue o f how feedback should be provided in a visual

form at.

4 .6 .1 T e x tu a l versus G ra p h ic a l F e e d b a c k

The firs t issue to be resolved is whether feedback should be given in te x tu a l or graphical

form at. In human discourse, many different com m unication channels are used to provide

Feedback. .97

feedback. A p a rt from utterances, people also use gestures, gaze and body stance to commu

nicate the ir understanding o f w hat is being said [EH93]. A feedback model based on ly on

tex tua l descriptions w ill therefore not exp lo it the m u ltip le possib ilities available in p rov id ing

feedback to the user.

In conveying a message i t is often useful to make jud ic ious use o f m etaphor, per

haps invo lv ing graphical components w hich can be superior to a pu re ly te x tu a l descrip tion

[DFAB93]. A n example o f th is is the use o f the spreadsheet m etaphor fo r accounting a p p li

cations. A well chosen m etaphor is invaluable in increasing an end-user’s fa m ilia r ity w ith an

application. M etaphor must be used w ith caution, though, since an incorrect choice could

make things even more confusing for the user.

Shneiderman advises th a t a feedback d isplay should be consistent — using the same

colours, formats, captia lisa tion etc. so th a t users w il l know w hat to expect, and th a t feed

back should always be given where i t is easily detected [Shn98]. T h is can app ly equa lly to

textua l or graphical feedback. However, there is a body o f research w hich po in ts unhesita t

ing ly towards the adv isab ility o f graphical feedback.

Norman advises th a t sound and graphics should be investigated [Nor98]. Faulkner, too,

advises tha t feedback be presented in a graphica l fo rm a t and th a t a ll feedback messages

should be clear and unequivocal [Fau98]. P h illip s [Phi86] argues th a t v isua l im agery is su

perior to verbal representation in a id ing m emory and th ink ing . G ard iner [Gar87] agrees,

saying th a t recall is be tte r for .dynam ica lly in te rac ting item s than for items stored in isola

tion. She avers' th a t recall is fu rth e r im proved i f items are presented p ic to ria lly , ra the r than

textually.

From a cognitive po in t o f view, graphical feedback may be far more he lp fu l, siiice users

have pa rticu la r strengths which can be u tilised by non-textua l feedback mechanisms such

as processing visual in fo rm a tion rap id ly , coord inating m u ltip le sources o f in fo rm a tio n and

making inferences about concepts or rules from past experiences [01s87].

Since the user’s in te raction w ith modern com puter systems is essentially based on recog

n ition , ra ther than recall, and is intensely visual, i t would be less than o p tim a l to t r y to

describe the actions in a tex tua l fo rm at. The representation chosen fo r a p a rtic u la r set o f

data w ill indeed make a difference [Sim69] — some representations a llow ing users to per

ceive one type o f pa tte rn in the data, others revealing som ething to ta lly d ifferent. We should

therefore explore possib ilities for po rtray ing feedback in a graphical fo rm at. In o rder to do

this, there must be a v isualisation o f the in fo rm a tion th a t we are a tte m p tin g to p o rtra y —

a graphical fo rm at which w ill be assim ilated by the user more easily than a te x t descrip tion .

The follow ing section w ill define the concept o f v isua lisa tion and Section 4.6.3 w ill b rie fly

address issues th a t must be borne in m ind in deciding on a visualisation.

Feedback .98

4 .6 .2 W h a t D o e s V is u a lis a t io n D o ?

V isua lisa tion provides an interface between the hum an m ind and the com puter. In visual

ising in fo rm ation , the challenge is to find designs th a t reveal de ta il and com plexity, ra ther

than presenting the user w ith a confusing profusion o f c lu tte r. The fa ilu re o f the design w ill

sometimes be blamed on the com plexity o f the data, o r on lack o f understanding on the pa rt

o f the viewer [Tuf90]. Chen [Che99] explains th a t in fo rm a tion v isua lisa tion is composed o f

two essential activ ities: s truc tu ra l m odelling and visua l representation. Once a visualisa

tion structure has been identified, the mechanisms and design techniques m ust be chosen

to present a v isualisation o f the in form ation. Shneiderman [Shn98] cites the fo llow ing tasks

th a t need to be supported by a visualisation:

• Overview — to gain an overview o f the whole collection;

• Zoom — zoom in on items o f interest;

• F ilte r — filte r out non-interesting items;

• Details-on-demand — select an item and get more in fo rm a tion about it;

• Relate — view relationships between items;

• H is to ry — keep a h is to ry o f actions to support undo or replay; and

• E x trac t — allow the user to extract subsets o f the in fo rm ation .

In choosing a v isualisation, a designer has to work at d ifferent levels. The firs t, low-level

choice is concerned w ith the visual variables available — such as size, colour, shape and sym

bols. The second far more d ifficu lt choice perta ins to the use to which these v isua l features

w ill be pu t in order to present the required in fo rm ation . D ix [Dix91] notes the d ifficu lty

o f choosing a pa rticu la r technique for some data set. D irectives in choosing techniques are

discussed in Section 4.6.3.

4 .6 .3 R e s tr ic t io n s

There are some guidelines to be borne in m ind when v isualis ing in fo rm a tion [Cha99a, Tuf90]:

• Do not overload the user w ith in fo rm ation . R ather provide tools w hich w il l a llow the

user to get extra in form ation .

• Gershon et al. [GEC98] urge tha t v isua lisa tion systems should be based on hum an

capabilities o f perception and in fo rm ation processing.

• The layering o f in fo rm ation is d ifficu lt. T u fte [Tuf90] advises the im portance o f a

proper re la tionship among in fo rm ation layers. In fo rm a tion can be separated by using

colour, shape, size or value (ligh t to dark). Separation is sometimes achieved by means

o f a g rid — the g rid should not dom inate, bu t should be m uted re la tive to the data.

Feedback. .99

• Sm all m u ltip le designs which v isua lly represent comparisons o f change are the best way

to answer questions about quantities. Sm all m ultip les reveal a range o f options. T u fte

warns th a t comparisons should be enforced w ith in the scope o f the eyespan. There is

also a continuous trade-o ff between the maintenance o f context and the provis ion o f

v isua lisa tion to support comparison.

• V isua lis ing tim e and space involves the design o f maps and time-series. Examples o f

th is type o f v isua lisa tion include road maps, it in e ra ry design and tim etables. M any

o f these depict changes in b o th tim e and space. A novel app lica tion o f th is technique

has been applied to the v isua lisa tion o f dance routines.

Layout is im p o rta n t and Chen [Che99] emphasises th is , po in ting out th a t a good layout

conveys the key features o f the system to a w ide range o f users, while a poor layout would

obscure them. Vanderdonckt and G illo [VG94] give five sets o f visual techniques which can

be used as guidelines for presenting a layout:

• physical — balance, sym m etry, regularity, a lignm ent, p ropo rtion and ho rizon ta lity ;

• com position — s im p lic ity , economy, understatem ent, neu tra lity , s ingu larity , p o s itiv ity

and transparency;

• association — un ity , re p a rtitio n , grouping and sparing;

• ordering — consistency, p red ic tab ility , sequentia lity and continu ity ;

• photographic — sharpness, roundness, s tab ility , leveling, activeness, subtlety, repre

sentation, realism and flatness.

Vanderdonckt and G illo emphasise th a t these techniques cannot a ll be applied to every

s itua tion , bu t th a t others are always to be applied. W hich techniques should be applied is

com plete ly dependent on the nature o f the data being displayed. Throughou t th is process,

we should keep in m ind th a t we are seeking to reduce the com plexity o f the data and allow

the user to use in fo rm a tion which, i f presented badly, w il l be useless.

The question o f qu irks was fu lly explored in Chapter 3. The fo llow ing section w ill

consider the role th a t feedback can p lay in a llev ia ting the negative aspects o f qu irks and in

assisting the user in dealing w ith them.

4.7 Feedback for Quirks

Jam bon [Jam96] urges system developers to design w ith in te rrup tions and errors in m ind.

He argues th a t th is would decrease the poss ib ility o f operators fo rge tting som ething c rit ica l

a fter hand ling a qu irk , thereby causing a serious accident. The focus o f Jam bon’s research

was interfaces for p ilo ts . E rrors made by users using other systems may not have such serious

repercussions as those made by p ilo ts , bu t th a t does not make them any less annoying. The

Feedback. 100

c o n trib u tio n made by feedback to a llev ia ting the effects o f each o f the q u irk categories w ill

be discussed in the fo llow ing sections.

4 .7 .1 B re a k d o w n s

Im m ed ia te feedback is not much use i f the end-user com puter breaks down. A rch iva l feed

back can on ly be useful i f i t persists. I f another p a rt o f the d is tr ib u te d system breaks down,

i t w il l depend on the forethought o f the app lica tion designer whether the system w ill respond

in a he lp fu l way or not. I f the breakdown was not antic ipa ted by the designer du ring system

development, the user is sure to receive an un in te llig ib le response. A rch iva l feedback could

be he lp fu l to the specialist summoned to track the events leading to the breakdown. W ha t

w ill be useful is some way o f understanding exactly w hat the prob lem is together w ith some

ind ica tio n o f the course o f action to be taken.

4 .7 .2 H u m a n E r r o r

The recommendations given for error recovery by Rizzo et al. [RPM B96] fo r supporting the

hand ling o f human errors as discussed in Section 3.5.5 w ill be re iterated here:

1. Make the action perceptib le.

2. D isp lay the error message at a h igh level.

3. P rovide an a c tiv ity log.

4. A llo w comparisons.

5. Make the action result available to user evaluation.

6. P rovide result explanations.

These are rem arkably s im ila r to the desirable feedback features given in Section 4.5.2. The

firs t, second, f if th and s ix th recommendations are satisfied by im m ediate feedback, while

the th ird and fo u rth are satisfied by archival feedback.

4 .7 .3 In te r r u p t io n s

I f we consider the stages o f a c tiv ity defined by Norm an, and enumerated in Section 4.3,

M iya ta and Norm an [MN86] suggest th a t an in te rru p tio n would be least d is rup tive i f i t oc

curred between the evaluation stage and the fo rm ation o f a new goal or in ten tion . Generally

an in te rru p tio n when the m em ory load is h igh is very d isrup tive , whereas an in te rru p tio n

when the m em ory load is low — where much o f the context is available v ia external cues

— is not as d isruptive . M iya ta and Norm an conclude th a t in te rrup tions would be most

d is rup tive at the p lann ing and evaluation stages.

Feedback. 101

I t would appear th a t the great problem w ith hand ling o f in te rrup tions is th a t i t is often

d iff icu lt to re-establish context so th a t the user, in choosing the task to be resumed, has

often forgotten a ll about the stage o f im po rtan t w ork in progress. Thus, i t is clear th a t the

nature o f human episodic m emory is relevant to the in te rru p t handling process. G ard iner

[Gar87], presents the fo llow ing facts in her discussion o f episodic memory:

1. People have a very lim ite d a b ility to remember the detailed appearance o f novel, v isual

abstract patterns, even over intervals o f a few seconds.

2. Im m ediate m emory is poorer the more complex the visual pa tte rn .

3. Im m ediate m emory for visual abstract patterns is d isrupted by even a sm all am ount

o f d is traction .

4. So long as the context in which in fo rm ation is retrieved approximates the context in

which i t was stored, recognising an item in m em ory is easier and more efficient than

having to recall the item unaided.

Point number 4 is especially relevant to error repo rting and in te rrup tions, since i t underlies

the need to rem ind users o f w hat they d id , in the same form at in which i t was done, in

order to provide context-sensitive assistance — hence once again a m o tiva tion for archival

feedback. Jambon [JamOO] po ints out th a t at design tim e i t is im p o rta n t to have a tab le o f

a ll possible in te rrup ted tasks by a ll possible in te rrup tions. He advises th a t fo r each en try

o f the table the developer must indicate the context and fin d out how th is context may be

stored during the in te rru p tio n (by the human w ork ing m em ory a n d /o r the interface). The

interface can be said to to lerate in te rru p tio n if, in each case, the program m er can prove th a t

the context may be saved.

4 .7 .4 C o n c lu s io n

There is a com m onality in the user’s handling o f errors, breakdowns and in te rrup tions . In

the case o f error, the user has to understand the cause o f the error and understand how to

recover from it . In the case o f breakdowns, the user needs to understand w ha t caused the

breakdown and w hat, i f any, action should be taken to recover. In the case o f in te rrup tions ,

the user a ttem pting to resume context must correctly perceive the state o f the app lica tion

in order to take up th e ir task at the po in t o f in te rrup tion .

We can conclude th a t feedback which enhances the user’s comprehension o f the app li

cation state, and the events th a t led to th a t state, is a valuable to o l in ensuring th a t users

are able to handle qu irks easily. Furtherm ore, th is w ill comprise a jud ic ious m ix tu re o f

im m ediate and archival feedback.

Feedback. 102

4.8 Summary

T h is chapter has argued the necessity o f feedback and given guidelines about how it should

be provided. The need for bo th im m ediate and arch iva l feedback has been argued and

directives fo r p rov id ing feedback have been given.

I t has been pointed out th a t feedback should be ta ilo red towards the needs o f the end-user

and i t would be a d ifficu lt task for applications to provide for a ll the possib ilities mentioned

in Section 4.5.2. Thus we can conclude th a t the provis ion o f feedback is not easily achieved.

Feedback

Immediate Archival

Expands to

' Link
Input & Effect

Confirm A f . . ExplainReassure Overview Summary

Figure 4.1: A Classification of Feedback

In order to synthesise the recommendations c ited in th is section, a classification o f the

nature o f feedback has been constructed and is illu s tra te d in F igure 4.1. Feedback should

have bo th im m ediate and archival features. The im m ediate feedback should confirm user

actions, reassure users th a t the system is func tion ing correctly and exp la in errors i f they

occur. Th is should be done in the fram ework o f a reference between the users actions and

the resu lting system response. The archival feedback should offer an overview o f session

activ ities, as well as a summ ary function so th a t the user can get a broad view o f activ ities.

The overview should offer the fa c ility for the user to choose a p a rticu la r previous action

so th a t the previous im m ediate feedback can be dup lica ted — w ith the exp lana tory and

confirm atory functions s t i l l being useful at th a t stage.

Th is chapter concludes the background lite ra tu re survey. The fo llow ing section o f th is

d issertation w ill pose the problem being addressed by th is research, propose a so lu tion and

cite related work which supports the proposal.

part III

Addressing Feedback Needs in
Component-Based Systems

He who joyfully marches in rank and file has already earned my contempt.

He has been given a large brain by mistake,

since for him the spinal cord would suffice.

Albert Einstein

103

"This affair must be unravelled from within."

He [Hercule Poirot] tapped his forehead.

"These little grey cells. It is ‘up to them' ".

Agatha Christie

The Mysterious Affair at Styles. (1920) ch. 10

chapter 5

Problem Description and Proposed
Solution

Part I discussed the emergence o f component-based systems as a dom inant force in software

construction, and the im portance o f feedback to the u sa b ility o f software. P art I I brings these

two aspects together to discuss how to support feedback in component-based applications.

The diffuse nature o f such applications is certa in to affect the way in which feedback can

be programmed, and the d ifficu lty o f recovery from quirks. The so lu tion th a t is adopted

centres around the use o f app lica tion tracking — i.e. m on ito ring what the user is doing and

how the app lication is reacting.

Section 5.1 presents a synopsis o f the problem being addressed, w ith special emphasis

on the feedback needs o f component-based systems. Section 5.2 proposes a so lu tion to the

problem. Sections 5.3 and 5.4 discuss the techniques used in the proposed solution, and

Section 5.5 justifies the need for the provision o f feedback by means o f a v isua lisa tion o f

application activ ity . Section 5.6 consolidates the chapter by p rov id ing an ou tline o f some o f

the benefits and lim ita tio n s o f th is approach and sum m arising the chapter.

104

Problem Description and Proposed Solution. 105

5.1 The Problem

C hapter 3 looked at the various problems which interfere w ith the stra igh fo rw ard use o f ap

p lica tions, a ll o f which make feedback v ita l. Chapter 4 examined the nature o f feedback and

concluded th a t the feedback provided to end-users is often w oefu lly inadequate. The research

described in th is d isserta tion concentrates on feedback needs in component-based systems.

Section 5.1.1 w il l look at the ways in which feedback has tra d it io n a lly been provided. Sec

t io n 5.1.2 w ill examine reasons fo r the d ifficu lty in feedback provis ion in component-based

systems (CBSs). Section 5.1.3 w il l discuss why error recovery becomes more d ifficu lt in

CBSs, w ith specific reference to e-commerce systems. Section 5.1.4 concludes th is section.

5 .1 .1 T r a d it io n a l W a y s o f P ro v id in g F e e d b a c k

There are various ways in which we can ensure th a t adequate feedback is provided. The

fo llow ing sections w ill discuss d ifferent approaches.

5.1.1.1 G uidelines for Program m ers

Provis ion o f feedback du ring app lica tion development is often le ft to the in d iv id u a l pro

gram m er’s d iscretion. However, good user-interface design is more than ju s t common sense

[Tul93].

There have been some a ttem pts to set ou t guidelines for many aspects o f user-interface

design and feedback has not been neglected. Some examples were given in Section 4.4.

T h im b leby [Thi90] points out th a t developers are sceptical o f guidelines because o f a per

ception th a t they are e ither t r iv ia l or d iff icu lt to im plem ent, or both . Guidelines are often

user- or application-dependent, which makes fo rm u la ting or fo llow ing them alm ost impos

sible. T h im be lby also notes th a t adherence to guidelines by no means guarantees th a t a

chosen means o f feedback w il l work, u n til i t is in use. B y then, i t is p robab ly too late to

improve on it.

Expecting programmers to fo llow guidelines is s im ply not realistic, as evidenced by the

many systems in use today w ith appalling standards o f feedback. Norm an and Thomas

[NT91] give some examples o f problems experienced by users m aking use o f systems which

do not give an appropria te response to the ir actions. P rovision o f feedback is such a complex

a c tiv ity th a t i t is doub tfu l th a t any set o f guidelines w ill ever f i t the b ill. As in o ther complex

human activ ities , those who do i t w ell w il l have d iff icu lty in fo rm u la ting th e ir methodology.

Furtherm ore, i t is wasteful to have programmers dup licate the coding required to provide

identical, non-app lica tion specific feedback fu n c tio n a lity in app lica tion programs. W hile

app lica tion specific feedback cannot be replaced by any o ther fac ility , m any o f the extra

features discussed in Chapter 4 are almost generic in the ir na ture and offer the poss ib ility

o f being provided for by a generic fac ility . For example, many user interfaces provide an

explanatory balloon which pops up when the user lingers over some b u tto n on the screen.

Problem Description and Proposed Solution 106

Th is fac ility , which has become almost generic, has so obviously been he lp fu l to the end

user th a t i t has become ubiqu itous.

5.1.1.2 C om prehensive Online M anuals

Th is approach is followed w ith d ifferent measures o f success by various applications. The

lite ra tu re on online manuals is well established [DPM 92, Kea88]. Innovative approaches,

such as p rov id ing anim ated help, have also been developed [Thi93a]. In a CBS, however,

the late com position o f the system makes the development o f a comprehensive online manual

d ifficu lt, i f not impossible. There is also cu rren tly no standard to which components can

satisfy which requires th a t they provide an online help fa c ility fo r the ir component. Even i f

provided, the d ivers ity o f the different component producers would not fac ilita te a coherent,

understandable help fac ility . Even i f the app lica tion program m er were to choose to provide

a help option, th a t would not supply the level o f feedback th a t the user needs, bu t on ly

fu lf i l l an explanatory function . The issue o f dynam ic feedback is not catered fo r by online

help. Th is problem is exacerbated by the in te rna tiona l na ture o f most component-based

systems.

5.1.1.3 A Feedback A pplication Program m er Interface

This approach would provide an A P I, which could be used by a program m er to provide

feedback to the end-user. The A P I m ight display feedback in a standard w indow, or be

added system atically to the active w indow in some way. Th is would become v is ib le whenever

the user needed to be apprised o f Some event, or to denote closure o f an action. Th is op tion

suffers from the same problems as the firs t, since use o f the A P I is dependent on the vagaries

o f the in d iv id u a l programmer. I t also lim its the type o f feedback which can be provided.

5.1.1.4 Sum m ary

I f we judge the process by its end-product, we can conclude th a t the tra d it io n a l ways o f

p rovid ing feedback are not effective. Th is section has addressed the d ifficu lties o f feedback

provision in general terms. The fo llow ing section w ill discuss the special problems o f feedback

provision in component-based systems.

5 .1 .2 W h y F e e d b a c k P ro v is io n is (E v e n M o r e) D if f ic u lt

in C o m p o n e n t-B a s e d S ys tem s

W ith respect to tra d itio n a l usab ility needs, CBSs are no d ifferent, bu t in CBSs user needs

are less like ly to be addressed comprehensively. Component-based systems are constructed

using components harvested from possibly (and indeed probab ly) many d ifferent sources.

The developers o f d ifferent components w ill not have met each other, le t alone discussed

the ir error reporting and hand ling mechanisms. Th is means th a t each component w ill handle

Problem Description and Proposed Solution 107

errors d ifferently, according to the pa rticu la r developer’s own preferences. The components

w ill also p robab ly have different in p u t conventions, fo r example, increasing the like lihood

o f mistakes. Even i f components are documented correctly, there w ill p robab ly s t i l l be

problems, due to the b lack-box component approach [BW 97].

Consequently, the user-interface developer w ill not have developed the server compo

nents, and is s im p ly given an interface, an A P I and some component docum enta tion for

each server component. Using only these resources, the developer creates a user interface.

Th is developer w ill p robab ly not antic ipate a ll the errors which could result from the use o f

each component and not make provision for a ll o f them. Th is w ill cause great problems for

the user when something goes wrong later on.

Furtherm ore, the developers o f components, CBSs and user interfaces fo r these systems

are m ostly people who have a high technical expertise and th is can make them unrealistic

about the ab ilities o f the ir end-users. (Th is makes i t very d iff icu lt fo r developers to conceive

o f a user who has not a tta ined the basic level o f technical knowledge th a t they take for

granted.) One on ly has to read a few papers about CBSs to be convinced o f th is. Norm an

[Nor98] puts i t very succinctly by sta ting th a t “ there is no re tu rn to innocence” . A pp lica tions

cannot be produced for in d iv id u a l users, since th is is not econom ically viable. Thus the

application developer must produce applications for a k ind o f “generic” end-user and make

assumptions about the users’ knowledge. A large part o f the prob lem is th a t there is a basic

m ismatch o f assumptions and knowledge. Th is g u lf has to be bridged effectively i f feedback

needs are to be met.

D is trib u tio n , once again, makes things more complex. CBSs are often d is tr ib u te d over

many sites. T h is adds to the poss ib ility th a t some parts o f the system w il l not always be

available. Such is the nature o f d is tribu ted systems [Bac97, M ul93]. Users w ill often be

puzzled by such absences and need to be apprised o f the reasons fo r them.

F ina lly, as we know, feedback is tra d itio n a lly provided from w ith in the app lica tion code,

bu t th is approach is flawed because programmers are seldom tra ined w ith the H C I skills to

provide adequate feedback and i t is almost impossible to augment the feedback once the

application has been delivered. Furtherm ore, users function ing in d ifferent roles often have

completely d ifferent feedback needs and it is d ifficu lt for an app lica tion to provide for a ll o f

them adequately.

5 .1 .3 W h y E r r o r R e c o v e ry is (E v e n M o r e) D if f ic u l t

in C o m p o n e n t-B a s e d S ystem s

Section 3.5 examined error in some detail. There is ample evidence to lead to the conclusion

tha t humans do indeed err, th a t they are unrealistic about th e ir p ropensity fo r m aking

errors and th e ir a b ility to detect them, and thus, having erred, w il l convince themselves, in

spite o f clear evidence to the contrary, tha t they d id not err.

In the days o f batch processing, the tra d itio n a l transaction concept protected databases

Problem Description and Proposed Solution. .108

from the effects o f errors. The app lica tion program w ou ld s ta rt the transaction, make the

changes, and e ither com m it or abort the transaction. A human agent w ould supply the

data being used to make the updates, and data e n try professionals being h igh ly skilled,

made re la tive ly few mistakes. In those days, much use was made o f m anual checking, w ith

supervisors being responsible for keeping the occurrence o f errors down to a m in im um .

These days, th ings are somewhat d ifferent. C o n trib u tin g factors are b o th the nature

o f components, as expounded in Chapter 2, and the a rch itecture o f these systems, which

decrees th a t the user interface is essentially th in , w ith much o f the logic being encapsulated

in the m iddle tier. Instead o f d isciplined data-entry specialists exclusively entering data,

ju s t about anyone is involved in entering the data to be used in database transactions. Each

user o f in ternet e-commerce can, and w ill, enter data w hich w il l make changes to some

underly ing data store. Very few o f these people w ill be sk illed in data en try and we can

therefore expect th a t many errors w ill be made. These errors w il l possibly be unlike the

fatigue-induced errors generated by data-typ is ts , bu t regardless o f th e ir cause, they can be

expected to be far more numerous.

A nother factor to be considered is the fact tha t most users o f th in -c lien t e-commerce

systems w ill no t have been tra ined in the ir use. Since the user w ill not have been tra ined to

use the system, the user interface w ill have to be designed w ith great care. The user must

be able to discover everyth ing about the system, based on the perceptib le system state.

Users are no longer given extensive tra in in g in the use o f p a rticu la r systems, th is must have

a significant effect on the way tha t systems should be designed. The designer o f the user

interface must be sure to bestow ra tiona l behaviour on the app lica tion — ensuring tha t

the app lica tion behaves in a way th a t is reasonable and in te llig ib le . W hen a user makes

use o f an app lica tion , the app lica tion must give the im pression o f being being responsive to

user actions, in the same way as humans are responsive to other humans’ actions [Suc87].

This, once again, brings us back to N orm an’s assertion th a t th ings invis ib le should be made

visible [Nor98], so th a t the user can understand the m o tiva tio n behind the system ’s actions

— as being d irec tly in response to the ir own actions. W h ile humans ro u tin e ly correct

mistakes made by other humans, i t is im p o rta n t to make the d is tin c tio n between humans

and computers. Com puter applications are qu ite s im p ly unable to make these corrections

and i t would be unwise to contemplate complete reliance on such a scheme. W hat the

application must do is give the user the m axim um o p p o rtu n ity o f detecting th e ir errors so

that they can be corrected.

I f th is adm on ition is ignored, i t could cause an unw ary user to p rec ip ita te a ll sorts o f

havoc by using a system incorrectly. A simple order form , cu rren tly used w ith great success

by catalogue firm s, could be a disaster on an e-commerce system. The user could easily

enter an item code in to the quan tity box, for example, and inadverten tly order hundreds o f

items they d id not require. The removal o f the in te lligen t human agent, w h ich in manual

systems would f ilte r ou t th is type o f error, means th a t even greater care m ust be exercised

to ensure th a t user errors do not cause disasters.

Problem Description and Proposed Solution 109

I t is also essential th a t the user understands when the ir action (perhaps the click o f a

b u tto n) w il l cause a transaction to become fina l. In the days o f batch processing, com puter

applications proceeded from in s tru c tio n to in s tru c tio n w ith in pred ictab le tim e boundaries.

So, i f the app lica tion program d id not crash, the program w ould s ta rt a transaction, make

some changes to the data and com m it or abort the transaction. W hen a hum an enters the

process, i t is no longer possible to allow the program to s ta rt a transaction, then w a it for

the user to enter some data, and then on ly com m it or abort the transaction. Compared to

computers, humans are extrem ely slow and laborious and i t is not possible to keep database

locks for extended tim e periods w h ile the user decides which displayed item to choose. The

im p lica tions o f th is — w hat is sometimes called the lazy c lient problem — is th a t the

program w ill collect the data from the user, and then s ta rt a transaction, make the changes,

and com m it the transaction. The user w ill have no contro l over whether the transaction

com m its or aborts — due to not being consulted. I t w il l p robab ly happen autom atica lly , as

described in C hapter 2.

For example, the online bookseller site, www. amazon, co .u k , has obviously been designed

w ith great forethought. The user is continuously to ld , th roughout the ordering process, tha t

no th ing is fina l u n t il the last screen has been reached and a con firm ation has been obtained.

W hen users reach the con firm ation screen, and confirm the transaction, they are le ft in no

doubt about exactly w hat they have ordered, th a t the transaction has been accepted and

the order placed. To ensure th a t th is is understood, em ail is dispatched im m ediate ly, fu rthe r

re in forc ing the sense o f closure. i •

The online flig h t reservation site, e x p e d ia .c o .u k , has been less well designed. A user

wanting to book a flig h t uses a search process to choose a fligh t from a displayed lis t. The

user then has the choice o f reserving the flig h t for 24 hours or purchasing i t d irectly. In

e ither case, the user is asked to enter cred it card details and a ll personal data. Once th is

has been entered, and the user clicks on the “ reserve” bu tton , they r ig h tly expect th a t

the reservation has been made, or the tickets purchased. They hope in vain. O n ly at th is

stage does the system make contact w ith the a ir lin e ’s computers, to ensure th a t the fligh t

is available. I once entered m y details no less than six times w ith th is p a rticu la r site, each

tim e being in form ed th a t the flig h t was fu ll, before I w rote i t o ff in disgust and used a travel

agent instead.

If, having completed a transaction, the user realising he or she has made a mistake,

w ill often find i t extrem ely d iff ic u lt to correct the mistake. T ra d itio n a l m ono lith ic systems

provide an undo fac ility , so th a t one can back up to a previous state, thus undoing the

error [LN86]. T h is is very useful for most applications. However, in transactiona l CBSs,

undo is un like ly to be an option . I t w il l p robab ly not be possible fo r the app lica tion to

offer an undo fac ility . In CBSs where the user-interface program communicates w ith an

interception-based com ponent-oriented m iddleware layer, each m ethod ca ll is p o te n tia lly a

complete transaction, so an erroneous action which succeeds probab ly results in a transaction

being com m itted. O ther transactions m igh t already have used the data resu lting from tha t

http://www.amazon

Problem Description and Proposed Solution 110

transaction.

The only op tion for CBSs is for a compensating transaction to be executed. So, a user

using an e-commerce system selling gardening products to place an order could incorrectly

order 11 garden gnomes (by pressing the “ 1” key too hard), instead o f on ly one. To correct

th is, a compensating transaction, cancelling the order o f 10 gnomes, would need to be

executed.

D ix et ol. [DFAB93] refer to the concept o f fo rw ard recovery, as opposed to backward

recovery (undo). Jambon [Jam98], in his taxonom y o f error recovery, discusses the d ifferent

states a system could be in a fte r the occurrence o f an error. He emphasises the fact th a t

the state arrived at a fter forw ard recovery is not necessarily the same as the state arrived

at a fter norm al execution. In the same way, recovery after a crash w ill leave the system in

a state which is not equal to the in it ia l state.

The amazon site offers the user the o p p o rtu n ity o f executing a compensating transaction

via email, or telephone. Th is would be an add itiona l transaction, since the o rig ina l one

would have been processed already. I t is essential th a t system developers bear these issues

in m ind while developing the ir system.

The state o f the system — your cred it card account, your tem per and the space taken

in your garden by your acqu is ition — w ill not be the same a fte r backward recovery, as after

forward recovery. For example:

• Backward recovery — the user enters a qu a n tity o f 11, instead o f 1. Before click ing

on the con firm ation bu tton , the error is noticed and corrected. The user confirms

the transaction by means o f some con firm atory gesture such as click ing on a bu tton .

The result: one garden gnome arrives and the cred it card account is debited w ith 20

pounds.

• Forward recovery — the user enters a quan tity o f 11, instead o f 1. T h is is not noticed,

and the order is placed. The credit card is debited in the am ount o f 220 pounds. The

error is discovered:

— before the gnomes are delivered. The user contacts the organisaton and cancels

the order. Result: a compensating transaction goes through, cancelling the order

for 10 gnomes and cred iting the cred it card account in the amount o f 200 pounds.

I t may seem th a t the end result is the same. Perhaps i t w il l be, bu t there is a

bigger p icture. Suppose the user on ly realised the error a day after the order was

placed. W hat i f the user tr ied to purchase another item and could not because

the cred it card l im it had been reached? W h a t i f the cred it card account was

p rin ted , and interest payable calculated, du ring those 24 hours? E ithe r way the

user is in for a nasty surprise.

- after the gnomes are delivered. I f the organisation is customer-centred, i t may

take the excess gnomes back w ith o u t charging ex tra for collecting them again.

Problem Description and Proposed Solution 111

I t w il l p robab ly be a much bigger jo b ge tting the forw ard recovery done in th is

case and the effects on the user’s tem per w ill be considerable. T h a t convenient

scapegoat, “ the com puter” , w il l p robab ly be blam ed for the error and the user

m ight be re luctant to order online again.

The previous discussion merely underlines the need fo r great care to be exercised when

designing these systems — so th a t the user is given every o p p o rtu n ity to realise th a t an

error has been made, fa c ilita tin g rap id and painless backward recovery. Should an error be

undetected, the system can make life much sim pler by m aking the user’s fo rw ard recovery

process as painless as possible too.

5 .1 .4 C o n c lu s io n

Feedback can be considered to be “m aking vis ib le th a t w h ich should be vis ib le , and h id ing

what is irre levant” [Nor98]. Th is is not merely a m a tte r o f common sense, as is abundantly

obvious to any user o f com puter applications, b u t ra the r an issue which should be given due

consideration. I t is clear th a t research in to mechanisms and guidelines for the provision o f

feedback are in an unresolved state, so th a t many program m ers cu rren tly are le ft w ith no

choice bu t to depend on the ir own common sense.

5.2 The Proposed Solution

The previous section concluded th a t the manner o f p rov id ing feedback, and standards for

ensuring the q ua lity thereof,, are an open question. Feedback must, at present, be provided

during the development o f an app lication fron t-end1, and i t is extrem ely d iff ic u lt to remedy

applications which provide inadequate feedback, once they are in use.

Dynam ic feedback and error reporting must also presently be provided by the program

mer in add ition to a ll the other work. In assisting the program m er to improve the level o f

feedback provided, there are three prim e tenets:

1. I t is necessary to make the program m er’s task sim pler. The tra d itio n a l approaches

to p rov id ing be tte r feedback — tra in in g program m ers and prov id ing guidelines — are

doomed to fa ilu re since they require an extra measure o f effort on the pa rt o f the

programmer. Chapter 4 explored th is issue and concluded th a t the program m er has

an enormous task in satisfying a m yriad o f requirem ents, du ring im plem enta tion o f an

application. On top o f tha t there are ever-present deadlines and inev itab le technical

problems. I t makes no sense to add to th is load. Therefore any proposed so lu tion

should have as its firs t tenet the reduction and easing o f the p rogram m er’s workload.

2. Inseparable from the previous tenet, is the need to provide feedback independently o f

the application. I t is counter-productive to expect the program m er to change program-

JThe rest of this chapter will refer to fron t-end applications simply as applications

Problem Description and Proposed Solution. 112

m ing style to su it any new methodology. I f the program m er has to make func tion calls

to fac ilita te extra feedback, i t is not like ly to be successful. Thus the mechanism cho

sen to fac ilita te extra feedback should be as independent as possible o f the app lica tion

program, and be easy to understand and use.

Th is leads to the logical conclusion th a t we should consider feedback to be o f two

types: applica tion-in te rna l and application-external. A p p lica tion -in te rna l feedback

w ill respond to user inputs which do not require the app lica tion to in te ract or com

municate w ith any external entity. Th is type o f feedback w ill convey in fo rm a tion

about in te rna l app lica tion function ing such as, for example, repo rting a subto ta l, or

registering receipt o f a user-interface custom isation ins truc tion . A pp lica tion -ex te rna l

feedback is required when the app lica tion interacts w ith the environm ent, the user,

and the rest o f the CBS. Th is sp lit is made so th a t we can argue th a t d ifferent feedback

needs must be handled in d is tin c tly d ifferent ways:

• A pp lica tion -in te rna l feedback should be provided by the app lica tion program m er

• who is com pletely in touch w ith the inner function ing o f the app lica tion .

• A pplication-externa l feedback, on the o ther hand, can be provided in a generic

manner for a ll applications, since the applications are necessarily com m unicating

w ith externa l entities, so th a t applications could a ll fa ll fou l o f exactly the same

types o f errors. Furtherm ore, each component-based fram ework includes a generic

architecture which can be explo ited to b u ild a generic feedback mechanism using

app lica tion tracking.

Another perspective could consider component-based versus non-component-based feed

back. A ny component-based in te raction w ill necessarily en ta il com m unication w ith

other components, whereas non-component-based a c tiv ity could be executed en tire ly

w ith in the app lica tion itself.

I t is reasonable to assume th a t there is a benefit to be derived from p rov id ing these

two types o f feedback needs in different ways.

3. Chapter 4 drew the conclusion th a t feedback should be bo th im m ediate and archival,

and tha t i t should be supplied in a visual or graphical fo rm at, ra the r than p rov id ing

solely tex tua l feedback. A ny too l which is provided for augm enting feedback should

therefore give due consideration to offering feedback in as visual a fo rm at as possible.

Th is doesn’t mean th a t a ll feedback should be iconic ra the r than tex tua l. Textua l

abstractions have been developed over the past 4000 years, and are often fa r more

effective than pictures. Thus to ta l reliance on tex t, or to ta l reliance on p ictures, w ill

never suffice. Feedback should be ta ilo red according to the data being displayed, and

the user’s needs.

Problem Description and Proposed Solution .113

A fte r consideration o f these tenets, and contem pla tion o f various established techniques,

the proposed so lu tion treats the provision o f app lica tion-exte rna l feedback as a separate

concern, which can be dealt w ith independently o f the basic fu n c tio n a lity o f the program.

U nlike many o ther tools which provide for the separation o f behavioural from functiona l

concerns, the approach applied here is th a t fu n c tio n a lity should be catered for w ith m in im a l

pa rtic ipa tion by the program m er — by p rov id ing the feedback independently o f the applica

tion . The use o f the separation o f concerns technique satisfies the firs t tenet. M ak ing use o f

app lica tion tracking to ob ta in the required in fo rm a tion to provide the feedback satisfies the

second tenet. The th ird tenet w ill be satisfied by investiga ting techniques for v isualisation

o f app lication activ ity .

The fo llow ing sections w ill take a look at the research in to the areas o f separation o f

concerns (Section 5.3) and app lication track ing (Section 5.4). Section 5.5 w ill address issues

perta in ing to the v isua lisa tion o f the in fo rm ation thus obtained.

5.3 First M echanism — Separation of Concerns

Programmers have to deal w ith a considerable am ount o f com plexity — th is being inherent

in the ir task. They have to deal not on ly w ith the program m ing o f the required func tiona lity ,

bu t also w ith other im p o rta n t issues like rep lica tion o f components, d is tr ib u tio n , rea l-tim e

configuration, synchronisation and persistence. W herever possible, software development

systems should isolate the various aspects so as to help the program m er focus on specific

tasks. Approaches to th is vary from separating the specification o f concerns — which im plies

tha t the program m er can im plem ent the fu n c tio n a lity separately — to proposed orthogo

na lity o f the specific issue, which implies th a t the work is done on behalf o f the program m er,

w ithou t any effort on th e ir part.

5 .3 .1 S e p a ra te S p e c if ic a t io n o f C o n c e rn s

Some research has been done in to prov id ing programmers w ith tools w hich separate the

behavioural features o f the software from the func tiona l features [GGM 97]. Kiczales [Kic96]

introduces aspect-oriented programming. Aspects could refer to location, com m unication

and synchronisation, and once specified, they can be au tom a tica lly combined w ith the ap

p lica tion program by using some tool, such as AspectJ[Asp98], to arrive at the executable

application. For example, Kersten and M urphy [KM 99] b u ilt a web-based learning environ

ment and used aspects to support its run tim e configuration. Some examples illu s tra te the

separate concerns approach w ith respect to [HL95]:

• Process synchronisation — in which details about the in te raction o f concurrently exe

cu ting processes have been separated from those processes. F ro lund and Agha [FA93]

have developed language support which enables m u lti-ob jec t coord ination . The co

o rd ina tion patterns are specified abstractly, in the fo rm o f constraints, w h ich contro l

Problem Description and Proposed Solution. 114

the invocation o f a specified group o f objects. P roperties such as ordering and atom

ic ity are enforced by means o f these constraints.

Lopes and L ieberherr [LL94] describe an approach to concurrent ob ject-orien ted pro

gram m ing which separates synchronisation schemes from the basic behaviour o f the

application. They in troduce a new level o f abstraction, called the adaptive level, which

describes concurrency contro l requirements. B y using the o rig ina l p rogram and the

adaptive constructs, a complete and correct app lica tion program is generated.

• Location control — The A L - l /D system [0194] allows dynam ic ob ject loca tion contro l

using meta-level program m ing. Okam ura and Ishikawa make use o f com puta tiona l

reflection and a meta-level arch itecture to separate the program m er-defined compu

ta tiona l a lgo rithm from the location contro l mechanism. T h is allows program m ers to

contro l object location more fle x ib ly than w ith tra d it io n a l approaches.

• Real-time constraints — A ks it et al. [ABvdSB94] make use o f com position filte rs to

effectively separate the rea l-tim e concerns from other m ethod concerns. T h e ir compo

s ition filte rs are used to allow messages between objects to carry tim in g in fo rm ation ,

which allows the receiver o f the messages to take the sender’s tim in g constra in t in to

account. These filte rs catch and affect the rea l-tim e properties o f messages in teracting

w ith an object. A k s it et al. argue th a t the considered configura tion o f th e ir filte rs can

be used to specify rea l-tim e constraints.

• D is tribu tion — Since the fa ilu re semantics for d is tr ib u te d systems is obviously d ifferent

from centralised .systems, separating th is d is tr ib u tio n concern is not simple. S troud

[Str93] po in ts ou t th a t i t can on ly be done successfully i f centralised semantics are con

sidered to be a special case o f d is trib u te d semantics. Guerraoui [GGM97] describes

Garf, a software development too l which provides a lib ra ry o f abstractions to s im p lify

d is tribu ted program m ing. G a rf encourages programmers to develop app lica tion com

ponents by focusing in it ia lly on ly on th e ir func tiona lity . Then, w ith o u t changing these

components, the d is tr ib u tio n and rep lica tion features can be activated.

A nother approach, fo r Java, is the K an p ro ject (w w w .c s .u c s b .e d u /~ d s l/K a n) [Jam99a]

K an provides extensions to the Java language w hich allows the program m er to m ark

classes o f objects as d is trib u te d objects so th a t the run tim e system then manages the

d is tr ib u tio n , rep lica tion and m ig ra tion o f these classes. I t e ither creates d is tribu ted

objects on specified machines or ins tructs K an to choose locations. The K an system

can be used to adapt a Java program to run on m u ltip le machines.

• User-interface code — the Chiron-1 User Interface development system [TJ93] in tro

duces a series o f layers th a t separate the user-interface code from the app lica tion code

by using user-interface agents called artists which are attached to abstract data types.

O perations on the abstract data types au tom atica lly trigger user-interface activ ities.

http://www.cs.ucsb.edu/~dsl/Kan

Problem Description and Proposed Solution .115

The Teallach model-based approach [B M P + 99] allows the app lica tion developer to

specify task and presentation requirements independently from the database contents.

The dom ain model, which reflects the database s tructure , is meshed together w ith the

other models and the app lica tion program is generated autom atica lly.

• User manuals — Th im b leby [Thi93b] developed Hyperdoc, a system w hich allowed a

program m er to develop a user m anual alongside the user interface, so th a t the user

manual m irro rs the structu re o f the user interface. The program m er can add to e ither

the user manual or the program , and the m atching section in e ither the program or

the manual w ill be m odified autom atically.

• Exception handling — Dellarocas [Del98] makes a case fo r separating exception han

d ling from norm al system operation. A n exception hand ling service is provided for

use by component developers, which uses a knowledge base to describe the fa ilu re o f

the system to the user.

5 .3 .2 O r th o g o n a li ty o f C o n c e rn s

This approach is ra ther d ifferent from the previous one. O rthogona lity frees the user from

the concern altogether. Th is means th a t the issue w ill be taken care o f by the underly ing

system. Examples are far more d ifficu lt to find , and include:

1. Persistence — orthogona lity o f persistence was proposed by A tk inson and M orrison

[AM95] where the program m er s im p ly identifies a persistent root, and ensures th a t a ll

persistent objects are reachable from th is root. The approach is dem onstrated by the

development o f the persistent program m ing language PJam a [P A D + 97].

2. Location — C O M and C O R B A illu s tra te an orthogonal approach to component lo

cation. The program m er never has to be concerned w ith the location o f the server

component being used — these details are taken care o f by the underly ing component

com m unication architecture.

5 .3 .3 S u m m a ry

I t is clear from th is lis t, which is by no means exhaustive, th a t there are many methods o f

reducing com plexity in app lica tion development. M ost o f the examples shown above have

required the developer to program b o th the basic and special concerns, a lbe it separately.

Kiczales [Kic96] argues th a t th is helps to reduce the com plex ity w ith which the developer

has to cope. Others, such as orthogonal persistence, do most o f the work for the program m er

in a transparent fashion. The au thor is not arguing o rthogona lity o f feedback, bu t ra ther

approaching the problem by p rov id ing a too l which w il l help the program m er to provide the

feedback as easily as possible.

Problem Description and Proposed Solution. 116

5.4 Second M echanism — Application Tracking

A p p lica tio n tracking is a generic te rm th a t refers to the observation o f some aspect o f an

app lica tion fo r one or more purposes. For example, the development o f an app lica tion

th roughou t its lifecycle could be traced in order to assist management in con tro lling a

software pro ject. On the o ther hand, a workflow app lica tion could be “ tracked” to ascertain

its route th rough the in trane t, and to ensure th a t i t had not crashed before com pleting its

task. Yet another type o f track ing could concentrate on the licencing perspective — w ith

software vendors licencing th e ir p roduct for a specific tim e period, and in s ta llin g a licence

server on the c lien t’s system to ensure th a t the products being used are indeed licenced.

The meaning a ttr ib u te d to “ app lica tion track ing” in th is d isserta tion w ill be the ob

servation o f the behaviour o f an app lica tion du ring its execution. W ith in these boundaries

m any m otiva tions for track ing exist. Am ong these could be a need to:

• understand the app lica tion execution process, especially i f the app lica tion is dis

tr ib u te d or runs on para lle l processors;

• provide in fo rm a tion needed to carry out system tun ing ;

• satisfy security requirements;

• support debugging purposes;

• provide an aud it tra il; or

• provide extra support fo r end-users.

A p p lica tio n track ing is often achieved by adding extra code to the fundam ental app lica tion

code. The execution o f th is code observes and reports on the behaviour required. A n

im p o rta n t aspect o f app lica tion track ing is how th is ex tra code is added. I t must not

intefere w ith the norm al runn ing o f the app lica tion , and yet achieve its goals. Th is section

describes d ifferent approaches to adding app lica tion tracking.

However, before considering th is aspect o f tracking, i t is necessary to discuss the focus

or reason fo r the track ing ac tiv ity . A pp lica tions can be tracked from at least two different

perspectives, e ither track ing the user in te raction w ith the app lica tion or watching app lica tion

in te rac tion w ith the rest o f the system. Each w ill be discussed in the fo llow ing two sections,

followed by a discussion which focuses on the actual insertion o f the code to fac ilita te tracking

in Sections 5.4.3 and 5.4.4.

5 .4 .1 F ir s t P e rs p e c t iv e — U s e r - in te r fa c e T ra c k in g

T h is type o f track ing has an interest in the user’s in te raction w ith the app lica tion . One

example o f user-interface track ing is seen in the work o f T ra fton and Brock [TB96] whose

system provides a layer between the user interface and the app lica tion to keep track o f the

Problem Description and Proposed Solution .117

user’s actions, com paring them to an in te rna l representation o f various task models, to t ry

to id e n tify the task being perform ed by the user. W hen a correspondence can be pinned

down, the user is offered the op tion o f the sequence being completed autom atica lly. Masson

and De Keyser implemented a p ro to type o f th e ir Cognitive Execution Support System which

anticipates errors and warns users when these errors could occur [M K93]. Yoshimune and

Ogawa [Y 094] developed a graphica l feedback system which watches user in teractions w ith

a guide book, and suggests correct procedures i f the user deviates from w hat is deemed to

be an op tim um procedure.

Fawcett and Provost [FP90] worked on find ing ways to p red ic t whether the user o f a

given account is not the authorised user. They pro file each user by characterising behaviour

based on histories o f previous sessions. M yka et al. [MGS92] developed a system which

au tom atica lly generates hypertexts and then records user actions when in te rac ting w ith the

text to determ ine whether any re lationships can be in ferred about the docum ent by trac ing

user actions. M any researchers have studied the processes and patterns o f user in teraction

w ith com puter systems [BF88, CE89, LM 88, M ar89, W SA97], w hile L in et al. [LLM 91] have

developed methods for v isualis ing the masses o f data collected about user search patterns in

a varie ty o f graphical form ats, a llow ing human pa tte rn recognition capabilities to be applied.

5 .4 .2 S econd P e rs p e c t iv e — S y s te m -L e v e l M o n i to r in g

O ther researchers have looked at track ing app lica tion use o f system resources. B u rto n and

K e lly [BK98, BK99] have developed a too l which traces system calls and provides the a b ility

to re-execute these calls to allow system tun ing .

Jeffery et al. [JZTB98} in troduce the A lam o m on ito r program execution m on ito ring

architecture which assists developers in bug-detection, p ro filin g programs and visualisations.

Siegle and Hofm ann [SH92] have developed the S U P R E N U M microprocessor which uses a

hybrid com bination o f software and hardware m on ito ring to determ ine para lle l program

behaviour. Th is assists programmers in gain ing ins ight in to the execution o f th e ir para lle l

programs. W ybran ie tz and Haban [W H88] also use a h yb rid approach to observe system

behaviour, measure performance, and record system in fo rm ation . They make use o f a

special measurement processor which runs m on ito ring software fo r each d is tribu ted node

in the system. The in fo rm a tion thus derived is displayed graph ica lly and used to improve

understanding about run -tim e system behaviour. Joyce et al. [JLSU87] m on ito r d is tribu ted

systems by means o f a d is tribu ted program m ing environm ent called Jade, which assists the

program m er in debugging, testing and evaluating d is trib u te d systems.

Eisenhauer and Schwan [ES98] have addressed the problems experienced as a result

o f the tra d itio n a l event-stream mechanism th a t most m on ito ring devices use to report on

activ ity . They propose th a t the com m unication, instead o f on ly proceeding in one d irection

from the app lica tion to the m on ito ring program, should be flow ing in bo th directions. They

argue th a t the m on ito ring program should be able to send “ steering” in fo rm a tion back to

Problem Description and Proposed Solution. .118

the app lica tion . Th is is fac ilita ted by the use o f augmented objects which w il l b o th send

m on ito ring reports, and receive steering in fo rm ation .

W hen a decision is made to track an app lica tion , there are basically two ways o f going

about i t — invasively and non-invasively. The fo llow ing sections w ill discuss these a lte rna tive

approaches.

5 .4 .3 F ir s t A p p ro a c h — In v a s iv e T ra c k in g

I f we consider an executing app lica tion , we can see th a t there are various levels at w h ich

track ing agents can be inserted in to the system:

1. W ith in the application i ts e lf— Th is is p robab ly the most common m ethod o f track

ing app lica tion ac tiv ity , as is dem onstrated by Thomas [Tho96], and W elland et al.

[WSA97], for example.

A pp lication-invasive track ing requires th a t a reporting component be inserted in to the

app lica tion code. Th is code is inserted e ither at development tim e or once the need

for m on ito ring becomes evident.: B a ll and Larus [BL94] have described a lgorithm s for

p lacing code w ith in programs in order to record program behaviour and performance.

Inserting m on ito ring code could have negative effects. E rrors can easily be in troduced

in to the system by the m on ito ring code and i t could be very d iff icu lt to locate these

errors. More rarely, the insertion o f m on ito ring code could actua lly remove errors from

the system. Th is could be caused, for instance, by the fact th a t the m on ito ring code

slows down the threads and problem s which could occur when threads co-ordinate are

alleviated.

In order to disable the m on ito ring , the program m er must e ither remove the code or

use some sort o f environm ent variable or flag setting to disable the reporting . E ith e r

way, i f the m on ito ring code is not removed, i t w il l negatively affect the performance

o f the application. I f i t is removed, i t is en tire ly possible th a t human fa ll ib i l i ty w il l

lead to more errors being made and cause much valuable tim e to be wasted in order

to correct the error thus in troduced in to the system.

2. Inside the libraries or classes the application uses — Inserting track ing code in to

lib raries w ill track the a c tiv ity o f the contents o f th a t pa rticu la r set o f classes, not

the app lica tion . Since o ther applications could use the same libraries, i t is necessary

e ither to dup lica te the lib ra ry and insert the reporting code in to it , or disable the

repo rting when i t is used by o ther applications. Thus in th is case you would get

lib ra ry m on ito ring ra the r than app lica tion m onito ring .

3. Via the operating system — T h is is even more generalised than lib ra ry m on ito ring .

O pera ting system m on ito ring w il l generate many reports about a ll and sundry events.

Problem Description and Proposed Solution. 119

The m on ito ring app lica tion w il l have qu ite a jo b filte r in g out the m eaningfu l reports

from the dross.

A l l the techniques m entioned in th is section are invasive in one way or another — and one

can read ily understand w hy th is is so. There is a need to be invasive to get the am ount o f

in fo rm a tion required by the developers o f systems, in order to perform the types o f functions

fo r which the tun ing is required.

5 .4 .4 S eco n d A p p ro a c h — N o n -in v a s iv e T ra c k in g

The m on ito ring in th is case should not make changes e ither to the source code, or make use

o f a non-standard set o f libraries. Some examples are:

1. Using reflection , w hich must necessarily be language dependent, fo r example —

(a) Java: Welch and S troud [WS99] give a comprehensive overview o f the various

approaches to reflection in Java and note th a t most o f them require access to

source code, or the use o f a customised Java V ir tu a l M achine — the portab le

operating system used by Java programs. T h is does not meet the c rite rion o f

non-invasion, bu t the Kava approach described by Welch and S troud does ex

ercise reflection non-invasively. They use run tim e byte code transfo rm ation in

order to incorporate the use o f special m eta-object protocols, which are used for

im plem enting special behaviour in to the system. Th is mechanism could be used

ju s t as easily for app lica tion m onitoring .

(b) Oberon-2: Moessenbock and S te ind l [MS99] describe a reflection technique fo r the

Oberon-2 language which allows a program m er to access run -tim e in fo rm a tion

about variables and procedures, and allows the program m er to m anipu la te the

values o f such variables.

2. Using proxies — Chalmers et al. [CRB98] have developed a non-invasive methodology

to b u ild up Web usage histories for users in a p a rticu la r com m unity. The user search

pa th is compared to paths o f other users w ith in the com m unity and i f a m atch is

found, sites v is ited by the other users w ill be suggested as being o f probable interest.

W exelblat and Maes [W M 99] have b u ilt a set o f tools to support Web browsing. These

tools accumulate a h is to ry o f other user’s search paths and make i t available to la ter

users. T h e ir tools contextualise the web pages the user is view ing.

3. Using operating system A P Is — Some operating systems, such as W indows, have sub

stan tia l A P Is to support non-invasive tracking. A n example o f th is is the Desk W atch

fac ility .

4. Using specialised hardware — Argade et al. [ACT94] present a non-invasive technique

for m on ito ring applications, b u t they use a specially ta ilo red piece o f hardware to

Problem Description and Proposed Solution. 120

fac ilita te the m onito ring . T h e ir m ain goal is to sim ulate app lica tion execution, so

th a t the app lica tion execution environm ent can be optim ised.

5 .4 .5 S u m m a ry

To summarise, track ing can be carried out e ither invasively or non-invasively. Invasive

track ing is risky, since i t could in troduce errors and be expensive in terms o f tim e and

e ffort to disable the repo rting mechanism when there is no longer a need for it . I t is also,

by de fin ition , application-specific, and track ing must be added to each app lica tion type

ind iv idua lly . Non-invasive track ing is easily deactivated and can seamlessly track a varie ty

o f applications, bu t is much harder to accomplish.

Whereas the results o f user interface m on ito ring are sometimes u tilised by the end-

user o f a system [CRB98, Y 0 9 4 , M K93, TB96], i t is often carried ou t p r im a rily fo r the

benefit o f system developers and maintenance teams. System resource m on ito ring is carried

ou t exclusively for the benefit o f system development teams. One im p o rta n t stake-holder in

app lica tion use, the end-user, is seldom catered for. Th is research w ill consider the provis ion

o f feedback for the benefit o f the end-user to be a special concern— separated from the

basic fu n c tio n a lity concern o f the application. Th is w ill be done by using the results o f non-

invasive app lica tion m on ito ring , im plem ented by means o f proxies, to augment app lica tion

feedback.

5.5 Third M echanism — The Visualisation

P ortray ing in fo rm a tion about app lica tion a c tiv ity in order to augment app lica tion feedback

is a novel use o f the in fo rm a tion derived from app lica tion tracking. The last im p o rta n t

issue to be addressed concerns the manner in which the in fo rm a tion thus obta ined can be

visualised in a he lp fu l manner.

Chapter 4 argued fo r the provis ion o f bo th im m ediate and archival feedback. Section

4.6 ju s tifie d the need for the v isua lisa tion o f app lica tion a c tiv ity to provide the required

feedback, ra the r than supp ly ing merely tex tua l feedback. The fo llow ing subsections w ill

discuss the research carried out in the v isua lisa tion area.

5 .5 .1 V is u a lis a t io n o f U s e r In te r a c t io n w i t h a n A p p lic a t io n

I t has been noted by various researchers th a t discourse typ ica lly has an increm enta l q u a lity

about i t [CM93, LM 94]. Th is need is often satisfied in tu to r ia l or v isua lisa tion applications

by supp ly ing the user w ith a log file contain ing previous explanations [EL96, DJA93]. T h is

does not lin k the explanations to user actions, though, and is therefore o f lim ite d assistance

in v isualis ing the user in te rac tion w ith the system.

There are three types o f research which have some bearing here — the firs t is research

in to the v isua lisa tion o f software execution; the second is research in to the v isua lisa tion o f

Problem Description and Proposed Solution. 121

user-machine dialogue, and the th ird is the v isua lisa tion o f serial in fo rm ation .

5 .5 .2 V is u a lis in g E x e c u t io n o f S o ftw a re

Some researchers have worked on v isualis ing the execution o f software [ESS92, BDPS94,

Jer96, K M S + 95]. Th is is done p r im a rily for the benefit o f developers who need to analyse

access patterns, and increase understanding o f the program execution. Drew and Hendley

[DH95] have worked on v isualis ing complex ob ject oriented software systems.

5 .5 .3 V is u a lis in g D ia lo g u e

O ther researchers have worked on v isua lisa tion techniques which m a in ta in and present a

record o f user dialogue w ith the machine. T h is in fo rm a tion can be used for p rov id ing a

record o f explanations, as shown by Lem aire and M oore in [LM 94]. K u rlande r et al. [KF90]

illu s tra te a system which allows users to browse, redo or undo past actions which were

perform ed using a graphical ed ito r. Reiser et al. [R FG + 88] developed a system which

provides a record, in graphical fo rm at, o f a s tuden t’s so lu tion to a problem.

R ich and Sidner [RS97] have developed a co llaborative interface agent which m aintains

the h is to ry and context o f the in te raction between the user and the application. The agent

interacts d irec tly w ith the app lica tion , and w ith the user. I t then m ainta ins a h is to ry

based on in teraction w ith the user and observation o f user actions. Th is agent queries

the app lica tion , and makes recommendations based on observation o f the user’s in teraction

w ith the application. Tw o windows are used to fac ilita te the v isua lisa tion o f the user’s

com m unication w ith the agent, and the agent’s com m unication w ith the application. The

com m unication is textua l, based on an a rtif ic ia l language developed by Sidner [Sid94].

Berlage and Genau [BG93] developed the G IN A fram ework, which provides a h is to ry

mechanism for m ulti-user applications. Th is fram ework allows users who are located at

d ifferent sites to work in co llabora tion on the same document. The fram ework requires

the app lica tion program m er to provide add itiona l hooks to fac ilita te the function ing o f the

framework.

5 .5 .4 V is u a lis in g s e r ia l p e r io d ic d a ta

The data to be visualised — app lica tion in te raction w ith the user — can be modeled as

event-anchored serial period ic data [CK98]. T h is type o f data has periods w ith different

durations. Each period is composed o f some user a c tiv ity followed by some app lica tion

a c tiv ity caused by in fo rm a tion supplied by the user ac tiv ity . Each period is triggered by

some user actions, signaled by events. The tim e taken fo r each period varies according to

many factors. Periods fo llow each o ther in serial form , m irro rin g the serial nature o f human

processing capabilities.

Some researchers have worked on visualis ing d ifferent types o f pure ly serial data. Some,

such as C h i et al. [hCKBR97] have used tabu la r techniques. Rao and Card [RC94] and

Problem Description and Proposed Solution. 122

Spenke et al. [SBB96] allow the user to in te ractive ly explore the data being displayed in

a tabu la r fo rm at. O ther researchers have worked on techniques for d isp laying serial data.

One approach, by Robertson et al. [RM93], shows a “ perspective w a ll” , w ith tim e m oving

from le ft to righ t, and the centra l p a rt o f the w a ll g iv ing the current focus. P la isant et al.

[P M R + 96] developed LifeLines w hich shows a person’s h is to ry compactly, w ith selectable

items allow ing the user to get more de ta il as required.

5 .5 .5 In te r a c t in g w i t h th e V is u a lis a t io n

Serial da ta exp lo ra tion is often supported by one o f two tools — dynam ic querying and

focus+context techniques [CK98]. D ynam ic query systems allow users to explore the data

by executing queries, using user-friend ly interfaces [KPS95]. W ha t Carlis and Konstan call

focus+context is the same as Shneiderman’s [Shn98] overview and zoom approach. Th is

approach displays a broad overview and allows the user to zoom in on items o f interest.

Some examples o f research using th is technique can be found in [Fur86, RM 93, SSTR93].

Carlis and Konstan [CK98] present a scheme for v isualis ing serial period ic data which

displays data along a sp ira l so th a t b o th serial and period ic qualities o f the data can become

visib le. They have also incorporated'som e dynam ic querying fac ilities in to th e ir visualisa

tion , feeling th a t i t was not obvious how the focus and context technique would be applied.

5 .5 .6 C o n c lu s io n

>■ Once again, the p itch o f the research to be found in th is area m irro rs the approach taken

in the app lica tion tracking fie ld i.e: h a lf o f the work done benefits app lica tion developers

— usually g iv ing insights about the execution o f the app lica tion program . The other work

is done for the benefit o f the end-user and depicts the user’s in te raction w ith the system in

the form o f a s tructu re — usually a lis t - conta in ing a representation o f user commands.

Examples o f th is are the selective paste offered by Emacs, or the history command used

in U n ix and MS-Dos. The au tho r is unable to locate research which maps user dialogue

to app lica tion response, independently o f the app lica tion , to provide a v isua lisa tion for the

benefit o f the end-user.

5.6 Consolidation

The approach proposed here is use o f app lica tion track ing to enable the program m er to trea t

feedback provis ion as a separate concern and to provide feedback by means o f a v isualisation

o f session activ ity . Th is approach has positive and negative po ints and i t is as well to

enumerate them here, before con tinu ing w ith the design o f the generic fram ework.

The proposed approach is made possible by the architecture, and generic features, o f

component-based systems. Specific details about the features explo ited by th is technique

Problem Description and Proposed Solution. .123

w ill be covered in de ta il in the fo llow ing chapter. The fo llow ing sections address the benefits

and lim ita tio n s o f the approach.

5 .6 .1 B e n e fits o f th e P ro p o s e d A p p ro a c h

There are two basic techniques which make up the founda tion fo r th is approach: separation

o f concerns and app lica tion tracking. The benefits o f using th is com bination are:

• The program m er’s jo b is s im plified.

— Separating the feedback concern from the basic concern o f the app lica tion re

duces com plexity and allows programmers to concentrate on the m ain task o f the

program — the fu n c tio n a lity o f the program [Kic96].

— The program m er does not have to provide deta iled feedback about app lica tion

external errors th roughou t the application.

— The program m er w il l not be required to an tic ipa te a ll possible problems which

could occur as a resu lt o f the fa ilu re semantics o f the d is tribu ted system.

— The program m er can get debugging assistance d u ring app lica tion development.

T h is is p r im a rily linked to the ir use o f the m idd le -tie r components, since th is use

is observable, and can thus be reported.

— The programmers need no longer be hum an-com puter in te raction experts, since

• much o f the work w ill be done by the generic fram ework.

• The non-invasive approach requires m in im a l effort from the app lica tion program m er,

w hich makes i t more like ly to be used.

• The feedback is augmented by means o f non-invasive app lica tion tracking, which means

th a t the app lica tion has the fle x ib ility to func tion e ither w ith or w ith o u t it , and the

end-user can use i t on ly when required, and deactivate i t once the need disappears.

• D is tr ib u te d systems open up the poss ib ility o f m any more indeterm ina te failures, and

i t is therefore useful to have a standard way o f ind ica ting th a t an error has occurred,

and for find ing out more about th a t e rror [S tr93].

• The generic fram ework w il l supply a feedback d isplay w hich can act as an external

m em ory aid to the user. T h is is w hat Norm an [Nor98] calls “ knowledge in the w orld ” ,

which makes i t easier for the user to p ick up the threads a fte r an in te rru p tio n or error.

• The feedback d isplay can be designed to be extensible, which w ill make i t easier to

accommodate changing user needs.

Problem Description and Proposed Solution .124

5 .6 .2 L im ita t io n s o f th e P ro p o s e d A p p ro a c h

The disadvantages o f the approach are tha t:

• I t can on ly give feedback based on the externa l ac tiv ities o f the app lica tion . Thus the

feedback th a t can be provided is lim ite d to the in te raction o f the app lica tion w ith the

user and the rest o f the d is tribu ted system.

• I t requires the use o f a language w ith in trospective capabilities, since th is is essential

fo r the generation o f proxies — the mechanism used to im plem ent the non-invasive

app lica tion tracking.

• I t is bound to have a negative im pact on the performance o f the app lica tion . Th is

m a tte r is addressed fu lly in Chapter 8.

5 .6 .3 S u m m a ry

The problem de fin ition rests on the central assumption th a t feedback provis ion is d iff icu lt

and th a t i t is seldom provided adequately and appropria te ly. The proposed so lu tion is based

on three supporting areas o f research — separation o f concerns, app lica tion track ing and

v isua lisa tion — and, the p a rticu la r features o f component-based systems, as is illu s tra te d in

F igure 5.1.

Visualisation

Separation
of Concerns

^plication
racking

Features of CBSs

Figure 5.1: Supporting research

Each research area plays an equally im po rtan t role w ith o u t which the proposed so lution

would fa lte r. Having decided to augment feedback by means o f separating the concern, and

track ing app lica tion a c tiv ity in order to ob ta in enough in fo rm a tion to provide th a t concern,

i t is necessary to test th is by im plem enting a p ro to type o f the framework. The im plem ented

fram ework obtains in fo rm a tion about app lica tion a c tiv ity and provides a v isua lisa tion o f

th a t a c tiv ity in order to augment the feedback provided by the app lica tion

The next p a rt o f th is d isserta tion w ill describe the design and im plem enta tion o f a

pro to type o f the generic fram ework, which was used to test the proposal made in th is

Chapter.

part IV

HERCULE — Design and
Implementation

I never worry about action, only inaction.

Sir Winston Churchill

I f A is a success in life, then A equals x plus y plus z.

Work is x; y is play; and z is keeping your mouth shut.

Albert Einstein

125

Sometimes I think the surest sign that intelligent

life exists elsewhere in the universe is that none

of it has tried to contact us.

Bill Watterson

Calvin and Hobbes

chapter 6

HERCULE’s Design

P art I I o f th is d isserta tion described the problem s experienced in p rov id ing adequate feed

back in component-based systems. The, proposed so lu tion entails the use o f a generic

feedback-enhancing fram ework which works by track ing app lica tion a c tiv ity and p rov id ing a

v isua lisa tion o f th a t a c tiv ity in order to augment the feedback provided by the application.

I t has been argued th a t th is fram ework would allow feedback to be treated as a separate

concern, freeing the program m er to concentrate on the fu n c tio n a lity o f the app lica tion pro

gram.

The approach discussed here which has been applied to meet user feedback needs is

applicable to a w ide range o f com puter app lica tion systems. Th is research has focused on

a feedback mechanism for component-based systems since these systems are d is tribu ted ,

increasing the like lihood o f errors. The nature o f component-based systems also decreases

the like lihood o f adequate feedback provision — as m otiva ted in C hapter 5.

The concept o f a fram ework was explored in Section 2.2.2, which concluded th a t a

fram ework should provide a generic so lution for a set o f s im ila r problems. The fram ework

described in th is chapter seeks to provide a generic so lu tion to the prob lem o f p rov id ing

feedback in CBSs. The fram ework has been named HERCULE after Hercule P o iro t, Agatha

C h ris tie ’s legendary detective — since i t essentially acts as a detective w hich watches a ll

events, tries to discover the reasons fo r quirks, and expla in app lica tion ac tiv ity .

126

HERCULE’s Design 127

T h is chapter w ill explore the ra tiona le behind the design o f HERCULE (Section 6.1). Sec

tions 6.2 and 6.3 discuss the technology supporting HERCULE's observation and explanatory

roles. The general architecture and fu n c tio n a lity o f the fram ework is described in Section

6.4 and the v isua lisa tion o f the app lica tion a c tiv ity is discussed in Section 6.5. Section 6.6

concludes the chapter. Chapter 7 w il l then go on to discuss the actual im p lem enta tion

details.

6.1 Design Philosophy

The purpose o f th is research is to provide a fram ework which facilita tes the provision o f a

v isua lisa tion o f the user’s in te rac tion w ith the app lica tion . The effect o f th is v isualisation

is to provide feedback inc lud ing dynam ic im m ediate feedback about the current state o f the

system, and archival feedback about previous states o f the application.

6 .1 .1 D e s ig n P r in c ip le s

A num ber o f design decisions were made, each o f which is described below.

• F lex ib ility : To allow any ex isting or new app lica tion to make use o f a stand-alone

generic feedback enhancing franiiework. The fram ework should not be ta ilo red to a

specific group o f applications, except th a t broad category o f th in -c lien t systems which

rou tine ly appears in th ree-tie r CBSs. The th in -c lien t basically provides the Graphical

User Interface (G U I) fo r the app lica tion , w h ile the actual business processing is done

by the other two tiers. T h is is not a p a rticu la rly restric tive requirem ent, since most

systems are m oving to three-tiers in these days o f e-commerce. B y a llow ing existing

applications to make use o f the fram ework and thus ob ta in ing the benefits o f the extra

feedback, i t is hoped th a t the idea w ill become more w ide ly accepted and th a t th is

w ill speed the uptake o f the concept.

• Painlessness: To require m in im a l p a rtic ip a tio n from the app lica tion program m er. Th is

requirem ent is im p o rta n t because any extra burden on an app lica tion developer is un

like ly to be appreciated and, even i f the program m er is w illin g e x p lic it ly to invoke

calls to HERCULE, th is could be done incorrectly, which would result in the applica

tion becoming even less usable than the o rig ina l version. A dd itiona lly , i f the frame

work requires app lica tion program m er pa rtic ipa tion , ex isting applications would be

d isqualified from u tilis in g its func tiona lity .

I t is as well to be absolute ly clear about the meaning o f the word m in im a l, since i t

is a re lative term . The approach which is intended here is th a t program m ers would

be able to re ly on the fram ework to provide the ex tra feedback, b u t w ould have to

take no action w ith in the ir programs to fac ilita te it . They are also not to be expected

HERCULE’s Design .128

to pa rtic ipa te in the insertion o f any mechanisms in to the system to fa c ilita te the

func tion ing o f the fram ework th a t they would not have provided in any case.

W ha t is expected is th a t they w ill pa rtic ipa te in the ta ilo rin g o f descrip tive messages

which are supplied to the end-user to describe w hat the system is doing. HERCULE

can on ly give m eaningfu l messages i f assisted to do so by a hum an agent — and

programmers are the most im p o rta n t and valuable allies in th is respect, since they

w ill become com pletely fa m ilia r w ith the server components’ idiosyncrasies as they

develop th e ir program. T h is is the fu ll extent o f th e ir pa rtic ipa tion .

• O ptiona lity : I f the user decides not to use the fram ework, i t should no t in trude on the

system. Th is could be in terpre ted in two d ifferent ways:

— The user could choose to have HERCULE runn ing in the background, bu t make

no use o f the fac ility . The im pact here is a s ligh t performance pena lty only.

— On the other hand, the user could choose not to use i t at a ll and s im p ly execute the

app lica tion w ith o u t add itiona l feedback. In th is case the environm enta l variables

must be altered, so th a t HERCULE would not activate at a ll. I t would s im p ly

take up a l i t t le room on the hard disk, which is not a scarce resource.

• Least damage: The fa ilu re o f HERCULE should not in any way cause the fa ilu re o f

the application. The negative im pact o f HERCULE on the app lica tion perform ance

should also be kept to a m in im um . I t w ould be unreasonable to expect HERCULE

to have no im pact at a ll, since extra com puta tion is being carried ou t by HERCULE.

A n endeavour was made to design HERCULE to have the smallest negative im pact

possible.

• Non-invasiveness: No p a rt o f the app lica tion should be changed to accommodate

the fram ework. The a lte rna tive to th is is th a t an app lica tion could be engineered to

enable HERCULE, bu t th a t would inva lidate op tiona lity . Thus o p tio n a lity and non-

invasiveness go hand-in-hand — you cannot have one w ith o u t the other.

• Non-intrusiveness: The HERCULE console should always be available, perhaps in the

fo rm o f an icon, or on the screen in the form o f a w indow , bu t, because o f the aforemen

tioned points, should not in trude. I t must m a in ta in an up-to-date display dep icting

in fo rm a tion about session ac tiv ities so th a t i t can be used by the user as a feedback

mechanism at any tim e. B y “ not in tru d in g ” w hat is meant is th a t the HERCULE

display w ill not d isplay itse lf, unbidden, in fron t o f the app lica tion ’s w indows, w il l not

force its help on the user and w ill not make the user take any extraneous action to

deactivate it.

T h is is in s tark contrast to the deplorable tendency o f certa in products to force help

on the user in the form o f the annoying paper clip . W h ile one empathises w ith the

HERCULES Design 129

designer’s probable good intentions in creating th is fac ility , the expert user is often so

alienated and aggravated by th is unwanted assistance th a t i t is more damaging than

he lp fu l1.

• S im p lic ity : Com plex schemes are adm irable, bu t offer far more oppo rtun ities for dis

aster. C om plex ity leads to d is tracted effort, w hile s im p lic ity leads to a more focused

effort [dB98]. Designing w ith s im p lic ity as the a im produces a more elegant, un

derstandable solution, enabling the rem aining tim e to be spent more p ro fita b ly on

mechanisms for v isualis ing app lica tion activ ity .

• C larity : Explanations should be understandable and lucid . Th is is no simple m atter.

We have a ll been the recipients o f un in te llig ib le messages — no m a tte r how com puter

lite ra te we are. The program m er can be o f assistance in ta ilo rin g these messages,

bu t th a t is not like ly to be the u ltim a te solution. HERCULE should enable the post

im plem enta tion ta ilo rin g o f explanations and messages so th a t one user’s problem can

be solved and then the exp lanation relayed to HERCULE on o ther machines so th a t

the problem is solved fo r o ther users too.

• Versatility : I t is often be tte r to s im p lify a process than to tra in people to cope w ith

com plexity [dB98]. E xp lanations and error messages should be relayed at the user’s

level. T a ilo ring fac ilities should be provided which w ill offer d ifferent types o f expla

nations and error messages dependent on the requirements o f the user. I f the user is

an end-user w ith no interest in the inner function ing o f the system, the explanations

should be at a h igh level and, i f the user is the system designer, the explanations

should give far more deta il.

6 .1 .2 A ccess in g H E R C U L E

A decision must be made about the fa c ilita tin g mechanism used to provide the user w ith

access to the feedback. I t could be achieved in various ways:

• activated by a special control sequence from the keyboard. Th is m igh t be daunting to

technophobes or novice users, and m igh t prevent the user from m aking use o f it.

• a button added on to the application ’s window — perhaps at the bo tto m o f the w indow

— which allows the user to summon help. T h is conflicts w ith the non-invasiveness

and o p tio n a lity aims.

Tt could be axgued that expert users should know how to deactivate the paper clip. They do indeed, but
when the help is offered they are engaged in another activity. Switching off the feature entails an interruption,
together with the accompanying loss of context. Once the primary task has been completed the user will
probably have forgotten about the paper clip until its next appearance.

HERCULE's Design .130

• in a m inim ised window , which can be m axim ised as required. T h is w ould satisfy the

design aims, bu t the w indow, being hidden, would not be in a pos ition to offer dynam ic

feedback w ith respect to the state o f the system.

• in a window being displayed to the righ t o f the user’s screen. T h is op tion was u lt i

m ate ly chosen since i t fac ilita tes the provis ion o f bo th dynam ic im m ediate and archival

feedback at a glance. The fact th a t the user does not have to go and look fo r the feed

back makes i t im m edia te ly available and since i t is always in the same place the user

knows exactly where to find it.

O
User

Screen

JVM

To and From

Middle-tier

Client
Application

Components

Figure 6.1: Application executing without HERCULE

The app lica tion runn ing w ith o u t HERCULE is shown in F igure 6.1, w hile when the applica

tio n runs in harness w ith HERCULE, the s tructu re o f a c tiv ity is shown in F igure 6.2.

6 .1 .3 R e q u ir e d A p p lic a t io n F e a tu re s

Before proceeding fu rthe r, i t is necessary to state exactly w hat is required, bo th o f the

app lica tion system and the program m er, to use HERCULE. The generic fram ework scheme

relies on, and exploits, the fo llow ing features o f component-based systems:

1. T h e ir tiered structure , w ith most o f the processing being done in a d ifferent address

space. The client app lica tion makes extensive use o f “exte rna l” en tities to carry out

processing on its behalf.

2. The object-orien ted nature o f in te r-tie r com m unication. The client program issues

requests to the m iddle tie r and receives replies ind ica ting the success or fa ilu re o f the

HERCULE’s Design 131

User Hercule Display

Application
Window

Feedback

User Interface
Proxy

S o cketi

Socket i
Server Proxy

J V M , 1 JVM

To and From

Client
Application H ER C U LE

Middle-tier Components

Figure 6.2: Application running in harness with HERCULE

processing carried out as a consequence.

3. The business logic provided by the m idd le tie r o f th ree-tie r systems is often supplied by

server components housed w ith in an app lica tion server. Th is means th a t the m iddle-

tie r components, being independently developed, are: accessed v ia defined interfaces;

which must be self-describing; and are accompanied by at least some form o f docu

m entation which can be harnessed by the fram ework. I t also im plies the existence

o f some sort o f component docum enta tion intended to in fo rm the program m er o f the

fu n c tio n a lity o f the component.

4. The event-based nature o f graphica l user interfaces. I t is therefore re la tive ly simple to

detect m eaningfu l ac tiv ity , from the app lica tio n ’s po in t o f view, at the user interface.

These features are essential in supporting an independent feedback fa c ility since app lica tion

behaviour m ust be observed and explanations supplied by means o f a v isua lisa tion o f a c tiv ity

based on in te rp re ta tio n o f th is observation. The firs t feature ensures th a t much o f the

app lica tion a c tiv ity w ill be observable. The second ensures th a t the com m unication w ith

the m iddle tie r is easily understood, since i t is s tructu red in a predictable fo rm at. The th ird

ensures th a t the essence o f the com m unication thus observed can be in terpre ted correctly,

w h ile the fo u rth feature supplies the fram ework w ith an understanding o f the relevance o f

events at the user interface.

HERCULE’s Design 132

The last requirement is th a t the app lica tion program m er must have the necessary ex

pertise to be able to use HERCULE effectively to provide extra feedback. T h is means th a t

the app lica tion program m er must have the required expertise bo th in Java and in EJBs.

Th is is no t an exacting requirement, since the program m er has to have th is knowledge to

b u ild an end-user app lica tion for a component-based system anyway.

6 .1 .4 A n d T h u s ...

HERCULE needs two d is tin c t fa c ilita tin g functions: observation o f the user and app lica tion

a c tiv ity ; and explanation o f th a t activ ity . The fo llow ing section discusses HERCULE’s ob

servation function , while Section 6.3 explains how the components are described in order to

give HERCULE in fo rm ation about m ethod semantics, in order to fu lf i l l its ro le o f exponent.

6.2 Facilitating HERCULE’s Observation Function

The aim o f f le x ib ility is satisfied by not m aking changes to e ither app lica tion code or any o f

the packages being used by the application. T h is ensures th a t any app lica tion can func tion

e ither w ith or w ith o u t HERCULE and also satisfies o p tio n a lity and non-invasiveness.

Chapter 5 in troduced the HERCULE concept, which is based on the observation o f the

externa l behaviour o f an application. No a ttem p t is made to deduce the in te rna l function ing

o f the application. Thus HERCULE observes the app lica tion ’s in te raction w ith the user, and

w ith the rest o f the CBS and merely reports on what i t observes. The HERCULE approach

thus m onitors systems on an application level — specifica lly Java applications — ra ther

than at a system level. Th is has been decided on for several reasons:

1. The application-oriented approach makes i t possible to involve the program m er in

ta ilo rin g messages for the end-user, because the semantics o f the com m unication w ith

the environm ent is easily understandable, as they are merely m ethod invocations.

2. A pp lica tio n track ing using Java offers a p la tfo rm -independent o p p o rtu n ity for m oni

to ring , ra the r than system tracking, which is p la tfo rm dependent. P la tfo rm indepen

dence is extrem ely im po rtan t fo r th in -c lien t d is tr ib u te d systems, since most CBSs are

s tructu red th is way. The th in -c lien t, especially the e-commerce th in -c lie n t, must be

designed to be executed on any com puter th a t could possibly connect to the m idd le

ware server. M ost th ree-tier CBSs w il l have many different types o f c lien t accessing

the m iddle tie r, p rov id ing ta ilo red clients for d ifferent needs. For example, the same

m idd le tie r could support a browser client, a Java app lica tion c lient and a telephone

interface client.

The CBS client app lica tion can therefore not rea lly make any assumptions about the

type o f com puter used as the p la tfo rm for the c lient program. HERCULE is intended

to be an end-user assistant and must therefore be able to run on any p la tfo rm th a t

HERCULE’s Design 133

supports Java and uses it . System-level m on ito ring on ly works on a specific p la tfo rm

and is not the r ig h t op tion for HERCULE.

3. System-level m on ito ring is complex to achieve and i t is very d iff icu lt to lin k events

to the app lica tion ac tiv ity . T h is d iff icu lty is confirm ed when you consider th a t a ll

system-level m on ito ring done so far has delivered results to system engineers — not

end-users. (See Section 5.4)

Since the application-oriented approach has been chosen, the mechanism to fac ilita te track

ing needs to be decided. One way to track an app lica tion non-invasively is to insert proxies

between the app lica tion and the environm ent — which requires no changes to be made

to the application code. A proxy m ust be inserted between the user and the app lica tion

user-interface and between the app lica tion and the m iddleware layer. The use o f proxies,

fo llow ing the decorator or proxy design pa tte rn [GHJV94], satisfies the aims o f painlessness,

optiona lity , s im p lic ity and non-invasiveness. Least damage is guaranteed by ensuring th a t

these proxies cannot cause the fa ilu re o f the app lica tion . The im plem enta tion should be

carried out in such a way th a t the proxies, upon encountering a problem,, w il l s im ply revert

to the “ norm al” behaviour o f the system., They should no longer report anyth ing and s im ply

act as an empty channel th rough which the app lica tion communicates.

There is no question o f the proxies, once activated, being removed at run tim e since the

application holds references to bo th proxies, w ith o u t being aware o f the fact. There is no

way to update these references inside the app lica tion so the best approach is s im ply to cause

the least possible damage and behave as a sleeper. Once the proxies become aware o f an

error condition they must im m edia te ly cease to report to HERCULE, so th a t the im pact on

performance is negligible. There are two types o f proxies to be inserted:

• the user-interface proxy; and

• the component proxies.

The com m unication between the proxies and HERCULE can be made e ither synchronously

or asynchronously. Synchronous com m unication is s im p ly not viable in th is case, since th a t

would enta il the app lica tion w a iting fo r HERCULE to accept reports from the proxies and

slow the app lication unnacceptably. Asynchronous com m unication using some asynchronous

messaging system would have less im pact on the app lica tion , bu t i t is doub tfu l th a t dynam ic

im m ediate feedback can be guaranteed in th is case. The “ m in im a l im pact p roxy” design

pattern, described in Section 6.2.1, was developed to provide a reusable so lu tion to th is

problem.

Section 6.2.2 discusses the design o f the user interface proxy, w h ile Section 6.2.3 describes

the proxies which intercept com m unication between the app lica tion and the m iddleware

layer.

HERCULE's Design 134

6 .2 .1 T h e “M in im a l Im p a c t P r o x y ” D e s ig n P a t t e r n

Th is new design pa tte rn was developed specially for the HERCULE framework. Th is pa tte rn

can be used to lin k proxies to receiving applications, at run tim e , in order to track app li

cation a c tiv ity and to fac ilita te repo rting o f a c tiv ity w ith m in im a l im pact on app lica tion

performance

The insertion o f proxies enables the observation o f app lica tion a c tiv ity w ith o u t necessi

ta tin g the a lte ra tion o f app lica tion code. However, w ith m on ito ring becoming more common

and the reasons fo r m on ito ring ever more jus tified , i t is beneficia l to iden tify a design pa t

tern, namely the “ M in im a l Im pact P roxy” pa tte rn — a general so lu tion to a problem in

context [GHJV94] — to ensure th a t the proxy does not slow the app lica tion down too much.

Th is section w ill iden tify the key aspects o f th is common design s tructu re th a t make i t useful

fo r reuse.

C h a ra c te r is t ic s — Th is p a tte rn has two d is tin c t features, the firs t is the use o f proxies

between the app lica tion and some component m aking up its environm ent. Th is could

be the user interface, a server, a database or whatever in te raction needs to be mon

itored. The means for insertion o f these proxies does not fo rm pa rt o f th is design

pattern. The second feature, the feature w ith which th is pa tte rn is concerned, is the

linkage o f the proxies w ith an independent app lica tion w hich w ill receive the reports

generated by the proxies and act upon them.

In te n t — Linkage o f inserted proxies to a m on ito ring app lica tion with m in im um perfor

mance degradation.

A p p l ic a b i l i t y — Th is pa tte rn w ill be used when there is a need to track an app lica tion

by m aking use solely o f proxies.

S tru c tu re : R e p o r ts — Reports should be catered fo r by a single class type, w ith various

subtypes for specialising reports. The specialisation could be used to reflect d ifferent

types o f a c tiv ity or d ifferent types o f objects or operations on objects. I t is im por

tan t to note th a t a ll fields in the report should be easily stored2, so th a t i t can be

transm itted by means o f the socket mechanism. Th is means th a t objects tracked from

the app lica tion cannot necessarily be included in the report, unless the program m er

is certain th a t such objects w ill not conta in unserializable fields.

S tru c tu re : L in k a g e — Shown in F igure 6.3.

P a r t ic ip a n ts —

• Proxies — observe the a c tiv ity and generate reports.

2As Java is being used, serializing the report structure will be sufficient.

HERCULE's Design 135

addltem

O)

Component Interface

O pI()

0 P2()

wakeup()

Reporter

Op1()

Op2()

Proxy

Socket

ReporterQueue

addltem ()
getltem()

Figure 6.3: CBS Test Application Architecture

• ReporterQueue — provide a queueing structure , which introduces a measure

o f asynchronic ity in to the repo rting a c tiv ity — m in im is ing the im pact o f the

m on ito ring on the application.

• Reporter — removes the reports from the queue and sends the item to the

m on ito ring application.

• M on ito ring A pp lica tio n — which receives the reports and generates some mean

ing fu l representation w ith respect to the app lica tion activ ity .

C ollaborations —

• The app lica tion unknow ing ly invokes methods on the proxies, who then report

such a c tiv ity and invoke methods on the actual components.

• The proxies p u t reports onto the ReporterQueue for fo rw ard ing to the m on ito ring

application.

• The ReporterQueue notifies the Reporter o f the existence o f a report.

• The Reporter removes the report from the queue and sends i t to the designated

sockets.

• The m on ito ring app lica tion gets the reports from the designated socket.

C onsequences — Th is pa tte rn offers the fo llow ing benefits:

1. I f a non-invasive proxy insertion mechanism can be found, th is is a great ad

vantage. Even i f some system lib ra ries have to be altered to effect insertion o f

HERCULE's Design 136

proxies, the o ld lib raries can be re instated once m on ito ring is completed. There

w ill be no problems w ith rem oving the m on ito ring code from the application.

2. The linkage s tructu re ensures m in im um im pact on the app lica tion , since w ritin g

to the socket — which takes some tim e — is done asynchronously.

The fo llow ing restrictions should be taken in to account:

1. A n insertion mechanism should be found which is not invasive. T h is is possible

in Java, as w il l be shown in the fo llow ing chapter, b u t i t may not be as easy to

achieve using other im plem enta tion languages.

2. Th is pa tte rn uses two sockets, thereby ty in g them up. T h is m igh t be a problem

i f any other app lica tion on the system uses the same socket numbers. Th is is an

unavoidable consequence o f the socket system and the user o f the pa tte rn should

s im ply be aware o f it , ra the r than waste tim e try in g to overcome it .

Im p le m e n ta t io n — In im plem enting the linkage, the fo llow ing should be noted:

1. In the interests o f doing least damage, the proxies should not cease function ing

i f something goes wrong w ith the linkage. As can be seen from , the Reporter
Code Fragment in A ppend ix B, a g lobal variable, reportEvents, is used which

is in it ia lly set to true. I f anyth ing goes wrong w ith the connection, th is variable

is set to false and the entire object s truc tu re stays in place, acting as a channel

through which messages are passed.

2. The ReporterQueue and Reporter ru n in th e ir own threads, independently o f

the proxies, meaning th a t th e ir fa ilu re w ill not cause fa ilu re o f the app lication

and th a t they can func tion w ith o u t degrading the app lica tio n ’s performance.

3. The environm ental variable verbose is used to im plem ent a measure o f debugging

in case the m on ito ring does not work. Thus, when a specialist is called in to

ascertain the cause o f a problem , the various error messages are easily generated

w ith o u t the need for a separate com pila tion . (Th is is applicab le, once more,

only to Java applications, since other languages have the ir own techniques for

removing debugging-type ou tpu t.)

Some o f the im plem enta tion code is given in A ppend ix B.

6 .2 .2 T h e U s e r - in te r fa c e P r o x y

In order to track user ac tiv ity , w ith o u t being language specific, there are tw o requirements:

the need to b u ild up a data s tructure to represent the user interface; and the need to track

activ ities by bo th the app lica tion and the user a t th a t interface. These needs are addressed

as follows:

HERCULE's Design 137

1. The first is to build an in te rna l representation of the user-interface structure. To
achieve this, there is a need to know about each user-interface component being created
and how the user interface is composed. In any user interface, the window is built
up hierarchically. Each visible item on the screen is a component. Components have
specialised functions. Some of these, the container components, have the ability to
“house” other components. For example, in the window shown in Figure 6.4, the outer
Window is a container component. It contains a menu bar (also a container) at the top
containing four menu options. Each menu is also a container and holds the different
menu item components. The window itself also contains three panels, the top one
containing only a label, the second one containing four button components and the
bottom one containing only the Quit button. A panel is a non-visible container which
is used to group components together using some type of specific layout function.

HERCULE EXPERIMENT .USLsjl
File Hide Show Customise

SAVINGS ACCOUNT TRANSACTIONS

Create Account

Withdrawal

Deposit

C lose Account

Figure 6.4: The C lient User Interface

The Window in the figure houses the following components:

• a MenuBar, which in turn contains the following:

- a File Menu

- a Hide Menu

- a Show Menu

- a Customise Menu

• a Panel containing the Label "Savings Account Transactions”

• a Panel containing four Buttons:

- Create Account

- W ithdrawal

HERCULE's Design 138

- Deposit

- Close Account

• a P anel conta in ing the Q uit b u tto n

Th is can be represented as a tree structure , as shown in F igure 6.5.

Fram e

MenuBar] Panel Panel Panel

Menu Menu Menu LabelMenu Button Button Button Button Button

Figure 6.5: The Internal User Interface Representation

The user-interface tree structu re is required so th a t the event delivery to contained

components can be traced. W ith o u t such a s tructure , i t would be more d ifficu lt to

iden tify windows contain ing event-generating components, to keep track o f components

w ith in a window; being added or removed, and to provide any sort o f context-sensitive

feedback.

2. The second is to keep track o f activ ities at the user interface — bo th w ith respect to

the application and the user — and to associate them w ith the parts o f the interface

being used. To watch user and app lica tion activ ities, a tracking fa c ility needs to be

notified whenever the user does something at the G U I, and every tim e the app lica tion

changes the appearance o f the display. Since G UIs are p r im a r ily event-based, th is

in fo rm ation can reasonably be expected in the fo rm o f events. So, fo r example, in the

Window shown in F igure 6.4, the app lica tion responds to b u tto n activations. In th is

case, HERCULE also needs to be apprised o f b u tto n activations. On the other hand,

in some cases, the app lica tion makes some on-screen components visib le which were

not visible before — or hides some components. T h is im pacts on the user’s view o f

the app lica tion ’s interface and is obviously im portan t.

HERCULE can on ly keep track o f these activ ities i f i t is in form ed when actions occur.

I t could, upon learning th a t a component has been created, declare an interest in a ll

events on th a t component. Th is would mean th a t i t would be interested in every

bu tton press, every mouse movement, every key press, w indow activa tion and deacti

vation and much more. Th is volume o f reporting would slow the system unacceptably.

HERCULE's Design 139

The second-best op tion is to have HERCULE register an interest in events which are

im po rtan t to the app lica tion . These events would presum ably p rec ip ita te some action

on the part o f the app lica tion and are therefore m eaningfu l activ ities from the po in t

o f view o f the user when using th a t p a rticu la r application.

T h is keeps HERCULE aware o f events triggered by user actions, bu t not activ ities

triggered by the app lica tion . To keep track o f these changes, HERCULE needs to

register an interest in the v is ib ility o f components which could possibly be removed

from , or added to, the display. The state o f on-screen components which could have

changing values are also o f interest and HERCULE needs to be in form ed o f these

activ ities too. Since p a rt o f HERCULE's task is to provide a mechanism for rebu ild ing

context, i t is essential th a t HERCULE knows about any change in components th a t

are visib le at the user interface. Changes to inv is ib le components are not im portan t,

since they w il l not have any effect on user perception.

The previous discussion has focused on the activ ities required to report on in te raction be

tween the user and one w indow display. A n app lica tion typ ica lly makes use o f m any w indow

structures in order to comm unicate w ith the user. Thus, HERCULE needs to be able to dis

tingu ish between different displayed windows and be aware o f the tra n s itio n between them.

In add ition to registering an interest in events which interest the app lica tion , or components

w ith in a w indow, HERCULE also has to register an interest in windows being made visib le

or invisib le as the app lica tion executes.

Since there is on ly one user interface, HERCULE on ly needs one user-interface proxy

— and it would have to be an in te lligen t agent, w ith specially ta ilo red behaviour fo r each

different type o f user interface component. The behaviour o f the proxy can be summarised

as follows:

• For each component:

- send a report s ignaling th a t the component has been created;

- send a report g iv ing the id e n tity o f the container the component resides in;

- i f the component has state, send a report about the state o f the object. For

example, a b u tto n ’s label w ould be reported.

- i f the component can be the source o f events, check whether the app lica tion has

registered an interest in events on the component and, i f so, register an interest

in those events too.

• For each container component:

- register an interest in events on the container. Th is is so th a t HERCULE is

inform ed o f new components being added to, or removed from , the container.

In some containers, the layout specifies th a t some components can be visib le

HERCULE's Design 140

while others can be invisib le. Registering an interest in the container ensures

tha t HERCULE is in form ed o f components being added, removed or having the ir

v is ib ility altered.

• For each w indow component:

- register an interest in a ll events on th is w indow. T h is issues a report whenever a

w indow is e ither shown, or closed, or destroyed.

- register an interest in the sim ple activa tion and deactiva tion o f a w indow. Th is is

im portan t because the user may sw itch to another app lica tion , to carry out some

other work and then sw itch back to the app lica tion being tracked. HERCULE

needs to know th a t th is activa tion has not ac tua lly changed anyth ing in the user

interface and th a t i t is merely a resum ption o f use after an in terva l.

- report on the t it le o f the w indow.

The reports generated by th is scheme serve to keep HERCULE in form ed o f the app lica tion

and user ac tiv ity at the interface, as well as events generated by the user. So, for example in

the w indow in Figure 6.4, reports w ill, be generated fo r each component — buttons, labels,

panels, frames, menu bars and menus. The construction o f the w indow is also reported, as

for example, the fact th a t the menu bar is contained w ith in the w indow frame. The state

o f the buttons and menus is reported too. The proxy registers an interest in each b u tto n

and menu, since these are o f interest to the application. A n interest is also registered in the

w indow itself, so th a t HERCULE is in form ed o f w indow open and close activ ities. I f the user

clicks on the “ Close Account” bu tton , a report is sent to HERCULE in fo rm ing i t o f the fact

th a t the user had activated th a t bu tton . I f a new w indow was displayed, construction and

status reports would be generated for th is new w indow and a repo rt generated to in fo rm

HERCULE tha t the firs t w indow was no longer active.

6 .2 .3 T h e C o m p o n e n t P ro x ie s

To intercept com m unication w ith server components, i t is necessary to intercept each o f

three different phases o f th is com m unication:

1. when the client app lica tion “ makes contact” w ith the app lica tion server;

2. when the actua l component is being located; and

3. when methods are being invoked on the server components.

The firs t contact typ ica lly involves an ob ject from a nam ing fac ility , w h ile the second uses

tha t object to locate server components. A nam ing fa c ility is used in order to locate the

required server component. Th is is done in d ifferent ways according to the component

model being used, b u t each scheme has the basic use o f a nam ing fa c ility in common. I f

HERCULE's Design 141

HERCULE intercepts com m unication w ith the nam ing ob ject by means o f the insertion o f

a proxy in to the system, the nam ing object can engineer the insertion o f a ll the necessary

server component proxies from there onwards since i t is solely used to gain access to server

components used by the application.

There is a need for a server component proxy for each interface o f each server component.

To satisfy the painlessness aim , proxies must be generated autom atica lly. The program m er

should not have to p u t any effort in to ge tting the proxies w r itte n or insta lled in to the system.

To fac ilita te the creation and insertion o f proxies, a language w ith extensive introspective

qualities is required, fo r example, the Java reflection package [M ic99], which allows the

investigation o f a ll aspects o f a component interface and enables generation o f a proxy for

any component im plem enting th a t interface.

The general s tructu re o f the proxy is essentially th a t o f a “w rapper” [GHJV94]. The

proxy implements the same interface as the component, so th a t the proxy instance can

be substitu ted for the component instance. The app lica tion program uses the proxy as

i t would the component instance re turned by the m iddleware server. The fact th a t the

proxy implements the same interface as the component, and is com patib le at a type level,

makes th is subs titu tion possible. The interface inheritance mechanism makes i t possible to

substitu te one object for a com pletely different object, as long as bo th im plem ent the same

interface or a subtype o f the interface.

The proxy reports on a ll m ethod invocations, then invokes the m ethod on the actual

component and reports on the value returned or exception throw n. The Java code fo r the

proxy incorpora ting th is fu n c tio n a lity is generated au tom atica lly and then com piled so tha t

the class files are au tom atica lly made available to the JV M at runtim e. The proxies can be

generated e ither at run tim e or offline — C hapter 7 discusses th is issue fu rthe r. The proxies

have the follow ing func tiona lity :

• W hen the proxy is in itia lised , a report is sent to HERCULE te llin g i t about th is server

component interface and in fo rm ing HERCULE o f the name o f the descriptor object for

th is interface.

• For the interface m ethod signatures:

1. store the parameters provided by the app lica tion program in a data structure;

2. report th a t the m ethod is about to be invoked;

3. invoke the m ethod on the wrapped component;

4. report the com pletion o f the m ethod invocation — inc lud ing the re tu rn values or

the exception throw n.

• Ensure tha t a ll exceptions are caught, so th a t a report can be relayed to the proxy

about it , before re laying i t back to the app lica tion .

HERCULE’s Design 142

Once the proxies are in place, HERCULE needs to have some understanding o f the semantics

o f method invocations, so th a t explanations can be generated for m ethod invocations. The

fo llow ing section discusses the approach to th is problem .

6.3 Facilitating HERCULE’s Explanatory Function

In accordance w ith the a im o f c la rity , i t would not be sufficient to report on methods invoked

in the same form at as, fo r example, an exception o u tp u t statement, since th a t would not

make any sense to the end-user. HERCULE, as an observer, has no understanding o f the

semantics o f e ither the inpu ts supplied by the user, the methods invoked on the server

components or the results from the m ethod invocations. HERCULE therefore needs to have

access to textua l descriptions o f these events, so th a t these descriptions can be relayed to

the user as part o f the feedback.

To get descriptive in fo rm a tion about m ethod invocations, existing component documen

ta tion is mined. HERCULE should func tion w ith the m in im um requirements. HERCULE’s

requirements should not be greater than th a t which can be expected from a component

supplier. Since there is presently no standard fo r documents supplied w ith components, the

absolutely m in im um requirements, w ith o u t which no component would be delivered, are the

follow ing:

1. A n Application Programmer Interface (A P I) document, expla in ing the purpose o f the

component, and g iv ing details o f m ethod func tiona lity , for example, ja va d o c [Mic98b]

ou tpu t.

2. One or more interface classes th rough which the component can be accessed.

3. A deployment document which specifies the context dependencies o f the server com

ponent and explains how the component should be deployed.

Programmer

Component
Documentation

Proxies

Descriptors
DISCOVERY

PROCESS

Figure 6.6: The H E R C U L E ’s discovery process

HERCULE’s Design 143

HERCULE mines the in fo rm a tion from th is docum entation to customise its e lf w ith respect

to th a t specific component. The explanations m ight not be suitable for an end-user and thus

the programmer should be provided w ith a too l to a llow these explanations to be augmented

easily. To provide HERCULE w ith the required semantic in fo rm ation , a discovery process is

executed to bu ild up a set o f descriptors for each p a rtic ip a tin g server component interface,

(see Figure 6.6) T h is descriptor holds in fo rm ation about:

1. the interface name;

2. the method signature for each m ethod in the interface;

3. the semantics o f each m ethod invocation. T h is is a free-text descrip tion expla in ing

what the m ethod does; and

4. the possible errors and exceptions which could be produced by each invocation and

an explanation fo r each pa rticu la r error.

I t is to be hoped th a t, in tim e, more descriptive component docum enta tion w il l be delivered,

as a m atter o f course w ith server components. The need for rich component specifications

is c ritica l [ND99] I t is the component specification th a t allows component consumers to

determ ine quickly which services are provided by the component [Sho98].

6.4 HERCULE’s Architecture

The HERCULE fram ework essentially obtains details o f the dialogue between the user and

the application, together w ith an understanding o f the effects o f user actions — m ethod

invocations triggered by these actions. The fram ework must transform in fo rm a tion about

the dialogue to a graphica l feedback display. The design o f HERCULE was driven by the

need to find the simplest and most elegant solution to the problem . Some com plexity could

not be avoided, as becomes evident from the discussion o f the w indow manager component,

bu t the structure o f HERCULE, shown in Figure 6.7, was de liberate ly kept as unelaborate

as possible, in accordance w ith the a im o f s im plic ity . Each o f the constituen t components

is explained in the fo llow ing subsections.

6 .4 .1 C o m m u n ic a t io n m o d u le s

The “ Get U I Reports” & “ Get P roxy Reports” modules receive user interface or proxy

reports and make them available to the GoBetween module. Since two types o f reports can

be expected, there are two o f these modules dedicated to receiving each in d iv id u a l report

type — each on a d iffe rent socket. To receive the reports, the fo llow ing steps are taken:

• listen on the designated socket and w a it for the app lica tion ’s proxy to make contact;

HERCULE’s Design 144

HERCULE

Get Go
Between

Display

Controller
Controller

Reports

From

Proxies

Server
Proxy

M anager

Get
Proxy

Reports

Window
M anager

Hercule
Components

To
Feedback
Display

Figure 6.7: HERCULE’s Internal Architecture

• m ainta in a queue o f messages, appo in t an object to w a it at the socket for new messages

and append the messages to the queue when they arrive;

• reply to requests from the GoBetween for messages by removing and re tu rn ing the

message from the head o f the queue — i f there is a message, i I f there are nq current

messages, s im p ly w a it a w hile and try again; and

• i f communications break down, th row an exception to the contro ller, so th a t the d isplay

can be updated to reflect the fact th a t the app lica tion has severed the connection. Th is

is probably an ind ica tion th a t the app lica tion has completed its execution.

Th is procedure is shown in F igure 6.8.

6 .4 .2 C o n tro lle r

Th is is the contro l centre fo r HERCULE — the “ b ra in ” th a t controls and co-ordinates a ll

activ ities. I t is responsible fo r in itia lis in g a ll the o ther components at launch tim e and

assigning each to a separate thread. HERCULE needs to be m ulti-th readed because the

com munication modules have to block w hile w a iting fo r messages from the proxies and the

HERCULE display must be able to respond in spite o f th is. A p a rt from th is, the contro lle r

also launches the console and m ainta ins the status display by in fo rm ing i t when the proxies

make contact and when they sever contact at app lica tion com pletion tim e. D u rin g system

operation, i t requests reports from the com m unication modules and decides what to do w ith

the reports. The contro lle r relates the user interface reports to the proxy reports to lin k user

interface ac tiv ity to app lica tion reaction. I f a user action at the user interface, as signaled

by an event, d irec tly precedes a ca ll to the server, we can assign a purpose to a user action.

HERCULE’s Design 145

To Controller

HEAD TA IL

Q U E U E

Get Reports

GoBetween

Figure 6.8: Communication Module

Th is must serve as a substitu te for an understanding o f the user’s in ten tion when the action

was taken w ith respect to the sequence o f proxy invocations thus triggered. C onstruction,

status and event reports are sent to the W indow Manager, w hile server proxy reports are

sent to the Server P roxy Manager.

6 .4 .3 T h e W in d o w M a n a g e r

The w indow manager has a dual function . Its firs t func tion is to b u ild up an in te rna l

structure in m emory to represent each in d iv id u a l w indow which is displayed — as ind icated

by construction reports. L inked to th is are the status reports, which send details about the

display characteristics o f the windows, such as the tex t typed in to a tex t fie ld or the tex t

displayed on a b u tton . These reports, bo th construction and status, give a comprehensive

p ic ture o f the appearance o f the app lica tion user interface.

The second func tion is to keep track o f user actions at the G U I. The w indow manager

builds up a linked lis t o f w indows as they are created and displayed by the app lica tion and

also remembers user actions w ith respect to those windows.

The w indow manager has a simple structure, shown in F igure 6.9, be ly ing the complex

nature o f the software. In deciding on a mechanism fo r m aking sense o f th is p le thora o f

in form ation , the fo llow ing decisions and assumptions were made:

1. I t was assumed th a t the structure o f a p a rticu la r w indow would be constructed by

HERCULE's Design

Construction ReportsReport

from
Proxy

Status Reports

Event Report

Get HistoryQuery

History

Link Event
to Window
Change

Record
Status

Return a list
of session
activity until
given event

Build up

structure

Figure 6.9: The Window Manager Architecture

HERCULE’s Design .147

the app lica tion on ly once, u tilised as required and made inv is ib le when no longer

needed. Such a w indow could be re-displayed many times du ring the session ac tiv ity ,

containing possibly different state in various user-interface components. For example,

the app lica tion program m er could use the same w indow to issue w arn ing messages

or in fo rm ation messages. The same w indow could be used w ith d iffe rent messages

displayed in a pa rticu la r message box. Thus, i t is necessary to remember the s truc tu re

o f the d ifferent w indows separately from the state. Th is w indow s truc tu re storage

mechanism is illu s tra ted in F igure 6.10.

Window 1 W indow 2 W indow 3
Structure Structure Structure

Figure 6.10: Storage of Window Structures

2. There are two ways o f storing the w indow state (o f v is ib le components) separately

from the structu re o f the window.

• A duplicate structu re could be stored w ith each node conta in ing in fo rm a tion

about the state. For example, a node which represents a label could store the

tex t value being displayed, while a container could store the layout s tructu re

which i t uses to determ ine the layout o f the composite components.

• A lis t o f components which have changed state could be stored.

The choice between these two schemes would obviously be based on the type o f app li

cation. A n app lica tion w ith a very involved s tructure , b u t re la tive ly few components

which change state frequently, would benefit from the second approach. For exam

ple, a word processor w indow has many bu ttons and fixed menus, b u t on ly one m ain

component which changes a ll the tim e — the editab le te x t display.

On the other hand, i f the windows are re-used for various purposes w ith d ifferent

en tity states, or i f a series o f windows w ith d ifferent appearances are used to ob ta in

in fo rm ation from the user, the firs t scheme is p robab ly better.

Since th is software is generic, i t is not easy to judge the nature o f the app lica tions so

tha t a good choice can be made. However, th is decision can once again be based on the

HERCULE’s Design .148

nature o f th in -c lien t systems. These systems generally collect in fo rm a tion and then

send the data to the m iddleware to be processed. T h is type o f app lica tion generally

uses a w indow s tructu re o f one type to get a specific type o f in fo rm a tion and then

proceeds to another w indow display to get another type o f in fo rm ation . Th is can

be judged from the structu re o f systems like the online bookseller, amazon.co.uk,
or any o f the many e-stores in existence today w hich are a prim e example o f th in -

client technology. Thus i t was decided th a t the firs t scheme would be followed. The

aforementioned scheme fo r storing state is illu s tra te d in F igure 6.11.

Event X Event Y

W indow 3

State 2
Window 3

Structure
W indow 3

State 1
Window 3

State 3

Figure 6.11: Storage of Window State Changes

3. In fo rm ation about the s ta te :o f the w indow components, cons titu ting the w indow ap

pearance, needs'to be recorded. A decision must be made about the extent o f in fo r

m ation to be recorded.; I t is possible to store in fo rm a tion about every possible feature

— inc lud ing colour, size, pos ition on the screen, fonts used in the display and so on.

To store th is in fo rm a tion so th a t i t can be relayed to the user would obviously be

valuable, bu t once again we come up against the fact th a t the negative im pact o f

HERCULE on the app lica tion should be as small as possible. Each type o f in fo rm a tion

stored leads to in fo rm a tion being relayed between the proxies and HERCULE and slows

the app lica tion down. Thus, a pragm atic approach was followed, w ith a m in im um o f

in form ation extracted and other details reg re tfu lly ignored. Therefore the state o f

each component w ith respect to displayed te x t and v is ib ility on the screen is recorded,

while the other features like colour, pos ition and size are not collected.

F ina lly, the w indow manager has to satisfy a query re la ting to the session history. In

storing the session a c tiv ity history, i t is not enough to store the succession o f w indows and

w indow component state. A n assumption about the event driven nature o f the system has

been made, thus i t is reasonable to assume th a t some action by the user precip itates the

trans ition either from one w indow type to another (shown proceeding from top to bo ttom in

Figure 6.12), or from one state to another state in the same w indow (shown proceeding from

le ft to righ t in the F igure 6.12). Therefore the state changes must be stored in con junction

HERCULE’s Design______________

w ith the actions which caused them.

149

Time

Changing
Windows

Time
---s»-

State Changes within Windows

Figure 6.12: Storage of Session History

6 .4 .4 T h e S e rv e r P r o x y M a n a g e r

This module keeps a h is to ry o f a ll server component m ethod invocations. There are three

possible consequences o f a ca ll to the server:

1. no response w ith in an expected tim e period;

2. an exception, signaling th a t an error occurred; or

3. correct execution, signaled by a re tu rn value or values to the user.

In the firs t case, the lack o f a response w ith in the expected tim e triggers investigation in to

the source o f the delay. I t is d iff ic u lt to determ ine the difference between a slow server and a

Event A Event B

Event C

Event D

Event E

Window StateWindow Structure

HERCULE’s Design 150

dead server. Th is manager therefore keeps a record o f reaction times. I f the current reaction

tim e exceeds double the current m axim um tim e, i t is assumed th a t the server has crashed.

To diagnose the problem , the m odule f irs tly a ttem pts to check whether the server is indeed

s t i l l responding by a tte m p tin g to establish a new connection to the server. I f th is fails, the

manager then executes a program which checks w hether the machine housing the server is

function ing. The diagnosis w il l be reported to the user. I t is read ily acknowledged th a t

diagnosis is not always possible, b u t i t is hoped th a t experience w ith th is fram ework w ill

suggest better and more re liable ways o f m aking a more conclusive and re liable diagnosis.

In the second and th ird cases the re tu rn values are stored together w ith the details o f

the call to augment the h is to ry o f the session. In the second case, an exception handler

is activated to investigate the source o f the error. The descriptors w ill conta in tex tua l

descriptions o f the reasons for each exception th row n by m ethod invocations.

The server proxy manager arch itecture is shown in F igure 6.13. The inpu ts received

consist o f reports generated by the proxies. The reports indicate one o f four events:

• tha t a connection to a server has been made — g iv ing the host and p o rt details;

• tha t a specific component interface has been used by the app lica tion g iv ing in fo r-

' m ation about the descriptor class which describes th is component interface;

• th a t a method has been invoked on a component interface; or

• tha t a m ethod invocation has completed, g iv ing the re tu rn value or exception throw n.

In each case the in fo rm a tion is stored for la ter ava ilab ility . The th ird case causes a T im er to

be started, which tim es the response and registers the absence o f a response in the rare cases

when th is happens. In these cases the server proxy manager is in form ed so th a t in fo rm ation

can be relayed to the display contro ller. The fo llow ing queries are satisfied by the server

proxy manager:

• getting an exp lana tion for an exception th row n by a component;

• getting a lis t o f m ethod invocations which were prec ip ita ted by specified user actions.

The server proxy manager has another func tion too — th a t o f m a in ta in ing a system state

ind ica to r which is an essential p a rt o f the im m ediate feedback to be provided by the HER

CULE display. The server proxy manager is in a unique pos ition to gauge the “ hea lth ” o f

the rest o f the d is tr ib u te d system. The system state ind ica to r c learly shows whether the

server is ready and w a iting for work, busy servicing a request, or not responding. The server

proxy manager is the firs t to know o f any problems in th is respect and therefore in form s the

display contro ller o f the required state to be depicted.

HERCULE’s Design

LOGGING and MONITORING

Register Host and Port

Report
from

Proxies

Identify Component Interface

StartMethod Invocation

Complete

Get
Exception
Explanation

QUERY RESPONSE

explanation

Get Method
Invocations

list of
invocations

Record
Details

Record
Details

Use Descriptor Object
and Generate Exception
Explanation

Get all Method Invocations

matching given Actions

Log the Call

Update the Console Status

Stop the Timer

Log the Call

Update the Console Status

Start the Timer

Figure 6.13: Architecture of the Server Proxy Manager

HERCULE’s Design 152

6 .4 .5 T h e D is p la y C o n tr o l le r

Th is contro ller handles the display th a t provides b o th im m ediate and arch iva l feedback. I t

depicts a ll a c tiv ity for the session and can also expla in errors and offer possible reasons for

those errors. The d isplay is active continuously, bu t does not in trude. I f the user wants to

verify any actions or get explanations o f errors, the d isp lay can be consulted.

The session visua lisa tion should depict the re la tionsh ip between the user’s actions and

the actions o f the system as a result. The system in teractions w ith the rest o f the CBS as

a result o f user actions occur in the form o f global m ethod invocations. The v isualisation

aspect is discussed in Section 6.5.

6 .4 .6 H e rc u le C o m p o n e n ts

These feedback-tailoring components extend the feedback capacity o f the d isp lay and satisfy

the ve rsa tility design princ ip le . They can be ta ilo red to the specific needs o f the end-user,

as discussed in Sections 4.5.3 and 4.5.4. There is a capacity to add them to the system

dynam ically so tha t the system can keep up w ith changing user needs.

Thus, suppose the system has been in use for some tim e and a b lin d user needs to

make use o f the system. A special feedback component w hich plays an audio message as

explanation o f system actions could be very he lp fu l fo r such a user. Th is feedback component

can be added dynam ica lly to the HERCULE display on the new user’s machine whereupon

i t would be available fo r use 'im m ediately. To support th is ex tens ib ility o f the HERCULE

console, the fo llow ing mechanism, shown in F igure 6.14, is used:

• A n abstract class named HerculeComponent (which extends java. awt .Panel). Th is

class must be im plem ented by any feedback component to be incorpora ted in to the

HERCULE console.

• A HistoryListener interface. The feedback component implements th is interface and

registers as a listener w ith the h is to ry panel. The feedback component is then notified

o f user actions at the h is to ry panel, which enables i t to provide relevant feedback.

The feedback component implem ents th is interface i f i t is going to provide dynam ic

feedback related to a specific user activ ity .

• A n OutcomeListener interface. The feedback component im plem ents th is interface

and registers as a listener w ith the h is to ry panel. The feedback component is then

notified o f the outcome o f system actions which were caused by a set o f user actions.

The feedback component typ ica lly implements th is interface i f i t wants to provide

statistics about the entire session ac tiv ity , or performance.

HERCULE’s Design .153

java.awt. Panel

{abstract}

HerculeComponent

{interface}

HistoryListener

Hercule
Component

{interface}

OutcomeListener

. ‘ Figure 6.14: Structure for extending the HERCULE console ,

6.5 Application A ctivity Visualisation

The focus o f th is research has been end-users — consideration o f th e ir needs and a tten tive

ness towards find ing out how system in te rp re ta b ility can be enhanced. The purpose o f th is

section is to expla in the design o f the app lica tio n -ac tiv ity v isua lisa tion in graphical fo rm at

to satisfy these needs. The cost to the user o f accessing th is in fo rm a tion is made up o f the

cost o f find ing i t on the screen and the cost o f assim ila ting i t [CRM91]. To reduce the firs t

cost, i t should be available at a glance while to address the second, the in fo rm a tion being

depicted should not be ambiguous. The user should be le ft in no doubt o f which pa rticu la r

action i t refers to. T h is section therefore starts o ff by tak ing a look at the user’s needs and

summarising the find ings o f Chapter 4.

G e n e ra l N e e d s

Section 4.5.2 gave a sum m ary o f the user’s feedback needs. There are some im p o rta n t th ings

to be remembered in p rov id ing these:

• The feedback d isplay should not in trude, bu t offer the user assistance. Thus, i t should

use as l it t le screen space as possible. M any feedback devices tend to become over

powering and the last th in g we want to do is to annoy.

• The user should be able to ob ta in as much in fo rm a tion as possible im m edia te ly —

and more i f needed, bu t there is a need to be careful not to overload the user w ith

HERCULE’s Design .154

in form ation .

• A llow different types o f navigation o f archival feedback.

• Section 4.4 concludes th a t feedback should be continuous. In Section 4.5, a d is tin c tion

was made between im m ediate and archival feedback. Im m ediate feedback must neces

sarily be continuous and in fo rm ative . A rch iva l feedback should provide an im m ediate

overview and sum m ary o f in fo rm a tion — and then allow the user to in te ract w ith

i t in order to reconstruct in ter-re ferentia l re lationships between the ir in p u t and the

app lica tion ’s response (ou tpu t).

C o n te x tu a l N e e d s

I t is often necessary to help the user reconstruct the ir context. Th is need was mentioned

in the sections o f Chapter 3 dealing w ith in te rrup tions and errors. I t was also referred to

in d ire c tly in the discussion o f s itua ted action in Chapter 4. The fo llow ing analogies, w ith

which we are a ll fam ilia r, illu s tra te the need:

• when you go in to a room to fetch something and, having arrived, you forget w hat i t

was you wanted. B y going back to where you were, i t is often possible to reconstruct

the tra in o f thought th a t prom pted the errand.

• when you lose som ething you can try to reconstruct the events surround ing the last

tim e you used the item . Th is often helps you to remember where the item is.

I f the user is operating w ith an objective in m ind [Suc87], ra the r than a r ig id p lan o f action,

and is responding to the system ’s state du ring the user o f the app lica tion , the reconstruction

o f th is state is extrem ely im p o rta n t in enabling the user to rebu ild the circumstances th a t

prom pted action in the firs t place. A feedback mechanism can be tru ly he lp fu l to the user

in reconstructing m ental context, by fa c ilita tin g backtracking.

6 .5 .1 H o w S h o u ld th e A p p l ic a t io n A c t iv i t y V is u a lis a t io n b e P ro v id e d ?

Section 4.6 argued the need for graphical ra the r than tex tua l feedback. In p rov id ing such a

v isualisation i t is necessary to b u ild a model o f the user’s in te raction w ith the app lica tion

and to convert th a t to some sort o f v isua lisa tion which is he lp fu l and meaningfu l. Chen

points out tha t there are two issues to be resolved [Che99], the structu re o f the in fo rm a tion

and its visualisation.

S tr u c tu r e o f th e In f o r m a t io n

I t is useful to examine the nature o f the in fo rm a tion to be depicted. HERCULE holds

in fo rm ation about the appearance o f the user interfaces, events at th a t interface and m ethod

invocations resu lting from those events. T h is is a continuous process w ith one set o f events

HERCULE’s Design 155

continu ing on from m ethod invocations resu lting from previous events and so on. In choosing

a structu re to be visualised, i t is im po rtan t to fin d a configura tion w hich can exp lo it the

user’s in tu itive understanding o f in te raction w ith the app lica tion . The fact th a t HERCULE is

w ork ing w ith a th in client greatly sim plifies m atters, since the app lica tion itse lf, by its very

nature, only collects the necessary in fo rm a tion and relays i t to the m iddleware layer and

does the m in im um o f processing itself. The user’s opera ting paradigm is th a t some inputs

w il l be supplied whereupon the app lica tion responds to those inpu ts by doing something

m eaningful. The pervasiveness o f web browsers makes th is paradigm w ell understood by

many computer users and thus makes the task o f designing th is p a rt o f HERCULE somewhat

simpler.

In broadly analysing the app lica tion ac tiv ity , tw o types o f ac tiv ities stand out: the

user-interface a c tiv ity and the app lica tion com m unication w ith the m iddle tie r. Chapter

4 compared the in te raction o f a user w ith the com puter to a two-way conversation. In a

conversation there are also two types o f “a c tiv ity ” — w hat was said by one person and

w hat was said by the other. In observing a conversation we can on ly guess at the in terna l

reasoning process o f the partic ipan ts , based on w hat is said. In the same way, HERCULE, by

tracking the application, on ly m onitors external app lica tion behaviour and cannot a ttem pt

to guess at in te rna l func tion ing o f the application. A pp lica tio n in te raction w ith the rest o f

the CBS occurs by means o f m ethod invocations.

Since not a ll user-interface a c tiv ity results in server component m ethod invocations,

there could be a num ber o f user-interface activ ities occurring before a m ethod invocation.

In the same way, a whole s tring o f method invocations could be prec ip ita ted by a sequence

o f user-interface activ ities. The user carries out a set o f actions and these actions change the

state o f the system in some way. These changes can be considered to be a trace o f the user’s

actions. Suchman analyses the structu re o f discourse as follows: “ the user’s actions can be

grouped in a series o f displays such that the last action prescribed by each display produces

an effect that is detectable by the system, thereby in it ia tin g the process that produces the next

display” [Suc87].

To model th is behaviour, i t is necessary to consider each app lica tion thread in tu rn ,

w ith the sequence o f user-interface activ ities (inc lud ing user actions and app lica tion dis

plays) which precede some or other component-based a p p lica tio n -a c tiv ity being called a UI-

sequence (User Interface Sequence), and the series o f m ethod invocations thus precip ita ted

being referred to as an Ml-sequence (M ethod Invoca tion Sequence). W hen a Ul-sequence is

matched to an Ml-sequence, we can ca ll th is m apping an Episode. Th is is illu s tra ted in Fig.

6.15.

HERCULE must trea t the dialogue as an in fo rm a tion source th a t can be browsed by

the user, thus g iv ing a representation to the dialogue history. Th is v isua lisa tion is not

merely a m atte r o f d isp laying the content o f user-interface a c tiv ity , bu t needs to be linked

to the method invocations which were prec ip ita ted as a result o f the dialogue as well as

the user interface activ ities. The system must have a strategy fo r producing tools which

HERCULE's Design 156

Episode
. . >

Ul-sequence Ml-sequence Ul-sequence

(U l Ul Ul Ul) (g m i g m i) (Ul Ul)
J

 ►
Time

Figure 6.15: Ul-sequences, Ml-sequences and an Episode

allow the user to browse and search through the dialogue. Considering the conversational

nature o f the user’s in te raction w ith the app lica tion , i t is possible to in te rp re t the U I-

sequences to be the app lica tion ’s in te raction w ith the user, w ith the Ml-sequences being

the app lica tion ’s response to the user has instructed i t to do. Thus HERCULE reveals the

app lica tion ’s response to user inputs. In a conversation the listener is sometimes instructed

to do something and the actions as a result o f the in s tru c tio n serve to in fo rm the ins truc to r

o f the understanding o f the instructions given. Since the app lica tion ’s actions are often

hidden and therefore un in te llig ib le to the user, the user is le ft puzzled. B y v isualis ing th is

a c tiv ity — m aking v is ib le w hat is in v is ib le — HERCULE can prom ote a be tte r understanding

o f application function ing.

6 .5 .2 V is u a l R e p re s e n ta t io n

Section 4.5.2 discussed the feedback features which should be provided by a com puter ap

p lica tion . These are satisfied as follows:

Im m e d ia te F e e d b a c k

Th is is satisfied by g iv ing the user im m ediate feedback about the state o f the system. Since

the current tim e can be ind ica tive o f the state, th a t too is included here. The fo llow ing

displays are used to provide the required feedback:

• a status display;

• a current tim e display;

• explanations:

- an explanation o f the latest Episode (i f chosen by the user); and

- detailed in fo rm a tion about latest m ethod invocations (i f chosen by the program

mer). T h is requires no th ing more from the program m er than a choice from a

menu on HERCULE's display — whereupon the m ethod invocations are displayed.

HERCULE’s Design .157

A rc h iv a l F eed b ack

A rchiva l feedback is best satisfied by an interface w hich allows the user to get details o f the

most recent interface ac tiv ity , and the a b ility to access deta ils o f previous in teraction . To

satisfy archival feedback needs, therefore, the user m ust be given an overview o f a ll session

activ ities, w ith the op tion o f ge tting an explanation o f any one o f the activ ities , as follows:

• access to fac ilita te reconstruction o f context (m em ory aid)

• summary in fo rm ation (overview)

• an overview o f Episodes (overview) — which can be expanded to:

— tim e when Episode occurred;

— explanation o f an Episode;

— detailed in fo rm a tion about m ethod invocations.

• an expanding fa c ility (detail-on-dem and) in which the system:

— allows a choice o f which Episode is to be expanded;

— allows a choice o f the type o f expansion th a t is required — e ither end-user expla

nations or m ethod invocation in fo rm a tion fo r the program m er or both;

— makes i t easier for a program m er to add new feedback features to cater fo r d if

ferent feedback requirements since new needs can be identified at any tim e.

6 .5 .3 L a y o u t

The derived layout is shown in Figure 6.16. Th is layout has components to address each o f

the feedback needs ou tlined in the previous section as follows (sm all le tters in brackets refer

to the specified areas in the figure):

1. Im m ediate Feedback:

• A status d isplay (a). A symbol is used to depict the system status. T h is is used

bo th to save space since a legend becomes unnecessary and to save the user tim e,

since no th ing needs to be read b u t the sym bol can s im p ly be in te rp re ted d irectly.

• A current tim e display (b), w hich is given in hh :m m a m /p m form at. The decision

to display the tim e in d ig ita l ra the r than analog fo rm a t was made fo r two reasons:

(a) M any younger people today are not as fa m ilia r w ith analog watches as used

to be the case and i t is not as easy fo r them to te ll the tim e a t a glance. The

d ig ita l d isplay is suitable fo r a ll age groups.

(b) There is a need for the user to compare the current tim e w ith the action

tim e, displayed as pa rt o f the archival feedback. T h is is easier to do w ith

d ig ita l displays.

HERCULE’s Design 158

I HERCULE

(a) Status

(b) Current Time

(c) Context Link

STATUS PANEL

(h) Legend (i) Time

(g) Groups of 100 Episodes

(0 Groups of 10 Episodes

(e) Current Episodes

HISTORY PANEL

Individual Episode Feedback

(d) or

Summary Feedback

Figure 6.16: The Feedback Layout

• Explanations are supplied in the panel at the bo tto m o f the display (d).

2. A rch iva l Feedback:

• Access to fac ilita te reconstruction o f context (c) — supplied as a bu tton . Th is

reconstruction o f context requires the an im ation o f the w indow displays as they

appeared on the screen. Th is is impossible and inadvisable to depict in a sm all

space, so i t is constructed on demand.

• Summary in fo rm a tion — supplied in the panel a t the b o tto m o f the display (d).

• Overview o f Episodes is supplied in the h is to ry panel as groups o f episodes. They

are not called episodes since the term “ Episode” has on ly been coined to assist

the designer in b u ild ing a model o f dialogue s tructu re and using th a t te rm in the

display would on ly confuse the user. Therefore they are referred to as actions ,

since the user is surely aware o f th e ir actions having an effect on the application.

• Expanding F ac ility — obtained by clicking on one o f the symbols used to depict

episodes in the groups o f episodes. Th is causes the explanation to be displayed in

the panel a t the bo ttom o f the w indow. The topm ost d isplay (g) groups Episodes

by hundreds, w h ile the m iddle display, (f), groups them by tens. The bo ttom

area (e) displays the current ten Episodes. Each episode has a lin k to:

HERCULE’s Design 159

- the tim e o f the user action (i); and

- the exp lana tion shown in the lower area (d).

The h is to ry panel contains grouped Episode areas which lin k downwards to the

group presently being displayed.

Th is layout has the fo llow ing desirable features, mentioned in Section 4.6.3 and as discussed

by Vanderdonckt and G illo [VG94]:

• regularity , as characterised by the fact th a t the components o f the layout are deter

m ined by some evident p rinc ip le .

• vertical and horizonta l a lignm ent, g iv ing a pleasant aspect.

• proportion as shown by the various labeled areas, w ith no one area overwhelm ing the

others.

• horizonta lity , since the display is w ider than i t is long. Vanderdonckt and G illo cite

research which shows th a t displays should have a greater w id th than height, as th is is

preferred by users.

• sim p lic ity and economy, w ith on ly absolute ly essential features being shown. C lu ttered

displays do no th ing to ease understanding so th a t s im p lic ity has been applied here as

throughout the design phase.

• un ity , w ith on ly one w indow being used to display a ll required in fo rm ation . The

various components o f the display are related to each other, g iv ing an overall p ic tu re

o f application activ ity .

• grouping, which has been used to dem onstrate an overview — areas for the Episodes

are grouped together on the righ t. The status panel contains areas for status, current

tim e and context linkage to provide im m ediate feedback w ith respect to the system

state. Each panel provides a grouped area o f feedback components, the status panel

depicting im m ediate feedback w ith respect to the current status o f the system and the

h istory panel p rov id ing archival feedback.

• sequentiality and pred ic tab ly arranged in a logical rh y th m ic order — by tim e. The

feedback components w ill, by the ir s im ila rity , help the user to antic ipate th e ir use and

understand the re la tionsh ip w ith the h is to ry panel.

6 .5 .4 C u s to m is a t io n

In Section 4.5.3 some differences between people were cited. I t is tem p ting to satisfy these

needs by p rovid ing a profuse collection o f custom isation facilities. There is evidence th a t

people often take no advantage o f custom isation features, seeing the tim e spent on th is

HERCULE’s Design 160

as tim e wasted [Mac91]. MacLean et al. [M C LM 90] po in t ou t th a t users w ith extensive

com puter skills tended to make more use o f custom isation fac ilities than users who had no

interest in the com puter bu t ju s t wanted to get on w ith th e ir task. The la tte r users seem

to have less expectation o f ta ilo rin g the ir system. M acLean et al. advise th a t ta ilo rin g

mechanisms be made more accessible to the user, to reduce the need to learn a new set o f

skills merely to customise the system.

In designing custom isation features fo r the HERCULE display, the need for s im p lic ity

once again becomes param ount. There are two types o f custom isation to be considered

— appearance and func tiona lity . C ustom isation o f appearance could possibly app ly to the

size o f the fonts used or the colours used by the display. C ustom isation o f fu n c tio n a lity

would have more to do w ith the actua l feedback provided, like the type o f explanations

being ta ilored to the end-user or the programmer. The form er should be accessible to the

end-user, while the la tte r should be provided by the program m er and offered to the end-user

as a possible option.

The in it ia l p ro to type custom isation features are kept to a m in im um . I t is certa in ly

possible th a t experience w ith HERCULE w ill suggest the des irab ility o f other custom isation

features and i t would be interesting to investigate these needs at a la te r stage. The provisos

mentioned in Section 4.5.3 are catered for as follows:

• Appearance:

— Physical abilities and physical workspaces. HERCULE allows the user to choose

whether an error should be signaled by a beep sound or not. T h is allows the

user to adapt HERCULE to noisy environments and in d iv id u a l preferences w ith

respect to beeps.

— Disabilities. There is scope for HERCULE to offer an audib le exp lana tory mes

sage instead o f a tex tua l one. T h is is handled by the a dd ition o f a new feedback

component which is displayed at the bo ttom o f the HERCULE display. The mech

anism fo r doing th is has been designed in to HERCULE, b u t im p lem enta tion o f

the actual audio feedback has been reserved for fu tu re a tten tion .

— Elderly users. The HERCULE display does not e x p lic it ly define font sizes and

thus uses the defau lt size defined by the user fo r the desktop. T h is means th a t

HERCULE reflects the user’s d isplay preferences w ith respect to font and w indow

size.

• Functiona lity :

— Cognitive and perceptual abilities. Possible lim ita tio n s are a llevia ted by the in

fo rm ation given in the session h is to ry panel and by the use o f a sym bol to com

municate system state.

HERCULE’s Design 161

— Personality differences. HERCULE seeks to make the app lica tion less threaten ing

by expla in ing activ ities. I t also seeks to reassure by offering a dynam ic system-

state ind ica tor.

— Cultural and in te rna tion a l diversity. The custom isation feature offered by HER

CULE allows the program m er to ta ilo r messages to support these differences.

E x tra feedback components can also be developed specifica lly to support the

user w ith unusual needs.

Design problems often appear to have many solutions. W h ile solutions can often be com

pared to each other to find some which are be tte r or worse than each other, i t is often

impossible to cite the best design w h ile i t m igh t be uneconomical to expend a vast amount

o f tim e chasing after such an elusive design. Thus designers w il l often expend w hat they feel

is a reasonable am ount o f effort, using guidelines such as the ones cited above, and arrive at

a satisfactory design. Simon [Sim69] calls th is “ satisfic ing” — the process o f seeking good

or satisfactory solutions instead o f op tim a l ones. The science o f in fo rm a tion v isua lisa tion is

young enough to support th is paradigm fo r the present, w h ile the fu tu re may well produce

stronger guidelines which allow us to approach the o p tim a l so lu tion more quickly.

6.6 Conclusion

The design o f HERCULE suggests the need for three d is tin c t tools:

1. A descriptor too l, which would:

• provide a mechanism to generate descrip tor objects which describe the server

components used by an app lica tion . T h is should be generated au tom atica lly

from the component docum entation; and

• provide a mechanism for exp lanatory messages to be updated during the life tim e

o f the system, by means o f a simple interface.

2. A proxy generator, which would:

• provide a mechanism for component interface proxies to be generated au tom ati

cally.

3. A run tim e feedback too l, which would:

• intercept a ll server calls and keep a h is to ry o f the calls to provide session feedback;

• bu ild up an in te rna l representation o f the user interface and watch a ll user ac tiv ity

at tha t interface;

• provide run tim e support fo r app lica tion users by p rov id ing continuous feedback

and error explanations; and

HERCULE’s Design 162

• allow end-user and program m er custom isation o f the feedback display.

In addition , there is a need to devise a scheme for inserting the proxies dynam ica lly so

th a t the end-user does not have to bother about achieving th is. The fo llow ing chapter w ill

discuss the details o f the im plem entation o f these tools and ou tline the mechanism used to

insert the proxies.

Debugging is anticipated with distaste, performed with

reluctance, and bragged about forever.

Anon.

Backup not found: (A)bort, (R)etry, (P)anic.

Anon.

chapter 7

Implementation

The design having been completed, the next step is to im plem ent a pro to type o f HERCULE.

Before details about im plem enta tion can be given, Section 7.1 describes the component-

based test app lication fram ework w ith in which HERCULE was implemented.

Section 7.2 w ill discuss the im plem enta tion o f the user interface proxy, while Section 7.3

gives details about the technique for the autom atic generation o f server component proxies.

The design chapter concluded th a t three tools were needed in order to fac ilita te HERCULE:

1. A descriptor tool — described in Section 7.4.1, p rov id ing a mechanism to autom at

ica lly generate descrip tor objects describing server components. I t also provides a

mechanism fo r upda ting explanatory messages by means o f a simple interface.

2. A proxy generator — described in Section 7.4.2, p rov id ing a mechanism to generate

component interface proxies autom atically.

3. A runtim e feedback to o l— described in Section 7.5, builds up an in te rna l representation

o f the user interface, tracks user interface ac tiv ity , links i t to requests for server a c tiv ity

and provides run tim e support for app lica tion users by p rov id ing a v isualisation o f

app lication activ ity .

163

Implementation .164

Since the approach followed in th is research has been to provide the feedback by means o f a

v isualisation o f app lica tion ac tiv ity , an entire section, Section 7.6, has been devoted to th is.

Section 7.7 concludes the chapter.

7.1 Prototype Application

The pro to type was tested on a three tie r CBS, as shown in F igure 7.1, w ith Enterprise

Java Beans (EJBs) [Mic98a] fu lf i l l in g the role o f the server components. The app lica tion

server used was the Tengah server from W eblogic [Tho98b], an all-Java app lica tion server.

The test system was composed o f a c lient on an N T host runn ing on a Pentium 166, the

Tengah server runn ing on Solaris on a Pentium 166, w ith the th ird level being made up by

a Cloudscape database [W il99] conta in ing a set o f c lient accounts.

O
User

A
\

Client
Intel Application
running

v NT

Intel
running
Solaris

Cloudscape
Database

Database

Figure 7.1: CBS Test Application Architecture

This system, which is typ ica l o f a th ree-tie r CBS, was used to test the design o f HER

CULE. A lthough the test app lica tion is physica lly d iv ided in to three tiers w ith each tie r

runn ing on a different machine, th is is not necessary fo r the function ing o f HERCULE. A ll

three tiers could easily run on the same machine. A ll th a t is required to support HERCULE

is tha t the client should be “ th in ” — meaning th a t most business-logic is taken care o f by

Implem entation 165

another layer o f the system.

The choice o f EJBs to provide the m idd le t ie r was com plete ly a rb itra ry w ith respect

to func tiona lity provided by the m idd le tie r. A l l th a t was required was a m idd le tie r to

provide the business-logic layer. I t could have been provided by e ither C O M or C O R B A

components.

However, there were some other factors which led to the choice o f EJBs. I t was decided

th a t a pro totype based on C O M objects would be too p latform -specific . The delay in the

C O R B A Component Specification loaded the decision in favour o f EJBs. Furtherm ore, the

need for an im plem entation language w ith introspective capabilities, such as Java, made

EJBs the obvious choice.

7.2 Observing User-Interface A ctivity

T h is section describes how to insert a user-interface proxy, positioned as shown in F igure

7.2. The firs t goal o f the im plem enta tion is to in tercept user a c tiv ity successfully. Th is

o
User

Client Machine 'User Interface
Proxy Socket

Server Proxy Socket

M iddleware Server
MachineComponents

Databases on
Separate Machines
in Lowest Tier

Database Database Database

H ER CULE
Framework

Client
Application

Figure 7.2: CBS Application Architecture with Proxies

involves two tasks: b u ild ing a descrip tion o f the active user interface and recording the user’s

Implementation 166

in teraction w ith th a t interface. In a Java app lica tion , the interface consists o f a hierarchy o f

in teraction objects — instances o f awt or Swing package classes — such as frames, panels and

buttons. Th is hierarchy is b u ilt up by ins tan tia tin g awt or Swing classes. User in te raction

results in calls to methods o f these classes.

These tasks require HERCULE to be aware o f the ins tan tia tio n o f new user interface

components and to be inform ed when the state o f any o f these components changes. For

tunately, the Java run tim e system enables the in tercep tion o f component in s ta n tia tio n by

means o f the insertion o f a special proxy ob ject w hich is invoked when the user interface is

being constructed. A n adapta tion o f the m in im a l proxy im pact pa tte rn (Section 6.2.1) is

used to allow the ReporterQueue object to register an interest in components o f the user

interface which are subject to change. T h is w ill be described for the case o f in tercepting

b u tto n press events, b u t equivalent techniques app ly to o ther user interface components too.

Section 7.2.1 describes the mechanism used by Java in p rov id ing p la tform -independent

user-interface classes. Section 7.2.2 explains how the user-interface proxy is inserted in to

the system. Section 7.2.3 describes the operation o f the proxy. Section 7.2.4 describes the

mechanism used to watch and record user a c tiv ity a t the user interface, and Section 7.2.5

b rie fly describes how the reports about th is a c tiv ity are used.

7 .2 .1 J a v a P la t fo r m - In d e p e n d e n t U s e r - in te r fa c e M e c h a n is m

The way tha t the JV M provides p la tform -independent user-interface classes fo r the G U I

is by means o f a com bination o f the java.awt .Toolkit class and a lib ra ry o f p la tfo rm

dependent Toolkit classes. W hen a Java program instantia tes user-interface components

in order to bu ild a G U I, the component class instance w ill use the Toolkit to establish a

lin k to a p la tfo rm dependent peer.

W hen the Java app lica tion interacts w ith these java.awt objects, the messages are

relayed to p la tfo rm dependent peers, in order to display the required G U I. The peers handle

a ll details so th a t the program m er is com pletely ob liv ious o f the process. The program m er

s im ply instantiates and invokes methods on the java.awt objects, w hile subsequent calls to

the peer objects are com pletely invisib le. The java. awt .Toolkit class has the responsib ility

for loading the p la tfo rm dependent classes. T h is Toolkit is loaded au tom atica lly by the

java.awt classes when they are instantia ted. A program m er w ill often never have to make

d irect use o f th is class at all. For example, the program may include the fo llow ing:

B u t t o n q u i t = n e w B u t t o n (" Q u i t ") ;

The Button class calls on the Toolkit to create the p la tfo rm dependent peer object,
ButtonPeer. T h is ob ject is the actua l p la tfo rm specific ob ject which is displayed on the
user interface. I f the program m er now calls:

q u i t . s e t L a b e l (" C a n c e l ") ;

then the quit object w il l ca ll the setLabel m ethod on ButtonPeer so th a t the label on the

bu tton on the G U I w ill change. The s tructure o f th is a c tiv ity is shown in F igure 7.3.

Implementation .167

Package Package

Application java.awt java.awt.peersPlatform
Dependent
Toolkit

Figure 7.3: The Use of the Toolkit to facilitate GUI platform independence

7 .2 .2 In s e r t in g th e P r o x y

The aim is to track user interface a c tiv ity w ith respect to an app lica tion , w ith o u t m aking

changes to e ither the app lica tion , the java packages’ source code or bytecode. A firs t

approach would be to generate wrappers for a ll the classes in the j ava. awt package, use an

aux ilia ry class loader and, by an add itiona l level o f ind irec tion , substitu te the proxy classes

for the wrapped classes1. Th is satisfies the requirem ent th a t no p a rt o f the app lica tion

should be altered and i t also does not interfere w ith the java.awt package. U n fo rtuna te ly

we cannot wrap the java.awt package, because its use invokes the java.awt .Toolkit class.

Th is class cannot be wrapped since i t is abstract and there fo re ‘cannot be instantia ted, so

th a t the p la tfo rm dependent java.awt .Toolkit and java.awt peers are loaded by the

application class loader. Th is confuses the w rapped classes which are loaded by the ir own

separate class loader, so th a t.th e y .consequently cannot reference the Toolkit. Since the

java.awt package is essential for our purpose in track ing user interface a c tiv ity 2, another

mechanism must be used.

The approach ju s t described attem pted to in tercept user interface com munications for

each user interface component. However, an a lte rna tive pos ition for the in terception o f

in fo rm ation can be found in the T o o lk i t class, since Java requires the creation o f a ll user

interface objects be created using th is class. Tw o factors make th is a v iable proposal:

1. The firs t is th a t Toolkit is an abstract class. As an instance o f an abstract class

cannot be instantia ted, the program m er e ither has to use an instance o f a class th a t

extends the abstract class or a s ta tic m ethod which re turns an instance o f a subtype.

The java.awt package makes use o f the abstract class java.awt .Toolkit, which

provides a static getDefaultToolkit () m ethod. Th is gets the name o f the p la tfo rm

dependent Toolkit class from system properties and obtains an instance o f th a t class

from the p latform -specific lib raries to be re turned to the caller.

2. The second, which relies on the firs t, is th a t the s ta tic m ethod getDefaultToolkit ()
allows the use o f an environm ent variable (-Dawt .toolkit=. . .) to specify which

Toolkit is to be loaded [Beg99]. The java.awt .Toolkit incorporates a mechanism

'This method is explained in detail in [REOO].
2Swing is built on top of the awt package, so applications using Swing also utilise the awt classes.

Implementation 168

to allow the developer to substitu te another Toolkit for the one which would, by

default, be loaded by the JV M .

So, suppose a proxy Toolkit is w ritte n which extends java. awt .Toolkit, called java. a w t .
ProxyToolkit T The EssentialApp app lica tion can be to ld to use th is proxy Toolkit by
s ta rting the app lication w ith the fo llow ing command line:

java -Dawt.toolkit=java.awt.ProxyToolkit EssentialApp

The java.awt .ProxyToolkit w ill be instantia ted when the app lica tion needs a.11 instance

o f a Toolkit and the proxy w ill thereby be dynam ica lly activated.

7 .2 .3 T h e U s e r - in te r fa c e P r o x y

The java.awt .ProxyToolkit class, which extends java.awt .Toolkit, is the user interface

proxy. W hen the app lica tion calls the s ta tic getDef aultToolkit m ethod to get an instance

o f the to o lk it, an instance o f the ProxyToolkit is created. Th is ProxyToolkit then loads

the OS specific Toolkit, so tha t the ProxyToolkit acts as a channel, re laying a ll calls to

the p la tfo rm dependent to o lk it and relaying all re tu rn values back to the application. The

resulting s tructure is shown in F igure 7.4.

Package Package

Application
Platform
Dependent
Toolkit

java.awt.
ProxyToolkit

java.awt java.awt.peers

Figure 7.4: The System using the P roxyToolk it

Since the ProxyToolkit must be a Toolkit and re-route a ll m ethod invocations 011 the

Toolkit, it must im plem ent a ll the pub lic methods provided by the java.awt .Toolkit
class. W ith in the ProxyToolkit, a static block loads the p la tfo rm dependent to o lk it, and

m aintains a reference to th is to o lk it so tha t a ll fu tu re m ethod calls can be relayed to the

p la tfo rm dependent to o lk it. The code is shown in Code Fragment 7.1.

A ll methods invoked 011 the system’s default to o lk it are forwarded to ProxyToolkit,
which relays them to the p la tfo rm dependent Toolkit. The createButton m ethod in

ProxyToolkit called when a Button is created, illus tra tes this.

The proxy can execute programmer-defined code in the overridden methods, w hich pro

vides a means o f extracting m eaningfu l in fo rm ation from the ProxyToolkit. as required.

I t is im portan t tha t app lica tion performance is not affected undu ly by the presence o f the

ProxyToolkit. When repo rting the required in fo rm ation the app lica tion should not be

slowed down any more than is absolute ly necessary. The m in im a l im pact proxy pa tte rn

'The P roxyToolkit m ust be p art of the ja v a . awt package because all the m ethods in the abstract T o o lk it
class are p ro tec ted , and cannot be invoked by a member of another package exactly w hat this proxy
needs to do, in order to relay messages to the platform -dependent toolkit.

Implementation .169

p a c k a g e j a v a . a w t ;

p u b l i c c l a s s P r o x y T o o l k i t e x t e n d s T o o l k i t {

/ / t h e l i n k t o t h e p l a t f o r m d e p e n d e n t t o o l k i t

p r i v a t e s t a t i c T o o l k i t t h e T o o l k i t ;

/ / q u e u e s t r u c t u r e f o r r e p o r t s

R e p o r t e r Q u e u e q u e u e ;

/ / s t a t i c b l o c k t o i n i t i a l i s e t h e " r e a l " t o o l k i t

s t a t i c {

S t r i n g t o o l k i t N a m e = " " ;

S t r i n g o s N a m e = S y s t e m . g e t P r o p e r t y (" o s . n a m e ") ;

/ / h a r d c o d e t h e n a m e s o f t h e p l a t f o r m d e p e n d e n t t o o l k i t s h e r e

i f (o s N a m e . i n d e x O f (" W i n d o w s ") > = 0) t o o l k i t N a m e = " s u n . a w t . w i n d o w s . W T o o l k i t " ;

e l s e i f (o s N a m e . e q u a l s (" S o l a r i s ")) t o o l k i t N a m e = " s u n . a w t . m o t i f . M T o o l k i t " ;

t r y { t h e T o o l k i t = (T o o l k i t) C l a s s . f o r N a m e (t o o l k i t N a m e) . n e w l n s t a n c e () ; }

c a t c h (E x c e p t i o n e) {

e . p r i n t S t a c k T r a c e () ;

S y s t e m . e x i t (0) ;

I I I c a t c h

} / / s t a t i c b l o c k

p r o t e c t e d B u t t o n P e e r c r e a t e B u t t o n (B u t t o n t a r g e t) {

q u e u e . a d d I t e m (t a r g e t , t a r g e t . g e t P a r e n t ()) ;

r e t u r n t h e T o o l k i t . c r e a t e B u t t o n (t a r g e t) ;

} / / c r e a t e B u t t o n

/ / r e s t o f m e t h o d s

} / / P r o x y T o o l k i t

Code Fragment 7.1: ProxyToolkit

v

Im plem entation 170

Application ProxyToolkit ReporterQueue Reporter Socket Hercule

create awt

addltem ()O bject

getltem Q

AWTEventMulticaster Aw tR eport

A w tR eportevent notification
readO bject()

(S ignals som e event the
application has reg istered
an interest in)

Aw tR eport

Figure 7.5: S tructure o f User Interface Reporting

described in Section 0.2.1 w ill be applied to u tilise two d is tin c t objects, the ReporterQueue
and the Reporter, to ensure th a t the proxy has a m in im a l im pact on the overall performance

o f the application.

The interaction between the ProxyToolkit and these two objects is shown in F igure 7.5.

So, for example, i f a Button is being created, and the createButton m ethod is called in the

ProxyToolkit, the createButton m ethod would pu t an item on the queue describing the

new item being created, as shown in the given code. So, for example, i f a bu tton , w ith the

t it le Quit, is being created, two reports w ill be generated:

1. a “new Component,” report to indicate th a t a b u tto n w ith the t it le Quit, has been

created.

2. an “add Component to C on ta ine r” report to indicate th a t the b u tto n resides in some

specific panel container.

In fo rm ation can now easily be extracted about the s truc tu re and com position o f the user

interface, enabling the construction o f an in te rna l s truc tu re dup lica tin g each w indow struc

ture. Th is structure provides the basis for m aking sense o f user a c tiv ity reports.

7 .2 .4 W a tc h in g U s e r A c t i v i t y

Once an in ternal s truc tu re has been created, the next requirem ent is to be able to keep track

o f user activ ities. Th is can on ly be done i f HERCULE is in form ed when those actions occur.

Implementation 171

HERCULE could, upon learning th a t a component has been created, declare an interest in

a ll events upon th a t component. Th is would mean th a t HERCULE would be interested

in every b u tton press, every mouse movement, every key press, w indow activa tion and

deactivation, and much more. Th is volume o f repo rting w ould slow the system unacceptably.

The second best op tion is to register an interest in events which interest the app lica tion .

These events would presum ably p rec ip ita te some action on the p a rt o f the app lica tion and

are therefore m eaningfu l activ ities from the po in t o f view o f the user when using th a t

pa rticu la r application.

A ll java.awt components allow o ther objects to declare an interest in events on the

component by registering as a listener. Each component has different capabilities so, for

instance, a java.awt .Button has registered action listeners (registering, for example, the

pressing o f a bu tto n), w h ile a java.awt .TextComponent has b o th action listeners and text

listeners. The actions o f interest are the pressing o f the Enter key and the te x t listeners

register a ll changes in the displayed tex t o f the te x t component. The event notifica tions

received as a result o f registering as a listener w il l serve to provide a tangib le record o f a ll

user activ ity.

W hen a component is ins tan tia ted v ia a ca ll to the Toolkit, the ProxyToolkit w ill

check whether the app lica tion has registered an interest in th a t component. I f i t has, the

ReporterQueue w ill be added as a listener for th a t event. The ReporterQueue implem ents

the interfaces for a ll listeners so th a t i t has the a b ility to be registered as a listener for a ll

types o f user interface events. W hen the ReporterQueue receives an event no tifica tion from

the AWTEventMulticaster (as shown.in F igure 7.5), an event report w il l be placed on the

queue, g iv ing in fo rm a tion about the type o f event and the component th a t generated it.

W hen th is fu n c tio n a lity has been included, the createButton m ethod is altered as shown

in Code Fragment 7.2.

p r o t e c t e d B u t t o n P e e r c r e a t e B u t t o n (B u t t o n t a r g e t) {

/ / s e n d a r e p o r t t h r o u g h a b o u t t h i s b u t t o n ,

/ / a s w e l l a s t h e b u t t o n c o n t a i n e r

q u e u e . a d d l t e m (t a r g e t , t a r g e t . g e t P a r e n t ()) ;

/ / i s t h e a p p l i c a t i o n i n t e r e s t e d i n t h i s c o m p o n e n t a s a s o u r c e o f

/ / e v e n t s ? I f s o , w e n e e d t o w a t c h i t t o o

i f (t a r g e t . a c t i o n L i s t e n e r ! = n u l l) t a r g e t . a d d A c t i o n L i s t e n e r (q u e u e) ;

/ / n o w g e t t h e r e a l t o o l k i t t o c r e a t e t h e b u t t o n

r e t u r n t h e T o o l k i t . c r e a t e B u t t o n (t a r g e t) ;

>___
Code Fragment 7.2: c re a te B u tto n

N o tifica tion o f a ll application-re levant user actions w ill be sent to the ReporterQ ueue.

The R e p o rte r object w il l relay these reports to HERCULE. There is one more th ing th a t

Implementation 172

has to be done. HERCULE needs to know when Windows are being displayed on the user

interface and when they are removed. To be in form ed about th is , the ReporterQueue also

listens to a ll w indow events, thus being inform ed about when windows are shown or hidden

from the user interface. W hen th is happens a show component or hide component report is

generated and added to the queue.

The code given in Code Fragment 7.2 looks bound to work and indeed i t does keep

HERCULE informed. A l l listeners are structu red as a linked lis t, the firs t o f w h ich is the

app lication listener. Therefore the app lica tion w il l be no tified firs t and be allowed to com

plete a ll execution which hinges on the event. O n ly then is HERCULE notified . T h is makes

it impossible to provide im m ediate dynam ic feedback w ith respect to the status o f current

application-server in teraction , because the m ethod-invocation reports w ill arrive long after

a ll a c tiv ity has been completed. To alleviate th is , the order o f the two listeners must be

reversed. Th is is achieved by p lacing extra code w ith in the createButton m ethod o f the

ProxyToolkit as shown in Code Fragment 7.3.

i f (t a r g e t . a c t i o n L i s t e n e r ! = n u l l) {

/ / o k , t h e r e i s a l i s t e n e r , r e m o v e i t a n d

/ / p u t t h e r e p o r t e r q u e u e i n a s t h e f i r s t l i s t e n e r

/ / t h e n a d d t h e o l d l i s t e n e r a g a i n

ja v a . a w t . e v e n t . A c t i o n L i s t e n e r l i s t e n e r = t a r g e t . a c t i o n L i s t e n e r ;

t a r g e t . r e m o v e A c t i o n L i s t e n e r (l i s t e n e r) ;

t a r g e t . a d d A c t i o n L i s t e n e r (q u e u e) ;

t a r g e t . a d d A c t i o n L i s t e n e r (l i s t e n e r) ;

} / / l i s t e n e r s r e g i s t e r e d

Code Fragment 7.3: Registering Interest in Events

This section has ou tlined the mechanisms used to record user a c tiv ity a t the user interface

and to watch changes in displayed windows. Together w ith the previously defined in te rna l

structures representing these windows, the m eaningfu l in fo rm a tion can be provided about

user in teraction w ith the system.

7 .2 .5 M a in ta in in g a n d u s in g th e in te r n a l im a g e o f th e G U I

The construction , status and event reports generated by the ProxyToolkit are used to b u ild

up a tree structure, dep icting the appearance o f the user interface, as shown in F igure 7.6.

HERCULE keeps track o f user a c tiv ity by m a in ta in ing a h is to ry o f w indows w hich are shown

at the user interface. HERCULE also keeps track o f user actions which cause a change in

the user interface appearance. Event reports w ill keep the track ing program in form ed o f a ll

a c tiv ity which w ill then be up to date w ith exactly w hat the user has been doing at any

tim e, together w ith the effect on the user interface o f th a t user a c tiv ity [Ren99].

Implementation .173

Frame

Panel Panel PanelM enuB ar

Menu Label Button ButtonMenu Menu M enu Button Button Button

Figure 7.6: The Internal User Interface Representation

7.3 Observing Server Communication

Th is section discusses the Java-specific application o f the m in im a l impact, p roxy pa tte rn

for observing com m unication w ith the server, w ith the proxy inserted between the client

app lica tion and the rest o f the CBS., positioned as shown in F igure 7.2, using Enterprise Java

Beans (EJBs)[Tho98a] as server components. A lthough the mechanism has been developed

• specifically for CBSs using, the Java Nam ing and D irecto ry Interface (JN D I) [Mic98c] to

access EJBs, i t appears not impossible to customise for o ther com m unication models where

a nam ing service is used to locate server components and components separate interfaces

from im plem entation.

7 .3 .1 T h e E n te rp r is e J a v a B e a n s C o m p o n e n t M o d e l

The EJB specification requires a client application to make use o f the Java Nam ing and

D irecto ry Interface (JN D I) package to contact the app lica tion server. Each bean w ill have a

JN D I name which is published by the server and which w il l be supplied by the app lica tion

in order to enable JN D I to fin d the component. I t w il l have two d is tin c t interfaces, a Home

interface (for managing bean instances) and a Remote interface (for business-logic methods).

The object tha t implements the Home interface is called an EJBHome object, while the object

im plem enting the Remote interface is called an EJBO bject.

JN D I requires the c lient app lica tion to establish com m unication w ith the server hous

ing the server components before any connection can be made w ith those components.

The context must im plem ent the ja v a x .n a m in g .C o n te x t interface. The ja v a x .nam ing .

I n i t ia lC o n te x t class im plem ents the C on tex t interface, p rov id ing the necessary context

to the application. The JV M makes use o f a CLASSPATH environm ent variable th a t can be

exploited to ensure th a t the J V M loads a proxy class instead o f the o rig ina l class, s im p ly

by p u ttin g the location o f the proxy class ahead o f the location o f the o rig ina l class in the

Implementation .174

CLASSPATH. The proxy fo r the InitialContext class w il l be dynam ica lly inserted by m ak

ing use o f the above-mentioned CLASSPATH mechanism. T h is works because o f the J V M ’s

equivalence mechanism which considers two classes to be equivalent i f they have the same

name and are loaded by the same class loader. B y g iv ing the proxy class the same name

one can guarantee tha t the JV M w ill accept i t when the app lica tion requests th a t the class

be loaded.

Consider an EJB which provides the fu n c tio n a lity required to create new accounts, close

existing accounts, w ithd raw funds or deposit funds. The E JB is called accountBean, which

is supplied together w ith two interfaces, the home interface called AccountHome and the

remote interface called the Account interface. The client app lica tion goes th rough the

fo llow ing steps to use an EJB:

1. Establish a s ta rting p o in t to lin k the app lica tion program to the available EJBs con

tained in the EJB server, as shown in F igure 7.7, by in s tan tia tin g the InitialContext
object. The InitialContext object needs some properties to iden tify the server to

be contacted. The firs t, and most c rit ica l property, is the Universal Resource Locator

(U R L) which identifies the location o f the EJB server. O ther properties include the

context factory (which w ill produce the required context ob ject), the user login name

and the password. The client program establishm ent o f context is shown in Code

Fragment 7.4.

/ / b u i l d u p t h e p r o p e r t i e s o f t h e c o n n e c t i o n

P r o p e r t i e s p r o p e r t i e s = n e w P r o p e r t i e s O ;

/ / p u t t h e U R L , i n i t i a l c o n t e x t f a c t o r y , u s e r n a m e

/ / a n d p a s s w o r d i n t o p r o p e r t i e s

/ / g e t t h e i n i t i a l c o n t e x t

C o n t e x t t h e C o n t e x t = n e w I n i t i a l C o n t e x t (p r o p e r t i e s) ;

Code Fragment 7.4: A pp lica tio n calls to establish in it ia l context

The InitialContext object im plem ents the Context interface, and establishes a nam

ing context. The context is an ob ject whose state is a set o f b indings w ith d is tin c t

atom ic names. Since, in th is case, we are “p o in tin g ” the context at the U R L o f the

EJB server, th is Context object w ill a llow us to ob ta in a lin k to any EJBs residing in

the EJB server.

2. Get the EJBHome object, as shown in F igure 7.8, by ca lling the lookup m ethod in

InitialContext. The client program requests the home object by p rov id ing the

JN D I name o f the EJB (accounts .accountBean) and invoking the InitialContext
lookup m ethod as follows:

A c c o u n t H o m e h o m e = (A c c o u n t H o m e) t h e C o n t e x t . l o o k u p (" a c c o u n t s . a c c o u n t B e a n ") ;

Implementation .175

Application InitialContext EJB Server

new InitialContext()

establish initial context

LAN

Figure 7.7: Establishing contact with the server

Application InitialContext EJB Server

lookup("accountBean")
lookup("accountBean")

AccountHome Object

LANAccountHome Object

Figure 7.8: G etting the Home Interface Object

Implementation 176

The home object implements the AccountHome interface and w il l be used to locate

existing beans, or to create new beans.

3. Use the EJBHome object, as shown in F igure 7.9, to get instances o f in d iv id u a l EJBObjects,
each o f which is identified by means o f a key object. T h is could be done as follows:

c u r r e n t A c c o u n t = (A c c o u n t) h o m e . c r e a t e (a c c o u n t K e y) ;

The currentAccount EJBObject implements the Account interface.

Application AccountHome EJB Server

create("PK234")
create("PK234")

Account Object

Account Object LAN

Figure 7.9: Getting the EJB Object

7 .3 .2 U s in g P r o x ie s t o I n t e r c e p t C o m m u n ic a t io n

There are two steps involved in tracking a ll app lica tion in te raction w ith the E JB server.

The firs t is to insert proxies at each o f these three com m unication stages. The next step

requires the reports generated by these proxies (MiReports — M ethod Invoca tion Reports)

to be forwarded to HERCULE.

7.3.2.1 Inserting th e Proxies

To insert a proxy at the connection stage, the system has to generate a proxy which w ill

im plem ent the Context interface, in the same way as is achieved by the InitialContext
class — since the app lica tion ’s source is not going to be a ltered in any way. T h is proxy

Context object has been specially developed, b u t w il l now serve to insert proxies in to

an app lica tion using the InitialContext class to establish an in it ia l lin k to a m iddle-

tie r server. The proxies for the EJBHome and EJBObjects, on the o ther hand, w il l have

to be un ique ly generated for each different EJB. In order to ease th is process, HERCULE

generates the proxies au tom atica lly by using the class files and reflection. The to o l provided

for generating these proxies, as pa rt o f the p ro to type im plem enta tion , is discussed in Section

7.4.1. To expla in exactly how the proxies are engaged at run tim e:

Im plem entation 177

1. In t lu 1 firs t place, HERCULE needs to intercept calls to the InitialContext. The

Context interface is therefore im plem ented and also named javax.naming. Initial
Context. This class is pu t in to a location which was inserted in to the CLASSPATH
ahead o f the o rig ina l InitialContext, thus ensuring tha t the JV M loads the proxy

InitialContext and not the o rig ina l one. W hen the app lica tion instantia tes Initial
Context, the proxy im p lem enta tion o f InitialContext is called. A special context,

ProxyContext, is now instantia ted (th is also im plem ents the Context Interface) and

th is instance is re turned to the application. Since the app lica tion is expecting an

object tha t implements the Context interface, it is unaware o f the substitu tion .

Application InitialContext ProxyContext EJB Server Proxy Socket Hercule
Reporter

new ln itia lContext()

establish
initial
con text _

new

read
ObjectQProxyContext O bject M iR eport M iR eport

M iR eport

Figure 7.10: Establishing contact w ith the server using a proxy

A ll com m unication between the app lica tion and the EJB server is now routed th rough

th is ProxyContext. Th is ob ject holds a reference to the actua l InitialContext,
allow ing it to observe a ll calls made v ia th is ob ject to the server. The procedure is

illus tra ted in F igure 7.10.

2. When the app lica tion makes a call to the InitialContext to request an object th a t

implements the home interface, the ProxyContext instantiates a proxy im p lem enta tion

o f the home interface (AccountHomeProxy). The required EJBHome object, im plem ent

ing the home interface, is requested from the server and the AccountHomeProxy object

is given a reference to th is object. The instance o f AccountHomeProxy is re turned to

the client. Once again the c lient app lica tion is none the wiser, since the proxy also

implements the Home interface. The proxy relays a ll calls to the actual EJBHome
object and returns replies to the application. See F igure 7.11.

3. W hen the app lica tion makes a call to the EJBHome object to request a specific bean,

the AccountHomeProxy object instantiates a proxy EJBObject (AccountProxy). The

EJBObject im p lem enting the Account interface is requested from the server, and the

AccountProxy is given a reference to th is object. I t then acts as a channel through

which all calls are relayed. The in terception is illu s tra te d in F igure 7.12.

Im plem entation 178

Application ProxyContext EJB Server Proxy Socket Hercule
Reporter

lookup
("accountBean")lookup

("accountBean")

M iReport read
M iR eportA ccountHom eProxy O bject()

Object M iReport

A ccountHom e
O bject

new

AccountHomeProxy

Figure 7.11: G etting the EJBHome O bject using a proxy

Application AccountHomeProxy Proxy Socket Hercule
ReporterAccountHome EJB Server

create
M iR eport("PK234") create

create

Account
Account

O bject

M iR eport
read

ObjectQ
new M iR eport

M iR eport
AccountProxy

M iR eport
Object

AccountProxy

Figure 7.12: G etting the EJB O bject using a proxy

Im plem entation 179

Th is explains how to insert proxies at each level o f the com m unication w ith the server, and

these proxies then generate reports by means o f which a ll com m unication w ith the server is

monitored.

7.3.2.2 S e n d in g th e re p o r ts to HERCULE

The server proxies also need a s tructu re which w il l fa c ilita te the sending o f reports to HER

CULE. The P r o x y R e p o r t e r provides for th is. The proxy object, bo th E J B H o m e objects and

E J B O b j e c t s , w ill essentially have to report on every m ethod invocation, g iv ing in fo rm a tion

about the method, the parameters supplied, and the tim e the invocation occurred. Once

the method has been executed, the proxy w ill e ither report on the successful com pletion o f

the method invocation — repo rting the re tu rn value i f there is one — or give details about

the exception throw n, in the case o f an error. The P r o x y R e p o r t e r receives these reports,

and uses a S o c k e t connection to relay them to HERCULE.

7 .3 .3 . U s in g th e re p o r ts g e n e ra te d b y th e p ro x ie s

W hen HERCULE receives the reports, they have to be stored so th a t the in fo rm a tion can

be retrieved at any tim e for feedback purposes. I t is im p o rta n t to realise th a t the server

proxies are to ta lly unaware o f the user interface proxy and th a t they therefore have no

com m unication w ith one another. The on ly way th a t HERCULE can lin k user actions to

server method invocations is by using the tim e factor enclosed w ith in the generated reports.

Therefore, when server reports are received, these actions w ill be linked to the user actions

which preceded them.

W hen storing the proxy in fo rm a tion (derived bo th from the user interface and the server),

i t is v ita l to store i t in the form o f Episodes. T h is is necessary because the user a c tiv ity

must be linked to system actions So th a t a lin k is established which can be explo ited by

the display mechanism to p o rtra y the app lica tion a c tiv ity to the user. I t is s t i l l necessary

to keep them apart for some specialised feedback requirements, so HERCULE w il l store a

lis t o f UA-sequences and lin k each UA-sequence to the Ml-sequence p rec ip ita ted by the

UA-sequence. These two lis ts w ill be linked one to the other, fo rm ing a h is to ry o f session

Episodes.

7.4 The Descriptor Tool and Proxy Generator

HERCULE has two d is tinc t phases o f use: discovery and runtim e. The discovery phase

is a customisation phase, w hich serves to in fo rm HERCULE, essentially p rov id ing a generic

feedback mechanism, o f the server components which w ill be used by an app lica tion . D u ring

the runtim e phase, the results o f the custom isation w ill be used to fac ilita te the required

feedback.

Im plem entation 180

Since the programmer has to generate the proxies and the descriptors at least once,

to customise HERCULE, the two tools have been merged, as shown in F igure 7.13. The

fo llow ing sections w ill discuss the im plem entation o f these tools.

Figure 7.13: Customising HERCULE

7 .4 .1 T h e D e s c r ip to r T o o l

Th is ‘'discovery” phase is executed p rio r to HERCULE being used, and as often as necessary

after tha t as the programmer becomes more fam ilia r w ith the operation o f the component.

HERCULE makes use o f the server component docum entation to customise the framework

for a pa rticu la r server component. In Section 6.3, three documents were mentioned tha t

have to be provided together w ith a server component:

1. An Application Programmer Interface (A P I) document, which explains the purpose o f

the component and gives details o f m ethod func tiona lity . Examples o f such documents

are those found as ja vadoc [Mic98b] ou tpu t.

2. One or more interface classes through which the component can be accessed.

3. A deployment document which specifies the context dependencies o f the server com

ponent and explains how the component should be deployed.

Many component vendors w ill choose to provide far more, bu t HERCULE only relies on the

basic m in im um being provided. The delivered docum enta tion is “ m ined” in order to extract

descriptor objects tha t hold details about the methods used to access the server components,

and to generate proxies.

Descriptor objects are essential to the visualisation o f session activ ity . Tracking w ill on ly

be meaningful i f its results can be depicted in an in fo rm ation -rich and useful fashion. In

Im plem entation 181

order to provide the users w ith explanations o f server ac tiv ity , the method invocations should

be described in terms easily understood by the user, ra ther than in language fa m ilia r to the

programm er o f the system. These explanations are a ll to be found in the server component

A P I docum entation and the descriptor objects can thus be derived from these documents.

Since Java class docum entation is generally produced by ja v a d o c , th is makes the m in ing

process sim pler4. Th is m in ing process should produce at least an adequate descriptor object,

since it contains the in fo rm ation as obtained from the A P I document. In order to improve

th is object, HERCULE provides a too l to allow the program m er to augment the descriptor

object. W ith the program m er’s assistance the descriptor object can be augmented to make

it even more helpfu l to the end-user.

3Change Method and Exception Explanations

b ean M an aged .A cco un tH om e DESCRIPTOR

Fin ished S tore C hanges Cancel

L*J

1
Create an account w ith key $param O$ and d

findByPrim aryKey balance $param 1$
findB igAccounts

Id d H
Click here to Change

1
javax.ejb.CreateException
java.rm i Rem oteException

L T 1
Click here to Change J

Figure 7.14: Perm itting the Programmer to Augm ent Descriptors

Parameters used in method invocations can be inserted in to the explanations o f these

methods. Th is w ill allow the programmer to customise the explanations o f method invoca

tions and exceptions th row n by the methods, according to the parameters provided by tha t

pa rticu la r invocation.

1 If this is not done by javadoc, it becomes more difficult to mine since we have no idea how the docu
mentation would be structured. The next EJB specification requires the use of E xtensib le M a rk u p Language

(XML) for this docum entation, which would make the process even simpler because we no longer have to
rely on the vagaries of the html being produced. This could possibly change from one version of javadoc to
another, which would invalidate the current generation code. XML is easily parsed and does not suffer from
these limitations.

Im plem entation 1 8 2

H A lte r Description

|C reate an accouritw ith key $paramO$ and
balance $param1 $

Li

~n Clear

PARAMETERS IN EXPLANATION
$paramO$ is pa ram ete r 1 display: c lass java.lang.S tring toString
$param1 $ is param eter 2 display: doub le

Lj

Restore Original Content

Insert Parameter Value

Remove Parameter Value

OK - change it

alue

Cancel

Figure 7.15: Changing a M ethod Explanation

7 .4 .2 T h e P r o x y G e n e r a to r

The proxies conform to the wrapper or decorator pattern [GH.JY94]. This is one approach
to adding reflection to statically typed languages [WS99]. Some examples can be seen in
the work of Karaorman et al. and De Oliveira Guimaraes [KHB99, De 98]. Many imple
mentations of reflective5 Java rely on customised JVMs or require access to the source code
of the application — examples are cited by Welch and Stroud in [WS99]. Since one of our
design decisions stems from a strong desire to be non-invasive and optional, neither of these
options is attractive.

If we want to engage proxies using a standard platform, without changing the source
code, there are two ways to go about it. One is to make use of byte code transformations
at runtime, while the other is to generate proxies offline and insinuate them into the system
by manipulation of the CLASSPATH at JVM runtime.

The first mechanism has been applied successfully by the Dalang prototype and its exten
sion Kava [WS99]. However, the approach taken in these projects is aimed at implementing
meta-object protocols for commercial off-the-shelf components, whereas the focus here is on
reporting on the activities of specific middle tier components. Whereas the changing nature
of meta-object protocols6 will make it feasible to re-generate and compile wrappers with
each program execution, in the case of reporting, the requirements are stable. It is wasteful

’The ja v a .Ic in g .r e f le c t package is wrongly named, since it allows introspection, but not actual re
flection. Reflection implies the ability to change the behaviour a t runtim e — and the ja v a . Icing, r e f le c t
package does not allow tha t.

'’M eta-object protocols allow the runtim e insertion of additional behaviour into a system. This could
cater for non-functional requirem ents such as distribution or concurrency, for example.

Implemen tat ion .183

to generate and compile the proxy classes for each execution when i t can be done once and

repeatedly re-used thereafter.

The other concern is th a t the run tim e com pila tion o f wrappers may affect the perfo r

mance negatively. The fina l factor w hich swayed the decision in favour o f the second op tion

was the sheer s im p lic ity o f the approach — the byte code transfo rm ation approach is in t r i

cate and admirable, b u t ra the r complex. I t is also not clear whether the specialised class

loaders w ritte n to expedite th is scheme would work for fu tu re JD K releases.

The generation o f the proxies was made possible by the introspective ab ilities o f the Java

language i.e. the ja v a . la n g . r e f le c t package [Mic99]. T h is package reveals in fo rm a tion

about the interfaces needed to generate wrappers — m ethod signatures and inheritance

details and so on.

The proxies have the same methods as the interfaces. M ethods w ill be invoked on the

proxies by the app lica tion , the proxy w ill invoke the methods on the actua l stub object,

receive the reply, and pass th a t back to the application. In order to carry ou t its task, the

proxy w ill report to the com m unication agent before the m ethod is invoked on the stub, and

after the reply has been received from the stub, before passing i t back to the app lica tion .

7.5 The Runtime Feedback Tool

HERCULE tracks app lica tion a c tiv ity by dynam ica lly inserting proxies, and extracts in fo r

m ation based on the reports generated by these proxies. HERCULE operates based on two

types o f inputs. The firs t is made up o f the docum enta tion and Java class files delivered w ith

the EJB. The second comprises the reports generated, at run tim e , by the proxies. HERCULE

must use the in fo rm ation from th is docum entation to customise itse lf. T h is custom isation

facilita tes the operation o f the proxies at runtim e. HERCULE receives two types o f reports

from run-tim e invoked proxies:

1. User interface reports: signaling events and the user interface construction. These

events enable HERCULE to keep a h is to ry o f user interface appearance and user ac tiv

ity.

2. M idd le -tie r component method invocation reports: The reports received here indicate

different stages o f server component com m unication:

(a) Contact: in it ia l establishment o f com m unication w ith the server;

(b) New Server Component: in it ia tio n o f a new interface object;

(c) Interface Object A c tiv ity , m ethod invocations on the interface object;

HERCULE runs in a separate process so tha t its execution and te rm in a tio n are not dependent

on the application. W hen HERCULE executes, i t is in it ia l ly in an inactive mode while i t

waits for the app lica tion proxies to make contact. Upon receiving the firs t report, which

Implementation 184

informs HERCULE th a t the app lica tion is up and runn ing , and th a t the m idd le -tie r server

was contacted successfully, HERCULE enters feedback mode. In feedback mode HERCULE

receives messages about app lica tion a c tiv ity and provides feedback to the user.

HERCULE registers the te rm ina tion o f the app lica tion by the cessation o f the S ocket

connection either from the server proxies or the G U I proxy. HERCULE stays active so th a t

the user can use the d isplay to provide post-execution feedback. Th is w il l be p a rticu la r ly

useful i f the app lication te rm ina ted erroneously or i f the user needs to confirm actions taken

during the session. I t also allows the user to summon help i f something has gone w rong and

enables the user to dem onstrate the actions taken, should a support person be summoned

for assistance.

7.6 Application A ctivity Visualisation

Once the UA-sequences have been linked to the Ml-sequences and the Episodes have been

constructed, the results need to be depicted in a he lp fu l manner on the screen. There are

many aspects o f th is in te raction th a t could be depicted, bu t fo r HERCULE, the decision was

made to depict the success or fa ilu re o f each Episode. Th is decision was made because the

focus is to provide end-user feedback and the success or fa ilu re o f an Episode is o f .c ritica l

interest to the end-user. Since a p a rticu la r app lica tion session could easily generate m any

Episodes, the display chosen has some im p o rta n t characteristics:

• I t should be able to depict e ither one or many Episodes in a clear manner, so th a t the

user can obta in as much in fo rm a tion as possible at a glance.

• I t should not in trude, bu t offer the user assistance.

• I t should allow the user to step backwards in tim e to view and confirm previous actions.

7 .6 .1 C h a r a c te r is t ic s o f V is u a l is a t io n

Section 6.5.2 suggested th a t the fo llow ing feedback should be provided:

• A status display.

• A current tim e display.

• Explanations o f latest episode — ta ilo red to the current user role.

• Access to reconstruction o f context.

• Summary in fo rm ation — such as, fo r example, a graphical display ind ica ting the

performance o f the network.

• A n overview o f episodes — a display offering the “ overview and zoom” fac ility , which

w ill allow users to choose which Episode to access.

Implementation .185

• An expanding facility linked to the above feature, giving extra information about
the chosen Episode.

The display designed for HERCULE was created with those requirements in mind and satisfies
them as follows:

• It provides a mechanism to enable the user to get information about all of the Episodes
for the entire application.

• It allows detailed information about Episodes to be obtained quickly and easily.

• It does not intrude, but is always available as an icon, offering the possibility of
obtaining feedback at any time.

• It allows the user to obtain information about previous Episodes quickly and easily.

System State Indicator

(JHERCULE
File Hide Show Customise Advanced

Customisation
Facility

Action
Time

System Readiness

Ready

Current Time

12:55 pm

Repiay My Actions

Replay Facility

1 Successful Action
| Failed Action

Action Time
12:54 pm

Groups
of 100

Groups
of 10

Current

Current Display Session History
Panel

Figure 7.16: The HERCULE Display

The icon chosen for HERCULE is that of a man’s head, shown in black on white. This has
been chosen so that the user can easily identify the HERCULE window and the icon, should
it be minimised.

7 .6 .2 I n t e r a c t i v i t y o f th e D is p la y

At runtime, the HERCULE display (Figure 7.16) provides the following information, which
is dynamically updated as the user works:

Im plem entation 186

1. A traffic lights widget depicts the current system state. This will display:

• red when the application cannot be tracked. The legend beside the traffic light
will display the result of HERCULE’s attem pt to diagnose the cause. This could
be: due to a server breakdown or a network problem; or because the application
has not yet started executing; or because the application has terminated;

• orange when the middle tier server is busy servicing a request; and

• green when HERCULE is waiting for application activity. Since humans are so
much slower than computers, one can expect the display to be in this state for a
great percentage of the time — reflecting the time spent by the user assimilating
the screen display and deciding what to do next. HERCULE will depict activity
once the user has provided inputs arid signaled that they should be processed,
otherwise it simply waits.

The traffic lights display is a universal symbol, and adequately sends the required
message in most cultures.

Figure 7.17: The Playback Facility

2. A Replay My A ctions button will summon a playback facility, shown in Figure 7.17,
which allows the user to view a screen replay of all UA-sequences as they took place.
This shows the windows displayed by the application to the user, one at a time. The
user can control the transition to the next window by clicking the mouse, and so
control the pace. Each window will highlight the action which caused the transition
to the next window. For example, if the user clicked on a button, that button would
be highlighted by setting the background colour to yellow in the replay window.

To allow extra flexibility, the user can search for a particular window with a key
phrase in it, step back a certain number of windows or simply replay all activity from
beginning to end.

By providing this functionality, HERCULE supports users by alleviating their weak
nesses (such as limited working memory), while capitalising on and utilising their

Implementation .187

strengths (such as sw ift pa tte rn recognition, and the a b ility to re trieve relevant in

fo rm ation about the meaning o f these patterns qu ick ly). The replay mechanism has

no effect on the app lica tion whatsoever, in accordance w ith the non-in trus ion policy,

and should be considered to be ra the r like an action replay used in te levis ion sports

broadcasts.

3. A session h istory panel which presents a ll Episodes h ierarchically, displayed in three

separate panels:

• the bo ttom panel d isp laying the last ten Episodes;

• the m iddle panel depicting groups o f ten Episodes; and

• the top panel dep icting groups o f hundreds o f Episodes.

Each d is tinc t Episode is displayed as a coloured rectangle. Th is depicts the result o f

the Ml-sequence resu lting from the Episode UA-sequence as:

• red i f i t failed — assumed i f the server throws an exception,

• yellow i f the outcome is pending, and

• green i f i t succeeded — assumed by the absence o f an exception.

The colour red is tra d it io n a lly used in the western w orld to ind icate e ither danger, or

heat, while green is used to signal safety [TYa91]. The use o f these is h igh ly cu lture-

specific since the Chinese tra d itio n a lly use green to symbolise death, w ith red symbol

ising luck and good fo rtune [WarOO]. The lin k o f the colour to the m eaning is shown

in the legend at the top o f the session h is to ry panel, so th a t th is type o f confusion

can be avoided. The best op tion would be to allow users to choose the colours them

selves, bu t th is would add to the com plexity o f the display, som ething which should

be avoided. These colours are used so th a t an error w il l au tom a tica lly “pop ou t” o f

the background, so th a t the user w ill be more like ly to notice it.

7 .6 .3 E x te n s ib i l i ty o f th e D is p la y

The HERCULE display is dynam ica lly extensible, so th a t the iden tifica tion o f a new user

feedback need can be accommodated. New HERCULE feedback components can be coded,

and added to the HERCULE display at runtim e. The top section o f the display, as shown in

Figure 7.21, w ill always be displayed, since i t provides the core fu n c tio n a lity o f the display.

A programmer can add a new feedback component, by coding a class which m ust extend the

HerculeComponent class. The inheritance hierarchy for a HERCULE feedback component is

shown in Figure 7.19.

The component could im plem ent e ither the H is to r y L is te n e r or the O u tcom eL is ten e r

interfaces, or both, depending on the notifica tions required. To add the component to the

Im plem entation 188

M H E R C U LE □LE]
File Hide Show Customise Advanced

System Readiness

Ready

Current Time

2:31 pm

Replay My Actions

H Successful A ction
| Fa iled A ction

Groups
of 100

A ction T im e
2 :30 pm

Groups
of 10

Current

Explanation of System Action

Find an accountw ith key X333-SV
Deposits £100.0 into account.

Figure 7.18: The User V iewing an Explanation o f a Previous Episode

java.awt.Panel

{abstract}

HerculeComponent

{interface}

HistoryListener

{interface}

OutcomeListener

Hercule
Component

Figure 7.19: S tructure for extending the PIERCULE Display

Implementation

[Jh e r c u l e

File Hide S how Customise Advanced

System Readiness

Ready

Current Time

5:38 pm

Replay My Actions

Successful Action
Failed Action

Action Time
5:38 pm

croups
of 100

Groups
of 10

Current

System Call Details

Time taken: 1372

METHOD: withdraw
PARAMETERS: 100.0
RETURN VALUE: 1079.0
Time taken: 250

Figure 7.20: The Extended HERCULE Console

U H ER C U LE •CTnUn
File Hide S how Customise A dvanced

System Readiness

a Finished

Current Time

2:57 pm

Replay My Actions

I Successful Action
| Failed Action

Action Time
2:38 pm

Groups
of 100

Groups
of 10

Current

Ftesponse Time

□
Successful Calls

100

Figure 7.21: The HERCULE Console showing the Support Panel

Implementation 191

points to the Episode for which feedback is cu rren tly being given in the vis ib le feedback

components. The Current D isplay label in F igure 7.16 po in ts to the h igh ligh ted rectangles

in the h is to ry panels, ind ica ting th a t the most recent Episode Ml-sequence explanations

would be displayed (i f any feedback components were v is ib le).

The user’s im m ediate feedback requirements w ith respect to in d iv id u a l Episodes, as

indicated by clicking on a block w hich represents a previous Episode, w il l be m et by dy

nam ica lly reflecting the feedback for th a t Episode in the in fo rm a tion displayed by each o f

the visib le feedback components. O n the console shown in F igure 7.18, the Episode actions

are explained as Deposits /lO O .O into account. T h is is no t the explanation o f the most

recent Episode Ml-sequence, since the h igh ligh ted rectangle is in the last bu t one position,

ind ica ting tha t the explanation belongs to the second last Episode.

7.7 Conclusion

The im plem entation described in th is chapter has produced a p ro to type o f the HERCULE

feedback enhancing framework. I t was mentioned in C hapter 5 th a t the general concept o f

such a framework required the use o f a language w ith introspective qualities. I t should be

clear from the discussion in th is chapter th a t these were indeed used extensively th roughout

th is project. The im plem entation was done using JD K 1.1.7, because the m iddle tie r server

used tha t version, and the 1.2 version was not available when im plem enta tion commenced.

The scheme for engaging the proxies makes use o f m an ipu la tion o f the CLASSPATH in

order to insert the proxies in to the system. T h is feature is used ra the r d iffe ren tly in JD K

1.2. P re lim inary tests have indicated th a t the hook provided by JD K 1.1.7 which facilita tes

the insertion o f the user interface proxy is s t i l l provided in 1.2. The on ly difference is th a t

JD K 1.2 expects to find any class w ith a name s ta rting w ith java, in a special place —

i.e. w ith in the rt. jar file provided by Sun. Since the ProxyToolkit must be pa rt o f the

java.awt package because a ll the methods in the abstract Toolkit class are protected
and cannot be invoked by a member o f another package, the on ly way to make use o f

the user interface proxy proposed in th is chapter is to add the ProxyToolkit class file to

the JD K rt. j ar file. Th is is tr iv ia l and, a lthough i t could be considered to v io la te the

non-intrusiveness aim, i t does not do so to an unacceptable extent.

Since the JNDI package is external, or add itiona l, to the core JD K , the CLASSPATH fa c ility

is used by the JV M to locate it , which means th a t the mechanism explained in th is chapter

can be used w ith o u t alterations.

A n a lternative to the CLASSPATH mechanism is the use o f a specialised class loader to

insert the proxies. Th is classloader can detect members o f specific classes, and substitu te

the proxy classes as required. Th is mechanism has been used by Welch and S troud [WS99]

in developing the ir Kava byte code transfo rm ation approach.

This chapter discussed the im plem enta tion o f the HERCULE pro to type. The fo llow ing

pa rt o f th is dissertation w ill evaluate the software and draw the fina l conclusions.

part V

Epilogue

It was the best of times, it was the worst o f times.

Charles Dickens. A Tale of Two Cities. 1890

Reason, or the ratio of all we have already known, is not the same

that it shall be when we know more.

William Blake. 1788

192

Basic research is what I'm doing

when I don't know what I ’m doing.

Wernher Von Braun

We have a habit in writing articles published in scientific

journals to make the work as finished as possible, to cover up

all the tracks, to not worry about the blind alleys or describe

how you had the wrong idea at first, and so on. So there isn't

any place to publish, in a dignified manner, what you actually

did in order to get to do the work.

Richard Feynman

chapter 8

Evaluation

The evaluation o f HERCULE proved to be the most d ifficu lt pa rt o f the research. Since th is

too l is so unlike other software development tools there is no obvious way o f evaluating it.

Even for standard tools, no w ide ly accepted systematic assessment m ethod exists [CMH92].

I f one is to prove the value o f HERCULE conclusively, there are various aspects o f HERCULE’s

use tha t should be evaluated. Eva luation is often done in a laboratory, and the resu lting

findings are essentially based on short-te rm user experience o f the tool. Laboratory-based

short-term evaluation is not the best way o f evaluating HERCULE because i t has the fo llow ing

shortcomings:

• Evaluation invo lv ing the use o f HERCULE by a num ber o f end-users would be the

ideal way to evaluate the HERCULE display. The need for HERCULE is deemed to

be greatest in complex systems, in which people are forced to learn how to use the

system in order to perform the ir duties. People who must use a piece o f software for

193

Evaluation 194

some reason are m otivated enough to overcome problems in understanding the system

and w ill s im p ly have to master it. Volunteers are not m otiva ted by th is need and i t is

unrealistic to expect i t o f them. I t is therefore d iffic u lt to set up an experim ent which

tests the efficacy o f HERCULE w ith in a short experim enta l period o f a h a lf hour, or an

hour, w ith a volunteer group. The app lica tion m ust be kept simple i f the user is to have

any chance o f m aking use o f i t w ith in the short period and the very s im p lic ity o f an

application which can be used in an experim enta l setting makes HERCULE somewhat

superfluous;

• Subjects in such an evaluation are subject to the Hawthorne effect, the tendency for

ind iv idua ls to respond pos itive ly to special a tten tion or a change in rou tine [M il94].

A ny increase in p ro d u c tiv ity and performance, or perceived ease o f use, can therefore

not be linked conclusively to HERCULE;

• One has to re ly on the subjects’ subjective evaluation o f th e ir workload, performance

and satisfaction w ith respect to the use o f the too l. Studies suggest th a t users often

do not report effects th a t they p la in ly do experience, e ither because o f a sense o f p ity

towards the developer o f the too l, or a sense o f ir r ita t io n w ith the entire evaluation

process, or because they find i t d iff icu lt to evaluate the ir experiences effectively [WSOO].

• F ina lly, there is always the need to test a too l such as HERCULE in a real life setting

rather than in a labora to ry in which the findings are not necessarily applicable to

authentic work s itua tions [And90].

The a lternative to short-te rm evaluation is to test HERCULE over the long te rm in an

industria l setting, so th a t the long-term benefits can be assessed. Aspects to be evaluated

would include the fo llow ing:

1. Chapter 3 has derived a classification o f d isrup tive events and m otivates the need

for user assistance in recovering from such events. I t is necessary to confirm the

correctness o f the classifications o f each o f the separate qu irks — error, in te rrup tions

and breakdowns. I t would also be useful to determ ine the cum ulative effect o f these

events on users’ w orking day. W h ile other researchers have studied these concepts in

isolation, a s tudy which considers a ll events together could be in teresting and would

either validate, or suggest changes to, the derived classifications;

2. Easing the process o f recovery from in te rrup tions in p a rticu la r is a subject th a t has not

received much a tten tion from researchers. I t is hoped th a t HERCULE w il l assist users in

recovering from in te rrup tions qu ick ly and w ith l i t t le e ffort, by rem ind ing them o f past

actions, thereby easing recovery o f context. In order to prove th a t th is is indeed the

case, i t is necessary to observe users recovering from in te rrup tions w ith and w ith o u t

HERCULE, and to tim e the recovery tim e. Previous studies suggest an unassisted

Evaluation 195

context recovery tim e o f up to 15 m inutes [vSBvL98]. A quan tita tive evaluation would

be able to show whether th is tim e is reduced by users using HERCULE;

3. The sociological im pact o f HERCULE is the aspect th a t w il l be most in teresting and

relevant to evaluate. M any people are in tim ida ted by th e ir computers. O ther veer

towards hate — and many become increasingly stressed as they a ttem p t to use th e ir

computer to carry out essential tasks du ring th e ir w ork ing day. I t is hoped th a t HER

CULE would have the effect o f reducing these negative emotions and increasing general

confidence in the com puter. Feelings w ith respect to p a rticu la r applications in p a rtic

u lar and computers in general can not be expected to change in the short te rm and

any change in a ttitu d e would have to be gauged over a period o f tim e. In determ in

ing the effect o f HERCULE it is im po rtan t for the evaluator to establish an amicable

re lationship w ith the user so th a t the user feels free to express displeasure or delight

w ithou t fearing disapprobation. Th is too, is not to be hurried , since re lationships take

tim e to bu ild up;

4. I t is hoped th a t HERCULE w ill be o f assistance to app lica tion programmers. The firs t

obstacle in evaluating th is is in overcoming the program m ers’ in it ia l reluctance to use

the tool, and then in gauging the ir reaction to it , and ascertaining whether HERCULE

is indeed easing the ir task. One could re ly to a certa in extent on a subjective evaluation

since programmers may feel positive enough about the too l to rate i t h ighly. However,

any subjective analysis is bound to be error-prone and the best test o f HERCULE

would probably come from an observable increased reliance on HERCULE during the

system development process and in consequent suggestions from program mers about

useful extensions to the tool.

As a consequence o f the above factors, i t was concluded th a t the long-term evaluation o f

HERCULE should be c ited as a top ic for fu tu re investigation. A short-te rm evaluation was

carried out, in spite o f its shortcomings, since any find ings as a result o f th is evaluation

would be helpfu l in ob ta in ing an in it ia l impression o f the reception accorded to HERCULE

by end-users and programmers. D ifferent approaches to evaluation are discussed in the fo l

low ing section. The m o tiva tion for the p re lim inary evaluation methods chosen for short-te rm

evaluation o f HERCULE are also given. Section 8.2 discusses the results o f the p re lim ina ry

evaluation. Section 8.3 concludes.

8.1 Current Approaches to Evaluation of Tools

M cK ird y and Gray [MGOO] po in t out th a t many tools are chosen based on m arketing mate

ria l, jo u rna l reviews or w ord-o f-m outh ra ther than by the use o f evaluation tools. E va luation

methods have been proposed for some classes o f tools, such as development environments,

user interface development tools or CASE tools. For example, Mosley [Mos92] has developed

Evaluation .196

a five-step m ethod to assist developers in selecting CASE tools. Her approach evaluates the

proposed too l according to: ease o f use, power, robustness, func tiona lity , ease o f insertion

and qua lity o f support. The too l is given a score, which indicates how well i t measures up in

each category. Mosley emphasises th a t the evaluation o f a to o l is on ly the t ip o f the iceberg

and th a t the use o f the to o l in the organisation is a much bigger issue.

M c K ird y and Gray [MGOO] introduce the ir S .U .I.T fram ework, w hich can be used to

evaluate the s u ita b ility o f user interface development tools. They evaluate the to o l according

to categories which take hum an resource and organisational context in to account. S .U .I.T

also considers the ease w ith w hich the too l can be integrated in to the exis ting w ork ing

practice.

Poston and Sexton [PS92] propose th a t software tools be evaluated according to various

c rite ria inc lud ing p ro d u c tiv ity gain, qua lity gain, organisational changes required, p la tfo rm

changes required, func tiona lity , response time, user friendliness and re liab ility .

HERCULE is the on ly to o l th a t is specifically designed to assist an app lica tion program

mer in p rov id ing feedback to the end-user. The agent im plem ented by R ich and Sidner

[RS97], described in Section 5.5.3, is the only other too l the au thor has located which does

something s im ila r, a lthough th e ir too l requires the app lica tion program m er to provide hooks,

which is not required by HERCULE. There can therefore be no comparison w ith o ther tools.

I t is im po rtan t to note th a t the evaluation o f HERCULE should also be in itia te d from

the perspective o f the end-product produced by the software development process. O ther

software development tools w ill be used exclusively by the program m er and, w h ile i t m igh t

be easier to produce the end-product — a working app lica tion , the end-user w il l no t have any

interest in, or knowledge of, the tools used to produce the software. HERCULE is somewhat

different, since the end-user w ill gain a d irect and v is ib le benefit from the program m er’s use

o f HERCULE during the software development life-cycle — to w h it, the HERCULE feedback

window. Thus i t is necessary to extend and m od ify the tra d itio n a l evaluation c rite ria to

include evaluation o f the end p roduct by the end-user in the evaluation process.

8.2 Preliminary Evaluation Results

For the purpose o f a p re lim ina ry evaluation i t was decided th a t HERCULE would be evaluated

from two d is tin c t perspectives. F irs tly in terms o f how the end-user (in any o f a num ber

o f roles) perceives and uses the HERCULE display. The second perspective is th a t o f the

programmer. Eva lua tion here must assess the im pact o f the HERCULE fa c ility on th e ir task

and determ ine whether i t helps or hinders. Some relevant evaluation c rite ria have been

selected from those proposed by Mosley [Mos92] and Poston & Sexton [PS92]:

1. End-user assistance — encompassing crite ria such as fu n c tio n a lity o f the HERCULE

display and the q u a lity gain (w ith respect to feedback). Section 8.2.1 w il l discuss the

evaluation o f HERCULE from the end-user’s perspective.

E v a lu a tio n ___ 197

2. Software development encompassing c rite ria such as ease o f use, robustness, func

tiona lity , ease o f insertion, p ro d u c tiv ity gain, organisational changes required and

re liab ility . Section 8.2.2 w ill discuss how the HERCULE fram ework can be used by the

application program m er. The evaluation o f HERCULE by app lica tion programmers

w ill also be described.

3. Performance impact — evaluation o f HERCULE in terms o f its effect on app lica tion

performance and robustness. Since th is d id not f it neatly in to e ither o f the above

categories, Section 8.2.3 w ill describe the results o f the performance evaluation.

8 .2 .1 U s e r N e e d s

The first prototype o f the HERCULE display was tested by eight subjects. The subjects were

specifically chosen as being com pute r-illite ra te , since it was felt th a t the use o f com puting

science students for th is type o f experim ent would produce an unrealistic result. A very

sim ple application was used, which allowed users to carry out sim ple banking transactions

on various accounts. The choice o f a banking app lica tion was made because o f the fa m ilia r ity

o f the general populace w ith th is type o f com puter app lica tion and because it consequently

d id not in tim ida te the subjects. The app lica tion interface was fa ir ly sim ple and allowed the

user to click on buttons to make choices o f the type o f banking transaction — opening or

closing an account, depositing or w ithd raw ing funds. Inpu ts were provided by means o f tex t

fields. The fo llow ing results were obtained:

1. Various errors were de libera te ly generated th roughout the experim ent and the users

were observed dealing w ith the errors. Users also spontaneously made unforced errors

which enriched the experim ent considerably. They d id handle the errors be tte r when

the HERCULE display was v is ib le and seemed more confident and relaxed when they

understood the problem.

HERCULE CONSOLE HERCULE CONSOLE

Session History Session History

Last Action:

S ys te m S ta tus:

Last Action: E rror Explanation

S ys te m S ta tus :

C an ’t Connect

Figure 8.1: The In itia l Display

Evaluation 198

2. Users were asked d ire c tly whether they fe lt th a t the d isplay had been he lpfu l. In

retrospect th is was unwise, since they almost a ll fe lt obliged to be com plim entary

about it. W hen asked to rate the ir performance w ith and w ith o u t the HERCULE

display, the m a jo rity rated th e ir performance as being be tte r with the display. Th is

too, was suspect, due to the previously mentioned Hawthorne Effect.

3. The in it ia l pro to type feedback display, shown in F igure 8.1, required the user to click

on a b u tto n to get an exp lana tion o f the error and th is caused some ir r ita t io n in at

least one o f the subjects, who wanted the exp lana tion offered w ith o u t having to go

looking for it.

The firs t pro to type provided the user w ith archival feedback in the form o f a table,

as shown in Figure 8.2, w ith clickable bu ttons beneath the “ A c tio n ” and “E ffect”

headers to give users more in fo rm a tion about the ir actions, and the corresponding

system response. The e ffort required by the user to get a t the needed in fo rm a tion

caused the same ir r ita t io n as mentioned above. The tab le is also c learly not scalable

and was not a good solution.

S E S S IO N H IS T O R Y

T IM E A C T IO N E F F E C T S U C C E S S /
F A IL U R E

3:01
Find
B ook M o re ... S U C C E S S

3 :0 5 S e a rc h M o re ... S U C C E S S

3 :1 5 O rd e r
M o re ... S U C C E S S

3 :1 6 S ub m it M o re ... F A IL U R E

Figure 8.2: The Initial Session History Display

The conclusions which can be draw n from the users’ reactions to th is d isplay underline

the findings described in C hapter 4. Users s im p ly do not want to spend tim e looking for

answers to questions. They want the in fo rm a tion to be d ire c tly available — supporting

an increasingly like ly “ s itua ted action” mode o f operation. T h is experience led to the

form at o f the present display (F igure 8.3), which gives an explanation o f the most

recent a c tiv ity spontaneously w ith o u t any effort on the p a rt o f the user.

4. I t was also noted tha t users often d id not detect errors, even though they were being

reported by the app lica tion in the form o f error messages. T h is led to the inclusion

o f the optiona l beep feature in to the HERCULE display — which alerts users to the

occurrence o f an error. I t is op tiona l because i t m igh t no t be suitable in a noisy

environment to use a beep, or the user’s aversion to a beeping noise may negate the

positive effects o f the beep.

E valuation 199

H H E R C U L E g | * l
File Hide Show Customise Advanced

System Readiness

Ready

H Successful A ction
Fa iled A ction

Current Time

2:31 pm

Replay My Actions CuIle„,

A ction Tim
2:30 pm

□ sGroups
of 100

Groups ■ 0
of 10

Explanation of System Action

- }Find an account with key X333-SV
Deposits £100.0 into account.

Figure 8.3: The Revised Session H istory Display

The experim enta l use o f HERCULE was obviously valuable in discovering problems w ith the

display, but there was s t il l a feeling of unease w ith respect to the fact tha t the s im p lic ity

o f the app lica tion made the HERCULE display less useful than it could be. Th is led to the

decision not to repeat the experim ent w ith the latest HERCULE display, bu t ra ther to rely

on a func tiona l evaluation o f the features offered. T h is w ill be addressed in the fo llow ing

sections.

8 .2 .1 .1 F eedback

Im m e d ia te F eedback

The im m ediate feedback w ill be evaluated according to the features listed in Section 4.5.2.

1. System state ind ica to r - HERCULE provides a continuous feedback mechanism in the

form o f tra ffic lights. The lights are green when the system is idle and w a iting to be

used. The lights are orange when the system is busy servicing a request and red when

the system has broken down and cannot be used. The tra ffic lights were used because

2% o f the popu la tion is co lour-b lind and it is not sufficient to have an ind ica to r which

is e ither red, green or orange. The tra ffic ligh t s truc tu re is universally recognised and

even co lour-b lind people wall have no d iff icu lty in te rp re ting it. T raffic lights are also

Evaluation .200

used throughout the w orld , and w ill be read ily assim ilated by a ll cultures and across

language barriers. A no the r he lp fu l ind ica to r o f system state is the tim e display.

2. Explanations — The HERCULE provides a spontaneous explanation o f the system’s

actions as a result o f the user’s actions. T h is is provided in the form at preferred by

the user, so tha t the feedback provided to programmers w il l be very d ifferent from

tha t provided to the end-user or system support person. Th is feedback can also be

ta ilored to suit users’ pa rticu la r language o f choice or mode o f com m unication.

3. Making visible what is often invisib le — The effects o f actions are made visib le, by

means o f the above-mentioned explanations. In the absence o f such feedback, the user

can only guess at w hat the system d id as a result o f th e ir inputs.

A rc h iv a l Feedback

1. M enta l aids — provided by the context bu ild ing fac ility , which perform s an action

replay and enables reconstruction o f the m ental context surrounding a specific task.

2. In ter-re ferentia l links — provided by the overall h is to ry display. HERCULE presents

an overall display o f the session h is to ry which g raph ica lly depicts Episodes — each

being a direct lin k between actions taken and the success or fa ilu re o f system a c tiv ity

precip itated by those actions. Th is “overview and zoom” technique allows the user to

get in form ation about previous actions and the ir effects.

8 .2 .1 .2 Q u irk s

Chapter 3 described what were called quirks, those things which interfere w ith “ norm a l”

execution o f a task. The characteristics o f the three sub-groups o f qu irks were described

and the ir effects on the user explored. The fo llow ing sections expla in how HERCULE can

alleviate the negative effects o f quirks.

E r r o r

Section 3.5 described error in some detail. W hile HERCULE cannot prevent errors, i t can

ease the detection of, understanding of, and recovery from , errors:

• E rro r detection — HERCULE could go some way towards reducing the tim e elapsed

before the error is detected, by p rov id ing feedback about actions taken. In fo rm a tion

about inputs given and results obtained from the server are a ll recorded and can

be accessed by the user. There is a flaw in th is though, because the user who has

made th is type o f error has no reason to confirm an action unless some feedback

mechanism, or some difference in the state o f the app lica tion , makes evident the

fact th a t something has gone wrong. Enhancing feedback by d isp laying a w indow

containing a confirm atory message after the action has completed would help reduce

Evaluation .201

the occurrence o f th is state, b u t HERCULE’s non-invasiveness p rope rty prevents th is

course o f action.

Since users do not always see error messages, HERCULE can assist by p rov id ing visual

and audio feedback about the success or fa ilu re o f an action. Non-detection o f th is

type o f error state is not as damaging as i t is fo r undetected errors, since the data

store has not been affected.

The Episode display colour indicates the presence o f an error by d isp laying red and

by beeping, unless the user chooses to deactivate the beep feature. The use o f colour

was discovered not to be sufficient in HERCULE's firs t end-user evaluation, and th is

influenced the decision to incorporate an op tiona l beep-upon-error fac ility . I t is pos

sible to flash an error message w indow, b u t there is a need to proceed carefu lly since

the user should not be annoyed any more than they w il l be already by the presence o f

an error.

• E rro r understanding — There are two aspects involved in m aking the problem clear

to the user:

1. the firs t is a rem inder o f what the person did, and

2. the second is an explanation o f w hat the system d id as a result o f the action.

HERCULE provides a sm all rectangle, as p a rt o f the session h istory, representing th is

link , while the in fo rm a tion about either the user actions or the system actions can be

obtained w ith ease.

• E rro r recovery — Once users understand the nature o f the error, and th e ir pa rt in

causing it , the next step is to assist them in recovering from the error. They should

be able to work out w hat steps to take in ge tting the app lica tion to the state they

intended. HERCULE reduces cognitive under-specification [Rea90] according to the

guidelines given in [RPM B96]:

1. Make the action perceptible — HERCULE links the action to the effect. The users

can lin k the ir inputs to the system’s actions and th is should help them understand

why the error occurred.

2. Display message at high level — explanations o f e rro r are given in terms o f the

user’s intentions.

3. Provide an ac tiv ity log — provided by the archival feedback fac ility .

4. A llow comparisons — not supported.

5. Make action result available to user evaluation — provided by means o f the

archival fac ility .

6. Provide result explanations — the results o f the m ethod invocations are explained.

Evaluation .202

In general terms, HERCULE should assist the user to b u ild up an in te rna l model o f how the

system works, enabling them to move more qu ick ly tow ard the skill-based level o f perfor

mance. Table 3.1 shows th a t i f the tim e taken to resolve an error can be reduced, i t w il l

d irec tly reduce the negative emotions experienced by the user. HERCULE seeks to reduce

th is tim e by explaining system actions so th a t the user does not have to puzzle about th ings

for too long and get annoyed.

Interruptions

The biggest problem caused by in te rrup tions, as explained in Section 3.6, is the re-establishment

o f the context a fter an in te rrup tion . The user w ill o ften not go back to the o rig ina l task bu t

resume another task altogether — often w ith disastrous results1.

Chapter 4 introduced Suchman’s [Suc87] s itua ted action theory, which presents the case

th a t users tend to respond to th e ir current circumstances ra the r than fo llow ing a r ig id plan.

Once the user has lost context, i t often does not help to look at the last w indow displayed

by the application. W hen using a browser i t is a sim ple task to backtrack over the browsing

pa th to check previous states. I f th is were not available, they may remember w hat they

were doing, bu t w ill often have d ifficu lty doing so. ,

Users need to be supported in linearising the ac tiv ities o f the ir regular w ork ing day and

in dealing w ith unexpected in te rrup tions. To help w ith th is, a software app lica tion should

fac ilita te the rebu ild ing o f the lost context so th a t the user remembers the circumstances

which existed, w ith respect to the application, before the in te rrup tion .

Since the user’s in te raction w ith modern com puter systems is essentially based on recog

n ition , ra ther than recall, and is intensely visual, i t would be less than o p tim a l to t r y to

describe a set o f user or system actions in a tex tua l fo rm at. Therefore, to assist the user in

rebu ild ing the mental context a fter an in te rru p tio n HERCULE provides an action replay o f

the user’s in teraction w ith the app lica tion — up to the p o in t o f the in te rrup tion . Since the

o rig ina l circumstances were established based on the recognition o f certa in w indows on the

screen, the reconstruction o f th is state is fac ilita ted , and eased, by visual means as well.

Breakdowns

Section 3.4 discussed breakdowns and identified four possible breakdown locations:

1. The end-user computer its e lf— the crash o f the entire com puter w ill mean th a t HER

CULE w ill cease execution too. O n ly i f the session h is to ry is made persistent can i t be

useful in such a case.

2. An application on the end-user computer — errors generated as a resu lt o f communica

tion between the a component-based app lica tion and the rest o f the component-based

1 It is a rare person who has never allowed the bath to overflow or the supper to burn!

Evaluation .203

system w ill always be signaled by exceptions. HERCULE w ill provide a user-friendly

explanation o f the error, ra ther than confronting the user w ith an exception p rin to u t.

3. The network — th is could be signaled by a lack o f response. HERCULE times responses,

tries to find out w hat is wrong and provides an explanation.

4. The application server a n d /o r data store — th is w ill present as e ither an un lim ited

delay, which w ill be handled as network errors are handled — or by an exception,

which w ill be handled as an app lica tion error.

HERCULE provides continuous feedback to keep the user in form ed about the state o f the

entire component-based application. Th is w ill help the user to iden tify errors outside the

scope o f the ir own computer. The current Task Manager fa c ility offered by W indows oper

a ting systems offers the useful fa c ility for being able to ascertain th a t applications on one’s

own machine are not responding. HERCULE attem pts to provide th is fa c ility fo r applications

outside the user’s machine. There is, as yet, no way fo r HERCULE to detect app lica tion ,

hardware or software faults.

8 .2 .2 C o m p o n en t-B a sed S y ste m D e v e lo p m e n t an d M a in ten a n ce

Section 2.5 pointed out th a t component-based development is a re la tive ly new fie ld and

th a t it is logical to expect the development process to change and m ature as component-

based development becomes the order o f the day. The program m er’s task is thus not clearly

defined at present. HERCULE seeks to support program mers in th e ir efforts to produce a

good product in w hat is becoming an increasingly complex environm ent. The 21st century

programm er has a much more complex task and the concepts which must be mastered are a

world removed from those o f the program m er o f the last two decades. The fo llow ing section

w ill explain how HERCULE assists the program m er in p rov id ing feedback, w h ile Section

8.2.2.2 summarises a program m er’s experience w ith HERCULE.

8.2 .2 .1 P ro g ra m m e r N eeds

Section 5.1.1 concluded th a t programmers are not often tra ined to provide good user in

terfaces and th a t for a number o f reasons the feedback provis ion by programmers seems

doomed to be inadequate. The HERCULE fram ework acknowledges th is and seeks to make

the task easier for the programmer. Programmers must pa rtic ipa te in ta ilo rin g messages for

the end-user, by means o f one o f the HERCULE tools and th a t is the ir on ly con tribu tion .

In re tu rn for th is small investment, programmers get help in debugging programs, since

the framework times responses and displays in fo rm a tion about m ethod invocations and

server replies. They also save tim e in generating user-friendly error messages w ith in the ir

programs, since the fram ework w ill do th is for them.

Evaluation .204

The focus in th is research has been the s im p lifica tion o f the program m er’s task, since

i t is my understanding th a t they have more than enough to do in program m ing the core

system functiona lity .

8 .2 .2 .2 P ro g ra m m e r E x p e r ie n c e w i t h HERCULE

There are two ways to evaluate th is type o f software, from the program m er’s perspective:

1. objective evaluation by a num ber o f programmers. The au th o r’s approaches to indus try

were met w ith po lite refusals. I t could have been th a t companies were afra id to

demonstrate th e ir use o f technology to an outsider, which is understandable in the

cu t-th roa t software indus try o f today. The ever prevalent deadlines in th is indus try

which considers 3 m onth plans to be “ long-term ” p lann ing, make the poss ib ility o f

testing tools in a real w orld environm ent ra the r unlikely.

Faced w ith th is b rick wall, the other option , th a t o f using student programmers w ith in

the U niversity to test the software, was attem pted, w ith l i t t le success. I t proved to be

extremely d ifficu lt to find enough programmers w ith the required expertise w ith in the

University. A n a ttem p t was made to interest the MSc class, bu t, when faced w ith the

steep learning curve required to develop an app lica tion using EJBs the students were

unw illing to partic ipa te . There is also the d ifficu lty o f persuading students to pu t a

lo t o f effort in to a p ro ject for which they are not earning credits.

2. subjective evaluation by one or two programmers. W h ile not the perfect solution, th is

proved to be the on ly workable evaluation m ethod and was thus the approach followed.

The fo llow ing discussion addresses the experience o f HERCULE as obtained v ia an in terv iew

w ith a programmer who used i t to develop a th in c lient fo r a CBS. The general feedback

can be summarised as follows:

• He enjoyed the fact th a t he d id not have to do anyth ing special for HERCULE to

work. He could program in his own style, using his own mechanisms, w ith o u t w orry

ing about HERCULE. T h is meant th a t the “ease o f insertion” c rite ria scored highly.

Since no extra e ffort was required to fac ilita te HERCULE’s function ing, there was to ta l

programmer “ease o f use” .

• The custom isation was easy to use, as he found th a t i t took very l i t t le tim e — scoring

high on end-user “ease o f use” .

• HERCULE d id not crash. (Th is robustness was p a rticu la rly encouraging)

• He fe lt tha t the HERCULE feedback component w h ich displayed details o f method

invocations raised his p ro d u c tiv ity since he d id not have to track his own app lica tion

and p r in t the details out himself.

Evaluation .205

He suggested some changes which were incorporated in the fina l version:

1. the need for more in fo rm ation about exceptions was expressed. A t th a t stage HER

CULE d id not include any in fo rm ation about the m ethod invocation causing the ex

ception, in the exception explanation.

2. the tim e taken by the method invocation, i f inc luded in the program m er feedback

component display, was seen to be very helpful.

3. a change to the h igh ligh t mechanism was suggested. The HERCULE display cu rren tly

uses the h igh ligh ting technique suggested by the program m er. The previous display

used a triangle to indicate the current Episode and he qu ite r ig h tly po in ted out the

inconsistency th is caused.

8 .2 .3 P erform an ce Im p a ct

I t is very im portan t th a t the presence o f HERCULE should not affect app lica tion performance

unacceptable Since HERCULE inserts proxies between the app lica tion and the user interface,

and between the app lica tion and the rest o f the CBS, we can expect any performance

degradation to take place:

1. when the user interface proxy is being loaded, since an extra level o f ind irection is

being introduced;

2. when the in it ia l connection w ith the server is being forged, since th is is where the

server proxy w ill be introduced;

3. whenever a new w indow is being constructed; and

4. when global methods are invoked on d is tribu ted components. Tw o types o f methods

need to be considered independently, methods w hich w il l require action by the com

ponent container and methods on the component itse lf. The form er n a tu ra lly take

longer than the la tte r to process.

A p re lim inary s tudy o f performance differences was undertaken, by runn ing the example

app lica tion twenty times bo th w ith and w ith o u t HERCULE. The client com puter used was a

Pentium 166, not exactly the leading edge o f com puting technology, and the figures should

therefore be seen as a “worst-case scenario” . W here effects were observed, the results are

shown, in seconds taken for each activ ity , in Table 8.12.

I t is clear tha t the user w ill have to pay a pena lty fo r using HERCULE. I t would be

unreasonable to expect otherwise. The entire insurance in d u s try is based on the “present

pain, fu ture gain” princ ip le . Shneiderman [Shn98] cites research which shows th a t modest

2There was no discernable effect when new windows were constructed, with only the time taken for the
initial window being affected.

Evaluation .206

Action W ithout Proxies W ith Proxies

Display o f In it ia l A pp lica tio n W indow 1.44 2.45

In it ia l C ontact w ith Server 5.92 8.73

Container M ethod Invocation 1.40 1.56

Component M ethod Invocation 0.25 0.54

Table 8.1: Time taken for core activities

va ria b ility in response times is deemed by users to be acceptable. I f users see the benefits o f

using HERCULE, they w ill hopefu lly be prepared to pay the sm all pena lty o f s lig h tly longer

response times, fo r the fu tu re gain o f having in fo rm ative and extensive feedback available.

8.3 Conclusion

The evaluation o f HERCULE is by no means completed. I have cited i t as a top ic for fu tu re

research in Chapter 9. The evaluation o f th is type o f specialised software too l w il l be no

small task, since the w orld o f component-based systems is a re la tive ly young fie ld, and the

skills required to operate as a program m er in th is area are not yet com m only found.

However, such evaluation as has proved possible has indicated th a t HERCULE does con

vey some benefits to end-users and app lication programmers alike. End-users experience

improved feedback while programmers find i t easy to use, and find th a t i t assists in app li

cation development by au tom atica lly tracking the application. Performance is somewhat

affected, bu t not in such a way th a t the end-users w ill be s ign ifican tly disadvantaged. I look

forward to pursuing th is line o f research in the fu ture .

/ am sorry that I have had to leave so many problems

unsolved. I always have to make this apology, but the world

really is rather puzzling and I cannot help it.

Bertrand Russell.

"The Philosophy of Logical Atomism,” Lecture V

chapter 9

Conclusion

9.1 Reiteration of Thesis Statem ent

I subm it tha t feedback can be enhanced in a d is trib u te d component-based system by exe

cuting the application w ith in a generic feedback enhancing fram ework. I fu rth e r subm it th is

supports the user: f irs tly in understanding the app lica tion , secondly in recovering from er

rors, and th ird ly in rebu ild ing m ental context a fte r in te rrup tions. The fram ework standard

ises feedback provision, sim plifies app lica tion code, allows continuous post-im plem enta tion

refinement o f explanatory messages and promotes reuse.

9.2 Summary of Research

This dissertation started o ff by draw ing a comparison between hum an-to-hum an conversa

tion and hum an-to-com puter in teraction , and concluded th a t the a b ility o f com puter ap

plications to generate a shared context w ith the user needed to be enhanced. T h is con

clusion was based on personal experience, w ith m any professional people who happened to

be com puter-illite ra te , vast amounts o f anecdotal evidence and the prevalence o f web-sites

and newspaper columns exp la in ing the behaviour o f com puter applications and in te rp re ting

error messages for the benefit o f perplexed end-users.

207

Conclusion .208

The in troduction stated the au th o r’s in ten t to explore the enrichm ent o f the tra d it io n a l

feedback provided by applications to enhance the in te rp re ta b ility o f applications and pro

vide an explanatory bridge between the app lica tion program m er and the end-user. I t is

abundantly clear from the applications in use today th a t the provision o f feedback is sadly

neglected. Current techniques clearly needed to be re-examined and a new approach found.

Component-based systems are being used increasingly in a ll types o f systems and in

these systems the poss ib ility th a t the user w ill receive adequate feedback is even sm aller

than usual. The nature o f component-based systems was explored, w ith Chapter 2 p rov id ing

an overview o f the current state o f th is technology.

W hile users m ight have problems in using these systems when th ings are proceeding as

planned, they could have even more problems i f something interferes e ither w ith th e ir con

centration or execution o f the task. The nature o f the various events which could interfere

w ith stra ightforw ard execution were studied and a classification o f quirks , w h ich encom

passed a ll such events, was derived. Q uirks can be e ither breakdowns, hum an errors or

in te rrup tions. The characteristics o f each type o f q u irk were explored in depth in C hapter

3.

The lite ra tu re w ith respect to feedback was studied and the conclusion drawn th a t feed

back could be e ither immediate or archival. Each type meets d ifferent needs — im m ediate

feedback assisting the user in understanding the rules o f discourse, and archival feedback

m aking the app lica tion state visible. Th is boundary is not absolute ly rig id , w ith im m ediate

and archival feedback fu lf illin g the o the r’s function as well. W h ile feedback can be very

useful when everyth ing proceeds according to p lan, i t becomes even more essential when

something goes wrong, or in te rrup ts the user’s in te raction w ith the app lica tion . The use o f

feedback to alleviate these negative effects was investigated. The find ings w ith respect to

feedback were given in Chapter 4.

Having thereby m otiva ted the need for an add itiona l and augm entary user-programmer

com m unication mechanism, an approach was developed which provides the end-user w ith

a run tim e feedback assistant, named HERCULE, which can also be used as a software-

development too l to ease the program m er’s task. Th is approach combined established

techniques o f app lica tion tracking, separation o f concerns and v isua lisa tion to provide the

end-user w ith a v isua lisa tion o f app lica tion a c tiv ity (described in Chapter 5). The design

and im plem entation o f th is to o l was discussed in Chapters 6 and 7. Th is unique form

o f feedback — app lica tion a c tiv ity v isua lisa tion — augments the feedback provided by a

component-based app lica tion , so th a t the end-user is assisted in understanding and using

these applications, as discussed in Chapter 8. T h is is expected to satisfy many o f the user’s

feedback needs, as has been suggested by in it ia l usab ility tests. The approach applied, and

mechanism developed, du ring the course o f th is research is applicable to a w ide range o f

end-user applications. Thus, a lthough th is d issertation has concentrated on the provis ion o f

th is framework in the context o f component-based systems, its scope is fa r w ider, and can

be applied as such.

Conclusion .209

To conclude, th is d isserta tion has shown th a t i t is feasible to provide feedback, using

a com bination o f separation o f concerns and app lica tion tracking, as a v isua lisa tion o f the

app lica tion a c tiv ity and has developed in it ia l evidence to s trong ly suggest th is w il l often be

beneficial to bo th app lica tion developers and end-users.

9.3 Thesis Contribution

The contributions o f th is d issertation can be enumerated as follows:

1. A summary o f the large and vo la tile fie ld o f component-based systems, a fie ld which

does not easily lend itse lf to scientific analysis. Th is is due to changing names, d iffe r

ent meanings a ttr ib u te d to the same names, prevalence o f books which are designed

for managers ra the r than engineers and scientists, and m arketing ja rgon. Chapter 2

describes how components have evolved, explains issues w ith respect to component-

based development and gives a b rie f overview o f the prom inent component models in

use today.

2. A classification o f quirks, those diverse events which interfere w ith our everyday ex

ecution o f tasks. Each type o f q u irk — error, in te rrup tions, and breakdowns — was

analysed and classifications derived. F ind ings w ith respect to qu irks were given in

Chapter 3.

3. M o tiva tion for the extension o f the tra d itio n a l concept o f feedback to include archival

feedback as well as im m ediate feedback. A case was also made for the due consideration

o f the use o f graphical feedback ra ther than solely te x tu a l descriptions. The need

for custom isab ility o f feedback to meet the needs o f d iffe rent types o f users or users

function ing in different roles was also addressed. Feedback was discussed in Chapter

4.

4. A review and organisation o f several no rm a lly unrelated areas o f research — separation

o f concerns, app lica tion track ing and v isualisation — in to one fram ework for fu tu re

reference, in Chapter 5.

5. M o tiva tion for trea ting feedback as a separate concern and for im plem enting th is

separation by means o f app lica tion tracking, also in C hapter 5.

6. Development o f a model o f app lica tion ac tiv ity , nam ely Episodes, to be portrayed as

being representative o f the a c tiv ity o f the app lica tion , and m o tiva tion fo r p rovid ing

feedback graphically.

7. A pro totype im plem enta tion o f the proposed fram ework, which tests the v ia b ility o f

the proposed scheme and provides a v isualisation o f the a c tiv ity o f the application,

described in Chapters 6 and 7.

Conclusion .210

8. A design pattern, nam ely the “ M in im a l Im pact P roxy” pa tte rn , was developed to be

re-used in ensuring th a t proxies do not im pa ir app lica tion performance more than they

should. Th is is discussed in Section 6.2.1

9.4 Future Research

The author echoes the sentiments o f B ertrand Russell in feeling th a t many issues have been

le ft unsolved. I t is some consolation th a t th is is the nature o f research and th a t i t does give

one many opportun ities for fu rth e r work. The fo llow ing opportun ities for fu tu re research

have been identified:

1. Enhanced query fa c ilit ie s fo r the display. The display as i t stands does not offer

many opportun ities for e ither grouping o f s im ila r Episodes, or searching for a specific

Episode, or characterising Episodes as one o f a certa in type. Since the display is

essentially a type o f v isua lisa tion these fac ilities w ill have to be provided i f HERCULE

is going to be a m eaningfu l too l.

2. L ink to knowledge base to explain errors. Dellarocas [Del98] has developed a scheme

whereby a knowledge base is established which builds up a collection o f explanations

o f errors. Th is would take some o f the effort out o f defin ing the reasons for exceptions,

and assist the program m er, since the same explanation could be used th roughout the

application.

3. Incorporating fa u lt tolerance. Huang and K in ta la [HK93] have worked on an add-on

fau lt tolerance mechanism which is w ide ly used w ith in th e ir organisation (B e ll Labs).

This could conceivably be harnessed by HERCULE. For example, HERCULE could be

used to detect the fa ilu re o f a pa rticu la r server and n o tify a specified person so th a t

the problem can be resolved in as li t t le tim e as possible.

4. F u ll evaluation o f HERCULE, which is necessary to con firm conclusively the many

benefits o f HERCULE bo th to the end-user and programmer. I t is not absolute ly

clear how th is evaluation should be done, since th is to o l is a new concept in software

development. I t w ould be interesting to work w ith researchers in the evaluation fie ld to

arrive at a comprehensive evaluation m ethod and thereby be able to assess HERCULE

comprehensively.

5. I t would obviously be very he lp fu l for HERCULE to keep a perm anent record o f session

activity. Th is w ould be very he lp fu l for aud iting , security purposes etc.

6. I t has been suggested th a t i t would be he lp fu l i f HERCULE could run on a remote m a

chine, so th a t a system support person could m on ito r the performance o f a p a rticu la r

app lication on a p a rticu la r machine from th e ir own office.

Conclusion .211

7. The mechanism used to insert Java proxies opens up a host o f questions about the

safety and security o f Java applications, which I look forw ard to investigating in more

depth in the fu ture .

8. The HERCULE concept could easily be adapted to func tion as a m o n ito r o f user

interface usability. I t could be used to check which parts o f the dialogue were used

regularly, which were ignored, and which were seldom invoked. Instead o f supply ing

the user w ith an a c tiv ity v isualisation, HERCULE could be ta ilo red to w rite such

in fo rm ation to files so th a t i t could be analysed by the usab ility engineer.

— The End —

part VI

Appendices and Bibliography

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started.

T S Eliot. 1944

212

A p p e n d i x A

Glossary

A ctiveX — C O M based visual desktop components integrated in to applications.

A N S A — Advanced Networked Systems Architecture.

A P I — Application Program m er Interface.

C B D — Component Based Development. The process o f designing and developing a system

using p re -bu ilt components.

CBS — Component Based System. The system b u ilt using components.

C O M — Component Object Model. M ic roso ft’s component model.

C O R B A — Common Object Request B roker Architecture. The component model specifi

cation delivered by the O M G .

CVC — Component Vendors Consortium. A n organisation which seeks to standardise

technical support and docum entation o f components.

DBM S — Database Management System.

D C O M — Distribu ted COM. A n extension o f C O M which allows components to reside on

different machines.

D T C — Distributed Transaction Coordinator. Ensures consistency in the face o f m u lt i

database transactions.

213

Glossary .214

EJB — Enterprise Java Bean. Sun’s component model.

G U I — Graphical User Interface.

H C I — Hum an Computer In teraction .

H T M L - Hypertext M arkup Language. F o rm atting language used by Web Documents.

ID L — Interface D e fin ition Language. Defines component interfaces.

H O P — In te rne t In te rO R B Protocol. P rotocol for d ifferent ORBs to in teroperate.

IP C — In te r Process Comm unication. P ro toco l fo r applications to com m unicate by means

o f sockets.

IR — Interface Repository. R epository o f component interfaces used by C O R B A .

JN D I — Java Nam ing and D irecto ry Interface. Nam ing service for the E JB standard.

JTS — Java Transaction Service. Transaction m on ito r fo r Sun’s EJB.

JV M — Java V irtua l M achine. The portab le v ir tu a l machine for app lications w r itte n in

the Java language.

M TS — M icrosoft Transaction Server. Component-oriented m iddleware fo r CO M .

O C X — 32 b it version o f V B X .

O LE — Object L ink ing and Embedding. F irs t M icrosoft components.

O M G — Object Management Group. A u thors o f the C O R B A standard.

O RB — Object Request Broker. C O R B A pro toco l for in te rac ting w ith rem ote objects.

O T M — Object Transaction M on ito r. A no ther te rm ino logy for component-oriented m id

dleware.

OTS — Object Transaction Service. C O R B A ’s specification fo r d is tr ib u te d transactions.

PC — Personal Computer.

R M I — Remote Method Invocation. A llows m ethod invocations o f remote objects in the

same way as is done locally.

RPC — Remote Procedure Call. Procedure ca ll p ro toco l im plem ented fo r client-server

architectures.

T P M — Transaction Processing M on ito r.

U R L — Universal Resource Locator.

Glossary___ 215

V B X — V isual Basic Controls (app lica tion -in te rna l components).

X M L — Extensible M arkup Language.

A p p e n d i x B

Minimal Impact Proxy Design
Pattern Code

P r o x y C o d e F ra g m e n t

The setting u p of the lin k to the R e p o r t e r Q u e u e is demonstrated in the fo llow ing code:

R e p o r t e r Q u e u e q u e u e ;

p u b l i c P r o x y O {

q u e u e = n e w R e p o r t e r Q u e u e () ;

q u e u e T h r e a d = n e w T h r e a d (q u e u e) ;

q u e u e T h r e a d . s t a r t () ;

} / / c o n s t r u c t o r

R e p o r te r Q u e u e C o d e F ra g m e n t

p u b l i c c l a s s R e p o r t e r Q u e u e e x t e n d s T h r e a d {

/ / T H E T A R G E T F O R A L L O U R R E P O R T S

216

Interaction M onitor Design Pattern Code .217

R e p o r t e r r e p o r t e r T o B e N o t i f i e d ;

/ / o t h e r v a r i a b l e s

p u b l i c R e p o r t e r Q u e u e () {

/ / s t a r t u p t h e c o m m u n i c a t o r o b j e c t

r e p o r t e r T o B e N o t i f i e d = n e w R e p o r t e r (t h i s) ;

T h r e a d r e p o r t e r T h r e a d = n e w T h r e a d (r e p o r t e r T o B e N o t i f i e d) ;

r e p o r t e r T h r e a d . s t a r t () ;

/ / w a i t t i l l t h e t h r e a d i s a l i v e a n d r u n n i n g

w h i l e (! r e p o r t e r T h r e a d . i s A l i v e O) ;

} / / c o n s t r u c t o r

p u b l i c v o i d r u n () { } / / r e q u i r e d t o i m p l e m e n t R u n n a b l e

p u b l i c s y n c h r o n i z e d v o i d a d d I t e m (R e p o r t e r Q u e u e I t e m n e w l t e m) {

/ / A D D A NEW R E P O R T E R Q U E U E I T E M T O T H E q U E U E

/ /
/ / t e l l t h e w a i t i n g t h r e a d s o m e t h i n g i s i n t h e q u e u e

r e p o r t e r T o B e N o t i f i e d . w a k e U p O ;

} / / a d d l t e m

} / / R e p o r t e r Q u e u e

R e p o r te r C o d e F ra g m e n t

p u b l i c c l a s s R e p o r t e r e x t e n d s T h r e a d {

s t a t i c b o o l e a n v e r b o s e = B o o l e a n . g e t B o o l e a n (" v e r b o s e ") ;

R e p o r t e r Q u e u e q u e u e ;

s t a t i c b o o l e a n r e p o r t E v e n t s = t r u e ; / / r e p o r t t i l l f a l s e

s t a t i c j a v a . n e t . S o c k e t s o c k e t ;

s t a t i c j a v a . i o . O u t p u t S t r e a m o u t S t r e a m ;

s t a t i c j a v a . i o . O b j e c t O u t p u t S t r e a m o b j e c t O u t ;

p u b l i c R e p o r t e r (R e p o r t e r Q u e u e r q) {

q u e u e = r q ;

s e t O u t p u t S t r e a m O ;

} / / c o n s t r u c t o r

p u b l i c s y n c h r o n i z e d v o i d w a k e U p O { n o t i f y Q ; }

p u b l i c v o i d r u n () {

Interaction M onitor Design Pattern Code

t r y {

w h i l e (t r u e) {

i f (q u e u e . e l e m e n t s () = = 0)
s y n c h r o n i z e d (t h i s) {

i f (r e p o r t E v e n t s) w a i t (1000); / / w a i t f o r s o m e t h i n g

e l s e w a i t () ; / / E R R O R C O N D I T I O N - g o t o s l e e p f o r e v e r

} / / n o t h i n g o n t h e q u e u e

i f (q u e u e . e l e m e n t s () > 0) {

/ / G E T T H E F I R S T R E P O R T O F F T H E Q U E U E

R e p o r t e r Q u e u e l t e m i t e m = q u e u e . g e t H e a d () ;

w r i t e (i t e m . g e t R e p o r t O) ;

} / / e l e m e n t s o n t h e q u e u e

} / / w h i l e

> / / t r y

c a t c h (E x c e p t i o n e e) {

i f (v e r b o s e) {

S y s t e m . o u t . p r i n t l n (" E X C E P T I O N - R e p o r t e r ") ;

e e , p r i n t S t a c k T r a c e () ;

}
} / / c a t c h

> / / r u n ()

p u b l i c v o i d s e t O u t p u t S t r e a m O {

/ / T H I S I S O N L Y D O N E O N C E , T O S E T U P C O M M U N I C A T I O N S W I T H

/ / T H E M O N I T O R I N G A P P L I C A T I O N

/ /
} / / s e t O u t p u t S t r e a m O

p u b l i c v o i d w r i t e (R e p o r t m e s s a g e) {

i f (! r e p o r t E v e n t s) r e t u r n ; / / a n e r r o r o c c u r r e d , d o n o t h i n g

t r y { o b j e c t O u t . w r i t e O b j e c t (m e s s a g e) ; }

c a t c h (E x c e p t i o n e e) {

i f (v e r b o s e) {

S y s t e m . o u t . p r i n t I n (" P r o b l e m c o m m u n i c a t i n g ") ;

e e . p r i n t S t a c k T r a c e (S y s t e m . o u t) ;

>

} / / c a t c h

} / / w r i t e

} / / R e p o r t e r

B ib lio g ra p h y

[ABvdSB94]

[ACT94]

[A1199]

[AM82]

.[AM95]

[And83]

[And90]

[ANS89]

[Aoy98]

[App87]

[Asp98]

[AST99]

[Bac97]

Mehmet Aksit, Jan Bosch, W illiam van der Sterren, and Lodewijk Bergmans. Real-
Time Specification Inheritance Anomalies and Real-Time Filters. In [TP94J, pages
386-407, 1994.

P V Argade, D K Charles, and C Taylor. A Technique for Monitoring Run-Time
Dynamics of an Operating System and a Microprocessor Executing User Applica
tions. In Proceedings of the 6th International Conference on Architectural Support
fo r Programming Languages and Operating Systems, San Jose, CA USA, Oct 5-7
1994. ACM.

P Allen. Doing Business w ith Component-Based Development. Application Develop
ment Advisor, 3(l):36-44, October 1999.

C M Allwood and H Montgomery. Detection of errors in statistical problem solving.
Scandinavian Journal of Psychology, 23:131-139, 1982.

M. P. Atkinson and R. Morrison. Orthogonally Persistent Object Systems. VLDB
Journal, 4(3):319-401, 1995.

J R Anderson. The Architecture of Cognition. Harvard University Press, Cambridge,
Massachusetts, 1983.

P B Andersen. A Theory of Computer Semiotics. Cambridge Series on Human-
Computer Interaction. Cambridge University Press, Cambridge, 1990.

ANSA. An Engineers Introduction to the Architecture. Architecture Projects Man
agement Limited. Cambridge, November 1989. Release TR.03.02.

Mikio Aoyama. New Age of Software Development: How Component-Based Software
Engineering Changes the Way of Software Development. In [ics98J, 1998.

Human Interface Guildelines: The Apple Desktop Interface. Addison-Wesley, Read
ing, Massachusetts, 1987. Apple Computer Inc.

http://www.parc.xerox.com/spl/projects/aop/aspectj. AspectJ Web Page, 1998.

M Aleksy, M Schader, and C Tapper. Interoperability and Interchangeability of
Middleware components in a Three-Tier CORBA-Environment-State of the A rt. In
3rd International Enterprise Distributed Object Computing Conference. EDOC’99,
pages 204-213, University of Mannheim, Germany, September 27-30 1999. IEEE.

J Bacon. Concurrent systems: operating systems, database and distributed systems:
an integrated approach. Addison Wesley, Harlow, second edition, 1997.

219

http://www.parc.xerox.com/spl/projects/aop/aspectj

Bibliography .220

[Bae98]

[Ban89]

[Bas99]

[BDPS94]

[Beg99]

[BF88]

[BF95]

[BF97]

[BG93]

[BH93]

[BK98]

[BK99]

[BL94]

[BMP+99]

[BN84]

[Bor91]

T Baer. The Culture of Components. Web Document, September 1998.
www.adtmag.com / pub / sept98 / fe902 .htm.

L Bannon. From Cognitive Science to Cooperative Design. In N O Finneman, editor,
Theories and Technologies of the Knowledge Society, pages 33-59. 1989.

P Bassett. Two Flavors of Component Architectures. Component Strategies,
1 (11):70—72, May 1999.

Marc Brown, John Domingue, Blaine Price, and John Stasko. Software Visualization.
ACM SIGCHI Bulletin, 26(4):32-35, 1994.

James Begole. Personal communication, March 1999.

L Blackshaw and B Fishhoff. Decision making in online searching. Journal of the
American Society fo r Information Science, 39:369-389, 1988.

J R Brooks and P Frederick. The Mythical Man-Month. Addison-Wesley, 1995.

D J Berg and J S Fritzinger. Advanced Techniques fo r Java Developers. John Wiley
and Sons, 1997.

Thomas Berlage and Andreas Genau. A Framework for Shared Applications w ith a
Replicated Architecture. In Proceedings of the ACM Symposium on User Interface
Software and Technology, CSCW and Distributed Applications, pages 249-257, 1993.

Susan E. Brennan and Eric A. Hulteen. Interaction and feedback in a spoken language
system. In A A A I Technical Report FS-93-05, pages 1-6, 1993.

A N Burton and P H J Kelly. Workload Characterization and Using Lightweight
System Call tracing and re-execution. In IEEE International Performance Comput
ing and Communications Conference. IPCCC ’98, Phoenix/Tempe, Arizona, USA,
February 16-18 1998. IEEE.

A N Burton and P H J Kelly. Tracing and Reexecuting Operating System Calls for
Reproducible Performance Experiments. Computers and Electrical Engineering: An
International Journal, May 1999.

T Ball and J R Larus. Optimally Profiling and Tracing Programs. ACM Transactions
on Programming Languages and Systems, 16(4):1319-1360, 1994.

Peter J. Barclay, Jo McKirdy, Norman W. Paton, Philip D. Gray, Jessie Kennedy,
Richard Cooper, Carole A. Goble, Adrian West, and Michael Smyth. Teallach: A
model-based user interface development environment for object databases. In Nor
man W. Paton and Tony Griffiths, editors, Proc. User Interfaces to Data Intensive
Systems (UIDIS99), pages 86-96, Edinburgh, Scotland, 5-6 September 1999. IEEE
Computer Society Publishers.

A D B irrell and B J Nelson. Implementing remote procedure calls. AC M Transactions
on Computer Systems (TOCS), 2(1):39—59, 1984.

N Borenstein. Programming as i f People Mattered. Princeton Univeristy Press,
Princeton, New Jersey, 1991.

http://www.adtmag.com

Bibliography .221

[Bro99]

[BW97]

[BW98]

[BZPF93]

[Car87]

[CCHOO]

[CCS91]

[CE89]

[Cha96]

[Cha97]

[Cha98]

[Cha99a]

[Cha99b]

[Cha99c]

[Che99]

[CK98]

[Cla97]

A W Brown. Moving from components to CBD. Component Strategies, 1(10):23—28,
A pril 1999.

M Biichi and W Week. A Plea for Grey-Box Components. In [LS97], 1997.

Alan W Brown and K u rt C Wallnau. The Current State of CBSE. IEEE Software,
15(5):37—46, September/October 1998.

F C Brodbeck, D Zapf, J Priimper, and M Frese. Error handling in office work w ith
computers: A field study. Journal of Occupational and Organizational Psychology,
66:303-317, 1993.

J M Carroll, editor. Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction. M IT Press, Cambridge, MA, 1987.

Edward B Cutrell, Mary Czerwinski, and Eric Horvitz. Effects of Instant Messag
ing Interruptions on Computing Tasks. In Barbara Hayes-Roth and Richard Korf,
editors, Proceedings of C H I’2000, pages 814-819, The Hague, Netherlands, 1-6 April
2000 .

M Czerwinski, S Chrisman, and B Schumacher. The Effects of Warnings and Dis
play Similarities on Interruption in Multitasking Environments. SIHCHI Bulletin,
23(4):38-39, October 1991.

F R Campagnoni and K Ehrlich. Retrieval using a hypertext-based help system.
ACM Transactions on Information Systems, 7:271-291, 1989.

D Chappell. Understanding ActiveX and OLE. Strategic Technology Series. Microsoft
Press, Redmond, Washington, 1996.

D Chappell. The Next Wave. Component Software Enters the Mainstream. Web
Document, April 1997. Chappell and Associates, www.chappellassoc.com.

D Chappell. MTS versus EJB. Component Strategies, 1(5):14-17, November 1998.

Matthew Chalmers. Information visualization tutoria l. In 25th International Confer
ence on Very Large Data Bases VLD B ’99, Edinburgh, Scotland, 7th - 10th September
1999. Morgan Kaufmann.

D Chappell. Application servers: COM-Based vs. Java-Based. Component Strategies,
1(9), March 1999. www.chappellassoc.com/artlcs.htm.

D Chappell. Taking Stock of Component Technology. Component Strategies,
1 (12): 16—17, June 1999.

Chaomei Chen. Information Visualisation and Virtual Environments. Springer, Sin
gapore, 1999.

John V. Carlis and Joseph A. Konstan. Interactive Visualization of Serial Periodic
Data. In Proceedings of the ACM Symposium on User Interface Software and Tech
nology. U IST’98, Visualization, pages 29-38, San Francisco, CA USA, November 1 -
4 1998.

W illiam J Clancey. Situated Cognition. On Human Knowledge and Computer Rep
resentations. Cambridge University Press, Cambridge, UK, 1997.

http://www.chappellassoc.com
http://www.chappellassoc.com/artlcs.htm

Bibliography .222

[CM93]

[CMH92]

[CMN83]

[Cor91]

[Cot98]

[Cox90]

[CR87]

[CRB98]

[CRM91]

[CS87]

[CWS95]

[Cyp86]

[Das92]

[dB98]

[De 98]

[Del98]

[DFAB93]

Giuseppe Carenini and Johanna D. Moore. Generating Explanations in Context.
In Proceedings of the 1993 International Workshop on Intelligent User Interfaces,
Session 6: User Support, pages 175-182, 1993.

E lliot J. Chikofsky, David A. M artin, and Chang Hugh. Assessing the State of Tools
Assessment. IEEE Software, 9(3):18-21, May 1992.

S Card, T Moran, and A Newell. Applied Information-Processing Psychology. Erl-
baum Associates, Hillsdale, NJ, 1983.

John R Corbin. The A rt of Distributed Applications. Springer Verlag, New York,
1991.

B Cottman. Componentware: Component software for the enterprise, h ttp ://w w w .i-
kinetics.com/wp/cwvision/CWVision.html, 1998. (27/11/98) I-Kinetics Web Site.

B Cox. There is a silver bullet: The b irth of interchangeable, reusable software
components w ill bring software into the information age. Byte, October 1990.

J M Carroll and M B Rosson. The Paradox of the Active User. In [Car87], chapter 5,
pages 80-111. M IT Press, 1987.

M Chalmers, K Rodden, and D Brodbeck. The Order of Things: Activity-Centred
Information Access. In Proceedings of the 7th International Conference on the World
Wide Web, pages 359-367, Brisbane, Australia, Oct 5-7 1998.

S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information visualizer, an
information workspace. In Proc. ACM Conf. Human Factors in,Computing Systems,
CHI, pages 181-188. ACM, A pril 1991.

H H Clark and E F Schaefer. Collaborating on contributions to conversations. Lan
guage and Cognitive Processes, 2:1-23, 1987.

H C Chan, K K Wei, and K L Siau. The effect of a database feedback system on
user performance. Behaviour and Information Technology, 14(3):152-62, 1995.

Allen Cypher. The structure of users’ activities. In D A Norman and S W Draper, ed
itors, [ND86J, chapter 12, pages 243-264. Lawrence Erlbaum Associates, Publishers,
Hilldale, New Jersey, 1986.

Marcelo Dascal. On the Pragmatic Structure of Conversation. In Herman Parret and
Jef Verschueren, editors, (On) Searle on Conversation, pages 35-56. John Benjamins
Publishing Company, Amsterdam, 1992.

Edward de Bono. Simplicity. Penguin, London, 1998.

J. De Oliveira Guimaraes. Reflection for Statically Typed Languages. Lecture Notes
in Computer Science, 1445:440-461, 1998.

C Dellarocas. Toward Exception Handling Infrastructures for Component-Based Sys
tems. In [WCB88], 1998.

A Dix, J Findlay, G Abowd, and R Beale. Human-Computer Interaction. Prentice
Hall, 1993.

http://www.i-

Bibliography .223

[DH95]

[Dix91]

[DJA93]

[Dol98]

[Dol99]

[DPM92]

[Dra86]

[DRW95]

[DW98]

[EH93]

[EL96]

[EN96]

[Eng97]

[ES98]

[ESS92]

Nick Drew and Bob Hendley. Visualising Complex Interacting Systems. In Proceed
ings of ACM C H I’95 Conference on Human Factors in Computing Systems, volume 2
of Short Papers: Information Visualization, pages 204-205, 1995.

A J Dix. Closing the loop: modelling action, perception and information. In
M. F. Costabile T. Catarci, S. Levialdi, and G. Santucci, editors, A V I’96 - Advanced
Visual Interfaces, pages 20-28. ACM Press, 1991.

Nils Dahlback, Arne Jonsson, and Lars Ahrenberg. Wizard of Oz Studies - Why
and How. In Proceedings of the 1993 International Workshop on Intelligent User
Interfaces, Session 7: Design & Evaluation, pages 193-200, 1993.

M Dolgicer. Distributed Object Middleware & the Internet. Component Strategies,
l(5):23-32, November 1998.

M Dolgicer. Building a Middleware Platform. Component Strategies, l(9):40-44,57,
March 1999.

T M Duffy, J E Palmer, and B Mehlenbacher. Online Help. Design and Evaluation.
Ablex Publishing Company, 1992.

S Draper. Display managers as the basis for user-machine communication. In D A
Norman and S W Draper, editors, [ND86J, chapter 16, pages 339-352. Lawrence
Erlbaum Associates, Publishers, Hilldale, New Jersey, 1986.

A. Dix, D. Ramduny, and J. Wilkinson. Interruptions deadlines and reminders:
Investigations into the flow of cooperative work. Technical Report RR9509, School
of Computing and Mathematics, University of Huddersfield, 1995.

D F D ’Souza and A Wills. Objects, Components and Frameworks with UML: The
Catalysis Approach. Addison Wesley, 1998.

Frits L. Engel and Reinder Haakma. Expectations and Feedback in User-System Com
munication. International Journal of Man-Machine Studies, 39(3):427-452, 1993.

Stephen G. Eick and Paul J. Lucas. Displaying trace files. Software—Practice and
Experience, 26(4):399-409, A pril 1996.

Margery Eldridge and W illiam Newman. Agenda Benders: Modelling the Disruptions
Caused by Technology Failures in the Workplace. In Proceedings of ACM CHI 96
Conference on Human Factors in Computing Systems, volume 2 of SHORT PAPERS:
Models of Work Practice (Short Papers Suite), pages 219-220, 1996.

R Englander. Developing Java Beans. O ’Reilly, Cambridge, USA, June 1997.

G Eisenhauer and K Schwan. An Object-Based Infrastructure for Program Monitor
ing and Steering. In Proceedings of the SIGMETRICS Symposium on Parallel and
Distributed Tools, 1998.

S G Eick, J L Steffen, and E E Sumner. SeeSoft — A Tool for visualising software.
IEEE Transactions on Software Engineering, 18:957-968, November 1992.

Bibliography .224

[FA93]

[Fau98]

[FFW88]

[FHLS99]

[FM95]

[FN97]

[FP90]

[Fur86]

[FvD82]

[Gar87]

[GC87]

[GEC98]

[GGM97]

[GHJV94]

Svend Fr0 lund and Gul Agha. A Language Framework for M ulti-Object Coordi
nation. In European Conference on Object-Oriented Programming (ECOOP), pages
346-360, Kaiserslautern, Germany, July 1993. Springer Verlag, Lecture Notes in
Computer Science. Vol. 707.

C Faulkner. The Essence of Human Computer Interaction. Prentice Hall, London,
1998.

Brad Hartfield Fernando Flores, Michael Graves and Terry Winograd. Computer sys
tems and the design of organizational interaction. ACM Transactions on Information
Systems, 6(2): 153—172, A pril 1988.

G Froehlich, H Jim Hoover, L Liu, and P Sorenson. Designing Object-Oriented
Frameworks. In [Zam99], chapter 25. 1999.

Batya Friedman and Lynette M ille tt. ” I t ’s the Computer’s Fault” - Reasoning about
Computers as Moral Agents. In Proceedings of ACM C H I’95 Conference on Human
Factors in Computing Systems, volume 2 of Short Papers: Agents and Anthropomor
phism, pages 226-227, 1995.

BJ Fogg and Clifford Nass. How Users Reciprocate to Computers: An Experiment
that Demonstrates Behavior Change. In Proceedings of ACM CHI 97 Conference on
Human Factors in Computing Systems, volume 2 of SHORT TALKS: A Melange,
pages 331-332, 1997.

T Fawcett and F Provost. Activ ity Monitoring: Noticing Interesting Changes in
Behaviour. In Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Diego, CA USA, August 15-18 1990.
ACM.

George W. Furnas. Generalized Fisheye Views. In Marilyn M. Mantei and Peter Or-
beton, editors, Proceedings of the ACM Conference on Human Factors in Computer
Systems, SIGCHI Bulletin, pages 16-23. Association for Computer Machinery, New
York, U.S.A., 1986.

J D Foley and A van Dam. Fundamentals of Interactive Computer Graphics. Addison-
Wesley, Reading, Mass. London, 1982.

M M Gardiner. Principles from the psychology of memory. In [GC87], chapter 5,
pages 119-162. John Wiley & Sons, 1987. Part II. Episodic Memory.

M M Gardiner and B Christie, editors. Applying Cognitive Psychology to User In
terface Design, Chichester, 1987. John Wiley &; Sons.

Nahum Gershon, Stephen G. Eick, and Stuart Card. Design: Information Visualiza
tion. interactions, 5(2):9-15, 1998.

Rachid Guerraoui, Benoit Garbinato, and Karim R. Mazouni. Garf: A Tool for
Programming Reliable Distributed Applications. IEEE Concurrency, 5(4):32-39,
October/December 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1994.

Bibliography .225

[Gla98]

[Got98]

[GR93]

[Gru87]

[Gut99]

[Ham87]

[Han98]

[Har98]

[hCKBR97]

[HG99]

[Hit87]

[HK93]

[HL95]

[Hub83]

[ics98]

[JA84]

Robert L. Glass. Loyal Opposition: Reuse: W hat’s Wrong w ith This Picture? IEEE
Software, 15(2):57—59, March / April 1998.

E Gottesdiener. 0 0 Methodologies. Process & Product Patterns. Component Strate
gies, l(5):34-44, November 1998.

J Gray and A Reuter. Transaction Processing — Concepts and Techniques. Morgan
Kaufmann, San Francisco, California, 1993.

J Grudin. Social Evaluation of the user interface: Who does the work and who gets the
benefit. In H-J Bullinger and B Shackel, editors, IN TER AC T 1987. IF IP Conference
on Human-Computer Interaction., Stuttgart, Germany, 1987. IFIP, Elsevier Science
Publishers B.V.

Rhett Guthrie. The Business Case for Server Component Models. Component Strate
gies, 1 (12):24—29, June 1999.

N Hammond. Principles from the psychology of skill acquisition. In [GC87], chapter 6,
pages 163-188. John Wiley & Sons, 1987.

J Han. Characterisation of Components. In [WCB88], 1998.

P Harmon.. Components and Objects, http://www.cutter.com/cds/cds9807.htm l,
July 1998. Component Development Strategies. Monthly Newsletter from the Cutter
Information Corporation.

Ed Huai hsin Chi, Joseph Konstan, Phillip Barry, and John Riedl. A Spreadsheet
Approach to Information Visualization. In Proceedings of the ACM Symposium on
User Interface Software and Technology, Programming by Demonstration, pages 79-
80, Banff Canada, October 14 - 17 1997.

D Hinchcliffe and M J Gaffney. Components: Where are They?
http://www.objectnews.com, January 1999. (19/1/99).

Graham J Hitch. Principles from psychology of memory. In [GC87], chapter 5. John
Wiley & Sons, 1987. Part I. Working Memory.

Y. Huang and C. M. R. Kintala. Software implemented fault tolerance: Technologies
and experience. In Proceedings of 23rd Intl. Symposium on Fault-Tolerant Computing,
pages 2-9, Toulouse, France, June 1993. Also appeared as a chapter in the book
Software Fault Tolerance, M. Lyu (Ed.), John Wiley & Sons, March 1995.

Walter Hiirsch and Cristina Videira Lopes. Separation of Concerns. Technical Re
port NU-CCS-95-03, College of Computer Science, Northeastern University, Boston,
Massachusetts, February24 1995.

G P Huber. Cognitive style as a basis for MIS and DSS designs: much ado about
nothing? Management Science, 29(5):565-597, 1983.

1998 International Workshop on Component-Based Software Engineering. ICSE98,
Kyoto, Japan, April 25-26 1998.

G Johansson and G Aronsson. Stress reactions in computerized administrative work.
Journal of Occupational Behaviour, 5:159-181, 1984.

http://www.cutter.com/cds/cds9807.html
http://www.objectnews.com

Bibliography .226

[Jac73]

[Jam96]

[Jam98]

[Jam99a]

[Jam99b]

[JamOO]

[Jer96]

[JLSU87]

[JZTB98]

[Kar98]

[Kar99]

[Kea88]

[KF90]

[KHB99]

[Kic96]

[Kie98]

[KM99]

J Jacobi. The Psychology of C G Jung. Yale University Press, New York, 1973.

Francis Jambon. Erreurs et interruptions du point de vue de Vingenierie de
I ’interaction homme-machine. Phd thesis, Universite Joseph Fourier, 1996.

F Jambon. Taxonomy for Human Error and Fault Recovery from the Engineering
Perspective. In International Conference on Human-Computer Interaction in Aero
nautics (HCI-Aero’98), pages 55-60, Montreal, Canada, May 1998.

J James. Design of the Kan Distributed System. Technical Report TRCS99-29,
University of California, Santa Barbara, Santa Barbara, CA 93106, 1999.

J James. Reliable Distributed Objects: Reasoning, Analysis, and Implementation.
PhD thesis, UNIVERSITY OF CALIFORNIA, Santa Barbara, March 1999.

F Jambon. Personal communication, May 2000.

Dean F. Jerding. Visualizing Patterns in the Execution of Object-Oriented Programs.
In Proceedings of ACM CHI 96 Conference on Human Factors in Computing Systems,
volume 2 of Doctoral Consortium, pages 47-48, 1996.

J Joyce, G Lomow, K Slind, and B Unger. Monitoring Distributed Systems. ACM
Transactions on Computer Systems, 5(2): 121-150, May 1987.

C Jeffery, W Zhou, K Templer, and M Brazell. A Lightweight Architecture for
Program Execution Monitoring. In ACM SIGPLAN/SIGSOFT workshop on Progra
Analysis fo r Software Tools and Engineering, Montreal, Canada, June 16 1998. ACM.

D Kara. Build vs Buy: Maximizing the Potential of Components. Component Strate
gies, 1(1), July 1998. http://www.componentmag.com/.

D Kara. The Enterprise Java Beans Component Model. Component Strategies,
1 (7):18—25, January 1999.

G Kearsley. Online Help Systems. Design and Implementation. Ablex Publishing
Corporation, Norwood, New Jersey, 1988.

David Kurlander and Steven Feiner. A Visual Language for Browsing, Undoing, and
Redoing Graphical Interface Commands. In S.-K. Chang, editor, Visual Languages
and Visual Programming, pages 257-275. Plenum, New York, 1990.

Murat Karaorman, Urs Holzle, and John Bruno. jContractor: A Reflective Java
Library to Support design by contract. Technical Report TRCS98-31, University of
California, Santa Barbara. Computer Science., January 19, 1999.

G. Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28(4es):154-
154, December 1996.

D Kiely. The Component Edge - An Industrywide Move To Component-Based de
velopment holds the promise of massive productivity gains. Information Week, (677),
April 1998. www.techweb.com/se/directlink.cgi7IWK19980413S0001.

M ik A. Kersten and Gail C. Murphy. Atlas: A Case Study in Building a Web-Based
Learning Environment Using Aspect-oriented Programming. Technical Report TR-
99-04, Department of Computer Science, University of British Columbia, March 31
1999. Wed, 07 Apr 1999 21:31:26 GMT.

http://www.componentmag.com/
http://www.techweb.com/se/directlink.cgi7IWK19980413S0001

Bibliography .227

[KMS+95]

[KP95]

[KPS95]

[Kra88]

[Lew86]

[Lew98]

[Lin91]

[LL94]

[LLM91]

[LM88]

[LM94]

[LN86]

[LS97]

D. Kimelman, P. M itta l, E. Schonberg, P. F. Sweeney, Ko-Yang Wang, and D. Zernik.
Visualizing the Execution of High Performance Fortran (HPF) Programs. In IEEE,
editor, IPPS ’95: 9th International parallel processing symposium — A pril 25-28,
1995, Santa Barbara, CA, International Parallel Processing Symposium, pages 750-
759, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1995. IEEE Com
puter Society Press.

M K ita jim a and P G Poison. A comprehension-based model of correct performance
and errors in skilled, display-based, human-computer interaction. International Jour
nal of Human-Computer Studies, 43:65-99, 1995.

Harsha Kumar, Catherine Plaisant, and Ben Shneiderman. Browsing Hierarchical
Data w ith Multi-Level Dynamic Queries and Pruning. Technical Report CS-TR-
3474, HCIL Dept, of Computer Science, University of Maryland, March 1995.

Sacha Krakowiak. Principles of Operating Systems. M IT Press, Cambridge, 1988.

C Lewis. Understanding what’s happening in system interactions. In D A Norman
and S W Draper, editors, /ND86'], chapter 8, pages 171-186. Lawrence Erlbaum
Associates, Publishers, Hilldale, New Jersey, 1986.

Scott M. Lewandowski. Frameworks for component-based client/server computing.
ACM Computing Surveys, 30(l):3-27, March 1998.

K. Lindstrom. Breakdowns and other interruptions in VD T work as a source of stress
in customer service and banking. In Proceedings of the Fourth International Confer
ence on Human-Computer Interaction, volume 1 of Congress I: Work with Terminals:
HEALTH ASPECTS: WORKLOAD, STRESS AND STRAIN AND IRREGULAR
WORKING HOURS; Causes and Measures of Stress, pages 185-189, 1991,

C. V. Lopes and K. J. Lieberherr. Abstracting Process-to-Function Relations in
Concurrent Object-Oriented Applications. In [TP94J, pages 81-99, 1994.

X Lin, P Liebscher, and G Marchionini. Graphical Representations of Electronic
Search Patterns. Journal of the American Society fo r Information Science, 42(7) :469-
478, 1991.

P Leibscher and G Marchionini. Browse and analytical search strategies in a full-text
CD-ROM encyclopedia. School Library Media Quarterly, Summer:223-233, 1988.

Benoit Lemaire and Johanna Moore. An improved interface for tu toria l dialogues:
Browsing a visual dialogue history. In Proceedings of ACM C H I’94 Conference on
Human Factors in Computing Systems, volume 2 of PAPER ABSTRACTS: Accessing
and Exploring Inform ation, page 200, 1994.

C Lewis and D A Norman. Designing for Error. In D A Norman and S W Draper,
editors, User Centred System Design. New Perspectives on Human-Computer Interac
tion, chapter 20, pages 411-432. Lawrence Erlbaum Associates, Publishers, Hilldale,
New Jersey, 1986.

Gary T. Leavens and Murali Sitaraman, editors. Proceedings of the F irst Workshop
on the Foundations of Component-Based Systems, Zurich, Switzerland, September 26
1997, September 1997.

Bibliography .228

[Mac91]

[Mac99]

[Man87]

[Mar89]

[MB99]

[McI68]

[MCLM90]

[Mes98]

[MGOO]

[MGP60]

[MGS92]

[Mic98a]

[Mic98b]

[Mic98c]

[Mic99]

[Mil94]

Wendy E. Mackay. Triggers and Barriers to Customizing Software. In Proceedings of
ACM C H I’91 Conference on Human Factors in Computing Systems, Group Use of
Computing, pages 153-160, 1991.

Murdoch Mactaggert. Cbd, components and class libraries. Application Development
Advisor, pages 14-17, Sept-Oct 1999.

Ken Manktelow. Principles from the psychology of thinking and mental models. In
[GC87], chapter 4. John Wiley & Sons, 1987.

G Marchionini. Information-seeking strategies of novices using a fu ll-text electronic
encyclopedia. Journal of the American Society fo r Information Science, 50:54-66,
1989.

T Merridenard and J Bird. Filling the gap. In Management Today. June 1999.
Produced for Microsoft.

M D Mcllroy. Mass produced software components. In [NR69], pages 88-98, 1968.

Allan MacLean, Kathleen Carter, Lennart Lovstrand, and Thomas Moran. User-
Tailorable Systems: Pressing the Issues w ith Buttons. In Proceedings of AC M C H I’90
Conference on Human Factors in Computing Systems, End User Modifiable Environ
ment, pages 175-182, 1990.

J J Meserve. Application servers come into focus. Web Document, October 1998.
Application Development Trends, www.adtmag.com.

J M cKirdy and P Gray. SUIT — Context Sensitive Evaluation of User Interface
Development Tools. In DSVIS’2000, Limerick, Ireland, 2000.

G. A. M iller, E. Galanter, and K. H. Pribram. Plans and the structure of behaviour.
Holt, Rinehart and Winston, New York, 1960.

A. Myka, U. Giintzer, and F. Sarre. Monitoring User Actions in the Hypertext System
“HyperMan” . In ACM Tenth International Conference on Systems Documentation,
pages 103-113, 1992.

Sun Microsystems. Enterprise Java Beans Specification. Web Document. URL:
java.sun.com/products/ejb, March 1998.

Sun Microsystems, javadoc - The Java AP I documentation Generator. Web Docu
ment, 1998. http://java.sun.eom /products/jdk/l.2 /docs/tooldocs/javadoc/.

Sun Microsystems. JNDI: Java Naming and Directory Interface.
http://java.sun.com /products /jnd i/docs .h tm l# ll, January 1998. Web Docu
ment.

Sun Microsystems. java.lang. reflect. Web Document, 1999.
http://java.sun. com /products//jdk/1 .2 /docs/api/java/lang/reflect / package-
use.html.

Steve M iller. Experimental Design and Statistics. New Essential Psychology. Rout-
ledge, London and New York, second edition, 1994.

http://www.adtmag.com
http://java.sun.eom/products/jdk/l.2/docs/tooldocs/javadoc/
http://java.sun.com/products/jndi/docs.html%23ll
http://java.sun

Bibliography .229

[MK93]

[MN86]

[MNG87]

[Mos92]

[MS99]

[Mul93]

[ND86]

[ND99]

[Nic76]

[Nie93]

[Nor86]

[Nor89]

[Nor94]

[Nor98]

[NR69]

[NT91]

[NT95]

M Masson and V De Keyser. Preventing human errors in skilled activities through a
computerised support system. In /SS93J, 1993. volume II.

Yoshiro M iyata and Donald A Norman. Psychological issues in support of multiple
activities. In D A Norman and S W Draper, editors, [ND86], chapter 13, pages
171-186. Lawrence Erlbaum Associates, Publishers, Hilldale, New Jersey, 1986.

C Marshall, C Nelson, and M M Gardiner. Design guidelines. In [GC87], chapter 8,
pages 221-278. John Wiley & Sons, 1987.

Vicky Mosley. How to Assess Tools Efficiently and Quantitatively. IEEE Software,
9(3):29-32, May 1992.

H. Moessenbock and C. Steindl. The Oberon-2 reflection model and its applications.
Lecture Notes in Computer Science, 1616:40-53, 1999.

S Mullender. Distributed Systems. Addison Wesley, Wokingham, second edition,
1993.

D A Norman and S W Draper, editors. User Centred System Design. New Perspec
tives on Human-Computer Interaction. Lawrence Erlbaum Associates, Publishers,
Hilldale, New Jersey, 1986.

P A Nixon and S A Dobson. Objects, Components and the V irtua l Enterprise. Tech
nical Report TCD-CS-1999-07, T rin ity College, Department of Computing Science,
T rin ity College, Dublin 2, Ireland, February 1999.

R Nickerson. On conversational interaction w ith computers. In Proceedings of
ACM /SIGGRAPH workshop, pages 101-113, Pittsburgh, PA, 14-15 October 1976.

J Nielsen. Usability Engineering. AP Professional, Boston, 1993.

D Norman. Cognitive engineering. In D A Norman and S W Draper, editors, [ND86J,
chapter 3, pages 31-62. Lawrence Erlbaum Associates, Publishers, Hilldale, New
Jersey, 1986.

D Norman. The “problem” of automation: Inappropriate feedback and interaction,
not “overautomation” . Technical Report ICS Report 8904, Institute for Cognitive
Science, University of California, San Diego, La Jolla, California, 92093, 1989.

D A Norman. Things That Make Us Smart : Defending Human Attributes in the
Age of the Machine. Addison Wesley Publishing Company, 1994.

D A Norman. The design of everyday things. M IT Press, London, England, 98.

P Naur and B Randell, editors. Proceedings, NATO Conference on Software En
gineering, Garmish, Germany, October 1969. NATO Science Committee, Brussels
(published as a book in 1976).

M. A. Norman and P. J. Thomas. Informing HCI Design through Conversation
Analysis. International Journal of Man-Machine Studies, 35(2):235-250, 1991.

O Nierstrasz and D Tsichritzis, editors. Object-Oriented Software Composition. Pren
tice Hall, London, 1995.

Bibliography .230

[0 ’C99]

[OF95]

[0 ’H94]

[0194]

[01s87]

[PAD+97]

[Par72]

[Phi86]

[PMR+96]

[PQS96]

[Pri99]

[PS92]

[PSV94]

[PT88]

A O’Callaghan. Full moon rising. Application Development Advisor, pages 59-61,
May-June 1999.

Brid O’Conaill and David Frohlich. Timespace in the workplace: Dealing w ith inter
ruptions. In Proceedings of ACM C H I’95 Conference on Human Factors in Comput
ing Systems, volume 2 of Short Papers: Workplaces and Classrooms, pages 262-263,
1995.

Kenton O’Hara. Cost of Operations Affects Planfulness of Problem-Solving Be
haviour. In Proceedings of ACM CHF94 Conference on Human Factors in Computing
Systems, volume 2 of INTERACTIVE POSTERS, pages 105-106, 1994.

H. Okamura and Y. Ishikawa. Object Location Control using Meta-level Program
ming. In [TP94], pages 299-319, 1994.

J R Olsen. Cognitive Analysis of People’s Use of Software. In [Car87], chapter 10,
pages 260-293. M IT Press, 1987.

Tony Printezis, Malcolm P. Atkinson, Laurent Daynes, Susan Spence, and Pete Bai
ley. The Design of a new Persistent Object Store for PJama. In Proceedings of the
Second International Workshop on Persistence and Java (PJW2), Half Moon Bay,
CA, USA, August 1997.

D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053-1058, December 1972.

R J Phillips. Computer graphics as a memory aid and a thinking aid. Journal of
Computer Assisted Learning, 2:37-44, 1986.

Catherine Plaisant, B rett Milash, Anne Rose, Seth Widoff, and Ben Shneiderman.
LifeLines: Visualizing Personal Histories. In Proceedings of ACM CHI 96 Confer
ence on Human Factors in Computing Systems, volume 1 of PAPERS: Interactive
Information Retrieval, pages 221-227, 1996.

Manuel A. Perez-Quinones and John L. Sibert. Negotiating User-Initiated Cancel
lation and Interruption Requests. In Proceedings of ACM CHI 96 Conference on
Human Factors in Computing Systems, volume 2 of SHORT PAPERS: Models, pages
267-268, 1996.

J Pritchard. COM and CORBA Side by Side. Architectures, Strategies and Imple
mentations. Addison Wesley, Reading, Massachusetts, 1999.

Robert M. Poston and Michael P. Sexton. Evaluating and Selecting Testing Tools.
IEEE Software, 9(3):33-42, May 1992.

Dewayne E. Perry, Nancy A. Staudenmeyer, and Lawrence G. Votta. People, Orga
nizations, and Process Improvement: Two experiments to discover how developers
spend their time. IEEE Software, 11 (4):36—45, July 1994.

M A Planas and W C Treurniet. The Effects of Feedback During Delays in Simulated
Teletext Reception. Behaviour and Information Technology, 7(2):183-191, 1988.

Bibliography .231

[PvV99]

[Raj 99]

[Ras87a]

[Ras87b]

[RC94]

[RDL87]

[RE98]

[REOO]

[Rea87a]

[Rea87b]

[Rea90]

[Ren99]

[RFG+88]

[Ric91]

[RM93]

M Porter and M van Vliet. Expand your server-side too lk it w ith EJB. Web Docu
ment. IT Architect. Sunworld, April 1999. www.sunworld.com/sunworldonline/swol-
04-1999/swol-04-itarchitect.html.

G S Raj. A detailed comparison of enterprise javabeans (ejb) & the
microsoft transaction server (mts) models. Web Document, May 1999.
http: / / members.tripod.com / gsraj / misc/ejbmts / ejbmtscomp.html.

J Rasmussen. Cognitive control and human error mechanisms. In [RDL87]. John
Wiley and Sons, 1987.

J Rasmussen. Reasons, causes and human error. In [RDL87]. John Wiley and Sons,
1987.

Ramana Rao and Stuart K. Card. The Table Lens: Merging Graphical and Symbolic
Representations in an Interactive Focus-[-Context Visualization for Tabular Informa
tion. In Beth Adelson, Susan Dumais, and Judith Olson, editors, Proceedings of the
Conference on Human Factors in Computing Systems, pages 318-322, New York,
NY, USA, April 1994. ACM Press.

J Rasmussen, K Duncan, and J Leplat, editors. New Technology and Human E r
ror. New Technologies and Work. Ed: Bernhard W ilpert. John Wiley and Sons,
Chichester, 1987.

R Rock-Evans. DCOM Explained. D igital Press, Boston, 1998.

Karen Renaud and Huw Evans. Javacloak: Engineering Java Proxy Objects using
Reflection. In M Weber, editor, NET.OBJECTDAYS 2000. Messekongresszentrum
Erfurt, Germany, October 9-12 2000.

J Reason. A framework for classifying errors. In [RDL87J. John Wiley and Sons,
1987.

J Reason. A preliminary classification of mistakes. In [RDL87]. John Wiley and
Sons, 1987.

J Reason. Human Error. Cambridge University Press, 1990.

K V Renaud. Tracking activ ity at the user interface in a Java application. Technical
Report TR-1999-33, Department of Computing Science, University of Glasgow, 17
Lilybank Gardens, Glasgow, G12 8RZ, A pril 1999.

Brian J. Reiser, Patricia Friedmann, Jody Gevins, Daniel Y. Kimberg, Michael Ran-
ney, and Antonio Romero. A Graphical Programming Language Interface for an
Intelligent Lisp Tutor. In Proceedings of ACM CHP88 Conference on Human Fac
tors in Computing Systems, Visualization, pages 39-44, 1988.

G P Richardson. Feedback Thought in Social Science and Systems Theory. University
of Pennsylvania Press, Philadelphia, 1991.

George G. Robertson and Jock D. Mackinlay. The Document Lens. In Proceed
ings of the ACM Symposium on User Interface Software and Technology, Visualizing
Information, pages 101-108, 1993.

http://www.sunworld.com/sunworldonline/swol-

Bibliography .232

[Rog99]

[RPMB96]

[RS97]

[RS99]

[SA89]

[SBB96]

[See98]

[Ses98a]

[Ses98b]

[Ses99]

[SesOO]

[SH92]

[Shn86]

[Shn98]

[Sho98]

[Sid94]

The Component Buyer’s Guide. W hite Paper, March 1999. Rogue Wave Software
Inc.

A. Rizzo, O. Parlangeli, E. Marchigiani, and S. Bagnara. The management of human
errors in user-centered design. AC M SIGCHI Bulletin , 28(3): 114—119, 1996.

Charles Rich and Candace L. Sidner. Segmented Interaction History in a Collab
orative Interface Agent. In Proceedings of the 1997 International Conference on
Intelligent User Interfaces, Planning Based Approaches, pages 23-30, 1997.

E Roman and R Sessions. EJB vs COM+. Debate at Austin Foundation for Object
Oriented Technology (AFOOT), July 13 1999. www.objectwatch.com/eddebate.htm.

Lawrence M. Schleifer and Benjamin C. Amick, II I . System response time and method
of pay: Stress effects in computer-based tasks. International Journal of Human-
Computer Interaction, 1 (1):23—39, 1989.

Michael Spenke, Christian Beilken, and Thomas Berlage. FOCUS: The Interactive
Table for Product Comparison and Selection. In Proceedings of the AC M Symposium
on User Interface Software and Technology, Papers: Information Visualization, pages
41-50, 1996.

K Seetharaman. The CORBA Connection. Communications of the ACM, 41(10):34-
36, October 1998.

R Sessions. COM and DCOM. Microsofts Vision fo r Distributed Objects. John Wiley
and Sons, Inc, New York, 1998.

R Sessions. The Convergence of TPMs and Components. Web Document, September
1998. www. obj ectwatch. com/ converge. htm .

R Sessions. ObjectWatch Newsletter Number 22. Focus on Distributed Technology.
Web Document, October 30 1999. www.objectwatch.com/issue22.htm.

R Sessions. COM+ and the Battle fo r the Middle Tier. Wiley, New York, 2000.

M Siegle and R Hofmann. Monitoring Program Behaviour on SUPRENUM. In
International Conference on Computer Architecture. Proceedings of the 19th Annual
International Symposium on Computer Architecture, Queensland, Australia, May 19-
21, 1992 1992. ACM.

B Shneiderman. Designing the User Interface. Addison-Wesley, Reading, Mas
sachusetts, 1986.

Ben Shneiderman. Designing the User Interface. Addison-Wesley, Reading, Mas
sachusetts, 1998.

K Short. Component-based development and object modeling.
http://www.selectst.com, June 1998. (20 A pril 1999).

Candice L. Sidner. An A rtific ia l Discourse Language for Collaborative Negotiation. In
Barbara Hayes-Roth and Richard Korf, editors, Proceedings of the Twelfth National
Conference on A rtific ia l Intelligence, pages 814-819, Menlo Park, California, 1994.
American Association for A rtific ia l Intelligence, A A A I Press.

http://www.objectwatch.com/eddebate.htm
http://www.objectwatch.com/issue22.htm
http://www.selectst.com

Bibliography .233

[Sie98]

[Sim69]

[SKB99]

[SS93]

[SS98]

[SSTR93]

[Sto94]

[Str93]

[Str99]

[Suc87]

[SW89]

[SW98]

[Szy98]

[TA92]

[Tay99]

[TB80]

[TB96]

J Siegel. OMG Overview: CORBA and the OMA in Enterprise Computing. Com
munications of the ACM, 41(10):34-36, October 1998.

Herbert A Simon. The Sciences of the Artificia l. The M .I.T Press, Cambridge,
Massachusetts, 1969.

P A Savage-Knepshield and N J Belkin. Interaction in Information Retrieval: Trends
over Time. Journal of the American Society fo r Information Science, 50(12):1067-
1082, 1999.

G Salvendy and M J Smith, editors. Advances in Human Factors/Ergonomics.
Proceedings of the Fifth International Conference on Human-Computer Interaction,
(H C I International ’93), Orlando, Florida, August 8-13 1993. Elsevier, Amsterdam.

Amanda Spink and Tefko Saracevic. Human-Computer Interaction in Information
Retrieval: Nature and Manifestations of Feedback. Interacting with Computers,
10(3):249-267, 1998.

Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretching the
Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens. Technical
Report CS-93-39, Department of Computer Science, Brown University, Box 1910,
Providence, RI 02912, September 1993.

G Storrs. A conceptualization of m ultiparty interaction. Interacting with Computers,
6(2): 173—189, 1994.

Robert Stroud. Transparency and reflection in distributed systems: position paper
of the 5th ACM SIGOPS european workshop. ACM Operating Systems Review,
SIGOPS, 27(2):99-103, April 1993.

W Strigel. W hat’s the problem: Labor Shortage or Industry Practices. IEEE Soft
ware, 16(3):52-54, May/June 1999.

L Suchman. Plans and Situated Actions. Cambridge University Press, Cambridge,
1987.

J A Simpson and E S C Weiner, editors. Oxford English Dictionary. Clarendon Press,
Oxford, second edition, 1989.

D Sprott and L Wilkes. Component-based development.
http://www.butlergroup.com/pubsframe, September 1998. (20 A pril 1999).

C Szyperski. Component Software. Beyond Object Oriented Programming. Addison
Wesley, Harlow, England, 1998.

G Torkzadeh and I E Angulo. The Concept and Correlates of Computer Anxiety.
Behaviour and Information Technology, 11(2):99—108, 1992.

David A Taylor. The Keys to Object Technology. In [Zam99j, chapter 1. 1999.

R N Taylor and I Benbasat. A critique of cognitive style theory and research. In
Proceeding of the F irst International Conference on Information Systems, 1980.

J G Trafton and D P Brock. Simplifying interactions w ith task model tracing. ACT-R
Summer School, Psychology Department, Carnegie Mellon University, June 1996.

http://www.butlergroup.com/pubsframe

Bibliography .234

[Thi90]

[Thi93a]

[Thi93b]

[Tho96]

[Tho97]

[Tho98a]

[Tho98b]

[TJ93]

[TK98]

[TL91]

[TMdlADF99]

[TN99]

[TP94]

[Tra91]

[Tuf90]

[Tul93]

H Thimbleby. User Interface Design. Frontier. ACM Press, Addison Wesley Pub
lishing Company, New York, 1990.

M A Thies. Animated help as a sensible extension of a plan-based help system. In
/SS93J, 1993. volume II.

H Thimblebey. Combining systems and manuals. In J L Alty, D Diaper, and S Draper,
editors, People and Computers V II I H C I’93, pages 479-88, 1993.

Richard C. Thomas. Long-Term Variation in User Actions. ACM SIGCHI Bulletin,
28(2) :36—38, 1996.

A Thomas. Enterprise Java Beans. Server Component Model for Java. Patricia
Seybold Group, Dec 1997.

Anne Thomas. Enterprise JavaBeans technology. Server Com
ponent Model for the Java Platform. Web Document, 1998.
http: / /java.sun.com / products / e jb /white_paper.html.

Anne Thomas. Selecting Enterprise JavaBeans Technology. Prepared for WebLogic,
Inc., July 1998. http://www.beasys.com/products/weblogic/server/papers.html.

Richard N. Taylor and Gregory F. Johnson. Separations of Concerns in the Chiron-
1 User Interface Development and Management System. In Stacey Ashlund, Ken
Mullet, Austin Henderson, Erik Hollnagel, and Ted White, editors, Proceedings of
the Conference on Human Factors in computing systems, pages 367-374, New York,
24-29 April 1993. ACM Press.

O Tallman and J B Kain. COM versus CORBA: A Decision Framework. Web
Document, December 1998. www.quoininc.com/quoininc/COM_CORBA.htm l.

Boon Wan Tan and Tak Wah Lo. The Impact of Interface Customization on the
Effect of Cognitive Style on Information System Success. Behaviour and Information
Technology, 10(4):297-310, 1991.

Lourdes Tajes-Martines and Maria de los Angeles Diaz-Fondon. Systems Object
Model (SOM). In [Zam99], chapter 30. 1999.

S Terzis and P Nixon. Component trading: The basis for a component-oriented de
velopment framework. In 4th International Workshop on Component-Oriented Pro
gramming (WCOP 99),(in conjunction with ECOOP’99), Lisbon, Portugal, 14 June
1999.

Mario Tokoro and Remo Pareschi, editors. Object-Oriented Programming, Proceedings
of the 8th European Conference ECOOP’94■ Lecture Notes in Computer Science,
volume 821, Bologna, Italy, July 1994. Springer Verlag.

D Travis. Effective Color Displays. Theory and Practice. Academic Press, London,
1991.

Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, Connecticut,
U.S.A., May 1990.

T S Tullis. Is user interface design just common sense? In [SS93], 1993. volume II.

http://www.beasys.com/products/weblogic/server/papers.html
http://www.quoininc.com/quoininc/COM_CORBA.html

Bibliography .235

[TV99]

[Twe97]

[VG94]

[VL99]

[vSBvL98]

[Wae89]

[WarOO]

[WC95]

[WCB88]

[WD98]

[WH88]

[Wil99]

[WM99]

[WS99]

[WSOO]

S Taylor and J Vaughan. OTMs - ORBs for the enterprise. Web Document, February
1999. Application Development Trends, www.adtmag.com.

Lisa Tweedie. Characterizing Interactive Externalizations. In Proceedings of ACM
CHI 97 Conference on Human Factors in Computing Systems, volume 1 of PAPERS:
Information Structures, pages 375-382, 1997.

Jean Vanderdonckt and Xavier Gillo. Visual Techniques for Traditional and M ulti-
media Layouts. In Proceedings of the workshop on Advanced visual interfaces, pages
95-104, Bari Italy, June 1994.

J Vaughan and G Lawton. Application Servers in 1999: Persistent objects are knock
ing at the door. Web Document., May 1999. Application Development Trends.
www.adtmag.com.

Rini van Solingen, Egon Berghout, and Frank van Latum. Interrupts: Just a Minute
Never Is. IEEE Software, 15(5):97-103, September/October 1998.

Y Waern. Cognitive Aspects of Computer Supported Tasks. John Wiley & Sons,
Chichester, 1989.

Colin Ware. Information Visualization — Perception fo r Design. Morgan Kaufmann,
San Francisco, 2000.

Wade Walker and Harvey G. Cragon. Interrupt Processing in Concurrent Processors.
Computer, 28(6):36-46, June 1995.

ACM. 1998 International Workshop on Component-Based Software Engineering.
Proceedings of the 1988 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Kyoto, Japan, April 25-26, 1998 1988. URL:
http: / / www.sei.cmu.edu / cbs/icse98 / papers/index.html.

N Ward-Dutton. Componentware turns the corner.
http://www.adtmag.com/pub/jul98/qa701.htm l, July 1998. Application De
velopment Trends.

D Wybranietz and D Haban. Monitoring and performance measuring distributed
systems during operation. In Proceedings of the 1988 AC M SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pages 197-206, Santa Fe, USA,
May 1988. ACM.

Shawn W ille tt. Cloudscape Woos VARs for Java Database. Computer Reseller News
6-99, June 1999. http://www.crn.com/search/display.asp?ArticleID=7017.

Alan Wexelblat and Pattie Maes. Footprints: History-Rich Tools for Information For
aging. In Proceedings of ACM CHI 99 Conference on Human Factors in Computing
Systems, volume 1 of Foundations fo r Navigation, pages 270-277, 1999.

I. Welch and R. Stroud. From Dalang to Kava — the evolution of a reflective Java
extension. Lecture Notes in Computer Science, 1616:2-21, 1999.

Gillian M Wilson and Angela Sasse. Do Users Always Know W hat’s Good for Them?
Utilising Physiological Responses to Asses Media Quality. In Sharon McDonald,

http://www.adtmag.com
http://www.adtmag.com
http://www.sei.cmu.edu
http://www.adtmag.com/pub/jul98/qa701.html
http://www.crn.com/search/display.asp?ArticleID=7017

Bibliography .236

[WSA97]

[YC93]

[Y094]

[Zak92]

[Zarn99]

[ZBF+92]

Yvonne Waern, and Gilbert Cockton, editors, Human Computer Interaction 2000.
People and Computers X IV Usability or Else! 11 C l2000, Sunderland, United
Kingdom, September 5-8 2000. Springer Verlag.

Ray Welland, Dag Sjoberg, and Malcolm Atkinson. Empirical Analysis based on Au
tomatic Tool Logging. In Empirical Assessment in Software Engineering. EASE'97,
University of Keele., 24-26 March 1997.

C Yang and P Carayon. Effects of computer system performance and job support on
stress among office workers. In [SS93/, 1993. volume I.

Toshiya Yoshimune and Katsuhiko Ogawa. Graphical Feedback System to Effectively
Support User’s Task. In Proceedings of the Human Factors and Ergonomics Society
38th Annual Meeting, volume 1 of COMPUTER. SYSTEMS: Usability [Lecture], pages
345 349, 1994.

D Zakay. The influence of computerized feedback on overconfidence in knowledge.
Behaviour & Information Technology, 11(6):329 33, 1992.

S Zamir, editor. Handbook of Object Technology. CRC Press, Boca Raton, 1999.

D Zapf, F C Brodbeck, M Frese, H Peters, and J Plumper. Errors in working with
office computers: A first validation of a taxonomy for observed errors in a field setting.
International Journal of Human-Computer Interaction, 4(4):311 339, 1992.

