
Verification of LOTOS Specifications
using Term Rewriting Techniques

Carroii E lizabeth Kirkwood

Subm itted for the Degree of Doctor of Philosophy.

Research carried out in the D epartm ent of Com puting Science,
University of Glasgow.

@ June, 1994, Carron Kirkwood.

ProQuest Number: 13818519

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818519

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

)

GLASGOW ~ |
UNIVERSITY I
LIBRARY I

A bstract

Recently the use of formal methods in describing and analysing the behaviour of (computer) sys­

tems has become more common. This has resulted in the proliferation of a wide variety of different

specification formalisms, together with analytical techniques and methodologies for specification

development. The particular specification formalism adopted for this study is LOTOS, an ISO

standard formal description technique. Although there are many works dealing with how to write

LOTOS specifications and how to develop a LOTOS specification from the initial abstract re­

quirements specification to concrete implementation, relatively few works are concerned with the

problems of expressing and proving the correctness of LOTOS specifications, i.e. verification. The

main objective of this thesis is to address this shortfall by investigating the meaning of verificar

tion as it relates to concurrent systems in general, and in particular to those systems described

using LOTOS. Further goals are to automate the verification process using equational reasoning

and term rewriting, and also to attempt to make the results of this work, both theoretical and

practical, as accessible to LOTOS practitioners as possible.

After introducing the LOTOS language and related formalisms, the thesis continues with a

survey of approaches to verification of concurrent systems with a view to identifying those ap­

proaches suitable for use in verification of properties of systems specified using LOTOS. Both

general methodology and specific implementation techniques are considered. As a result of this

survey, two useful approaches are identified. Both are based on the technique of expressing the

correctness of a LOTOS specification by comparison with another, typically more abstract, spec­

ification. The second approach, covered later in the thesis, uses logic for the more abstract

specification. The main part of the thesis is concerned with the first approach, in which both

specifications are described in LOTOS, and the comparison is expressed by a behavioural equiv­

alence or preorder relation. This approach is further explored by means of proofs based on the

paradigm of equational reasoning, implemented by term rewriting.

Initially, only Basic LOTOS (i.e. the process algebra) is considered. A complete (i.e. confluent

and terminating) rule set for weak bisimulation congruence over a subset of Basic LOTOS is

developed using RRL (Rewrite Rule Laboratory). Although fully automatic, this proof technique

is found to be insufficient for anything other than finite toy examples. In order to give more

power, the rule set is supplemented by an incomplete set of rules expressing the expansion law.

The incompleteness of the rule set necessitates the use of a strategy in applying the rules, as

indiscriminate application of the rules may lead to non-termination of the rewriting. A case study

illustrates the use of these rules, and also the effect of different interpretations of the verification

requirement on the outcome of the proof.

This proof technique, as a result of the deficiencies of the tool on which it is based, has two

major failings: an inability to handle recursion, and no opportunity for user control in the proof.

Moving to a different tool, PAM (Process Algebra Manipulator), allows correction of these faults,

but at the cost of automation. The new implementation acts merely as computerised pencil and

paper, although tactics can be defined which allow some degree of automation. Equations may be

applied in either direction, therefore completion is no longer as important. (Note that the tactic

language could be used to describe a a complete set of rules which would give an automatic proof

technique, therefore some effort towards completion is still desirable. However, since LOTOS

weak bisimulation congruence is undecidable, there can never be a complete rule set for deciding

equivalence of terms from the full LOTOS language.) The composition of the rule set is re­

considered, with a view to using alternative axiomatisations of weak bisimulation congruence: two

main axiomatisations are described and their relative merits compared. The axiomatisation of

other LOTOS relations is also considered. In particular, we consider the pitfalls of axiomatising

the cred preorder relation.

In order to demonstrate the use of the PAM proof system developed, the case study, modified

to use recursion, is re-examined. Four other examples taken from the literature, one substantial,

the others fairly small, are also investigated to further demonstrate the applicability of the PAM

proof system to a variety of examples.

The above approach considers Basic LOTOS only; to be more generally applicable the verifi­

cation of properties of full LOTOS specifications (i.e. including abstract data types) must also be

studied. Methods for proving the equivalence of full LOTOS specifications are examined, includ­

ing a modification of the technique used successfully above. The application of this technique is

illustrated via proofs of the equivalence of three variants of the well-known stack example. The

proofs are carried out by hand as neither of the implementation tools used above are able to handle

data types. The approaches of other authors to verification of full LOTOS specifications are also

described and illustrated by examples in order to propose an approach to verification comprising

several complementary techniques.

Finally, the verification of LOTOS specifications where the abstract requirements axe expressed

using temporal/modal logic is briefly considered. Specific reference is made to the existing linear

temporal logic used in conjunction with LOTOS and also to the use of HML (Hennessy-Milner

Logic) in conjunction with CCS. The possibility of using HML with Basic LOTOS is discussed

at length, with examples drawn from earlier in the thesis. Also considered is the possibility of

extending the logic for use with full LOTOS. Both of these proposals require further investigation.

C ontents

1 In trod u ction 1
1.1 Background... 1
1.2 Aims and O bjectives... 4
1.3 Overview .. 5

2 V erification R equirem ents I 10
2.1 What Do We Mean By “Verification”? .. 10
2.2 System Development and Verification .. 11

2.2.1 Requirem ents... 12
2.2.2 Specification ... 13
2.2.3 Implementation.. 15

2.3 S u m m a ry .. 17

3 C oncurrency and P rocess Algebra: A Survey 18
3.1 Introduction.. 18
3.2 Process A lgebra.. 18

3.2.1 Basic Concepts and Operators of Process Algebra .. 19
3.2.2 Extensions to Process Algebra .. 25
3.2.3 Properties of Specification Languages .. 27

3.3 C S P ... 28
3.3.1 Operators of CSP .. 28
3.3.2 Semantics of CSP .. 30
3.3.3 Proof Techniques for C S P .. 32

3.4 C C S ... 33
3.4.1 Operators of CCS .. 33
3.4.2 Semantics of CCS (In fo rm a l)... 34
3.4.3 Semantics of CCS (F o rm a l).. 37
3.4.4 Proof Techniques for C C S .. 46

3.5 L O T O S ... 47
3.5.1 Operators of Basic L O T O S .. 47
3.5.2 LOTOS Specification S ty les ... 49
3.5.3 Semantics of Basic L O T O S .. 50
3.5.4 Proof Techniques for L O T O S ... 53

3.6 Comparison of Process Algebras... 53
3.6.1 Comparing the Formalisms as Specification Languages.................................. 53
3.6.2 Comparing the Different Equivalences.. 55

3.7 S u m m a ry .. 59

4 V erification R equ irem ents II: Satisfaction 60
4.1 Proving the Implementation satisfies the Specification ... 60
4.2 What Sort of Relation Should Be U s e d ? ... 62

4.2.1 Equivalence, Congruence or P reo rd e r? .. 62

iii

4.2.2 Choosing between Different Equivalence/Congruence R e la tio n s.................. 63
4.3 Refinement and Transformation.. 66
4.4 Proof Techniques and Proof Tools .. 67

4.4.1 Semantic R easo n in g .. 67
4.4.2 Syntactic R eason ing .. 68
4.4.3 LOTOS C onsiderations.. 70

4.5 S u m m a ry ... 71

5 E qua tiona l R easoning, T erm R ew riting an d LO TOS 72
5.1 Introduction.. 72
5.2 Term Rewriting System s... 73
5.3 Knuth-Bendix Com pletion.. 75
5.4 Extensions to Term Rew riting.. 77
5.5 Application to LO TO S.. 78

5.5.1 Using Term Rewriting Techniques in Other W ays... 78
5.5.2 Soundness of the Laws of [IS088]... 79

5.6 S u m m a ry .. 80

6 U sing R R L to Im plem en t LO TOS W eak B isim ula tion C ongruence Laws 81
6.1 Introduction... 81
6.2 Implementing LOTOS Laws as Rules in R R L .. 81

6.2.1 Basic Rule Set for Weak Bisimulation C ongruence .. 82
6.2.2 Result of the Completion P ro c ed u re ... 83

6.3 Equational Proofs — The Buffer E xam ple .. 84
6.4 Adding Other R u l e s ... 85

6.4.1 Developing The Expansion R u le s ... 85
6.4.2 Strategy in Applying the Expansion R ules.. 88
6.4.3 Laws causing Infinite Sequences of Rewrite R u le s ... 88
6.4.4 More Rules for the LOTOS Relabelling O p era to r... 92

6.5 S u m m a ry .. 93

7 U sing T erm R ew riting for LOTOS: Login Case S tu d y 94
7.1 Introduction... 94
7.2 The E x a m p le ... 95

7.2.1 Informal Overview of the S y stem ... 95
7.2.2 P ro to c o ls ... 97
7.2.3 P ro cesses .. 97

7.3 Verification of the E x a m p le ... 98
7.3.1 Informal Discussion ... 98
7.3.2 Formalising the Verification R equ irem en t.. 99

7.4 Verification P r o o fs .. 100
7.4.1 Splitting the Conjecture into Three P a r t s ... 100
7.4.2 Proving the System as a W hole.. 106
7.4.3 Adding Constraints to the E x a m p le ...107

7.5 Extensions to the Example ...109
7.6 Review of the Tools U s e d ..109

7.6.1 Improvements to L O T O S ... 109
7.6.2 Improvements to R R L ... 110

7.7 Summary and Discussion ..I l l

IV

8 U sing PA M to Im plem ent LO TOS R ela tions 113
8.1 Proof: Technique and A u to m atio n ...113
8.2 P A M ... 114

8.2.1 Setting up P A M ... 116
8.2.2 Adding the LOTOS Relabelling O p e ra to r ..119

8.3 PAM Axioms for LOTOS Equivalence Relations ..120
8.3.1 Laws Given in [BIN92] 120
8.3.2 Extra Laws Taken from in [IS 0 8 8].. 121

8.4 PAM Axioms for c r e d .. 122
8.4.1 Axiomatising cred as a Predicate .. 124
8.4.2 Axiomatising cred as an Equivalence ...127
8.4.3 Proving that Axioms CRED3 and CRED4 hold for i ...128
8.4.4 Why cred as an Equivalence can be Dangerous.. 132

8.5 S u m m a ry ..137

9 F u rth e r S tud ies using PAM 138
9.1 Login Case S tu d y ..138

9.1.1 Reformulating the Example for PA M ... 139
9.1.2 Proof of the Verification R equ irem en t.. 140

9.2 A Simple Radiation Machine ..141
9.2.1 LOTOS Specification of the Radiation M achine.. 142
9.2.2 Expressing the Verification R equirem ents..142
9.2.3 Proving Theracl is not s a f e ...146
9.2.4 Proving SimpleTherac is s a fe ..147
9.2.5 Proving the Modified Theracl is sa fe ... 150
9.2.6 Summary and Discussion ..154

9.3 Readers and W rite rs ... 155
9.3.1 The LOTOS D escriptions..155
9.3.2 Proving the Verification Requirement H o ld s ...156

9.4 A Nondeterministic Candy M a c h in e ..157
9.4.1 The LOTOS D escriptions..157
9.4.2 Proving the Verification Requirement Holds ... 159

9.5 The Scheduler..160
9.5.1 The LOTOS D escriptions..160
9.5.2 Proving the Verification Requirement H o ld s ...161

9.6 S u m m a ry ..163

10 Full LO TOS 164
10.1 ACT ONE and L O T O S ... 165

10.1.1 ACT ONE S y n ta x .. 165
10.1.2 Adding ACT ONE to Basic L O T O S ... 166
10.1.3 Full LOTOS Semantics ...167

10.2 Three Views of a S tack .. 168
10.2.1 The ACT ONE S t a c k .. 169
10.2.2 The First LOTOS S ta c k ...170
10.2.3 The Second LOTOS S tack ..171
10.2.4 Proving Stack One Equivalent to Stack T w o ...171
10.2.5 The Third LOTOS S t a c k ..177
10.2.6 Proving Stack One Equivalent to Stack T h re e ..177
10.2.7 Summary and Discussion ..185

10.3 A Unified Framework... 186
10.3.1 Abstract Interpretation and L O T O S ... 186
10.3.2 Abstract Interpretation and the Radiation Machine ... 193
10.3.3 Using C on tex ts .. 201

v

10.3.4 Related W o rk .. 207
10.4 Summary and Discussion .. 208

11 V erification R equ irem en ts III: T em poral an d M odal P ro p e rtie s 210
11.1 Introduction...210
11.2 Temporal Logics and L O T O S ..212
11.3 Introducing HML and its V a r ia n ts .. 213

11.3.1 The Modal M u-Calculus...215
11.4 Classes of P ro p ertie s ... 216

11.4.1 Safety P roperties... 217
11.4.2 Liveness Properties.. 218

11.5 Using Logic For Partial Specifications .. 219
11.5.1 Login Case S tudy... 220
11.5.2 The Radiation M a ch in e ...221

11.6 The Modal Mu-Calculus and Full L O T O S .. 222
11.6.1 Extending the Modal M u-Calculus... 222
11.6.2 Extending the Proof Technique... 223
11.6.3 E x am p les...225

11.7 S u m m a ry ..226

12 C onclusions 228
12.1 Detailed List of Achievements..229
12.2 Further W o rk ..232

12.2.1 Work Directly Related to the T h e s is .. 233
12.2.2 Work Indirectly Related to the T h e s is ...234

12.3 Prospects for this W o r k ... 234

A A Survey o f P ro o f Tools for LOTOS an d R e la ted Form alism s 246
A.l Introduction...246
A.2 Behaviourally Based Tools/Semantic Reasoning...247

A.2.1 The Concurrency W orkbench...247
A.2.2 T A V ..248
A.2.3 A U T O ...249

A.3 Algebraically Based Tools/Syntactic R easoning ...249
A.3.1 A Rewriting Strategy ... 249
A.3.2 PA M .. 251

A.4 Tools for L O T O S..252
A.5 Summary and Discussion .. 253

B LOTOS Inference R ules 255
B.l LOTOS S y n ta x ...255

B.1.1 Basic D efinitions.. 255
B .l.2 Process Algebra S y n ta x .. 257
B .l.3 LOTOS Data Type S y n ta x ..258

B.2 LOTOS S em an tics .. 259
B.2.1 Algebras and Transition S ystem s.. 260
B.2.2 LOTOS Inference R u le s .. 262
B.2.3 Weak Bisimulation Congruence Law s.. 266
B.2.4 Weak Bisimulation Equivalence Laws.. 269
B.2.5 Testing Congruence L a w s ...270
B.2.6 Testing Equivalence L a w s ...270

C R R L R ules 271
C .l Introduction..271
C.2 A lg e b ra ..272
C.3 Core Rules ..272
C.4 Sets and L is ts ...273
C.5 Generalised Choice and Parallelism ... 274
C.6 Case Study C o n s ta n ts ... 275
C.7 Hide Expansion R u le s ... 276
C.8 Parallel Expansion Rules.. 276

D PA M In p u t Files 279
D.l Main LOTOS “Axioms” .. 279
D.2 Extra LOTOS “Axioms” .. 281
D.3 “Axioms” for the LOTOS cred Preorder.. 283
D.4 The Login Case S tu d y ... 284
D.5 The Simple Radiation M ach ine ..285

D.5.1 T h e r a c l ... 286
D.5.2 Simple Therac ... 287
D.5.3 Modified Theracl — Version A ...287
D.5.4 Modified Theracl — Version B ...287
D.5.5 T h e r a c ld .. 288
D.5.6 T h e ra c 2 ... 288

D.6 The Readers and Writers E x a m p le ..290
D.7 The Candy Machine E xam ple ... 290
D.8 The Scheduler E x a m p le .. 291

vii

C hapter 1

Introduction

1.1 B ackground

The last few years have seen an increasing interest in the use of formal methods in the design

and analysis of computer systems. By formal methods, we mean the application of mathematical

concepts to the modelling of a real world problem. Most commonly this means the use of a formal

specification language, i.e. one which has a formal mathematical semantics, to describe the system.

The use of formal methods allows us to build a (simplified) mathematical model of a real world

phenomenon which can then be analysed using mathematical techniques. The results gained can

then be used to deduce results about the properties of the real world system. Of course, the

applicability of these results to the real world system is highly dependent on the accuracy of our

mathematical model.

Use of formal methods can aid practitioners in two main ways. Firstly, by virtue of their math­

ematical basis, formal specifications allow clear, precise and unambiguous descriptions of a system;

moreover, descriptions can be written without reference to implementation issues. Secondly, the

existence of formal semantics for the specification language makes rigorous mathematical anal­

ysis, i.e. verification, of the specification possible. Such analysis can improve confidence in the

correctness of the design and/or implementation. It may also lead to a better/deeper understand­

ing of the system, especially in cases where the analysis detects some (non-trivial) error in the

specification.

A variety of different specification formalisms are in current use in many different areas of ap­

plication, e.g. VDM, Z, denotational semantics, petri nets, finite state automata, process algebras,

. . . . Although the choice seems endless, it may be narrowed down by the requirements of the area

of application. We are interested in the verification (and therefore the specification) of concurrent

systems. For this application area, a popular means of specification is process algebra. Promi­

1

nent examples of process algebras include ACP [BK84], CCS [Mil80, Mil89b], CIRCAL [Mil85],

CSP [Hoa85], SCCS (Synchronous CCS) [Mil89b], and MEIJE [AB84]. They are prominent be­

cause of popularity, i.e. used in many applications and studies, both academic and industrial, or

theoretical significance, e.g. it has been shown in [dS85] that SCCS and MEIJE are universal pro­

cess algebras, in the sense that all other process algebras can be described in terms of SCCS or

MEIJE.

It should be realised that universality is not necessarily a desirable feature of a language.

While a universal process algebra is able to describe every sort of system, it may be that these

descriptions are clumsy. More importantly, because it is so general, the theory for verification

may be less rich than if we used a language which has a smaller scope and is perhaps specifically

designed for our purpose. For this reason neither of the universal process algebras mentioned

above are considered further here. The matter of why variety is important in process algebras is

further discussed in [BBH+91].

Another consideration not mentioned above is standardisation. Although the formalisms above

are of academic significance, they have not been widely adopted for industrial use. For interna­

tionally standardised specification formalisms we must look to ISO (the International Standards

Organisation).

One of the tasks undertaken by ISO is the development of open systems which will provide

a uniform framework for communication throughout the world. This means that the protocols

controlling communication must behave in exactly the same way whenever and wherever they are

executed, regardless of local variables such as implementation language, machine architecture and

physical location.

The focal point of the standardisation process is the seven layer Reference Model [IS074]

which describes the interaction between systems in an abstract, implementation independent way.

Obviously, given the aims of ISO, the first essential is to have a specification which cannot be

interpreted in any way other than that intended by the specifier, implying the use of a formal

specification language. With this in mind, ISO have introduced three internationally standard

formal description techniques (fdts) to support the Reference Model: Estelle [ISO90], SDL [CCI88]

and LOTOS [IS088]. These are to be used to give formal specifications of the services and protocols

which make up the Reference Model. [Vis90] gives a historical overview of the development of

these languages and related standards, and [Tur93] gives an introduction to, and comparison of,

the languages.

Support for the formal description techniques is provided in the form of European research and

development projects. In the past these projects have resulted in development methodologies and

analytical tools for the fdts. Initially the projects were joint ventures, encompassing all three fdts,

for example, the SEDOS project [vEVD89]. More recently, as interest in the different languages has

2

grown, the projects have been specific to particular fdts, e.g. LOTOSPHERE [vSPV92]. Following

this lead, we also concentrate on just one of the fdts, LOTOS, for the following reasons.

The LOTOS language has two parts: process algebra, which can be used to specify the control

aspect of a system, and abstract data type, which can be used to specify the data manipulated

by the system. The process algebra part was developed from the formalisms CCS and CSP; this

allows us to link our study to both academic and industrial concerns. The theory behind CCS

and CSP is now well developed, and there is a wide literature on many aspects of analysis of CCS

and CSP specifications. Due to the close relationship between these formalisms and LOTOS it

may be possible to transfer results obtained for these formalisms to the LOTOS setting. Our main

reason for choosing to study LOTOS rather than CCS or CSP is its status as an international

standard. We cannot investigate all aspects of the definition and application of LOTOS in one

thesis, therefore we concentrate on verification of properties of LOTOS specifications.

The fdts of ISO were all designed with specification in mind; therefore the expressivity of the

language was given more importance than the simplicity of the semantics. While specification in

itself is a valuable undertaking, providing clear descriptions and perhaps a better understanding

of the system, ideally, from our point of view, more emphasis should be put on methods for

checking the correctness of a specification. The more expressive a language is, the more complex

the semantics, and the harder it becomes to verify correctness of specifications in that language.

Verification really needs to be considered right from the first stages of specification, rather than

tackled after specification is completed; this point is made in [HJOP89]. This conflict between

the expressive power of the language and the simplicity of its semantics is particularly relevant

to LOTOS, which is encumbered by a verbose syntax, making analyses longer and more tedious,

and also obscuring the simplicity of the underlying system.

Several forms of analysis can be considered for LOTOS, including debugging, simulation, test­

ing and verification. While projects such as LOTOSPHERE have been successful in providing a

structured development methodology together with some tool support, other aspects of the devel­

opment process have been largely ignored. In particular, although much effort has been expended

on, for example, testing techniques, relatively little has been directed towards the problems of

verification, particularly verification of properties of full LOTOS specifications. A desire to rectify

this imbalance is the main aim of this thesis; more specific aims and objectives are detailed in the

next section. We are interested in verification because it provides rigorous mathematical analysis

of a system. While verification cannot provide 100% certainty that a system is correct, it can

greatly increase our confidence in the general correctness of the system, and the correctness with

respect to particular properties (assuming the properties are expressed accurately). Verification

can give more confidence in the system than a testing method can.

Another aspect of verification is automation. Even for small systems, analysis can be tedious

3

and error prone, therefore it is vital to have some sort of machine assistance. Although full

automation of any analyses is preferable, in practice we may have to settle for partial automation.

A wide variety of methods for automation exist for different aspects of verification. We consider

a general method of proof and automation, the paradigm of equational reasoning implemented by

term rewriting, and consider how two forms of analysis may be carried out by equational reasoning

and automated by term rewriting. Process algebras are all associated with sets of laws or axioms

corresponding to different notions of equivalence, making equational reasoning a natural proof

technique to use.

The next section details our aims and objectives in the study of verification of properties of

LOTOS specifications.

1.2 A im s and O b jectives

The aims of this thesis are:

• to investigate the verification of concurrent systems described using the formal description

technique LOTOS,

• to apply this knowledge by developing proof methods for verifying the correctness of LOTOS

specifications. These methods should make use of existing proof tools rather than necessi­

tating the implementation of new software. The proof technique used will be equational

reasoning, automated by term rewriting.

• to make the results (both theoretical and practical) of this investigation accessible to LOTOS

practitioners.

These aims will be achieved by the following objectives:

• to build knowledge of LOTOS, the LOTOS related process algebras CCS and CSP, and their

associated approaches to verification,

• to use this knowledge in defining what verification means for concurrent systems in general,

and more specifically for both Basic LOTOS and full LOTOS,

• from the above study, to identify an approach to verification which can be automated using

equational reasoning and term rewriting,

• to develop a proof system (based on existing tools) implementing that approach to verifica­

tion,

• to demonstrate the usefulness of the proof system through examples.

4

We believe these aims and objectives have been largely achieved in the thesis. Although we do

not claim to have completely investigated verification for LOTOS (we have only briefly covered

some aspects of verification, such as the use of temporal/modal logics in specifying the requirements

of the system1), we have thoroughly explored one aspect of verification, namely that of proving two

specifications (both described using LOTOS) are related by a behavioural equivalence or preorder.

This has been achieved through theoretical and practical investigations, the practical work being

carried out using equational reasoning and term rewriting tools. The proof technique we develop

in the thesis is illustrated through several examples, some small, others medium sized.

The following section gives a more detailed account of the work carried out.

1.3 O verview

The thesis is organised around the main topic of verification; particular questions addressed are:

what is meant by verification, what kind of verification can be carried out on LOTOS specifications,

how can the proofs of verification can be automated, and what do those results tell us about the

system under examination?

Chapter 2 contains an informal discussion of what is meant by verification. The view taken

here is that verification is the formal, mathematical expression and proof of the correctness of a

concrete description of a system with respect to some set of (formal) requirements. Of course,

the requirements also constitute a description of the system, at a more abstract level. As the

two descriptions need not be expressed using the same formalism, two main cases are considered;

the bulk of the thesis is concerned with the case in which both descriptions are expressed using

LOTOS. An alternative case in which the concrete description is expressed in LOTOS and the

requirements are expressed using a temporal or modal logic is considered in chapter 11.

What does verification mean in relation to systems specified using LOTOS? In order to consider

this question a good working knowledge of the semantics of LOTOS and the ways in which LOTOS

specifications can be compared is required. It is also helpful to have the same knowledge for CCS

and CSP, since LOTOS was developed from these formalisms. Since both CCS and CSP have a

rich literature, it may be possible to adapt proof techniques from either of these formalisms for

use with LOTOS. The three formalisms, LOTOS, CCS and CSP, are presented in some detail

in chapter 3, including a summary of their main differences (and similarities). At this point

we consider only Basic LOTOS, which aids the comparison with CCS and CSP. Full LOTOS is

considered in chapter 10.

The survey of the three process algebras is followed by the first detailed section on verification,

1The investigation of temporal logic in conjunction with LOTOS is the basis of a SERC funded project, “Tem­
poral Aspects of Verification of LOTOS Specifications”, which will run over the next two years.

5

chapter 4. The technique of comparing two descriptions of a system where both are written using

the same specification language is one which is commonly used in the process algebra literature.

Many proof techniques and tools based on this approach are currently in use, and a wide variety

of equivalence relations and/or preorders have been developed to express ways of comparing spec­

ifications. A side issue considered briefly here is the selection of the most appropriate relation for

a given problem.

The available proof techniques and tools are surveyed, compared and considered for use in

conjunction with LOTOS. Although there are some fast algorithms for deciding equivalence of

processes (based on graph partition algorithms), in general these do not give any intuition in the

case where the two specifications are not equivalent (they only answer yes or no). Such algorithms

also rely on a special internal representation of the process specifications for their calculations.

In this work our preference is for a proof technique in which no special intermediate forms are

required, and which may give some insight into the workings of the system under consideration,

especially in the case in which the two specifications are not equivalent. Equational reasoning

is such a proof technique and is adopted for use in the practical work. Equational reasoning

is automated by term rewriting. The basic theory of term rewriting, including Knuth-Bendix

completion, is presented in chapter 5. We also discuss the discovery of an inconsistency, which we

found by rewriting techniques, in the laws of weak bisimulation congruence of [IS088].

Chapters 6 to 9 detail the various components of the practical work. The initial aim of the

practical work is to form a complete (i.e. confluent and terminating) set of rewrite rules (giving a

decision procedure) for LOTOS weak bisimulation congruence using the tool RRL (Rewrite Rule

Laboratory). This is described in chapter 6. A complete rule set for a subset of the language is

developed. No complete set for the full language can exist because weak bisimulation congruence

is known to be undecidable. Several small examples of proofs by rewriting demonstrate the use

of the rewrite rule set and also the need for rules expressing the full power of the expansion law

(which allows parallelism to be expressed in terms of sequencing and choice). A set of rules to

achieve this is developed. As the new set of rules is not complete, a strategy in applying the rules

must be adopted, otherwise the rewriting may not terminate.

To illustrate the use of this verification technique, a case study is introduced in chapter 7.

The case study has two purposes: firstly, to obtain a successful proof, using the rewrite rules

developed with RRL, of the requirement that the specification of the system is satisfied by the

implementation, and secondly, to discover the effect of different interpretations of this requirement

on the outcome of the proof. It is interesting to note that under the initial, intuitive interpretation

of the verification requirement the implementation cannot be proved to satisfy the specification.

In the end the specification has to be altered (in a modular way, using the constraint oriented

specification style) in order to complete the proof. As a result of this study a number of defi­

6

ciencies in the original verification technique are identified; the most important is the inability to

handle recursive processes, but also significant is the inflexibility of the RRL system and lack of

opportunity for user intervention.

Chapter 8 introduces our second approach to using term rewriting proof techniques for ver­

ification of Basic LOTOS specifications. A different tool, PAM (Process Algebra Manipulator),

which can perform proofs on specifications incorporating recursive processes, is adopted. This new

power is balanced by the fact that PAM cannot perform proofs automatically; the user must guide

every step. However, a number of tactics describing patterns of rule application may be defined,

allowing some limited form of automation.

An important decision in setting up PAM is how to express the LOTOS laws, and indeed

whether all laws are necessary for most examples. The relative merits of different solutions to

this question are considered. This leads on to implementation of equivalences other than weak

bisimulation congruence. Also discussed is the problem of axiomatising a preorder relation.

In chapter 9 the case study example is repeated (this time with recursive processes). In order

to further show the utility of the system, a number of other examples are also presented. These

are a simple radiation machine, the reader/writer problem, a nondeterministic candy machine and

the scheduler. Of these, the most significant, and largest, is the radiation machine study. Proofs

are presented of the safety (or not) of several variants of the machine; the most interesting are

the proofs of safety. These could not be completed using PAM, as reasoning external to our proof

system had to be employed. All of the examples are taken from the papers of other authors.

Until this point only one half of the LOTOS language has been considered; namely the pro­

cess algebra part, Basic LOTOS. However, full LOTOS also incorporates an abstract data type

language, ACT ONE. In chapter 10 the proof technique used so far is reviewed and the question

of how the inclusion of data types might alter the verification process is considered. The modified

proof technique is illustrated by means of an example. Three descriptions of the stack, each with

varying emphasis on the process algebra, are compared using weak bisimulation congruence; the

proofs are carried out by hand. Hand proofs are normally tedious and error prone: these are no

exception. This “feature” is only exaggerated by including data types. The technique seems of

limited value without automation (which is not possible due to the limitations of current tools) so

approaches by other authors to the problem of verification of full LOTOS are also surveyed. The

two main approaches we consider both work on the principle of removing the abstract data types

from the specification to obtain a Basic LOTOS specification, and evaluating correctness using

the better understood Basic LOTOS proof techniques. The first approach provides a method for

encoding the data values of a full LOTOS specification in a Basic LOTOS one, and may be varied

to preserve some, all, or none of the data type information. The other approach is really a method

for deriving a process algebra specification from an abstract data type specification, preserving

7

all data type information in the derivation. We illustrate both approaches by our own examples:

one using the Stack example and a hand proof, the other using the radiation machine study of

section 9.2 and the PAM implementation to automate the Basic LOTOS proof. In the absence

of one really useful and generally applicable proof technique for verification of properties of full

LOTOS specifications, it seems that a composite approach may be the best solution.

In the initial discussion of verification in chapter 2, two main approaches to verification were

identified. Although the main approach of proving equivalence between LOTOS specifications

was demonstrated in chapter 9 to be fairly successful for Basic LOTOS specifications, chapter 10

showed that it is not as suitable for full LOTOS specifications. The second approach to verification

mentioned in chapter 2 considers the situation in which one description (usually the more abstract

specification) is written using some form of logic. This allows the desirable properties of the system

to be described in a more abstract, less constructive manner. The current state of verification

with respect to this approach is surveyed in chapter 11. Although a linear temporal logic has been

developed for use in conjunction with LOTOS, it is not satisfactory as the equivalence induced by

the logic is the rather weak trace equivalence, meaning that deadlock properties are not preserved.

We conjecture that a variant of HML (the logic commonly used with CCS) might be adapted

for use with Basic LOTOS; we present the logic, outline the proof technique and give some re­

specification, in logic, of earlier examples. A natural progression is to consider what sort of logic

would be required for use with full LOTOS; we discuss this topic, illustrating the discussion by

examples, but the possibility is not pursued. This work will be the subject of a future investigation,

as mentioned earlier.

Finally, chapter 12 concludes our study with a discussion of what has been achieved, how far

our work has gone towards meeting the original objectives, open problems and further work.

Four appendices are attached: appendix A consists of a survey of existing tools for verification

of specifications written using process algebras and tools for LOTOS (proof tools and otherwise),

appendix B presents the LOTOS syntax and semantics, and appendices C and D give the input

files used in RRL and PAM respectively.

Acknowledgem ents

My interest in the topic of verification of LOTOS specifications began when I was employed on

the SERC project “Verification Techniques for LOTOS” [VTL93]. I want to thank my supervisor

Muffy Thomas for getting me involved in all of this, providing the stimulus for much the work

described herein and for patiently proof-reading countless drafts of bits of this thesis.

During the course of the project I had many illuminating conversations with colleagues involved

in the project from Royal Holloway and Bedford New College and Rutherford Appleton Laboratory.

Amongst my colleagues, I particularly want to thank Phil Watson, who shared an office with me for

three years, during which time he helped guide me through the hard maths! I also want to thank

visitors to our project meetings: Jeremy Dick, who provided the case study example described in

chapter 7, and friendly rivals in the field, Paula Inverardi and Monica Nesi.

The Department of Computing Science has been a great environment in which to work. I’d like

to thank all my colleagues there, in particular, the members of the Formal Methods group, who

probably never want to hear me talk about the case study example ever again. The University of

Glasgow also played a part by funding me as a University Scholar from October 1992 to September

1993, allowing me to write this thesis.

The tools used in this work came from the following people: Deepak Kapur (RRL) and Huimin

Lin (PAM). Thank you particularly to Huimin, who was always ready to answer my questions

about PAM.

For moral support, I want to thank all my family; the Shanklands and the Kirkwoods. Last

but by no means least, thanks to my best friend Derick, who supplied endless cups of tea, never

stopped believing in me, and generally put up with my ranting and raving throughout the process.

9

C hapter 2

Verification Requirem ents I

In this chapter the meaning of the term verification is discussed, initially in the general setting

of concurrent systems. As there are many different uses of the term in the literature, we try to

identify what exactly we mean by verification: what it is, what it is not, and at what point in the

development of a system verification techniques may be applied. We feel it is important to clarify

from the outset what we understand verification to mean so that it is clear to the reader what we

are trying to achieve in the wider aims of the thesis. The discussion of the meaning of verification

can of course be applied to verification of properties of systems described using LOTOS, and,

where appropriate, specific examples from the LOTOS literature are used to illustrate certain

forms of system analysis.

2.1 W h at D o W e M ean B y “V erification” ?

As mentioned in the introduction, there are several different approaches to the analysis of spec­

ifications, some formal, some informal. For example, we may carry out syntactic analysis of the

specification to ensure expressions are well formed and well typed. This sort of analysis can be

easily carried out by machine. Indeed, machines can perform such tasks with greater accuracy

than humans, because by hand they become tedious and errors are then easily missed.

Another form of analysis involves the use of a simulator to try to detect invalid sequences

of events by “executing” the specification. A similar function may be carried out by performing

a test process describing the sequence of events in parallel with the specification, synchronising

on all events. If the test process reaches a special “test passed” event, then we know that the

specification can perform that sequence of events. Using these simulation methods we can check

for good or bad behaviours in a system, and correct any errors found. These forms of analysis

involve only syntactic manipulation of the system, and have been automated for LOTOS, e.g.

10

various components of the LITE toolkit [LITE]. Appendix A.4 provides a brief survey of such

tools.

Unfortunately, due to the non-exhaustive nature of simulations and tests, all errors in a speci­

fication may not be discovered by such methods and tools. While the presence of errors in all but

the simplest of specifications is unavoidable, there are some further analyses which may further

reduce the number of errors left undetected. This brings us to verification.

In the literature there seems to be a great confusion over exactly what is meant by verifi­

cation: everyone has their own, slightly different, interpretation. In particular, verification is

often confused with validation. Our understanding of these terms, supported by various sources

[CR90, vG90, Bri88b], is as follows:

verification Formal, rigorous proofs of properties of the system by manipulations of axioms and

known truths.

validation A convincing demonstration of conjectures. Proof by experiment.

For example, verification may involve formal proofs of the equivalence of two specifications, or

that a particular property holds of a given system. Validation, on the other hand, tends to be less

formal, and includes, for example, the application of tests to an implementation, or simulation

of a specification, until a “sufficient” number of test have been passed, or “enough” behaviour

has been observed in the simulation. Of course “sufficient” and “enough” are highly subjective

evaluations. Since both analyses are typically non-exhaustive, we use validation techniques to

increase our confidence in the correctness of the system, but we can never be sure that we haven’t

missed some important test. Therefore, although validation is useful, especially in the early stages

of design/specification/implementation, because it is usually less time consuming than verification,

we are more interested in verification because of its wholly formal basis.

An alternative definition of validation, found in, for example, [HJOP89], includes verification

as a subclass of validation, i.e. the definition of validation is similar to that above, but validation

activities consist of testing, simulation and verification. This definition is compatible with our

own because verification retains the same meaning.

2.2 S ystem D evelopm ent and V erification

Having settled on a definition of verification, the next question to be considered is “at which point

in the development of a system can/should verification techniques be applied?” . To try to answer

this question, we consider the flow of system development as put forward in figure 2.1.

We assume the Requirements are the informal requirements of the customer, written infor­

mally in a natural language, the S p ec ifica tio n is given formally, written in any of a variety

11

Im plem entation

R equirem ents

S p e c i f i c a t io n

Figure 2.1: The Flow of System Development

of specification languages, and the Implementation is the final code of the system, written in a

programming language.

What sort of verification can be carried out in each area?

2.2.1 R equirem ents

Since the Requirements are assumed to be informal and written in a natural language such as

English, they are therefore ambiguous and possibly even inconsistent, so there is little to say

about them in relation to formal proofs, i.e. we cannot rigorously and formally compare a formal

specification with informal requirements. However, we can use formal requirements, which are

then a form of specification, in such a proof. These formal requirements do not appear out of

thin air; they must have their beginnings in informal thoughts about the system. We discuss this

formalisation process below.

When the informal requirements are expressed, we expect that the user has in mind some

aspects of the final implementation, therefore the informal requirements could be said to relate

to a class of implementations. We then go through a process of trying to express the informal

requirements in formal terms, thereby reducing the set of acceptable implementations by remov­

ing the ambiguity inherent in an informal description. Typically, the informal requirements may

12

be interpreted in several different ways; therefore the formal requirements use the information in

the informal requirements under one of those interpretations. One of the problems of verification

lies in trying to interpret our informal notions of the correctness of a system. We look at this

problem with respect to a particular example, the Login Case Study, in section 7.3. The partic­

ular informal requirement considered there is: “the implementation (of the system) satisfies the

specification (of the system)” . Other common informal requirements include “completeness” and

“freedom from deadlock” , which may also be transformed into formal statements; see the section

on S p e c if ic a tio n below.

The derivation of formal requirements from the informal ones, i.e. requirements capture, is

being studied by others, but this field lies somewhat beyond the scope of the current document.

2.2.2 Specification

The most appealing area of system development, in terms of possibilities for verification, is that

of S p e c ifica tio n . Given the possibility of iterations in the specification process it is useful to

assume the existence of a sequence of specifications:

So — y S\ — y S2 — y • • • — y Sn

The arrow indicates a temporal ordering of the specifications (i.e So is the first specification

and Sn the last) but no other relationship is assumed, i.e. 5,+i not necessarily derived from S',-.

We expect that So will be the most abstract specification, detailing what the system must do

without saying anything about how these actions are to be performed, while Sn will be much more

concrete, possibly providing implementation information. So will probably be the first attempt

at formalising the informal requirements, as described above, while Sn is the specification from

which we might attempt to derive program code (depending on available techniques).

Given such specifications, the sorts of verification which can be carried out can be split into

two groups:

• formally comparing two specifications, and

• proving properties of an individual specification.

We examine each of these case in more detail below.

Form al C om parison o f Tw o Specifications

We also refer to this approach to verification as satisfaction because usually we want to prove that

one specification satisfies another. A different formalism may be used for each description, for

example a logic for the “specification” , i.e. the more abstract description, earlier in the sequence of

13

specifications, and a process algebra for the “implementation” , i.e. the more concrete description,

coming later in the sequence of specifications. In this case we need a proof technique relating the

semantics of the logic to the semantics of the process algebra. This approach to verification is

discussed in chapter 11. Note that the term “implementation” is used here in a different sense to its

use earlier, in figure 2.1, where it denoted system code. The language used for the implementation

here will be a formal specification language, and not a programming language, but we expect that

the style of specification will be more concrete than that used for the other specification.

Alternatively, we might use the same language for both descriptions, but at different levels of

abstraction, again allowing one to be viewed as the “implementation” of the other. Given two

process algebra descriptions, there are many relations based on the observable behaviour of a

system which can be used to express their equivalence, or perhaps that one is a refinement of the

other. This approach to verification is discussed in detail in chapter 4.

P roving P rop erties o f Individual Specifications

Although it is more likely that we will wish to express the correctness of a LOTOS specification

with reference to some other specification, occasionally we want to prove particular properties hold

of an individual specification. We note that this provides a link with the informal requirements

as typically these properties will be expressed informally.

An example of a property we may desire a specification to have is internal consistency. For

example, a change may have been made to the specification and we wish to ensure that this change

does not conflict with, or contradict, the existing parts of the specification.

Another property we may desire of an individual specification is completeness, i.e. the speci­

fication describes all the things we want it to describe. This can be hard to express because we

are asking if the specification matches an informal intuition about the system; however, we can at

least put forward some guidelines to help.

Above we mention that logic may be used to specify a system. Although this will not be fully

discussed until section 11, the properties which can be described by the logic may be partitioned

into two classes: safety properties and liveness properties. This classification can help express

the completeness of a specification because we may have some informal criteria such as “the

specification should satisfy safety and liveness properties” . Then, if the specification says nothing

about liveness, this is probably an omission, since it should say something about liveness.

For example, the trivial process which does nothing satisfies the liveness property of termi­

nation, but obviously does no useful work. Similarly, the divergent process satisfies all safety

properties of the form “when the process terminates, P holds” because it never terminates. Only

the liveness property of termination forces the specification to describe useful work.

Completeness of a specification can also be partially checked by testing, e.g. to check that the

14

specification satisfies the requirement that all classes of data are correctly dealt with, test cases

must include examples from each data class. Conformance testing (see the following section on

implementation) can perform this function for all classes of data expected by the specification,

but not for unexpected ones.

In [RS91], the completeness of a specification of a finite state machine (which is a subclass of

the machines which may be described using LOTOS) is investigated by describing the machine as

a set of rules and relating the completeness of the rule set, a property well understood in term

rewriting theory, to the completeness of the machine. This work is described in more detail in

chapter 5.

We ignore other properties which may be desired to hold of a specification, such as robustness

and performance, as they cannot be expressed in the chosen formalism and therefore cannot be

verified. For example, the language must be able to express time and/or space to rate performance

since this is usually measured in terms of these attributes. Also ignored is fairness, e.g. given a

repeated choice between two actions a and b, we cannot guarantee that a will ever be performed.

This is a limitation of process algebra.

Obviously the choice of formalism affects the properties we can prove hold of a specification. It

can also affect the verification process: if logic is used to describe the system, a proof technique such

as model checking should be applied, whereas if process algebra is used to describe the system

a different proof technique would be applicable. This leads on to consideration of other issues

which may affect the verification process, such as the style in which the specification is written.

Varying the level of abstraction is an obvious stylistic choice which has already been mentioned. In

LOTOS another obvious choice is between writing an abstract data type specification and writing

a process algebra specification; the problems of verifying full LOTOS specifications are discussed

in chapter 10.

We now consider what sort of verification can be carried out in the implementation stage of

system development.

2.2.3 Im plem entation

Unlike specification, there is little to say about the Implementation, as this will be a bottom

level implementation in a language such as C, Pascal, Ada, FORTRAN etc. Note that most of

these languages do not support concurrency. This is because with OSI we expect that much of the

concurrency comes from executing the protocol on different machines, i.e. distributed computing,

rather than from having several processes running on one machine.

The transition from specification to implementation has been more widely researched than that

from requirements to specification. Below we describe two particular areas of research which are

of some interest because, although they cannot be considered as verification, they are based on a

15

formal approach.

A number of tools have been developed which “translate” a specification language into program

code, assuming that the specification is suitably concrete. The method may also require that the

specification is annotated by comments indicating how something should be implemented (to give

the compiler some help). An example of this, drawn from the LOTOS literature, is described in

[vEKvS90]. This approach uses the relationship between the resource oriented and state oriented

specification styles, see section 3.5.2, to translate LOTOS into C code.

Also of interest is conformance testing, i.e. checking that a given implementation conforms to

its specification by applying particular tests. This allows the user to confirm that the product

behaves as expected, i.e. as originally stated in the informal requirements. Note that conformance

testing does not test for robustness, i.e. correct behaviour of the system in the presence of in­

correct/unexpected inputs. This is because such tests would be impossible to derive from the

specification and, while the set of conformance tests is finite, the set of robustness tests can be

infinite.

In [BSS87] the notions of what constitutes a correct implementation, and how conformance

tests can be used to prove that an implementation is correct, are discussed. The formalisation of

these notions is based on the testing equivalences and preorders of section 3.5.3. A later work,

[Bri88a], considers the question of canonical testers. A canonical tester is a test case, or a set

of tests, such that if I conforms to S then I will pass the test, and if I does not conform to

S then it will not pass the test (this last part requires repeated execution of the test since a

nonconforming implementation may pass the test on some occasions, but not on every occasion).

In [Bri88a], canonical testers are shown to always exist, and a method for deriving such testers

from the (Basic LOTOS) specification is given. This result is only possible because of the exclusion

of robustness tests. This and other methods, also for specifications in Basic LOTOS, have been

implemented as tools [Wez90, Ald89].

There are situations in which conformance testing, a form of validation, is more appropriate

than a verification technique. Firstly, in an industrial setting, the source code of an implementation

may not be available (to check it against the specification), therefore testing is the only way to

determine if an implementation meets its specification. Secondly, although verification may have

been carried out at an earlier stage in the system development, errors may have crept into the final

code when transforming the formal language into a programming language. Thirdly, the system

may be too complex, or too large, to make exhaustive analysis practical.

The reason that techniques such as conformance testing do not make verification redundant

(even though it is typically harder to analyse a specification formally than it is to apply tests to

a finished implementation) is that any errors are discovered relatively late in the development of

the system, by which stage correcting the error may be very expensive. Obviously, given that we

16

can examine the specification of the system, it would be better if verification techniques could be

applied early in the design process, catching errors before they have serious consequences. Ideally,

a combination of verification and validation techniques should be used in system development.

2.3 Sum m ary

In this chapter we have given a general definition of verification as the formal proof of correctness

of a system, and have identified two broad approaches to verification of the correctness of LOTOS

specifications. In the remainder of this thesis we concentrate on the former approach, i.e. expressing

the correctness of a LOTOS specification by comparing it with another specification (either in

LOTOS or in a modal or temporal logic). The second approach to verification, of proving properties

of an individual specification, is rejected as it relies on some degree of informality in specifying

the requirements.

Since this type of analysis may only be carried out on formal specifications of the system,

the formalism to be used, i.e. LOTOS, must be introduced before verification techniques can be

discussed formally and in more detail. This is the purpose of the next chapter.

17

C hapter 3

Concurrency and Process Algebra:

A Survey

3.1 In trod u ction

Here we introduce Basic LOTOS by way of a general discussion of the features of process algebra

and presentation of the related process algebras, CCS [Mil89b] and CSP [Hoa85]. This helps

to give a context for LOTOS within the wider spectrum of process algebras. The reason for

presenting CCS and CSP is that in order to verify a system, we need to have a firm grasp of what

the meaning of the system is, i.e. its semantics. Presenting CCS and CSP in detail achieves two

goals; the first is that their semantics are clear and simple, and therefore provide a much better

introduction to the concepts of process algebra than LOTOS, which is made more complex by

considerations of OSI protocols. The second reason is that a rich literature on verification in CCS

and CSP exists, and, bearing in mind the close connection between these languages and LOTOS,

it may be possible to adapt verification techniques developed for use with CCS or CSP for use

with LOTOS instead. This latter goal in particular should be borne in mind when reading this

chapter.

The reader who is familiar with process algebra can safely ignore much of this chapter. We

recommend reading sections 3.3.3 and 3.4.4 which deal with proof techniques for CSP and CCS

respectively, and also section 3.5 which introduces LOTOS and its associated proof techniques.

3.2 P ro cess A lgeb ra

In this section a particular kind of concurrency formalism is introduced, process algebra. Process

algebras are based on the concept of observable behaviour, where the behaviour being observed is

18

typically a sequence of events. Events are usually atomic and without duration, i.e. we abstract

away from duration, therefore it is impossible to distinguish the start (or end) of an action. There

may of course be intervals between occurrences of actions, so processes are not without duration.

The systems being observed display patterns of behaviour which are normally called processes.

This term can be used to refer to the systems themselves, associating an object with its behaviour.

The observer is usually taken to be some entity with a means of recording events who has the

power to perform experiments on processes, either by controlling the environment in which they

operate or by interacting with them.

For example, consider a vending machine1 which can take money and dispense bars of chocolate.

This can be viewed as a process which orders the events inlOp and outchoc in some way, where

inlOp denotes the event of putting ten pence into the machine, and outchoc denotes the event of

a chocolate bar appearing in the dispensing tray. Of course, other events may also occur in the

life of the vending machine (e.g. refill with chocolate, empty cash box), but we have the ability to

ignore events which we do not find interesting, or which are not relevant to our point of view.

The three process algebras to be discussed here all use the same (or similar) notions of events,

processes, operators and environments, although these basic concepts may have different repre­

sentations in each formalism. We begin by looking at some of the basic ideas common to all of

the languages considered.

3.2.1 . Basic Concepts and Operators of Process Algebra

In a process algebra, each process is defined inductively (or algebraically), with one or more special

processes forming the base case, and a variety of operators providing the means to construct new

processes. The following list of basic ideas is therefore in two parts; first the base elements of

process algebra, followed by the constructors.

E vents (Also called actions). These are the basis of the observable behaviour of our systems.

Events may be specified as required for a particular task e.g. inlOp, outchoc for a vending

machine, send.m, receivejm for a communications protocol, and so on. They can be simple

or complex, depending on the level of abstraction in the specification, e.g. the event buychoc

could model the whole vending machine operation described above.

In addition to user defined events, some formalisms have special events built into the lan­

guage. The most common special event is one which denotes internal, or unobservable,

action. Internal actions can be used in specifications for a number of reasons; often they are

used to explicitly introduce nondeterminism (see below), but they may also result from the

application of other operators such as hiding (see below).

1 We acknowledge a debt to Tony Hoare, who was the first to use vending machines to illustrate process algebra.

19

To continue with the vending machine example, an internal action may denote the coin

dropping down inside the machine, or a gate opening to release the chocolate, neither of which

are of particular significance to the customer of the machine and are therefore unobservable.

Other common special events include successful termination (although in some languages

this is a process rather than an event, see below) and clock tick (used in languages with

time, see section 3.2.2).

P rocesses As with events, processes can be user defined by associating a name with a particular

behaviour, or they can be special processes, built into the language. Examples of special

processes are: the broken process (also known as deadlock) which can do nothing, the process

which can terminate successfully and then do nothing, or the process which can always do

everything.

Another important feature of execution is divergence, i.e. a process never terminates but

continues doing useless work for ever. Useless work is characterised by endless repetitions

of the internal event. Although we usually do not want such processes in our specifications,

divergence should appear in our concurrency theory so it may be identified and avoided.

Some formalisms give this process a special name, others do not.

Another special process is the environment. The environment of a process can determine

which events the process may perform, and can be viewed as another process interacting

with the process of interest. Typically the process chosen to represent the environment is

one which will allow all actions, and not hinder the progress of any other process.

In addition to the base case elements above, all process algebras include some operators, or

constructors, which create new processes from the building blocks of events and special processes.

The common operators are given below.

E ven t P refix ing This is the most basic way to construct a new process. The operator for this

takes two arguments, an event, x and a process, P. The new process can be described by “do

event x, then behave like process P”. This operator allows the construction of sequential

processes, i.e. events occur one after the other.

Choice This describes the point in a behaviour where we want to say “behave either like A or like

B ” . A and B are called the branches of the choice. There are two different sorts of choice:

d e te rm in is tic choice The current environment determines which branch of the choice is

to be taken, depending on the initial events of A and B. Note, the initial events of A

and B must be distinct. When the initial events are both allowed by the environment

weak determinism results. This means the environment observes the choice made, but

cannot influence it.

20

If only deterministic choices are made in a process, then, given the same environment

and the same sequence of events, the process will always end up in the same state.

An example of deterministic choice may be found in the vending machine which sells

chocolate and toffee. After inserting lOp, the customer, who forms part of the envi­

ronment of the machine, presses one button to choose chocolate and another to choose

toffee. The machine then delivers chocolate or toffee as appropriate. The machine is

willing to allow either button to be pressed, and the choice to deliver chocolate or toffee

is only taken after the button is pressed.

n onde te rm in is tic choice The choice between A and B is random. Given the same en­

vironment, the same choice may or may not be made again. Continuing the vending

machine example, assume that instead of having buttons to allow choice between choco­

late and toffee, the machine decides which to supply, based on some internal decision

making procedure, which is sometimes modelled by the internal action (this makes the

two branches initially look the same and the choice is made nondeterministically). To

the customer, the machine has made an internal choice as to what sort of sweet to

supply, chocolate or toffee; the customer does not participate in the decision making.

When implementing nondeterministic choice, it may be further classified as angelic,

demonic or erratic. The difference between these two types of nondeterminism is best

demonstrated by example.

In a choice between A and B let A be a process which takes a coin, gives a chocolate

then stops (deadlocks), and B be a process which takes a coin, gives out a chocolate

and returns to its initial state. Angelic choice will never pick A, always B (because A

deadlocks, but B does not).

This sort of choice is also known as external choice, meaning that the only actions which

may proceed are those allowed by the environment. In the implementation of angelic

choice both branches are followed until some event causes one branch to deadlock. This

forces execution to commit to the other branch of the choice (although it may deadlock

at a later stage)2. This form of choice is in some sense stronger than deterministic

choice (in the case in which both actions are possible), as it has the ability to look

beyond the first action when making its choice.

Demonic choice operates in much the same way, except that the bad branch is chosen,

i.e. the one which deadlocks. Demonic nondeterminism is also known as internal choice

since it depends only on the process — the environment has no influence.

2 In an environment where neither branch leads to deadlock we must rely on som e other im plem entation of
nondeterminism, e.g. tossing a coin!

21

Obviously, both forms of choice lead to inefficient implementation as extra computations

must be carried around when there are unresolved choices. A more efficient alternative

is erratic choice.

In the implementation of erratic choice the decision of which branch to follow is made

straight away, with no reference to the events in each branch, initial or otherwise. The

choice is random, and each branch is equally likely to be chosen. In the example above,

there is a 50% chance that the deadlocking branch A will be chosen.

Some notations have separate operators for deterministic and nondeterministic choice, while

others have only one which can behave in either way, depending on the circumstances.

Typically, such general choice operators behave deterministically when the initial events of

the choice are distinct, and nondeterministically when the initial events of the choice are the

same, or one is the internal event.

P aralle lism One of the most important features of concurrent systems is that processes may be

observed interacting. In order to achieve this, the processes must be executed at the same

time, i.e. in parallel. There are two sorts of parallelism: true parallelism, (events may occur

simultaneously) and interleaving parallelism (only one event occurs at any point in time,

but the order in which the events occur is unknown). Although true parallelism is the more

powerful of the two approaches (since any the result of any computation obtained under

interleaving semantics may also be obtained under true parallelism semantics), interleaving

is a more commonly used semantics for process algebra. This is because interleaving is

simpler, or more easily understood, than true parallelism and has nicer algebraic properties

(such as being able to express parallelism in terms of event prefixing and choice), while

retaining some level of nondeterminism in the ordering of events. Some languages may have

operators which specify interleaving, taking precedence over the true parallel semantics if

necessary.

To illustrate the difference between true parallelism and interleaving parallelism, consider

the following example. Take two processes A and B. Let A be the statement y := y -j- 1 , and

B be the statement y := y — 1. The initial conditions are y = 1. If A and B are performed in

parallel there are two possible results depending on the kind of parallel semantics employed.

With interleaving semantics, the result will be y = 1, since A before B gives y = 1, and

B before A also gives y — 1. On the other hand, true parallel semantics will yield a set of

results y — {0,1,2}. This is because, in addition to the execution scenarios given above for

interleaving semantics, it is possible that A and B begin execution at exactly the same time.

Each process may read the value of y at the same time (y = 1), but the result depends on

which statement overwrites the value of y last. Obviously true parallelism is more powerful

22

than interleaving semantics, since the result set obtained by interleaving semantics is a subset

of the the result set obtained by true parallelism. True parallelism may also give a more

realistic model of the world than interleaving semantics. However, formalisms are often a

simplification of real world situations, as the full complexity of the situation may be too

great to allow analysis.

Another variation of parallelism to consider here is whether the actions of the language

occur synchronously or asynchronously, i.e. actions of parallel processes are performed in

lockstep, or actions of parallel processes are allowed to start and stop at different times.

Synchronous calculi are interesting because they are more powerful than their asynchronous

counterparts (asynchrony can be expressed by introducing a wait operator to the synchronous

calculus), but they are less used because the idea of every process executing according to

some global clock does not intuitively relate to our notion of distributed systems, where

each part proceeds at its own speed. This problem, the conflict of power and popularity,

was mentioned in section 1 .1 when we discussed which formalism to adopt for our study.

Now we can express two processes executing at the same time, we also need to consider

different forms of interaction, or communication.

C om m unication Communication is a simple phenomenon which, like parallelism, comes in sev­

eral varieties. Given two processes A and B which wish to communicate, the most obvious

form of communication is message passing.

Message passing provides a means to exchange information between processes; rather like

input/output. Events which perform message passing are usually called channels. Message

passing can be synchronous or asynchronous. These two forms of communication can be

illustrated by simple, everyday, examples. Synchronous communication is like a telephone

conversation (both parties engage in the communication at the same time), while asyn­

chronous communication is more like writing a letter (each party is active at different times,

but not necessarily so). Note that synchronous message passing does not necessarily entail

a synchronous calculus, similarly for asynchronous message passing.

The difference between these two forms of communication may be understood by considering

the type of communication medium being modelled in each case. Synchronous message

passing models communication over a wire, i.e. without a buffer, while asynchronous message

passing models communication over a buffer. In synchronous message passing, if one process

is ready to send a message it has to wait until the other process is ready to receive that

message. Asynchronous communication allows the sending process to deposit its message in

a buffer and continue working; the receiving process may come and get the message when it

is ready. Obviously the reverse is not true; the receiving process cannot pick up a message

23

before it is available.

A special case of synchronous message passing occurs when the messages are empty. For

examples, if both processes can perform event x, say, we require that they perform x at the

same time, with the occurrences of x being somehow merged. Hence the observer sees just

one occurrence of x, but it was performed by both A and B. This sort of communication

serves only to synchronise the progress of the processes involved, i.e. if process A is first to

reach the point where it should execute x, it is forced to wait until B is also ready to execute

x before it may proceed. Communication of this type is referred to as synchronisation.

Some process algebras restrict communication to be between two processes only; however,

communication can be generalised to multi process interaction. When more than two pro­

cesses are involved, message passing is known as broadcasting, or multi-way synchronisation

(for empty messages).

H id in g /R es tric tio n 3 Hiding takes place implicitly when the observer decides which events are

im portant/to be observed (all others are hidden), but the concurrency formalism may also

provide a mechanism for explicitly hiding certain events from the observer. Hiding of events

is typically achieved by transforming the events to be hidden into occurrences of the internal

event, which is unobservable. Hidden events may proceed instantaneously.

An alternative to hiding, restriction specifies a list of events which may not occur, rather

than a list of events which occur but cannot be observed. Restriction is often used to force

processes to communicate with each other by refusing to allow communication with any

other processes in the environment.

R ecursion This allows us to describe repetitive behaviour patterns that may continue indefinitely.

Above we have described some of the most common process algebra operators. There is

one more fundamental concept which has yet to be discussed; this is the area of Observations,

Semantics and Equivalence Relations.

The concept of observable behaviour is fundamental to process algebras. As described above,

the semantics of a system is given by the actions it takes, and patterns of those actions. It is

also important to realise that the semantics of a system may change depending on our notion of

what can be observed. This may allow us to identify more processes (to distinguish fewer), or to

identify fewer processes (to distinguish more processes). This is appropriate because the modelling

of different systems may call for different notions of what is important and needs to be observed,

and what can be safely ignored.

3This is a rather sim plistic view of how hiding and restriction work. For more details see section 3.3.1 and
section 3.4.1 respectively.

24

Another way of altering which processes are identified is to define equivalence relations over

the structure of the processes. This is just another method of saying which aspects of process

behaviour are observable. Usually, each process algebra has a particular equivalence relation with

which it is most often associated, although it may also be associated to a lesser extent with other

equivalences. The topic of equivalence relations will be discussed in more detail in sections 3.3, 3.4

and 3.5 where reference can be more easily made to specific relations and process algebras. We

also discuss the relationships between different equivalence relations in section 3.6.2.

Those features of concurrency which are common to many process algebras have been given

in this section, but each process algebra will have its own interpretation of the operators, and

probably some special features not discussed above. There is a large body of work on extending

the capabilities of process algebras to make them capable of specifying real world phenomena

more accurately. Of course, this also has an effect on verification in terms of being able to express

different properties, e.g. a timed language can express properties relating to performance and

efficiency. We may also have to develop new verification techniques to allow us to determine

whether or not our system possesses these properties. The next section briefly discusses the sort

of extensions which have been proposed in the literature.

3.2.2 Extensions to Process Algebra

Extensions to process algebras fall into two broad classes: those which are merely notational,

and are intended to simplify the specification of complex systems by giving the specifier more

operators, and those which are more fundamental, requiring an extension of the underlying model.

An example of the first type of extension (although it is not generally viewed as an extension)

is the parallel operator in an interleaving semantics. Although we presented this operator as a

basic constructor of process algebras, it is actually redundant, as any expression using parallelism

can be rewritten using action sequencing and choice. It should be noted however that the huge

specifications resulting from the removal of parallelism would be almost impossible to read and

understand mainly because of their size and lack of structure. Other examples of the notational

type of extension may be found as part of the language descriptions in sections 3.3.1 and 3.5.1.

These forms of extension only affect verification if we use a proof technique which relies on

the syntactic form of the process. More often we will use some form of pre-processing which

reduces the process expression to its simplest form, using only basic operators, and apply the

proof technique to that expression. A far greater impact may be made on the verification process

by the introduction of the second type of extension which can alter the underlying model of the

language.

The second type of extension lies somewhat outside the scope of this survey, but it is important

to know of the existence of such developments and of the form they may take. To this end, some

25

possible extensions to process algebra are given below. We present only those extensions which

have been applied to LOTOS, giving LOTOS specific references in each case. Other extensions,

such as priority weighting for choice, which do not have LOTOS applications have been ignored.

T im e The formalisms considered later in this chapter order the occurrence of events but do not

include an explicit notion of time. However, the specification of real-time systems requires

a more complex model of time.

There are several different approaches to the introduction of time: some languages introduce

a special operator which signifies the passing of time, others introduce a global clock. A

third method of adding time to a language is to make actions more complex by adding a

time parameter to the actions, e.g. action a takes 0.2 seconds. An example of a language

which uses time explicitly in this way is Timed LOTOS [QAF90, QFA89, RvB91] which adds

date stamps to its actions.

D a ta C onstruc ts Most existing process algebras deal only with simple data types. Obviously to

describe more complex concurrent systems more complex data types may be required. The

ability to describe such data types has been added to some languages by the introduction

of an abstract data type sublanguage to describe the actions. For example, full LOTOS is

obtained by adding the ACT ONE data type language to the process algebra Basic LOTOS.

M obility A different approach to the introduction of data types to a process algebra is to extend

the sort of messages which can be passed between processes to include channel names. This

allows dynamic reconfiguration of processes, giving the ability to model complex data types

and higher order process algebra. This approach is basic to the 7r-calculus [MPW92]. This

extension has been modelled in LOTOS in [F091].

P ro b ab ility The branches of a choice can be weighted by adding probability to the language.

For example, in a choice between a and b, we can say action a is more likely to occur than

action b. For LOTOS, this extension has been described in [RvB91] and [MFV89].

Further examples of extensions and approaches to extensions both generally, and more specifi­

cally for LOTOS, can be found in the proceedings of conferences such as CONCUR, e.g. [CONCUR],

PSTV, e.g. [PSTV] and FORTE, e.g. [FORTE],

The additions of such extensions can have important repercussions in the semantics and proof

theory of a language, and this in turn affects verification. Typically proofs become more com­

plicated; we shall see examples of this in chapter 10 where proofs in full LOTOS, i.e. with data

types, are considered. Initially, to avoid such complications, we concentrate on the simpler Basic

LOTOS, i.e. with no extensions other than the notational kind.

26

3.2.3 Properties of Specification Languages

In section 3.2.1 the features specific to concurrency formalisms were considered; such languages

should also have the features we desire of any specification language.

In [Bri8 8 b] some basic criteria are presented which a good formalism should satisfy. A for­

mal description technique (fdt) should be clear and consistent, have appropriate mechanisms for

providing the specification with structure, be able to specify all aspects of the system under

consideration (at a sufficiently high level of abstraction) and should encourage the specifier to

write unambiguous specifications (of course, the language’s own semantics should also be without

ambiguities). These basic criteria can make a specification easier to reason about.

A concurrency specification language may also have special needs as regards verification. We

may want to analyse any of the following properties: freedom from deadlock/livelock, fairness,

correct allocation/deallocation of resources, mutual exclusion, equivalence between processes etc.

Our modelling of the concurrent system should facilitate specification and verification of these

properties. It is possible that such properties may be better checked by some formal system which

can be used in conjunction with our process algebra, rather than by using a more complex version

of the process algebra.

We move on now to present the three process algebras CCS, CSP and LOTOS in more detail.

Although LOTOS was developed from CCS and CSP there are many differences in approach

between the formalisms. LOTOS was developed for industrial use, whereas CCS was developed

for research purposes. CSP has a foot in both camps as it was intended to be a usable language

for large scale development (the programming language occam™ is based on CSP) but is also

commonly used for research.

A further contrast between the languages chosen is evident in the approach to their definitions.

We can split process algebras into two groups: those which are based on a particular model and

are presented with laws which are true in that model (e.g. CSP and LOTOS), and those which

are calculi of rules and axioms and can be presented independently of any mathematical model

(e.g. CCS).

The languages chosen are discussed individually in the following three sections. In each section

we present the basic ideas behind the design of the language, the operators which express that

language’s particular flavour of concurrency, the form of semantics most commonly associated with

each formalism (but not the full language semantics), and some of the proof techniques which may

be used in that semantic framework. Specific implementations of techniques and tools for particular

languages are not discussed here; automated proof techniques are considered in chapter 4 , and a

survey of verification tools, mainly those for CCS, and of LOTOS tools in general, may be found

in appendix A.

27

We begin by presenting the process algebra CSP. Alphabetically, CCS should be considered

first; however, CSP has a simpler mathematical model.

3.3 C SP

The most important design decision behind CSP [BHR84, Hoa85] was to have a single, simple

model in which as many processes as possible were identified. This decision arose from the following

aims: the language must

• be able to describe a wide range of applications,

• admit efficient implementation,

• give programmer support in all stages of development, i.e. specification, design, implemen­

tation, verification and validation.

These aims result in a large number of operators, each corresponding to one concept in con­

currency theory, giving the programmer flexibility. The designers also adopted the principle of

indiscernibles: only observably different processes are distinguished, all others are identified. This

model yields a rich set of algebraic laws, allowing flexible transformation and optimisation of CSP

processes.

3.3.1 Operators of CSP

A core set of CSP operators are given in figure 3.1, in which a and b denote events, c a channel (a

communication event), P and Q processes, and A and C sets of events. We use x to range over

events, P(x) for the set of processes parameterised by x, v and w to range over some data set

e.g. integer, X to range over processes and F (X) to denote a guarded expression containing the

process variable X .

Features of CSP concurrency to note are:

a lp h ab e t An important part of CSP is the alphabet of a process. The alphabet of a process is

the set of events in which the process may engage. This may be explicit (as a subscript to

the name of the process, or defined separately), or implicit (can be deduced from the process

description).

env ironm en ta l choice This form of choice is intended to be deterministic, so we require a b

in the expression (a —>• P) | (6 —> Q).

genera l choice This is a combination of environmental choice and nondeterministic choice. If

the initial actions of P and Q are distinct then it behaves like |, otherwise it behaves like fl.

28

description notation
deadlock STOP
divergence CHAOS
action prefixing a —»■ P
deterministic choice based on actions (binary) (a —■► P) 1 {b Q)
(and over sets of actions) (x : A —y P(x))
general choice over processes p \ \ Q
demonic nondeterministic choice over processes P n Q
parallelism P \ \ a Q
interleaving J’ lll Q
communication event (input) c?w
communication event (output) c!42
hiding of events P \ C
recursion HX : A. F (X)

Figure 3.1: CSP Operators

para lle lism The parallel operator may have its synchronisation set explicitly specified, as in

P || A Q, meaning that only events in the specified set, A, may interact. Otherwise, the

synchronisation set of the parallel operator is taken to be the intersection of the alphabets

of the processes, i.e. all possible events interact.

In a CSP parallel expression two or more occurrences of the same event synchronise i.e.

multi-way synchronisation. Synchronisation is compulsory in that if an event belongs to the

specified synchronisation set then it may not proceed independently.

in terleav ing Interleaving is parallelism where the synchronisation set is empty, i.e. no synchro­

nisation/message passing at all.

com m unication For example, occurrences of c?w and c!42 synchronise, assigning the value 42 to

w. Message passing is treated slightly differently from synchronisation. Convention dictates

that while synchronisation in general is multi-way, channels may be used for two process

communication only, although this is not enforced by the semantics.

h id ing The expression P \ C means the process P with all occurrences of events in C hidden,

i.e. the events may still occur, and in fact they occur automatically and instantaneously,

but they may not be observed by the environment. The alphabet of P \ C is therefore the

alphabet of P minus events in C.

recursion In the definition of a recursive process F (X) must be a guarded expression, otherwise

the recursion degenerates to divergence. A guarded expression is one in which the occurrence

of the process variable is prefixed by at least one action. This action must not be hidden.

In view of the aims of the designer (in particular, that CSP should be applicable to large scale

systems), there are a number of additional operators in CSP which are more apt for specifying real

29

protocols and applications. These include yj (the successful termination event), sequential com­

position of processes, interrupts, pipes and various features borrowed from imperative languages

such as assignments, conditionals and loops.

3.3.2 Sem antics of CSP

As mentioned in the introductory section, most formalisms have several different semantics. The

following section gives the strongest and most commonly used of the CSP semantics, Failures-

Divergences semantics. Two other semantics are frequently used in connection with CSP: Trace

semantics and Failures semantics. These are also detailed below.

Standard Sem antics

In CSP, a process is uniquely represented by its alphabet, its failure set and its divergence set. This

representation of a process is known as Failures-Divergences semantics. The alphabet has already

been mentioned. The definition of the failure set is a little complicated; first the terms trace and

refusal must be defined.

A trace is a sequential record of the observable behaviour of a process. It may be viewed as a

string and shares many of the standard string operations such as concatenation. In this section

the following notation is used:

• () denotes the empty trace.

• (a) denotes the trace containing one occurrence of the event a.

• (a,b, c) denotes the trace a then b then c.

• A* denotes the set of all possible traces using events in A. We use cr to range over A*.

Each process may have many possible traces as a result of choices in execution.

To define a refusal, let X be the set of events offered by the environment of a process, P. If

P can deadlock on its first step when placed in this environment, then the set X is known as

a refusal of P. We combine traces with refusals to obtain the failure set of a process, P, which

contains all pairs (a ,X), where cr is a trace and A is a refusal, such that P may deadlock after

trace cr in the environment offering events X .

The divergence set of a process is a set of traces such that, after performing any one of these

traces, the process will behave chaotically, i.e. it is impossible to determine which events will occur.

The semantics of any CSP process is given by these three sets. As an example consider the

two special processes:

30

STOP,, ^ (^ ,{ (> }xP (^),{})

CHAOS,, =' (A ,(A 'x W {A)) ,A ‘)

(3.1)

(3.2)

where IP (A) denotes the powerset of A.

The first component of the triple in equation (3.1) says that the alphabet of STOP,* is A, some

arbitrary set of events. Note the use of a subscript A to make the alphabet explicit in the name

of the process; if unspecified the alphabet is assumed to be all events. The first component of

equation (3.2) is similar. The second component of equation (3.1) says that STOP^ can refuse to

do any subset of A after it has performed the empty trace, i.e. it can refuse to do everything before

it does anything, while the second component of equation (3.2) says that CHAOS^ can refuse to

do any subset of A after any trace, i.e. at any time it can refuse to do any event. The remaining

component of equation (3.1) says that STOP>t has an empty divergence set, meaning STOP^

never diverges, while the last component of equation (3.2) says that CHAOS^ may diverge after

every possible trace.

We give a further example of the Failures-Divergences semantics of a process below.

E xam ple Consider a vending machine, VM, which either takes 5p, gives a chocolate and stops,

or takes lOp, gives a toffee and stops. This machine can be represented by a process in the following

way:

VM d= (in5p — ¥ outchoc — ¥ STOPa vM I ̂ outtoffee — ¥ STOPa y^f)
d cjA = {in5p, inlOp, outchoc, outtoffee}

VM d= (A, {((), P({outchoc, outtoffee})), {(in5p),F(A - {outchoc})),
((inlOp), IP (A - {outtoffee})), ((in5p,outchoc), I P (A)) ,
((inlOp,outtoffee), P(A))}, {})

The alphabet, A, contains the four events of interest, in5p, inlOp, outchoc and outtoffee. The

process may deadlock if, after doing trace (), it is only offered outchoc and/or outtoffee. Once the

machine has accepted a five pence, i.e. (in5p), it can only perform an outchoc event, refusing all

others, similarly for inlOp. Finally, after the process has performed {in5p, outchoc), it becomes

incapable of any further action (similarly with (inlOp, outtoffee)). VM never diverges.

A ltern ative Sem antics for CSP

The semantics given in the previous section is not the only possible semantics for CSP. We now

describe two other weaker CSP semantics: Trace semantics and Failures semantics.

In trace semantics a process is represented by its trace set. For example, let p be a process,

then traces (p) is defined to be the set of all possible traces of p. Two processes are equivalent if

31

their trace sets are the same. This equivalence on processes is similar to the language equivalence

used for finite state automata. It is the weakest possible semantics for CSP and generally an

unsatisfactory one as it does not preserve deadlock properties, i.e. two processes may be equivalent

under trace semantics even if one deadlocks and the other does not. Trace semantics is popular

because it is simple, and easily described and understood. For verification purposes a stronger

equivalence is generally required.

The next step up from trace semantics is Failures semantics. In this semantics a process

is represented by its alphabet and its failure set (as described above). Two processes are then

equivalent if their failure sets are the same. This semantics ̂ cannot detect divergence.

3.3.3 P roof Techniques for CSP

Proofs in CSP can be carried out using two methods: manipulation of the specification by using

the algebraic laws, or proving certain properties hold of the semantics of a particular process. This

has been compared with the way in which proofs in boolean algebra may be performed [BBH+91].

As mentioned earlier, because of the simple model of CSP and the proliferation of operators,

the algebraic theory is fairly rich. The algebraic laws can transform process algebra statements

so that they are more efficient, or so that they may be more easily verified. We will not present

all the laws here: a full treatment is given in [Hoa85]. Instead we mention a few of the main

laws. For example, || , n and [] are all associative and commutative, n and [] are also idem-

potent. STOP is a zero for || , but an identity for [] , while RUN is an identity for || (RUN is

the process which may do anything/everything, but never blocks an action, unlike CHAOS). We

also have (1 and Q distribute over each other, and —>■ distributes over n. Note that this law

a —t (P r \ Q) = (a —y P) n (a -> Q) is one of the main distinctions between CSP and CCS (it

does not hold in CCS).

The alternative proof technique is to define desirable properties in terms of traces (and failures

and divergences if necessary) and use a relation sa t which relates process algebra expressions to

the CSP semantics. We write P sa t S, where P is a process and S is a specification of properties,

meaning P satisfies S, i.e. all possible observable behaviours of P are consistent with by S.

More formally, Vtr. (tr € traces(P) => S). These specifications allow us to write more abstract

descriptions of systems, specifying what should be achieved, rather than how to do it.

For example, in a vending machine, we may want to specify that pairs of inlOp and outchoc

events always match up, i.e. the machine never takes money without giving a chocolate, and it

never gives chocolates without taking money. This can be done by stating that the number of

inlOp events in a trace must be equal to or one more than the number of outchoc events.

We move on now to consideration of CCS.

32

3.4 CCS

The aim behind the design of CCS [Mil80, Mil89b] was to provide a means of investigating different

models of concurrency. Each model uses the same set of operators, but a different notion of

equivalence between processes. Unlike CSP, the operator set of CCS is very compact, with each

operator combining elements of different concurrency concepts. For example, deterministic choice

and nondeterministic choice are denoted by the same operator. Despite the small size of the

operator set, CCS has a high level of articulacy and generality, i.e. many different kinds of system

may be described, at many different levels of abstraction.

3.4.1 Operators of CCS

The operators of CCS are given in figure 3.2, in which P and Q denote processes, a an event and

L a set of event names. X ranges over processes.

description notation
internal action
inactive process (deadlock)
action prefixing
choice
parallelism
restriction
recursion

T
0

a.P
P + Q
P \Q
P \L

Figure 3.2: Operators of CCS

Because of the difference in approaches between CSP and CCS, there are some important

differences between the operators:

• r , the special internal action, signifies the occurrence of an internal event without giving

details as to what that event is. It can be used explicitly by the specifier, but it also results

from communication between processes (see below).

• There are two sorts of actions, the simple actions and their overbarred complements. Com­

munication occurs between an action and its complement. When such a communication

occurs the resulting action is r, i.e. given a and a, the result of their communication is r and

both a and a are hidden. It is convenient to view these complement pairs as input/output

pairs.

• Communication and value-passing can occur between only two processes, unlike CSP which

allows broadcasting.

• CCS has only one parallel operator. There is no synchronisation set associated with this

operator, so it is possible for all events to synchronise, but synchronisation/communication

33

is not compulsory and need not take place. The restriction operator, see below, may be used

to force communication between certain processes by denying communication with other

processes.

• CCS has only one choice operator, which is deterministic but can be forced to be nondeter­

ministic by prefixing each branch by the same event, or by prefixing just one branch by the

special event r.

• Restriction prevents other processes in the environment communicating with P through ac­

tions in L. Actions in L may occur within P (assuming P is a complex process composed

of other processes in parallel) if they can synchronise with their complements (since syn­

chronisation results in a r action, which cannot be restricted). Unlike CSP hidden actions,

restricted actions may only proceed by communication and may not proceed independently.

Extensions of the basic calculus introduce operators which make descriptions of real systems

more convenient, but these operators introduce no extra power. They are not described here since

they are similar to the extra operators introduced for CSP and will not be used in the following

discussion of the equivalence relations defined over CCS.

The following sections introduce the semantics of CCS processes and discuss some of the

equivalence relations which have been defined in the CCS literature.

3.4.2 Semantics of CCS (Informal)

The operators of CCS are defined in terms of labelled transition systems. Each process is seen as

a set of states, with arcs between states representing actions which move the process from one

state to another. The unobservable action, r, moves a process silently from state to state. Loops

from a state to itself are possible. A set of inference rules give an operational definition of CCS

processes in terms of labelled transition systems.

Exam ple Consider again the vending machine VM presented in section 3.3.2. The labelled

transition system for VM can be rolled out into the form of a tree, which looks like this:

inlOp

outchoc outtoffee

Labelled transition systems are often represented as trees, or process graphs, since pictures are

usually understood more quickly and easily than a mathematical equation. The switch from one

domain to the other is normally made without comment.

34

Now consider the notion of equivalence between processes/labelled transition systems. As

with CSP, there are several different equivalences for CCS. The choice of equivalence is important

in system verification (where we might want to prove equivalence between two processes) since

processes can be equivalent in one model, but not equivalent in another. For more details of how

the equivalences relate to each other, see section 3.6.2.

Of the many equivalences which can be defined for CCS, only four will be detailed here.

D escrip tion o f CCS Equivalences

To motivate the different equivalences, we first include some examples of processes, taken from

[Mil89b], which we would not like to be identified.

a. (b + c)

b

a.b + a.c

The reason for distinguishing these processes is that, after performing an a event, the left hand

process may deadlock when offered 6 , i.e. the right hand branch has been taken, whereas the right

hand process will never deadlock if offered b after performing a. Note that these processes are

equivalent under all three of the CSP semantics. This example demonstrates the invalidity of the

distributive law of . over + in CCS.

We also want to distinguish the following processes:

b

a.b + a

The left hand process may do an a and then fail when offered b. Again, this is because the

right hand branch has been taken. The process on the right will always do a then b then stop.

This may lead us to the conclusion that we only want to identify processes which have exactly

the same branching structure, i.e. tree equivalence, but this is too strong. As a further example,

here are two processes which we generally wish to equate:

35

a.b -f a.(b + b) a.b

These processes cannot be distinguished by their behaviour: they both perform a then b and

then stop. The criteria we use in identifying processes is that they should be equated if they

exhibit the same behaviour under all tests. These tests are constructed with respect to three

conditions:

1. The choice of transition at any moment is determined by the environment (nondeterministic

choice is used in the case of ambiguity, e.g. same first event in each branch);

2. The environment has only finitely many states — at least as far as choice-resolution is

concerned;

3. We can control the environment.

Essentially, these criteria mean that to test a process, a copy of the process is executed. When

a branch point is reached, duplicate copies of the state reached are made, one for each possible

branch, and execution continues. This means that for any process we know all the behaviour of

that process, and have a record of the places in the process where (significant) choices are made.

This last point is most important: often it is the differences between the choice points which

distinguish processes. See, for instance, the first example of this section.

Two equivalences are obtained using this view of the testing:

• If r is viewed in the same way as all the other actions, the equivalence obtained is Strong

Equivalence, also known as Strong Bisimulation Equivalence. This is the strongest equiva­

lence used in conjunction with CCS.

• If r is given its special status as the unobservable action, it cannot be used to distinguish

between processes. The equivalence obtained is Observation Equivalence, also commonly

referred to as Weak Bisimulation Equivalence, or just bisimulation equivalence in the litera­

ture.

Although these equivalences are nice to use because of their simple definitions, they have been

criticised for their artificiality, i.e. in reality we may not be able to control the environment, expect

it to have a finite number of states, or be able to calculate all the states. This leads us to a third

equivalence known as Testing equivalence in which two processes are equivalent if they “pass” the

36

same tests (where pass can have different interpretations). On the other hand, criticism is also

made of observation equivalence for making distinctions which are not truly observable. Branching

Bisimulation Equivalence was developed to correct these deficiencies.

The formal definitions for these equivalences are given in the next section.

3.4.3 Sem antics of CCS (Formal)

Before defining the equivalences of CCS, we first need to make some auxiliary definitions. All

definitions, including those of particular equivalence and congruence relations given elsewhere in

this section, are taken from [Mil89b] unless otherwise specified.

D efinitions

• The domain of labels is called C. This consists of names A and co-names A . We use a, b, c,

. . . , a, b, c, . . . to range over £ and t , t i , . . . to range over C*.

• The domain of actions is called Act. This is defined to be C U {r}. We use a , /?, 7 , . . . to

range over Act, and a to range over A c t . The empty string is denoted e.

• The domain of CCS processes, called V , is the set of ground process expressions. We use P

and Q to range over V.

• A labelled transition system is a 4-tuple (5, Act, {-^4C S x 5}, so)j which consists of a set

S of states, a set Act of transition labels, a transition relation — I, one for each a £ Act,

and a starting state so £ S. The transition relation determines how we get from one state to

another, and is defined by the inference rules which give an operational semantics of CCS.

The name of a CCS process is identified with the starting state of its labelled transition

system by an abuse of notation.

• P -^4 Q means that process P performs the event a and then behaves like process Q.

This can be extended to strings, so P Q, where cr = (a,b,c), is an abbreviation for

P P' P" Q, for some intermediate states P' and P ".

• P ==> Q means that P performs some string of events r 'a r J for some i, j > 0 before behaving

like Q. Again, this relation can be extended to strings as above.

• We write cr to denote the string a with all occurrences of r removed.

• P ==b- Q means the same as P Q for all a ^ r . For a = r the behaviour is slightly

different: P Q means P Q where <r = for j > 1, while P ==»■ Q denotes P Q

where a = r J for j > 0 , i.e. it is possible that cr = e.

37

In simple terms what these definitions mean is that, for all events in C, the three kinds of

arrow behave in exactly the same way; their behaviour differs only for r actions. For a £ Act*,

the arrows describe the labels in a exactly, and their behaviour on the r actions is as follows:

describes exactly the r actions in cr, ===>- at least the r actions in cr, and ==$■ says nothing

about t actions. The definition of these different types of arrows allows us to define the different

bisimulations and equivalences in a similar manner.

Strong E quivalence

Strong equivalence is described in terms of a property of relations over processes, called strong

bisimulation. The notion of bisimulation was first introduced by Park in [Par81].

D efin ition 1 (S trong Equivalence) A relation, R C .V x V , is a strong bisimulation if

(P, Q) £ R implies, Va £ Act

1. if 3P' : P P' then 3Q1 : Q Q ' with (P ', Q') £ R, and

2. if 3Q' : Q ~ ^ Q' then 3P ' : P P' and (P ',Q ') £ R.

Two processes P and Q are strongly equivalent, written P ~ Q, if there exists a strong bisimu­

lation R such that (P,Q) £ R. The relation ~ is defined to be the largest strong bisimulation, i.e.

the union of all strong bisimulations.

A certain amount of confusion arises from the common use of strong bisimulation to describe

the equivalence as well as the relational property. We will try to avoid such confusion.

There are a number of alternative characterisations of strong equivalence, corresponding to the

alternative characterisations of observation equivalence given below, with the exception of HML.

The details for strong bisimulation equivalence are not given here as they are similar to those

given for observation equivalence.

O bservation Equivalence

As with strong equivalence, observation equivalence is also defined in terms of a property of

relations over processes. This property is called weak bisimulation, also referred to as bisimulation.

This is similar to strong bisimulation, as the name suggests, only differing in its treatment of the

unobservable r action.

38

D efinition 2 (O bservation Equivalence/W eak B isim ulation Equivalence) A relation,

R C.V x V, is a (weak) bisimulation if (P , Q) £ R implies, Vo £ Act

1. if 3P' : P P' then 3Q' : Q Q' with (P ', Q') £ R, and

2. if 3Q' : Q - ^ Q' then 3P' : P P' with (P ',Q ') £ R.

Two processes, P and Q, are observation equivalent, written P ta Q, if(P ,Q) £ R for some

(weak) bisimulation R. The equivalence, is the union of all weak bisimulations, and hence the

largest weak bisimulation.

The essence of this equivalence is that r actions may be ignored in determining the equivalence

of two processes; only visible actions are taken into consideration.

Again, confusion arises because of the identification of the name of the property with the

name of the equivalence. In this case the problem is more severe than with strong bisimulation

and strong equivalence as the two names resemble each other less, and often give the impression

that there are two equivalences, one called weak bisimulation, and the other called observation

equivalence.

There are a number of algebraic laws associated with observation equivalence. For finite agents

(i.e. terminating processes) these laws form a complete axiomatisation [HM85]; this result was

extended to finite state agents in [Mil89a]. Note that these axiomatisations are not finite; given

the operators of CCS, a complete, finite axiomatisation of observation equivalence is not possible

[Mol90]. Observation equivalence is undecidable in general.

A lte rn a tiv e C haracte risa tions of O bservation Equivalence

There are a number of alternative methods of defining bisimulation. We give them here as they

may be useful in developing proof techniques later.

Refining th e U niversal R ela tion The above definition of observation equivalence starts from

the empty relation and adds pairs of processes to the relation to give a bisimulation. The following

definition works the other way, i.e. starting with the universal relation at the leaves of the labelled

transition system, and gradually refining the relation as we head towards the root.

This method of defining observation equivalence is the original observation equivalence, and

was given in [Mil80], before the bisimulation method was developed.

D efinition 3 (O bservation Equivalence) The new relation is defined in terms of a series of

relations, with the first in the series being the universal relation, each of the others being defined

in terms of the previous relation.

39

P « 0 Q holds for all P and Q;

P *k+i Q iff- V<7 <E C*

(i) if 3P' -.pJU P' then 3Q ': Q Q' and P ' « fc Q ';

(ii) if 3Q' : Q =^> Q' then 3P ': P P 1 and P' » fc Q';

P » Q iff Vfc > 0. P n k Q

i.e. « = p |
k

In fact, the relation obtained here is only identical to that obtained by definition 2 on the

domain of image-finite processes. A process is image-finite if for each a the set {p' | p p'}

is finite. This means that the practice of using the terms weak bisimulation equivalence and

observation equivalence interchangeably is in fact incorrect.

H ennessy-M ilner Logic A third characterisation of observation equivalence can be obtained

by using Hennessy-Milner logic (HML), first introduced in [HM85]. This logic is presented fully in

chapter 11, so we will not give the details here. The power of the logic comes from the ability to

nest the modal operators to arbitrary levels. There is a direct relation between the depth of this

nesting and the stratification of the relations in the previous characterisation; the proof of this can

be found in [Mil89b]. A direct result of this relationship is the property that HML also precisely

characterises observation equivalence, so that if two processes are not equivalent with respect to

observation equivalence then an HML formula can be found which distinguishes them.

In [Mil89b] a satisfaction relation between processes and HML is defined which uses the tran­

sition relation to define what it means for a formula to be true of a process. This provides us with

a mechanism for expressing properties of programs (such as deadlock) in logic and proving the

CCS specification of that program satisfies those properties. Again, this is studied in more depth

in chapter 1 1 .

U sing Tests The last method of characterising observation equivalence to be considered is as

a Testing equivalence. Since testing equivalence will not be introduced until later in this section,

we give only a very brief outline of the way in which this equivalence may be altered to give

observation equivalence.

As mentioned in the informal introduction, observational equivalence is based on a notion of

testing; however, in general, these tests rely on some very strong assumptions about the control we

have over the environment. In the usual definition of Testing equivalence, test are constructed in

a similar way to processes, and do not have the discriminatory power of observation equivalence.

In [Abr87] the extra power required is gained by extending the operator set used in constructing

tests to include the existential quantifiers, V and 3. These correspond to the informal notion that

in observation equivalence we can control and examine the environment and that we can perform

40

tests in all possible configurations of the environment (implying that there are only finitely many

configurations). This extension to testing equivalence gives observation equivalence.

We move on now to consider observation congruence.

O bservation C ongruence

Unfortunately, observation equivalence is not preserved by summation in CCS. For example, while

it is true that r.b « b holds (since the r action is unobservable), it is not true that a + r .6 « a + 6

holds because, on the left hand side, we can find ourselves in a position in which it is no longer

possible to perform a (and only b is possible), i.e. the r branch has been taken. This is due to

the pre-emptive power of the r action, which essentially converts a deterministic choice into a

nondeterministic one.

This is a major failing in the equivalence. Imagine a system in which you wished to replace

some subsystem by a new, perhaps more efficient subsystem, without changing the functionality

of the system as a whole. Even if the old and the new subsystems were shown to be observation

equivalent, we could not guarantee that the system with the new part would behave in the same

way as the old system, as shown in the small example above. What is needed is a congruence

relation which guarantees that two systems which are identified behave in the same way in all

contexts. Observation congruence is defined to be the largest congruence relation contained in

observation equivalence.

D efin ition 4 (O bservation C ongruence) P and Q are observation congruent, P — Q, if

Vo; E Act

1. if 3P ' : P P' then 3Q’ : Q Q' with P 1 « Q', and

2. if 3Q' : Q - ^ Q' then 3 P ' : P P ' and P' « Q'.

Note that the only difference between this definition and the definition of observation equiv­

alence is that ==*>• appears instead of = > for the first transition from the root. This means that

rather than throwing away all information about r actions when comparing systems, some r ac­

tions, those which occur at the root, are retained. In particular, if Q starts with a r action, then

that action must be matched by one or more r actions in P. Observation equivalence, on the

other hand, allows that such an action is matched by zero or more r actions.

To return to the small example from the beginning of this section, we show that the problem

no longer arises because although r.b « b, it is not true that r.b = b. The congruence does not

hold because the first clause of the definition is not true, i.e. the left hand side can perform a

t action to become b, but the only way the right hand side can match this is by performing no

action at all, and this is not allowed by observation congruence.

41

A complete axiomatisation for observation congruence over processes without recursion is given

in [HM85],

Two problems arise when using observation equivalence or congruence in proofs. On one hand,

it makes distinctions which are not truly observable: as mentioned above, to describe observation

equivalence in terms of tests requires that we make tests very strong. This makes observation

equivalence too strong for many applications. On the other hand, observation equivalence does not

truly preserve the branching structure of a process, i.e. although it does preserve some information

about the branch points of processes, it does not preserve the branching potential of all states.

This can be more easily seen in an example:

a.(c + r.b)

b

a.b + a.(c + r.b)

In the process on the left, the decision to do b might have been made when the a is performed,

i.e. the left branch is taken. In the right hand process, after a, we can still do b or c. These processes

are equivalent under observation equivalence. Below, we consider equivalences which solve these

problems by preserving different amounts of information about the branching structure of the

process.

B ranching B isim ulation Equivalence

In order to supply a branching equivalence which incorporates the notion of the unobservable

action without making unnecessary identifications, branching bisimulation was developed [vG90].

Although originally defined in the setting of ACP, the definition can be easily translated into CCS

(and LOTOS). Essentially the definition is the same as observation equivalence, differing in that,

as well as comparing the states at the start and finish of r sequences, it also compares states along

r sequences.

D efin ition 5 (B ranch ing B isim ulation E quivalence) A symmetric relation, R C P x V , is

a branching bisimulation if (P , Q) £ R implies, Va £ Act

1. if 3P' : P -^4 P' then either a = r and {P' , Q) £ R, or

3 a path : Q => Qi -^4 Q2 => Q' with (P, Qi) £ R , (P ', Q2) £ R, (P ', Q') £ R, and

2. if 3Q' : Q - ^ 4 Q' then either a — r and (P, Q') £ R, or

3 a path : P = * Px ^ 4 P2 =► P ' with (Q, Pi) £ R, (Q't P2) £ R, (Q'} P ') £ R.

42

Two processes, P and Q, are branching bisimulation equivalent, written P i±Q , if (P,Q) G R

for some branching bisimulation R.

Branching bisimulation equivalence has some pleasing properties, including that it is a con­

gruence relation, that it is decidable for a certain class of processes [Hiit91] (see section 4.2.2 for

more information) that it has a complete axiomatisation, and a complete term rewriting system

corresponding to those axioms [AB90].

Testing Equivalence

As mentioned in section 3.4.2, the strong and weak bisimulation equivalences are generally inad­

equate in real world applications because they rely on fairly strong assumptions about the degree

of control over the environment and tests on processes (e.g. the ability to make multiple copies

of the environment and the process under test is assumed). Testing equivalence [DH84, Hen8 8] is

based on the notion of experiments on processes. Two processes are testing equivalent if they pass

the same tests. To define this equivalence we need a set of observers, a way of observing, and a

criteria for judging the results of the observations.

Given a set of states, S ta tes, a computation can be defined as a non-empty (possibly infinite)

sequence of states. Com p denotes the set of computations and is ranged over by c.

Let O, V (ranged over by o,p respectively) be a set of observers and a set of processes. For

every o and p there is a non-empty set of computations Com p(o,p), which denotes the effect of

the observer o performing tests on the process p. The outcome of a test is then c G Com p(o,p).

We define a subset of S ta tes to be the Success states, denoted by {T}. Unsuccessful states

are denoted by {-L}. A computation is successful if it contains a successful state, unsuccessful

otherwise. We denote the result set of a test by lZ(o,p). The tests may be repeated a number

of times, which may yield the additional result, {T, _L}, i.e. sometimes the process will pass the

test, sometimes it will fail.

Testing equivalence is defined in terms of three relations which reflect different views of how

to order these results as domains.

1. The Hoare Domain, see figure 3.3, reflects the view that the possibility of failure is not a

disaster, and therefore equates {T} with {T, X}, i.e. some experiments may fail, but at

least one experiment was successful. Given a process p, p m ay satisfy o if T E 1Z(o,p).

The relation on processes derived from this domain is written Cmay, where p Cmay q if

Vo £ O, p m ay satisfy o implies q m ay satisfy o.

2. The Smyth Domain, see figure 3.3, is the opposite of the Hoare domain, in that the possibility

of failure is viewed as catastrophic, and {T, X} is equated with {X}. Given a process p,

p m ust satisfy o if {T} = 7Z(o,p).

43

{T}

{T} = {T, X} {T} {T, X}

{-L} {-L} = {T, X} {X}
The Hoare Domain The Smyth Domain The Egli-Milner Domain

Figure 3.3: Testing Domains

The relation on processes derived from this domain is written where p Qmust 9 if

Vo £ O, p m ust satisfy o implies q m ust satisfy o.

3. The Egli-Milner Domain, see figure 3.3, reflects a more balanced view of the possibility of

failure, equating it with neither {T} nor {-L}.

The relation on processes obtained from this domain is written Q te s t , and p Q te a t 9 iff

P Q m a y 9 and p Cmus£ q.

Each of these relations is a preorder, i.e. a reflexive and transitive relation.

D efinition 6 (T esting Equivalence) Testing equivalence is defined in a natural way by the fol­

lowing:

p and q are testing equivalent if p Q t e s t 9 and q Q t e s t P -

Informally, p and q are testing equivalent if there are no tests which one passes but the other

does not. As with strong and observational equivalence a complete axiomatisation exists for testing

equivalence over finite processes [DH84],

The power of testing equivalence varies, depending on three factors: the power of the observers,

the criteria for determining success or failure of a test, and the method of tabulating the results

of a test. Varying these factors gives a range of different testing equivalences. The observers most

commonly used are constructed in the same way, and using the same operators, as processes, with

the addition of an action u; which denotes success. A test is successful if the u> action is observed.

The resulting equivalence is the one most commonly used, and is the equivalence we mean when

we refer to “testing equivalence” .

Tests can be made stronger, as mentioned previously, by allowing existential quantifiers, as

in [Abr87], as part of the language. This alters the way in which the information from the tests

is collated. Another possible extension is to change the treatment of divergence; specifically, if a

process enables the observer to perform an u> action but subsequently diverges, should a success

or failure be observed?

44

C h aracterisations o f T esting Equivalence

We now consider other means of characterising testing equivalence. The full definitions may be

found in [De 87].

L abelled T ransition System s The previous discussion of testing equivalence was in a general

setting. To be applicable for CCS (or LOTOS), the notions of observers and successful states

must be defined in terms of labelled transition systems. An observer (or experimenter) is just a

process with the additional action u>, denoting success. A state is a (process, observer) pair. The

state is successful if the observer can perform an cj action. Given these definitions, computations

are sequences of states, and the preorders m ay and m u st are defined in terms of success states

within computations.

P rocesses are sets of LTS’s as defined in section 3.4.3.

O bservers (or experimenters) will be P rocesses with the additional action u>, which reports

success.

S ta tes will be pairs (p, e) where p is a state of a process and e is a state of an experimenter. A

successful state is one whose right component can perform an u action.

C om p u tation s Given two transition systems, T and E, with initial states t and e, a computation

from (t , e) is a finite or infinite sequence of pairs of states (tn,en) where:

1 . (to,e0) is (t,e).

2 . (a) (tn, en) (^n+ij^n+i) if tn ̂ r̂»+i a-nd en — en-\-\, or en en+i and

i n — ^n + l)

(b) (tn j ^n) (tn+ 1 > Cn+1) if tn ̂^n+1 and en >• €n+\

3. if the sequence is finite with {tk,ek) as final element then no more transitions in Act

are possible from (t*,e*).

The relations m ay satisfy and m ust satisfy can now be redefined in terms of the above defini­

tions.

1. T m ay satisfy E if 3<x e Act*.(to,e0) — >■ (tn ,en) and 3en+i.en e„+i.

2. T m ust satisfy E if for every computation (to,eo) {t\,e i) ^ 2 ,^ 2) — > . . . there

exists n > 0 such that en en+i ■

The preorders and the equivalence are defined as before, but using the above definitions of m ay

satisfy and m ust satisfy.

45

A ction Sequences The problem with the above characterisations of testing is that, although

they are very easy to understand, they are not so useful in proofs of equivalence. Proving non­

equivalence is straightforward: only one observer which differentiates the processes must be found,

whereas a rigorous analysis of all possible tests is necessary to prove equivalence.

An alternative method of characterising this equivalence uses sequences of actions to define the

three orderings. This is the method used in the LOTOS standard to define the testing preorders.

As the definitions are given in section 3.5.3 we do not repeat them here.

Failures In [De 87] the important result that testing equivalence has the same discriminatory

power as the equivalence induced by failures semantics in CSP is given. This means that testing

equivalence can also be defined in terms of traces and failures. The definition turns out to be just

the contrapositive of the definition in terms of action sequences given in section 3.5.3, i.e. rather

than concentrating on the actions a process can perform we concentrate on the actions it cannot

perform.

3.4.4 Proof Techniques for CCS

The kinds of proofs which can be constructed for CCS processes vary depending on the particular

semantics/equivalence relation adopted.

• The operational semantics may be used to “simulate” a behaviour. This allows us to trace

through the execution of a process, highlighting situations in which deadlock may occur and

so on.

• Two terms to be proved equivalent may be manipulated by applying the algebraic laws

associated with the particular equivalence/congruence/preorder used. This is always sound,

and in some cases, e.g. for branching bisimulation, may also be complete.

• The alternative methods of characterising the equivalences can be used instead of referring

to the labelled transition system or the axioms. For example, using strong equivalence or

observation equivalence we may proceed by trying to find a (strong or weak) bisimulation

R which includes the pair of terms to be proved equivalent. For observation equivalence

we may also try to prove that two processes are not equivalent by finding an HML formula

which holds for one but not the other. To prove that two terms are not equivalent under

testing equivalence a test must be found which distinguishes them. Alternatively, a case

analysis over tests must be carried out to show that there is no test which distinguishes the

terms.

• A combination of the above methods can be used as appropriate for the given problem,

e.g. first use the algebraic laws to simplify the processes, making the other proof techniques

46

simpler to apply.

Another important technique used in proofs in CCS is unique fixed point induction. This allows

us deduce that two recursively defined processes are equivalent if they satisfy the same general

equation. This is due to a result about the uniqueness of solutions to equations. Again this

definition is taken from [Mil89b].

D efin ition 7 (U nique S olu tion of E quations) Consider solutions of the expression X = E,

where X and E denote vectors of variables and process expressions respectively.

Let the expressions E be guarded and sequential expressions, i.e. all expressions have visible

initial events and use only the operators . and -f, with free variables in X . Let P = E { P / X } and

Q = E{Q/ X} . We may deduce P = Q.

In the above, = stands for observation congruence, but similar results have been obtained for

other equivalences/other formalisms.

Having introduced CCS and CSP, we can now consider the formal description technique

LOTOS.

3.5 LO TOS

LOTOS [IS088] is based on the concept of specifying a system in terms of observable behaviour,

i.e. events, and was designed by ISO (International Standards Organisation) with the specification

of communications protocols in mind. This has had a great bearing on the design decisions taken

when developing the language; in particular, LOTOS is very expressive, with a large operator set,

including mechanisms for structuring large specifications.

As in CCS and CSP, LOTOS has no explicit representation of time; however, constraints may

be placed on the order of events. The communication and change of information within a system

is expressed by the structure of those events.

LOTOS consists of two parts: the process algebra Basic LOTOS and the abstract data type

specification language ACT ONE. In this section, and for the following six chapters, only the

process part of the language, Basic LOTOS, is considered; the data type part is discussed in

chapter 10. The complete syntax and semantics of full LOTOS is given in appendix B.

3.5.1 Operators of Basic LOTOS

The operators of Basic LOTOS are given in figure 3.4, in which a is an event, P, Q and ex are

processes, G is a set of gate names, and S is a relabelling function.

Some LOTOS operators have exactly the same behaviour as their CCS counterparts:

47

description notation
internal action i
inaction (deadlock) s to p
successful termination ex it
action prefixing a; P
choice p D Q
parallelism (general) P |[G] | Q
parallelism (interleaving) ^111 Q
parallelism (full synchronisation) m Q
enable P > Q
disable P[> Q
hide h id e G in P
renaming P[S\
recursion p ro c ex := a; ex e n d p ro c

Figure 3.4: Operators of Basic LOTOS

• t becomes i.

• 0 becomes stop .

• a.P becomes a; P.

• P + Q becomes P (] Q.

The remaining operators are either ones which owe more to CSP than CCS, or ones specially

introduced to make the specification of communications protocols easier.

• In addition to the CCS unsuccessful termination, i.e. deadlock (stop), LOTOS also has

successful termination, denoted ex it. A new event, 8, denoting successful termination is

added, along with the transition rule ex it stop .

• In CSP the special communication events are called channels; in LOTOS they are called

gates.

• The parallelism operator is altered to allow explicit specification of the set of gate names,

G, on which the processes must synchronise (this follows the model of CSP parallelism).

• LOTOS has broadcast communication.

• Interleaving is parallelism with an empty set of gate names, i.e. no synchronisation. Full syn­

chronisation is parallelism with the set of gate names equal to the language of the processes

being combined, i.e. everything synchronises.

• Enable, denoted by , means the sequential composition of processes4.

4 In the concurrency literature enable has a different meaning. If an action is enabled, then it is ready to be
performed. This difference is irritating, but enable is the name used in the LOTOS standard for this operator.

48

• Disable, denoted [> , allows Q to interrupt the execution of P and take control.

• LOTOS h ide is like CSP hide, rather than CCS restriction, i.e. hidden events are turned

into occurrences of the internal action, and may proceed without constraint.

• The post-fix renaming operator applies a relabelling function to the gate names. The only

constraint on the behaviour of the function is that it must map the internal action to itself.

An important area of LOTOS-related research, which is not a feature of CCS or CSP research,

is the investigation of the ability to write specifications in different styles. Some of the most

common styles are described below.

3.5.2 LOTOS Specification Styles

In [VSvSB91] two basic characterisations of the descriptive style of a specification are given: exten-

sional, an abstract style which describes what the system does, and intensional, a more concrete

style which describes how the system operates, typically also giving internal structuring of the

system. For Basic LOTOS, two more styles within each of these classes can be identified. For

extensional descriptions these are monolithic and constraint-oriented, while for intensional spec­

ification styles we have state-oriented and resource-oriented. In the monolithic style, observable

interactions are presented as a collection of alternative sequences in branching time. A character­

istic of this style is the absence of parallelism, only choice and ordering are used. In constraint-

oriented specification, different aspects of the system are separated and described as individual

processes. These processes are recombined using parallelism to give the whole specification. This

style of specification is popular because in general it is easier to understand the behaviour of small

components than large ones. However, this can lead to a false understanding of the system, as

the interactions of the components can be very complex and easily misunderstood. The user must

rely on tools to check that the combined behaviour is as intended. Examples of this style may be

found in [Naj87, Tur92], and also here, in section 7.4.3.

In the state-oriented specification style, interactions manipulate a global state variable. No

structuring other than choice is used which is similar to the monolithic style. Finally, we have the

resource-oriented specification style, which is similar to the constraint oriented style, except that

here each component can be identified with an underlying implementation feature rather than

with an abstract feature of the system. Tools exist which can transform a specification written in

one style into another style [vE89, LITE].

The constraint-oriented and resource-oriented styles also satisfy more general specification

style concerns such as orthogonality (functional independence of parts), generality (parametric

specifications), and open-endedness (flexible, easily extended specifications). This makes them

49

more suitable for early, abstract specifications, while the other styles are nearer to the level of the

implementation of the system, particularly the state oriented style.

In most specifications, a mixture of styles will be used, starting with constraint-oriented, which

is more easily understood by a user, and moving to state-oriented or resource-oriented, which may

be closer to implementation. An interesting question, from our point of view, is how the verification

process might be affected by the style in which a process is written. Obviously, since there are

transformations from one style to another, the specification style should not alter the validity of

a property; however, it may be easier in a particular style to show that property holds of the

specification.

3.5.3 Sem antics of Basic LOTOS

Basic LOTOS is based on the same model as CCS: the semantics of processes are given by labelled

transition systems. The inference rules defining the semantics of LOTOS, taken from [IS088], are

given in appendix B. Everything that was said about equivalences in CCS can also be applied to

Basic LOTOS, and we do not repeat the definitions here. Some laws, also taken from [IS088], for

weak bisimulation congruence and equivalence, testing equivalence, testing congruence, red and

cred are given in appendix B. In the LOTOS laws the operator C is often used. This operator

takes a process and returns the language of that process, i.e. the set of events in which it may

participate.

In the rest of the thesis the following notations are used. We have tried to maintain com­

patibility with both the LOTOS standard and the definitions and notation used in the previous

section.

• The domain of gates is denoted by Q (this is similar to the domain of labels in CCS, but there

is no notion of a co-label in LOTOS as communication is multi-way). The new termination

action is treated in the same way as the other gate labels, S E Q, but, as in CCS, internal

actions are treated differently, i £ Q. We use g , g i , . . . to range over Q and t , t i , . . . to range

over Q*. Subsets of Q may be denoted by A, G or L (depending on the context).

• The domain of actions is denoted Act as before. Act = Q U {i}. We use a ,/?, . . . to range

over Act.

• The definitions of — > and =>• are as before, modulo renaming of variables and substitution

of i for t .

• We denote LOTOS weak bisimulation congruence by =wbc and weak bisimulation equivalence

by ^ wbe• The notation for the other relations is defined in a similar manner.

50

In addition to defining weak bisimulation equivalence and congruence for LOTOS, the LOTOS

standard also defines the preorder red and its congruent counterpart cred. These are essen­

tially the testing preorders of section 3.4.3, as described in [DH84, De 87, Hen8 8], although the

LOTOS convention is to write the arguments in the opposite order, i.e. impl cred spec, rather

than spec C impl.

We give the LOTOS standard’s presentation of testing in terms of action sequences below. To

define the red and cred relations some more auxiliary definitions are required. Remember the

slightly different naming conventions of variables in LOTOS as opposed to those used in CCS. For

example, traces, denoted by t, may also contain S.

• P after t = { ? ' | F P'}.

• Let L C Q, then

(P m ust L) iff. P =>- P' implies 3 P " . P ' ==U- P" for some I E L

P m ust L is equivalent to saying that if P performs any visible actions then it must perform

an action from L , assuming L ^ 0. The expression P ==> P' guarantees freedom from

divergence, i.e. any sequence of internal actions is finite. There are two special cases of note:

stop m ust L and P m ust 0, both of which give false, regardless of L and P.

Note that this relation really has more of the flavour of m ay than m ust, since it expresses

the possibility that an action may be performed rather than the certainty that that action will

be performed. The m ust flavour comes from the following definition extending the relation

to sets of states.

• The m ust predicate can be defined over sets of states in the obvious way. Let Q C V , then

Q m ust L iff. V Q E Q. Q m ust L.

An interesting special case here is 0 m ust L which is always true, even when L = 0. In the

definition of red below this case occurs when the trace t is not a valid trace of the process,

therefore P after t is empty.

• Let C\] be a LOTOS context, then C[P] denotes the process P in the context C[].

The red and cred relations may now be defined.

D efin ition 8 (T h e red relation) P red Q iff.

W E G* VL C Q. (Q after t) m ust L =>• (P after t) m ust L

D efin ition 9 (T h e cred relation) For LOTOS behaviour expressions P and Q,

P cred Q iff. for all LOTOS contexts C[], C[P] red C[Q],

51

Both of these refinement relations are preorders (i.e. reflexive and transitive relations). Divergence

is ignored, unless it comes before a successful state.

An alternative definition of red is given by [Bri8 8 a] and [Lan92].

D efin ition 10 (T he red re la tio n 2)

P red Q if

v t e g * , V L e g

if 3P'. P =U P ’ A Va € L -.(3 P P ' P") then

3Q'. Q Q' A Va G A. - (3 Q". Q' =*> Q")

Informally, this definition describes red in terms of events which it cannot perform, i.e. re­

fusals, rather than in terms of events which it may perform. These two forms of definition are

in fact equivalent, since this is just the contrapositive of the previous definition of red . This

also underlines that tests and failures are just different ways of expressing the same equivalence

relation.

Similar/related preorders to red and cred have been defined elsewhere in the literature. For

example, red , ex t and im p in [BSS87] and red and conf in [Bri8 8 a]. Note that the same name

need not denote the same relation; however, the differences are minor.

The definition of red in [BSS87] is like definition 10 above except that the trace set of the

implementation must be contained within the trace set of the specification. The ex t preorder,

on the other hand, insists that the trace set of the specification process be contained within that

of the implementation process. Moreover, although the rest of the definition is the same as the

alternative red given above, the traces are taken from the language of the specification, rather

than from Act*. This difference makes sense as the intention of [BSS87] is to develop a method

of deriving tests from the specification. Using tests from Act amounts to testing the system for

robustness, i.e. correctness in the presence of incorrect/unexpected inputs, whereas restricting the

tests to traces of the specification means that only defined inputs are tests; all others are ignored.

The equivalences induced by red and ex t are the same. The third preorder of [BSS87], im p,

is defined by im p = red ext, i.e. a composition of the two previous preorders. It behaves like

the red of definition 1 0 except that it insists that the specification and the implementation have

the same traces. These three relations evolve into red and conf in [Bri8 8 a], where re d is as in

definition 1 0 and conf is similar to ex t except that no constraints are placed on the trace sets of

the processes.

The definitions of [BSS87] were early attempts to express the notion of implementation which

were later refined in [Bri8 8 a], therefore we choose to use the later definitions in the following.

We do not use conf as it is not a preorder (it is not transitive) and therefore does not yield an

equivalence, unlike red . Since most of our work will be based on equivalence relations red is

52

therefore a more desirable relation to use.

Complete axiomatisations for LOTOS equivalences and preorders do not exist, as far as the

author is aware, or rather, they have not been documented. Certainly finite Basic LOTOS can be

transformed into finite CCS, see [BIN92], and complete axiomatisations exist for finite CCS, and

therefore for finite Basic LOTOS.

3.5.4 P roof Techniques for LOTOS

The proof techniques for LOTOS are borrowed directly from the proof techniques for CCS. With a

little manipulation, CSP-like proofs can also be obtained, this is described in [GL91] and [GL091].

A problem of the approach is that the fixpoint induction principle cannot be applied to LOTOS

with failures semantics as the solutions to equations are not unique; this is because the ordering

over sets of failures is non-monotonic with respect to the corresponding processes in the presence

of i.

In addition to the usual CSP and CCS proof techniques, property testing is a commonly used

proof technique for LOTOS. The technique consists of describing the property in the style of a test

process and executing that test in parallel with the system to be tested. The test process includes

a special action which indicates that the test has been passed and the two processes synchronise

on all other events. If the system can perform the same actions as the test process then the test

is passed; if not, the test fails. This technique is based on testing equivalence, but typically only

one test (one property) is considered, rather than all tests. This proof technique used in [Tho93],

which is also described in chapter 9.

The power of the tests can be increased by extending the language of tests. One possible

extension is to add an action which can detect deadlock; this form of testing is described in

[Lan90].

We have now presented the three process algebras CSP, CCS and LOTOS. Before moving on

to consider verification of properties of LOTOS specifications in more detail, we summarise the

differences and similarities of the three formalisms. We also compare the relative strengths of the

different equivalence and congruence relations defined for all three process algebras.

3.6 C om parison o f P ro cess A lgebras

3.6.1 Com paring the Formalisms as Specification Languages

The process algebras CSP, CCS and LOTOS are all very similar in their basic concepts. Each

formalism is described in terms of a set of operators over the same basic domain: processes and

actions. They differ in their philosophy and area of application however. When CCS was defined

53

the intention was to have a minimal set of operators which would allow the semantics of the

language to be more easily explored. Although good for small examples, CCS is more difficult

to use in larger scale examples because it lacks the operators necessary to structure a larger

specification. However, some of these operators can be constructed from the basic operators if

necessary. On the other hand, both CSP and LOTOS were designed to be used as specification

languages. LOTOS in particular was designed for large communications systems, and therefore

has lots of operators which make it easy to build a large specification out of smaller parts.

Having a large operator set can cause problems, simply because the proliferation of operators

may cause confusion, thus making the specification process more difficult in some circumstances.

Also, as mentioned in the introduction, the more expressive a specification language is, the more

complicated verification becomes (either through the language being based on a more complex

mathematical model, or simply through the confusion of having lots of operators).

The three formalisms, although based on a common semantic model (CSP can also be defined

in terms of labelled transition systems), have slight differences in the way in which that model

is interpreted. For example, communication in CSP and LOTOS is based on multi-way synchro­

nisation, whereas CCS restricts communication to two parties. The differences in the approach

to communication are also reflected in the approach to hiding and restriction. While CSP and

LOTOS turn hidden actions into internal actions (which may then proceed instantaneously), CCS

uses restriction to prevent a process from communicating with its environment, usually forcing it

to communicate with some other process.

Another difference is the use of distinguished actions. CSP has one distinguished action,

yj’, which signifies successful termination. Although the hiding operator in CSP, as in LOTOS,

produces internal, invisible, actions, CSP has no special notation for this. CSP invisible actions

really are invisible! CCS, on the other hand, relies quite heavily on the internal action for the result

of a communication, and for modelling nondeterminism in the system (whereas CSP has a special

operator for nondeterministic choice). LOTOS, as might be expected, reflects both formalisms in

that it has a distinguished internal action; however, its treatment of i is a combination of the CCS

use of r , and the CSP creation of internal events by hiding.

With regards to syntax and semantics of operators, it can be seen that CSP and LOTOS are

quite similar and useful as practical specification languages, while CCS is more suited to small

theoretical investigations. When considering proof systems, LOTOS is aligned with CCS rather

than CSP. The operators of all three formalisms are associated with a set of algebraic laws which

allow transformation of process expressions. In addition to this, CSP also has an associated

abstract specification language, which can be used to express the requirements of a system, and

a satisfaction relation, which tells us when a CSP process meets those requirements. CCS is also

closely related with a more abstract specification language, the logic HML, which can be used in

54

a similar way. LOTOS however, has no such language. What LOTOS does have, which the other

two lack, is extensive tool support; this is a result of being designed for use in industry rather than

academia. Of course there are tools associated with CSP and CCS, but there are not so many,

and they are mostly proof tools, whereas LOTOS tools offer support in various other forms of

analysis. Details of tool support for CCS and LOTOS are given in appendix A. Where CSP and

CCS gain is that there is an extensive associated literature, while LOTOS, being relatively new,

has only a small literature.

Finally, we may also consider implementations of processes: CSP is closely related to the lan­

guage occam™, CCS is incorporated in the language LCS [BS94], and tools exist which translate

LOTOS into C [LITE],

Further comparison of CCS and CSP may be found in [vG8 6]; the evaluation of LOTOS with

respect to other concurrency formalisms, including CSP and CCS, may be found in [Fid93].

Although proof systems are mentioned above, they are not discussed in detail. All methods

of proof, i.e. traces, failures, tests and bisimulations, are relatively easy to understand, and to

a great extent preference for one or the other depends on the subjective choice of the specifier.

However, the behavioural equivalences associated with each proof technique can be compared more

objectively.

3.6.2 Com paring the Different Equivalences

Several different equivalences have been defined in sections 3.3.2, 3.4.3 and 3.5.3. In [vG90] a

general framework, based on transition systems, is presented which allows these equivalences to

be compared in terms of distinguishing power. The use of a common model also enables us to see

that an equivalence defined for use with CSP may just as easily applied to LOTOS or CCS, or

vice versa.

A similar study of some of the commonly used equivalences is detailed in [De 87], but without

the cohesive underlying framework. However, this work does consider equivalences which involve

the r action, while the study of [vG90] considers only finitely branching5, concrete, sequential

processes. This means that the processes under consideration can have no internal actions, they

must be compliant (they may not block actions — only the environment may block actions), and

actions may not occur simultaneously. In other words: no infinite summation (choice), no silent

actions, no nondeterminism (although nondeterminism occurs when a choice is given which has

the same first action in each side) and no true parallelism are permitted.

Note: we do not consider the red and cred preorders in this framework since it does not make

sense to compare preorder relations with equivalence and congruence relations.

5 Finitely branching processes may be recursive, but at each stage, only finitely many choices are allowed.

55

Below we give the informal description of the comparative framework of [vG90], the ordering

of the relations presented here in that framework, and some examples illustrating the differences

between those relations.

O bserv ing P rocesses

The semantics of a process is determined by its observable behaviour. An observer may observe all

actions of a process, and may terminate the observation at any time. An observation is a sequence

of actions over A, in other words, a trace. Three parameters of observable behaviour are used.

The first concerns time:

1. L inear T im e The observer may observe the process many times and under all circumstances,

giving a set of traces.

2. B ranch ing T im e At any time in the execution the observer may split the process into

several copies of itself, each taking a different execution path. This results in a tree of

observations.

The second parameter is concerned with the sort of events which may be observed:

1. O nly A ctions

2. Also Id leness Traces are defined over AU{<J}, where S denotes idleness, i.e. periods during

which the process performs no actions.

3. M enus At each idle period, a menu of possible actions is recorded.

Finally, the effect of the environment on the process is considered.

1. S ta tic E nv ironm ent The environment will allow any action to proceed.

2. In te rm e d ia te E nv ironm en t The environment may block actions. Once blocked, an action

cannot be re-enabled.

3. D ynam ic E nv ironm en t The environment is free to block and unblock actions at any time

in the execution of the process.

This results in a total of 18 semantics or equivalence relations, but many of these coincide in the

particular range of processes chosen. We also limit this discussion to those relations presented in

this chapter, with the inclusion of complete trace equivalence which is just the language equivalence

of finite state automata.

The semantics can be ordered by the partial order “makes at least as many identifications

as” , written S ■< T , if S makes as many (possibly more) identifications as T. This means that

56

S is a coarser equivalence than T , i.e. let iden(c>) be the set of identifications made by S, then

iden(»S) D iden(T). See figure 3.5 for a diagram showing the positions of the seven defined seman­

tics in relation to each other. In this diagram S <— T represents S -< T ■ The diagram is part of

a complete lattice on this ordering over all variants of observing processes, called the linear time

— branching time spectrum. See [vG90, De 87] for details of the rest of this lattice, and also for

proofs that the relations are indeed ordered as shown in figure 3.5.

strong bisimulation equivalence

branching bisimulation equivalence

observation congruence

observation equivalence

failures congruence = testing congruence

completed trace equivalence

trace equivalence

Figure 3.5: The Distinguishing Power of Common Equivalences

D ete rm in is tic Processes

An interesting result discussed in [vG90] is that if the processes are deterministic, the whole

structure of figure 3.5 collapses, i.e. all equivalences coincide.

D efin ition 11 A process is deterministic if P Q Sz P R => Q = R.

57

If the processes are deterministic, the equivalences are also decidable (since strong bisimulation

equivalence is decidable for the class of normed BPA processes [GH91, Hiit91]).

E xam ples

Below we give some examples which demonstrate the differences between equivalences in the above

ordering. The examples are expressed in CCS syntax and are taken from [vG90].

6

a.b + a

— te

cte

a.b

Completed trace equivalence is more discriminating than trace equivalence as traces (left-hand-

process) = traces(right-hand-process) = {e, a, ab}, but complete-traces(left-hand-process) = {a,a&},

while complete-traces(right-hand-process) = {ab}.

b

— cte

#/«

a . (6 + c)a.b + a.c

Failures equivalence/testing equivalence is more discriminating than complete trace equiva­

lence as complete-traces (left-hand-process) = complete-traces(right-hand-process)= {ab,ac}, while

(a, {6 }) E failures (left-hand-process) but not failures (right-hand-process).

a.b.c + a.b.d

— f e

^ s b e

a.(b.c + b.d)

58

Strong bisimulation equivalence is more discriminating than failures equivalence, as in the left

hand process we can perform a and then find ourselves unable to perform be, while the right hand

process will always be able to perform be after a.

— wbe

sbe

a.b a.r.b

Any processes which are equivalent under weak bisimulation congruence by removing an inter­

nal action will never be equivalent under strong bisimulation equivalence. Similarly for branching

bisimulation equivalence.

For an example of processes which are distinguished under branching bisimulation equivalence,

but identified under weak bisimulation congruence, see section 3.4.3.

Discriminatory power is one of the most important ways in which we can compare these

relations. In section 4.2.2 we discuss some other possible means of comparison.

3 .7 Sum m ary

In this section we have laid the foundations for the discussions of verification to come. The

semantics of CSP and CCS have been introduced, and the many interpretations of those semantics

have been put forward. Since LOTOS inherits much of its semantics from these two languages, in

most cases the same interpretations may also be applied to LOTOS semantics, possibly with some

small alterations. In addition, the various proof techniques associated with each formalism have

been described. These proof techniques may be useful in giving us different ways of approaching

the problem of verifying the correctness of a system. Finally, we have summarised the differences

and the similarities of the three formalisms, particularly concentrating on the different semantic

equivalences which may be defined for each.

In the next chapter, one particular aspect of verification is singled out for further study, namely

the approach of proving two specifications, both described using process algebra, in particular Basic

LOTOS, are related in some way, i.e. by a preorder, equivalence or congruence relation.

59

C hapter 4

Verification Requirem ents II:

Satisfaction

In this chapter we examine in detail the proof method of evaluating the correctness of an im­

plementation with respect to a specification by showing that the implementation satisfies the

specification, i.e. some relation, an equivalence, congruence or preorder, holds between the two

descriptions. We shall call this the satisfaction approach to verification. We assume the specifica­

tion and implementation are given, and are both expressed in Basic LOTOS. The most important

question to be answered is “what sort of relation should be used to model satisfaction?” .

We begin by considering the types of relation available to us in LOTOS, equivalences, con­

gruences and preorders, and some criteria in deciding which kind of relation to use. We then

consider more specifically the various equivalence relations which can be used with LOTOS and

put forward some criteria for choosing between them. We also briefly consider the question of

using these relations to help derive the implementation from the specification.

Having considered the theoretical background of the satisfaction approach to verification, we

move on to consider proof techniques and tools currently in use for either CCS or LOTOS which

are based on this approach. The reason for considering CCS techniques and tools is the lack of

verification tools available for LOTOS; we may be able to adapt these techniques and/or tools for

use with LOTOS. From this survey of tools and techniques, we identify the technique of equational

reasoning as appropriate for our use.

4.1 P rov in g th e Im p lem en tation satisfies th e S pecification

Many case studies in the literature include examples of proving the equivalence of two behaviours,

one which represents a “specification” of the system, the other the “implementation” ; see below

60

for references to a selection of such case studies. The specification here is an abstraction of the

implementation. This may mean that it is described in a more abstract, less implementation

dependent way; the LOTOS specification styles mentioned in section 3.5.2 illustrate some of the

different levels of abstraction possible within one language. Alternatively, abstraction may mean

that the specification is partial, i.e. it describes only certain aspects of the behaviour of the system,

whereas the implementation may capture the full behaviour of the system. In this case an equiva­

lence relation is an inappropriate means of comparing the specification with the implementation; a

preorder relation should be used instead. Having said that, most of the examples in the literature

use equivalence relations, therefore we will concentrate on the former interpretation of abstraction.

Examples of the satisfaction approach to verification are particularly common in OSI commu­

nications examples, due to the structure of the OSI Reference Model [IS074]. Each layer of the

Reference Model is specified in two ways: a description of the service provider in terms of the

services available to the layer above, and a description of those services as protocols, i.e. interfaces

between the user, which is the service provider, and the service providers of the layer below.

This approach to verification is applied by many case studies in the literature. Some use tools

to aid in the proof, others carry out the verification by hand (this is only feasible for relatively

small examples). Those which use tools to automatically construct an equivalence relation include:

train/car level crossing [Bai91], communications protocols [Par8 8 , BA91, CN91], sliding window

protocol [MV91b], ISO Reference Model layer [Naj87], communications protocol [Ern91], protocol

for overtaking cars [EFJ90], and hand-over procedure in a mobile phone network [F091].

Other case studies rely on equational reasoning: curious queues [vG90], sliding window protocol

[Gro87], and hand-over from one base station to another in a mobile phone network [0P91]. Most

of these are done by hand. A particularly rich source of equational reasoning examples is [Bae90]

which deals with applications of the process algebra ACP (which is defined only by sets of axioms,

making equational reasoning an obvious paradigm to adopt) to specific examples. Also good for

many examples of equational reasoning and constructing bisimulations by hand is [Mil89b].

The papers on automatic tools referenced in section 4.4 and in appendix A contain examples of

automated proofs; common examples include Milner’s scheduler and the alternating bit protocol.

Another example is the verification of protocols governing the logging-on interactions between a

user and a computer system [Kir93], also described in chapter 7.

Given that we wish to show the implementation satisfies the specification, we have first to decide

which sort of relation, i.e. equivalence, congruence, or preorder, is appropriate for a particular

example. In particular, if an equivalence relation is used, which of the many relations defined in

the last chapter should be used. This decision depends on which parts of the observable behaviour

are important and are to be used in evaluating the equivalence. The answers to these questions

are considered below.

61

4 .2 W h at Sort o f R ela tion Should B e U sed?

4.2.1 Equivalence, Congruence or Preorder?

For LOTOS, we have a choice of three kinds of relation with which we may compare processes:

equivalence, congruence or preorder relations. In most verification proofs, we will want to ensure

that the substitutivity property is preserved, i.e. that two equivalent processes will have the same

behaviour in all contexts, therefore if a congruence relation is available, we should always choose

it in preference to the corresponding equivalence relation. This applies to weak bisimulation

congruence and testing congruence; strong equivalence, branching bisimulation equivalence and

trace equivalence are all also congruence relations. This criteria also applies to preorder relations.

We still have to decide between using an equivalence/congruence relation and a praorder rela­

tion.

If the specification and implementation are developed independently, then choosing between

congruence and preorder is largely a matter of trial and error. However, if we assume that the

implementation is somehow derived from the specification and that we have inforrmtion about

that derivation process, then we can use that information in our decision. This is m t a strong

assumption, as in general we expect that the specification will at least be used as a reference when

defining the implementation. Note that we do not assume that the implementation is formally

derived from the specification, as this would make the verification trivial, see section 4.3 .

As in section 2.2.2 we assume a sequence of specifications, So —> Si —>■ S2 Sn . This

time we also assume we know a little more about the relationship between each specification and

the next.

Given two descriptions in the sequence, Si and Sj, where i < j , we view S,- as the specification

of the system and Sj as the implementation. Four interpretations of implementation an identified

in [BSS87]; we consider three of these interpretations below. The fourth interpretation of the term

implementation is as the final code of the system. Since we stated in chapter 2 that we are not

interested in program code, this particular interpretation is ignored here.

We consider three sorts of steps which may be taken from the specification to reach the imple­

mentation.

R ed u c tio n Resolving choices which were left open in the specification, i.e. removtig nonde­

terminism. This means the implementation may have fewer possible behaviour; than the

specification, but certainly not behaviours which the specification does not have.

E x tension Adding new information about what to do/how to do something (different observable

behaviour). Extension supports incremental specification, moving from a partial specification

to a total one [IYK90]. This implies that the implementation will have behaviours which

62

the specification does not have.

R efinem ent Providing more detail about a particular component, or method of structuring, e.g.

changing a method (for efficiency for example) (same observable behaviour).

Examining these steps can tell us something about the sort of relation we need to capture the

difference between descriptions. For example, if Si+i is obtained from Si by refinement, preserving

the observable behaviour, then some sort of equivalence relation is appropriate. On the other hand,

if 1 was obtained by reduction then a preorder relation might be more appropriate since the

behaviour of S;+i will be contained within the behaviour of Si. In the same way, extension steps

also indicate the use of a preorder relation; in this case the behaviour of Si will be contained

within the behaviour of Si+i. The preorder relation models the case where we want the behaviour

of one specification to approximate the behaviour of the other.

Unfortunately, in most cases, the step the specifier takes between Si and Si+ 1 will be larger,

and probably a combination of many of all three types of design decision, making the choice

between equivalence and preorder less clear cut.

Since we are dealing with LOTOS, there is only one preorder relation to consider, i.e. cred (the

congruent counterpart of red). If, however, the interpretation of implementation indicates an

equivalence or congruence relation, we still have to choose between several different equivalence

and congruence relations commonly used for LOTOS and presented in detail in the last chapter.

Possible criteria for making this choice are detailed next.

4.2.2 Choosing between Different Equivalence/C ongruence Relations

The most commonly used equivalence for LOTOS is weak bisimulation congruence (observation

congruence), which is unfortunate since it seems to be too strong for most applications. (It is

well known that the differences between distinct processes under observation equivalence are not

truly observable [Abr87].) Also used are testing equivalence and, less commonly, failures and trace

equivalence [GL91, GL091]. However, any other equivalence which can be defined over labelled

transition systems can also be used for LOTOS, e.g. branching bisimulation equivalence.

Given that such a number of equivalences exist, how can a user wishing to compare two

specifications choose which relation is the most appropriate for a particular example? Of course

the satisfaction relation must capture the property we wish to express, but it can be difficult to

determine exactly what that is. A number of possible criteria for making this chdce are given

below. Our intention here is not to thoroughly explore the question of choosing an equivalence

relation; we merely suggest some possible criteria, illustrating them via some selected examples.

The exploration of the full implications of these criteria is considered as further work.

63

S tre n g th In the portion of the linear time — branching time spectrum presented in figure 3.5,

section 3 .6 .2 , the relations are compared in terms of the number of identifications they make.

We can use the relative strength of relations in terms of identifications to make our choice.

For example, a strong equivalence will probably hold if a very short step has been taken

between specification and implementation. On the other hand, a weaker relation is more

likely to hold than a strong relation if the implementation is very far removed from the

specification.

At the very least, when considering proving satisfaction, the user should start with a strong

equivalence relation, moving to a weaker relation if the proof fails, if that relation still

captures the property to be proved.

P ro p e rtie s P rese rv ed As mentioned in section 3.4.3, logic may be used to describe properties

of the system. Some equivalences respect certain properties while others do not. For exam­

ple, trace equivalence does not preserve deadlock properties, and is therefore unsuitable for

verification purposes (since we normally do not want to equate a process which deadlocks

with one which does not). Similar relationships may exist between other equivalences and

properties. The relationships between the equivalences induced by various logics and the

standard process algebra equivalences is investigated in [BR83].

C ongruence This was discussed above. Normally we expect that a congruence relation is more

desirable in a verification setting than an equivalence relation.

R efinem ent o f A ctions Normally actions are assumed to be atomic, but a useful development

procedure is to use an action to model a more complex process, substituting that process for

the action at a later stage in the development of the specification. Unfortunately, equivalence

may not be preserved by this procedure. An equivalence which does allow refinement of

actions is branching bisimulation equivalence [vG90].

A xiom ati sa t ions In order to carry out axiomatic proofs, it is helpful if the axiomatisation is

sound and complete, and, for automation purposes, finite. Given the usual operators of

process algebras, it is shown in [Mol90] that no such axiomatisation can exist; the expan­

sion theorem required to express interleaving semantics is actually an axiom schema which

expands to give an infinite axiomatisation. A finite axiomatisation can only be obtained

by altering the operator set. For example, the addition of the left merge operator to the

language can give a finite axiomatisation. Alternatively, we may restrict ourselves to a subset

of the language. For example, in [BIN92] a complete axiomatisation for finite Basic LOTOS

has been derived by translating Basic LOTOS into CCS (and a complete axiomatisation

exists for observation equivalence over finite state agents [Mil89a]).

64

R ew rite R ules Some axiomatisations can be turned into a finite confluent and terminating sets

of rewrite rules, while others cannot. Experiments have been carried out in [DIN89] to inves­

tigate this for various equivalences, yielding the following results. Those equivalences which

do have a corresponding complete rewrite rule set include branching bisimulation equiva­

lence, also discussed in [AB90], and trace equivalence; while those that do not admit a finite

confluent and terminating rule set include observation equivalence and testing congruence. A

complete rule set may be derived for these latter equivalences in one of two ways: removal of

“troublesome” operators, e.g. observational congruence without the parallel operator yields a

complete set of rewrite rules, [DIN89], or by application of special term rewriting techniques

which allow infinite rule sets to be generalised, giving finite rule sets. This is also discussed

in section 6.4.3.

A lte rn a tiv e C h arac te risa tio n s For hand proofs in particular, some methods of proof may be

more appealing than others. For example, for weak bisimulation congruence, a proof may be

completed by using the axioms, or by exhibiting a bisimulation, or by using logical properties.

As another example, while proving testing equivalence does not hold can be relatively easily

done by demonstrating that one test exists which differentiates the two processes, it is harder

to be sure that all tests have been considered in a proof that the equivalence does hold. In this

case we might resort to the alternative characterisation of failure trees (as testing equivalence

and failures equivalence are identical). Unlike the other criteria, which are quantifiable in

some way, this criterion depends mainly on the subjective opinion of the specifier.

D ecidab ility Given two arbitrary processes, is it always possible to compute whether or not they

are equivalent? Obviously if the underlying equivalence is undecidable, then we cannot fully

automate the proof. Taking the classification of process algebra equivalences as put forward

by [vG90] (the linear time - branching time spectrum), it has been shown in [GH91, Hiit91]

that of these, only strong bisimulation equivalence and branching bisimulation equivalence

are decidable in general. All other equivalences in this spectrum are undecidable. (This

result was shown for a special class of processes, equivalent to the context free languages,

called normed BPA (Basic Process Algebra).)

Restrictions may be imposed on the language which ensure decidability, e.g. if the processes

are deterministic then completed trace equivalence is decidable. Since all equivalences are the

same over deterministic processes, [vG90], all equivalences are decidable over deterministic

processes.

Another alternative is that we can relinquish fully automated methods of proof, moving to

partial automation (where some measure of user guidance will be required).

65

C o m p u ta tio n How feasible is it to compute the equivalence? Although most of the above equiv­

alences are undecidable in general, algorithms have been developed which allow automation

of proofs of equivalence for a subset of processes [KS90]. We might consider the efficiency of

these algorithms with respect to each other.

Until these criteria are fully investigated we must rely on the method of trial and error in

selecting a relation.

4 .3 R efin em en t and T ransform ation

Above we have considered the situation in which we are given two descriptions and are required to

prove them related; however, we may also briefly consider the question of refining or transforming

a specification to give an implementation, preserving some relation in the refinement. Again the

choice of relation is important, since some relations will preserve properties which others do not.

Obviously, if equivalence relations and preorders can be used to determine whether or not one

specification satisfies another, the axioms of an equivalence (or a preorder) can be used to derive

5,+i from Si. It is also possible that the correctness of any transformations which are developed

can be expressed in terms of the equivalences above. For example, as part of the LOTOSPHERE

project a catalogue of correctness preserving transformations [Bol92] was developed for LOTOS.

Several of these transformations preserve weak bisimulation congruence. One of the transfor­

mations is discussed in section 10.3.1; we note that special variants of the usual bisimulation

equivalences were developed to express correctness of this transformation.

Another example of specification transformation in given in section 10.3.3, in which weak

bisimulation congruence is preserved in transforming an abstract data type specification into a

process algebra specification. We may also consider transformations within process algebra, e.g.

from one specification style to another.

Related to the above question is how putting a specification in a different context may change

the behaviour of the system as a whole. For example, if the specification replaces another con­

gruent specification, then there is no change to the observable behaviour. On the other hand, the

constraint oriented style of specification is based on the ability to alter a specification by compos­

ing it in parallel with a new subsystem. This composition preserves the safety properties of the

specification but not the liveness properties [Bri89].

The whole question of refinement and transformation is really a side issue of the main consider­

ation of proving an implementation satisfies a specification, as we assume that the implementation

is given, rather than being derived by us from the specification.

We now return to the main question, and consider proof techniques for proving the equiva­

lence/ordering of two process algebra specification, and tools which implement those techniques.

66

4 .4 P r o o f Techniques and P r o o f T ools

An important factor in the acceptability of a specification formalism is the quality and type of

methods and automated tools with which it is associated. The previous sections have dealt with

the theoretical foundation of the verification method of proving two specifications are related. We

now consider automated techniques applying this method, and mention specific tools which can

perform the comparison automatically (or semi-automatically). The features of these tools are

discussed in more detail in appendix A.

There are several approaches to automating the proof of implementation satisfies specification,

and many different tools. Here we consider proof tools in general because of the lack of specific

LOTOS tools for this approach to verification. Below, these are grouped into those which use

semantic reasoning, i.e. the approach relies on a deeper understanding of the semantics of the

formalism, particularly the details of the equivalence relation, or syntactic reasoning, i.e. the

approach relies on being able to manipulate the process expressions, without the machine having

any knowledge of the underlying semantics. We might also call this the formal approach.

We consider several approaches in detail.

4.4.1 Sem antic Reasoning

P a r ti t io n A lgorithm s To construct an equivalence, the processes are converted into finite state

automata and partition algorithms, such as those given in [PT87, KS83] are used to construct a

bisimulation. Equivalences such as testing equivalence can be alternatively expressed in terms of

bisimulations by varying the information on the nodes of the graph, see e.g. [CH90]. Systems using

this approach to equivalence checking include the Concurrency Workbench [CPS89] and AUTO

[MV89], also used as part of the LITE toolkit [LITE].

These systems are limited by the fact that the partition algorithms can only be applied to

finite state graphs, therefore not all processes which are equivalent can be proved equivalent using

these tools. We note however, that this must be true of any method for equivalence checking, as

most of the relations we deal with are undecidable. Constraints on the syntactic structure of a

process which ensure finiteness have been developed in [BS87, MV91a]. The partition method also

suffers from the state explosion problem, i.e. if the size of the graph gets too big, which happens

easily when parallel statements include several components, the algorithm may become too slow

to make its use practical.

A further drawback of the original partition method is that it can only give a yes/no answer,

i.e. if two processes are not equivalent it cannot supply any reason as to why this is the case (such

reasons can be useful in gaining understanding of the specification). One way of expressing the

difference between two processes is by finding a modal logic formula which one may satisfy but the

67

other cannot; such a formula is guaranteed to exist [HM85]. [Cle91] refines the algorithm of [KS90],

allowing the construction of a distinguishing formula in the case of inequivalence. This applies

only to the algorithm for observation equivalence; similar refinements for other equivalences may

be discovered in the future.

B ack track ing M eth o d This method, described in [Lar8 6] and automated in TAV [GLZ89], is

different from the partition algorithm above in that it tries to find a minimal bisimulation rather

than a maximal one. The method involves backtracking and is slower than the partition algorithm.

Its main advantage is that reasons for inequivalence are generated automatically (but this can now

be accomplished by partition methods also).

M ilne’s M eth o d This method, described in [MM92] also relies on the representation of the

processes by finite state machines, but instead of partitioning to find an equivalence, the equiv­

alence is demonstrated more directly, by composing the processes in parallel and comparing the

resultant transition system with that of one of the original processes using tree equivalence. This

allows the construction of a distinguishing trace in the case of inequivalence.

This method computes strong bisimulation for deterministic finite state machines (although

note that the spectrum of equivalences collapses when nondeterminism is eliminated, so this is the

same as trace equivalence) and testing equivalence for nondeterministic finite state machines (by

transforming the graph into a deterministic Acceptance tree).

This method is not reliable as the equivalence computed is not exactly the same as testing

equivalence.

In summary, of the semantic reasoning approaches to equivalence checking, the most promising

seems to be the graph partition method of proof, since it subsumes the backtracking method, and

since Milne’s method is not sound. However, the graph partition technique has some features

which we find undesirable, such as the need for a special representation of processes, and the

lack of intuition into the system being investigated given by this approach, due to the lack of

meaningful information supplied during the proof.

We now consider approaches to equivalence checking which fall under the syntactic reasoning

approach.

4.4.2 Syntactic Reasoning

Sym bolic M an ipu la tion Using the technique of equational reasoning, the axioms of the equiv­

alence under consideration can be used to manipulate process expressions. Informally, the goal is

to prove equivalence by transforming one expression until it has the same syntactic form as the

other. The advantages of this approach are that the state explosion problem is avoided, since one

68

equation may encompass several states, but also we can use lazy expansion, expanding only one

part of an expression at a time as we choose, rather than indiscriminately expanding everything.

Other advantages are that even infinite labelled transition systems are easily dealt with, and that

the intermediate stages in the proof are easily understood, which is not true of intermediate par­

titions. The main disadvantage of this approach is that the proof procedure may not be fully

automatic; some user intervention may be required to determine which axiom should be applied

next and the direction in which it should be applied. This problem is partially overcome by term

rewriting systems, a method of automating equational reasoning, in which the axioms are turned

into rewrite rules by orienting them, i.e. giving them a direction. Even with this improvement,

full automation is only possible if the rule set forms a decision procedure for the relation modelled

by the axioms. The rule set only forms a decision procedure under certain conditions (of course,

the decidability of the original relation is important!). Tools which are based on term rewriting

systems are therefore usually proof assistants, rather than automatic theorem provers.

In this category, there are tools which are general equational reasoning tools which have had

special rule sets or tactics built into them to deal with a particular formalism and equivalence,

e.g. [CN92] which is based on the LP theorem prover. In addition, [Lin92] is a process algebra

specific rewrite tool, i.e. it has been tailored to enable easy manipulation of process algebras, but

does not adopt a particular process algebra.

Other systems may start with the rewriting paradigm and build a tool which implements just

the equivalences of one particular formalism, e.g. [IN90, DIN89] for CCS. This particular tool also

performs proofs in LOTOS by using additional rules to translate finite Basic LOTOS into CCS

[DIN91].

Logical System s The semantics of a process algebra may be expressed in terms of logical for­

mulae, allowing equivalence between processes to be reduced to a logical statement, and therefore

allowing the use of a general logic based theorem prover to perform equivalence checking. Exam­

ples of such systems include: [Fle87], which uses the Boyer-Moore theorem prover, [Boo89] which

uses LCF, and [CR90, CIN91, Nes92] which are based on HOL.

Note that [Nes92] does not fit comfortably into our categories as the work is based on formalis­

ing the semantics of CCS in HOL. Nevertheless, this is certainly a formal approach, rather than a

graph based one. Once the transition relations are described, and the equivalence relations, proof

tactics and operators of the language are defined on top of them, the user has no need to refer to

the transitions again.

V erification via D ecom position There has been particular interest in compositional meth­

ods, both of specification and verification, particularly since this should make analysis of large

69

systems easier. Compositional methods of verification include partial methods [LT91] and modal

specifications [Lar90a]. Both of these methods rely on somehow modifying the transition system

(by adding unspecified events to give a partial specification or by adding new sorts of transition

relation). Modal specifications use two transition relations, must and may, and give a rich theory

of refinement. Note that if only must transitions are used (which is likely in later refinements)

then the system is equivalent to a labelled transition system with the usual sort of transitions.

Alternatively, the method of [GM92] allows the truth of equivalence of two specifications to

be deduced from the truth of the equivalence of corresponding parts of the specifications using a

special operator to project the parts for verification out of the main process. The original transition

system remains unchanged. This method is more a symbolic preprocessing, allowing equivalence

to be calculated using the partition algorithms above more efficiently. Only a limited number of

systems, those in which communication between the components is minimal, are suitable for this

transformation.

To summarise the syntactic approach to reasoning about the equivalence of processes, equa­

tional reasoning and logically based systems seem the most promising techniques; verification by

decomposition is only applicable in a few cases. We now consider the tools and techniques with

specific reference to LOTOS.

4.4.3 LOTOS Considerations

Amongst the tools mentioned above, only two are LOTOS specific, [LITE] and [DIN91].

Graph partition methods, as used in [LITE], have the advantage of speed, but as a special

representation is used, the proof steps, assuming we can look at intermediate steps in the proof

process in the first place, are not informative. In particular, if a proof fails, we may not gain any

information as to why it failed.

On the other hand, syntactic reasoning, as used in [DIN91] avoids the need for a special repre­

sentation for processes, and the proof steps, being applications of the axioms of the equivalence,

are simple and easy to follow. The normal forms produced in a proof of inequivalence may help

identify the reason for the inequivalence as the normal forms are generally more* compact and

clearer to understand than the original process terms. The main drawback of this approach is the

lack of automation and high reliance on the skills of the user, who must frequently guide the proof.

This may also be seen as a benefit, as such close interaction may lend additional understanding

of the system under examination. We do not adopt the tool of [DIN91] as it deals only with finite

Basic LOTOS, and it is our intention to perform proofs over as much of the language as possible.

This proof system is claimed to be modular and easily extensible; this is only true if the developer

is familiar with Prolog programming. We intend to develop a system in which the user only needs

to know about the laws of the LOTOS relation being used, even in the case that new laws or even

70

relations have to be added.

4.5 Sum m ary

In this chapter we have described an approach to verification which allows us to prove that the

implementation of a system satisfies the specification of that system, where we assume that both

descriptions are written using Basic LOTOS. What it means for one description to satisfy another

can be conveniently modelled by one of the LOTOS equivalence, congruence or preorder relations.

Since many different relations can be used, the choice of the most appropriate relation for a

particular problem is an important decision in this approach to verification. We have presented a

number of criteria which may help in this choice.

The satisfaction method of verification may be automated in a variety of ways; we surveyed

current techniques and tools in order to identify a suitable tool for our work. Equational reasoning

as a proof technique provides a simple proof system for the user to understand, and may also lend

extra understanding of the system under investigation, by examination of intermediate stages in

the proof. However, the only equational reasoning based tool for LOTOS is applicable to only

a subset of Basic LOTOS, and may prove difficult to extend (the user must have knowledge of

Prolog as well as of LOTOS).

In view of the deficiencies of this system we decided to develop our own proof system for

proving equivalence or ordering of two Basic LOTOS specifications, using equational reasoning as

the underlying proof paradigm.

Chapters 6 and 8 detail our attempts to develop an equational reasoning tool to perform proofs

of equivalence over LOTOS processes. Equational reasoning is implemented by term rewriting; we

base our approach on existing term rewriting tools in order to avoid unnecessary implementation

work. To prepare for the description of the development of our tool, we first introduce the basic

concepts of equational reasoning and term rewriting which will be used in the following chapters.

71

C hapter 5

Equational Reasoning, Term

Rewriting and LOTOS

In the previous chapter an approach to verification of LOTOS specifications was discussed which

requires a proof of the equivalence of two specifications (or that one specification is related via a

preorder to the other). We considered various implementation techniques, eventually identifying

equational reasoning implemented by term rewriting as our favoured method of automation. The

terms “equational reasoning” and “term rewriting” have only been described in a very informal

way up till now; it is the purpose of this chapter to give formal definitions of these terms. In

addition, we will describe how we plan to use term rewriting in the proofs of equivalence of

LOTOS specifications and any special term rewriting techniques that may be required for these

proofs.

5.1 In trod u ction

Equational reasoning provides a means of reasoning about equational specifications, i.e. specifi­

cations that are given by a signature (a set of function names and arities) and a set of equations

specifying the properties of the functions of the signature. LOTOS processes and the laws relating

to the LOTOS equivalences can be viewed as such a specification.

A LOTOS expression is built from variable names, and the function symbols of LOTOS. An

expression of the language is also called a term. In equational reasoning two expressions (terms)

are proved equivalent by applying axioms to one or both until they are syntactically identical. In

a typical proof the same axiom may be used several times, applied in either direction, sometimes

making the expression smaller, sometimes bigger. Of course, we cannot always transform one

term into the other; in this case either the terms are not equivalent, or our axioms or laws do not

72

fully describe the equivalence relation of the mathematical model, i.e. they are not complete with

respect to the model. In the latter case we may have to define a new axiom, derive a new law, or

use a different proof technique altogether to complete the proof of equivalence.

A problem which arises when automating equational reasoning is that a great deal of skill

is required when deciding which axiom to apply (for several may be applicable), and in which

direction that axiom should be applied (left to right, or right to left). In order to combat this

problem, instead of using axioms, we use rules which are obtained by orienting the axioms, i.e.

by giving the axioms a fixed direction of application, so we decide once only the direction of

application for each rule. The rules obtained in this way may then only be applied in that

direction. A system of such rules is called a term rewriting system. Assuming that the underlying

equivalence is decidable, a term rewriting system may give us a decision procedure for the equality

of terms. This is not always the case: even if the equivalence is decidable, we also require that

the term rewriting system satisfies certain properties.

In the following sections we give some standard definitions of basic term rewriting concepts

which will be required for chapters 6 and 8 . Further introductory material to term rewriting theory

in general may be found in [H082] and discussion of specific topics may be found in a special issue

of the Computer Journal [Com91] devoted to term rewriting.

5.2 Term R ew ritin g S ystem s

We begin by giving a formal definition of terms and signatures. A signature is a pair (5, T) where

S is a set of sorts and T is a set of functions. Each function consists of a name and arity describing

the sorts of the function arguments and result. For example / : s i , . . . , s n —»■ t, where / is the

function name, s i , . . . , sn,t G S and n > 0, denotes the function / which takes arguments from

each of the s,- and returns a result in t. If n = 0 then the function takes no arguments and is

known as a constant.

Given such a signature, a term, w, is then constructed from the functions of that signature

and variables over the sorts, w = f (u i , . . . , un) where / G T and i q , . . . , un are also terms (of the

correct sort with respect to the arity of /) . Subterms of w are w itself and all the subterms of the

U{, 1 < i < n.

To explain the use of term rewriting systems we use a small, familiar, example of a rule set

describing addition in the integers. The rule set is defined as follows:

x + 0 —» x R1
0 + x x R2
—x -f x —► 0 R3
{x + y) + 2 -► x + (y + z) R4

where x,y, z denote variables.

73

These rewrite rules are obtained from the corresponding axioms of the system by exchanging

the = symbol for a —>■ symbol, and by giving the rule a direction of application. Notice that all of

the rules in the system given above, with the exception of the associative rule, have smaller terms

on the right hand side of the —Y than on the left hand side. The associative rule is ordered so that

the brackets group to the right.

Although the direction can be given manually by specifying for each rule whether it should

be applied left to right, or right to left, normally an ordering is used to describe the direction

of the rules in a consistent manner. In general we use standard pre-defined orderings such as

Knuth-Bendix Ordering (KBO) and Recursive Path Ordering (RPO), or variants of these. We

do not give details of these orderings here; the reader need only know of their existence. Further

information on orderings may be found in [Der82]. The ordering provides a method of evaluating

the complexity of a term, and usually the rules are oriented so that the left hand side of the rule

is more complex than the right hand side.

Assuming we have constructed a set of rewrite rules as above, how are they used? The basic

step is a reduction or rewrite. Given a rule, I — Y r, and a term, t = f (u \ , . . n > 0, we

compare I and t. We may apply a substitution a to I which exchanges the variables in I for other

terms and/or variable names so that <xl — w, where w is a subterm of t . This process is known as

matching. The rewriting continues by replacing w in t by <rr.

Iteration of this process is called reducing or rewriting. We write t \ — Y* t n for the sequence

t 1 — y . . . — y tn , where n > 0. Termination means that there are no infinite reductions, i.e.

rewrite sequences of the form t \ —Y t2 Y <3 —Y If the ordering used to orient the rewrite

rules is well-founded then termination of the reduction process is guaranteed, i.e. well-foundedness

guarantees there are no infinite decreasing sequences of terms in the ordering, so eventually we

must reach a term to which no rule applies.

The process of reducing a term until no more rules can be applied is called normalisation, and

the final term obtained is called the normal form. Usually the rule set contains more than one

rule, so the rewrite step compares the left hand side of each of the rules to t in turn, looking for

a match. Also, more than one rewrite rule may be applicable to a given term, therefore rewriting

is nondeterministic.

For example, given the rule set above, consider the term a + 0. Using the rule R1 and substi­

tuting a for x, we can rewrite a + 0 to get a, i.e. a + 0 — Y a. Since none of the rules has a left

hand side which matches a, this is a normal form.

A rewrite proof consists of rewriting two terms until their normal forms are obtained, i.e. no

more rules can be applied. If the two terms obtained at the end of the process are syntactically

equivalent, then the original terms are equivalent in the semantics. This process is illustrated in

figure 5.1. The terms s and t are equivalent since they both rewrite to the normal form u. If we

74

assume that the rule set forms a decision procedure for the equivalence, then the normal forms are

unique, therefore if the normal forms resulting from the rewriting process are different the original

terms are not equivalent in the model.

s t

u

Figure 5.1: A Successful Rewrite Proof

Unfortunately, the procedure is not always as easy and straightforward as described in fig­

ure 5.1. Even assuming the original equivalence is decidable, a set of rewrite rules derived by

orienting the equations of the equivalence only yields a decision procedure for the equivalence if

the rule set satisfies certain properties. If the rule set does not satisfy these properties, then the

normal forms are not unique, and we cannot deduce from the failure of a rewrite proof that the

original equation does not hold, i.e. we have a semi-decision procedure. The reason for this loss

of power is that when using the equations we can apply them in either direction, whereas we

restrict rules so that they may be applied in one direction only. In forcing the equations to be

unidirectional rewrite rules we have lost the power of the original equational system.

In the next section, we discuss this problem, and a partial solution, further.

5.3 K n u th -B en d ix C om p letion

If a rewrite rule set derived from a set of equations is to give a decision procedure for the equivalence

relation expressed by those equations, it must satisfy two properties: the rule set must be confluent

and terminating (termination was defined above, confluence is defined below). If these properties

hold we say that the rule set is complete or canonical. These properties ensure that every term

has a unique normal form and equations which can be proved to hold in the equational system

can also be proved to hold by the rewrite rules. Conversely, equations which cannot be proved to

hold by the rewrite rules do not hold in the equational system.

A term rewriting system is confluent if, and only if, V<i,<2 ,U t —** U A t —>* £2 => . <i —>■*

t' A <2 —>■* t ' . This is also known as the diamond lemma for obvious reasons:

75

t

Figure 5.2: Confluence

Confluence means that if there are two ways to rewrite a term, it doesn’t matter which one is

chosen as eventually both will rewrite to the same term. Local confluence is like confluence except

that we replace t —y* 11 and t — <2 in the above by t —y t\ and t —>• £2 , he. <1 and t% can be

obtained by exactly one reduction from t .

The properties of confluence and termination are undecidable in themselves. However, New­

man’s theorem [New42] shows that a terminating term rewriting system is confluent if, and only

if, it is locally confluent.

A procedure exists, due to Knuth and Bendix [KB70], which checks a rule set for local conflu­

ence, and if the set is not locally confluent, adds rules to try to make it locally confluent. Used in

conjunction with a termination ordering, the procedure may produce a complete rule set, hence

the procedure is known as completion, or Knuth-Bendix Completion.

The completion procedure is based on the examination of critical pairs. A critical pair is a

pair of terms generated by applying two different rewrite rules (or two different applications of

the same rewrite rule) to a term (the critical expression). For example, assume a rewrite system

which allows the term t to be reduced as in figure 5.3.

t

t l t2

Figure 5.3: A Critical Pair

The critical pair is (<1 ,^2)- Assuming t\ and <2 cannot be further reduced, the rule set is not

confluent. To correct this we must add a new rule to the rule set, <1 — y <2 - The main theorem

of [KB70] says that a terminating term rewriting system is locally confluent if, and only if, every

critical pair is trivial. An example of a trivial critical pair is (t,t), i.e. the terms are the same, or

have the same normal form.

76

Critical pairs are generated from rewrite rules automatically by superposition. This means

unifying subterms. Unification is the process of matching where substitutions may be applied to

both terms, i.e. we look for a i and cr2 such that (T\l\ = 0 2 2̂ - Rules may also be superposed onto

themselves.

Knuth-Bendix completion works by generating all critical pairs and adding non-trivial pairs as

rules until no more non-trivial critical pairs are generated. In this way, if Knuth-Bendix completion

is successful, a non-confluent system may be turned into a confluent one. Of course, the completion

procedure is not always successful.

Three things can happen as a result of running the Knuth-Bendix completion procedure:

1. The algorithm may halt, leaving a confluent and terminating set of rewrite rules, giving a

decision procedure for the original equivalence.

2. The algorithm may halt because a critical pair has been generated that it cannot orient.

3. The algorithm may diverge, i.e. superposition of the rules generates an infinite number of

new non-trivial critical pairs and therefore new rules.

The second case may be solved by adopting a different termination ordering. There are several

methods of attempting to solve the third case, i.e. divergence of Knuth-Bendix completion; this

topic is discussed further in section 6.4.3.

Even if we have a set of rules which is not complete, we can still use this set of rules for rewrite

proofs, but we will not be able to prove that an equation does not hold. In order to prove an

inequation, we must use some other proof technique. Note that we can use rewriting to produce

normal forms of the terms of the inequation, possibly simplifying the application of the other proof

technique, i.e. rewriting with a non-complete set of rules is sound.

A further introduction to the ideas of Knuth-Bendix completion may be found in [Dic91].

5 .4 E x ten sio n s to Term R ew ritin g

There are three extensions to the basic paradigm of term rewriting which are of interest to us:

order-sorted rewriting, rewriting modulo a set of equations, and conditional rewriting.

Typically, term rewriting systems have one sort, the universal sort, and all terms belong to

that sort. In order-sorted rewriting we can define subsorts, giving a sort structure. Using this

structure we may declare function arities more accurately, which may help clarify the specification.

Additionally, rewriting may be restricted to allow terms to be rewritten only to the same sort or

to a subsort.

The next extension is concerned with specific equations; those, such as the commutativity

axiom, which cannot be oriented in the conventional rewriting framework. To get around this

77

problem rewriting modulo a set of equations was introduced. The special equations are held

separately from the rest of the rewrite rules. Since the special equations most often express

associativity and commutativity this is also known as a-c rewriting.

Finally, we may wish to define rules which only hold in certain situations, i.e. they have side

conditions. Again, a special modification of term rewriting allows us to deal with conditional rules.

5.5 A p p lica tion to LO TO S

As the LOTOS equivalences are given by a set of laws, equational reasoning is an obvious choice

of proof technique. Although most of the LOTOS equivalences are not decidable, as discussed in

section 4.2.2, and therefore no corresponding complete rule set can exist, we may be able to find

a complete rule set for a subset of the language. Finding this rule set will require the application

of the Knuth-Bendix completion procedure. Since some LOTOS operators are associative and/or

commutative, we should try to use a term rewriting system which implements rewriting modulo a-c

equations. The RRL (Rewrite Rule Laboratory) term rewriting system [KZ87] has these features.

RRL also has a limited form of order-sorted rewriting in that operators may be given sorts, and

subsorts may be defined, but variables have the universal sort. Order-sorted rewriting is required

by some methods of solving divergence in Knuth-Bendix completion. RRL also has conditional

rewriting. Other rewriting tools are available, see [HKK91] for a survey; however, none have all

the features we require.

5.5.1 Using Term R ew riting Techniques in O ther Ways

An interesting application of term rewriting to concurrency protocols described as finite state

machines (fsms) appears in [RS91] where the properties of a fsm are shown to have a direct

correspondence with the properties of the term rewriting system implementing that fsm.

First the system to be investigated is described as a set of rules giving the transition relation

for the fsm. We can then check that rule set for properties such as completeness, confluence

and termination using a standard term rewriting tool and use this information to deduce the

corresponding properties of the fsm. For example, if the rule set is complete, then the protocol

described by the fsm is complete, i.e. all possible input scenarios are described, and it makes

progress. If the rule set is terminating then the protocol is bounded and so on. The Knuth-Bendix

completion procedure can be used to check that the rule set has the desired properties, and may

also be used to supply the extra rules required by a deficient rule set to ensure that the rule set

has these properties. This work was carried out using the RRL system [KZ87].

Also, specific properties such as “input x leads to state s, or to output y” may be expressed as

equations (over states of the finite state machine) and shown to be consistent with the original rule

78

set, i.e. they are valid with respect to the original equational theory. The equation may contain

variables, in which case either it holds for all possible instantiations of the variables, or RRL can

be used to supply the particular values for which the equation holds.

This method has limitations in that Knuth-Bendix completion is not guaranteed to terminate,

and the method of description restricts the applicability to finite state machines only, therefore we

would have to translate finite LOTOS expressions into a finite state machine to use this technique.

Furthermore, the finite state machine gives a fairly low-level description of a system, and we would

prefer to express our properties/equations etc. to RRL using normal LOTOS syntax. It is also

difficult to see how higher-level language constructs such as parallelism could be accommodated

in this framework. These limitations deter us from adopting this approach to verification of

concurrent systems.

5.5.2 Soundness of the Laws of [ISO88]

One of the common applications of term rewriting is to prove the consistency of a specification: for

boolean terms, if a rule set is not consistent the completion procedure will (eventually) generate

the rule true — > false. During our attempts to find a canonical rule set corresponding to the laws

of weak bisimulation congruence for LOTOS, which are described in the next chapter, we also

managed to find an inconsistency in the laws of [IS088], i.e. the laws are not sound. Fortunately,

this inconsistency can be corrected. In this section we discuss how completion uncovers this

inconsistency and our correction of the laws.

Before we began our experiment we were aware of a possible inconsistency in the LOTOS laws

for weak bisimulation congruence as given in [IS088]. Knowing of this problem helped greatly;

as we shall see, inconsistencies in term rewriting systems containing sorts other than booleans are

less obvious than the true — y false example above.

The inconsistency can be detected as follows. We give the following rules, derived from d4,

c3b and d2a of the LOTOS standard,

B stop — > B HI stop
ex it HI stop — y stop

ex it B — y i; B

to RRL and invoke the completion procedure. The following rule is derived:

i; stop — y stop

It is not immediately obvious that this rule is not valid; however, an example will demonstrate that

although valid under weak bisimulation equivalence, this rule is not valid under weak bisimulation

79

congruence as the two processes do not have the same behaviour in all contexts. It is necessary

only to consider the behaviour of the processes when part of a choice expression, i.e. we must show

B [] s top j=wbe B [] i; stop, for some B . Consider the corresponding equation with B — i; exit,

i.e.

(i; exit) \\ s top =wbe (i;exit) [] (i;stop)

By the reduction derived above, i; s top — > stop, this equation can be shown to hold in RRL;

however, by considering the behaviour of each side of the equation, it is clearly false. While the left

hand side will always terminate successfully, the right hand side may either terminate successfully

or deadlock, since [] is forced to be nondeterministic in the presence of i actions.

The law in the standard will be sound if a side condition is added:

B stop = w bc B HI s top where B ^ ex it

We use this form of the law in the remainder of this thesis.

5.6 Sum m ary

This chapter introduced the basic concepts of equational reasoning and term rewriting. We also

discussed how these proof techniques will be used for LOTOS proofs, how they contributed to

finding an unsound law in the standard [IS088] and described a previous use of term rewriting

techniques for verification of concurrent systems [RS91].

The next section describes how we used a particular rewrite tool to develop a complete set of

rules for use with LOTOS, and how these rules can be used in rewrite proofs.

80

C hapter 6

Using RRL to Im plem ent LOTOS

Weak Bisim ulation Congruence

Laws

6.1 In trod u ction

This chapter describes the use of Knuth-Bendix completion to try to find a canonical rule set

corresponding to the laws of LOTOS weak bisimulation congruence. We take the laws of weak

bisimulation congruence as given in the LOTOS standard [IS088] as our starting point. Since

weak bisimulation congruence is undecidable, there will be no complete rule set corresponding to

the equivalence of the model; however, we are able to find a rule set corresponding to a subset of

the laws of weak bisimulation congruence which is complete. The term rewriting system used for

this work is RRL (Rewrite Rule Laboratory) [KZ87]. The use of the rule set is illustrated by some

small, simple, rewriting proofs. From these examples, it is clear that the rule set suffers certain

deficiencies; we attempt to correct these by adding new rules but in doing so lose completeness.

Finally, we discuss the problem of using a rule set which is not complete in rewrite proofs, and also

consider some laws we would like to add to the rule set, but which cause the completion procedure

to diverge.

6.2 Im p lem en tin g LO TO S Laws as R u les in R R L

Our first experiment with the LOTOS equivalences is to attempt to obtain a complete set of rules

for weak bisimulation congruence, starting with the laws as given in the LOTOS standard [IS088].

81

In the following sections we use two numbering schemes for the rules. In most cases, we refer to a

rule by the number of the corresponding law in the standard, this will be of the form an, where

a is an alphabetic character from {a . . . m} and n is a number, e.g. d l. Sometimes the code will

have an additional letter, for subdivisions of a law, e.g. d2a. We also use the number assigned to

the rule by RRL for rules generated by the completion procedure which do not appear in [IS088].

This work is also reported in [Kir91] and [KN91]. Here we give a slightly modified version of

those results, allowing a more coherent presentation.

6.2.1 Basic Rule Set for Weak Bisim ulation Congruence

The first decision to be taken is to choose which laws from the LOTOS standard are to be adopted

as rules. In RRL, all data structures to be used have to be defined by the user; the only built-in

data type is Boolean. In this first experiment, no auxiliary data types such as lists or sets are used,

therefore operators relying on these types, such as h ide and relabelling, are largely ignored; the

only exceptions to this are equations requiring base cases of the types, i.e. the empty list or set,

or which do not require investigation of the values, i.e. the value of the list or set is not important

to the equation. We also do not yet deal with recursive processes: recursion cannot be easily

expressed in the rewriting framework, and this problem is discussed in more detail in chapter 8 .

The set of rewrite rules is formed by adding rules derived from the laws in the LOTOS stan­

dard one at a time, discarding laws that “misbehaved” , i.e. cause divergence of the completion

procedure. We also have other factors, such as operator precedence to consider, see below. Other

methods, resulting in different rule sets, could be used; for example we could include only laws

relating to a particular set of operators. Since our goal is completion we choose to add just those

rules which do not interfere with achieving this goal. Although this results in a rather haphazard

rule set it is at least a complete rule set. The “bad” rules, those which cause divergence, are

discussed further in section 6.4.3.

The laws eventually chosen and run through the completion algorithm are as follows, using the

numbering scheme of the LOTOS standard (also used in appendix B): b l, b3, b4, c3a (particular

case where ex it takes no parameter), c3b, d l, d2a, d3, e2, e3, e4, e5, k l, k2, m l, m2 and m3. We

refer to this rule set as core. The rules corresponding to these laws are given in figure 6.1, with

the exception of law b l. The RRL system keeps a special set of operators which are declared to be

commutative and commutative-associative and therefore has no need of the actual laws expressing

commutativity or associativity. Note that associativity on its own cannot be expressed using the

special declaration.

We have edited the input files to give a more familiar, LOTOS, look in the presentation. The

actual input files may be found in appendix C, together with details of the relationship between

the two representations (LOTOS and RRL).

82

[b3] P [] s to p — > P
[b4] P □ P — > P
[c3a] e x it | [A] | e x it — > e x it
[c3b] e x it ||| s to p — y s to p
[d l] s to p » P — y s to p
[d2a] e x it » P — y i; P
[d3] P » (Q » R) — >• (P » Q) » R
[e2] P [> s to p — y P
[e4] s to p [> P — y P
Ce3] (P C> q) □ Q — ► P [> q
[e5] e x it [> P — y e x it [] P
[k l] s to p [S] — y s to p
[k2] e x it [S] — y e x it
[ml] u; i; P — y u; P
[m2] P [] (i; P) — > i; P
[m3] (u; (P [] (i; Q))) [] (u; Q) —■> u; (P [] (i; Q))

Figure 6.1: core set of rules

The following information is also given to RRL: function arities as given in appendix C, dec­

laration of [] as commutative, » associates left to right, allowing orientation of rule d3, and

function precedences: » > ; and [> > []. These precedences ensure that rule d2a and e5 respec­

tively are oriented left to right. We note here that it is possible to use different precedences, and

that other precedences give different results, for example, an infinite sequence of rules is produced

if all precedences are reversed and » associates right to left. The precedences above are chosen

because these particular directions make sense for rules d2a and e5 if we assume that we are try­

ing to push occurrences of the choice and sequencing operators out, and therefore occurrences of

operators such as disable in. We should eventually be able to remove the higher level operators.

The precedences chosen also give the smallest canonical rule set.

6.2.2 Result of the Com pletion Procedure

The completion procedure, when given the above information, terminates, producing the following

extra rules:

[17] Q [] (q [] ex it) — y Q [] ex it [e 5 ,e 3]
[18] (i; Q) » R — ► i; (Q » R) [d2a ,d3]
[19] u; Q [] u; (P [> (i; q)) — y u; (P [> (i; q)) [e3,m 3]

The numbers on the right indicate the rules from core which generate the critical pair giving the

new rule.

We use the name newcore to denote the set of rules comprising the core set plus the rules

generated by the completion algorithm. The rule set newcore is complete, i.e. confluent and

terminating.

The next section illustrates the use of the rule set newcore in rewrite proofs.

83

6 .3 E q u ation al P roofs — T h e Buffer E xam ple

Consider the example given in figure 6.2. The aim of this example is to prove that the behaviour

of a two-way buffer is the same as the behaviour of two one-way buffers in parallel. Unfortunately

the example is a little forced as recursion is not part of our restricted LOTOS; this means that

the buffers in figure 6 .2 only handle one or two data elements, depending on which buffer is being

considered, and then stop.

in i ; (in2; (ou tl; out2; exit
[] out2; ou tl; ex it)

□ ou tl; in2; out2; ex it)
[] in2; (in i ; (ou t l; out2; exit

[] out2; ou tl; ex it)
[] out2; in i ; ou tl; ex it)

Figure 6.2: Buffer example

The right hand process in this example is far easier to read than the one on the left. This

demonstrates that simply defined processes in parallel are frequently easier to understand than

large process written without parallelism (a principle of the constraint-oriented style of specifica­

tion).

The newcore rules generated above by Knuth-Bendix completion are not enough to prove the

buffer example; laws relating some of the higher level constructs (such as parallelism) to the more

basic constructs are also required. Such laws are known as the expansion laws and describe how

any LOTOS process can be rewritten to a form using just ; and []. The particular expansion law

required here is law n l of the LOTOS standard, also given in figure 6.3.

B \ [A} \ C ==wbc 0 {&,■; (Bi | [A] | C) | name (&,- g A, i £ I }
D D t e (B I [A] I Cj) | name (cj £ A, j £ J}
[] □ {a; (Bi | [A] | Cj) \ a = bi = cj, name (a) £ A ,i £ I , j £ J}

where B = {6,;5j | i £ 1} and C = {cj]Cj \ j £ J}

Figure 6.3: The Expansion Law for Parallelism, law (nl) of [IS088]

This law cannot be entered straight into RRL because of its complexity, i.e. use of choice over

an indexed set of processes, so some simple instantiations of this law are generated by hand and

added to the set newcore in RRL. These new rules, call them little-exp, are oriented left to right.

The rule set formed by newcore and little-exp is no longer canonical; the completion procedure

diverges.

a l; PI HI a2; P2 == a l; (PI ||| a2; P2)
[] a 2 ; (a l; PI ||| P2)

= w b c (in i ; o u tl; ex it)
HI (in2 ; out2; ex it)

84

a; P HI e x it == a; (P ||| e x it)
e x it HI a; P == a; (e x it ||| P)

Although no longer complete, the rule set can be used to prove the equation in figure 6.2 holds.

6 .4 A d d in g O ther R u les

In the Buffer example, extra rules had to be added to turn an expression involving parallelism into

one involving only sequencing and choice in order to complete the proof of equivalence. In that

particular case only three rules had to be added. Looking ahead, since the rules in little-exp do not

express the full generality of the expansion law, other (larger) examples will certainly require more

such rules. If using the rules newcore plus little-exp as a proof system, adding rules on an ad-hoc

basis is undesirable, therefore what is required is a set of rules which will be generally applicable,

i.e. able to translate any expression involving parallelism into its sequential equivalent, rather

then an ever-increasing number of specific instantiations of the expansion law. Section 6.4.1 below

details our development of a set of rules which implement the full expansion law for parallelism

and hide and discusses the problems created by this rule set.

The expansion laws are not the only LOTOS weak bisimulation congruence laws omitted from

newcore. As mentioned in section 6.2.1, we also rejected laws which caused divergence of the

Knuth-Bendix completion procedure. Although such divergence generates an infinite set of rules,

in some cases it may be possible to generalise this set, i.e. if a pattern may be detected in the

form of the rules, it may be possible to find a (finite) re-expression of those rules.

Section 6.4.3 details some of the rules which, together with core, cause divergence of the

completion procedure. We also present portions of the corresponding infinite rule sets generated

and our attempts to find patterns in those rule sets. Only in one case does this allow us to add

rules eliminating the cause of divergence; however, the other examples have been used by our

colleagues on the SERC project “Verification Techniques for LOTOS” in order to illustrate the

application of special term rewriting techniques which attempt to generalise infinite sequences of

rewrite rules [TW93, Wat92]. Finally we discuss the possibility of adding rules which describe the

behaviour of the relabelling operator more fully than those in core.

6.4.1 D eveloping The Expansion Rules

T h e E x p a n sio n Law for P a ra lle lism

In this section we give an overview of the definition of rules expressing the generality of the

expansion laws, in particular the expansion law for parallelism. The full RRL input files for these

rules may be found in appendix C.

85

First consider the general form of this expansion law as given in figure 6.3. Two sorts of events

are considered: events which may proceed independently, and events which must synchronise. In

the expansion law the events which may proceed independently are dealt with by the first and

second branches of the law; these are all initial events of B which are not in A, and all initial

events of C which are not in A, respectively. The events which must synchronise are dealt with

by the third branch of the law; these are events which are initial events of both B and C and are

also in A.

The division of the law by type of events is also reflected in the RRL implementation; the

function expanda deals with events which may occur independently, and the function expandb

deals with events which must synchronise. These functions are declared as follows:

expanda : procset, procset, gatelist —> procset
expandb : procset, procset, gatelist —> procset

where procset is a set of processes.

The rules defining these functions follow the style of functional programming, i.e. each rule is

defined by pattern matching over its arguments. To cut down the number of patterns which must

be considered we assume that, as in figure 6.3, the process arguments B and C are formed by a

generalised choice, denoted gch, over a set of processes and moreover, that the only operators used

are stop, exit, ; and event constants. Since all LOTOS processes can be expressed in this way

this does not restrict the scope of the rules.

The general rule for the expansion law is

par (pp(gch(x),gch(y)), v) == gch(expanda(x,y,v) ++ expanda(y,x,v) -H- expandb(x,y,v))

where -H- is similar to the set union operator. The three branches in the right hand side of the

rule correspond to the three branches of the expansion law as given in figure 6.3. In addition to

this rule, we must also define rules which correspond to special patterns in the input; namely B

and/or C equal to stop , exit, or simple processes b; B and c; C. These are similar to the laws in

little-exp.

The individual expand functions operate as follows:

expanda This function takes both process arguments, B and C, and also the list A. The result

of the function is a set of processes whose initial elements may proceed independently.

The function examines each component of the first set of processes recursively and, depending

on whether or not the initial action may proceed independently, either adds a new component

to the result set or proceeds to the next component. For each process examined there are

two possible outcomes; either the process is stop , ex it or &,•; Bi, where &,• E A, in which case

no action may proceed independently so no process is added to the result set, or the process

is b{-, B i,where bi £ A, and the process 6*; (J9,| [A] |C) is added to the result set.

86

This function implements the first and second branches of the law in figure 6.3 by switching

the first and second arguments accordingly.

expandb This function again takes both process arguments and the list A. The result of applying

expandb is a set of processes which proceed by synchronising with each other.

The task is to compare pairs of processes from B and C to determine whether any initial

actions from these processes may synchronise, expandb strips one process at a time from B

and gives it to the auxiliary function expandc together with the whole set of processes C

and the gate list A. expandc compares the process with each component of the process set

C in turn, producing the set of processes which may proceed by synchronisation, expandb

combines the results from repeated applications of expandc.

expandc is declared

expandc : process, procset, gatelist —> procset

For each iteration, assuming we have the first argument 6,-; B i, and Cj; Cj from the set, ex­

pandc compares &,• and Cj. If they are the same and also in A then the process &,•; (Bi \ [A] \ Cj)

is added to the result set, otherwise nothing is added and we go on to the next member of

the set. If either process is stop then again nothing is added and we go on. Finally, if both

processes are ex it with the same exit list then ex it is added to the result set of processes.

The rules introduced to “implement” the expansion law are essentially a functional program

and therefore are deterministic; at any point, only one rule is applicable. The correctness of these

functions is not formally proven, since initially we plan to test the correctness of the rule set in use,

i.e. validation to increase our confidence in the rules, with formal verification of their correctness

coming later. As shall be seen in the next chapter, deficiencies in RRL lead us to adopt a different

tool for our proofs. This new tool has the expansion law built in therefore our expand rule set

becomes redundant, and a formal correctness proof becomes a rather pointless exercise.

To implement these functions we also have to introduce rules for the standard functions on

sets and lists (as generalised choice requires sets, and the parallel operator is expressed using a

list of gates; lists are also required for the h ide expansion law). We do not present the functions

or details of the rules which implement them here; see appendix C for the full rule set and some

explanation of their operation.

The expansion law for hide is also added. Apart from requiring the definition of lists, the

implementation of this law is unremarkable; it is not as complex as the law for parallelism, and

requires no auxiliary operators or functions.

We note that the rule sets now obtained, expand and hide respectively, are not complete; this

is a result of the constructive way in which the functions are defined. This means that it is always

87

possible to make more superpositions, and hence more rules.

An example of the use of the rule sets formed by newcore, expand and hide in proofs by rewriting

may be found in the Login case study detailed in chapter 7.

6.4.2 Strategy in Applying the Expansion Rules

When using RRL with the rules newcore, expand and hide for proofs, we discover that the rules are

best split into two groups: one with expand and one with newcore plus hide. It is also important to

use these two sets in the correct way, otherwise the normalisation process diverges: this is a result

of not having a complete set of rules. We rely on the system applying all the newcore and hide rules

before trying to apply the expand rules, and vice versa: all the expansion rules must be applied

before trying to apply the newcore plus hide rules. This is because, although the expansion laws

will eventually produce the correct expansion of a given term, there are a number of intermediate

stages in the expansion which do not correspond to well-formed LOTOS processes. Ultimately,

the need to have more control over the application of rules becomes more important as we move

further away from a complete rule set. RRL cannot provide the facilities to do this.

6.4.3 Laws causing Infinite Sequences of R ew rite Rules

Other laws we might wish to have in our rule set for weak bisimulation congruence include: f8

(hide distributes over), b2 (associativity of []) and el (associativity of [>). These laws

cannot be included because they cause divergence of the completion procedure, i.e. they generate

an infinite sequence of rewrite rules.

Some special term rewriting techniques [TJ89, Lan89, TW93] exist which allow (some cases

of) infinite rewrite rule sets to be generalised by a finite rule set. These techniques require either

an extension of the underlying term rewriting theory or the addition of extra operators or sort

structure to the definition of the rule set. In all techniques, the first step of the technique is to

identify a pattern in the infinite sequence of rules. From this pattern it may be possible to express

a general rule, or set of rules, which subsumes the infinite sequence, i.e. to make a generalisation.

Of course, the trick is to ensure that this generalisation is exact, i.e. it only produces rules which

belong to the infinite sequence, and does not introduce new rules. An exact generalisation may

not exist.

Below, we consider the infinite rule sets given by the completion procedure on core plus each

of the rules mentioned above in turn. In each case we give some representatives of the infinite

rule set and try to detect a pattern in these rules. In most cases we give fairly informal over­

generalisations, i.e. the rules fit the pattern, but the pattern also generates other rules which are

not in the infinite sequence. Fuller details of the rule sets and of our attempts to generalise them

may be found in [KN90]. These investigations were made in the hope that a simple solution to

the problem of divergence could be found, as is the case for the first example below. In the other

(unsuccessful) cases, there appears to be no simple solution, and we do not pursue the problem

here. These infinite rule sets provide example material for the special techniques for solving (some

cases of) divergence of Knuth-Bendix completion developed by our colleagues on the SERC project

“Verification Techniques for LOTOS” , see [TW93, Wat92].

D istr ib u tiv ity o f h ide over

This law, f8 , is just a representative of a family of similar laws involving h id e or relab el and the

other operators.

h id e v in (PI » P2) == (h id e v in PI) » (h id e v in P2)

This law is added to the set core, given left to right orientation by declaring the precedence

h id e > » . The infinite sequence generated by Knuth-Bendix completion includes the following

rules, where the first 16 are just the rules of core:

[f8] h id e A in (P » Q) — > (h id e A in P) » (h id e A in Q)
[19] (h id e A in s to p) » (h id e A in Q) — > h id e A in s to p [d l , f8]
[20] (h id e A in e x it) » ((h id e A in e x it) » h id e A in P)

— > (h id e A in e x it) » (h id e A in P) [m l, 18]
[24] (h id e Al in (h id e A in s to p)) » (h id e Al in (h id e A in Q))

— y h id e Al in (h id e A in s to p) [1 9 , f8]
[35] (h id e A in s to p) » ((h id e A in Q) » R)

— y (h id e A in s to p) » R [1 9 , d3]

It can be seen that some terms in these rules take the form Pn, where

Pn = h ide A n in Pn - 1

Pq = h ide A in stop

or Qn , defined similarly to Pn, but with exit instead of s top in Qq. We also note that these terms

occur on the left hand side of a operator. Intuitively, it seems that hiding gate names in stop

or ex it should have no effect, but there are no rules in [IS088] which allow, for example, Pn to

be rewritten to stop. What we do have is the following law:

h ide A in P = P where A fl C(P) = 0

This law, f4, which allows applications of h ide to be removed if the actions to be hidden are not

in the process P anyway, was passed over originally because it requires conditional rules. Using

the facts £(stop) = 0 and £(exit) = 0, we generate two instantiations of this law by hand to give

the rules:

89

[f4 a] h id e A in s to p — > s to p
[f4b] h id e A in e x it — > e x it

In addition, we know from rules d l and d2a that occurrences of s to p or e x it on the left hand

side of can be eliminated.

Given rules f8 , f4a and f4b the completion procedure terminates producing a canonical set of

rules comprising the rules originally generated to give newcore, and one more rule:

h id e A in i; P — > i; h id e A in P [d2a, f8]

This is in fact one of the laws of weak bisimulation congruence in the standard, number (f5a). We

note that this rule set is not canonical if rule f8 is oriented right to left, i.e. if » > h id e .

This example shows that some infinite sequences may be easily eliminated.

A sso c ia t iv ity for []

In core, [] is declared to be a commutative operator. If [] is declared to be associative as well

as commutative the completion procedure diverges. Below is an initial portion of the infinite

sequence generated when completion is attempted of core with [] associative and commutative.

The first 16 rules are the same as those in figure 6.1.

[18] R [] (P [> (R1 □ R)) — y (P [> (Rl [] R))
[19] R [] i; (Rl [] R) — >• i; (Rl [] R)
[20] R [] (P [> (PI [> R)) — > (P [> (PI [> R))
[21] R [] (P [> (R l [] (P2 [> R)>) —)• P [> (R l [] (P2 [> R))
[22] R [] (i; (R l [] i; R)) — > i; (Rl [] i; R)
[23] R [] (i; (P [> R)) — > (i; (P [> R))
[24] R [] (P [> i; R) — ► (P [> i; R)

The rules in the infinite sequence generated by the addition of associativity of [] follow the

basic pattern:

R [] P — > ? (*)

Of course, a rule like (*) is undesirable as it makes choice totally unfair (it will always choose

the second argument). Also it is not an exact generalisation (i.e. not every instantiation is a rule)

and so adding it would imply unsound equivalences.

There seems to be a more complex relationship between R and P which deserves further

investigation. For example, R is a subterm of P, and P is built from applications of [>, i, and [].

Such a study lies outside the scope of this thesis.

In [Wat92] a method of generalising infinite sequences of rewrite rules by recurrence terms is

investigated. Recurrence terms extend the underlying term rewriting theory by allowing terms

[e 3 , b4]
[m2, b4]
[e 3 , e3]
[e 3 , e3]
[m2, m2]
[m2, e3]
[m2. e3]

90

to be constructed using operators not in the signature; meta-operators in some sense. The basic

extension allows a term schema to be defined, thus one recurrence term represents a sequence

of the usual kind of term. The rule set generated above is used as an example to illustrate the

application of the method, and an exact generalisation is produced. Since the solution relies on

an extended form of term rewriting we cannot use it here (because RRL does not support that

extension). The previous infinite sequence of rules is also used as an example in [Wat92], but we

were able to find a different solution which does not require any special term rewriting techniques.

A ssociativ ity for [>

When rule e l (associativity for [>) is added to the core set, with the operator [> declared to

associate from right to left, the completion procedure diverges. The first 16 rules are as in figure 6.1;

examples of the remainder are as follows.

Cel] P [> (Q [> R) — > (P [> Q) [> R
[18] q [] (Q [] ex it) — y (Q [] ex it)
[19] (Q [] ex it) [> R — > exit [] (Q [> R))
[20] P [> (R [] ex it) — y (P [> ex it) [> R)
[21] (q [> r) [] ((p [> q) [> r)) — ► (p [> q) [> r
[22] (P [> ex it) [> ex it — y P [> exit
[23] (P [> ex it) [> (i; ex it) — y P [> i; ex it
[24] ((P [> ex it) [> PI) [> ex it — y (P [> PI) [> exit
[25] (R [] ex it) [] (CP [> ex it) [> R) — y (P [> ex it) [> R
[26] ex it [] (R [] ex it) — y R [] exit
[27] ex it [] (i; ex it [> R) — y i; exit [> R
[28] ex it [] ((P [> ex it) [> R) — y (P [> ex it) [> R

This time generalisation is more difficult as there seem to be several infinite sequences of rules,

each with a different pattern. Since no simple pattern is obvious, we try altering the composition

of the rule set slightly by omitting law e5, which can be seen to be contributing to the critical

pairs above, from core. Completion then gives the following rule set:

[b3] P [] s to p — y P
[b4] P [] P — y P
[c3a] e x it I [v] I e x it — y e x it
[c3b] e x it I [] I s to p — y s to p
[dl] s to p » P — y s to p
[d2a] e x it » P — y i; P
[d3] P » (q » R) — y (P » q) » R
[e2] P [> s to p — y P
[e4] s to p [> P — y P
[e3] q [] (p [> q) — ► p [> q
[kl] s to p fv] — y s to p
[k2] e x it [v] — y e x it
[ml] u; i; P — y u; P
[m2] P [] i; P — y i; P

1—
1

ffi cn e3]
[e5 , e l]
[e5 , e l]
[e l , e3]
[b4, to 0 1

__
__

__
i

[m2, 20]
[e 3 , 20]
[20 , e3]
[b4, 19]
[m2, 19]

i—
i

(D 03 19]

91

[m3] u; q [] u; (P [] i; Q) — > u; (P □ i ; Q)
[e l] P [> (Q [> R) — ► (P [> q) [> R
[17] (q [> R) [] ((P [> q) [> R) — >• (p [> q) [> R
[18] (i; q) » R — >• i; (q » R)
[19] P » (i ; R) — >• (P » ex it) » R
[20] (P » stop) » R — y P » stop
[21] ((P » ex it) » ex it) » PI — y (P » ex it) » PI
[22] ((q [> q i) [> R) [] (((p [> q) [> q i) [> R)

— ► ((CP [> q) [> q i) [> R)
[23] (u; q) [] u; (P [> (i; q)) — ► u; (P [> (i; q))
[24] (((q [> q i) [> q2) [> R) [] ((C(P [> q) [> q i) [> q2) [> R)

— > (CCCP [> q) [> q i) [> q2) [> R)
[25] ((((q [> q i) [> q2) [> q3) [> r)

[] (CCCCP [> q) [> q i) [> q2) [> q3) [> r)
— > (CCCCP [> q) [> q i) [> q2) [> q3) [> r)

[26] (CCCCq [> q i) [> q2) [> q3) [> q4) [> r)
[] (((((C P [> q) [> q i) [> q2) [> q3) [> q4) [> R)
— > ((((((P [> q) [> q i) [> q2) [> q3) [> q4) [> r)

This time the infinite sequence appears to have only one pattern.

arg [] (P [> arg) — y P [> arg
ignoring brackets in (P [> arg) since [> is associative

where the form of arg can be described as a grammar.

arg subterm^ [> R
subterm i ::= q | subternn+i [> q

As before, the discovery of an exact generalisation of this rule set lies outside the scope of

this work. However, this rule set has also been used as an example in [Wat92], where an exact

generalisation is found.

Finally, we consider adding rules which express more of the functionality of the LOTOS rela­

belling operator (the core set has only two rules: one for s top and one for exit).

6.4.4 More Rules for the LOTOS R elabelling Operator

Since the addition of the expansion laws requires the addition of rules for some of the usual

operations over lists and sets, it is possible to add more detailed versions of the LOTOS operators

which were initially ignored, or only given a few base case rules because of their use of data types.

The operator hide has its expansion law as mentioned above in section 6.4.1; what about the

relabelling operator?

Although we can model the relabelling function as a list of pairs, some of the laws in the

standard for relabelling have rather involved side conditions, e.g. the relabelling must be the

identity function, or the relabelling must be injective. The identity condition can be easily checked

[e l , e3]
[d2a, d3]
[d2a, d3]

[d l , d3]
[m l, 19]

[e l , 17]
[e 3 , m3]

[e l , 22]

[e l , 24]

[e l , 25]

92

by adding an auxiliary function which first collapses the list, i.e. replaces pairs of the form [a/6 , 6/c]

by the pair [a/c]. All that is then required is to check no pairs of the form [a/6] appear, where a

is different from 6 .

It is also possible to check the injectivity condition, but to do so would require so much extra

work that it seems unlikely to be worth the effort. For example, we would require an auxiliary

function which checks that the relabelling does not map two different gate names onto the same

result. At this point we note that in LOTOS we have both gate parameters to processes and the

relabelling operator, therefore a specifier will typically use gate parameters and ignore relabelling.

In that case, our effort would be better spent in finding a way to implement gate parameters in

the rewriting framework, than in adding complex rules for the relabelling operator.

The problem of the complicated side conditions of the laws of the relabelling operator is also

discussed in chapter 8 .

6.5 Sum m ary

In this chapter we described the process of attempting to find a canonical rule set corresponding

to the laws of weak bisimulation congruence for LOTOS as given in the LOTOS standard [ISO8 8].

We were able to find such a rule set for a portion of the LOTOS laws and used this rule set in

performing simple rewrite proofs. It was clear from these examples that other, more powerful, rules

were also required, i.e. the expansion laws. Although rules could be expressed implementing the

expansion laws, these rules cause divergence of the completion procedure, as do a number of other

desirable rules, such as associativity of |] . This means that the final rule set, which will be used

in the next chapter, is not complete, and therefore some care has to be exercised in applying the

rules. We have a semi-decision procedure for weak bisimulation congruence of LOTOS processes,

i.e. normal forms are not unique. This means that if two terms can be shown to be congruent by

our rules, then they are congruent in the LOTOS semantics, but if two terms cannot be shown to

be congruent by our rules, then they may or may not be congruent in the semantics. No special

techniques to cope with non-confluent rule sets are adopted other than resorting to a hand proof

if two terms cannot be shown congruent by RRL.

93

C hapter 7

Using Term Rewriting for

LOTOS: Login Case Study

7.1 In troduction

One of the main aims of this work is to investigate the verification requirements of LOTOS, i.e.

to find out what sort of properties we want to verify, what sort of properties we can verify, and

how the proofs may be carried out. In order to gain a better understanding of the problems

of verification we undertake the study of the verification of the small communications problem

presented in this chapter.

The verification requirement of the example studied is to show that some sort of relationship

holds between the given specification and implementation, i.e. the implementation satisfies the

specification. The problem is compounded as the implementation is not derived in any way from

the specification. In the course of the verification we explore various ways of expressing the

property to be proved and consider several approaches to the proof. We also try to automate the

proofs required (by using the rules developed in the previous chapter). The aims of this chapter

are:

• to investigate the verification requirements of LOTOS via an example,

• that the example chosen should display

— some measure of realism, but also

— simplicity (to allow easier exploration of the verification requirement),

• to obtain a successful proof that the verification requirement is met, and

• to demonstrate the viability of the rules developed in the last chapter as a proof technique.

94

The example is presented in section 7.2: an informal overview of the whole system is given,

followed by formal and informal descriptions of the specification and implementation of the sys­

tem. The formal descriptions are given in Basic LOTOS [IS088]. Section 7.3 is concerned with

a preliminary discussion of the interpretation of the verification requirement, and possible ap­

proaches to proving that it is satisfied. The formal details of the verification requirement are given

in section 7.3.2. The process of automating the proofs is as was described in chapter 6 .

Section 7.4 describes how we initially fail to meet the verification requirement. In fact, we

can show that the implementation does not satisfy the specification. Close examination of the

proofs that the relation does not hold results in a deeper understanding of the requirement and

the development of a different approach to the proof. The new approach hinges on adding some

extra information in a modular way to the specification; this is achieved by adopting the constraint

oriented style of specification [VSvSB91] and allows the proof to be successfully completed. The

new approach, the resulting specification, the statement of the verification requirement and its

proof are presented in section 7.4.3.

We recognise that the example as it stands is simple, so possible extensions to the case study

are discussed in section 7.5. In section 7.6 we review our experience with LOTOS and RRL,

making suggestions for improvements. Finally, we give our conclusions and ideas for further work

arising from this study.

The version of the case study presented here is essentially the same as the one presented at

TAPSOFT’93 [Kir93], with some elaboration of various points drawn from the technical report

[Kir92].

7.2 T h e E xam ple

7.2.1 Informal O verview of the System

The example is an abstraction of a real communications problem involving four communicating

processes at OSI Session level. It was first investigated as a case study for the “Verification

Techniques for LOTOS” SERC project [VTL93].

There are four communicating entities: A, B, C and D, shown in figure 7.1. In the diagram, a box

represents an entity, and a O—► represents a message (sent in the direction of the arrow). Each

message is labelled by mx, where x is a number in {1, 3, 4, 5, 6 , 7}. Informal interpretations of the mx

are given in figure 7.1. Messages of the form px or nx are positive and negative acknowledgements,

respectively, to the corresponding mx messages. 1

1Note that some messages only require a positive acknowledgment, while others require both positive and
negative acknowledgments (see figure 7.1) — this is to do with the nature of the messages which they acknowledge,
e.g. it does not make any sense to allow C to respond in a negative way to the message m6 “deallocate” .

95

ml pi or n lr m4 p4 or n4.

m3

p3
or
n3

P6

Message interpretation:
ml — A requests a service of B
m3 — B communicates with C
m4 — B communicates with D
m5 — D sends a message to B
m6 — B deallocates C
m7 — B deallocates D

Figure 7.1: The Processes and their messages

A requests a service from B; in order to provide that service, B must communicate with C and

D. B has an internal timer which “times out” if D does not reply to its communication within a

previously set time limit. B must send deallocation messages to C and D when they are no longer

required.

The original example [Dic90] was supplied by Jeremy Dick, who worked for RACAL at the

time. For reasons of security, we were given only the abstract description of the system as above;

no indication of the real content or meaning of the messages was given. To help illuminate the

system, we invented a possible interpretation of our own. This provides some intuition as to what

happens in the system, although it is not an exact match. We view the system as follows: A is

a user wishing to log-on to a system with a username and a password. C takes a username and

checks that it is valid. D takes a valid username, acknowledges receipt of the name, and then

returns the corresponding password. B co-ordinates these activities to ascertain if A is a valid user

and has supplied the correct password. Since we use Basic LOTOS to model the example, the

password and username are not in the formal description of the system.

The two descriptions of the system supplied to us are given below: firstly, a group of protocols

which make up the specification, and secondly a group of processes which make up the imple­

mentation. Note that inconsistencies may be found between the way the specification describes

something and the way the implementation describes the same thing. This is because the imple­

mentation was not derived from the specification and one of the problems considered here is that

of trying to reconcile any differences between the two.

Below, the informal introductions to the specification and implementation are followed by their

formal descriptions, given in Basic LOTOS. Note that in the remainder of this chapter, the term

processes will be used to refer to the implementation part of the example.

In these descriptions the simplifying assumptions are made that the carrier is faithful and that

no messages or acknowledgements are lost or corrupted.

96

7.2.2 Protocols

Communication in the system is governed by protocols PI, P2 and P3. Each protocol describes the

interface between just two of the processes in the system, e.g. PI describes the interface between

A and B, completely ignoring C, D and their associated actions.

PI: A sends ml to B, which must be acknowledged by p i or n l.

P2: B sends m3 to C which must be acknowledged by p3 or n3. Following p3, B may or may not

send m6 to C which must be acknowledged by p6.

P3: B sends m4 to D which must be acknowledged by p4 or n4. After p4, D may or may not send

m5 to B. m5 must be acknowledged by p5. Also after p4, B may or may not send m7 to D. m7

is acknowledged by p7. If m7 is received it is no longer possible to send m5.

The LOTOS description of these protocols is as follows:

p r o c e ss PI := ml; (n l; e x it [] p i; e x it) en d p ro c
p r o c e ss P2 := m3; (n3; e x it [] p3; (e x it [] m6; p6; e x i t)) en d p ro c
p r o c e ss P3 := e x it [] m4; (n4; e x it

[] p4; (e x it [] m7; p7; e x it
[] m5; p5; (e x it [] m7; p7; e x i t))) e n d p ro c

Note that the alphabets of the LOTOS processes PI, P2 and P3 are disjoint, i.e. the protocols are

independent of each other.

In a real system the protocols, and also the processes, would probably be described recursively,

i.e. cycling over the same behaviour forever. This is ignored at the moment, the simpler finite case

being dealt with first. The problems of dealing with recursive processes in the rewriting paradigm

are discussed in the next chapter. The initial e x it branch of P3 is a result of the way the proof

is carried out; the process names are given here as a convenience, but in the RRL system, the

conjecture is entered using the full process expressions, therefore the e x it branch models the case

in which the P3 protocol is not activated.

7.2.3 Processes

The implementation of the system is achieved by four interacting processes.

A: A sends ml to B. After this message B sends either p i or n l to A, indicating success or failure of

the transaction respectively.

C: C receives m3 from B to which it replies either p3 or n3. If p3 is sent then C expects an m6

deallocation message, to which it replies p6.

97

D: D receives m4 from B, to which it replies p4, and the transaction continues, or n4, and the

transaction terminates. After p4, D sends m5 to B, expecting p5 in response, then deallocation

by m7, to which D replies p7. The transaction may be terminated if D receives m7 before it

sends m5, i.e. the timer has expired causing B to terminate the transaction.

B: In a successful execution B receives ml from A, allocates C with m3 p3 and D with m4 p4, then

sets a timer as D must send m5 within some time limit. When m5 arrives the timer is cancelled

and B replies with p5. C and D are deallocated by m6 p6 and m7 p7 respectively. Finally B

signals the success of the transaction by sending p i to A.

This sequence of actions may fail in a number of ways: either C or D could refuse to participate

by returning negative acknowledgments (n3 or n4), or D might not send m5 within the time

period, in which case the timer “times out” . In these cases B replies n l to A. Deallocation

of C and D occurs if and only if they originally agreed to participate in the transaction, i.e.

if p3 and p4, respectively, were sent.

The LOTOS descriptions of the processes are as follows:

p ro cess A := ml; (n l; e x it [] p i; e x it) en d p ro c
p ro cess C := m3; (n3; e x it [] p3; m6; p6; e x it) en d p ro c
p ro cess D := e x it [] m4; (n4; e x it

[] p4; (m5; p5; m7; p7; e x it
□ m7; p 7 ; e x i t)) en d p ro c

p ro cess B : =
ml; m3; (n3; n l; e x it

□ p3; m4; (n4; m6; p6; n l; e x it
[] p4; s e t ; (tim eou t; m6; p6; m7; p7; n l; e x it

[] m5; tc a n c e l; p5; m6; p6; m7; p7; p i; e x i t)))
en d p ro c

Note the differences and similarities between the descriptions of the protocols and the processes.

For example, the description of A is identical to the description of PI, whereas the description of

C differs slightly from P2 because in C deallocation is compulsory, whereas it is optional in P2. As

with the protocols, the processes A, C and D are independent of each other; however, here we also

have the process B which interacts with all other processes.

Now we have the formal descriptions of the specification and the implementation, we try to

verify that the implementation is correct with respect to the specification.

7.3 V erification o f th e E xam ple

7.3.1 Informal Discussion

The statement to be verified can be expressed as: does the implementation (the processes A,

B, C and D) satisfy the specification (the protocols PI, P2 and P3)? The terms used here are

deliberately vague, allowing exploration of different possible interpretations, discussed informally

here and more formally in section 7.3.2. Three terms have yet to be defined: “specification” ,

“implementation” and “satisfies” .

In chapter 4 we assumed that the interpretation of the specification and the implementation

was straightforward; however, consideration of this example shows us that this is not the case. For

example, the protocols form the specification, but how they should be combined, or indeed if they

should be combined, is not mentioned. The same is true of the processes and the implementation.

Suppose the protocols are to be combined to form the specification and the processes combined

to form the implementation. The statement then becomes:

(A | B | C | D) satisfies (PI | P2 | P3) (7.1)

where the “|” operator denotes “combined with” . Note that each instance of “|” may be replaced

by a slightly different operator when the statement is made concrete, i.e. the combinator used in

A | B may be different from that used in C | D, or PI | P2. This is formalised in section 7.3.2.

An alternative approach to expressing the verification requirement exploits the modular way

in which the system has been defined: each facet of the interaction can be examined separately.

(A | B) satisfies PI (7-2)
(C | B) satisfies P2 (7.3)
(D | B) satisfies P3 (7-4)

As they stand, these equations are not quite correct since the language of the left-hand ex­

pression may not be the same as that of the right-hand expression, e.g. A | B will use events not

mentioned in PI. Either these events will have to be hidden, or the interpretation of “satisfies”

must take account of the extra events.

Since equations (7.2), (7.3) and (7.4) each yield a boolean, the results can be combined using a

boolean operator. The correctness of the system as a whole is expressed by ((7.2) A (7.3) A (7.4)).

We choose A since we want all facets of the interaction to be satisfied, but we must also be sure

that satisfying all equations separately is the same as satisfying the system as a whole. In this

case, since PI, P2 and P3 are all concerned with distinct facets of the communication of the system,

it seems likely that the verification can safely be split into parts. Note that this really depends

on choosing the right methods of splitting up the system, hiding unimportant events, making

individual proofs, and recombining the results.

7.3.2 Formalising the Verification Requirem ent

We now give the formal interpretation of “|” , the hiding of events, and “satisfies” in Basic LOTOS.

99

The general parallelism operator of LOTOS is used to combine both processes and proto­

cols. Variations of the events in the synchronisation list give subtly different combinations of the

components of the system as required above.

If we choose the modular approach to the verification requirement proof we must also formalise

the means by which actions can be ignored in each of the equations (7.2), (7.3) and (7.4). The

h ide operator is used to restrict the processes to protocol events only.

There are many different possible interpretations in LOTOS for the “satisfies” relation. The

various equivalence relations and preorders which can be used with LOTOS were discussed in

detail in chapters 3 and 4. Here we re-examine these relations with specific reference to the

current problem.

Given the use of the h ide operator which converts hidden events into the internal event, an

equivalence which ignores these internal events is required, therefore strong bisimulation cannot

be used. At the other extreme we have trace equivalence which is too weak for verification

purposes as deadlock properties are not preserved, leaving us with the weak bisimulation and

testing relations. The system under examination will probably have to interact with other systems,

so it is important that it behaves in the same way in all contexts. This leads us to reject weak

bisimulation equivalence and testing equivalence, in favour of their congruent counterparts. We

may also consider using the testing preorder cred. Any of these relations might be taken as our

interpretation of “satisfies” in the verification requirement.

In the following section, we initially use the strongest relation available to us, weak bisimulation

congruence, in place of “satisfies” , progressing to weaker relations as necessary. If we start with the

strongest relation and prove the equation holds for that relation, then all other (weaker) relations

follow.

The next section contains details of the conjectures we attempted to prove hold, and some

discussion of why many of those conjectures do not hold.

7.4 V erification P roofs

Two possible approaches to proving that the implementation of the system satisfies its specification

have been presented above. One involves splitting the proof into three parts corresponding to the

three protocols in the specification, while the other deals with the system as a whole. These two

approaches are explored below.

7.4.1 Sp litting the Conjecture into Three Parts

Since each protocol describes the interface between just two of the processes, the idea of proving

each interface is correct and deducing from that the correctness of the whole system is very

1 0 0

appealing. The equations to be proved in this section are all of the form:

PI satisfies h id e [m3,p3,n3,m4,p4,n4,m5,p5,m6,p6,m7,p7] in

(A |[m l,p i,n l] | B) (7.5)
P2 satisfies h id e [ml, p i, nl,m 4,p4,n4,m 5,p5,m 7,p7] in

(C |[m3,p3,n3,m6,p6]| B) (7.6)

P3 satisfies h id e [m l,p l,n l,m 3,p3,n3,m 6,p6] in

(D |[m4,p4,n4,m5,p5,m7,p7]| B) (7.7)

where P I, P2, P3 and A, B, C, D are as defined in section 7.2.

The verification requirement is obtained by substituting different relations for “satisfies” in the

above equations. Correctness of the system as a whole is proven when all three equations can be

shown to hold for a particular relation. Note that the only parts of the conjectures which change

from one proof to another is the relation substituted for “satisfies” , and the orientation in the case

of the cred refinement relation.

In the following proofs, we use procAB, procCB and procDB to denote the right hand sides of

equations (7.5), (7.6) and (7.7) respectively. The rule sets newcore, expand and hide are used in

RRL to attempt to show the conjectures hold for weak bisimulation congruence. We have no rule

set for testing congruence or the cred relation, therefore these proofs are carried out entirely by

hand.

Unfortunately, this approach turned out to be unsuccessful. Although some conjectures about

the relationship between the specification and the implementation can be shown to hold, the results

are not strong enough to satisfy the correctness requirement. Hand proofs of the negation of the

conjectures which could not be shown to hold are given below. Examination of these conjectures

and their proofs may help to illuminate the reasons for the failure of this approach overall.

W eak B isim ula tion C ongruence Consider:

PI = w b c procAB (7.8)
P2 = w b c procCB (7.9)
P3 = w b c procDB (7.10)

These equations, (7.8), (7.9) and (7.10), cannot be proved to hold using the rule sets in RRL;

however, we can use the reduced forms of the terms, which are normal forms only with respect

to our rules, not necessarily unique normal forms, to help us in hand proofs of the negation of

these conjectures. Remember that as our rule sets are not complete we cannot use RRL to prove

inequalities. Also note that RRL cannot identify the cause of failure of proofs, it merely returns

the normal forms of both sides of the conjecture.

1 0 1

By hand, we can prove the following:

-i (PI =wbc procAB) (7.11)
-> (P2 =wbc procCB) (7-12)
-i (P3 =wbc procDB) (743)

P roof. The key to the proofs of conjectures (741), (7.12) and (7.13) lies in the difference be­

tween weak bisimulation congruence and weak bisimulation equivalence. Informally, the difference

between weak bisimulation equivalence and weak bisimulation congruence lies in the way in which

initial internal actions are treated. Let P denote the left hand side of an equation and Q the

right hand side, as in definitions 2 and 4 of chapter 3. In both the equivalence and the congru­

ence, every action performed by P must be matched by an action performed by Q, where extra

internal actions may be added in the matching process. Similarly, every action performed by Q

must be matched by an action performed by P. However, for weak bisimulation congruence, an

initial internal action must be matched by one or more internal actions, while weak bisimulation

equivalence allows an initial internal action to be matched by zero or more internal actions.

The actions which can be performed by the various components of the system can be more

easily seen by examining normal forms with respect to =wbc produced by our rewrite rules on

the terms in equations (7.11), (7.12) and (7.13). These are given in figure 7.2. Note that the

protocols have not been reduced; they were already in normal form with respect to our rule sets.

The normal forms in figure 7.2 will be referred to in the proofs in the remainder of this section.

Informally stated, the proof proceeds as follows for each inequation:

E q u a tio n (7.11) Clause (1) of definition (4) holds; procAB1 can match every action PI7 can

perform. However, clause (2) fails because (procAB a fte r ml) can perform an i action to

get into a situation in which it can perform the action n l and no other, whereas (PI7 a fte r ml)

can only match an i action by doing nothing, which leaves it in a state in which either n l

or p i are possible. Obviously a state in which two distinct actions are possible cannot be

equivalent to one in which only one action is possible.

E q u a tio n (7.12) Again clause (1) is satisfied, but clause (2) fails as an initial internal action

must be matched by one or more internal actions. P27 cannot match the initial internal

action performed by procCB except by zero actions, and therefore the expressions are not

weak bisimulation congruent.

E q u a tio n (7.13) Exactly the same as for equation (7.12).

This ends the proof that the inequations (7.11), (7.12) and (7.13) hold. I

1 0 2

PI normal form (P l;) is
ml; ((n l ; ex it) [] (p i; ex i t))

P2 normal form (P2') is
m3; ((n3; ex it) [] (p3; (ex it [] (m6; p6; e x i t))))

P3 norm al form (P3') is
exit

[] m4; (n4; exit
□ p4; (exit

[] m7; p7; exit
[] m5; p5; (ex it [] m7; p7; e x i t)))

procAB no rm al form (procAB1) is
ml; ((i; n l; ex it) [] (i; p i; ex i t))

procCB no rm al form (procCB1) is
i; m3; (n3; ex it [] p3; m6; p6; ex it)

procDB normal form (procDB') is
i; (i; exit

[] i; m4; (n4; exit
[] p4; (i; m7; p7; exit

[] m5; p5; m7; p7; e x i t)))

Figure 7.2: Normal Forms of the Processes and the Protocols with respect to the Weak Bisimula­
tion Congruence rule sets expand and newcore plus hide.

Since we failed to show the conjectures of the verification requirement hold for weak bisimula­

tion congruence, showing instead that the verification requirement is not met for the specification

and implementation with respect to weak bisimulation congruence, we move to a weaker relation,

testing congruence.

T esting R ela tions Taking equations (7.5), (7.6) and (7.7) as above, we substitute the cred

relation for “satisfies” and try to show the new equations hold left-to-right and right-to-left (giving

testing congruence), i.e.

cred laws of the LOTOS standard, which means that the protocols are a deterministic reduction

of the processes, i.e. the processes may have some nondeterminism not present in the protocols.

PI cred procAB
P2 cred procCB
P3 cred procDB

(7.14)
(7.15)
(7.16)

and vice versa.

Equations (7.14) and (7.15), in the left to right direction, can be shown to hold by applying the

103

However, we normally expect the implementation of a system to be less nondeterministic than the

specification. Neither of these equations can be shown to hold by application of the cred laws in

the right-to-left direction; equation (7.16) cannot be shown to hold in either direction.

Proofs of the corresponding inequations are slightly more tricky than the proofs of the weak

bisimulation congruence inequations. We begin by showing that the equations (7.14), (7.15) and

(7.16) do not hold in the right-to-left direction for the cred relation, i.e.

-> (procAB cred Pi) (7-17)
-i (procCB cred P2) (7.18)
-n (procDB cred P3) (7-19)

Proof. In definition 9 of chapter 3, the cred relation was characterised by the tests a process

must pass. To prove that two LOTOS processes are not related by cred, a test must be found

which one must pass but the other need not. In particular, because the orientation of the expression

is important, a test must be found which the right hand side must pass, but which the left hand

side may fail. For example, in equation (7.17) a test must be found which PI must pass, but which

procAB may fail. This is sufficient to prove that the cred relation does not hold in the given

direction. If no such test can be found, there may be a context which differentiates the terms,

since cred is a congruence relation.

In the following proofs we refer back to the normal forms given for weak bisimulation congruence

in figure 7.2 and use these in the proofs. This procedure is sound.

T heo rem 1 To make use of the normal forms we need to show, given p =wbc p' and q =wbc q',

-i (p1 cred q') =$>• -i (p cred q)

where p' and q' denote the normal forms with respect to our rule sets relating to weak bisimulation

congruence of p and q respectively.

P roof. The method of proof is by contradiction. The following statements hold: p =wbc v' and

q =wbc </, and -> (p' cred q'), which we will demonstrate for each case in the remainder of this

section. Now suppose p cred q. Since (B\ =wbc B2) => (Bi cred B 2), from [IS088], we may

deduce pf cred p and q cred q', and hence p' cred q' by transitivity of cred, thus contradicting

our initial statements. I

Although there are cred laws which can reduce some of the normal forms given further, they

are not used here as they apply only to the process normal forms and reducing terms on the left

hand side of the cred relation when we are trying to show that it doesn’t hold could lead to false

conclusions (this problem is discussed in more detail in section 8.4).

104

Again informally stated, the proofs that equations (7.17), (7.18) and (7.19) hold are as follows:

E q u a tio n (7.17) (Pi' a fte r ml) can always pass the test n l, but (procAB1 sifter ml) will some­

times fail that test (because the internal actions can proceed silently and put us into a state

in which only p i can go ahead).

E q u a tio n (7.18) There is no test which can differentiate between P2' and p ro c C B however, they

can be differentiated by the context P Q m8; exit, where m8 is an arbitrarily chosen action

and P is a place holder for the system under test. In this context, ((P2' [] m8; exit) a fte r e)

can always pass the test m8, whereas ((procCB1 [| m8; exit) a fte r e) could fail this test. This

is because the internal action can move procClH [] m8; ex it into a state where only m3 is

possible.

E q u a tio n (7.19) To prove this equation we must find a test which P3' must satisfy, but which

cannot be passed by procDB'. Given the test m5, (P3' a fte r m4 p4) must always pass this

test, but (procDB' a fte r m4 p4) won’t necessarily pass this test (as the internal action may

be taken, putting procDB? into a state in which it can only perform m7).

This concludes the proofs that equations (7.17), (7.18) and (7.19) hold. I

The final inequation to be proved is to show that (7.16) does not hold, i.e.

-i (P3 cred procDB) (7.20)

P roof. The proof proceeds by demonstrating that there is a test which procDB must satisfy but

which may not be satisfied by P3. Consider the state (procDB' a fte r m4 p4 m5 p5 S), call it DB'.

Although D B' m ust m7, (P3' a fte r m4 p4 m5 p5 6) may sometimes fail the test m7, therefore P3'

is not a refinement of procDB?.

This concludes the proof that equation (7.20) holds. I

Equations (7.5), (7.6) and (7.7) do hold for trace equivalence, but as we said earlier, this

relation is really too weak to be useful in verification.

At this point it appears that trying to prove the verification requirement is satisfied is hopeless.

However, we strongly believe that the processes are a valid implementation of the system. Since

we tried weakening our interpretation of satisfies with no success we must conclude that it is the

approach to the proof which is incorrect. The strategy of splitting the conjecture into three parts

does not work, or rather, proofs of some parts of the conjecture can be completed, but these

are not sufficient to satisfy the verification requirement. By examining the normal forms given

in figure 7.2, it seems that the hiding of events causes the failure of the proofs by spotlighting

apparently nondeterministic choices in the process normal forms. These choices are not really

nondeterministic; they are determined by factors in the other processes. For example, procAB'

105

makes a nondeterministic choice between replying p i and replying n l. However, we know that

this choice really depends on the receipt of m5 (which is hidden). This problem affects proofs

using weak bisimulation congruence or testing congruence. We observe that we are not the only

ones to encounter this problem; the same phenomenon also causes problems for other authors, e.g.

[Bai91, BA91].

We now go on to try the other approach to the proof, where the system is considered as a

whole, thus avoiding the use of hide.

7.4.2 Proving the System as a W hole

No relationships between the processes all combined and the protocols all combined can be demon­

strated because, although the processes can be combined using parallelism, there is no meaningful

way in which to combine the protocols.

Two operators are possible candidates for combining the protocols: sequential composition of

process expressions (the “enable” operator,) and interleaving (general parallelism synchronising

on no events, since the protocols have no events in common). Using sequential composition to

combine the protocols we obtain the following expression:

PI » P2 » P3

This is an unsuccessful way of combining the protocols because, for example, the events of PI do

not all precede the events of P2. Interleaving gives:

PI III P2 III P3

which is similarly unsuccessful as the protocols contain no information about the relative ordering

of events in different protocols. Interleaving results in a process expression which has a large

number of traces which make no sense given our informal understanding of the system. For

example, one trace which results from the above expression is (p4 p3 m4 m3 ml); however, we

know from the description in section 7.2 that ml should be the first event in the interaction, and

that events occur in numerical order, i.e. m3 comes before m4, and that messages occur before their

respective acknowledgements.

Given this way of expressing the protocols we can only prove protocols cred processes, i.e. the

protocols implement the processes, which is not a true reflection of the verification requirement.

The reason we cannot show processes cred protocols is that the protocols also specify lots of other

behaviours which the processes do not. Really our problem is that the specification is too weak;

there are some details which have been omitted.

The missing information, which is implicit in the implementation, includes details of a timer,

deallocation and what constitutes success or failure of the transaction. In the specification there

106

is no information about any of these things. Our solution is to add the information in the form of

constraints, giving a successful approach to the problem.

7.4.3 Adding Constraints to the Exam ple

In the constraint oriented style of specification, described in [VSvSB91] and also earlier in sec­

tion 3.5.2 of this thesis, different aspects of the behaviour of the system are described by separate

processes, the full system description being given by the parallel composition of these subparts.

The effect is similar to using conjunction in a logical specification; each part must be satisfied

for the whole to be satisfied. This style of specification is only possible because of the multi-way

synchronisation of the LOTOS parallel operators.

Using this specification style, we define more LOTOS processes which express aspects of the

specification not included in the protocols. These include a timer in B to determine how long it

should wait for D to send the m5 message, compulsory deallocation of C and D, ordering of events

as mentioned in the informal overview of the system, and conditions dictating success or failure

of the transaction as a whole. The following constraints are added to the specification:

Timer Constraints
process timer := exit [] s e t ; (tcancel; exit [] timeout; ex it) endproc
process timer_on := exit [] p4; s e t ; exit endproc
process timer_off := exit [] s e t ; (m5; tcancel; p5; m7; exit

[] timeout; m7; ex it) endproc

D ea lloca t ion Constraints
process dealloc.C := p3; m6; p6; ex it [] n3; exit endproc
process dealloc_D := exit [] m4; (p4; m7; p7; exit [] n4; ex it) endproc

Success and Failure
process system := m5; p i; exit

[] n3; n l; exit
[] n4; n l; exit
[] timeout; n l; exit endproc

Ordering Constraints
process order13 := ml; m3; (n3; n l; exit

[] p3; (n l; exit [] p i; e x i t)) endproc

process order34 := m3; (n3; nl; exit
□ p3; m4; (n4; n l; exit

[] p4; (n l; exit [] p i; e x i t))) endproc

process order457 := n3; n l; exit
□ m4; (n4; n l; exit

[] p4; (m5; p5; m7; p7; p i; exit
□ timeout; m7; p7; n l; e x i t)) endproc

process order56 := n3; n l; exit
[] n4; ra6; p6; n l; exit
[] timeout; m6; p6; n l; exit
□ m5; p5; m6; p6; p i; exit endproc

107

process order67 := n3; n l; exit
□ p3; (n4; m6; p6; n l; exit

[] p4; m6; p6; m7; p7; (n l; exit
[] p i; e x it)) endproc

As with the descriptions of the protocols and the processes, some exit branches are introduced

to express the notion that a constraint may not be activated.

Given these constraints, the correctness of the system may now be expressed by the following

equation:

(((P I I [p i , n l]I system) I[ml, p i , n l , n3]I orderl3)
I [p i , n l , m3, p3, n3, n4, m5, timeout]I

((((P 2 I[p3, n3, m6, p6]I dealloc.C)
I [m3, p3, n3, m6, p6] I (order34 I [p3, n3, p4, n4]I order67))
I [p i , n l , n3, m4, p4, n4, m7, p7]I

(((P3 I[m4, p4, n4, m7, p7]I deallocJD)
I[m4, p4, n4, m5, p5, m7, p7]I order457)
I[p4, m5, p5, m7, timeout]I

((t im er I [s e t]I timer_on) I [s e t , timeout, tca n ce l]I tim er_off)))
I[m5, p5, m6, p6, timeout]I order56))

— wbc
(((A I[ml, p i , n l]I B) I [m3, p3, n3, m6, p6]| C)

I[m4, p4, n4, m5, p5, m7, p7]I D)

Note that, although the order in which the process expressions are combined does not affect

the meaning of the process expression as long as the synchronisation lists are adjusted accordingly;

we find that in practice it is helpful to add the processes which restrict behaviour before adding

the ones which add behaviour. In the equation above, this means adding as many constraints as

possible to each protocol before combining it with the other protocols. The reason that this is

necessary is that, in performing the reductions, our system of rule sets can only deal with one

parallel statement at a time, which means that the proof has to be built up gradually from small

units. This is a feature of the way the rules to expand parallel expressions have been implemented

and was mentioned in section 6.4.1. Adding as much information as early as possible helps to cut

down the size of the intermediate stages in the proof.

The above equation can be proved to hold by the rule sets. This is an adequate proof of

correctness since it means not only that the processes have the same observable behaviour as the

protocols, but also that they behave in the same way in all contexts. The proof requires only

the expand rules. As the specification and implementation contain no internal actions we may

also deduce that the above equation holds for strong equivalence as well as for weak bisimulation

congruence. This is to be expected as the final process expressions are deterministic (and therefore

all equivalences are the same).

Although we have achieved our aim of proving the verification requirement is satisfied, it is at

some cost; we had to alter the specification and the new one is much more complex.

108

7.5 E xten sion s to th e E xam ple

The example as considered so far is very simple; there are a number of ways in which it can be

made more complex.

• A useful extension would be to add an “abort” message, call it m2. A can abort the service

at any time by sending m2 to B, which should clean up by deallocating any resources held

and then replying to A with p2.

In LOTOS it would be simple to add m2 p2 as an abort sequence using the operator [> ,

which allows one process to take control from another. However, in this example the system

is more complicated, requiring varying sequences of actions between m2 and p2, depending

on the events which occurred before m2. The original solution could not be easily extended

to include this new behaviour. This could indicate a fault in the solution to the original

problem: perhaps it is not modular enough, or it could be that there is no simple, elegant

way to extend the solution. Certainly it is true to say that some of the constraints used in the

final description and proof of the example are not perhaps the most obvious descriptions. In

particular, some constraints contain too much information, in that they are not as modular

as their names suggest. This information was necessary to be able to combine the LOTOS

processes in a meaningful way. We do not claim that our solution is in any way optimal;

further investigation may reveal better solutions which can be easily extended when the

specification of the problem is altered. Another possibility is that it is the form of this

particular modification which is causing the problem, see section 7.6.1 for further discussion.

• Data types could be added to the messages, e.g. the login name and password of the informal

interpretation of the example.

• The most obvious extension would be to introduce recursion.

The first two extensions are not considered further here; the case study with recursion is

considered in the next chapter.

7.6 R ev iew o f th e T ools U sed

Although some degree of success is achieved in the case study, there are also many problems, not

all of which arise from the example itself; some are due to either LOTOS or RRL.

7.6.1 Im provem ents to LOTOS

LOTOS is not always suitable to describe the example. A major problem is revealed when attempt­

ing to extend the original problem to include the abort message. The [> operator is unsuitable

109

for this purpose because it does not allow the abort sequence to be dependent on the state of

execution before the abort message. One way round this is to write each abort possibility into the

LOTOS processes as choice branches, which makes the specification rather cumbersome. What is

required is an operator which allows the abort sequence to be flexible, perhaps allowing parameters

to be passed from the interrupted to the interrupting process (there is an extension of this sort

for sequential composition of processes in full LOTOS).

Another feature which would be useful is an operator to “wrap-up” several actions and make

them behave as a single action, i.e. like a critical section in a mutual exclusion problem. For

example, we want to be able to combine two process expressions using interleaving, but to have

a section in one of the expressions which, once it has begun, has to finish without interleaving

with the other process until after the last action is completed. This could be achieved by using a

mutual exclusion algorithm, but a language construct to do this would be more convenient. This

problem is also identified in [Got87].

7.6.2 Im provem ents to RRL

The following is a list of features which we would find useful in carrying out our proofs.

• The ability to specify which rule to apply next, particularly important when the rule set is

not complete.

• A list of all the rules used in a reduction. RRL does not supply this information when a

reduction is carried out.

• The ability to split rules into groups within the system and to specify which groups of rules

can be used in a reduction. (We achieve this effect by running simultaneous copies of RRL,

each with a different rule set. This requires the user to cut and paste equations from one

system to another, which provides the opportunity to introduce errors.)

• The ability to reference the last term reduced and to use that reference in the next reduction.

As our rule sets are not complete, the order in which rules are applied can be very important.

For the case study proofs this means that subparts of the proof have to be fully expanded

before they can be added to the rest of the expression. Again we use cut and paste to

perform this function, increasing the possibility of error.

• The ability to save rule sets, rather than having to regenerate them every time.

• Although RRL has fairly sophisticated functionality, the user interface is poor, being only a

list of commands followed by a prompt. A graphical interface would make the system more

appealing to use.

1 1 0

Perhaps these features will be available in later versions of the software, but we solve some of the

problems by adopting a different tool. This is described in the next chapter.

7 .7 Sum m ary and D iscu ssion

After much experimentation, we have successfully shown that the verification requirement of a

small communications protocol are indeed satisfied. It must be noted that the given specification

was not sufficient for our purposes and had to have more information added to enable the proofs

to be carried out. The new information was added in a modular way however, and the text of the

original specification was unaltered, although it must be admitted that the size and complexity of

the specification was greatly increased. Possible extensions to the problem, including the intro­

duction of recursion to the LOTOS processes, were provided in section 7.5, but not explored. It

is hoped that these can also be made in a modular way.

In some ways, the initial failure to meet the verification requirements was perhaps more fruitful

than the final proof, because we were able to identify problems in the verification process which

need to be further researched. For example, the effect of h ide on our proofs, introducing non­

determinism and thus causing failure, and the difficulty of choosing which of the many equivalence

relations of the process algebra literature to use.

Another way to look at this problem is that perhaps we chose the wrong approach to the veri­

fication. Essentially the protocols constitute a partial specification of the system, which is why we

had to hide events when splitting the conjecture into three parts. However, using h ide and equiv­

alence relations we could not prove that the implementation satisfied the specification. We also

tried using the preorder cred which captures some aspects of the notion of partial specification,

but not the ones pertinent to this example because we were unable to show the implementation

satisfied the specification for cred either. The failure of cred was due to the fact that cred only

captures the notion of reduction with respect to nondeterministic choice, whereas we require the

reduction of deterministic choice, e.g. we need something which says a; A sat a;A\\ b;B where

a ^ 6 .

A third possible solution would be to express the protocols, the specification, in terms of logic

and to show the processes provide a model in which that logical formula holds. This possibility is

explored further in chapter 1 1 .

The main result of our work on this case study is the demonstration that verification, even of

such a small and simple system, is a difficult process, one which is full of opportunities to take the

wrong decision and thereby to fail to prove the correctness of the system under investigation. This

is true even though we restrict our attention to a particular formulation of verification, namely

equivalence between two processes. In this study we only arrived at a successful conjecture and

1 1 1

proof because we persevered, having a strong belief that the verification requirement could be

formulated in this way. In more complex examples it would perhaps be less easy to hold such

a belief and this prompts several worrying thoughts: how long must we persevere to gain an

acceptable formulation of the verification requirements and proofs that they are satisfied, how do

we measure acceptability, and how do we know when to give up. The answers to these questions

can only be gained through more experience of the verification process.

1 1 2

C hapter 8

Using PAM to Im plem ent LOTOS

Relations

In the previous chapter we presented a case study in verifying that a LOTOS specification was

satisfied by its implementation, also given in LOTOS. There we were more concerned with different

ways of expressing the verification requirement, so the system was simplified to ease the proof

process. Specifically, the processes were not recursive. At the time we pointed out that this

was somewhat unrealistic and that a future exercise should be to introduce recursion to the

processes and show that the verification requirement was still satisfied. We also encountered

various problems with the use of RRL as a proof tool. Although when a complete rule set is used

RRL is very useful and can apply all the rules automatically until a normal form is reached, we wish

to have more control over the rules applied since our rule sets are not complete. This is something

which RRL cannot supply. This aspect, together with the recursion problem, encouraged us

to seek a new proof tool more suited to our purpose. The new tool, PAM [Lin92], which is

again an equational reasoning tool, is described in this chapter. Having a different tool gives

a slightly different approach to the proof process, therefore we re-examine our choice of rewrite

rules, or rather, our choice of the underlying laws. The different possibilities for weak bisimulation

congruence are explored in section 8.3, with laws for the other equivalences also considered here,

but not in as great detail. In section 8.4 we consider the problem of axiomatising the cred preorder

for input to PAM.

8.1 P roof: T echnique and A u to m a tio n

In this section we consider the problem of extending our rewriting system to recursive LOTOS

processes; this implies adding recursive rules. Below we discuss several possible approaches to this

113

problem, using the simple buffer, Buffer := in; out; Buffer, as an illustrative example.

The obvious (naive) approach adds recursive process definitions directly as recursive rules, i.e.

Buffer — > in; out; Buffer

This is unsatisfactory because the rule set becomes non-terminating; since this rule can always be

applied, the process of rewriting can never end.

To ensure termination, we could instead add the rule

in; out; Buffer — > Buffer

This rule is no good for investigating the behaviour of the buffer as it folds all the observable

behaviour away, leaving only the process name itself, making it impossible to say anything about

the behaviour of the system.

The next possible approach is to somehow control the use of the first rule in the rewriting by

modelling the recursion as primitive recursion, rather than allowing unbounded recursion. This

can be done by, for example, adding a counter to indicate the number of times the rule may be

applied, thus ensuring the rule can only be applied a finite number of times; this approach is

used in [CN92]. Although this approach may work sufficiently well for small examples, where

the number of times the recursive equation has to be unfolded is easily calculated, it is probably

unworkable in practice. However, consideration of this technique gives a clue to the final approach.

The naive approach of adding recursive rules does not work because it is the term rewriting

system which decides which rule to apply next, and it only stops when no more rules can be

applied, therefore rewriting with recursive rules is non-terminating. By using primitive recursion

we try to control the unfolding and application of the recursive rules, but the method of control

is too restrictive, forcing us to decide in advance how many times the rule can be applied. If

we cannot automate the decision of when to unfold the expression, then we must give the user

interactive control over the unfolding of the recursive equations. We must therefore abandon

traditional rewriting tools (in which virtually no control over the application of rules is given to

the user), turning instead to a tool which gives the necessary control, preferably without totally

abandoning equational reasoning as a proof technique. PAM (the Process Algebra Manipulator)

[Lin92] is such a tool and is described in the next section.

8.2 P A M

PAM [Lin92] is a parameterised rewriting-based proof assistant designed with process algebras in

mind. Rather than implementing the operators and equivalences of a particular process algebra,

114

like tools such as the Concurrency Workbench [CPS89], the philosophy behind the development

of PAM was to create a general tool which could be used for any process algebra. PAM has

some built-in transformation steps, relating to common steps in equational proofs which are not

language specific. An example of one of these built-in steps is the unique fixed-point induction

technique (ufi); this is of particular interest to us as it allows reasoning about the equality of

recursively defined processes. Other functions are available which manipulate the presentation of

the proof in the proof window (zoom, outline) and which perform routine operations (substitution,

definition, folding/unfolding).

To operate, PAM requires the user to supply a definition of the language to be used, Basic

LOTOS in our case. Although the description of a number of process algebras, including CCS

and CSP, is given in the PAM manual, PAM has not, to our knowledge, been used for LOTOS

before. The language definition contains arities and precedences of the operators of the language

and axioms which describe the behaviour of those operators. Once set up, PAM can be used to

carry out equational reasoning style proofs on terms of the language.

An important feature of PAM is that it has a graphical interface. The proof window consists

of two parts: a control panel and a proof display. The control panel has lots of buttons; one for

each of the built-in functions, and one for each of the user defined axioms. The proof display

is essentially the paper on which the conjecture and the subsequent transformations are written.

To apply an axiom, the user must select a term in the proof side, and then click on a button

in the control side. Since the language definition gives equations describing the behaviour of the

operators, the direction of application must be specified by the user every time that equation is

applied. A switch in the control panel specifies either left-to-right or right-to-left; this direction

then applies for all equations and substitutions. The user has complete control over the proof

process; indeed, PAM cannot perform proofs automatically, instead the system is an automated

pencil and paper; aiding in the book-keeping of proofs.

At the heart of each proof is a conjecture to be proved. This is supplied, together with any

process definitions required, in a separate file by the user. To help structure the proofs, they are

divided into sections; so if a subterm of the main conjecture has to be reduced it can be done in

a new section, the result of that reduction being substituted for the original subterm in the main

section.

As well as giving the freedom to use equations individually, the current version of PAM (vl.O)

also gives power in the form of equation groupings. A simple language allows tactics to be built

which describe common patterns of equation application, thus freeing the user from the tedium of

applying each equation individually. Tactics are built by single or multiple applications of equa­

tions (the number of applications can be limited). Direction of application can also be specified,

effectively specifying a rule rather than an equation. A tactic can then be used to specify a rule

115

set. If the rule set so defined is confluent and terminating, then application of that tactic to a term

will produce the (unique) normal form of that term, thus giving us an automatic proof technique.

PAM cannot determine whether or not a rule set is complete; this must be done using one of the

traditional rewriting tools such as RRL.

Tactics are problem specific, i.e. the tactic descriptions go into the problem definition files

rather than the process algebra description file. Useful tactics, developed for use with LOTOS,

may be found in the PAM problem definition files of appendix D.

Using tactics, PAM can offer flexibility for the experienced user, and a nice interface to an

automatic proof process for the novice, i.e. the user need not make any hard decisions about the

order of application of the equations, or the direction of application. This approach can also cut

down some of the more laborious proofs by automating portions of them. Another useful feature

for the novice is the command “ask” . Given a term, “ask” will tell the user which equations are

currently applicable.

A full description of the PAM system may be found in [Lin92]. We now present some of the

steps in customising PAM for use with LOTOS.

8.2.1 Setting up PAM

Creating a proof in PAM requires two steps: description of the process algebra in the language

definition file, and description of the particular conjecture to be proved in the problem definition

file. Below we give details from the actual input files for PAM for LOTOS and weak bisimulation

congruence to illustrate the method of definition. In these files, comments are prefixed by —.

The first part of the language definition is to declare the types of the language, and the

operators and their arities. Subtypes can also be declared. PAM has two built in types: boolean

and set. Infix operators are defined by including _ in the operator declaration as a place holder.

For any operator, PAM also allows the user to declare priority (a number between 0 and 9999,

where a higher priority (higher number) means tighter binding), associativity and commutativity,

and the direction of association (left or right).

The LOTOS definition begins with the following declarations:

signature
type Gate Action Process
with Gate < Action
operator

- [] _

stop
e x it
h ide _ on _
i
d e lta

Process Process -> Process 120 AC RIGHT
Action Process -> Process 200 RIGHT
-> Process
-> Process
Gate s e t Process -> Process 300
-> Action
-> Action

116

_ | [_] I _ :: Process Gate s e t Process -> Process 150 AC LEFT
_ I I I _ :: Process Process -> Process 150 AC LEFT

The syntax of the operators is close to the usual LOTOS syntax; departures have only been made

where clashes with PAM’s inbuilt operators occur, e.g. h ide _ in _ becomes h ide _ on _ as PAM

uses in for set membership, and the action sequencing operator ; becomes . (as in CCS).

The next part of the definition file is concerned with the axioms which define the operators

declared above. Note that, although for weak bisimulation congruence these are really laws with

respect to the model of labelled transition systems, to PAM they are axioms, as PAM knows

nothing about the underlying model. In the remainder of the document, we will refer to “PAM

axioms” in an attempt to make the distinction clear.

Below we give an example of some of the PAM axioms for weak bisimulation congruence,

to illustrate the style of definition. The makeup of the PAM axioms is more fully discussed in

section 8.3 and the full PAM input files may be found in appendix D.

axiom
— B1 and B2 AC laws redundant; choice declared AC above
B3 x [] stop = x
B4 x [] x = x

HI hide A on stop = stop
H2 hide A on (x [] y) = (hide A on x) [] (hide A on y)
H3A hide A on a. x = a. (hide A on x) i f n o t(a in A)
H3B hide A on a. x = i . (hide A on x) i f (a in A)

The above example illustrates the usual form for simple axioms, such as the choice axioms,

and more complex conditional axioms, such as the hide axioms. The code on the left is the name

of the axiom; this appears on the button in the command panel, and may also be used in defining

tactics, see below.

A special law of process algebras is the expansion law. Since the expansion law really denotes

a infinite family of laws, it cannot be expressed in the same way as the laws above, therefore PAM

provides a special template. For each language, only the particulars of how synchronisation is

achieved need be supplied by the user. For LOTOS we must supply information about the style of

communication, i.e. broadcast, and information about which actions may synchronise, and which

actions may proceed independently. This information is used by the expansion law to determine

the possible actions resulting from a parallel expression.

117

expansion law
EXP l e t x = a l . x l [] . . . [] an. xn y = b l . y l [] . . . [] bm. ym then

(x I [A]I y) = stop
i f (sync_move(x,y) eq n i l) and (async_move(x,y) eq n i l)

(x I [A] | y) = Sum([] ,async_m ove(x,y))
i f sync_move(x,y) eq n i l

(x I [A] I y) = Sum([] ,sync_m ove(x,y))
i f async_move(x,y) eq n i l

(x I [A] I y) = Sum([] ,async_m ove(x,y)) [] Sum([] ,sync_m ove(x,y))
otherw ise

with communication fu n ction
broadcast

sy n c(a , b) = a i f (a eq b) and n ot(a eq i) and ((a in A) or (a eq d e lta))
async(a) = true i f n o t((a in A) or (a eq d e lta))

The functions Sum, syncjnove and async_move are built in to PAM.

Some of the laws of LOTOS require information about the language of a process, denoted

C(P). PAM has this function built in, and calls it Sort; the process of calculating the sort is

called sort computation. Note that this procedure is only decidable when calculating the syntactic

sort, i.e. PAM does not carry out any analysis of whether or not an action is ever possible in the

given environment.

Sort computation may or may not be necessary for a particular example; a flag must be set

in the problem definition file to enable it. The function Sort is defined by the user by a set of

equations, each relating to a particular language construct:

so rt computation
S o rt(sto p) = {}
S o r t (i . P) = Sort(P)
S o rt(a . P) = a union Sort(P)
Sort(P [] Q) = Sort(P) union Sort(Q)
Sort(P I [A]| Q) = Sort(P) union Sort(Q)
S ort(h id e A on P) = Sort(P) d i f f A

Note that PAM does not require braces round a in the definition of Sort (a . P).

This completes the description of the form of the language definition file.

Each proof in PAM requires a language definition file, as described above, and also a problem

definition file. The problem definition file contains the conjecture to be proved, which may be an

equation or inequation, and any auxiliary process definitions required by the conjecture. This file

may also contain tactics, see below, and the sort computation flag. Several example of problem

definition files may be found in appendix D.

Using the defined axioms, tactics may be defined which help to partially automate the proof

process. For example, below we define a tactic which will repeatedly apply the axioms of h id e until

no more are applicable, thus pushing the occurrence of hide as far into the process as possible.

ru le HIDE = *{H1 H2 H3A H3B}

118

Here the tactic name is HIDE and the equations it refers to are just the hide axioms defined

earlier. The braces group the axioms together, indicating that any one of the rules may be applied

(alternatively, they could have been separated by semi-colons, indicating that they should be tried

one after the other). The asterisk indicates that the process should be repeated until no more

rules are applicable (or until the rewrite limit defined in the .pam file, default 20, is reached). We

could also have specified the direction of application for any of the equations, e.g. Hl> for left to

right and Hi< for right to left. More examples of tactics may be found in the problem definition

files in appendix D.

PAM also allows macros to be defined which help make the process definition more readable.

These are typically used to define sets of events.

Finally, although most of the operators of LOTOS were implemented in PAM easily, the

relabelling operator continues to cause problems.

8.2.2 Adding the LOTOS R elabelling Operator

In section 6.4.4 we noted that adding rules for the LOTOS relabelling operator is not trivial,

mainly due to the complex side conditions of some of the relabelling laws of the standard, i.e.

requiring the relabelling function to be the identity function, or to be injective. In PAM, the

side conditions of an axiom may only be simple boolean expressions, therefore we cannot even

express the necessary conditions for the relabelling laws in PAM. However, although the difficulty

of expressing these laws in RRL led us to reject the relabelling operator, we are reluctant to do

so this time.

Since PAM does not allow processes to have parameters, one important use of relabelling in

PAM is to model the effect of gate parameters and their instantiation. In order to have this

facility we implement a restricted version of relabelling in which only one gate is renamed in one

application of the operator, e.g. P[a/b]. This form of implementation means that, for individual

axioms, the side conditions become trivial. However, several relabellings can be applied to one

process, and there is no way to add conditions which deal with more than one application of an

operator at a time. This means that it is up to the user to ensure that the function modelled by

all the relabelling applications is the identity function, or is injective, depending on the axioms

used. PAM cannot enforce these conditions.

The PAM axioms for relabelling are given in appendix D.2, and examples of the use of rela­

belling to implement gate parameters may be found in the examples in the next chapter; specifi­

cally, the readers and writers problem, section 9.3, and the candy machine, section 9.4.

Having presented the form of the language and problem definition files, we spend the rest of

this chapter considering the choice of laws/axioms for the language definition file.

119

8 .3 P A M A xiom s for LO TO S E quivalence R ela tion s

In moving from RRL to PAM, power has been gained, in that recursive processes may now be used

in specifications, and that the user has a lot of control over equation application. Unfortunately,

a great deal of convenience has also been lost, in that PAM is not automated, and the user

must direct every equation application. The ability to specify tactics compensates a little for

this loss by providing partial automation. In addition to these changes, there is one other of

significance: whereas RRL allows rules to be applied in one direction only, PAM deals with

equations and allows them to be applied in either direction, therefore we are no longer concerned

with the completeness of the rules with respect to the laws, except possibly when defining tactics.

Instead we are concerned with the completeness of the PAM axioms with respect to the underlying

model of equivalence. We aim for a more complete representation of the LOTOS language and the

LOTOS relations considered so far, namely: branching bisimulation equivalence, weak bisimulation

congruence, testing congruence and trace equivalence. We know that, for the latter three relations,

it is not possible to have a complete and finite axiomatisation, as discussed in section 4.2.2.

However, we can attempt to find a set of axioms whose form follows some pattern and which are

simple to apply; a set which is appealing in some sense. Since the aim for completion in chapter 6

led to the rejection of several rules, and therefore their underlying laws, the decision to forego

completion allows us to reconsider our choice of laws. Below we consider the laws of a number of

relations, weak bisimulation congruence in particular, since this is the relation most often used in

verification proofs.

8.3.1 Laws Given in [BIN92]

In the LOTOS standard it is stated that the laws given for weak bisimulation congruence are not

complete (with respect to the model) and that other laws could be used to express the relation.

In [BIN92], laws are given which translate finite Basic LOTOS into finite CCS (i.e. expressions

involving only choice and sequencing). Once in CCS, there exist complete (with respect to to

the model, not necessarily confluent and terminating) sets of laws for several of the standard

relations. The ones given are: observation congruence (weak bisimulation congruence), branching

bisimulation equivalence, testing congruence and trace equivalence. These laws are given in PAM

form in appendix D .l. We remark that the laws of branching bisimulation equivalence, when

added to the laws of strong congruence (the choice laws), form a confluent and terminating set of

rewrite rules; this was proved in [AB90] for axioms expressed using the left merge operator, but

we also used RRL to form a complete rule set corresponding to the laws as given in appendix D.l.

None of the other equivalences described in appendix D.l admit a complete rule set; attempting

completion with RRL on rule sets corresponding to these laws (using all possible permutations of

1 2 0

precedences offered by RRL) results in divergence of the completion procedure.

Note that for implementation in PAM these rules have been augmented by three other laws

which are derived from the LOTOS standard to ease the proof process. For example, the rule

DELTA which states that ex it is the same as stop . This is added because of the way in which

the PAM expansion law works (it does not allow ex it as an argument to the parallel operator

as all processes/process branches must have at least one initial action). The others also state

specifically the behaviour of parallelism with ex it or s top as arguments.

The laws of [BIN92] are useful in situations in which a definition of a process must be unfolded,

pushing occurrences of the higher level operators, such as hide, and [> , further into the

expression so that the initial portion of the process uses only [| and sequencing. This sort of

rewriting is required, for example, when trying to identify occurrences of particular events, or

patterns of behaviour. However, although complete with respect to the model of finite Basic

LOTOS, these laws do not yield a confluent and terminating rule set, and therefore must not be

used indiscriminately. In particular, since recursive equations can be continuously unfolded, these

laws form a nonterminating set of rules. This is not a great problem, as the user is unlikely to

keep unfolding a recursive definition. The advantages of these laws, that their form follows some

sort of simple pattern and that they are easy to apply, outweigh this possible disadvantage.

8.3.2 Extra Laws Taken from in [ISO88]

A further disadvantage of the laws of [BIN92], which cannot be discounted, is that these laws are

geared only towards removing occurrences of the higher level operators to give a more operational

definition of the system; they cannot manipulate occurrences of these operators in any other

way. For example, given the expression h ide A in h ide A in P, we would expect to be able to

reduce it to h ide A in P, or, if A H C(P) — 0, P. The laws of [BIN92] cannot perform these

reductions because they are intended to push occurrences of high-level operators through a process

expression until an occurrence of exit or stop is reached, at which point the high-level operator

can be removed. The laws of [BIN92] are complete only with respect to finite LOTOS, but our

proofs typically involve infinite processes. The above strategy fails on infinite processes as ex it

and s to p are seldom encountered. We found during the course of the experiments detailed in

chapter 9 that such reductions involving high-level operators are often required, typically to allow

duplicate states in a process unfolding to be recognised as such. These laws usually take the form

of those of the LOTOS standard, or slight variants thereof. To this end, we have prepared a

supplementary set of PAM axioms which follow the standard and which may be added to the set

from [BIN92] as required.

It is important to remember that the PAM axioms/laws given in appendix D are only guidelines.

For any particular proof, it is possible that another rule, derived from the inference rules defining

1 2 1

LOTOS, may be required. One of the benefits of using PAM is that several different language

definition files may be loaded at the same time, so it would be possible to maintain files in which

different equivalences were described, or in which the same equivalence is described in different

ways. As long as the syntax of the operators remains constant, problem definitions should be able

to be used in any setting (unless defined tactics rely on a particular set of axioms). Of course, all

possible laws/axioms could be included in one file, but this makes the file and the proof window

somewhat unwieldy.

8 .4 P A M A x io m s for cred

The above section deals only with expressing axioms for the usual equivalence and congruence

relations defined over LOTOS. However, it was noted in chapter 2 that equivalence and congruence

relations are not the only relations of interest when comparing LOTOS specifications. In some

situations, e.g. if the specifications are partial, i.e. early specifications ignore some aspects of the

system, while later specifications provide a more full and accurate representation of the system, it

may be inappropriate to use an equivalence relation to compare specifications. In these cases, where

we wish to show that the implementation approximates the specification, preorders (sometimes also

referred to as implementation relations) can be useful. For LOTOS, there are two important related

preorders: red and cred. These preorders are based on those first presented in [DH84] and are

used in the definition of testing equivalence and congruence. Some motivation for these preorders

may be found in section 3.4.3; the LOTOS definitions of red and cred appear in section 3.5.3.

Other preorders defined there, originally presented in [BSS87], are closely related, differing only

in minor details.

We have chosen to examine the cred preorder for two reasons: mainly because it appears in

the standard (although, as mentioned above, the preorders are all substantially the same), but

also because cred is the congruent counterpart of red (and congruence is important if we consider

that any system will typically be part of a larger system). Figure 8.1 gives the laws from [IS088]

for cred .

The problem we consider in this section is how a set of PAM axioms corresponding to these

laws may be formed, allowing us to decide if two processes are related by the cred preorder (but

note that cred is not decidable, therefore the best we can hope for is a semi-decision procedure).

Since cred is a preorder and therefore reflexive and transitive but not symmetric, the im­

plementation of cred in PAM cannot be achieved in the same way as the implementation of

the equivalences as described in the previous section. For example, consider the second law of

1 2 2

1. I- B i =wbc B 2 => B i cred B 2

Note: this means that cred inherits all the laws for weak bisimulation congruence.

2. B cred i; B

3. g; (5 i Q B 2) cred g\Bx [g \ B 2

4. g;Bx cred g;Bx Q g , B 2

5. B \ cred B 2 & B 2 cred B 3 B \ cred S 3

6 . B \ cred S 3 h B 2 cred S 3 = > • (Si Q B 2) cred S 3

Figure 8.1: The cred laws from [ISO8 8]

figure 8.1. Our first attempt at expressing this as a PAM axiom might be:

X = i;X

where = stands for cred. However, the = relation is PAM in assumed to be an equivalence,

therefore adding cred in this way is not sound. Although X cred i; X holds, i; X c red X does

not.

The obvious way to get round this problem is to axiomatise cred as a predicate; then the

equivalence we deal with in PAM will be the equivalence over truth values. For example, the law

above will be added as:

(X cred i; X) = true

This approach to adding PAM axioms for cred is discussed in section 8.4.1. Unfortunately,

in order to ensure the correctness of the PAM axioms formed using this approach, some strong

conditions concerning the syntactic form of terms have to be made; these make this approach too

restrictive in practice.

Given that axiomatising cred as a predicate is not really practical, we return to the possibility

of axiomatising cred as if it were an equivalence in section 8.4.2. Although this is generally

unsound we can find some restrictions on the axioms which guarantee soundness. The proof

system generated by this approach is more powerful and flexible than the one in which cred is

viewed purely as a predicate. Section 8.4.4 contains the theoretical work required to back up this

claim. We emphasise here that this rather bizarre approach to axiomatising cred is necessary

because we cannot express cred properly in the equational reasoning framework. At this stage,

rather than adopting a new framework, we prefer to see how far we can push the equational

reasoning paradigm.

123

8.4.1 A xiom atising cred as a Predicate

As cred is not an equivalence relation, we cannot treat it in the same way as the other LOTOS

relations when considering how to add PAM axioms to allow proofs of the conjecture

implementation cred specification

The obvious way to deal with cred is to axiomatise it as a predicate. We now face another

problem: to our knowledge, no such axiomatisation exists in the literature. Below we present our

attempt to axiomatise cred as a predicate.

Given that cred has been declared appropriately in PAM, the first axioms we need are those

expressing simple cases for which cred holds, i.e. base case axioms. Using the laws in figure 8.1

as a guide, we arrive at the following:

CBASE2 (A cred i.A) = tru e
CBASE3 (a .(B I [] B2) cred a.B l □ a.B2) = tru e
CBASE4 (a .B l cred a .B l [] a.B2) = tru e

These are obviously correct as they are merely particular instantiations of the corresponding

laws in figure 8.1. We now consider PAM axioms corresponding to the other laws of figure 8.1.

There is no PAM axiom relating to the first cred law of figure 8.1. Assuming the definition

file for cred also includes the axioms for weak bisimulation congruence, this law says that we can

use these axioms to reduce A and/or B in the conjecture A cred B = true and the procedure is

sound. This is implicit in the operation of PAM which allows subterms to be reduced separately,

and the result to be substituted back into the main conjecture.

The fifth cred law of figure 8.1, transitivity of cred, also does not appear because it is impos­

sible to express this in the PAM framework. This law would require being able to work on two

conjectures at once: A cred B = true and B cred C = true, and on being able to combine the

results. Attempting to express a PAM axiom which would allow this gives:

(A cred B = true) and (B cred C = true) = (A cred C = true)

but here we end up using the = operator four times in one axiom, which is not allowed by PAM. The

effect of this law could be gained by the user decomposing and recombining the desired conjecture

manually, doing separate proofs for each part of the conjecture, but this is not something we can

add explicitly as a PAM axiom. We ignore the sixth cred law of figure 8.1 for similar reasons.

In addition to the PAM axioms above, we add the following:

CBASE7 (B cred B) = t ru e

since we must define cred to be reflexive. This law is implicit in law 1 of figure 8.1.

124

Note that none of the base case laws above allow A cred B = false to be derived, i.e. the

proof system is at best a semi-decision procedure for cred. This is to be expected as cred is not

decidable. If ->(A cred B) then the proof must be completed by hand. Obviously we prefer a

fully automated procedure; however, this inability to show -i(A cred B) in PAM can be used to

our advantage, see section 8.4.2 below.

The next sort of PAM axiom we consider is, given an arbitrary expression A cred B = true,

where A and B do not fit any of the base case axioms, how do we reduce the expression until a

base case axiom does apply?

The motivation for the form of these axioms is that the validity of cred depends on the tests

passed, i.e. (A cred B) implies if B passes a test, then so does A (but not vice versa), and

therefore if -i(A cred B) there will exist at least one test which B passes but which A does not.

The strategy we attempt to express in the PAM axioms is that we can reduce both A and B by

removing process expressions which behave in the same way, i.e. pass the same test, retaining the

parts of A and B which differ (if there are such parts). Eventually we reach an expression to

which a base case axiom applies, implying {A cred B). If no base case axiom applies then it is

possible that -i(A cred B), and the proof is continued by hand. We hope that the reductions will

have made the distinguishing behaviour of A and B more obvious and that a hand proof will be

simplified. The axioms are as follows:

CRED2A i.A cred i.B = A cred B
CRED3A a. A [] a.B cred a. A [] a.C = a. (A [] B) cred a. (A [] C)
CRED4A a.A [] a.B cred a.A [] a.C = a . B cred a.C

These axioms suffer two problems; the first is that they are not sound, the second problem is

that in the above form the axioms are only applicable to a small number of expressions, i.e. we

have lost a lot of the power of the original laws. We consider the soundness problem first.

The problem with this approach to formulating PAM axioms for cred is that we cannot guar­

antee that removing a part of the process expression is the same as removing a particular set of

tests. For example, in CRED4A the idea behind the form of the axiom is that branches with iden­

tical behaviour are removed, leaving behind the branches which may (or may not) have different

behaviour. In this way, we hope to finally reduce the expression until either it is proved true by

the base case axioms, or the user can prove by hand that the relationship does not hold. However,

in CRED4A it is possible that B — A, in which case removing the a.A branch will not remove all

the tests which a.A satisfies from the expression. This could mean that these tests have been

removed from one side of the cred predicate, but not the other, i.e. we have artificially created a

distinguishing test.

To correct this problem we must ensure that removing process behaviour is the same as re­

moving tests. The problem can be formalised as follows: let L\ be the largest set for which

125

a.A m u st L\ and let L 2 be the largest set for which a.B m ust L2 . In order to apply CRED4A

maintaining soundness we must ensure that all tests L\ are removed by removing the expression

a.A. The simplest way to do this is to insist that L\ fl L 2 = 0. To ensure this condition holds

we place strong constraints on the syntactic form of the expression A, B and C: we can insist

that both sides be normal forms with respect to weak bisimulation congruence (which solves the

example above), and also that the language of B be disjoint from the language of A (thus assuring

that the set of tests relating to each branch do not overlap). This is stronger than necessary; we

only require L\ fl L 2 = 0, but this cannot be expressed in PAM. In general, it is also simpler to

compute the language of a process than the set of tests it passes.

These constraints ensure soundness of the PAM axioms for cred. Leaving aside for a moment

the fact that they are extremely restrictive, we move on to consider the second problem with our

formulation of the cred preorder axioms: the loss of the power of the original laws.

Consider the following example: we might want to show

(a.A 0 C cred a.A [] a.B [1 (7) = true

but the relevant axiom (CRED4A) applies only to expressions with two choice branches, not three.

Moreover, CRED4A must reduce both sides of the expression, whereas the conjecture above needs

a PAM axiom which reduces only the right hand side of the cred predicate.

Obviously we can add axioms of the correct form for choice, but then we also have to consider

the other operators of LOTOS and add axioms for them. Another example of a relation which

can be proved to hold by the laws of the standard, but which cannot be shown to hold by the

PAM axioms above is

a.b.B cred a.(b.B Q b.C)

This highlights the problem: the PAM axioms can only be applied to the outermost level of an

expression.

Normally in this situation we use the PAM functions to reduce the subterms of the expression

(otherwise we would have had the same problem in axiomatising the equivalence relations), but

since cred is axiomatised as a predicate and not as = we have lost this ability. To overcome this

problem we would have to add an infinite number of axioms, each dealing with different operators

and different levels of nesting. Clearly this is not possible.

Our inability to express cred as a predicate, without either losing the power of the original

laws, or having to place strong syntactic conditions on the axioms, indicates that we cannot

accurately express cred in the equational reasoning framework. On the other hand, our proof

system is considerably weakened if we ignore preorder relations. This encourages us to try to find

an alternative formulation of the PAM axioms for cred.

126

8.4.2 A xiom atising cred as an Equivalence

Although originally rejected as a means of implementing cred, in this section we explore more

fully the consequences of axiomatising cred as if it were an equivalence relation.

Some of the problems of the previous attempt to implement axioms for cred in PAM were

generated because the built in functions of PAM cannot be fully utilised given the form of the

axioms. In particular, subterms of expressions cannot be reduced independently, with the result

being substituted back into the original conjecture. This sort of manipulation applies only if the

relation being considered is modelled by the = of PAM, i.e. an equivalence relation. In order

to regain this ability, we consider what happens if cred is axiomatised as an equivalence. The

axioms are as given in figure 8.2. We also declare cred as a predicate and add the base case

axioms, CBASE2, CBASE3, CBASE4 and CBASE7, as in the previous section, allowing the derivation

of true. The PAM input file for these definitions is given in appendix D.3.

CRED 2 A = i.A
CRED3 a. (B [] C) = a.B [] a.C
CRED4 a.C = a.B [] a.C

Figure 8.2: PAM axioms for cred as an equivalence

We know that in general this method of axiomatising cred is not sound, but we can place some

constraints on the application of the axioms which allow only sound reductions. Unfortunately,

PAM cannot enforce these restrictions, therefore we rely on the restraint of the user. To help,

we retain some of the features of the previous axiomatisation in order to remind the user that

cred is not an equivalence and that care should be taken in the application of these axioms. This

is why we add the base case axioms, CBASE2, CBASE3, CBASE4 and CBASE7, although they are

subsumed by the axioms of figure 8.2. We also declare cred as a predicate, even though it is also

expressed in the axioms by =. This allows us to continue expressing conjectures involving cred as

A cred B = true, which serves as a constant reminder in the proof of the true nature of cred.

Note that not all of the original laws are explicitly included in this axiomatisation; the first

and fifth laws are implied by the properties of = and PAM’s built-in substitution facility. The

sixth law of figure 8.1 is again ignored, and for the same reason; we cannot express this law in

the framework of PAM. Also note that axioms CRED3 and CRED4 hold for a E GU {i}, rather than

g 6 G as in the original laws. The proofs that this is the case are in section 8.4.3.

Given the axioms of figure 8.2, in which cases is their application sound? Only if they are

applied right to left to the expression on the right hand side of the cred predicate, i.e. given the

conjecture A cred B = true, we may only reduce B. The proof of this is given in section 8.4.4,

where we consider the implications of using the axioms of figure 8.2 as rewrite rules. If A is reduced

127

in A c red B = true then the reduction may not be sound.

Like the previous axiomatisation, this axiomatisation is obviously incomplete, as we do not

provide a way to derive false. We also note that random applications of the axioms may lead to

being unable to prove relations which hold. For example, CRED3 may be used to throw away the

“wrong” branch of an expression, i.e. given

a.b.A cred a.(b.A [] b.C) = true

we can reduce the right hand side of the cred predicate to a.b.C. However, whereas the original

expression holds, a.b.A cred a.b.C = true does not. In such cases it is an advantage that we

have no PAM axioms (A c red B) = false, as otherwise we might not realise our mistake. For this

example, we should have used the axiom to reduce the right hand side to a.b.A, then CBASE7 could

be applied to show the conjecture holds.

This new approach is obviously more powerful than that of the previous section; the examples

which were given there as impossible to derive in that system are straightforward to prove with

the axioms of figure 8.2. Equally obviously, the axioms of this section are not as powerful as the

original cred laws, as they may not be applied to the left hand side of the cred predicate.

An example of the use of these cred axioms is included in section 9.2.3. To some extent, the

rules were designed with this example in mind, and are therefore tailored to make this particular

proof work. Whether or not they can be applied to other examples remains to be seen.

The remaining sections of this chapter provide the theoretical basis for the axiomatisation of

cred as in figure 8.2 and the investigation of the soundness of the use of those axioms as rewrite

rules.

8.4.3 Proving that A xiom s CRED3 and CRED4 hold for i

In axioms CRED3 and CRED4 of figure 8.2 we have used a for actions, thus including i, whereas the

corresponding laws of the standard use g, implying that they do not hold for i. This is not the

case and may be an oversight due to the inclusion of the law which allows all occurrences of i to

be removed. In this section we show that the third and fourth cred laws do hold for i. These

proofs were completed by hand.

T heorem 2 The following hold:

i; Bi cred I, Bi \\ I, B2 (8.1)

i; (Bi 0 B2) cred i; Bi [] i; B2 (8.2)

128

The proofs that these laws hold proceed in two stages: first we prove the laws hold for red , and

then we consider the validity of the relation in all contexts. In the second part of the proofs only

the context of choice need be considered, as this is the only context which affects the substitution

property (see for example [Mil89b] or [DH84]).

P roof. In order to show that law (8.1) holds, we must first show that it holds for red , i.e.

Vf .VL.((i; B\ [] i; P 2) a fte r i) m ust L => ((i; P i) a fte r t) m ust L (X)

In other words, in all states, if i; P i (] i; B 2 can pass a test then so must i; B\.

We consider the state sets which result after various traces. The table in figure 8.3 lays out

the sets P a fte r t for left and right hand sides of the axiom for each possible case of t. In this

figure, we use t r (P) to denote the trace set of P , and, given a trace s, such that s G tr{P), we use

P' to denote the set of states reached after s , i.e. {P" \ P P"}.

trace, t state set of i; P i after t state set of i; P i Q i; P 2 after t
t = € {i; P i, Pi} {i; PiO i; B 2, Bi, B 2}

t G tr(Bi) D tr (B2) B[B[U B'2
t G tr (Bi) , t g tr(B2) B[
t £ tr(Bi) , t G ir (B2) {} P '
t g tr(Bi) U tr (B2) {} {}

Figure 8.3: State sets of law 8.1 after selected traces

The next step is to evaluate the effects of various tests on those state sets.

For each state set we consider four possible tests: the test belongs to the trace set of B\ and

the trace set of B 2 , the test belongs to trace set of B\ only, the test belongs to the trace set of

P 2 only, and the test does not belong to the trace set of either P i or B 2 • These results of these

tests applied to the state sets of figure 8.3 are presented in figures 8.4 to 8.8 in a form similar to

that of truth tables. In these tables, lhs denotes the process expression i; B\ and rhs denotes the

process expression i; B 1 [j i; B 2 .

We need not consider L = {}, as then all tests fail, regardless of the state set. We also do

not have to explicitly consider instantiations of L such that L has more than one element. The

expression P m ust {a, b) is equivalent to the expression P m ust {a} V P m ust {b}. Since V

is used to combine the results, it is enough to show that the implication (X) holds for singleton

sets.

These tables show that for every value of a, and hence all possible L, and for all traces, the

implication (X) holds, i.e.

i ;Bi red i ;P x 0 i; B2

129

L = {a} state set of rhs => state set of lhs
a G tr(Bi) fl <r(B2) true =£► true

a G ir(B i) A a ^ ir(B 2) false => true
a ^ tr(Bi) A a G tr(B 2) false => false

a £ tr(Bi) U tr(B 2) false => false

Figure 8.4: t = e.

£ = {«} state set of rhs =>• state set of lhs
a G ^ (B i) D tr(B'2) true =$■ true

a G tr(B[) A a ^ tr(B'2) false => true
a £ tr(B[) A a G tr(B2) false => false

a (£ tr(B[) U tr (B2) false =>• false

Figure 8.5: t G tr(Bi) Pi tr(B 2).

L = {a} state set of rhs =>• state set of lhs
a G ^ *r (B2) true =>• true

a G A a ^ ^ (B j) true => true
a 0 A a G tr{B2) false => false

a £ tr(B[) U tr (B2) false => false

Figure 8.6: t G tr (B \) , t £ <r(£?2).

L = {a} state set of rhs => state set of lhs
a G ir{B'i) fl tr (B2) true => true

a G ^(B^) A a £ tr(B2) false => true
a ^ tr(B i) A a G tr (B2) true =£• true

a £ tr(B[) U tr (B2) false => true

Figure 8.7: t ^ tr (B i) , t G i r (# 2).

L = {a} state set of rhs => state set of lhs
a G ^(B J) fl t r (B2) true =4>- true

a G tfr(Bi) A a ^ tr (B2) true =$• true
a £ tr(B[) A a G tr (B2) true =J> true

a (fc tr(B[) U t r (B2) true => true

Figure 8.8: t 0 tr(J5i) U <r(B2).

130

We must now show that the above statement holds when cred is substituted for red . This is done

by considering the expressions i; B\ and i; B\ [] i; B 2 in a choice context, i.e. we need to show

Z Q i; B\ red Z Q i;.Bi Q i , B 2

for some process expression Z. We only need to consider the state set resulting from t = e, i.e. the

case in which the i action might pre-empt the choice; the other state sets are similar to those in

figure 8.3. After the trace e, the state sets of the left and right hand sides of the above statement

are:

{Z 0 i; B\, B i) {Z 0 i ; £ i [] I B 2, B 1, B 2}

Similarly, only one test need be considered, a E tr(Z) A a £ (tr(Bi U tr (B 2))- In this case,

both state sets above fail the test and therefore the implication holds.

We therefore conclude that law 8.1 is valid. I

P roof. In order to show that law (8.2) holds, we must show

V/.VL.((i; B\ [| i; B 2) a fte r t) m ust L =$■ (i; (B\ [] B 2) a fte r t) m u st L (4)

In other words, in all states, if (i; B\ Q i; B 2) can pass a test then so must (i; (B\ [] £ 2))-

As above, we consider the state sets which result after various traces; these are given in

figure 8.9. The state sets are identical for all traces except t = e, therefore they will pass the same

tests and we need only consider tests for state sets of t = c.

trace, t state set of i; (B\ [] B 2) after t state set of i; B\ [| i; B 2 after t
t = € {i; 0 b 2) , b 1 Q b 2} {i; Bi [] i; B 2 , Bi ,B2}

t E tr(Bi) fl tr (B 2) B[U B'2 B[U B ’2
t E t r (B i) , t g tr(B2) B[B[
t £ t r(B i) , t E tr{B2) B>2 B'2
t £ tr(Bi) U tr (B 2) {} {}

Figure 8.9: State sets of law 8.2 after selected traces

Assume L = {a}. Consider the possible cases of a and its membership of tr (B \) and <r(i?2). If

a belongs to both, then both sides of the law pass the test. If a belongs to one but not the other,

then i; Bi [] i; B 2 fails the test, whereas i; (Bi [| B 2) passes the test. Finally, if a belongs to the

trace set of neither branch, then both sides fail the test.

We conclude that the implication (4fc) holds for each test, i.e.

i; {B\ D B2) red i ; ^ Q i; B 2

131

We move on to consider how placing these expressions in a choice context might alter the outcome

of the tests.

The statement we now need to consider is

Z D i ; (BiD B2) r e d Z Q i;B , 0 i;B 2

for some process expression Z. Again only the case t — t need be considered. The state sets are:

{Z 0 i ;(Bi o b 2) , b 1 0 B2} {Z 0 l , B 1 0 i \ B 2)b u b 2}

Similarly, only one test need be considered, a £ tr (Z) A a £ (tr (B \) U t r (B2)). In this case,

both state sets above fail the test and therefore the implication holds.

We therefore conclude that law 8.2 is valid. I

We note that for each of these laws, the proof that the law holds in a choice context was not

really necessary: since each side of the expression is prefixed by i, substituting one for the other

in a context has no effect, i.e. the tests passed are not changed. We use this realisation to justify

restricting the analysis of the PAM cred axioms in the next section to visible actions only; this

makes the presentation simpler. The results are easily extended to include invisible actions.

8.4.4 W hy cred as an Equivalence can be Dangerous

In this section we analyse the consequences of axiomatising cred as an equivalence and using the

PAM axioms given in figure 8.2 as rewrite rules. Axiomatising cred in this way may lead to

unsound reductions as PAM assumes the relation is an equivalence, i.e. reflexive, symmetric and

transitive, but since cred is a preorder it is only reflexive and transitive.

Consider the conjecture

A cred B = true

the question we address in this section is: under what circumstances may we use the cred axioms

as rewrite rules to reduce the terms A and/or B without altering the validity of the conjecture?

Since the PAM axioms never allow a conjecture to be disproved, we are more concerned with cases

in which the reductions might turn a false statement into a true one, than in cases in which the

reduction turns a true statement into a false one. In the latter case, the proof would be finalised

by hand and we would expect the error to be detected then.

We consider the PAM axioms for cred as given in figure 8.2; note that only axioms relating

to the second, third and fourth laws are given. The first law is ignored as this is implicit in

the way PAM allows the reduction of subterms of a conjecture, assuming the language definition

file also includes the PAM axioms for weak bisimulation congruence. Using the axioms of weak

132

bisimulation congruence to reduce terms of a cred conjecture is correct since weak bisimulation

congruence is a stronger relation, i.e. makes more distinctions, than cred. The validity of the

conjecture is unaffected.

Similarly, we ignore the fifth law (transitivity) in our investigation as this is also implicit in

the operation of PAM. Indeed the need to use this facility was one of the reasons for axiomatising

cred as an equivalence. Application of the transitivity law does not change the validity of the

conjecture. The sixth law, on the other hand, cannot be axiomatised in PAM: given the form of

the conjecture there is no way to represent it in the PAM framework. If this law is required in

a proof, the user must reason about the subparts separately and recombine the results manually.

We analyse each of the other laws as PAM axioms below.

As PAM axioms may be used in either direction, we analyse the consequences of using the

cred axioms both left to right and right to left. We note that the left to right direction is less likely

to be used as this implies taking a deterministic expression and turning it into a nondeterministic

one. In addition, using axiom CRED4 left to right is forbidden by PAM as the free variables of

the right hand side of a rule must be included in the free variables of the left hand side of the

rule. Also, using axiom CRED2 left to right may make the expression behave differently in a choice

context, since an i action is added. Axiom CRED3 is the only one of the three likely to be used left

to right.

Recall the definition of red as given in section 3.5.3.

A red B Vf G A* VL C A.(B a fte r t) m ust L =$■ (A a fte r t) m ust L

Our motivation for the analysis below is that by reducing either A or B the tests passed may be

changed, thus changing the validity of A red B. The analysis below is really on A red B, but we

write A cred B as the context does not affect the validity (as mentioned in the previous section).

For each PAM axiom we consider first how the tests passed differ in the left and right hand

sides of the axiom; we then consider what that means in terms of increasing or decreasing tests

passed when used left to right or right to left. After completing this analysis for each of the three

axioms, we consider how using these axioms in a proof of (A cred B) = true might affect the

validity of the conjecture.

A xiom atising B cred i; B as B = i; B

The only distinction between B and i ,B arises after the trace c. B a fte r e = {B}, whereas

i ,B a fte r c = {i, B , B } The definition of m ust means that any leading i actions are ignored,

therefore the set of states on each side is effectively {B}, and the tests passed by each side are the

same.

133

Since the tests are not altered, we conclude that it is safe to use this axiom right to left on either

A or B in (A cred B) = true. As noted above, use of this axiom left to right is not appropriate

as the introduction of an i action may cause the validity to change in a choice context, i.e. giving

red instead of cred.

A xiom atising g; (Bx Q B2) cred g \Bx Q g; B2 as g; (Bx [| B 2) = g;Bx Q g; B2

For this axiom, several instantiations of t need to be examined. The table in figure 8.10 lays out

the sets P a fte r t for left and right hand sides for each possible t. As before, we use P' to denote

the state set {P" | P —̂ P"}.

trace, t state set of <7; (-BiQ B2) after t state set of g\ B x [| <7; B 2 after t
e {91 (Bi 0 B 2)} {g ,Bx 0 9 ,B 2}
9 {Bx\ \B 2} {B i ,B 2}

gs, s E tr(Bi) fl t r (B2) B[UB'2 B[\JB'2
gs,s E tr (Bx),s £ tr(B2) B[B[
gs, s £ tr(Bi) ,s E tr{B2) B'2 b '2
gs, s £ tr(Bi) U tr (B2) {} 0

Figure 8.10: States sets after selected traces in cred axiom CRED3

The figure shows that the state sets only differ when t = e or t = g. We examine each case

separately.

Case: t = e. Consider two possible values for L, either L = {<7} in which case both sides of the

axiom pass the test, or L = {a}, where a g, in which case both sides fail the test.

Case: t = g. Let L = {a}; there are four possible outcomes:

a € t r (B 1) fl tr (B2) Both sides of the axiom pass this test.

a E tr(Bi), a £ tr(B2) The right hand side of the axiom fails this test, as passing the test requires

both states to pass. The left hand side passes the test.

a ^ t r (B i) , a £ t r (B 2) As above.

a (fc tr(Bi) U tr{B2) Both sides of the axiom fail this test.

A xiom CRED3 rig h t to left By considering the cases of t and L for CRED3 we see that using

the axiom right to left may increase the number of tests passed, i.e. by combining B x and B 2 in

a choice statement the possibility of passing a test is greater because the test is passed if either

state passes the test, while before applying the axiom passing the test requires both states to pass

the test.

134

A xiom CRED3 left to r ig h t Used in this direction, the axiom may decrease the number of tests

passed. The reasoning is just the reverse of the above.

A xiom atising g\ Bi cred g\ Bi □ g\B2 as g\Bi = g; B x |] g\ B 2

As for the previous axiom, we begin by analysing the states B a fte r t, for left and right hand

sides, and for different values of t. A table of these results is given in figure 8.11.

trace, t state set of g\ B\ after t state set of g\ B\ [| g; B 2 after t
€ {9' ,Bi } {g\B\ 0 g ,B 2}
9 {Bi} {B u B 2}

gs, s E tr(Bi) fl tr(B2) B[B[U B2
gs,s E tr (Bi) ,s £ tr(B2) B[B[
gs, s £ f r (B i) , s E tr (B2) {} b '2
gs, s £ f r (B i) U tr (B2) {} {}

Figure 8.11: States sets after selected traces in cred axiom CRED4

The table shows that the state sets differ for t = e, t = g and some cases of t = gs. We

examine each case separately.

Case: t = e. Consider two possible values for L, either L = {g} in which case both sides of the

axiom pass the test, or L = {a}, where a / g, in which case both sides of the axiom fail the test.

Case: t = g. Let L = {a}, there are four possible outcomes:

a E tr(Bi) C\ tr(B2) Both sides of the axiom pass this test.

a E tr(Bi), a £ tr(B2) The left hand side of the axiom passes this test, but the right hand side

fails the test as B 2 does not pass the test.

a £ tr(Bi), a E tr (B2) Both sides of the axiom fail the test.

a £ tr(Bi) U tr(B2) Both sides of the axiom fail this test.

Case: t = gs,s E tr(B[) fl tr (B2). The results are similar to the above case analysis for t = g.

Case: t = gs,s E tr(B[), s & For this value of t, the state sets of left and right hand

sides of the axiom are the same, therefore the tests passed are the same.

Case: t = gs,s (fc tr(B[),s E tr (Bf2). Let L = {a}, there are two cases:

L = {a}, a E tr(B2) Both sides of the axiom pass this test, but note that the left hand side passed

only because the state set after gs is empty.

L = {a}, a ^ tr (B2) The left hand side passes the test but the right hand side fails.

135

Case: t = gs, s ^ tr(B[) U tr(B'2). Again, the state sets are the same for both sides of the

axiom, therefore the tests passed are the same.

A xiom CRED4 right to left By considering the cases of t and L in the above analysis, we see

that the number of test may be increased, i.e. by throwing away a branch of the choice, we throw

away all information about the tests which that branch may fail, and assume instead that all of

those tests are passed.

A xiom CRED4 left to right As mentioned above, PAM does not allow use of this axiom left to

right as a new free variable is introduced on the right hand side of the axiom.

Effect o f axiom s as reductions

Summarising, use of axioms CRED3 or CRED4 right to left may increase the number of tests passed

by a behaviour expression, while use of CRED3 left to right may decrease the number of tests passed.

We now consider how use of these axioms in reductions may affect the validity of a conjecture.

Assume we are trying to show

A cred B = true

and we have, by applying the axioms as rewrite rules, A — > A! and B — ► B'. Under what

circumstances can we substitute A' for A and B ' for B in A cred B = true?

Consider the use of the axioms right to left, which may increase the tests passed, i.e. A ' passes

more tests than A, and similarly for B' and B. Since, if ->{A cred B), there is some test which B

passes but which A does not, replacing A by A! may turn a false statement into a true one, as A'

may pass the test which previously distinguished A and B. On the other hand, replacing B by B'

might artificially create a distinguishing test, thereby turning a true statement into a false one.

From this analysis we may conclude that using the axioms in figure 8.2 right to left to reduce

either term in a cred conjecture is not sound; however, while it is totally unacceptable to reduce

A, as this may allow us to prove a false statement true in PAM, we may consider reducing B.

Since we know the axioms are not complete and that we therefore cannot always prove a statement

holds in PAM even though it holds in the model, and also that we can never prove in PAM that

a conjecture does not hold, using the axioms to reduce B to B' is acceptable. The worst thing

which can happen is that a bad reduction makes us unable to prove a true statement holds in

PAM in which case we revert to a hand proof employing the technique of finding a distinguishing

test.

Conversely, if we use the axioms from left to right, possibly decreasing the tests passed, it is

acceptable to reduce A, but not B, for similar reasons as above.

136

In most proofs therefore, we use the cred axioms right to left, and on B only, in the conjecture

A cred B = true. Occasionally we may also use the axiom CRED3 left to right on A. These

restrictions will prevent us from making unsound reductions when using PAM for proofs involving

the cred preorder.

8.5 Sum m ary

In this chapter we have shown how our proof technique may be transplanted to a different equa­

tional reasoning tool, PAM. This change was necessary to allow us to reason about recursive

processes. We first considered a number of ways in which rules for recursive processes could be

added in a normal term rewriting framework, but without success.

We have also considered PAM formulations of the laws/axioms of other equivalences and con­

gruences, and also for the preorder cred. We have shown that, while axiomatising cred as a

predicate might be sound, we have to place such great restrictions on the rules to ensure sound­

ness that the resulting proof system is considerably weaker than that given by the original laws

of cred in the LOTOS standard. In order to regain some of that power, we axiomatise cred as

an equivalence relation; again, some constraints must be placed on the axioms, but the system

is more powerful than the one resulting from axiomatising cred as a predicate. In order to show

the possible dangers of axiomatising cred as an equivalence, and also to show which uses of the

axioms were safe, we analysed each of the axioms in terms of tests passed.

We note that really this is an unsatisfactory situation brought about by the inappropriateness of

the equational reasoning paradigm as a setting for the cred preorder. One possible view is that we

should ignore the preorder relations and stick to equivalence and congruence relations; however,

this is unacceptable as preorders are valuable in expressing the verification requirements of a

system. We have at least shown a way in which cred can be expressed within equational reasoning

if necessary, even if it is a rather ugly solution which becomes dangerous if the recommended

restrictions are ignored.

Having defined our proof system, we must next demonstrate its utility by application to a

range of examples. This is the purpose of chapter 9.

C hapter 9

Further Studies using PAM

In this chapter we present a number of studies in verifying that an implementation of a system

satisfies a specification of the same system. The purpose of these studies is to perform proofs in

the system developed in the previous chapter, i.e. PAM in conjunction with the various sets of

axioms, in order to demonstrate the applicability of the system to real examples.

When developing a proof system of any kind, it is always a worry that the examples carried

out are somehow tailored, even subconsciously, to the quirks of the system. We have tried to avoid

this by taking the examples, with one exception, from the papers of other authors. We note that in

addition to taking the LOTOS or CCS descriptions of the systems, we also used the other authors’

interpretation of the verification requirements, typically specification =wbc implementation. The

only example of our own is a repeat of the Login case study of chapter 7, this time with recursive

behaviour. This is described in section 9.1.

The other examples presented are: a radiation machine [Tho94], section 9.2, the Readers and

Writers problem, section 9.3, and the Candy machine, section 9.4, both from [DIN91], and the

Scheduler [Mil89b, DIN89], section 9.5. The radiation machine is a fair-sized example, which

introduces the verification technique of property testing and explores the difficulties of proving a

specification does or does not exhibit a particular behaviour. The other examples are all relatively

small and straightforward.

9.1 L ogin C ase S tu dy

With the system as described in the previous chapter, we now have the power necessary to complete

a proof of correctness of the login case study where the processes and the protocols are described

using recursion.

138

9.1.1 Reform ulating the Exam ple for PAM

T h e v e r if ic a t io n req u ire m en t is a s b efore: to p ro v e th a t th e implementation sa t is f ie s th e specifica­

tion. T h e n e w p r o c ess d e sc r ip t io n s are o b ta in e d la r g e ly b y e x c h a n g in g a ll o c cu rr en ce s o f ex it b y

th e a p p r o p r ia te (recu rsiv e) p r o c e s s c a ll . S o m e m o d if ic a t io n s are req u ired; th is is d e sc r ib e d b e lo w .

S in ce th e e x a m p le is s u b s ta n t ia lly th e sa m e as th e fin a l, c o n s tr a in t-o r ie n te d , v e rs io n o f c h a p te r 7 ,

th e d e ta i ls o f th e d e sc r ip t io n s are n o t g iv e n here: see a p p e n d ix D .4 for th e P A M in p u t file s .

I t is th e n a tu r e o f th e c o n s tr a in t-o r ie n te d s ty le o f s p e c if ic a t io n to u se lo ts o f p a r a lle lism ; it

is th is p a r a lle lis m in c o n ju n c t io n w ith recu rsio n th a t c a u se s u s so m e d iff ic u lt ie s w h en tr y in g to

e x p r e s s s a t is fa c t io n u s in g th e n e w v ers io n o f th e L o g in e x a m p le . T h e p r o b le m is th a t , a s th e

p r o c e s se s are n o w recu rsiv e , a n d d e fin it io n s c a n b e u n fo ld e d r e p e a te d ly , e x tr a o p p o r tu n ity a r ises

for th e e x p a n s io n o f a p a r a lle l s ta te m e n t to p r o d u ce in d e p e n d e n t a c t io n s . F or e x a m p le , g iv e n th e

p r o c e s s d e sc r ip t io n s A = a; 6; ex it a n d B = 6; c; exit, th e n A | [6] | B = a; 6; c; exit. H o w ev er ,

i f w e r ep la c e th e o c cu rr en ce s o f ex it b y A or B as a p p ro p r ia te a n d m a k e th e p r o c esse s r ecu rsiv e ,

A | [6] | B b e c o m es:

(A | [b] | B) = a; 6; (c; {A | [6] | B)

0 a-,{b]A I [b] I c; B))

S im ila r p r o b le m s a r ise w ith th e lo g in e x a m p le . C o n sid er tw o d e f in it io n s r e la t in g t o th e t im e r (in

th e ir o r ig in a l f o r m) :

t i m e r = s e t ; (t c a n c e l ; e x i t [] t i m e o u t ; e x i t)
t im e r _ o n = p 4 ; s e t ; e x i t

C o m b in in g th e se p r o c esse s in p a r a lle l , w e g e t

t i m e r I [s e t] I t im e r _ o n = p 4 ; s e t ; (t c a n c e l ; e x i t [] t i m e o u t ; e x i t)

N o w c o n s id e r th e recu rsiv e fo r m s o b ta in e d b y r ep la c in g e x i t b y t i m e r or t im e r j o n :

t i m e r = s e t ; (t c a n c e l ; t i m e r [] t i m e o u t ; t i m e r)
t im e r _ o n = p 4 ; s e t ; t im e r _ o n

T h e r e s u lt o f tr y in g to c o m b in e th e p r o c esse s t i m e r a n d t im e r _ o n in p a r a lle l is a s fo llo w s , u s in g

o n ly u n fo ld in g a n d e x p a n s io n :

t i m e r I [s e t] | t im e r _ o n
= p 4 ; s e t ; ((t c a n c e l ; t i m e r [] t i m e o u t ; t i m e r) I [s e t] I t im e r _ o n)
= p 4 ; s e t ; ((t c a n c e l ; t i m e r [] t i m e o u t ; t i m e r) I [s e t] I (p 4 ; s e t ; t i m e r _ o n))
= p 4 ; s e t ; (p 4 ; ((t c a n c e l ; t i m e r [] t i m e o u t ; t i m e r) I [s e t] I (s e t ; t i m e r _ o n))

[] t c a n c e l ; (t i m e r I [s e t] I t im e r _ o n)
[] t i m e o u t ; (t i m e r I [s e t] I t im e r _ o n))

139

A lth o u g h th e tr a ce w e w a n t a p p ea r s , i .e . th e tra ce p r o d u ce d b y th e o r ig in a l e x p r e s s io n , w e a lso

g e t a tr a c e w h ic h a llo w s p 4 to o c cu r a g a in b e fo re e ith e r t c a n c e l or tim eout o ccu rs . T h is p o s s ib le

tr a c e d o e s n o t m a tc h w ith o u r in tu it io n s a b o u t h o w th e p r o to c o ls sh o u ld b e h a v e . W e m ig h t e x p e c t

s o m e o th e r c o n s tr a in t t o r e s tr ic t th is p o s s ib le b e h a v io u r , b u t in th is p a r ticu la r c a se w e k n o w th a t

n o o th e r p r o c ess d e sc r ib e s th e r e la t io n sh ip b e tw e e n th e se e v e n ts . T o r e c t ify th is s i tu a t io n , a n e w

timer p r o c e s s is d e sc r ib e d w h ic h in c o r p o r a te s a c t iv a t io n o f th e t im e r a n d th e e v e n ts w h ic h o ccu r

a fter th e o p e r a t io n o f th e t im e r . In so m e w a y s th is is a n u n sa t is fa c to r y so lu t io n a s th e sp e c if ic a t io n

is n o w le s s m o d u la r th a n i t w a s p r e v io u s ly ; h o w ev er , th ere s e e m s t o b e n o o th e r w a y a ro u n d th e

a b o v e p r o b le m .

9.1.2 P roof of the Verification Requirem ent

We now present the proof of satisfaction for the Login case study as carried out in PAM on the

conjecture PROCESSES = PROTOCOLS, where = stands for =wbc-

The only proof techniques required for the proof are the ones built into PAM: the expansion

law, folding and unfolding of definitions (including recursive definitions), substitution of a subterm

reduced in an earlier section, and unique fixed-point induction (ufi); none of the axioms defined

for weak bisimulation congruence are required.

The details of the proof are uninteresting, consisting of expanding each parallel expression to

end up with an expression using only choice and sequencing in the initial part and calling the

original process expression recursively. For example,

P2 | [second] I DEALLOCjC
=wbc

m3; (n3;P2 [] p 3;(P 2 [] m 6;p6;P2))
I [second] I m3; (p3;m6;p6;DEALL0C_C [] n3;DEALL0C_C)

— to 6c

m 3;(n 3;(P 2 I[seco n d]I DEALLOCjC)
[] p 3 ;((P 2 [] m6;p6;P2) I [second] I m6;p6;DEALL0C_C))

— to 6 c

m 3;(n3;P2>
— to 6c

m 3;(n 3 ;P 2 ’

=wbc
m 3;(n3;P2*

— to 6c
m3; (n 3 ; P2 * [] p 3 ; m6; p 6 ; P2 ’)

where P2 * is a new name defined to be P2 I [second] I DEALLOCjC. This serves to make the proof

less cluttered. The other expansions proceed in a similar fashion.

We note that in PROCESSES, A, C and D are all absorbed by B, i.e.

PROCESSES = ((B I [f i r s t] I A) I[secon d]I C) I [t h ir d] | D = B

[] p 3 ;((P 2 [] m6;p6;P2) | [second] I m6;p6;DEALLOCJC))

[] p 3 ;((m 3;(n 3;P 2 [] p3; (P 2[]m 6;p 6;P 2)) [] m6;p6;P2)
I[secon d]I m6;p6;DEALLOCJC))

[] p3;m 6;p6;(P2 I [second] I DEALLOCjC))

140

where
f i r s t = ml, Pi > nl
second = m3, n3, p3, m6, p6
th ird = m4, n4, p4» m5, p5, m7, p7

Having unfolded both PROCESSES and PROTOCOLS we are able to use unique fixed point induction

via the built-in function ufi to conclude that the conjecture PROCESSES =wbc PROTOCOLS holds, i.e.

the expressions for PROCESSES and PROTOCOLS are syntactically identical modulo occurrences of

the process name.

Completion of this example shows that in the new proof system we have achieved the goal

stated in the discussion of chapter 7 of having more control over the proof process and of being

able to perform proofs of equivalence of recursive processes.

9.2 A S im ple R ad ia tion M achine

In [Tho94], a simple radiation machine, based on the Therac 25, is presented in order to demon­

strate the use of formal specification and verification techniques. The aim of the exercise is to

prove the safety, or otherwise, of several variants of the machine. The specifications are given in

Basic LOTOS (later specifications use full LOTOS, but these are ignored at present) and several

different approaches to verification (trace analysis, property testing and temporal logic) are used

to reason about the safe and unsafe behaviour of three variants of the machine. In this section,

the property testing part of the experiment is repeated using the system developed in chapter 8.

We explore the safety or otherwise of four variants of the Therac machine. Three of these are the

ones given in [Tho94]; the fourth, called SimpleTherac here, is developed for this experiment to

provide a simpler example on which to explore techniques for proving the safety of the machine.

All specifications, unless noted otherwise, are as in [Tho94].

In [Tho94] the original approach to the verification (property testing, automated by the LOLA

tool [LITE]) was only able to confirm unsafe behaviours of a machine, and could not be used to

prove a machine safe. The approach relies on building an Extended Finite State Machine (EFSM)

representing the process and analysing the transitions of this EFSM. In an unsafe machine, this

analysis can reveal the “bad” behaviours, usually fairly quickly. However, although LOLA can

recognise states which it has visited before, the EFSM for one of the safe machines (Theraclb)

is infinite, and LOLA can continue forever in an attempt to find bad behaviours. This problem

occurs because of the way in which Therac lb is defined (a problem with the [> operator). In the

experiments of [Tho94] the tool runs out of memory, therefore although the confidence of the user

in the correctness of the specification is increased, there is always the possibility that the tool ran

out of memory just before a bad behaviour was discovered. Here, the strange behaviour of the

[> is noted, and we are able to re-express Therac lb without [>; the new process is equivalent to

141

the original version of Therac lb, and can be shown to be safe. Note however, that, in contrast to

[Tho94], our proofs are not fully automated. Although PAM can be used to obtained a reduced

form of the specification, the proof must be finished by hand.

While the main results of our experiment are the successful proofs of the safety or otherwise

of the four versions of the radiation machine, another result is to “debug” the specifications

originally given in an unpublished draft of [Tho94]. Our findings have been noted by the author

and incorporated in the published version.

The basic specification of the radiation machine, Therac 1, is presented in the next section. The

verification requirement, i.e. how the safety of the machine is measured, follows in section 9.2.2.

The proof that Theracl is unsafe is given in section 9.2.3 and the following two sections present

the variations on the basic Therac specification and the proofs of safety (or otherwise, as the case

may be) of those machines.

9.2.1 LOTOS Specification of the Radiation Machine

The LOTOS specification of the radiation machine is given in figure 9.1. The computer controlled

radiation machine provides two forms of treatment: electron and xray. The electron treatment is

produced by firing a low intensity electron beam directly at the patient, while for xray treatment

the intensity of the beam is higher and the beam is scattered through a shield to produce xrays

rather than being fired directly at the patient. In the LOTOS processes the setting of the position

of the shield and the intensity of the beam is modelled by the events Is (low shield), hs (high

shield), lb (low beam) and hb (high beam). The beam and shield are initially both set to low in

the process STARTUP. The two forms of treatment are reflected by corresponding processes in the

LOTOS specification. The operator chooses the form of treatment by selecting the event e l or xr

and doses the patient by selecting the f i r e event. The XRAY process sets the beam and shield to

high (using the auxiliary process SETUP), fires, and then resets the beam and shield to low (again

using SETUP). The ELECTRON process assumes the shield and beam are set to low, therefore the

only event this process performs is the f i r e event. Once a particular form of treatment is selected

the operator may abort the treatment and return to the initial choice between xray and electron

treatment. The ability to abort the treatment and begin again is reflected by the use of the special

LOTOS disable operator, written [>, which was designed specifically for this sort of behaviour.

9.2.2 Expressing the Verification Requirem ents

As stated in [Tho94], the most important verification/safety requirement for the radiation machine

is that it should not fire when the beam strength is high and the shield is low as this would result

in a lethal dose of radiation for the patient. A further safety requirement would be to also consider

142

specification Theracl [f ir e , lb , hb, I s , h s, xr , e l] :ex it

behaviour
STARTUP [f ir e , lb , hb, I s , h s, xr, e l]
where

process STARTUP [f ir e , lb , hb, I s , h s, xr , e l] :ex it :=
SETUP [lb , I s] » TREATMENT [f ir e , lb , hb, I s , h s, xr , e l]

endproc

process SETUP [e v l, ev2] :ex it : =
(e v l; ex it) I I I (ev2; ex it)

endproc

process TREATMENT [f i r e , lb , hb, I s , h s, xr, e l] :ex it :=
xr; XRAY [f ir e , lb , hb, I s , h s, xr, e l]

[] e l ; ELECTRON [f ir e , lb , hb, I s , h s, xr, e l]
[] ex it

endproc

process ELECTRON [f ir e , lb , hb, I s , h s, xr , e l] :ex it :=
(f ir e ; TREATMENT [f ir e , lb , hb, I s , h s, xr , e l])

[> TREATMENT [f ir e , lb , hb, I s , h s, xr , e l]
endproc

process XRAY [f ir e , lb , hb, I s , h s, xr, e l] :ex it :=
(SETUP [hb, hs] » (f ir e ; SETUP [lb , I s])

» TREATMENT [f ir e , lb , hb, I s , h s, x r , e l])
[> TREATMENT [f ir e , lb , hb, I s , h s, xr , e l]

endproc
endspec

Figure 9.1: Theracl Specification

the situation in which the beam is low and the shield is high as dangerous, as this results in the

patient getting insufficient radiation to treat their illness. For simplicity, we consider only the

former requirement.

In [Tho94] the verification requirement is formalised by specifying the traces which precede a

lethal dose of radiation as a regular expression:

(not (hb I h s))* ; hb; (not (lb I hs I f ir e))* ; f i r e

where * denotes zero or more occurrences, I denotes choice, ; sequencing, and not (x I y)

denotes the choice of all events excluding x and y. The given regular expression says that a bad

trace is one in which a f i r e event is preceded by a hb event but not a hs event. The trace will

always start with ((lb ; I s) 1 (I s ; lb)) , representing the initial setting of the beam and shield.

A minimal example of a bad behaviour is lb ; I s ; xr; hb; e l ; f i r e .

143

In [Tho94] the proof technique is based on showing the ability or inability of the Therac

specification to perform traces of the above form. In other words, we use a bad trace as a test. If

Therac can pass the test, then we know that the machine is not safe. This technique is generally

known as Property Testing. This approach is used because it is simpler to give samples of possible

bad sequences of behaviour than it is to specify all possible good behaviours. Another reason

for specifying bad behaviour rather than good behaviour is that the good behaviour has already

been specified once, i.e. in the description of the machine itself. If a mistake was made in that

specification, it is possible that the same mistake will be repeated when specifying good tests. In

order to avoid this potential problem, the machine is specified from a different angle the second

time, namely the bad behaviours.

In general, a proof using the property testing technique proceeds by describing the test (which

may be a good or a bad sequence of events) as a LOTOS process. The last event in the test is

the user-defined special event te sto k , which indicates successful completion of the test. The test

process is then composed in parallel with the process under test, synchronising on all events in

the test except testo k , i.e. P \ [£(.P)] | TEST, where P is the system under test. Due to the

multi-way synchronisation of the LOTOS parallel operator, if the process under test can perform

the behaviour in the test process, then eventually the te s to k event will be observed, and we say

that the process passes the test. Typically, the proof is automated by employing a simulation

tool to execute the process, although specialised testing tools also exist. The original exercise of

[Tho94] used the testing tool LOLA, which is part of the LITE toolkit [LITE]. The LOLA tool is

essentially a simulator, and operates by simulating the process P | [£(.P)] | TEST until either the

te s to k action is observed, a duplicate state is reached, or the tool runs out of memory.

We may also express property testing in terms of a relation between processes. For our exper­

iment with the radiation machine we use the following basic form:

te sto k ; ex it cred THERACTEST
where

THERACTEST = h ide theracjevents in
STARTUP I [theracjevents] I lb ; I s ; (TEST » te sto k ; ex it)

The use of cred expresses the notion that at least one trace of THERACTEST has the behaviour

we are looking for (although there may be lots of other behaviours). An equivalence relation would

also take account of these other behaviours and is therefore too strong. The theracjevents must

be hidden in the combined test process, THERACTEST, to make comparison with te s to k ; ex it

possible.

The full definition of the TEST process is given in figure 9.2. The TEST process is preceded by

setting the beam and shield to low (which occurs in the STARTUP process), and when we exit from

the TEST process the te s to k action is performed and Therac passes the test. For full generality we

should give the option to perform Is before lb, but this would make no difference to the validity of

144

process TEST[fire, lb , hb, I s , h s, xr , e l] :ex it
N oth b h s[fire , lb , I s , xr, e l]

» (hb; N o tlb h s[f ir e , hb, I s , xr , e l])
» (f ir e ; ex it)

endproc

process N oth b h s[fire , lb , I s , xr , e l] :ex it :=
f i r e ; Nothbhs [f ir e , lb , I s , xr , e l]

□ lb
[] Is
[] xr
[] e l
[] ex it

endproc

N oth b h s[fire , lb , I s , xr, e l]
Nothbhs [f ir e , lb , I s , xr , e l]
Nothbhs [f ir e , lb , I s , xr , e l]
Nothbhs [f i r e , lb , I s , xr , e l]

process N otlbhs[hb, I s , xr, e l] :ex it :=
I s ; Notlbhs [hb, I s , xr, e l]

[] hb; Notlbhs [hb, I s , xr , e l]
[] xr; N otlbhs[hb, I s , xr , e l]
[] e l ; Notlbhs [hb, I s , xr, e l]
[] ex it

endproc

Figure 9.2: The Unsafe Test Process

the proof and is therefore unnecessary. For all of the Therac examples, the test process describes

a bad behaviour, therefore if the specification passes the test it means that it is unsafe.

As mentioned in the introduction, use of the LOLA tool for the radiation machine example

is appropriate in the case that the test is passed (within a small number of unfoldings), but less

so for the safe machines, which potentially require infinite unfolding. As the power of the tool is

limited by the number of unfoldings it can perform, and therefore by the physical limitations of

the machine on which it executes, this can result in inconclusive test results, i.e. the test has not

been passed, but the unfolding is aborted due to lack of memory. This should not occur in the

Therac examples, as LOLA can recognise states which have been visited before, e.g. recursive calls

of a process. Unfortunately, the Therac lb process is more complicated, and LOLA is unable to

recognise duplicate states and therefore cannot show that the test is rejected, i.e. that the machine

is safe. We also encounter the same problem, but the close interaction required of the user by PAM

makes it easier to identify the cause of the problem. The problem and our solution is described in

section 9.2.5.

In the following sections, proofs of the safety of several variants of the example are attempted

as follows: in section 9.2.3 the original machine of [Tho94], referred to here as Theracl, is shown

to be unsafe, in section 9.2.4 our machine SimpleTherac is shown to be safe, and finally, in

section 9.2.5 two modified versions of machine, also presented in [Tho94], are shown to be unsafe

145

and safe respectively. In all cases the main part of the proof is carried out in PAM, with the proofs

being finished by hand where necessary.

Note that some modifications to the specification are necessary because of limitations of PAM.

These are merely syntactic rather than semantic and do not affect the proof results. In particular,

parameter passing is not supported by PAM. The main effect of this is that instead of having a

parameterised process SETUP as in [Tho94] we have two processes SETUPH and SETUPL which are

hardwired versions of SETUP [hb, hs] and SETUP [lb , I s] respectively. The other processes

of the specification are also parameterised, but the list of actual parameters matches the list of

formal parameters, therefore having no effect on the process behaviour.

9.2.3 Proving Theracl is not safe

To show that the machine, as described in figure 9.1, is unsafe, we attempt to prove the following

conjecture holds using PAM:

((te s to k ; ex it) cred THERACTEST) = true (*)

The proof begins by reducing THERACTEST as much as possible by unfolding the definitions of

the processes, applying various laws preserving weak bisimulation congruence and applying the

laws which allow the process to be expressed using only the ;, [] and h ide operators. The h ide

operator could also be removed, but is retained to allow the reduction to be followed more easily.

Below we give a condensed version of the proof procedure, showing important intermediate stages.

In performing this unfolding we use the bad trace lb ; Is ; xr; hb; e l ; f i r e to guide us to an

occurrence of the te s to k action.

THERACTEST
— uibc

hide theracjevents in
i ; stop
e l; ELTEST
xr; (e l ; ELTEST

[] xr; XRTEST
[] i; hb; (i ; stop

[] xr; XRTEST'

1—
1

L
J e l; (i; f i r e

[] xr; XRTEST'
[] e l ; ELTEST'))))

where

ELTEST = ELECTRON | [theracjevents] I (TEST » te sto k ; ex it)
XRTEST = XRAY I [theracjevents] I (TEST » te sto k ; ex it)
ELTEST7 = ELECTRON I [theracjevents] I

(Notlbhs » f ir e ; ex it » te sto k ; ex it)
XRTEST' = XRAY I [theracjevents] I

(Notlbhs » f ir e ; ex it » te sto k ; ex it)

146

We stop here because the te s to k action has appeared in the unfolding.

The reduced form of THERACTEST given above may be further simplified by applying laws which

push the hide operator further into the expression, turning all hidden events into occurrences of i.

Once this is done the laws of weak bisimulation and testing congruence can be applied to further

simplify the expression by removing sequences of internal actions and duplicated branches. Finally

we obtain

THERACTEST
— t c

i; te s to k ; ex it
[] i; stop
[] i; h ide therac_events in ELTEST
[] i; h ide therac_events in XRTEST
□ i; h id e therac_events in ELTEST7
[] i; h id e therac_events in XRTEST'

By substituting this reduced form of THERACTEST for THERACTEST in (*) the expression which must

be proved to hold can now be expressed as:

(te sto k ; ex it cred i te sto k ; ex it
□ i stop
□ i h ide therac_events in ELTEST
□ i h ide therac_events in XRTEST
[] i h ide therac_events in ELTEST'
□ i h ide therac_events in XRTEST')

= tru e

which can be shown to hold in PAM by application of the cred axioms, CRED4, CRED2 and CRED7,

developed in section 8.4.

9.2.4 Proving SimpleTherac is safe

It is relatively easy to prove that the Theracl specification is unsafe since all that is required is

to show that at least one bad trace is possible. If a particular example of a bad trace, preferably

the shortest one, is known in advance, the proof is less tedious as there is some notion of where

the proof is going and what is being aimed for in unfolding definitions and applying axioms. In

this section we consider the case in which the specification must be proved safe, and therefore no

such bad trace exists.

By examining the original Theracl we see that it is the ability to interrupt the machine while

the beam and shield are being set for xray treatment which leads to the firing of the high beam

with a low shield. As a simple preliminary exercise in proving a specification safe, we look at

Theracl with the disable sequences omitted, i.e. we remove the ability to abort the treatment.

This particular modification was not discussed in [Tho94]; the safe modification presented there

is considered in section 9.2.5.

147

specification SimpleTherac [f ir e , lb , hb, I s , h s, xr, e l] :ex it

behaviour
STARTUP [f i r e , lb , hb, I s , h s, xr, e l]
where

process STARTUP [f ir e , lb , hb, I s , h s , xr, e l] :ex it :=
SETUP [lb , Is] » TREATMENT [f ir e , lb , hb, I s , h s, xr , e l]

endproc

process SETUP [e v l, ev2] :ex it :=
(e v l; e x it) III (ev2; ex it)

endproc

process TREATMENT [f i r e , lb , hb, I s , h s, xr, e l] :ex it :=
xr; XRAY [f ir e , lb , hb, I s , h s, xr, e l]

[] e l ; ELECTRON [f ir e , lb , hb, I s , h s, xr, e l]
[] ex it

endproc

process ELECTRON [f ir e , lb , hb, I s , h s, xr, e l] :ex it :=
f ir e ; TREATMENT [f i r e , lb , hb, I s , h s, xr , e l]

endproc

process XRAY [f i r e , lb , hb, I s , h s, xr , e l] :ex it :=
(SETUP [hb, hs] » (f ir e ; SETUP [lb , I s])

» TREATMENT [f ir e , lb , hb, I s , h s, xr, e l])
endproc
endspec

Figure 9.3: Simplified Therac Specification

The new SimpleTherac description is as in figure 9.3. The only changes are to the processes

ELECTRON and XRAY. The test process is as before.

Whereas in the proof of safety of Theracl all that was required was to exhibit an occurrence

of a bad trace, showing the machine was not safe, here we must show that none of the traces of

SimpleTherac is a bad trace and that the machine is therefore safe. In the previous section, the

main part of the proof consists of unfolding the behaviour until a te s to k action is reached. Here

there should be no occurrence of te sto k , and, since the processes of SimpleTherac are recursive,

the unfolding procedure is potentially infinite. The SimpleTherac proof proceeds by unfolding

the behaviour once or twice as necessary and analysing the behaviour of the initial portion of the

unfolding and using that analysis to deduce properties of the machine as a whole. In more abstract

terms, if we start with a process X , we attempt to unfold this process to give an expression which

involves only X (and some events), but no other process names, e.g. X = a \b\c\X . An equation

of this form tells us that all unfoldings of X will result in traces of the form (abc)*, allowing us to

148

conclude, for example, that no d event will occur.

Consider the initial unfolding of THERACTEST, produced in PAM using the weak bisimulation

congruence PAM axioms:

THERACTEST
= uibc

hide therac _e vents in
STARTUP I[therac_events]I (lb ; Is ; TEST) » te sto k ; ex it

——w be
hide theracjevents in
lb; I s ; (TREATMENT I [therac_events] I (TEST » te sto k ; e x it))

— wbc
i; (h ide therac_events in
TREATMENT I [theracjevents] I (TEST » te sto k ; e x it))

Two important expressions in the above unfolding are:

hide therac_events in (TREATMENT I [theracjevents] I (TEST » te sto k ; e x it))

which we will refer to as TREATTEST, and

TREATMENT I [theracjevents] | (TEST » te sto k ; ex it)

i.e. the above without the h id e operator, which we will refer to as TREATTEST7.

Instead of trying to find an occurrence of te s to k in TREATTEST we try to unfold TREATTEST,

i.e. h ide therac_events in TREATTEST', to get a process expression in which TREATTEST7 (and no

others) is referred to again. Unfolding in PAM:

h ide therac_events in TREATTEST7
— wbc

h ide theracjevents in
(i ; stop

[] x r ; hb; stop
[] e l ; (i; stop

[] f i r e ; TREATTEST7))

By the uniqueness of solutions to equations we can show that this process is equivalent to

one which does not even have the te s to k event in its language, allowing us to conclude that this

version of the machine is safe.

Note that often we do not push the h ide operator through the process expression as this can

obscure the origins of expression by hiding the identity of events which cause those actions.

For example, the expression above, TREATTEST is weak bisimulation congruent to

i; (h ide therac_events in TREATTEST [] i; stop)

With the actions hidden, it is harder to see what is happening, but it is obvious that neither

branch leads to an occurrence of a testo k .

149

In this example we are really reasoning about the state of the beam and shield, which could be

regarded as an underlying state of the process. The actions lb , Is , hb and hs are the operations

which allow this state to be altered, but we have no way of explicitly examining the current value

of the state, which is what makes reasoning about it so difficult. In section 10.3.2 a version of the

machine which makes this state explicit is considered, thus allowing reasoning about the state.

9.2.5 Proving the M odified Theracl is safe

The above version, SimpleTherac, of the machine cannot be used as a serious alternative to the

original radiation machine as the operator is committed to a course of action as soon as the xray

or electron button is pressed. This is bad because the operator has no facility for changing the

dosage: once either of the processes XRAY or ELECTRON has started we must continue to the f i r e

event and we may not abort the processes. In the original paper [Tho94] a modification is given

which allows the machine to maintain the ability to abort from a treatment, but which is also safe.

We now consider this modification here.

The problem in the Theracl specification is that the beam and shield may be set incorrectly

because of the ability to abort a treatment. Rather than remove the ability to abort the treatment,

as in SimpleTherac, we look at how the beam and shield are set. The process SETUP allows the

beam and shield to be set in any order, but the ordering of events could be fixed so that the beam

is only made high if the shield is already up, and the shield is lowered only after the beam is set to

low. This adjustment should rectify the problem of firing the high beam when the shield is down.

An alternative solution to this problem would be to introduce a language construct to wrap

up sequences of events which should be performed as atomic, thus ensuring that the beam and

shield are set together. The need for such a construct was already mentioned in section 7.6.1. We

shall only study the former solution to the problem here.

The LOTOS for the modified SETUP process is as in figure 9.4. As before, we modify this for

PAM to give hardwired versions of the parameterised processes.

process SETUP [e v l, ev2] :ex it :=
ev l; ev2; ex it

endproc

Figure 9.4: The New SETUP Process

In addition to the new definition of SETUP there is another important alteration to Theracl.

For the machine to be safe, the calls to SETUP in XRAY must also be altered (the arguments have

to be in the right order). The new version of XRAY is as in figure 9.5. The rest of the machine is

as in figure 9.1.

150

process XRAY [f ir e , lb , hb, I s , h s, xr , e l] :ex it :=
(SETUP [h s, hb] » (f ir e ; SETUP [lb , I s])

» TREATMENT [f ir e , lb , hb, I s , h s, xr , e l])
[> TREATMENT [f ir e , lb , hb, I s , h s, xr , e l]

endproc

Figure 9.5: The New XRAY Process

If this change to the parameters of SETUP is not made, then the machine can still deliver lethal

doses of radiation.

We shall refer to the first version (with the parameters in the wrong order) as Therac la and the

second version (with the parameters in the correct order) as Therac lb. We prove that Therac la

is still unsafe, but that Therac lb is safe. In the draft of [Tho94] this change to the order of the

parameters was not mentioned, but it was claimed that the new version did not pass the test, i.e.

was safe. In fact, LOLA ran out of memory before the test could pass or fail, thus the conclusion

is that confidence in the correctness of the system is increased, even though the system may still

not be safe.

Theracla

As with the original Theracl proof, we proceed by trying to follow a trace which we know leads

to te s to k being performed. The trace is the same as before, as is the final process expression

obtained (allowing for the modification of XRAY). Our conclusion is that Therac la is not safe.

Theraclb

Since we believe this process to be safe, we attempt to use the same approach as for the SimpleTherac

proof of section 9.2.4. We unfold THERACTEST to try to obtain a recursive expression referring only

to TREATTEST, or TREATTEST' if hide is not pushed through the expression. Although this ap­

proach was successful for the SimpleTherac proof, it is not successful here. Below we give some

stages in the unfolding of THERACTEST.

THERACTEST
— wbc

h id e therac_events in
lb ; Is ; TREATMENT I [therac_events] I lb ; Is ; (TEST » te sto k ; ex it)

= w b c
h id e theracjevents in

lb ; I s ; TREATTEST'
= wbc

i; h id e therac_events in TREATTEST'
— wbc

151

i; h ide therac_events in
lb; Is ; (i; stop

[] xr; XRTEST
□ e l; ELTEST)

where

XRTEST = XRAY I [theracjevents] I (TEST » te s to k ; ex it)
= i; stop [] xr; XRTEST [] e l ; ELTEST

ELTEST = ELECTRON I [theracjevents] I (TEST » te sto k ; ex it)
= i; stop [] xr; XRTEST [] e l ; ELTEST

[] f ir e ; ((TREATMENT [> TREATMENT)
I [therac_events] | (TEST » te sto k ; e x it))

In ELTEST, instead of getting TREATTEST7 after a f i r e event, we get

((TREATMENT [> TREATMENT) I [theracjevents] I (TEST » te sto k ; e x it))

Unfolding this expression results in similar expression to the unfolding of THERACTEST, but with

extra occurrences of the [> operator in various places. In particular, after f i r e in the electron

phase of treatment we get

(((TREATMENT [> TREATMENT) [> TREATMENT
I [theracjevents] I (TEST » te sto k ; e x it))

We can deduce from this that each unfolding will have the same effect, giving larger process

expressions each time, none of which appear to be the same as TREATTEST7. In the original paper

[Tho94] this is why the tests are inconclusive, because LOLA cannot recognise TREATMENT as the

same process as TREATMENT [> TREATMENT. What we would like is to have an axiom which allows

the application of the disable operator to be eliminated, for example P [> P = P , but this

conjecture does not hold. This can be proved by counter example: let P = a; 6; P , then

P [> P = P [] a; (P [| b; P [> P) which is obviously not the same as P since a possible trace

of P [> P is (a, a, b) which can never occur as a trace of P .

The situation is not hopeless, as it is possible that the full power of such a general law is not

required. The problem in the unfolding is that the disable operator, if not activated, gets passed

on to the next recursion of the process, which is not what we want in the proof. Perhaps the form

of the above conjecture is incorrect: what we really want to say is, given the following definitions

and unfoldings:

P a,b-,P

Pi = PO a ; (PD 6; Pi)

P [> P =wbc P Q a ; (P 0 M ^ [> P))

where P [> P is generated by the disable expansion law, P [> P is a solution for Pi, i.e. if we

substitute P [> P for Pi in the second equation above we get the third equation. In other words,

152

by uniqueness of solutions Pi =wbc P [> P- Although we use a particular example above, what

we are saying is that the disable expansion law can be used to unfold occurrences of [> , and

the expression P [> P can be replaced by a variable name. This equivalence is taken for granted

when the disable operator is used.

In PAM we are unable to redefine operators in this way, so instead we rewrite the Therac lb

specification, replacing occurrences of the disable operator in the ELECTRON and XRAY processes by

the equivalent expression involving only choice and sequencing; see figures 9.6 and 9.7. These new

processes are equivalent to the original ELECTRON and XRAY processes by uniqueness of solutions

to recursive equations.

process ELECTRON [f i r e , lb , hb, I s , h s, xr, e l] :ex it :=
TREATMENT [f ir e , lb , hb, I s , h s, xr, e l]

[] f i r e ; TREATMENT [f ir e , lb , hb, I s , h s, xr, e l]
endproc

Figure 9.6: ELECTRON with no occurrence of [>

p rocess XRAY [f i r e , lb , hb, I s , h s, xr, e l] :ex it :=
TREATMENT [f i r e , lb , hb, I s , h s, xr, e l]

[] hs; (TREATMENT [f ir e , lb , hb, I s , h s , xr , e l]
[] hb; (TREATMENT [f ir e , lb , hb, I s , h s, xr , e l]

[] f i r e ; (TREATMENT [f ir e , lb , hb, I s , h s, xr , e l]
[] lb ; (TREATMENT [f ir e , lb , hb, I s , h s, xr , e l]

[] Is ; TREATMENT [f ir e , lb , hb, I s , h s , x r , e l]))))
endproc

Figure 9.7: XRAY with no occurrence of [>

The unfolding of THERACTEST is now as follows:

THERACTEST
=wbc

i; h id e therac_events in TREATTEST'
— tii 6c

i; h id e th erac.even ts in
(i ; stop

[] xr; (TREATTEST'
[] i; stop)

[] e l ; (TREATTEST'
[] f ir e ; TREATTEST'))

Again, we have produced an expression which refers to itself recursively, so to complete the

proof of safety we use the uniqueness of solutions to recursive equations theorem to show that the

above process is equivalent to a process in which the event te s to k does not occur. We conclude

that the machine Therac lb is safe.

153

We note that in the original presentation [Tho94], Thomas is unable to prove the safety of this

machine using LOLA. Although LOLA has the ability to recognise previously explored states, like

us it cannot identify TREATMENT [> TREATMENT and TREATMENT. Since LOLA is a simulation tool,

it is not possible to carry out any manipulation of the term TREATMENT [> TREATMENT, which is

why the original paper does not investigate this problem further. Using PAM, however, we are

able to manually identify an equivalent expression, without the [> operator, which allows us to

successfully reason about the safety of the machine.

We also note that if the original experiment with LOLA is repeated with the modified versions

of ELECTRON and XRAY, as in figures 9.6 and 9.7, LOLA is able to identify loops in the process and

to state that the unsafe test is rejected, i.e. the machine Therac lb is safe.

9.2.6 Summ ary and Discussion

In this section we have examined four specifications of the radiation machine and proved their

safety or otherwise. This was largely a repetition of the experiment presented in [Tho94], using a

modification of the proof technique and a different method of automation. We note that we were

able to conclude with certainty that Therac lb was safe, whereas this was not possible in [Tho94].

Although the proofs that two of the machines were unsafe were straightforward, the same could

not be said of the proofs that the other two machines were safe. In the original presentation the

method was incomplete, in that the proof tool seemed geared towards finding bad behaviours, or

of proving finite processes safe. In an infinite process the tool ran out of memory and aborted

before finding a bad behaviour. Here we used additional proof techniques (applied by hand) to

mathematically prove the safety of two of the machines. The lack of automation is the price which

has to be paid for a more powerful proof technique.

An example of an additional proof technique required in the radiation machine verification is

the reference to the underlying state of the beam and shield in the analysis of SimpleTherac.

Although this state is implicit here, it can be made explicit by the introduction of abstract data

types modelling the state of the beam and shield. This part of LOTOS has been ignored up till

now, but is considered in chapter 10. In section 10.3.2 the modified Therac example is analysed

in the setting of full LOTOS.

Another interesting problem uncovered during this study is the difficulty of reasoning about

expressions involving the disable operator. In fact, the verification of Therac lb could not be

completed until the expression TREATMENT [> TREATMENT had been replaced by an equivalent

expression involving only sequence and choice.

Our main aim in studying this example was to demonstrate the PAM axioms developed in

chapter 8. This particular example provides the opportunity to use the cred axioms developed in

the previous chapter, as well the more commonly used weak bisimulation congruence axioms. Our

154

aim has therefore been achieved. In addition, we have also gained more experience of the process

of verification, and uncovered some more problems in that process.

9.3 R ead ers and W riters

This example is taken from [DIN91]. It is based on the problem of ensuring that a shared re­

source is accessed mutually exclusively by two processes (a reader and a writer). Two LOTOS

descriptions are given: one which specifies the mutual exclusion property (the specification), and

one which implements the access of the reader and the writer (the implementation). The ver­

ification requirement is then to prove that the specification is satisfied by the implementation.

Minor changes have been made to the example from the original presentation in [DIN91]; these

are detailed in the next section.

9.3.1 The LOTOS Descriptions

The specification of the readers and writers problem is given in figure 9.8. This says that either

the reader has access to the resource or the writer does, but never both at the same time. If we

model reading and writing by the actions r and w, then scheduling these activities and ensuring

mutual exclusion would be trivial (because of the interleaving semantics of LOTOS). Instead, we

model the beginning and ending of these activities separately, i.e. we have four actions: rb (reader

begin), wb (writer begin), re (reader end) and we (writer end). This also models the fact that the

reading and writing activities have some duration.

specification Readers_And_Writers_Spec [rb, r e , wb, we] :n oex it

behaviour
Spec [rb, r e , wb, we]
w here

process Spec [rb, r e , wb, we] :n oex it : =
i; rb; re; Spec [rb, r e , wb, we] [] i; wb; we; Spec [rb, r e , wb, we]

endproc
endspec

Figure 9.8: The Readers and Writers Specification

A proposed implementation of the specification is given in figure 9.9. The actions of the reader

and the writer are interleaved. Both processes are forced to synchronise with a semaphore, which

ensures mutual exclusion. The reader and writer are created by instantiating the general Proc, i.e.

the reader is the process Proc [p, v, rb, re] and the writer the process Proc [p, v , wb, we].

This is different from [DIN91] where the reader and the writer were defined individually. Another

155

minor alteration is that the semaphore is more general (using only p and v rather than specific pr

and vr actions for the reader and pw and vw actions for the writer). The semaphore actions are

hidden in the implementation.

specification Readers_And_WritersJEmpl [rb, r e , wb, we] :n oex it

behaviour
Impl [rb, r e , wb, we]
w here

process Impl [rb, r e , wb, we] :n oexit : =
h ide p, v in S [p, v] I[p , v]I (Proc [p, v , rb, re] III Proc [p, v , wb, we])

endproc

process S [p, v] : n o ex it : =
p; v; S [p, v]

endproc

process Proc [p, v , b, e] : n oex it : =
p; b; e; v; Proc [p, v , b, e]

endproc
endspec

Figure 9.9: The Readers and Writers Implementation

The problem could potentially have more processes accessing the resource, but it is sufficient

to show that the semaphore preserves mutual exclusion for the two process case.

9.3.2 Proving the Verification Requirem ent Holds

The aim of the verification is to show that the implementation of figure 9.9 satisfies the specification

of figure 9.8, i.e. we have to prove the following conjecture in PAM:

Spec = Impl

where = stands for weak bisimulation congruence. This was the relation used in [DIN91].

Some minor syntactic alterations are made to the LOTOS descriptions of figures 9.8 and 9.9

in order to conform with PAM syntax, also, gate parameters in the LOTOS description are im­

plemented by relabelling in PAM. See appendix D.6 for the PAM input file.

The above conjecture can be shown by the axioms as described in appendix D.l, the rela­

belling axioms of appendix D.2 and the built-in unique fixpoint induction. As usual, most of the

proof consists of unfolding process identifiers, expanding parallel statements, and folding process

identifiers. Tactics are used to push hide and relabelling through a sequence of actions, and the

PAM axioms of weak bisimulation congruence are used to remove occurrences of the silent action

156

i. In the following presentation of the proof we simplify process expressions by removing gate

parameters. We also combine several simple (tedious) steps, but note the rules used in each step

at the right hand side.

Impl
= w b c (unfold)

hide p, v in S I[p , v]I ((Proc [r b /b]) [r e /e] |I |(P r o c [wb/b]) [w e/e])
= w bc (unfold Proc, REL tactic)

hide p, v in S |[p , v] |
(p; rb; re; v; (Proc [rb /b]) [r e /e]
I I I p; wb; we; v; (Proc [wb/b]) [w e/e])

= w bc (unfold S, expansion)
hide p, v in

p; rb; re; v; (S I [p, v]I ((Proc [rb /b]) [r e /e] III (Proc [wb/b]) [w e /e]))
[] p; wb; we; v; (S I [p, v] I ((Proc [rb /b]) [r e /e] III (Proc [wb/b]) [w e /e]))

= w bc (fclDE tactic)
i; rb; re; i; (h id e p, v in

(S I[p , v]I ((Proc [r b /b]) . [r e /e] | | | (Proc [wb/b]) [w e /e]))
[] i; wb; we; i; (h id e p, v in

(S I [p, v] I ((Proc [rb /b]) [r e /e] III (Proc [wb/b]) [w e /e]))
= w b c fi laws, fold)

i; rb; re; Impl [] i; wb; we; Impl

By application of the built-in uf i function, PAM is able to conclude Spec = wbc Impl.

Completing this example builds our confidence in the applicability of our proof technique. We

continue with another example from the same paper.

9.4 A N o n d eterm in istic C andy M achine

This problem is also taken from [DIN91] and is again an exercise in proving that two LOTOS

descriptions of a system are equivalent, i.e. the implementation satisfies the specification. The

specification gives the observable behaviour of the machine whereas the implementation builds the

machine from simple components. We feel that the original specification presented was somewhat

contrived, and therefore ours is slightly different.

9.4.1 The LOTOS Descriptions

The specification of a nondeterministic candy machine is given in figure 9.10. This machine takes

a ten pence and returns either the message “try again” , a ten pence, or a piece of candy. After

this it behaves like a candy machine again.

An implementation of the Candy machine is given in figure 9.11. The implementation of the

machine is the parallel composition of the processes S lo t, Fair and Turn.

157

specification Candy .Spec [inlO p, message, candy, outlOp] : n oex it

behaviour
Spec [inlOp, message, candy, outlOp]
w here

process Spec [inlO p, message, candy, outlOp] :n oex it : =
inlOp; (i; message; Spec [inlOp, message, candy, outlOp]

□ i; outlOp; Spec [inlO p, message, candy, outlOp]
[] i; candy; Spec [inlOp, message, candy, outlOp])

endproc
endspec

Figure 9.10: The Candy Machine Specification

specification CandyJEmpl [inlOp, message, candy, outlOp] :n oex it

behaviour
Candy [inlOp, message, candy, outlOp]
w here

process Candy [inlO p, message, candy, outlOp] :n oex it : =
hide t25p , tlOp in

((S lo t [inlO p, message, tlO p, t25p]
I[t25p , tlO p]I Fair [tlO p, t25p , candy, outlOp])
I[inlO p, message, candy, outlOp]I Turn [inlOp, message, candy, outlO p])

endproc

process S lo t [inlO p, message, outlOp, out25p] cnoexit :=
inlOp; ((i; message; S lo t [inlOp, message, outlOp, out25p])

[] (i; outlOp; S lo t [inlOp, message, outlOp, out25p])
[] (i; out25p; S lo t [inlOp, message, outlOp, out25p]))

endproc

process Fair [inlO p, in25p, candy, outlOp] :n oex it : =
(in25p; candy; Fair [inlOp, in25p, candy, outlOp]

[] inlOp; outlOp; Fair [inlOp, in25p, candy, outlOp])
endproc

process Turn [inlO p, message, candy, outlOp] :n oex it : =
inlOp; (outlOp; Turn [inlOp, message, candy, outlOp]

[] candy; Turn [inlOp, message, candy, outlOp]
[] message; Turn [inlOp, message, candy, outlO p])

endproc
endspec

Figure 9.11: The Candy Machine Implementation

158

The processes S lo t and Fair are as given in [DIN91]. The machine S lo t takes ten pence and

nondeterministically returns either a message, ten pence or twenty-five pence. The machine Fair

will return a candy if given twenty-five pence, but rejects ten pence. The object of the original

exercise of [DIN91] was to study the process resulting from the parallel combination of S lo t and

Fair. The link between the two processes was established by joining the output of S lo t to the

input of Fair via the new gates t25p and tlOp (through twenty-five pence and through ten pence).

Since there is no restriction on putting ten pence in before the result of the last ten pence is

known, the specification derived in [DIN91] is rather complex and unintuitive. We have written

a new, simpler, specification, as given in figure 9.10, and altered the original implementation by

adding a new constraint in the form of Turn, which forbids putting in another ten pence until the

result of the previous input is known.

9.4.2 Proving the Verification Requirem ent Holds

The aim of the verification is to show that the implementation of figure 9.11 satisfies the specifi­

cation of figure 9.10, i.e. we have to prove the following conjecture in PAM:

Spec = Candy

where = stands for =wbc-

Some minor syntactic alterations are made to the LOTOS descriptions of figures 9.10 and 9.11

in order to conform with PAM syntax; see appendix D.7 for the PAM input file. Gate parameters

in the LOTOS are implemented by means of relabelling in PAM.

The above conjecture can be shown to hold by the axioms as described in appendix D .l, the

relabelling axioms of appendix D.2 and unique fixpoint induction. The proof below follows the

format of the Readers and Writers proof of the previous section:

Candy
=wbc (unfold)

h id e tlO p, t25p in (((S lo t[tlO p /o u tlO p]) [t25p/out25p]
I [tlO p, t25p]I (F a ir[tlO p /in lO p]) [t2 5 p /in 2 5 p])
I[inlO p, message, outlOp, candy]I Turn)

=wbc (unfold, REL tactic)
hide t l0 p ,t2 5 p in

inlOp; (i; message; (S lo t [tlO p/outlO p]) [t25p/out25p]
[] i; tlOp; (S lo t [tlO p/outlO p]) Ct25p/out25p]
[] i; t25p; (S lo t [tlO p /ou t1Op]) [t25p /ou t25p]))

I[tlO p, t25p]I (t25p; candy; (Fair [tlO p /in lO p]) [t25p/in25p]
[] tlOp; outlOp; (F air [tlO p /in lO p]) [t2 5 p /in 2 5 p])

I[inlO p, message, outlOp, candy]I inlOp; (outlOp; Turn [] candy; Turn
[] message; Turn)

=wbc (expansion)

159

hide t l0 p ,t2 5 p in
inlOp; (i; message; (((S lo t [tlO p/outlO p]) [t25p/out25p]

I[tlO p, t25p]I (F air [tlO p /in lO p]) [t2 5 p /in 2 5 p])
I[inlO p, message, outlOp, candy]I Turn)

□ i; tlOp; outlOp; (((F a ir [tlO p/in lO p]) [t25p/in25p]
I [tlO p, t25p]I (S lo t [tlO p/outlO p]) [t25p /ou t25p])
I[inlO p, message, outlOp, candy]I Turn)

[] i; t25p; candy; (((F a ir [tlO p/in lO p]) [t25p/in25p]
I [tlO p, t25p]I (S lo t [tlO p/outlO p]) Ct25p/out25p])
I[inlO p, message, outlOp, candy]I Turn))

= w b c ("HIDE tactic)
inlOp; (i; message; (h ide t l0 p ,t2 5 p in

((S lo t [tlO p/outlO p]) [t25p/out25p]
I [tlO p, t25p]I (F air [tlO p/in lO p]) [t2 5 p /in 2 5 p])
I [inlOp, message, outlOp, candy]I Turn)))

[] i; i; outlOp; (h ide t l0 p ,t2 5 p in
((F a ir [tlO p/in lO p]) [t25p/in25p]
I [tlO p, t2 5 p]| (S lo t [tlO p/outlO p]) [t25p /ou t25p])
I[inlO p, message, outlOp, candy]I Turn)

[] i; i; candy; (h ide t l0 p ,t2 5 p in
((F a ir [tlO p/in lO p]) [t25p/in25p]
I[tlO p, t2 5 p]| (S lo t [tlO p /ou t1Op]) [t25p /ou t25p])
I[inlO p, message, outlOp, candy]I Turn)

=w bc (i la w s , f o l d)
inlOp; (i; message; Candy [] i; outlOp; Candy [] i; candy; Candy)

By using the built-in uf i function PAM is able to conclude Spec =wbc Candy. This was the

conclusion of [DIN91] on the original version of the candy machine.

9.5 T h e Scheduler

Our final example in this chapter is the well-known Scheduler problem of [Mil89b]. This example

is often used as a benchmark test for proof systems. The example was also presented in [DIN89],

which is our main source. In [DIN89] the problem was simplified from the n process case to the

two process case.

Since the original example was presented in CCS some major changes to the process behaviours

have been made in recasting the descriptions in Basic LOTOS. These changes relate to the different

approaches to synchronisation of parallel actions in CCS and LOTOS, and also the use of hiding

rather than restriction. The example is described in the next section.

9.5.1 The LOTOS D escriptions

Consider two processes, Cl and C2, which each perform some activity. As with the readers and

writers example, we do not model the actual activities, only the start and end of them. The

actions a l and b l are the start and stop actions for Cl, with a2 and b2 being the corresponding

160

actions for C2. The scheduler must ensure that the start activity actions occur cyclically, i.e. if

only a actions are observed, the system produces traces of the form (a l a2)*. The end activity

actions are ignored by the scheduler specification. The LOTOS description of this specification is

given in figure 9.12.

specification Sched_Spec [a l , a2] :n oex it

behaviour
Spec [a l , a2]
w here

process Spec [a l , a2] :n oex it : =
a l; a2; Spec [a l , a2]

endproc
en d spec

Figure 9.12: The Scheduler Specification

The implementation of the scheduler, given in LOTOS in figure 9.13, must then ensure that

this specification is satisfied. This is achieved by using extra actions which model a baton being

passed back and forth between Cl and C2, where possession of the baton indicates permission to

start. The b actions (end activity) may occur in any order, in particular, the scheduler must not

force an ordering on them as it does with the a actions.

Note that the translation from CCS to LOTOS is not trivial. For example, in the CCS

implementation, the processes Cl and C2 are identical, modulo renaming of events, rather like

our C l’ and C2. However, these processes need a prompt from another source to start them off,

since initially both are waiting for their turn; for the “baton” to be passed to them. In the CCS

description, this prompting is performed by an extra process which performs a g l action and then

stops; the process 0 can then be eliminated by using the laws of CCS to rewrite the expression.

However, in LOTOS, due to the different nature of synchronisation, there is no corresponding law.

To solve this problem, we have two versions of Cl. Initially Cl can start straight away, but control

is then passed to C l’ , which must wait for the g l action before it may proceed.

9.5.2 Proving the Verification Requirem ent Holds

The aim of the verification is to show that the implementation of figure 9.13 satisfies the specifi­

cation of figure 9.12, i.e. we have to prove the following conjecture in PAM:

Spec = h ide b l , b2 in Sch

where = stands for =wbc-

161

sp e c if ic a tio n Sched-Impl [a l , a2 , b l , b2] :n o e x it

b ehaviour
h id e b l , b2 in Sch [a l , a2, b l, b2]
w here

process Sch [a l , a2, b l , b2] :n oex it : =
h id e g l , g2 in (Cl [a l , b l , g l , g2] I [g l , g2]I C2 [a2, b2, g l , g 2])

endproc

process Cl [a l , b l , g l , g2] :n oex it : =
a l; ((b l; g2; C l’ [a l , b l , g l , g 2]) [] (g2; b l; Cl* [a l , b l , g l , g 2]))

endproc

process C l’ [a l , b l , g l , g2] :n oex it : =
g l; a l; ((b l; g2; C l’ [a l , b l , g l , g 2]) [] (g2; b l; C l’ [a l , b l , g l , g 2]))

endproc

process C2 [a2, b2, g l , g2] :n oex it : =
g 2 ; a2; ((b2; g l; C2 [a2, b2, g l , g 2]) [] (g l; b2; C2 [a2, b2, g l , g 2]))

endproc
en d spec

Figure 9.13: The Scheduler Implementation

Some minor syntactic alterations are made to the above LOTOS descriptions in order to

conform with PAM syntax. See appendix D.8 for the PAM input file.

In this case the PAM axioms as described in section D .l and unique fixpoint induction are not

sufficient to complete the proof; two other laws (derived from those in the LOTOS standard and

given as part of the supplementary set of PAM axioms in appendix D.2) are also required.

h id e A in h id e A’ in B = h ide A’ in h ide A in B
h id e A in (Bl I [A’] I B2) = ((h id e A in B l) I [A*] I (h ide A in B2))

i f {} eq (A in te r A’)

These allow occurrences of hide to be flipped, and hide to be distributed through parallel

statements (as long as the hidden actions are not required for synchronisation). Again, the proof

follows the format of the Readers and Writers proof.

h id e b l , b2 in Sch
= w b c (unfold)

h id e b l , b2 in h ide g l , g2 in (Cl I [g l , g2]I C2)
= w b c (flip and distribute h id ej

h id e g l , g2 in ((h id e b l , b2 in Cl) I [g l , g2] I (h ide b l , b2 in C2))
= w b c (unfold)

h id e g l , g2 in
((h id e b l , b2 in (a l; ((b l; g2; C l’) [] (g2; b l; C l*))))
I [g l , g2] I (h ide b l , b2 in (g2; a2; ((b2; g l; C2) □ (g l; b2; C 2)))))

= wbc ('HIDE tactic)

162

hide g l , g2 in
((a l; ((i; g2; h ide b l , b2 in C l’) [] (g2; i; h ide b l , b2 in C l’)))
ICgl. g2]l
(g2; a2; ((i; g l; h ide b l, b2 in C2) [] (g l; i; h id e b l , b2 in C 2))))

Iw bc (i la w s)
hide g l , g2 in

((a l; g2; h ide b l , b2 in C l’) I [g l , g2]I (g2; a2; g l; h ide b l , b2 in C2))
--wbc (expansion)

hide g l , g2 in a l; g2; a2;
((h id e b l , b2 in C l’) ICgl, g2] | (g l; h ide b l , b2 in C2))

=wbc (unfold Cl*)
hide g l , g2 in a l; g2; a2;

((h id e b l , b2 in (g l; a l; ((b l; g2; C l’) [] (g2; b l; C l’))))
ICgl, g2]I (g l; h ide b l, b2 in C2))

=wbc (push hide through g l, expansion, fold)
h ide g l , g2 in a l; g2; a2; g l;

((h id e b l , b2 in Cl) ICgl, g2] I (h ide b l , b2 in C2))
=w bc fHIDE tactic, i laws)

a l; a2; h id e g l , g2 in ((h id e b l , b2 in Cl) ICgl, g2] I (h ide b l , b2 in C2))
=wbc (reverse 2nd step, fold)

a l; a2; (h id e b l , b2 in Sch)

By using the built-in uf i function PAM is able to conclude Spec =wbc Impl.

9.6 Sum m ary

In this chapter we have presented five examples of the use of the proof system developed in the

previous chapter: the login case study, now with recursive processes, one more major example

(a simple radiation machine) and three minor examples (the readers and writers problem, the

nondeterministic candy machine, and the scheduler). All examples were drawn from the papers of

other authors, together with the verification requirement of showing the implementation satisfies

the specification. The main aim of this chapter was to show that the proof system developed on

PAM is applicable to other examples; this has been successful. It is worth noting that most of the

proofs presented here were completed very quickly, also showing that the proof system is easy to

use, and that this method of proof is practical. Difficulties only occur when new approaches to

the proof are required, as in the radiation machine example of section 9.2.

With the exception of the radiation machine, no new results were presented here; we merely

use the examples of others to show that our proof system is applicable more generally. In the

radiation machine example, we obtained a result (that a particular version of the system was

safe), where the original presentation failed. Conclusions specific to this example were discussed

in section 9.2.6.

163

C hapter 10

Full LOTOS

Up to this point, verification of only a subset of the LOTOS language, namely the process algebra

Basic LOTOS, has been considered; however, full LOTOS incorporates an abstract data type (adt)

language, also known as ACT ONE [EM85]. The addition of ACT ONE to the language enables

the specification of guards which may further determine the flow of control within a process,

and also data values which may be passed between processes. Since, in practical applications of

LOTOS, specifiers do not restrict themselves only to Basic LOTOS, we must rethink the approach

to verification presented so far to incorporate specifications including ACT ONE data types.

In the literature, most authors have done as we have: concentrated on verification of Basic

LOTOS, ignoring data. For example, in the LITE toolset [LITE] the tools which operate over

full LOTOS are the testing and simulation tools, whereas the verification tools, i.e. those which

evaluate equivalences between processes and perform model checking, deal only with Basic LOTOS.

Similarly, there are also tools which deal only with ACT ONE, ignoring the process algebra part

of LOTOS. Although there is work on the verification of adts, we prefer to concentrate on

the verification of full LOTOS, i.e. considering how the addition of adts to LOTOS affects the

verification approach we have adopted up to now. Obviously, since data can affect the flow of

control within a process and hence its behaviour, ignoring the addition of ACT ONE constructs

to a specification may have serious implications for any correctness results.

We begin by introducing the data type part of LOTOS, noting that some features of Basic

LOTOS need to be modified to include data types. To introduce the problems that may arise with

verification of full LOTOS specifications we give three LOTOS descriptions of the well-known adt

example, the stack. Each description is written with differing emphasis on the process part and

the adt part. These descriptions were first presented by Gotzhein in [Got87]. In the original paper

the author claimed that the descriptions were equivalent, but was unable to prove this. We try

to prove equivalence using the satisfaction approach to verification, but with limited success. We

164

go on to consider approaches by other authors to the problem of verification of full LOTOS. To

our knowledge there are only a few works in this area: [Led87], [Bri92, BK91] and [Bol92]. We

discuss the strengths and weaknesses of these approaches. The latter two approaches seem quite

promising, and we illustrate their use via application to examples of our own: the stack of the

early part of the chapter, and the simple radiation machine example of chapter 9 respectively.

Finally, we conclude that the most suitable approach to verification is a composite one.

10.1 A C T O N E and LO TO S

The syntax and semantics of full LOTOS is presented in appendix B. Here we present a brief

overview of the main features of ACT ONE and alterations to Basic LOTOS which give full

LOTOS.

10.1.1 ACT ONE Syntax

Abstract data types in LOTOS are specified in an algebraic fashion. A basic specification consists

of the name of the type, a list of sorts used by the type, declarations of operators over the type,

and equations specifying the behaviour of those operations. There are no built in types, although

there is a standard library of commonly used types. One of the standard library types is Boolean.

A portion of the definition is given in figure 10.1 to illustrate the ACT ONE style of definition.

The full definition of Boolean also includes the operators =>, i f f , n e , eq and their associated

equations.

ty p e Boolean is
sorts Bool
opns tru e , f a ls e : —> Bool

not : Bool —> Bool
and, _or_ : Bool, Bool —>

eqns forall x : Bool
ofsort Bool
n o t(tru e) = fa ls e ;
n o t (fa ls e) = true;
x and true = x;
x and fa ls e = fa ls e ;
x or true = true;
x or f a ls e = x;

en d typ e

Figure 10.1: The Library Type Boolean

In ACT ONE, complex specifications may be built up from simpler specifications in a hierar-

165

chical manner; parameterisation of specifications also aids specification of large systems.

10.1.2 Adding ACT ONE to Basic LOTOS

To incorporate ACT ONE into LOTOS, much more needs to be done than simply providing

the ability to specify data types; some modification to the existing process algebra, to allow

manipulation of the data, is also required.

• The actions of Basic LOTOS are enhanced by allowing values to be passed between pro­

cesses at the gates. An action in full LOTOS is a gate plus an event offer, i.e. a value

passing/receiving construct. There are two types of event offers: variable offering and value

offering, which can be thought of as input and output. For example,

wire?x:Nat

receives a value x of type Nat at the gate wire, and

w ir e !1

outputs the value one at the gate wire. There can be more than one value passed at any gate,

and there are no restrictions on direction (unlike CSP, where it is recommended, although

not enforced, that channels are unidirectional). For example, in LOTOS the following is also

an action:

w ire?x:In t !3 ?y:Char

receiving values in x and y, and outputting the value 3, all at the gate wire.

As before, actions synchronise by matching gate names, but now values/variables must also

be matched. The standard form of value passing is to match a value offering to a variable

offering, but, in addition, offerings of the same type may synchronise, i.e. value with value

and variable with variable. This latter form essentially restricts the possible range of the

value received/sent, bearing in mind that LOTOS has multi-way synchronisation, and that

wire?x:Nat, for example, is really a shorthand for a set of choices, i.e. wire?0 [] w ire?l

[] The synchronisation mechanism allows the actions of one process to be restricted by

another (or several others) and is utilised by the constraint-oriented style of specification.

• Processes may be prefixed by guards, e.g.

[x > 0] - > P

which means P is only performed if x has value greater than zero, i.e. if the guard evaluates

to true. Typically several such statements are composed using the choice operator, giving

166

the effect of the case statement of programming (although the guards may not be mutually

exclusive, in which case the choice is made nondeterministically).

• A process may produce values on successful termination. Whereas in Basic LOTOS successful

termination is denoted by the 8 action, in full LOTOS successful termination is denoted by

J v \ . . . vn , where v\ . . . vn is a string of data values.

In Basic LOTOS the functionalities ex it and n oex it are added to processes to indicate

whether or not they terminate. Given the above modification of successful termination,

data types can also be added to ex it functionality to indicate the types of values produced

when the process terminates.

This addition to functionality can be used in an extension of sequential composition of

processes to pipeline results from one process to another. For example,

P » accept n:Nat in Q

Here P will terminate with, for example, 8 5, and Q will use the value of n, instantiated by

the value 5, in its body. A special value is any which can be used to give a parameter any

value from the specified type. This is required because in a parallel composition, the exit

values of a process must match; use of any gives flexibility.

• Data values may be present as parameters to processes, just as gate names may be used as

parameters in Basic LOTOS.

Note that, according to the full LOTOS syntax, a specification may optionally have data type

definitions, whereas it must have process definitions. Within these constraints, the balance between

the two components may be altered, giving, for example, a specification which has no data types

at all, or a specification which has lots of data types, but only a minimal process providing an

interface to the data types. The stack descriptions of section 10.2 demonstrate this ability to

describe the same object in totally different ways while staying within the full LOTOS language.

10.1.3 Full LOTOS Sem antics

Having introduced the syntax of full LOTOS, it is important to discuss how the addition of data

types to the language affects the semantics. The semantics of an ACT ONE type is a multi­

sorted algebra composed of (one or more) carriers of data elements, and a set of operations (total

functions) over the carriers. ACT ONE data types are given initial algebra semantics. An algebra

is initial iff there exists a homomorphism between it and any other algebra which gives the same

properties for the signature. The formal definition of the ACT ONE syntax and semantics is

discussed more fully in appendix B.

167

The semantics of a full LOTOS process is given by a structured labelled transition system.

Instead of being labelled by a gate name, a transition is labelled by a gate name and a string of

values from the ACT ONE algebra. For example, transitions are of the form

where g 6 Gates as before, and w = v\ .. ,vn ,Vi 6 Value. Obviously the interpretation of Value

will differ from specification to specification, depending on the data types used. No variables are

included in w, the semantics of full LOTOS ensures that the variables of the specification are

all instantiated, i.e. only ground terms appear in labelled transition systems and uninstantiated

terms have no meaning.

Whereas in Basic LOTOS the set Act was composed of gate names and the internal action, now

actions are of the form gw as above. All definitions of equivalence/congruence/preorder relations

are modified to use the new type of actions simply by using the new definition of Act. For example,

for actions to match in a bisimulation relation, the gate names and the data values of the transition

must match.

Bearing in mind that the semantics of every LOTOS specification is a structured labelled

transition system, it easy to see now why the data component of the specification is optional while

the process part is compulsory. Since the equivalences are based on observable behaviour, the

specifications must have at least some behaviour to observe. Obviously if a specification consists

of only data types then there will be no transitions; the process part is equivalent to stop. As

with many other formalisms, this is the result of a design decision by the creators of the language,

and is not the only way to describe objects.

Now we have discussed how a data type may be used in a LOTOS specification, and how the

meaning of that specification is given, we can go on to consider the verification of full LOTOS

specifications.

10.2 T hree V iew s o f a Stack

Early in the development of LOTOS, [Got87] considered the problems of verification of full LOTOS

specifications. Four descriptions of the same example, the stack, are presented in [Got87], each with

a different emphasis on the process algebra or the abstract data type parts of LOTOS. Although

the descriptions look quite different, the author claims they all represent the same object, and are

in fact weak bisimulation congruent. No proof is presented to support this conjecture, although

the author used testing and simulation tools to gain confidence in his claim.

In order to gain intuition about what adjustments to the verification process may be necessary

168

when a full LOTOS specification is under consideration, we re-examine three of the four stack

descriptions of [Got87] with a view to formally proving their equivalence. We have attempted

to stick as closely as possible to the original descriptions, making only essential changes. Most

changes were the result of what were assumed to be typographical errors; however, we did also

remove the error values of the abstract data type as these were not necessary and in fact created

some problems. The proofs are completed by hand, using a combination of equational reasoning

and bisimulation techniques.

10.2.1 The ACT ONE Stack

We begin by giving a description of the stack data type in ACT ONE; see figure 10.2. This forms

the basis for the first LOTOS stack, Stack_l, in the next section, but may also be viewed as the

conceptual model of behaviour we have in mind when giving the process algebra style descriptions

of StackJ2 and Stack_3. Note that the description in figure 10.2 does not constitute a LOTOS

specification itself, as it has no process algebra behaviour.

typ e Element is (* ACT ONE d e f in it io n *) en d typ e

ty p e Stack_Type(Data) is Boolean
form aljsorts Data
sorts Stack_Type
opns New : —> Stack_Type

Push : Stack_Type x Data —> Stack_Type
Pop : Stack_Type —> Stack_Type
Top : Stack-Type —> Data
Empty : Stack_Type —> Bool

eqns forall s : Stack_Type, d: Element
ofsort Bool
Empty (New) = true
Empty (Push (s , d)) = fa ls e
ofsort Data
Top (Push (s , d)) = d
ofsort Stack_Type
Pop (Push (s , d)) = s

en d typ e

ty p e Stack_Type (Element) is
Stack_Type (Data) actualizedby Element

using sortnam e Element for Data
en d typ e

Figure 10.2: Abstract Data Type: Stack

In the ACT ONE stack the usual operations are defined: to p , push, pop and empty. Error

values are ignored as the process guards provide the means to avoid constructing data values which

169

are undefined, such as Top (New).

This specification also demonstrates the parameterisation mechanism used in ACT ONE whereby

the stack type is described independently of the type of the data elements. These are instantiated

later. Comments are bracketed by (* and *). Note that our use of comments to indicate por­

tions of the specification which have been omitted is not correct concrete LOTOS, but is rather a

convenient method of abbreviating the presentation.

In the proof of section 10.2.4 that S tack .l and Stack_2 are equivalent we will find it convenient

to be able to refer to the bottom part of the stack, i.e. we define a function r e s t which takes a

stack and returns the stack obtained by removing the top element.

r e s t : Stack_Type —> Stack_Type
r e s t (Push (s , d)) = s

Note that r e s t (New) is undefined; we will never apply r e s t to New.

10.2.2 The First LOTOS Stack

The first stack will be described with the emphasis on ACT ONE. The ACT ONE description of

the stack is as given in figure 10.2. The process part given in figure 10.3 supplies the external

interface to the abstract data type stack.

specification Stack_Data_Type_l

library Boolean end lib
ty p e Element is (* ACT ONE d e f in it io n *) en d typ e
ty p e Stack_Type (Data) is (* ACT ONE d e f in it io n in fig u re 10.2 *) en d typ e
ty p e Stack_Type (Element) is (* ACT ONE d e f in it io n in f ig u re 10.2 *) en d typ e

behaviour
process Stack_l [push, pop, top , empty] :n oex it : =

push?x:Element; Used_Stack_l [push, pop, top , empty] (Push (New, x))
[] emptylEmpty (New); Used_Stack_l [push, pop, top , empty] (New)

w here
process Used_Stack_l [push, pop, top , empty] (s :Stack_Type) :n oex it : =

push?x:Element; Used_Stack_l [push, pop, top , empty] (Push (s , x))
□ [not (Empty (s))] —> pop; Used_Stack_l [push, pop, top , empty] (Pop (s))
[] [not (Empty (s))] —> toplTop (s) ; Used_Stack_l [push, pop, to p , empty] (s)
[] empty lEmpty (s) ; Used_Stack_l [push, pop, top , empty] (s)
endproc

endproc
en d spec

Figure 10.3: The First Stack

This stack is referred to as Version 1 in [Got87].

170

10.2.3 The Second LOTOS Stack

Here the data type is coded within the process part, i.e. the stack mechanism is implemented

by the processes, rather than being described by adt equations. The specification still retains

approximately the same structure as before, the main differences being the substitution of the ACT

ONE terms in the process by constants, the change in the parameter to Used_Stack_2 from the

whole stack to just one element of the stack, the top element, and the use of to connect separate

cells of the stack, i.e. instances of Used_Stack_2 (x). Note that the process Used_Stack_2 Ox)

always deals with a stack with something in it, whereas the process Used-StackJL (s) may also

have to deal with an empty stack.

specification Stack_Data_Type_2

library Boolean end lib
ty p e Element is (* ACT ONE d e f in it io n *) en d typ e

behaviour
process Stack_2 [push, pop, top , empty] :n oex it : =

(push?x:Element; Used_Stack_2 [push, pop, top , empty] (x)
[] em pty!true; ex it)

» Stack_2 [push, pop, top , empty]
w here
process Used_Stack_2 [push, pop, top , empty] (x:Elem ent) :ex it : =

push?y:Element; Used_Stack_2 [push, pop, top , empty] (y)
» UsedJStack_2 [push, pop, top , empty] (x)

[] pop; ex it
[] to p lx ; Used_Stack_2 [push, pop, top , empty] (x)
[] em pty!fa lse; Used_Stack_2 [push, pop, top , empty] (x)
endproc

endproc
endspec

Figure 10.4: The Second Stack

This stack is referred to as Version 3 in [Got87].

10.2.4 Proving Stack One Equivalent to Stack Two

Having described our stacks, how can it be verified that the two specifications, Stack_Data_Type_l

and Stack_Data_Type_2, denote the same object?

In the previous examples, where we were restricted to Basic LOTOS, such verification was

achieved by proving that the process expressions of the specifications were related by one of the

equivalence, congruence or preorder relations. For full LOTOS we have the added complication

of expressions relating to data. The definitions of the relations in previous chapters are easily

modified to take account of the shift from gate names to structured actions, as mentioned in

171

section 10.1.3. We can therefore still attempt to prove that Stack_l and Stack_2 denote the same

object by showing that the process expression corresponding to Stack_l is equivalent in some

sense to the one corresponding to Stack_2, although the proof technique for this is not as well

researched as that for Basic LOTOS expressions. Here we identify the top level process Stack_l

with the specification Stack_Data_Type_l by an abuse of notation, and similarly for Stack_2. The

relation chosen for the comparison is weak bisimulation congruence as this was the relation used

in [Got87j.

The proof method we use is a combination of equational reasoning and construction of a

bisimulation relation; this proof method is employed in [Mil89b] for CCS with simple data types.

We also note that a sketch of an apparently similar style of proof for equivalence of two queue

specifications described in full LOTOS appears in [Bri88b]. At the time our proof was completed

we were unaware of this sketch. To our knowledge, no such proof has ever been fully worked out

for full LOTOS specifications.

The proofs are carried out by hand, partly to gain intuition as to the proof process, and partly

because no tools currently exist which can prove equivalences between full LOTOS specifications.

As observed in the introduction, there are several tools which operate over full LOTOS, but these

are simulators or testers, and our aim is to produce a formal, mathematical proof of correctness.

It is possible to use a tool to produce a labelled transition system which can then be fed into a

tool such as the Concurrency Workbench; this technique is used in [EFJ90]. However, this process

requires intervention by the user to rename the actions to make them acceptable for input to the

Concurrency Workbench, and on even a small example like the stack, this seems more tedious

than carrying out the proof by hand in the first place.

The tool used in the last two sections, PAM vl.O, cannot be used for the proofs as PAM only

deals with basic process algebras. However, a new version called VPAM is under development in

which processes can have data type parameters, and we hope to use this tool at some point in the

future. Addition of data types would be straightforward in a term rewriting system framework,

but we are reluctant to go back to using RRL, as this would mean losing the ability to define

recursive processes. It might be possible to use the data value parameters of the processes to

control the rewriting, i.e. primitive recursion, but the stacks in this chapter are unbounded data

types, therefore the recursion would be unbounded for open terms. For the time being we are

resigned to carrying out the proof by hand.

Formally, we wish to prove the following theorem holds:

T heorem 3 StackJ. =wbc Stack_2

Proof. Since full LOTOS is rather verbose, the first step in the proof is to simplify the processes

as much as possible. This is done in two ways: syntactically and semantically. The former includes

172

the omission of gate parameters to the processes because the formal and actual parameters of the

processes are the same in both descriptions, and omission of types of values because these may

be deduced from the context. Semantic manipulations include application of the laws of weak

bisimulation congruence to the behaviour expressions, and application of the equations of the

data type to the abstract data type expressions. The descriptions we give below are therefore

LOTOS-like, but do not conform to the concrete syntax of LOTOS.

We identify significant states in the processes S tack J and Stack_2 and present their simplified

forms.

S tack J = push?x; Used_Stack_l (Push (New, x))
[] empty!true; Used_Stack_l (New)

Stack_2 = (push?x; UsedJ5tack_2 (x)
[] empty!true; ex it) » Stack_2

= w b c push?x; (Used_Stack_2 (x) » Stack_2)
[] empty!true; Stack_2

We now do the same for UsedJStack J and Used_Stack_2.

Used_Stack_l (New) and Used_Stack_l (Push (s , x)) are considered as separate cases. There

is no need to do this for Used_Stack_2 as Used_Stack_2 (New) is not a state of Used_Stack_2; it is

blocked by the process algebra behaviour. In Used_Stack_l (New) the expression Empty (New) is

replaced by true, and two of the four choices are removed because their guards evaluate to fa ls e .

Used_StackJ (New) = push?x; Used_Stack_l (Push (New, x))
[] em pty!true; Used_Stack_l (New)

Used_Stack_l (Push (s , x)) = push?y; Used_Stack_l (Push (Push (s , x) , y))
[] pop; Used_Stack_l (s)
[] top !x; Used_Stack_l (Push (s , x))
[] em pty!false; Used_Stack_l (Push (s , x))

Used_Stack_2 (x) = push?y; Used_Stack_2 (y) » Used_Stack_2 (x)
[] pop; ex it
[] top !x; UsedJStack_2 (x)
[] em pty!false; Used_Stack_2 (x)

It is illuminating to look at the labelled transition systems for these processes, given in fig­

ure 10.5. We can see from these diagrams that S tack J and StackJ! look very similar, except that

the state Stack_l is visited only once, at the start of execution, Used_Stack_l being used in its

place in the remainder of the execution. As a first step towards proving Stack_l =wbc StackJ! we

show Stack_l =wbc Used_Stack_l (New). The proof proceeds by unique fixed point induction:

if Used_Stack_l (New) can be substituted for StackJ. in the defining equations of S tack J with

no change in the behaviour, then UsedJStack J (New) is equivalent to S tack J . This is obvious

from the equations above.

173

e m p ty ! t r u e

p u s h ?x

e m p ty !t r u e
t o p l x

e m p ty !t r u e j
t o p ! y

empty ' . t r u e |
t o p ! z

e m p t y ! t r u e

Used S ta c k 1 (New)

e m p t y ! t r u e

pop I
pu s h ?x

U s e d _ S t a c k _ l (Push(New, x))

p u s h ?y

Used S ta c k 1
(PusTi (PusTi (New, x) , y)

e m p ty ! t r u e {
t o p ! x '

pop

e m p ty ! t r u e {
to p ' . y r

pop

p u s h ?z
e m p ty !t r u e /

t o p ! z
U s e d _ S t a c k _ l
(Push (Push (P ush (New, x) , y) , z)

S ta c k _ 2

p u s h ?x

U s e d _ S ta c k _ 2 (x) >> S ta c k _ 2

p u s h ? y

U se d _ S tac k _ 2 (y) >>
(Used S t a c k 2 (x) >> S t a c k 2)

p u s h ?z

U se d _ S ta c k _ 2 (z) >>
(U s ed _ S ta ck _ 2 (y) >>

(Used S t a c k 2 (x) >> S t a c k 2))

Figure 10.5: Stack-1 and Stack_2

The next stage of the proof is to show that Used_Stack_l =wbc Stack_2. We construct a

relation, 72, which includes pairs of process expressions (which represent states) which we claim

are equivalent; we must then show that 72. is a weak bisimulation. Using the process expressions

in figure 10.5 as a guide, we give the first few pairs of 72 below. Note that since » is associative,

we have omitted brackets.

72 = {(Used_Stack_l (New), Stack_2),
(UsedJ5tack_l (Push (New, x)), Used_Stack_2 (x) » Stack_2),
(Used_Stack_l (Push (Push (New, x) , y)) ,

Used_Stack_2 (y) » Used_Stack_2 (x) » Stack_2),
(Used_Stack_l (Push (Push (Push (New, x) , y) , z)) ,

Used_Stack_2 (z) » Used_Stack_2 (y) » Used_Stack_2 (x) » Stack_2),
. . . }

Since the stacks are unbounded 72 will contain an infinite number of pairs, so to express 72

finitely we have to find a generalisation of the pairs in 72. We define functions which “trans­

late” from states in Stack_l to states in Stack_2, using the adt stack given in figure 10.2 as an

intermediate step. These functions are merely syntactic manipulations of process expressions.

Given a stack s of Stack-Type, we assume that s is in canonical form, i.e. composed only of

applications of Push and New (applications of Pop can be removed by the equations of StackJType,

and Top gives values from Data, rather than Stack-Type). We define / and g which take s of

Stack-Type and return a process expression, i.e. a member of V, in Stack_l or Stack_2 respec­

tively.

/ : Stack-Type —)■ V g : Stack-Type —» V
/ (s) = Used_Stack_l (s) #(Push (s , d))= Used_Stack_2 (d) » g(s)

<7(New) = Stack_2

Both functions are bijective with respect to syntactic equality, since both processes take a stack

174

s, which is in canonical form, and merely perform syntactic manipulations of the representation of

that stack to give a process expression. For the function / this manipulation is trivial, prefixing

the stack s by Used_Stack_l, therefore each stack s has a unique representation in terms of

process expressions relating to states in the labelled transition system of StackJ.. The function

g performs a more complicated manipulation, but it is clear that no elements of the stack s are

lost or duplicated in the transformation into process expressions, and that each stack s is related

to precisely one process expression relating to states in the labelled transition system of Stack_2.

Given these definitions, we now define 1Z by:

^ = { (/ (s) .5,(s)) | Vs.s : StackJType}

Having now defined 1Z so that each pair consists of two states which we claim are bisimilar, we

have to prove that 1Z is a weak bisimulation. We proceed by showing that for any pair in 1Z, the

definition of weak bisimulation is satisfied (see definition 4 of chapter 3 for the formal definition),

i.e. for each pair, if one state can perform some transition, then the other state must also be able

to perform that transition and the pair of states resulting from these transitions is also in 1Z. We

consider two cases of pairs: s = New and s ^ New.

Case: s = New. The pair under consideration is (/(New),</(New)), i.e. (UsedJStackJ (New),

S ta ck J). From the defining equation of Used .Stack J (New) two transitions are possible: push?x

and em pty!true.

1. push?x can also be performed by S tack J . The resultant pair of states is

(U sed-StackJ (Push (New, x)) , UsedJStack J (x) » S ta ck J)

By the definition of / and g this pair of states can be expressed as (f(s ') ,g (s ')), where

s' = Push (New, x) , which is in 1Z.

2. empty!true can also be performed by S tack J . The resultant pair is

(UsedJStackJ (New), S ta ck J)

which we know to be in 1Z since this is the pair originally under consideration.

The argument is similar for the second clause of the bisimulation definition.

Case: s ^ New. Here we proceed much as in the first case, except this time we choose an

arbitrary pair from 1Z and therefore an arbitrary underlying stack s. Let s = P u sh(... (Push(New,

x i) , . . .) , x„) for some n > 1. The pair in 1Z under consideration is (/(s) , </(s)), i.e.

175

(Used_Stack_l (s) , Pn) where Pk is defined to be (Used_Stack_2 (x/e) » Pk-i) for k > 0 and

S ta ck J for k = 0.

Four actions are possible:

1. push?y. After push?y the state pair evolves to the result pair

(Used_Stack_l (Push (s , y)) , Used_StackJ (y) » Pn)

By using the definition of / and g and the states of this pair we can see the underlying stack

is s' = Push(s, y), allowing this pair to be alternatively expressed as (/(s ') , g{s')), which

is therefore in 11.

2. pop. To make the calculation of the resultant pair easier, we first partially unfold the

definitions of / and g in the original state pair giving

(Used_Stack_l (Push (r e s t (s) , xn) , Used_StackJ (xn) » Pn- i)

where r e s t (s) is as defined in section 10.2.1. The pair which results after a pop action is

(Used_Stack_l (rest(s)), ex it » Pn- i)

The right hand element of the pair, ex it » P ^-i, can be rewritten using the laws of weak

bisimulation congruence to give i; P„_i, giving the pair

(Used_Stack_l (rest(s)), i;P n_i)

Since we know that this is not the pair at the root of the labelled transition system, we can

use weak bisimulation e q u iva le n c e laws to remove the occurrence of i, giving

(Used_Stack_l (rest(s)), Pn-i)

which can be expressed as (/ (r e s t(s)) , g (rest(s))), which is in 1Z.

3. top lx ,,. This transition starts and ends in the same state, so the resultant pair is just the

same as the original state, i.e.

(Used_Stack_l (s), Pn)

which is in 1Z.

4. em pty!fa lse. As with to p !x n the resultant pair is

(Used_Stack_l (s), P n)

176

which is in 1Z.

Again, the argument is similar for the second clause.

Since the pair in the second case above was chosen arbitrarily, it represents all pairs in 7Z except

the pair (/(New),0r(New)), which was considered in the first case. The two cases above therefore

cover all possible forms of pairs in 7Z, and hence 7Z satisfies the definition of weak bisimulation.

Since 1Z is a weak bisimulation, any pair of processes in 7Z are bisimilar. In particular, the pair

(Used_Stack_l (New), Stack_2) belongs to 7Z, and hence Used_Stack_l (New) &wbe Stack_2.

Since the first branches of the labelled transition systems involved no internal actions, this relation

is also a congruence, see the definition of observation congruence (weak bisimulation congruence),

definition 4, section 3.4.3. I

Having successfully shown that StackJL and Stack_2 are weak bisimulation congruent using a

combination of equational reasoning and construction of a bisimulation relation, we now consider

a third description of the stack.

10.2.5 The Third LOTOS Stack

Although described using only process algebra and simple data types, Stack_2 retained some of

the structure and flavour of Stack_l. In the third stack specification, shown in figure 10.6, the

adt style is left behind, concentrating on process algebra to give a more operational definition of

the stack.

Similarly to Stack_2, the process Used_Stack^3 is parameterised on the top element of the

stack; the rest of the stack is modelled by an auxiliary data structure made up of linked cells, each

cell containing one element of the stack.

This description is referred to as version 4 in [Got87].

10.2.6 Proving Stack One Equivalent to Stack Three

In Stack_2, each instantiation of Used_Stack_2 only has information about one element of the

stack; as soon as that element is popped from the top of the stack, the process Used_StackJ2 exits

and control is taken up by the instantiation of Used_Stack_2 modelling the next element down in

the stack. In this procedure, it is only because we know how control is passed from one process

to another via the » operator that we can deduce that StackJ! behaves as expected.

In Stack_3 we have a similar situation; this time the Used_Stack^3 process behaves like the top

element of the stack with a pointer to the rest of the stack. Although Used_Stack^3 can perform

the stack events of push, pop, etc., it is really only an interface to the stack-like structure of linked

instantiations of C ell. After a pop action, Used_Stack_3 obtains the new top value from the C ell

structure.

177

sp ecification Stack_Data_Type J

library Boolean end lib
ty p e Element is (* ACT ONE d e f in it io n *) en d typ e

b ehaviour
process S ta ck J [push, pop, top , empty] :n oex it : =
(NewJtack [push, empty]

» accept x:Elem ent, n :In t in
(h id e up_l, up_2, down_l, down_2 in

Used_Stack_3 [push, pop, top , empty, up_i, up_2] (x , n)
|[up_l, up_2] | C ell [up_l, up_2, down_l, down.2] (x , 0)))

» S ta ck J [push, pop, top , empty]

w here
p rocess NewJtack [push, empty] :ex it (Element, In t) : =

push?x: Element; ex it (x , 1)
[] em pty!true; NewJtack [push, empty]
en d proc

p rocess U sed J ta ck J [push, pop, top , empty, up_l, u pJ] (x:Elem ent, n :In t) :ex it : =
push?y:Element; up_i!x; U sed J ta ck J [push, pop, top , empty, up_l, up_2] (y , n+1)

[] pop; up_2 ? z :Element;
([n = 1] —> ex it
[] [n ^ l] ^ U sed J ta ck J [push, pop, top , empty, up_l, up«2] (z , n * l)

[] top !x ; U sed J ta ck J [push, pop, top , empty, up_l, up_2] (x , n)
[] em pty!fa lse; U sed J ta ck J [push, pop, top , empty, up_l, up_2] (x , n)
en d proc

p rocess C ell [up_l, up_2, down_l, down_2] (x:Elem ent, n :In t) :ex it : =
h id e down.l', down_2; in
(up_l?y Element;

([n > 0] —> down_l! x ; C ell [up_l, up_2, down_l, down_2] (y , n+1)
[] [n = 0] —> (C ell [up_l, up_2, down_l, down_2] (y , n+1)

|[down_l, down.2] | C ell [down_l, down.2, down.1', down.2'] (x , 0)))
[] up J !x;

([n > 0] —> downJ?z: Element; C ell [up_l, up_2, down.l, down.2] (z , n-1)
□ [n = 0] —> e x it))
en d proc

endproc
en d sp ec

Figure 10.6: The Third Stack

178

Consider trying to show Stack-1 = wbc Stack_3 using the same method as in the previous

section. In the case analysis of possible transitions from an arbitrary state, it is clear that both

stacks can perform a pop action; it is less clear that Stack^3 then behaves like the rest of the

stack. Since C e ll actions are hidden, we cannot use weak bisimulation congruence to analyse

their behaviour; C e ll could reverse the values for all we know, or generate random values. In

other words, we can never be sure that C e ll returns the right values and in the right order. To

try to gain understanding of the workings of Stack_3 we take a particular stack and simulate the

process for the values of that stack.

E quational P ro o f for a P articular Stack

We begin by considering the way Stack_3 behaves with the sequence of actions push! 1 ; p u sh !2 ;

pop; t o p ? l ; pop; ex it. A test that S ta c k s really behaves like a stack will be whether or not it

can synchronise on the t o p ! 1 action. Below we unfold S ta c k s in parallel with the above sequence

of actions by hand, in order to gain some confidence in the correctness of the C e ll processes. We

begin with the expression

Stack_3 I [s ta c k je v e n ts] I p u sh il; push!2; pop; t o p ! l ; pop; ex it (*)

and attempt to obtain something of the form

p u s h il; p u sh !2; pop; t o p ! l ; pop; Stack_3

In the following unfoldings we know which event we want to occur next, therefore we only

unfold the appropriate part of the expression. This helps make the unfolding more readable.

Since all other actions in the choice expression are blocked by our choice of synchronisation list

this is correct. To further aid readability we abbreviate the set of actions up_l, up_2 by up,

dow n.l, down_2 by down, u p _ l, up_2 , dow n.l, down_2 by updown, and push, pop, to p , empty

by sta ck _ ev en ts .

We begin by unfolding some subsidiary expressions required for the unfolding of (*).

L em m a 1 Our first unfolding is to push an occurrence of up_l! 1 through the stack expression.

h id e updown in (u p _ l!l; Used_Stack_3 (2 , 2) I Cup] I C e ll (1 , 0))
—iti be

i; h id e updown in (Used_Stack_3 (2 , 2) I [up] I (C e ll (1 , 1) I [down] I C e ll (1 , 0)))

We proceed by unfolding and expansion

h id e updown in (u p .l! 1; UsedJStack^ (2 , 2) I [up] I C e ll (1 , 0))
=wbc (unfold)

h id e updown in
(u p .l ! 1; UsedJStack.3 (2 , 2)
I [up]I up_i?y; (C e ll (y , 1) I[down]I C ell (1 , 0)))

179

=wbc (expansion)
h id e updown in

up_l! 1; (Used_Stack^3 (2 , 2) I[up]I (C e ll (1 , 1) I[down]I C ell (1 , 0)))
=wbc (f5n)

i; h ide updown in (UsedJStack_3 (2 , 2) I [up] I (C ell (1 , 1) I [down] I C e ll (1 , 0)))

L em m a 2 Next we unfold the expression which pushes up_2 ?z through the stack expression.

h id e updown in
((up_2?z; Used_Stack-3 (z , 1)) I [up] I (C ell (1 , 1) | [down] | C ell (1 , 0)))

—wbc
i; h id e updown in (Used_Stack_3 (1 , 1) I [up] I (C e ll (1 , 0) I [down] | e x it))

Again we proceed by unfolding and expansion. Note that the second C ell process cannot interact

with UsedJStack.3 as its events were renamed at instantiation.

h id e updown in
((up_2?z; Used_Stack_3 (z , 1)) I [up] I (C e ll (1 , 1) | [down] I C e ll (1 , 0)))

=wbc (unfold)
h id e updown in

((up_2?z; Used_Stack_3 (z , 1))
I [up] I (up_2!l; down_2?z; C ell (z , 0) I [down] I C e ll (i , 0)))

=wbc (expansion, unfold)
h id e updown in up_2 ? l;

(Used_Stack^3 (1 , 1)
I [up] I (down_2?z; C ell (z , 0) I [down] | down_2!l; e x it))

=wbc (expansion)
h id e updown in up_2 ? l;

(UsedJStack^ (1 , 1) I [up] I down_2?l; (C e ll (1 , 0) I [down] I e x it))
=wbc (expansion)

h id e updown in up_2 ? l; down_2 ? l;
(Used_StackJ3 (1 , 1) I [up] I (C e ll (1 , 0) | [down] I e x it))

=wbc (f5a, m l)
i; h id e updown in (Used_Stack_3 (1 , 1) I [up] I (C ell (1 , 0) I [down] I e x it))

We now proceed with the main proof of (*), i.e.

C onjecture 1 Simulation of the stack with a particular sequence of events.

Stack.3 I [stackjeven ts] | p u sh il; push!2; pop; to p l l ; pop; ex it (*)
=wbc

p u sh il; push 12; pop; to p l l ; pop; Stack_3

As with the lemmata we proceed mainly by unfolding and expansion.

StackJ3 I [sta ck jev en ts] | p u sh il; push 12; pop; to p l l ; pop; ex it
—wbc (unfold)

(NewJStack » accept x , n in
(h id e updown in UsedJStack^3 (x , n) I [up] I C e ll (x , 0)))

» S ta c k s I [stack_events] | p u sh il; push!2 ; pop; to p l l ; pop; ex it

Let us consider just the initial portion of the right hand side, bearing in mind that this process

will eventually exit, at which point we need to re-introduce the » Stack_3 part of the process.

180

(New_Stack » (accept x , n in
(h id e updown in Used_Stack_3 (x , n) I [up] I C ell (x , 0)))

I [stack jeven ts]I p u sh il; push!2 ; pop; to p l l ; pop; ex it
=wbc (unfold)

((push?x; ex it (x , 1) [] empty I true; New_Stack)
» accept x , n in (h ide updown in U sed J ta ck J (x , n) I [up] I C ell (x , 0)))

I [s ta ck jev en ts] | p u sh il; push 12 ; pop; to p l l ; pop; ex it
=wbc (expansion)

push 1 1 ;
((e x it (1 , 1) » accept x , n in

(h id e updown in U sed J ta ck J (x , n) I [up] I C ell (x , 0)))
I [stackjeven ts] I push!2 ; pop; to p l l ; pop; ex it)

=wbc (d2b, m l)
p ush!1 ;

((h id e updown in U sed J ta ck J (1 , 1) I [up] I C ell (1 , 0))
I [stack_events] I push!2 ; pop; to p l l ; pop; ex it)

Since we know that we want the action push 12 to proceed, and that all others are restricted

by the synchronisation list of the parallel operators, we can unfold this expression further.

push 1 1 ;
((h id e updown in push?y; u p_l!l; U sed J ta ck J (y , 2) I [up] I C ell (1 , 0))
I [stackjeven ts] I push!2 ; pop; to p l l ; pop; ex it)

=wbc (f5b)
p u sh il; ((push?y; (h id e updown in up_l!l; Used_Stack_3 (y , 2) I [up] I C e ll (1 , 0)))
I [stackjeven ts] I push!2 ; pop; to p l l ; pop; ex it)

=wbc (expansion)
p u sh il; push 12 ;

((h id e updown in (u p _ l!l; Used_Stack_3 (2 , 2) I [up] I C e ll (1 , 0)))
I [stackjeven ts] I pop; to p l l ; pop; ex it)

From the result of the first lemma we substitute for the expression

h ide updown in (upJLIl; U sed J ta ck J (2 , 2) I [up] I C ell (1 , 0))) , giving:

p u sh il; push 12 ;
(i; h id e updown in (U sed J ta ck J (2 , 2)

I[up]I (C e ll (1 , 1) I[down]I C ell (1 , 0)))
I [stackjeven ts] I pop; to p l l ; pop; ex it)

=wbc (expansion, m l)
p u sh il; push 12 ;

(h id e updown in (U sed J ta ck J (2 , 2)
I [up]I (C e ll (1 , 1) I[down]I C ell (1 , 0)))

I [stackjeven ts] I pop; to p l l ; pop; ex it)
—wbc (unfold)

p u sh il; push 12 ;
(h id e updown in (pop; up_2?z; U sed J ta ck J (z , 1)

I [up]I (C e ll (1 , 1) I[down]| C ell (1 , 0)))
I [stackjevents] I pop; to p l l ; pop; ex it)

=wbc (expansion)
p u sh il; push!2 ; pop;

(h id e updown in ((upJ2?z; U sed J ta ck J (z , 1))
I[up]I (C e ll (1 , 1) I[down]I C ell (1 , 0)))

I [stackjevents] I t o p l l ; pop; ex it)

181

Using the second lemma we can substitute the unfolding of h ide updown in

((up_2?z; Used_Stack_3 (z , 1)) I [up] I (C ell (1 , 1) I [down] I C ell (1 , 0))) into the cur­

rent unfolding

p u sh il; push!2 ; pop;
(i; h id e updown in (Used_Stack^3 (1 , 1) I [up] I (C e ll (1 , 0) I [down] I e x it))
I [stackjeven ts] I t o p l l ; pop; ex it)

=wbc (expansion, unfold)
p u sh il; push!2 ; pop; i;

(h id e updown in (to p l l ; Used_Stack_3 (1 , 1) I [up] I (C e ll (1 , 0) I [down] I e x it))
I [stackjeven ts] I t o p l l ; pop; ex it)

= w bc (m l, expansion)
p u sh il; push 12 ; pop; to p l l ;

(h id e updown in (Used_Stack_3 (1 , 1) I [up] I (C ell (1 , 0) I [down] I e x it))
I [stackjeven ts] I pop; ex it)

Here we see that Used_Stack_3 does indeed have the correct value for the top of the stack,

since it is able to perform the t o p l l action. We continue with the unfolding to check that we

return to the original state.

p u sh il; push 12 ; pop; to p l l ;
(h id e updown in (Used_Stack^3 (1 , 1) I [up] I (C e ll (1 , 0) I [down] I e x it))
I [stackjeven ts] I pop; ex it)

= w b c (unfold)
p u sh il; push 12 ; pop; to p l l ;

(h id e updown in ((pop; up_2?z; ex it) I [up] I (C e ll (1 , 0) I [down] I e x it))
I [stackjeven ts] | pop; ex it)

= w bc (expansion)
p u sh il; push!2 ; pop; to p l l ; pop;

(h id e updown in ((up_2?z; ex it) I [up] I (C e ll (1 , 0) I [down] I e x it))
I [stackjevents] I ex it)

= w b c (unfold)
p u sh il; push!2 ; pop; to p l l ; pop;

(h id e updown in ((up_2 ?z; ex it) I [up] I ((up_2 ! l; ex it) I [down] I e x it))
I [stackjeven ts] I ex it)

= w bc (expansion)
p u sh il; push 12 ; pop; t o p l l ; pop;

(h id e updown in up_2 ? i; (ex it I [up] I (ex it I [down] | e x it))
I [stackjeven ts] I e x it)

= w b c (c3a, f5a, m l, expansion)
p u sh il; push 12 ; pop; to p l l ; pop;

(h id e updown in (ex it I [up] I e x it) I [stack_events] I ex it)

At this point we should remember that a part of the Used_Stack_3 process was stripped away

for convenience; we put it back now.

p u sh il; push 12 ; pop; to p l l ; pop;
(h ide updown in ex it » Stack_3 I [up] I e x it) I [stackjevents] | ex it

=wbc (d2a, f5a, expansion, m l)
p u sh il; push!2 ; pop; to p l l ; pop;

((h id e updown in S ta c k s I [up] I ex it) I [stack_events] I ex it)

182

— wbc (
p u sh il; push!2 ; pop; to p l l ; pop;

((h id e updown in S tack J I [stackjevents] I e x it) I [stackjevents] I ex it)
= w b C ' (c %> c 3 a)

p u sh il; push!2 ; pop; to p l l ; pop; (h ide updown in S ta ck s I [stackjevents] I e x it)

The occurrence of h id e will eventually be eliminated as at some point in the unfolding we

get two occurrences of hide, and one can be removed. In the last step above, we can remove

one occurrence of ex it by manipulation of the parallel operators, but not all. Since S ta ck J is

nonterminating, this ex it cannot be removed, as it has no other ex it process with which it may

synchronise; however, it will not interfere with the actions of S ta ck s . This means that we are in

fact unable to prove the conjecture (*) holds.

It can be seen that this unfolding is a very tedious process, and that, although we may have

gained some understanding of the behaviour of C ell and U sed J ta ck J , and hence some extra

confidence in the correctness of the behaviour, this cannot be taken as a formal proof that Stack_3

behaves like a stack.

We go on to consider other possible approaches to proving that Stack.3 has the same behaviour

as Stack_l or Stack_2.

O ther A pproaches to th e V erification

An alternative approach to the proof that Stack.3 has the same behaviour as Stack_l or Stack_2

might be to try to prove something about the C ell structure, for example, that it has the same

behaviour as Stack_l or Stack_2, and to use that proof to conclude that Stack.3 therefore behaves

like a stack. Informally, the structure built of C ell processes behaves similarly to a stack, but with

the bottom element held twice, and the actions renamed. Although we can relate the action up_l

to push, up_2 is more like a combination of top and pop; there is no C ell action which relates to

empty. These differences mean that we cannot say anything about C ell in relation to Stack_l,

since we cannot express that two actions are combined into one. Similarly, we cannot attempt a

proof of Stack.3 =wbc Stack_l with the occurrence of h ide removed as the C ell actions have no

counterparts in Stack_l, therefore the equivalence will certainly not hold.

It seems that we cannot perform a proof of behavioural equivalence between two specifications

to show that Stack.3 has the correct behaviour; are there any other ways of expressing the

requirement that S ta ck J behaves like a stack? In section 9.2 we used the notion of property

testing to express the bad behaviours of the radiation machine, perhaps we can use a similar

technique to express good behaviours of the stack. We can use the equations of the abstract

data type stack in figure 10.2, and also some information about which parts of the process model

empty stacks, to give specifications of properties which the stack may be expected to display. For

183

example:

1. A push action followed by a pop action should leave the stack unchanged,

2. A push?x action followed by a top !z action should satisfy x = z,

3. New_Stack_3 can never perform empty!fa ls e , only empty!true,

4. Used_Stack_3 (x , n) can never perform empty!true,

5. New_Stack_3 can never perform top or pop events,

6. Used_Stack_3 (x , n) performs top!x, not to p !z where x ^ z.

We consider formulating the first property above in more detail. The abstract data type

equation we use as our specification is Pop(Push(s, x)) = s; this property can be formulated in

terms of transitions as follows:

. push?x pop , .UsedJStack_3 (z , n) —> P — > UsedJStack^3 (z , n)

Given that so far we have working on equivalence proofs, we would like to be able to express

this as a relation between processes, e.g.

push?x:Element; pop; Used-Stack.3 (z , n) = Used_Stack^3 (z , n)

The question is: which relation should be used in place of =? It seems that the above equation

is too strict if a relation such as weak bisimulation is used as then it says that Used_Stack^3 (z , n)

may only perform push then pop actions. What we really want to say is that this is one possible

course of action, suggesting the use of the cred relation. If we try to prove the conjecture above

with cred for = we quickly encounter another problem: Used_Stack_3 does not operate in isola­

tion. In the conjecture there is no mention of the C ell processes. Including C ell processes gives

an expression of the form:

push?x:Element; pop;
(UsedJStack.3 (z , n) I [. . .] | C ell (xn, n) I [. . .] | . . . I [. . .] | C e ll (x l , 0))

cred
(Used_Stack_3 (z , n) I [. . .] | C ell (xn, n) I [. . .] | . . . I [. . .] | C ell (x l , 0))

assuming that the synchronisation lists are properly defined.

This formulation of the property has two problems. The first is that the proof will be extremely

tedious, and the second is that if we have to specify each x i then we are making the proof for

a particular stack, rather than for an arbitrary stack. On the other hand, if we do not specify

the x i we must at least specify n and then perform an induction proof over n to show that the

equivalence holds for all n. Again, this analysis will be tedious. The problem is that really

that we are attempting to prove something about a process containing uninstantiated variables.

184

Technically, such a process has no meaning in the LOTOS semantics, unless the specification is

parameterised over those variables, although we can think of it as representing a class of processes.

In the previous proof, of StackJ. =wbc S tack J , we ignored this fact and performed the proof for

an arbitrary stack. This did not matter as the laws of the allowed us to move the variables

around appropriately. Here the problem is exaggerated because we cannot rely on the laws of

weak bisimulation congruence since the actions of C ell are hidden, and we have to rely instead

on trying to investigate the values of the variables (therefore we must first assign values to those

variables).

The problems with S tack J arise because we are using LOTOS both as a specifications language

and as the meta-language in which we formulate desirable properties. While this was acceptable

for simple properties, we now encounter properties which require a more powerful meta-language

incorporating, for example, variables and quantifiers. The LOTOS formalism is more suited to

describing the construction of a system, than expressing a property of that system at a more ab­

stract level. The property we try to describe above can be easily expressed in terms of transitions:

if we are at a state s in a labelled transition system we can perform some actions to move to state

s' , and additionally we might be able to say something about a relationship between s and s',

such as s = s'. A more natural formalism to use for this sort of property is a modal or temporal

logic; the use of such a logic in conjunction with LOTOS is discussed in chapter 11.

10.2.7 Sum m ary and Discussion

We have studied three versions of the stack originally given in [Got87] and tried to prove them

equivalent in some sense. While we were able to prove that S tack J =wbc S ta ck J by using

a combination of equational reasoning and bisimulation construction, we were unable to prove

anything about the relationship between S ta ck J and the other two, mainly because we were

unable to formulate the conjecture to be proved. The problem of verification of full LOTOS

requires more study.

Other interesting observations made in [Got87] include some comments about the suitability

of LOTOS as a tool for specification. Some deficiencies mentioned are: the lack of a mechanism to

specify groups of events as atomic, i.e. to be performed without interleaving. This was something

we also encountered in the Login case study of chapter 7. Another possible problem identified by

Gotzhein is that LOTOS is a constructive language and that this might lead a specifier towards

a more implementation influenced design than if a more abstract language had been used. The

author does also praise LOTOS; in particular the ability to make specifications more readable (and

hence understandable) by modularisation, especially the hierarchical structuring of processes.

Given that the approach to verification which we have been using up till now, i.e. proving

the implementation satisfies the specification, is not as appropriate for full LOTOS as it was for

185

Basic LOTOS, we now consider the approaches of other authors to the problem of verification

of full LOTOS specifications which do not require the addition of other operators or adoption of

other formalisms, and which will allow us to remain within the equational reasoning paradigm,

specifically the proof system developed in chapter 8. These approaches work on the principle that

if full LOTOS is hard to deal with, then we must somehow separate the data types from the

process algebra; this includes totally removing the adt part of the specification. We present the

main ideas in more detail of two approaches, and consider how we might use them in practice.

Both approaches are illustrated by an example; one the stack of this section, and the other a full

LOTOS extension of the radiation machine example of chapter 9.

10.3 A U nified Fram ew ork

Part of the problem with verifying full LOTOS specifications is the apparent gap between objects

described using adts and objects described using process algebra. One method of narrowing that

gap is to create a unified framework for specification and verification by describing both parts of the

language in the same framework, e.g. in [Ple87] a CCS like language with adts is given a semantics

in terms of term rewriting systems. Another approach, which will be discussed in chapter 11, is

to use a more powerful formalism to describe system properties. Yet another alternative, which

is explored here, is to give the semantics of one part of the language in terms of the other part

by way of a translation. In the LOTOS literature this has been done in both directions: process

algebra in ACT ONE and data types as processes.

The semantics of Basic LOTOS in terms of ACT ONE can be found in [Raf92, EBB+86].

However, [Raf92] states that it is impossible to have a full and complete axiomatisation of LOTOS

in a many-sorted equational logic. This is because LOTOS contains operators expressing temporal

ordering of events and nondeterminism. Therefore, there is never a guaranteed transformation

from Basic LOTOS to ACT ONE. For our purposes, it is more useful to look at how data types

can be coded into processes, since we already have techniques for dealing with Basic LOTOS

processes. There are two main approaches at present to translating data types into processes:

abstract interpretation and context equations. These are examined below.

10.3.1 A bstract Interpretation and LOTOS

A b stract In terpretation and LOTOS

The problem with proofs involving full LOTOS is that they are too complicated. On the other

hand, proofs involving Basic LOTOS are much more straightforward, and a variety of proof tech­

niques and tools for such proofs exist. For some types of analyses, not all of the information in the

186

full LOTOS specification will be used; we need to get rid of the information we want to ignore,

retaining only the information necessary to complete the analysis. Abstract interpretation is a

well-known technique in partial evaluation of functional programs whereby a large/complex data

type is replaced in the program by a smaller /simpler data type. This is done in order to allow

evaluation of properties of the program, such as termination. By throwing away some information,

analysis of the program behaviour becomes more tractable. The difficult part is retaining enough

of the right information to make the evaluation meaningful. The same approach can be used to

translate full LOTOS specifications into Basic LOTOS specifications. This was investigated as

part of the LOTOSPHERE project, and is reported in chapter 13 of the Catalogue of LOTOS

Correctness Preserving Transformations [Bol92] produced by the project.

In this section we describe two transformations from full to Basic LOTOS from [Bol92]. In the

first, all data information is thrown away, leaving only the process skeleton, while in the secorid,

the data type information is retained by coding it into the process expressions. The correctness

of these transformations is expressed using modified versions of the simulation and bisimulation

relations. We give informal descriptions of the transformations and the relations; the full formal

descriptions may be found in [Bol92], illustrating the transformations by our own examples.

Obviously, transforming a full LOTOS specification into a Basic LOTOS specification in order

to simplify verification proofs is only justifiable if we can infer properties of the full LOTOS

specification based on the Basic LOTOS specification. An important question not addressed in

[Bol92] is: given two full LOTOS descriptions and their Basic LOTOS transformations, if we prove

something about the relationship between the Basic LOTOS specifications, can we then conclude

anything about the relationship between the full LOTOS specifications? We consider this question

in detail, with specific reference to the equivalence/congruence/preorder relations we have used

so far. Finally, we illustrate the use of one of the transformations by applying it to a full LOTOS

version of the radiation machine example of chapter 9, and completing a proof of safety of the

Basic LOTOS transformation of the machine in PAM.

R em ove D ata T ype Inform ation C om pletely

The first transformation we consider throws away all the information related to the data type.

Given any full LOTOS specification, we can always totally remove the data types to give a Basic

LOTOS specification by syntactically removing the adt part of the specification and any reference

to adts in the process expressions. In performing this transformation, information about data

which is important to the flow of control in the process, if there is any such data, will be lost,

and hence the process behaviour may be altered. For example, given the process P and its Basic

LOTOS transformation P',

187

P = in ? n :In t; ([n > 0] - > a; P P' = in ; (a; P'
n [n = 0] - > b; P D b; P'
[] [n < 0] - > c; P) [] c; P')

consider the consequences of executing P or P' in parallel with the processes Q and R, given below.

Q = b; Q R = (a; R [] b; R [] c; R)

Both q and R can be successfully run in parallel with P', synchronising on a, b and c in both

cases. However, it is clear that, with the same synchronisation list, while R runs successfully with

P, q in parallel with P may deadlock, since P may be forced to take either the a or the c action

because of the value of n, whereas q may only perform b. Even in these very simple processes, the

data makes a considerable difference. Having said that, this transformation may be of some use

in reachability analysis. Consider the process S which performs only d actions. Even with all the

data removed, it is obvious that P I [a , b , c , d] I S will deadlock.

The correctness of this transformation can be expressed in terms of a simulation relation over

processes. A simulation relation is one half of a bisimulation relation, i.e. only one clause of

definition 1 of chapter 3 need be satisfied. We write Q simulates P, P < Q, if Q can perform

all the actions of P (but P need not perform all the actions of Q). For this transformation, the

simulation relation is actually a family of relations, indexed by a coding function on events. The

coding function throws away all data values, i.e. if gw is a transition label, the coding function

returns g. The coding function is injective with respect to g, therefore distinctions between gate

names are preserved. The definitions of these relations may be found in [Bol92].

Using these simulation relations, the correctness of the abstract interpretation which removes

all the data type information is given by FL < 4, BL, where <f> is the coding function, FL the full

LOTOS specification and BL the Basic LOTOS specification.

Initially this preorder may seem to be written the wrong way round, but bear in mind that the

Basic LOTOS translation may be able to perform more actions than the Full LOTOS specification

can (because some of the restrictions enforced by the data type have been removed). What this

preorder says is that the Basic LOTOS process can perform all the actions the Full LOTOS process

can, i.e. it does not refuse any actions allowed by the Full LOTOS process.

As mentioned above, this coding is useful for reachability analyses. It is also useful in cases

where the data does not affect the flow of control within the process. Unfortunately, there are

lots of examples of processes in which the data does affect the flow of control. One such is the

radiation machine example presented in section 10.3.2, where data types are added to indicate

the level of radiation and the position of the shield. These values are then used to decide whether

or not it is safe to fire the electron beam. Obviously, it would be inappropriate to use the above

transformation on this example since the data types carry important information about the flow

of control of the process.

188

The next section presents a transformation which retains the data type information.

R etain D ata T ype Inform ation C om pletely

At the other end of the spectrum, we may take a full LOTOS process and transform it into a

Basic LOTOS process retaining all the data type information. There are two provisos: either the

data types involved must be finite, or the target language must provide a means of expressing

infinite choice over a data range. Although full LOTOS has an operator which gives a choice over

a possibly infinite range of data, Basic LOTOS has only finite choice, therefore we must ensure

that the data types we are dealing with are finite.

The basic idea of this transformation is to code the values and variables of the data types into

the process expressions. For example, a gate with an output variable is replaced by a new gate

name which incorporates the old gate name and the value represented by the output variable.

Gates with input variables are replaced by a choice over all the values of the appropriate type;

again the values are coded into the new gate name. As a concrete example, given a type Three

which denotes the set {1, 2, 3},

P = in?n:Three; P becomes P = i n . l ; P
[] i n . 2; P
[] i n . 3; P

This is of course the way in which value passing is implemented in CCS.

In practice, it is not enough for the original data types to merely be finite, ideally each type

should have only a small number of values, i.e. probably fewer than 10. This requirement is

not as restrictive as it may seem at first; the types of several specifications in the literature

satisfy this constraint, for example [Tho94, FLS90, EFJ90, DP91] and the OSI Session layer

specifications [Sco89, vS89, Aju89] all use enumerated types over a small range (but see below).

In addition to the basic transformation of event offers given above, other expressions involving

data types must also be evaluated. A record of which values are assigned to which variables

(the environment) must be carried around to allow the evaluation of guards and instantiation of

process parameters. This makes this transformation far more complex than the previous one. We

do not give the transformation details here, but illustrate its use in section 10.3.2 via the radiation

machine example. A full description of this transformation may be found in [Bol92].

The correctness of the previous transformation was expressed using a simulation preorder in

conjunction with a coding function; we can use something a little stronger here: a bisimulation

relation. This time the coding function must be bijective, because the definition of the bisimulation

relation requires the application of <̂-1 to transform Basic LOTOS labels into full LOTOS labels.

The correctness of this transformation is expressed by BL FL where the coding function <j)

performs the sort of transformations described earlier in this section. The full definition of the

189

coding function, and the bisimulation relation may be found in [Bol92].

While this transformation does retain all the data type information, which is good, it may

also give a huge explosion in the size of the specification. For example, if the processes in the full

LOTOS specification have data parameters, then each process is transformed into many processes,

one for each instantiation of the data parameters. Similarly, one variable event offer results in

several choice branches, one for each possible value of the variable.

A further problem of this transformation is the constraint that all types must be finite; although

some of the types of a specification may satisfy this constraint, the same specification may also

include infinite data types (typically the natural numbers or the integers). Several examples

of such specifications may be found in [vEVD89], including the OSI Session layer specifications

mentioned above. Many specifications include the integers or naturals as an unlimited source of

unique identifiers; if the process control relies in any way on comparison of these identifiers, then

neither of the abstract interpretation techniques described so far can be used.

An alternative transformation is given by choosing some sort of intermediate step between

throwing away all the data information and retaining all the data information. For example, the

Integers may be represented by the type {negative, zero, positive}. Another alternative is to retain

the type of values, but not the values themselves, so at least some sort of type checking can be

carried out. As with the first transformation, correctness of these transformations is expressed

using the simulation relation, <</,, as some information is being lost.

Assuming that we can use these transformations on a given specification, it is important to

know what implications results proved for the Basic LOTOS transformed specification will have

for the original full LOTOS specification. This question was not considered in [Bol92]; we consider

it below.

P ro p e rtie s of th e S im ulation R elations

Since the reason for using abstract interpretation is to allow verification to be carried out on the

simpler Basic LOTOS specifications rather than the full LOTOS specifications, it is important to

know what implications equivalences, or orderings, proved between Basic LOTOS specifications

have for the relationships between the full LOTOS specifications they represent. Obviously, any

relations depend heavily on the coding function used, so we will consider the two main transfor­

mations given above separately.

C oding Function Throw s Away All D a ta In fo rm ation Consider the coding which throws

away all data type information. Assume we have two full LOTOS specifications, FLi and FL2 .

From these we can derive two Basic LOTOS specifications, BLi and BL2 , so we have FLi BLi

and FL2 <* BL2 . Now assume that we can prove something about the relationship between

190

BLi and BL2 , say BLi ~ BL2 , i.e. BLi is strongly bisimilar to BL2 . What does this imply for the

relationship between FLi and FL2? Unfortunately, the answer is that nothing can be implied about

this relationship. As a counter example, take the case in which the strongest possible relation, and

hence all other relations, holds between BLi and BL2 : let them be the same process. The processes

FLi and FL2 are defined as follows, the transformed processes are denoted BLi and BL2 :

FLi = a ? n :In t; ([fa lse] —> b; FLi BLi = a; (b; BLi 0 c; BLi)
[tru e] —> c; FLi)

FL2 = a ? n :In t; ([true] —> b; FL2 BL2 = a; (b; BL2 □ c; BL2)
[fa lse] —> c; FL2)

Obviously FLi BLi and FL2 <4> BL2 , remembering that the BL,- may do more than the FL,-.

It also plain that FLi bears no relation to FL2 ; they are not even trace equivalent. It is not even

true to say that FLi cred FL2 as FL2 a fte r a m ust b while -1 (FLi a fte r a m ust b). Throwing

away all the data type information means that while some general properties, like reachability and

language as mentioned earlier, are preserved, equations concerning the equivalence or ordering of

the full LOTOS specifications cannot be inferred from the results proved about the equivalence or

ordering of the Basic LOTOS processes.

Fortunately, this is not the case for the coding function which retains all information.

C oding Function R etains A ll D ata Inform ation Given the transformation which preserves

the data information of a full LOTOS specification by coding it into the gate name of a Basic

LOTOS specification, any relation which holds of the two (transformed) Basic LOTOS specifica­

tions can be shown to hold, modulo the composition of the coding functions, for their corresponding

full LOTOS specifications. The relations weak bisimulation congruence, testing congruence and

cred can all be defined modulo a coding function in the obvious way.

Below we present results concerning the relations strong bisimulation equivalence, weak bisim­

ulation congruence and cred (and therefore testing congruence). We give only sketches of the

proofs.

T heorem 4 (FLi BLi A FL2 BL2 A BLi ~ BL2) => FLX ~^3 FL2

Proof. We know that the following relations hold: FLi ~ <j>1 BLi and FL2 BL2 . Notice that

different coding functions are used here to allow renaming of gates and data elements since we

expect that FLi and FL2 use different data types. If, in addition, BLi ~ BL2 , then we can deduce

FLi FL2 , where <j>3 = <j> 1 o 1 and o denotes function composition.

Informally, the proof proceeds by showing that a bisimulation, R (f>a, exists between FLi and

FL2 , i.e. we show that

Va e Act f l i -2+ f l i ' => 3 f l 2. f l 2 ^ f l 2' A (f l i , f l 2) €

191

and vice versa.

If a particular element, a, of Act is chosen, it remains to be proven that a state f 12 exists such

that f l 2 f l 2; A (f l^ f l^) E R(p3 - The state f l 2 can be found by tracing through the other

bisimulations:

FLi BLi A f l i f l i => 3 b l i .b l i ^ b i; A (f l i , bl£) 6

BLi ~ BL2 A b li b li => 3 bl'2 .b l2 bl'2 A (b l i , bl'2) 6 R

BL2 ~ 02 FL2 A b l2 ^ } bl'2 => 3 fl'2 . f l 2 *a ^ 4 a)) f l'2 A (b l2, f 12) E R<t>2

Since, by definition, a bisimulation equivalence contains all bisimulation relations, we know that

must contain the relations R, R ^ and Rfa. We also know that we can construct R,pa by the

transitive closure of these relations, therefore (f l^ , f l 2) E R<t>3. Note that the coding functions

<f>i and <f>2 are bijective, as required by the definition of the bisimulation relation.

The proof for the second clause is similar. I

So actually what we get from this chain of relations is a bisimulation modulo variations in the

names of the data types, i.e. the application of <f>i and <̂2. This is important because, according to

the LOTOS semantics, even if two algebras A and B are isomorphic, and we have two processes

which are identical except that one process uses data values from A and the other uses data values

from B , these processes are not bisimilar; however, they will be related by

T heorem 5 (FLi ~ <t>1 BLi A FL2 BL2 A BLi = wbc BL2) =4> FLi = w b c+3 FL2

Proof. The proof is similar to that for strong bisimulation equivalence above, therefore we do

not present it here. We remark that the only differences occur when considering i actions, but

that since the coding function is defined to map i to itself, the transition relation => behaves as

expected. The only difficult point might be in requiring congruence, rather than equivalence, but

the only i transition which affects congruence is one from the root of the Its, and since <f) maps i

to itself and the Basic LOTOS processes are congruent, there can be no i transitions which affect

the behaviour of the processes in different contexts. I

T heorem 6 (FLi BLi A FL2 ~^2 BL2 A BLi = tc BL2) => FLi = tc^3 FL2

P roof. We prove this theorem by showing that the result holds for cred, rather than = tc, first

in one direction and then the other. Below we give the proof for one direction only; the other

direction is similar. I

T heorem 7 (FLj ~ <p1 BLi A FL2 ~^2 BL2 A BLi cred BL2) => FLi cred^3 FL2

192

Proof. The proof proceeds by contradiction. In addition to the assumptions FLi BLi and

FL2 BL2, we also assume -i (FLi cred^g FL2), i.e.

3 <3 L.-i(FL2 a fte r fa(t) m ust fa(L) => FLi a fte r t m ust L)

We try to derive BLi cred BL2 , the third assumption of the theorem above.

We know that FL2 must pass a test which FLi does not, so let t and L denote that particular

trace and test set, modulo the coding functions (there may be other traces and tests, but only one

representative is required). Since FLi does not pass the test, we know that t 6 <r(FLi), because if

t £ ir(FLi) then FLi would pass any test. This means that the set FLi a fte r t must have at least

one member, call it f l i . We also know that m ust L).

Since FLi BLi, then BLi may perform the trace <f>i(t), and, moreover, may reach a state,

call it b li, which is bisimilar to f l i . As these states are bisimilar, they must be able to perform

the same actions, in particular, they are both unable to perform the actions in and L

respectively. We therefore have-«(BLi a fte r <pi(t) m ust <j>i(L)).

We now consider the state FL2, the trace fa(t) and the test set <f>3 (L). We know that FL2

passes this test. We must now try to determine whether or not BL2 passes the corresponding test.

We have two cases, either fa(t) (fc ir(FL2), or <f>3 (t) £ tr(FL2). In the first case there is no

f l 2 such that f 12 f l 2, and therefore there can be no b l 2 such that b l 2 b l2, and BL2

passes the test <f>i(L) vacuously. We use <f> 1 here because ^ 3 0 ^ 2 = fa.

In the second case we can select a specific state f 12 from FL2 a fte r <j>3 (t) since we know that

the set is not empty. We can then identify a state b l 2 in BL2 a fte r <f>i(t) which is bisimilar to f 12,

and can therefore perform the same actions as f 1 2. In particular, b l2 may perform the actions in

<f>i(L), and therefore pass the test, i.e. BL2 a fte r <̂ i(Z) m ust <j>\{L).

From the above cases we may deduce that BL2 passes a test which BLi does not, and BLi cred BL2

does not hold, contradicting our original assumptions, therefore theorem 7 holds. I

These results allow us to take two full LOTOS specifications, to transform them into Basic

LOTOS specifications, to prove some relation holds between the Basic LOTOS specifications, and

to then deduce that a similar relation, modulo the coding function, holds of the full LOTOS

specifications.

The next section demonstrates the use of the second transformation by applying it to the

radiation machine example already discussed in chapter 9.

10.3.2 A bstract Interpretation and the Radiation M achine

In section 9.2 the simple radiation machine was introduced, and we concluded there that in order

to have better control of the shield and beam, or rather, to have better information about the state

193

of the shield and beam, data types should be introduced to the specification. This modification

was originally presented in [Tho94]. We present it here in order to illustrate the full LOTOS to

Basic LOTOS transformation discussed in the previous section. Having obtained an equivalent

specification in Basic LOTOS, we attempt to prove the safety of the machine using the proof

system, PAM together with sets of axioms for weak bisimulation congruence and cred, developed

in section 9.2.

T he Full LO TOS D escrip tion o f th e R ad ia tion M achine

The full LOTOS specification is presented in figure 10.7, with auxiliary definitions in figures 10.8

and 10.9. There are several changes from the original presentation in [Tho94].

In [Tho94] the possibility that the electron beam may drift from the correct setting (and need

recalibration) is modelled by the inclusion of a mid constant in the beam data type which is neither

high nor low. We have decided to ignore this possibility, remaining with the simpler data type

including only high and low, since the actual recalibration is not modelled anyway, and inclusion

of the mid value would merely add to the complexity of the proof (unnecessarily).

One main alteration is made to the behaviour part of the radiation machine specification. In

[Tho94] the hiding of events is not uniform in the ELECTRON and XRAY processes; this means that

unfolding some terms gives h ide l b , Is in TREATMENT, while unfolding of other terms gives h ide

lb , I s , hb, h s , xr , e l in TREATMENT. These two process expressions cannot be identified by

PAM as equivalent, and thus the proof becomes impossible. The hiding of events is uniform in

our processes as this eases the proof process, and make no difference to the eventual behaviour of

a given process.

T ransla ting to Basic LOTOS

We apply the translation as given in [Bol92] to turn the full LOTOS specification into a Basic

LOTOS specification, preserving the data type information. The main steps are:

• replacing a parameterised process by several new process descriptions; one for each instan­

tiation of the data parameters,

• converting event offers such as f i r e !Low!Down into gate names f ire_Low_Down,

• converting S Low Down events to gates d_Low_Down,

• removing choices whose guards evaluate to fa ls e ,

• updating the synchronisation lists of parallel operators to take account of the new events.

194

specification Therac2

library Boolean end lib
ty p e SHIELD is (* as in fig u re 10.8 *) en d typ e
ty p e BEAM is (* as in f ig u re 10.8 *) en d typ e
ty p e ERROR is (* as in f ig u re 10.9 *) en d typ e

behaviour
STARTUP [f ir e]
w here

process STARTUP [f i r e] :ex it (beam, sh ie ld) :=
h ide lb , I s in lb ; Is ; TREATMENT [f ir e] (low , down)
endproc

process TREATMENT [f ir e] (b:beam, s :s h ie ld) :ex it (beam, sh ie ld) :=
(xr; XRAY [f ir e] (b , s))

[] (e l ; ELECTRON [f ir e] (b, s))
[] ex it (b , s)
endproc

process ELECTRON [f ir e] (b:beam, s :s h ie ld) :ex it (beam, sh ie ld) :=
hide lb , hb, I s , hs in

(FIRE [f ir e] (b , s) » TREATMENT [f ir e] (b , s))
[] TREATMENT [f ir e] (b , s)

endproc

process XRAY [f ir e] (b:beam, s :s h ie ld) :ex it (beam, sh ie ld) :=
hide lb , hb, I s , hs in

TREATMENT [f ir e] (b , s)
[] hb; (TREATMENT [f ir e] (h igh , s)

[] hs; (TREATMENT [f ir e] (h igh , up)
[] (FIRE [f ir e] (h igh , up) »

(TREATMENT [f ir e] (h igh , up)
[] lb ; (TREATMENT [f ir e] (low , up)

[] I s ; TREATMENT [f ir e] (low , d ow n))))))
endproc

process FIRE [f ir e] (b:beam, s :s h ie ld) :ex it :=
hide err in

[(b eq high) and (s eq down)] —> ERROR [err] (err54)
[] [(b eq high) and (s eq up)] —> ZAP [f ir e] (b , s)
□ [(b eq low) and (s eq down)] —> ZAP [f ir e] (b , s)
□ [(b eq low) and (s eq up)] —> ERROR [err] (err55)

endproc

process ZAP [f ir e] (brbeam, s :s h ie ld) :ex it := f i r e lb l s ; ex it endproc

process ERROR [err] (e:errnum) :ex it := er r le ; ex it endproc
en d spec

Figure 10.7: Therac Specification II

195

ty p e SHIELD is Boolean
sort sh ie ld
opns up, down : -> sh ie ld

eq : s h ie ld , sh ie ld -> Bool
eqns ofsort Bool

up eq down = fa ls e ;
up eq up = true;
down eq down = true;
down eq up = fa ls e ;

en d typ e

ty p e BEAM is Boolean
sort beam
opns h igh , low : -> beam

eq : beam, beam -> Bool
eqns ofsort Bool

high eq high = true;
high eq low = fa ls e ;
low eq high = fa ls e ;
low eq low = true;

en d typ e

Figure 10.8: Beam and Shield Data Types

typ e ERROR is Boolean
sorts errnum
opns err53 , err54 : -> errnum
en d typ e

Figure 10.9: Error Data Type

196

The translated specification is given in figures 10.10, 10.11, 10.12 and 10.13. We note that after

performing the transformation the specification becomes four times longer, corresponding to the

four permutations of the data parameters.

TREATMENTLowDown =
xr; XRAYLowDown [] e l ; ELECTRONLowDown [] d_Low_Down; stop

TREATMENTLowUp
xr; XRAYLowUp [] e l ; ELECTRONLowUp [] d_Low_Up; stop

TREATMENTHighDown =
xr; XRAYHighDown [] e l ; ELECTRONHighDown [] d_High_Down; stop

TREATMENTHighUp =
xr; XRAYHighUp [] e l ; ELECTRONHighUp [] d_High_Up; stop

Figure 10.10: Therac Specification II in Basic LOTOS: Treatment

ELECTRONLowDown = h ide lb , hb, I s , hs in
(FIRELowDown » TREATMENTLowDown) [] TREATMENTLowDown

ELECTRONLowUp = h ide lb , hb, I s , hs in
(FIRELowUp » TREATMENTLowUp) [] TREATMENTLowUp

ELECTRONHighDown = h id e lb , hb, I s , hs in
(FIREHighDown » TREATMENTHighDown) [] TREATMENTHighDown

ELECTRONHighUp = h id e lb , hb, I s , hs in
(FIREHighUp » TREATMENTHighUp) [] TREATMENTHighUp

Figure 10.11: Therac Specification II in Basic LOTOS: Electron

FIRELowDown = ZAPLowDown
FIRELowUp = ERR0R55
FIREHighDown = ERR0R54
FIREHighUp = ZAPHighUp

ZAPLowDown
ZAPLowUp
ZAPHighDown
ZAPHighUp

f ire_Low_Down; ex it
fire_Low_Up; ex it
f ire_High_Down; ex it
f ire_High_Up; ex it

ERR0RerrJ54
ERR0RerrJ55

err_54; ex it
err_55; ex it

Figure 10.12: Therac Specification II in Basic LOTOS: Remainder

P roving th e R ad iation M achine is Safe

Now that the state of the beam and the shield is explicit, a bad trace is simply expressed as one

which contains the event f ire_High_Down. The conjecture to be proved in PAM (if the machine

197

XRAYLowDown =
hide lb , hb, I s , hs in
(TREATMENTLowDown

[] hb; (TREATMENTHighDown
[] hs; (TREATMENTHighUp

[] (FIREHighUp » (TREATMENTHighUp
[] lb ; (TREATMENTLowUp

□ Is ; TREATMENTLowDown))))))

XRAYLowUp =
hide lb , hb, I s , hs in
(TREATMENTLowUp

[] hb; (TREATMENTHighUp
□ hs; (TREATMENTHighUp

[] (FIREHighUp » (TREATMENTHighUp
□ lb ; (TREATMENTLowUp

[] I s ; TREATMENTLowDown))))))

XRAYHighDown =
h ide lb , hb, I s , hs in
(TREATMENTHighDown

[] hb; (TREATMENTHighDown
[] hs; (TREATMENTHighUp

[] (FIREHighUp » (TREATMENTHighUp
[] lb ; (TREATMENTLowUp

[] Is ; TREATMENTLowDown))))))

XRAYHighUp =
h id e lb , hb, I s , hs in
(TREATMENTHighUp

[] hb; (TREATMENTHighUp
□ hs; (TREATMENTHighUp

□ (FIREHighUp » (TREATMENTHighUp
[] lb ; (TREATMENTLowUp

□ Is ; TREATMENTLowDown))))))

Figure 10.13: Therac Specification II in Basic LOTOS: Xray

198

is unsafe) is

(te s to k ; ex it cred h ide events in UNSAFETESTLowDown) = true

where

UNSAFETESTLowDown = TREATMENTLowDown
| [f ire_High_Down, d_Low_Down, d_Low_Up, d_High_Down, d_High_Up] |
TEST

TEST = f ire_High_Down; te sto k ; ex it
events = lb , hb, I s , h s , xr, e l , err , d_Low_Down, d_Low_Up,

d_High_Down, dJiighJJp, f ire_Low_Down, fire_Low_Up,
f ire_High_Down, fire_High_Up

This test process is slightly different from the original Basic LOTOS test of section 9.2: here

the STARTUP process is dispensed with, as we can specify that treatment begins with the beam

low and the shield down by using the process TREATMENTLowDown.

To prove the safety of this machine we use the method of section 9.2.4, i.e. unfold the top level

process until we get an expression which refers recursively to itself, and check that the bad event

does not occur in the unfolding. Note that in this example we have a set of mutually recursive

equations, therefore each one will have to be unfolded and checked for occurrences of the bad

event. This makes the proof longer, and a little more tedious, than before. Note that we have to

complete the proof by hand, as we expect that the conjecture above does not hold; we merely use

PAM to unfold the expression hide events in UNSAFETEST

In order to allow certain expressions to be reduced and/or unfolded in a different way, the

following new axioms are added to the usual set.

x I [S o rt(x)] I stop = stop
h ide A in h ide A in x = h ide A in x
(x [] y) I Cs] I z = (x I [s] I z) [] (y I [s] I z)

where S ort(x) calculates the language of the process. These PAM axioms are derived from laws

in the LOTOS standard and are mentioned in appendix D.2. The need for these axioms was

discovered in an earlier attempt to perform the proof.

The proof proceeds by unfolding all process expressions of the form TREATMENT&s, where

bs stands for LowDown, LowUp, HighDown or HighUp. In the unfoldings of the proof below,

the following shorthands are used, UNSAFETEST&s for TREATMENT&s I [f ire_High_Down] I TEST,

delta_events for {d_Low_Down, d_Low_Up, d_High_Down, d_High_Up}, and, finally, a ll_even ts

for therac_events union f ire_events union d elta jeven ts. As in the examples in chapter 9,

the axioms used to transform the expressions are noted on the right hand side.

h ide a l l .events in UNSAFETESTLowDown
=wbc (unfold)

h id e a l l .events in
TREATMENTLowDown
I [d elta jeven ts union f ire_High_Down] I f ireJHighJDown; te sto k ; ex it

199

= w b c (expansion)
x r ;(UNSAFETESTLowDown

□ i; (UNSAFETESTHighDown
□ i; (UNSAFETESTHighUp

[] fire_High_Up; (UNSAFETESTHighUp
[] i; (UNSAFETESTLowUp

[] i; UNSAFETESTLowDown)))))
[] e l; (f ire_Low_Down; UNSAFETESTLowDown [] UNSAFETESTLowDown)

We also need to unfold each of UNSAFETESTLowUp, UNSAFETESTHighDown and UNSAFETESTHighUp.

UNSAFETESTLowUp
— wbc

hide hb, h s, lb , I s in TREATMENTLowUp
I [d elta jeven ts union f ire_High-Down] I f ire_High_Down; te sto k ; ex it

— wbc
xr; (UNSAFETESTLowUp

□ i; (fire_High_Up; (UNSAFETESTHighUp
[] i; (UNSAFETESTLowUp [] i; UNSAFETESTLowDown))

□ UNSAFETESTHighUp))
[] e l ; (err_55; UNSAFETESTLowUp [] UNSAFETESTLowUp)

UNSAFETESTHighDown
— wbc

hide hb, h s, lb , I s in TREATMENTHighDown
I [delta_events union f ire_High_Down] I f ire_High_Down; te sto k ; ex it

— wbc
xr; (UNSAFETESTHighDown

[] i; (UNSAFETESTHighUp
[] fire_High_Up; (UNSAFETESTHighUp □ i; UNSAFETESTLowDown))))

□ e l; (e r r ^54; UNSAFETESTHighDown [] UNSAFETESTHighDown)

UNSAFETESTHighUp
— wbc

h id e hb, h s, lb , Is in TREATMENTHighUp
I [d elta jeven ts union f ire_High_Down] I f ire_High_Down; te sto k ; ex it

— wbc
xr; (UNSAFETESTHighUp

[] f ire_High_Up; (UNSAFETESTHighUp
□ i; (UNSAFETESTLowUp [] i; UNSAFETESTLowDown))))

[] e l ; (fire_High_Up; UNSAFETESTHighUp [] UNSAFETESTHighUp)

By examining these unfoldings it can be seen that none have the capability to perform a

f ire_High_Down action, and that the machine must therefore be safe.

Sum m ary and D iscussion

Completion of this example has shown us that, while it may be possible to transform a full LOTOS

specification into a Basic LOTOS one, the Basic LOTOS specification is so much larger that the

200

proof becomes extremely tedious, especially as the proof is not fully automated. In the original

paper, [Tho94], the LOLA tool was able to simulate the full LOTOS process, and identify duplicate

states and therefore conclude that the bad test was rejected, i.e. the machine was safe. Certainly

in this case, the LOLA simulation/testing tool seems more appropriate than our method of proof

using PAM. On the other hand, PAM has a nice graphical interface and is easy to use, despite the

process expressions being presented all on one line, with no indentation showing process structure.

The interface to LOLA is text based, and although indentation is used to aid readability of

the processes, other features of LOLA such as rather terse on-line help, and lots of confusing

information produced during the analysis, make LOLA more difficult to use.

We also note here that while performing the transformation some errors in the original descrip­

tion of [Tho94] were found. The FIRE process was incorrect in that it never allowed the high beam

to be fired, even if the shield was up. This meant that the machine was incapable of delivering an

xray treatment, and could only perform electron treatments. This error was due to an oversight in

the specification of the guard conditions of the FIRE process. A further problem is that although

the mechanism is set up to detect errors (either firing at the wrong level or the beam becoming

weak), no actions are taken when an error is detected. This means that once an error occurs

the machine is livelocked: the operator can select a treatment, but the machine refuses to deliver

that treatment, allowing the operator to select another treatment instead. Obviously the original

author made a decision to model only certain aspects of the problem, and this was one of the

features that were ignored.

We now go on to explore a different approach to transforming a full LOTOS specification into

a Basic LOTOS one.

10.3.3 Using C ontexts

Obviously each of the abstract interpretation approaches of section 10.3.1 has its problems; what

may be useful is to use a combination of both techniques, preserving information of finite data

types and throwing away information about infinite data types. This may allow some verification

to be carried out. There is another problem however: the second transformation may be suitable

where data types are simple, e.g. the naturals, characters, integers, etc., but what happens when

more “complex” data types are added, e.g. stacks, queues, i.e. adts with more structure? It quickly

becomes impossible to deal with gates which are composed of gate names and the entire contents

of a stack, for example. We may also encounter a similar problem for gates at which many values

are exchanged, e.g. g!3 ?x !2(n + 1) ?y. A further problem of the second transformation is

that common data types such as stacks and queues are typically infinite. Obviously, for the first

transformation these are not problems, as the data is ignored; however, the first transformation

throws away too much data to be useful in general, which means we have to find a solution to the

2 0 1

problems of the second transformation.

This section describes a method, presented in [BK91, Bri92], of turning complex data types

into simple ones. The method is general, as the transformation is derived from the definition

of the data types. Data types are not completely replaced by processes; the aim is to produce

processes having a maximum of one data parameter and only simple data types. Below we refer

only to [BK91]; this is a technical report which contains more detail than the published version of

the work [Bri92].

The method is presented here as it provides a means of deriving a process algebra oriented

specification from an adt oriented specification. The two specifications are weak bisimulation con­

gruent (or possibly strong bisimulation equivalent, depending on which derivation rules are used).

As with the two approaches above, the main reason for using this derivation is that it is typically

easier to reason about Basic LOTOS specifications than full LOTOS ones. We illustrate the use of

the method by taking S tack .l of section 10.2.2 and deriving a weak bisimulation congruent pro­

cess algebra stack; the process algebra stack happens to be the Stack_2 of section 10.2.3. Thus the

derivation also supports our earlier proof, using a different technique, that StackJL =wbc Stack_2.

In the original paper, four examples of common data types are transformed from ACT ONE speci­

fications into process algebra specifications; the bag, the queue, the stack and the set. The version

of stack presented in [BK91] is slightly different from our Stack_l, therefore presentation of this

example is not merely a repeat of the work in [BK91].

We begin by presenting the main ideas and some technical background of the method of [BK91].

T he T echnicalities

The method is based on contexts. A context can be imagined as a LOTOS behaviour expression

with a number of holes in it. In the definition of weak bisimulation congruence in section 3.4.3

and in the definition of the cred relation in section 3.5.3 contexts with only one hole were used to

express the congruence property, i.e. that congruent processes should behave in the same way in all

environments. The main theorem of [BK91] is that given an appropriate context equation, where

the context is the unknown, it is possible to construct a process algebra description of that context

to perform the function of the data type, thus removing the need for the ACT ONE specification

of the data type.

A context may be characterised by transductions; in the same way that process states are

related by transitions, contexts are related by transductions. In general, transductions are written

C - [a/6] C'

and should be read as “the context C evolves into C' by producing an a action, which may interact

2 0 2

with the outside environment, and consuming a 6 action from the process inside” . A transduction

C — [a/b] —> C' corresponds to an SOS inference rule of the form

X —)■ X ' b C[X] C'[X']

Contexts may be composed, written C o D[X], which means C\D\X^.

The main theorem of [BK91] describes a method for constructing a process corresponding

to a context based on the information contained in the transductions of that context. The only

transductions considered are those where 6 = 0, which means that no action is produced internally,

i.e. C performs a independently, and b = a, which means that the action a is passed through the

context. The process, pc, which represents the context C , is built as follows

Pc := 0 {a';pc' | C - [a/0] ->• C "} Q 0 {^IPc' | C - [a/a] C"}

and the following equation holds

C[X]~(Pc | [M] | X)[S»]

where SH is a renaming function which turns primed actions back into unprimed actions. The

actions are primed because, if the context performs an action independently, then the action must

be temporarily renamed to ensure it does not accidentally synchronise with actions from X. On

the other hand, if the context is merely passing an action on from the inner process, it performs

the action in parallel with the inner process; this has the desired effect because of the multi-way

synchronisation of LOTOS.

The equation is phrased in terms of strong bisimulation equivalence, but of course the weaker

relations may be used in place of ~ .

Stack E xam ple

We start with the full LOTOS stack, Stack_l, as given in figure 10.3. In this definition, the

processes are parameterised by values of type Stack_Type. The aim of the transformation is to

reduce these stack parameters to simple data types. A suitable context equation for this example

is

C'x[Used_Stack_l(s)] ~ Used_Stack_l(Push(s, x))

i.e. the context models the last element pushed onto the stack, the top element, ignoring the rest

of the stack (which is modelled by the process inside the context).

Given this context equation, we define the transductions of the context on which we can then

203

use the method of [BK91] to generate the process modelling that context. The process of defining

the transductions is a weak point of the method, as expressing the most appropriate transductions

is highly dependent on the skill of the user. It is important to realise that several ways of expressing

the transductions might be possible, and that not all transductions allow the process corresponding

to the context to be easily generated.

We define two transductions for the initial case, s = New:

C — [push?x/0] —>■ Cx o C

C — [empty! tr u e /0] —>■ C

Since we know that the stack is empty, only the actions push?x and empty! true are possible. We

also define four transductions for the general case, s / New:

Cx — [push?y/0] —► Cy o Cx

Cx -[pop/0] -» I

Cx — [top!x/0] ->■ Cx

Cx — [empty!false/0] —Y Cx

where I denotes the identity context, with transductions I — [a/a] —> I for all a. Since the context

models the top of the stack we know that x is at the top of the stack and that the stack is not

empty, allowing the top !x and em pty!false actions.

In all of these transductions none of the actions are generated by the process inside the context

Cx since this process is just the bottom part of the stack and is unaffected by operations to the

top of the stack. After top or empty the context remains unchanged and after pop action the

context behaves like the identity context, i.e. it allows all actions to pass through unchanged since

after x is popped from the top of the stack there is nothing more to do. Lastly, if a new element

is pushed onto the stack, the context behaves like the context for the new element composed with

the old context, i.e. the old context is kept around until it is needed again.

The problem with transforming these equations according to the theorem is that the last

equation gives composed contexts of arbitrary length, implying that each process has arbitrarily

complex arguments. To solve this problem in [BK91], a new theorem is introduced which deals

specifically with contexts of the form C — [a/0] —» C' and I — [a/a] —> I. The new theorem, ex­

pressed using =wbc rather than ~ , allows identity contexts to be interpreted as ex it and sequential

composition to be used in place of parallelism. Applying this theorem gives the following solution

for Cx [X]:

Cx[X] : =(push?y; q(x,y)
[] pop; ex it
Q top !x; Cx[X]
[] em pty!fa lse; Cx[X]) » X

204

where q(x, y) = Cy o Cx[X).

Of course the criteria for the transformation have still not been met in that, although only

simple data types are now used, the process q has two arguments. q(x, y) can be further decom­

posed by further examination of the original transductions for Cx and also of the above process,

Cx \X\. Two transitions can be applied to Cx\X\ according to these sources:

Cx [X] P̂ I ' Cv oCx[X)

Cx[X] q (x , y) » X

(distributing through [|). The right hand side states are equivalent by definition since our

processes are deterministic, i.e.

?(*C) y) ^ X = w b c C y O C x p f]

The right hand side of this equation can be transformed by rewriting the composition of contexts,

and applying associativity of and the definition of Cx[X].

y) ^ x =WbC
((push?z; q(y,z) [] pop; ex it [] to p ly ; Cy o Cx [X] □ em pty lfa lse ; Cy o Cx[X])

» (push?z; q(x,z) [] pop; exit [] to p lx ; Cx[X] [] em pty lfalse; Cx [X]))
» X

Since X can be an arbitrary process, we can take it to be ex it and use a weak bisimulation

congruence P ex it = w bc P to further transform this expression. This equivalence holds by the

following argument.

If P terminates with ex it, then by law (d2a) of the standard the final ex it of P ex it

becomes i; exit, which can be further reduced to give ex it (since there must be actions in P

we can apply law (m l)) , therefore P ex it reduces to P. In this case we know that q(x,y)

will eventually terminate, therefore use of this equivalence is sound. We note that in [BK91]

the process stop was (incorrectly) used rather than ex it. By applying the weak bisimulation

congruence laws to P s top we get the actions of P followed by ex it s top which is the same

as stop . Effectively we have turned the final ex it of P into stop. Obviously the two process do

not have the same behaviour, i.e. P s top =£w bc P-

So, by taking X to be ex it we get

?(®> V) — wbc
((push?z; q(y,z) [] pop; ex it [] to p ly ; Cy oCx [X] □ em pty lfa lse ; Cy oCx[X])
» (push?z; q(x, z) [] pop; ex it [] to p lx ; Cx [X] [] em pty lfa lse ; (7x[X]))

and, prefixing each side by push?y,

205

push?y; q(x,y) =wbc
push?y;

((push?z; q(y, z) □ pop; ex it [] top ly ; Cy oCx [X] [] em ptylfa lse; Cy oCx [X])
(push?z; q(x,z) [] pop; ex it [] top lx ; Cx[X] [] em ptylfa lse; Cx [X]))

i.e. push?y; q(x, y) is a solution of

X(x) = xubc
push?y; ((A (y) [] pop; ex it [] top ly ; Cy o Cx[X] [] em ptylfa lse; Cy oCx[X])

» (X{x) [] pop; ex it [] top lx ; Cx[X] [] em ptylfa lse; Cx[X]))

By the uniqueness of solutions to recursive process we know that the above expression represents

only one process, therefore we name it Unit (x).

Unit (x) = w bc
push?y; ((U n it(y) [] pop; ex it [] top ly; Cy o Cx[X] [] em ptylfa lse; Cy o Cx [X])

» (U n it(x) [] pop; ex it [] top lx ; Cx\X\ [] em pty lfa lse; Cx[X]))

One more step gives us the final solution to our transformation. Let Top(x) be the process

corresponding to Cx [X] given earlier, then from the solution to push?y; q(x, y) given above by the

process Unit we get the following for Top (x):

Top (x) := (Unit (x)
[] pop; ex it
□ to p lx ; Top (x)
[] em pty lfa lse; Top (x))

remembering that X = exit. From this we can then express Unit as

Unit (x) := push?y; Top (y) Top (x)

By the same method as above, we define a process corresponding to C[X], the context which

models the empty stack. Since only two transductions are defined for C[X] we only have two

branches in the process.

C[X] := (push?x; (Cx oC[X\)
[] empty I true; C[X\) X

As above, we let X = ex it, and call C[X\ Stack, giving

Stack = push?x; (Top (x) » Stack)
□ empty I true; Stack

Note that our derived process, Stack, is weak bisimulation congruent to the original abstract

data type oriented stack, Stack_i, by definition of the derivation, but also to Stack_2. With some

manipulation, substituting Unit into Top, reversing the process of distributing » through [] and

changing process names, the process Stack above is syntactically identical to the process StackJ2

of figure 10.4.

206

This example shows that it is possible to derive a process algebra specification from an ab­

stract data type; the method also gives us that the two specifications are equivalent, either by

strong bisimulation equivalence, or weak bisimulation congruence, depending on which theorems

of [BK91] are used.

10.3.4 R elated Work

In [Led87] a different approach to verifying full LOTOS specifications is taken: the idea is to

separate the descriptions involving adts from the purely process descriptions. The specification of

the system as a whole is obtained by composing the adt and process algebra descriptions using

parallelism. The verification of the system then proceeds on the assumption that the correctness

of the whole implementation with respect to the specification can be deduced from the correctness

of the parts. Correctness here is measured by the red preorder of [BSS87]. This relation, rather

than weak bisimulation congruence for example, is chosen because of the properties of the trans­

formation used to convert a process dependent on data to one independent of data. In [Led87] a

rather peculiar transformation from data dependent to data independent processes is used; only

the guards of the data dependent process are considered, the event offers and process parame­

ters being ignored. This excludes two important sources of information about the possible value

of a variable; presumably this approach is taken in order to make the transformation simpler.

The transformation does not preserve the branching structure of the original process as branches

whose guards are false, and thus are not executed if data information is preserved, are retained.

The introduction of internal events to model the nondeterminism of choices in which a number

of guards are true precludes the possibility of using weak bisimulation congruence. Given the

transformation of section 10.3.1, which behaves more as expected, this approach to the data of a

full LOTOS specification seems very strange.

Apart from the odd transformation from full LOTOS to Basic LOTOS used, this approach has

three main problems: firstly, the equivalence of processes involving data has still to be evaluated,

and it is not made clear whether or not this is possible. Secondly, as demonstrated in chapter 7, it

is not always possible to deduce anything about the correctness of the whole from the correctness

of the parts, or rather, it may not be possible to prove anything about the correctness of the parts.

Thirdly, it seems that the approach only works in the special cases where the two concerns can be

separated, and therefore relies on the specifier adopting this fairly restrictive approach. In many

specifications, the data has an important part to play in the flow of control of the process, and is

intrinsic to the process, therefore it cannot easily be moved to a separate process.

207

10.4 Sum m ary and D iscu ssion

In this chapter the problems of performing verification on full LOTOS specifications have been

examined and several possible solutions have been explored. We presented a modified version of

the approach used in chapter 9 and attempted to show (using hand proofs) that an abstract data

type oriented version of the Stack was equivalent to a process algebra oriented version of the Stack.

Although successful for Stack_l =wbc Stack_2, we could not show Stack_l =wbc Stack_3.

The proof technique used successfully for Stack_l =wbc Stack_2 seems too complex and the

proofs too tedious to be carried out reliably (if at all) on other (larger) examples.

A problem we encountered in attempting to prove Stack_l =wbc S tack J was that LOTOS is

not a rich enough language to be able to express the properties we wish to show. The next chapter

proposes the use of logic to specify system properties as a solution to this problem. Meanwhile, in

this chapter we continued by investigating the possibility of transforming the data information in

a full LOTOS specification into a process, allowing us to continue using the equational reasoning

paradigm. Although we can already see that equational reasoning does not provide an ideal setting

for verification of full LOTOS specifications, it is interesting to see exactly how far we can go before

the method breaks down completely. The methods investigated rely on first transforming the full

LOTOS specification into a Basic LOTOS specification, and carrying out any verification on the

Basic LOTOS specification. We presented the approaches of two other authors to this problem.

The methods were illustrated by a version of the radiation machine example and the Stack example

respectively. We also investigated the properties of the transformations produced by one of the

methods.

It can be seen that each approach on its own does not offer a satisfactory solution to the

problem of verification of Full LOTOS specifications. In particular, abstract interpretation either

throws away too much information, or results in an explosion in the size of the specification,

and the contexts approach relies heavily on the ingenuity of the person doing the transformation

(although the main data types are covered in [BK91]). However, it may be possible to obtain

useful results if the different approaches are used together.

For example, a specification of a telephone system is presented in [FLS90]. This specification

uses three types of data: sets, enumerated types, including booleans, and natural numbers. The

natural numbers represent the telephone numbers, so we could restrict them to a finite portion of

the naturals to allow the verification to be carried out. Booleans can be treated like an enumer­

ated type with two values. Two other enumerated types are used: one to denote the state of the

telephone, Ok or Busy, and the other to denote different phases of the connection process, e.g. dial,

ring, connect and so on. In the (constraint-oriented) specification the latter are used mainly to

constrain synchronisations. All enumerated types can be replaced by applying the second trans­

208

formation, which will preserve all data. Finally, the sets can be implemented as processes by using

context equations to derive the appropriate behaviour. Having performed these transformations,

various properties of the system could be checked, such as it is impossible to call two numbers at

once, the number dialled is the number connected to, and so on.

This example demonstrates how the approaches to full LOTOS specifications can be used

together to simplify the specification, hopefully retaining enough information that the results

proved on the simplified specification can also be applied to the original system.

The next chapter abandons the equational reasoning approach to verification, looking instead

at the possibility of using temporal or modal logic to describe the requirements of a system.

209

C hapter 11

Verification Requirem ents III:

Temporal and M odal Properties

11.1 In trod u ction

Since chapter 4 we have considered only the approach to verification of comparing two LOTOS

specifications using equational reasoning. We saw that this approach was beginning to break down

in the case study of chapter 7, in the attempt to axiomatise the cred preorder in section 8.4, and

again when we tackled full LOTOS in chapter 10. More specifically, in the case study we had

to dramatically alter the form of the specification in order to prove that it was equivalent to the

implementation; in expressing the cred preorder in PAM we had to resort to axiomatising cred

as an equivalence, which is not generally sound; and in the full LOTOS studies we discovered

that the introduction of data leads to an unacceptable increase in the complexity of the proof

technique.

A feature common to all these problems is the notion of partial specification. The original

case study specification, i.e. the protocols, was partial with respect to the system described by

the implementation, but neither equivalence relations nor the c red preorder could express this

relationship; instead we had to strengthen the specification.

Although the cred preorder expresses something of the notion of partial specification, namely

the reduction of nondeterminism, it was too strong for the case study. In addition, as showed in

section 8.4.1, we are unable to implement it soundly in the equational reasoning paradigm without

losing much of the power of the original relation.

As for the problems with full LOTOS, we could alleviate the complexity of proofs involving

data types by using partial specifications of the properties of the system, thereby simplifying the

specification and hopefully also the proofs. As can be seen in the above examples, we are unable to

2 1 0

use process algebra and equivalence relations to express the notion of partial specification directly.

In chapter 2 we indicated that we might sometimes want to use a different formalism to describe

the requirements of a system; this may also solve the problems of partial specification described

above. In this chapter we discuss the advantages and disadvantages of using logic in that role.

Logic is a non-constructive specification formalism; this means the ordering of events is spec­

ified implicitly, while safety and liveness properties are specified explicitly. We are particularly

interested in modal and temporal logics, e.g. [HM85, MP92, Koz83]. Some of these logics have

another useful property, already referred to in section 3.4.3, which is that they provide alternative

characterisations for the various equivalences on processes. This means that if two processes are

equivalent, they satisfy the same modal formulae, and if they are not equivalent, there is at least

one formula satisfied by one process and not the other. If the logic has this property we say that

it is adequate with respect to the equivalence.

The proof technique usually associated with logic is model checking. Model checking allows

us to determine whether a given formula holds in the model. In particular, we may use process

algebra to express that model. Algorithms exist which automate model checking; the user is not

required to intervene. (Therefore model checking does not depend on the skill of the user for its

success, unlike the system developed in chapter 8 which is highly reliant on the skills of the user.)

We begin our study of the use of temporal or modal logics with LOTOS by surveying the

current state of use of temporal logics for LOTOS; only two approaches are known to the author,

[FGL89, FGR90] and [DFGR92]. Neither of these is suitable for our purposes; the reasons are

given below. In contrast to this small literature on logic for LOTOS is the large body of work

on logics for CCS; in particular, for HML (Hennessy-Milner Logic) and its various extensions,

including modal mu-calculus. A very simple proof technique [SW90] can be used to show that a

CCS process satisfies a property expressed in one of these logics. Moreover, the logics and proof

technique do not rely on the syntax of CCS; they are based on labelled transition systems. For

this reason, we consider the use of the modal mu-calculus with Basic LOTOS.

We present HML and the modal mu-calculus in some detail, together with descriptions and

examples of the sorts of properties we might use these logics to specify. We continue by illustrating

the application of logic to two of the problem examples mentioned above, showing how logic can

solve the problems introduced by partial specifications. Finally, we conjecture that it might be

possible to extend this logic and proof techinique for use with full LOTOS and give a sketch of

this together with some examples. We do not pursue the topic here; it is to be the subject of a

SERC-funded research project, “Temporal Aspects of Verification of LOTOS Specifications” , at

the University of Glasgow.

2 1 1

11.2 T em p oral Logics and LO TO S

In [FGL89] a temporal logic for Basic LOTOS is described. The aim of [FGL89] is to give a

compositional temporal logic semantics for Basic LOTOS, this allows equality of processes and

satisfiability of formulae to be expressed in terms of temporal logic formulae. In this approach

each operator of LOTOS corresponds to a logical formula and the meaning of a process is given by

its characteristic formula, written x(p)- The ability of a process p to satisfy a particular formula

<f>, written p |= <f>, can then be expressed as x{p) The logic defined is expressive with respect

to trace equivalence over processes, which means that p = tr a c e 9 is expressed as q |= x{p) (o r

vice versa).

The logic is adequate with respect to trace equivalence, but, as discussed previously, trace

equivalence is too weak for most verification purposes because liveness properties are not preserved.

The main problem of this approach, therefore, is that the logic is too weak. Other problems are

that the proof technique can get very complicated because it involves (possibly nested) fixed points

and that the i action is not given its special status as an unobservable action.

This work is extended in [FGR90], in which the logic CTL* [CES86] and its relationship to a

subset of Basic LOTOS, namely action prefix, choice and recursion, is considered. The main result

of [FGR90] is that while it is possible to give a compositional temporal logic semantics which is

adequate with respect to strong bisimulation equivalence for this subset of LOTOS, no such logic

exists for a larger subset of LOTOS. In order to obtain a logic of this strength for Basic LOTOS,

either the compositionality of the semantics must be abandoned or the logic must be strengthened

by adding new operators.

The author knows of no other work on the use of a temporal logic with LOTOS (either full

or Basic LOTOS), although some related work may be found in [DFGR92, LITE]. In [DFGR92]

a proof technique is described which allows formulae expressed in ACTL (action based CTL) to

be checked against the model provided by a labelled transition system, expressed in either CCS

or MEIJE. The underlying model checker is based on CTL and Kripke structures (state based

transition systems), and the method defines two translations, one from labelled transition systems

to Kripke structures, and the other from ACTL to CTL. This proof technique is implemented

for LOTOS in the LITE toolkit [LITE]. Unfortunately, the translations described by [DFGR92]

only work in one direction; this means that if two processes are not equivalent, the system cannot

express this information in terms of the labelled transition systems and ACTL. The user must

learn to work in the world of CTL and Kripke structures or lose the information supplied in the

case of inequivalence of processes. Such information is one of the advantages of using logic-based

systems, therefore it seems a shame to lose it.

In direct contrast to the very small literature for logic and LOTOS is the large volume of

2 1 2

literature concerned with logic and CCS. This proliferation of work on CCS and logic may in fact

be the reason that this topic has not been pursued specifically in relation to LOTOS.

The most commonly used logic for CCS, HML (Hennessy-Milner Logic), is defined over labelled

transition systems, therefore there should be no reason why HML cannot be applied to Basic

LOTOS. Indeed, HML has already been used indirectly for LOTOS in [EFJ90], where the tool

Caesar is used to provide a labelled transition system which is modified (by changing the event

names) by hand and then entered into the Concurrency Workbench for model checking. This

application of HML to LOTOS shows that the only difficulty with using HML for LOTOS lies in

the lack of a suitable proof technique, or rather proof tool. Obviously it is not acceptable to have

to modify every example by hand in order to use the Concurrency Workbench.

To show that a formula $ holds for a particular process p we must show p belongs to the set

of processes satisfying $. One way of doing this is to construct that set and then test for p being

a member. Obviously this method involves a lot of unnecessary work since p will typically not

be the only process satisfying <$. Fortunately, other methods for checking a process satisfies a

formula exist. Safety properties over finite state systems can be checked by reachability analysis,

but this technique suffers from the state explosion problem. Other methods use proof systems

built from inference rules which allow the truth of a statement to be deduced from the truth

of previously proved statements; there are several examples of such systems. Methods which

make use of the structure of the syntax of the process include [Sti87, AW92]; others, such as

[SW90, BS90, Lar90a], rely on the structure of the labelled transition system. Obviously this

latter class of proof techniques is more useful to us since it is independent of CCS syntax.

Not all these proof techniques can be easily automated. Those intended for automation include

the technique described in [Lar90a], which is automated in TAV [GLZ89], and the tableau method

of [SW90], a version of which is automated in [CPS89]. These systems are fully automatic, but

do not support infinite transition systems; however, the tableau method of [SW90] is extended to

infinite transition systems in [BS90]. This extension is automated in the proof assistant [Bra92],

In the rest of this chapter we consider the use of an extension of HML, the modal mu-calculus,

for LOTOS.

11.3 In trodu cing H M L and its V ariants

Modal logics are interpreted over labelled transition systems. In addition to the usual propositional

logic operators, we also have modalities expressing transitional change. We begin by presenting a

simple logic, a very slight extension of HML [HM85].

213

The syntax of the logic is:

$::= tt | Z | -- $ | $1 A $ 2 I [K]$

where K C Act. In the original HML only single actions are allowed in the modalities.

Operators of this logic are the usual boolean operators (tt, — and A), plus [AT], the modal

operator “always” , where [A]<1> means that $ holds after every performance of all actions in K.

In addition to the main operators of the language, a number of dual operators can be defined;

see figure 11.1. The new modal operator {K) is called “possible” ; (K) $ means that holds after

some performance of any action in K.

ff
V $2

(K)<S>

Figure 11.1: Additional Defined Operators for the Modal Mu-Calculus

The modal operators [A'] and (K) are analogous to the m u st and m ay testing relations of

chapter 3. Each operator expresses the necessity or possibility, respectively, of an action being

performed.

Abbreviations which are useful in formulae are: [—] to denote [Act] and [- K] to denote

[Act — K], Similarly, (—) denotes {Act) and (—K) denotes {Act — K).

One problem with the above logic is that it cannot express invariants over an infinite compu­

tation. For example, given the process P = a\ P we can express the property of P being capable

of performing an a action by P (a)tt. However, we cannot express the property that P is

always able to perform the action a; the nearest we can get is an infinite formula of the form

P |= (a)tt A [a]((a)tt A [a]((a)tt A ...)). To fully express this property we need to extend the

logic. One method is to introduce infinitary connectives, but these are undesirable if automated

verification is planned. An alternative solution is to use modal equations to express properties;

the property above then becomes P f= Z = (a)tt A [a]Z, i.e. Z says a is possible, and after all

a transitions, Z holds. This equation has a number of solutions/fixed points; the smallest being

the empty set and the largest being the set containing the process P.

The smallest solution to a modal equation is not always the empty set. Another example of

a modal equation is Z — {b)tt V [a]Z which says either b is possible, or after all a transitions Z

holds. The smallest solution gives us processes which perform a finite number of a actions followed

by a b action, while the largest solution can perform an infinite number of a actions and b need

never occur. This formula is also known as until in some logics because we are expressing the

property that a holds until b holds.

def

def
= J - t t

A —$ 2)

214

As we have seen, the smallest and largest solutions to a modal equation can specify quite

different properties, therefore in practice we will find it convenient to be able to indicate which

of the two is required. If we continue to use the equational format to express such properties,

indicating whether we want the largest or the smallest solution may become cumbersome, especially

when the formula involves more than one equation. Rather than introduce equations to the

language, we introduce fixed point operators, one for the least solution to the equation, one for

the greatest. These two solutions are guaranteed to exist, due to the properties of the operators

of the logic and Tarski’s theorem.

The resulting logic is called the modal mu-calculus and it was first used in conjunction with

process algebras in [Lar90b]. Modal mu-calculus can also be described as a propositional branching

time temporal logic. It will be formally introduced below and used for all the examples following.

11.3.1 The M odal M u-Calculus

The syntax of the modal mu-calculus is the same as that of HML given above, with the addition

of uZ.<& where Z ranges over propositional variables, and the removal of tt. We define tt = vZ.Z.

The new operator, vZ.<&, denotes the greatest fixed point over $ (the maximal solution to the

equation Z — $). This expression has the syntactic restriction that each free occurrence of Z in

$ must lie within the scope of an even number of negations (this constraint allows the application

of Tarski’s theorem, guaranteeing the existence of least and greatest fixed points).

Just as we defined V to be the dual of A and (K) to be the dual of [K] we can define a dual

of u which denotes the least fixed point (minimal solution) of an equation. It is called /*, and is

defined as follows:

nZ.df =f ~ ^vZ .^ [Z := -<Z]

where <b[Z := ->Z] is the formula obtained by substituting -iZ for each free occurrence of Z in

The semantics of the modal operators is given in figure 11.2.

\\Z\\v = V(Z) (Z S V a r)
I h * | | v = P - I W I v
11$] A $ 2 ||v = ||$ l||v ^ ll$2 ||v
||[/r]#||v = { P e v - . v k e k . v p ' . p - ± + p ' = > p ' s ||$ ||v}
||(/f>$||v = {P e V : 3k € K S P '.P P ' => P ' e ||* ||v}
| | i / Z .$ | |v = U { £ S v ■■ £ £ I l* llv [e /Z]}
U Z M W = n { £ £ v ■■ l l* l lv [e /3] C £ }

Figure 11.2: Interpretation of Modal Formulae

Formulae of the logic are interpreted over the model (T, V), where T is a labelled transition

system and V is a valuation assigning a set of processes to each variable, V{Z) C V for each Z.

The valuation may be updated, written V[S/Z\ , to give V', where V' = V except at Z, where

215

V'{Z) = £. The notation ||$ ||y is used to denote the set of processes satisfying $. Usually the T

is dropped, since it will be obvious from the context.

A process p satisfies a property $, written p |= $, if and only if p E ||$ ||v , for some valuation

V. Modal mu-calculus is adequate with respect to observation/weak bisimulation equivalence.

In the interpretations of figure 11.2, the labelled transition system T has the transition relation

— >; the relation = > may also be used, allowing silent actions to be ignored. The modal operators

are then written |A | and ((A)), and are defined as follows:

||[/f]$ ||v = {P £ V : Vi 6 K.VP'.P =k- P ' => P ' 6 ||$ ||v}

||«/f»® ||v = { p £ V : 3* € K 3 P . P =k- P' => P ' € ||$ ||v}

The power of the logic is unchanged by this use of =>• instead of — ► , because both [A] and ((A))

can be defined in terms of [A'] and (A); however, these forms are often more convenient to use.

Note that now the modalities may also include [e]| and ((c)), where c is the empty string. These

formulae indicate the occurrence of a sequence of internal actions.

Above we claimed that it is possible to use the modal mu-calculus in conjunction with Basic

LOTOS because its definition relies on labelled transition systems rather than process algebra

syntax. To demonstrate this, we present several examples of the use of mu-calculus for Basic

LOTOS in the next two sections. We also describe classifications of properties, giving common

examples from each class.

11.4 C lasses o f P ro p ertie s

It is useful to be able to classify various properties for two reasons. First, the classifications

supply templates for formulae which are used frequently in specifications; second, as mentioned in

chapter 2, the classification can be used as a measure of the completeness of our specification, e.g.

typically a specification contains representatives of each class. One such classification is known as

the safety/liveness classification [Lam77]. This classification contains two almost disjoint classes,

which can be informally described as:

safety “nothing bad” happens, or invariance, i.e. some property on states holds continuously.

liveness “something good” happens, or response, i.e. requests are eventually dealt with.

The only formula common to both classes is the atomic formula tt. This classification is nice

because of its simple and intuitive definition.

A different classification, put forward in [MP89], gives a hierarchy of classes distinguished by

syntactic structure. Each class is also associated with a distinct proof technique. (No such clear

216

cut relations exist between the classes of safety and liveness and syntactic structure and/or proof

technique.) However, the classification of [MP89] does not encompass all expressible properties,

although the authors claim that all the properties generally required are included.

Below we give a few examples of the sort of properties which may be expressed in the modal

mu-calculus in order to illustrate what we might expect to be typical usage of the logic with

respect to LOTOS processes; the presentation reflects the division of properties into the classes

of safety and liveness, and also the existence of several subclasses. The examples are small, and

already familiar from earlier chapters. The specific problem examples we drew attention to in the

introduction to this chapter will be dealt with in the next section.

We begin with safety properties.

11.4.1 Safety Properties

C apacity This class is the set of properties which say that a process may perform some action,

i.e. the process is capable of performing the action, although it won’t necessarily perform it.

Formulae of this subclass contain the operator (K).

For example, given a buffer

B uffer := in ; ou t; B uffer

we may say that once the buffer receives an input, then it is capable of an output. This can be

expressed using logic.

B uffer |= [in](out)tt

After all transitions labelled by in, the action out is possible.

N ecessity This class expresses the property that an action not only can occur, but that it must

occur. For example, once the buffer receives an input, then that item will be output.

Buffer ^ [in]((out)tt A [—out]ff)

After all transitions in, the action out is possible and all other actions are impossible (since ff can

never be satisfied).

G lobal Invarian ts The particular formula for a global invariant will depend on the system

under consideration; however, we can say that in general global invariants are expressed using a

greatest fixed point. This is because, as a safety property, we want to say that the invariant holds

forever, i.e. over a (possibly infinite) sequence of actions.

217

A particular example of a global invariant is freedom from deadlock. We begin by expressing

what it means for a process to be deadlocked, i.e. incapable of performing an observable action.

Deadlock [—e]ff

Although deadlock can be good (if viewed as termination), usually we interpret deadlock as un­
successful termination. To say that a process is never deadlocked, it must satisfy:

vZ.-iDeadlock A [—]Z

Yet another global invariant commonly encountered is the property of mutual exclusion.

M u tu a l Exclusion Given two processes and a shared resource, we may wish to ensure that

only one process at a time may access that resource, i.e. the processes must exclude each other

from their critical section (the part where they use the resource).

This was described using process algebra in the Readers and Writers example of section 9.3,

where the mutually exclusive actions were reading and writing (from/to a part of memory). We

may specify that reading and writing never occur at the same time using logic:

Spec =? i/Z.([rb][wb]ff A [wb][rb]ff A [—\Z)

This formula says that the sequences of actions rb,wb and wb,rb are not permitted at any stage,

since no process can satisfy the formula ff. Compare this with the process algebra specification of

section 9.3, where it was necessary to specify the actions which could occur. Using logic allows us

to specify directly that actions may not occur.

To say that the processes implementing the system, as given in figure 9.9 of section 9.3, satisfy

this formula, we write Impl |= Spec.

We also want to look at liveness properties.

11.4.2 Liveness Properties

We mentioned above that it is a useful general principle that safety properties are best described

by maximal solutions because these express properties which hold over infinite computations. On

the other hand, liveness properties are best described by minimal solutions because these express

properties which hold over finite computations. (Remember that liveness properties say something

good eventually happens, i.e. within a finite amount of time.)

218

R esponse A response property usually has the form “if some event occurs, then eventually we

get a response to that event” . Using the buffer example above, a response property might be that

after an in action, there will eventually be an out action (although we may first have a finite

sequence of some other actions):

Buffer [in]//Z.((out)tt V [—]Z)

We would also want to say that this formula is true for every occurrence of in, so we wrap the

above response formula up in a greatest fixed point, giving:

Buffer \= i/Y.([in]/iZ.((out)tt V [—]Z) A [out]Y)

T erm ination The most obvious liveness property is that the process eventually terminates.

This can be expressed by saying the process converges, i.e. may only perform a finite number of

actions.

Converges d= (iZ.[—]Z

The opposite of this is divergence, i.e. the process is capable of performing silent actions forever.

Diverges *=? uZ.(\)Z

Liveness/L ivelock Freedom We may also want to express the absence of divergence by saying

that the process is live.

Live d= [ej((—e))tt

defLiveness = fiZ.Live A [—]Z

In other words, there may be a finite number of internal actions, but eventually an observable

action will occur.

Above we have given a very small selection of properties which can be expressed in the modal

mu-calculus. In the next section we explore further the greater suitability of logic for expressing

certain system properties by considering how logic can solve the partial specification problems

mentioned in the introduction.

11.5 U sin g Logic For P artia l S p ecifica tion s

We began this chapter by describing the problems encountered in the equational reasoning ap­

proach to verification when considering partial specifications. Logic now provides us with a means

219

of expressing a partial specification of system properties, and the |= relation allows us to express

that an implementation satisfies that specification. We illustrate this by reconsidering the case

study example of chapter 7 and the radiation machine of section 9.2.

11.5.1 Login Case Study

Consider the first protocol of the case study and our failure to show that equation 7.5 held with any

interpretation of “satisfies” ; see page 101. The problem we encountered there was the introduction

of nondeterminism by use of the h ide operator; the specification used deterministic choice, but

the implementation (with events hidden) used nondeterministic choice. If we had a way of relating

the specification and implementation which automatically ignored events in the implementation

not specified by the specification, we wouldn’t have to use h ide and this problem wouldn’t arise.

Using logic allows this; it also allows us to specify this protocol without specifying deterministic

or nondeterministic choice between p i and n l, something we cannot avoid when using process

algebra.

The first protocol, PI, is specified as a response property:

[ml]/iZ.((—ml ,p l ,n l)Z V (p l)tt V (n l)tt)

After all occurrences of ml we have a finite sequence of actions which does not include ml, p i or

nl; but eventually either p i or n l will occur.

This formula really applies to the once-only version of the case study in chapter 7. For the

recursive version, given in section 9.1, we want to be able to say that this formula holds for every

occurrence of ml. As with the buffer example given in the previous section, we wrap up the

response property above in a greatest fixed point.

*/Y.(([ral]/i.Z.((— ml ,p l ,n l)Z V (p l)tt V (nl)tt)) A [—]Y)

To express that the implementation of the system satisfies this property we write:

Processes f= vY.(([mi\nZ.((—ml ,p l ,n l)Z V (p l)tt V (n l)tt)) A [—]Y)

We anticipate that it should be straightforward to use the tableau method of [SW90] to show that

this expression holds.

We can express the other protocols similarly, therefore constructing the conjecture and proof

of correctness in three parts corresponding to the three protocols as we originally thought possible

in section 7.3. Using process algebra and cred (or any equivalence relation) this was not possible

because we had to explicitly hide events of the implementation which the specification did not

2 2 0

consider. Here logic allows us to say some events occur, without specifying which events occur, or

even how many of them occur.

We can also express some other properties of the case study which were added as constraints

to the specification, such as property that the positive response p i hinges on the transmission of

an m5 event.

[m5]//Z.(((—p i ,n l)Z V (p l)tt) A (nl)ff)

As above, we can wrap this up in a greatest fixed point to express that the formula holds repeatedly,

and show that it is satisfied in the model Processes.

The case study example also illustrates the feature of constraint-oriented specification that

liveness properties are not preserved by parallel composition of processes. When we combined the

protocols in chapter 7 using parallelism we suddenly were specifying much more than intended;

the liveness properties had changed. The relationship between constraint-oriented specification

and safety and liveness was discussed in [Bri89], where he concluded that liveness properties are

only preserved by composition if the constraints are consistent, i.e. P' $ may only be deduced

from P (= 4> if the traces of P' are all included in the traces of P. This was obviously not the

case with the protocols, and therefore liveness properties were not preserved.

11.5.2 The R adiation M achine

The safety requirement of the radiation machine example of section 9.2 provides an example of

a global invariant. We note that the term safety is overloaded; we mean specifically that life

is endangered by faulty operation of the machine; however, this property also happens to be

expressed as “nothing bad happens” .

We wish to express the requirement that a f ir e event can never occur when the shield is low

and the beam is high. Since we cannot easily say in process algebra that an action cannot occur,

we must instead specify the converse. We did this in section 9.2 by specifying the general form of

bad traces of the system, i.e. traces in which the f i r e event occurs when the beam is high and

the shield is low. This sort of property can be specified by a process. We can then show using

the cred relation that the machine either satisfies or does not satisfy that trace, and is therefore

unsafe or safe respectively. For an unsafe machine this means showing an expression of the form

(A cred B) = true holds; however, in the case of a safe machine we have a problem because this

requires showing an expression of the form (A cred B) = false holds. As discussed in section 8.4,

this is not possible in our proof system. Since logic can express that an event cannot occur, we

solve both of these problems using logic.

The good trace of the radiation machine example can be expressed as follows:

((n o t (hb | h s))* ; hb; (not (lb I hs I f i r e)) * ; (lb I hs))*

2 2 1

Initially, we can have any actions except hs and hb. As soon as an hb occurs we may then have

any actions except lb , hs and f ir e . If either lb or hs occur, we loop round the expression again.

Effectively, the danger zone is when an hb event has occurred and before either a lb or a hs occurs,

so we block the bad event, f ir e , during that period.

We can now express the good trace as a logical formula

good-therac d= uZ.{{—hb, hs)Z V [hb]i/Y.(((—lb , hs, fire)Y V [lb,hs]Z) A [firejflf))

The fixed point operators in this formula correspond roughly to occurrences of the * in the trace

formula above.

The safety requirement of the radiation machine is fully expressed by

Therac f= [lb][is]good-therac

the extra [lb][is] reflecting the initial set up of the machine. This has an equivalent effect to the

process algebra expression of section 9.2, i.e.

((te s to k ; ex it) cred THERACTEST) = f a l s e

An extension of the radiation machine example is to add data types; this was done in sec­

tion 10.3.2. The next section considers how we might use the modal mu-calculus with full LOTOS.

11.6 T he M od al M u -C alcu lus and Full LO TO S

Above we have claimed that it is straightforward to use the modal mu-calculus with Basic LOTOS

because both are based on transition systems. In particular, the same proof techniques can be

used as long as we choose one which relies only on the transition system, e.g. [SW90], and not

on the syntactic structure of the process, although these could perhaps be used by applying the

translation from finite Basic LOTOS to CCS given in [BIN92].

We saw in the chapter on full LOTOS that partial specification could be a way of alleviating

the complexity introduced by the addition of data types; we now consider extending the modal

mu-calculus for use with full LOTOS. The following discussion merely speculates on the sort of

extensions required; this topic is to be taken up as further work.

11.6.1 Extending the M odal M u-Calculus

The first part of the extension is to adapt the definitions of the operators of the modal mu-calculus

and the rules of the proof system to take account of data values in the transitions; it is just a

matter of drawing transition labels from the set of structured actions rather than plain gate names.

2 2 2

This is similar to the way in which the equivalence relations of Basic LOTOS are extended for use

with full LOTOS; see section 10.1.3.

So, for example, in the semantics of [K],

\\[I<Mv = {p e V : VAr <E K .'iP '.P P ' => P' £ ||$ ||v }

the actions in K can now structured; k = gw, where g is a gate name and w is a list of data

values. In evaluating formulae we must now consider gate names and data values.

We illustrate the use of the new logic by extending the buffer example given earlier; we can

now add data to the formulae. The new buffer is described as

Buffer := in?x; o u tlx ; B uffer

and we can express the capability and necessity to output the same data as was input.

Buffer f= */Z.([in?x]/zY.((out!x)tt V [—]Y) A [—]Z)

Buffer \= */Z.([in?x]/iY.(([out!x]tt A [—out!x]ff) V [—]Y) A [—]Z)

The occurrence of ?x is a binding occurrence for x in these formulae, therefore if the labelled

transition system contains the label in?3 the value 3 will be substituted for x in the remainder of

the formula. Since the buffer is defined recursively this happens every time the event in?x occurs.

These formulations of the properties of the buffer seem a little clumsy, especially for recursively

defined processes, in which case we want to look at just one unfolding of the labelled transition

system and deduce from that and looping in the transition system that the formula holds for all x.

To express this, the logic needs to be strengthened by quantification-, we want to be able to write

Vx.(Buffer i/Z.([in?x]/<Y.((out!x)tt V [—]Y) A [—]Z))

Introducing quantification seems less straightforward than the introduction of data, and will not

be discussed further here.

Assuming the logic has been successfully extended along the lines described above, it is useful

only if we have a corresponding proof technique.

11.6.2 Extending the Proof Technique

We claim it is possible to use the proof technique of [SW90] for the modal mu-calculus in con­

junction with Basic LOTOS processes and to extend it for use with full LOTOS. Below we give

a sketch of the proof technique and possible extensions.

223

The proof technique is a tableau system comprising several inference rules for building the

tableau based on the operators of the logic, and conditions that allow us to evaluate whether or

not a tableau is successful. A successful tableau indicates that the formula holds for the given

labelled transition system.

For example, consider the rule for the [K] modality.

P hA [#]$ j p / | vj(f € K p _k^ p ly

P' hA $

where the subscript A stands for a definition list relating variable names to formulae which is used

to unroll occurrences of fixed point operators.

Given a tableau ending with P hA [A]$, the top line above, the rule tells us how to build

the next level in the tableau. In this case we must investigate all possible K transitions of the

labelled transition system P, using the next state in the labelled transition system as the model

in the next line of the tableau. As might be expected, the rule for (K) allows us to choose one

possible transition from P, and therefore one state P ' , ignoring all the others. This makes tableau

construction nondeterministic; we have a choice as to how to construct the next row in the tableau.

The rule for V also gives us a choice.

We do not give full details of the proof system here, referring the reader to [SW90] or the

introductory [Sti91]. We have successfully carried out preliminary studies using this technique

to show the validity of some of the formulae of sections 11.4 and 11.5 with respect to LOTOS

processes.

Now consider using this proof technique for full LOTOS specifications. Given the rule for [K]

as presented above we have to work from a labelled transition system in which all data variables

are instantiated, otherwise we cannot know which transitions are really possible. Computing the

labelled transition system is time-consuming, and also is not possible if the process is infinite (in

which case we want to rely on properties of recursive equations, as mentioned above). The tech­

nique of [SW90] has to be modified to support uninstantiated variables in the labelled transition

systems. The strongest way of doing this would be to carry around details of the environment

(as in the second transformation from full to Basic LOTOS described in section 10.3.1) so that

we can work out the exact value attached to a variable. An alternative might be to work from

the predicates and guards of the process, maintaining a list of conditions which must hold for the

formula as a whole to hold. For example, rather than having an instantiated variable, we might

instead have a predicate which tells us that the value of that variable lies within a particular range,

e.g. n > 0. Again, this topic will be investigated as further work.

We conclude this section with some examples of the way in which we might use an extension

of the modal mu-calculus with full LOTOS. This gives us some incentive for overcoming the

224

problems of proving these properties hold with respect to a structured labelled transition system.

11.6.3 Exam ples

We can express the safety of the radiation machine presented in section 10.3.2 very simply as the

inability to perform the action fire!high!down:

vZ.{(tire!high!down)ff A [—]Z)

Contrast this with the fairly complicated specification of safety given earlier for the Basic LOTOS

specification. We believe the proof of the above formula would also compare favourably with the

complicated proof of section 10.3.2.

Now consider the third stack of section 10.2.5. Although equivalence proofs turned out to be

impossible for the third stack in section 10.2.6, we can describe some aspects of the behaviour of

the stack as partial specifications using logic.

For example, New_Stack_3 can only perform em pty!true, and not em pty!fa lse,

New-Stack.3 (empty!true)tt A [emptylfalsejff

and it cannot perform top or pop actions.

New_Stack^3 |= [top!x]ff A [pop]ff

On the other hand, Used_Stack_3 is unable to perform em pty!true.

Used_Stack_3(x,n) \= [empty!true]ff

Bearing in mind that full LOTOS allows data parameters to the processes, we might also want

to use these in our formulae, e.g.

Used_Stack-3(x, n) \= (toplx)tt A [top!z]ff where x ^ z

Given that x is the value at the top of the stack, top may only produce the value x and no other.

In this case it is the occurrence of x as a parameter to Used_Stack_3 which binds the value for the

remainder of the formula.

Looking back at the abstract data type equations of figure 10.2 we might also want to express

225

invariants over the behaviour of the stack, such as

(push?x)(i/Z.(pop)tt A [—]Z)

After a push action it is possible to perform a pop action. Again we might want quantification in

this formula, to express that the formula holds for all states of Used-Stack_3, e.g.

Vx.Vn.(Used_Stack^3(x, n) \= (push?y)(i/Z.(pop)tt A [—]Z))

The topic of extending the modal mu-calculus for use with full LOTOS is beyond the scope of

the present work.

11.7 Sum m ary

In this chapter, due to the inadequacy of process algebra and the equational reasoning frame­

work when considering partial specification, we have considered the use of logic as an alternative

means of specifying a system. Verification of the system can then be expressed by checking the

LOTOS implementation of the system against the logic specification of the system. We specifically

considered using the modal mu-calculus for both Basic and full LOTOS.

In order to demonstrate the advantages of using logic we reconsidered the examples which had

motivated our study of logic, namely the login case study of chapter 7 and the use of cred in

the radiation machine of section 9.2. Using logic we showed that it was possible to express the

correctness of the case study by splitting the conjecture up into three parts, each corresponding

to a protocol, and we claim that the proof is straightforward. Similarly, it was straightforward to

specify the good trace of the radiation machine, something which was not possible using process

algebra.

The modal mu-calculus can be used with no alteration for Basic LOTOS; however, some ex­

tensions must be made when considering full LOTOS. The proof technique must also be extended

to allow model checking of full LOTOS specifications. We considered some examples illustrating

the sort of extensions which might be necessary to allow reasoning about models containing data

types, and also some full LOTOS examples drawn from chapter 10 which illustrate the ease of

specifying system properties using logic rather than process algebra.

Logic can express properties which were difficult to express using process algebra, and the proof

technique (model checking) is less reliant on the skills of the user than our equational reasoning

approach. Nevertheless, this approach is not perfect. The main problem might be that the method

of describing the properties is a skilled task, more so than describing processes. We are not unduly

concerned by this, as every approach must have some drawback; the area of logic and LOTOS

226

remains a promising one, and will be further researched in the project “Temporal Aspects of

Verification of LOTOS Specifications” .

227

C hapter 12

Conclusions

In this thesis we have introduced the topic of verification of properties of concurrent systems, in

particular those described using LOTOS, in a manner suitable for those with no prior knowledge

of the subject. We followed this with a thorough, practically-based investigation of verification of

properties of LOTOS specifications expressed using comparison of two LOTOS specifications by

a behavioural relation and equational reasoning.

We developed a partially automated proof technique based on equational reasoning, and used

this, together with hand proofs where necessary, to study verification via particular examples. This

allowed us to develop a greater understanding of the verification process and also demonstrated

the utility of the proof system developed.

The main outcome of our work on equational reasoning and verification of properties of LOTOS

specifications is that equational reasoning is highly suitable for carrying out equivalence proofs, but

that the method begins to break down when partial specifications are considered; we are forced to

write clumsy specifications, and were unable to (soundly) automate the proof process. This implies

that a different proof paradigm should be adopted when considering ordering of specifications.

We investigated one method of dealing with partial specifications: the use of temporal or modal

logic for specifications. We do not abandon LOTOS; a LOTOS expression may be used as the

model in which we evaluate the validity of the logical specification. We made a preliminary study

of the advantages and disadvantages of this approach, illustrating the use of logic for specification

by examples drawn from the earlier part of the thesis. We showed how some of the examples for

which the equational approach had been unsatisfactory are better treated using logic.

228

12.1 D eta iled List o f A ch ievem en ts

The achievements of the thesis may be considered in four main groups. We began by introducing

and surveying the field. This survey gives the necessary background for the main investigation

of verification of properties of LOTOS specifications; the investigation had both theoretical and

practical elements. During the practical work we made some contributions to the use of term

rewriting for automation of process algebra proofs. We concluded by studying the use of logic

with LOTOS.

Following this grouping, we list these achievements in more detail.

• We began by providing an introduction to verification of concurrent systems, process algebra,

LOTOS, equational reasoning and logic which may be used as a springboard for other re­

searchers entering the field. This makes the thesis self-contained by providing the background

necessary for the main investigation of verification of properties of LOTOS specifications.

- We surveyed the topic of verification of properties of LOTOS specifications. The intro­

ductory work comes in chapter 2, where we discuss possible interpretations of the term

“verification” , and chapter 4, where one particular approach to verification is described.

- In chapter 3 we presented aspects of the three process algebras CCS, CSP and Basic

LOTOS, including equivalence relations and proof techniques. The work is not new,

but the presentation of the three together in a comparative manner is.

- We presented those aspects of equational reasoning relevant to our work with LOTOS,

namely proof by rewriting and Knuth-Bendix completion, in chapter 5.

- In chapter 11 we presented the logics HML and modal mu-calculus.

- As part of our survey of verification we also surveyed currently available proof tools

which might be used with LOTOS. This is mentioned in chapter 4; the survey is given

in more detail in appendix A.

- The syntax and semantics of LOTOS is presented in appendix B. We found the pre­

sentation of the same information in the standard [IS088] rather complex and poorly

organised. Our intention was to provide a clearer presentation for ourselves (and we

believe this has been achieved); others may also find our presentation easier to follow.

• The bulk of our work was related to the verification of properties of LOTOS specifications

where the verification requirement is expressed by a behavioural equivalence and the proof

carried out using equational reasoning.

- We have surveyed and discussed the topic of verification of properties of LOTOS speci­

fications, including two areas which have been largely ignored in the literature, namely

229

verification of properties of full LOTOS specifications and also the use of logic in spec­

ifying the requirements of a system; see chapters 2, 4, 10 and 11.

As part of the study of choices the user is faced with in the verification process we

identified several possible criteria, given in section 4.2.2, which might help differentiate

between the various equivalences/preorders.

We have made a thorough investigation of one aspect of the verification topic, namely

the method of comparing two LOTOS specifications in terms of a behavioural equiv­

alence relation. The theoretical part of the study was carried out first for a portion

of Basic LOTOS in chapter 4, extended to the complete language of Basic LOTOS,

including recursion, in chapter 8, and finally extended to full LOTOS in chapter 10.

The above approach to verification of properties of Basic LOTOS specifications has been

implemented in a term rewriting framework. The initial implementation described in

chapter 6 deals only with a subset of the language, but the system has evolved to include

all features of Basic LOTOS. The system finally obtained is described in chapter 8.

The ease with which it was possible to adapt and develop the system is a consequence of

choosing the equational reasoning paradigm. This development also required changing

the underlying equational reasoning tool. Note that the relabelling operator of LOTOS

is slightly simplified in our implementation.

The utility of the above proof system has been demonstrated via a number of examples,

presented in chapter 9. We deliberately chose examples which had been presented by

other authors using different proof systems as a means of avoiding unintentional bias

towards examples suited to our proof system.

When investigating verification of properties of full LOTOS specifications we consid­

ered the approaches of other authors to the problem in addition to considering how

the above equational reasoning approach could be modified. In particular we studied

the transformations from full LOTOS to Basic LOTOS detailed in [Bol92]. We inves­

tigated the properties of these transformations with respect to their use in verification

of full LOTOS specifications, concluding that the results of verification carried out on

the transformed specifications can only be extrapolated to the original full LOTOS

specification for one of the transformations. The other transformation preserves very

weak properties only. This was not considered in the original presentation of [Bol92];

our contribution is detailed in section 10.3.1.

An important part of verification is specification; if the possible approaches to verifi­

cation are borne in mind when specifying a system, the verification may be easier. We

also contributed to research on specification in LOTOS.

230

The LOTOS language was developed for use in specification of communications and

this is the area in which it is usually applied. We successfully used LOTOS for non­

communications examples in chapter 7 and in chapter 9, showing that the language is

applicable outside the originally conceived area of application.

We reviewed the language LOTOS in section 7.6. Of special relevance are the obser­

vations that some features of the LOTOS language make verification more difficult, in

particular the disable operator, discussed in section 9.2.5, and also the hide operator,

discussed in section 7.4.1.

• During the practical investigation of verification we used equational reasoning and term

rewriting for automation; this resulted in the following contributions.

- Early experiments in using a rewriting tool for proofs of equivalence were centered

around an attempt to find a confluent and terminating set of rewrite rules for the

LOTOS weak bisimulation congruence relation for a subset of the language; this is

described in chapter 6. This experiment was successful in that such a rule set was

developed, but unsuccessful in that the rule set did not have sufficient power for any

but the simplest proofs.

A complete rule set corresponding to the equivalence of the semantics is impossible

to obtain because weak bisimulation is undecidable, therefore we also discussed the

relative merits of different choices of rules and how they might affect the verification

process, see section 8.3. In particular, we discussed the effects an incomplete set of rules

might have on the verification process, and how that might necessitate the introduction

of a strategy in applying the rules, see sections 6.4.2 and 8.3.

— The above completion work had two side effects. The first was the generation of several

diverging sequences of rules (useful for work detailed in [Wat92]), see section 6.4.3. The

second was to show that the laws of weak bisimulation congruence given in [IS088] are

not sound (although this is easily corrected), see section 5.5.2.

- The complete set of rules developed above was not powerful enough for any but the

simplest examples, a fact easily ascertained by experiment. Our initial solution was to

develop a set of rewrite rules which reduce a term according to the expansion law for

parallelism; see section 6.4.1. (Note that the final implementation does not use these

rules because this facility is built into PAM).

— Although obtaining a set of rewrite rules for an equivalence relation is just a matter

of orienting the axioms or laws, the process is not so simple for a preorder relation.

In section 8.4 we presented two possible rule sets for the c red preorder, together with

analysis of the effects of using these rewrite rules in proofs.

231

- Throughout the study various equational reasoning tools were used. The principle of

equational reasoning is a simple and familiar one, which makes proof in this paradigm

straightforward. Equational reasoning tools, on the other hand, are hard to use on the

whole. This is due more to the status of these tools as research tools rather than a

pieces of software engineered for industry; see particularly our remarks about RRL in

section 7.6. However, we note that PAM, reviewed in appendix A, is also an equational

reasoning tool and yet is easy to use. Perhaps its simple graphical interface shows the

way of the future for such tools.

• As a result of the shortcomings of the proof system developed above, we identified a need

for an alternative approach to specification and verification. We studied the use of logic

in specifying the requirements of a system, with a LOTOS specification being used as the

model in which those requirements are evaluated.

- In chapter 11 we presented HML and the modal mu-calculus and proposed that, al­

though defined for use with CCS, they could also be used in conjunction with LOTOS

since both are based on the model of labelled transition systems. We outlined a suit­

able proof technique and gave several examples of the use of the modal mu-calculus

in expressing properties of Basic LOTOS specifications. In particular we considered

examples from earlier in the thesis for which the equational approach had been unsuit­

able.

- The use of the modal mu-calculus for Basic LOTOS seems straightforward, but the

modification of the logic for use with full LOTOS may be more difficult. We discussed

possible extensions to the modal mu-calculus and proof system required for use with full

LOTOS, illustrating those requirements by means of selected examples; see section 11.6.

Our original aims have been only partially met in that we have only thoroughly researched

one particular approach to verification of LOTOS specifications. Specifically, we have not fully

considered verification of LOTOS specifications with respect to logical requirements specifications

(but see further work below). We believe that with respect to verification of equivalence/ordering

of two LOTOS specifications we have achieved our original goals, including the goal to present the

work as simply and clearly as possible, making our work easily understood by a newcomer to the

subject, although this is of course a rather subjective evaluation.

12.2 Further W ork

There are two kinds of work discussed here: work which follows on naturally from the work of the

thesis, and work which is indirectly related to the main body of the thesis work.

232

12.2.1 Work D irectly R elated to the Thesis

This category contains four main topics: development of the PAM proof system, further case

studies, further investigation of verification for full LOTOS, in particular methods of automating

proofs, and use of modal or temporal logic for full LOTOS.

D eveloping th e PAM System There are several ways in which the proof system could be

further developed. The most obvious one is to add axiomatisations for other relations. This

could also mean finding a better axiomatisation for the c red preorder, although really we cannot

properly express preorders in the equational framework.

We remarked in chapter 10 that a new version of PAM which can handle parameterised pro­

cesses is under development. The addition of parameters to processes, both gate parameters

and data type parameters, is important if our system is to be used for real LOTOS verification,

therefore we anticipate modifying our approach to utilise these new features.

A further development, which also depends on development of PAM, is implementation of the

LOTOS relabelling operator as described in [IS088], rather than the current simplified version.

M ore Exam ples It is clear that we have only attempted fairly small examples in the studies

of chapters 7 and 9; although we note that our system was easy to use, and, for most of these

examples, proofs were completed quickly. An important question is: can our method be scaled up

to deal with larger examples? The easiest way to answer this question is to attempt verification

proofs involving larger, more complex specifications.

D evelopm ent o f P ro o f Techniques for fu ll LO TOS V erification Although we were able

to carry out some verification of properties of full LOTOS specifications, these results were not

satisfactory; the (hand) proofs were complex and tedious. While some of the difficulty lies in

the lack of automated tools, there has also been very little research on verification techniques

for full LOTOS. In particular, the method of constructing a bisimulation in the stack proof

of section 10.2.4 is very tedious; it would be useful to find a better way, which could be easily

automated, to prove two full LOTOS specifications equivalent.

Developing a M oda l/T em pora l Logic for full LO TO S While the use of the modal mu-

calculus for Basic LOTOS is perfectly valid, since both are based on labelled transition systems,

it seems much harder to generalise the modal mu-calculus for use with full LOTOS. As seen in

chapter 11, the problems lie more in the development of a proof system; we can already formulate

properties which use data. This work will be continued in the SERC-funded project “Temporal

Aspects of Verification of LOTOS Specifications” .

233

12.2.2 Work Indirectly Related to the Thesis

The remainder of these topics for further work are ones which were encountered during our inves­

tigations but which are somewhat tangential to the main body of the work.

C rite r ia for Choosing a R ela tion One of the most difficult parts of verification lies in inter­

preting the verification requirements; a particular aspect of this is choosing which of the many

equivalence and preorder relations defined for process algebras is most appropriate for a given

example. In section 4.2.2 we postulated a number of possible criteria which might be used in

making this choice; these remain to be more thoroughly investigated.

Specification Styles To what extent does the style of specification affect the verification? It

is clear that some specifications exclude certain methods; see, for example, the third stack and

equivalence proofs of section 10.2.6. A possible direction for future work lies in determining

whether such problems can be classified, identified in advance, and avoided.

N ondeterm in ism In the Login case study example of chapter 7 we originally anticipated that

the conjecture expressing correctness and hence the proof could be split into three parts due to

the disjoint nature of the protocols. In attempting the subproofs we discovered that the use of

the h ide operator led to extra nondeterminism and the proof could not proceed. We could not

prove anything about the correctness of the parts of the conjecture, and therefore nothing could

be deduced about the correctness of the system as a whole. However, the technique of divide and

conquer as a method of simplifying problems is both commonly used and valuable. Since the use

of h ide causes problems by introducing internal events, the problem may be that we have not as

yet found the right method of splitting the conjecture up, or of expressing the correctness of the

parts. As we have seen in chapter 11, one approach to this problem involves the use of logic. If

we want to remain within process algebra a solution could lie in relativized bisimulation [LM92],

where bisimulation is measured with respect to an environment which expresses “allowed” actions.

We conclude with a discussion of the possible impact of our work on academics in this field

and also on the wider LOTOS community.

12.3 P ro sp ects for th is W ork

The thesis as a whole may be useful to other researchers getting started in the area of verification

of properties of concurrent systems; we provide an introduction to the main topics of this area,

a thorough study of the applicability of equational reasoning techniques to such verification, and

also preliminary investigations of the use of temporal or modal logic for use with LOTOS. It

234

is important to point out that the area of verification has been largely ignored by the LOTOS

community in favour of validation methods such as testing and simulation, therefore few, if any,

large scale works on verification of properties of LOTOS specifications, such as our own, exist.

Given that LOTOS is an ISO standard and therefore used by industry, particularly the telecom­

munications industry, we must also consider the impact of our work on the wider LOTOS com­

munity, i.e. outside academia.

Through PAM, our system provides an environment in which to reason about Basic LOTOS

which is easy to use and also to extend (only a knowledge of LOTOS is required; the form of

the PAM files is straightforward and requires no special coding ability). However, the quality

and robustness of tools demanded by industrial practitioners is much higher than we have yet

attained; our tool is still in the early stages of development. We require to carry out further tests,

particularly on larger examples. In addition, our proof system relies to a large extent on the skill

of the user in guiding the proof process, which requires a significant investment in terms of time

both in preliminary study and in the proof process.

As long as tool support for LOTOS continues to be concentrated in the areas of simulation,

testing and translation, there is little future for verification in the wider LOTOS community.

Although verification can give us greater confidence in the correctness of our systems, perhaps,

relative to the amount of work required to gain that confidence, the gain is not as great as can be

achieved through use of testing and simulation tools which require less effort on the part of the user

to obtain results. Nevertheless, we hope that our work will help lead to a greater understanding

of verification and the development of better tools and techniques for verification in the future.

235

Bibliography

[AB84]

[AB90]

[Abr87]

[Aju89]

[Ald89]

[AW92]

[BA91]

[Bae90]

[Bai91]

[BBH+91]

[BHR84]

[BIN92]

[BK84]

[BI<91]

D. Austry and G. Boudol. Algebre de processus et synchronisation. T h e o re tic a l
C o m p u te r S c ie n c e , 30:90-131, 1984.

G.J. Akkerman and J.C.M. Baeten. Term Rewriting Analysis in Process Algebra.
Technical Report P9006, University of Amsterdam, 1990.

S. Abramsky. Observation Equivalence as a Testing Equivalence. T h e o re tic a l C o m ­
p u te r S c ie n c e , 53:225-241, 1987.

I. Ajubi. Formal Description of the OSI Session Layer: Session Protocol. In P.H.J.
van Eijk, C.A. Vissers, and M. Diaz, editors, T h e F o r m a l D e s c r ip t io n T ech n iq u e
L O T O S , pages 153-210. Elsevier Science Publishers B.V. (North-Holland), 1989.

R. Alderen. COOPER: the compositional construction of a canonical tester. In
S. Vuong, editor, F o rm a l D e s c r ip t io n T ec h n iq u es , II, pages 13-18. Elsevier Science
Publishers B.V. (North-Holland), 1989.

H.R. Andersen and G. Winskel. Compositional Checking of Satisfaction. In K.G.
Larsen and A. Skou, editors, P ro c ee d in g s o f C A V 9 1 , LNCS 575, pages 24-36, 1992.

G. Bruns and S. Anderson. The Formalization and Analysis of a Communications
Protocol. Technical Report ECS-LFCS-91-137, LFCS, University of Edinburgh,
1991.

J.C.M. Baeten, editor. A p p lic a t io n s o f P r o c e s s A lg e b ra . Number 17 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

J. Baillie. A CCS case study: a safety-critical system. S o f tw a r e E n g in e e r in g J o u rn a l,
pages 159-167, July 1991.

J.C. Baeten, J.A. Bergstra, C.A.R. Hoare, R. Milner, J. Parrow, and R. de Simone.
The Variety of Process Algebra. Deliverable ESPRIT Basic Research Action 3006,
CONCUR (R. Milner and F. Moller, eds.), University of Edinburgh, 1991.

S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating Sequen­
tial Processes. J o u r n a l o f th e A s s o c ia t io n f o r C o m p u tin g M a c h in e r y , 31(3):560-599,
1984.

M. Boreale, P. Inverardi, and M. Nesi. Complete sets of axioms for finite basic
LOTOS behavioural equivalences. I n fo r m a tio n P r o c e s s in g L e t te r s , 43:155-160,1992.

J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communication.
I n fo r m a tio n a n d C o n tro l, 60(1/3): 109—137, 1984.

E. Brinksma and P. Kars. From Data Structure to Process Structure. Technical
Report Memorandum INF-91-38/TIOS-91-11, University of Twente, 1991.

236

[Bol92]

[Boo89]

[BR83]

[Bra92]

[Bri88a]

[Bri88b]

[Bri89]

[Bri92]

[BS87]

[BS90]

[BS94]

[BSS87]

[CCI88]

[CES86]

[CH90]

T. Bolognesi, editor. Catalogue of LOTOS Correctness Preserving Transformations.
Technical Report Lo/W Pl/T1.2/N0045, The LOTOSPHERE Esprit Project, 1992.
Task 1.2 deliverable. LOTOSPHERE information disseminated by J. Lagemaat,
email lagem aatQ cs.utw ente.nl.

R. Booth. An Evaluation of the LCF Theorem Prover using LOTOS. In S. Vuong,
editor, F o rm a l D e s c r ip t io n T ec h n iq u es , II, pages 83-100. Elsevier Science Publishers
B.V. (North-Holland), 1989.

S.D. Brookes and W.C. Rounds. Behavioural Equivalence Relations induced by Pro­
gramming Logics. In P ro c e e d in g s o f I C A L P 8 3 , LNCS 154, pages 97-108. Springer-
Verlag, 1983.

J. Bradfield. A proof assistant for symbolic model checking. Technical Report ECS-
LFCS-92-199, University of Edinburgh, 1992.

E. Brinksma. A Theory for the Derivation of Tests. In S. Aggarwal and K. Sabnani,
editors, P r o to c o l S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n , V III, pages 63-74. Elsevier
Science Publishers B.V. (North-Holland), 1988.

E. Brinksma. O n th e D e s ig n o f E x te n d e d L O T O S . PhD thesis, University of Twente,
1988.

E. Brinksma. Constraint-oriented specification in a constructive formal description
technique. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, S te p w is e
R e f in e m e n t o f D is t r ib u te d S y s te m s : M o d e ls , F o r m a lis m s , C o r r e c tn e s s , LNCS 430,
pages 130-152. Springer-Verlag, 1989. REX School/Workshop, Mook, The Nether­
lands, May/June 1989.

E. Brinksma. From Data Structure to Process Structure. In K.G. Larsen and
A. Skou, editors, P ro c e e d in g s o f C A V 9 1 , LNCS 575, pages 244-254, 1992.

T. Bolognesi and S.A. Smolka. Fundamental Results for the Verification of Ob­
servational Equivalence: a Survey. In H. Rudin and C.H. West, editors, P r o to c o l
S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n , V II, pages 165-179. Elsevier Science Pub­
lishers B.V. (North-Holland), 1987.

J. Bradfield and C. Stirling. Verifying Temporal Properties of Processes. In C O N ­
C U R 90 , LNCS 458, pages 115-125, 1990.

B. Berthomieu and T. Le Sergent. Programming with Behaviors in an ML framework
— The Syntax and Semantics of LCS. In P ro c e e d in g s o f E S O P , 1994. To appear in
LNCS.

E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS Specifications, their Imple­
mentations and their Tests. In B. Sarikaya and G.V. Bochmann, editors, P r o to c o l
S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n , V I, pages 349-360. Elsevier Science Pub­
lishers B.V. (North-Holland), 1987.

CCITT. S p e c if ic a tio n a n d D e s c r ip t io n L a n g u a g e (S D L) R e c o m m e n d a tio n s Z .1 0 0 ,
1988.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications. In A C M T O P L A S , vol­
ume 8, 1986.

R. Cleaveland and M. Hennessy. Testing Equivalence as a Bisimulation Equiva­
lence. In J. Sifakis, editor, A u to m a tic V e r if ic a tio n M e th o d s f o r F in i te S ta te S y s te m s ,
LNCS 407, pages 11-23, 1990.

237

[CIN91]

[Cle89]

[Cle91]

[CN91]

[CN92]

[Com91]

[CPS89]

[CR90]

[De 87]

[Der82]

[DFGR92]

[DH84]

[Dic90]

[Dic91]

[DIN89]

[DIN91]

[DMdS90]

A. Camilleri, P. Inverardi, and M. Nesi. Combining Interaction and Automation
in Process Algebra Verification. In S. Abramsky and T.S.E. Maibaum, editors,
P ro c e e d in g s o f T A P S O F T 9 1 , volume II, pages 283-296. Springer-Verlag, 1991.

R. Cleaveland. Tableau-Based Model Checking in the Propositional Mu-Calculus.
Technical Report 2/89, University of Sussex, 1989.

R. Cleaveland. On Automatically Explaining Bisimulation Inequivalence. In E.M.
Clarke and R.P. Kurshan, editors, P ro c e e d in g s o f C A V 9 0 , LNCS 531, pages 364-372.
Springer-Verlag, 1991.

P. Curran and K. Norrie. Specification of an ISO Protocol in LOTOS. Technical
report, University of London, 1991.

P. Curran and I<. J. Norrie. An approach to verifying concurrent systems — a
medical information bus (MIB) case study. In P ro c e e d in g s o f th e 5 th a n n u a l IE E E
s y m p o s iu m o n c o m p u te r -b a s e d m e d ic a l s y s te m s , 1992.

T h e C o m p u te r J o u r n a l , 34(1), 1991. Special Issue on Term Rewriting.

R. Cleveland, J. Parrow, and B. Steffen. The Concurrency Workbench. In J. Sifakis,
editor, A u to m a tic V e r if ic a tio n M e th o d s f o r F in i te S ta te S y s te m s , LNCS 407, pages
24-37. Springer-Verlag, 1989.

S.J. Colwill and G.H.B. Rafsanjani. Towards Machine-Assisted Formal Validation
of LOTOS Specifications. Technical report, British Telecom, 1990.

R. De Nicola. Extensional Equivalences for Transition Systems. A c ta I n fo r m a tic a ,
24:211-237, 1987.

N. Dershowitz. Orderings for Term Rewriting Systems. T h e o r e tic a l C o m p u te r S c i ­
en ce , 17:279-301, 1982.

R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action based framework for
verifying logical and behavioural properties of concurrent systems. In K.G. Larsen
and A. Skou, editors, P ro c e e d in g s o f C A V 9 1 , LNCS 575, pages 37-47, 1992.

R. De Nicola and M.C.B. Hennessy. Testing Equivalences for Processes. T h e o re tic a l
C o m p u te r S c ie n c e , 34:83-133, 1984.

A.J.J. Dick. A Case St udy for the ERIL Project. Private communication, 1990.

A.J.J. Dick. An Introduction to Knuth-Bendix Completion. T h e C o m p u te r J o u rn a l,
34(1):-, 1991. Special Issue on Term Rewriting.

R. De Nicola, P. Inverardi, and M. Nesi. Using the Axiomatic Presentation of
Behavioural Equivalences for Manipulating CCS Expressions. In J. Sifakis, editor,
A u to m a tic V e r if ic a tio n M e th o d s f o r F in i te S ta te S y s te m s , LNCS 407, pages 54-67,
1989.

R. De Nicola, P. Inverardi, and M. Nesi. Equational Reasoning about LOTOS
Specifications: A Rewriting Approach. In P ro c e e d in g s o f 6 th I n te r n a t io n a l W o rk sh o p
o n S o f tw a re S p e c if ic a tio n a n d D e s ig n , pages 148-155. IEEE Press, 1991.

G. Doumenc, E. Madelaine, and R. de Simone. Proving process calculi translations
in ECRINS: The PureLOTOS —>■ MEIJE Examples. Technical Report RR 1192,
INRIA, 1990.

238

[DP91]

[dS85]

[EBB+86]

[EFJ90]

[EFP91]

[EM85]

[Ern91]

[FGL89]

[FGR90]

[Fid93]

[Fle87]

[FLS90]

[F091]

[GH91]

[GL91]

[GL091]

D. Duce and F. Paterno. A Formal Specification of a Graphics Systen in the Frame­
work of the Computer Graphics Reference Model. Technical Report RAL-91-065,
Rutherford Appleton Laboratory, September 1991.

R. de Simone. Higher-level synchronizing devices in Meije-SCCS. T h e o re tic a l C o m ­
p u te r S c ie n c e , 37:245-267, 1985.

H. Ehrig, J. Buntrok, P. Boehm, F. Nurnberg K-P. Hasler, C. Rieckhoff, and
J. de Meer. Towards an Algebraic Semantics of the ISO-Specification Language
LOTOS. Technical Report SEDOS/C2/N58, ESPRIT SEDOS Project, 1986.

P. Ernberg, L. Fredlund, and B. Jonsson. Specification and Validation of a Simple
Overtaking Protocol using LOTOS. Technical Report T9006, Swedish Institute of
Computer Science, 1990.

P. Ernberg, L. Fredlund, and J. Parrow. An Extended Bibliography of Case Stud­
ies. Deliverable ESPRIT Basic Research Action 3006, CONCUR (R. Milner and
F. Moller, eds.), University of Edinburgh, 1991.

H. Ehrig and B. Malir. F u n d a m e n ta ls o f A lg e b r a ic S p e c if ic a t io n I : E q u a tio n s a n d
I n it ia l S e m a n tic s . EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1985.

P. Ernberg. CCS as a method of specification and verification: Analysis of a case
study. Technical Report T91:05, Swedish Institute of Computer Science, 1991.

A. Fantechi, S. Gnesi, and C. Laneve. An Expressive Temporal Logic for LOTOS. In
S. Vuong, editor, F o rm a l D e s c r ip t io n T ec h n iq u es , II, pages 261-276. Elsevier Science
Publishers B.V. (North-Holland), 1989.

A. Fantechi, S. Gnesi, and G. Ristori. Compositional Logic Semantics and LOTOS.
In L. Logrippo, R. L. Probert, and H. Ural, editors, P r o to c o l S p e c if ic a tio n , T e s t-
inq , a n d V e r if ic a tio n , X , pages 365-378. Elsevier Science Publishers B.V. (North-
Holland), 1990.

C. Fidge. Comparison of CCS, CSP and LOTOS. Notes from a seminar given at
FORTE 93, but not published as part of the proceedings, 1993.

M. Fletcher. The Boyer-Moore Theorem Prover and LOTOS. Research & Technology
Memorandum RT62/014/87, British Telecom, Ipswich, 1987.

M. Faci, L. Logrippo, and B. Stepien. Formal Specifications of Telephone Systems in
LOTOS. In E. Brinksma, G. Scollo, and C. A. Vissers, editors, P r o to c o l S p e c if ic a tio n ,
T e s tin q , a n d V e r if ic a tio n , IX , pages 25-36. Elsevier Science Publishers B.V. (North-
Holland), 1990.

L. Fredlund and F. Orava. Modelling Dynamic Communication Structures in LO­
TOS. In F o rm a l D e s c r ip t io n T ec h n iq u es , IV , 1991.

J.F. Groote and II. IIQttel. Undecidable Equivalences for Basic Process Algebra.
Technical Report ECS-LFCS-91-169, LFCS, University of Edinburgh, 1991.

S. Gallouzi and L. Logrippo. A Hoare-style Proof System for LOTOS. In J. Que-
mada, J. Manas, and E. Vasquez, editors, F o rm a l D e s c r ip t io n T ec h n iq u es , III , pages
49-62. Elsevier Science Publishers B.V. (North-Holland), 1991.

S. Gallouzi, L. Logrippo, and A. Obaid. An Expressive Trace Theory for LOTOS. In
B. Jonsson, J. Parrow, and B. Pehrson, editors, P r o to c o l S p e c if ic a tio n , T e s tin g , a n d
V e rific a tio n , X I , pages 159-175. Elsevier Science Publishers B.V. (North-Holland),
1991.

239

[GLZ89]

[GM92]

[Gor88]

[Got87]

[Gro87]

[Hen88]

[HJOP89]

[HKK91]

[HM85]

[H082]

[Hoa85]

[Hiit91]

[IN90]

[IS074]

[IS088]

[ISO90]

[IYK90]

J.C. Godskesen, K.G. Larsen, and M. Zeeberg. TAV (Tools for Automatic Verifica­
tion): Users Manual. Technical report, Aalborg University, 1989.

J.F. Groote and F. Moller. Verification of Parallel Systems via Decomposition. In
W.E. Cleaveland, editor, C O N C U R ’9 2 , LNCS 630, pages 62-76. Springer-Verlag,
1992. Third International Conference on Concurrency Theory.

M.J.C. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, V L S I S p e c if ic a tio n , V e r if ic a tio n a n d
S y n th e s is , pages 73-128. Kluwer Academic Publishers, 1988.

R. Gotzhein. Specifying Abstract Data Types with LOTOS. In B. Sarikaya and
G.V. Bochmann, editors, P ro to c o l S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n , VI, pages
15-26. Elsevier Science Publishers B.V. (North-Holland), 1987.

R. Groenwald. Verification of a sliding window protocol by means of process algebra.
Technical Report P8701, University of Amsterdam, 1987.

M. Hennessy. A lg eb ra ic T h e o ry o f P ro c e s se s . MIT Press, 1988.

H. Hansson, B. Jonsson, F. Orava, and B. Pehrson. Specification for Verification. In
S. Vuong, editor, F o rm a l D e s c r ip t io n T ec h n iq u es , II, pages 227-244. Elsevier Science
Publishers B.V. (North-Holland), 1989.

M. Hermann, C. Kirchner, and H. Kirchner. Implementations of Term Rewriting
Systems. T h e C o m p u te r J o u rn a l, 34(l):20-33, 1991. Special Issue on Term Rewrit­
ing.

M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency.
J o u r n a l o f th e A s s o c ia t io n f o r C o m p u tin g M a c h in e r y , 32(1):137-161, 1985.

G. Huet and D.C. Oppen. Equations and Rewrite Rules - A Survey. In R. Book,
editor, F o rm a l L a n g u a g es: P e r s p e c t iv e s a n d O p e n P r o b le m s . Academic Press, 1982.

C.A.R. Hoare. C o m m u n ic a tin g S e q u e n tia l P r o c e s s e s . Prentice-Hall International,
1985.

H. Hiittel. Silence is Golden: Branching Bisimilarity is Decidable for Context-Free
Processes. Technical Report ECS-LFCS-91-173, LFCS, University of Edinburgh,
1991.

P. Inverardi and M. Nesi. A Rewriting Strategy to Verify Observational Congruence.
I n fo r m a tio n P ro c e s s in g L e t te r s , 35:191-199, 1990.

International Organisation for Standardisation. T h e R e fe r e n c e M o d e l f o r O p e n S y s ­
te m s In te rc o n n e c tio n , 1974.

International Organisation for Standardisation. I n f o r m a tio n P r o c e s s in g S y s te m s —
O p e n S y s te m s In te rc o n n e c tio n — L O T O S — A F o r m a l D e s c r ip t io n T ec h n iq u e B a s e d
on th e T em p o ra l O rd e r in g o f O b s e r v a t io n a l B e h a v io u r , 1988.

International Organisation for Standardisation. I n f o r m a tio n P r o c e s s in g S y s te m s —
O p en S y s te m s In te rc o n n e c tio n — E s te l le — F o r m a l D e s c r ip t io n T ec h n iq u e B a s e d
on an E x te n d e d S ta le T ra n s itio n M o d e l, 1990.

H. Ichikawa, K. Yainanaka, and J. Kato. Incremental Specification in LOTOS. In
L. Logrippo, R. L. Probert, and H. Ural, editors, P r o to c o l S p e c if ic a tio n , T e s tin g , a n d
V e rific a tio n , X , pages 183-196. Elsevier Science Publishers B.V. (North-Holland),
1990.

240

[KB70]

[Kir91]

[Kir92]

[Kir93]

[KN90]

[KN91]

[Koz83]

[KS83]

[KS90]

[KZ87]

[Lam77]

[Lan89]

[Lan90]

[Lan92]

[Lar86]

[Lar90a]

[Lar90b]

D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal Algebras. C o m ­
p u ta t io n a l P r o b le m s in A b s tr a c t A lg e b ra , pages 263-297, 1970.

C. Kirkwood. An Experiment using Term Rewriting Techniques for Concurrency.
In S.L. Peyton-Jones, G. Hutton, and C.K. Holst, editors, F u n c tio n a l P r o g ra m m in g ,
G la sg o w 1 9 90 , pages 196-200. Springer-Verlag, 1991. Extended abstract.

C. Kirkwood. A Case Study for the ERJL Project. Technical Report 1992/R4,
University of Glasgow, 1992.

C. Kirkwood. Automating (Specification = Implementation) using Equational Rear
soning and LOTOS. In M.-C. Gaudel and J.-P. Jouannaud, editors, T A P S O F T ’93:
T h e o ry a n d P r a c t ic e o f S o f tw a r e D e v e lo p m e n t , LNCS 668, pages 544-558, 1993.

C. Kirkwood and K. Norrie. Some Experiments using Term Rewriting Techniques
for Concurrency. Technical Report CSD-TR-623, Royal Holloway and Bedford New
College, 1990.

C. Kirkwood and K. Norrie. Some Experiments using Term Rewriting Techniques for
Concurrency. In J. Quemada, J. Manas, and E. Vasquez, editors, F o r m a l D e s c r ip t io n
T ech n iq u es , I I I , pages 527-530. Elsevier Science Publishers B.V. (North-Holland),
1991. Extended Abstract.

D. Kozen. Results on the Propositional /i-Calculus. T h e o r e tic a l C o m p u te r S c ie n c e ,
27:333-354, 1983.

P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. In P ro c e e d in g s o f 2 n d A C M S y m p o s iu m o n P r in c ip le s o f
D is tr ib u te d C o m p u tin g , pages 228-240, 1983.

P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. I n fo r m a tio n a n d C o m p u ta tio n , 86:43-68, 1990.

D. Kapur and H. Zhang. R R L : R e w r i te R u le L a b o r a to r y U s e r ’s M a n u a l, 1987.
Revised May 1989. Available by anonymous ftp from herky.cs.uioHa.edu.
L. Lamport. Proving the Correctness of Multiprocess Programs. IE E E T r a n s a c tio n s
on S o f tw a re E n g in e e r in g , SE-3(2):125-143, 1977.

St. Lange. Towards a Set of Inference Rules for Solving Divergence in Knuth-Bendix
Completion. In K.P. Jantke, editor, P ro c e e d in g s o f A n a lo g ic a l a n d I n d u c tiv e In fe r ­
en ce 8 9 , LNCS 397, pages 304-316. Springer-Verlag, 1989.

R. Langerak. A testing theory for LOTOS using deadlock detection. In E. Brinksma,
G. Scollo, and C. A. Vissers, editors, P r o to c o l S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n ,
IX , pages 87-98. Elsevier Science Publishers B.V. (North-Holland), 1990.

R. Langerak. T r a n s fo r m a tio n s a n d S e m a n t ic s f o r L O T O S . PhD thesis, University
ofTwente, 1992.

K.G. Larsen. C o n te x t-D e p e n d e n t B is im u la t io n b e tw e e n P r o c e s s e s . PhD thesis, Uni­
versity of Edinburgh, 1986.

K.G. Larsen. Modal Specifications. In J. Sifakis, editor, A u to m a t ic V e r if ic a tio n
M e th o d s f o r F in i te S ta te S y s te m s , LNCS 407, pages 232-246, 1990.

K.G. Larsen. Proof Systems for Satisfiability in Hennessy-Milner Logic with Recur­
sion. T h e o re tic a l C o m p u te r S c ie n c e , 72:256-288, 1990.

241

[Led87]

[Lin91]

[Lin92]

[LITE]

[LM92]

[LT91]

[LX90]

[Mad92]

[MFV89]

[MilSO]

[Mil85]

[Mil89a]

[Mil89b]

[MM92]

[Mol90]

[Mol91]

[MP89]

[MP92]

G.J. Leduc. The Intertwining of Data Types and Processes in LOTOS. In H. Rudin
and C.H. West, editors, P ro to c o l S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n , V II, pages
123-136. Elsevier Science Publishers B.V. (North-Holland), 1987.

H. Lin. PAM User Manual (Version 0.6). Technical Report 9/91, University of
Sussex, 1991.

H. Lin. PAM : A Process Algebra Manipulator. In K.G. Larsen and A. Skou, editors,
P ro c e e d in g s o f C A V 91 , LNCS 575, pages 136-146, 1992.

M. Caneve and E. Salvatori, editors. LITE User Manual. Technical Report
Lo/WP2/N0034/V08, The LOTOSPHERE Esprit Project, 1992. LOTOSPHERE
information disseminated by J. Lagemaat, email lagemaatQcs.utHente.nl.

K.G. Larsen and R. Milner. A Compositional Protocol Verification Using Relativized
Bisimulation. In fo r m a tio n a n d C o m p u ta tio n , 99:80-108, 1992.

K.G. Larsen and B. Thomsen. Partial specifications and compositional verification.
T h e o re tic a l C o m p u te r S c ie n c e , 88:15-32, 1991.

K.G. Larsen and L. Xinxin. Compositionality Through an Operational Semantics of
Contexts. In M.S. Paterson, editor, A u to m a ta , L a n g u a g e s a n d P r o g r a m m in g (I C A L P
9 0) , LNCS 443, pages 526-539, 1990.

E. Madelaine. Verification Tools from the CONCUR Project. E A T C S B u lle t in , 47,
1992.

C. Miguel, A. Fernandez, and L. Vidaller. LOTOS Extended with Probabilistic
Behaviours. F o rm a l A s p e c ts o f C o m p u tin g , 5(3):253—281, 1989.

R. Milner. A C a lc u lu s o f C o m m u n ic a tin g S y s te m s . LNCS 92. Springer-Verlag, 1980.

G. Milne. Circal and the representation of communication, concurrency and time.
A C M T r a n s a c t io n s on P ro g ra m m in g L a n g u a g e s a n d S y s te m s , 7:270-298, 1985.

R. Milner. A Complete Axiomatisation for Observation Congruence of Finite-state
Behaviours. I n fo r m a tio n a n d C o n tro l, 81(2):227-247, 1989.

R. Milner. C o m m u n ic a t io n a n d C o n c u r re n c y . Prentice-Hall International, 1989.

W. Mao and G.J. Milne. An Automated Proof Technique for Finite-State Machine
Equivalence. In K.G. Larsen and A. Skou, editors, P ro c e e d in g s o f C A V 9 1 , LNCS 575,
pages 233-243, 1992.

F. Moller. The importance of the left merge operator in process algebras. In M.S.
Paterson, editor, A u to m a ta , L a n g u a g es a n d P r o g r a m m in g (I C A L P 9 0) , LNCS 443,
pages 752-764, 1990.

F. Moller. The Edinburgh Concurrency Workbench (Version 6.0). Technical Report
LFCS-TN-34, LFCS, University of Edinburgh, 1991.

Z. Manna and A. Pnueli. The Anchored Version of the Temporal Framework. In
J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, L in e a r T im e , B ra n c h ­
in g T im e a n d P a r t ia l O r d e r in L o g ic s a n d M o d e ls f o r C o n c u r r e n c y , LNCS 354,
pages 201-284. Springer-Verlag, 1989. REX School/Workshop, Noordwijkerhout,
The Netherlands, May/June 1988.

Z. Manna and A. Pnueli. T h e T e m p o ra l L o g ic o f R e a c t iv e a n d C o n c u r r e n t S y s te m s :
V o lu m e 1: S p e c if ic a tio n . Springer-Verlag, 1992.

242

[MPW92]

[MT90]

[MV89]

[MV91a]

[MV91b]

[Naj87]

[Nes92]

[New42]

[0P91]

[Par81]

[Par88]

[Ple87]

[PT87]

[QAF90]

[QFA89]

[Raf92]

R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and
II. In fo r m a tio n a n d C o m p u ta t io n , 100(1): 1-40 and 41-77, 1992.

F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. In P r o ­
ceed in g s o f C O N C U R 90 , LNCS 458, pages 401-415, 1990.

E. Madelaine and D. Vergamini. Auto: A verification tool for distributed systems
using reduction of finite automata networks. In S. Vuong, editor, F o rm a l D e s c r ip t io n
T ec h n iq u es , II, pages 61-66. Elsevier Science Publishers B.V. (North-Holland), 1989.

E. Madelaine and D. Vergamini. Finiteness conditions and structural construction
of automata for all process algebras. In E.M. Clarke and R.P. Kurshan, editors,
P ro c e e d in g s o f C A V 9 0 , LNCS 531, pages 353-363, 1991.

E. Madelaine and D. Vergamini. Specification and Verification of a Sliding Window
Protocol in LOTOS. In K.R. Parker and G.A. Rose, editors, F o rm a l D e s c r ip t io n
T ech n iq u es , IV , volume C-2 of I F I P T r a n s a c tio n s . Elsevier Science Publishers B.V.
(North-Holland), 1991.

E. Najm. A Verification Oriented Specification in LOTOS of the Transport Protocol.
In H. Rudin and C.H. West, editors, P r o to c o l S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n ,
V II, pages 181-203. Elsevier Science Publishers B.V. (North-Holland), 1987.

M. Nesi. A Formalization of the Process Algebra CCS in Higher Order Logic. Tech­
nical Report 278, University of Cambridge Computer Laboratory, 1992.

M.H.A. Newman. On Theories with a Combinatorial Definition of Equivalence.
A n n a ls o f M a th e m a tic s , 43(2):223-243, 1942.

F. Orava and J. Parrow. An Algebraic Verification of a Mobile Network. Technical
Report R9102, Swedish Institute of Computer Science, 1991. To appear in FACS.

D. Park. Concurrency and Automata on Infinite Sequences. In T h e o re tic a l C o m p u te r
S c ie n c e , 5 th G I C o n fe re n c e , LNCS 104, pages 167-183, 1981.

J. Parrow. Verifying a CSMA/CD-protocol with CCS. In S. Aggerwal and K. Sab-
nani, editors, P r o to c o l S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n , V III, pages 373-384.
Springer-Verlag, 1988.

U. Pletat. Algebraic Specifications of Abstract Data Types with CCS: An Oper­
ational Junction. In B. Sarikaya and G.V. Bochmann, editors, P r o to c o l S p e c if ica ­
t io n , T e s tin g , a n d V e r if ic a tio n , VI, pages 361-372. Elsevier Science Publishers B.V.
(North-Holland), 1987.

R. Paige and R.E. Tarjan. Three Partition Refinement Algorithms. S I A M J o u r n a l
o f C o m p u tin g , 16(6) :973—989, 1987.

J. Quemada, A. Azcorra, and D. Frutos. A Timed Calculus for LOTOS. In
E. Brinksma, G. Scollo, and C. A. Vissers, editors, P r o to c o l S p e c if ic a tio n , T e s tin g ,
a n d V e r if ic a tio n , IX . Elsevier Science Publishers B.V. (North-Holland), 1990.

J. Quemada, D. Frutos, and A. Azcorra. TIC: A Timed Calculus. F o r m a l A s p e c ts
o f C o m p u tin g , 5(3):224-252, 1989.

G.H.B. Rafsanjani. A Data Type Specification for the Process Part of Basic LOTOS
— An Axiomatic Semantics. In C.M.I. Rattray and R.G. Clark, editors, T h e U n ified
C o m p u ta tio n L a b o ra to ry , pages 321-332. Oxford University Press, 1992.

243

[RS91]

[RvB91]

[Sco89]

[Sti87]

[Sti91]

[SW90]

[Tho93]

[Tho94]

[TJ89]

[Tur92]

[Tur93]

[TW93]

[vE89]

[vEKvS90]

[vEVD89]

[vG86]

S. Ramanathan and G. Sivakumar. Rewrite Systems for Protocol Specification and
Verification. In J. Quemada, J. Manas, and E. Vasquez, editors, F o rm a l D e s c r ip ­
t io n T ech n iq u es , I I I , pages 79-94. Elsevier Science Publishers B.V. (North-Holland),
1991.

N. Rico and G. v. Bochmann. Performance description and analysis for distributed
systems using a variant of LOTOS. In B. Jonsson, J. Parrow, and B. Pehrson, editors,
P r o to c o l S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n , X I , pages 199-213. Elsevier Science
Publishers B.V. (North-Holland), 1991.

G. Scollo. Formal Description of the OSI Session Layer: Transport Service. In P.H.J.
van Eijk, C.A. Vissers, and M. Diaz, editors, T h e F o r m a l D e s c r ip t io n T ech n iq u e
L O T O S , pages 97-116. Elsevier Science Publishers B.V. (North-Holland), 1989.

C. Stirling. Modal Logics for Communicating Systems. T h e o re tic a l C o m p u te r S c i ­
en ce , 49:311-347, 1987.

C. Stirling. An Introduction to Modal and Temporal Logics for CCS. In A. Yonezawa,
editor, C o n c u r re n c y : T h e o ry , L a n g u a g e , a n d A r c h i te c tu r e , LNCS 491, pages 2-20.
Springer-Verlag, 1991. UK/Japan Workshop, Oxford, UK, September 1989.

C. Stirling and D. Walker. CCS, liveness, and local model checking in the linear
time mu-calculus. In J. Sifakis, editor, A u to m a t ic V e r if ic a tio n M e th o d s f o r F in i te
S ta te S y s te m s , LNCS 407, pages 166-178, 1990.

M. Thomas. A Translator for ASN.l into LOTOS. In M. Diaz and R. Groz, editors,
F o rm a l D e s c r ip t io n T ech n iq u es , V, pages 37-52. Elsevier Science Publishers B.V.
(North-Holland), 1993.

M. Thomas. The Story of the Therac-25 in LOTOS. H ig h I n te g r i ty S y s te m s J o u rn a l,
1(1) :3—15, 1994.

M. Thomas and K.P. Jantke. Inductive Inference for Solving Divergence in Knuth-
Bendix Completion. In P ro c e e d in g s o f A n a lo g ic a l a n d I n d u c tiv e In fe re n c e 8 9 ,
LNCS 397. Springer-Verlag, 1989.

I\. Turner. Constraint-Oriented Specification in LOTOS — The Compositional Spec­
ification of a File Handler. Lecture given at University of Glasgow, 1992.

K.J. Turner, editor. U sin g F o r m a l D e s c r ip t io n T ec h n iq u es : A n I n tr o d u c t io n to E s ­
te l le , L O T O S a n d S D L . John Wiley and Sons, 1993.

M. Thomas and P. Watson. Solving Divergence in Knuth-Bendix Completion by
Enriching Signatures. T h e o re tic a l C o m p u te r S c ie n c e , 112:145-185, 1993.

P. van Eijk. Tools for LOTOS Specification Style Transformation. In S. Vuong,
editor, F o rm a l D e s c r ip t io n T ec h n iq u es , II, pages 43-52. Elsevier Science Publishers
B.V. (North-Holland), 1989.

P. van Eijk, H. Kremer, and M. van Sinderen. On the use of specification styles
for automated protocol implementation from LOTOS to C. In L. Logrippo, R. L.
Probert, and H. Ural, editors, P r o to c o l S p e c if ic a tio n , T e s tin g , a n d V e r if ic a tio n , X ,
pages 157-168. Elsevier Science Publishers B.V. (North-Holland), 1990.

P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors. T h e F o r m a l D e s c r ip t io n T ech ­
n iq u e L O T O S . Elsevier Science Publishers B.V. (North-Holland), 1989.

R.J. van Glabbeek. Notes on the Methodology of CCS and CSP. Technical Report
CS-R8624, Centrum voor Wiskunde en Informatica, Amsterdam, 1986.

244

[vG90] R.J. van Glabbeek. C o m p a ra tiv e C o n c u r r e n c y S e m a n t ic s a n d R e f in e m e n t o f A c tio n s .
PhD thesis, Centrum voor Wiskunde en Informatica, Amsterdam, 1990.

[Vis90]

[vS89]

[vSPV92]

[VSvSB91]

[VTL93]

[Wal89]

[Wat92]

[Wez90]

[CONCUR]

[FORTE]

[PSTV]

C. Vissers. FDTs for Open Distributed Systems, A Retrospective and a Prospective
View. In L. Logrippo, R. L. Probert, and H. Ural, editors, P r o to c o l S p e c if ic a tio n ,
T e s tin g , a n d V e r if ic a tio n , X , pages 341-362. Elsevier Science Publishers B.V. (North-
Holland), 1990. Invited paper.

M. van Sinderen. Formal Description of the OSI Session Layer: Session Service. In
P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors, T h e F o r m a l D e s c r ip t io n T ech ­
n iq u e L O T O S , pages 117-152. Elsevier Science Publishers B.V. (North-Holland),
1989.

M. van Sinderen, L. Pires, and C.A. Vissers. Protocol Design and Implementation
using Formal Methods. Technical Report Memoranda Informatica 92-19, TIOS 92-
19, Universiteit Twente, 1992. To appear in The Computer Journal.

C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification styles in
distributed systems design and verification. T h e o r e tic a l C o m p u te r S c ie n c e , 89:179-
206, 1991.

Verification Teclmic|iies for LOTOS specifications. Final project report. Project
information available from M. Thomas, email muffyQdcs.gla.ac.uk, 1993.

D.J. Walker. Automated Analysis of Mutual Exclusion Algorithms using CCS. F o r­
m a l A s p e c ts o f C o m p u tin g , 1 (3):273—292, 1989.

P. Watson. The expressive power of recurrence terms. Technical Report FM-92-6,
Department of Computing Science, University of Glasgow, 1992. Also submitted for
publication.

C. Wezeman. The Co-op Method for Compositional Derivation of Conformance
Testers. In E. Brinksma, G. Scollo, and C. A. Vissers, editors, P r o to c o l S p e c if ica ­
t io n , T es tin g , a n d V e r ific a tio n , IX , pages 145-158. Elsevier Science Publishers B.V.
(North-Holland), 1990.

W.R. Cleaveland, editor. C O N C U R ’9 2 , LNCS 630. Springer-Verlag, 1992. Proceed­
ings of the Third International Conference on Concurrency Theory.

M. Diaz and R. Groz, editors. F o rm a l D e s c r ip t io n T ec h n iq u es , V. Elsevier Science
Publishers B.V. (North-Holland), 1993.

B. Jonsson, J. Parrow, and B. Pehrson, editors. P r o to c o l S p e c if ic a tio n , T e s tin g , a n d
V e rific a tio n , X I . Elsevier Science Publishers B.V. (North-Holland), 1991.

245

A p p en d ix A

A Survey of Proof Tools for

LOTOS and Related Formalisms

A .l In trodu ction

This appendix looks at tools which automate the methods discussed in chapters 4 and 11, and

briefly at tools for LOTOS which perform functions other than verification. Although our main

investigation is limited to LOTOS, the scope is widened here mainly because there are very few

tools which can be used for verification of properties of LOTOS specifications. The tools presented

here which are not specifically for LOTOS were chosen because they are all, or can be, proof tools

for CCS [Mil89b], one of the languages from which LOTOS is derived. This also implies more

concern with Basic LOTOS than with full LOTOS. A similar survey covers the process algebra

verification tools which were developed during the CONCUR project [Mad92].

The tools discussed fall into two main categories: behaviourally based tools, which use the

semantics of the language to build graphs representing systems and then perform various manip­

ulations on that graph, and algebraic tools, which rely on symbolic manipulation of the terms

of the language. In the first group we have, for example, the Concurrency Workbench [CPS89],

TAV [GLZ89] and AUTO [MV89]. The second group includes the Pisa tool [DIN89], further de­

velopment of this tool [Nes92] using HOL [Gor88], and also PAM (Process Algebra Manipulator)

[Lin92].

Each tool mentioned above is discussed in a separate section; the relative merits of these tools

are discussed in the final section, which also includes comment on the relation of these tools to

our work on the verification requirements of LOTOS.

246

A .2 B ehavioura lly B ased T o o ls /S em a n tic R eason in g

A .2.1 The Concurrency Workbench

The Concurrency Workbench [CPS89, Mol91] is an automated tool which manipulates and analyses

concurrent systems, called agents, expressed in Timed CCS (TCCS) [MT90]. One of the aims of

the CONCUR project was to develop a common format, called FC2, for representing systems, and

to build front-ends for the existing tools which would allow them to take input from any language.

The aim of this research was to strengthen tool support in general, by making tools applicable to

more than just one language. As far as we are aware, this front-end to the CWB has not yet been

completed.

The CWB supports the following analyses:

• Analysis of behaviours expressed in TCCS, including proof of various relations between two

agents, and analysis of the state space of the transition systems of those agents. Several

of the standard equivalences and preorders over concurrent systems are supported, as are

some of the less well-known relations. At present, relations supported are: strong bisimu­

lation equivalence, observational equivalence and congruence, the preorders associated with

these relations (i.e. simulation relations), observational equivalence which respects diver­

gence, may, must and testing preorders and equivalences, 2/3 preorder and equivalence,

branching bisimulation equivalence, and contraction preorder. An important feature of the

implementation is the ease with which it may be adapted to deal with other relations. This

is discussed in more detail below.

• Determining whether a given specification satisfies a given modal logic expression by checking

the model. The logic used is the propositional /i-calculus [Koz83].

• Interactive simulation of the behaviour of an agent.

• Derivation of the missing part of an incomplete specification, given an equivalent specifica­

tion.

• Verification by decomposition, as described in chapter 4.

The power of the Workbench comes from splitting its implementation into three distinct parts:

interface, which deals with Workbench-User interaction, semantics, which consists of various graph

transformation procedures, and analysis, which consists of the algorithms for equivalence checking,

preorder checking and satisfaction of logical propositions. The Workbench proceeds by building

a graph of the transition system of the agent, and then analysing it. Each node of the graph has

an information field, whose contents may be varied by applying different manipulations in the

247

semantics layer, which may be used in the equivalence checking procedure. Flexibility is gained

by using the same equivalence checking algorithm for many different equivalences by varying the

contents of the information field.

Equivalence checking is carried out by a graph partition algorithm. This works by splitting

the nodes of the graph into blocks, ending when either the root nodes of the agents are in different

blocks (in which case the agents are not equivalent) or the relation induced by the partition is a

bisimulation. The particular algorithm used is derived from that presented in [KS83].

Preorder checking is similar. To check if two graphs are related by a preorder each node of the

combined graph is annotated by the nodes which are bigger than it in the preorder. The algorithm

stops when the root node of one is no longer annotated by the root node of the other (they are

not related), or when the annotations determine a prebisimulation (a bisimulation with special

clauses to say which nodes of the transition system must be matched).

Checking that an agent satisfies a modal propositions is carried out by a tableau based proce­

dure, documented in [Cle89], which attempts to build a top-down proof of the proposition. Again

the graph transformation procedures of the semantics layer are utilised to allow different notions

of satisfaction.

The Workbench is probably the most widely used of the tools considered in this report. See

[EFP91] for a list of case studies, compiled for the CONCUR project, some of which use the

Workbench. A few examples of use of the CWB are: verification of communications protocols

[Par88, BA91], and comparison of the properties of various mutual exclusion algorithms [Wal89].

A .2.2 TAV

The main aim behind the development of TAV (Tools for Automatic Verification) [GLZ89] was to

respond to a need for a process algebra tool which could not only check equivalence between agents

and answer ‘yes’ or ‘no’ (like the CWB), but which could also give a reason for inequivalence, i.e.

if two agents are not equivalent, then TAV provides a modal formula distinguishing those agents.

This is possible because the characterisation theorem of [HM85] says that agents are bisimulation

equivalent exactly when they satisfy the same modal formulae, and vice versa. Therefore, if two

agents are not equivalent there must be some formulae which one satisfies but the other does not.

Like the CWB, TAV provides checking of strong and weak bisimulation equivalence, various

state analyses of the transition system of the agents, and checking of modal formulas. The logic

used is HML [HM85] extended by recursion (both minimum and maximum fixed points). The

input language of TAV is CCS.

The algorithm used to determine equivalence between two agents in TAV is different from that

used by the CWB. Given two equivalent agents, TAV uses the method of [Lar86] to construct

a minimal bisimulation, whereas the partition algorithm of the CWB constructs the maximal

248

bisimulation. This difference is analogous to the difference between the original definition of

observation equivalence, in terms of refining the universal relation, and the definition of observation

equivalence by bisimulation relations.

Recent work [Cle91] has shown how to refine the partition algorithm to give an explanation for

bisimulation inequivalence. This is to be added to the CWB, thus removing the main advantage

TAV has over the CWB. The refined algorithm is claimed to be more efficient than that employed

by TAV.

A further feature of TAV is the use of modal transition systems [Lar90a]. These allow transi­

tions to be labelled as ‘allowed’ or ‘required’, so making the specification less rigid. TAV provides

checking and construction of strong and weak refinement relations and equation solving in these

modal transition systems using the method of [LX90]. This allows the user to check, for example,

if an implementation satisfies a specification, or to derive an implementation given a specification.

A .2.3 AUTO

AUTO [MV89] is an equivalence checking tool which constructs finite state machines corresponding

to the input agents, which are finite closed terms of the MEIJE process algebra [AB84]. AUTO

computes strong, weak and branching bisimulations, reduces the input machines according to

the axioms of the language (which helps control the state space of the agents) and can simulate

behaviours of agents. The interface can be textual, through a command language, or window

based.

MEIJE has been shown to be a universal process algebra [dS85]. Taking advantage of this fact, a

generalisation of AUTO, MAUTO, has been developed which can be compiled with the structural

operational semantics of a process algebra to give an equivalence checker for that formalism.

An instantiation of MAUTO for Basic LOTOS is part of the LITE toolkit (mentioned later in

appendix A.4). The translation from LOTOS to MEIJE is documented in [DMdS90].

A problem suffered by all of the systems considered so far is that of state explosion, since the

systems construct graphs of the agents. This also limits their application to finite state processes

only. We now move on to look at algebraic proof systems.

A .3 A lgeb raica lly B ased T o o ls /S y n ta c tic R eason in g

A .3.1 A R ew riting Strategy

[DIN89] presents an interactive rewriting-based system for proving properties of CCS specifica­

tions; in particular, the system attempts to prove observational equivalence between two CCS

specifications. This system is different those above in that it has no special internal representation

249

for the CCS specification; all manipulation of the terms is symbolic. In this way, the developers

of the system avoid some of the problems of state explosion. The system also allows a high degree

of user control and, like TAV, gives meaningful responses to queries.

The power of the system comes from the three ways in which the user may manipulate the

input:

• Operational semantics of CCS. This section implements the transition rules of CCS. This

allows simulation of a CCS process.

• Operationally defined equivalences. A term rewriting system corresponding to the chosen

equivalence relation.

• Axioms for Equivalences. Here the axioms of the equivalence relation can be applied one at

a time. This process is user controlled.

The implementation is modular and may be extended easily to encompass different verification

strategies and equivalences. Currently modules dealing with observational equivalence between

two (possibly recursive) agents have been implemented.

The main problem of this approach is that only some of the defined behavioural equivalences

defined in the process algebra literature actually have complete term rewriting systems associated

with them. In particular, the rewriting system associated with observational equivalence causes

divergence of the completion algorithm. This is a problem because unique normal forms are not

guaranteed unless the term rewriting system is complete.

To combat this problem, an ad hoc rewriting strategy is used which derives the normal form

of a term without using the completion algorithm. The strategy is based on the normal forms

of observational congruence, obs-normal forms, which have been used by Hennessy and Milner

to prove the completeness of the axiomatisation of observational congruence for a subset of CCS

(no recursion) [HM85]. The proof of the correctness and completeness of this strategy appears in

[IN90].

Informally, the divergence of the completion algorithm can be attributed to the interaction

of the r laws. The problem is that many proofs will require these laws to be applied first in

one direction, then in the other (unfolding and folding), but of course rewrite rules can only be

applied in one direction. The strategy works by applying these unfolding operations until it is

possible to eliminate all derivatives of the term which are semantically contained in other parts

of the term. When this is done the term is folded again. In other words, instead of trying to

create an infinite number of rules to do the right number of unfolds and folds (which is what

happens in completion), the original rules are applied a sufficient number of times to “simulate”

the necessary rule. The most difficult part of the implementation of this strategy lies in identifying

when sufficient unfoldings have been completed.

250

From CCS to LOTOS

A further development of this work [DIN91] is concerned with adding a translation module to

the system to allow it to deal with a subcalculus of LOTOS (without value passing or recursion)

rather than CCS (LOTOS being more widely used in the industrial community). Some of the laws

from appendix B.2.2 of the LOTOS standard [IS088] are used; a slightly different set from the

ones we use in RRL in chapter 6.

In [DIN91] two examples are described: the readers and writers problem, and a rather bizarre

candy/change machine. This is the source of the examples of sections 9.3 and 9.4.

Using HOL

The system described above is implemented in PROLOG. Yet another development of the work

above [CIN91, Nes92] uses a different system as a base on which to build the CCS tools, namely

HOL. The use of HOL provides a meta language which will enable the user to define their own

verification strategies and tactics. The current system supports verification of observational con­

gruence and expansion of parallel terms (using a lazy evaluator of the expansion laws), and also

satisfaction with respect to the propositional /i-calculus.

A.3.2 PAM

The Process Algebra Manipulator [Lin91, Lin92] differs from the other systems discussed so far

in that it is a proof assistant, and not designed to be fully automatic, and also in that, like

MAUTO, it is not tied to a particular process algebra. The main features of PAM are described

in section 8.2. Not mentioned there is the ability to link to the CWB. Care must be taken that

the agents supplied to the CWB are in the correct format and also finite state. Examples carried

out in PAM include the Alternating Bit Protocol in CCS and ACP [BK84], the Scheduler from

[Mil89b] and the Two Bit Buffer in CCS. Other languages described for PAM are EPL [Hen88],

CSP [Hoa85], and, of course, LOTOS, as described in chapter 8.

The main advantages of PAM over other systems are its generality, its ability to reason over

open terms, and its ability to cope with infinite state processes. PAM also has a relatively nice

mouse-driven graphical interface, with buttons for each rule, rather than the usual text-based

interface.

This concludes the (brief) survey of verification tools for LOTOS and related process algebras.

The next section looks at other tools specifically for LOTOS.

251

A .4 T ools for LO TO S

One of the products of the LOTOSPHERE project [vSPV92] was the LITE (LOTOS Integrated

Tool Environment) toolkit [LITE]. LITE provides a set of tools which are built round a common

representation of LOTOS behaviours. The following functionalities are provided:

• Editing/syntax checking (including a graphical editor for GLOTOS).

• Analysis of cross references and static dependencies.

• Completion of abstract data types.

• Checking for various properties of the abstract data types, e.g. termination, consistency and

completeness.

• Simulation of LOTOS behaviours by building an extended finite state machine and a sim­

ulation tree obtained by specifying values for the variables in the description. These values

are obtained by input from the user, or automatically generated by a narrowing tool.

• Compilation of an annotated LOTOS specification into C code. The annotations provide

information to the compiler about the implementation, e.g. which C object implements a

LOTOS sort or operation.

• Translations of a LOTOS specification into its labelled transition system, and abstract data

types into their equivalent rewrite system.

• Testing of behaviours by composition with user-defined test processes. Tests can be accepted

or rejected, i.e. the process may/must pass the test, or the process will never pass the test.

• Transformation of a LOTOS specification into an equivalent one. Two transformations are

available: regrouping parallel processes according to a pattern specified by the user and

preserving strong bisimulation equivalence, and bipartition of functionality, splitting the

specification with respect to event sets preserving weak bisimulation equivalence.

• Proof of behavioural equivalences and preorders over Basic LOTOS processes (using AUTO

or by writing the specification in a FC2 format which can be understood by the Concurrency

Workbench, see section A.2.1).

• Temporal logic model checking (Basic LOTOS only). The logic used is ATCL [CES86].

• Generation of the canonical tester of a Basic LOTOS specification (via Cooper [Ald89]).

All components can be applied to full LOTOS except those flagged as for Basic LOTOS processes

only. Basic LOTOS is obtained from the full LOTOS specification by forgetting the data types.

252

This transformation only preserves reachability properties of the original specification, as discussed

in section 10.3.1.

Other tools for LOTOS include the University of Ottawa toolkit (interpreter for LOTOS,

various tools for Graphical LOTOS) and Squiggles (checking of strong, observational and test­

ing equivalences on finite Basic LOTOS processes using Paige and Tarjan’s partition algorithm

[PT87]).

A .5 Sum m ary and D iscu ssion

Our aim is to investigate the verification of LOTOS specifications, and to do so using tools.

Although we are really interested in equational reasoning as a proof technique, we should also

consider other proof techniques which might be suitable and which are already implemented,

perhaps for CCS, if not for LOTOS. Above we have presented summaries of the abilities of several

proof tools; in this section we consider how we might use those proof tools.

To summarize the relative advantages and disadvantages of the tools discussed above: the

most versatile tool in terms of proof facilities seems to be the CWB. The CWB will be even more

versatile when the front end accepting FC2 is completed, making the CWB independent of input

language, in which case the CWB can be used for LOTOS. The main drawback of the CWB is

the problem of state explosion, and its inability to handle infinite state processes. TAV seems

to be largely superseded by the Workbench, especially if the Workbench is extended to provide

reasons for inequivalence. The final tool in the behaviourally based category, AUTO, is already

implemented for LOTOS as part of LITE. However, this tool can only accept Basic LOTOS input.

The Pisa tool of Inverardi and Nesi offers a high degree of interaction and control over the

proof to the user; however, only observation equivalence over LOTOS processes is evaluated, and

extensions to the system requires knowledge of Prolog or HOL. One of the benefits of the HOL

system is that it is built from the very basics of CCS, i.e. the operational semantics, with all the

axioms of the observation equivalence being derived from that and the definition of bisimulation.

Also, the tactic language of HOL is very powerful.

As we discovered in the case study of chapter 7, if a rewriting strategy is to be used we require

a high degree of interaction and control over the development of the proof. PAM offers this, as

well as flexibility in the input language and the equivalence relation. The price that has to be paid

is that defining the language and relation takes time (and skill). However, this only has to be done

once, and we have defined the most commonly used relations. A further benefit of using PAM is

that it is the only tool, apart from AUTO, which has a more sophisticated interface, making it

easy to use.

It is clear that none of the tools presented in this appendix have all the features we desire of

253

a verification tool for LOTOS. By adopting PAM we have the opportunity to build a system to

our liking, but without having to do too much implementation work (which, given the number of

tools available, would be rather a waste of time).

At the moment, our proof system is applicable only to Basic LOTOS specifications, but we

feel that we have laid the ground work for an extension of the proof system which could provide

a unified framework for verification of full LOTOS specifications.

254

A p p en d ix B

LOTOS Inference Rules

In this appendix we present the syntax and semantics of full LOTOS. Although these may be

found in the LOTOS standard [IS088], the presentation there is rather cluttered and unclear. We

hope our presentation of LOTOS is simpler and easier to understand than that of the standard.

B . l LO TO S Syntax

The LOTOS syntax is given in the form of a BNF grammar. To make the grammar more readable

we adopt the convention that reserved words of LOTOS will be shown in bold, other symbols of

LOTOS will be shown in typewriter style (following the format used for the examples presented

in the main body of the thesis), while the non-terminals of the BNF are shown in italics. Note

that in the LOTOS language, no special meaning is attributed to the font in which a character is

written. Optional parts of a production rule (0 or 1 occurrences) are enclosed by square brackets,

optionally repeated parts (0 or more occurrences) are enclosed by braces.

The grammar is split into three parts below: first we give the basic elements of the language;

identifiers, special symbols, etc., second we give the syntax for the process algebra part of the

language, and finally we give the ACT ONE related syntax.

B .1.1 Basic D efinitions

The syntax of the basic elements such as identifiers is as follows:

letter *= a | b | c | . . . | z.

digit *= 0 | 1 | . . . | 9.

normal-character == letter \ digit.

special-character d= # | '/. | & | * | + | - | . | / | < | = | > | ® | \ r i ~ | ' C | L

255

defreserved-words = specification | endspec | b ehav iou r | ty p e | e n d ty p e | is

| ac tua lizedby | using | lib ra ry | end lib | renam edby

| form al so rts | fo rm alopns | fo rm aleqns | so rts | opns

| ofsort | fo rall | eqns | so rtn am es | opnnam es | for

| process | en d p ro c | w here | s to p | ex it | n oex it | any

| i | le t | in | p a r | accep t | choice | h ide | of.

special-symbols d= = | => | : = | » | [> | I I | I I I | I C | 3 I

I □ I -> I ; 1 , I : | C | 3 | (|) | ? | • | - •
defidentifier = letter [{normal-character | _ } normal-character].
defspecial-identifier — special-character {special-character)

| digit [{normal-character | _ } normal-character].
defcomment = (* “any string of text” *)

The following observations may be helpful in understanding the rest of the LOTOS syntax.

• Since brackets and bar appear both as LOTOS syntax, [3 and I , and as BNF syntax, [] and

|, care must be taken not to confuse them in the following rules. In the syntax rules we have

tried to distinguish them by using a different typeface. Additionally, it may help to know

that the LOTOS symbols [3 appears in the production rules for the following non-terminals:

sum-expression, par-op, choice-expression, guarded-expression, selection-predicate, process-

instantiation and relabelling, and the I symbol appears only in the rule for par-op. All other

occurrences of these symbols are therefore BNF syntax.

• The reserved word behav iou r may be substituted by behav io r if desired.

• A special identifier is used for user-defined operators composed of symbols. All *-identifiers

are identifiers except operation-identifier, which can either be an identifier or a special-

identifier. No identifier or special identifier is allowed to have the same spelling as a reserved

word or special symbol.

• Comments, when included, should be enclosed by (* . . . *). Comments are not part of

the formal text of a LOTOS specification. A comment may include text (possibly foreign

language text) and/or pictures.

• Any *-identifier-list not otherwise defined is a list, separated by commas, of *-identifiers,

where * stands for different kinds of identifier, e.g. specification, process, gate, value,__

• Association of binary operators is to the right, unless parentheses indicate otherwise. The

operators C3, » , [>, II, III and I [A3 I are all associative, but note that mixed use of the

different parallel operators is not associative.

256

B .1.2 Process Algebra Syntax

The following production rules apply to specifications and to the process algebra part of a speci­

fication. Some reference is made in these rules to the ACT ONE syntax of the next section.

= sp ec ifica tio n specification-identifier formal-parameter-list

data-type-definitions b e h a v io u r definition-block en d sp ec .

d= p ro cess process-identifier formal-parameter-list : =

definition-block en d p ro c .
def= [_gate-identifier-lis£]][(identifier-declarations)] :e x it [(sort-list)]

| [[gate-identifier-lisQ^identifier-declarations)] :n o e x it.
def= identifier-declaration {, identifier-declaration}.

d= value-identifier-list : sort-identifier.

d= sort-identifier {, sort-identifier}.

behaviour-expression [local-definitions].
def= w h ere local-definition {local-definition}.

d== data-type-definition \ process-definition.

d= local-definition- expression

| sum-expression

| par-expression

| hiding-expression

| enable-expression.

local-definition-expression d= le t identifier-equations in behaviour-expression.
defidentifier-equations = identifier-equation {, identifier-equation}.

identifier-equation *= identifier-declaration - value-expression.

sum-expression *= choice sum-domain-expression [] behaviour-expression.
defsum-domain-expression = identifier-declarations \ gate-declarations.

p a r -e x p r e s s io n
def par g a te -d e c la r a t io n s p a r -o p b e h a v io u r -e x p re ss io n .

p a r - o p
def

1 1 | 1 1 1 | 1 L g a te - id e n tif ie r - l is t] I.

h id in g -e x p r e s s io n
def hide g a te - id e n t i f ie r - l i s t in b e h a v io u r -e x p re ss io n .

e n a b le -e x p re s s io n
def

d isa b le -e x p re s s io n [e n a b le -o p e n a b le -e x p re s s io n].

e n a b le -o p
def

» [accept id e n ti f ie r -d e c la r a tio n s in].

d is a b le -e x p r e s s io n def
p a r a lle l-e x p r e s s io n [[> d isa b le -e x p re s s io n] .

p a r a l le l - e x p r e s s io n
def

c h o ic e -e x p r e s s io n [p a r-o p p a ra lle l-e x p re s s io n] .

s p e c if ic a tio n

p r o c e s s -d e f in i tio n

f o r m a l - p a r a m e te r - l is t

id e n ti f ie r -d e c la r a tio n s

id e n ti f ie r -d e c la r a tio n

s o r t - l i s t

d e f in it io n -b lo c k

lo c a l-d e f in it io n s

lo c a l-d e f in it io n

b e h a v io u r -e x p re s s io n

257

choice-expression

guarded-expression

action-prefix-expression

action-denotation

experiment-offer

selection-predicate

atomic-expression

def

def

def

def

guarded-expression [[] choice-expression],

[premiss] -> guarded-expression \ action-prefix-expression.

action-denotation ; action-prefix-expression

| atomic-expression.

gate-identifier

[experiment-offer {experiment-offer)[selection-predicate]]

def

def

def

exit-parameter-list

exit-parameter

process-instantiation

relabelling-expression

relabelling

replacements

value-expression

simple-expression

term-expression

value-expression-list

premiss

simple-equation

gate-declarations

gate-declaration

def

de f

def

def

def

def

def

def

def

def

def

def

def

def

? identifier-declaration | ! value-expression.

[premiss].

stop

| ex it [exit-parameter-list]

| process-instantiation

| (behaviour-expression)

| relabelling-expression.

(exit-parameter {, exit-parameter}).

value-expression | any sort-identifier.

process-identifier [Lgate-identifier-lisf]][value-expression-list].

(behaviour-expression) relabelling.

[replacements].

gate-name/gate-name [, replacements].

[value-expression operation-identifier] simple-expression.

term-expression [of sort-identifier].

value-identifier

| operation-identifier [value-expression-list]

| (value-expression).

(value-expression {, value-expression}).

simple-equation | value-expression.

value-expression = value-expression.

gate-declaration {, gate-declaration).

gate-identifier-list in [gate-identifier-lisQ.

B .1.3 LOTOS D ata Type Syntax

The syntax of this section is only required for full LOTOS.

dtsfdata-type-definitions = {data-type-definition).

258

data-type-definition

p-expression

type-union

p-specification

def

def

def

replacement

sort-pair-list

operation-pair-list

sort-pair

operation-pair

sort-list

operation-list

operation

def

def

def

def

def

def

def

def

operation-descriptor *=

equation-lists d=

equation-list d=

equation

premisses

def

def

*= typ e type-identifier is p-expression en d typ e

| library type-identifier {, type-identifier} endlib .

[type-union] p-specification

| type-identifier actualizedby type-union using replacement

| type-identifier renam edby replacement,

type-identifier [, type-union].

[form alsorts sort-list]

[formalopns operation-list]

[formaleqns equation-lists]

[sorts sort-list] [opns operation-list] [eqns equation-lists].

[sortnam es sort-pair-list] [opnnam es operation-pair-list].

sort-pair [sort-pair-list].

operation-pair [operation-pair-list].

sort-identifier for sort-identifier.

operation-identifier for operation-identifier.

sort-identifier {, sort-identifier}.

operation {operation}.

operation-descriptor {, operation-descriptor} :

[sort-list] -> sort-identifier.

operation-identifier

| _ operation-identifier _.

[forall identifier-declarations] equation-list {equation-list}.

ofsort sort-identifier [forall identifier-declarations]

equation {; equation} [;].

[premisses =>] simple-equation,

premiss {, premiss}.

Having formalised the syntax of the language, the next section defines the semantics.

B .2 LO TO S Sem antics

The semantics of LOTOS processes is given in two parts:

• structured labelled transition systems, see section B.2.1 for the definition, and the inference

rules which generate those transition systems, see section B.2.2,

259

• equivalence relations over process behaviours/structured labelled transition systems, see sec­

tion B.2.3 onwards for laws, and also sections 3.4.3 and 3.5.3 for motivation and definitions.

Each process is seen as a set of states, with arcs representing transitions connecting those

states. Each transition is labelled by its action; for Basic LOTOS labels are gate names, while for

full LOTOS labels are pairs consisting of a gate name and a string of data values.

In order to turn a LOTOS specification into a labelled transition system, the specification is

first “flattened” . The flattening function essentially ensures that the specification adheres to the

LOTOS syntax, but also removes all hierarchical structure, ensures uniqueness of variable names,

and that all names and types used are previously defined. The resulting object is called a c a n o n ic a l

L O T O S sp e c if ic a tio n . The inference rules of transition may then be applied to the canonical

LOTOS specification to give a structured labelled transition system (actually the inference rules

give a c la s s of labelled transition systems, each relating to different instantiations of the formal

parameters of the specification).

In the next section we give the standard definitions relating to labelled transition systems and

algebras which are required for the definition of the inference rules in section B.2.2.

B.2.1 Algebras and Transition System s

Most of the following definitions relate to algebras and full LOTOS semantics; they can be ignored

for Basic LOTOS.

• A flattened canonical LOTOS specification, C L S , is given by a pair (A S , B S) . A S is an

algebraic specification (S , O P , E), where (S , O P) is a signature and E is a set of conditional

equations. The semantics of A S is given by the many sorted algebra Q (A S) which is the

quotient term algebra of A S . B S is a behaviour specification (P D E F S , p d e fo) where P D E F S

is the set of all the process definition in C L S , and pdefo is the top level process of the speci­

fication. Each element of P D E F S is a pair (p , B p) of a process name and the corresponding

behaviour expression. All sort names and operations in B S are defined in A S (the flattening

function ensures this).

• The algebraic specification generates a derivation system D , which allows us to deduce if two

terms are congruent, i.e. D t \ = a s t i - The congruence class of a term t , written [t], is

defined as [t] — { t ' \ t = a s t ' } .

• A m a n y - s o r te d a lg eb ra A is a pair (D , O) where

1. D is a set of sets, where each set is called a d a ta c a r r ie r of A . Elements of the data

carrier are called d a ta va lu es .

260

2. O is a set of total functions over the data carriers, D\ x . . . x Dn —)• D where D, D \ , . . . Dn

are data carriers and n > 0.

• A quotient term algebra Q{A) = (Dq , Oq) where

1. £)q is the set {Q(s) I s £ 5}, where Q(s) = {[<] 11 is a ground term of sort s} for each

s £ S,

2. Oq is the set of functions {Q(op) \ op £ OP}, where the Q(op) are defined by

Q(op)([*i]> •••>[*«]) = •••>*«)]•

• A labelled transition system Sys is a 4-tuple (S , Act, T, so) as defined in section 3.4.3, with

Act - G U {i}.

• A structured labelled transition system Struc is a 5-tuple (S, Act, A, T, s) where A = (D , O)

is a many-sorted algebra such that (S ,A c t,T ,s) is a labelled transition system, for
defAct = {i} U {gv | g £ G, v £ ((J D)*}. This is also referred to as a labelled transition system

over A.

In other words, a structured labelled transition system is just like a labelled transition system,

except that each label g is decorated by a string of values from D.

We also define the following auxiliary functions to help in the definition of the inference rules:

fg : process-names —>■ (gate-names)*

which yields the formal gate parameter list of a process p

fv : process-names —> (variables)*

which yields the formal value parameter list of a process p

so r t: variables —> sort-names

which yields the sort of a value.

name : transition-label —» G U {1}

given an experiment offer, yields the gate name of the transition, which could be S, or i.

C : behaviour-expression —> G*

yields the language of a process.

The following notational conventions help us to give the inference rules of transition with less

clutter:

• B (B ', B{, . . .) refer to process behaviours. B, Bi is defined for each rule, but B ', B " , . . . are

behaviour-expression instances, unless stated otherwise.

• 9 i 9 1) - .are gate-names.

261

• d \ , . . . are experiment-offer instances, i.e. of the form !x or ?x.

• x, x i , . . . are variable instances.

• 1 1 , . . . are term-expression instances.

• x\ = t i , . . . are therefore identifier-equation instances.

• p is a variable over process-names.

• SP denotes a selection-predicate instance.

• a ranges over transition labels, Act.

We also use the following notation for substitution: [ti / x i , . . . , tn/ x n]B meaning the simultaneous

replacement of the x,- in B by the appropriate .

These are split into two distinct groups: the axioms of transition, and inference rules of transition.

The numbering given here coincides with that in the standard [IS088]. Note that one of the rules

sum-expressions while the other applies to par-expressions.

For Basic LOTOS the same axioms and rules apply but assume the data parts of the interactions

are empty. The rules relating to guards, selection predicates, etc. may be ignored.

The presentation here puts prerequisites of the axiom or inference rule on the left and the

B .2 .2 LOTOS Inference Rules

appears to be repeated (B\ is a simplification of B)\ this is because one inference rule applies to

inference rule or axiom itself in a box on the right. Any conditions on the validity of the rule or

auxiliary definitions required come below the rule.

Axiom s o f T ransition

(a) B = \\B '

where B' is an action-prefix-expression.

B B'

(bl) B = gd1 . . .d n-B '

iff

Vi = [^]

Vi e Q{si)

t y i , . . . , tym are term instances with Vi = \tyi\

if di = !<t (l < * < 71) and U is a ground term,

if di = ?x,(1 < i < n) with sort(xi) = Si,

if di = ?yj(1 < i < n , l < j < m)

and {2/1 , - . . , ym} = {x,- | d,- = ?x,-, 1 < i < n}.

where B' is an action-prefix-expression.

262

B 9VJ—^ n [ty i/y i ,. . .tym/y m]B'(b2) B = gdl . . . d n[SP];Bt

iff

Vi and tyi defined as above, and providing D h SP' where SP1 denotes the ground equation

obtained by simultaneous replacement in SP of all X{ in SP that also occur contained in a in­

variable offer, i.e. d,- = ?£,(! < i < n), by a term t E t;,-.

(c l) B = exi t (i? i , . . . , En)

iff

Vi = [Ei]

Vi e Q{si)

if Ei is a ground term (1 < i < n)

if Ei = any st (l < i < n)

where E i , . . . , En are exit-parameter instances.

(c2) B = ex it

Inference R ules o f T ransition

(a) B = le t x\ = <1, . . . , xn = tn in B'

(b l) B = choice g in \gu . . . , g n] 0 B'

for each g{ € { g i , . . . , g n } -

(b2) B = choice x [| B'

iff t is a ground term with [<] € Q(s), where a; is a variable with sort(x) = s.

(b3) Bi is a sim plification o f B in norm al form

B — ► stop

[ti /x i , .. . , t n/ x n]B' B"

B B "

{B')\gi/g} B"

B B"

[t/x]B‘ - A B"

Bi B i '

B - ^ B i '

(c l) B = p a r g in \gu . . . ,gn] par-op B'
{B')\gi/g] par-op.. .par-op (.B')\gn/g\ B"

B B"

(c2) Bi is a sim plification o f B in no rm al form
Bi Bi'

B B i '

263

(d) B = h ide g i , . . . ,g n in B'

(e) B = Bi accep t x \ , . . . , xn in B 2

where t,-,.. , , t n are ground terms with [t 1] = Vi,

if name (a) (E {<71, . . •, <7n}

? h ide g i , . . . ,g n in B ‘

if name (a) £ {g i,.. .,gn}

B± -2+ B i’

B A B i ' ^ accept x i , . . ., xn in B 2

name (a) / S

^ 6vi...v ' B i!

B [h /x i, ■ • • > in /%n\B2

) •

Bi B\

B —■+Si'[> Bi
name (a) ^ S

Bl Sv± J ' Bt'

B Bi

B - ^ B ' 2

(g l) B = B 1 \\g1 , . . . , g n\ \B 2

Bi -Z+ B^'

B - ^ B ^

name (a) £ {5 1 , . . .,g n,S}

B 2 ^ B '2

B - l+ B i \ \9 u . . . , g n] \B '2

name (a) £ {g i,. . . ,gn,S}

B\ B i , B 2 B 2

5 A 5 / \[g u ... ,g n] \B '2

name (a) G {^i , .. .,g n, 6 }

where g i , . . . ,gn is a (possibly empty) list of gate-name instances.

264

(g2) B = B1|| |B 2

(g3) B = B1||B 2

where {gi, --,9n} = G.

(h) B = B 1 □ B2

fl A f l '

B r l b i j „] |B2 - A B '

B - A B'

P i - ^ B i '

B -^ B i'

£ 2 ~ ^ B '2

B ^ B ' 2

(j) B = [S B]-> B '

iff S P is a ground equation and D h SP.

(k l) B = stop

(k2) B = p

B' B "

B ~ ^ B n

no inference rules are generated

([t l / ^ l , ■ • •, i m / ®m]Pp) > • • • j g n/ hr i] ̂ B

B ^ B '

iff (p, P p) 6 BS.PDEFS

where /yfo} - (/i i , . . . , hn), and fv(p) = (x i , . . . ,x m).

(k3) B = (.B')

(m) B = (B ') [flfi/hi,. . . ,5n/h„]

where

h i , . . . , hn are gate-names,

a = gv i . . . v m ,

a' - g v i . . . vm if g £ {hi , . . . , hn}

a! = giv 1 . . . vm if g = /i*(l < i < n)

B > - 1 + B "

B B"

B' - A B"

B - ^ (B ") \ g 1/ h 1 , . . . , g n/h n]

265

These rules and axioms completely define the structured labelled transition system of a canon­

ical LOTOS specification.

The equivalence over labelled transition systems, tree equivalence, is too strong for verification

purposes, so we usually define other equivalence relations over labelled transition systems which

allow more identifications. In the following sections we give the laws relating to weak bisimula­

tion congruence and equivalence, testing congruence and equivalence, and the preorders red and

c red as given in [IS088]. The laws given do not completely characterise the relations, and there­

fore some proofs may require additional proof techniques. The definitions of these relations may

be found in sections 3.4.3 and 3.5.3, assuming the appropriate modification of Act to include

structured labels. The laws below are the source for the rewrite rules of chapter 6 and the PAM

axioms of chapter 8.

B .2.3 W eak Bisim ulation Congruence Laws

Appendix B.2.2 to the LOTOS standard [IS088] contains a set of weak bisimulation congruence

laws. We know these laws are sound with respect to the model, but they are not complete. This

does not concern us as it is always possible to add specific laws to cover the case we want.

The laws for weak bisimulation congruence, written B =wbc C , are as follows:

a) A ction-prefix Let g .. P.x : t . . . be an action-denotation with an experiment offer ?x :t, and
let z be a value identifier that does not occur in g .. .?x : t . . . [E\\ B.

1. g .. .lx : t . . . [E]; B =wbc g ...?z : t . . . [z/x][E\; [z/x]B

2. g .. .?£ : t . . . ; B =wbc choice x : t \] g . . . \x ; B

3. g\E ! .. .\En[E\- B =wbc [E] -> g ^ .. .\En; B

b) Choice

1. B\ Q B2 =wbc B2 D B

2. B\ 0 (B2 0 B3) =wbc (B i 0 b 2) D b 3

3. B 0 s to p =wbc B

4. B \\ B =wbc B

5. [E / x] B 0 (ch o ice x : t Q *) —uube ch o ice x ■t Q B i f [E]6 Q (t)

6. ch o ic e x :t \\ B =wbc B if x is not free in B

7. ch o ic e x : t Q e x i t (. .. , X, . . .) =wbc e x i t (. .. , any

c) P a ra lle l If a law holds for all of the parallel operators ‘|’ is used to denote any of them (using
the same instance throughout the law). Let A, A' be lists of gate-identifiers.

1 . B i | 8 2 = w b c 8 2 | B \

2 . B i | (8 2 | 8 3) = w bc { B i | B 2) | 8 3

3. (a) e x i t (£ i , .. . ,E n) | e x it (£ ’(, . . . , E'm) = wbc e x i t (8 x, . . . , En)
if 71 = m and

VI < i < n.{[Ei] = [£<]
or (El = an y t and sort(8,) = t))

= w bc s to p otherwise
(b) e x i t (. ..) | s top =wbc stop

4 . 8 1 \ [A]\B2 =wbc B 1 \ [A]\B2

5 . B 1 \ [A]\B2 =wbc B x \ [A']\B2

6. Bi | [A] \B 2= wbc Bi || B2

7 . B x | [1| B 2 =wbc B x IN B 2

where A! is any list containing the same elements as A

where A' = A fl (£(8x) U £(.8 2))

if (C(Bi) U C(B2)) C A

d) E nab ling Let 3 >* denote any instance of the enable operator, i.e. or accep t .. .in .

1. s top » * B =wbc s top

2. (a) ex it > B =wbc i; B
(b) ex i t (£x , . . . , £■«) » accept xi : tn in B =wbc i; [E i/x i , . . . , En/ x n]B

3. (B\ B 2) B 3 =wbc Bi (8 2 B 3)

4. B » * s top =wbc B HI s top if B =£wbc exi t(. . .)
Note that this side condition has been added here as a result of our experiments, see sec­
tion 5.5.2; it is not in the standard.

e) D isabling

1 . B x [> (8 2 [> 8 3) = Wbc (8 x [> 8 2) [> 8 3

2. 8 [)> s top ~wbc B

3. (8 x [> 8 2) 0 8 2 =wbc 8 x [> 8 2

4. s top [> 8 =wbc B

5. e x i t (. ..) [> 8 =wbc e x i t (. ..) Q 8

f) H iding

1. h ide A in 8 =wbc h ide A' in 8 where A' is any list containing the same elements as A.

2. h ide A in 8 =wbc h ide A' in 8 where A' = A fl C(B)

3. h ide A in h ide A' in 8 =wbc h ide A" in 8 where A" = A U A!

4. h ide A in 8 =wbc B if A fl C(B) = 0

5. (a) h ide A in a\E\ .. \E n\ B =wbc i; (hide A in 8) if a E A
(b) h ide A in g; B =wbc 9 \ (hide A in 8) if name (#) ^ A

267

6. h id e A in B \ |] B 2 = w bc (hide A in B \) |] (hide A in B 2)

7. h id e A in (B i \ [A'] \ B 2) = wbc (hide A in B i) | [A7] | (hide A in B 2) if A fl A 1 = 0

8. h id e A in (B i >■* B 2) = w bc (hide A in B i) » * (hide A in B 2)

9. h id e A in { B \ [> B 2) = w bc (hide A in B \) [> (hide A in B 2)

10. h id e A in [E] —> B = w bc [E] —> (hide A in B)

g) G u ard in g

1. (a) [L = R\ —>• B =wbc B
[L = R] ^ B =wbc s top

(b) [BE] —¥ B =wbc [BE = true] —> B

if L = R
otherwise

if B E is a value-expression

h) In s ta n tia tio n

p[a 1 , . . . , ctn](£'i) . . . , Em) =wbc i \E \/X i, . . . , Em/ x m]Bp)[ciif <71, . . . , anj gn]

if p rocess p \g i,. . . , gn](% 1 , • • •, xm) : f Bp endproc is the format of the corresponding process
abstraction for the process-identifier p.

j) Local D efin ition

le t X\ : t-± = E \ , . . . , x n 1 tn — En in B —wbc [E \fx \ , . . . , En/ x n]B

k) R elabelling Let [5] be any instance [ai/gi, . . . ,an/gn] of the post-fix relabelling operator.
We associate with [5] the function S on gate-identifiers defined by

S{gi) = ai (1 < i < n)
S(g) = g if g ^ gi{ 1 < i < n)

and S maps the internal action i to itself.
We extend S to lists, sets, strings etc. in the obvious way.

1 . stop[5] =wbc s top

2 . e x i t (. . .)[S] =wbc e x i t (. ..)

3. (a; 5)[S] =wbc S(a); B[S]

4. (B ! 0 S2)[S] =w6e 5i[5] 0 B 2 [S]

5. (B ! Bi[5] |[5(i4)]|B2[5|
if S is injective on C{B\) U C(B2) U A

6. (5x > * B 2)[S\ =wbc BrfS] > * B 2 [S\

7. {B1 [> B 2)[S] = wbc B i [5] [> B 2 [S]

8. (h ide A' in B)[S] =wbc h ide A in 5[5]
if S is injective on C(B) U A ', and . (̂.A7) =wbc A.

9. 5[5j =wbc B

10. =wbc B[S2]

11. ^[5'1][‘S'2] =wbc B[S2 o Si]

if S is the identity on C(B)

if Va G C(B).Si(a) = S 2 (a)

268

m) In te rn a l A ction

1. Gt| 1J B ~ wbc B

2. B [] i; B =wbc i; B

3. a; (B x Q i; B 2) 0 (a; B 2) =wbc a; (B \ Q i; B 2)

4. [E / x] B [j (choice x : t |] i; B) =wbc choice x : t Q i; B if [.E] E Q(t)

n) E xpansion T heorem s Let B = [] {&*; B (\ i E I}, C = 0 {cj jCj I 3 £ «/}

1. B \ [A] \ C =wbc 0 {bi-, (B i | [A] | C) | name (6,) £ A, * E /}
0 0 {cj; (B \ \ A] \ C j) I name (cj) £ j e <0
[| [] {a; (J3t-| [A] |Cj) | a = 6t- = Cj, name (a) £ A , i E / , j E J}

if all 6j, Cj are of the form g \ E \ , . . .!E n

2. B [> C =wbc C

0 0 {^; (B i [> C) \ i e i }

3. h ide A in B =wbc 0 {̂ »> h ide A in B i | name (&,) (fc A , i E 1}
[| \\ {i; h ide A in B i | name (bi) E A, i E 1}

if all bi are of the form g \ E \ . . , \ E n

4. B [S] = wbc 0 { S (b i Y , B [S] I « E /}

B .2 .4 Weak Bisim ulation Equivalence Laws

The following rules may be added to the above rules for weak bisimulation congruence when

dealing with weak bisimulation equivalence. We denote weak bisimulation equivalence by &wbe.

1. B £&w be B

2. Let C[] be a LOTOS context of the following forms:

(a) g - , []

(b) [] | [A] | B , or B \ [A] | []
(c) [] » * B , or B » * []
(d) [] (> B

(e) h ide A in []

(f) [£] - > []

(g) IMS]
(h) le t . . . in []

then B i &wbe B 2 => C [B \ \ C [B 2],

3. B ~ wbe C => a; B =wbc a] C , for all action-denotations a,

4. B be C —r* B rHuihc C

269

B .2.5 Testing Congruence Laws

The laws for testing congruence and equivalence are expressed in the pre-orders cred and red that

generate them. B\ red B 2 can be interpreted as “Bi implements B2\ cred is the largest subre­

lation of red that has the substitution property with respect to LOTOS contexts.

1. h Bi =wbc B 2 ==> Bi cred B 2

Note : this means that cred inherits all the laws for weak bisimulation congruence.

2. B cred i; B

3. g\ {Bi 0 B 2) cred g\B i [] g \B 2

4. g;B 1 cred g;Bi \\g ;B 2

5. Bi cred B 2 &; B 2 c red B 3 => B\ cred B3

6. Bi cred B3 & B 2 cred B 3 => (Bi |] B 2) cred B3

B .2.6 Testing Equivalence Laws

In addition to the above laws for cred and testing congruence, we also have the following when

dealing with red or testing equivalence.

1. h B\ ube B 2 = > Bi red B 2

2. Let C[] be a LOTOS context of the following forms:

(a) .?;[]

(b) [] | [A] | B, 0 1 B | [A] | []
(c) [] » * B, or B » * []
(d) [)[>B

(e) [E] -> []

(f) [][5]
(g) le t . in []

then B\ red B 2 =>■ C[B\] red C[B2],

3. Bi red B 2 & B 2 red B3 =>■ Bi red B3

4. Bi red B 3 &; B 2 red B3 => (B± [] B 2) red B3

270

A p p en d ix C

RRL Rules

C .l In trod u ction

In this appendix we give the actual RRL input files that were used for the experiments detailed

in chapters 6 and 7. Since the presentation of the rules there was LOTOS like, rather than the

form required by RRL, we begin by giving the mapping between the usual LOTOS syntax and

the syntax required by RRL. Comments in the RRL input files are preceded by

T he R R L A lgebra

The sorts used in implementing LOTOS are: process, event, gatelist, rlist (relabelling list) and the

universal type, univ, which is built into RRL. In addition to the algebra definition, we also include

some subtyping information: all list types are a subtype of list. For the arities of the functions see

the function declarations in the input files. The way these functions are used to implement the

corresponding LOTOS ones is given in the next section.

R ep resen ta tion o f LOTOS constructs

Operators represented are given in table C.l; only Basic LOTOS has been considered.

RRL requires alphabetic function names rather than operator symbols. We also adopt prefix

style for function application since RRL does not support mixfix parsing. Note that all variables

in RRL must start with it, v, w, x, y or z. We try to be consistent in using x , y and z for processes,

v for lists and u for events.

We now give the RRL input files which were used for the experiments in chapters 6 and 7.

271

Operator Name LOTOS RRL
emptylist [] nl
inaction stop stop
termination exit exit
internal action i i
action prefix a; B seq (u, x)
choice Bi D B 2 ch (x, y)
general parallelism B i |[A]| B2 par (x, y, v)
interleaving Bi HI Sa par (x, y, nl)
enabling B\ f?2 en (x, y)
disabling Bi [> B 2 dis (x, y)
hiding hide A in B hide (v, x)
relabelling B[S\ relabel (x, v)

Table C.l: List of LOTOS expressions and corresponding RRL expressions

C .2 A lgebra

This is the algebra for the LOTOS operators used in the completion experiments, i.e. in conjunction

with the rule set core.

seq : event, process —>■ process
ch : process, process —> process
par : process, process, gatelist —> process
en : process, process —¥ process
dis : process, process —> process
hide : gatelist, process —> process
relabel : process, rlist —> process
exit : process
stop : process
i : event

nl : list
cons : univ, list -4 list

list < rlist
list < gatelist

The use of < allows us to define, for example, list, generally, with all supertypes of list inheriting

the properties and functions of list.

In addition to these declarations, ch is declared to be commutative. Function precedences are

as described in chapter 6.

C .3 Core R ules

This is the set of rules, referred to as core in chapter 6, derived from the weak bisimulation laws

of LOTOS which will give a confluent and terminating rule set when run through the completion

algorithm.

272

;; choice is declared as commutative
ch(x, stop) == x
ch(x, x) —— x

par (exit, exit, v) == exit
par (exit, stop, nl) == stop

en(stop, x) == stop
en(exit, x) == seq(i, x)
en(x, en(y, z)) == en(en(x, y), z)

dis(x, stop) — — x
dis(stop, x) —— x
ch(dis(x, y), y) == dis(x, y)
dis (exit, x) == ch (exit, x)

relabel(v, stop) == stop
relabel(v, exit) == exit

seq(u, seq(i, x)) == seq(u, x)
ch(x, seq(i, x)) == seq(i, x)
ch (seq (u, ch (x, seq (i, y))), seq (u, y)) == seq (u, ch (x, seq (i, y)))

Other attempts to extend the rule set (sometimes giving a complete set, but mainly giving

divergent rule sets) use the following rules:

hide (v, en(x,y)) == en(hide(v,x), hide(v,y))
hide(v,stop) == stop
hide(v,exit) == exit

dis(x, dis(y,z)) == dis(dis(x,y),z)

We also added associativity for choice, but this was done by declaring ch to be associative, rather

than by giving the explicit rule.

For the case study, these rules are not sufficient. The remaining sections detail the new rules

implemented for the case study proofs. These rules relate mostly to the introduction of the

expansion laws for parallelism and hide. The resulting rule set is not complete.

We begin with the auxiliary data structures required, sets and lists.

C .4 S ets and L ists

Only a few set and list operations are required by the expansion rules.

{} : set
s : univ —> set
-H- : set, set -4 set

x ++ x == x
x -H- {} = = x

273

The set constructor -H- is declared to be a-c.

member : univ, list —» bool

member(u, nl) == false
member(u, cons(u, xs)) — — true
member(u, cons(v, xs)) == member(u, xs) if not(u = v)

;;assume no duplicates
equal : list f is t —>■ bool
equal (x cons xs, ys) == equal (xs, delete (x, ys)) if member (x, ys)
equal (x cons xs, ys) — — false if not (member (x, ys))
equal (nl, nl) == true

delete : univ, list —> list
delete (x, x cons ys) == delete (x, ys)
delete (x, y cons ys) == y cons delete (x, ys) if not (x = y)
delete (x, nl) == nl

C .5 G eneralised C hoice and P arallelism

To implement the expansion law more easily, two new constructs are introduced: generalised

choice, i.e. choice over a set of processes, and an auxiliary parallel operator.

Generalised choice notation is used to express the expansion laws. This operator is only a

shorthand for many occurrences of binary choice and is not a part of the LOTOS syntax. Note that

since the -H- operator is associative and commutative, we also get associativity and commutativity

for generalised choice. In the following procset denotes a set of processes.

gch : procset —> process
set < procset

ch (x, y) == gch (s(x) ++ s(y))

;; if a choice in a set is stop, then we can delete it, law b3.
gch(s(stop) -H- xs) == gch(xs)

;; we can eliminate nested gch
gch(ys -f+ s(gch(xs))) == gch(xs ++ ys)

;; gch of a single element is just the element
gch(s(x)) == x

;;gch of an empty list is stop
gch({}) == stop

The last three rules ensure an uncluttered normal form for gch.

The parallel operator causes considerable problems in the RRL framework, because it is a

ternary operator between two processes and a list of gate names that acts like an associative

274

and commutative binary operator between two processes. In order to alleviate this problem,

we introduce the auxiliary operator pp, which forms a process pair from two processes. The par

operator is then redefined to take a process pair and a gate list. By declaring pp to be commutative

we model the commutativity of par. Unfortunately we cannot do the same for associativity as

the occurrences of pp are not adjacent, i.e. we have par(pp(par(pp(x, y), v), z), w). However,

associativity of the parallel operators only applies when both synchronisation lists are the same,

therefore, we may not actually use associativity very often.

The new definitions are as follows:

par : procpair, gatelist —» process
pp : process, process —>■ procpair

C .6 C ase S tu d y C on stan ts

Each constant in the Login case study of chapter 7 must be defined as different from all the others;

this is achieved by mapping events into the naturals.

m l : event p i : event nl .■ event i :• event
m2 : event P2 : event delta :• event
m3 : event P3 : event n3 .■ event timeout :' event
m4 : event p4 event n4 •■ event tcancel :’ event
m5 : event p5 : event set :• event
m 6 : event p6 : event
m7 : event P7: event

0 : nat
f : nat —> nat
c : nat —>• event

(f (x) = f (y)) = = (x = y)
(f(x) = 0) = ~ false
(c(x) = c(y)) == (x = y)

i == c(0)
delta == c(f(0))
m l == c(f(f(0)))
m2 == c(f(f(f(0))))
m3 == c(f(f(f(f(0)))))
m 4 == c(f(f(f(f(f(0))))))
m5 == c(f(f(f(f(f(f(0)))))))
m 6 == c(f(f(f(f(f(f(f(0))))))))
m7 == c(f(f(f(f(f(f(f(f(0)))))))))
p i == c(f(f(f(f(f(f(f(f(f(0))))))))))
P 2 == c(f(f(f(f(f(f(f(f(f(f(0)))))))))))
P 3 == c(f(f(f(f(f(f(f(f(f(f(f(0))))))))))))
P4 == c(f(f(f(f(f(f(f(f(f(f(f(f(0)))))))))))))
p5 == m f (f (M f (f (f (f (f (f (f (f (o))))) m m)
P 6 == C(f(f(f(f(f(f(f(f(f(f(f(f(f(f(o)m ^^

275

p7 = = c(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(0))))))))))))))))
n l = = c(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(0)))))))))))))))))
nS == c(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(0))))))))))))))))))
n4 == c(f(f(f(f(f(f(f(mmmmf(f(m))))))))))))))))))
set = = c(f(Ki(s(s(f(mms(f(f(f(f(f(f(i(f(o))))))))))))))))))))
tcancel == c(f(0))))»)))))))))))))))
timeout = = c m f f m m m H H s a f f m m m s m)

When added to RRL the following precedences must also be set: timeout > tcancel > set >

m l > m2 > m3 > m4 > m5 > m6 > m7 > p i > p2 > p3 > p4 > p5 > p6 > p7 > i > delta > c

> f > 0

C .7 H id e E xp an sion R ules

These rules implement the hide expansion law and also describe how h id e interacts with gch.

These rules are derived from laws n3, f4 and f6.

hide (v, gch(s(x) -H- xs)) == gch (s(hide(v, x)) -H- s(hide(v, gch(xs))))

hide (v, exit(nl)) == exit(nl)
hide (v, seq (u, x)) == seq (u, hide (v, x)) if not (member (u, v))
hide (v, seq (u, x)) == seq (i, hide (v, x)) if (member (u, v))

C .8 P ara lle l E xp an sion R ules

The expansion law for parallelism is implemented by the following functions:

expanda : procset, procset, gatelist —> procset
expandb : procset, procset, gatelist —> procset
expandc : process, procset, gatelist —> procset

An overview of how these functions operate is given in section 6.4.1. The actual RRL rules are

given below.

The general form of the expansion rules is:

par (pp(gch(x),gch(y)), v) == gch(expanda(x,y,v) -H- expanda(y,x,v) -f+ expandb(x,y,v))

We must also define cases for each function for the situation in which one process is a simple

process with either seq, stop or exit at the top level, and the other process has gch at the top level.

par(pp(gch(xs), seq(u,x)), v) == gch (expanda (xs, s(seq(u,x)), v) -f+
expanda(s(seq(u, x)), xs, v) ++
expandb(xs, s(seq(u,x)), v))

par(pp(gch(xs), exit(vl)), v2) == gch (expanda (xs, s(exit(vl)), v2) ++
expanda(s(exit(vl)), xs, v2) -H-
expandb(xs, s(exit(vl)), v2))

par(pp(gch(xs), stop), v) == gch(expanda(xs, s(stop), v) -H-
expanda(s(stop), xs, v) ++
expandb (xs, s(stop), v))

276

Finally we have to cater for the situation in which both sides of the parallel operator are simple

processes.

par(pp(seq(ul, xl),seq(u2, x2)), v) —— gch (expanda (s(seq(ul, xl)), s(seq(u2, x2)), v) -H-
expanda (s(seq(u2 , x2)), s(seq(ul, xl)), v) -f-F
expandb (s(seq(ul, xl)), s(seq(u2 , x2)), v))

par(pp(seq(u, x), exit(vl)), v2) == gch(expanda (s(seq(u, x)), s(exit(vl)), v2) ++
expanda (s(exit(vl)), s(seq(u, x)), v2) ++-
expandb (s(seq(u, x)), s(exit(vl)), v2))

par(pp(seq(u, x), stop), v) == gch(expanda (s(seq(u, x)), s(stop), v) -H-
expanda (s(stop), s(seq(u, x)), v) ++■
expandb (s(seq(u, x)), s(stop), v))

par(pp(exit(vl), exit(vl)), v2) == exit(vl)
par(pp(exit(vl), exit(v2)), v3) == exit(vl) if equal(vl, v2)
par(pp(exit(vl), exit(v2)), v3) == stop if not (equal(vl, v2))
par (pp (exit (vl), stop), v2) —— stop
par(pp(stop, stop), v) == stop

We now define the functions expanda, expandb and expandc.

;;Rules for expanda
expanda (s(seq(u, x)) ++ xs, ys,v) == s(seq (u, par (pp(x, gch (ys)), v))) -f+

expanda (xs, ys, v) if not(member(u,v))
expanda (s(seq(u, x)) ++ xs, ys,v) == expanda(xs,ys,v) if member(u,v)
expanda (s(seq(u, x)), ys, v) == s(seq(u, par(pp(gch(s(x)), gch(ys)), v))) if not (member (u, v))
expanda (s(seq(u, x)), ys, v) == {} if member(u, v)
;; exit must synchronise with exit - it may not proceed on its own
expanda (s(exit(vl)) -H- xs, ys, v2) == expanda (xs, ys, v2)
expanda (s(exit(vl)), ys, v2) == {}
;; stop may not synchronise with anything or proceed on its own
expanda (s(stop) -H- xs, ys, v) == expanda (xs, ys, v)
expanda (s(stop), ys, v) —= {}
expanda({} ,xs,v) == {}

;;Rules for expandb
;; apply expandc to a choice from the first set, together with the second set.
;; apply expandb down the rest of the first set.
expandb (s(x) -f-f xs, ys, v) == expandc(x,ys,v) •++ expandb(xs,ys,v)
expandb (s(x), ys, v) == expandc(x, ys, v)
expandb ({},ys,v) == {}

;;Rules for expandc
expandc (seq(ul,xl), (s(seq(ul,x2)) ++ ys), v) == s(seq(ul, par(pp(xl, x2),v))) -H-

expandc(seq(ul, xl), ys,v) if member(ul, v)
expandc (seq(ul,xl), s(seq(ul,x2)) ++ ys, v) == {} if not member(ul, v)
expandc (seq(ul,xl), s(seq(u2 ,x2)) ++ ys, v) == expandc (seq(ul,xl), ys,v) if not (ul = u2)
expandc(seq(ul, x l), s(seq(ul, x2)), v) == s(seq(ul, par(pp(xl, x2), v))) if member (ul, v)
expandc(seq(ul, x l), s(seq(ul, x2)), v) —— {} i f not (member(ul, v))
expandc(seq(ul, x l), s(seq(u2 , x2)), v) == {} if not (ul = u2)
expandc (seq(ul, x l), s(exit(vl)) -H- ys, v3) —— expandc (seq(ul,xl), ys, v3)
expandc (seq(ul, xl), s(exit(vl)), v3) == {}
expandc (seq(ul, xl), s(stop) -H- ys, v3) == expandc (seq(ul, xl), ys, v3)
expandc (seq(ul, x l), s(stop), v3) == {}
expandc (exit(vl), s(seq(ul, x l)) -H- ys, v2) == expandc (exit(vl), ys, v2)

277

expandc (exit(vl), s(exit(v3)) ++ ys, v2) == s(par(pp(exit(vl), exit(v3)), v2))
expandc (exit(vl), s(stop) -H- ys, v3) == expandc (exit(vl), ys, v3)
expandc (exit (vl), s(seq(u, x)), v2) == {}
expandc(exit(vl), s(exit(v2)), v3) == s(par(pp(exit(vl), exit(v2)), v3))
expandc (exit(vl), s(stop), v3) — — {}
expandc (stop, ys, v) == {}
expandc (x, {}, v) == {}

278

A p p en d ix D

PAM Input Files

This appendix contains the PAM input files used for the examples in chapter 9. Comments in the

input files are preceded by —. Note that in some cases, only a portion of the input file is given,

this is to avoid excessive repetition; the accompanying text details the parts omitted.

D . l M ain LO TO S “A x io m s”

This is the input file usually used in conjunction with LOTOS. The main operators are declared

here, together with the PAM axioms, derived from the laws given in [BIN92], which allow the

derived operators to be converted into choice and sequencing. Also included are the so-called

“r-laws” for weak bisimulation congruence, branching bisimulation, testing congruence and trace

equivalence.

— B asic LOTOS
— Axioms fo r rew ritin g LOTOS terms based on BIN:92

signature
type Gate Action Process
w ith Gate < Action
operator

i
d e lta
stop
e x it

- [] -
_ » _
- [> -
hide _ on _
_ If -] | -

279

Acxion
-> Action
-> Process
-> Process
Action Process -> Process 150 RIGHT
Process Process -> Process 130 AC LEFT
Process Process -> Process 120 LEFT
Process Process -> Process 120 LEFT
Gate s e t Process -> Process 30 RIGHT
Process Gate s e t Process -> Process 100 AC LEFT
Process Process -> Process 100 AC LEFT

axiom
— CHI and CH2 AC axioms, covered by operator d ec lara tion
CH3 x [] stop = x
CH4 x [] x = x

— th ese f i r s t th ree are covered by the expansion law i f DELTA
— i s used , but i t may be more convenient to use th ese forms.
Pi e x it I I I e x i t = e x it
P2 e x it I [s]I e x it = e x it
P3 e x it I [s]I stop = stop
P4 x I I I y = x I [{}] I y
P5 stop I [s]I stop = stop

HI h ide A on stop = stop
H2 hide A on (x [] y) = (h ide A on x) [] (h ide A on y)
H3A hide A on a .x = a .(h id e A on x) i f n o t(a in A)
H3B hide A on a .x = i .(h id e A on x) i f (a in A)

El stop » x = stop
E2 (x [] y) » z = (x » z) [] (y » z)
E3A a.x » y = a. (x » y) i f not (a eq
E3B a.x » y = i . y i f (a eq

D1 stop [> X = X

D2 (x [] y) [> z = (x [> z) □ (y [> z)
D3A a.x [> y = y □ a.(x [> y) i f not (a eq
D3B a.x [> y = a.x [] y i f (a eq

DELTA e x it = d e lta .s to p

— add th ese fo r observation congruence
0BS1 a . i . x = a .x
0BS2 x [] i . x = i . x
0BS3 a. (x [] i . y) [] a .y = a .(x □ i .y)

— add th ese fo r branching b isim u lation congruence
BB1 a . i . x = a .x
BB2 a . (i . (x [] y) H x) = a .(x [] y)

— add th ese fo r t e s t in g congruence
TESTl i . (x [] y) n i . y = i . y □ x
TEST2 a. (i . x [] i . y) = a .x [] a .y
TEST3 i . (a . x [] a .y [] z) = a .x [] i . (a . y [] z)

— add th ese fo r tra ce congruence
TR1 i . x = x
TR2 a .(x [] y) = a .x [] a .y

expansion law
EXP
then

l e t X = a l .x l

i—
i

i __i [] an.xn y = b l . ■yi [] .

(x 1 [A] 1 y) = stop i f (sync_move(x ,y) eq n i l)
(x 1 CA] | y) = Sum([] , async jnove (x , y))
(x 1 CAD 1 y) = Sum([] , sync jnove (x ,y))

[] bm. ym

i f syncjnove(x,y) eq n i l
i f async_move(x,y) eq n i l

280

(x I [A] I y) = Sum([] , asyncjnove(x,y)) [] Sum([] , syn cju ove(x ,y)) otherw ise
w ith communication fu n ction
broadcast

syn c(a , b) = a i f (a eq b) and n ot(a eq i) and ((a in A) or (a eq d e lta))
async(a) = true i f n o t((a in A) or (a eq d e lta))

so r t computation
S o rt(sto p) = {}
S o r t(i.P) = Sort(P)
S o rt(a .P) = {a} union Sort(P)
Sort(P [] Q) = Sort(P) union Sort(Q)
Sort(P III Q) = Sort(P) union Sort(Q)
Sort(P I [A]| Q) = Sort(P) union Sort(Q)
S ort(h id e A on P) = Sort(P) d i f f A

end

D .2 E xtra LO TO S “A x io m s”

Occasionally the above laws are not enough to complete a proof, c.f. the scheduler example in

section 9.5. Below is a selection of the PAM axioms, derived from the laws of the LOTOS standard

[IS088], which may be useful for particular proofs; these axioms should be used in conjunction

with the declarations and axioms of the previous section, therefore this section cannot be used on

its own as a PAM input file. Also included in this selection is the declaration for the relabelling

operator, and the associated laws.

Each group of axioms/laws is denoted by the labels used in the standard, prefixed by an S,

otherwise some confusion with the axioms of the previous section may arise. We discuss each law

individually, noting ones which are either not Basic LOTOS, in which case they are ignored, or

which already occur in the previous set of PAM axioms.

— PAM axioms fo r rew ritin g B asic LOTOS terms based on the laws of
— th e LOTOS standard.

— R e la b e llin g i s added to the usual d e f in it io n s and d ec la ra tio n s .
_ [_ / _] : : Process Gate Gate -> Process 300 — r e la b e llin g

— Axioms
— F ir s t , axioms which are a s tr a ig h t tr a n s la tio n of the laws in the LOTOS standard.

— a (a c t io n -p r e f ix)
— not B asic LOTOS.

— b (ch o ice)
— laws 1 and 2 covered by standard d eclara tion : choice AC.
— laws 3 and 4 covered by standard laws CH3 and CH4.
— stop as a zero and choice idempotent.
— laws 5 - 7 not B asic LOTOS.

281

— c (p a ra lle lism)
— laws 1 and 2 covered by standard laws: p a ra lle lism AC.
— law 3a covered by standard laws PI and P2.
— law 3b covered by standard law P3.
— law 4 unnecessary as gate s e t s are used rather than gate l i s t s .
— law 6 unnecessary as f u l l synchronisation i s not used.
— law 7 covered by P4.

SC5 x I [s]I y = x I [t]I y i f t eq (s in te r (S ort(x) union S o r t(y)))

— d (enable)
— law 1 covered by standard law E l.
— law 3 not B asic LOTOS.

SD2 e x i t » x = i . x
SD4 (x » y) » z = x » (y » z)
SD5 x » stop = x I I I stop i f not (x eq e x i t)
— the s id e con d ition must be added as otherw ise th is law leads
to a co n tra d ic tio n , see se c tio n 5 .5 .2 .

— e (d isa b le)
— law 4 covered by standard law Dl.

SE1 x [> (y [> z) = (x [> y) [> z
SE2 x [> stop = x
SE3 (x [> y) [] y = x [> y
SE5 e x i t [> x = e x it [] x
— th is axiom i s covered by the laws D2 and D3B, but th is form i s more convenient.

— f (h id in g)
— law 1 unnecessary as s e t s are used rather than l i s t s .
— laws 5a, 5b and 6 covered by axioms H3A, H3B and H2.
— law 10 not B asic LOTOS.

SF2 h ide A on x = hide (A in te r S o r t(x)) on x
SF3 h ide A on hide A’ on x = hide (A union A’) on x
SF4 hide A on x = x i f ({} eq (A in te r S o r t(x)))
— standard law HI i s an instance of t h is .
SF7 hide A on (x I [s]I y) = (h ide A on x) I [s]I (h ide A on y)

i f ({} eq (A in te r s))
SF8 h ide A on (x » y) = (hide A on x) » (hide A on y)
SF9 hide A on (x [> y) = (hide A on x) [> (h ide A on y)

— g (guards)
— not B asic LOTOS.

— h (in s ta n t ia t io n)
— Since parameters are ignored, th is i s implemented by the PAM
— unfold fu n ctio n .

“ J
— not B asic LOTOS.

282

— k (r e la b e llin g)
— Note th at th ese are s im p lif ie d as r e la b e llin g cannot be implemented
— as a fu n ctio n in PAM, instead we use a p a ir of gate names.
— laws 10 and 11 are redundant under th is implementation of
— r e la b e l l in g .

SKI stop [a/b] = stop
SK2 e x it [a /b] = e x it
SK3A (c .x) [a /b] = c . (x [a /b]) i f
SK3B (b .x) [a /b] = a .(x [a /b])
SK4 (x [] y) [a/b] = x [a/b] [] y [a /b]
SK5 (x 1 [s]I y)[a /b] = x [a /b] 1[((s d i f f {a}) union { b })] 1 y [a /b]

i f not (c eq b)

— i f more than one r e la b e ll in g p a ir i s p resen t, the user must ensure
— th a t the r e la b e ll in g fu n ction as a whole i s in je c t iv e .
SK6 (x » y) [a /b] = x [a /b] » y [a /b]
SK7 (x [> y)[a /b] = x [a /b] [> y [a /b]
SK8 (h ide A on x)[a /b] = hide ((A d i f f {a}) union {b}) on x [a /b]
— as w ith SK5, the r e la b e ll in g fu n ction as a whole must be in j e c t iv e .
SK9 x [a /a] = x
SK11 x [a /b] [c /d] = x [c /d] [a/b]

— m (in te r n a l a c tio n)
— laws 1 - 3 covered by the axioms 0BS1, 0BS2 and 0BS3.
— laws 4 not B asic LOTOS.

— n (expansion laws)
— law 1 implemented by PAM expansion law
— law 2 implemented by group of standard axioms D.
— law 3 implemented by group of standard axioms H.
— law 4 implemented by group of laws above SKI - SK4.

— Some other axioms, a lso derived from the laws of the LOTOS standard,
— which were added fo r p a r ticu la r p roofs.

H4 hide A on hide A on x = hide A on x
H5 hide A on hide A* on x = hide A* on hide A on x

ST x I [S o r t(x)]I stop = stop
NEWEXP (x [] y) I [s] | z = (x I [s] I z) [] (y I [s] I z)
— t h i s i s added because th e PAM expansion law in s i s t s on a l l p rocesses
— being unfolded before expansion can take p la ce , but sometimes we don’t
— want every branch of a process to be expanded.

D .3 “A x io m s” for th e LO TO S cred P reorder

In some relations, rather than viewing the implementation as equivalent to the specification, we

wish to show that the implementation approximates the behaviour of the specification. This can

be modelled by the use of the cred preorder. As described in section 8.4.2, cred is implemented

as a predicate, but axiomatised in the style of an equivalence. No restraints are placed on the

application of cred axioms by PAM; it is up to the user to apply the rules in the manner advised

283

in section 8.4.2. As with the axioms of the previous section, the following axioms are designed to

be added to the axioms and declarations of appendix D.l; they cannot be used as a PAM input

file on their own. These PAM axioms were used in the Theracl proof, section 9.2.3.

— in a d d ition to the usual d ec la ra tio n s:
_ cred _ : : Process Process -> Bool 20

— the cred axioms
— fo r th ese ru le s we assume the conjecture i s of the form (A cred B) = true

— base cases
CBASE2 A cred i.A = true
CBASE3 a. (Bi [] B2) cred a .B l [] a.B2 = true
CBASE4 a .B l cred a .B l [] a.B2 = true
CBASE7 B cred B = true

— cred ru le s which can be applied as axioms,
— but only to B in (A cred B) = true
— and only r ig h t to l e f t .

CRED2 A = i.A
CRED3 a. (B [] C) = a.B [] a.C
CRED4 a.C = a.B [] a.C

— axiom CRED1 comes by a llow ing terms to be reduced by OBS r u le s .
— axiom CRED5, t r a n s i t iv i t y , i s im p lic it .
— axiom CRED6 a llow ing implementations to be combined
— cannot be implemented in th is s e t t in g .

D .4 T h e Login C ase S tu dy

— Login Case Study (recu rsiv e version) —

— P rotoco ls d escr ib in g in te r fa c e s between e n t i t i e s , g iv in g the s p e c if ic a t io n .
— P rocesses d ecrib in g e n t i t i e s , g iv in g the implementation.
— C onstrain ts d escr ib in g some extra inform ation e s s e n t ia l to the s p e c if ic a t io n .

con jectu re
PROCESSES = PROTOCOLS

where

PROCESSES = ((B I [f i r s t] I A) I[second]I C) I [th ir d] | D

A = m l.((n l.A) [] (p i.A))
B = m l.m 3.((n 3 .n l .B)

[] (p3.m 4.((n4.m 6.p6.n l.B)
[] (p 4 .s e t . ((tim eout.m 6.p6.m 7.p7.nl.B)

[] (m5. tc a n c e l . p5.m6. p6.m7. p7. p i . B))))))
C = m 3.(n3.C [] p3.m6.p6.C)
D = m4.(n4.D [] p4.(m 5.p5.m 7.p7.D [] m7.p7.D))

284

— p ro to co ls
PI = ml. (n l .P l [] p i.P I)
P2 = m3. (n3.P2 [] p3.(P 2 [] m6.p6.P2))
P3 = m4.(n4.P3 [] p4.(P3 □ m7.p7.P3 [] m5.p5.(P3 [] m 7.p7.P3)))

— co n stra in ts
TIMER = p 4 .s e t . (m5.tcancel.TIMER [] timeout.TIMER)
DEALLOC.C = m3. (p 3 . m6 . p6 .DEALLOC_C [] n3 .DEALLOCjC)
DEALLOC-D = m4. (p 4 .m7.p7.DEALLOCJ) [] n4.DEALL0C_D)

SYSTEM = ml. (m 5 .p l.SYSTEM [] n 3 .n l .SYSTEM [] n 4 .n l .SYSTEM [] t im e o u t .n l. SYSTEM)

0RDERT1 = tcancel.pi.0RDERT1
0RDER3467 = m3.(p3.m 4.(p4.m6.m7. p7. 0RDER3467

[] n4. m6 . 0RDER3467)
[] n3 . 0RDER3467)

ORDER13467 = m l.m 3.(n 3 .n l . 0RDER13467
[] p3.m 4.(n4.m6.p6.nl.0RDER13467

[] p4.m 6.p6.m 7.p7.(n l . 0RDER13467
□ p i . 0RDER13467)))

0RDER4567 = m4.(p 4 .(m6.p6.m7. p7. 0RDER4567
[] m5. p5.m6. p6.m7.p7. 0RDER4567)

[] n4 . m6 . p6 . 0RDER4567)
0RDER1345 = m l.m 3.(n 3 .n l .ORDER1345

[] p3.m 4.(n 4 .n l .ORDER1345
[] p 4 .(m 5 .p l.0RDER1345

0RDER167 = m l. (m6 .p6 . (m 7.p7.(nl.0RDER167 [] pl.0RDER167)
□ n l . 0RDER167)

[] n l . 0RDER167)
0RDER134 = m l.m 3.(p3.m 4.(n 4 .n l .0RDER134 □ p4.(nl.0RDER134 [] p i . 0RDER134))

[] n 3 .n l .0RDER134)
ORDERTIME = n4.m6.ORDERTIME [] p 4 .s e t . (tcancel.p 5 .m 6 . ORDERTIME

[] timeout.m 6 .ORDERTIME)

PROTOCOLS = ((((((P 2 I[second]| DEALL0C.C) I [{m3, n3, p3, m6 }]I 0RDER3467)
I[{m4, n4, p4, m6 , p6 , m7, p7}JI
((P3 I [{m4, p4, n4, m7, p7}]I DEALL0C_D) I[th ird]I 0RDER4567))
I [{m3, n3, p3, m4, n4, p4, m6 , p6 , m7, p7}]I 0RDER13467)
I[{m l, n l , p i , m3, n3, p3, m4, n4, p4, m5}]I
((((P I I [f i r s t] I SYSTEM) I[{m l, n l , p i , n3, n4, m5}]| 0RDER1345)
I[{m5, p4, tim eout}]I TIMER) I [{ p i , tca n c e l}]I 0RDERT1))
I[{m4, n4, p4, m5, p5, m6 , p6 , m7, p7}]I 0RDER4567)
I [{p4, n4, s e t , tc a n c e l, tim eout, p5, m6 }]I ORDERTIME

macro
f i r s t =
second
th i r d =

end

• {ml, p i , nl}
= {m3, n3, p3, m6, p6}
; {m4, n4, p4, m5, p5, m7, p7}

D .5 T h e S im ple R ad ia tion M achine

Several variants of the radiation machine example were presented in section 9.2; the input files for

the first variant, Theracl, is given in its entirety here, as is the input file for Therac2. For all the

285

other variants, only the Therac part of the definition is given; the complete input file is formed

by taking the conjecture, test process, macros and rules from Theracl. For all of the radiation

machine examples, the alphabet is: lb — low beam, hb — high beam, Is — low shield, hs —

high shield, e l — electron beam treatment, xr — xray beam treatment, and f i r e — fire!

D .5.1 T heracl
— Therac-25 case study, due to M. Thomas.
— Theracl

con jectu re
te s t o k .e x i t = hide theracjevents on UNSAFETEST

where

— d e f in it io n o f the therac machine
Theracl = STARTUP

STARTUP = SETUPL » TREATMENT

SETUPL = (lb .e x i t) I I I (I s .e x i t)
SETUPH = (h b .e x it) I |I (h s .e x i t)

TREATMENT = x r . XRAY [] el.ELECTRON [] e x it

ELECTRON = (f i r e . TREATMENT) [> TREATMENT

XRAY = (SETUPH » (f i r e . SETUPL) » TREATMENT) [> TREATMENT

— d e f in it io n o f the t e s t p rocesses
UNSAFETEST = STARTUP I [theracjevents] I ((lb .Is.T E ST) » t e s to k .e x i t)

TEST = Nothbhs » (hb.N otlbhs) » (f i r e .e x i t)

Nothbhs = fire .N othb h s
□ lb.Nothbhs
[] Is.N othbhs
[] xr.Nothbhs
[] el.N othbhs
[] e x it

Notlbhs = ls .N o tlb h s
[] hb.Notlbhs
[] xr.N otlbhs
[] e l.N o tlb h s
[] e x it

macro
therac_events = { lb , hb, I s , h s , f i r e , xr , e l}

ru le DIS = +DELTA
ru le EN = *DELTA
ru le HIDE = *DELTA

*{D2 D3A D3B}; *{DELTA<}
*{E2 E3A E3B}; *{DELTA<}
*{H1 H2 H3A H3B}; *{DELTA<}

286

ru le INT = +DELTA; *P4; *EXP; *P5; DELTA<
end

D .5.2 Sim ple Therac
— Therac-25 case study, due to M. Thomas.
— s im p lif ie d v ersio n in which the in terru p ts are t o t a l ly removed.

— d e f in it io n o f the therac machine
Theracl = STARTUP

STARTUP = SETUPL » TREATMENT

SETUPL = (lb .e x i t) III (I s .e x i t)
SETUPH = (h b .e x it) III (h s .e x i t)

TREATMENT = x r . XRAY [] el.ELECTRON [] e x it

ELECTRON = f i r e . TREATMENT
— o ld v ersio n ELECTRON = (fire.TREATMENT) [> TREATMENT

XRAY = (SETUPH » (f i r e . SETUPL) » TREATMENT)
— old version XRAY = (SETUPH » (f i r e . SETUPL) » TREATMENT) [> TREATMENT

— d e f in it io n of the t e s t p rocesses as in sec tio n D .5 .1 .

D .5 .3 M odified T heracl — Version A
— Therac-25 case study, due to M. Thomas.
— Theracl w ith new version of SETUP without in ter le a v in g .
— SETUPH has events in order hb, hs; th erefore Theracla i s unsafe.

— d e f in it io n o f the therac machine
Theracl = STARTUP

STARTUP = SETUPL » TREATMENT

SETUPL = l b . I s . e x i t
SETUPH = h b .h s .e x it

TREATMENT = x r . XRAY □ el.ELECTRON [] e x it

ELECTRON = (fire.TREATMENT) [> TREATMENT

XRAY = (SETUPH » (fire.SETUPL) » TREATMENT) [> TREATMENT

— d e f in it io n o f th e t e s t processes as in sec tio n D .5 .1 .

D .5 .4 M odified T heracl — Version B
— Therac-25 case study, due to M. Thomas.
— Theracl w ith new version of SETUP without in ter le a v in g .

287

— SETUPH has events in order h s, hb; th erefore Theraclb i s sa fe .

— d e f in it io n o f the therac machine
Theracl = STARTUP

STARTUP = SETUPL » TREATMENT

SETUPL = l b . I s . e x i t
SETUPH = h s .h b .e x it

TREATMENT = x r . XRAY [] el.ELECTRON [] e x it

ELECTRON = (fire.TREATMENT) [> TREATMENT

XRAY = (SETUPH » (f i r e . SETUPL) » TREATMENT) [> TREATMENT

— d e f in it io n o f the t e s t p rocesses as in sec tio n D .5 .1 .

D .5.5 T h eracld
— Therac-25 case study, due to M. Thomas.
— a lte r a t io n s from Theracl: new version of SETUP with no in ter le a v in g ,
— ch oice and sequencing su b stitu ted fo r d isa b le .

— d e f in it io n o f the therac machine
Theracl = STARTUP

STARTUP = SETUPL » TREATMENT

SETUPL = l b . I s . e x i t
SETUPH = h s .h b .e x it

TREATMENT = x r . XRAY [] el.ELECTRON [] e x it

ELECTRON = f i r e . TREATMENT [] TREATMENT

XRAY = TREATMENT
[] h s . (TREATMENT

□ h b .(TREATMENT
[] f i r e . (TREATMENT

[] I s . (TREATMENT [] l b .TREATMENT))))

— d e f in it io n of the t e s t p rocesses as in sec tio n D .5 .1 .

D .5.6 Therac2
— Therac-25 case study, due to M. Thomas.
— This i s th e tr a n sla ted version o f therac2 (i . e . p lus data typ es)
— Note th at because of the use of . in stead of ; here, the tr a n s la t io n
— i s s l ig h t ly d if fe r e n t from that in sec tio n 1 0 .3 .2 .
— Gates and values are represented g_u_v_w rather than g .u .v .w .

288

conjecture
te s t o k .e x i t =
hide (therac_events union f ir e .e v e n ts union d elta_events) on UNSAFETEST

where

— d e f in it io n o f the therac machine
TREATMENTLowDown = x r . XRAYLowDown [] e l . ELECTRONLowDown [] d_LowJDown.stop
TREATMENTLowUp = xr.XRAYLowUp [] e l . ELECTRONLowUp [] d_Low_Up.stop
TREATMENTHighDown = x r . XRAYHighDown [] e l . ELECTRONHighDown [] d_High_Down.stop
TREATMENTHighUp = x r . XRAYHighUp [] e l . ELECTRDNHighUp [] d_High_Up. stop

— e lec tro n treatm ents
ELECTRONLowDown = hide { lb , hb, I s , hs) on

(FIRELowDown » TREATMENTLowDown) [] TREATMENTLowDown
ELECTRONLowUp = hide { lb , hb, I s , hs} on

(FIRELowUp » TREATMENTLowUp) [] TREATMENTLowUp
ELECTRONHighDown = hide { lb , hb, I s , hs} on

(FIREHighDown » TREATMENTHighDown) [] TREATMENTHighUp
ELECTRONHighUp = hide { lb , hb, I s , hs} on

(FIREHighUp » TREATMENTHighDown) [] TREATMENTHighDown

— xray treatm ents
XRAYLowDown = hide { lb , hb, I s , hs} on

(TREATMENTLowDown
[] h b .(TREATMENTHighDown

[] h s . (TREATMENTHighUp
[] (FIREHighUp » (TREATMENTHighUp

[] l b . (TREATMENTLowUp
[] Is.TREATMENTLowDown))))))

XRAYLowUp = hide { lb , hb, I s , hs} on
(TREATMENTLowUp

□ h b .(TREATMENTHighUp
[] h s . (TREATMENTHighUp

[] (FIREHighUp » (TREATMENTHighUp
[] l b . (TREATMENTLowUp

[] Is.TREATMENTLowDown))))))
XRAYHighDown = hide { lb , hb, I s , hs} on

(TREATMENTHighDown
□ h b .(TREATMENTHighDown

[] h s . (TREATMENTHighUp
[] (FIREHighUp » (TREATMENTHighUp

[] l b . (TREATMENTLowUp
[] Is.TREATMENTLowDown))))))

XRAYHighUp = hide { lb , hb, I s , hs} on
(TREATMENTHighUp

[] h b .(TREATMENTHighUp
[] h s . (TREATMENTHighUp

[] (FIREHighUp » (TREATMENTHighUp
[] l b . (TREATMENTLowUp

[] Is.TREATMENTLowDown))))))

FIRELowDown = ZAPLowDown
FIRELowUp = ERR0R55
FIREHighDown = ERR0R54
FIREHighUp = ZAPHighUp

289

ZAPLowDown = f ire_Low_Down. e x it
ZAPLowUp = f ire_Low_Up.exit
ZAPHighDown = f ire_High_Down.exit
ZAPHighUp = f ire_High_Up.exit

ERR0R54 = err_ 5 4 .ex it
ERR0R55 = err _55. e x it

— d e f in it io n o f the t e s t p rocesses
UNSAFETEST = TREATMENTLowDown I [{ f ire_High_Down} union d elta jeven ts] I OVERDOSE

OVERDOSE = f ire_High_Down. te s to k . e x it

macro
fire_ ev en ts = {fire_Low_Down, fire_Low_Up, f ireJIighJDown, fire_High_Up}
theracjevents = { lb , hb, I s , h s, xr, e l , err}
delta_events = {dJLowJDown, d_Low_Up, d_High_Down, dJiighJJp}

need so r t computation
end

D .6 T h e R ead ers and W riters E xam ple
— Readers and W riters Problem, due to De N ico la , Inverardi and N esi.
— Gate parameters implemented by r e la b e ll in g .

— alphabet
— rb , re denote reader begin , reader end
— wb, we denote w riter begin , w riter end
— p, v denote semaphore s ig n a ls

con jectu re
Spec = Impl

where

— s p e c if ic a t io n
Spec = i .r b .r e .S p e c [] i.w b.w e.Spec

— implementation
Impl = hide {p ,v } on S I [{p , v }] | (Proc [rb/b] [r e /e] | | | Proc [wb/b] [w e/e])
S = p .v .S
Proc = p .b .e .v .P r o c
end

D .7 T h e C andy M achine E xam ple
— Candy Machine Problem, due to De N ico la , Inverardi and N esi.
— Gate parameters modelled by r e la b e llin g .

— alphabet
— inlOp denotes input ten pence

290

— in25p denotes input tw en ty -fiv e pence
— outlOp denotes output lOp
— out25p denotes output 25p
— tlOp denotes through lOp
— t25p denotes through 25p
— candy denotes output candy
— message denotes a p iece of paper saying "try again"

conjecture
Spec = Candy

where

— s p e c if ic a t io n
Spec = in lO p .(i.m essage .S p ec [] i.ou tlO p.Spec [] i . candy.Spec)

— Candy machine
Candy = hide {t25p , tlOp} on

(((S lo t [tlOp / outlOp] [t25p / out25p]) |[{ t2 5 p , tlO p}]I
(F air [tlOp / inlOp] [t25p / in 25p])) I [candy.events] I Turn)

S lo t = in lO p .((i .m e ssa g e .S lo t) [] (i .o u t lO p .S lo t) [] (i .o u t2 5 p .S lo t))
Fair = (in 25p .can d y .F air) [] (inlO p. outlO p.Fair)

— Turn i s an ad d ition from the o r ig in a l. I t allow s a more natural
— s p e c if ic a t io n .
Turn = inlO p.(outlO p.Turn [] candy.Turn [] message.Turn)

macro
candy ̂ events = {inlO p, outlOp, message, candy}

end

D .8 T h e Scheduler E xam ple

— Scheduler Problem, due to M ilner, and De N ico la , Inverardi and N esi.
— T ranslated from CCS.
— The implementation i s a ltered to g iv e two version s of Cl,
— one which can s ta r t , and one which has to wait fo r the g l a c tio n .
— The o r ig in a l had a f ir in g process which sta r ted Cl, but th is
— implementation i s inappropriate fo r LOTOS because of the
— m ulti way syn ch ron isation .

— alphabet
— a l , a2 denote the ‘ ‘s t a r t ’ * a ctio n s of C l, C2
— b l , b2 denote the ‘ ‘stop*' a c tio n s of Cl, C2
— g l , g2 synchronise the implementation Cl, C2

con jectu re
Spec = h ide { b l, b2} on Sch

where

— s p e c if ic a t io n
Spec = a i.a 2 .S p ec

— implementation
Sch = hide { g l , g2} on (Cl I [{ g l , g2}]I C2)

Cl = a l . ((b l .g 2 .C l ’) [] (g 2 .b l .C l’))
C l’ = g l . a l . ((b l .g 2 .C l’) [] (g 2 . b l . C l’))

C2 = g 2 .a 2 .((b 2 .g l.C 2) □ (g l.b 2 .C 2))
end

292

